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Abstract

The 1,3-dioxolan-2-ylium ion is an important intermediate occurring in many

carbohydrate transformations. The system has been widely studied, yet conflicting views

on the effect of substituents on the ground state structure of 1,3-dioxolan-2-ylium ions

have been presented. This thesis embodies the results of a series of investigations,

utilizing a number of complementary techniques, to examine the effect of substitution on

th~ structure and reactivity of a homologous series of 1,3-dioxolan-2-ylium ions.

The possible use of the 1,3-dioxolan-2-ylium system as a model for the transition

state structures of nucleophilic displacement reactions has been explored. The

intramolecular nucleophilic attack of an acetate group on a 1,3-dioxolan-2-ylium ion has

been investigated for a series ofC(4)-aryl substituted cations. A Hammett study revealed

that this isomerization reaction proceeds via a step-wise mechanism involving a carbenium

ion intermediate. In contrast, when the C(4) substituent is hydrogen or methyl, a

concerted isomerization mechanism is operative, as revealed by semi-empirical

calculations. It is suggested that when the C(4) substituent is sufficiently electron

donating, the system may adopt a trigonal bipyramidal geometry and hence may serve as

a model for the S..2 transition state.

Dual substituent parameter (DSP) correlations were used to establish the

dependence of the "c chemical shifts of the 1,3-dioxolan-2-ylium ion system on the
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electro.i donating power of the C(4)-aryl substituent. These correlations support the

inclusion of an ionic resonance contributor to the ground state description of the system.

The weight given to the ionic resonance contributor increases with better electron

donating C(4)-substituents.

X-ray crystallography has been used to determine the solid state structures of two

1,3-dioxolan-2-ylium ion salts with different C(4) substituents. The changes in bond

lengths observed in going from a hydrogen to a phenyl substituent at C(4) are partly

attributed to the increased importance of the ionic resonance structure in the aryl system.

Semi-empirical calculations at the AM1 level revealed the effects of differential

C(4)-substitution. Better electron donating substituents lowered the isomerization barrier

and increased the relative importance of the ionic resonance contributor in the ground

state, in accord with the experimentally determined results. The ability of a CF,

substituent at C(2) to achieve similar changes in structure and reactivity was also

established.
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"Nature is a language - can't you read?"

Morrissey
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