DECOMPOSITIONS OF COMPLETE MULTIPARTITE
GRAPHS AND GROUP DIVISIBLE DESIGNS

INTO ISOMORPHIC FACTORS

By
DALIBOR FRONCEK

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University
April 1994



DECOMPOSITIONS

OF COMPLETE MULTIPARTITE

GRAPHS AND GDD’S



ii

DOCTOR OF PHILOSOPHY (1994) McMASTER UNIVERSITY

(Mathematics) Hamilton, Ontario

TITLE: Decompositions of complete multipartite graphs and group

divisible designs into isomorphic factors

AUTHOR: Dalibor Fronéek, B. Sc. (Comenius University)
RNDr. {(Comenius University)
CSc. (Comenius University)

SUPERVISOR: Dr. Alexander Rosa

NUMBER OF PAGES: vii, 115



iit

ABSTRACT

A multipartite graph Km, m,,....m, (group divisible design GDD} is (2, d)-

decomposable if it can be decomposed into t factors with the same diameter d.
The graph Km, ma,...m, {(design GDD) is (¢, d)-isodecomposable if the factors are
moreover isomorphic. Km, m,,...m, (GDD) is admissible for a given £ if its number
of edges {or blocks) is divisible by ¢. f.(¢,d) or ¢-(2,d), respectively, is the minimum
number of vertices of a (t,d)-decomposable or (,d)-isodecomposable complete r-
partite graph, respectively. ¢.(%,d) is the minimum number such that for every
P 2 g.(t,d) there exists a (,d)-isodecomposable r-partite graph with p vertices,
and h.(t,d) is the minimum number such that all admissible r-partite graphs with
? 2 h.(t,d) vertices are (1, d)-isodecomposable.

We completely determine the spectrum of all bipartite and tripartite (2, d)-
isodecomposable graphs. We show that f3(2,d) = g2(2,d) = ¢5(2,d) = h2(2,d) and
f2(2,d) = g3(2,d) = ¢5(2,d) for each d, that is possible, while k3(2,2) = oo (i.e.,
for any given p, there is an admissible graph with more than p vertices which is not
{2,2)-isodecomposable), ha(2,3) = ¢3(2,3) + 2, k3(2,4) = ¢3(2,4) and h3(2,5) =
93(2,5) + 1.

For complete four-partite graphs we completely determine the spectrum
of (2, d)-isodecomposable graphs with at most one odd part. For the remaining

admissible graphs, namely for those with all odd parts, we show that there is no
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such (2, 5)-isodecomposable graph. For d = 2, 3,4 we solve the problem in this class
completely for the graphs K n.n,m and Kn a,m,m.

For all > 5 we determine smallest (2, d)-isodecomposable r-partite graphs
for all possible diameters and show that also in these cases always g.(2,d) = ¢;(2,d).
Some values of (2, d) are also determined.

We furthermore prove that if a GDD with r > 3 groups is (2, d)-isodecom-
posable, then d € 4 or d = co. We show that for every admissible n there exists
a (2,3)- and (2,4)-isodecomposable 3 — GDD(n,3), i.e.,, 2 GDD with 3 groups of
cardinality n and block size 3.

Finally, we determine the spectrum of the designs 3 — GDD{n,3) which

are decomposable into unicyclic factors.
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1. Introduction

After years of exhausting competition and unsuccessful battles against
increasingly discriminating regulations which preferred regular airlines, two major
charter companies from Beland and Deland decided to reach an agreement. The
agreement should enable them not only to continue their international operations
more effectively, but also to avoid the rules which prohibited charters to operate
domestic flights in both Beland and Deland. The top executives from Beland B-ways

and Deland D-lines agreed on the following conditions.

1. Each lire will be operated only by one of the companies.

2. To reach any destination, a passenger travelling with any one of the two
companies will not have to change more than twice.

3. The networks served by the two companies will have the same structure up

to the lengths of single lines.

They signed the agreement and appointed a joint committee to specify the new
networks. Unfortunately, the committee was unable to do this and was holding
meetings for weeks. Finally one of the senior members of the committee was so
bored that he resigned and a recent graduate was appointed to fill the vacancy. At
her first meeting she realized that she has already heard about a similar problem,
so she dug up old notes from her graph theory course and, as a result, one of the

authors of the paper [6] was approached. Being too busy, he recommended his
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student for the job. The student solved the problem, got a lot of money and free
lifetime tickets from both companies and did not have to do an applied research
any more.

Although not 2ll details of the story are completely true, the fact is that
in this thesis we solve the above mentioned problem. Translated to the language
of graph theory, this is the problem of decompositions of complete bipartite graphs
into two isomorphic factors with diameter 3, and the cited article [6] is dealing with
decompositions of complete graphs into factors with given diameters.

A facter F of a graph G = G(V, E) is a subgraph of G having the same ver-
tex set V. A decomposition of a graph G(V, E) into factors Fi(V, By ), Fa(V, Ez),...,
Fi(V, E,) is a t-tuple of factors such that E;NE; =@ forany1 <i< j <tand
.01 E: = E. A decomposition of G is called isomorphic if Fy & Fy & ... & F. If
t_= 2 then an isomorphism ¢ : Fi — F5 is also called a self-complementing iso-
morphism and the factors F; and F; the selfcomplementary factors. The diameier
diam G of a connected graph G is the maximum of the set of distances distg(z,y)
amcag all pairs of vertices of G. If G is disconnected, then diam G = co.

We already mentioned twice the first paper on decompositions of complete
graphs into factors with given diameters that was presented by J. Bosék, A. Rosa
and S. Znam [6] in 1966. The paper was published in 1968 and started an extensive
research in this area. Many authors studied the problem [see, e.g., 4, 5, 17, 21,

31], some of them also for directed graphs [26, 29, 30]. In 1975 first paper on
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decompositions of complete graphs into isomorphic factors with given diameters by
A. Kotzig and A. Rosa [16] appeared, followed by others [see, e.g., 15, 17, 24]. E.
Tomova [27] published first results on decompositions of complete bipartite graphs
into factors with given diameters in 1977 and later some others [28]. Decompositions
of complete multipartite graphs into selfcomplementary factors were studied by T.
Gangopadhyay and S. P. Rao Hebbare [11]. T. Gangopadhyay [10] then published a
paper dealing with decompositions of complete multipartite graphs into factors with
given diameters. F. Harary, R. W. Robinson and N. C. Wormald studied isomorphic
factorizations of multipartite graphs [13], and S. J. Quinn [20] studied isomorphic
factorizations of a special class of multipartite graphs, namely the graphs with all
parts of the same cardinality (called equipartite graphs).

Although some of the graphs presented in the napers [26, 27, 10] are self-
complementary, isomorphic factorizations per se were not consicered. On the other
hand, the authors of the paper on selfcomplementary factors [11] were not interested
in diameters of the factors. This thesis therefore joins both concepts. We study
decompositions of complete r-partite graphs, for all » > 2, into two isomorphic
factors with a given diameter. We always assume that the number of vertices of an
r-partite graph is at least r + 1, i.e., the graph is not a complete graph K.

E. Tomov4 [27] proved that a complete bipartite graph K, m decomposable
into two factors with the same finite diameter d exists if and only if d = 3,4,5

or 6, and presented smallest decomposable graphs for each of the diameters. T.
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Gangopadhyay [10] proved that there exists a complete r-partite graph for r > 3
decoraposable into two factors with the same finite diameter d if and only if d =
2,3,4 or 5. He also presented the smallest numbers of vertices of such decomposable
graphs.

A complete r-partite graph is (%, d)-decomposable if it is decomposable
into t factors with the same finite diameter d. I we in addition require all factors
to be mutually isomorphic, we say that the graph is (Z,d)-isodecomposable. We
denote a complete r-partite graph with r parts having m;,m2,...,m, elements,
respectively, by Km, ma,...m.. Or we denote the complete r-partite graph having
k; parts of cardinality n; forz =1,2,...,s by Kn‘;l nd2_phes In this case we always
assume that k; + ke +---+ &k, =r and n; # n; for i # j.

Decompositions of more general combinatorial objects were also studied,
though not as extensively as graph decompositions. Zs. Baranyai {1} in 1975 and
P. Tomasta [23, 24, 25] in 1976 and later studied decompositions of complete k-
uniform hypergraphs. Relatively recently three papers on decompositions of designs
into two factors appeared. A. Hartman [14] considered halving complete designs
into two factors with the same number of blocks, while P. K. Das and A. Rosa [8]
were halving Steiner triple systems into selfcomplementary factors. K. Phelps [19)
studied decompositions of complete designs with block size 4.

‘We are interested in decompositions of group divisible designs into self-

complementary factors with given diameter and into smallest connected factors. A
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group divisible design k — GDD(n,r) is 2 triple (V,G,B) where V is a set of ele-
ments, G is a partition of V' into r subsets of cardinality n called groups and B is
a collection of subsets of V' of cardinality k called blocks such that |GNB| <1 for
any group G € G and any block B € B and for any two elements z,y from distinct
groups there is exactly one block containing both z and y. Faciors are defined
analogically as in the case of graphs.

A decomposition of a GDD is, in fact, equivalent to a decomposition of
a multipartite complete graph satisfying an additional condition. If F is a factor
of a k — GDD(n,r) (V,G,B) then the underlying grapk of E is the r-partite graph
U(E) with the vertex set V in which two vertices z,y are adjacent if and only if
the elements z,y are adjacent in E, i.e., if they belong to the same block of E. A
decomposition of a k — GDD(n,r) is then equivalent to the decomposition of the
complete r-partite graph with parts of cardinality n into factors whose edge sets can
be partitioned into complete graphs K, where each K} corresponds to one block
of E.

In Chapter 2 we study decompositions of complete multipartite graphs
into two isomorphic factors with given diameters. In Sections 2.0 and 2.1 we give
the definitions and some necessary preliminary results. In particular, we define
two important classes of graphs. A complete multipartite graph Kutin‘,'?...nt- is
admissible if it has an even number of edges, and is strengly admissible if there is

at most one odd number n; having an odd exporent k;.
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In Section 2.2 we prove that every strongly admissible complete multipar-
tite graph is decomposable into two isomorphic disconnected factors and present the
smallest numbers of vertices of the complete r-partite graphs that are decomposable
into two isomorphic disconnected factors for every r > 1.

The method of extensions of factors given in Section 2.3 is later used in
many constructions.

Section 2.4 deals with bipartite and tripartite graphs. An r-partite com-
plete graph is (2, d)-isodecomposable if it can be decomposed into two isomorphic
factors with the diameter d. In this section we completely determine the spectrum
of all bipartite and tripartite (2, d)-isodecomposable graphs for all possible finite
diameters d.

Section 2.5 has two parts. In the first part we completely determine all
(2, d)-isodecomposable complete four-partite graphs with at most one odd part.
The second part contains results on the remaining class of admissible four-partite
graphs, i.e., the graphs Kn, mi,ms,m, With all odd parts. We prove that there
is no (2,5)-isodecomposable complete four-partite graph with all odd parts and
completely solve the problem of (2, d)-isodecomposability for d = 2,3,4 in the case
that the parts are of at most two different cardinalities.

Finally, the complete r-partite graphs with r > 5 are studied in Section

2.6. We determine smallest (2, d)-1sodecomposable r-partite complete graphs for



each possible finite d and each r > 5. We also prove that if such a smallest (2, d)-
isodecomposable r-partite complete graph has py vertices, then for every p > po
there exists an (2, d)-isodecomposable r-partite complete graph with p vertices.

In Chapter 3 we study isomorphic decompositions of group divisible de-
signs. In Section 3.0 we give the necessary definitions.

In Section 3.1 we prove that if a GDD is isodecomposable into two con-
nected factors, then the diameter of the factors is at most 4.

It is obvious that a k—GDD(n,r) is isodecomposable into two factors only
if the number of the blocks of the design is even. In particular, a 3—GDD(n,3) is not
isodecomposable for any odd n. In Section 3.2 we construct a (2, d)-isodecomposable
3 — GDD(n,3) for d = 3,4 and every even n > 4. An example of an (2,d)-
isodecomposable 3 — GDD(4,4) for d = 3,4 and co is presented in Section 3.3.

In Section 3.4 we prove that there is no 3 — GDD(n,3) isodecomposable
into connected acyclic factors and that the smallest possible connected factors giv-
ing an isomorphic decomposition are unicyclic, namely cycles. We prove that a
decomposition of a 3 — GDD(n,3) into isomorphic connected unicyclic factors is
possible only if n = 0(mod 6) and for each such n we construct the 3 — GDD(, 3)

having the required property.
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2. Decompositions of multipartite graphs into selfcomplementary factors

2.0. INTRODUCTORY NOTES AND DEFINITIONS

In this chapter we study decompositions of finite complete multipartite
graphs into two isomorphic factors with a prescribed diameter. A factor F of a graph
G = G(V, E) is 2 subgraph of G having the same vertex set V. A decomposition of
a graph G(V, E) into two factors Fi(V, E1) and Fo(V, E,) is a pair of factors such
that By N Ex = 0 and Ey U E, = E. A decomposition of G is called isomorphic
if F; = F,. An isomorphism ¢ : F} — F is then also called a self-complementing
isomorphism, self-complementing permutation or complementing permutation and
the factors Fy and F» the selfcomplementary factors with respect to G or simply
the selfcomplementary factors. The diameter diam G of a connected graph G is the
maximum of the set of distances distg(z,y) among all pairs of verticesof G. If G is
disconnected, then diam G = co. The order of a graph G is the number of vertices
of G while the size of G is the number of its edges. For terms not defined here, see
[2].

A. Kotzig and A. Rosa [16] and later P. Tomasta [24], D. Palumbiny (18],
and P. Hic and D. Pailumbiny [15] studied decompositions of complete graphs into
isomorphic factors with a given diameter. E. Tomové [27] studied decompositions of
complete bipartite graphs into two factors with given diameters and determined all
possible pairs of diameters of such factors. T. Gangopadhyay [10] studied decom-
positions of complete r-partite graphs (r 2 3) into two factors with given diameters

and determined also all possible pairs of diameters of such factors.
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In this thesis we join both concepts. We study decompositions of complete
r-partite graphs, for all r > 2 into two isomorphic factors with a given diameter.
We always assume that the number of vertices of an r-partite graph is at least r+1,
i.e. the graph is not a complete graph K.

It is well known that a complete graph K, is decomposable into two iso-
morphic factors (called selfcomplementary graphs) if and only if n = 0 or 1(mod 4)
and the diameter of such a factor is either 2 or 3. The decomposition exists for every
n > 4 (n 2 5 in the case of diameter 2), » = 0 or 1{mod 4). The decomposition into
an odd number m of isomorphic factors with a given diameter is studied in [16] for
m =3 and in [24] for m > 3.

E. Tomova [27) proved that a complete bipartite graph K, m decomposable
into two factors with the same finite diameter d exists if and only if d = 3,4,5 or
6 and determined the smallest decomposable graphs for each of the diameters. T.
Gangopadhyay {10] proved that a complete r-partite graph for r > 3 decomposable
into two factors with the same finite diameter d exists if and only if d = 2,3,4 or 5.
He also determined the smallest numbers of vertices of such decomposable graphs.

A complete r-partite graph is (¢, d)-decomposable if it is decomposable into
t factors with the same finite diameter d. If we in addition require 2ll factors to
be mutually isomorphic, we say that the graph is (2,d)-isodecomposable. We also
often say that a graph G is isodecomposeble if it is (2, d)-isodecomposable for a
finite diameter d which we do not determine specifically. We show that there are
(2, d)-isodecomposable complete r-partite graphs for each of the above mentioned
diameters for any r > 2. In all cases we also present smallest isodecomposable

grephs.
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2.1. PRELIMINARY THEOREMS

We denote a complete r-partite graph with r parts having m;, mz,...,m,
elements, respectively, by K, m,,...,m.- Or, especially if there are more parts having
the same cardinality, we denote the complete r-partite graph having k; parts of
cardinality n; for ¢ = 1,2,...,5 by Kn:, nk2  pke: In this case we always suppose
that ky + ko +---+ k;=rand n; #n; fori # ;.

Let f.(t,d) denote the smallest number of vertices of a complete r-partite
(¢, d)-decomposable graph. If such a number does not exist, then we define f-(¢,d) =
co. Let fi(t,d) denote the smallest integer such that for every m > f;(2,d) there
exist (t,d)-decomposable graph of order m. We again put fi(¢,d) = oo if such
2 number does not exist. We can see from the following theorems that always

f+(t,d) = fi(t,d). J. Bosik, A. Rosa and 5. Zném [6] proved the following result:

Theorem 2.1.1. (Bosik, Rosa, Znam) If a complete graph K, (n 2 2) is de-
composable into m factors with diameters dy,dz,...,dm, then for any N > n

the complete graph Ky is also decomposable into m factors with the diameters

dl, d21 . ,dm.
An analogue for r-partite graphs is due to E. Tomovd [27].

Theorem 2.1.2. (Tomovs) If 2 complete r-partite grapk Kn, ngyun, (* 2 2} is
decomposable into m factors with diameters dy,dz,...,dm (where d; 2 2 for i =
1,2,...,m), then for any N > ny, N2 2 nz,..., Ny 2 nr the graph Ky, N, N, 18

also decomposable into m factors with the diameters d;,dz,...,dm.

It is obvious that any (2,d)-isodecomposable complete r-partite graph

Ky ms,...,m, Must have an even number of edges and hence the number of parts
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having odd cardinalities must be 0 or 1 (mod4). A graph with this property, as
well as the corresponding r-tuple my,m2,..., My, is called admissible.

We can similarly introduce g,(t,d) as the smallest number of vertices of
a complete (t,d)-isodecomposable r-partite graph. We also define g;(,d) as the
smallest integer with the property that for any n > g;(t,d) there is a complete
r-partite (¢, d)-isodecomposable graph with n vertices. Finally, we define k.(1,d) as
the smallest integer such that any admissible complete r-partite graph with at least
h.(t,d) vertices is (t,d)-isodecomposable. If such numbers do not exist, we again
put ¢r(t,d) = 00, gi(t,d) = oo or h.(t,d) = o0, respectively. It is obvious that

frl(t,d) < g-(2,d) < 972, d) < he(2,d)-

We show now that the first and last inequality can be in some cases sharp. For
instance, Gangopadhyay [10] proved that f4(2,3) = 5, but there is no admissible
four-partite graph with 5 vertices and so g¢(2,3) > 6. The last inequality can be
sharp as well: £2(2,4) = g2(2,4) = ¢5(2,4) = 8, but k2(2,4) = oo since no graph
K3,m can be decomposed into two factors with diameter 4, as has been proved by
Tomova [27). On the other hand, the difference between k.(2,d) and g;(t,d) can be
small. There is only one admissible complete tripartite graph with at least 7 vertices
which is not (2, 5)-isodecomposable, namely K3 2,3. Because no graph with less than
7 verticesis (2, 5)-isodecomposable either, we can see that k3(2,5) = ¢3(2,5)+1 =8.

In the following paragraphs we prove some lemmas which will be useful in
constructions of classes of graphs with given parameters. From now on, we always
assume that the number of parts, r, is at least 2 and the number of vertices is at
least r < 1.

The following example shows that not all admissible complete multipartite

graphs are isodecomposable into connected factors.
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Example 2.1.3. Consider a graph G = Kj 3,3,11 with nine vertices v1,vz2,...,vg of
degree 17 and eleven vertices u;,uz,...,uy of degree 9. Suppose that the graph is
decomposable into two connected isomorphic factors F} and F;. Denote a; and b;
the degrees of the vertex v; in F} and F», and ¢; and d; the degrees of 2 vertex u;
in Iy and F5, respectively. Because ¢; + b; =17 fori =1,2,...,% and ¢;+d; =9
for j = 1,2,...,11, obviously a; # b; and ¢; # d;. Since the number of vertices
of degree 17 in G is odd, there is a value, say ¢, which appears more times in the
sequence aj,dz,...,0a than in by,b2,...,bs. If ¢ appears k& times in a1,az,..-,a9
and a;, = r, then since a;, +b;, = 17, we may assume without loss of generality that
t = a;, > b;, and hence ¢ > 9. Now there are k vertices of the set {v1,v2,...,79}
which are of degree ¢ in Fj while less than k vertices of this set are of degree ¢ in
F,. But then there must be a vertex uj, such that d;, =¢ > 9 and hence ¢;, =0,
i.e. vj, is an isolated vertex in Fy, which is impossible because Fj is connected. So

we have shown that K3 3 311, although admissible, is not (2, d)-isodecomposable for
any finite d.

This leads us to introduce another class of 'éraphs for which we prove
that its members are always decomposable into two connected isomorphic fac-
tors. A multipartite complete graph Kn§1u§=... ke where n,n2,...,n, are odd
and np41,Np42, ... Ns are even is strongly admissible if it is admissible and at most
one of the numbers ki, k2, ..., kp is odd (i.e., if the number of parts of the same odd
cardinality is always even with at most one exception).

First we deal with the bipartite case.

Lemma 2.1.4. A strongly admissible bipartite grapk Ko m is decomposable into

two connected isomorphic factors if and only if n,m > 2.
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Proof. If n = 1 then the graph is a star and every proper factor is disconnected.
If n = 2 then Ko m has m + 2 vertices and a connected factor has to have at least
m+ 1 edges, which is impossible, because K2 m has size 2m. Since every admissible
bipartite graph has at least one partite set with an even number of vertices, we
may assume that we have a graph Konm withn > 2and m > 3. Let the partite
sets be {u;,uz,...,u2n} and {v,v2,... ,Um}. We construct a connected factor ¥}
containing edges uim fori =1,2,...,n, usmm fori=n+1,n+2,...,2n and ug;v;
fori=1,2,...,n; § =3,...,m. The other factor F; contains all remaining edges

of Kon,m and is, clearly, isomorphic to F. O
Having the bipartite case solved, we can prove the general theorem.

Theorem 2.1.5. Every strongly admissible multipartite graph other than K1 am

or K2 m is decomposable into two connected isomorphic factors.

Proof Suppose that we have a strongly admissible graph K a2t p2ke 2ke where

all n;,n2,...,ne are odd. Then Zk is even and E2k n; = 4n. Take a com-
plete graph Ky, with vertices vn,z_l, Vin, V21,--- ,vz,:,_zf;u, eryUln, Vdlye .- V4n a0d
. decompose it into 2 isomorphic factors Fi and F> as follows: F) contains Kon
induced by the vertices v11,...,%1n,%21,---,V2n and all edges v1iv4; and v2;v3j,
i,j = 1,2,...,n. Then choose %; mutually disjoint subsets of cardinality n; of
the set {v11,...,V1n,¥21,-.,V2n} and delete from F; all edges having both end-
vertices in the same subset. Repeat this for k, subsets of cardinality n and so
on such that no two subsets of any cardinality have a vertex in common. Finally,

delete an edge v3;vy; from F if and only if v1;v2; has been deleted from Fi. The

remainder of the original graph Ky, is now isomorphic to Kn§‘1n§*= .2k and 7
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is clearly isomorphic to F». Now take any complete (= + 1)-partite complete graph
Kam, 2ma,...2mama; (Which is, of course, strongly admissible) with the partite sets
U; = {uilj = 1,...,2mi}, i = 1,...,2 + 1 and decompose it into two isomorphic
factors F} and F} asfollows: Foranyi < I € zand any s = 1,...,2m; an edge u;jus,
belongs to F{ if j € {1,...,m;} and to Fjif j € {mi +1,...,2m;}. Foranyi <=z
and any s = 1,...,m:+1 an edge u;ju.+1 s belongs to F] if j € {m; +1,...,2m;}
and to F} if 7 € {1,...,m:}. \

Ift = 0 and z > 2, the proof is finished. If £ = 0 and z = 1, the result is
given by Lemma 2.1.4.

If ¢t > 0 we can join every vertex of F] (even if z = 0 - in this case Fj is
just a set of isolated vertices) to all vertices v11,...,%1n,V21,--.,Y2s Of F1 and every
vertex of F} to all vertices v31,...,¥3n,V41,- - - , V4n t0 obtain two isomorphic factors
F!" and F¥ of a strongly admissible multipartite graph with 2k; parts of an odd
cardinality n;, 2k parts of an odd cardinality ns,...,2k: parts of an odd cardinality
ne, z parts of even cardinalities (not necessarily different) 2m;,2my,...,2m; and a
part of cardinality m.4.1. Because the cardinality m.4, is arbitrary, the theorem is
proved. O ’

Now we determine the spectrum of orders of strongly admissible graphs.
Because every strongly admissible graph is isodecomposable, as it follows from The-
orem 2.1.5., we will at the same time see that once we have an r-partite isodecom-

posable graph of order p then there exists an isodecomposable r-partite graph for
all orders greater than p.

Lemma 2.1.6. Let G & K, m,,..m, be a strongly admissible complete r-partite
graph containing a vertex of an even degree. Then there is a numberi € {1,2,...,7}
such that the graph G' = Kp, .. M;....m, is strongly admiscible for any M; 2 m;.
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Proof. First suppose that the number of vertices of G is odd. Then it follows from
the definition that there is an odd number among mi,ma,...,m, Which appears
an odd number of times in the r-tuple mi,mz,...,m,. Let G = I{n:"ngz...nf‘ . Let
n1,...,np be odd and ny41,.-.,7, even numbers. We may assume without loss
of generality that m; = n; and hence & is odd. Obviously, any vertex belonging
to a partite set of an odd cardinality has an even degree in G and, by definition,
ke,...,kp are even.

Now consider the graph G'. It contains k'; = k; — 1 = 0(mod 2) parts of
cardinality ny. If M; = nj € {n2,.-.,7p)}, then there are ¥; = k; + 1 = 1(mod 2)
parts of cardinality nj, 'y = -+« = kjo1 = kjp1 = --- = kp = 0(mod2) and G’ is
strongly admissible. If M; is an odd number not belonging to {n2,...,mp}, then
there is just one part having M; vertices, k'y, k2, .. ., k, are even and G’ is strongly
admissible. If M; is an even number, then again &'y, k2,...,kp are even and G' is
strongly admissible, too.

Now suppose that the order of G is even. Then, by the definition of
strongly admissible graphs, for any even m; there is an even number of parts having
cardinality m;. Since all vertices belonging to parts ;f odd cardinality have odd
degrees, in order for G to contain a vertex of an even degree, there must be at least
one part of an even cardinality. We can denote the even cardinality by m; and

follow the first part of the proof to obtain the desired result. O

The following corollary is an immediate consequence of Theorem 2.1.5 and

Lemma 2.1.6.

Corollary 2.1.7. Let G be an isodecomposable complete r-partite graph of order
p containing a vertex of an even degree. Then there exists an isodecomposable

complete r-partite graph of order q for any ¢ 2 p.
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Lemma 2.1.6 and Corollary 2.1.7 do not deal with strongly admissible
graphs with all vertices of odd degrees. We can remedy this by making the following

simple observation.

Proposition 2.1.8. Let Km,,ms,...m, be a strongly admissible graph of order p
with all vertices of odd degrees. Then there exists a strongly admissible r-partite

graph of the same order p having a vertex of an even degree.

Proof. If a strongly admissible r-partite graph Km, m.,...m, has all vertices of odd
degrees then r is an even number not less than 4, p is even, every partite set is of
an odd cardinality and each cardinality appears in the r-tuple m;,m2,...,mr an
even number of times. Therefore we can without loss of generality suppose that
m; =mg > mz =my 2 --- 2 Mpy = my. Moreover, because we always assume
that p > r+1 we may assume that m; = mz 2 3. Thenm; +1 and mg —1 are both
even, mz — 1 > 2 and one can easily see that the r-tuple m; +1,m2 —1,ma3,...,mr
is strongly admissible and 50 is Km,+1,mg—1,ms,....,m, Whose order is p. The degree
of every vertex belonging to the partite set of cardinality m; +1 isnow p—rm —1,

which is clearly an even number. O

Proposition 2.1.8 together with Corollary 2.1.7 instantly yields the follow-

ing.

Lemma 2.1.9. Let G be an isodecomposable complete r-partite graph of order p.
Then there exists an isodecomposable complete r-partite graph of order ¢ for any

qg2Dp-

Now we can determine the smallest orders of isodecomposable complete

r-partite graphs.
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Theorem 2.1.10. There exists an isodecomposable complete r-partite graph of
order p > r if and only if
r=2,p2T,o0r
r=0(mod4)andp 2 r+3, or
r=1l{mod4)andp=r+1,o0r
r =2(mod4),r >2andp2r+1,0r

r = 3(mod4) andp 2 r + 2.

Proof. The case r = 2 follows immediately from Lemma 2.1.4.

The orders stated in the other parts of the theorem are the smallest re-
spective orders of admissible r-partite graphs. This proves the necessity.

To prove sufficiency, one can observe that an r-partite graph Kz2,21,...1 1s
strongly admissible for all r = 0(mod 4). Similarly, K2,1,1,....1 is strongly admissible
for all r =1 or 2(mod4) and Kz.21.1,....1 is strongly admissible for all r = 3(mod 4).
Therefore all these graphs are isodecomposable by Theorem 2.1.5 which together
with Lemma 2.1.9 yields our result. O

-

2.2. DECOMPOSITION INTO DISCONNECTED FACTORS

First we show that strong admissibility is & sufficient condition for (2, c0)-

isodecomposability of an r-partite complete graph for every r > 2.

Theorem 2.2.1. Every strongly admissible complete r-partite graph is decompos-

able into two isomorphic disconnected factors.

Proof. Case I: r =2,



18

Every bipartite strongly admissible graph has a partite set of an even
cardinality. Hence we may assume that we have a graph K2a,m with partite sets
V = {v1,v2,-..,022} 2a0d U = {u1,u2,--- ,um}. The factor F} then contains edges
viu; foralli = 1,2,...,n;7 = 1,2,...,m while F» contains the remaining edges.

Both factors are clearly diséonnected and Fy = Fi.

Case 2: r > 2, at least one part is even.

Suppose we have a strongly admissible r-partite graph G withr >2and
a partite set V of an even cardinality 2m;. Let G = K2m,.ma,...m, 20d V =
{v1,v2,-.,2n}. Then the (r —1)-partite graph G' = Km;m;,..,m. With the vertex
set U = {u1,u2,...,1}, Where ¢ = mz+m3 +---+my, is also strongly admissible.
Now we have to distinguish two subcases:

(i) r = 3. In this case at least two parts are of even cardinalities, hence we
can decompose G' into factors F} and Fj as in Case 1 and then add the set V and
all edges viuj,i =1,2,...,m1;5 =1,2,...,¢ to F{. The resulting factor FlofGis
disconnected and isomorphic to F, which contains the set V, the factor F; and the
edges viu; fori=my+1,m +2,...,2my;5 = 1,2,...,q.

(i) r > 4. Here we can decompose G’ into isomorphic (and connected)
factors F! and F} using the construction from Theorem 2.1.5 and then add the

set V and edges viju; 2s in the subcase (i) to obtain again mutually isomorphic
disconnected factors F and F5.

Case 3: r > 2, all parts are odd.
In this case r = 0 or 1{mod 4) as follows from admissibility of G. Since

G 22 Kom,+1,2ma+1,...2m+1 1S strongly admissible, we may assume without loss of
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generality that m; = m2 2 m3 = My > ... > mp_;. We again distinguish two
subcases.

(i) m1=0. Thenmy=mz=---=Mr_1 = 0 which yields m, 2 1 (other-
wise G is a complete graph K). Therefore G = K1,1,....1,2m.+1- Let the vertex set
of G conz st of the part V = {v1,v2,...,v2m,+1} and r—1 vertices uy,uz,---, Ur1-
Let G' = Ky 1,...,1,2m,—1 have vertices v3,v4, - -+, V2m, 41, U1, U2y 0 ooy Yrl- Em,2>2,
then G' is a strongly admissible graph of order greater tha:; r and can be decom-
posed, by Theorem 2.1.5, into two isomorphic factors F{ and F}. K m, = 1, then
G' = K, and r = 0 or 1(mod4). It is well known that then G’ can be also de-
cbmposed into two isomorphic factors, say F' and Fj'. We can now construct the
factor Fy of G by joining v; to all vertices of Fi (or Fy' ) and v; to 2ll vertices of F;
(or F¥'). Then F; contains the isolated vertex v; and is isomorphic to F3.

(#) my 2 1. Because my = mz, G contains at least two non-trivial
parts V = {v1,v2,...,%2m 41} 20d W = {w1,w2,...,Wam,+1} and the remain-
ing vertices uy,u2,...,u,. Nowlet G' & Kgml_l'zsz'i.___'gm,+1 have the vertices
U3y e s V2my b1y Whe o oy Wamy b1y Ul -+ Ug- Asin (i), G' is always decomposable into
two isomorphic factors F{ and Fj and we can again extend Fj to Fj, joining vy and
w; to all vertices of F{ and vz to wr. Similarly we join vz and w, to all vertices
of F} and v; to w; to obtain F3. The factors Fy and F; are mutually isomorphic
and disconnected — both contain a component isomorphic to K3, induced by the

vertices vo and w, or v; and wy, respectively. This completes the proof. O

Since every bipartite and tripertite admissible graph is strongly admissible,

the following is evident.
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Theorem 2.2.2. Every admissible bipartite and tripartite graph is decomposable
into two isomorphic disconnected factors. In particular,
(¢) f2(2,00) = g2(2,00) = g3(2,00) = h2(2,00) =3,
(3) f3(2,00) =4,93(2, 00) = g3(2,00) = h3(2,00) = 3.

Now we present the smallest (2, c0)-isodecomposable graphs.
Although for r > 4 we are not able to determine all complete r-partite

(2, co)-isodecomposable graphs, we show that for every order greater than the min-

imum one there exists a (2, co)-isodecomposable graph.

Theorem 2.2.3. For every r > 2 one of the following holds:
() if r = 0(mod4) then fr(2,00) =r +1,9(2,00) = g;(2,00) =7 +3,
(b) if r = 1(mod 4) then f(2,00) = gr(2,00) =g'(2,00) =7 +1,
(c) if r = 2(mod4) then fr(2,00) = gr(2,00) = gr(2,00) =T +1,
(d) if r = 3(mod4) then fr(2,00) =1 +1,9+(2,00) = g;(2,00) =r +2.

Proof. Every r-partite graph of order r+1is decomposable into factors [ = K UK,
and F = K3 U Kj 3. Hence fr(2,00) =7 +1 for'fevery r > 1. The factors
of the minimal {2, co)-isodecomposable graphs are shown in Figure 2.2.1 and the
corresponding isomorphisms are the following. We denote by Fi(r) the disconnected
selfcomplementary factor of the minimal (2, 00)-isodecomposable complete r-partite
graph.

() For r = 4 the factor Fy(4) with the parts W = {wo}, Vi = {vi1,vi2},3 =
1,2,3. The cycles of the isomorphism ¢ : Fy — F are (wo), (v11v12), (v21v22),
(v31v32). Forany r = 0(mod4),r > 4 we get the factor Fi(r) such that we “blow
up”the vertex wg such that we put into the vertex any selfcomplementery graph of
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order r — 3 with vertices wg, 181, U2, - - , Uar—4 2nd the complementing isomorphism
¥ with ¥(wp) = wo. Then every vertex u;,0 < i < 4r — 4 is adjacent to vjx if and
only if wy is adjacent to v;x. The resulting factor Gf has isomorphism induced by
¢ and ¥. To construct a factor of any order greater than r + 3, say r +3 + p, we
simply add p new vertices w;, Wz, .., w, to the partite set W and join each of them
to all neighbours of we. Then the isomorphism takes every w; onto itself.

(b) For r = 5 the factor Fy(5) with the parts W = {w',w"}, Vi = {v;} for
i = 1,2,3,4. The cycles of the isomorphism ¢ are (w'w"), (v1v3vevz). We construct
a factor of any order p + 6 by adding p vertices w1, ws,...,wp to W and joining
each of them to v; and v;. The isomorphism now sends each w; onto itself.

We construct the factor Fj(9) with 10 vertices by adding 4 new parts
Un = {un}, Uiz = {u12},U1s = {zis}, UVic = {1} to Fi(5) with the edges
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Uy1Uiz, Ur2U13, U13tie and all edges u11v, urevi, unw”, upw” for i =1,2,3,4. The
cycle of the isomorphism is (u11u13u14%12)-

To increase the number of parts by any number 4r', we continue similarly,
adding new parts Ujk,j = 2,3,...,7";k = 1,2,3,4 with edges and isomorphism
exactly as above. To increase the order of an r-partite graph, we again add vertices
Wy, W,---,Wp to the part W and edges wvy,wevy for every & = 1,2,...,p and
weu;r whenever the edge wevp exists. Again the isomorphism takes each w; onto
itself.

(c) For r = 2 the minimal graph is K>, and the factors are I\ UK,.
For r = 6 we consider the factor Fi(6) with the parts Vi = {vo1,v02}, Vi =
{n}, Vo = {v2},Va = {v3},Va = {vs}, W = {wo}. The isomorphism is defined
by (wo), (vo1%02), (V193v4v2). We increase the number of parts by “blowing up” the
vertex wp into selfcomplementary graph exactly as in part (a). We also increase the
order of the factor by adding copies of the vertex wy to the partite set W.

(d) For r = 3 we consider the factor F3(3) with the parts V1 = {v11,v12},
Vo = {ve1,v22}, W = {wo}. The isomorphism is deﬁ.ng;l by (vi1v12), (v21v22), (wo)
and we increase the number of parts and the order of the factor exactly as in (a)

and (c). O

We have not been able to determine h.(2,00) for r > 3,7 = 1,2,3(mod 4).
For r = 0(mod 4) we shall later show that k.(2,00) = co.

2.3. EXTENSIONS OF ISOMORPHIC FACTORS PRESERVING DIAMETERS

Although we have proved that every strongly admissible graph is isode-
composable, we have not been able yet to decompose 2 multipartite graph into
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isomorphic factors with a particular finite diameter. In this section we give the
necessary tools for such decompositions.

Most of our constructions of isomorphic factors with a given diameter are
based on “extensions” of smaller factors. In fact, we already used the “extension” in
the proof of Theorem 2.2.3. Having a factor with a diameter d of an r-partite graph
G, we construct factors with the same diameter by extending a partite set of G into
sets of all strongly admissible cardinalities. The method is a special case of that
used by Gangopadhyay and Rao Hebbare [11], although they studied just factors
with given diameters not requiring their isomorphism. In the following lemmas we
describe two different cases.

The first lemma allows us to extend a partite set of a cardinality m; to

any cardinality greater than m;.

Lemma 2.3.1. Let G = K, .ma,...m. be a complete r-partite graph decomposable
into two isomorphic factors Fi and F» with finite diameter d and let V; be a partite
set of G of cardinality m;. Let there exist an isomorphism ¢ : F; — F» and a vertex
vi; € V; such that ¢(vi;) = vij. Then G' = Ky, M;,...,m, IS 2lso decomposable

into two isomorphic factors with the diameter d for any M; 2 m;.

Proof. Let an r-partite graph G with partite sets V1, Vz,...,Vr be decomposable
into two isomorphic factors Fy and F; with the diameter d. Suppose that the partite
set Vi of cardinality m; and its vertex v;; satisfy along with an isomorphism ¢ the
assumnptions of our lemma. Let G* be a complete multipartite graph with the parts
Vi = ViU {v) mg1reoo% a}s V25---5 Voo We construct factors Fj and F; as

follows:
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F! (F}, respectively) contains all edges belonging to Fy (F2) and moreover
each vertex v};(i = m1 +1,..., M) is adjacent to all neighbours of v11 in Fi (F2).
Now we define an isomorphism ¢’ : F] — Fi:

¢'(vi;) = $(vi;) fori=1,2,...,m57 = 1,2,...,m;
#'(vy;)=vy forj=m+1,..., M.

It is easy to see that ¢’ is really an isomorphism. For any v); an edge
¢'(v};)¢'(vi1) = v1;é(vir) appears in Fi if and only if v116(vit) exists in Fj. But
this occurs if and only if v13vx exists in FY and this is true if and only if v]; and
vkt are adjacent in Fj. Hence ¢'(v};)¢'(vis) appears in F3 if and only if the edge
v};vkt exists in Fy.

Furthermore, an edge ¢'(vi;)¢'(vrt) appearsin Fj if and only if vijuRs exists
in F! because in this case ¢'(vi;) = ¢(vi;), ¢'(vet) = ¢(vkt) and ¢ is an isomorphism.

Now let diste(u,w) and dister(u,w) be the distances between vertices
u and w in G and G, respectively. If u,w € {v11,v} my41s---2%] a5, }» then
dister (v, w) = dista(u,w) < d. ¥ both u,w € {v11,%] m 415+++1V] py, }» then
dister(u, w) = 2 < d. Finally, if u belongs to {v11,9] m,%31,+-+» V1 ¢, } While w does
not, then again distgr(u,w) = distge(v11, w) = distg(v11,w) < d. Therefore Fy is
of diameter at most d. Because diam G = d, there are vertices ug and wg in G such
that distg(uo, wo) = d. Let P’ be a ug — wo path containing any vertex v}; and let
P be a ug — wp path which arises from P’ by replacing v}; by v11. Then P! and P
are of the same length and hence diste:(uo, wo) = distg(uo, wo) = d. Therefore Fy
has diameter d, which completes the proof. O

However, Lemma 2.3.1 is not as universal as it seems to be. Since the
“fixed” vertex required in the construction can appear in at most one part, we need

another lemma which extends partite sets by even numbers of vertices.
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Lemma 2.3.2. Let G = Kp, . m,,...m. be 2 complete r-partite graph decomposable
into two isomorphic factors Fy and F»> with finite diameter d and let V; be a partite
set of G of cardinality m;. Let there exist an isomorphism ¢ : Fy — F; and
a pair of vertices v;;,vir € V; such that ¢(vi;) = vix and ¢(vir) = vij. Then
G = Knm,,...M;,...m, is &lso decomposable into two isomorphic factors with diameter

d for any M; = m; + 2m' where m' is an arbitrary positive integer.

Proof. Suppose we have a factorization of G and an isomorphism with the required
properties where V; = W1, vi; = w11 and v = v12. Let G' be the graph described
in the proof of Lemma 2.3.1. We can construct factors F{ and F3 as follows:

F} contains all edges belonging fo F1 and in addition to it each vertex
U m 41> Vimy3s - -+ Viag —1 s adjacent to all neighbours of v1; and each vertex
Y}y 420 Vimy 441+ -2 Vipg, 15 adjacent to all neighbours of v;2.

Now we define an isomorphism ¢’ : F{ — F3:

#'(vi;) = ¢(vij) for i =1,2,...,15 =1,2,...,m;

-

¢'(‘U;k) =v§ B+l for k=m1 +1,m1 +3,...,M1 -1

and

¢'(vip) = v} gy for k=my +2,my +4,..., M.

One can easily verify that similarly as in Lemma 2.3.1, ¢' is again an isomorphism.
The distance between any two vertices of 0 V; remains in G’ the same as in G,
therefore diam G' > diamG. The d.istan:::'between any v}, and any vs in G’
is the same as distg(v11,vse) or distg(viz2,vsr), according to parity of k and it is

therefore always at most d. Finally, the distance diste(vi;,v};) equals either 2 or
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distg(v11, v12), according to the parity of |k — I|. Hence diam G’ < diam G, which
completes the proof. O

The following general theorem summarizes the techniques used in the lem-

mas above.

Theorem 2.3.3. Let K, m,,...m, With partite sets Vi = {vi1,%i2,---,Vim; 8 =
1,2,...,r be (2,d)-isodecomposable into factors Fy and F». Let 2 < ¢ < r and
é : F, — F» be an isomorphism such that ¢(v11) = v11, $(vir) = viz and ¢(viz) = vix
fori=2,3,...,q. Then a graph K, M,,. M. is (2,d)-isodecomposable for every
admissible r-tuple M, Mz, ..., M, such that My = m; + m}, M; = m; + 2m;] for
i=2,3,...,¢ and M; =m; fori = ¢+ 1,9 +2,...,r where all m}’s are arbitrary

non-negative integers.

Proof. Follows easily from repeated application of Lemmas 2.3.1 and 2.3.2. O

92.4. BIPARTITE AND TRIPARTITE GRAPHS

In this section we completely determine all complete bipartite and tripar-

tite graphs decomposable into two isomorphic factors with 2 finite diameter.

Theorem 2.4.1. A complete bipartite graph K, m is (2, d)-isodecomposable for a
finite diameter d if and only if at least one of the numbers n,m is even, n < m and
one of the following conditions applies:

(e) d=3, n>6,m26;

(b)) d=4,n=24,m240orn=3,m26;

(¢)d=5,nrn>23,m2>4;

(d) d=6,n=23,m2=4.
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The necessity follows from Tomova’s result [27]. We present the theorem

in a restricted form stating only the parts relevant to our topic.

Theorem 2.4.2. (Tomovéd) A complete bipartite graph Kn m is (2, d)-decompos-

able for a finite diameter d if and only if at least one of the numbers n,m is even

and one of the conditions (a)-{(d) of Theorem 2.4.1 applies.

A complementary permutation of F} is an isomorphism between the factors

F; and F; of a graph G. Isomorphism is often described in the form of cycles of the

complementing permutation.

Proof of Theorem 2.4.1. Necessity has been shown above.

Sufficiency:

() Consider the factor Fj = G(2, 3) of the graph K ¢ of Figure 2.4.1 and

the isomorphism

¢3 : Fy = Fy : (v11)(v12){(v13v16)(v1av1s ) (v21v25 (V2226 ) (Va3tae).
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The distance dist(v11,v2¢) = 3 and for any other pair of vertices dist(vij,ver) < 3,
hence diam F} = 3.

(b) Consider the factor F; 22 G1(2,4) of Ky of Figure 2.4.2 and
$41 : Fy = F : (v11)(v12v14))(v13) (v21v22 (w23 vae).

Here dist(v11,v13) = 4 and for any other pair of vertices dist(v;j,vki) < 4, hence
diam Fj = 4. -

To complete this part one needs to see that K3 ¢ is isodecomposable into
factors Fy = F, = G(2,4) of Figure 2.4.2 where

b4z : Fy = Fy 1 (v11)(v12)(v13 ) (v21vas J{v22v24 ) (V23 v26)-

Again dist(vg;,v2¢) = 4 and for any other pair of vertices dist(vij,vx1) < 4, hence
diam F]_ =4.
(c) Consider the factor Fy = G(2,5) of K34 of Figure 2.4.3 and

¢s : Fi = F» : (v11)(v12v13)(v2192¢)(v22023).
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Now dist(v13,v21) = 5 and for any other pair of vertices dist(v;j,vr) < 5, hence
dia.m F 1 = 5.
(d) Finally, consider the factor Fy = G(2,6) of K3 4 of Figure 2.4.3 and

¢s5 : F1 = Fa 1 {v11)(v12)(v13 }(v21v23)(v22v24).

Here dist(va21,v2¢) = 6 and for any other pair of vertices dist(vij,ver) < 6, hence
diam F} = 6.

In all cases (a)—{d) the isomorphism ¢4 satisfies the assumptions of The-
orem 2.3.3 and all considered factors can be extended into factors of arbitrary
admissible graphs K ar for any N > n and M > m, which are therefore (2, d)-

isodecomposable. O

The following corollary follows easily from Theorem 2.4.1 and therefore
the proof can be omitted. To see that always ky(2,d) = oo, one can notice that if
Kn,m is (2,d)-isodecomposable then the smaller partite set has at least 3 vertices.

Since there is no (2, d)-isodecomposable graph K , for any finite d, we can for any
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np find an infinite class of graphs of order greater than ng, namely all graphs Kz »

with n > ng — 1, which are not isodecomposable.
Corollary 2.4.3.

(¢) f2(2,3) = g2(2,3) = 92(2,3) = 12, h2(2,3) = e0,
(b) f2(2,4) = 92(2,4) = g3(2,4) = 8, h2(2,4) = oo,
(c) F2(2,5) = g2(2,5) = 93(2,5) = 7, h2(2,5) = o0,
(2) f2(2,6) = 92(2,6) = g3(2,6) = T, h2(2,6) = 0.

Decomposability of r-partite graphs,r > 3, was proved by Gangopadhyay
[10]). Here we present Gangopadhyay’s results dealing with tripartite graphs.

Theorem 2.4.4. (Gangopadhyay) A complete tripartite (2, d)-decomposable graph
K, ,ma,ms With m vertices for a finite diameter d exists if and only if one of the
following cases occurs:

(c) d=2, m2>13;

() d=3, m26;

(c) d=4, m25;

(d) d=5 m>T.

In the following theorems we show that for all the above mentioned car-

dinalities of minimal (2, d)-decomposable graphs there exist (2, d)-isodecomposable
graphs, i.e. f3(2,d) = ¢3(2,d) for d = 2,3,4,5.

Lemma 2.4.5. A complete tripartite graph Km, mas,m; With m; < mz < mj is not
(2, 2)-isodecomposable for m; < 4.

Proof. Suppose there is a (2,2)-isodecomposable graph Km,,ma,m; With the ver-

tex sets v& = {Ulh---:vlmg}:vé = {V21,1’22,~--11’2m3}1% = {1}31,032,---,1’3"“},
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where m; < 3. First we show that if m; > 1 then no vertex of V2 U V3 can
be adjacent to exactly one vertex of Vi in either factor. Suppose, to the con-
trary, that m; > 1 and there is a vertex in V., U V3 which is; adjacent in one
factor to exactly one vertex of V3. We can assume without loss of generality
that v3; is in Fy adjacent to vi1,v21,¥22,-++3V2r- We can see that r > 0, oth-
erwise vy, is the only neighbour of w31 and distg, (v31,v12)} > 2, which is im-
possible. If r = mg, then v3; isin F» adjacent only to the vertices vy, > 1,
and distr, (v31,v11) > 2. All vertices vz ry1,%2 r42,---5V2m; must be in F1 adja-
cent to vy;, otherwise again distr, (va1,v2m,) > 2. But vy is in F2 adjacent to
V2 rb1y U2 s#25- - -y V2my and the vertices v11,{ > 1, and none of them is a neighbour
of vy, there. Thus distr,(vs1,211) > 2, which is a contradiction. Therefore every
vertex of Va U V4 is adjacent to all vertices of V; in one factor, and to none of them
in the other factor. Assume that vs; is in Fi not adjacent to any vertex of V3.
Then vs; must be in F} adjacent to all vertices of V2, otherwise there is a vertex
vo; such that distp,(vei,v31) > 2. Hence v3; is in F> adjacent only to the vertices
U114---,V1m, 20d every other vertex vz; € V3 must be.then in F, adjacent to one
of the vertices vy, ...,%1m,. Consequently, each vertex vz; must be in F; adjacent
to all vertices of V; and F» contains the complete bipartite graph (Vi U V5}.

On the other hand, every vertex v3; € V5 is in F} adjacent only to vertices
of V, and therefore it must be adjacent to all of them. Thus F; contains the complete
bipartite graph (V2 U V3).

Because there is no edge v2;v3; in F2, every vertex vz; must be adjacent
to one of the vertices of Vi (otherwise distr,(v2i,v31) > 2) and therefore to all of
them. Then F contains also the complete bipartite graph (V1 Uz} and the vertices

V11y---,V1m, arein F isolated, whichis a contradiction. O
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The previous lemma shows that A3(2,2) = oo and the only candidate for

2, 2)-isodecomposability with f3(2,2) = 13 verticesis K3 4,5. We further show that
this graph is indeed (2, 2)-isodecomposable and therefore f3(2,2) = ¢3(2,2) =13. In
the other cases we also show that there is always exactly one (2, d)-isodecomposable
graph with f5(2,d) vertices for each d = 3,4,5. We also prove in these cases that
every admissible complete tripartite graph with at least g3(2,d) vertices is (2,d)-
isodecomposable, i.e. f3(2,d) = g3(2,d) = ¢5(2,2) = h3(2,d) for d = 3,4, 5.

First we exclude two graphs. Two sequences B = by, b2,...,bp and € =
€1,C2,- .- ,Cn are isomorphic if there exists a one-to-one mapping 1 : N — N such
that b; = «y(;). The degree sequence of a graph G with a vertex set v1,vz,...,vn
is the non-increasing sequence A = ay, a2, ...,a, Where a; = degv;;. The sequence
is isodecomposable if there exist isomorphic sequences B = by, b2,...,bp 20d C =
€1,€2,---,Cn (DOt necessarily non-increasing) such that a; = b; +¢; for each i €
N = {1,2,...,n}. Obviously, a graph G is isodecomposable only if the degree
sequence of G is isodecomposable. Moreover, G is isodes:omposa.ble into two factors
with a finite diameter only if the degree sequence of G is isodecomposable into two

sequences with all positive entries.
Lemma 2.4.6. K24 is not (2,3)-isodecomposable.

Proof. The degree sequence of Ki24 is A = 6,5,5,3,3,3,3. Let A be isodecom-
posable into B = b;,b2,...,br and C = ¢y,62,...,¢7. Let B’ = b,b;,...,07 be
the re-ordered sequence corresponding to B such that 4 > & > .- 2 b; and

C' = c},ch,...,& be the re-ordered sequence corresponding to C such that if
b; = bj; then ¢} = ¢j;, ie, b} + ¢} = aj;.
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We start with b} = 5. Here b} = b;, because a; < 5 tor eachi > 2 and if
b; = 5 then ¢; = 0, which is impossible. But if b] = b = 5, then there also has to
be ¢; = 5 for some : > 1, which is impossible as well.

Now let &, = 4. If B' = 4,4,2,1,1,1,1 then neither ¢} nor ¢; can be 4,
because a; = 6. Hence ¢; = ¢ =4forj# k;j,k>2and bi+c, > 5fori=1,2,5k,
which is impossible. If B' = 4,3,3,1,1,1,1 then either ¢4 = 3 or ¢; = 3, say &.
Then ¥}, + ¢§ = 4,6 or 7, which is not possible. If B'=4,3,2,2,1,1,1and ¢} =2,
then necessarily ¢, = 2 and ¢, = 3 or ¢} = 3, say ¢;. Then there is > 4 such that
b 4 ¢} > 5, which is impossible. Therefore ¢} =1. If ¢ =4 ér ¢ =4, this reduces
to the previous case. Hence there must be 5 = 3 (otherwise b} + ¢; < 5 for each
i=12,...,7) and & = ¢; = 1 (otherwise b} + ¢! = 6 or 4 for i = 3 or 4, which
is impossible). So C' = 1,3,1,1,2,2,4, and we examine factors with this degree
sequence later.

Finally, consider 3, = 3. If B’ = 3,3,3,2,1,1,1 then there must be : €
{1,2,3} such that ¢} = 3, say ¢ = 1. Clearly ¢;,c; < 3 and then one of them, say
&, equals 1. Hence ¢ + B, = 4, which is impossible. f B’ = 3,5,2,2,2,1,1 then
there must be C' = 3,2,3,1,1,2,2 which we examine later. If B’ =3,2,2,2,2,2,1
then ¢} = 3 and five of the entries ¢, ,...,c; are equal to 2. But then there is
i€ {2,3,...,7} such that ¢} + b} = 4, which is again impossible.

So it remains to investigate factors with the degree sequences 4,3,2,2,1,1,1
and 3,3,2,2,2,1,1. If K24 is (2,3)-isodecomposable, the factors F; and F2 have
both order and size 7 and are connected and therefore are unicyclic graphs. The
longest possible cycle in F; is Cy, because otherwise we have less than 3 vertices of
degree 1. If we have the cycle Cy = (v1,v2,v3, 4}, one of the vertices, say v;, must
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be of degree 4 in Fy. Since there are only 2 vertices of degree 2 in i1, we have two
possible graphs H; and Hj, shown in Figure 2.4.4.

But diam H; = 4, which is a contradiction. Hence v7 is adjacent to one of
Vo, Vg, S2Y Va.

Now consider the graph G = K 24 with the partite sets U = {u;;}, U2 =
{u21,u22},Us = {us1,use, us3,u34}- The degree sequence B corresponding to Fy
yields v2 = uj; and vy = uy;, say uz;. Hence vy must be one of the vertices vs;, say
v31, and v3 = uz2. But if we compare it with the degree sequences A, B and C we
can see that the degree of uz2 in F] must be 1, which isa contradiction.

If the factor F} of G contains a eycle Cs, the vertices of the cycle must
belong to different partite sets. Let tke cycle be {u11,us21,us1). The vertex uy;
must be of degree 3 in F and u3; of degree 4 as we have seen above. Then Fj must
be one of the graphs of Figure 2.4.5.

Since both have diameter 4, we get a contradiction and K 2  cannot be de-
composed into two isomorphic factors with diameter 3 having the degree sequences
4322111,

Finally, let us examine the factors with the degree sequence 3,3,2,2,2,1,1.
The factor F) is again unicyclic and cannot contain Cs. If Fi contains Cjy, then
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" Fy is one of the graphs Hs, Hy of Figure 2.4.6. But diam Hs = 4, hence oﬁly H
remains. The cycle Cs contains u;j, both uz; and use :'md two vertices of U3, say
u3; and u3z so that Cs = (u11,u21,u31,%22,u32). No vertex us; can be in Fj of
degree 3, otherwise it is isolated in F3, which is impossiole. Therefore u;; and ug; '
are the vertices of degree 3. Hence u;; is adjacent to ugg, say, while us) is adjacent
to uz¢. Thus we have three mutually non-adjacent vertices ujy,us2,uss, and F
contains the triangle {111, 222, 234), which contradicts our assumption that the only

cycle contained in F; is Cs.

i I} contains Cy, then F; must be one of the graphs Hs, Hg, H7 of Figure
2.4.7, whose diameter is 4 (in the case of Hs and Hs) or 5 (Hz)-
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X F contains C3, then Fj is one of the graphs Hg, Hy, Hy9, H1y of Figure
2.4.8 and diam H; = 4 for : = 8,9 or diam H; = § for { = 10,11. Therefore K; 24
cannot be decomposed into two isomorphic factors with diameter 3 having the
degree sequences 4,3,2,2,1,1,1 and hence Kj 24 is not (2, 3)-isodecomposable. O

Lemma 2.4.7. K23 is not (2,5)-isodecomposable.

Proof. Suppose that K323 is (2,5)-isodecomposable. Then the factor of K23,
F1, must have 8 edges. The degree of a vertex in F} cannot exceed 4, otherwise
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F, is disconnected. If there is a vertex vg of degree 4 in F1 and vi,v2,v3,vs are
its neighbours in Fy, then the graph (v, v1,...,v4) has in F7 diameter at most 2.
Because F contains only two more vertices, it is clear that then diam F; < 4. If
there is no vertex of degree 4 in Fj, then there must be at least two vertices of
degree 3, say u and v, because Fj is of size 8. But then z and v ave at 2 distance at
most 2 and F} must be again of a diameter at most 4, which is impossible. Finally,
there is no graph with maximum degree 2 having 7 vertices and 8 edges and hence

K223 is not (2, 5)-isodecomposable. O

We are now ready to characterize all (2, d)-isodecomposable graphs for a
finite diameter d.

Theorem 2.4.8. A complete tripartite graph Km,,mam, With m1 < me S m3 is
(2, d)-isodecomposable if and only if at most one of the numbers m,, ma,m3 Is odd
and one of the following conditions holds:

(¢) d=2, my 24,mz 2 4,m3 25;

() d=3, m122,m2>2,m3 22, orm =1,mz 24,m3 >4;

(¢)d=4, m 21,me22,m322;

(d) d=35, m 21l,m 22,m3 24.

Moreover, for each d = 2,3,4,5 there is a unique (2, d)-isodecomposable
graph of the minimum order: Ky 4,5 for d = 2, K22 for d = 3, K29 ford =4
and K;['z'( ford=5.

Proof. The minimelity of the orders follows again from Theorem 2.4.4. The unique-
ness in the cases d = 3 and 4 is evident, because at most one partite set can

have an odd cardinality. For d = 2, the graphs Km, mams With my < 4 are
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not (2, 2)-isodecomposable by Lemma 2.4.5. For d = §, there is only one other

admissible complete tripartite graph with 7 vertices, namely K2 3, which is not
(2, 5)-isodecomposable by Lemma, 2.4.7.

To prove that all admissible graphs larger than the minimal ones are also
(2, d)-isodecomposable for d = 2,3,4,5, respectively, we consider the factors shown
in Figures 2.4.9-2.4.12 and the corresponding isomorphisms ¢4; : F1 — F>.

(a) We consider Fi = G1(3,2) of Figure 2.4.9 with ¢z, : [ — F2.

é21 = (va1)(v1s)(vis )(v12v14)(v21 V22 }(vasvag J(va1 3¢ ) (vazvas)-

One can check that dist(vi;,vgr) < 2 for all pairs of vertices.

Gi(3,2) s

V14

Figure 2.4.9

(b) The factors are shown in Figure 2.4.10. Form; = my = m3 = 2
consider the factor Fj = G1(3,3) and

$31 = (v11v12)(v21v22) (v31932).
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The distance dist(v12, v22) = 3; for all other pairs of vertices dist(vi;, vir) < 3.

For my + mg + m3 = 7 consider first m; > 2 and Fy € G2(3,3) with

$32: (’t’nvlz)(t’nvzz)(vn)('032033)-

39

Here again dist{v;2,v22) = 3 and dist(v;;,vx) < 3 for all other pairs of vertices. It

has been shown in Lemma 2.4.6 that K » 4 is not (2, 3)-§sodecomposab1e, hence for

m; = 1 we start with my = m3 = 4. We take Fj = G3(3,%) and

¢33 : (v11)(v21922) (V2324 )(v31 V33 ) (V32034).

Here dist(ve;,v33) = 3 and dist(v;;, vi) < 3 for all other pairs of vertices.

(c) The factors are shown in Figure 2.4.11. For m; +m2+m3 = 5 consider

the factor Fy = G1(3,4) of the only admissible tripartite graph of order 5, K3 2.2,

and

¢41 : (1’11)(1’21031”22”32)-
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Figure 2.4.11

The distance dist(v21,v22) = 4; for all other pairs of vertices dist(v;;,vx1) < 4.
For m; + m2 + mz = 6 consider the factor F; = G2(3,4) of the only
admissible tripartite graph of order 6, X3 2 2, and

b4z @ (v11){v12)(v21v31092v32)-

Here dist(vs1,v32) =4 and for all other pairs of vertices dist(v;;,vr) < 4.

For m; + ma + m3 = 7 consider first F; = G3(3,4) and

$az : (v11)(v21v22)(va1vaz)(vazvae).

The distance dist(v3¢,v22) = 4 and for all other pairs of vertices dist{v;;,vi) < 4.
By Theorem 2.3.3 we can extend V2 to any even cardinality and V3 to any even
cardinality greater than 2, hence every admissible graph K m,,m, with at least 7

vertices is (2,4)-isodecomposable.
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The other admissible tripartite graph of order 7 is Kz 2 3. We cpnsider its
factor Fy = G4(3,4) and the isomorphism

Pas: (0111’12)(921022)(031)(032033)-

The distance dist(vs1,v32) = 4; for all other pairs of vertices dist(vij,vr) < 4.
The isomorphism ¢44 clearly satisfies the assumptions of Theorem 2.3.3 so that we
can extend V; and Vi to any even cardinality and V3 to any cardinality not less
than 3. Therefore every admissible tripartite graph Km, mams With 2 < my <
ma < mg3 is (2,4)-isodecomposable which together witia the previous cases proves
that every admissible tripartite graph Km, ma,ms With at least 5 vertices is (2,4)-
isodecomposable.

(d) As we have seen above, the only (2, 5)-icodecomposable graph of order
7is K1,24. We take the factor Fy =2 G1(3,5) of Figure 2.4.12 and the isomorphism

¢s1 ¢ (w11 )(v21v22)(va1 vaz ) (vazvas)-

The distance dist(vs;,vs4) = 5 and for 2ll other pairs of vertices dist(vi;,vx1) < 5.
It follows again from Theorem 2.3.3 that every admissible tripartite graph of order



42

at least 7 with the single exception of K22 3 is (2, 5)-icodecomposable and the proof

is now complete. O
From Theorem 2.4.8 we immediately have the following.

Corollary 2.4.9.

(2) f(2,2) = g3(2,2) = g3(2,2) = 13, h3(2,2) = oo,
(b) f3(2,3) = g3(2,3) = ¢5(2,3) = 6,h3(2,3) = §,
(c) f3(2,4) = 93(2,4) = 65(2,4) = ha(2,4) = 5,

(2) f2(2,5) = g3(2,5) = 93(2,5) = 7, h3(2,5) = 8.

2.5. FOUR-PARTITE GRAPHS

This section has two parts. In the first part we completely determine
all (2, d)-decomposable complete four-partite graphs with at most one partite set
of an odd cardinality. In the second part we study the case of four odd par-
tite sets. We prove that all (2, d)-decomposable graphs Kn nm,m are also (2,d)-
isodecomposable for d = 3,4. For d = 2 we show that 2ll graphs with »,m 2> 3 are
(2,2)-isodecomposable while the graphs K ,3,m,m are not (2,2)-isodecomposable.
On the other hand, we prove that there are no (2, 5)-isodecomposable four-partite
graphs with zll odd parts. We also prove (as a corollary of a more general result)
that the graphs Ky nn,m are not (2, d)-isodecomposable for any odd numbers n,m
and for any d.

First we state a theorem of Gangopadhyay [10] dealing with decomposable
graphs.
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Theorem 2.5.1. (Gangopadhyay) A complete four-partite (2,d)-decomposable
graph of order n for a finite diameter d exists if and only if one of the following
conditions applies:

() d=2andn 2T,

(b) d=3 andn =35,

(¢c)d=4andn 26,

(d) d=5andn >8.

Let us remark thaut Gangopadhyay determined the minimum order for
d = 3 as 4. But according to our definition of r-partite graphs, 2 four-partite graph

has at least 5 vertices.

Theorem 2.5.2. A complete four-partite graph Km, my,m3,me:m1 S mz Smg <
ma, with at most one partite set of an odd cardinality is (2, d)-isodecomposable for
a finite diameter d if and only if one of the following conditions applies:

(¢) d=2 and m; > 1,mz,m3,myq = 2,

(b) d=3 and m; 2 1,mz,m3,mq 2 2,

(c) d=4 andmy 2 1,mz,m3,m¢ 2 2,

(d) d=5andm; > 1,mz,m3 22,mq 2 4.

To prove the theorem, we need some preliminary results. First we present
some simple observations on isodecomposable graphs and isomorphisms between
their factors. Most of them can be found in [11].

A cycle ¢ = (vi,vi,...,v},) of an isomorphism ¢ : Fy — F; is pure if all
vi; belong to one partite set of G. The subgraph (6™, 6D, ..., 4®) induced by the
cycles ¢, ¢, .., () is the graph induced by all vertices v,,i = 1,2,...4;5; =
1,2,...8;.
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Observation 2.5.3.a. Let G be a complete multipartite graph isodecomposable
into isomorphic factors Fy and F2 and ¢ be an isomorphism from F; to Fp. If
G',F} and Fj are the subgraphs of G,Fy and F3, respectively, induced by cycles
W, 62 4 then F} is isomorphic to Fi.

Observation 2.5.3.b. Let ¢() = (v},v3,...,v} ) and 6@ = (v},v3,...,v2) be
pure cycles of odd lengths. Then all vertices vj-_.,z' =1,2;7; = 1,2,...s; belong to

the same partite set. "

Observation 2.5.3.c. Let ¢(}) = (v},v3) be a cycle of the isomorphism ¢ : F} —
F. Then ¢} is pure.

Observation 2.5.3.d. Let (1) = (vi,vi2) and ¢ = (vj1,v;2) be pure cycles.
Then (Qs(l), ¢(2)) = K1.2 U K;.

Observation 2.5.3.e. Let v;;vi1 be an edge in F. Then the pre-images ¢=(vi;)

and ¢~1(vkt) are non-adjacent in Fi.
Next we show that neither Kz 22 2 nor Ko 223 is (2,5)-isodecomposable.
Lemma 2.5.4. K222 is not (2,5)-isodecomposable.

Proof. Suppose, to the contrary, that K> 222 is (2, 5)-isodecomposable into factors
F) and F;. Obviously, Fy cannot contain a vertex of degree 5, otherwise diam F} £
4. Hence every vertex is of degree at most 4 in F; and therefore of degree at least 2
in F,. Consequently, every vertex is of degree at least 2 in Fy. Because diam Fy = §,
for every pair of vertices u, v whose distance in F} is 5 there is an induced path P;
of length 5, {u = z¢,21,... 25 = v), from u to v. Since degr, To = 2, zo must be

adjacent to one of the remaining vertices, say‘ y1. Then y; cannot be adjacent to
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any of z3,%4,%s, otherwise diam Fy < 4. For the same reasons zs is adjacent to
y2 # 11 and y2 is adjacent to none of 2, T1,z2. Now F} contains at most 11 edges:
5 edges in {zo,Z1,... Ts) and at most 6 edges yiz;. The size of F} has to be 12 and
there is only one other possible edge—y1y2. This yields dist(zg,zs) =3, whichis a

contradiction. O
Lemma 2.5.5. K223 is not (2,5)-isodecomposable.

Proof. Let K2223 with the partite sets V7 = {‘Un,v]_g},:Vg = {v,v22}, V3 =
{v31,v32}, Va = {va1,vez,va3} be (2, 5)-isodecomposable into factors Fi and Fa.
Obviously, F; cannot contain a vertex of degree 6, because then diam Fj would be
less than 5. Now we show that if there is a vertex of degree 5 in F1, then there
must be exactly one other vertex of degree 1. Let zo and zs be at distance 5 in Fy
and let {zg,1,...2s) be an induced path. Suppose, to the contrary, that there is
no vertex of degree 1 in F;. Then zo has to be adjacent to one of the renuaining
vertices y1,Y2,¥s, SaY ¥1, and s to another, say y2. (Of course, zg and zs cannot
have a common neighbour, since dist(zq,2s5) = 5.} If i:.he vertex of degree 5 is z;,
where i € {1,2,3,4}, then it is adjacent to both and yz, which is a contradiction,
because then dist(zo,zs) = 4-

None of the vertices y1,¥2,y3 can be adjacent to more than 3 vertices
of 2g,21,...,s, otherwise dist(zg,2s) < 4. We have seen that no vertex z; can
be of degree 5. If degys = 5 then y3 must be adjacent to both y; and y. and
dist(ze,2s) = 4, which is impossible. If degy1 = 5 or degyz = 5 then ¥ must
be adjacent to y» and dist(zo,2s) = 3, which is agein impossible. Hence there is
a vertex of degree 1 in F. If there were two or more vertices of degree 1 in each

factor, at least one of them would have to be of degree 6 in the other factor, because
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only 3 vertices of G have degree 6. Hence there is precisely one vertex of degree 1
in each factor.

The vertex of degree 1 in F> must be one of the vertices having degree 6
in G, i.e. v41,v42,v43, otherwise we have a vertex of degree 6 in F;. Suppose then
that it is the vertex w43, which is of degree 5 in Fy. For the same reason, the vertex
having degree 1 in F; must be one of vq1,vs2, say v41. As we have seen, vq2 is of
degree at least 2. We may assume without loss of generality that vs3 is adjacent
to the vertices vi1,v12,v21,%22,v31- I the only neighbour of vy in Fi is different
from v32, say v21, the subgraph of Fy induced by all edges incident to vertices vg;
and vga, H, has diameter 3. None of the other vertices vgz,v32 is in adjacent in
F} to vq or to vys. Because vz is of degree at least 2 in Fj, it must be adjacent
to at least one of the vertices vy, v12, %21, V22 and dist(vaz, v;;) < 4 for any vertex
vi; € H. Similarly vz, which is also of degree at least 2 in F}, must be adjacent
to at least one of the vertices v11,v12,v21,v22,v31 and dist(vaz,vi;) < 4 for any
vertex vi; € H. Both v32 and vs2 are now at distance at most 2 from v¢3 and then
dist(vs2,v42) < 4. Thus diam Fy < 4, which is a contradiction. So we can suppose
that the only neighbour of v4; in F} is v32. Because now vy; has the same neighbours
in F} as vz in F5 and vice versa, we may assume without loss of generality that
v3z is in F} adjacent to vge. If v, is adjacent to one of the vertices v11,v12,v21, 922,
then dist(vqs,v:;) < 3 for any vertex v;j,i # 4 and dist(vaz, vij) = 1 for v and v42.
This yields diam Fj < 4 and we have to examine the only remaining case.

In this case vs2 is adjacent in F} only to v4; and vy, and hence its neigh-
bours in F» are v11,%12, V21, V22, V¢3- Lhen in F, all vertices but v42 belong to the
graph H induced by all edges incident to the vertices v4; and vzz. The only ver-

tices in H having eccentricity 4 are vy and v3;. Because the degree of vz in F3 is
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at least 2 and it is not adjacent to v4z, one of its neighbours has eccentricity less
than 4. Therefore diam F» < 4, which is again a contradiction and K32 23 is not
(2, 5)-isodecomposable into factors containing a vertex of degree 5.

To prove that there are no isomorphic factors with diameter 5 having the
highest degree 4 we start with the observation that no such factor F} can have more
that four vertices of degree 4, otherwise F has less vertices of degree 4 than .

There are two possible degree sequences satisfying the assumption: 4,4,4,
4,3,3,3,3,2 and 4,4,4,3,3,3,3,3,3. We first examine the former. Let u,v be an
arbitrary pair of vertices having distance 5 in Fy. Then there is an induced path
P; = (u = zq,%1,..-,2s = v) and 3 other vertices y1,¥2,ys. As follows from the
degree sequence, degzo + degzs > 5. On the other band, degzo + degzs < 5,
otherwise o and zs have a common neighbour. Thus degzo + degzs = 5, which
is possible only if one of the vertices, say zo, is of degree 3 and the other, zs, of
degree 2. Then zq is adjacent to, say, y1 and y. while 5 is adjacent to ys. Neither
1 nor y2 can be adjacent to y3, otherwise dist(zo,zs) = 3. We have now in F}
5 edges TiTi+1, 3 edges z;y; and at most one edge y;-yk, namely y;y2. Because
B is of size 15 and altogether we have 8 or 9 edges, there must be 6 or 7 more
edges z;y; in Fy. No vertex y; can be adjacent to more than 3 vertices of the path
(4 = z9,21,...,Ts = v), because then there is another path between z¢ and zs of
length less than 5, which is impossible. In addition, the neighbours of any y; can
be at distance at most 2 apart on the path Ps. This excludes the possibility that
there are 7 other edges z;y;.

Hence we have to suppose that there is the edge ¥z in F; and 6 other

edges z;y;. As we have shown above, the neighbours of zo, y: and yz, must be
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Figure 2.5.1

adjacent to z; and zo while the neighbour of zs, y;, must be adjacent to z3 and z4.
Now F; contains a subgraph isomorphic to Ky, induced by the vertices zg, 21, , 1, ¥2.
Because F5 is isomorphic to F, it has to contain the graph K as well. Hence there
must be in F} at the same time at least 4 mutually non-adjacent vertices.

One can check Figure 2.5.1 to see that there are only two mutually non-
adjacent vertices among zg,z),Z2,¥1,Y2, namely zp and z2, and two mutually
non-adjacent vertices among z3,z4,Ts,Yy3, namely z3 and zs. But the vertices
z2 and z3 are adjacent and thus F> cannot contain K. Hence Kz 223 is not (2,5)-
isodecomposable into factors with the degree sequence 4,4,4,4,3,3,3,3,2.

Finally, it is easy to see that K223 is not (2,5)-isodecomposable into
factors with the degree sequence 4,4,4,3,3,3,3,3,3 either. In this case both end-
vertices of any induced path (zg,1,...,%s) are of degree at least 3, therefore one
of the remaining vertices must be adjacent to both zy and z5. Hence dist(z,z5) = 2

and diam Fy < 5, which is a contradiction completing the proof. O
Having the exceptions excluded, we can now prove Theorem 2.5.2.

Proof of Theorem 2.5.2. The minimality in the cases (2)-(c) is obvious. The graph
Kj 222 is in all the cases the smallest admissible four-partite graph of this class
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of order not less than the corresponding value of f;(2,d) shown by Gangopadhyay
[10]. In the case (d) fi(2,5) = 8 but Lemma 2.5.4 shows that the only admissible

four-partite graph with at most one odd part, K3 2 2 2, is not (2, 5)-isodecomposable.

Since Lemma 2.5.5 excludes one of the two graphs of order 9 with one odd partite

set, K2 223, only K; 224 remains.

there is an isomorphism ¢ : F; — F; satisfying assumptions of Theorem 2.3.3.

To prove sufficiency we show that for every of the above minimal graphs
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(¢) Consider the factor Fy = G(4,2) of the graph K 322 of Figure 2.5.2

and the isomorphism

$2 : Fi = Fp : (vi1)(v21v22)(v31v32 )(var va2)-

The distance for any pair of vertices dist(v;;, vx) < 2, hence diam F} = 2.

(b) Consider the factor Fy = G(4,3) of the graph K 2,22 of Figure 2.5.2
and the isomorphism ¢, from (2). The distance dist(v21,v41) = 3 and for any other
pair of vertices dist(v;j,vx) < 3, hence diam F} = 3.

(¢) Consider the factor F; = G(4,4) of the graph K 222 of Figure 2.5.2
and again the isomorphism ¢2 from (a). The distance dist(v21,v41) = 4 and for any
other pair of vertices dist(v;;,vzr) < 3, hence diam Fy = 4.

(d) Consider the factor F} = G(4,5) of the graph K 22,4 of Figure 2.5.2

and the isomorphism

$s : Fy = F2 : (vn1)(v21v22)(v31v32) (Va1 a2 }(Va3vae)-

The distance dist(vs1,v42) = 5 and for any other pair 6f vertices dist(vij, vt} < 4,
hence diam F; = 5.

Because both ¢, and ¢5 satisfy conditions of Theorem 2.3.3, we can in all
_ cases extend the minimal factor to a factor of any complete four-partite graph with

zero or one odd partite set having more than 7 (in the cases (a)-(c}) or 9 (in (d))
vertices. O

The case of graphs with 2ll odd parts is more complicated. The only
diameter for which we completely solve the problem of isodecomposability in this
caseis d = 5. We prove that no graphs with all odd parts are (2, 5)-isodecomposable.
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For d = 2,3,4 we solve the problem only for special classes of graphs with all odd
parts. We start with the following.

Theorem 2.5.6. Let I,m,r,s,r # s be odd numbers. Then the graph Ku,m is

not (2, d)-isodecomposable for any d.

Proof. The degree sequence of Kugm is 9,0,..+,0,¢,4,---,¢ Where both numbers
p=(I—1)r +ms and ¢ = Ir + (m — 1)s are odd and both appear in the sequence
an odd number of times, namely p appears /r = ¢ times and ¢ appears ms = n —1
times. Suppose, to the contrary, that K. ,m is isodecomposable. We may assume
without loss of generality that p < g. Let A =a;3,@a2,...,8, and B = by, b2,...,bn
be isomorphic sequences such that a; + b; =pfori=1,2,...,tand a; + b; = g for
i=t+1,t+2,...,n Let af) (B(2)) for i =0,1,...,p be the number of terms of
ai,az,--.,at (b1,b2,...,b:) which are equal to i and &'(7) (8'(7)) for 7 =0,1,...,¢
be the number of terms of @e41, Gt42, - - -  @n (De+1, Dt42y- - - , bn) Which are equal to j.
Obviously (i) = 3(p — i) and &'(¢) = §'(¢ — 7).

Because t is odd, there must be 7 such that a() > B(Z) . Let iy be the
smallest number ¢ such that afiy) > B(%o) . Denote k =.a(f)—p5(z). As the sequences
A and B are isomorphic, ip must appear in by, beg2,- .., bn k-times more than in
@141, B242,- - -5 Gny 1€, B'(30) — &!(20) = k. Then a'(g — i) — B'(g — %) =k, ie,
g — ip appears more often in @i41,8¢42,---,8n than in beyy,bet2,...,0,. Hence
g — ip must appear in by, b2, ..., by k more times than in @, as,...,a:, which yields
B{q — t0) — a{qg — ip) = k. This is equivalent to a(to +p—¢) — Blio +p—¢) = k.
Because k > 0, we have a(iy +p — g) > B(30 + p — ¢). From the minimality of ¢,
it follows that #p + p — ¢ > 1o, which contradicts our assumption that p < ¢ and
therefore K,m is not isodecomposable. O

We state the special case for four-partite graphs as corollary.
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Corollary 2.5.7. If r,s are odd with r # s then the complete four-partite graph

Kr rr,s 1s not (2,d)-isodecomposable for any d.

Using our earlier results, we can determine k.(2,d) for any r = 0(mod 4)

and any d, including d = oo.
Theorem 2.5.8. h.(2,d) = oo for any r = 0(mod4) and any d.

Proof. Given any r = O(mod 4) and any order n, we can construct an infinite class
of graphs with order greater than n, for instance all graphs Kop41,4p41,4p+1,...04p+1
where p > n. This graph is not (2, d)-isodecomposable for any finite or infinite d
by Theorem 2.5.6. O

Now we attempt to prove that four-partite graphs with all odd parts are
not (2, 5)-isodecomposable. In fact, we prove a more general result, namely that
there are no (2, 5)-isodecomposable r-partite graphs with all odd parts. First we

show some interesting properties of (2, 5)-isodecomposable graphs.

Lemma 2.5.9. Let Kp, ma,....m,.," 2 3, be (2,5)-isodecomposable into factors Fy
and F». Let z be a vertex with eccentricity 5 in Fy. Then all vertices having in Fy

distance 5 from z belong to the same part as .

Proof. For convenience we assign a colour to each part. Let a white vertex wo have
exr, wo = 5. Let U; be the set of vertices having distance  from wp in Fy. A vertex
belonging to U; is denoted by ¢;, where ¢ is a colour. If a vertex belongs to & union
U; UU; U Ug, then it is often denoted by ci—j—&.

It is obvious that U/; contains only non-white vertices and Uy UUs contains
vertices of two different colours, because the vertices of Us are in F; adjacent only

to those of U;. From now on we always assume that U; contains a blue vertex b;.
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We proceed by contradiction. Let us suppose that Us contains a non-white
vertex. Let uo_3—2 and vo—1—2 be 2 pair of vertices both in Up U U, U U,. Then no
matter what their colours are, the distance between them in F is always less than
5. If u and v have the same colour, then distg, (u,v) = 2 because Uy U Us contains
vertices of at least two different colours and one of them must differ from the colour
of u and v. If one of them, say v, is of a colour different from those in Us UUs, then
U, U Us contains a vertex z whose colour differs from that'of v. Then in Fy the
vertices u and v have the common neighbour z and distr,(u,v) < 2. If at least one
of the vertices u, v is neither blue nor white, say red, and the other is of any colour ¢,
and U, UUs contains only vertices of colour ¢ and red, then dist Fy{To—1—2,C0~1-2)
4, because F; contains a path Ps of length 4 ro—1-2 — €45 — wo — T4—s — Co—1-2
if ¢ is blue and rg—y_2 — €a—s — b1 — rq—s — Co—1—2 If ¢ is white. Finally, fuis
white, v is blue and there are only blue and white vertices in Uy U Us, the non-
white vertex of Us must be blue. We have two possibilities. First, there is a vertex
in Up U Uy U Uz which is neither blue nor white, say red. Then we have a path
% = wo_1_z = bs — P12 — We—s — bo_1a = v of length 4 and distr,(z,v) < 4.
Secondly, there are no other vertices than white and blue in Uy U Uy U Uz. Because
Uy = wo, we see that all vertices of U; are blue while all of U; are white. Now we
have u = wo_i_z —bg=r3—b=v2 path of length 3 and distg,(u,v) < 3. For
similar reasons, distg, (u,v) < 4 for any u,v € U3 UU; UUs. If one of u,v is neither
blue nor white then as above distr,(u,v) € 2. The same holds if both « and v have
the same colour. If u = w3_q_3,? = bs—4—s and there is a vertex rz_—4s, we have
in F; a path u = w3_q—s — by —ro—1—2 — wo — by—s—s = v of length 4. If there isno

vertex other than white or blue in Uz U Ug U Us and Uy contains a vertex r, then
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again distr,(u,v) £ 2. If there are only blue vertices in Uy, then all vertices which
are neither blue nor white belong to Uz. According to our assumption, there is a
blue vertex bs € Us. I nowu = ws_s € UsUUs and v = b3_4_s then distp, (u,v) £ 3
because there is a path u = wy_s —r2 —~wg — by—q—s5 in F5. If u = w; € U; then we
have a path u = w3 — bs — wy — b3—q-s in F3 and distp,(u,v) < 4.

Now we look at the pairs u,v where v € Uy UU UU2 and v € U3 UU L Us.
First we consider both u,v having the same colour. Suppose the colour is different
from both white and blue, say red. Because U; U Us contains a vertex ¢4—5 whose
colour is different from red, we have in F3 either a path u = ry_2 —~ 45 ~wp =
r3-4-5 =v ifcisblueor u =ri_o — cq—5 — by — r3—q4~5 = v if ¢ is white. If both
u,v are blue, and either U; or Us U Us contains a vertex which is neither white
nor blue, say red, we have in F> a path u = bj_2 — r4_5 — wp — b3—4—5 = v or
© = bj_p — wy_s —ra_3 — 345 = v and in both cases distF,(u,v) £ 3. If there
are no other vertices in Ug U /1 U Ug U Us than white and blue, all other vertices
must belong to U UU;. Hence we havein F a pathu=b; —r3 —wp —b3_q—5 =
if there is a vertex r3 or u = by_2 — Wy_g — r2 — Wy — 1;3_4_.5 = v if there are only
white or blue vertices in Us. In both cases distp, (u,v) < 4.

If both u,v are white and there is a vertex other than white or blue in
Up VU3 WU, UUs then the case is essentially similar to the previous cne. If UgUU U
Us U Us contains only white and blue vertices, then according to our assumption
there is a vertex bs € Us and a red vertex in Uz U Uz. If there is r3 € U; then we
havein F; apath u = w12 — b5 —r3 — by —w3_q_s = v. If thereis r, € U; then
webhavein Fh eitheru =wy_12—bs—w3 =voru=wo_1-2—bs—ro—wy_s=v

which in both cases yields distp, (u,v) £ 3.
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Finally, we investigate the pairs u, v, where u € UpUU1UU2,v € Us LU UUs
and u and v have different colours. ¥f u € U;,v € Uj and j — ¢ > 1 then obviously
the edge uv is in F2. So we have the only possibility v € Uz,v € Us. If none of
them is white, we have in F5 the path us — wp — v3. According to our assumption,
there is a non-white vertex cs € Us. Hence if either u or v is white, we have in F
either u = ws — ¢s — Wy — v3 OF Uy — Wy — €5 — W3 = v3 and distF,(u,v) £3.

Thus we have shown that if Us contains a non-white vertex, then the
diameter of I is always less than 5, which is a contradiction. Therefore Us contains

only white vertices. O

Let us suppose now that a factor Fj of a (2,5)-isodecomposable graph
with more than two parts contains a vertex of eccentricity 5 which is adjacent to
vertices of two different parts. Let exs, wp = 5 and let r; and by be adjacent to wp
in Fy. Using the notation of the previous lemma, we can see that there are vertices
of at least two different colours in Ug U Us, say aq—s and cq—s. Any two vertices
U3—4—5,V3—4—s Of Uz U Ug U Us have in F» distance at most 2, because there are
vertices of 3 different colours in Uy U U;. Similarly, if we have ug_1-2,%0-1-2 €
Uos WU, U Uz, and one of the colours u, v, say u, differs from a and ¢, then there is
in F; a path ug_1-2 — Gg—s — Vo—1—2 OF Ug_1-2 — C4—5 — Vo—1-2, depending on the
colour v.

Suppose now that ug—y—2 € Ug UV UU> and u3_4.5 € Uz WU, UUs have
the same colour. Of course u differs from one of @, ¢, say ¢, and one of w, r, b differs
from both u and ¢. Then ¢4—s is a neighbour of uy_3—2 in F3 and uz_4—s and ¢4
have in F» a common neighbour Uy U Uz U Uz. Hence distf, (vo-1-2,%3—¢—35) < 3 |

for any two vertices of the same colour. If we have uo—3—2 € Up UU; U, and
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v3—4—5 € Uz U Uy UUs of different colours such that u; € U; and v; € U; and
j —1i> 1, they are adjacent in F». If : =2 and j = 3, then one of the colours q, ¢,
say ¢, differs from u and one of w, b, r differs from both v and ¢. Hence v3_4_s5 isin
Fp at distance at most 3 apart from ug—_3—2, and diam F» < 4. This is impossible,
and therefore we can state another lemma.

The neighbourhood of a vertex z in a graph G, denoted Ng(z}, is 2 set of
all vertices adjacent to =z in G. If A is a2 set of vertices of ‘G, then Ng(A) is the

union of neighbourhoods of all vertices of A.

Lemma 2.5.10. Let Kpy, m,,...m.," = 3, be (2,5)-isodecomposable into factors Fy
and F». Let z be a vertex with eccentricity 5 in Fy and U; the set of all vertices
having distance i from z in Fy. Then Uy U Us is a subset of one partite set of

K, ma,..,m,. and Uy U Uy is a subset of another partite set.

Proof. The first part of the assertion is restated Lemma 2.5.9. Above we have shown
that U; consists of vertices of just one colour. We can repeat the consideration and
instead of having vertices of two different colours in U; suppose that U contains
vertices of two colours different from white. We arrive at the same conclusion, that

in this case diam F, < 4, which is impossible. O

Now we are ready to show that once a factor F; contains a white vertex of
eccentricity 5, then all vertices with eccentricity 5 in either factor must be white.
Consequently, the vertices adjacent in either factor to a vertex with eccentricity 5

also belong all to one part.

Lemma 2.5.11. Let Ky m,,...m.,m = 3, be (2, 5)-isodecomposable into factors Fy

and Fy. Let A; be the set of all vertices of eccentricity 5 in F;. Then A, N A; =0,
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Ay U Az C V; and Np (A1) U N (A2) C Vi, where V;, Vi are partite sets of the

gra'ph Kml T2 yeenyMp *

Proof We again assume that there are vertices wo,ws such that distp, (wo,ws) =
5 and that wg is adjacent to a blue vertex b;. Let u,v be vertices such that
distp,(u,v) = 5. It follows from Lemma 2.5.10. that u,v have the same colour.
Let us assume that we have two red vertices r,r’. Then again from Lemma 2.5.10
we have r,r’ € Uz UU; and they are both adjacent to wo in F. If we have two blue
vertices, both in U, then they have the common neighbour ws in F>. There is no
blue vertex in U> and any two blue vertices of Us U Uy have the common neighbour
wg in Fp. Finally, let b, belong to Uy and b3y to Us U U;. Because there is a red
vertex ro—3 € Uz UU, the path b —ws —r2_3 —wp — b3—g yields distp, (b1, b3—4) < 4
Hence the only vertices that can have eccentricity 5 in F» are white.

But this means that A; contains vertices of just one partite set, namely
white. If we repeat the proof for the factor F; instead, we get the same for the set
A;. Thus 4; U A2 C V;. Now we want to show that 4; N 42 = 0. To do so, we
check distr, (wo,w’) for each w'. For w' € Uz we have"in F, a path wg — by — wj.
We know that there is a vertex ro3 € Uz U Us. Therefore for w' € Uz we have in
F; a path wg — ro3 — ws — by — w} and for w' € Us a path wo — re—3 — ws. Thus
exp, wo < 5 and 4; NA; =4.

Since every vertex w with exp, w™ = 5 belongs to U UU; and is in F3
adjacent either to all blue vertices of Uy or to all blue vertices of Uy, by Lemma
2.5.10 all neighbours of w in F, are blue. Hence NF,(4;1) U Nr,(A42) C Vi, which

completes the proof. O

The following is an immediate consequence of the lemma.
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Corollary 2.5.12. Let Km,,ma,...m, be(2,5)-isodecomposable and let r > 3;m; >

my---2m,. Thenm; 24 andmz 2 2.

Proof. A factor F; contains at least 2 vertices with eccentricity 5, hence {4;] > 2.
Because A;NA2 = 0 and 4;UA2 C V;, then my 2 m; 2 4. Obviously |[Np,(41)] 2 2
and hence Np, (A1) C Vi yields mp 2 2. O

Although the following lemma could be included in the proof of the main
result of this section, we prefer to state it on its own, because we use it explicitly later
in the case of r-partite graphs where r > 5. First we show that Np, (4;) = Ng,(42),
ie., that an isomorphism ¢ : F} — F3, takes the s.t of neighbours of vertices with
eccentricity 5 onto itself. Then we prove that the isomorphism takes the whole

partite set containing the neighbours of the vertices with eccentricity 5 onto itself.

Lemma 2.5.13. Let Ky m,,...m. 7 = 3, be (2,5)-1sodecomposable into factors
Fy and F>. Let A; and Nf,(A;) be defined as above and ¢ : Fy — F> be an
isomorphism. Then NF,(A1) = Nr,(Az), or equivalently ¢(Nr,(A1)) = Nr (41).
Moreover, if Vi, is the partite set containing N, (A1), then ¢(Vi) = Vi.

Proof. We again denote the vertices of A; (and, consequently, of A;) as white, and
their neighbours, i.e. the vertices of Nr, (A1) and Np,(Az2), as blue. Let wo be a
vertex of eccentricity o in F} and U; be again the sets of vertices at distance ¢ apart
from wp in Fy. Let ws € Us, i.e., distp, (wo,ws) = 5. The set Uy consists only of
blue vertices. All vertices of Uy U Us are of eccentricity less than § in F; by Lemma
2.5.11. Because all vertices of U are non-blue, they havein F» common neighbours
in U; and therefore their mutual distance in F> is at most 2. The same holds for all

white vertices of U;. By Lemma 2.5.11 all vertices having in F> eccentricity 5 are
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white and none of them belongs to Uy UUs. At the same time Uy U Uy contains only
blue vertices. Therefore for every pair of vertices w', w"” such that distp,(w', 0"} =5
one of them, say w’, belongs to > while the other, w", belongs to Us. Obviously
Uy C Nrp,(w"). Since Uz = Npg (wo), we have NF,(wo} C NF,(42). This vields
NE, (A1) C Nr,(Az2), as the vertex wp was chosen arbitrarily. We can repeat our
considerations for any vertex w) € Az to obtain Ng,(A2) C Nr (A1), which yields
Np (A1) = Nr(A2).

Now we show that ¢(Vi) = Vi. Suppose it is not the case. Then there
exists a non-blue vertex ¢ ¢ Vi such that ¢(c) = be € Vi. Since ¢(Np (41)) =
NF,(A)), we can see that c is not adjacent in F; to any vertex of N, (A1). Hence it
is adjacent to all vertices of N, (4;) i the factor Fi. Then for any vertex w € 4
we have distg, (w,c) = 2 which yields distr, (w,w') = 4 for any pair of vertices of
A;. This is impossible, since the vertices wo,ws € 43 have In F; mutual distance
5. This contradiction shows that there is no vertex ¢ € Vi such that ¢(c) € Vi and
therefore ¢(Ve; =V, O

The general theorem now follows easily.

Theorem 2.5.14. Let r = 0(mod4) and Km, ma,....m, be (2,5)-isodecomposable.

Then at least 3 of the cardinalities m,,m2,...,m, must be even.

Proof. We need to show only that one of the numbers m;, mz,. .., m, must be even,
because if just one or two of them are even, then K, m,,...m. has an odd number
of edges. Let Np,(4:) C V;. K |V;| is even, we are done. From Lemma 2.5.13 it
follows that ¢(V;) = V; and hence by Observation 2.5.3.2 the graph Km, ms,...mr—2
is isodecomposable. This is possible only if the number of odd parts is either 0 or

1(mod 4) which implies that at least two of the numbers m;,ma,. .., M, must be
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even. But |V;| was odd and hence the actual number of even cardinalities among

my,Mma,...,Me_; must be at least 3. O

As one of the main results of this section, we state the case of four-partite

graphs on its own. The assertion follows easily from the previous theorem for r = 4.

Theorem 2.5.15. Kn; m2,my,m, IS not (2,35)-isodecomposable for any odd num-

bers m,ma, m3, my.

Thus we can already determine the parameters fi(2,d), g4(2,d), ¢%(2,d)
and hy(2,d) for all d = 2,3,4,5.

Theorem 2.5.16.

(c) fa(2,4) =6,04(2,4) = gi(2,4) = T, hs(2,4) = o5,
(4) fa(2,5) = 8,94(2,5) = g4(2,5) = 9, h4(2,5) = co.

Proof. From Corollary 2.5.7 it follows that h4(2,d} = co for any d.

(a) The values f,g,¢' follow directly from part (a} of Theorem 2.5.2.

(b), (c) There is no admissible graph with 5 vertices, and only one with
6 vertices, namely K 1,3, which is not isodecomposablc again by Corollary 2.5.7.
Thus the values follow from parts (b) and (c) of Theorem 2.5.2.

(d) Since Kj 1,5 is not isodecomposable by Corollary 2.5.7, the result
follows from part (d) of Theorem 2.5.2. O

As we have seen above, there is no isodecomposable graph with odd parts
Kr.r.rs for r # s. On the other hand, we prove in the following paragraphs that all
graphs with odd parts of the class K r,,,s 2re (2, d)-isodecomposable for d = 2,3,4
with the following exception.
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Lemma 2.5.17. A complete four-partite graph K1 1,r,r is not (2, 2)-isodecompos-

able for any r 2 2.

Proof. If r is even, then 1,1,r,r is not an admissible quadruple. Hence we may
assume that we have a (2,2)-isodecomposable graph K1, with an odd » 2 3.
Let Vi = {vnn}, V2 = {vo1,v22,..-v2r}, V3 = {v31,32,... 930}, Vs = {va1} be the
partite sets and F; and F; the isomorphic factors with diameter 2. We may assume
without loss of generality that the edge v11v4; belongs to Fy. ‘Then in F there must
be a vertex, say vsr, adjacent tc both vy1 and vy, otherwise dist s, (v11,v41) > 2.
Because v3, is not adjacent in F} to any of v11,v31,v32,---,%3 r=1,%41, the distance
distF, (v3r, v2:) can never be 2. Hence v3, must be adjacent to all vs1,v22,...,%2r,
otherwise diam F; > 2.

Therefore vs, is of degree 2in F. If v;; is any vertex of V2UV; then it must
be adjacent in F% either to v); or to vg- In the opposite case distr, (v3r, vij) > 2
because vz, has no other neighbours than v;; and vy4;. Since v3, is in F) adjacent
neither to vy; nor to vy, at least one vertex of Va, say va1, must be adjacent to vq,
and one vertex of 75 must be adjacent to v;;. As we saw above, it cannot be v,
otherwise distr, (vsr,v21) > 2. Thus we can without loss of generality suppose that
vy is in F} adjacent to ve.. Now we are going to show that every vertex v;;,2 = 2,3
with the exception of v, is adjacent in F> (and consequently in F}) to exactly one
of v13,v41. We first observe that if F; contains a vertex u of degree 1, then the
only neighbour of u, say w, must be in F; adjacent to all other vertices, otherwise
exr, u > 2. But then w is isolated in F3, which is impossible. Suppose then, to the
contrary, that there is another vertex than v3, adjacent in F to both v1; and vq.

Then degp, v11 + degp, va = 2r + 2. We distinguish two cases:
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(i) degp, vi1 = degp, va1 = r+ 1. Clearly, F} now must contain two

vertices of degree r + 1. Because degg, v11 = degg, v41 =1, there must be another

vertex v;;,7 # 1,4 such that degp, vi; = r + 1. But then degp, v;; = 1, which is
impossible.

(ii) One of the vertices v11,v41, 3y Vi1, is of degree r +k 2 r +2 in F3.
There is only one vertex which could possibly be of degree r + k in Fy, namely
v41, because all other vertices are only of degree r + 2 in Kj 1 rr. But in this case
degr va1 = 2r + 1 —(r + k) = r — k + 1, which ylelds degp, vi1 + degp, va1 =
(r + k) + (r = k¥ + 1) = 2r + 1. This contradicts our assumption and hence each
vertex 21,122, -+« , U2r, V31, U325+ - - , V3r is in F; (and in F}, too) adjacent to just one
of v11,v41. As we have seen above, degp, v3- = 2 and F; must also contain a vertex
of degree 2. Suppose it is one of v11,%a1, say v11- Then degp, v1y =2r — 1 and Fy
contains a vertex of degree 2r — 1. Apparently, it must be v4:. Then degp,,vi1 =2
and F contains two vertices of degree 2 and so does Fy. Hence there is at least one
vertex of degree 2 in F% different from vy1,v41. Let it be vz;. It isin F) adjacent
to vs, and one of vy1,v41, Sy v11. Then each vertex' v3;,7 € {1,2,...,r =1} is
adjacent to v;1, otherwise distg, (v2i,v3;) > 2. So in F2, v1; is adjacent only to var
and some vertices vge,t # £. But none of the vertices vy is a neighbour of v2; in F2
and distp, (vi1,v2:) > 2, which is 2 contradiction.

Now suppose that degp, vsi = 2, < r. Each vertex of V3 different from
v3, is adjacent to exactly one of v13,24; in F} so that we may assume without loss
of generality that vs; is adjacent to v;; and some vz;. Now each vertex va,,s ¥ J
must be adjacent to vy;, otherwise distz (v2,,v3:) > 2. As we have seen, vz, is

adjacent in Fy to vg; and therefore j =r. So v, is in F> adjacent to vy while v3;
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to vg;. But neither the edge ve,vs; belongs to F> nor ver and v3; have a common
neighbour in F> which yields distr; (v2r, v3;) > 2. Then diam Fy = diamF3 > 2,

which is a contradiction completing the proof. O

Let us recall now the decomposition of the graph Kn';"‘ln§"= n3H? with
all ny,n2,...,n, 0odd from the first part of Theorem 2.1.5. I we put p = 2 and
ky = k» = 1, we see that we have decomposed the complete four-partite graph
Kamy +1,2m1+1,2ma+1,2ma+1 10to two isomorphic factors with diameter 3. The main
idea, due to J. Sirdn [22), is the following. We take the complete graph K and
decompose it into two paths P;.. Then we “blow up” the paths so that we replace
each original vertex by m; 4+ m2 + 1 vertices and replace the original edges with all
possible edges between the new vertices. Then we add 2ll edges between vertices
belonging to the original inner vertices of the path. Finally, we remove all edges of
a subgraph Kzm,+1 from one of the sets corresponding to an original inner vertex
and all edges of K2m,+1 induced by all other vertices corresponding to original inner
vertices.

To illustrate the method more clearly we dec;ampose K3 35,5 into factors

with diameter 3.

Example 2.5.18. Take the complete graph K with vertices v1,v2,v3,74 and de-
compose it into two paths: vy, v2,v3,v4 and v2, vy, v1,v3. The former gives rise to the
factor F}, the latter to F5>. Now replace each vertex v; with 4 vertices v;, vi2, vis, vis
and each edge v;v; with 16 edges vavj;k,l = 1,2,3,4. In F} for i = 2,3 add
edges vipvg for all k # I3 k,1=1,2,3,4. In F; for ¢ = 1,4 add edges vixvy for all
k#1; k,1=1,2,3,4. The factors of K are, of course, isomorphic and the diameter
is 3. To get the graph K3 3 55 and its factors, we have to remove a factor 2K3 U2KS.
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So we remove from F) all edges of K3 induced by vo1, v22, v23 and all edges of K in-
duced by v24, v31, V32, V33, V34- From F> we remove the edges induced by v41, v42, %43
and all edges of K5 induced by vaq, v11,v12,%13, %14 F1 and F; are now factors of
the graph K33s,5 with partite sets Vi = {v21,v22,v23}, V2 = {var,vaz,va3} V3 =
{v24, 31, V32,33, V3¢ }, Va = {4, v11, 212,213, %14} The isomorphism ¢ : I} — F;
is defined as follows: ¢(v1;) = vei,d(v2:) = vai, é(v3i) = v1i, ¢(vai) = vsi for
i = 1,2,3,4. To prove that diam F] = diamF> = 3 we can observe that in F}
the distance distr, (vi;,vix) < 2 because they have always a common neighbour.
The vertices vy; are adjacent to all vertices vz1, similarly each v2; is 2djacent to all
v11, each vy is adjacent to all vs; and each v3; is adjacent to all vqr. The distance
distF, (v15,v) = k — 1 < 3 because there is for k = 3,4 always a path v1;,v21,v3
or v1j, V21,31, V4. Similarly, for 7 = 1,2,3 we can see that distp, (v25,var) = 1 and
dist, (v2j,var) = 2. This also yields distr, (v24,v31) = 2 and distr, (veq,v41) = 3
because voq is adjacent to the other vertices vp;. Finally, dist(vsj,var) = 1 for all
7,1=1,2,3,4 and hence diamFy =3. O

‘We repeatedly use modifications of the idea to prove (2, d)-isodecomposabi-
lity of the graphs Kom,+1,2m;+1,2ma+1,2ma+1 for d =2,3,4.

Theorem 2.5.19. Let r,s be odd integers. A complete four-partite graph K r,,s
is (2, d)-isodecompasable for 2 finite diameter d if and only if

(¢} d=2andr,s >3, 0r

(b)) d=3andr>1,s2>3or

(¢c)d=4andr>21,s22.

Proof. The orly other finite diameter for which there exist isodecomposable four-
partite graphs, 5, is excluded by Theorem 2.5.15. Necessity in (a) follows from
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Lemma 2.5.17. In the cases (b) and (c) it follows from our definition of multipartite
graphs that 1 < s = 3. To prove sufficiency, we start with one of the simpler cases,
(c). We use a construction slightly different from that in Theorem 2.1.5 which can
be easily modified for the cases (2) and (b).

Take a complete graph Ka(r4.s) and partition its vertex set into 8 subsets
X1,y X4, Y1,..., Yy wherefor each i =1,2,8,4,|X;|=r and |¥| = (s —7)/2 =t
Let X; = {za1,Zi2,.--,Zir} 20d Y; = {yi1, ¥i2,- .., ¥ic} for .= 1,2,3,4. First we
construct isomorphic factors F; and F> as follows: Fy contains all edges z;;2:41,k,
where ¢ = 1,2,3 and j,k = 1,2,...,r, all edges y;;yi+1,z, where z = 1,2,3 and
5k = 1,2,...,¢, and all edges y1:zx and y4iTjk, where 2 = 1,2,...,t and j =
1,...,4;k=1,2,...,r. Furthermore, Fy contains all edges z2;zs; a.nd T3iz3; where
it # 73 4,7 = 1,2,...,7, y2iy2; and yaiys; where ¢ # j; 4,7 = 1,2,...,t. One
can verify that ¢ : F; — F; is an isomorphism with cycles (z4;z2:z1:%3:) and
(vaiy25v15y35) for i = 1,2,...,r and j = 1,2,...,t. Now we can remove from the
complete graph Ko(np,) 2ll edges of its complete subgraphs (21, 222, ...,22-) Z K,
(Tar,Ta2,- -2 Tar) = K, (Y21,¥22,- -5 V26, Y31, Y325 - - -, Y32, T31, T32, -+ - Tar) = K
and (Y11,Y12-- - Y12, Va1, Y42y + - - » Yats T11, T125 - - - y T1r) = K to obtain Ky rppse I
we remove the edges also from the factors F1, F> of Kj(, ), We have factors FY, Fj
of Ky r.s,s The isomorphism ¢' : F{ — Fj is then induced by the isomorphism
¢: Fy = F.

The factor F] has now the edges z;;zi41 r Withi =1,2,3; 7,k =1,2,...,7;
vijyek and ysjyar with 5,k =1,2,. ., yizn with:=1,2,...,¢ 7 =2,3,4; k=
1,2,...,rand yzjr again with i = 1,2,...,%; 7=2,3,4; k=1,2,...,r. Onecan
verify that distr, (ye:,ys5) = 4 for any ¢,7 = 1,2,...,%. Therefore from Theorems
2.5.1 and 2.5.15 it follows that diam F} = 4.
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In the case (b) we take again the graph Ko,y ,) with the vertex set having
the same subsets X3,...,X4,Y1,...,Ys as in part (c) and construct the factors Fy
and F5 in a sBightly different way. F} now contains the edges zi;Zi+1 &, where 1 =
1,2,32and j,k =1,2,...,r, all edges yij¥is1 &, wherei = 1,2,3and 7,k = 1,2,...,1,
and all edges z2:yjr and zaiysk, wherei = 1,2,...,75 = 1,...,4k = 1,2,... %
Furthermore, F} contains 21l edges z2;Z2; and z3;Ts; where i # 7; 1,7 = 1,2,...,73
Y2iye; and yaiys; where i £ j; 4,7 = 1,2,...,t. We now remove from F} all edges
of induced complete subgraphs {z31,Z32,--.,%3r} = Kr and (y21,¥22,---, %26, Y31,
Y325 - - - s Y3, T21, T22, - - - , T2r) = K,. From F> we remove the edges of the subgraphs
(Ta1,%425-- -, Tar) = Kr and (311,%125---> Y16, Y41, Ya25 - - -y Y26 L2115, 2125 - - -, T1r)
K,. The resulting graphs F{, F}} are certainly factors of the graph K, ., . with
the partite sets Vi = X3, Vo = X,V3 =X U2 U Y3, Ve = X1 U1 UYy. The
isomorphism between them is again defined as above, i.e. ¢' : F] — F; with the
cycles (z3;21:%2i24:) and (ysjvriyeiye;) for i =1,2,...,rand j =1,2,...,¢

The factors have diameter 3. For instance, distr, (z1i,24;) = 3 for any
i,7 =1,2,...,r and for any pair of vertices it does not. exceed 3.

The construction of factors with diameter 2 (case (2)) is quite similar. We
partition the vertex set of Ka(rts) into sets Xi,...,Xq,Y1,..., ¥4 such that X =
(r+s—4)/2=1tand |Y;| =2 for i = 1,2,3,4 and construct the factor F} similerly
to that of part (c). We have then edges z;;zi¢1 & for t = 1,3,4; 2,k =1,2,...,%
Yi;¥i+1 k for i = 1,2,3 and 7,k = 1,2; y1izje and yazje for i = 1,2; 7=1,23,4
and k = 1,2,...,¢t. Furthermore we have again all edges z2;z2; and z3;T3; for
i#j; 1,7 =1,2,...,t and y21y22 with y31y32. The factor F is of diameter 2, but

now we have to be more careful while removing edges o obtain Ky, r,,,+ because we
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must preserve the diameter. If one removes all edges between any two of the sets X;
and Y;, the diameter increases to at least 3. Hence we have to leave edges between
any two sets to preserve a path of length 2 between any two vertices.

So we remove from Ka(nt4) the edges of the complete graphs (z21,%22,...,
Z2 re2,y21,¥51) = Kr, (Ta1,2Z42,+- -, Tt r=2, %11, Ya1) = Ky (T2 r-1,220, %2 ri1s- -0
T2ty T31,T32,- -5 T3t Y22,Y32) = K, and (T4 r—1,Tary T4 w41, - -+ T425 T11, T125 - - -
Z1, 12, Yaz) = K,. The remaining edges form a factor Fj of the complete graph
K,.rs,s with the partite sets Vi = {221, %22,...,%2 r—2, Y21, Y31} V2 = {Ta1,Ta2,- .-,
T4 re2s 11, Y41}y Vs = {22 rm1,T2r, T2 rblye o> T2t 231,232, - -, 31, Y22, Y32} 20d
Vi = {Z4 r—1,Z4rs Td r15- -+ » Tdty T11, 125 - - - ,T11,Y12,¥a2}- The isomorphism is
again ¢' : F] — Fj with the cycles (23;':5173'32,‘.‘1:4{) and (y3;y15Y25¥45) for i =
1,2,...,rand j =1,2,...,%

Finally we verify that diamF} = 2: distr,(n1i,y2;) = 1; this yields
distg, (¥11,%12) = 2 and dists, (15, ¥3k) = 2 because there are the edges y21¥s2
and yo2ys1; distr, (y1i,¥a) = 2 because there is always a path y1i, T3k, Va5 Sim-
ilarly distr,(y11,%1:) = 1 and distr,(¥12,21:) = 2 since there is always a path
Y12, T2;T1:(f < r —2); distr, (15, 225) = diste, (¥1:,235) = 1; distr, (316, 245) S 2
since there are all edges yy;zsr and Zakyej; distr (y21,y22) = distr (yo1,¥32) =
dist g, (y22,¥a1) = 2, hence distr, (v21,¥31) = distz, (y22, y32) = distr (v2i, ¥a5) = 25
distr, (y2i, Tjt) = 2 because both y; and yz2 are adjacent to both y11,%12 and
z;x is adjacent to at least one of y11,%12; distp, (y3i, 255} = 2 by the same argu-
ment (via yq and yz); disty, (ya1,¥32) = distm, (y3:i, ¥e5) = 1, distr, (ya1, y42) = 2,
distF, (y4i, zjx) < 2 since there are all edges y4:z2; and z2171m and all edges yaizar

and T3;1%4m; distr, (z1i,%25) = 1 and hence distp, (z1i, 215) = distr, (z2i,225) = 2,
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distF, (21, T35) = 2 because all z;; and z3; are adjacent to y11; distr, (714, 245) £ 2
because each z1; is adjacent to all z41,...,2Z4 r—2 while all z4 ,—1,...,%4¢ are ad-
jacent to yq1 which is a neighbour of all z,;; dists, (z2:, z3;) = distr, (z2i, T4x) = 2
since each vertex z4; is adjacent to one of y41,¥s2 and they are both neighbours
of all zo; and z3;; and finally dists, (23, 245) = 1 and therefore distr, (3i, %3;) =

d:'lStF,_ (3‘.‘45, 24j) =2. 0

2.6. r-PARTITE GRAPHS WITH r > 5

In this section we determine smallest (2,d)-isodecomposable complete r-
partite graphs for every r > 5 and every possible finite d, i.e., the values of g.(2, d).
We also prove that g.(2,d) = gL(2,d) for any possible pair r,d. In other words, we
prove that for every p > ¢.(2, d) there is a complete r-partite (2, d)-isodecomposable
graph with p vertices. We start with Gangopadhyay’s result [10] on decomposability

into factors (not necessarily isomorphic) with the same finite diameter.

Theorem 2.6.1. (Gangopadhyay) Let a complete r-partite graph Km,,m,,...,m.
with more than 4 parts be (2, d)-decomposable for 2 finite diameter d. Then d =
2,3,4 or 5 and

(e) mi+me+---+m.2r+1ifd=2;
(b)) mi+me+---+m 2r+lifd=3;
(c) mi+met--+m 27r+2ifd=4;
(d) mi+ma+--+m.2r+4ifd=5.
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We prove later that for every r > 4,7 = 2(mod 4) and each d = 2,3,4,5,

every r = 1(mod4) and d = 2,3, and every r = 3(mod4) and d = 4,5 all (2,d)-
decomposable complete r-partite graphs are also (2, d)-isodecomposable. However,

the following lemmas show that it is not true in general.

Lemma 2.6.2. Let r > 4,7 = 0 or 3(mod4) and d = 2 or 3. Then there is no

(2, d)-isodecomposable graph Km,,m,,...,m, With r+1 vertices.

Proof. Obviously, the only graph Km,,ma,...m, With r + 1 vertices is K2,1,1,...1,
which is not admissible for » =0 or 3(mod4). O

Lemma 2.6.3. Let r > 4,r = O(mod4). Then there is no (2,d)-isodecomposable

graph Kum, ms,...m, With r+ 2 vertices for any d..

Proof. There are only two possible complete r-partite graphs with r 4+ 2 vertices,
namely K221.1,...1 aod K3 11,....1. The former is not admissible, while the latter is

not isodecomposable by Theorem 2.5.6. O

Lemma 2.6.4. Let r > 4,r = 0(mod4). Then there is no (2,5)-isodecomposable

graph Km, m,,...m, With r + 4 vertices.

Proof. By Corollary 2.5.12, every (2,5)-isodecomposable r-partite complete graph
has one part of cardinality at least 4 and another of cardinality at least 2. The only
r-partite graph with r + 4 vertices, satisfying this condition, is K3,2,1,1,...,1. But the
number of the odd parts of this graph is r — 2 = 2(mod 4) and therefore the graph
is not admissible. O |
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Lemma 2.6.5. Let v > 4,r = 1(mod4). Then there is no (2,4)-isodecomposable

graph K, ms,...m, With r + 2 vertices.

Proof. There are two graphs Km, ,ma,...,m, With r+2 vertices. K221.1,...1, which is
not admissible, and K31 1,...1. Let us suppose that there is r = 1(mod 4) such that
the r-partite graph K33 1,...1 is (2,4)-isodecomposable into factors Fy and F». Let
U = {u1,uy,u3} be one part and V; = {v;},7 = 1,2,...,r — 1 the other parts, and
letV=VUuWUu..-UV,._;.

We first assume that there is a pair of vertices u;, u;, say ui, ua, such that
dist s, (11, u2)} = 4. Obviously, Np, (u1) U Nr,(u2) C V and Np, (u1) A Ng, (u2) = 0.
Furthermore, there is no edge between Np, (u1) and Np, (uz). Let M = V\Np, (u1)\
Np,(u2). Then in F, 2ll vertices of N, (u;) are adjacent to up, all vertices of
NF, (u2) are adjacent to u;, and each vertex of N, (u,) is adjacent to all vertices of
NFp, (u2). I the vertices u; and up have no common neighbour in Fp, i.e., if M =0,
the diameter of the graph (VUu, Uuz)r, = F> —u3 is 3 and the only vertices having
eccentricity 3 in this graph are u; and u2. Since uj is not adjacent to either of them,
we can see that exr, u3 < 3, which yields diam F> < 3. If M # §, then the diameter
of the graph (V Uu; Uuz)p, = F2 — u3 is 2 and therefore again diam F; < 3. Thus
if distF;(z,y) = 4, at least one of the vertices z,y belongs to V.

Now we show that if distp,(z,y) =4 and z = v; € V then y ¢ V. Suppose
it is not the case and there are vertices of V, say vy, va, such that distg, (v1,v2) = 4.
Denote F! the subgraph of F; induced by the vertices of V. Then clearly diam F} >
4. It is well known that if a factor of a complete graph K, has diameter greater
than 3, then its complement (with respect to K, ) has diameter at most 2. Because
(V) = K,_1, the diameter of F; is at most 2. Then all vertices with eccentricity 4
in F; belong to U, which is impossible by the preceding paragraph.
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Thus we have only one possibility left, namely that there are vertices u;

and vj, say u1,v1, such that distg, (1,21} = 4. Then (V Uu;) = K, and the graph
(V U uy) g, has diameter at most 2, because diam(V U uy)r, > 4. Hence the only
vertices which could have eccentricity 4 in F> are uo and uz. Then distr, (u2,u3) = 4,

which is 2 contradiction completing the proof. O

Lemma 2.6.6. Let r > 4,r = 1(mod4). Then there is no (2, 5)-isodecomposable

graph Km, m,,...m, With less than r + 6 vertices.

Proof. By Corollary 2.5.12 every (2,5)-isodecomposable graph K, ma,...,m, con-
tains K’ = Ky2,1,,.,1.- This graph has r + 4 vertices and is not admissible for
r = 1{mod 4).

There are only 3 grephs or order r + 5, containing K'. The first one,
Ky2.2.1,..1, is not admissible. Let us investigate then the graph Ks521,,..1 and
denote the part with 5 vertices by V3, and the part with 2 vertices by V2. It
follows from Lemma 2.5.11 that the vertices which have eccentricity 4 in either
factor belong to V2. By Lemma 2.5.13 the self—complementing isomorphism, ¢,
takes V2 onto itself. Hence, by Observation 2.5.3.a, the r-partite graph Ks21,1,...1
is isodecomposable only if the (r — 1)-partite graph Kg1,...,1 is isodecomposable.
But X5 ,1,...1 has r — 2 trivial parts, which is an odd number, and therefore is not
(2, d)-isodecomposable for any d by Theorem 2.5.6.

The last case, K4 3,1,1,...,1, 15 similar. By the same arguments as above, ¢
takes the part with 3 vertices onto itsel'f and K4 31,1,...,1 is isodecomposable only if
the (r — 1)-partite graph Kq,1,1,...,1 is isodecomposable, too. But for r = 1(mod 4)
the graph Ky 1,1,...,1 withr—2 parts of éardinality 1 is not admissible, and therefore

Ki3,1,,....1 is not (2, 5)-isodecomposable. O



v

Uy

W

v

) r = O(mod 4)
() r=

v3

Ug
wo
u;

u2

1Y

) r = 2(mod 4) -
(c)r=

Figure 2.6.1

"
2
wWo
V3
w
Uy
1{mod 4)
®r =
Uz
U2y ”‘
Wo
U
U
Uys
vz
U2z

(d) r = 3(mod 4)

> 5.
Now w each r
hs for ez

P

ble gra

l 0sa

(2,2)-isodecomp

t (2,

alles

t sm

en

e pres



73
Construction 2.6.7. (a) Case r = 0(mod4). For r = 8 we take the graph
shown in Figure 2.6.1.2. To get 2 selfcomplementary factor of Kz2221,..1 with
parts W = {wo},U1 = {un,ure}, U2 = {ta1,u22}, Us = {us1,us}, Vi = {vi},2 =
1,2,3,4, we add all edges uz1z and unz for z € {wo,v1,v2,v3,v4} Whenever the
edge u;;z exists and all edges uz2z and uz2z whenever the edge u;2z exists. The self-
complementing permutation ¢ is determined by the cycles (wo), (v11u12), (u21222),
(uai1uaz), (vivzvavz). For any r = 4k + 8,k > 1, we add parts V5, Vs,..., Vartq,
where V; = {v;}. Then for every quadruple viit1, Veit2, Vai+a, Vai+s We add the
edges of the path Py = (vgit+1,v4i+2, U4i+3,‘04:'+4), l.e., V4it1V4it2, V4it2V4i+3s
V4i+3Y4i+4, and join the end-vertices v4;41 2nd v4it4 of P; to all “preceding” vertices,
i.e., to the vertices u11, 112, u21, 222, U31, Y32, W0, V1, V2, - « -  V4i- The new cycles of ¢
are then (vgip1Vai+3Vai+avaite) fori=1,2,.0,k

(b) Case r = 1(mod4). For r = § we take the selfcomplementary
factor shown in Figure 2.5.1.b. The parts of Kz11,1,1 ate W = {w,w}, Vi =
{nn}, Vo = {v2},Va = {vs},Va = {w}, the self-complementing permutation ¢
is determined by the cycles (wq),(w), (v1v3v4v2). Fc:Jr any r = 4k + 5,k 2 1,
we add again vertices vs,vg,...,vk+4 (OF, more precisely, parts V; = {v;}) and
for every quadruple vgig1,Vai+2, Vai+3, Vai+e we add the edges of the path Py =
(V4541 Vai+2, Vaitd, Vaitd)s 1-€.y Vaik1Vai+2, Vai+2V4i+3, Vai+3V4i+4, 2nd join the end-
vertices vgi41 and vgie of Py to all “preceding” vertices, i.e., to the vertices
Wo, W, V1,V2,...,%i. The new cycles of ¢ are now again (v4is1Vai+308i+408i+2)
fori=1,2,...,k

(c¢) Case r = 2(mod4). For r = 6 we take the selfcomplementary factor
shown in Figure 2.6.1.c. The self-complementing permutation ¢ is determined by
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the cycles (wo), (w122), (vivsvavz). Forany r = 4k 46,k > 1, we add again vertices
(i.e., parts,} vs, vg, ..., var+4 and all the edges as in the case (b). The new cycles of
¢ are again (V441 Viravaivavaisz) forz =1,2,... k.

(d) Case r = 3(mod4). For r = 7 we take the selfcomplementary factor
shown in Figure 2.6.1.d. The self-complementing permutation ¢ is determined by
the cycles (wo), (u11u12), (u21u22), (v1vavave). Forany r =4k + 7,k > 1, we again

add the vertices, edges and permutation cycles as in the previous cases. 0

We continue with smallest (2, 3)-isodecomposable graphs for each » 2 5.
The construction is in a1l cases very similar to the previous one. We again take first
the r-partite factors for r = 5,6, 7,8 and extend them by adding paths Py, but we

join to the “preceding” vertices the inner vertices of F; rather than the end-vertices.

Construction 2.6.8. (¢) Case r = 0(mod4). For r = § we take the graph
shown in Figure 2.6.2.2. To get a selfcomplementary factor of K222,1,..1 with
parts W = {wo},Us = {un1,u12}, U2 = {u21,u22},Us = {uar,uz}, Vi = {v;},i =
1,2,3,4, we add all edges ug;z and ug1z for z € {wO?Ul,Uz,‘U;;,'U4} whenever the
edge u;17 exists and all edges u22z and u32z whenever the edge u127 exists. The self-
complementing permutation ¢ is determined by the cycles (wo), (u11u12), (¥21u22),
(usiuaz), (M1vsveve). For any r = 4k + 8,k 2> 1, we add parts Vs = {vs5}, Vs =
{vg},..- s Vaksa = {var+4}. Then for every quadruple vyit1,v4i42, Vai+3; Vaits We
add the edges of the path Py = (v4it1,Vai42,Vai+3,Vaitd), DAMeElYy V4i4104is2,
Vait2V4i+3, V4i+30ei+4, 2nd join the vertices vqit1, Vai+2,Vai+3, Vai+4 to the vertices
¥12, V22, Va2 and, furthermore, the inner vertices vgit2 and vsits of Py to the ver-
tices wo,v1,v2,.-.,V4i- The new cycles of ¢ are then (Vgi+104i+3Vai+aVai4+2) for

i=1,2,...,k. The vertices at distance 3 apart are always u3; and u3».
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(b) Case r = l(mod4). For r = 5 we take the selfcomplementary
factor shown in Figure 2.6.2.b. The parts of K23,1,11 are W = {w,wo},V1 =
{01}, Va = {v2},Va = {v3}, Vi = {4}, the self-complementing permutation ¢ is
determined by the cycles (wo), (w),(vaivavsve). For any r = 4k + 5,k 2 1, we
add again vertices vs, s, - - -, Vsk+4 (i-€., parts V; = {v;}) and for every quadruple
Vait1, Vait2, Vai+3, Vaird We 2dd again the edges of Py = (vgit1, Vai+2, Vait3s Vit
1.6., Ugi+1Vei+2, Vei+2V4i+3, V4i+3V4i+4, and join the inner vertices vyiy2 and viiys
of P; to all “preceding” vertices, i.e., to the vertices wo,w,v1,v2,...,%;. The new
cydles of ¢ are now again (vVait1Vdi+aVsitalei+2) for ¢ = 1,2,...,k. The vertices
having mutual distance 3 are vi41 and vak+4-

(c) Case r = 2(mod4). For r = 6 we take the selfcomplementary factor
shown in Figure 2.6.2.c. The self-complementing permutation ¢ is determined by
the cycles {wp), (uyu2), (v1v3v4v2). Forany r = 4k+6,k > 1, we add again vertices
(parts) vs,Vs,--.,v4k+4 and all the edges as in the case (b). The new cycles of ¢
are again (Vqi+1v4it+avairaVai2) for ¢ = 1,2,...,k. The vertices u1; and uyz are
always at distance 3. '

(d) Case r = 3(mod4). For r = 7 we take the selfcomplementary factor
shown in Figure 2.6.2.d. The self-complementing permutation ¢ is determined by
the cycles (wg), (u11t12), (¥2122), (v1vsvave). For any r =4k + 7,k > 1, we again

add the vertices, edges and permutation cycles as in the previous cases. O

In constructions of factors with diameters 4 and 5 we use a different ap-
proach. To increase the number of parts, we “blow up” the pathb 7% induced by
vertices belonging to different trivial parts similarly as in Sectioﬁ 5, e.g., in Exam-
ple 2.5.18 or Theorem 2.5.19. First we construct smallest selfcomplementary factors
with diameter 4 of the complete r-partite graphs for each r > 5.
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Construction 2.6.9. (a) Case r = O(mod4). We start with decomposition of
the 8-partite graph Kz221,..1 with the parts W = {wo},Uh = {u11,v12}, U2 =
{uz21,u22},Us = {us1,us}, Vi = {v:},# = 1,2,3,4. The selfcomplementary fac-
tor is shown in Figure 2.6.3.a2. The self-complementing permutation ¢ is deter-
mined by the cycles (wo), (u11u12), (u21u22), (uz1u32), (viv3vgv2). The vertices hav-
ing distance 4 are u;; and u3;. For any r = 4k 4+ 8,k > 1, we add parts V; =
{v;},i = 5,6,...,4k + 4. Now we “blow up” the path Py(0) = (vi,v2,v3,%4)-
We add the edges of the paths P4(), namely v4it10ai+2, Vai+2V4i+3, Vai+3V4i+4 for
i=1,2,....k, all edges vqir1Val+2, Vait2Vai+3, Vai+3Vai44 and all edges vgigavaise
and vgipavares for all pairs 3,1 € {0,1,...,k},i # I. We also add the edges v4itrz
for all i = 1,2,...,k and r = 1,2,3,4 whenever the edge v,z exists. Here z is any
vertex of WUU; UU> UUs. In other words, we take the path P¢(0) = (v1,v2,v3,v4),
put the vertices vgiqr,i = 0,1,..., k7 = 1,2,3,4 “into” the vertex v, and substi-
tute the original edge vrvr41 for all possible edges vai+rvai+r+1. The vertices vqis2
and v4i43,%t =0,1,...,k induce complete graphs K41, while the vertices vg;41 and
Vaip1,t = 0,1,...,k remain mutually non-adjacent. Fiﬁa.lly, every vertex vs;+r has
the same neighbours in WU Uy U Uz U Us as the vertex vr. One can check that u3
and ugz, are at distance 4. The new cycles of ¢ are now (vait+1vai+3Vai+aVei+2) for
i=12,...,k
(b) Caser = 1(mod4). We first decompose the graph Kj,1,1,1,1 with parts
U = {uy,uz,u3,u4}, Vi = {01}, Vo = {2}, V2 = {v3}, V4 = {v4} into factors isomor-
phic to the one shown in Figure 2.6.3.b. (The indicated vertex w; appears later in
* the construction of graphs of greater orders.) The self-complementing permutation

is determired by the cycles (u;ugumg) and (v v304v2). Forany r =4k +5,k 2 1,
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we add the parts Vs = {vs}, Ve = {ve}..-, Var+s = {var44} and “blow up” the
path Py(0) = (v1,v2,v3,v4) exactly as in part (2). The new cycles of § are again
(Vait1vai+3Vai+atais2) fori = 1,2,..., k. The vertices having mutual distance 4 are
u; and uq.

(¢) Case r = 2(mod4). We start with the graph K(1,,1, with parts
W = {wo},U = {z1,u2,u3,u}, Vi = {u}, V2 = {m}, Vs = {3}, Va = {vs} and
decompose it into factors isomorphic to the factor shown in F‘igure 2.6.3.c. The seli-
complementing permutation ¢ is determined by the cycles (wo), (ui1usuquz) and
(v1vsvevz). For any r = 4k + 6,k > 1, we again “blow up” the path Py0) =
{v1,v2,v3,v4) exactly as in part (2), adding the parts Vs = {vs}, Vs = {v6},---,
Vaki< = {var+s} and the corresponding edges. The new cycles of ¢ are again (vais1
VairaVeiraVaiv2) for i = 1,2,..., k. The vertices at distance 4 apart are vy and ug.

(d) Case r = 3(mod4). For r = 7 we decompose the graph Kz.2,1,0,1,1,2
with parts W = {wo},Uh = {un1,v12}, U2 = {ua1,u22},Va = {n}, Va={v2},Va=
{v3},Va = {v} into factors isomorphic to the graph in Figure 2.6.3.d. The self-
complementing permutation ¢ is determined by the cycles (wq), (ua1u22), (v12%21)
and (v1v3v4v2). We increase the number of parts for any r = 4k + 3 as in the

previous cases. The vertices having mutual distance 4 are uz; and u22. O

Finally, we construct factors of smallest (2, 5)-isodecomposable complete
r-partite graphs for each r > 3.

Construction 2.6.10. In this construction we present only the factors of smallest

(2, 5)-isodecomposable complete r-partite graphs with r = 5,6, 7,8 and 9 parts. The
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factors of smallest graphs for any r 2 10 can be obtained exactly as in Construction
2.6.9—by “blowing up” the path P((0) = (v1,v2,v3,v4)-

(a) Case r = O(mod4). The §-partite graph Ky2.21,..1 with the parts
W = {wo}, U1 = {ua1,u12,m13,u14}, U2 = {u21,u22}, Uz = {ua1,u32}, Vi = {vi},
1 =1,2,3,4, is (2,5)-isodecomposable into the selfcomplementary factors shown in
Figure 2.6.4.2. The vertices v;,...,v4 are adjacent to the neighbours of the vertex
wy, i.e., to U3z, ur3, U21,u32. The self-complementing permutation ¢ is determined
by the cycles (wo), (va1u12), (v13t14), (u21u22), (u31u32), (v1v3v4v2). The vertices
having mutual distance 5 are u;; and u;4.

(b) Case r = 1(mod4). The 5-partite graph K 2 22,1 with the parts W =
{wo}, Ur = {u11,u12, u13,u14}, Uz = {uo1,u22}, Us = {us1,ua2}, Vs = {uq,u2} is
(2,5)-isodecomposable into the selfcomplementary factors isomorphic to the sub-
graph of the graph shown in. Figure 2.6.4.b induced by the above mentioned parts.
The vertices v1,...,v4 are adjacent to the same vertices u;; as the vertex wq.
The self-complementing permutation ¢ is determined by the cyeles (wo), (v11212),
(uwasu1a ) (u21u22), (u31u32), (vq1u42). The vertices at mutual distance 5 are u;; and
Uzg.

To obtain the selfcomplementary factor of the 9-partite graph K4 2221,....1,
we have to add to the graph in Figure 2.6.4.b the parts Vi = {v1 }, Vo = {2}, V5 =
{vs}, Va = {v4} and edges v;uj for each { = 1,2, 3,4 whenever the edge wou;; exists.
The permutation ¢ contains now one more cycle, (v1v3v4v2).

(c) Case r =2(mod4). The factor of the 6-partite graph Ky 211,11 with
the parts W = {w,wo}, U = {uy,uz,us,us}, 1 = {01}, Vo = {12}, V3 = {03}, Va =
{v4} is shown in Figure 2.6.4.c. The cycles of ¢ are (w), (wo), (u1uauqu2), (v1v3v4v2)

and the vertices at distance 5 are u; and uq4.
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(d) Case r = 3(mod4). The 7-partite graph Ky 2,,..1 With the parts

W = {wo}, U1 = {un,v12, %13, 814}, U2 = {ua,u2}, Vi = {m}, 12 = {v.}, V2 =
{v3},Va = {vs} is (2,5)-isodecomposable irto the factors isomorphic to that in

Figure 2.6.4.d. The cycles of ¢ are (wp), (u13u12), (21314), (¥21122), (v10304v2) and

the vertices at distance 5 are uj3y and u34. O

We can summarize the resulis given in this section as follows.

Theorem 2.6.11. Let r > 5. Then

9-(2,2) = 9+(2,3) = 9r(2,4) =7 + 3, 9:(2,5) =r + 5 if r = 0(mod 4),

gr(2,2) = g-(2,3) =7 +1, g:(2,4) =7 +3, 9(2,5) =7 +6 if r = 1{mod4),
g-(2,2) = 9-(2,3) =7r+1, ¢,(2,4) =7 +2, ¢-(2,5) =r+4 ifr = 2(mod 4), and
9-(2,2) = 9-(2,3) = ¢-(2,4) =7 +2, ¢,(2,5) =r +4 if r = 3(mod 4).

Proof. Apply Lemmas 2.6.2-2.6.6 and Constructions 2.6.7-2.6.10. O

P, Das [7] introduced the following classes of graphs. A complete graph
without one edge, K, = Kn — ¢, is called an almost complete graph. A graph G
with n vertices is almost selfcomplementaryif the graph ffn can be decomposed into
two factors that are both isomorphic to G. Obviously, if a graph with n vertices
is selfcomplementary, then n = 2 or 3(mod4). Since the graph K, is the complete
(n—1)-partite graph K21 1,...,1, which appears among the smallest isodecomposable

graphs in the previous theorem, the following re-phrasing of the results dealing with
almost selfcomplementary graphs may be of some interest.

Theorem 2.6.12. (Das) An almost complete graph K, is decomposable into two
connected isomorphic factors with diameter d if and only if »n = 2 or 3(mod 4) and
d=2or3.
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In the previous sections we have seen that for r = 2,3,4,we always have
g-(2,d) = ¢’(2,d) for any d. Constructions 2.6.7—2.6.10 provide the necessary tools

to prove that the equality holds for any finite r and any d.
Theorem 2.6.13. Let 2 < r < co. Then ¢,(2,d) = ¢\.(2,d) for any d.

Proof. ¢go(2,d) = coforr > 2and d = 10or § < d < co, hence the result is
immediate. The same holdsforr=2and d=1,20r6 <d < co. All other cases
for 2 < r < 4 follow from Theorem 2.2.3 (d = o), Corollary 2.4.3 (r = 2), Corollary
2.4.9 {r = 3) and Theorem 2.5.16 {r = 4). To prove the assertion for any r > 5 we
need to show that for a given d,2 < d £ 5 and any p > ¢,(2,d) there is a complete
r-partite (2, d)-isodecomposable graph with p vertices. Let p = ¢-(2,d) +¢. For
d = 4 and r = 1(mod 4) we take the factor constructed in part (b) of Construction
2.6.9, add g vertices wy,wz,...,w, into part U and join each of them in the factor Fy
to all vertices vqiy2, Vi3, = 1,2,..., k. Then ¢(w;) = w; foreach j =1,2,...,¢
and obviously F} = F;. In all other cases one can see that ¢(wq) = wy. Therefore
we can always add ¢ vertices wy,ws,...,wy into part W and join in Fy each of
them to all neighbours of wg. Then 2gain ¢(w;) = w; for each j =1,2,...,¢ and
heFrR O
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3. Decompositions of group divisible designs

3.0. INTRODUCTORY NOTES AND DEFINITIONS

A group divisible design k — GDD(n,r) is 2 triple (V,G,B) where V is
a set of elements, G is a partition of V into r subsets G;,G2,...,Gr of the same
cardinality n called groups and B is a collection of subsets of V of cardinality k called
blocks such that |G;NB| £ 1 for any group G € G and any block B € B and for any
two elements z, y from distinct groups there is exactly one block containing both z
and y. {Our definition is _somewiza.t more restrictive than that given usually in the
literature, cf., e.g., [3]). A iransversal design k — TD(r) is a group divisible design
k—GDD(n,k), i.e., |GiNB| = 1 for any group G; € G and any block B € B. A factor
E of 2 k—GDD(n,r) is a triple (V, G, D) where D is a subset of B. A decomposition
of a k — GDD(n,r) is an m-tuple of factors E; = (V,G,D;),: = 1,2,...,m such
that D; ND; = 0 and G D; = B. Two factors E; and E; are isomorphic (denoted
E; = Ej) if there exist:: 11 one-to-one mapping ¢;; of V onto itself such that D' =
{ij(z1), i;(z2),. .., 0i;{(zk)} € Dj if and only if D = {z1,22,...,2+} € Di. A
decomposition is isomorphic if E; = E; foreverypair 1 £:1<j<m. Im =2,
the isomorphism ¢ : E; - E» is also called a self-complementing isomorphism,
self-complementing permutation or comolementing permutation and the factors E;
and E; the selfcomplementary factors with respect to k — GDD(n,r) or simply the
selfcomplementary factors.

A path of length ¢, Py, is a sequence 29~ By —z1— By —23 —--- =By~ 1z,
of elements and blocks such that for each : = 1,2,...,q the clements z;1 and

z; belong to the block B; and no block and no element appears more than once.
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Since each pair of elements in a k — GDD belongs to at most one block, the path
is uniquely determined by the elements and we usually use the simpler notation
Py=z¢—zy—-- =24 A cycle of length g, Cy, is a sequence zg — B; — 21 — B2 —
23 — -+ — By — z4 (or simply zp — 21 — + -+ — z,) of elements and blocks such that
zo = z4, for each i = 1,2,...,q the elements z;_; and z; belong to the block B;
and no block or element appears more than once. A distance between elements z
and y in a factor E, denoted distz(z,y), is the length of the shortest path from z
to y. A factor E is comnected, if for each pair z,y € V there is a path from z to
y; otherwise, it is disconnected. A diameter of a connected factor E, diam E, is the
maximum of the set of distances distg(z,y) among all pairs of elements of E. If E
is disconnected, we define diam E = co.

Hartman [14], Das and Rosa [8], and Phelps [19] studied decompositions
of designs into two factors. We are interested in decompositions of GDD’s into two
isomorphic factors with a given diameter and also in isomorphic decompositions of
GDD’s into smallest connected factors. A GDD is (t,d)-decomposable if it can be
decomposed into t factors with diameter d each. A GDD is (¢,d)-isodecomposable

if it can be decomposed into ¢ mutually isomorphic factors with diameter d.

3.1. DIAMETERS OF SELFCOMPLEMENTARY FACTORS OF GROUP DIVISIBLE

DESIGNS

There is an obvious similarity between decompositions of GDD’s and mul-
tipartite complete graphs. If E is a factor of a2 k — GDD(n,r) (V,G,B) then the
underlying graph or underlying factor of E is the r-partite graph U(E) with the ver-
tex set V and the parts Gi1,Ga,...,Gr in which two vertices z, y are adjacent if and
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only if the elements z,y are adjacent in E, i.e., if they belong to the same block of E.
Clearly, distg(z,y) = disty(g)(z, y) an hence diam E = diam U(E). If U(E) is the
underlying graph of a factor E of k — GDD(n,r) then the edge set of U(E) can be
partitioned into complete graphs K, where each K corresponds to one block of E .
We say that a complete r-partite graph Kp n,...n = Kar is Ki — (¢, d)-decomposable
if it is (¢, d)-decomposable and the edge set of each factor can be partitioned into
complete graphs K. Similarly, K- is Ki — (¢, d)-isodecomposable if it is Ki —(t,d)-
decomposable and the factors are mutually isomorphic.

The necessary and sufficient conditions for decomposability of group di-

visible designs now follow easily so that the proof can be omitted.

Theorem 3.1.1. A (¢,d)-decomposable group divisible design k—GDD(n,r) exists
if and only if the underlying graph K.r is K; — (t,d)-decomposable, and (i,d)-
isodecomposable group divisible design k — GDD(n,r) exists if and only if the
graph Kn- is K — (t,d)-isodecomposable. .

Remark 3.1.2. It is easy to see that a similar theorem holds also in a more general
case when we consider the groups and blocks having different sizes ny,n2,...,n,

and ki, k2,..., ks, respectively.

Since for k = 2 the group divisible design is isomorphic to its underlying
graph, K-, we always suppose that r,k > 2. As we have seen in the previous
sections, connected selfcomplementary factors of complete r-partite graphs with
r > 2 can have diameters 2,3,4 or 5. Therefore, no selfcomplementary factor of
a k — GDD(n,r) can have diameter greater than 5 either. In fact, in the case of
selfcomplementary factors of GDD’s even the diameter 5 is not possible. We could
prove this applying Lemmas 2.5.9 and 2.5.10, but we are looking for a more general
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result. We prove that if 2 k—GDD(n,r) is decomposable into two connected factors
E, and E,, not necessarily isomorphic, then one of them is of diameter at most 4.
We could prove even this applying Lemmas 2.5.9 and 2.5.10, or more precisely, the
proofs of the lemmas, because we never used the isomorphism of the factors in the
proofs of the lemmas. But the proof in the case of GDD’s is more compact and
therefore we prefer to present the modified form.

We prove the result first for the underlying factors. The main result is

then an easy corollary. A clique of a graph F is a maximal complete subgraph of
G.

Theorem 3.1.3. Let a complete r-partite graph be decomposable into two con-
nected factors Fy and F» such that the smallest clique in any of the factors has at
least 3 vertices. Let diam F) > 5. Then diam F> < 3.

Proof. For convenience we again assign a colour to each part. Let a white vertex
wy have in F eccentricity d = diam F) 2> 5. Let V; be the set of all vertices having
in F) distance i from wy. Since every clique of I is of order at least 3, wp has at
least two neighbours of different colours, say red and blue. For the same reason, if
a4, a vertex of colour a, is in F at distance d from wy, then Vi_; U V contains
vertices of two other colours, say & and ¢. The distance in F> between any two
vertices z;,y5 € VaU Vg U---UV; is at most 2, because one of the red, blue or white
vertices of Vp U1 has a colour different from both z,y and hence is in F; adjacent
to both z;,y;. X z;,y; € VoUV1 UV> then again distg, (2:,y;) < 2 because Vg, UVy
contains vertices of 3 different colours.

If z; € V; and y; € V; have different colours, 1 £ 2,7 2 3and j—i > 1,

then z; and y; are adjacent in F3; if they have different colours and ¢ = 2 and
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j = 3, then z, is adjacent in F3 to vertices of 2t least two colours of Va_; U Vg, say
ap,by. At the same time y; is adjacent in F5 to a vertex of the set Vo UV U Va.
But every vertex of Vo U Vi U V. Is, according to its colour, adjacent in 5 to at
least oue of ap,b;. Then F: contains 2 path of length 3 between z; and y; and
distz, (z:i,v;) < 3. Finally, if z; € V; and z; € V; have the same colour, z, and
i < 2 and j > 3, then similarly as a2bove z; is in F> adjacent to vertices of at least
two colours of Va_, UVz, say a,, by, while z; hasin F2 2 neig}:bour in VU V. This
neighbour is in F» adjacent to at least one of ap, b; which yields distz (2i,2;) £ 3.
Thus for any two vertices z,y the distance between them in F} is at most 3 and

diamF> <3. O
An equivalent result for group divisible designs now follows easily.

Theorem 3.1.4. Let a group divisible design with at least 3 groups be decompos-
able into two connected factors Ey and E,. If every block of the GDD is of size at
least 3 and diam E; > 5 then diam F» < 3.

Proof. Because the minimal blocks have at least 3 elements, the underlying fac-
tors U(E,) and U(E,) satisfy the conditions of Theorem 3.1.3. Since diam E; =
diam U(E;), we can repeat the previous proof to show that if there is a vertex wo
with exg, wo = exy(g,) wo = 5, then diamU(E2) < 3. Therefore diam E, < 3,

which completes the proof. O

If we require the factors to be isomorphic, we immediately have the fol-

lowing.

Corollary 3.1.5. Let a complete r-partite graph be isodecomposable into two
connected factors Fy =2 F, such that the smallest clique in the factors has at least
3 vertices. Then diam F} = diam I, < 4.
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Corollary 3.1.6. Let a GDD with at least 3 groups be isodecomposable into two

connected factors E; = E,. If every block of the GDD is of size at least 3, then
diam E; = diam £» < 4.

3.2. SELFCOMPLEMENTARY FACTORS OF 3—TD’s

In this section we prove that for every even size 2n > 4 and d = 3,4
and oo there exists a (2, d)-isodecomposable transversal design 3 — T'D(2n), i.e.,
a group divisible design with 3 groups of size 2n and blocks of size 3. Obviously,
such a decomposition of 2 3 — TD(2n + 1) is not possible because the number of
its blocks is odd. Since we do not know an example of a (2,2)-isodecomposable
3 — TD(2n) but, at the same time, we are unable to prove that such a TD does
not exist, we leave the case d = 2 in doubt. For both @ = 3 and 4 we construct
factors of a 3 — TD(2n) arising from the additive group Z2,. The groups of the
design are Gy = {01,11,21,...,(2n = 1 },G2 = {02,12,22,...,(2n — 1)2},G3 =
{03,13,23,-..,(2n — 1)3} and its blocks are the triples (z1,y2,(z + ¥)a) for z,y =
0,1,2,...,2rn — 1. It is well known that a 3 — TD(2r) is equivalent to a latin
square of order 2n. If we assign the numbers 0,1,2,...,2n — 1 to both the rows
and the columns then a triple (z1,¥2,23) belongs to the 3 — TD(2n) if and only if
the entry z appears in the z-th row and y-th column, i.e., in our case, if and only

if z + y = z(mod 2n).

Construction 3.2.1. (d = 3) The factor E, of the 3 — T D(2n) above contains the
blocks

(ola 02: 03): (01, 1z, 13)$ (01’ 22a 23): R (01 ? (n' - 1)2! (n - 1)3)!



90

(21,02, 23),(21, 15, 33)! (21’22-:43)1 ey 21$ (n' - 1)2s (n -+ 1)3),

((277' _2)17 02, (27?. - 2)3)& ((271, - 2)1 y 12, (271 . 1)3)! v ((2n - 2)1 ’ (n - 1)27 (7’2 - 3)3)’
(11,712, (n + 1)3)’ (11: (n + 1)23 (n + 2)3)a .- ?(11: (2n' - 1)2’03)y
(31, N2, (n. + 3)3), (31, (n -+ 1)2, (n + 4)3), cany (31, (211 - 1)2,23),

((2n—1)1,n2,(n — 1)), ((2rn — 1)1, (n+1)2,n3);- .., (2 — 1)1, (2r —1)2, (2n — 2)3).
The factor E contains all blocks not contained in E; and the self-complementing
permutation is ¢(z1) = z1, $(z2) = (n + z)2, ¢(23) = (n + z)s.

Now we have to show that diam F; = 3. To see this, we present the factor
E) as the sub-array of the array of the additive group Z3, shown in Figure 3.2.1 for
n odd and in Figure 3.2.2 for n even. The elements of the group ) are assigned
to the rows, the elements of G2 are assigned to the columns and the elements of G
are the entries. If there is no block containing both elements z; and y. we leave
the space in the z-th row and y-th column blank.

We start with n odd. First we check the distances from the elements of G,
to all others. For every z;,3n € Gi,z) # w1 the distance distg, (z1,31) = 2 because
each of the two rows contains | 7] + 1 even entries and hence they have at least one
even entry, say 2, in common. Thus z; and y; have in E; a2 common neighbour z3.

For y2 € G2 we have distg, (z1,y2) =1 if z is even and y < n or z is odd
and y 2 n because the entries in the z-th row and y-th columns are non-blank;

if z is even and ¥y 2 n or z is odd and y < n then distg, (z1,y2) = 2 because
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odd 0 1 2 v n-1 n n+l | n+2 2n-1
o] 4] 1 2 “ee n-1 - - - -
1 - - - - - n+l | n+2 | n+3 0
2y 2| 3] a . ] - | -] - -
3 - - - - - | n+3 | n+4 | na5 2
n=l{n-1| n |n+1 . 2n-2§ - - - -
k—___ e re—————————————— e}
n - - - - - 0 1 2 n-1
ntl | ndl | od2 | ne3 .o 0 - - - -
n+2 | - - - - - 2 3 4 n+l
2n-2}2n-2|2n-1{ o wae n-3 - - - -
an-1f) - | - | - - - fn2| n |nn1 2n-2

' Figure 3.2.1

each column contains either all even or all odd entries and each row contains n

consecutive entries and therefore at least one of them is even and one is odd. Thus

every row contains at least one entry in common with each column which means

that every element of G; has a common neighbour with each element of Go.

Finally, for ys € Gj, distg,(71,33) =1if risevenand y € {z,2+1,z 4+
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even] O 1 2 n-1 n | n+l | n+2 2n-1

4] 4] 1 2 n-1 - - - -

1 - - - - n+l | n+2 | n+3 s}

2 2 3 4 n+l - - - -

3 - - - - n+3 | n+4 | n+S 2
n=-1 - - - - 2n-1| © 1 n=2

n n n+l | ne2 2n-1 - - - -
n+l - - - - 1 2 3 n
n+2 [ n+2 | n+3 | n¥4 1 - - - -
2n-2§2n=-2|2n-1| ¢ n-3 - - - -
2n-1 - - - - n-1 n n+l 2n-2

Figure 3.2.2

2,..,z+n—1}orzisoddand y € {z+n,z+n+1,...,z +2n — 1} because
all the mentioned entries y appear in the z-th row and the corresponding elements
belong to the same block; if ziseven and y € {z +n,z +n+1,...,2 4+ 2n — 1}
orzisodd and y € {z,z + 1,z +2,...,z + n — 1} then distg, (z;,y3) = 2 since

every aven I, is adjacent to 02 and 1; (there is a non-blank entry in the first two
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columns in each even row) and two neighbouring columns together contain all entries
0,1,2,...,2n — 1—hence every element z; is adjacent to one of the neighbours of
z1, either 0z or 1;. Similarly, if z; is odd then it is adjacent to n; and (n +1)2 and
every z3 is adjacent to one of them.

Thus we have shown that distg, (z1,%:) < 2 for any z; € G, and any
yi € G2 U G;. Now let y;,z; € G2 U Gs. Since E) is connected, then z; is adjacent
to an clement z9. Because distg, (z1,¥:) < 2 and, in particular, distg, (29,%:) £ 2,
we immediately have distg, (yi,z;) < distg, (29,2;) + distg, (2%,y:) < 3 for any
Yi,2; € G2 U G3, which ylelds diamE; < 3. To prove that diamE; = 3, we
have to find a pair of elements whose distance is greater than 2. One of such
pairs is 0z, (n + 1)2, because the neighbourhood of 02, Ng, (02), contains elements
01,21,...,(2n — 2),,03,23,...,(2n — 2); while Ng,((» + 1)2) = {11,31,...,(2n -
1)1,13,33,---,(2n—1)3}. Thus Ng, (z2)NNx, (y2) = 0 and therefore distg, (02, (n+
1)2) = 3, which completes the case of n odd.

Now we consider n even. Then distg, (z1,11) = 2 for any 1,11 € Gy,
because if the difference z — y is even then z; and y; have n common neighbours
in Go—02,12,...,(n — 1)z for z,y even, na,(n + 1)2,...,(2n — 1); for z,y odd; if
the difference £ — y is odd then exactly one of z,y, say =z, is even and Ng,(z;)
contains elements z3,(z + 1)3,...,(z + n — 1); while Ng () contains elements
(y+n)3, (¥ +n+1)s,...,(y —1)s. Then Ng, (1) contzins either z3 or (z+n—1)3
and in any case N, (z1) N Ng,(v:) # 0.

For any z; € Gi1,y2 € G2 we have distp, (z1,¥2) £ 2, because every
z; € G has 2 odd and % even neighbours z3 € G3 and each y2 € G2 is adjacent
either to all odd or all even elements of G3.
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Also distg, (z1,y3) € 2 for any z; € G1,y3 € Ga, because if z is even then
z, is adjacent to 0z and 12, while at the same time N, (02) contains 03, 2,..., (2n—
2); and Ng, (12) contains 13,33, ..., (2r—1);. Thus Ng, (02)UNE, (12) = Gs, which
yields the desired inequality. If z is odd then z; is adjacent to n and (n+1)2,and
again Ng,(n2)U Ng, ((n + 1)2) = G3, which completes the case.

We have shown again that distg, (z1,y:) < 2 for any z) € G; and any
yi € G2 UG3. Similarly as in the case of n odd it follows now that distg, (¥i,z;) £3
for any yi,z; € G2 U G3, because every vertex z3 is adjacent to a vertex zJ and
distg, (29, i) < 2, which yields the inequality above. Hence distp, (zi,y;) € 3 for
any zi,y; € V. The elements at distance 3 are again 0z and (n + 1)2 as in the
previous case, since again Ng,(02) = {01,21,...,(2n = 2)1,03,23,...,(2n — 2%}
while Ng, ((n +1)2) = {11,31,---,(2n = 1)1,13,35,...,(2n — 1)3}. Thus Ng,(z2)N

Ng,(y2) = 0 and distg, (02, (n + 1)2) = 3, which completes the construction. O

For d = 4 we consider again the 3—TD(2n) from the additive group Zz,. It
is much easier now to show that the factors have diameter 4. Since from Corollary
3.1.6 it follows that a selfcomplementary factor of a GDD can have diameter at

most 4, we only need to show that there is a pair of elements whose distance is 4.

Construction 3.2.2. (d = 4) The factor E; consists of blocks

(01,12, 13), (01,232, 23), (01,32, 33), - .-, (02, (20 — 1)2, (27 — 1)3),
(11,02,13),(11,12,23), (11,22, 33), - .-, (21, (7 = 2)2,{n — 1)3),(11,n2,(n + 1)),
(21, (2 + 1)2,(n + 2)3), ..., (21, (2n = 1)2,03},

.
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(i1,02,i3), (i},lz,(i -+ 1)3), (f1,22,(i <4 2)3), P ,(fl,(ﬂ —-— 1 —_ 1)2,(!1 — 1)3),(1.1,(71 -—
l+ 1)21("‘ + 1)3),(11,(71 -1 + 2)2,(1’1 + 2)3)"' . !(ils(zn - 1)2,(2”. + t - 1)3)a

((n=1)1,02,(n=1)3), ((n—=1)1, 22, (n+1)3), ((r=1)1, 32, (n+2)3),. .., ((n—1}1, (2n—
1)2,(n —2)3), and
(n1,02,n3), (n + 1)1,{n — 1)2,03),((n + 2)1,(n — 2)2,03}...,((2n — 1)1, 12,03).
We again present the factor E; in Figure 3.2.3 as the sub-array of the array of Z,,.
The factor F» contains all blocks not contained in E; and the sclf-com-
plementing permutation is ¢(z1) = (n + z),é(z2) = 22,8(z3) = (n + 2);. To
prove that diam Ey = 4-'we only need to cbserve that distg, (n;,(n + 1);) > 3.
Because n; is adjacent only to 02 and n3 while (n -+ 1); is adjacent to (n —1)2 and
03, we can see that distg, (n1,(n + 1)1) > 2. Moreover, there is no block in E,;
containing either the pair 02,03 or (n — 1)2,n3. Since the 3 — TD(2n) contains no
block with two elements of the same group, no neighbour of n, is adjacent to any
neighbour of (n + 1);, which yields distg, (n1, (r + 1)1) > 3. Because diam E; < 4,
the construction indeed yields factors of diameter 4. O

Construction 3.2.3. (d = oo} The factor E, consists of all blocks (z3, y2,23) with
z =1,2,...,n while E; contains the blocks (z1,y2,23) withz =n+1,n+2,...,2n.
The self-complementing permutation is the same as in the previous construction:
#(z1) = (n+z)1, #(z2) = 22, #(z3) = (n+z)3. The factor E; isindeed disconnected,
because the elements (n+1);, (r+2)1,...,(2n); are not contained in any block. O

Using the constructions, we can state the following result.
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Theorem 3.2.4.

isodecomposable 3 — TD(2n).

o 1 2 o= n=2 | n=1 .n n+l | n+2 - 2n-2 | 2n=-1
o - 1 2 “ee n=2 | n=1 n o+l | n+2 . 2n=-2| 2n-1
1 1 2 3 aee n-1 - n+l | n+2 | n+d . 2n-1| o
2 2 3 4 P - n+l | n+2 | 43 | ntd - [+] 1
3 3 4 5 “wn n+l | nd2 | 043 I ned | NS . .1 2
n=2 | n=2 | n=1 - N 2n=4|2n-3 j 2n-2|2n-1| 0 B n~4 | n=3
n-=1 ] n-l - n+l PN 2n-3{2n-2 | 2n~1| © 1 - n=3 | n-2
n n - - - - - - - - - -
n+l - - - - - 0 - - - - -
n+2 - - - - 0 - - - - - -
n+3 - - - - - - - - - - -
n=2] - | - o - - - - -1 - - -
2n-1] - 0 - - - - - - - - -
Figure 3.2.3

For every n 2 2andd=3,4a.ndootherewdstsa(2,d)-

Let us remark that the 3 — TD(2) arising from Z, (which is unique up to

isomorphism), is isodecomposable only into disconnected factors.



3.3 AN ISODECOMPOSABLE 3 — GDD(4,4)

Franek, Mathon and Rosa proved that there are exactly 23 nonisomorphic
GDD’s with 4 groups of size 4 and block size 3. We choose the most “symmetric”
of them, with the largest automorphism group, and show that it is isodecomposable
into factors with diameters 3,4, and co. The elements are 0,1, 2,...,15, the groups
are G; = {0,1,2,3}, G» = {4,5,6,7}, Gz = {8,9,10,11}, G4 = {12,13,14,15}.
The set of blocks, B, consists of 32 blocks: -
(0,4,15),(0,5,8),(0,6,11),(0,7,12),(0,9,13), (0, 10, 14),(1,4,9), (1, 5,15),
(1,6,12),(1,7,10),(1,8,13),(1,11,14},(2,4,14),(2,5,10),(2,6,9), (2, 7, 13),
(2,8,15),(2,11,12), (3,4, 11), (3,5, 14), (3, 6, 13),(3, 7,8), (3,9, 15), (3, 10, 12),
(4,8,12),(4,10,13), (5,9,12), (5, 11,13), (6, 8, 14), (6,10, 15),(7,9, 14),(7, 11, 15).
One of the 96 automorphisms, ¢, is given by ¢ = (0 3)(1 2)(4 6){S 7)(8)(9)(10)(11)
(12 14)(13 15). ‘

The factor E; with the blocks
(0,4,15),(0,5,8),(0,6,11),(0,7,12)(1,8,13), (1,11, 14), (2,4, 14), (2,5, 10),
(2,6,9),(2,7,13),(3,9,15),(3,10,12),(4, 8,12), (4,10, 13),(5, 9, 12), (5,11, 13)
has diameter 3. Let Vi(z) be a set of all elements having in Ey distance : from z.
Then V;1(0) = {4,5,6,7,8,11,12,15} and all elements not belonging to V;(0) have
neighbours in ¥3(0): 1 and 13 belong to the block (1,8,13), 2 and 14 belong to
(2,4,14), 3 and 9 to (3,9, 15) and 10 to (3,10,12). So ¥2(0) = {1,2,3,9,10,13,14}
and V3(0) U ¥2(0) = V. Therefore exg, 0 = 2 and all elements of V;(0) have in E;
eccentricity at most 2 and we have only to check the distances distg,(z,y) for all
pairs =,y € V2(0). The distance distg, (1,3) = 3, because Vg, (1) = {8,11,13,14},
Ve, (3) = {9,10,12,15} and 8 and 12 belong to the block (4,8,12). Similarly,
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distg, (1,9) = 3, because Vg, (9) = {2,3,5,6,12, 15} , and 8 and 12 belong to the
common block (4,8,12). The other elements of ¥2(0) not belonging to V1(1) have
a neighbour in V;(1), namely 2 belongs to (2,4, 14) and 10 belongs to (4,10,13).
Thus exg, 1 = 3. Since the element 2 is adjacent to all elements of V2(0) with
the exception of the elements 1 and 3, their mutual distance is at most 2. Be-
cause exg, 1 = 3, we must show only that distg, (3,z) < 3 for z = 9,10,13,i4.
This is true, since E; contains the blocks (3,9,15) and (3,10,12), which yields
distg, (3,9) = distg,(3,10) = 1, and 13 is adjaceat to 10 in (4,10,13). Finally,
there is the block (4,8, 12) which has elements in common with both (3,10, 12) and
(2,4,14) which yields distz, (3,14) = 3. Thus exg, z < 3 for every element z € V
and diam Ey = 3. The factor E> contains all blocks not contained in E) and one
can check that the automorphism ¢ is the self-complementing isomorphism.

For the diameter 4, the case is simpler. Because we know that every
connected selfcomplementary factor has diameter at most 4, we have to show only
that the factor F) described below is connected, contains a pair of elements having
distance 4 and its complement, F5, is isomorphic to F;. The factor Fj contains the
blocks
(0,4,15),(0,5,8), (0,6,11), (0,7,12),(0,10,14),(1, 11, 14), (2,4, 14), (2,5, 10),
(2,6,9),(2,7,13),(2,8,15),(3,9,15), (4, 8,12),(4,10,13), (5,9,12),(5,11,13)
and distF, (1,3) = 4. Really, V3(3) = {9,15}, Vi(1) = {11,14}, V2(1) = {0,2,4,5,6,
10,13} and therefore distz, (1,3) > 4. Because there is the path 1-(1,11,14)-11—
(0,6,11)—6—(2,6,9)—9—(3,9, 5)—3 of length 4, we can see that distr, (1,3) = 4. To
prove connectivity, we observe that ¥;(0) = {4,5,6,7,8,10,11,12,14, 15}. All other
elements belong to V>(0), because the element 1 appears in the block (1,11,14), 3
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and 9 appear in (3,9,15), and 2 and 13 appear in (2,7,13). Thus F} is connected.
The factor F» containing 2ll triples that are not in F} is isomorphic to Fi—the
isomorphism is again the antomorphism ¢ described above.

The factor I; with the blocks
(0,4,15),(0,5,8),(0,6,11),(0,7,12),(0,9,13}, (0, 10, 14),(1,4,9),(1, 5, 15),
(1,6,12),(1,7,10),(1,8,13),(1,11,14),(4,8,12),(4,10,13), (5,9, 12),(5,11,13),
is clearly disconnected, because the elements 2 ané 3 are not contained in any block
and are therefore isolated. The isomorphism from I; to its complement [ is again
¢, the automorphism of the 3 — GDD(4,4).

The case of decomposition into two factors with diameter 2 remains in

doubt.

3.4. ISOMORPHIC DECOMPOSITIONS OF 3 — TD’S INTO SMALL CONNECTED

FACTORS

In this section we study decompositions into the smallest possible isomor-
phic connected factors. It is not difficult to observe that the smallest connected
factor is acyclic. [fa 3 — TD(n) has such a factor E(s) with s blocks, it is obvi-
ous that it contains 2s + 1 elements and therefcre the number of elements of the
3 — TD(n), 3n, must be equal to 25 + 1. Hence s = 32-1 and n must be an odd

number. So we can state the following simple observation.
Proposition 3.4.1. A 3— T'D(n) has a connected acyclic factor only if n is odd.

Let us suppose now that » is odd, say 2m + 1. Then the number of blocks

of the factor E(s) is s = 381 = 3(2"‘;'1)-1 = 3m+1. Since the number of blocks of
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the 3—TD(2m+1) is (2m+1)?, the 3—TD(2m+1) is decomposable into connected
acyclic factors only if 3m + 1 | (2m + 1), Suppose it is the case. Then thereis a
positive number k such that (2m+1)* = k(3m+1). We can write k =im+1, where
0 <t € Q. Then we havedm? +4m+1=(tm+1)(B3m+1) =3tm? + (1 +3)m +1,
which yields 4(m + 1) = 3tm +t + 3. Hence 4m —3tm =t —1 and m = [=5;. Since
m is a non-negative integer and the fraction is negative for all ¢ # 1, we are left

with ¢ = 1, which yields m = 0. Then » =1 and the following holds.

Proposition 3.4.2. No 3 — TD(n) with n > 1 is decomposable into connected

acyclic factors.

Let us consider now connected factors of 3 — TD(2m + 1)’s with 3m + 2
blocks. The 3—TD(3) of the additive group Z3 with groups G1 = {01,11,21},G2 =
{02,12,22} and G3 = {03, 13,25} and blocks (0z,02,03), (01, 12, 1), (01, 22,23), (11,
02,13),(11, 12, 2a),(11, 22, 03), {21, 02, 23), (21, 12, 03), (21, 22, 1) has a connected fac-
tor E(5) with 3m + 2 blocks, e.g., (01,02,03),(01, 12, 13),(11, 02, 13),(21,02,23), (21,
22,13). The factor E(5) contains two cycles: 01 — (02,02,03) — 02 ~ (11,02, 13) -
1s — (01,12, 13) — 01 and 2, — (21,02,2) — 0z — (13,02, 1) — 1a — (21,22, 15) — 21,
and is therefore not the “simplest possible”, i.e., unicyclic.

A necessary condition for decomposability into unicyclic factors follows.

Lemma 3.4.3. If a 3 — TD(n) is decomposable into unicyclic factors, then n =
0(mod 6).

Proof. Let E(s) be a unicyclic factor with s blocks. The shortest cycle, Cj, consists
of 3 blocks that contain together 6 elements. Since every other block contributes

2 to the number of elements, we have s = 923 Therefore » must be even. On the
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other hand, the number of blocks of the factor must divide the number of blocks of
the 3 — TD(n), i.e., 3% | n%. This yields 3 | n and hence n = 0(mod6). O

We show further that for every n = 0(mnod 6) there is a decomposable
3 — TD(n). We even show that the factors can be mutually isomorphic. But first

we state the following.

Corollary 3.4.4. If 2 3 — TD(n) is decomposable into ¢ connected factors of size
t, then t > 3%. The equality can hold only if n = 0(mod 6).

Now we present constructions of 3 — T'D’s that are isodecomposable into

unicyclic factors, namely cycles. We start with the case n = 6(mod 12).

Construction 3.4.5. n = 6(mod12). Let n = 12m+6. First we construct a Latin
square A of order 6m + 3 as follows. The first rowis 1,3m+3,2,3m+4,3,...,3m+
1,6m+3,3m+2. Anentryin i-th row and j-th column, a*, is then equal to gl/#+i-1,
Then we construct a Latin square C of order 12m + 6 with entries ¢ = @™ for
1<%, <6m+3,cW =g~ 7-3J for bm+4 <i < 12m+6,1 <7 <6bm+3, ¢ =
ai—6m-3 for 1 < i < 6m+3, 6m+4 < j <12m+6, and ¢ = gi—6m-3.~6m=3 {5,
6m +4 < i,j < 12m + 6. The triples of the 3 — TD(12m + 6) are then (i1, j2,c57).
One can notice that the Latin square C is a2 multiplication array of a commutative
half-idempotent quasigroup. An example of the Latin square C is shown in Figure
3.4.1. Since the third element of a triple is determined uniquely, we usually write
just (31,72, c3).

The factor Ep contains the blocks (iy,i2,¢3) fori = 1,2,...,12m + 6, the
block (11, (12m+6)2, ¢3) and the blocks (j1, (j +6m+2)2,¢3) for § = 2,3,...,6m+3.
Then Ej is the cycle 1; —(1;,12,13) = 13 — ((6m + 4, (6m +4)2,13) — (6m + 4)2 —
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1|2(34is5]|s
1j1|3]|2]4|6]s
|2 3|2|1]e6|5]|4
IE 2{1]3]s5[4]s
el ]s]2]5]z]
sfe|s5]|4f3}2 1"
ofslalef2lafs]
Figure 3.4.1
(21,(6m +4)2,¢3) — 21 — (21,22,23) — 23 — -+~ — 3y — (i1, i2,43) — i3 — ((6m + 3 +
th,(6m + 3 +1)2,i3) — (6m + 3 +i)2 — (G + 1), (6m + 3 + i)o,c3) — E + 1)1 —
(E4+D1,E+1)2,(E+1)3) — (E+1)3 — --- — ((12m + 6)1, (12m + 6)2, (6m + 3)3) —

(12m + 6)2 — (11, (12m + 6)2,¢3) — 13.

The factor E; is determined by the isomcerphism v, : Ey — F; with
Y1(z1) = 21, ¥1(v2) = (¥ + 6m + 3)2,¥1(23) = (z + 6m + 3)s.

E; is determined by ¥, : Ey — E2, where
¥2(11) = (6m + 3)2,¥2(21) = 12,9%2(31) = 22,...,%2((6m + 3)1) = (6m + 2),,
P2((6m + 4h) = (12m + 6)2, %2((6m + 511 ) = (6m + 4)2, ¥2((6m + 6);1) = (6m +
8)2;+ -+, ¥2((12m + 6)1) = (12m + 5)z,
¥2(12) = 21,¥2(22) = 31,%2(32) = 41,..., %2 ((6m + 3)2) = 1,,
Y2((6m + 4)2) = (6m + 5h,¥2((6m + 5)2) = (6m + 6)s,...,%2((12m + 6);) =
(6m +4)4,
a(z3) = z3.

Ey¢ is determined by v, : Eo — E;, where
Ya(l1) = 41, %a(21) = 51,%4(31) = 61,...,%u((6m + 3);) = 31,
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1z 63 2; 43 33 Sa 13

Figure 3.4.2
Ya((6m + 1) = (6m + 7)1, u((6m + 5)1) = (6m + 8)1,...,%u((12m + 6);) =
(6m + 6},
Pa(y2) = vz,
Ya(ls) = (3m + 4)2,$4(25) = (3m + B)s, . .., Yu((6m + 3)3) = (3m + 3)s,
$a((6m + 4)3) = (Im + T)s, Pa((6m + 5)s) = (9m + 8)s, ..., %u((12m + 6)3) =
(9m + 6)s.

In general, a factor By, wheret = du+2v+w, 1<t <12m+5= n-1,1s
determined by an isomorphism ¢; : Ey — E, which is defined as the composition
be =¥ 03 o Y, with ¥ =id.

For n = 6, the underlying factor U(Ep) is shown in Figure 3.4.2 and the
arrays corresponding to all factors are shown in Figure 3.4.3.

In the case n = 0(mod 12) we construct a Latin square corresponding to a

non-commutative half-idempotent quasigroup.

Construction 3.4.6. n = 0(mod12). Let n = 12m. First we construct an array
B of order 6m. The main diagonal is defined by & =i, i = 1,2,...,6m. The
entries 57, where i — j = 0(mod 2) are defined as follows. Let 2! = i — i(mod 6m),
then b%7 = b% 4 1. To define the entries 5"/, where i — j = 1(mod 2), we define
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E_o"-T 2|3 _4— 5|6 Epj1[{2]|3]4}5]6]
1l 1 5 1 3

2 2 6 2 1

L2d | [3) f«l 3] 2 |
OEEEDEE AREEREE
5 | 56 1 "
6 6

5
=
X
w
N
n
)

=

Figure 3.4.3

BP9 as the number of the set {1,2,... ,6m} such that 579 = }"9(mod6m). Then
B = Bi-lJ 4 6m, Le., b9 € (6m + 1,6m +2,...,12m}.

Then we construct a Latin square D of order 12m with entries div = piv
for 1 <4,j < 6m, d = b"5m™J for 6m +1 < i < 12m,1 < j < 6m, v = pri=6m
for1 << 6m, 6m+1<j £ 12m, and d™9 = bi—5™J—6m for 6m +1 < i,j < 12m.
The triples of the 3—T'D(12m) are then (iy, j2,d37). An example of the Latin square
D of order 12 is shown in Figure 3.4.4. We again write usually just (i1, j2, d3) instead



of (il’j% d;‘J)‘

The factor Ey contains the blocks (i1,2,13) fori = 1,2,...,12m, the block

Figure 3.4.4

——— "5
1l213 4|5 5”7 8| 9 |10|12]22
1ftal7]|s|sle|lo] alio} 2|21l 3]22
2 lzol2{8|le6lof1ll7|s5]|11}]3]|12] &
3221l 3l 9|10l s|{s]|elr2]laln
4 22| 3|22 a|20]28]lelal2]l7]s
s 3|az| 4|l 7|5]|2alle]l o]l 1liol2]s
6124758591102'113J
re— ——— =———_'—_-._L—
71 4i10| 2022|3121l 7|ls5lel6ls
sl 75|11 2|12l4a]10l2]8]|s]o
ofls|s|le|12la| 7] 2122]l3|9!l1]10
10l sleflo]a]7 5L,113124102
116911028“31247511
12911021131247536“
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(11,(12m}z,d3) and the blocks (j1, (j — 1+ 6m)q, ( ~1+46m);) for j = 2,3,...,6m.
Then E; is the cycle 1; — (11, 1z, 13) -1; - ((6m+ 1)1, (6m+ 1)2, 13) - (6m+ 1)3 -

(21,(6m + 1)2,(6m + 1)3) -2 - (21,22,23) -2 = s =y — (il,ig,is) —13 —
((6m -+ i)]_, (6m + i)z, 2'3) — (ﬁm ~+ i)z - ((t + 1)1, (Gm + i)z, (Gm + i)a) - (z + 1)1 -
(G +1)1,G + 1)2, G + 1)s) = G + 13 = - -+ — (12m)1, (12m)2, (6m)3) — (12m); —

(11,(12m)2, (12m)3) — 1;. The other factors are defined similarly as in the case

n = 6(mod12). For n = 12, the underlying factor U(Ey) is shown in Figure 3.4.5.

The factor E; is determined by the isomorphism ¥; : Ey — E; with i(z1) =



106

Figure 3.4.5

z1,¥%1(y2) = (v + 6m)2, ¥ (z3) = (2 + 6m)s.

E, is determined by #; : Ey — Ez, where ¥2(11) = (6m)z,1%2(21) =
12,92(31) = 22,...,¥2((6m)h) = (6m — 1)z,
¥2((6m + 1)1) = (12m)z, ¥2((6m + 2)1) = (6m + 1)z,%2((6m +3)1) = (6m +
2)2y. .y ¥2((12m)) = (12m — 1),
¥2(12) = 21,¥2(22) = 31,%2(32) = 4,..., $2((6m)2) = 14,
P2((6m+1)2) = (6m+2)1, $2((6m+2)2) = (6m+3)1, ..., ¥2((12m)) = (6m+1)s,
P2(z3) = 3.

E, is determined by 4 : Ey — Ey, where $4(11) = 41,%4(21) = 51,
Pa(31) =61,..., Pa((6m)1) = 34,
Ya((6m+1)1) = (6m+4), Ya{(6m+2)1) = (6m+5), .. ., Y4((12m)1) = (6m+3);,
Ya(y2) = ¥2,
$a(13) = (9m + 2)3,%4(23) = (2m + 3)s, ..., ¥a((6m)s) = (9m + 1),
Ye((6m +1)3) = (6m)s, Yu((6m +2)3) = 1s,..., 4((12m)3) = (6m — 1)s.

In general, a factor By, wheret =4u+2v+w, 1<i<12m-1=n~-1,
is again determined by the isomorphism ¢;.: By — E,, which is defined as the
composition ¢ = ¥} o Y3 o Py, with $J = id.
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For n = 12, the arrays corresponding to the factors Ey, By, Es, B3 are
shown in Figure 3.4.6. Figure 3.4.7 shows the array with the factors Eo, By, Es, E3

together.

Since we proved that for every n = O(mod 12) there exists a 3 — TD(r)

which is isodecomposable into cycles, the complete characterization of TD's that are

isodecomposable into unicyclic factors follows immediately from the constructions

and Lemma 3.4.3.

Theorem 3.4.7. A transversal design with group size n and block size 3 isode-
composable into unicyclic factors exists if and only if n = 0(mod 6). Moreover, for
each such n there exists a 3 — T'D(n) isodecomposable into cycles.
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4. Conclusion

Decompositions of complete graphs and later complete multipartite graphs
into factors with given diameters were studied since 1966, when the first paper (6]
was presented. Decompositions of complete graphs have been studied very exten-
sively, and many authors studied decompositions of complete graphs into isomorphic
factors with given diameters.

There were also several papers on decompositions of complete multipartite
graphs into factors with given diameters, but none of them considered isomorphic
factors. Such decompositions are therefore studied in the present thesis. In par-
ticular, we are dealing with decompositions of complete multipartite graphs into
two isomorphic factors with given diameters, either finite or co. The possible finite
diameters of such factors were determined by Tomova [27] and Gangopadhyay [10].

Although we were mostly interested in decompositions into connected fac-
tors, some results for d = oo were also obtained. We proved that every strongly
admissible multipartite graph (i.e., 2 graph Kpm_ pzenti nt, Where each m; is
odd, each n; is even and at most one of p1,...p, is odd) is decomposable into two
isomorphic disconnected factors. In particular, every bipartite complete graph with
at least 3 vertices and t:_-ipartite graph with at least 5 vertices is decomposable in
such factors, providing that the number of edges of the graph is even.

In the case of bipartite and tripartite graphs we also completely deter-

mined all graphs decomposable into two isomorphic factors for every possible finite
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diameter. The case of four-partite graphs with at most one odd part was also
solved completely. The remaining case of graphs Km, ,ma,m3,m, Where 2ll numbers
mi,ma, M3, my are odd, splits into several subcases. No graph Km, ,ma,ms,m, With
all odd parts is decomposable into 2 isomorphic factors with diameter 5. For the di-
ameters 2,3 and 4 the subcase where m; = my and m3 = m, was solved completely,
as well as the subcase m; = ma = m3. The subcase where the set {m;, mz, m3,m4}
contains at least 3 different numbers remains for d = 2, 3,4 open.

For r-partite graphs with r > 5 we determined smallest graphs decompos-
able into two isomorphic factors for every possible diameter. We also showed that
if for a given diameter d there exists a complete r-partite graph with po vertices
isodecomposable into two factors with the diameter d, then for every number of
vertices p > pg such a graph with p vertices exists, too.

Decompositions of hypergraphs into factors with given diameters were also
studied. Recently several authors [8, 14, 19] published results on decompositions of
designs into two isomorphic factors, but none of them was particularly interested in
the diameters of the factors. We attempted to open two directions in the research
of decompositions of designs into isomorphic factors.

The first area includes decompositions of group divisible designs into two
isomorphic factors with given diameters. We proved that the diameter of the con-
nected factors can be at most 4, providing each block has at least three elements.

We also presented for any even number n and the diameters d = 3,4 and oo a group
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divisible design with three groups of size n and blocks of size 3, i.e., 2 3-~GDD(n, 3),
that is decomposable into two isomorphic factors with the diameter d. The diameter
2 remains in doubt.

We also studied isomorphic decompositions of 3 — GDD’s into smallest
connected factors. There is no 3 — GDD(n,3) decomposable into mutually isomor-
phic connected acyclic factors. The decomposition into isomorphic unicyclic factors
is also impossible unless n = 0(mod 6). For each such n there exists decomposition
into cycles.

In both of the zbove mentioned directions many other interesting ques-
tions remain open. For instance, one such question 1s, for which triples n, %, d does
there exist k— GDD(n, k) decomposable into two isomorphic factors with the diam-
eter d. Another question concerns decomposability of GDD’s into more than two
factors with given diameters, including factors which are not necessarily isomor-
phic. The question of smallest mutually isomorphic connected factors decomposing
k — GDD(n,k) for n # 0(mod 6) can be interesting as well. We can also decom-
pose complete multipartite graphs with odd number of edges or GDD’s with odd
number of blocks into almost selfcomplementary factors, in analogy to the approach
of Das [7] and Das and Rosa (8], respectively. Many other areas remain virtually

untouched and may be challenging both for the author and the reader.
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