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Abstract

This work is concerned with the behavior of n-bond trees in a regular d dimen-
sional lattice for large n. A lattice tree is, by definition, a connected cluster
of bonds with no closed loops.

The results presented herein are for a ‘spread-out’ model in d > 8; this
model differs from the nearest-neighbour model in that the ‘bonds’ are chosen
uniformly from {z,y € 2¢: maxicica |*i — il < L} where L will be taken
large enough for a variant of the lace expansion (as adapted in [HS3 & 4)) to
converge.

By way of comparison, it has been recently proved [HS1] via the lace ex-
pansion that, above 4 dimensions, n step self-avoiding walks on the hypercubic
lattice Z¢ converge (in distribution) to Brownian motion when space is scaled
down by n'/2, and n tends to infinity.

If we let ¢,(0, z) be the number of » bond trees connecting 0 and z, we can
take its Fourier series ,(k):

fn(k) — Z tn(oa m)eiz-k’

rezd
where k € [—m,7]|9. We prove that for L sufficiently large and d > 8 for the

spread-out model,

: in(k./DnIH) — foo dl lel’/?-lk’ﬁ’
n/'co tn(O) 0
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where D is related to the mean radius of gyration. This would correspond in
r space to scaling space down by n!/4 where n is the size of a tree as measured
by the number of bonds it contains.

Similar calculations are carried out for trees connecting m points. The
resulting distributions turn out to be exactly the characteristic functions of
the measures D. Aldous conjectured in his 1993 J.S.P. paper regarding the
embedding of random continuum trees in R — which are themselves related

to variant of super Brownian motion known as integrated super-Brownian

excursion (ISE).
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Chapter 1

Introduction

1.1 Overview of this work

Lattice trees can be viewed as models for branched polymers in theoretical
chemistry, but more importantly from the mathematical physics stand-point,
as models exhibiting features related to critical phenomena. Some of these
features will be explained below, but the one feature which will be the focus
of this work, is the existence of a scaling limit.

In general, the scaling limit will depend in an essential way on the spatial
dimension in which one is working. For instance, it has recently been shown
[HS1] that when the length n of a self-avoiding walk goes to infinity as space is
scaled down by n!/?, one gets convergence in distribution to Brownian motion
if d 2 5. For d = 4 the same is thought to occtif (with a Iogarithmic‘ correction
to the n'/2 power law), but for d < 3 the limit, if there is one, is not yet known.

The above is an example of a physical model which can be used to con-
struct a probabilistic process — Brownian motion as it happens. The results
in this work yield a connection with the scaling limit of lattice trees and a

variant of super-processes called integrated super-Brownian excursion (ISE).
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In particular. we show that under appropriate conditions, the scaling limit
of lattice trees is distributed as ISE. The latter is a process which combines
aspects of the spatial diffusion exhibited by Brownian motion, together with
particle branching mechanisms {cf Chapter 5]. As a result of this work, lattice
trees can now be viewed as a physical model whose scaling limit belongs to the
class of super-processes known as ISE. It may be possible that the methods
developed for this work. coupled with those in [BG1 & 2], may help in the
study of the scaling limit of other models such as percolation. In fact T. Hara
& G. Slade have conjectured in [DS] that for bond percolation, the scaling
limit of the incipient infinite cluster is also distributed as ISE.

It should be mentioned that our investigation was greatly aided by a paper
of D. Aldous [Al] (a probabilist), which contained the explicit distributions he
conjectured should result from the scaling limit of lattice trees. That turned
out to be a critical transfer of information since mathematical physicists had
no concrete notion of what limit to expect, and probabilists had no technology
to rigorously compute a scaling limit on the lattice. As will be described later,
the technology that was up to the task turned out to be the lace expansion as
adapted in [HS3&4).

Before describing our model, we should reiterate that the spatial dimension
our model is cast in will play a crucial role. In fact, not only is it very difficult
to construct a convergent expansion that can capture the behavior of lattice
trees in high dimensions, but it is still difficult (even in lower dimensions) to
construct algorithms to simulate them [RM] & {RJ]. The point is that even if
there were a new expansion valid below d = 8 dimensions for lattice trees, one
would have no apriori notion of what scaling limit to expect.

We will be working in the d-dimensional hypercubic lattice z¢, and will



focus cn a ‘spread-out’ model for d > 8, although we should mention that
the results contained herein also apply to the nearest-neighbour (n.n.) model
in sufficiently high dimensions. A lattice tree in Z? is a connected cluster of
bonds having no closed loops. In the spread-out model these bonds should be
thought of as un-ordered pairs of sites, say z,y € 2%, such that ||z — ylle < L;
if ||z —yll2 = 1 we recover the nearest-neighbour model. We will say that a tree
T contains the site ‘z’ if it is an endpoint of 2 bond in T, with the convention
that {z} is a zero bond tree.

The reason for looking at the spread-out model is that by taking L large
enough, we can analyse it using a variant of the lace expansion if d > 8, the
critical dimension above which mean-field behavior is expected (the concept
of mean-field behavior will be discussed shortly). In fact, the main idea in
this work is the adaptation of the lace expansion developed by Brydges and
Spencer [BS], who originally used it to prove mean-field behavior for the weakly
self-avoiding walk above four dimensions. The expansion was later improved
by Hara and Slade [HS1] to deal with the fully self-avoiding walk (above four
dimensions), and then adapted [HS2] to percolation, where the triangle con-
dition {AN] was shown to hold in sufficiently high dimension (thus proving
mean field behavior). Lately, the lace expansion was re-formulated in [HS3]
and [HS4] to handle the problem of proving mean-field behavior for lattice
trees and animals. There, the crucial bound was on the square diagram (to be
discussed shortly), which was shown to be finite for d > 8 for the spread-out
model, and in sufficiently high dimension for the nearest neighbour model.
These adaptations, and some others to be presented later on, have ultimately
enabled us to compute the scaling limit of of lattice trees under the above

conditions.



Before discussing mean-field behavior for lattice trees we must define a pa-
rameter known as A. Let a, be the number of trees containing n bonds modulo
translation in the lattice (thus only the shape of the tree matters). Then by
sub-additivity arguments, it was shown [K] that there exists a constant A such

that

supal/® = A = lim a}/" (1.1.1)

a>1 n—+oo "

with 0 < A < oo. It is thought that for d > 2,
ap "0 ANnn 0 (1.1.2)

except for a critical dimension (presumably d = 8 for lattice trees). Above this
critical dimension, the critical ezponent 0 is believed to be constant. In fact,
it was proven in [HS3&4] that if d > dg for some dy or if L > Lo for some Lg
for spread-out trees above d = 8, then § = 5/2. Thus, the model exhibits the
same qualitative behavior under the above conditions as for arbitrarily high
d; the model is tken said to exhibit mean-field behavior. If d = 8 the above
expression is thought to need a logarithmic correction, but for d < 8, it is

expected that 8 will vary srith d. The best bounds to date are
(!1".“c2 losnzc-ﬂ fap, < c3nl/d-12c—n1

which are proven in [JR] and [M] (respectively), and are probably not sharp.

There are other critical exponents for lattice trees which will be discussed
in section 1.2, but one common to self-avoiding walks, percolation and lattice
trees is related to the susceptibility. The susceptibility in turn is the sum
over the lattice of the 2 point function G.(0,z). The latter is the generating
function for the number of n bond trees containing 0 and z. If |T'| denotes the

number of bonds in a tree T, we have

G:(0,z)= Y 2T (1.1.3)

T30,z



where the sum is over trees containing 0 and z as depicted below.

g

If we let zz. = A™!, and
Q(z)= Y. G:(0,7)G:(z,y)G:(y, w)G:(w,0) — G:(0,0)*, (1.1.4)
z‘m.wez‘

we can state the square condition, that is lim, »;, O(2) < oo. If this condition

holds it was shown {T,TH] that the susceptibility

x(z) = 3 G.{0,2) (1.1.5)

rezd

is comparable to (z. — z)"‘/ 2 for z < z, i.e. for some constants 0 < ¢; < ¢,
c1(ze = 2)7M? < x(2) € a2 — 2)V2, (1.1.6)

The singularity z. is known as the critical point. It was proved in [HS4] that
for d > 8 and L large enough for the spread out model (or d large in the

nearest neighbour model):

x(z) = (_z:fz_)" + &(z2), (1.1.7)

with 4 = 1/2 and [£(2)| < const. |z. — z[*"!/? for |2| < z, and any



e < min(1/2,(d — 8)/4). There are corresponding expressions for \(z) in
percolation and self-avoiding walks, and the exponent governing their rates of

divergence at their critical points is also denoted by 7.

We now give an overview of the main results in this work. In Chapter 3
we will be looking at x;(z), which we define as follows: let x,(z) = g(z) =
Y r502'7! be the generating function for trees containing the origin and ya(z) =
x(z), as in (1.1.5). Then, for m > 3, define

G:(0,z1, ..y Tm1) = Z 217l (1.1.8)

790.31 rem=—1

to be the generating function for trees containing {0,z,,..,Zm-1}. Now let

Xm(2) = Toyzmey G:(0,Z1, ...y Tmo1). We now present the main result of

chapter 3.

Theorem 1.1 For d > 8 and L sufficiently large (or d sufficiently large for
the nearest neighbour model), m 2 3, and for |z| < z,

xm(2) = (2m = 5)Ix*™3(2)v(2)™"? + En(2), (1.1.9)
where the un-subscripted x(2)’s were defined in (1.1.5). The following bounds
also hold:

1) lv(2)| L c for|z] £ z ‘

2) x(2)*™ ()™ = x(2)™%(z)™? + E(2) for m 2 3, with |E(z)| <
c|ze — 2|"™¥3/2%¢ for |2| < z. and eny € < min(1/2,(d — 8)/4).

8) |Em(2)| € clze—z|~¥%+|z.—|2||"™*3*¢, for |z| < 2. and m > 4. Form =3,
|B5(2)] < elze — #170. |

The main conclusion to be drawn from (1.1.9) is that trees connecting m
distinct points, can be represented via a product of uncoupled generating func-

tions mediated by vertex factors v(z). In other words, starting from the most
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general structure for a trees’ backbone, namely a binary backbone, one can
connect m distinct points {0,z,..,2m-;} by m—2 internal nodes {11 ym=2};
(1.1.9} indicates that via the vertex factors v(z), one may connect these 2m —3
nodes independently of each other. The x(z)s were the generating functions
for trees connecting two points, and except for the coupling v(z), there is no
interaction between them.

The fact that v(z) is finite on the disc |z] < z. is will be crucial for the
continuum limit since, as we consider larger and larger trees, the effect of
the v(z) will be more and more local. In essence, the ieading term in (1.1.9)
should be viewed as (2m — 5)!x(z)*™3u(z.)™"? as in the second conclusion
of Theorem 1.1.

A more detailed explanation of v(z) and the meaning of the error terms
will be given in chapter 3, but for now, let us set the stage for the continuum
limit by introducing another critical exponent called v.

It was proved in [HS4] that if ¢,(0,z) is the number of n bond trees con-
taining 0 and z, and t, = 3", #,(0, z), then

1/2
(E: tn(ga 3)""’:”2) n—4oo Dn¥(14 O(n™*)), (1.1.10)

with v = 1/4 for any € < min(1/2, (d — 8)/4); here, |- || denotes the Euclidean

metric. It turns out that v governs the mean radius of gyration R, where

21 sz _ 2 ta(0,3)lz|?
R: = . mz_ :%uz zrl? = 5 , (1.1.11)
T30

with 21 = (n +1)7! T.¢7 2 being the centre of mass of the tree T. In view of
the last equality in (1.1.11), it follows that

R, "% Dn'4(1 + O(n~Y)), (1.1.12)
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where D = D/\/2. Heuristically, either result suggests that trees in 8 or more
dimensions are inherently 4 dimensional objects in the sense that their *mass’
goes as the fourth power of their root-mean square radius. Thus, one should
not expect that they intersect each other in more than 8 dimensions; this is
why mean field behavior is expected if d > 8. In fact, (1.1.10) also says that-
a tree of size n containing 0 will have most of its mass distributed a distance
O(n'/%) away from 0. This last remark provides the impetus for looking at the

following limit: P(z) = limn_e Pa(z) where

Pu(z) = %’f"l (1.1.13)

with yi(n) = [n'/%z;] for i = 1 to d. Here P,(x) is the fraction of n bond
trees which connect 0 to y(n) in Z% As will be discussed at the end of this
section, it is the momentum space analogue of (1.1.13) which we will compute

by looking at the Fourier transform ,(k) of ¢,(0, z), where

tn(k) = 3 e*t,(0,2), (1.1.14)
so that
. . dik
= ~iz-k
t(z) f{_m]d WRe s (1.1.15)
with k € [—7,7]% Since, k/n'/* will be dual to n'/4z, we will compute:
T fn(k/Dnll") oo _;2/2_1‘:2/2
P(k) = i =5 _fo dl le . (LL16)

where with the benefit of hind-sight we set D? = (2/x)1/2D?/d. It should be
pointed out that (2/7)*/2D?/d = a/+/1 + b where c is defined at the beginning
of section 4.2 and b at the end of section 2.2. Another feature readily apparent
to the cognoscenti is that P(k) is related to parabolic cylinder functions [GR];
for those of us who are not special-function af.“ionados, suffice it to say it is

transcendental,



To understand the continuum limit of lattice trees linking m points (which
will be discussed below) we must bear in mind the binary ‘growth’ of these
trees as discussed after Theorem 1.1. Thus, rather than specifying points
{0,2).., Tm_1}, which are to be connected by an n bond tree, it will suffice to

specify a binary backbone linking these points as illustrated below:

A

K — Ays— — Ayan—a= — Ay
a ]
v AyYzn-2

It is clear that to uniquely determine this backbone, it suffices to specify which
3 edges {Ayy, (i)y Aloy(i)» AYoy(i)} meet at each of the m — 2 internal nodes in
the m point tree’s backbone. To simplify notation let {s} denote the set of
m — 2 triplets chosen from {1,..,2m — 3} (which will represent the subscripts
of the edge lengths Ay; which are connected in the backbone’s internal nodes).

Now, let #™(0,zy,..,2n-1) be the number of n bond trees containing
{0, 1, ..y 2me }, and let

= Y 0,2, ..., zpmy) © o (LL17)

Typendm=1"

(note t{™ is the n coefficient of the power series expansion of xm(2)). If we
let Tu({e}; Ay, ..., Ayz2m-3) be the number of n bond trees having the specified

binary backbone structure, we can define

Tn({a}; Ayls ) Ay2m—3)

Pn('{a}; Ayl'l teey Ay2m—3) = t(m)

(1.1.18)

In essence, the above corresponds to the fraction of n bond trees which link

the vectors Ay; as per the backbone specified by .
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We would like to investigate the behavior of

limpoee Pa({o}; n' Ay, s 1Y Ay _a), but we will do so by rescaling

- . im-—3 , 3
P.({c}; k1, .oy kama3) = Z e Xoal uky P.({o}: Ay, oo Ayam-a),

Wen¥2m=2

(where as usual, k € [—7,7]%) so as to have
P({o};i k1, komes) = Jim Pa{o}iki/n'l, .., kameg/n'4), (1.1.19)

To do so, we will find Tu({c}; k1, .., k2m—3) by looking at the Fourier transform

of its generating function. Put

G.(k) = 3. G.(0, z)e'*=, (1.1.20)
it will turn out that,
Tul{o}iktrmkomes) = = 4 T} ny oo am) L2 1121
al19 13 K1y -y R2m-3 =5 Jel=e ({e}i by, 2m-3);;._1' (1.1.21)
where
T:({e}i k1, s kamaa) = - (1.1.22)
2m-3 m—2 -
II Glks) TT Belkoy(3)s Kouiys kos)) + Bm(2, B),
=1 j=1

and |Em(z,E)| obeys the bounds of (3.1.2) on the disk |z| < z. As will
become apparent later, B:(ko, (s}, koy(j), Kos(j)) is a Fourier transform of the
kernel v(z) of (1.1.9) so that when k; = kin=1/4, the “local effects” captured
by B:(Ko,(5)s Koy(j) Kos(s)) venish as it converges to v(z.). In particular, all
information contained in {o} is lost in the limit as n * oco.

As with (1.1.16), we wish to analyse the distribution resulting from scaling
the Ayi's by Dn!/4, by computing the fraction of the scaled trees that connect
the specified distances in the limit. Again, we will compute the momentum

space analogue of the latter limit by letting k;/Dn'/4 be the dual of Dn!/4Ay;.
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It is now appropriate to draw a connection with Theorem 1.1, for in essence,
the bulk of this thesis is devoted to showing that to “leading order”, modulo

certain scaling constants,

2m=-3 1

,:-E[l K+ ze— 2

Indeed, with the above result in hand, it is relatively easy to deduce the main

7;"1({0.};kl:l":"l".2i'l'l—3) ~ (1.1.23)

result of chapter 4:

Theorem 1.2 Put k;/Dn'/* = k; for 1 <i < 2m —3 with D as defined below
(1.1.16). Then, for k; € RY, m > 2, d > 8 and L sufficiently large (or d
sufficiently large in the n.n. model),
P({o}; ki, s ham=3) = lim Pa({0}; 61, ..K2m-3) (1.1.24)
2m-3 2m=3 2m-3
f f dly...dlgpm-a3( 2 ) exp{—( Z 1?2 - Z lik?/Q}-
=1 i i
Though it may not he obvious, P({=}; k1, ...kam-3) is related to the charac-
teristic function of a probability measure: if all the k; are set to zero, we get
1/(2m — 5)!L. In fact, there are (2m — 5)!! ways of assembling 2m — 3 edges

into a binary tree, so by summing over all configurations {¢}, we get 1.

If we revert to position space, now in R?, the distribution of the continuum

trees becomes

2m—3£ ) : 2m~3 2m=-3
j j au, dz,m_;, T ® { ( 2 L) /o Z (Ayo)?/2L } . (1.1.25)
This is the ver; distribution conjectured by D. Aldous in his 1993 J.S.P. [A0]

paper in whlch’,he discussed various ways of obtaining integrated superBrow-
nian excursion (ISE) as a limit of randomly embedded abstract trees.

We will postpone further discussion regarding the interpretation of (1.1.25)
and its connection with ISE until chapter 5. Below is an overview of the

contents of the following chapters.



Chapter 2 summarises the important machinery contained in [HS3] and
[HS4]; the latter is the main reference upon which this work is based. Section
2.1 is a self contained explanation of the lace expansion as applied to our
model; the principle behind the expansion is that one can recover a convolution
equation for G:(0,z). By taking the Fourier transform of this convolution
equation, one can obtain an algebraic equation for the Fourier transform é:(k)
of G.(0,z) involving another function, I1.(k), which in turn can be bounded
(essentially) by a geometric series in square diagrams [HS3]. Section 2.2 deals
with @',(0), which turns out to be closely related to dl__:—:flz(O), and will be used
to construct the generating function for trees connecting 3 points. However,
2.2 can be omitted if reading only sections 3.1 through 3.3 but is essential to
the analysis in sections 3.4 and 3.5.

Cbapter 3 deals with the use of a differential operator to inductively calcu-
late xm(2). The base case of the induction involves explicitly resumming the
3 point function, and this is done in section 3.2. For the 4 and higher point
functions, the main difficulty in proving Theorem 1.1 will be to bound the
derivatives of ¥.(0) resulting from the induction and this is done in sections
3.5 through 3.10. Although the results contained therein are of interest in and
of themselves, their principal purpose is to bound error terms in the inductive
proof of section 4.5; it should however be possible to read section 4.1 and 4.2
having only read section 2.1. In fact, section 4.1 follows straight {from (1.1.9).

Chapter 4 deals with the continuum limit of trees connecting specified
lattice points. Section 4.1 introduces some modified machinery from [MS] to
estimate the size of the coefficients of the error terms in (1.1.9), and it is then
shown that the leading term in 2) Theorem 1.1 yields the leading order term
behavior for ¢{™). In the next section, we tackle the scaling limit of the 2 point

function; all calculations are carried out in terms of the Fourier transforms
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of the pertinent generating functions, and to achieve this, the leading order
behavior of G.(k) is isolated in section 4.2 so that the desired continuum
limit may be calculated by a contour integral. Section 4.3 is the analogue of
section 3.2 in that we explicitly resum the generating function for the 3 point
function with the appropriate phase factors (mainly for the sake of those who
may not have read section 2.2). Section 4.4 shows that B.(ks, ;) Koa(i)s Kos())
reduces to v(z) upon scaling, and section 4.5 is where all previous results
are pulled together in Lemma 4.7 to extract the leading order behavior of
T:({o}; K1y -y kam-3) of (1.1.22), and then its scaling limit in Theorem 4.8.
Appendix A was included for completeness as the estimates contained
therein are central to the analysis in section 3.3; it would have been some-
what unsatisfactory to quote them from Riesz’ work in [R] as those results

were explicitly stated only in four dimensions — yet we needed them for all

d> 8.



Chapter 2

The lace expansion as applied to

lattice trees

2.1 The 2 point generating function

As advertised, we will be looking at ‘spread-out’ lattice trees. The purpose of
this artifice is to ensure convergence of the lace expansion above the critical
dimension (d > 8) and should not qualitatively change the model’s behavior.
We now proceed to describe the model. Consider a regular d-dimensional
lattice, and henceforth view a tree in this lattice as a set of connected bonds
with no closed loops (one could view trees as sets of sites in the lattice, but this
would prove inconvenient when setting up the lace expansion). The object of
our attention will be the generating function for the number of trees containing

the origin, and a given site ‘z’:

14



Fig 1 of a tree

Gm@=§pm=immm, (2.1.1)

T50,r n=0
(recall that t(0,2) = ;)

where the first sum is over trees T which contain 0 and z, and |T| denotes
the number of bonds it contains; note that the no. of sites in a tree is always
one greater than the number of bonds. We will also look at the associated
quantity

x(z) = Y G.(0,z) = Y (IT} + 1)=17), (2.1.2)

zezd Ta0
The idea behind the expansion in [HS3] is to decompose a tree into a

backbone (i.e a walk w of length |w]) connecting 0 and z, and a set of ‘ribs’
(sub-trees) R = {Ro, -y Biuy} so that the rib R; ‘grows’ from the j** step
w(j). The task is then to ensure that these ‘ribs’ do not intersect each other
(thereby also ensuring w is self-avoiding). This is accumplished by the use of

the interaction U, ( R), where:

0 ifRUR =
U,,={ HRUR =0 (2.1.3)

~1 fRUR0



1t

and the kernel A0, |.=|] where
Kloill= JI (1408 (2.1.4)
0Ss<1<l]
It is therefore clear that if we sum over random walks o, we may recover

equation {2.1.1) by writing:

!
G:(0,z)= > 2l (H 3 ::"") K0, J]). (2.1.5)

wilep 1=0 Rouwl(t)
In the above sum, w is a walk which may take steps in any set @ which does
not intersect the origin and also respects the symmetries of the lattice. The

set used to carry out the analysis for the convergence of the expansion [HS3]
was the set {z € Z%\ {0} : {|z]jo < L}.

In what is to follow we will recall the derivation of the expansion for the
2-point function as in [HS3], and some results regarding the norms of certain
quantities via fractional derivatives (cf. appendix C) as in [HS4].

As in [HS3], given an interval [a,b) with a,b > 0 define any pair st C [a, 8]
with s < ¢ to be an edge. A collection of edges is defined to be a graph, and a
graph I will be defined as connected on I = [a,b] if both a and b are endpoints
of edges in I" and if for any ¢ € (a,b) there is at least one edge st € T such
that s < ¢ < ¢ (this definition of connectedness differs from the one used for
self-avoiding walk, but is a natural one to deal with rib-rib interactions). A
lace is a minimally connected graph (i.e. the removal of any edge of a lace on
[a, b] would result in a disconnected graph). Furthermore, given a connected
graph [ on [a,b], we can associate to it a unique lace Lr via the following
prescription:

Given I, Lr will consist of a set {s;¢;}, where s; = a and
ty = max{t : at € I'} and subsequently, ¢;4; = max{t:st € I,s < t;} with

s; = min{s : st; € ['}. The above concepts are illustrated below:
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Definition 2.1.1 Given a lace L, the set of edges st & L such that Lrogsey = L
will be denoted by C(L) . This will be called the set of compatible edges of L.

To illustrate these definitions let L = Lr (with T as in the previous dia-
gram), and consider diagrams A and B. In A, we have added 2 new edges e,
ez sothat T'y = L U; e;. Since Lr, = L, e; and e; € C(L). mnBT, =L U es,
but Lr, # L so e3 is incompatible with L.

Let us denote the set of all graphs on [a, b] by B(a,b) , and the subset of all

connected graphs in B(a,b) by G(a,b). With these definitions, we can write:

Klg,dj= JI 0+U)= X II U (2.1.6)

ags<tigh reBia,b) stel’
where the sum on an empty graph is equal to one. We seek a convolution equa-

tion involving G.(0, z). The first step in deriving this convolution equation is

to resum the interaction Kfa, ] as follows: for n > 1 let

K[0,n) = K[1,n] + _z";r gl;o ] I VaKli+ 1] (2.1.7)
=1 I'eg|0,] ot

The above can be seen by breaking up the sum of all graphs on [0,n] into
those whose edges contain 0, and those that do not. Those which contain 0

may themselves be resummed by looking at those graphs which connect 0 to



—
o

i and then multiplying these by K[i + 1,n] thus giving us a ‘bridge’ from 0
to ¢ and then all other possibilities from i + 1 onwards (this gap is required
because the above definition of connectedness).

The sum over connected graphs can also be resummed as:

2 JlUe = 3 3 Ue II Un

reg[on] stel LeLlon]:Lp=L stel s'ttelT\L

= 2 IIU«. II Q+Uw)=J0,n). (218)

LeLlon]steL  s'w'eC(L)
Now, equation (2.1.7) may be written as:
K[0,n} = K[1,n]+ > J[0,i]K[i + 1,7] (2.1.9)
i=1
where K[n,n] and K[n +1,n] are to taken as equal to 1 in the above sum. For
convenience let us separate the i = n term in the above sum so as to get:
n—-1
K[0,n] = K[1,n] + 5_ J[0,i]K[i + 1,n]) + J[0, ] (2.1.10)
i=1

We are now in a position to write our convolution equation.

G:(0,z) = Y 2lPolgy

Rp30
fwl
+ z 2l (H Z ZIR‘|]K[1,Iw|])
w:b—x =0 R;3uw(i)
lwl 21 _
|wl=1
+ 2 zl“’l[ H leu"] Z J[O,le[j+ ljlw”
wi:i0—ar Riw(i) i=l1 _
o] 22
fel
+ X MIT X AR ). (2.1.11)
wil =z =0 R;3u(i)
w21
Let us define
g(z) =3 2 = G.(0,0) (2112)

T30
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and explain the ‘lace expansion’ by writing J[0,n] = Yom>1 Jm[0,n), where
IJnl0nl= 3 Tl Ue TI (Q4Usw) (2.1.13)
Lelm[0n] stel s't'eC(L)
(Ln[0,n} denotes the set of laces consisting of m edges on [0, n]).
If we now define

0.(0,z)= Y M (ﬁl 3 z]R”) JI0, Jwl], (2.1.14)

Wwil—zx #=0 Ri3u(i)
lwl > 1
it can be seen that I1.(0,z) = Tt IT{™(0, z), where

o™,z = S 2 (Iﬁl 3 le-‘l) Jn[0, J]]. (2.1.15)

vioss  \=OR3U)

Jwl21

Now we re-write G.(0,z) in what will be its final form:

G.(0,) = do,z9(z) + I1.(0,z) + zg(2) 3 Gi(u,z)+ > zI1.(0,u)G.(v, z)
o ) (2.1.16)
In the above sums, (0,u) is a step taken in Q. Similarly, (u,v) is such that
(v—1u) € Q. The last two terms in (2.1.16) could be written in terms of
convolutions with‘the indicator function Jjg)(z) of the set Q. The normalised
Fourier transform of the latter will be denoted as

D(k)y = é z‘j!e"’“. (2.1.17)
TE

Finally it should be mentioned that the factor g(z) in the third term is neces-
sary because the walk in its corresponding term in (2.1.11) was non-trivial (it
consisted of at least one step). Now, if we assume that all the functions in the
above convolution are summable [HS3], we can Fourier transform both sides
of equation (2.1.16) to obtain:

g9(2) + (k)

) = T o RDk)e(e) + L)

(2.1.18)



We will now discuss some analytic bounds on G‘,(k). Let
F(k) =1 - 20D(k)(g(z) + TI.(K)). (2.1.19)

By the bounds in [HS4] p. 1015, we know that £, (0) = 0, where z, = A~} [cf.
(1.1.1)] and that

F.(0)* = BX(2. — z) + E(2),
where |E(z)| < ¢|z. — 2" for |z| < 2., and B, is a constant which depends on

L and will be described more precisely in section 4.1. Using the above facts,

we can show that

E(0) = By(ze — 2)M? + E(2), (2.1.20)
where ]E'(z)| < ¢lze — z[*/?*¢. Simply put E(z) = [B}(z. — z) + E(2))"/* -

by the binomial theorem

|E(z)] = |z—2]?|(1 4 B(z))'/? - 1 (2.1.21)
< ze—2[M*1 + B(2)?/2 + ... — 1).

2.2 The derivation of ¥,(0)

Next we recall the derivation of ¥,(0) (as per [HS4]} defined by the equation:

d

E(21‘1,(0)) = ¥.(0)(20x +1). - (2.2.1)

This generating function will be of fundamental importance when calcu-
lating the behavior of higher order connectivity functions.

Let us carry out the differentiation in (2.1.14). Put v; = g 5.(;) 2!, Then,

d . d |l )
ZEL) = =3 H( )y z'"*'*‘) JI0, Jw]

[wi>13=1 \R;3uw(j)



ju|
= 3y MYy { IT "ﬁ} > (R + 1)2BL0, jw]

{21 =0 | jiji Riduwl(i)

Jwl
= > > zl"’lz:(l__[ 'yj) > R J[0, [l (2.2.2)

v w21 i=0 \f:j#i Riguw(i)y
since |R;| + 1 is the number of sites in the i** rib.

Roughly speaking ¥(0) involves two simultaneous lace expansions: the
first sums over back-bones with one lace expansion so that the ribs intersect
according to the sum over laces L € L]0, |w|] and the other sums over the ribs
so that the rib R; in (2.2.2) becomes a back-bone with its own ribs (we will
denote these with R;); these primed ribs then interact according to a sum over
L’ € L[0, |w']]. The problem is to keep track of the interaction between these
primed and un-primed ribs; this will require several interactions to mediate.
The desired interaction in a given expression will be specified by appending it

to the kernel it is acting within. For example, the term corresponding to the
rib at w(?) is defined by:

>, A= 3 oM ('H'—n) Ko, W' u], (2.2.3)

Risuw(i)y whw(i) 3y k=0

where 7 = Yy 50y 24,

Ko, W= I (+Uy), (2.2.4)
0<s<tg|w]
and
0 fRNR =0
L={ f ’ (2.2.5)
-1 fR,NR,#0
Let us also introduce V!
0 fR,NR=
=y 0 HRNR=0 (226)
-1 ifR,NRI#0



[3*)
2]

As an intermediary we define 1 + V}:
1+Vi= J] (1+V, (2.2.7)
sieC(L)

with which we can define Ay;:

1+ Uy, O<k<l!

1+ 4= . (2.2.8)
A+ +V)), 0=k <!

If 0 < k <, Ay will only involve primed rib interactions, whereas Xy will be
non-zero only if Uy # 0 or if R} intersects some rib R, with si € C(L), where
t is our distinguished rib.

If we use the convention that si represents the edge is if i < s, we can

single out a distinguished rib by writing

Joli]= ¥ u(L,i)(II i 11 (1+ut.-)), (2.29)

Leco,lw]) asicL titieC(L)
where
ULD)= JI Ue JI Q+Use) (2.2.10)
stel At e C(L)
st#1 £

The product over compatible bonds in (2.2.9) may be combined with
K[, [w'l; U] :
KO, W't TT (1+Us) = (1 + VK]0, |'); X). (2.2.11)
ttiec(L)

Thus (2.2.2) may be re-cast as:

;z("n 0) =2 z'"'lz (H %) > UL, (2.2.12)

|21 i=0 \ju#i Lel(o)|w]]

X 3 2l (H 7!:) (1 + Vo) KO, |w'|; X)( [T Usi)-

|w![>0 k=0 naiEL



Let us consider the case where |w'| = 0 and write that as:

[wl /ol
P20y = MY (H 7_,') J{0, Jl] (2.2.13)

|w]>1 =0\ jigi
(Recall that [T,igeqzy(1 + Uai) is embedded in (1 + V})). Now we consider the

case |w'| 2 1. First we define a kernel:

H=ZZ"”'[§(H‘H) P UL T (Hv) (143

Jwi>1 i=0 \jiji LeL[o,]w]]
(2.2.14)

It is clear from (2.2.13) that the summations within #H must still act upon
[ls:sier Usi and K0, |w’|; X]. By resumming we obtain
K[0,|'; ] = K[1, |o'|; U] + % JO,m; X)K[m + 1, ['|; U] (2.2.15)
m=1
since X' = U’ for laces without an edge at w(i). If |w'| > 1 in (2.2.13), we must
allow for the eventuality that i be in an edge of the lace L. If this is not the
case however, the empty product [],.,;ez Usi = 1.

Now fix L € £[0, |w'|). The case where i € L will be dealt with as follows:
given a configuration such that 2,; = —1 , let k(s,i) be the smallest k such
that R,N R} # @ (there may be at most two edges in L with common end-point
i) and put k(L,?) = maX,sics k(s,?). Then k(L,3) gives us the ‘furthest’ point
on w' where a rib growing from w' is intersected by an un-primed rib. This
shall be encoded into W which is defined by

|w'| ']
H U; = Z W, = :i:z I[k([,,,-)=q. (2.2.16)

nsiEl =0 i=0
The = sign is -1 if there is only a single edge with end-point i and +1 if there -
are two such edges.

To take into account the ‘point of last intersection’ between primed and

un-primed ribs, we define Y by



1+ U, l<s<t
L+ =1 * (2.2.17)
Hk:ﬂ(l + (Ykg), [ =85 < t

So again, J'?' # 0 if either there is a non-empty primed rib — primed rib
intersection, or when s ={ and R{N R, # 0 with [ : li € C(L).

We now seek to split the interaction K0, |w|} into two pieces. As in [HS4]

we have for 0 < < ||,

K0, |w'); X] = K[0,5; X)K[l, |'|; Y™ (2.2.18)

Ifl =0 or!= |w'| the above is trivial. For 0 < { < |w'| we obtain (2.2.18) by
separating the 3)1(,1.) terms so that the R.H.S. of (2.2,18) can be written as

II a+x) T 0+ I a+¥80) (2.2.19)
0<a<t<! 1<t |w'] <o’ <t < lw!]
=TI +X) [ (14U x

<! 0<agig!

!

H (H(l + thl)) (1 + ?J{,.) H (l +U_.f',.)

<i<jw!| k=0 1<a' <t < )
= ]I ((1+u5g) I1 (1+va)) I a+u,)x
a<egt sai€C(L) 0<a<t<] \
]

II {(1+u;,t.) II (1+v;,.)1‘[(1+u;,.)} II Q+u.,)

let'<o!| ssieC(L) k=1 1<a'<<|w!|

(the first line of the last equality involves only ribs up to the {** vertebra; the
first product in the last line involves interactions between a rib before and a
rib after the I** vertebra, whereas the last product involves only ribs after the
I vertebra). The above effectively yields K0, |w'|; X] as per the L.H.S. of
(2.2.18). Combining (2.2.18) with (2.2.15) gives us

o'
K[0, |w'l; ) = K0, XI(K[ + 1, W'k + 30 JU5 YOIK] + 1, W'l 4)
= (2.2.20)



[ Q)
[%]]

(by the definitions of the interactions.)
Finally we can substitute (2.2.20) and (2.2.16) into (2.2.13) for the case
where i € L and (2.2.15) for the case i ¢ L. By separating the { = 0 term

from the rest of the sum (2.2.16) we have

d -
— = 2.9
o 211.(0) (2.2.21)
o) +

H (T (1, W5 U] + TierWoK[1, |l ]) +
Jo'|

Mgy 3 J[0,0; XK [a+ 1, 'l '] +
a=1
lw'|
Hljey) {Z WIK[0,; XKl + 1, |w'|;u']} +
=1

lw'|-1 ']
’HI[,-EL]{ Y WIK[0, LX) Y Jlta; Y Ka+1, |w'|;u']}

=0 a={+1

(the term ! = [w'| in the second line of the last term would have yielded an
empty sum, and hence was dropped). The second term in the above sum can
be resummed to give:

$1(0)20x(2), (2.2.22)

which when combined with ¥1(0) from the |w'| = 0 case gives us:
BL0)(1 + 20Qx(2)). (2.2.23)

As in the case of ¥,(0, z) of [HS4] (4.28), let us extract the ! = |’ | term
of the first line in the last term of (2.2.21) as well as the a = |w’| term in the

last line in (2.2.21). The result is:

$2(0) = Hipgr)J0, |'}; X] +
']

Higer) Y WIK(0, 1 X)J([L, ') YY) (2.2.24)
=0



This leaves us with:

fuw'l—1

Hligr) D J[0,a; X)K[a+ 1, ') 2] + (2.2.25)
a=1

fo'l-1
m['w{ 2. WIK[0, LXK+ l,rw'l;u’l} +
{=1

=0 a=l41

|o]~2 |1
e { 2 WIK[0,LX] 3 Jla; V)R [a + 1, Iw'l;u’]} ,
which can be resummed to yield:
F2(0)20x(2). (2.2.26)

Letting .(0) = ¥1(0) + ¥2(0) produces (2.2.1).

It will be important to recall from [HS4] Lemma 2.1 (i7) that
b+ ¢(z) = 200(0), (2.2.27)

where limz 400 b = 0 and |{(2)] < ¢(€)|2c — z* (c is independent of L) for any

€ <min{1/2,(d — 8)/4}. To be more precise, b = 200, (0).



Chapter 3

The n-point connectivity

functions

3.1 The n-point functions.

Let x1(z) = g(2) as per (2.1.12), and xa(z) = x(z). Then, for n > 3, define
xn(z)tobe T, o G.:(0,2y,..,2,-1), where
G021y 0y Tny) = Y 2T, (3.1.1)
T30,51mmZnm1
is the generating function for trees connecting {0,zi,..,Zn-1}. We seek to
express this quantity in terms of x(z), and thus to control the asymptotics of
Xn(z) in terms of powers of z; — z. The main result in this chapter is that for
n>3
xn(2) = (2n = B)¥*""3(2)v(2)"2 + Eu(z2), (3.1.2)
where v(z) = (20)2(1+20%,(0)) [cf. (1.1.9)] and E,(z) is an analytic function
on the disc [z| < z., where it satisfies |Eq(z)| < cq|zc — |z|| "3 |2, — 2|~3/2

for n > 4, with € < min(1/2, (d — 8)/4), and |z. — z|™! for n = 3.

27
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The reason for the sirange looking bound on |E,(z)| is that it involves
estimating derivatives of ¥.(0); however, the latter can only be estimated for
real z. Astonishingly, these bounds will suffice to estimate the asymptotics of

En(z)’s coefficients (with the machinery of section 4.1).

We now explain the meaning of the results (3.1.2). Each factor of x(=) in
(1.1.9) corresponds to a tree linking 2 points; these trees are then themselves
linked in groups of 3 by a factor v(z) which operates by looking at the case
where the trees do not avoid each other and then subtracting the cases where
they do intersect via the function 11',(0). This binary structure accounts for
the v(z)™~? and the double factorial in (1.1.9) as will be explained below. The
degenerate case where the ‘extra’ point is connected to the tree via the vertex

factor v(2) (i.e. an error term) is depicted in the bottom right diagram below:

S i;
vl

D

—(

—

T4

%

O~ u(z

The above illustrates the 4 ways of connecting x4 to a tree connecting § points.

The internal vertex in the error term is no longer finite at z., but rather,
for real z, behaves as x(z)'/? (as indicated by the bloated blob) so that the
overall behavior of the generating function corresponding to that diagram is
O(x(z)*+1/2) as per the error bound in (1.1.9). There are many ways for the

‘internal edges’ of a diagram corresponding to xm(z) to collapse, but in all



cases, the generating functions they produce are O(x*™~"/2). As an exam-
ple, consider a tree diagram corresponding to xz(z). Some of the possible

degenerate diagrams which result are shown below.

bpd o L hed

The (2n - 5)!! in (3.1.2) comes from the number of ways of assembling trees

N

-

with vertex coordination number 3 so that they connect n distinct external
end-points. The factor v(z) accounts for the fact that such a tree will have
precisely n — 2 internal branch-points. The diagram below explains how such

trees are inductively assembled.

€4 €q €4 €g
€1 €3 €7 €g __ € €3 €7 €g
€s -] €8
€2 €y [
€1 . —
€
+ 10 en
n edges+ another (n +2) edges

By adding another edge, we increase the number of edges by two; the
number of possible edges to graft e, onto, is 9 (if we added another edge to
the new tree, there would be 11 branches to choose from). In general, for a
binary tree connecting n external end-points we can inductively see that there

would be (2n — 5)!! ways of assembling it.
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3.2 The 3 point function.

The expression for xn(z) in (3.1.2) will follow by induction on n. Let us start
with the base case (n = 3). As will become apparent later, we could compute
xa(z) by means of a differential operator, or resum it as we shall do below.
While the former method has the advantage of being more mechanical, it has
the draw-back of not yielding an expression in terms of v(z) and y(z) and
is therefore not being amenable to capturing all the (2m — 5)!! leading order
terms in (3.1.2) by the methods of the next section. The technique below
however, will yield an identity in x(z) and v(z) which will later be used to
construct the Fourier transform of the 3-point function.

We can write an expression for y3(z) by summing over all its sites — twice.
Once by summing over all end-points z, and a second time by summing over

the sites £, on the #** branch, and then summing over all the branches.

Jwl
x(x) = T z'“"Z(H 5 zmﬂ) T RIE W) (3.2.1)

T1.T2 will=rzy i=0 \jii&i R,3w(j) Ridw(i),z2

This is illustrated below.

T2

|0|\‘ ___J| ~
IHI_Tw(z') | _

We now introduce one last piece of lace machinery from [MS] (because
of our definition of connectedness for graphs, we produce a slightly different

expression than in [MS]).
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Definition 3.2.1 Consider a graph B € B[0,n]. Ifi € [0,n], and B contains
an edge, say st, such that s < i <t then put Ci(B)=[h, L) = I where I is
the smallest endpoint of the left-most edge connected to st and I, is the largest
endpoint of the right-most edge connected to st (the definition of connected was

defined on p.13). If is no such edge st ezists, let Ci(B) = {i}.

Now we can introduce:

Lemma 3.1 The interaction K(0,|w|] may be resumr =d as follows: given
i € [0, Jwll,
K0, |wl] = 3 K{0, Iy = 1)J[1, BIK [ + 1, |}, (3.2.2)
I3i

where the sum is restricted to I = [I),I5] s.t I C [0, |w]].

Proof.
We see that
Kjo,wl] = 3 X II U. (3.2.3)
I3i B:Ci(B)=Ist€B
= ZK[O,I] - l] z H U“K[IQ -+ l,lwl]
I9¢ Teg(l) stel
= Y K[0,5 - 1J[L, BK[L + 1, |w]],
I3
if we use the conventions J[i,i} =1, K[0,-1] = K[lw]+ 1, |w|] = 1. ...

For convenience we will let
K(I) = K[0, L = 1J[I, B)K[I + 1, |w|]. (3.2.4)

Before using this resummation, we will first recall a result from [HS4]:



(as before, v; = L R3uE) ::'H'I)

2 (:1.(0,2))

dz
ot
=2 X z'“'Z(ij) > =, ]
¥ owill=zlw>1 =0 \jijgi Riduw(i).y
= ¥.(0,2)(z0x + 1), (3.2.5)

where |¥.(0)| < ¢ for |2| < z. as shown in [HS4]. The latter bound on ¥,(0)
will later play a crucial role when calculating the continuum limit of these
generating functions, but for now, the idea is to use Lemma 3.1 to exploit the
independence between the 3 interactions and thereby isolate a product of 3
x(z)s.

The only nuisa.ncé in the application of (3.2.2) is that various special ‘lower

order’ terms are produced:

fu|
xa(z) = 3 Y MYY (H "")R > MRk, (3.2.6)

T2 |w|>1 =0 I3¢ \j:i#i i Dw(i),x2
|ew]
= E Z zlwlz 2 (H Ti) Z zIR.'I]c([’,')
3 |w|>l i=0 I3i Frii Ridw(i),x2
I #£0;1z # |w]
J|
+ X3y (H ‘Yi) Y. R, BIK [+, |w))
@ w2l =0 L \ji# JRsu(i)e
I=[0,1]

+ ZZz""‘lf': > (H w) > Ak, h-11J1, [w]

I3 |W|21 i=0 I J.gJ-#" Ria”(‘).zz
I'=[h,jwl]

+ 222‘“‘5 > (H —n) S 2R, i),

2 |w)>1 =0 I3¢ Fiigts Ridw(i),z;
I=|o, l“'l]
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By (3.2.5), the last term yields (1 + 20x(z))¥.(0). We further split the re-

maining terms in (3.2.6) into sub-cases. The first term may be split as:

>3 z'wlg 3 ( II 7,.) > 2RI,y (3.2.7)

T2 |w>1 =0 IEY SR E Ri3w(i),zz2
I 201 # |wl
Ju|
=y 3 zlwlz 3 (H .7‘.) Y le‘IIC(I,i)
T2 jw|>1 =0 I3 FBE Ri3w(i),z2
0L < I # |w
||
+ XMy (H 're) > APK(0,i - K[+ 1, ).
Tz |w|>1 =0 \ j:j#i Riauw(i),z2

(J[#,3) = 1 was used in the last line since I} = I, = i). The two last terms
yield (20x(2))%(1 + 20x(2))¥:(0) and (20)2x(2)® respectively.

We may also split the second term as shown below:

T My Y (Hw) S S, K, ol

2 |w|21 =0 13i Ji#i Ridw(i),x2
I=[0,1I3)

jw|
D IDIELONDY (Hm-) > 2R, BIK(L 41, w]]
T2 [w|>1 =0 o, Ji#Ei JRidw(i),zz

o< I=[04]

+ 222'”'i(n —r.-) > RK+1L, W] (I=i=0),

T2 |wl21 =0 \j#i  /Ri3u(i)za

since J[0,0] = 1, thereby giving us (1 + 2Qx(z))¥.(0) - z2Qx(z) and 2Qx(2)?
respectively. The counter-part of the previous term is dealt with similarly

below:

i
XY MY T (1’[ 7,-) S ZRIK(0, I —1)J[4, [w|]

Tl =0 L\ Risuli)es
I=[h.wi)
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]
=YY MY T (H —,-.-) 3 SRR, L= 1) {1 fel]

=izt im0 00\ ) Rl
Hhl < |wlid =14, |wl]

ol
+ z E k! Z (H 7;) Z le‘!K[O, lw|—1] (I=i=|w|)

T2 |21 i=fw] \fi#i JRidw(i)e:
which yields (as per the last term): (1 + zQx(z))\i!z(O) +20x(z) and =0y (z)?
respectively.

Upon collecting terms it can be seen that (3.2.6) gives

x3(z) = x(2)3(2Q)*(zQ¥.(0) 4+ 1) (3.2.8)
(0

x(z
+ 3T(0)(=Qx) + 2:0x(2)? + 3208 (0)x(2) + ¥.(0).
Remark 3.2.1 As a check, we obtain the leading and next-to-leading term in
(8.2.8) (asymptotically as z /* z.) by computing (the derivation immediately

below will be explained in more detail in the nezt section):
T G0enen) = DT+ 101 = Sz, 3.29)
T1,T2 T30
The above is the main ingredient, but we must also use the following identities
from [HS4):
1= 2e(g(2) + I1..(0)) = 0, x(2) = h(0)/F,(0), k.. (0) = 1/(2:0),

ha(0) _ _ g(2) +11(0)

x(z) = Fz(o) T 1-— 2 g(z) + fI,(O))’

(3.2.10)

and £z(g(z) + 11.(0)) = x(z) + (20x(z) + 1)¥,(0). We then have

izX(") - x(z)(1+ ZQ‘i’z(O)) + ‘i’z(o)
dz " F.(0)
. 4 Hh(O)x(2)(1 + 208:(0)) + ¥:(0)]

B F.(0y?



But since zQk.(0) = 1 — F.(0), the above reduces to

x(2)(1 + z09.(0)) + $.(0)
F.(0)?

Now, £.(0)~2 = x(2)?h.(0)~2 and k.(0)~2 = (20)?/(1 — £.(0))2. For z near
ze, F(0) is small and thus:

(3.2.11)

ho(0)72 "= (29)%(1 + 2F4(0) +...) (3.2.12)
From [HS4] we know that £.(0) e (20x(2))! + O(z. — z)*/?+¢, Thus,
ha(0)72 " (2Q)[1 + (20x(2)) ™! + O((ze — 2)™1/*+)] (3.2.13)

Then using F,(0)~2 = x(2)%k-(0)~2 in (3.2.11) we deduce that

xs(z) = [x(2)(+ 2Q¥.(0)) + ¥.(0)]x(2)?h(0)~*
e (20)%(1 + 209.(0))x(2)?
X(2)239(0)(22)? + 20 + O((2 — 2)~'**)  (3.2.14)

-+

as per the resummation method. Unfortunately, we cannot capture the next
lower order term x(z) since we have already made an error of order (2. —2)~1*¢,

All we really need is good control over the leading and next-to-leading
order terms for x(z) as these will be recursively fed into xm(z) by the iterative

machinery which will be explained in the next section.

3.3 The method for computing higher order

functions.

Recall from the previous section that xa(z) = x3(22)?(1 + 202¥.(0)) to highest

order in x; to proceed by induction, we note that since the number of sites in
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an n bond tree is n + 1,

xm(z) = 3t = ST(IT] + 1ym-12dT (3.3.1)
n T30
where
tsmm) = Z tn(oaxlv "vxm—l)' (332)
Ty Tmel

This leads us to the relation

Xm+1(2) = Dxm(z) (3.3.3)

for m > 1, where D(xm(2)) = £(zxm(z)). Thus in general, for m > 2,
Xm(z} = D™=%x(z). The only problem in writing down a general formula is

the fact that for any differentiable functions f and g,

D(fg) = (Df)g + (Dg}f - fg. (3.3.4)

In other words, although D is linear, it is not quite a derivation. This is merely
a technical nuisance however, since we are only interested in the leading order

behavior of a product. For a true derivation D(.) = £(-) we would have

D"l fi= Y. clis,oyinym)D fy.. D", (3.3.5)
i=1 f14Fin=m

For convenience let us introduce:

Definition 3.3.1 For m > 1, and smooth {f;}1., let

Pu(n)= > ity ingm)DU £l D" £,
f1+.tin=m
with c(iy,..,in;m) as in (8.3.5).
In fact, to leading order, D does behave like D as shown by

Lemma 3.2 For any sufficiently smooth functions {f;}°,, n > 2 and m 2 1,

e ﬁf- = f:(T)(—l)‘Pm-,-(n)(n - 1)k,

i=1 i=0
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Before proving Lemma 3.2, we introduce a proposition:

Proposition 3.3.1 For n > 2 and sufficiently smooth f;,

DIlfi=Y ( I fj(Df.-)) ~(m-DII 4 (3.3.6)

i=1 i=1 \jijgi

=1

Proof of proposition 8.8.1. By induction [the n = 2 case is the content of
(3.3.4)] we can use (3.3.4) on [I%, fi:

D fanr ﬁfi) = fa1 (i( Il fi)Dfi-(n-1) ﬁ f:‘) (3.3.7)

i=1 =1 jeii i=1
n n+l
+ (Hfi)Dfn+l - H fJ
=1 j=1
n+1 n+1
= Y AII Dfi—n ]l £
f=1 jiji J=1
..l
Proof of Lemma 9.2. Now we can understand the action of D on
Pa(n)= 3 clityeyinym)D f1.. D f,,
1+t in=m
since by proposition 3.3.1,
D Y clityinm)D" fi DS, (3.3.8)
f14.tin=m .
= Z 2 (i1, .y tnym)( H D""fk)D'l-"Hfj
J=1li14.+in=m kiki
= (n=1) Y clir,erinym)DUfi. D" f,.
it hetin=m

One can now proceed by brute force. The c(i;, .., in;m)s are really the multi-

nomial coefficients
m!

ARy

— (3.3.9)

i,!



(]
o

Keeping this in mind,

i Y. clinimm)( I] D*f)DO (3.3.10)

J=lit+.tin=m bkt
n
= > clinij— Lgigm)( [ D*fi)D f;
fi+atn=mal j=1 kik#j

by letting i; — i; — 1. However, since the c(1y..,tn;m) s are multinomial
coefficients, c(i1,.,4; = 1,.,4a;m) = i;¢(i1, .., in;m). Since p_ iy = m + 1, it
follows that

yn‘_‘ 1i¢(t1y ey tnym) = (i1, ey tnym + 1) (3.3.11)

j=1
as can be seen from (3.3.9). Inserting this last identity in the last line of

(3.3.10) yields

e(i1y inym + 1)DU f1. D f = Py (n). (3.3.12)
tetin=m+l

It therefore follows from (3.3.10), (3.3.8) that for n > 2 and m > 0,
DPn(n) = Ppyi(n) — (n — 1)Pa(n). (3.3.13)

Using (3.3.13) the Lemma follows by induction on m [the base case is the

content of proposition 3.3.1},

DmH I_] fi= Zo Pr-i(n)(n — 1)} (3.3.14)
= 20(’“)( 1) Pnisr ()(n ~ 1)° z;("‘( 1Y Pp_j(n)(n — 1)/*!

- ) = |
= Pnu(n) +§ Y (7 + (™)) Praciln)(n = 1)
+ (=1 = )R = 3 (T Pasaciln - 1)

This concludes the proof of Lemma 3.2. N
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Remark 3.3.1 The c(i;,..,in;m)’s are constants whose values we will not
need since the total number of leading order terms produced (counting mul-
tiplicities) by the above differentiation is n™ since the ‘wsual’ multinomial
expansion for derivatives produces terms in a 1 - 1 correspondence with the

ezpansion of (a; + .. + a,)™.

As preparation for the proof of (3.1.2) we introduce:

Lemma 3.8 Suppose that |D'x(z)| = cilzc = z|~%/2|z. — |2||"™ for1 < i <
m —4 and |z] < z.. Then for|z] <z, and1<j<m -3,

ID“'i’zl < lezc - Iz“—j-i-c, (3315)

where € < min(1/2, (d—8)/4 (w.l.o.g. the same result holds if we replace ¥.(0)
with v(z)).
The proof of Lemma 3.8 proper will be deferred until section $.6.

Remark 3.3.2 One really must assume an apriori bound on Dix(z) to say
anything about D! x(z) since we do not know anything about the it* derivative
of v(z) when using (3.9.9) on (3.2.8) as will be explained later on. It will turn

out that the latter will only involve derivatives of x(z) up to order .

3.4 The body of the 'proof
Let it be understood that from here on in, ¢ < min(1/2, (d — 8)/4).
Theorem 3.4 For m > 4 we have

Xm(2) = (2m = 5)x(2)*™3u(2)™"2 + En(2), (3.4.1)

where |En(z)] < cml2e — 2732+ |2, — |2]|~™+3%¢ for |2| < <.



Proof of Theorem 8.4.
The idea is that the leading term in (3.2.8) will yield the main term in

(3.4.1). By (3.2.8), xa(2) = x(2)%(z) + E(z) where
E(2) = (30.(0)29 + 2)(20x(2)?) + W.(0)(1 + 320x(2)), (3.4.2)
and v(z) = (2Q)2(1 + z00¥.(0)). In other words, after a little algebra

xa(2) = Dxa(z) = D(x(2)°v(2) + E(z))
= 3x(2)*(2)(x(2)’s(z) + E(2)) (3.4.9)
+ x(2)*Do(z) — 3x(2)%v(z) + DE(z). (3.4.4)

By Lemma 3.3, |Dv(z)| € ¢}z — |2||~1* so that
IX(Z)apv(z)l < clzc - z|—3/2 : Izc - |2”-l+c‘

By similar arguments, |DE(z)| can be dominated by the error term above.
Thus, we have proven (3.4.1) for m = 4 (the base case of the induction),

The point is that the leading order term is produced when D operates
ezclusively on the x(z); as soon as a D operates on v(z), we obtain a lower
order term. To prove the general result, we proceed by induction and use
Lemma 3.2 to view D as an ordinary derivative and inductively drop any

result.ng lower order terms when using (3.2.8), in the expression for Xm(2)

below:
nle) = D™s(e) = D2 (s e(z) + E) 4.5
= T erpuaiie) (349
TP E (PP i) (34)

+ (=1)"x(2)°v(z) + D"2E(2). (3.4.8)
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For the induction, we will assume the hypotheses of Lemma 3.3; in particular

these fmply that:
’DJX(Z)I < ¢jlze — z|_1/2 Hze = Iz”_ja (3.4.9)

for 1 £j <m—4and |z] < z. Now suppose that m > 5. By harnessing the
content of (3.4.9) using Lemma 3.2 with P,,(3) and fi = x(z) for k = 1,2,3,
together with Lemma 3.3, we can bound® anytermin (3.4.6) with1 < i < m—3
by

lze = l2ll™™ 30 IDUx(2)|.|DRx(2)]

1 +izfi3=m—3-1

emlze = |27 37 [Tz = 272z = |2]17%)

Ntizdiz=m=3—~1 j=1

IA

A

cm[zc - |z”—i+c . (lzc _ z|-3/2 . lzc _ lz”-(m—a—i))

= cm|2e = |z|[T™3t . |z, — 2732, (3.4.10)

If however, i = 0, in (3.4.6), we can recover the leading term in (3.4.1). Before
we do so, note that by exactly the same procedure as above, the ¢ = 0 term in
(3.4.6) could be bounded by |z — 2|~¥2 - |z, — |2||~™*3 [cf Lemma 3.3]. This
would then imply that the lower order terms in (3.4.7) could all be bounded
by |z. = 2|=3/2 . |2, — |2||~™*, since for these terms, the m in P, (n) of Lemma
3.2 is effectively knocked down by at-least 1. The same bound can be obtained
for |D™=3E(z)| in (3.4.8).

At the risk of belabouring the above, it follows by the induction hypothesis
that |‘D"‘“3x3(z)1| < ¢|ze — 2|™%2|z, — |2||"™+3. The only way that the leading
term may comé about is by letting D operate only on x(z) and ignoring all
other terms produced (remember that by Lemma 3.2, D can be viewed to

leading order as a derivation). This is now illustrated:

lit clearly suffices to consider the leading term in Lemma 3.2



Xm(2) = D™ Pu(z)x(z)°® (3.4.11)
= (D" 8x () (x(=)%(2) + E(2))} + Lo.t.
= 3v(2)"D"*{5x(=)(x(2)v(2) + E(2))} + Lo.t.

= (2m — Mh(z)"3{(2m ~ 5)x(2)*™8(x(=)3v(z) + E@:)} + Lot
= {(2m = 5)u(2)™"2x(2)*™3 + Lo.t.

By the arguments preceeding this computation, any l.0.2. may be bounded by
(3.4.10), since D would have operated on at least one v(z), or better still, an

E(z). ...

The rest of the chapter will be devoted to proving Lemma 3.3.

3.5 The structure of derivatives of ¥,(0).

Before starting the proof of Lemma 3.3 in earnest, we first discuss the structure
of ¥ and how it will be affected by successive applications of D. Recall that

¥, is given by:

|ewf
0 = ¥ z"‘"Z‘,(H w) J00, jw] (3.5.1)

lw]>1 =0 \j:j#i
||
¢ L5 (Tn) $ uw
w1 i=0 \ fijki LeL[o,|w])

x

|w'|
( 3 2 (1‘[ 'y,',) (1 + Volier)J[0, |w']; X)

W1 k=0

o] |
+ 3 2 (H 72) 1+ Volyen Y K[0,5; X)JI(L |w'; J’”’])
1=0

w21 k=0
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We start with the first term in (3.5.1), and define ®, = 2-n>1 Pn(z) where

Pn(z) Z I“'Z (H ‘)’j) Jml0, [w]]. (3.5.2)

21 i=0 \jij#i
We next deal with the second part of (3.5.1).
- Define T(z) = X np1 THL(2) + T2 (2). Where T1)(z) and T2 (z) com-
prise the cases j ¢ L and j € L respectively. Thus,

ot
T (z) = Zzlwlz(ﬂ 7.-) Y. U(L.i) (3.5.3)

Jw|>1 J=0 \ i Lelq[o,|w]}

X > 2 (H 7&) (I +Volseny 3_  Jml0)w'); )
w21 k=0 LeCmo,lul

w'(0) = w(j)
Diagrammatically, T{!),(z) will be a sum of 2™*+*? (m + n)-loop ‘ladders’

as will be explained later. Similarly for the case where j € L we write the

corresponding term

]
T,(,f.l‘(z) = ZzMZ(H 7.-) > U(L,i) (3.5.4)

w21 550 \i# ) LeLnlbul
X S0 M (1‘[1,‘) (1+Vy)
21 k=0
w(0) = w()
v/
X

I[_,-Ez,] Z WIK(0,!; Xl '] y“)]
i=0

Before proceeding, we introduce one last inequality involving J,[0, [w]; U] and

the so called compatible edges C(L) of definition 2.1.1. Recall that
C(L)={st ¢ L: Lyy(uy = L}.

We will now modify the above so that



4
Definition 3.5.1 Given a lace L = U (sit;) € L]0, |w]].

Clly={st¢ L:s;<s<i<t, for some i}.

This new definition amounts to weakening the avoidance restrictions imposed
by the edges compatible with a given lace, and doing away with the alternating
sign inherent in the product over laces. In terms of ladder diagrams (to be
described below), all we are giving up is the avoidance -imposed by the com-
patible edges- of the branches of certain sides of one loop with its neighbouring
loops. An example of a lace L and an edge st € C(L) such that st ¢ C(L) is

given below (st is the lower edge):

v 1 M

-------------------------------------------------------------- Dn--...-..-u---uu

Thus,

Jal0lwhiU) = | 3. Tl U TII (14U (3.5.5)

LECa 0wl StEL  s't'eC(L)

< S Wl I A+ Use)= R0, |w]; U]

LeLn{0,|w|} ateL sred(L)
for any any walk w, any set of ribs { Ry, ..., Ry}, and any interaction U, U/’,
X, or YU,

Now we can state:

Definition 3.5.2 Let $,(z), and T () (i = 1,2), be the functions that
result by first replacing Ju[0, [w|} by P[0, |w|] in the definitions of &,.(z) and
T4 respectively. Also, let

2
b.0)= Y du(2)+3. 3 TY (2). (3.5.6)

m2>1 =1 mn>i



Remark 3.5.1 We can then majorise — for positive z < z. — the derivatives
of ©m(z) and TY) (z) in terms of those of & (2) and T D (z) respectively, since
the coefficients in the series expansion of the () functions dominate those of
the original functions by construction. Now, since
$.00) = T ®n(2) +f Y. TH.(2),
m>1 i=l mn21
and since the coefficients of the functions in definition 8.5.2 are positive, it

Jollows that for any |z| < z. and anym > 0,
|D™¥,(0)| < c (2 D"®,..(|z)) + 2 Y DT (=] ) (3.5.7)
m>1 i=l mn>1

In view of remark 3.5.1, any bound proven for D™¥.(0) with 0 < ¢ < 2.
[m 2 0] will carry over for |D’“‘i’¢(0)|5=|=; | on the disc |z| < ¢ < z.

The functions in definition 3.5.2 can be expressed (and again slightly ma-
jorised) for 0 < z < z. in terms of convolutions of 2-point functions. These
convolutions may take on certain ‘topologies’ depending how the laces L €

L£,(0, |w}) are configured.

Consider the above n edge lace. There are 2*~! generic possibilities for edges
to be configured, since the right ehd-point of the i* edge may or may not
coincide with the left end-point of the i + 1% edge.

Consider for example the function below:
|w]
By(z)= T MY ( I 7;) P[0, lwl; U] (3.5.8)
W21 im0 \jyi

Shown below is a typical lace L € 5[0, |w|], and below that, the typical rib

intersections it would induce.
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SO

0 w(a) w(b) w(c) w(d) wie) w(f)  w(g)
w(a) w(b) w(d) w(f)
w(c) wie) wi(g)
20 o o
F
0 wi(a) w(d) wi(e) w(f) wi(g)

The last of the three diagrams represents the convolutions of 2-point functions
that would bound such a diagram; the thick line represents the tree’s backbone,
and a solid dot represents a convolution of two 2-point functions. This last
diagram does not take into account the sum over backbone sites in (3.5.8)
however. This can be achieved diagrammatically by a sum of diagrams each of
which has a line in its backbone replaced by a convolution of 2-point functions
as depicted by the hollow circle in the single diagram below (we will use the

convention that hollow vertices are added vertices).

o

o ® 2

In general, any of the generic 2"~! loop? diagrams will have no more than
[(n+1)/2] lines in its backbone. Thus there will be at most [(n + 1)/2] x 2n-!

diagrams to consider when bounding a member of ®,(z).

2These loops may not collapse to a point.
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Similar considerations hold for terms comprising Tm.,.,(z); there will be on
the order of 2™*" generic ways for the laces in T () to be configured, and
thus, there will be no more than a multiple of 2™*" generic diagrams generated.
The detailed description of terms comprising T o(z) will be dealt with in later
analysis, but for now, the picture to keep in mind is that of two backbones w
and w' with ribs intersecting as shown below. In general, there will be one rib

belonging to w' that intersects w no further than 3 loops® away from w'.

w

YANIVANIYAN AN\
NN NV NN

The above diagram illustrates a generic diagram corresponding to Ts 1, (2).

Eventually, we will have to bound the derivatives of these convolved func-
tions, so we must begin by understanding what happens when D™ operates

on a term G:(z,y) : (recall that v = gy, 2/7)

Jwl
D"Gi(z,y) = D™ Y M vnKIo, ) (3.5.9)

wiT—by i=0

Juw|
- D’“"{i Iz z'”"*"‘[""“’”}
dz Wiz —by §=0 R, 3uw(i)

= 22 X MO g

wiz—y p=1 1 +.objp=m 04 <. <ipg|w]

( I1 7:') D%, Dy, K0, ]
jul#il |"||-p
The second equality follows by using the z in D to obtain |w|+1 for the number

of sites in the back-bone. If we assume that for z < z,, and 1 < JkEm-=-3,

3Loops formed by the ribs of w.
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Dixny (2) € ¢fze = z)=n+1/2, (as per the hypotheses of Lemma 3.3)* then the

last expression above can be majorised by

m p+l

¢2(G: Seri(z = y) JT xH!
p=1 k=1
< eI (Gex o % Golpui(z — y)X*", (3.5.10)
p=1

where (G:*- %G ),(z —y) denotes the p fold convolution of 2 point functions,
and (f * g)(z) is defined in the usual way,

(f*9)(z)= 3 flz - (3.5.11)

yezd

Case (1)
Let the 4n 2-point functions involved in the spatial convolution for *5,,(:)
be labeled G,..,GI". Then, interchanging the order of convolution and differ-

entiation, and using the the formule regarding the action of D on products of

functions, we have:

- 4“ . ] .
Dren(z)=3 D JIGi=Y % c(iyy oy ian; m)D G DI G

(S-C-) i=1 (s,c.) i1+ tign=m

m—1
+ 2 Z { —(n-1 )"‘"-" Z (i), oy tgnym — l)D"‘Gl..D"""G’:“}

s C. ) =1 i1+ tign=m=j
+H=-)"r-1)" ¥ 1‘[ e (3.5.12)
(S c. )t._
(where s.c. denotes the spatial ‘convolution arguments’). Bearing in mind that

every additional convolution in (3.5.12) corresponds to adding an additional

vertex in the spatially convolved 2 point functions, we see, using (3.5.9).and

“note that it takes one Do get from 5, (z) to x(z)
[E% ‘:‘\\

TN
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(3.5.10), that the leading term of (3.5.12) is:

Dnb,(2) < c(dnm)(dn)™ > GLx*m (3.5.13)

B i=1 4=1

< cldnm)(dn)™ 3 Byy(2)md

=1

2]

L

The factor 4nm accounts for the fact that each term D' G* may give rise to
at most m terms, and it is only at this level that the above bound is not sharp

in its n dependence (cf. remark 3.3.1).

In terms of diagrams, ®,,(z) has the nictorial representation below,

T N

O —! ! O
BENOIE of
N [
C4t

—
where the resulting ‘ladder’ diagrams have been pruned of their extra branches
(i.e. the x(z)*~'s) and have extra vertices at the site of the ‘pruning’ (the
solid dots represent vertices which were present before any differentiation). In
diagrammatic notation, ®,,(z) is essentially a sum of $,(z)s with p distinctly

distributed ezxtra vertices.
Case 2.

By exactly the same methods we can deduce that for i = 1 or 2

p m+ntj

DPT0Mz) < clm+mp)m+aP £ [ G x>~

C.a.j=1 i=1



L
= C(4(Tl + m)p)(m + n)p z Trs:.)n;j(z)z\‘

Jj=1

>

=

i

L

-

——
s
cn
Rl
.
S

where again, T4, () is a sum of diagrams such as T (2) with p randomly

added extra vertices.

3.6 Proof of Lemma 3.3.

In view of remark 3.5.1, Lemma 3.3 follows from

Lemma 3.5 For 0 < z < z, and L sufficiently large,

T o(2) < c(n,m)|ze — 5| =P/ (3.6.1)
fori=1,2 and,
B5(2) < e(n)]|z, — z}7P/2te (3.6.2)
with
c(n,m;p) = { c(-ih)m'{'“-?’ form+n>p . (3.6.3)
c Jorm+n<yp

for some § > 0, and c(n;p) = ¢(n,0; p).

Proof of Lemma 8.3. It follows from (3.5.13) (under the same hypotheses 28
for Lemma 3.3) that #

| ‘._:_‘;
v

.Dpé(z) - DP z &n(z) S C Z 2ﬂ(4np)(4n)p z (inu-(z)XQP-Jl
n?."' n>_‘1 J=l
P . .
S 2 2(dnp)(dn)e(nip) Y Jze — 2T |z — 2|74
n2l =1
< ez — 2| (3.6.4)

(the 2" corresponds to the number of generic diagrams produced by the 2"

generic configurations of n laces). Similarly,
2

DPT(z) = D* ¥, YT (2) (3.6.5)

n,m>1 i=1
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2 b
< e Y ST 4(n 4 m)p)(m + n) Z o 2P
nm21 1=1 i=1
< ¢ X 2T (d(n + m)p)(m + n)e(n,m;p) x
nm>1
S lee = 2| o, — 5| PHIE < o], — 5[
=1
(again there are on the order of 2™+" generic diagrams to consider).
This concludes the proof of Lemma 3.3. .

3.7 The proof of Lemma 3.5

This section will deal with the estimates needed to bound &,,,,(z) and later
T‘}f?nip(z). Roughly speaking, the idea is to break-up the convolutions com-
prising these functions into a product of terms, some of which are small (and
therefore responsible for the geometric convergence when summing on m and
n), and some of which diverge as z ,* z.. A later Lemma will provide a
universal estimates for any divergent diagram.

The ingredient in what is to follow, is the translation invariance and sym-

metry of the 2 point function. As a consequence of this, the diagram below

( -@

may be changed so that it is pinned down with the zero being at any vertex of

our choosing. Starting from left to right, we then repeatedly use the inequality

|2 f=)g(@)] < sup |£(y)] 2 ls(<) (3.7.1)

The result of the first application of this procedure is shown below.
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where y is the vector separating the broken end-points.

Proof of Lemma 8.8 Using the above procedure, we start by majorising

O in(2). Diagrammatically, we have:

99— @
iy iz ia 14 tmeg| Tm-1] im
L

where i) + i3+ ... + tm = n + 1 (extra 1 accounts for the ‘hollow’ vertex that

takes care of counting the number of sites in the backbone) and i; counts the
number of extra vertices on the top, bottom, and right lines of the jt¢ loop —
with the obvious caveat that i, include the vertices on the left-most line. By

repeated use of (3.7.1), we arrive at

(3 / i2 z1"r1—l/ I
(3] \ ip-2 \ ip-—l+ ip /ip+1 im

oooooo

or

depending on whether any of the extra vertices fall on of the top or bottom
lines. If any do, we can use one of these eztra vertices to yield single loop
diagrams (i.e. the top case); if none do, we must be left with one double

loop diagram with an added vertex as shown. In either event, we now have
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Y ik = n (theextra 1 was used to makea square or to ‘dot’ the 2 loop diagram).
By possibly re-labeling, let {?1,..,§q} be the subset of non-zero ixs for either
distribution of vertices (with i; = i, +1,_, if ip+1ip-1 2 1 in the second case).

We begin with a definition that will be used in this and other sections:

Definition 3.7.1 Let I(n,z) be the function which dominates for 0 < z < 2
the modulus of the square diagram and any of the 10 diagrams below when n

vertices are added, for d > 8 (independently of where the vertices are added).

SR
T
S=e N OMe e

The following Lemma will allow us to deal with the 2 loop diagram and the

other indecomposable diagrams which will result when using (3.7.1) to bound

Tan(z).
Lemma 3.6 For0< z< z, and L sufficiently large,
I(n,2) < c|z, — 2|7/ (3.7.2)

forn 21 and d > 8 independent of the distribution of vertices [the 1 loop

diagram being the worst offender].

We now use (3.7.2), which in particular gives bounds on the value of 2 one

or two loop graph with n extra vertices:

? g )
II1Z(Rk,2) < €] loc — 2|Rif2e (3.7.3)

k=1 =1



< clz.— zl'"/2+"‘ < ez — z|"‘/2+‘

for 0 < z < z, as per Lemma 3.3 by remark 3.5.1. If m > n there will be m —n

zero 7s; these ‘square’ diagrams could have been no more than ,,L, for the

original expansion to converge. This is what provides us with the bound for

¢(m;n)in (3.6.1). This concludes the analysis of terms coming from derivatives
of ®pnn(z). .0

We must now deal with the terms corresponding to the bounding of
Tmmip(2) by the same procedure as for ®.:p(2). The obstacle in this case is
that not only will the secondary backbone w' intersect w, but so too will one
of its ribs (via the compatible bonds of associated with w’s lace expansion).

These intersections will lead to 10 irreducible diagrams which will be dealt

with separately.

Jn

. jn.-l

i ®
0 noy

&
i) iz th-1 | ik —)

o o "k " Tkt2
|

The following conventions will be used: ; is the number of added vertices

im

on the top, bottom and right-most edge of the j* loop (with the exception
of i, where the left edge is also considered) for j < k, k being the first loop



cn
o

intersected by w' or a primed rib [¢f section 2.2]. For j > k the convention is
reversed in the sense that i; then encompasses the extra vertices on the top,
bottom, and left-most (except for 7x4,) edges of the j** loop (again i, also
includes any added vertices on the right-most edge of the diagram). Similarly,
Jx counts the number of added vertices on the left, right and bottom of the k*
loop (with the obvious caveat for the top loop and the bottom edge for J)-

The after-math of majorising the above diagram is:

Jn
—

Jn-1

i) i i L tmer \ | 4

In general, after having bounded a diagram, there may be up to 3 con-

secutive i;s as well as a j, (see diagram) which contribute to an irreducible
diagram. Let ng be the sum of these ixs and j;, then let {n1,..,n;} be a
re-labeling of all the non-zero its and jis which do not contribute to an ir-
reducible diagram. Clearly 31, n;i = 2kt + Lk Jk = p, and thus by using

(3.7.2),
/
II Z(nk, 2) < |2 — 2| 7P/3HUHE < |5, | p/24e (3.7.4)
k=0
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for 0 < z < z as per Lemma 3.3 in view of remark 3.5.1. (i.e. the worst
bound results when all the extra vertices are piled onto a single diagram).
Now again, if p < m + n, there will surely be some zero i;s and Jxs which will
yield m + n — p ‘square’ diagrams. Each of these will be at most -‘;-H for L at
least as large as in [HS3), thus yielding the constant c(m,n;p) of (3.6.2). This

concludes the proof of Lemma 3.5 assuming Lemma 3.6. ...m

The next section will deal with the 10 diagrams which result from the

intersection of w' and the rib - ‘primed’ rib interactions. These are the diagrams

of definition 3.7.1, which are then used in Lemma 3.6.
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3.8 The 10 spurious diagrams

The spurious diagrams without the p added vertices (of definition 3.7.1) arise
from the primed-rib rib interactions mediated by A} in (2.2.8).

In the 4 diagrams below, one should view the long straight line in the above
diagram as the back-bone w of the tree, and the other black line with the
dotted lines re-intersecting the back-bone as the back-bone of w' (the dotted
lines represent the ¢ in ti € C(L) of (2.2.9) - i.e. the position of the rib R,

which intersects w' via some other rib Rf).

4
3-8
fi
01 3\45 [6 30 Q7 Ag
oo a1
A I [V T D T | CO “
01 2
———0—
fi
01V2 3 A s P2 Qs |5
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01 3 4
L Sams
4| 3 f
01 2314 5 ®3 Cg
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—h e

. ot
Ny 0
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()

The four diagrams account for all generic lace configurations, and the dot-

ted diagrams account for all the possible intersections via compatible edges.
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The diagrams below correspond to the possible intersections, and were isolated

in [HS4].

SREREES
OO
SR O

3.9 The bounds on the ten irreducible dia-

grams

Having isolated the 11 fundamental diagrams arising from the double lace
expansion for ¥,(0), we set about estimating their behavior for 0 < z < =,

after adding n extra vertices to any of them, as per the content of Lemma 3.6.

The idea is to bound these diagrams in momentum space by using a the-
orem of T. Riesz [R] dealing with lattice Feynman diagrams; the propagators
in our diagrams will be the Fourier transform of the 2-point function. Since

our estimates need only be valid for z positive, we will use the following lower

bound.®

Lemma 3.7 Ford > 8 and L large enough, 3 ¢ > 0 such that

c
<

for z € [(5Q)7),z,) and k € [—=, 7]%.

3In fact, the Lemma 3.7 could be strengthened to hold for afl J2} < =..

|G.(k)




Proof. See [HS4] p. 1020 (3.4) ...H

We now turn to the task of estimating the value of the above diagrams
by computing their value in momentum space. Setting-up these integrals is a
standard exercise in mathematical physics. The number of integration vari-
abies will correspond to the number of loops; the mcmenta flowing through any
line are the super-position of the individual loop momenta in the case where a
line is shared by two loops. As an example consider the 2 loop diagram. The

integral corresponding to the diagram below

(Here there are no added vertices).

A 2 loop diagram
is,

f[_" . Ul d* k2 G (k1 )2 G (k2 + Ky )2 G (ky)° (3.9.1)

since the middle line has 2 propagators with the shared momenta ky and ky,
and the other lines have 3 propagators.

To clear-up some of the above lingo we introduce:
Definition 3.9.1

1) A propagator corresponds to the Fourier transform of a 2-point function,
2) A ‘line’ is a set of propagators with ezactly the same momenta.
(Note that in all our diagrams, a ‘line’ will be a line with vertices of coordina-

tion number 3 at its end-points).

I
|
|
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For convenience we will put A = |z, — z|~Y/2; using (3.7), we obtain
d*hydik C :
Jevape e TR YR+ AT
(appendix B works out the U.V.® divergence of the above example using the

method in {R]).

(3.9.2)

Proof of lemma 8.6.

We start by ubtaining (3.7.2) for the square diagram. For convenience, let
A= |z — 2|72 (3.9.3)

By the same philosophy as in {HS4], and using Lemma 3.7 the square diagram

with n added vertices can be bounded by

c
~/[--1r.7r]d ddk(k2 + A1 )4-{»11 ) (3.9.4)

Since A™' Ny 0 as z 2 z, it is clear that the above integral will be LR.?

singular for d small enough. Let k = A~'/2k’, and scale out the s to get

_ \(8-d)/2+ d €
I(n,d,A) = AB-)2+n /['_,,,\m,,,\m]ad M  (3.9.5)

We have now turned the problem inside-out. As z > 2¢, the domain of inte-
gration now extends to all of R? (growing as A1/?), and the integral is now LR.
finite (since the propagators are now massive), but U.V. singular for d large
enough. The key to turning the problem right-side-out is the A&-9/2+n which
was scaled out:

1 if(d-8)~2n<0

I(n,d,))  AB-9)/2n
Md-8)/2-n105(}} if (d—8)—2n >0

(3.9.6)

MB=d/24n  if (4§ _8) —2n < 0
log(A)  if(d—8)—2n>0

San Ultra Violet divergence is one which occurs for large values of .
"Infra Red divergences are those that occur for small values of k.
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The worst case is d = 9, so that Z(n,d, ) < A* 2 forn > 1. Ford > 10
and n = 1 we will use the bound log(\) < c|z. — z|~® for any § > 0. Thus, for
d > 9, we can write the uniform estimate Z(n,d, A} < ¢lz, — z|~™?*¢ for any
¢ < min(1/2, (d — 8)/4).

The above will be the tactic to estimate the 2, 3 and 4 loop diagrams. By
substituting k; = A~!/2k! for the integration variables, and by observing that
for all 10 of the original diagrams the number of propagators is 4 times the
number of loops, we obtain integrals of the form considered in the appendix
multiplied by a factor of Mz)'®4/2+" (n js the number of added vertices).

The volume cut-off for these integrals will of course be A!/2,

It is now time to invoke the results in the appendix to deal with remaining

10 graphs:

The results of [R] state that the overall u.v. divergence of a graph with {

loops and volume cutoff p can be bounded above by p*t¥) log(p) if w(H) > 0,

where
w(H) = g)ga;c(w(S)) (3.9.7)
and w(S) and P are defined as follows: let N be the number of lines [cf. def.

3.9.1] on the graph, and let n; (1 < i < N) be the number of propagators on
the i** line. Now let P = {Q C {1,..., N} : |@] < I — 1} where |Q| denotes the



cardinality of Q. For any S C P, let w(S) = d({ - |S§|) - AT - 2ies ).

The bounds for the 1 loop case have already been worked out; to deal with

the remaining diagrams it suffices to have:

Proposition 3.9.1 w(H) < max(l(d — 8) - 2n,({ — 1)(d—8)=2) forn>1,
for any distribution of extra vertices, and for any of the 10 diagrams shown in
definition 8.7.1.

(Proof of proposition following Lemma)

We henceforth assume ! > 2. If we let G(n,{,d, A1/ 2) denote the value of an
[ < 2 loop diagram with n added vertices in d dimensions with volume cutof;

A2, the bound on w(H ) in proposition 3.9.1 will give us

1 if w(H) <0

(3.9.8)
M D 2og X4 if w(H) > 0.

G(n,l,dw\)SC{

Multiplying by the overall factor of M(8~d)/2+n that was scaled out in the
beginning (when turning an I.R. problem into a U.V. problem), yields

M{B=d)/24n ifw(H
,\l(s-d)/2+ng(n, LdN <o ifw(H) <0
Al(a-d}/2+n+w(ﬂ)/2(log A)’ if w(H) 2 0.
‘ (3.9.9)

By proposition 3.9.1, w(H) < 0 if d < 8 + max(2/(! — 1),2n/l), and for these
cases, we obtain the bound ¢|z. — z{(¢-8)/4=5/2 iy (3.9.9). The next worst case
isifw(H)20and I(d—8)—2n < (I -1)(d—8) -2, ie. ifd < 84+ 2(n-1),
which yields ¢jz, — z[!{4-8)/4-(n=0/2|og |2 — 2| in (3.9.9). If on the other hand
w(H) 2 0 and I(d —8) — 2n > (I ~ 1)(d — 8) — 2, we can bound (3.9.9) by
c(log|z. — 2[)* for d > 8 + 2(n — 1).
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By combining these bounds with those for the square diagram (which is

clearly the worst case), we obtain the universal estimate:
I(n,z) < ¢z, — z|~"/2%e (3.9.10)

(with € < min(1/2,(d — 8)/4)) for 0 < z < z. and d > 9. This concludes the

proof of Lemma 3.6. ...

Proof of proposition 3.9.1. To show that
w(H) = max({(d - 8) — 2n, (I — 1)(d — 8) — 2) we first make some topological

observations about the original 11 diagrams:
1) For each diagram #vertices = 4 #loops. Thus w(@) = {(d — 8) — 2n.

2) w(S) can be gotten by deleting p lines p < { — 1 (a line has 2 vertices of
coordination no.3 at its end pts.) and then apgplying the formula:

w(S) = l(d — 8) — d(*deleted lines)+2(*(vertices on the deleted line)+1).

Now let us suppose that the overall degree of divergence is not the worst,
i.e. that w(B) < w(H). Then by inspection, for all 10 diagrams (the 1 loop
case has no sub-graphs), the worst case scenario is that all the n extra vertices
fall on the same line. Furthermore, no line had more than 3 propagators on
it to begin with (before the addition of extra vertices). Let m be the number
of loops erased from the original graph when implementing the procedure

described in 2). Thus, for any sub-graph,
w(S) S Ud—8)=2n+m(—d+2-3)+2n = (I - m)(d — 8) — 2m, (3.9.11)

since the degree of divergence of the original graph is /(d — 8) — 2n and we
are considering a sub-graph in which 2n eztra vertices are added. The factor

m(—d-+2-3) takes into account the number of erased loops; the factor of 2 3
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stems from the fact that each line had at most 3 propagators originally, and

each propagator behaves as k*. The worst case in (3.9.11) is m = 1. -



Chapter 4

The scaling limit of trees

4.1 The asymptotics of t{™

Before taking the continuum limits described in (1.1.16) and (1.1.24), we must
first obtain precise estimates for the normalising terms (™.

Recall that t{™ is the number of n bond trees linking m (not necessarily
distinct peints). If {{"}(0, z1, ..., Z;m—1) is the number of n bond trees connecting
{0,z1, e,z 1}y

tS‘m) = z: tf,”‘)(O,:cl,...,mm'_l)

T wnTme=1

= (n+1)™* Y t2(0,2;) = (n + 1)), (4.1.1)
Ty

From [HS4],

x(z) = 32 187 = E&%ﬁ +&(2), (4.1.2)

n=0
where for i = 0,1 |42£(2)| < e(i){zc — z|~@+D/2+¢ of the disc |2| < 2z, with
e < min{(d — 8)/4,1/2). Also k. (0) = (Qz.)™*, and B? = 2(1 + b)/z, with b
as defined in (2.2.27).

65
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Now we introduce two separate but complementary results. The first is a
standard result abuut algebraic functions. The nt* coefficient of the Maclaurin

series of (1 — z)? is asymptotic (as n " 00) to

n=8~1/P(-p) (4.1.3)

for 8 ¢ N (see [W] p.150 for example). The other result is Lemma 6.3.3 of

[MS] which we reproduce below with certain modifications as:

Lemma 4.1 Let f(z) = T2 anz™ have radius of convergence greater or equal
to R>0.

(i) Suppose that for |z| < R, and for some by > 1 and by > 0,
[f(@l S elR—z|™ - |R— |2, (4.1.4)

Then,
lan] < O(R~"nP1) (4.1.5)

for_nny P> b + b,

(i) Leti > 1.
If for some by > 1 and b, > 0, |§=5,—f(z)| < c|R=z["% . |R—|z||™ for|z| < R,
then

lan| € O(R"n-+iltr) - (4.1.6)

for any p > by + b,.

Because of the condition b; > 1 it will not be until section 4.5 that we will

be in a position to use part (i) of the above Lemma.

Proof of Lemma 4.1
(i) By the result on fractional derivatives in the appendix,

1 d
N0y = — f g-e f(z)zn%, (4.1.7)

2n
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where the integral is around a circle centred at the origin of radius r < R. By

Lemma A.5
n~laa < o [ " 4 fo T AN f(ree) — F(O)]. (4.1.8)

Since |f(2) — £(0)| = O(|z|) for small z, the contribution to (4.1.8) is finite for

A € [1,00]. By our assumptions on f(z),

T 1 . . .
n-alanl S cr™ (1 + d()/ d)\IR —_ re_'\”n]—bz . IR — re:ﬂe—,\ll l_bl) )
-1 0
(4.1.9)
Now let » 7 R in the above (this gives us our R~"). By symmetry, it suffices

to consider the 6 integral on the interval [0, 1], and show that
—by=by 1 ! <Al 6 _—xlfe\_p
RH =jod0.[o Al = e |1 — e oo (4.1.10)

By letting u = A'/® and using the obvious bounds for the squares of the real
and imaginary parts of the second factor in the integrand leads to the upper
bound

1 1
fo do fo du w1 — e7Y]"% L [(1 — e7)? 4 GRe2u]h/2, (4.1.11)

Using the change of variables w = fe™*/(1 — ¢~*) on the § integral in the

above expression yields:

1 e el T
[ du wot! ey | duw(l 4wt (4.1.12)

The w integral is finite for b, > 1 and O(|log(u)|) for b, = 1. Hence if b, > 1,
(4.1.10) is bounded by a multiple of

1
fn du u®==%| log(u)|, (4.1.13)

which is finite for @ > b; + by — 1.
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(i) By the bounds on the derivative, it follows from (1) that
In(n = 1)+ (n =i+ 1)a| < O(R™n""1)

for any p > b, + b,. .

We now show that the leading order term in Theorem 1.1 captures the

leading order behavior of ¢{™).

By the first result, the n** coefficient of (z, — 2)~4? is asymptotic to

z;"n~!2[\/z;w and we can therefore deduce from (4.1.2) that

tstz) R L —~1/2)n 1/(ch) (1 + O(n“)) (4.1.14)
27 (1 + b)

since (by Lemma 4.1 part (ii)) the n*® coefficient of £(z) is Oz mn~4?-¢) as
per the bound |£'(2)| < ¢fz. — z|™*2* proven in [HS4] .1012 (1.11). From
(4.1.1), we obtain

gm) nteo _l/mz_c)n’"“"/’,\“(l +0(n™*)) (4.1.15)
2r(1 +b)

for any € < min(1/2, (d — 8)/4).

However if we define #{™ through the leading term for x,,(2) as in 2) Theorem

1.1, we deduce the following asymptotics:

i) n200 (de/lzi"b)(zm_a) \/lz_wv(zc)""z(l + O(n"")). (4.1.16)
The (2m — 5)!! pre-factor in the leading term for (3.1.2) is cancelled by the
1/T'(m — 3/2) of (4.1.3), and Lemma 4.1 allows us to control the error terms.
By (2.2.27) v(z;) = (2.2)%(1 + b), so the above is in fact asymptotic to the
leading term in (4.1.15) since by Lemma 4.1, the nh coefficient of the error

term En(2) of (3.1.2) will be O(A"n™=5/2-¢) for any € < min(1/2, (d — 8)/4).
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4.2 The 2 point function scaling limit

In this section we will develop most of the techniques and bounds we will need
for the scaling limit of the m point functions. However, we only work out the
scaling limit of the 2 point function (section 4.5 contains all the calculations
for the m point functions).

The results from the previous section will now enable us to investigate the

following scaling limit:

. @ (k/nt (k/nt
P(k) = lim tn (k/nt) lim ! fil- Gs(k/nt) dz (4.2.1)

neo @ neth 2mg NONEFT

Our first step will be to derive an explicit algebraic expression for the
leading order behavior of G:(k) «nd the ensuing error terms. The estimates
we will derive for the error terms will be valid only on the disc |z] £ z. and

will be dealt with by using Lemma 4.1.

Recall that . L
oo hek)
G.(k) = =——, 4.2.2
(k) (R ‘ (4.2.2)
where h.(k) = g(z) + [.(k), and Fu(k) = 1 — 2QD(k)h.(k).
To extract G.(k)’s leading order behavior we will first need
Lemma 4,2
Fu(k) = ak®/2 + B(z, — 2)'/* + B(z, k), (4.2.3)

where a = —V(D(0) + z.011,,(0))/d, 82 = 20(1 +b)k,.(0) and the error term
B(z, k) = T, Ei(z,k). Also, for |z| < z. and & = kn~1/4,

i=1
|E1(Z,K.)|

|Ba(z,8)] < cK?2 - 2|5, (4.2.5)
|Ea(2)] < c|zc—z|1’2‘*", (4.2.6)

IA

en~ 13-, (4.2.4)



with ¢ < min(1/2,(d — 8)/4), and
d =1/2r —e/d 13 .
|E—__B(z,rc)| Sefee = [TV 4 |z = 2. (4.2.7)
In order to deal with the denominator in (4.2.2) we will need:

Lemma 4.3 For |z| < z., there is some ¢ > 0 so that

d -
EFz(k)l < e — 2|72, (4.2.8)

and for |z| < z. and n large enough,
|Ex(kn™ ) 2 ¢'lze — 2|/ (4.2.9)
As for the numerator of (4.2.2) we will use:

Lemma 4.4
ho(k) = b (0) + E(z, k), (4.2.10)
where £(z, k) = h,(0) — h..(0) + I1.(k) - 11.(0).

With € as in (§.2.6) and & as in Lemma 4.2, this new error term obeys

|E(z, kn=)| < clze — 2|t + en~/4, (4.2.11)
and
d -1/4 -1/2
|55 &(z, kn™ )| < clze - 2 (4.2.12)
for |2] < z..

The idea is that by dividing (4.2.3) by (ak?/2 + 8(z. — 2)!/?) F,(k), we can
write

1 1 3 B(z,k)
Fi(k) — ak?/2+ B(zc— 2)'?  (ak?[2+ (2, — 2)/2)F(k)

(4.2.13)



Finally, by using (4.2.13) and (4.2.10) we have

ha(k)
Fo(k)

b (0) + E.(k) B(z, k){h:.(0) + E.(k))
ak?[2+ B(ze — 2} (ak?/2 + Bz, ~ 2)12)Eu(k)’

G.(k)

Il

(4.2.14)

In essence, the only term contributing to the numerator of (4.2.14) is A, (0).
Let us first deal with the first term in (4.2.14) when taking the limit in
(4.2.1):

Lf n%azc(O) a’z
271 Jjz)=e (ﬁ(zc - 2)2 + ak2/2n1/2) zc(f%)ﬂ-l-l

We start by choosing a branch cut! for \/2—z. = /w on the real axis to

(4.2.15)

the left of 2 with —7 < argw < . If we now look at z. — z, i.e. —w, the
branch cut will now be rotated by 7 about 0 in the w plane, and lie to the
right of 0 on the real axis with arg(—w) = —= on the iop half of the branch,
and arg(z. — z) = +x on the bottom half of the branch.

Fig 2 : The pack-man contour

1f we had not been careful in choosing our branch-cut, we would have wound up with
an added contribution from a simple pole as well as the wrong sign from the integration
around the branch-cut.



)
(£

We now deform the contour around = = 0 in (4.2.13) to a *pack-man’ type
contour (in the w plane) which swallows the branch-cut as its mouth closes
(the contributions from the arcs around w = re¥ and w = Re® both vanish

as R 7 oo, and r \; 0). We can make a further change of variables so that

% — z = —%, and thus, our new expression becomes;
1 e h..(0)n3 dw
k) = o [T el B
2mi Jo i[ak?/2 - ﬁzwz] n(l+ ;;l-)“'*‘ 2
1 o he (0)nz dw
2ri o n-¥lak?/2 + Biws|n(l + L)tz

= m (0} dw ‘
- _'/ {ka/o—ﬁgw;} (1+:¢ln)n+i3c. (12]6)

We now observe that for any >0 and 2m < n,
(I+z/n)*2 1+(0)/n)™ = 14+2™27™ /m], (4.2.17)
since
n.(n=1)(n—-m+1)

— m
A 2 (222)" fmt 2 27t
mn n

if 2m < n. By (4.2.17), we may use Lebesgue’s dominated convergence theo-

rem to conclude that:

1 fm e ¥*Tm {——hz‘(—o)—l} dw. (4.2.18)
c Jo ak?/2 — Biw?

We could at this point use the parabolic cylinder function D; to recover
the m = 2 case of Theorem (1.2) since P{k) = **/18D,(k?/2) as per [GR]

(3.462.1). However, we will handle all cases m > 2 in one fell swoop in section

B(k) =

4.5 via more direct means.

We will now deal with the error terms in (4.2.14). We would be done if we
could show that

_1_}( n'2B(z, k/ni/4) dz
211 Jal=e Fy (k) (ak?n=3/2/2 + B(z. — 2)1/?) (2] zc)"H

= o(n),(4.2.19)



and

1 f nlﬂg(z,k/nl/-i) dz - O(TI). (4220)

211 Jzi=c akin=112/2 4 B(z, — z)V% (z/z)n+
By our choice of branch-cut (2. — z)!/2, will always have positive real part,

and thus, by Lemma 4.3,
|lak?/2 + B(zc — 2) 3| Fu(k)] 2 |z — 2| (4.2.21)

and similarly,

lak?/2 + Bz — 2)1/?| > |z, — 2|'/? (4.2.22)

both for [2] < 2. Using the above, Lemma 4.3 and the bounds of Lemma 4.2
part (i%), we find that the derivative of the integrand in (4.2.19) satisfies

d B(z,kn=4)
/2 m & _ L 4,2.23
n'tz, Idz Fz(k)(akzn““/? + ﬁ(zc — z)l/2)' ( )

< ml/222(n-1/2—c/4|zc _ zl-z + n—1/2|zc _ z|-2+c)

+ cnl/'.’z;l(n—cf-llzc - zl-—3/2 + Izc - z|—3/.;f r.’_'

on the disc |z] < z..

Now we can use Lemma 4.1 to conclude that the n** coefficient of each of
the above terms is O(n~=¢/4-2+2), O(n~2+(-9)), O(n!/2-2-¢/4+3/2) apq
O(n!/2+-2+(3/2~9)) regpectively. Technically, we should also consider the cross-
term B(z,k)&(z,k) in (4.2.23) but it and its derivatives will yield the same
bounds, so the corresponding analysis will be omitted.

The last step in the error analysis is to look at the contribution from
(4.2.20). We now use (4.2.11) of Lemma 4.4 and the lower bound in (4.2.22)
to conclude that
4 E(k/n'lY

dzak?{2 + B(z. - z)
< cz:"nlﬂlzc - z'-al'z(lzc — 2+ n""/d).

n1/2zc-nl

7 (4.2.24)



Again, by Lemma (4.1), we see that the n™ coefficient of the above terms
is O(n!/3-2+(=<+3/2)) and O(n'/*~¢/*-2+3/2) respectively. Thus (4.2.19) and
(4.2.20) behave as n™*/ for ¢ < min(1/2, (d — 8)/4).

Before proving Lemma 4.2, let us introduce some notation:

Definition 4.2.1 Given a power series f(2) = °°, anz", let
o
LF G = 3 leall=[™ (4.2.25)
n=1
This definition will be used when dealing with fractional derivatives [cf Ap-
pendix C} in the proofs of the following Lemmas.

Proof of Lemme 4.2 Our task is to show that:

F.(k) = B(z. — 2)'/? + ak? /2 + B(z,k) (4.2.26)

with a = V(D(0) + 2.011..(0))/d, and 52 = 20((1 + b)h..(0)). Before decom-
posing F:(k), let

E(z,k) = I1.(k) ~ [1(0) — k*V211.(0)/(2d), (4.2.27)
and recall that z04.(0) =1 - F£,(0). We will use these identities forth with:

Fi(k) = 1-20D(k)(g(2) + 11.(0) + (IL(k) - [L(0)))  (4.2.28)
= 1—20D(k)(h.(0) + E(z, k) + k*V21,(0)/(2d))

= 1-D(k)1 - F.(0)) (4.2.29)
— 2QD(k)E(z, k) (4.2.30)
~  D(k)zQK*V1.(0)/(2d). (4.2.31)

We begin with some bounds for term (4.2.30): let I,,(z) denote the coefficient
of 2™ in II:(0,z}. Then [z[|[In(z)| < m|ll(z)|. We can then write (using



symmetry)
E(z,k) = Y T1.(0,z)(cos(k - z) — 1 + (k - )2/2). (4.2.32)
Since |cos(y) ~ 1 + y*/2| < O(y***), and using the fact that ([HS4] Lemma
2.1 (iv) ) 8| V1.,(0))] < c, we deduce that
|E(z, k/n¥)| < cn=3~/4 (4.2.33)
for all [2| < z.. As for term (4.2.31),
- D(k)K? (209211, (0)/ (2d) + (2QVI1.(0) — z0V?1L.,(0))/(2d))
= —k*z.QV2L, (0)/(2d) + O(k*) (4.2.34)
- D(k)k?(2QV311.(0) — 2.0V, (0))/(2d).
To deal with (4.2.29) we use D(k) = 1 — k2/2V2D(0)/d + O(k*) so that,
(1 — D(k)) + D(k)F(0)
= k*/(2d)V2D(0) + F.(0)(1 — ¥*V2D(0)/(2d)) + O(k*), (4.2.35)

with the understanding that the term O(k*) may incorporate a function of z

which is bounded on the disc |z| < z.. By (2.1.20),

»

F0) = B(z. — 2)*/? + Es(z), (4.2.36)

where |E3(z)| < ¢}z — z|'/3+¢ as per (4.2.6), and S is as advertised in (4.2.26).
Now define
E\(z,k) = —2QD(k)E(z, k) + O(kY), (4.2.37)

which satisfies (4.2.4). Ey(z, k) incorporates the O(k*) error term from (4.2.34)
and (4.2.35). We can now also define:

Ey(2,k) = -D(k)k*/(2d)(2QV3IL,(0) - 2.0V?11,.(0)) (4.2.38)
+ —K*/(2d)V2D(0)F.(0),
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(where E(z, k) incorporates the error terms in (4.2.35) and (4.2.34)). Since
8)12.0V11., (0)]| < ¢, (C.1) shows that
|(zQV?11,(0) = 2.0V, (0))] < 2. — =
and [HS4] Lemma 2.1 (i), shows that | F.(0)| < c|z. — z|'/2. Tt therefore follows
that
|Ex(z, knt)| < en™ 3z, - 2, (4.2.39)
for |z} £ 2 as per (4.2.5). ‘

By combining the leading terms in (4.2.35) and (4.2.34) we recover the
coefficient a of (4.2.26); (‘4.2.36)'yields the coefiicient 8, thus completing the
decomposition in (4.2.26).

Now, we deal with the derivatives of B(z,k) = 3 | E;(z,k). By construc-
tion, B(z,k) = F.(k) = B(zc — 2)/? — ak?/2, so by (4.2.28), and the identity
DIL (k) = (k)1 + 20x(2)),

%B(z, k) = ;f; (Butk) = B(ze - 2)'7%) (4.2.40)
= —D(k)D(g(z) +11.(0)) ~ D(k)QD(11:(k) - 11:(0))
+B/2(z; — 2)™/*
—D(E)R(x(2)(1 + 2Q81(0)) + B/2z0 — 2 (4.241)
— D(R)RE.(0) - DRIQ(E.(K) — $.(0))(1 + 20x(2)).

Let ¥m(z) be the m® coefficient of ¥,(z), and note that lz|¢|m(z)] <
m°[m(z)|. Now, from Appendix C, we know that &2, |¥:(k)|| < e. Hence, for
|2| < z,

¥ (kn=14) — §,(0)| < en™t/A. (4.2.42)
This takes care of the last term in (4.2.41). From (2.2.27), (1 + z0¥,(0)) =
(1+b) + K(2), with |[K(2)] < ¢|2 — 2|*. By (4.1.2)

(Zc —_ z)—1,’2

x(z) = 0(2z.(1 + 0))'72

+ K(2)(zc — 2)71?, (4.2.43)



however 8/2 = ((1 + b)/2z.)"/2. By using the above with the expansion
D(kn Y% = 1 4+ O(n~1/?) together with |x(z)| < c|z. — z|~/? we can bound
the first line of (4.2.41). The end result is that for |z| < =z,

[%B(z, kn='] < ¢z = 2|7 V3 (0 4 |z, - 2 (4.2.44)
This concludes the proof of Lemma 4.2. .

Proof of Lemma 4.8 By (3.3.3) and (2.2.1),

d

Eﬁ;(k) = —QD(k)(x(2) + (k)1 + 20x(z))). (4.2.45)

thus we can find ¢ > 0 such that

|—Fu(k)| < ¢z ~ 2|~ V2. (4.2.46)

IS

We will now prove a stronger version of what was claimed in the last part

of the Lemma. Namely, that
|EL (k)| 2> e(k? + |2 — 2|M?) (4.2.47)
for |2| < z; and k* < 7 < (7/2)? for some 7 > 0. Recall from (2.1.20) that

F;(0) = By(z. — 2)'/* + £(2), (4.2.48)

with [E(z)] < ¢fz. - 2|'/2*, for |2| < 2, € < min(1/2, (d — 8)/4), and with
B? = 20(1 4 b)h.(0) and b — 0 as L — oo. From Lemma 2.1 (1) and Lemma
2.2 of [HS4], we have

|1 = 2/2|? < |E(0)] < |t — 2/2z|'/? (4.2.49)

for |z < z..
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To derive (4.2.47) we use

together with

Fi(k) =1 — D{k)z0{h.(0) + 11.(k) - 11.(0)} (4.2.51)
to arrive at

Fi(k) = 1—D(k)+ D(k)EL(0) + zQD(k)(I1.(k) - [1,(0)). (4.2.52)
It follows from (3.11) [HS4] that for & € [—m,7]¢

— D(k) > ck? (4.2.53)

(uniformly in L}, and from the arguments immediately preceding it, that
1. (k) — I1.(0)] < eL3-94? (4.2.54)
for |2| £ 2. (and & € [—m,7]%). Thus,
|zQDt};‘)(ﬂ,(k) - 11.(0))| < cL®%? (4.2.55)

for [2| < 2.. Using these bounds we can estimate (4.2.52) as follows:

1F(R)| 2 11 — D(k)) + D(k) F+(0)] -

|2QD(k)(1L. (k) — 11.(0))] >
(1 - D(k)) + (A)(Bn/z'c_—z+£(z))| cL’~%k? >
c|ll — D(k) + D(k )Bn/chzl-dE( )| - EL39k2, (4.2.56)

We now use ﬁ(k) > cfor k* < n < 7/2. Let \/z; — z = z+iy ; by our choice of
branch-cut in (4.2.15) we will always have 0 < |y| < z (since 0 = arg(\/z; — 2)
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will lie in the wedge |0] < =/4). Therefore, |1 — f)(k) + D(k)\/zc —z| 2
c(k? + |z. — z|'/?) for |z| € z.. Thus,

|FL (k)] > e(k? + |2 — 2/?) = &z, — 2|12+ (4.2.57)

for L sufficiently large, k* < . Now let V = {|2] < 2. : |z. — 2} < (cp)!/<).

Then for ¢y small enough and z € V,
clze = 2'3(1 = &z, — 2I°) > clz — 2]V/*(1 — &co) 2 |z — 2|2 (4.2.58)
We now have (4.2.47) for z € V and k? < 5. It remains to oktain
|Fo(k)| 2 (4.2.59)

on W= {|z| <z, \V}.

Now, since F:(k) is analytic for |z| < 2. and continuous on the boundary
of the disc |z| < z, we can obtain {4.2.59) by the same reasoning as in [HS4]:
by applying the maximum modulus principle to 1/F(k) on 8W. Before pro-
ceeding, we must show |F.(k)| > ¢ > 0 on W. This follows by the identities
in (4.2.56) together with the lower bound in (4.2.49):

1F.(k)| > |(1 = D(k)) + D(k) F(0)]
—|2QD(k)(IL.(k) — 1,(0))|
\D(k)| - 1E:(0)] — en (4.2.60)

> Clze—z'P—ep>0

v

for all z € W provided 7 is sufficiently small; since, 1 / I:",,(lc) in analytic in W
(with &? sufficiently small) we may proceed to exploit the maximum modulus
principle.

We already have a lower bound for |F,(k)| on V and its boundary, so it
suffices to show (4.2.59) for z = z.e* , ¢ € [¢o, 21 — @o] with ¢y independent



of L (o is defined by the choice of 7). By using (2.35) of [HS4] on

[FL(R)] > 1= 20]g(=)| = =0Q|ML.(k)], (4.2.61)
we deduce that
|Eo(k)] = e(do) — [TL(k)] 2 e(¢0) = cr > 0 (4.2.62)
for L > 1. We therefore have (4.2.59) which yields
. : 2o — 2|12 .
(k)] 2 1+ d7r2(k2 * :zc - ::llz) 2 e(k® + |z — 2|'/%), (4.2.63)

for k* < 5 < (7/2)? if ¢ is small enough.

We have now proved Lemma 4.3. ...,

Proof of Lemma 4.4. The procedure is a combination of that in Lemma 4.3
and Lemma 4.2 except that for
Ti(k) — 11.(0), (4.2.64)
we will use |z|*|lln(z)] < m¢|Mn(z)]. That together with the bound on
82|11, (0)|l, allows us to conclude that
T (kn="4) — 11,(0)] < cn~/". (4.2.65)
From [HS4] we know? that |k, (0) — A(0)| < |z — z|*, so that
|E(z, kn~ )| < e(|z. — 2|* + n=4/%) (4.2.66)

It remains to deal with the bound on the derivative. Since 3“-'; f(z)=(Df~f)/=

and 11.(0) has no constant coefficient, we may as well work with D instead of
d

'd_z'.

DE(z,k) = La(k)(1 + 2Qx(2)) + (x(2) ~ 9(2))/ (4.2.67)

(the last term has a removable singularity at z = 0), Thus |£E(2, k)| <

Clzc—' zl_llz. -.-.

2the bound could be improved from ¢ to 1/2
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4.3 The Fourier transform of the 3 point func-
tion

We now proceed in detail with the Fourier transform of the 3-point function.
If a tree connects 3 distinct points, the backbone these points induce has
no choice but to contain an internal branch-point of coordination number
3; if we then take the Fourier transform with respect to the lattice vectors
corresponding to the distance between the each external point and internal
node, we should recover (to leading order) a term reminiscent of y3(z) except

for some phase factors. The Fourier transform just described can be expressed

as:
P.(kl,kz,ka Z Z ZI[W( )=z 2]e‘{"‘l-"-'2'|'k'-'(-"-‘:!-3-'2)} ol X
T1, T2 T3 w013 i=0
A
(H '7,1') {etka(rl—-‘rz) Z z[Ril} K[U, lwl]’ (431)
J# Risuw(i)axy
where
et 3 Myt 5 o (H vk) KO, )). - (432)
Ridw(i).uy whirg—T) k=D

As in chapter 3 we will resum the interaction K{0, |w]] by using
K(I)=K[0,I, = 1|J[1,, L)K[] + 1, |w]), (4.3.3)

where for any ¢ € [0, |w]], £;5:K({) = KJ[0,|w]|]. Before resumming (4.3.1),
define

d’(kl: k2s k3; I,J?, Y, l) = eik;{w(i]—-w(h)+w(h)—w([;—l)-}-w(!l—l)-ﬂ} %

etka{z—w{la 1) +w(ly+1)~w( Iz} w(l2) -w(i)} x e'ka{y—w(i}} (4_3'4)

The diagram below illustrates the vectors these phase factors encompass;



o
[ £

ks

- )

« ky - kea -

as we shall show, by resumming the interaction K70, lw]] as in (3.2.2) we can
extract 2 factors corresponding to G,(k). These correspond to the wavy lines to
the left and to the right of the central ‘ladder’ diagram. By the independence of
the interactions we need not worry about the intersections between branches
of the wavy lines and the the ‘central ladder’ diagram. The top wavy line
however must be kept from intersecting the branches of the central ‘ladder’
whence it ‘grew’ from. This is the job of the kernel we formally knew as . (0).
The kernel we will replace it with will have to depend on k), ka, k3, and this is

the only new twist. Now, let

Bk, Kz, ks gy ) = erlibrikaulull=u(i) ks y—u(il) (4.3.5)

With this, the machinery involved in the derivation of (2.2.21), and the
independence between the interactions in (4.3.3), we can resum the 3-point

function as follows:

P, (kyy hay ks) = (4.3.6)
Jwl

2 2 XM dknka ke Lz ([T ) T Ak

Y wil-tz i=0 Isi FiEC Ridw(i)y

= G.(k1)G.(k2)(202)2 D(ky) D(k3) x

wl
{Gz(ka) + (Z Z ZIWIZ( H Vi ) (ky, k2, kay v, 1) Z le'IJ[O: |‘-°'|])}

¥ |wizt =0 jiygi Rid3yw(i)
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+ E(Z; }CI, kz, ka)

The term E(z;ky, ks, k3) encompasses precisely the same lower order terms
encountered in chapter 3 {cf (3.2.6)], albeit with some decorating phase factors,
and thus can be bounded by £(z) as defined in (3.4.2).

The term G, (ks) within (4.3.6) is a result of the case [ = {i} with 0 < I,
and /; < |w| in (4.3.3) (recall that J[i,7] = 1). The remaining term in the
braces results from the case where |I| > 1 with the same restriction upon I,
and /, as above and may again be resummed using the machinery of section
2.2:

||
PIDIELDY | | EHCHNT I DIELLY (N | N CE k)

Vo |w|2>1 =0 i Ridyw(i)

= eE sy () = o

v wl2t =0 \j#E ) Lecfoylwl]
o W'l flw']
x 3 MY (1'[ 'n') (L + VKO, W' X] T] Usitb(Fay ko, ks, 1)
whiw(i)—y =0 \i=0 ssi€l
As before, we will split the above expression up into terms where : € L, or
i ¢ L. For the latter case, we resum K0, |w'|; X'] using
o'l
K[0,|w'; ¥] = K[1, W' U1+ Y J[0,m; X)K[m + 1, |W'|;U'],  (4.3.8)
m=l

whereas for the former, we will use

K0, |w'; X) (4.3.9)
Jr!| ']

= zwm’{o,z;xl{K[1+1,|w'|;u'1+ 3 J[t,j;y“’]ff[j+1,|w'|;w1},
=0 J=l+1

with the understanding that the above expression depends on i and L through

W,. We further separate the case |w'| = 0 from the case |w’| > 1; in the latter



L=~
o

case we will use the kernel:

! |
H=Y M (H —yj) Yo UL,y (H q»,(.) (1+Vg), (4.3.10)
k=0

|lw]21 1=0 \ jy&i LeZ[o)w]] W] > 1

w'(0) = w(i)
Performing the resummation of the last line of (4.3.6) using the above identities

yields: (cf. (2.2.2))

||
303 YT w)lkn kesksivai) 32 2RO )] (43.01)
¥ w>1 =0 jiji Risyw(i)
']

= HIUEL]‘nb(kla ko, ka; y,i) Z W{I\"[O,l; X]I\'[I +1, |w'];Ll']
=1

J'l ']
+ Hljenyb(kn, ko ks v,9) 3 WK, X)) S0 JIL 5 YK + L, o' )
=1 j=i+1
+ H-’[jez.]}'lb(khkz,kaiy,i)K[l,|W'|iu']
W
+ Hipen}o(ky, ks, ksiy, 1) 2 JO,m; XK [m+ 1, |w'|; U]
m=]

el
+ 3 zlwlZ( T ;) e (C+katellw=w( 710, 1w])

W31 =0 jiyi
(the last term takes care of the case where |w’| = 0). Next we define
\Ii(f)(kl,kg) = Z 2w E( H .h.).Yl.eikx(w(i}+ikz(w(IwI}-w(i))J[(), i}, (4.3.12)
lwf21 =0 jiji
and extract the first term of (4.3.8) and the { = 0 term of the of the first sum
in (4.3.10) to yield

H{ler) KL, [w'l] + TiepgWo K (1, W' |; U1} oKy, ko, ks yy i) (4.3.13)

Ju] o p s : R .
- Z zlwlz( H 71.).7‘.8-#:(w(=)+=kz(w(lwl)—wh))‘][g’ lw|)zQD(k3)G.(ks).

WiS1 =0 ji#i '

Combining this the last expression of with (4.3.14) yields

GO (ky, k2)(1 + 2QD(ka)) G (ka) (4.3.14)



The remaining interaction terms are

o'l
Iign 3 J00,5; X)K G + 1, | (4.3.15)
i=1
']
+ Jiien > WIK([0, 6 XIK[ + 1, 1'|; U]
I=1
'} 'l
+ Iyen ) WK, LX) 3 T YK + 1, || U')
i=1 j=t41
However, we shall further extract j = |w'| from the term g7y and j = ||

from the term [j;gy) with [ = |’|. Define

U (ky, ko, k3) (4.3.16)
o]

= 'H{I[.‘Q]J[O, |w’|; X] + I[iel] Z WIK[O: t; X]J[l: lw'l; y(l)]}d’(kh k2, kai Y, 1)
=0

Then we are left with:

J'|—-1
Hp(ky, ko, ki, ) gery 3 J10, 03 X]Ka + 1, o'l 241 (43.17)
a=1
Jo'|-1
+ Hp(ky, ko kaiy, Dyen 3 WIK[0, L X]K [+ 1, |w'|; U]
I=1
[w/)-2 |w'i-1 |
+ Hp(ky ko kg Mgey D 20 WIK(0, LX) 0 YO K a + L, jo'|:U)
=0 a=l+l
Agafh, as per the derivation following (2.2.21), combining the above ex-
pressions yields:
lw'l

H(Tenyd [0, k'l X] + Tiery 3 WIK[0, 4 X)L, |w'f; YY)
=0

x (K1, ka, k3; g, )20 D(k3) G (ka)) (4.3.18)
So we recover a factor

YO (ky, ks, ka){2QD (k)G (ko) + 1} (4.3.19)



Now, if we define
Bi(ky, ko ka) = UO(ky, ko, k3) 4+ WO (ky, ko), (4.3.20)
we have
Pk, ka, K3) = G (1) G (k2)(=)* Dk ) D (k) x (4.3.21)
{Ga(ke) + Ba(ki, ko ks)(1 + 2QD(ka) G (ko)) } + E(z3 ki, k)

Thus we can now proceed to write P(k1,kq, k3) in the same manner as

P(k,). To leading order in G (k) we have

(202D (k) D(k») (HG ){1+~QD(L3)B (ki ks, ka)} (4.3.22)

=1

For convenience when dealing with error terms we introduce:

Definition 4.3.1 Let
B.(ky, k2, k3) = (202)? D(k )D (kg)(l + -QD(JL;,)B (kyy ka2, k3)) (4.3.23)

It will be shown in section 4.5 that the leading order term for

P(kl, kz, ka) iS:

1 { Rap(0)(2:0)%{1 + 209, (0)} d= (4.3.24)
1= B

neo 2mi 1 {o2k?/2 4+ Bz )
We will postpone evaluating this expression until we find the general expression
for P(ky, ..., k2m-1) in section 4.5. Next we show that the numerator of (4.3.24)

is indeed the correct leading order term.

4.4 The leading order behavior eof P(kl, ka, k)

We already know the leading order behavior of G.(k), so the only new twist

compared to the analysis performed in section 4.2 is that we have to deal with



the term B, (k. k2. k3) much as we did with iz=(k). The point of this section is to
show that to “leading order™. B.(k,. k.. k3) behaves as (z.2)*(1 -}-:Cﬂ\il:c([))) =
v(z.) as the momenta &; are scaled to zero. The expression in (4.3.24) will seem
more plausible in view of the following Lemma. which will be used in the next

section.

Lemma 4.5 Let &; = ki/n'/3, § = (xy, k2, 83), and v(2) = (=0)*(1 +:0¥,(0)).
Then

Bu(R) = vl(ze) + {BulR) ~ (=)}
+ {B:(R) - B..(R)}, (4.4.1)

and the last two terms may be bounded by cn™/* and c|z, — z|® (respectively)

for |z| £ 2. and any € < min(1/2, (d — 8)/4).

Proof.
We start by looking at the fractional derivative of B.(ky, k2, k3). To do so

we make use of the fact that
S:1Bx(kr, 2y ka)il < 8:M1(22)%(1 4 209.,(0))s, | < e82)¥.(0)).. || < &, (4.4.2)

as shown in Appendix C. In view of the above, and (C.1), we can already

conclude that
|B.(R) - B..(F)| < clzc - z[, (4.4.3)
for |2| < z. and any € < min(1/2, (d — 8)/4).
We must ncw deal with the first term in (4.4.1). Recall from definition
4.3.1 that :

B.(k1, k2, 53) = (22)?D(k1) D(Ra)(1 + 22D(3) Be (1, k2, 53)),  (4.4.4)
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where B.(0,0,0) = ¥,(0). Using B:(R), we may recast v(z.) — B. (R) as

(z2)*(1 = D(r1) D(r2)) + (29)°(F.(0) — HDm (R1.82.K3)).  (4.4.5)

=1
Clearly, the first term decays as cn~!/? for || < z.. For the second term, we

will use the fact that
a 3 3
[t — [T D(r:) cos(yiki)l < e(D lyimil* + 3 |#;1%) (4.4.6)
i=1 =1 =1

for any € < 2 and &; € [, 7], as can be seen by performing a series expansion
of the L.H.S. and using D(k) = 1 + O(k?).

Let B.(y1,y2,ya) be the function whose Fourier transform is B:(E), and
let bpn{y1,¥2,y3) be the m™ coefficient of its Maclaurin series. It follows by

(4.4.6), symmetry, and the inequality |y;|*bm (1, ¥2,y3) € M*bm(y1,¥2,y3), that

for |z} £ 2,
- 3 -
1¥2(0) = [] D(x:) B:(R)| = (4.4.7)
i=1
3
120 2 bm(y1,y2,33) (1 - HD(ﬁi)COS(y;Rs)) |
m21 120 i=1
3 ’l
s Z Z C(Z lyiss|* + |’°s‘|2)|bm(yhy2sya)|
m21l ¥.¥2rs sl
a
< X 2 o3 mt o+ kil bm(y1s y2, o)

m:_’l s i=1
< nmYYS (0] | + c'nH? < e/ =

for any € < min(1/2, (d — 8)/4). This takes care of the last term of (4.4.5) and

completes the proof of Lemma 4.5. ...H

Ay
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4.5 The higher order finite dimensional distri-

butions

In this section, we compute the general expression for P({o}: ki, ... kames) as
defined in (1.1.19).

Before proceeding, let us recap our results from chapter 3: we inductively
calculated the generating function for trees connecting m + 1 points from that
of trees connecting m points by applying an operator D which counted the
number of sites in a tree. For the 3 point function (the base case of the
induction), this amounted to counting the number of sites in a rib, on all of
the ribs of the tree’s backbone. A resummation was performed to re-cast the
3 point function in terms of a convolution of 2 point functions (to leading
order). In the general case, when summing over ribs, the same resummation
could be used on the 2 point functions (by ;;heir independence), although when
summing over ribs in the kernel ‘i’,(D), no resummation need be performed
since even when the interaction between the rib and ¥,(0) is ignored (yielding
an upper-bound), the resulting terms will be of lower order.

Presently, we will perform much the same drill although instead of counting
the number of sites on a rib, we will Fourier transform them with respect the

vertebra to which the rib was attached. By doing so, we will induce a new

node, and hence a new backbone whose new internodal distances must be

recorded in momentum space. As an upper bound for Fourier transforming

ribs inside the kernel B,(k,, (¢), koa(i)s Koy (iy), we will merely count the sites on
these ribs as in chapter 3, where there were no phases. Indeed the estimates

in the proof of ('3§1.2) will be most valuable.

e
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More recently, by the results of the 2 previous sections, we had

3 -
Poky, ka, k3) = T G (k)Be(ky, ka, ks) + E(z), (4.5.1)
i=1

where P.(ky, ks, k3) was defined in (4.3.1) and |E(z)| £ ¢}2c — z|~! for |2] < =..
However, for trees connecting m > 4 points, we will have to worry about
the backbone configuration via {¢}, which was defined to be a set of or-
dered triplets {(a1(7), o2(3), 3(3))} 753? chosen from {1, ..,2m—3} which spec-
ify which momenta meet at B(k,,, ks,,ks;) in the j** internal node. Keeping

this in mind we can now prove:

Lemma 4.6 The Fourier transform with respect to the internodal spacing in

the backbone of trees connecting m > 3 points, given a backbone structure

specified by {0}, is

. 2m=3 . m=2
P.({e}ikr, e kam=3) = [ G:(ki) I] B:{koy(i)s koati)s Kosti))
=l - i=1
+En(z, k), (4.5.2)

where for |z| < z,
|En(2,B)| < clze =272 |z, — Ja||-™¥o*,

uniformly in the k;. The error term accounts for trees which do not possess

binary backbones.

Proof.
The case m = 3 has already been dealt with. Let us assume (4.5.2) for
3 £k < m—1. Then, for k = m by using a lower order generating function

and ‘splicing’ its backbone, we have forany 1 <i<m -3,

1



R

"

m-—6 m-3
H G=(k") H B=(k0:(1}vkﬂ:(j)vkos(1)) (‘1-5-3}
i=1 i=1

|

. Z Z ei{k:m_sw(i}'l'k?m-&(U([Wl)"w(i))}
Jurf22

T =0
x zhl (H'yj) {e“‘""“(’"““” > :'R"} K0, |w]] + Lo.t.
J#i R, 3uw(i).zy

where the lower order terms above may be bounded uniformly in the &; by

m—3

2 emi(D{D((1 + 209.(0))} D™ x(2)*)

i=1
tem{D(1 + 209:(0))}x(=)*"*.
The first term corresponds to previous generating functions where the sites on
the ribs in \il=(0) are Fourier transformed, and the second error term is an upper
bound for the case where we Fourier transform the ribs in B (ka5 Koatiys Kay()
for some j. With the bounds in chapter 3, these error terms can be bounded
for [z} < z by |z. — 2| 73/2|2, — [2||"™+3%,

By resumming the principal term as in (4.3.21) we obtain

2m-3 m—2
Pz({a}; kh ey k2m-3) = H G:(k;) H Bz(kag(i)-: ka-_-(i)’ koa(i))
=1 t=1
+ En(z,k), (4.5.4)

where |En(2,k)] < |z — 2|~%?|z. — |z)|=™*3+¢ for |2] < z uniformly in the

k,'. ...0

Our original quest was to compute P({c}; k;,.., kzmm—1) as defined in The-
orem 1.2. However, we will let x; = k;/n/* [cf x; = k;/ Dn'/* in (1.1.24)} and
compute

P({a};kli"!;:?m-l)kz lim L PZ({G};’C““’"@"‘-S) dz

120 277 J)s|=c 3{m) P

- (4.5.5
\} )

&



The scaling factor D will be dealt with at the end of the proof.
To compute {4.5.5) we must separate the wheat from the chaff and re-

express {4.5.4) as:

2m-=3 h (0) )
11 {0'\2/9 N A + Ey(z,8) + Eﬂ(--m)} X (4.5.6)
m=2

IT (@21 + 09, (0) + Es(z,5:)) + Enm(=,7),

=1

=1

where as usual:

B(z, 5i)(h+(0) + £:(x:))

Ei(z,mi) = (@n?/2 % Bl = D Fo () (4.5.7)
. Ez Ky -
Eyz,K) = v~y +l§(-'-:c)— i (4.5.8)

Ey(z,R) = {B:(R)— (z02)2(1 + 2.0¥.(0))}
+ {32(5‘:/“1/4) - B&(,’{jnl/")},

with B(z,k) and £(z,k) as defined in (4.2.3) and (4.2.10) respectively.
A typical term in the first product in (4.5.6) will be of the form:

EP(z,8) = (ﬁ W—ig]\)/:—__—)(ﬁ E\(z, n.—))(ﬁ Eg(z,n;)). (4.5.9)

=1 1=1 i=1

where 3°; p; = 2m — 3. A typical term in the second product in (4.5.6) will be

of the form
- . g2
ED(2,R) = ((2:9)°(1 + 2:0%..(0)))" (H Ea(z, E,(,-))) , (4.5.10)
Jj=1

with ¢ + g2 = m — 2. Of course, the only term in (4.5.6) that will contribute

to (4.5.5) is

e ha(0) . me2
{mc? 72+ ﬁ\/_} ((z)*{1 + 2.09.,(0) N, (asa1)

i=1

as shown by:
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Lemma 4.7 Let m > 2. Suppose py < 2m —3 in ({.5.9). or m=2m -3 but
1 <m-~21in ({.5.10). Then,

1 ~ -
5o f B RED(2, R)

271 |z]=¢ ™

d-.
t(’“) n+1

= O(n~Y), (4.5.12)

for any € < min(1/2,(d — 8)/4). The above result holds with the same ¢ if
the integrand in ({.5.12) is replaced by any function obeying the bound on the
error term in (4.5.4). (Recall that t(™) "X° en™=5{1z7n ),

Corollary 4.5.3 All information contained in {0} is lost in the continuum

limit, as can be seen from ({.5.11).

We are finally in a position to prove (with the notation in (4.5.5)):

Theorem 4.8 Form > 2,

({0'} k. o Bamar) : (4.5.13)
2m+1 - am+l ,' 2 Im+1 l k; 2‘/——5
=jo ju dly...dlamr g; I)e (T =T el R VT

[cf (1.1.24) with k;/D = k).
Proof. Define the auxiliary variables p? = k?+ 4 for 1 < i < 2m —3 and some
¢ > 0. Also let

o(m) = v(2e)" h. (0™ = ((22{1 + 200,,(0)}) " (1/9z)*™.

(4.5.14)
By Lemma 4.7, it suffices to compute, for m > 2,
=m-= " o(m) dz
R 4.5.15
5, i 5N\0 2mi fi:kgf w1 api/2nif? 4 Bz, — 2)1/2 (M) pni ( )

where by (4.1.15),

4{m) nsteo 1/(2,_-9)

nm—5/2,\n O(n~* ,
/2r(1+b) (1+0(="))
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for any ¢ < min(1/2,(d—8)/4). Proceeding exactly as for the 2-point function,
we deform the contour around the origin to the ‘pack-man’ contour of fig 2.
page 70, and make the change of variables —w/n = z. — = with the same
branches as before. By the definition of the p;, the integrand in (4.5.15) is
bounded below uniformly in w on the cut plane. Thus, the contributions from
the arcs of radius r and R of the pack-man contour vanish as r \, 0 and
R / oo; the latter because of the factor z"*! in the denominator.

Now let
- 2m-3 c(m)
Iw, k)= ] ap? 2017 = iBwilt[pll?

i=1

(4.5.16)

Since \/—w/n is —iw!/?/n'/? on the top branch of our contour, and +iw!/*n!/?
on the bottom, we get 2i Tm(/(w, p)) for our integrand by taking into account
the orientation of the integration along the top and bottom of the branch cut.

Thus, (4.5.15) reduces to

1 foo - { n=(m=5/2e(m)Qz./T+ b } dw

BT o N\ I I ot 2 = 60| (¥ e,
(4.5.17)

The factor of n™%/2Q2.\/T+b comes from t{™ and the factor of n=(m=3/2)

was pulled from the product in the square root in the denominator (recall the

change of variables z. — z = —%), The combination of the factors cancels the
factor of 1/n in the measure. |
Now, by using the identity >l‘)
1 '
p?/2 — iwl/?

in (4.5.17) we obtain

m .
2/:,':)"2/0 die= 13/ 2T 2= ) (gince p? 5 () (4.5.18)

w

. G(m) peo d
nllgg‘lsl\l‘% — ./o (1+;:"7‘)ﬂ+1zc!(w’ﬁ) (4.5.19)

where

(=] 7Y - R
I(w,p) = j.. e _Lotﬂl v dlym_ge™ Dot SLRVIRS L it A2z L (4.5.20)

o~
-



with é(m) = ¢(m)Qz./1 + bﬁ (:_c.:,ﬁ)('.!m—a),'z = l (2/7)% and L = Timedy

By interchanging the order of integration (which is permissible for any d > (0)

and then letting § \, 0 we obtain:

2m=3 ,‘ _'
JL‘EL] [ dage™ Do B oy (1) 45.21)

where

Y hai dw sin((?w)”zL) = diL cos(tL) s
F'n(L)—/0 1+ & —fo ESTED (4.5.22)

(as can be seen by letting (2w)'/? = ¢ and then integrating by parts). Once
again we must appeal to special functions [GR] (p.959); in particular we will

use representations 8.432 (5) and (9) for the the function k,(zz). By letting

y* = t*/2n we arrive at the integral

VoL fo ® dy%ﬁi)- = Fu(L). (4.5.23)

By the integral representations discussed in [GR} we get (for L > 1)

evan oo dt t2n—l ~VTFTW2nL ¢
F(L) = 4"1"(n)_2L o (Br1)° (a524)

cV2n o

< < =/nt=/nL ;2n-1

= 4nr(n)=L/ © e
cv2n o oo

< L j et §2n=1,=n+1/2

S et L)y deT e

oo,
< . — Le=ViLD (27 — 1)p-nt1/2
S Frgyple” T@n—1n
n—$oo c:nslzLe-\/iL.
Thus, Fo(L) € c Le~L for some L > Loand n 2 ng. We are now justified in
using*Lebesque’s dominated convergence theorem. By the same arguments as

for the 2-point function,

Jim Fo(L) = (x/2)"?Le~L'/2, (4.5.25)
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inserting this result back into (4.5.21), we arrive at
o] {=<] m=—1 T
[ f dly...dlym 3L~ A=T50 ob kIR (4.5.26)
0 0

o».

As mentioned in the introduction, the diffusion constant D of (1.1.10)
obeys (2/7)'?D*/d = a/y1+5, so that had we taken D? = D?(2/rd)!/?
as our scaling constant in the transformation k; — k;/Dn'/%, we would have
weund up with (1.1.24) as per the content of Theorem 1.2.

The above establishes the convergence of the finite dimensional distribu-
tions of continuum lattice trees to integrated super-Brownian excursion as will

be discussed in Chapter 5.

Proof of Lemma 4.7 We have already taken care of the the errors for the
2-point function limit, so from here on in, m > 3.
We will consider 2 cases. The first deals with terms in (4.5.9) for which

P2+ p3 2 1. The last case assumes p;, = p3 = 0 but g2 > 1 in (4.5.10). The

following estimates will also simplify the analysis:

By Hélder’s inequality (using counting measure),

(2 )" < m""(i; 27 (4.5.27)

for any z; > 0. Using the above and Lemmas 4.3, 4.4 and 4.2, we can write

|Er(z, k)P S a2z — 272 {2, ~ 2| ¥P¢ (4.5.28)

and

|Ea(z, 6iP° < bm|ze — 2|77/} (nP34 4 |z, — | PP, (4.5.29)
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Case (i) If m > 3 with p; + ps > | in (4.5.9), we can bound the second

product in (1.5.6) on the disc |z| < z. by a constant. and then bound the first

product by
C..iPQCPJ
1.5.30)
lze — z|P/24p2/24ps/2" (-.5.30}
with py + p2 + p3 = 2m — 3, and where by (4.5.28, and {(4.5.29),
AP S am(lzc _ ;'+P2t + n—Pi(l[:.'-!-c/-l)l:C _ :l—p-_\j:!) (-1.5.31)
+ amn—p:-/'-":c — zjpale=1/3
and
CP < bm(n—pu/-i + |ze — 2I+p;¢). (4.5.32)

Recall that p;+p3 2 1. If p» = 0 the analysis is easy so we will focus on p, > 1.
In the latter case, since (4.5.32) is bounded for |z| < z., we can deal solely with
terms coming from (4.5.31). The denominator of (4.5.30) is |2, — z|~™*3/2, 50
applying Lemma 4.1 to (4.5.30) with the bounds in (4.5.31), we find that the
coefficients of the terms under consideration are O(n?z7") with

7= (=14+m—=3/2—pac) or (~14m —3/2— py(1/2 + €/4) + p2/2) or
(=1+m —3/2 — ps/2 — py(e — 1/2)). Since ti™) "*° enm-5/7;-n the cor-
responding term in (4.5.12) will decay at least as fast as O(n~*/4) fér any

e < min(1/2,(d — 8)/4).

Clase (ii) Suppose now that p; = 2m — 3 in (4.5.9) and g2 2 1. Since Fa(z,R)
is bounded on the disc |z| < 2., it suffices to consider the case g, = 1. Such a

term can be bounded by
clze — 2|7 F2(|z, — 2|t + n), (4.5.33)

for |z| < z.. By Lemma 4.1 (i), the n coefficient of such a term is no worse

than

c(n—l+—312+m—¢ + n-l—¢/4-3/2+m)z:n.



Ouce again, upon dividing by t!™), the corresponding term in (4.5.12), will be
O(n~'"} for any ¢ < min(1/2,(d — 8)/4). Since the error term in (4.5.2) is
hounded by

Clze = 2753 e = [2] |79,

Lemma 4.1 once again shows its coeflicients are no worse than

O(z7"n™=%2=¢} for any ¢ < min(1/2, (d — 8)/4).

The end result is that all error terms in (4.5.12) are Q(n~4*) for any

¢ < min{1/2,(d - 8)/4). . |



Chapter 5

Discussions and conclusions

5.1 Discussions

Before moving to the conclusions, we will interpret our results.
With the notation from (1.1.24) (i.e. with the momenta rescaled by D to

avoid scaling factors), we had:

2m+1 m 1
Plky, .y kames) f f dly...dlma( Z ,)e-@. RS2 D Lz

(5.1.1)

Upon Fourier transforming back to z space, we recover

5 ) 2’“"" L) am+1 12 2m41
l_l -(2. L3 f2- ayfl
./; ...j; dll...dlzm.}.l n?:‘+l 211_!‘)‘”26 E; 214y

= P(m)(Ayh *ey Ay2m+1)? (5']"2) .

where the Ay; s are inter-nodal distances. By letting
e"Aﬁ'?lzll

p(Ays i) = Ak (5.1.3)

we can recast (5.1.2) as

2m+] m
Py = [ [ de (35 1T ] plagit. (5.14)

=] . i=1

99
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The above has the interpretation that the p(Ay;; l;) s are the transition kernels
for Brownian motion in R? for particles moving from the ‘left end-point’ of Ay;
to the ‘right end-point’ in time {;. The factor
(ZE:J'l [)e~ (I P2 (5.1.5)
i=1
is responsible for determining how these times are ‘shared’ among the different
nodes.

We shall now discuss how, with the correct interpretation, the { P{™} form
a consistent family. Consider m external vertices {0, zy, ..,z ;n—;} along with
m — 2 internal vertices y;. We can write P(™ in terms of these internal and
external vertices, and then integrate out the external node z,,-; (for example)
and the internal node y,,—z (for sake of argument) to which it was connected.
After some tedious calculations, one can show that P(™) then reduces to P(m-1)
as per the backbone determined by {0,..,zm-2} and {yi,..,ym-a} (i.e. the
backbone with the edge (ym-2,Zm-1) removed).

Having given a physical explanation of (5.1.2), it is perhaps appropriate
to briefly talk about d dimensional super-Brownian motion. Again, for the
cognoscenti, this is special case of an (a, d, 8)-Superprocess [DBS], with o = 2
and 8 = 1; a = 2 is the part responsible for the Brownian motion, and

B = 1 will yield binary branching. As for the description, super-Brownian

" motion is a measure valued process {Z;t > 0} which (roughly speaking) can

be constructed in R¢ by running a particle undergoing d dimensional Brownian

motion and then at exponentially distributed times having it die, or split into

two indepehflent copies each with probability 1/2. If the particle splits, the

process can then continue splitting until it dies out. The state space at time

t is the number of particles in exist\:énce a.nrgl;;their positions. ISE in turn, is a
I

special case of super-Brownian motion.
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Heuristically, ISE is a variant of superBrownian motion in which the time
variable has been integrated out to yield a random measure. The process itself
starts with infinitesimal mass at the origin and is then conditioned to have unit
mass at extinction. The construction of such measures is very technical and
complicated but for our purposes suffice it to say that Aldous’ construction (A
2 -4] involved randomly embedding abstract trees into R?. These abstract trees
can, in turn, be constructed via a map from Brownian excursions to abstract
trees (the ‘extrema’ of the former determining the branching structure of the
latter). The probability density for these abstract trees was found to be (5.1.5).

Before moving to the conclusions, we should point out that there is another

instance where the density (5.1.5) has been observed.

Via totally different methods, and via a different map To(e,try .y ty) —
(7321, .., %) from excursions e to ‘trees’, Le Gall [G], obtained the same den-
sity (5.1.5) in a paper that extended a result of Bismut [B]. His results es-
sentially state that under the law of normalised excursion n(;)(de) (excursions
conditioned on having duration one) the distribution of the tree 2T(e, th, ..2p)

under the probability measure

Loa(tr)---1ipa(tp)nqy(de)dty...dt, \‘[ (5.1.6)
MI
has density ' ,
P V!
(32 e P G17)

=1

with respect to 2 measure A(dT'). This last measure on trees is the distribution

of Ty(e;ty, .., 1p) under the measure

2-(9_1) 1[0.!}(11)"'lloull(tp)n(de)dtl"'dt’” (5' 1'8)

where n(de) is Itd measure on positive excursions of linear Brownian motion

with a special normalisation.



5.2 Conclusicns

The main conclusion to be drawn from this work, is that the scaling limit
of sufficiently spread-out lattice trees above eight dimensions (or of the n.n.
model in sufficiently high dimension) is distributed as ISE.

More generally though, any model in statistical mechanics, for which the
Fourier transform of its generating function (with radius of convergence z;)
obeys

G.(k) = -
D2 4+ B(zg— 2)1/2
with |£B(z, k)| < c|20 — z|~?* for any € > 0, can be automatically known

+ E(z,k), (5.2.9)

to have its scaling limit 2-point functions distributed as ISE.

Such considerations could be useful in the study of high dimensional perco-
lation as conjectured by Hara and Slade in [DS), since the contour techniques
in Theorem 4.8 reduce the scaling limit problem to analytic estimates similar
to those of Lemma 4.7. However, one obvious hurdle that will require new
methods to clear is proving the analogue of (1.1.9). This analogue has already
been conjectured in [AN], and will likely be a2 major stumbling block, as will

\\_,,_.r; .
be the lack of a unique backbone structure.

Present work centers around the use of even more refined generating func-
tions. By adding another variable ¢ to our 2-point generation function, we
can keep track of the number of bonds in the backbone of a tree connecting 2

points. Thus, ‘ '
Guc(k) = 3= Y tnnlk)(™2" (5.2.10)

n=1lm=1

where ima(k), is the Fourier transform for the number of n bond trees con-

necting 0 and z with exactly m bonds. This new generating function obeys

Gee(k) ~ (5.2.11)

c
k2% /e — 2 27 (1= Q)"
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where 7 is a new constant governing the scaling of the backbone. This new

work explains the rather artificial looking ;s in (5.1.2) with the following:

Theorem 5.1 For sufficiently spread-out trees above d = § (or ford > dqy for

the n.n. model),

lim (,)mlI?)tl’?"""]-ﬂ(hk/(DnlM)) — [e-¢2/2—lk’/2.

n—oo tn

(5.2.12)

Similar statements hold for m point functions. The precise statements of the

results of this work are contained in [DS]

The above result has the rather satisfying interpretation that if we let { =
m/(yn!/?) in the right side of (5.2.12), we get a Riemann sum approximation
to P(k) by dividing by yn'/? and summing over all m. The main content of
the above Theorem is that backbones of length n!/2 are typical, and converge

to Brownian motion sample paths in the scaling limit.

We now conclude with a comparison of the models discussed in this Chap-
ter: Aldous’ construction used probabilistic methods and led to an interpreta-
tion of (5.1.5) as involving inter-nodal edges of lengths /;; Le Gall’s results used
very deep insights into excursion theory and also yielded (5.1.5) albeit with a
slightly different nc;tion of edge lengﬁhs; finally by analytical techniques (with
generating functions) we also obtained families of consistent measures involv-
ing (5.1.5) from the scaling limit of a deterministic mode],r with the physical

meaning of the [;’s as captured by (5.2.12).



Chapter A

Appendix

A Estimating integrals

We seek upper bounds on the volume cutoff of integrals of the form:

f k... d%,,
2>k lobiem] TIE2 (K7 + p2)™ Thcicim ((Ki + k5)2 4 p2)mis”

where n; and n;; are natural numbers. For our application, m < 4 and p = 1;

(A.13)

for m = 4 we will have n;; = 0 for ‘those loops not sharing momenta k;, k;.
The following is a self-contained version of the method developed by Thomas
Riesz!; the argument amounts to showing that (A.13) can be dominated by a
sum of integrals in which the mass # = 0 but where the domain of integration
excludes the resulting poles in the integrand (cf. Theorem A.1). Once this is
achieved, one car,estimate the cutoff behavior in terms of power counting in all
sub-graphs via induction on m (the number of loops). In essence, the overall
behavior is determined by the worst sub-graph (the example ip section ‘B’

explains these steps much more explicitly). We start by re-casting (A.13) with

lwhich itself is based on the work of Hahn & Zimmerman
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the following notation: Let N = m + m(m — 1)/2 and define I; = =1 Cisk;
for1 <i< N, where rank(C;;) = m and any row of C;; has at most 2 non-zero
entries. Then (A.13) can be expressed as
j dky ... d%y
> ool [T, (12 4+ 1)P
where the p; correspond to the appropriate n; or n;;.
Define D* = {(ki,...,km) € R™ : || < A\, 1 i < N}. Since D?

contains a convex neighbourhood of the origin, there is some ¢’ > 0 for which
g g

(A.14)

D¥* 5 [, A]%™; by scaling out this constant through the measure, (A.13)

can be dominated by

&°ky ...k,
fm (B + 1) (A15)

i=1

Now let DM = {(ky,...km) ER™™: 1< || <A,1<i < N}. We will show:

Theorem A.1 3 C,c> 1 independent of A (for ) sufficiently large) such that
for XA =ch: /

/ ddkl e ddkm ddkl N ddkm
N - < _/ N 12 ;
> LY LY Hi:x(t:‘ + 1)?. DA ni:l (ll 'r\l-l)p'

Note that in D™!, the I; 's are bounded away from zero! 'L'his will later

(A.16)

allow us to let the mass vanish in the propagators and obtain a homogeneous

denominator. .
The proof of (A.15) hinges on the observation that if P = {1,..., N} and

§ C P we can chop-up D* into what we might call ‘Riesz’s pieces*

ALl €h ifjes

X3 = { (k1y.er k) €RI™ , (A.17)
’ { bk <1 ifjeP\S}
where Usgp X'\ = D'\. If
Q0 d d
10y = [, Sl

—p 1
e I @ + 1) (A.18)
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then it suffices to show that 3 C(S) > 0 (again independent of A ) such that:
I(X}) < C(S)I(X}) VY SC P, for then

f Bk dhn Y I(xY) < Cr(xy). (A.19)
o LB+ 1) ~ 4 $= F

Since X3 is by definition D!, the theorem will be established.

Proof of Theorem A.1: Let 5 C P be chosen ( if S = P there is nothing
to show; if § = @ see below). By re-numbering we can arrange so that:

(a=|Pt~|S])

L1<1 for ,1<j<
xyo s Tai=J=a (A.20)
1|2 for,a+1<ji<N

By (possibly) re-numbering again, we can also have:
1) i= {l1, ..., s} is a basis of {l1,...,Ls} (b £ a). In particular, if @ > b then
forb+1<j<a ;=3 ails
2) I = {lep1, I} (@ < ¢) completes i to a basis of {ty - In} (I need not
however be a basis for {lg41y ...y In} ).
3) for some e < ¢ , {le41, ., N} are all linear combinations from I (e is chosen
as-small as possible).

It then follows that I; = {;(i,]) for a+1 < j < e, where to summarise,
l<b<a<e<ec<N.

At this point it will be appropriate to invoke:

Proposition A.1 : Having chosen S, and keeping the re-arrangement in

(A.20) and the corresponding constants a,b,c,e and bases I,I as before, de-

fine:
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[HE! for1<b
Ya) =< erM: i) <1 fb+1<j<a (A.21)
L|GEDISA forat+l<j<e
(IfS =0, then a = P and the theorem follows directly from this lemma).
Then 3 C,c > 1 (indep. of A for ) sufficiently large) such that for X = cA

/ di
vady [T, (3 + 1)7
di o

' = W“
< ¢ oo TR ~ /YO

)p
where WA = {() e R¥: 1 < |;((, )] <X 1< j <e), and

b N
l_.,' = 2 bj,'l,- + Z d,‘.‘l;.

=1 i=c+l1

JYAD) = (A.22)

(Proof of proposition following Thm A.1)

Back to the proof of Thm A.1:
Define 22 = {I = (41,0, dn) €R® : 1 < ]| <A e+l <5< ‘N}. Now
use (I,1) as integration variables, and let ds be the Jacobian of (ki, ..., km)
with respect to the (I,) variables. Let E() = ien, (L(D? + 1) where
Ny ={e+1,.,N}, and Ea(i,1) = [ign, (i, )2 + 1) where Ny = {1,..., }.
Then by the proposition A.1, | '

dl di 3
IX)= d . s A.23
K= b [ ny by D (A
r o dl di 5
<Cs s [ 5 b B = C1OP
This concludes the proof of Theorem A.1l. N

Before proving proposition A.1 we need 7~
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Lemma A.2 There ezist a finite number of compact sets oy and {02;}32, in
RY, of positive measure, with the following properties:

(1) YA(I) C oy

(2) For any () € 22, 3 j suck that oo; C WX(I), where X = cA for some
c> 1.

(3) The sets can be chosen independent of A for A sufficiently large.

Proof of proposition A.1 using Lemma A.2 Let ¢ = 6y U (U}2,02;). Having
constructed the above sets, the idea is to obtain upper and lower bounds for
the integrands in (A.22) for all/inc = oy U (U2,02,;). From (A.21) we have
L) = T8, biili + g;(1) for (1 < j < e) where
I‘ - N \

()= Y dili (A.24)

* e}
(of course by; and dj; will have blocks of zero and identity matrices embedded
within). Now, pick M > 0-such that |, blil < MVi€ o (1< < e). We

then bave

1
G (2M2 4 2¢7 + 1)Pi
1
S = 3 . :
G (i) byels + q; (D2 + 1)%

gll) = (A.25)

= I(, 1)

. To obtain a similar upper bound for I(i, 1), note that for 1 < j < e and

for i € o,

230 +2M2 41 2((gs + Ty bisk) — Ty i) + 2M2 + 4
T (i bl ()P +1 (Zhas bl + 5)* +1
<4+6M° (A.26)

,,..\,\]
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where, as in (A.25), we used the inequality (z + y)? < 2(z? + y?). Thus, by

(A.25) and (A.26) (with some appropriate & > 0), it follows that
<UD forleo (A.27)
(i, <ég(l) forle oy

respectively. Then using (A.27), we can prove (A.22) of Lemma A.1 since:

JIYAD) < f di Z(L 1) < vol(ay g ) (A.28)
and
g(Dvol(az;) < j diZ(i, 1)y < JWAD), (A.29)
can be combined, so that J
o0 < (g (ZEL awid).
This proves proposition A.1 assuming Lemma A.2. ...N

Proof of Lemma A.2. We now set about the construction of the sets in o.
First it is clear that

YD) c @bi[-1,1F = 0. (A-31)

The trouble lies in the construction of {2,/}12,, for one cannot construct a
single set & such that & C u,-eééwg(i') since the {; s in [ can vary [cf (A.22);-
their magnitude, however, is bounded by A + 2.
Choose ap =0 < @, <... < ay-. € R such that the set of (L, .oy lp) € RY
satisfying : | .
]2 1 for1 <i<band (A.32)
2400 ST} bl Sy forl<i<e

contains a compact set of positive measurefor 1 <j < N —e (these compact

sets can be chosen since Z}zl bi;l; defines a hyperplane in R®). Call these
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sets 03,;. The task is to show that they possess property (2) of Lemma A.2
(property (3) is automatic).
For1 <i< N —eand somer > 2, let

Qi = {(Gesrs - @n) € RV |G| S @joy+1 or A+7 2> [Gi] = a;+1) (A.33)

for e+1 < i € N where (i) = Eff_.cH fi;1j by the re-numbering below (A.20).
Also let |

Qn-ctt = {(Get1,rGn) ERV=: |Gl <y +1fore+1<i< N}.
(A.34)
Note that {(Fes1, e Gn) : |Gl < A+2, e4+1 <1 < N} c UN7*HQ;. Thus,
Z3 c UNSHQ; for some sufficiently large 7.

Now, if (Ges1,...,GN) € @5, then by (A.32) either

24a;.1—(14+a;) £ [Zf;-:l bijli] ~ |@| < |li] fore+1<i<N, or

(a; + 1) — a5 < |Gl — | Ty Bisls| < |4 fore+1<i<N
(A.35)
for (l) € o2,;. However, no matter the value of j,
G < & + |):;’-=1 bijl;| < cA for some ¢ > 1. Thus, for (Get1y..Gn) € Q;
we have 09; € st(i), with A = c). This concludes the proof of Lemma A.2.

We now set about estimating (A.14). Before proceeding, we need to define

the maximum degree of divergence of an integral of the form (A.14) as follows:

Definition A.1 Let P = {Q C {1,...,N}:|Q| £ m ~ 1}, where |Q| denotes
the cardinality of Q. Now let '

o(8) = dim = 1S)) = A3 n - T (A36)

JES
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Then, w(H) is defined as follows:
w(H) = glca}.)x(u(S)) (A7)

By the remarks before (A.13), it suffices to obtain estimates for (AL18).

Thus, with the notation for (A.18) with X3 replaced by D, we have:

Theorem A.3

(A.38)

DY < c*{ 1 if w(H)y <0 }

(log \)" XH) i f w(H) > 0

Proof. For 1 <£< N, let
D" = {(kyy o km) €RF™EAD L) 2 e 21,1 <8 < N). (A.39)

Then DM ¢ U, D}. By Theorem A.1, 3 ¢ > 1 so that as per the notation
in (A.18):

N
I([=A\AF™) S HD™M) < Y 1(DEY).
{=1

By changing C* in (A.38), we may assume w.l.o.g. that ¢ = 1 for the factor
scaling A. Fix €, 1 < £ < N and choose a non-singular m x m matrix (A(€))s;
such that t; = 7L, A(£)i;k; where t; € R? with det A(€) =1 and ¢, = le(k).
Thus, k(f) = A~YE). Then,

dty...d%
M < d 2@ fm
1(D}) _cjvmd t, fU(-\J RTETT (A.40)

where V(A) = {t) e R?: 1 < |t)] < A} and U(}) = {(t2,..,tm) € RH™-1) .
A > |li(A7 ()] = t1 > 1}. Note that by construction, the domain of integra-
tion in the above integral is bounded away from the zeroes of the integrand.
This allows us to let the@\:is vanish and thereby obtain a homogeneous de-

nominator.



Now, if wp = dm — 2}::-\;] pi, we let {ta,...,tm) = [t|(t5, ..., 1,), with t] =

ti/|ti], so as to exploit the homogeneity of the denominator by using

(AT () =o < 2Mi A7)

to write

I(Dg)

IA

d 41 d 4t
j dh h,u./' d ig..._a'l t,:, - (A.41)
vy & b Jogy IToe (AT ()

d dyt
'f i ‘““f hodln __ (sa2)
vyt b SO I LA () )y =0 |
where A = A/|t;| and
O(0) = {(thy o th) € RE™D 1 1 < I AT () mo < A},

We now have:

dt déth...d!
A < ¢ 1 0 2 m 4
I(De) = fvm o) [T L(AT (1)) =0 (A4

Remark A.1 The inner integral now corresponds to an m — 1 loop diagram

related to ils ‘parent’m loop diagram by ‘erasing’ the line corresponding to the

momenta flowing through [;.
Before we perform the induction on the number of loops we:state:
Lemma A.4 Choosea; € R, 1'<i<m and let c = max;<icm(ai), then

j _‘.i.titﬂl/ (_it_z.tﬂz.../ dt"‘tﬂm
a1t ) Insest tp 2 Mbtma1)>tm>1 2 ™

m

50{ 1 z'fc<0} o (Aad)
(logA)™A* if ¢e>0
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Proof.

(A.44) is true for m = 1; let us assume it is true for & = m — 1, then if

b= maxXigicm-1(a;:) and 6> 0: (If b < 0 we may assume ¢ = a,)

o S du o,
x>l i ! AMy>nl fa ° Mititme )3 tm>1 £y T

< c-[\ ﬁt‘;'(,\/tl)b log™ (/1)

>u>1 b

dt,
< —121(X/1)  log™ Y (A
Sef T/l logm ()

Sc{ 1 ifc<0} )
Af(log )™ if c2>0

This proves (A.44). ...m

Theorem A.3 follows by nesting the procedure leading up to (A.43) on the
remaining variables t5, ...,/,. This will generate a sum of integrals of the type
described in Lemma A.4; in every such integral, the a;s will correspond to a
sequence {wy, ...,wm-1} which in turn depends on the order in which the tis
are integrated out. As per remark A.1, the w, for the inner integral in (A.43)
will be d(m — 1) — 2(n — n¢) (since the line corresponding to l¢ was absorbed
in the inner integral). By applying Lemma A.4 to all possible nestings, we
deduce Theorem A.3. : ...®

B The 2 loop case

We start by assuming Theorem A.1. Consider:

dkydik,

e B'l
--’:/blh Likal T, (12 + 1) .
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where [, = ky, b=k +kyand 3=k, (n; > 1i=1,2,3). As a consequence
of Theorem A.l and the comments preceding (A.15), (B.1) can be dominated
hy:

dikydik,
CS o T ®2)

where D = {(k,k2) € R¥: e 2 |li| 2 {§;| 2 1,1 < i < 3}, and the
constants C,c > 1 are independent of A for A sufficiently large.

Let us now focus our attention on j = 2:

[(Dc'\) _ ddk1ddk2 _/ dd[]ddlz
U I TRL@ 1 T o (4 DB+ DM (e~ h)? + 1)
d?l, dil
< - — .
- -LA>]!3|>I ;3" ./.ca\>|l:—-l||.|l||>l ™Ml — 1)) (B.3)

where Dm\ = {(k;,kz) € R‘zd teA > Ilz - l1l, Illl 2 IIQI 2 1}
Now let I = iy 2nd I = T\T Then,

g ATAL dat}
D < ¢ —
(D7) < ¢ jc.\)l!:l)l 1"’“*"?*“3’ eMlal> |~ LI 1> ()2 (1 — )%
dlz 2d-a(n;+n+ dél
< " _I njrng n;) 1 .
= € /c.\>tz>1 I 2 jwu,pu;[:.l I [2(n2+na) (B.4)
since |l}| < 2|1 — I3|. We therefore have: (n = 3,0, n;)
dl dl
(D™ < t2d _2[211-2:1 __Ild—2(m+u3)
(D5) < ¢ fc.\>t,>1 I 2 chfl:)lg)l [

Fa

,,{ 1 ifm<0 }
¢ : (B.5)
(log A?A™ if m >0

where m = max{2d — 2n,d ~ 2(n, + n3)} (cf. Lemma A.4). Had we chosen

Dg*, we would have arrived at the same estimate with
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m = max{2d — 2n,d - 2(n, + na)}; for D, m = max{2d - 2n,d — 2(na +ng)}.

B

The above are the 3 sub-diagrams corresponding to the 2 loop graph.

C Fractional derivatives
We state without proof the results in [MS] regarding fractional derivatives:

Definition C.1 Given ¢ > 0 and a power series f(z) = T3,aq2", let the
fractional derivative of f(z) be defined as

[+ +]
=) n‘a."
n=0

We can estimate the above fractional derivative via Lemma 6.3.1 in [MS].

Lemma A.5 Let f(z) = 5% a,z" have radius of convergence R. Then for

any z with |z| < R, and for any ¢ € (0, 1),

8:f(2) = e(l — &)z fo " fze MmN gy
where (1 —¢) = ((1 - c)F(l — €))7, Similarly,
| 87°f(2) = c(a j [£(2e™>"7") — f(0))dn.

(both the above also holds for 2 = R if a, > 0). For a proof see p.188 [MS].

The usefulness of the above result will come to light after we state Lemma
6.3.2 of [MS]:
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Lemma A.8 Consider ¢ € (0.1} aend f(z) = 3.2, a,2". Suppose that A, =
Yozgntlan|R*™ < oo for some R > 0 (so that in particular, f(z) converges

Jor |z| < R. Then for any |z} < R,
() = F(R) S 2=¢AJR ~ <" c.1)

For a proof see p.189 [MS]. N

When combining the above results with Lemma 4.1 of chapter 4 (which
is Lemma 6.3.3 of [MS]), we can obtain information about the asymptotics of
the coefficients a,, of f(z). For convenience, we will compute the fractional

derivative of a function under the following hypotheses: suppose that

d .
155 f(2) < elze = |2]|77/l2 (C.2)
for |2| < 2. Then with z, = z.e~ /"™,
If(22)/22] € ell — e P 2y < eXPI0-912, (C.3)
Thus,
87 < Cuee [ e
< [ \-‘—pl(l—d .
< fo dh X < o0, (C.4)
fp<l—e

Now, in particular, since £f = (Df — f)/z, and since for |z| < ze, [by

Lemma 3.3 combined with remark 3.5.1, and (2.2.1) respectively]
IDE. (k)| < IDE.(0)] < cfze — J2|-9,

and
IDIL (k)| < [DIL(0)] < |2 — 27079,

it follows that the ¢ fractional derivatives of li’,(k) and Il,(k) are finite.
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