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Abstract

The relativistically minimalist Breit equation is used to study the
two-nucleon system. Generally, the 2quation is noncovariant and its realm
of applicability is limited. It is not a field-theoretical equation but, at low
energy, it was thought to be a promising candidate to explore the scheme of
repulsive vector and attractive scalar interactions as the dominant ingredient
of the two-nucleon interaction.

In the 1S, singlet case, the equation does indeed seem viable. Dynam-
ically sound interactions and a reasonable fit of the scattering data arise. In
a specific application, the discrepancy between the 1S, isovector scattering
lengths of the p — p and n — n interactions is explored. This novel charge-
symmetry-breaking (CSB) mecharism enlarges the discrepancy between the
two lengths, implying a still larger correction is required by other documented
(CSB) mechanisms.

An all-encompassing model of the 5)-3D; state is, on the other hand,
not achieved. Models which best fit the experimental deuteron and elastic
scattering data, are unphysical. The vector coupling is driven strongly neg-
ative and a dominant interference mechanism arises involving the entirely
phenomenological short range OPEP. It was hoped that this parametrized
short range OPEP would remain benign while the scalar/vector interference

scheme took a lead role. Instead, the constraint of avoiding Klein paradox
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difficulties defeats this picture and achieves the short-range repulsion in ihe
N — N force by ramping up the phenomenological OPEP.

It is finally argued that the Breit framework almost certainly does not
lend itself to an adequate description of the N — iV system. It does, however,
point to novel relativistic elements which may ultimately resolve celebrated
outstanding problems such as the a,-ry, discrepancy. The triplet scattering
length a, and deuteron matter-radius r,, are tightly correlated and resistant
to simultaneous fitting in conventional models. The p-wave amplitudes of

the lower components of a relativistic framework offer a potential means of

resolution.
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mentioned in the paper.
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polarization in the literature. The model was conceived by Y. Nogami and
the analytical work in support of the paper was carried out jointly by both

authors. The numerical example in the letter was the work of the author.
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Chapter 1

Introduction

1.1 AN OVERVIEW

For over half a century, much success has been achieved in the dy-
namical analysis of systems of nucleons by making two basic assumptions:
1.) nucleons are elementary in their own right, i.e.. structureless; and 2.)
non-relativistic quantum mechanics. e.g., the Schrédinger equation. suffices
as a framework in which to describe the nuclear dynamics. These assump-
tions underlie the field of conventional nuclear physics. They also require a
context: they have been mostly successful in the low energy range, i.c.. at
the typical energy scale of nuclear bound systems.

Both of these assumptions are now universally viewed as only approx-
imate at a fundamental level. Nucleons are now viewed as bound ensembles of
quarks and gluons whose dynamics in turn is described by a fully relativistic

quantum field theory, Quantum Chromo-dynamics (QCD). Since QCDisa



2 1 Introduction

more fundamental theory than a local nonrelativistic dynamics of elementary
nucleons and a host of many intermediate frameworks. we expect there to
be a smaller and smaller intersection set between dynamics described by the
fundamental theotv and the progressively cruder frameworks. For the crud-
est of all such frameworks to be successful. (and it has been!), it is required
that some of the more sophisticated dynamics and kinematics play a sparing
role at low energies { Tom, the center of momentum frame kinetic energy, =
0-150 MeV ).

There is merit in appealing to the simpler yet cruder frameworks if the
physics allows it. A clean break in the reductionist sense would be much more
appealing. If we can pick the minimal scorrect” number of degrees of freedom,
the minimal tier of the “correct” relativistic elements and the bare essentials
necessary from full blown field theory so as to bring in the “correct” amount
of physics from the vacuum, then we could use that tier of explanation to
describe all of the NN scattering phaseshift data. all deuteron properties and
with enough computing power. the table of the nucleides. QCD could then be
appealed to in order to explain why the hadron or skyrmion or soliton masses
and form factors are what they are at a clearly separate level of reduction.

In a sense, it is appealing not to have to know quark-gluon dynamics
to understand the nuclear magic numbers. It may or may not yet be the
case. In co:hplete analogy, one generally does not have to know the molecular
dynamics of the organic molecules in an inclined wooden plank to understand
a ball rolling down an incline under the influence of gravity. On the other
hand, if the ball is heavy, the plank will bend and one must know something

of its internal dynamics to correctly describe the equation of motion of the



1.1  An overview 3

rolling ball. Perhaps the quark and gluon degrees of freedom will be front
and center in the ultimate nuclear force models.

Turning now to the question of relativity, the current masses of the
quarks that compose the nucleon lie between 6 and 10 MeV ;). With a char-
acteristic energy scale for the dynamics of QCD two orders of magnitude
beyond that one could surmise that physics inside the nucleon is ultra rela-
tivistic. Two such composite systems whose centers of momentum are both
in a nearly simultaneous rest frame may require a full relativistic description.

Popularly, it is expressed that relativity is important only when char-
acteristic velocities become large and the ratio (v/c) becomes appreciable. It
is less often pointed out that even a relatively static physical system requires
a full relativistic treatment if dynamic energy scales approach the charac-
teristic mass scales of the particles. A relativistic description of spin-1/2
particles entails dynamic interactions which can have a rich structure in the
product spinor space as well as in co-ordinate or momentum space.

The basic questions investigated in this thesis are:

1.) Does the minimal relativistic framework for two spin 1 /2 particles, i.e., the
Breit equation (Two-Body Dirac equation, Kemmer equation alternatively)
lead to a more complete description of low energy nuclear observables than
that of the conventional framework? In other words. in the reductionist spirit,
can we lower the bar a single notch and explain much additional physics?

2.) In the Dirac framework, extra features such as the negative energy
states and Zitterbewegung appear. These are manifestations of the parti-
cle/antiparticle symmetry of the Dirac theory. A proper accounting of the
transient vacuum excitations involving the antiparticle sector requires the full

blown Quantum Field Theory. Does the treatment of these aspects require a



4 1 Introduction

more rigorous approach more in tune with field theory? The Bethe-Salpeter
equationp (in ladder approximation) or even the Salpeter equations; pro-
vide more field-theoretic rigour in this sense but are technically much more
complicated. They account for physics from essentially non-static effects that
perhaps may not play a large role at low energy. This in fact is the bulk of
the departure from the Breit equation. It has long been known that to their
detriment, ladder approximation based two body equations do not reduce
in the limit of one of the two masses becoming infinite to the l-bddy Dirac
equation. This is a property which is evidentally tied to the absence of the
crossed diagrams.

In fact. the Breit equation, which is essentially inferior in all other
regards, does to its credit have this proper reduction characteristic. Efforts to
offer botb. the proper mass reduction limit and account properly for the de-
coupling of the positive and negative energy continua have arisen recently. 4]
Much of the effort is focussed on the proper accounting of particle-antiparticle
interaction corresponding to Z-graphs in the perturbative language. In the
two body system, the lowest order graph which has a single anti-particle leg
in one of the fermion lines is of fourth order in the vertex coupling. A proper
accounting of these is required if the 2-body system is brought into inter-
action with a third particle or an external potential either of which acts as

an energy and momentum source/sink leading to the continuum dissolution

problem.lsl.lel'm
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In the work which follows the two body system will be kept strictly
in isolation so this problem is avoided completely. As a conciliatory acknowi-
edgement of the Breit equation’s inadequacies. a more phenomenological out-
look than usual will be taken in addressing the interactions used. The ma-
chinery of ordinary Quantum Mechanics can be adopted wholesale. The other
field-theoretical equations possess some non-trivial interpretive difficulties.g)
What exactly is the amplitude? Is it a proper wave-function and what is to
be done with the relative time co-ordinate?

Technically, the Breit equation with local interactions offers an edge
also. Local interactions (which appear non-local when reduced to a non-
relativistic limit) can be introduced and treated in a straight forward co-
ordinate space based system of coupled differential equations of motior -
exactly as in the case of the Schrédinger equation with local interactions.
To achieve this with the other choices generally requires still further layers
of approximation. In their simplest form, the other equations generally offer
coupled integral-differential equations which are more challenging. The mo-
tivation here is not to evade the extra rigour but to measure the gains made
by adopting the Breit equation in the two nucleon system.

The Breit equation is an equal time equation for spatially separated
interacting particles. It is consequently not fully covariant, but neither is the
Schrédinger equation. The Breit equation does not properly account for the
physics of the vacuum (negative energies) and the coupling of such states
with the positive energy sector -and of course. neither does the Schrodinger
equation.

The Schrédinger equation has served very well at providing us with

an understanding of low energy physics with weak static potentials. Perhaps
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the Breit equation is a sufficient window on moderately strong static interac-
tions at low energy. What we do get extra is the Zitterbewegung, the p-wave
amplitudes in the 35, - 3Dy system. the non-local irn.eractions when viewed
from a reduced non-relativistic framework. the proper relation between the
energy and scattering state wave length at the high end of the elastic scat-
tering energy range, and a natural richness of dynamical structure because
of the spinor-dependent interaction species. For example, we gain a forum in
which to view the constructive-destructive interference between scalar and
vector interactions.

Other shortcomings of such a framework are the omission of internal
nucleon structure (internal excitations and finite size effects) and an intrinsic
breaking of Lorentz covariance due to the presence of spatially extended
interactions.

The finite size of the nucleon is kept in mind however since the in-
teractions to be discussed are regularized (smoothed) at the origin (zero
separation of the two particles). These “glementary” nucleons tacitly have
form factors. This smoothing performs a more important function though
than merely allowing for extended particles. It also ensures that the Klein
paradox can be side-stepped. If interactions are too strong, the Dirac current
can leak out through the lower (“small”) spinor components.

Potentials such as the bare Coulomb which blow up at r = 0 yield
peculiar singularities at energy dependent values of finite r (and correspond-
ing forced nodes in some of the radial amplitudes): The root of this difficulty
is. once again. the improper accounting of the vacuum. In addition, recently
Krowlowskig has pointed out that the Breit equation can reprdduce the

quantum electrodynamic (QED) hyperfine spectrum of para-positronium to
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order a? if solved exactly but to order o} if the Breit part of the interaction
is treated in first order perturbaticn. (Breit. himself. demonstrated this for
atomic hydrogenic systems.q})

The relativistic quantum bound state remains an open problem. In
the absence of clear interpretations and empirically demonstrated superiority
in the non-perturbative realm amongst the field-theoretic-based equations, in
the following pages the simplest two-body equation for fermions available will
be put to use.

In part, the motivation for this work arose out of the success of the
Dirac phenomenological treatment of nucleon-nucleus scattering. [11),12},13)
The 1-body Dirac Equation with Dirac optical potentials of Lorentz scalar
and 0-th component vector types (time-like vector component only) was used
to describe proton-nucleus scattering observables. The energy sensitive spin
observables are more successfully fitted in the impulse approximation in this
scheme than in a standard non-relativistic calculation.;4)

The other motivation is the intriguing failure of several realistic nu-
clear force models within the non-relativistic framework with primarily local
interactions (plus spin-orbit coupling) to account for the observed inconsis-
tencies between the (N,N) triplet scattering length a; and the rms matter
radius r,, of the deuteron, both of which are very low energy observables
indeed. [15,16,17,18,19]

The resolution of this problem, in all likelihood, lies squarely within
one or both of two augmentations of the simple nonrelativistic picture, rel-

ativity and/or non-locality associated with substructure of the nucleons. In
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this work. the focus of course is on the relativistic elements in the Breit for-
malism. It is appropriate to provide at this point a historical perspective on
the use of this equation in sub-atomic physics in particular.

1.2 HISTORICAL BACKGROUND OF THE BREIT EQUATION
IN NUCLEAR SYSTEMS

Breit introduced the equation bearing his name in 1929 to describe
the various bound two-body hydrogen-like atoms. It was adopted several
vears after that by N. Kemmerypq and applied to the deuteron. Kemmer
tried to preserve the covariance of the system and therefore was forced to
adopt, é-function interactions for his two equal time nucleons. He found that
such a form allowed no bound states.

In the decade after that, the equation was again put to the problem of
the nucleon-nucleon system by Schwinger) and by Moller and Rosenfeldpg) 123)-
At the time the nucleon was indeed thought to be elementary in its own
right. With a pointlike nucleon assumed in both instances, meson exchanges
involved pure Yukawa interactions with the singularity at the origin intact.
This would have led to the Klein paradox related problems mentioned ear-
lier (and a 1/r® divergence in the tensor part of the interaction) unless the
un-cutoff Yukawa functions of separate mesons conspired to cancel just so at
the origin.

At the time, little was known of the meson species beyond the pion
and the vector meson mass and coupling parameters were frozen by the regu-
larization criterion. Since that time, the finite size nucleon and the knowledge
of separate meson degrees of freedom (including 3 separate vector mesons of-

ten) has led to the cultural acceptance of smearing the interaction, often with
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a common cut-off parameter. while maintaining the independance of the cou-
plings of the different species. With a common nucleon form-factor for each
meson. the parametric freedom within one-boson-exchange models (OBE's)
can be reasonably minimal (8-10 parameters) and provide a reasonable fit of
phase-shift data. 4

In the mid 1960's, Green and Sawada working within the context
of the Breit equation, highlighted thé interference feature of relativistic in-
teractions. (5 They considered regularized meson interactions in contrived
combinations such that no large-to-large components between the nucleons
were coupled. The already purely relativistic pseudo-scalar coupling, an ex-
treme version of the S+ V interference theme with exact cancellation and
a similar but novel combination of axial and anti-symmetric Lorentz tensor
(4 + T) were all looked at.

They then effected a reduction to an equation with a Pauli-spinor
wave function (in the large component) preserving the interaction terms to
two surviving orders. A clear correspondence was set up between the obtained
velocity (momentum) dependent interactions (in the reduced non-relativistic
picture) and the allowed spin and momentum dependent interaction species
of the two-mucleon interaction (as allowed by observed symmetries -e.g., see
Okubo and Marshaksg)).

The correspondence is also clear in two papers by S. Satopyr)pg) in
which the explicit triplet radial equations in the reduced picture illustrate
the identification between the Lorentz tensor interactions of various rank
(associated with the appropriate meson species) and also exhibit an explicit
energy dependence. Sato merely revealed the reduction to illuminate the

correspondence between conventional force models and the meson-exchange
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based relativistic one. He did not calculate within the reduced model as did
Green and Sawada. Because they eliminated lower spinor components. they
had to rescale their normalization.

As will be evident in chapter 3. if the lower components are enhanced,
as they inevitably are in the §+V-type models. a mere rescaling of the large
spinor components to restore unitarity may be too crude an approximation
for examining subtle relativistic effects.

The advent of 3-dimensional reductions of the Bethe-Salpeter equa-
tion such as that of Salpeter and the Blankenbecler-Sugar equationygg) or
straight applications of the full Bethe-Salpeter equation in 4 dimensions
with ladder approximationys),jay [a2] (3] 20d the incorporation of OBE models
within those formulations with much success in phase-shift fits (34 has more
or less squeezed the Breit equation out of the nucleon-nucleon literature.
Ironically, it fared better in application to the meson represented as a com-
posite system, at first as bound NN pairsss) [36], 2nd later as quark-antiquark
qq Pairs.[s7),[3s]

As of late. it has received a small resurrection which is probably
attributable in part to the fact that when it was in vogue. realistic calculations
were computationally prohibitive for the technology of the day. When the
technical advances finally came, the formal problems of the Breit equation left
it in the shadow of the field-theoretically based family of two body equations.

Exact calculations with the full Breit equation with even semi-realistic
interactions (beyond 6—funcltion or square-well interactions) are quite recent
in the literature [o7)2e) The avoidance of the Klein paradox sevérely restricts
the parameter space a.vailable-when attempting a quantitative fit of N-N data.

This undoubtedly also contributed to this apparent gap in the literature.
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Jumping ahead a little. we will find that the most reliable part of
the N-N interaction -the one pion exchange (OPE) tail cannot be properly
described in the Breit equation by either entering the interaction through an
axial (devivative coupling) or pseudoscalar {direct coupling) Lorentz com-
ponent. The root of the problem is that neither interaction is arrived at
through the perturbative apparatus of field theory in this framework. Al
though a naive axial version can be devised for the 15, sector alone, a gener-
ally acceptable pion exchange tail capable of fitting the higher partial waves
must be put in by hand as in the Schrédinger equation without an appeal to
any particular Lorentz tensor field. This will be discussed in some detail in

Appendix Iil.

It is quite plausible that the difficulty with the bare pseudoscalar
coupling alone (G2 = 14.7), the Klein paradox, and the brutal nature of
any regularization scheme to rectify the situation (without jeopardizing the
OPEP tail in all but the farthest asymptotic region) led to disenchantment
with the Breit equation in the nuclear context. In meson physics. the pseudo-
scalar problem is not a consideration. There, one is primarily concerned with
scalar and vector interactions between the quarks which in both cases have
spin-matrices diagonal in the 4g spinor components. An issue of paramount
importance for example, quark confirement, can be formulated nicely with
a scalar interaction supplemented by its lowest order velocity-dependent

corrections.(zg)

1.3 SPECIFIC APPLICATIONS OF THE BREIT EQUATION

With the revived activity and interest in the Breit equation in the

last decade or so, a contribution to the literature detailing the highly involved
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radial decomposition of the Breit amplitudes for two unlike masses was well
overdue. Leal Ferreira and Galedo present such a synopsis for a broad variety
of bilinear combinations of particle-1 and particle-2 spin matrices.sg) They
extended the set of possible interaction species beyond the usual 5 scalar
contractions of Lorentz tensors to include a straight 0-component vector
(Coulomb-type) and three velocity or retardation species as discussed by
Breit[yo; and Childersysg; in different contexts. This set is indeed sufficient to
cover the variety of interaction combinations utilized in chapters 3 and 4
(singlet chapters) of this thesis.

In chapter 5 (the triplet chapter), the OPEP presented is entered as a
combination of two spin-dependent pieces not included in their set. Further,
the decomposition of Leal Ferreira and Galedo, in the case of the spin triplet,
is not one which reduces in the non-relativistic limit to the Schrddinger equa-
tion. Chapter 2, therefore presents the full radial decomposition separately
for singlet and triplet configurations, in both cases favouring amplitudes
which contain the pure large component to ensure the proper reduction to
the Schrodinger radial equations. The interaction types included in the re-

"duction are those of Leal Ferreira and Galedio augmented by two additional
aforementioned spin-dependent pieces. The increased generality necessitates
a departure from their notation. The tensorial spinor basis of the two parti-
cle spinor which has passed into near universal usage is that of Moseley and
Rosen.zq)

' The material which follows contains three appendices the first two
of which depart somewhat from the theme of this work. Appendix I com-
prises a self-contained study of vacuum polarization for simple models in the

1-body Dirac equation. This investigation encounters the same scalar-vector
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interference theme which in two-body work leads naturally to spin-orbit in-
teractions. In the 1-body equation. the rich structure of the vacuum when
the small spinor components get enhanced by large S and V" is discussed.

Appendix II addresses some of the concern about utilizing the “un-
rigourous” Breit equation as opposed to one of the field-theoretic offspring
the Salpeter equation. A simple separable model in 1 space dimension with
dialable coupling and range parameters is examined to quantify the depar-
tures of one framework from the other. The results are quite encouraging
for dynamics which takes place on a length scale longer than the nucleon
Compton wavelength.

The third appendix addresses the choice of OPEP as encountered in
the triplet version of our equation and illuminates the trouble spots with
either an axial or pseudoscalar representation of this important component
of the N N-interaction in this framework.

Chapter 3 constitutes the first “physics” chapter. Here, a subtle in-
terference effect between the Coulomb interaction and the combined Lorentz
scalar and vector species is shown to cause an “apparent” charge symme-
try breaking component when viewed naively from a non-relativistic point
of view. This is the only place where the electromagnetic interaction will be
addressed. The magnetic portion of the interaction (in one instance) is de-
scribed by the retardation interaction terms of Breit.js No attempt is made
to incorporate a consistent description that accounts for the large anomalous
Pauli magnetic moments of the somewhat un-Dirac like nucleons.

In chapter 4, two relativistic generalizations of the effective range

expansion are derived and studied. Although, the Breit version is of the
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15, singlet form. a singlet deuteron is hound artificially to enable quantita-
tive comparision between the two possible k? expansions (about threshold
and about the deuteron pole) and to relate the matter radius of the singlet
deuteron to the singlet-scattering length via a third related expansion and
to compare the results with an exact calculation.

In the fifth chapter, attention will be diverted to the coupled triplet
38, - 3D, channel. A local model with the alternative OPEP along with the
usual scalar-vector combination will be put to use to describe the scatter-
ing data over the elastic scattering range Tiap < 350MeV and the deuteron
properties. A study of mod;-.'l independence is made within the framework
of local dynamical interactions and Breit equation. (Model parameters are
varied but the ansatzes for scalar. vector, OPEP interaction splines at small
r are preserved.) Best fits catering to the deuteron and threshold data alone,
the scattering data over the elastic range, and overall data are presented. For
the same reasons mentioned above pertaining to the magnetic interaction,
an accurate magnetic moment for the deuteron is not obtained. A crude es-
timate of the moment is obtained by allocating the p-wave fraction of the
deuteron (from lower components of course} its equivalent nonrelativistic or-
bital contribution. Future work to incorporate the Pauli moments and the
full relativistic current operator into the calculation is a logical next step to

supplement the work of chapters 3 and 5.



Chapter 2

The 3—dimensional
Breit equation and its radial de-
composition

2.1 THE 3-DIMENSIONAL BREIT EQUATION

The Breit equation in 3 dimensions is considerably more sophisti-
cated than the 4 x 4 spinor matrix equation of the 1-body Dirac Equation.
The 2-body spinor wavefunction is expressed in the outer-product space of
the 2 individual spinor spaces which each have the usual rank 4. ¥(r},173) has
16 components. All spinor matrices become 16 x 16 and the 3-dimensional
equation is now a 16 x 16 matrix equation. There is much simplicity in the
structure however and we will strictly adhere to one of the most elegant

' choices of basis, namely that of Moseley and Rosenjsg 4. First let us con-
struct the equation in the ¥, @4, basis. The 2 free Dirac particle Hamiltonians

are simply augmented by an interaction term to yield:

{[&1 b+ Bym ] +[a; P+ Bym,) + ﬂint}‘l’(f;, r) =0 (2.1.1)

15
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Ve take the interaction to depend on the relative coordinate ¥ = (i7 - 13)
alone. ! = (F} + r})/2 is a system coordinate conjugate to total momentum
P = p, + p,. The coordinate F is conjugate to the relative momentum j =
(P, —p, )/2 which becomes —iV /2 in the coordinate representation. Neither this
choice of (7, 5) and (R, P), nor any other, can achieve the desirable separation
in the Hamiltonian between the system motion and internal motion possible
in the nonrelativistic system. It is, however, the simplest and most symmetric
choice given that one is going to work in the P = 0 frame. This is indeed a
preferred frame because (2.1.1) is not covariant.

Note that ¥ is a function of 2 space points 7, and 7, at equal time.
A single operation i — W carried a t-dependent 2-body equation to the
t-independent (2.1.1). Adherence to covariance would require the presence
of t, and t, associated with the spacetime locations of 2 particles as in the
case of the full Bethe-Salpeter equation (BSE) or an interaction purely of
a &-function nature. Equation (2.1.1) is much simpler to work with than
the BSE however and may contain some of the essential physics which de-
scribes nuclear systems elusive in the nonrelativistic formalism. For that
matter, the nonrelativistic Schrodinger equation, like the Breit equation, vi-
olates Lorentz-covariance yet has achieved great success in broad application
throughout nuclear physics. It is our hope to establish whether or not the
Breit equation can retain and improve on the low energy success of the
Schrodinger equation.

We retain H;,, as the 0-component of a 4-vector. Hence in the 3-space

formalism it behaves as a scalar under rotation.

Hine = 7?':{.’{50) + V()72 Y + T(r)01 0, + A7 3 s Tou + P(")‘Tf“/,s}
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is the most general interaction possible constrained to be local in r = |{ — 13|,
symmetric in the spin indices, derivable from the bilinear scalar combinations
of the Dirac Lagrangian and not augmented by {v/c)-correction terms as.
for example, discussed by Childers.(3g) As usual. the matrices above can be
expressed in terms of the basic hermitean matrices such as:

P=y=p Fe=-u=a ¥ =1/23"7}; =i
This set must be augmented to include the two species of electromagnetic
interactions discussed in the Charge Symmetry Breaking work: U (r) , a
Coulomb-type. interaction describing a purely electrostatic coupling; and
U,.(r} a Breit interaction to describe a magnetic interaction between Dirac
particles. It also must, unfortunately, be further augmented by two spinor
combinations which also do not derive from the Lorentz transforming set
above. This is because the OPEP interaction tail in the triplet case simply
cannot be generated using axial or the pseudoscalar coupling. The addi-
tional species which must enter the Breit equation are simply those which
are brought into the Schrédinger equation by the usual OPEP. We designate
these as: U,,(r), associated with the spin-spin part of the OPEP; and U, (r)
related to the tensor part. This is discussed in more detail in Appendix (1I1).
Now we divert to the Hermitean matrices of Mosely and Rosen in writing

our complete interaction encompassing both the dynamical models we will

encounter in the singlet and triplet work:

Hine =(8,8,)8(r) + (1 - &, - &)V(r) + (8,88, - 7 + & &)T(r)
+(&, - &, = T,T,)A(r) + (8,8,)(L, T, )P(r)

F(WWUa(r) + (D), (1) + (5,  G:)U,0(r) + (AU, (r) (2.1.2)
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where
A= (&, - i",)'(zcr, -T)
and
t= (a, -flg&', - T)
Here =%y, 4) = axa) © Ohaxa) 804 T (4uq) = Ph2x) © Laxa) (ie,=7%).ais

the particle label 1 or 2.

In the singlet !Sp work, which preceded the triplet 3S; work, the
OPEP tail was indeed generated using an axial coupling. The ultimate irre-
solvability of this coupling with the tensor part of the OPEP became clear
only after work on the triplet scattering began. Thus the singlet and triplet
cases are examined within the context of two separate dynamical models,
both within the framework of the Breit equation. Two different notations
are employed in the singlet and triplet chapters that follow. We will con-
nect them to the master H;,, when the time comes. At the least, they will
unambiguously emphasize that different models are employed.

The spinor species of H;y,; largely overlap with the rather convenient
compilation of forms listed by Leal-Ferreira and Galeao 35 Their Childers-
type interactions are traded for &, - &, and A in this work and some rescaling
occurs. We prefer the overall scale factor attached to each species to enable

the nonrelativistic reduction:
Hint — S(0)+ V(1) +Up, (N +{T(r) + A(r) + U, (r)}8, - &, + {Up, () + U, () }A

which acts on the upper (large) spinor components,
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2.2 THE EQUATIONS AND TENSORIAL SPINOR BASIS OF
MOSELEY AND ROSEN

In the P = 0 frame of reference, equation (2.1.1) becomes in coordinate

space:
{TT!(&‘ — &) Ve +3m, +8,m, + Hiny(r) — W}‘I’(F) =0 (2.2.1)

Equation (2.2.1) amounts to a system of 16 coupled equations in the 16 spinor
components of ¥. The system is of order 4 in the differential J, and its decom-
position to radial equations is discussed in many places.(s)-jag) Perhaps the
most elegant approach, which will be adopted in this work, iuvolves a change
of spinor basis made possible by the 2-body nature of the problem.(3)(40 The
components of spinor ¥ have 2 indices associated with the 2 particles. They
have the structure: ¥, 5 = ¥,4¥,5, @ bilinear in which the 2 parts respond
only to the single particle spinor matrices with the same particle label.

Now in the 1-body Dirac equation, the bilinear forms ¢u, év+¥,
oot ¥, gy5v# 1), and @754 transform as a Lorentz scalar, vector, 2nd rank ten-
sor. axial vector, and pseudoscalar respectively.(e.g., see Messiah v.2 p.908)143
Here ¢ and ¢ are independent 1-particle spinors. ( ¢ = ¢t+° = [*"]7° ). Now
Moseley|yo) points out that'[q‘:'r] transforms under boosts and rotations like
6" Q where Q is —Balo® and that therefore the bilinear combination (r.bTQ)d',
transforms like the O-th component of a 4-vector, and (waa'; )i, like the i-th
component.

One can augment the Q matrix by any of the 16 independent spinor
matrices and identify a bilinear combination of the ,4¥,s that transforms
like a component of one of the 5 basic Lorentz tensors. The bilinear combina-

tions mentioned above all have 4 terms, so a factor of 1/2 is required to fulfill
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a unitary transformation between the original product basis ¥a.3 = jatyps

and the tensorial spinor basis. The tensorial spinor basis components are as

follows.
the scalar:
I= (¥, Q8v,) (2.2.2)a
the 4-vector:
A= (0 Qu,) , A= (v Qav,) (2.2.2)b

the 2nd rank antisymmetric tensor:
B = (¢, QBc*"¥,)

whose 6 independent components can be alternatively expressed as two 3-

vectors:
F with F¥=—iB% and G with G*=1/2¢"mB™ (2.2.2)c
the 4-axial vector:
0= (¥7Qre;) . U= (v Qras,) (2.2.2)d

and the pseudoscalar:

J = (¥, QTBY,) (2.2.2)e

There is no formal superiority in choosing such a basis over any
other which does not have the tensorial character as far as the spinor is
concerned. The simplicity occurs when (2.2.1) is expressed in this basis. If
only §,V.T, 4, P are pfesent, the entire interaction spinor matrix Hin be-
comes diagonal. With the extra species in our interaction, it becomes block-
diagonal with mixings only between the various components of each 3-vector.

We define the linear combinations encountered as follows:
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Q,(r) = 8(r) + 4V (r) = 6T(r) = 44(r) + P(r) + U, (r) = U, (r) = U, (r) = 3T {r)

(2.2.3)a

Q,(r) = —S(r) + 2V (1) + 24(r) + P(r) + Uy (1) + Up, (1) = Uy (1) + Vs (1) (2235
Q,(r) = S(r) = 2V(r) = 24(r) = P(r) + Ug, (1) + Ug, (1) = U (r) = 83U, r) (2.2.3)c
Q,(r) = S(r) + 2T(r) + P(r} + Up(r) = U, () = Uy (1) + V(1) (2231
Qy(r) = =S(r) = 2T(r) = P(r) + Up(r) = Un, (r) = U (1) + U (1) (2:23)e
Q, (1) = =S(r)—2V(r) ~24(r)+ P(r)+Up, (1) + Up, (1)~ U, (1) =3V () (223)f
Q,(r) = S(r) +2V(r) + 24(r) = P(r) + Ug (1) + Up, (1) = Uy (1) + U, (r) (2.2.3)g

Q,(r) = =S(r)+4V(r)+6T(r) = 4A(r) = P(r)+ U, (r) - Ug (r)=U,(r)=3U,.(r)

(2.2.3)h
X,(r) = 2Ug,(r) — 2U,(r) (2.2.3)i
X,(r) = =2U,, (r) = 2U,(r) (2:2.3)
X,(r) = =20, () = 2U, () (2.2.3)k
X, (r) = 2U,, (r) = 2U,{r) (2.2.3)!

Within this level of generality, the Breit equation in the center of

momentum frame becomes the system:

(W= Q) +2iV-F+2MA°=0 (2.2.4)a
(W=-2,)-%0,]A+2Vx T -2uF =0 (2.2.4)b
(W - Q)A° +2MI=0 (2.2.4)c

[(W=Q,)-X,0,,]G+2VJ-2MT =0 (2.2.4)d
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[(W=Q,)— X0, JF+2iV[-2ud=0 (2.2.4)e
(W =) +2uJ =0 (2.2.4)f
[(W=0,)-%0,)0+2VxA-2MG=0 (2.2.4)g
(W= Q)T +2iV -G+2u°=0 (2.2.4)k

We have introduced the operator @, which acts on a vector quantity

f,"

O, (V)=& x (& x V) (2.2.5)a
or equivalently:

0, (V)= (& -V)E -V (2.2.5)b

Two properties which prove useful in the reduction of the dynamical equa-
tions are:

"2 F_ A i

02 V=-0,,7 (2.2.5)c

and

[a + b@xx]‘—l = [% + ?b?'__gibxx] (225)d

Equations (2.2.4)a — h differ only slightly from equation(s) (6 a-h) of Leal-
Ferreira and Galeao (3. Consistent with their notation (and Moseley and
Rosen’s) are the mass parameters: M = 1/2(m, + m,) and u =1/2(m, —m,).
There is a close correspondence between our @, ,(r) and their ¥;_g(r). They
differ only because of the absence of the Childers spinor species and the
presence of A and &, - &,. Our quantities X,,,(r) correspond to their V5,10
only as far as the Breit interaction is concerned.

To gain a handle on the angular-radial separation which we wish
to effect next, we take the action of the operator J2 which has the explicit

form: 32 = 1(&, +,)* + L - (4, +,) + L* on each of the spinor components
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in the tensorial basis. Excepting the 3-vectors. it is found that the action

of J2 and I? are equivalent. Therefore component I(7). for example. in a

state with total angular momentum /j(j + 1) can generally be expressed as:
I(F) = I(r)Y; ().

The 3-vectors can be expressed generally as a linear combination of
vector spherical harmonics within the subspace { = j-1.j,j+1. For example:
F= f_(r)?_(Q,a)+fn(r)?°(ﬂ,a)+f+(r)?+(9, o). Here we have the introduced
the definitions:

V=Y i m(Q0) (2.2.6)a
and
Yo(Q,0) = Yii;(2,0) (2.2.6)b

where the harmonics obey the orthonormality convention:
'[dQY-mJ (Q O’) Y -y l'(Q O') J’JNSQ !'6m,,m; (2.2.6)0

These defining properties of the vector harmonics correspond to the con-
ventions of A. R. Edmonds (p. 83)45 The full radial decomposition can be
effected with the accompanying concise list of properties within this refer-
ence.

The angular momentum considerations have restricted us to 16 in-
dependent radial amplitudes; one associated with each of the spinor compo-
nents I,49, J,U% and three each associated with the 3-vectors A, F.G, and
. Let us now turn to considerations of parity. The scalars w.r.t. rotation
1.4°,J.U% are to be associated with spin singlets, while the 3-vectors are
associated with spin triplets.

In the 1-body Dirac equation, the 4-component spinor # is not an

eigenstate of the parity operator # in the naive sense: ¥y = %v. The lower
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components couple to the upper components (large in the usual sense) by
an operation linear in p (or —iV). They are consequently of opposite spatial
parity. The parity of the state. in the strict sense can be obtained from the
operation:

#(BY) = +v

In the Breit equation. Hpg,eis couples the midsized components: U4 ¥4
{o €(1,2) , B € (3,4) or vice versa } (4, F,J, U0 in the tensorial basis), with
the large and doubiy small components through terms linear in p (or —iV,).

Thus the strict parity of a state is extracted by the operation:
78,3, ¥Breit) = T ¥Breit (2.2.7)

We can divide the spinor components into 2 distinct sets. The first
set, {I, 4%, {7, G}, shares the parity of ¥ as a whole. The set {J. U%, A, F} have
opposite parity. We can classify the states of ¥ by designating the usual two
classes: case-i: # = (—) and case-ii: & = (—)\i+1). We are interested only in the
particle-particle sector so there is no further complication due to the intrinsic
parities. { 1o, 'Py, 3P, 1 Dy, 3D3, etc. } spectroscopic states all belong to case-
i while { 38;, 3Py, 3P, 3Dy, 3D;, etc. } belong to case-ii. Both classes will be
subject to scrutiny in later chapters.

Parity considerations reduce the total number of allowed indepen-
dent radial amplitudes from 16 to 8 for a given parity. This can be seen as
follows. Take e.g., case-i. Both I and J spinor components must have angu-
lar dependence }}"" (Q) which under spatial inversior: acquires a sign of (=).
The J-component. however. must acquire a sign of (=)U+1) as dictated by
the dynamical equations (2.2.4). J is forced to vanish in case-i. For each of

the 3-vectors, one or two of the three radial amplitudes will also vanish. The
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spinor components are reduced to the following structure. In case-i. & = (=)’

and we have:

I=7(n™©Q) . G= 9(r)¥Ye(Q.0) (2.2.8)a. b
A=ary™(@Q) , U= u(r)Yo(Q, o) (2.2.8)c,d

-

J=0 , A=a_(r)Y_(Qo)+a,(r)¥,.(Q0) (2.28)e,f

=0 . F=f(n¥_(Qo)+ fi(r)¥. (o) (22.8)g,h

or in case-ii , # = (—){+1) applies (as in the deuteron bound state) and we

can write:
I=0 , G=g.(nNY_(Q0)+g.(r)¥, (o) (229)a,b
A2=0 , T=u(r)¥_(Q0)+u(r)¥,(Q0) (229)c,d
J=JrYM(Q . A=ar¥(@0) (2.2.9)e, f
U= u(r)¥ (@), F=f(r)¥e(Q0) (2.2.9)g, 1

For each case, two of the eight dynamical equations (2.2.4)a — h will be sat-
isfied trivially. Equations (2.2.4)f,h in case-i and (2.2.4)a,c in case-i vanish

identically yielding no dynamical information.

2.3 THE GENERAL # = (-} DECOMPOSITION

There are two motivations for reducing the Breit equation to a set
of 2 coupled 2nd order differential radial equations. One is simply to express
the physics concisely and in a way conducive to utilizing old standard tech-
niques and software built around the Schﬁidinger equation. The other is to
relate the two formalisms in the limits of low energy, small interactions, or

both. This motivation is more concerned with physical insight. We wish to
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preserve physics well described in the conventional picture, while looking for
extensions to that picture which rein in some anomalous low energy features
(44]-[51) Which are only described in a purely nonrelativistic framework by
introducing nonlocal interactions and/or finite size effects.

A priori, there is no reason why the 8 radial equations obtained sim-
ply by operating on each of equations (2.2.4)a — h with [ dQ?}"?’ 7] or
JdaY;™ ()] | cannot be directly numerically solved for the 8 radial am-
plitudes given the usual boundary conditions. Four of the amplitudes can be
obtained in a purely algebraic manner in terms of the others and four first
order differential equations remain. Even in recasting the system in terms
of two coupled 2nd-order equations in terms of two amplitudes.one is faced
with a variety of choices. In case-i with # = ()’ one can choose eny pair
of radial amplitudes with the exceptions of pairs {Z(r),a(r)} and {u(r),g(r)}
in (2.2.8)a — h to which the system will reduce. The two resulting 2nd or-
der equations will be coupled. Such a system has come to be known as a
“Schrédinger-like equation” .zq) 41]

~ Any such choice will concur with the first motivation. In regard to
the second motivation, the choice of decomposition can dramatically af-
fect the Schrodinger-“likeness” of the equations. In the non-relativistic limit,
W =2M+E (€< 2M) and all interactions are small. We anticipate that
the dynamics of the upper spinor components reduces to the Schrédinger
equation exactly after O(£/M)*terms are dropped. We therefore surmise
that the spinor cbmponents (in the tensorial basis) I, A°, U, G will bear a
more faithful resemblance to the Schrédinger-wavefunction of ordinary quan-

tum mechanics.
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Let us begin with the task of reduction by doing as much arithmetic
as possible before decomposing (2.2.4)a—h into the radial and angular sectors.
Since. in case-i we will not pursue any analysis of the (n.p) system. we will
invoke the lone simplification g = (my — m2)/2 = 0. This is a minor loss
of generality but it grants us much less algebra. In essence, it decouples
completely the | j,j,s = 1,m;} and | j,j, s = 0, m;} channels.

Recalling that in case-i, J(F) = U%#) = 0, from (2.2.4)c and d we

obtain:
- 2M ) .
.—l°(r) = —.W_—_me(r) (.).31)(1
and
_— oM X, (r) .
GO =+ gt o am o=V @S

We can also eliminate the spinor-vectors A(7) and F(7) using (2.2.4)b and e.

o2 X,(r) e o
A(F) = W= Q,(r)){l + T ACEYAC) «x 1V x U(F) (2.3.1)e
and
= _ 21‘ 11)5(1‘) - el oy
F(F)= = Q,(r)){l + AT Xs(r))(‘)“}VI(r) (2.3.1)d

We obtain the two now uncoupled 2nd order equations in {I(¥), U(7)}
from the only remaining dynamical equations (2.2.4)a and g. They become
respectively:

= 1 A, (r)
v. 1+ 2
{(W - Qz.(r))( (W~ Q(r) + &,(r))

(W = Q,(r)) M? o
e (r))}I(r) =0 (2.3.2)a

O, )VI(7)}

+{
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and

S 1 L (r)

~ ¥ x {(W —am T o g +A‘,(r))0’"‘)V x U(R}
{ (-2l _ w_
1 (W= 2(r)

X(r) APX,(r)

A +(W—Q‘(f‘))(“"—Q‘(r).}.,v‘(,.)))oxx YH(F) =0

(2.3.2)b

As will be shown shortly, the above two equations yield two inde-
pendent radial equations which are quite similar to the Schrédinger radial
equations. Equations (2.3.2)a and b constitute our first Schrédinger-like equa-
tions. Note that the decomposition could also take place by inverting (2.3.1)a
and b and reducing to equations in terms of spinor components A%(F) and

G(7) respectively. These take the form:

-5, 1 X (r) > ar oM o
Vwmemtt woam e Vg et Cl

and
Z% x { (14 A, (r) O 3% x [ (W = Q,(r) = X0, )EP)}
oot oo m g Y * = Q)= O

{ (W= QN0V -0, _ M,
8M 2

= (35%((“’ = Q, (X (r) + (W = Qr)X,(r) + X, ()X, (1)) D, }G(F) =0

-+

(2.3.3)b

These two separate decompositions are special in the sense that the
spinor pairs {I(7), ()} and {A%(7), G(7)} in the # = (-)’ case have the same

structure in the p, © p, spinor space as the # = (-)U+!) case U(F) and G(F)
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components respectively. ( 7, ,-spinor space is p, ; 26, ;. All of our two-body
spinors are built in the space p, S0, 3p, S0,.) Inthe & = (— )b+ case, T'(F)
and G() have two radial amplitudes associated with each of them. We shall
find two very natural decompositions in that case involving isolated U (F) or
isolated G(F). |

One could select a decomposition that does not involve upper spinor
components, choosing A(F) or F() but the nonrelativistic reduction does not

correspond to the Schrodinger equation. The 2nd order (differential) equation

for A is for example:

. (W = ()
Y {(w—o W —o,m o)

(W — QN - Qu(r) + B DG H M) o 1e 30
- o) (7 = 0.0 £ Z N = 0,07 & Byer) + B el ¥ X AP
+ T = Q1) - 4,0, i) =0 (23.4)

This can be decoupled into two radial equations for a_(r) and a,(r). In the

limit of low energy and all interactions vanishing we find that

i) — -%fﬁ x T(F) —» O(k/M)T(F) — 0.

The vanishing spinor component A(7) and equation (2.3.4) offer us little when
the subject of nonrelativistic correspondence is central to our analysis.
There is one additional subtlety here that distinguishes the # = (—)’
case from the # = (=){+1) case. There is a certain interchangability between
the spinor components I(F),4°(F), or in the one triplet scenario U(7),G(F)
and the pure large spinor component: ¥, 5 (with a,3 runniﬁg over 1,2 only)

in that although slightly different dynamical equations are obeyed by each,
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they all possess the identical asymptotic properties. The phase shift must be
common to all as the relations (2.3.1)a, b reduce to mere constant dependen-
cies. This does not hold in the # = {—){+1) case between the two choices of

decomposition there: T'(F) and G(7).

2.4 THE 7 =(-)! SPIN-SINGLET RADIAL EQUATION

To proceed from (2.3.2)a and b to radial equations is a small step.
We will only encounter the case-i situation twice in ensuing chapters and
both instances will involve the particularly simple !5y state. In the 15, state,
equations (2.2.6)a reduces to: I{F) = Z(r)¥5(Q?) and of course there is no triplet
configuration 3Sp with this L, J combination.

From Edmonds p(84)3 we have: VI(7) = —£I(r)¥3,(?,0). Equa-
tion (2.3.2)b vanishes identically in the *So configuration. The general spin-

singlet radial equation generated from (2.3.2)a reads:

I'(r) + {————(WQ olr )( )
G+ 3G+ 1DA(0)
e S CETAGETAT)
1(("V Qa("))(w’ Q‘(r)—-h\/fz)(IV Qs(r)}z()
4 (W - Qa(r))

(2.4.1)

The presence of the dynamical quantity in the Z’(r)-term above, reflects an
“apparent” momentum dependent interaction term or equivalently a non-
local interaction if we were to strictly identify (2.4.1) with the Schrodinger
radial equation for the 1S, state. This gives us some hint of the thrust of the
arguments we will encounter in the forthcoming “physics” chapters. Alter-

natively, the radial equation for S, could have emanated from (2.3.3)b rather
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than (2.3.3)a. G like [ vanishes and we ultimately obtain for A%F) = a(r)IF(R?)

o'(r) Q'(r)
TG MUET G

a”(r) + {% +2

JjU+1 JU+ LX) (W - @Q,(r) , 1A2
- tam o am T 1 A ey
Q'(r) A0 o (N (M) A
oam T oam) TWoamw —am T v - g )
=0 (2.4.2)

2.5 THE GENERAL # = (-)¥+) DECOMPOSITION

The Breit equation possesses much symmetry. Glancing at the dy-
namical equations: (2.2.4)a — h, one may notice that tensorial spinor compo-
nents J, U®. 3, and F occur symmetrically w.r.t. components I,4°, 7, and
G respectively if one exchanges p «— M, Q, +— Q,, @, ; — &, 45,
Q, — Q,, and Q,, X, +— @, X,. 13q) With these exchanges, we could trans-
form (2.3.2)a and b into two equations in components J{F) and A(F). These
are mid-sized components in the particle-particle sector, however, so we now
look for a decomposition to the non-zero components U(7) or G(#) which
contain the f,raditional large component.

With. this, the case-ii decomposition will be quite similar to tie cou-
pled spin triplet state in the nonrelativistic Schrddinger equation. The mass
difference between the neutron and proton is preserved in the mass param-
eter u which is small but non-zero. We introduce the ".llowing definitions

which entirely contain the u-dependence:
W,(r)=W - Q,(r)

Wy(r) =W - Q,(r) + X (r)
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2

4
W,(r) = W = Q,(r) + () - W#(r)

W, (r) = IV - Q(r)

W, (r) =W = Q,(r)
4p?
ry= — —-——
W,ir)s W - Q,(r) W, (1)
Proceeding from equation set (2.2.4) with (2.2.9)a—h in mind, we

obtain from (2.2.4)e and f:

UO(F) = —W%J(F) (2.5.1)a
and
() = +Mf’;r).1(r“) (2.5.1)b

T = Aldy (2.5.1)c
and
. Y S
= F(F 2.5.1)d
A(F) (W,(r))v x U(F) ( )

We can now choose to eliminate U(F) or G(7) in terms of the other. We will
show both decompositions for completeness.

Equation (2.2.4)g yields G in terms of I:

Wi (r) = 2, (10, + 0 .
53 YO(F )— {W( ) x U(¥)} (2.5.2)a

or equation (2.2.4)d yields I in terms of G:

i) = (2ol _zf,_;(r)o"* }G() + %ﬁ{ﬁv" &) (2.5.2)b
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If we choose (2.5.2)a to eliminate G, then (2.2.4)d becomes our Schrodinger-like

equation:
1 = P - Frfoe > = 1 - -;, -
Wa(r)v AW (1) = (N0, ) TEN T = {W(r) = K1) 0,V X [W,(r)v x U(M)] }
+ 50 -TO,J}Em =0 (253)a

and alternatively substituting (2.5.2)b into (2.2.4)g gives:

(W, (r) - x,(r)c')“)fr[W:I(T)ﬁ B} - T x {w—:(r—v‘r x [(Wa(r) = X1 O, )G}

)
v IS0)-T0,]}8M =0 @53

where we have introduced: §(r) = {W,(r)W,(r)—4M?} and T(r) = W, (r)A;(r)+
W, (r)&,(r) + X, (r) Ao (r)
When all interactions vanish,
2 2

4 4
WQ(I‘)-—FW——{;; ’ W,(r)-aW—-%-.

W,(r)—» W y Wi(r)— W

Equation (2.5.3)a reverts to the free wave equation:

- 4M2)(W?
4?2

—V20(7) + {(W2 = ) Y7 =0 (2.5.4)

We identify the quantity in {  } with the relativistic *. For W — 2M +£

with £ € M we get:
M2 [.12

2
K — =5

£+ O£

where Mﬁﬂ is simply 2M, _,. Equation (2.5.4) is also the free wave equation
limit of (2.5.3)b with U replaced by G. With small interactions, at low energy;,
G(7) and U(F) which differ only linearly in the doubly-small spinor component

become indistinguishable from one another.
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2.6 THE GENERAL # = (-)¥+!) BREIT RADIAL EQUATIONS

We can now proceed to decompose (2.5.3)a and b into their radial
form. Acting on these expressions from the left with J dQY"“’ [ 7] yields
nontrivial equations for the cases: £ = j £ 1 only. We then arrange the two
coupled radial equations in such a way that the second derivative of a lone
radial amplitude is isolated in each of them with a coefficient of 1. Equation

(2.5.3)a which involves the tenserial spinor:

-

U(r) (r)Y (Q,0) + uy(r) Y.(D,0)
reduces to a set of coupled equations, the first of which is:

4 d
’él"'zzx"' Ar S
(A-1)A=3) AZ_1  A2—1 _ Ab b by

1wl o+ {§+

+{- 17 +t At 82 @+——+- +3-+c1——+(1——)c3}u
+oo0 o+ M-Z+B 2”’}+
+ A{- 2(cg ;- c3) + 4y ib: + '—‘;ga f:; 4Ar2 Ay, = 0 (26.1)a
'The second equation has the structure:
1 u + {% + jTA

+ {_(A+14)£2A+3) + Yu,

+ 0« o+ A{- d—;- + .

+ A{- ?_(csz_) + .t =0 (2..6.1)13

and is fully generated from the first by making three simple interchanges:
i) A = A, i) A — A, and #i.) uy — uz. The r-dependence has been

“suppressed above for brevity. All quantities encountered in (2.6.1)a and b
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excepting A and A have a radial dependence. The notation in these radial

equations is as follows: There are six dimensionless quantities defined by:

p=2- (mEvWJ :’_}3) - (mm) (2.6.2)b

93 = 1{%% (x’%’ it;)} (2.6.2)c

g = - (—%) + é(mwr) %T}W“L% (2.6.2)d
0 a-%(%) +';'(w:vv:) - %-,;‘7’7 (2.6.2)e
E%(W—(V-VW—V%X—)H}!(%% —é;f;? —% (2.6.2)f

The quantities b; and d; have dimension length~! (or equivalently

energy in our natural units).

1 W, W+ X! WIW, (W, + X, )W
— A 1 2 I__T " 8 2.6.2
=il Tw W ey T oww, 1 6%
__1 Wé W _W
bz = -—EWz' + WT - WB (262)’!
3, W WL W X OW'X WIW,
b=l-ww tw, T {w Wowr ~ woom, 1 ay) 282
1 W oW X W WIW, X, W,
he=if o Wit W ? 2.6.2)j
T, T W e Tyt @O
WOW W
=olVe W 6.2)k
h=2 "W, Tw, | (2.6:2)
The quantities ¢; have dimension length~? and are defined by:
W, T W
1=3 2 2.6.2)1
( t W) I+ A (262)
_1 W wew, ‘
3 = E(WT- - W-, W. ) (2.6.2)m

In the later chapters dealing with the deuteron and 35, -scattering prob-

lem, equations (2.6.1)a and b completely determine the dynamics and will
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be utilized for the numerical work associated with the exact Breit equation
solution. The equations associated with G(F) = g_(rnY_(Qo)+ g+(r)‘17+(9,or)
are therefore redundant for this purpose. However they. together with (2.6.1)a
and b, can offer insight into the pure large spinor component radial equations.
It is the large component: L={G+ U} V2 = _(ryY_(Q0) + f+(r)‘f’+(ﬂ,a),
and its associated radial amplitudes which are relevant in the phase-shift
analysis. Each of G and & contains a doubly small spinor component con-
tribution which asymptotically is proportional to (7, -k)(&, - k)£. Thus, part
of the ¢ = j — 1{j + 1)-wave radial amplitude associated with e.g. g_(g.) is a
kinematic piece associated with the pure large radial component £,(£_).

We get expressions quite similar to (2.6.1)a and b:

2 e e  AZ-1
" R T . 1A
1 ¢ o+ {r+ >~ 3xt Ay 22}gl

A-1)A-3) A2-1  A?-1 Al hy _h
(- 4).-(2 )+8Ar2p1+ R Rk b m+ +(1+“‘)“3}9—

Ar
2z
poog o+ A{-§+-r-——2-}9+
2(n2+n3)+ +2h3 Aps | P4

¥ M Ar 2 2 4_\,.2 AT = 0 (2.6.3)a
and
" 2 .
Lo + {; * e 1A
A+1)(A+3
- (_"“_4)_,'(2_"_) + e e
" €7 ,
+ 0 o + Ay - K + ves }g_
A{2(n2: n3) + N o - o 263

Once again, (2.6.3)b is fully generated from (2.6.3)a by interchanging g_ and

g, amplitudes, (and their derivatives) and negating both A and A. The six
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dimensionless dynamical quantities here are:

n= 3(%1(%—:;—;) +3(W ‘x’) + 71}; w- -6 (2.6.4)a
pzsz—(ﬁ:%’if’;)—(’;‘\;ﬁ) (=) (2.6.4)b
. NUICES e
= — (W—(Ww—j_—:};:—)) %(%)4—% (2.6.4)d
LW, W, +45), 1 (W + X)W, X,

; ) O 0
2 (Ws(w{ + (1’ ) ‘_( W W, ) 9 W4 + ‘1,‘ (-64)8

1W,W + &), T W AW, 1 1
4(W3(W‘+A")) 3 W, W, V¥ Iway 3 26df

The quantities e; and h; (with dimension length~!}) have the form:

ww, WEXIW, W W

— 9
{w W, +A’) o, T woam w8
o w +x W
= _._{ } W W W (2.6.4)h
{ 2w' WIW, (WX,
WAL TR W,
W: + 1” wl .
+4w,+(1; +W ey 3—} (2.6.4)i
1w, e, W W ,.
el - sy T W, W R, T W, w264
WX W W
= R - (2.6.4)k

Quantities of dimension length~? encountered are:

_ .8 W, W, T W, B

ni =‘h8(w :l:——(w +A’))+8_"_(w T x) (= xe1) (2.6.4)1
L WIS W WL+

n= W m W WA, +X)} (264m

For the sake of the numerical solution of {2.6.1)a and b we perform

the usual trick of taking an auxiliary set of radial amplitudes:

vz(r) = rug(r) (2.6.5)
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which both vanish at the origin in the case of a regular (physical) solution.

This then allows (2.6.1)a.b to be recast as:

d] (1'2 Az

'” il I
e F 2 "It Tar L
(A-1 A—3) A2-1.¢q A% -1 Aby  We—-dy  2Wz+d (c2 -+ c3)
+{- 4)r(2 Ar? (__ o)+ —gz r1+ 22r - 2Ar2+(cl+c3)_—2‘TS_}U'
P A(-ZaBoafh
2(ca+ca) |, by (2b:s+d2) —KQ:s (94-!}1) —q1 + 8y2
+ A{ A + r + Ar + r + r2 dA7? }b'
= 0 (2.6.6)a
and
d
1 o+ 5 o+
(A 4+ 1)(A+3)
+ {—“——F—'— + }U+
+ 0o v + A{—% + }ol
+ A{-z(czl%“—) + . oo = 0 (266)b

Equations {2.6.6)a and b are in the form in which they are encoded in
the FORTRAN code brtrip.f and all related routines which are used in the
(38,)-(3Dy) nucleon-nucleon scattering and deuteron related calculations of

chapters 8 and 9 respectively.

2.7 MATRIX ELEMENTS

The focus of this chapter up to now wasl on the systematic casting of
the Breit equation into forms which bear much similarity to the Schrodinger
equation in its 3-dimensional (and 3-dimensional-radial) forms. This enables
us to take advantage of existing algorithms to obtain solutions to the Breit

equation . The only apparent complication is that we must maintain a more
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sophisticated definition of the matrix elements which in the tensorial basis

is:
(B|O|T) =
(O O ... o O] e
O.-P I O__‘o Al [N 0_40 J AIJ
: . A
- - e o 10
[I- 4 3 v~ O F & 7] LL—,
F
. G
L Oyt O d - I
(2.7.1)

© necessarily leaves rotational scalars and vectors unmixed. This ma-
trix element involves rotational scalars in the form: (Io|OnslA%) and rota-
tional vectors in the form: (ds - |O.s|Fp). With this, we are finished with the
preliminary mathematical details associated with the 3-dimensional Breit
equation ’s decomposition. In the next chapters we will turn to the interesting

physics which it contains.

— |







Chapter 3

Nonrelativistic
charge symmetry breaking of
relativistic origin

3.1 SPECIFICS OF THE MODEL USED FOR THE CHARGE-
ASYMMETRY PROBLEM

In the last chapter. the formalism for the Breit equation was devel-
oped. The variety of interaction types included in the development of the
various systems of equations encompassed the physical models of this and
all following chapters. Any one of the models. taken alone, obeys a much
simpler dynamics than the apparent complexity of the last chapter would
indicate.

In the following section. which is a reprint of a paper appearing in the
Journal of Physics G: Nuclear and Particle Physics, we examine the trouble-
some problem of the asymmetry between the 15, nucleon-nucleon scattering
lengths of the n—n and p— p‘systems (with isospin: 1). The two systems have
very different dynamics due to the obvious Coulomb repulsion in the p—p

system, but the nuclear component of the dynamics is believed to be largely

41
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the same. The extent to which it may not be is a subject of some debate.
For a broad discussion. see Henlev in reference (55 for example.

Chronologically. the general algebra of the preceeding chapter was
done after this work on the Breit singlet state. The change of notation
between the last chapter and the published paper of the next section was
mainly to enable the model’s simplicity to carry over into the notation of
a stand-alone paper. It is necessary, therefore. to provide some transitional
commentary to relate the two.

We consider a Breit equation Hamiltonian (2.1.2), in which the nu-
clear portion is comprised of a large attractive scalar interaction S(r), a large
repulsive vector interaction V(r). both of which are taken to be Gaussian. and
an axial version of the one-pion-exchange-potential (OPEP) A(r) = —1Va(r).
This Vi(r) is chosen such that it is regularized at the origin and reproduces
the singlet state OPEP tail asymptotically.

Two descriptions of the electromagnetic interaction are to be em-
ployed. In the first instance. (form I), a purely electrostatic interaction be-
tween the two particles is present, Ug(r) = V.(r) where V,(r) asymptoti-
cally is the Coulomb interaction. U, (r) fulfills this role alone. In the second
case, (form II), we wish to treat the magnetic part of the interaction a lit-
tle less lightly. We want the electromagnetic part of the Hamiltonian to be:
Ve (M = {1—-3ley oy + (ﬁl'—':%ﬂ'ﬂ]}Vc(r) This Hamiltonian does not include

Pauli-type interactions coupling to the anomalous magnetic moments so it
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is still a simplified model. This combination can be generated by the assign-

mMents:

. l..
U r) — +.'2"c(")

. . 1..
Vir) — VNuclear + :;‘ c-(")
- 1_.
Ug (r) — _'.;"c{")
The nonrelativistic reduction of equation (2.1.2) in the singlet case is

of course: S(r) + V(r) + Vx(r) + ¥V, (r} for either of the two electromagnetic

prescriptions applied between the two protons.
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3.2
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Charge asymmetry in non-relativistic nucleon—nucleon
potential derived from charge symmetric relativistic
interaction
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Canada L3S 4M1

+ Institute of Computer Sciences, Kyoto Sangyo University, Kyoto 603, Japan
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Abstract. Consider a relativistic model of the nucleon-nucicon {NN) system subject to
an interaction which is a sum of a charge symmetric NN interaction and the Coulomb
potential. When the model is rewritten in the form of a non-relativistic model. the
resulting effective non-relativistic potential obtains a charge-symmetry-breaking (csB)
component. We illustrate this by means of the Breit cquation. If the relativistic NN
interaction contains a combination of 2 strongly attractive Lorentz scalar and a strongly
tepulsive vector. the non-relativistic potential obtains a large 5B component. When the
magnetic interaction is included, however, the csB effect may be reduced. This and
other aspects, in which relativistic and non-relativistic models may exhibit significant
differences, are discussed.

1. Introduction

It is believed that the nuclear interaction itself is charge independent (and charge
symmetric), and electromagnetic effects are responsible for any observed charge
dependence. A sensitive test of charge dependence of the nucleon—nucleon {NN)
interaction is provided by measurements of the low-energy scattering parameters in
the 'S state, in particular the scattering lengths. In this paper, we focus on charge
symmetry and compare the scattering length for proton—proton (pp) with that for
neutron-neutron (nn).

Let us quote relevant experimental data and the analysis of the 'S scattering
lengths. The experimental value of the nn scattering length a,,, determined from the
reaction #~d— ynn, is [1]

Q= -185£04fm. (1.1)

The a,, has also been extracted from the reactions nd— nnp, dt—an He, tt—
nn *He. and n *Be—» nn *Be. These data lead to a value of a,, about 2 fm smaller in
magnitude than that of (1.1) [2]. For example, @n,=—16.5+1.0fm has been
deduced from n *Be— n *Be by Bodek er al. {3]. The discrepancy between the value
based on x~d— ynn and those based on nd—>nnp, etc, has been a subject of
controversy. However, we take the value of a,q of (1.1) rather than that of [31. Slaus
et al argue that the discrepancy is due to certain three-body forces acting in the final

0954-3899/92/061039 + 11 $04.50 © 1992 IOP Publishing Ltd 1039
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states of nd— nnp. etc. and recommend g, = —18.5 £ 0.3 fm: see section 6 of 12}-
There is another reason for choosing (1.1): this is concerned with the Coulomb
energy of *He as stated at the end of the next paragraph.

For the pp system. we have to distinguish the ‘nuclear’ scattering length and
the "Coulomb-corrected” or *non-Coulombic’ scattering length [4]. Let us denote the
former by a,, and the latter by a,. The a,, is the pp scattering length due to
the nuclear interaction in the presence of the Coulomb potential e*/r. The ag; is the
scattering length in the absence of the Coulomb potential. The experimental value is
a,, = —7.823 £ 0.011 fm; see, e.g. [5]. The a,, cannot be measured directly; rather it
is estimated as follows. .\ssume a ‘non-Coulombic potential’ for pp. Ve, Solve the
Schrodinger equation for pp scattering with the (total) potential Vyc + e*/r. Adjust
Vue such that the experimental phaseshift. in particular @pp = —7.823 fm, is fitted.
Then. switch off the Coulomb potential. i.e.. use Vyc alone. and solve the
Schrodinger equation again to determine the scattering length; this is a,,. A widely
accepted value of a is [6,7]

a,,= —17.1£0.2 fm. (1.2)

Actually the above value of a,, was obtained by removing the efiects of e*/r and
vacuum polarization. For the degree of accuracy which we are concerned with in this
paper, the vacuum polarization effect is unimportant. Combining (1.1) and (1.2), we
obtain

Aa=ap,—dp,=1.420.6 fm. (1.3)

If the point Coulomb potential e*/r were the only difference between the potentials
for pp and nn, then one would find that Ve of pp is equal to V,,, and hence
Qpp = Qqy. Here V,, is the nn potential. The Aa of (1.3) implies that Wyc is less
attractive than V,,; charge symmetry is broken. This feature is consistent with the
results of the binding energy calculations of the mirror nuclei *H and *He. The
calculated Coulomb energy of *He is about 10% smaller than the empirical mass
difference between *He and *H. This discrepancy can be removed by assuming a
charge-symmetry-breaking (csB) component in the NN interaction which is consistent
with (1.3) [7, 8].

Various csB effects, which are responsible for Vyc # V,,,, have been examined so
far. They can be classified into two types: direct and indirect (4]. The direct effects
include those of the vacuum polarization, the magnetic interaction and the finite size
of the nucleon. These are characterized by no meson exchange between nucleons.
The indirect effects include any process in which the electromagnetic interaction
modifies the nuclear force. Those considered so far include the p—w mixing and the
y—x exchange.

The main purpose of this paper is to examine yet another type of the csB effect
which seems to have escaped attention so far. This effect emerges when a relativistic
model is rewritten in the form of an effective non-relativistic model. Recall that the
analysis of the 'S scattering lengths in relation to charge symmetry has been done
always within the framework of non-relativistic quantum mechanics using the
Schrodinger equation. As noted above, in determining a,, which can be compared
with a,,, the Coulomb effect in pp has been removed by using the non-relativistic
Schradinger equation. We emphasize this point because the definition of ‘css’ does
depend on the framework in which one chooses to work. Throughout this paper, we
are interested in csB effects which appear in the non-relativistic framework.
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One usually expects that relativistic effects are negligible in low energy quantities;
the scattering length is the scattering amplitude for zero kinetic energy. When the
relativistic interaction contains a combination of a strongly attractive Lorentz scalar
S and a strongly repulsive vector V. however, relativistic effects can be appreciable
even at very low energies [9]. For the model of the relativistic NN system. let us
consider the Breit equation (two-body Dirac equation) with an instantaneous
potential; there are many references regarding the Breit equation which can be
traced through [10, 11]. We are aware of some shortcomings of the Breit equation,
but the equation will serve the purpose of illustrating some remarkable differences
that can arise between relativistic and non-relativistic approaches. For the interac-
tion we assume that it is a sum of charge-symmetric nuclear part and an
electromagnetic (M) potential Vgy. The Vem acts only in the pp system. For the
nuclear part, which we call the NN interaction. we assume that it contains a
combination of S and V as we mentioned above. For Ve we consider two forms.
One is just the Coulomb potential Vc. while the other consists of V¢ and the so
called Breit potential which takes care of the magnetic interaction. The Breit
equation can be reduced to a Schrodinger-like equation without any approximation.
The interaction W that emerges in the latter equation then exhibits a csa effect. This
is in the sense that W, — Vey # Wan where W,, and W,, are the W for pp and nn,
respectively. This csa effect can be significant if the S and V of the NN interaction are
very strong as we assume. A similar aspect of the nucleon in a relativistic shell
model has been discussed recently [12].

Besides the novel css effect outlined above, the effect due to the finite size of the
proton (one of the direct effects) becomes more important in our relativistic model.
The proton of radius =0.9 fm can hardly be considered as a point. When this finite
size is taken into account, the pp Coulomb potential is suppressed as compared with
¢*/r. On the other hand, the effective potential W of our mode! is much softer than
the NN potentials in the conventional non-relativistic models. Thus the nucleons can
approach each other more easily. As a consequence the finite-size effect is
enhanced.

In section 2, we set up a model of the relativistic interaction (for the Breit
equation). Then we reduce the Breit equation for the 'S state to a Schrodinger-like
equation. In section 3, we examine the css effect on the scattering lengths, The
results are discussed in section 4.

2. Model

We start with the Breit equation
[(@— @)+ p + By + Boym + Uly = Ey | 2.1)

where suffixes 1 and 2 refer to the two nucleons. The units are such that ¢ = h=1,
and m =939 MeV is the nucleon mass. We have taken the centre-of-mass system;
p=p,—p- is the relative momentum. The potential U consists of nuclear and
Coulomb parts. The nuclear part consists of Lorentz scalar S(r), vector V(r), and
pseudovector V,(r);

U=gB:S(r)+{1—a,- a)V(r)- Yo, 0.- [ Ta}Va(r) + Veul(r) (2.2)

where r = |r, — n|, ' = —ia,a,a; [10].
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For V,.(r). we take the following cut-off Yukawa potential,

V. (r) = =g {exp(—ur) — exp(—Agr)]/r, (2.3)

where g* = 0.08 is the usual pion—nucleon coupling constant and u = 135 MeV is the
mass of the neutral pion x’. For the cut-off parameter Aq, we try A, =m/2. This
cut-off is ad hoc. but we need some cut-off so that V,(r) does not become too strong
at short distances. Otherwise the effective non-relativistic potential W that we obtain
later may develop an unwelcome singularity (not in the 'S state but in some other
states). We also tried A, =m, but without any significant difference in the final
results. We will set up U, in the spirit of phenomenology, such that the empirical s
phaseshift is well fitted. When we change the value for any of the parameters
involved in U, it is of course understood that other parameters are readjusted such
that the phaseshift fit is restored. In any case the short-range part of the
one-pion-exchange potential (opep) is not known. We take the attitude that, apart
from the long-range part of the oPEP which is represented by V,(r) of (2.3), we
determine the NN interaction U phenomenologically. For the rest of the interaction,
S(r) and V(r), we assume the Gaussian form;

S(r) = —g, exp| - (r/a,)’] (2.4)
V(r) =g, exp[ — (r/a,)’). (2.5)

We have also tried a cut-off Yukawa form for S(r) and V(r), but again with no
essential difference in the final results. We prefer the Gaussian form rather than the
cut-off Yukawa form. This is because we found that, although the two forms yield
equally good phaseshift fits, the former requires fewer parameters. This aspect is
related to a complication with S(r) and V(r) of the cut-off Yukawa form, which we
will explain towards the end of this section, We will determine the parameters in §
and V in section 3.
For potential Vgu(r) of (2.2), we consider two forms:

Vel(r)
{1-4[a;: a2+ (@) F)(az" )/} Velry

We refer to the above two as forms I and II, respectively. For point protons, Ve(r) is
of course e2/r. However, we take the Vc(r) for finite-size protons, given in the next
paragraph. The Vgy of form II can be derived from the one-photon-exchange
process in a certain approximation [11]. The reason why it contains the of that
particular form rather than (1 — @, * @) can be traced to the transverse nature of the
photon. The part that contains the & is often called the Breit potential in the
literature. This part represents the magnetic interaction associated with the (normal)
magnetic moment of the proton. The anomalous magnetic moment is not included
here.
For V(r) we take

Veml(r) = { (2.6)

Ve(r)= (2::2)"ezf dgFX(q*)e" "Iq* (2.7)

where F(g?) is an appropriate form factor which takes account of the finite size of
the proton. This Vc(r) is more realistic than e/r, but there is another reason for

-

taking this instead of e*/r which we will explain at the end of this section. For F (g®)
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let us assume the standard dipole form (see, e.g. [13]),
Fg®y = 1/[1 +(q/0)T A?=0.71GeV?. (2.8)

Then Vc(r) becomes

Velr) ="'; [(1 —e™) —‘%;—’ (11 +3s +%)] 2.9)

where s = Ar. ‘

Having decided about the form of the interaction, we now reduce (2.1) to a
Schradinger-like equation. The two-body wavefunction w of (2.1) has 16 com-
ponents. According to Moseley and Rosen [10}, however, the components that are
relevant to the 'S state are the following:

I=£(r) A=) F =fr)rir. (2.10)

The interaction U is diagonal with respect to the above components, and (2.1) can
be reduced to

(E - U)fi + 2i(r£:+ 3)’-:2 +2mfo=0 (2.11)
(E - Upfy +2mfy=0 (2.12)
(E-Ufs+2i :—’:j =0, (2.13)
The U, are given by
Uy=S+4V + 4V, + (;)Vc (2.14)
U,=s—2v+§1{,+(_11)vc (2.15)
1
Uy=—S+ ( 1)vc (2.16)

where the upper and lower elements of the column matrices correspond to forms
I and II of (2.6), respectively. It is understood that V=0 for nn.
It is straightforward to eliminate f; and f; in favour of f,. If we define u(r) by

u{r)y=(E - Us)“m'fl (2.17)
we arrive at
1 d*u E*—am®
o + Wu= am u (2.18)

where E is the relativistic energy inciuding the rest mass 2m. The effective potential
W is defined by
E-U am? 1 U, U U E*—am*
B e i
am ( BT T mE-U) i E~T T 4m
(2.19)

——

T2
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Figure L. The 'S phaseshift in degrees versus the centre of mass energy in MeV, lor
three sets of values of the parameters (a, = 4.4/m, 4.6/m, and 4.8/m. with a, kept
constant at 3.0/m) listed in table 1. They all go through zero at E=2,123m
(centre-of-mass kinetic energy of 116 MeV)., The crosses arc for the empirical
phaseshift.

where U, = dU,/dr and U} = d*Us/dr*. Note that W is a function ofrand E. If the U
were much smaller in magnitude than m and if E =m, then W would approximately
be given by :

W=(U+WU)2=S+V+V, + V. {2.20)

Let us add that we could have taken the pseudoscalar interaction for V, in (2.2). We
opted for the pseudovector interaction because we found its non-relativistic
reduction more straightforward.

At this point let us explain the complication with the § and V of the cut-off
Yukawa form which we mentioned after equation (2.5). 1f we adopt the cut-off
Yukawa form like (2.3) for S(r) and V{(r), $'(r) and V'(r) become non-zero at
r = 0. Then, because of the term with U3/r, W of (2.19) behaves like 1/r around the
origin. We found that such § and V do not fit the phaseshift very well. By further
reguiarizing the potential we were able to obtain a fit as good as that obtained with
the Gaussian form. Obviously such a regularized potential needs more parameters
than those for the Gaussian form. We find it quite remarkable that the simple
Gaussian form that we have chosen works so well (as shown in figure 1). The V, of
(2.3) does not lead to such a problem, because Us does not contain V.

If we were working entirely in the usual non-relativistic way, the W for pp and
nn, W,, and W,,, would simply be related by W, = W, + Ve. This is not the case for
W of (2.19), which is not linear with respect to Vc. In order to have a feel for this,
let us expand W for E = 2m in powers of U/m. Then we find

S=-3V ——iV,,)]
=S+ V+iV;

W Wi+ Ve 145

Y- (2.21)
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where we have ignored terms with the derivatives of the U. The presence of the
Coulomb-nuciear interference term is evident in (2.21). Since S5<0,V>0and V. is
much weaker than S and V. the interference term for form I is negative (attractive).
and counteracts the repulsive Coulomb potential. This is similar to what was found
for the one-body Dirac equation [12]. For form II. the Coulomb--nuciear intet-
ference term is positive. We should add that the expansion in powers of U/m is
useful only for r = 1 fm. We do not use this expansion in the actual calculations.

If we use e*/r in place of V¢ in W, of (2.19), the denominators £ — U and
E — U, vanish at (very smali) values of r, resulting in a singular behaviour of W,
This does not happen with Ve of (2.9). A similar situation will be encountered (in a
state in which the V, becomes repulsive) if we do not introduce a cut-off in V.

3. css effect on the singlet scattering length

We first determine the parameters in our model potential. We have already decided
about Ve and V,. For § and V, we assume certain values for the ranges a, and a,,,
and determine the strength parameters g, and g, such that gy, = —18.5fm and the 'S
nn phaseshift vanishes at £ =2.123m, i.e., for the centre-of-mass kinetic energy of
0.123m = 116 MeV. The empirical phaseshift is the one for pp rather than for nn
[14), but the phaseshifts for nn and pp should be indistinguishable except at very low
energies. For a,, we arbitrarily fix it to a, =3/m=0.63fm, while we try three
different values for a,, 4.4/m, 4.6/m and 4.8/m. Table 1 lists three sets of values of
the parameters. Figure 1 compares the calculated 'S phaseshift with the experimen-
tal one. The agreement is very good. There is a small disagreement near the
threshold: this is because the calculated phaseshift is for nn, while the empirical one
is for pp.

Figure 2 shows W,, (with a,=4.6/m} for three different energies in the
centre-of-mass system. The phaseshift changes sign at 116 MeV. Below (above) that
energy W, is effectively attractive (repulsive). In the same figure the Reid soft-core
potential is also shown {15]. Note that W is much softer than the Reid potential.
With the Reid potential, which is energy independent, the sign change in the
phaseshift (at 116 MeV) is caused by the strong short-range repuision, whereas, with
W the sign change is due to the energy dependence of the potential. The difference
in the softness between the two potentials results in the differences between
the corresponding wavefunctions av short distances, which are displayed in
figure 3. Figure 4 shows the Coulomv-nuclear interference potential defined by

Table 1. The parameters in S(#) and V(r): a, and g, are in units of the nucleon
Compton wavelength 1/m =0,2101 fm, and g, and g, are in units of m =939 MeV. The
non-Coulombic scatteting lengths a,,, in fm, calculated for Vg, of form I, are listed
together with Aa = a,, —a,, where 2p, = = 18.5 fm. The vaiues for Vg of form Il are
shown in brackels.

a, a, & 8 " @pp Aa
4.4 30 0.3515 0.5370 =20.47 (—19.43) -1.97 (—0.93)
46 30 0.2855 0.4808 -20.34(-19.41) -=1.84(-0.91)

4.8 3.0 0.2365 0.4345 -20.24(—19.38) -1.74 (-0.88)
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Figare 2. The eflective potential W of (2.18) for g, = 4.6/m and g, = 3.0/m is plotted for
three values of the centre-of-mass kincetic energy of 0, 116 and 250 McV, The phaseshift
changes from positive to negative at 116 Me'f. The Reid soft-core potential, which is
energy independent, is aiso shown fo: comparison.

Wop — Wan — Ve, for forms I and II. Note that the signs of the long-range part
(r = 1fm) of the two interference potentials are consistent with {2.21). In addition,
Ve(r) — €*/r is shown in the same figure; this difference in the Coulomb potential is
due to the finite size of the proton.

We calculate the non-Coulombic scattering length a,, by solving the
Schrodinger-like equation (2.19), but replacing Wy, with W,, — e°/r. Table 1 lists the

——r—r T
- "" -
o L ’/ 4
Nt 7 l
% [ ]
e | 4 ]
St 4 )
Lran o ' —

1) ¥
e d p r) -
= B ) i
i’ r
[ /! Breit wave fn. ]

L
1 ; mm—- Nonrel. wave {n. |
[ o (Reid S.C. Pot.) ]
AL AU TP S Y NN TN ST U T N W S |
0 0.5 1 1.5 2
r{fm)

Figure 3. The relativistic wavefunction (in an atbitrary scale) determined by (2.18) for
nn is compared with the corresponding non-relativistic wavefunction due to the Reid
soft-core potential. For the relativistic potential, the parameter sct with 2, = 4.6/m has
been used.
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Figure 4. The Coulomb—nuclear interference potential W, — Wo— Ve and the potential
for the finite-size cfect Vo —e*/r are shown. The W are for the parameter sct with
a, =4.6/m.

values of a,; for the three sets of the parameters of S and V, and for Vgy of forms
I and II. Table 1 also lists the calculated values of Aawag,— @y, Where ap,=
—18.5 fin. The Aa ranges from —1.80 to —2.04 fm for form I, and from —0.93 to
—0.98 fm for form 1I. The calcuiated values of Aa are large in magnitude (and
unfortunately negative). Compare these with the effect of the p—w mixing on Aa,
which has been estimated to be <0.6 fm [4].

Since we calculated ag, by using W, — ¢*/r rather than W,, — Vc, part of Aa is
due to the finite-size effect in the Coulomb potential. Actually more than a half of
the large Aa that we have found is due to the finite-size effect in the Coulomb
potential. We caiculated the scattering length for W,, + (Ve —e’/r), and found (for
a, =4.6/m) a=—19.62fm. Hence the Aa due to the finite-size effect alone is
—~1.12 fm. This is very large, but is not really surprising. We repeated the same
calculation, but replacing W, with the Keid soft-core potential and found
Aa=—-0.71 fm. This can be compared with the result of the old calculation by
Schneider and Thaler who used a hard-core potential [16}; the corresponding value
that they obtained is —0.68 fm. In this connection see also [17]. The large value of
Aa = —1.17 fm with W,, is understandable in view of the large difference between
the relativistic and non-relativistic wavefunctions shown in figure 3.

" 4., Discussion

We started with the Breit equation (2.1) for the NN system in the 'S state and
reduced it to the Schridinger-like equation (2.18) with the effective potential W of
(2.19). Although the nuciear part of the relativistic interaction, consisting of S, V
and V., is exactly charge symmetric, the non-Coulombic part of W exhibits charge
asymmetry: W, — Wy, #e*/r. As we emphasized in section 1, whether or not the
interaction is charge svmmetric depends on the framework in which one chooses to
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work. When we talk about charge symmeiry regarding the low energy SN
interaction. it is conventional to choose the non-relativistic framework with the
Schrodinger equation. By ‘cse’ we mean the cs8 in this conventional language
throughout this paper.

We assumed that the (charge symmetric) NN interaction and the eM potential are
additive in the relativistic model. This is an assumption which is not exactly correct.
There are csp effects like the p—-w mixing and the y-x exchange in the relativistic
model as well as in the non-relativistic model. By assuming the additivity of the NN
interaction and the EM potential in the relativistic model, we did not mean that the
p-w mixing, etc, are absent; rather we wanted to single out the specific effect that
we have examined. For the potentiais S and V in the relativistic model we simply
assumed that they are some given functions of r. They should be taken as
phenomenological potentials. However. if S and V are associated with meson
exchanges. then the effect that we have discussed could be related to the y—p and
y-o (scalar meson) exchanges. In that case, however, the relativistic effects must be
carefully retained in deriving the potential. In addition to the Coulomb-nuclear
interference effect of the relativistic origin, we found that the finite-size effect in the
Coulomb potential becomes much larger than in the conventionat non-relativistic
models. This is because the effective potential W is much softer at short distances
than the conventional non-relativistic potentials.

Since the non-Coulombic (Coulomb-subtracted) part of the pp interaction
Wep — e*/r is more attractive than the nn interaction W,, in our model, the calculated
value Aa is negative. This is contrary to the experimental result of {1.3). This would
mean that other csg effects such as that of the p-o mixing must be greater in
magnitude and opposite in sign to the relativistic effect that we have found. They
must be greater than so far estimated [4].

Although the model interaction that we have used reproduces the 'S phaseshift
well, as seen in figure 1, there is still some arbitrariness regarding the details of the
interaction. Ideally. one should determine the interaction by examining other partial
wave states also, in particular, the triplet state. However, we expect that a more
sophisticated model interaction will lead to similar results. The Breit equation which
we have used is only ‘semi-relativistic’; it is not fully covariant. It would be
interesting to repeat the analysis by means of some other relativistic two-body
equations.

For Vg, we considered two forms, I and IL. The results were quite different
between the two. As Bethe and Salpeter argued, perhaps form 11 should not have
been used beyond first order perturbation {11]. Also, we have not included
anomalous magnetic moments of the nucleons. There is an extended form of the
Breit interaction, given by Schwinger (18], which includes anomalous magnetic
moments. but it may also be subject to Bethe and Salpeter's criticism. Despite such
uncertainties, however. we believe that, with the combination of strong § and V in
the relativistic interaction. the mechanism of the NN interaction is very different from
that of the conventional non-relativistic models, and the difference may well
manifest itself in low-energy nuclear phenomena.
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Chapter 4

Relation between the bound
state and the scattering length:
Relativistic effects

4.1 SPECIFICS OF THE MODEL USED FOR THE EFFEC-
TIVE RANGE EXPANSION PROBLEM

The effective range expansionss)[sq), is an optimal means of bridging
theoretical dynamical models and raw experimental scattering data. The
expansion relates the quantity kcoté to a Taylor series in k? or (A* + o?)
where o is the inverse decay length of a bound state. The coefficients of
the expansion are progressively more dependent on details of the model,
such as potential shape parameters as one takes higher and higher orders.
Fitting the lowest two coefficients, essentially shape-independent, is almost a
minimal requirement to be satisfied by any successful model. As will be shown
in the following section, the expansion’s coefficients can be derived from
fundamental considerations and are found to be dependent on both dynamic
(modelj properties and kinematic properties (relativistic or non-relativistic

choice of framework). We examine the kinematic differences between the
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expansions in these two frameworks. To enable a test of the expansion about
12 = —q? for the Breit equation, the 15, model of the last chapter is used.
We dial up the attraction of the interaction to create a bound state which we
casually equate with the deuteron. We simulate a singlet deuteron because
the complexity of the true triplet Breit equation probably does not offer any
further illumination of the point. The triplét also requires a great deal of
extraneous discussion pertaining to the choice of spinor amplitudes involved
in the expansion, choice of phase convention etc., which are not central here.

Once again, where the discussion turns to the two-body Dirac equa-
tion (a.k.a. Breit equation, in subsections IV and V of the following section,
the notation is different from that of chapter 2. We borrow the dynamic
model of chapter 3 with the electromagnetic components of the interaction
turned off. (Our simulated deuteron will still contain an electrically neutral
neutron.)

At this point, the reprint of a self-contained paper, as it appeared
published in Physical Review C., can best be used to present a detailed

discussion of the ideas.
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snuuin.leuthaueeuminedformndehwhichnimuhmtheniplewmuohhcmmmm
Twmnddammddued:mhbuedomhemabodybhuequﬁmmﬂ&co&ummno-body
Dirac equation. The relation is expressed as (rg/aRmicg+eyxi+eyxi+ -+ - /8, where xmarg; @ is
related to the binding energy and rp is the effective range. This expansion is compared with the corre-
spondin;upnﬁonaf:hemnuhﬁvhﬁc&hr&dinwnu. The first three terms are shape independent.
The ¢p | =1) and ¢, { ™=0) are the same as those of the nonrelativistic case but & relativistic correction

appears in €3.

1. INTRODUCTION

Recently several papers have appeared examining the
relation between the root-mean-square (rms} radius of the
deuteron rp and the scauering length a {commonly
denoted by a,) of the triplet S state of the two-nucleon
system [1-7). The interest in this problem was inspired
by the remark by Klarsfeld et al. {1] that the values of rp
and a, calculated on the basis of a number of realistic
nucleon-nucleon potentials, exhibit a lincar relation;
when a is plotted against rp one obtains a straight line.
It is interesting that the experimental {rp,a) point lies
distinctly off the calculated line. The discrepancy, al-
though only about 1%, is believed to be significant.

When the relativistic interaction consists of a strongly
attractive Lorentz scalar and a strongly repulsive (zeroth
component of) Lorentz vector, there could be significant
relativistic effects even at low energies [8,9]. This obser-
vation motivated the analysis of relativistic effects on the
rp/a matio [2). Within limited one-dimensional model
calculations, however, relativistic effects were found to be
t0o smail to remedy the discrepancy. Incidentally it was
then conjectured thut the discrepancy is a signature of
nonlocality of the nucleon-nucieon interaction. Later
analyses support this conjecture [3,4,6).

Through nonrelstivistic (NR) model calculations Bhs-
duri et al. [4) found that, when rp /a is expressed in the
form of the expansion,

{rp/alt={cyteix! e i+ o+ /8, (.10

where x=ro/a and ry is the cffective range, the first
three coefficients are shape independent:

c°=l. Clwo. €==-1- . (1.2
The dependence on the shape of the potential begins to
appear through ¢;. Since x =0.36, Eq. (1.1) together

with Eq. (1.2) explains why 75 /a is almost shape indepen-
dent. The expansion has been further clucidated by
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Sprung ez al. [5) and by Kermode #f al. [6}.

The purpose of this paper is 1o obtain reiativisuc ver-
sions of the expansion (1.1). Unlike Ref. [2] we conxider
three-dimensional models in this paper. However, we
will point out an interesting difference between one and
three dimensions. We consider two models, I and IL. In
model 1 we use the onc-body Dirac equation with an
external central potential. Model II is based on the two-
body Dirac equation with an instantancous interaction,
Unlike in NR quantum mechsnics, relativistic two-body
problem cannot simply be reduced to a one-body prob-
fem; hence the one-body Dirac equation of model Ican
only simulate the two-nucleon system. The two-body
Dirac equation of model I does describe the two-body
system but the equation is not exactly covariant. Never-
theless, we hope to be able to get a feel for relativistic
effects through these models.

IL THE rms RADIUS VERSUS SCATTERING
LENGTH: NONRELATIVISTIC CASE

Before discussing the relativistic models, let us review
the relation between rp and a in the NR case. We con-
sider an S state which contains only onc bound state
{which simulates the deuteron), The S matrix has a pole
at k=ia, which corresponds to the bound state. The
binding energy is a*/2u, where p=m /2 is the reduced
mass; m is the nucieon mass, The effective range expan-
sion for the scattering phase shift & can be done in two
ways:

keotsm =+ Lrokd—prikt+ - 2.0

= —g+irglkitati— . 2.2}

The parameters in the two expansions ate related by
a=%+%a=ro+1’a‘r5+ e 2.3)
rg=ry +4Pa’ry+ . 2.4)

67 ©1991 The American Physical Society
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Following Ref. [6), we put the rms radius of the bound
state into the form

. := fn.plal.rl(rﬂ)zdr
a if-
a fo pla,ridr
1—4a’L(a)
= 7 , (2.5
8laa {1 —2alyla))
where
Ijla)= f:{e"“'—p(a.r)]dr . (2.6)
2.7

Ila)= fo'[e"w—p{a.rnridr .

The pla,?) is related to the bound state wave function
uia,r}/rby

pla,r)=u¥a,r), (2.8)

where u(a,r) is such that ula,r)—e ™% as r—» o, 2nd
[ epla,ridr=1.
Kermode er al. [6] derived the expansion

1
D [ agfi+Hart+eylarg?+ -1, 29
a T 0 3 0 * *

where
cy={t =27 +8P)/4, (2.10)
J=[0)/15(0) . {2.11)

Obviously ¢, is shape dependent. Actually, Kermode
et al. [6] gave an expression for rp/a rather than for
(rp/a)%; moreover, their expansion is with respect to
arg/2. Their a; is reiated to our ¢y by @y 74¢. Note
that Eq. {2.9) is an expansion in terms of arq rather than
ro/a which Bhaduri et al. (4] adopted; the cy's of Egs.
{1.1) and (2.9} are slightly different, but their relation caa
easily be obtained by using Eq. (2.4).

In arriving at Eg. (2.9) there were two important steps,

namely,
Ila)=ry 2, (2.12)

A

1
k cotdm(p+E) —E+{E-pl fo"(,.ﬂ-b/A-sxo-ffo)dr '

and that Ja{a) is finite when a—0 as implied by Eq.
{2.10). Equation 12.12) arises in the derivation of expan-
sion (2.2). For the behavior of [,{a) when a—0, we
know of no example of the bound S state such that I;(a)
diverges. We point out in Sec. [I1 that relativistic correc-
tions appear in these two steps, resulting in a correction
of order a* in Eq. (2.9).

III. ONE-BODY DIRAC EQUATION

We consider the Dirsc equation (in natural units

c=f=1)
(ap+Blp+SI+VI=Ev, (kR Y

where S and ¥ are a Lorentz scalar and the zeroth com-
ponent of a Lorentz vector, respectively. The § and ¥ are
both central potentials, and can be local or nonlocal. For
the mass we take g=m /2 so that the NR reduction of
Eg. (3.1) becomes the two-body Schridinger cquation.
The angular part of Eq. (3.1) can be separated, and the ¥
is reduced to a two-component form [10]. We denote thie
radial part of ¥ by gir)/r and flri/r, which are the
upper and lower components, respectively.

Let us examine the cffective range expression for
scattering. We introduce auxiliary functions p{r) and
Ar) which are defined by

= sin{kr+5) k cos(kr+>5)
“amb ——

s AT e+ 2

aln

where E=(u?+k?)'2, The g/r and //r satisfy the
Dirac equation in the absence of the interaction and the
centrifugal terms. When k —0, g and 2, respectively, be-
come

golri=1—r/a, solri=—=1/2pa .

We also choose the phase and normalization of g{r} and
F(r) such that, when r—sw, they approach g(r) and
Ar), respectively, Using a trick similar to that of the
nonrelativistic case [11] we obtain

{3.3)

(34

where go and f, are for k =0, This leads to the expansion around k =0. However, note that, for r greater than the in-
teraction range, g =g but £ =/+0(1/r). Hence the integral in Eq. (3.4) gets a contribution from beyond the interac-

tion range.
Next let us consider the expansion around k =ic. To this end we introduce g.(r) and Z(r), defined by
-ar - -ar (3.
golri=e™ ", Jir} atE, e 3.5)
and obtain
a [
kcotb=(u+E) | =5 +|5—s,1fo {py,-k,{/,,—gg?—ff,)dr . (3.6}
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where g,ir) and f,(r} form the exact wave function for
the bound state. When k =ia, the integrai on the right-
hand side of Eq. (3.6) can be approximated by

[TV LY

=7 | e g s far

n+E;
e 3.7
where Io(a) is defined by Eq. (2.6), together with
+E
p(a.r)=#zpu(g§+f§). (2.8)

This p(a,r) replaces u*(@,r) of the NR case. Note that
pla,ri—e ™2 a5 — oo see Eq. {3.12). Putting Eq. (3.7)
in Eq. (3.6}, cxpanding around &= —a*, and compasing
the result with Eq. (2.2}, we obtain

———a 2
- . (3.9
fa E lp+E;)  Eg fola)
which leads te
=1 _“__ﬂ_: 3
Tola} 2r,,-t- W rg+0la) . (3.10

Next let us examine /,{a} which is defiued by Eq. 2.7)
together with the pia,r) of Eq. (3.8). This requires a
closer look at the asymptotic form of g, and f. Beyond
the range of the interaction they are give:: by

—ar — — a '_1_ =ar 3
ga=e Y, fa= ntE. 1 el L (3.11)
and hence
- z
-lar_ ._.‘_..._.L_ +L —_ =lar
e pla,r) p+E, ‘l o ’ l|e .
(3.12)

For R greater than the interaction range we obtain
f:[e =lar_nia,r)|ridr
1
PRI SE—
uaipu+E,)
which diverges as a—0. Consequently, [;la) behaves
like —1/(4p’a) as a0 [12]. We therefore define J by
1

=——t_41.
Lila)= ' + 8r‘,.l+0(¢zl .

{l+aRle~2* (313

{3.14)

Taking account of the relativistic corrections of Eqgs.
{3.10) and (3.14) we obtain the Dirac version of Eq. (2.8),

L3 IR O S 2 Spaes

2 2 tH— 2 4(aro) +eyiargl + '
(3.15

cy=(1=2J+8P)/4 . 13.16}

The ¢, is shape dependent. The term 3a*/2u° in Eq.
13.15) is a relativistic correction. For the deuteron,
\argF/4=0.041 and 3a®/(2p*)=0.014. This relativistic
correction on rp is oniy 0.7%0, but the discrepancy re-
garding rp /a that we are concerncd with is about 1%,

If one considers a fictitious one-dimensional model
with the one-dimensional Dirac equation, the correction
due to Eq. (3.14) does not appear; this is because the 1/ar
term docs not appear in the one-dimensional counterpart
of f,. Then the J is defined by Eq. {2.11). The cne-
dimensional version of Eq. (3.15) is obtained by replacing
3a*/2u? in Eq. (3.15) with a? /(2).

IV. TWO-BODY DIRAC EQUATION
By the “two-body Dirac equation” we mean
:(U| "a:)-p+(B|+ﬂzlm+U]lb=E@ » (4.”

where subscripts | and 2 refer to the two nucleons [13,
14]. We have taken the center-of-mass system;
P=p;—Pp: is the relative momentum. The poteatial U
can be any linear combination of Lorentz scalar, vector,
etc., but we need not specify it until we consider an expli-
cit example later.

There are various configurations of the two-nucleon
system, but let us consider the simplest one which corre-
sponds to the 'S state. Of course the deuteron is the °S
state, but Eq, {4.1) is very complicated for the S state.
To use the 'S state to simulate the °S state is like arop-
ping the tensor force in the NR case. This is admittedly
crude; nevertheless, let us try. We assume that the poten-
tial is such that there is a bound state (in the 'S state)
which simulates the deuteron.

According to Moseley and Rosen [14], the relevant
components of the wave function for the 'S state are
those of the form

I=£,1r), A.=fylr), iF=fylrie/r. 4.2)

There is a departure from Moseley and Rosen'’s notation;
our i F cotresponds to their F, i.c., our f is equal to their
ify. In this way all the f's can be taken as real func-
tions. Equation (4.1) becomes

(E=U,)f, +2 r-‘%_-+3 f—:+2mf,-0. “.3)

(E=UyMy+2mf =0, X
d

{E_UJ)IJ-Z"‘:'T'-O, 4.5)

where U,, eic., are certain linear combinations of the
Loren1z scalar part, vector part, etc., af U.

On the basis of Eqgs. (4.3)=(4.5) we can derive effective
range formulas similar 10 those for the one-body Dirsc
equation. Let us define Zjir)'s by

__2m___ sinikr+8}
rA E & sinb “6)
_ 2k costkr+5) '

4 E sinb !
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where E=2m3+k3'72, When k —0, the /s became

1

r
rén= -r/m=l—“;. r,fm=—-£ . 4N

We choose the phase and normalization of the Jfi's such
that they have the same asymptotic form as the A's. The
effective range expansion around k=0 can be obtained
from

1
k coth= ———
cotb=F

+%{E—-2m V3 [ fbo= LS|

{4.8)

where the fo's are for k=0, and the Z, is for i=t, 2,
and 3.
For the expansion around k =ia we introduce

—2¢ -

r Ia=_-2£-ﬂr/h=e_c'- i’/,(r)="'£_¢ » 4.9)
a a

where E,=2({m2—a*)'7?, and arrive at

a
k cotb=E E.

+%(E_£u)$fo-(ﬁﬂc—fffiu)rld' ’

(4.10)

where the f;,'s are the f,'s for the bound state.
We now define the two-body version of pla.r) by
pla,r)=(E3 /8m3r S fL (4.11)
i
which behaves like e ~33" as r— . This pla,r} enters

into Iyia) and I (a). The two-body counterparnt of Eq.
{3.10) reads

a

4.12)
2m?

Iola)-%r,-b--g—— rg+0tad) .

m?

For r greater than the interaction range,

= rfyme,
: 4.13)

28 hell, -e
g E, [|+cr ] R

which leads to

ILia)= —z—m‘_.—a-+%r31+om) . @.14)

Combining the above resuits we obtain

:
| o432 Loy S
. ] =3 ll+ o + ‘(arol +c,lary )+ '

(4.15}

1
Amrgh

¢y =1 -2 +8P}— (4.16)
The correction 3a*/m? in Eq, (4.15) is { of the corre-
sponding term of Eq. (3.15). The relativistic correction in
eylarg)® is —are/t2m?)=—5X 107", which is negligi-
ble. For a fictitious one-dimensional model, the term
3a3/m?* of Eq. (4.1%) is replaced by &*/m?.

V. MODEL CALCULATIONS

Let us consider two models. The first one is the nonlo-
cal separable potential model of Refl {12). This model
uses the one-body Dirac equation. The relation between
tp and a of this model has been examined receatly (7]. In-
order to see the relativistic effects, the results are com-
pared with those of a phase-equivalent NR model. The
NR model is constructed by means of the inverse scatter-
ing method. Also the NR model has 3 bound state of the
same binding energy as that of the relativistic model.

When a is plotted against rp, the (rp,a) lines of the
celativistic and NR models lie close to each other, but the
relativistic one is slightly shifted to the right (such that
rp is larger for the same vaiue of a); see Fig. 1 of Ref. [7).
The increase in 7y, (for the same value of a) is {0.2-0.3)%.
The term 3a?/2u? of Eq. (3.15) increases 7, by 0.7%. On
the other hand, the J of the relativistic models is larger
then the J of the phase-cquivalent NR models, This
tends to compensate for the 3a? /2 term. In fact, I;(a)
for the relativistic and NR models are nearly equal. This
is because the density distribution p(r,a) differs very lit-
tle between the two models. We should add that, the
phase shift in these models does not become negative at
high energies; so it does not simulate the empirical phase
shift very well The NR separabic potential has no
short-range repulsion.

The second model is based on the two-body Dirac
equation of Sec. IV. For the potential U we assume a
combination of Lorentz scalar S(r), vector Vir), and
pseudovector Vlrk

U=ﬂ|835(r)+( 1 —al'azll-’(r)
—=Hopo=NiaV.lr, (5.1)

wheze r=|r,—r,| and I'=—ia,a,a,(=7*) [14]. Thea
U,, Uy, and Uy of Egs. (4.3)-{4.5) are given by

U =S+4V+4V,, (5.2)
U,=S—2V+3V,, 5.3
Uy==S. (5.4)
For the radial dependence of the potential we assume [A5)
Str)= —g,exp[ —(r/a, ], (5.5)
Viri=g,exp[—(r/a,}], (5.6)
V, iri=—gi{expl—m ri—expl=Ar)l/r. (57}

The V. with g*=0.08 and m, =138 MeVisa cutoff one-
pion-exchange potential. For the cutoff parameter A we
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arbitranily assume A=m /2.

We solve the two-body Dirac equation without any ap-
proximation. The parameters in § and ¥ are fixed such
that there is a bound state of the deuteron binding energy
1,225 MeV (@=0.04866m), and that the S scattering
phase shift is well ftted as shown in Fig. 1. The vaiues of
the parameters of S and ¥, i.e., a5, Gyo &5 Bor together
with the calculated values of a, rp, o, P, J, and ¢, are
listed in Table I. The potential is similar to that of model
R) of Ref. [2] (which is the same as model 4 of Ref. 8}
in which a,=5/m, a,=3/m, 8,=0.37m, g, =0.46487
{16]. The two-body Dirac equation can bc rewsitten into
the form of a2 Schrodinger-like equation [15]. The
effective potential A that appears in the Schridinger-like
equation of the present model is similar to the W of the
one-dimensional model shown in Fig. 2 of Ref. [8]. The
W is cnergy dependent. At low energies, W is almost en-
tirely attractive, and is much softer than the nucleon-
nucteon potential of the usual NR models.

In expansion (4.15), if we retain the terms up to
¢ylarg P, we find 8(rp /c ¥ =1.0300, which can be com-
pared with the exact calculated value of 8irp/a 2
=1.030S5. Hence the truncation error is 0.0005. Let us
look into some details of the term in the square brackets
of expansion {4.15). The relativistic terms of order o is
3al/m?=0,0071. The shape-dependent part of c;lary)®
is —(J/2{ary)*=—0.0287, which it not much smaller
than the shape-independent term of order o, ie.
{arg)}/4=0,0381.

In Ref. [2] a variety of one-dimensional models, relativ- '

istic as well as NR, were examined. It was found that rel-
ativistic corrections on rp /g were altogether negligible.
This was surprising in the following sense. In contrast to
the nsual NR models in which the potential has a strong
short-range repulsion, the effective potential W of the
Schrodinger-like equation of the relativistic models of
Ref. [2] is very soft. It was thought that the absence of
the strong repulsion at short distances would result ina
smailer size of the bound state as compared with the NR
models, What actually happens is this. The value of J is
larger in relativistic models than in the NR models; this
indeed results in a smaller radius of the bound state, For
rp/a, however, the relativistic correction a’/m? (in one
dimension) nearly compensates for the increase in J. . As
we noted earlier, the relativistic correction of order &’ is
3a/m? in three dimensions. This correction in three di-
mensions tends to overcompensate for the change in J,
and shifis the (rp,a ) slightly to the right.

Illlll!llllllJ_L
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FIG. |. The triplet S phase shift § in radians versus the
center-of-mass energy (including the rest mass) in units of
m=939 MeV. The experimental phase shift is indicated by the
crosses. The line represents the calculated phase shift.

V1. SUMMARY

We examined the ratio (rp/a)? for two relativistic
models, 1 and II. Model I is based on the one-body Dirac
equation and model II on the two-body Dirac equation.
We obtained Eqgs. (3.15) and (4.15) for models I and 11, re-
spectively. In both cases relativistic corrections begin to
appear in order a® 3a?/2u® and 3a’/m? in the square
brackets of Eqs. (3.15) and {4.15), respectively  Since
@#=m /2, this correction term for 1 is twice as large a3
that of II. We slso pointed out that, il one uses one-
dimensional models as those of Ref. (2], the correction
terms of order a° are reduced by a factor of 3 in both
models.

The expansions we obtained are relativistic generaliza.
tions of Eq. (1,1). These formulas explain why the ratio
rp/a is not very sensitive to the details of the potential,
In Sec. V we examined an explicit mode! based on the
threa-dimensional two-body Dirac equation. We dis-
cussed the mechanism which underlics the negligible rela-
tivistic effects on rp/a found in the onc-dimensional
models of Ref [2]. In the three-dimensional model, the
relativistic effects on rp /a are slightly larger. We should

TABLE 1. The parameters of the potential ¢,, 8¢ £ S and various calculated quantities of the
two-body model of Sec.. V. The values of a,, a1 4: 7ps and ro are in units of the nucleon Compton
wavelength 1/m=0.2101 fm. and g,. g,, and a are in units of the nucleon mass m=939 MeV. The pa-

rameters P. J, and ¢+ are dimensionless.

a; a, & J.{) t0fa aq
4.6 30 0.35662 043902 4.866 25.54
n Fa IOJP J €y
9.168 8,024 - 7.600 0.9626 —{0.2543
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add that the two-body caiculation of Sec. V is only a
simulation of the deuteron; we used the singiet statc for
simsplicity. 1t would be interesting to do calculations for
the triplet state,

Relation between the bound state and the scattering length...
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Chapter 5

Breit treatment of the j=1
triplet nucleon-nucleon sector

5.1 BACKGROUND AND MOTIVATION

The non-relativistic wave function in the locally interacting two-
nucleon system is essentially in a “straight jacket” at very low energy. All
length scales in the system are commensurate. The centrifugal barrier which
affects the D-component of the j =1 triplet configuration forces the D-wave
radial amplitude to rise as r? (while the S-component is finite at the origin)
The characteristic length scale at which the D-wave can depart from this form
is the Compton wavelength of the nucleon. This is a familiar kinematic re-
striction on the partial waves. The dynamics in the wave equation takes over
and determines the topology (nodes and asymptotic wave function phases or
exponential tails).

The nuclear dynamics however also take place on a length scale that,

no matter what physics underlies it, it is essentially defined by My quite

63
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in contrast to atomic physics where the Coulomb interaction has infinite
range. QCD’s characteristic scale A: is ~ 240MeV = 0.25My; constituent
quark masses are = 0.33My, alternatively in a purely hadrodynamic scheme
we have meson masses -hence inverse ranges: = = 0,15,p = 0.82,w = 0.83,¢ =
1.09My and the fictitious o ~ 0.5My.;s5) Consequently, it would be expected
that the amplitudes should both vary quite smoothly over these length scales.

The nonrelativistic deuteron S-wave and D-wave amplitudes must
abandon their 70 and r? behaviour and descend exponentially on a short dis-
tance scale with no nodes and with little room to maneuver because of the
rapidly weakening short range potentials. In all realistic local models which
correctly match the value of the triplet scattering length a, there is a = 3o
overestimateyg; of the deuteron mean-square matter radius. The character-
istic range and strength parameters of such models are used up in fitting the
deuteron binding and a;.

The wave functions of the threshold scattering state and the bound
deuteron cannot be very different from one another in the near region because
of their proximity in energy (a mere 0.0024My.) A useful expansion relating
the radius rm to the scattering length a; was devised by Bhaduri et al. (15
using the expansion parameter z = (ro/a:) Here, 7, is the effective range for
the given potential model. Alternatively, Sprung et al. j45) Suggest = = {(ar;) as
an appropriate expansion parameter where r; is one of three mildly different
effective ranges. The quantity « is the inverse decay length of the deuteron
wave-function tail. As o vanishes the threshold state and bound state must
converge. The two quantities at odds are associated with these two only

slightly different wave-functions.
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In either expansion, it is clearly indicated that potential shape effects
enter only in the third order. Profound shape effects are called for in local
models to bring about agreement with the quoted values for the matter
radius: 1.9643+0.0038 fm. (a weighted mean of the two values quoted in Table
3 of Machleidt’s review article on the Bonn modelsy) -specifically Bérard et
al. ;5] and Simon et al. .5) This is the value and error estimate used in
the various x? fits of the next sections. A very recent reanalysis of past
data quotes a value consistent with this: 1.961 % 0.007 fm.(g;). The Machleidt
aggregate value with its more stringent error estimate weighted the matter
radius more heavily in the fitting criteria so it was retained.)

Non-locality as a result of internal nucleon excitations (A — A)jg) Or
explicit quark degrees of freedoms;) are widely suggested as a remedy to this
| problem. (e.g., six constituent quarks can interact locally at a distance re-
moved from the physical centers of both nucleons which mark the end points
of the relative co-ordinate in the Schriédinger equation. An accounting of
their influence through a potential would appear non-local in that particular
co-ordinate.) Hence, there is a realistic expectation for explicit non-locality
in an interaction.

Alternatively, when a two-elementary-nucleon wavefunction is pro-
jected out of a parton one, the projected wavefunction can have features
which are counter-intuitive for a ground-state configuration. The recently
presented version of the Moscow potentialigs) which is entirely local has a
node in the S-wave amplitude for example. The amplitude’s radial depen-
dence is not particularly misbehaved for a 2S-state. The model includes a
very deep bound 15-state however which the authors argue must be projected

out of calculations.
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Non-local interactions can resolve the problem by essentially creating
a pathological spline between the r << Mg! and r >> Mpy! regions without
appealing to an equally pathologically shaped potential to accomplish the
task.so|

For a relativistic framework to resolve this problem, the additionel
spinor components, perhaps only nominally small, are required to save the
day. The features which intuition would lead us to expect of the mid-sized
spinor components would include the following:
i.) There are important structural differences to the radial amplitudes at-
tached to S, P, and D wave components of the spinor wave-function which
are solely related to kinematic considerations. For example, the P-wave de-
pendence arises from the 4 mid-sized radial amplitudes which characteristi-
cally rise as rl. The P-wave is pushed away from the origin by a centrifugal
" barrier 1/3 as strong as that of the D-wave. If P-wave strength is drawn
away from the even further pushed out D-wave, we might expect the mat-
ter radius to be drawn inward. In fact, the opposite will be found. The
tails of the amplitudes, also dictated by pure kinematics, fall exponentially
at large r as: S-wave — A,e~°"; P-wave — 5,4, {1 + Z}e™°"; and D-wave
- 7,4,{1 + & + z&y}e°"; So, it is the S-wave whose tail pulls out the
deuteron radius more than that of the others -all other things being equal.
The point is, that these intrinsic differences in addition to the dynamics may
provide an opportunity for simple resolution of the arrm puzzle. Dynamics
still plays the lead role in deciding both the tensor strength (for the D-state
component) and the level of enhancement in the lower spinor components.
ii.) r;‘ha P-wave amplitudes experience a vastly different potential from the

large componeat amplitudes. In the large attractive scalar axd repulsive
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vector scheme, these radial amplitudes, (a(r).J(r).u{r).f(r)) of equations
(2.2.9)e — h, experience a deep attraction and should be pulled inward. This
effect would be over and above a mere P-amplitude enhancement as that
could also be accomplished if these amplitudes saw a large repulsion also.
In the following, a resolution of this longstanding problem will be
sought within these two hypothetical mechanisms. In a similar vein to Kukulin
and Pomerantsev’s argument to dismiss their deep lying bound state arti-
fact, one could argue that anomalous bound states arising from the NN and
N N-sectors of this model are artifacts of the incorrect vacuum and +E,-E
continua coupling. As long as such artifacts remain distant in energy from our
+E NN sector, we can reliably argue thai: our picture is viable. (A comforting
glance at Figure A2.3 of Appendix IT will help assure the reader that depar-
tures from a more rigorous field theoretic picture are likely to be negligible
for the problem at hand. The deuteron weighs in at an energy of 1.997630Mxy
with log(1/8) =~ 0.5 — 0.8M5! for the various interactions for the purpose of
comparison with this figure.) In addition, if a lone deuteron bound state is
pulled out of the positive energy continuum, the energy dependence of the
phaseshifts reflects a single drop in =, consistent with Levinson’s theoremygg).
Of course, a clear bound on this minimal relativistic framework exists
as the N N-scattering energy rises. A departure from the picture of elementary
nucleons is necessary for N N-scattering near and above the pion production
threshold (Tjep = 270 MeV) As a comparible upperbound, the energy at which
the 38, phaseshift crosses 0 is taken as the upperbound of the energy range

for which an attempted fit of scattering phase parameters is to be made.
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5.2 THE DYNAMICAL MODEL

A distinct preference has developed in the literature for Yukawa type
interactions modulated by form factors to smear the singular behaviour at the
origin. Here, the approach will be to take Gaussian ansatzes for both S and V
as was the case in the previous two singlet chapters. This has the advantage of
allowing extended ranges for these two Lorentz species inside 1 fm. capturing
some of the flavour of the large extended nucleon without penalizing the
physics outside this radius by attaching to Yukawa-tails associated with too
low a meson mass. The only tail in the asymptotic region is that of OPEP.
The Gaussian ranges can seem uncharacteristically large in comparison to
the usual cut-off Yukawa ansatzes.

Indeed, a spline onto a Yukawa-tail where the decay length asymp-
totically remained faithful to the meson exchange mechanism would have
been more realistic but the Gaussian can be viewed as the first order term in
a unique expansion of oscillator eigen functions of whatever cut-off Yukawa
species one prefers. Further shape embellishments can be implemented sys-
tematically if one wants to go beyond the zeroth order description. That will
not be done here however. An additional benefit of the Gaussian is that the
radial equations possess a reduced number of dynamically-dependent diver-
gent terms of the 1/r and 1/r? sort.

The scalar and vector interactions adopted are therefore simply:
S(r) = g, /%)’ (5.2.1)a

and

V(r) =g, e /%) (5.2.1)b



5.2 The dynamical model 69

The pion tail however is a sacrosanct part of any model should higher
partial wave phaseshifts be fitted. If treated as a dialable parameter in such
fits, the pion-nucleon coupling G? falls into quantitative agreement with the
directly measured value: G2/4r = 14.5 [¢y) (observed in pion nucleon scatter-
ing). The higher partial waves are not a subject of study here but a faithful
reproduction of the OPEP tail should bring about convergence between this
model and others which have successfully described these channels.

The pion exchange interaction in the near region is a question mark
however. If a pseudoscalar coupling is used,P(r) & G%e~™=" /r, the interaction
assures Klein paradox singularities at finite r. The differentiated quantities
P'(r) and P"(r) occur in the precise combinations in the numerators of the
potential-like terms of the large component radial equations required to have
the proper spin dependence. It is the bare P(r) that presents difficulty.

To curtail the interaction by damping it severely at < 1 fm. but not
beyond introduces wild transients in the 1st and 2nd radial derivatives of the
interaction -both of which show up prominently in the dynamical equations.
If a long tempered damping factor is used to tame the pseudoscalar at low
r, then the OPEP tail is not reproduced well until out beyond several fm.

In the case of an axial coupling, A(r) ~ g2e~™="/r, the direct interac-
tion, its 1st and 2nd derivatives also appear explicitly in the radial equations
but A(r) alone does not have the proper spin dependence. Once again,the 1st
and 2nd derivatives occur in the exact spin-dependent combination required
but the g2 = 0.08 coupling of the bare axial interaction is severely reduced
by a factor = (m,/2My)? in these terms. There is an order of magnitude less

tensor coupling between the $ and D waves.
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The above two paragraphs, the subject matter of which is expounded
in Appendix III, would be highly discouraging if we chose to preserve the
mesonic identification of the QPEP simply because the Breit equation offers
a straightforward interpretation and recipe for its inclusion. Ask instead,
how is the OPEP “derived” in its incorporation into the non-relativistic
Schrodinger equation. It is lifted from field theory in 1st order perturbation
and then written into the non-relativistic framework..

What is called for in the Breit equation is an abandonment of the
apparently natural pseudoscalar or axial form and a similar putting in of

OPEP by hand. We have the following co-ordinate-space ansatz:

Vorgr =7, - 8,U.. () + 80 Dy )

The radial potentials U, and U, are attached to the large spinor component
in the lowest order in exactly the way they appear in the Schrodinger equa-
tion. There are residual contributions to the OPEP from reducing the small
and doubly-small spinor components but they are of an order (max/2Mpn)? =
1/200 smaller still and are inconsequential.

The specific radial dependence of U, (r) and U, (r) is dictated by the
traditional Yukawa tail from a distance of the pion Compton wavelength
and outward (= 1.43 fm.) Inside that length, they are governed by indepen-
dent polynomial splines which match the asymptotic pieces to four radial
derivatives. More specific details are relegated to Appendix IIL

The net interaction in the model is therefore:

Vot = (B,8:) () + (1= &, - &)V() + (&, - 20, () + (22 Dy, )
(5.2.2)
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where U,_(r) and U, (r) are as given by equations (43.1)a,b with 7, - T, =1 or
by the spline expressions which follow shortly thereafter.

Referring back to equation (2.1.2) it is clear that the spin-spin part
of the co-ordinate space OPEP does indeed resemble an axial coupling. The
absence of a §-D coupling tensor part in the previous singlet chapters enabled
the OPEP to be described in this way. An all encompassing model should
have a consistent definition of this interaction across all channels.

In Sato’s approachy,;), the pseudoscalar identity of the OPEP is pre-
served. A particular conspiracy with an additional ficticious scalar meson
(isovector) interaction is called upon to cancel the small r strength thus
sidestepping the Klein paradox problem. The additional scalar is specifi-
cally designed to address this framework dependent problem. This is not
an ideal circumstance. On the other hand here it will be found that if the
phenomenological OPEP spin-spin and tensor potential splines at small r
are allowed to become strong, then x? fits of deuteron and scattering data
tend to force the scalar and vector interactions into parametric forms where
their identification with appropriate meson exchange also becomes dubious.
This blurring of identity with meson-exchange must be viewed in the con-
text of our utilitarian approach to the Breit equation. We essentially want a
Schridinger equation with a P-wave small component! The only connection
between the identification of a particular interaction in the non-relativistic
formalism and a meson-exchange mechanism is that established by a reduc-
tion from a rigourous relativistic framework.

This blurring is not such a loss for ficticious scalar mesons but the
vector meson presence is a well established feature of more rigourous frame-

works [ss) and there are of course real vector mesons!
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Here there is parametric freedom in the OPEP splines that could
be viewed as extraneous parametric freedom akin to Sato’s extra scalar me-
son. This is not quite accurate. The extra parametric freedom (2 parameters
namely: U,_(r = 0) and U, (r = 0) (or U’ (r = 0)) are associated with the inner
most unknown part of the N — N interaction where undoubtedly many mech-
anisms i.e., many degrees of freedom contribute. There is nothing contrived
about them to cancel divergent terms brought about by other unrelated in-
teraction species.

The model as established above provides a window on dynamics with
basic ingredients:

i.) mid-sized spinor components with P-wave radial dependence

ii.) a rich variety of possible interference mechanisms of which SV is merely
one. The phenomenological OPEP at small r also has a hand in the inter-
ference behaviour. The richness of possibility can be seen at a glance by
examining the linear combinations Q,(r), and X,(r) of equations (2.2.3)a-l. In
the triplet, only @, and Q, do not appear.

The following section (5.3) details a quasi-model-independent study
of the Breit framework, in particular as it applies to the a;-rm problem. An
empirical relation between these two lengths akin to that of Klarsfeld et al.
15) is undertaken.

After that, the best fits obtained for the deuteron and low energy
scattering data alone will be detailed (section 5.4). An attempt to further
encompass the triplet scattering data will be made in section 3.5.

To generate the broad survey necessary for section 5.2, the 5-parameter

space Of {gy, by, b5, C,00:Ciro} (Where U, (r = 0} = 92C,,, and U,(r = 0) =
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¢2C,,) was randomly sampled within the bounds:

Vector coupling Gu C {0.0,0.6} My = {0.0, 563} MeV
Vector range: by c {1.0,5.0}M5! = {0.210,1.051}fm.
Scalar range: by c {3.0,8.0}M5' = {0.630,1.681}{m.

OPEP spin-spin @ r=0: C,,, C {-5.0,10.0}My = {—4.695,9.389}GeV
QOPEP A-piece: @ r =0: Cho C{-100,5.0}My = {-9.389,4.695}GeV

For every point within this sample, a range of the scalar coupling g,
such that the Klein paradox was avoided was determined. Within this range,
g, was varied to bring about, if possible, a single isolated bound state at
the deuteron binding. Such a state would also have to be from the particle-
particle sector (as determined by an adiabatic turning off of all couplings).
Singular interactions for finite r were allowed to creep up as high as 1.90My in
energy (or ~ 100 MeV below the deuteron bound state). This is also a rough
bound on the encroachment of spurious states from the vacuum sector.

The alternative parameter varying choice for the OPEP tensor related
interaction U, (r) is to bend its first radial derivative as opposed to the spline
function value itself at » = 0. This leads to a tapered tensor OPEP (i.e,
tapered at both ends). A more limited survey of this parameter space was
undertaken. The quantity C,, controlling the spline, (U (r = 0) = ¢°C,,) was
allowed to fall within the bounds: (-10,0).

The random element to the survey was introduced to meet several
objectives simultaneously. A uniform spread over the entire sample space
could be achieved. In addition, a large number of points would ensure that

many interference combinations would occur at random also. A simple grid
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survey pattern of managable size tended to skip over narrow topological
features in the x? function on the space.

The lowest x? for collective scattering and deuteron data were fol-
lowed up with the simplex minimization algorithm amoeba from the Nu-
merical Recipes software package.s). The results of these searchs form the
content of sections 5.4 and 5.5.

The random survey allowed favourable configurations for the best
overall fit, best low energy fit and best elastic scattering fit to appear quite
quickly whereas a grid survey would have to have a serendipidous starting
point to generate such points right away.

5.3 BROAD SURVEY OF MODEL INDEPENDENCE IN THE
BREIT FRAMEWORK

As mentioned earlier, an intriguing aspect of the ai-rm discrepancy is
the model independence of their linear relationship that is exhibited within
the scope of realistic nonrelativistic local potential models. The reasons for
the relationship were tied in the last section to the extreme light binding
of the deuteron. As suggested by the singlet case of chapter 4, the relativis-
tic framework also yields a nearly linear reletionship between the two albeit
* slightly shifted from that of the non-relativistic one. There appears to be no
corresponding derivation in the literature as of yet for the triplet effective
range expansion with a relativistic equation. The presence of a D-state com-
ponent in the non-relativistic case shifted the as-rm line further to the right,
away from the experimental datum, in one analysis.(4

The numerical example of an artificial singlet deuteron of chapter 4

actually generates a ai-rm value to the left of the empirical non-relativistic
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line. One might be misled to believe in the possibility of a resolution of this
celebrated discrepancy. It must be kept in mind that comparing singlet to
singlet, the relativistic corrections all direct the a,-rm relation further to the
right.

Despite the lack of an analytic a;-rm relation for the relativistic
triplet, we obtain, as a by-product of an extensive parameter search within
the space discussed earlier, a set of 981 configurations (out of an attempted
total of 1494) which produce an isolated particle-particle bound state at
deuteron binding. The a; and ry, data are plotted on two scales in Figure
5.3.1. Clearly, the relativistic triplet relation is shifted right, to larger r,, away
from the accepted value. The small deviations below and above the line are
due, in all likelihood, to the interaction shape dependent effects manifesting
themselver at third order and beyond in the quantity (ar,). Indeed, we see
that the Breit triplet, with its typical D-state component of 5-6%, leads to
an empirical relation further to the right than the empirical non-relativistic
relation.

Taken at face value, this fact seems to be a striking indication that
explicit nonlocality is required to resolve the discrepancy and that nonlocality
must be even more drastic in a relativistic framework. There are several open
ended questions however that require closer examination and through which
the relativistic resolution hypothesis remains viable.

Firstly, the typical P-wave contribution to the overall normalization
is 1%.(This is from the lower midsized components -of course.) Figure 5.3.1
supports the suggestion that the P-wave draws out and away from the S-state
and/or D-state strength. Qualitatively, the results as ill_ustrated indicate that

dramatic shape effects are required in the Breit case. Pathological shapes are
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required to resolve the problem in the nonrelativistic case but perhaps here
another avenue remains open. It is possible that the P-wave components can
be pulled in even further by a particular interaction interference configuration
that must be precisely tuned and consequently was overlooked in the hit-
and-miss scheme used to generate the data set. In fact the best overall XEw
points (x2 over low energy W': experimental deuteron data and effective range
parameters) from the random search were followed up. The best result (it
appears there are several local x? minima) is discussed in the next section.
A second possible opening lies in a re-analysis of the physics asso-
ciated with the very indirect determination of rpn.;gs) The quantity obtained
from eleétron—deuteron scattering is the electromagnetic form factor F(g?).

To two orders in momentum transfer, we have the equation:
1
F(g") =1 - gréne’ +O((e")?) (5.3.1)

From this quantity, the deuteron charge radius ¢y is determined.

This quantity (r%,) must be further pared by finite size charge distri-
butions of the proton and neutron components. Meson exchange corrections
yield another uncertain but very likely small deduction.;gz More importantly,
a subtraction commonly associated with the relativistic Zitterbewegung is

present.gs) This can be concisely written:
2 _,2 2 _ .2 2 3
Tm =Tch— T'p - Th A'Pm - {m} (532)
Now the =y, refers, in a non-relativistic state, to the quantity:
2 _ 1 2 2 2
™m=3 drr*{unr(r)® + wnr(r)‘}.

(Here unr(r) and wypg(r) are the auxiliary radial amplitudes associated with

$ and D parts of the nonrelativistic wave function.) Clearly, referring back
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to section 2.4 (chapter 2), the relativistic version of r,, involves P-wave con-
tributions from A, etc. . so there is a question now, of overcorrection. The
Zitterbewegung is a natural consequence of coupling upper and lower com-
ponents which are automatically present in the Breit amplitude.

Further, an ambiguity in choosing the “proper” relativistic form
factor F(q?) exists. A relation between the directly observable form factor
and the rest frame Fourier transform of the density ¥'¥ is in question at
present.(The two are equivalent non-relativistically.) This will be addressed
in an upcoming paper.ig The question is unsettled as of now but there are
compelling arguments to offer in support of a subtraction of 5oz 8 a correc-
tion in the reduction of r&, — 2, in place of the z3; correction when relating
to the rms radius as determined in the relativistic system's rest frame.

The dotted +1¢ box in the second panel of Figure (5.3.1) shifts to
larger v, and is to be compared with the relativistic data of that figure
only. The shift would return the e,rm discrepancy to the status quo wvis
4 vie the Breit framework data of this work. One must note that the full
sophisticated Bonn model in the Blankenbecler-Sugar reduction of the full
relativistic Bethe-Salpeter equation falls dead center. If the 527 correction
holds, this would indicate that a relativistic framework is indeed sufficient
to resolve the problem but that the framework apparently lies above the tier
of the Breit equation. Off shell effects accounted for in the ﬁeld-theorgtica.lly
based Bonn model could be responsible.

It remains to be determined hoever, whether or not shape depen-
dence effects can be “tuned” by a sufficiently strong interference mechanism
so as to greatly enhance the P-wave part within the Breit frayyework and

model space of this work. That will be the subject investigated next.



78 5  Breit treatment of the j=1 triplet nucleon-nucleon sector

By enhancement of the P-wave part, it is not meant that the contri-
bution to the overall normalization from the lower mid-sized P-wave com-
ponents should necessarily rise to meet the experimental data. The most
resistant datum, by far, remains the matter radius rm. A shift inward in
these amplitudes may be all that is required. Indeed, Figure (5.3.2) seems to
indicate that over the entire survey, rising P-wave representation beyond 1

% carries the fit away from the r,-a; point quite sharply.
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Figure 5.3.1 Breit 33, a, and deuteron r_: Broad survey
results
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The solid line box marks the experimental datum +1 ¢. The solid diamonds
from bottom left to top right are the nonrelativistic potentials: RSC, Paris,
TRS, V,, (see Bhaduri etalq). The star is the full Bonn modely, from
the Blankenbecler—Sugar equation. The dotted box is that of the proposed
relativistic model r,, for comparison with full Bonn model and broad Breit

model survey: {+: untapered OPEP tensor part; x: tapered OPEP tensor part)

®: Breit model A (untapered OPEP tensor): ®Breit model B (tapered OPEP tensor)
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Figure 5.3.2 Relationship of xj, .; and % p-wave
(from broad survey) B

+ : Untapered OPEP survey configurations.
x : Tapered OPEP survey configurations.

% p—wave component
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5.4 BREIT MODEL OF THE DEUTERON AND THRESHOLD
SCATTERING.

The pursuit of a best fit to the deuteron and low energy scatter-
ing observables is implemented here with the following experimental data to
serve as targets. All values are taken (or derived) as compiled in Table 3in a
1987 paper by Machleidt et al. .;sq The tabulated values are repeated here for
easy reference but can be tracked from reference (58] and the experimental
references therein. The deuteron binding of 2.224575 has an uncertainty of
+0.000009 MeV. Never-the-less, it is fitted exactly every time, thus eliminat-
ing the binding from the x? function. This was done for technical reasons. (It
is easier to fix the energy at the right binding and vary dynamical parameters
to fix the radial amplitude continuity conditions than to scan for the binding
ensrgy for each configuration. The dynamical parameter varied each time to
bring about the exact binding is the scalar coupling g,. The quantity My is
the average nucleon mass: 938.91897 MeV.

As noted in chapter 3, the magnetic properties are casually treated
in this model. The magnetic moments of the proton and neutron are perhaps
the most-glaring signal of compositeness. The anomalous (Pauli} moments
can probably be treated consistently in this framework by following a proce-
dure outlined by Schwinger(sg) but it would require a considerable leap in the
sophistication of this model. The deuteron magnetic moment is not one of the
prime targets to be fitted here consequently. We can generate a quasirelativis-
tic value by simply weighting the orbital contribution of the lower P-wave
components by the P-wave percentage but using the nonrelativistic formula.

This is not quite correct since the Schridinger and Breit current

operators are different but the magnetic moment is not included in the x?
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fitting scheme but is calculated for completeness and at least a rough estimate
of the P-wave contribution. The calculation of the non-relativistic moment:

3 1
Hyeusnon—rel = ity +pH, = 5(”’9 +u, - E)PD (5.4.1)0.

(e.g., see DeBenedettify) p.51,52) is supplemented by a contribution

1 1
Sbtane = —5(p + 0 = 3P (5.4.1)b

by a straight forward extension of the discussion within those pages. Here,
the individual moments for the proton and neutron are respectively: u, =
2.792847386u, and p, = —1.913042754, . [s¢) NO meson exchange corrections

are included in this formula either -so a lot of precision here is unexpected.

Table 5.4.1 DEUTERON AND EFFECTIVE RANGE DATA

Property Symbol Value / (Uncertainty)
Deuteron rest energy: Wieue 1.997630725(49) My
D-state probability: P, 5(2) %

quadrupole moment: Qucut 0.2860(15) fm?
magnetic dipole moment: Baent 0.857406(1) uy
asymptotic S-state: Ag 0.8846(16) fm(~*/?
asymptotic D/S ratio: 7 0.0271(8)

deuteron matter radius: Tm 1.9643(38) fm

38, scattering length: at 5.424(4) fm

38, effective range: Tt 1.759(5) fm
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Turning now to the quadrupole moment of the deuteron, nonrelativis-
tically, the quadrupole operator: @ = (§)?(3cos® # — 1) disapoears (of course)
in the pure S-state, mixes S and D parts as well as well as picking up a con-
tribution from the D-component. This operator will not mix the odd P-part
with the even S or D parts of the relativistic generalization but a direct P-P
contribution will occur. A further subtlety is that the pure spatial operator
¢ will not intermix different spinor componeats even if they occur in the
required S-D, P-P, or D-D combinations. In the tensorial spinor basis, we

have:

Que = { (Ba@ 0N (300526 = TR Nl + 0.}
+ (T4 )5 (3050 — DITEL (@, 0N {(rDuy + (s}
+ (T44(@ 015 (8cos? 0 — DITE1 (@ N {rhucsy + (Ds-s)
T Beost 0 D@, e + 037 + (g + )
(5.4.2)
The four angular pieces in order are 0, —gy, +§7‘5-0-, and the new
P-contribution: +g5.

To obtain relativistic analogs of A, and 5, we substitute the following

quantities in place of the usual expressions:

A, = 1.1_1_.1110 VU2 () + g2 (r)re®” (5.4.3)

and

LI TE pp TS N
Y rlingo ud(r) +gi(r)re {1+ar+(ar)2} (5.4.4)

o= J(Wdzeut - 4‘“'2)(4M2 - Wdzeu!)

nDIS

with

w2 o

deut
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Of course, the much focussed on quantity rm is also obtained with a
straightforward extension of its non-relativistic version.

rmE{ > <r2),,i}1/2 (5.4.5)

—tu.,0 J .6
Gi=g i fuotgy

Many of these relativistically altered expressions clearly offer a pos-
sible mechanism to provide interesting physics through the participation of
the P-wave amplitudes.

With the aforementioned {S,V,U,,,U,} model-ansatz calculated at

many points in the space {gy, by, bs,C

aal?

C,,} the top five random fits were
seeded as the starting points of several minimization threads. The best fit
within the model with independent U, and U, splines, with both quantities
finite at r = 0, certainly does well in fitting the deuteron and effective range
quantities: {W,,.. Queuer A1 llpjsr Tmi ey Tt} With a total X2, = 9.32, (or 0.76
per datum with 6 dynamical parameters in all excluding the pion tail which
is taken as given). This will be referred to as Model-A.

The parametric freedom of the two OPEP generating species U, (r)
and U, (r) at small r however leads to several unnatural consequences. The fit
is obtained when the simplex algorithm ramps up both C,,, and Cy, control-
ling parameters of the OPEP strength at the origin. The phenomenological
OPEP takes over as a dominant influence at small r. The long range nature
of these interactions does not allow that unduly large influence to dissipate
away very quickly as r becomes larger. The response of the scalar and vec-
tor interaction ranges then is to stretch out considerably so that the large
powerful OPEP part can be countered somewhat.

Although Gaussian ranges b, and b, are somewhat naturally larger

than characteristic cut-off Yukawa ranges for crudely equivalent fits, those
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encountered here depart significantly from the characteristic meson ranges
we associate with the vector and scalar (all be it ficticious) fields in more
rigourous and successful relativistic frameworks. Table 5.4.2 lists the dynam-
ical parameters and evaluated physical quantities as they occur in model-A.

The choice of shape of ansatz for S(r) and V(r) could perhaps have
a detrimental effect that causes the x? function to minimize with a push
towards a U,,(r)-U,(r) interference mechanism that drives the lower com-
ponent P-wave amplitudes to become large and influential. A presumably
better approach may have been to include more parametric freedom associ-
ated with the vector. There are indeed more than one vector meson playing
a role in the microscopic process, we presume.

One of the reasons for allowing the one parametric freedom in U, (r)
to be its value a* “he origin was to enable it to affect the fit of &, (the 253D,
mixing angle) near the elastic/inelastic scattering threshold. An attempt to
fit the scattering data accompanied model selections in subsequent sections
but here it was not a fitting criterion. Still as an artifact of those attempts to
fit the entire 35;-3D; channel cver the body of deuteron and elastic scattering
data, this freedom allowed for a better fit than the model-B with the tapered
OPEP. The fact that the x2  function at the end point in the parameter
space is dominated by the same “sore thumb”, 7, as in the non-relativistic
models may well be the sole reason for this excursion into a nonintuitive
region of parameter space.

From a purely phenomenological perspective, however, Model-A pro-
vides us with enhanced P-wave amplitudes at small r and smooth interactions
which lead to short range structure and important gnergy-dependence in the

effective potentials of the Schridinger-like equation (as represented in radial
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Table 5.4.2 MODEL-4: PARAMETERS AND LOW ENERGY DATA

Dynamical model parameters

Scalar coupling g,: -0.19039 My range by: 6.47870 My
Vector coupling g,: +0.11040 My range by: 7.25557 My!
OPEP splines U, |r=o: +0.84604 My U, |r=o: -0.65352 My
Quantity Numeric value AxZ,, contribution
W, 1,875.6134 MeV 0.000
Qe 0.28587 fm? 0.007
Baeus’ ‘ 0.82718 p, n.a.

A 0.88456 fm~% 0.006
Noys 0.02665 0.321
Npyst ; 0.03444 n.a

r: 1.97198 fm 4.085

% D-state: 5.98083 % 0.241

% P-part: 1.16945 % n.a.

a,: 5.42028 fm 0.865

T, 1.75935 fm 0.005

P: (shape parameter) -0.02066 n.a.

total x%,: 5.323
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Figure 5.4.1a Breit low energy model solution A dynamic
components (A = untapered OPEP tensor)
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Top-left: The four simple dynamic model components

Top-right: The four crucial linear combinations wh
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Bottom-—left/right: Energy dependent effective direct interactions of radial
equations (2.6.8)a (solid lines) & (2.6.6)b (dotted lines). ( E mW — 2M )
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Figure 5.4.1b Breit low energy model solution A dynamic

components (continued)

» i T T r——r—v— 1000
= o - = : - s =
- : / I
— . ;
™ : :
5 H :‘t <

: [ 5
" -1000 E = 1680 MeV n :. s ........ E = 180 MeV d-10002
f.lﬁ
E= 80MeV o eeees E= 80 MeV
l..
-2 MeV assnnnee E = -2 MeV
-2000, L L ! - -2000
2000 3 : 2 —— *1000
— -~
S
g o . g
5 2
% 2
2 5
E i —~
3 0 - -1ooo§
> ] e E = 160 MeV = 180 MeV =~
........ E = 80 MeV = 80 MeV
asssenas B o -2 MeV wsranens B m -2 MeV
-mogu Il i é — PR PO S Y 1 i é —_— e . ‘-BDOO
r (fm) r (fm)

Top-left/right: Energy dependent effective S-D crossterm interactions of radial
equations (2.6.6)a (solid lines) & (2.6.8)b (dotted lines).
Bottom-right/left: Purely relativistic interaction after subtraction of
non~relativistic reduction in the direct and cross channels.
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Figure 5.4.2 Breit radial amplitudes for Model A
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form by equation {2.6.6)a and b.). It clearly hints at an interference mecha-
nism. (See the top-left frame of Figure 5.4.1a.)

Since, in this section, the emphasis is purely to seek out a low en-
ergy fit of deuteron and effective range data, another attempt is called for
which pays more homage to the consideration that U, (r) and U, (r) are re-
ally dependent. Strictly speaking a single functicn, the Fourier transform
of the nucleon-pion form-factor modulus squared Z-(r) dictates entirely the
spin-spin and tensor portions of the OPEP. Refer to equation (A3.1)a and
b. The dependent relation for r < m_! was lifted to enable short range phe-
nomenological part of the interaction to have a spin-spin and tensor portion
not necessarily connected with the pion alone.

With the strict dependence between U, (r) and U, (r) in place, it can
be seen (Appendix 3) that finite U,, (r = 0) implies U, (r = 0) = 0. If the first
radial derivative vaaishes for U_,(r) as it does for either OPEP ansatz here,
then both U, (r = 0) and U’ (r = 0) would vanish.

The tapered tensor OPEP model, maintains the first restriction while
flaunting the second. Hence, a flavour of extra short range phenomenology
associated with direct spin-spin and direct tensor parts remains.

The tapered OPEP parameter search led to Model-B. Here, it is
evident that the fit is slightly worse than with untapered OPEP but that once
again, the x2 _ is dominated by r». The dominant interference mechanism
to enhance the P-amplitudes is indeed scalar/vector however. This bodes
well for any followup study that utilizes additional vector degrees of freedom
which may then have the ability to tune this interference to resolve the rm-a
discrepancy. The model dynamics is described in Table 5.4.3 and illustrated
in Figures (5.4.3)a and b, with the solution illustrated in Figure (5.4.4).



5.4 Breit model of the deuteron and threshold scattering. 91

Table §.4.3 MODEL-5: PARAMETERS AND LOW ENERGY DATA

Dynamical model parameters

Scalar coupling g,: -0.33527 My range b,: 4.08399 M3
Vector coupling g,: +0.47501 My range by: 3.44266 Ay
OPEP splines U, |r=0: +0.18511 My Ul lr=0: -0.11747 My
Quantity Numeric value Ay}, contribution
W, 1,875.6134 MeV 0.000
Qe 0.28585 fm? 0.009
P’ 0.83256 4, na.
A 0.88601 fm™z 0.780
Moys: 0.02670 0.253
Meys' 0.01399 n.a.
Tt 1.97336 fm 5.687
% D-state: 5.36937 % 0.034
% P-part: 1.11153 % na
o 5.42174 fm n.319
r 1.75489 fm 0.674
P: (shape parameter) -0.00941 .0

total x2,: 7.771
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Figure 5.4.3a Breit low energy model solution B dynamic
components (B = tapered OFEP tensor)
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Bottom-—left/right: Energy dependent effective direct interactions of radial
equations (2.6.8)a {solid lines) & (2.8.6)b (dotted lines). ( E aW — 2M, )
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Figure 5.4.3b Breit low energy model solution B dynamic
components (continued
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Figure 5.4.4 Breit radial amplitudes for Model B
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Finally, although the elastic scattering data were not a fitting crite-
rion beyond threshold. for completeness, the calculated phaseshifts of both
models A and B are shown in Figure (5.4.5). The sign flip in & associated
with model B illustrates clearly a trend that resulted in the abandonment of
the U, (r = 0) requirement in the first place. The sharp falling off of the D-
wave phase shift (over-repulsion) is also a persistent feature of models within
this parameter space.

Although the 2 , is dominated by rm, the possibility that the proper
*m to relate to the Breit model rms radius (and the Blankenbecler-Sugar
model for that matter) is shifted an amount close to 1 oy, is intriguing. The
best fit Breit model only just squeezes into the corner of the 1 ¢ box. Perhaps
a not-so-contrived tuning of -V interference may indeed move it into agree-
ment with the experimental datum afterall. This is still an open question.
The P-wave apparently does play a role in moving r in the right direction.
Surprisingly, so does the D-wave part. The S-wa' e amplitudes alone would
place rm at 2.017 fm. for model-A. The P-wave rms radius alone is 1.104
fm., ohly slightly smaller than the D-wave value of 1.252 fm. Similarly, for

model-B, we have values: 2.012, 1.216 and 1.314 for S,P, and D contributions

respectively.
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Figure 5.4.5 Breit models A and B: °S, - 3D, phaseshifts

e

T, (MeV)

The solution set VLAO of SAID (Arndt et.al ) is the fit of elastic scattering
data below T = 350 MeV. The light dotted line is their solution. (Points and
error bars are their fixed energy solutions.) The best deuteron and effective
range data fit, model-4A, is shown as solid lines. The tapered OPEP solution
model-B is represented by the dashed lines.
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5.5 BREIT MODELS OF THE 35, - D, NN SYSTEM

Since the scalar and vector ansatzes are simple Gaussians, a good
fit of phaseshift data over the entire elastic scattering energy range is a bit
too ambitious. A seemingly attainable goal would be to fit the phaseshifts
at two widely separated energies: threshold and W,: the energy at which the
38, phaseshift crosses 0. Provided that the interactions are smooth and not
pathological, smooth fitting phases like the S-wave of Figure (5.4.5) which do
fit intermediate energies may arise anyway. If not, then intermediate points
could probably be brought into line by additional shape enhancements on
the basic ansatz.

The attempted total fit within the basic Gaussian model (+ OPEP)
was therefore driven by a minimization algorithm acting on a quantity x2,
which is x2,, of the previous section with an additional contribution:

Xow = ; (Q(W,) —Agztgg(l";)) + (EI(W,) _Aittm(wz))

Here the following target values were adopted.

8_targ(W,) = 0£0.0122

8, targ(W,) = —0.4211 = 0.0084rad (= —24.12%)
& targ(W,) = +0.0971 = 0.0066rad (= +5.56")
W, = 2.17010M,, (= 2037.550MeV)

The errors were estimated at W, using a weighted average of Arndt
et al. 'z fixed energy errors at Tig = 325 MeV and Tio = 350 MeV.
When one is attempting to simultaneously model the elastic scat-

tering data(s;) as well as the deuteron properties, a dichotomy arises. The
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best deuteron fits, models A and B, yield an over-repulsed D-wave scatter-
ing phaseshift as can be seen in Figure (5.4.5). To offset this, the parameter
search must provide more attraction for the D-wave while not seriously af-
fecting the S-wave properties which are already reasonably described over
the entire range. Hence, there is a preferential drive towards parameter con-
figurations with U,(r) playing a larger role at small (or higher energy,
T, = 350MeV). Recall that to lowest order, U, is the sole source of different
dynamics in the § and D channels.

The parametér search is always restricted to select a range of g such
that singular effective interactions at finite r are avoided. Parametrically the
most severe danger is posed by g, which can be large and positive (and is
so in the Bonn modelisg). Of the four key quantities which appear in the
denominators of radial equations (2.6.6)a and b, W,(r) which includes the
combination W — 4V (r) proves to be the most restrictive on g, .

This restriction apparently (as encountered in this study) is too dom-
inating and as the search algorithm samples repulsive U, (r) values at lowr, it
finds favourable configurations (lower x2,) in which the role of U, (r) at small
r is directed to offsetting V(r) in the quantity W, = W = 4V(r) +3U,, (r) +....
Eventually, the completely phenomenological U,,(r) (for small r) provides
essentially all the short range repulsion while g, is actually driven to negative
values. This now harkens back to the observations of earlier investigators,
including Breit;q) from the onset, that the equation generated spectra which
departs in second order (in couplings) from field theory (or empirical data
 at the time). A departure in second order in a strong coupling g, ~ Q1)

could easily leave a negative coupling as a signature of this disorder. The
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apparent consistent movement of the parameter search into this regime is a
black mark against the Breit choice of framework.

The exercise of obtaining best fit scattering solutions is still worth-
while however in that the influence of universal relativistic elements, such as
non-traditional energy dependences in the effective interactions of the radial
equations, can be gauged and held up in comparison to the conventional
view of the nuclear force as a hard repulsive core with soft intermediate at-
traction. The relative softness of interactions in the relativistic formalism is
likely to survive this simple quantum-mechanical picture. Extra repulsion is
generated by ramping up the energy in the effective equations here in the
triplet as was the case in the charge-symmetry breaking investigation of the
18, system of chapter 3.

The fact that soft interactions are forced upon the Breit equation
by the avoidance of the Klein paradox scenario is quite separate from this.
The suggested energy scale of the dynamics in this work is apparently not
‘soft enough. Ultimately though, the theme of energy dependent interactions
suggests an at*tractive viable resolution of the saturation/binding difficulties
with nuclear matter.(73 The effect is achieved here with the correct qualitative
behaviour. (Higher energy ramps up the internucleon repulsion.)

There are two results to be presented here. As before, the two al-
ternative OPEP short range splines are employed. The best overall fit hit
randomly in the broad survey had x,,, ~ 420 in the untapered OPEP tensor
case and ~ 475 for the tapered OPEP tensor spline. These starting points
had positive g, ~ +0.15 — 0.30 to begin with but soon the simplexes were

drawn to highly positive U, , and negative V.
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The best obtained model fit with the untapered OPEP tensor will be
referred to as model-C while the tapered OPEP tensor case will be designated
model-D.

Altogether, six seed points were tested with the minimization algo-
rithm. Five attempts were with the untapered OPEP and three of these were
“chosen” points far apart in the space particularly w.r. to the starting at the
best two points of the random survey. After achieving five end or aborted
solutions with negative g, , the sixth attempt with the tapered OPEP ansatz
was made. The search trajectory joined the other five by driving g, down
and U, (r = 0) up.

The dynamical parameters and “deuteron” properties are presented
in Table 5.5.1 for model-C. The interactions and effective interactions as
they occur in model-C are illustrated in Figures (5.5.1)a and b. As the table
shows, the low energy and deuteron fit is sacrificed for very marginal gain
on the high end of the elastic scattering. The wave-functions are presented
in Figure (5.5.2). It should be noted that although none of the interactions
as indicated in the top left frame of Figure (5.5.1)a have a particularly skort
range repulsion, the S-wave radial equation has an effective interaction with
a deep well and steep 7 repulsion below 1 fm. This is a signature of highly
non-additive interactions entering the relativistic equation for amplitudes
vo(r),ve(r).

The tapered OPEP tensor approach offers the better overall fit this
time. Model-D fits the deuteron and effective range data along with the 3
scattering parameters at W = W, to within a x2, of 200. This very modest
result is of course brought about by seemingly unphysical combinations of

V(r) and U,(r). Table 5.5.2 and figures 5.5.32 and b illustrate this choice.
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The one out of four physically believable models of these last two sections.
model-B, with the conventional S&V interference mechanism, does not do
well with the scattering. The defection back to the axis (and frequent sign
change) of the mixing parameter ¢, unfortunately seems a persistent feature

of the tapered OPEP tensor ansatz. There are exceptions however -notably

Model-D.
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Table 5.5.1 MODEL-C: PARAMETERS AND LOW ENERGY DATA

Dynamical model parameters

Scalar coupling g,: —-0.65994 My range bs: 3.59875 My
Vector coupling gy: -0.50662 My range by: 1.11341 M3}
OPEP splines U, |r=0: +0.90487 My Uy lr=0t +0.33509 My
Quantity Numeric value Ax2,, contribution
W, 1,875.6134 MeV 0.000
Qo 0.28909 fm? 4.244
T 0.83120 pu, n.a.

A 0.88824 fm~% 5.176
Mpys' 0.02683 0.114
Npsst 0.03444 n.a.

Tt : 1.97912 fm 15.21

% D-state: 5.52442 % 0.069

% P-part: 0.99510 % n.a.

a,: 5.43365 fm 5.820

Tyt 1.77154 fm 6.290

P: (shape parameter) -0.01169 T.G.

total x2,: 37.38
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Figure 5.5.1a Breit model solution C dynamic
components {(C = untapered OPEP tensor)
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Figure 5.5.1b Breit low energy model solution C dynamic

components (continued)

Breit treatment of the j=1 triplet nucleon-nucleon sector
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Figure 5.5.2 Breit radial amplitudes for Model C
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Table 5.5.2 MODEL-D: PARAMETERS AND LOW ENERGY DATA

Dynamical model parameters

Scalar coupling g,: —0.07494 My range b,: 3.87240 My'
Vector coupling gy: -1.17388 My range by: 3.15588 My!
OPEP splines U, |r=0: +1.30468 My U |r=0: +0.12231 My
Quantity Numeric value Ax2,, contribution
W, 1,875.6134 MeV 0.000
Qo 0.20752 fm? 58.98
Bt 0.82037 py n.a.

A, 0.88542 fm~3 | 0.263
pyst 0.02754 0.302
Moy 0.03444 n.a.

r 1.97488 fm 7.752

% D-state: 6.75591 % 0.771

% P-part: 1.00407 % n.a.

a; 5.41918 fm 1.452

r.: ' 1.75130 fm 2.372

P: (shape parameter) -0.00900 n.a.

total X2, 71.19
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Figure 5.5.3a Breit model solution D dynamic
components (D = tapered OPEP tensor)
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Figure 5.5.3b Breit low energy model solution D dynamic
components (continued)
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Figure 5.5.4 Breit radial amplitudes for Model D
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Figure 5.5.5 Breit models C and D: 38, - 3D, phaseshifts
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The solution set VL40 of SAID (Arndt et.al. [nl) is the fit of elastic scattering

deta below T = 350 MeV. The light dotied line is their solution. (Points and

error bars are their fixed energy solutions.) The best overall fit of scattering

and low energy data, model-D, is shown as dashed lines. (It is the tapered OPEP tensor.
As before, the untapered OPEP tensor fit, model-C is represented by the solid lines.
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. 5.6 DISCUSSION OF THE TRIPLET RESULTS

In section 5.4, it was found that the Breit equation does not resolve
the outstanding a;-rr, discrepancy if the conventional non-relativistic reduc-
tion of r, holds up. There is some dispute over the 2y contribution to the
Zitterbewegung correction as it epplies to relativistic equations.g) The proposed
correct deduction of r, from electromagnetic scattering involves one-half of
the usual correction.

The shift of the relativistic r, to larger value combined with sufficient
tuning of an interference mechanism which enhances the 4 P-wave amplitudes
can indeed lead to a smaller r,, but the interference can happen between a
number of interaction types. The S-V mechanism which has a lot of empirical
and theoretical support generates a best fit (model-B) that falls a little more
than 1 & away from the experimental value. An anomalous solution (model-
A) that relies on the purely adhoc short-range OPEP interaction can fit
the experiment to an even better degree but this must in all likelihood be
attributed to a kinder set of Klein paradox restrictions. A more sophisticated
framework could allow g, and g, to become sufficiently large to solve the
discrepancy more definitively.

From a purely kinematical point of view, the Breit equation seems
to corroborate this. The P-amplitudes exist and take up a piece of the nor-
malization, have concentrated strength at small r, and can be enhanced by
dynamics acting differentially on the large and small components. The Breit
equation may not lend itself to the right dynamics if couplings become large
but certainly it does provide a window on “how" relativistic interference

mechanisms impact on the problem if not “why”.
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The solution model-B is also reasonably close to the a;-rm, point so
that even with its moderate couplings, additional shape effects beyond the
basic Gaussian ansatz may resolve this particular problem within the Breit
framework afterall.

When an attempt is made to explain the elastic scattering for the
j =1 triplet in addition, the parameter searches are driven into the regions
of large couplings. The Breit equation cannot be reliable because surely the
vacuum must be playing an important role. Although it cannot be ruled out
that the Gaussian choice of ansatz with no shape embellishments could be
responsible for the bad fit, the fit attempted was at the energy end points
of the elastic scattering range. Initial efforts in this work did involve extra
parametric freedom among S and V. The ansatz: g;(1 + e,r)e~(*/%:)" was used
for S and V although the parameter search was more crude and less system-
atic. For that matter, cut-off Yukawa potentials with two-boson exchange
and single exchange tails were also utilized but in both cases, the OPEP
used was frozen through all the work. The x?'s of model's A,B,C, and D of
this chapter are the best results of the accumulative attempts.

An attempt to resolve the problem through variable free parameters
of both the OPEP (short range) generating part and the additional ones of
the scalar and vector interactions was not undertaken because of the large
number of parameters especially in light of the small number of data to be
fitted. This will be undertaken in a subsequent study subject building from
the results given here,

There are perhaps additional reasons that the Breit equation may
still be a viable equation in this setting. Firstly, the parameter search took

place in a diabolical space of funnels, long winding tunnels (in 5 dimensions
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usually) and abrupt precipices. (Suddenly, at an incremented potential range,
the deuteron state acquires an excited partner for instance.) It may yet be
the case that most of the fit trajectories taken miss converging to a stable
configuration of mildly strong scalar/vector couplings with OPEP clearly in
the background.

If the strong couplings are unavoidable as this chapter leads us to
believe, then perhaps a brand of quasi-potential formalism can be worked
out, relating the Breit couplings to the “true” couplings as suggested by a
more fundamental theory to a higher perturbative order than second.

Finally, although the total x? for all data were dominated by the
D-wave phaseshift §, at W = W,, and the j = 1 mixing parameter &, the
purely low energy fits for the deuteron and effective range were driven al-
most entirely by the dominating influence of ry, on the x2. The experimental
value of ry, that entered this function was that obtained involving the =T
Zitterbewegung subtraction from the deuteron charge radius. It is an open
question whether the suggested target for the Breit equation would have led

to a gentler configuration of couplings.






Chapter 6

Discussion

In the previous pages, we tried to apply an equation to the two nu-
cleon system that would allow a “simple” relativistic extension (the apparent
complexity of chapter 2 notwithstanding) of the very familiar Schrédinger
equation with local interactions.

The work of chapters 3 and 4 dealt exclusively with the 1S system
and chronologically, in the development of this study, preceded the triplet
work of chapter 5. Several shortcomings of the Breit equation were exposed,
even in the spin-singlet work. The handling of the electromagnetic interac-
tion in the charge-symmetry-breaking (CSB) study, for example, is one such
sensitive point. Still, an effort to correct for the departure from field theory
is made by adopting Breit’s own form of the electromagnetic interactionyg),
1-3&-a,- (E—L?,ggﬂ}vm(i-'), for Dirac particles. Thus, the electromag-

netic field, a Lorentz 4-vector, enters the dynamics in a modified form, quite
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different from the strong nuclear vector field which has massive quanta and
enters the interaction as {1 - &, - &,}V (7).

The use of the Breit magnetic part is a tacit admission that the
massless photon field cannot be handled properly in our purely quantum
mechanical equation without some modification. The massive vector mesons,
on the other hand, are more inhibited from popping in and out of the vacuum
and so we enter the strong vector into the Breit equation as an unmodified
covariant 4-vector. Keeping in mind that electromagnetic effects to first order
in ¢ (as opposed to a,) are electric and not magnetic, and that the energy
W, strong scalar S, and strong vector V all enter the Breit equation to
lowest order correctly, the bilinear combinations of these quantities in the
next order must therefore also be correct. These are the terms which are
most important in the interference effect, a novel apparent gharge—symmetry—
breaking mechanism which appears in the non-relativistic singlet scattering
length a, discussed in chapter 3.

Due to the simplicity of the Breit equation, the effective range ex-
pansion of the 1S, singlet of chapter 4 provides an opportunity to examine
general relativistic extensions of the usual expansion. The key to remember
here is that this expansion relies primarily on elementary properties of wave
functions such as continuity and asymptotic behaviour which are cemented
concepts in any framework. The dynamics of the equation certainly influence
the parameters of the various discussed expansions, but the kinematic cor-
rection %‘g’- of equation (4.15) (of the contained reprint) in the expansion of
ratio {5}3-}2, will certainly rémain as long as the modulus squared of all spinor
components enters the calculation. (As mentioned briefly in chapter 5, when

comparing with similar non-relativistic expansions, a part of this amount is
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already accounted for in subtractions of the Zitterbewegung but apparently
not the total.)

In chapter 5, difficulties with the OPEP came to light that did not
appear in the singlet studies because of the neutrality of the tensor portion
of the interaction. The essential problem is that the potential tail is charac-
terized by a strength g2 =~ 0.08 which is very approximately nonrelativistic.
The nonrelativistic analyses corroborate this tail quite consistently and it
must be generated to both extend any model consistently to higher partial
waves in scattering and to place the asymptotic deuteron properties “in the
right ball park”.

The pseudoscalar inclusion of the OPEP in the Breit equation runs
head on into the Klein paradox. Methods of regularizing the P(r)y}v,5 form
of the interaction must brutally damp the interaction at all values of  that
G2 is greater than or even of the same order as M,. The avoidance of a
singularity at finite » (which would come at roughly 1.3 fm) requires severe
damping in that very tail region. (The interaction is of course very benign at
r >> 1 fm, where there is no need of damping and where, of course, nuclear
scattering data is sparse to none!)

The alternative method of entering OPEP in an axial form cannot
properly generate the tensor force. The deuteron d-state related properties
and the g, scattering mixing parameter are utterly unreproducible.

The OPEP must be part of the model. Both of the natural avenues
for its inclusion in the Breit framework, P(7) and A(F), are closed. A sure-fire
way to generate the proper tail without the singularity problem is to put
in, by hand, the spin-dependent pieces of the interaction. The interaction,

as it appears in the radial equations of the pure large components is the
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traditional OPEP tail merely dressed with tiny transient pieces associated
with the algebraic elimination of the small components. If we allow the short
range phenomenological part of this interaction to be governed by two 0-
range strength parameters and a smooth attachment to the tail, a fit of the
scattering and deuteron data should fix these parameters in a benign way
and presumably let the scalar and vector potentials cover most of the physics
in the intermediate and short range regions.

- This did not happen. With a blind eye to the scattering data, a
good fit with physically meaningful interpretation, model-B of chapter 5, was
attained. At tl:ﬁs, the deuteron matter radius, r» was still highly resistant to
the fit and contributed the lion’s share of x? . The added requirement of a
simultaneous fitting of scattering data proved too restrictive altogether.

| We can ask a few pointed questions. Can the interference scheme,
which incrementally improves the fits until the point where singular effective
interactions defeat the Breit equation framework be tuned with additional
shape parameters within this context? Or alternatively, must the couplings
keep ramping upward in strength, forcing our hand and making us discount
the Breit equation in the nuclear context altogether? In chapter 5, it was
stated that the attempt to fit the scattering was already directed at the
meagre goal of producing a reproduction of scattering data at threshold and
at one other fixed en.ergy only, W,, where the 5_ crosses 0. It was argued
that this already accounts for the crudity of the shape ansatz. Intuitively, if
nothing was wrong with the framework, a crude model would likely fit the end
point phase data and perhaps butcher the fit in between. Basic ingredients of
range and strength parameters attached to each of attractive S and repulsive

V were not able to fit this minimal scattering data.
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A very pathological \? behaviour in the 3-dimensional parameter
space leads us not to discount entirely the possibility of a overlooked solution
that does lend itself to physical interpretation within the Breit framework’s
éphere of description. The narrow tunnels that appear in the space are likely
symptomatic of the interferences between the interactions. The parameter
space was widely sampled however with points all playing to the more and
more established scalar-vector interference mechanism (in section 5.3). In the
wide survey, V was pegged to be repulsive which tended to drive S negative
to bind the deuteron. Ali of the best seed points from this survey in addition
to a few widely separated hand-picked points were drawn into areas of the
parameter space where other interference mechanisms, of dubious physical
interpretation, dominated the physics. (Constrained searches with g, > 0
leads to g, = 0. Try to interpret that!)

What we are essentially left with is a high degree of certainty that
the Breit framework is not a viable one for nuclear dynamics. This is un-
fortunate because of the ease of interpretation and the amount of overlap
between traditional non-relativistic calculations and those of our minimally
relativistic apparatus.

There is definite insight to be gained from this work however if atten-
tion is turned away from an incorrect dynamics (a result of a choice of frame-
work) and turned instead to asking how does a relativistic wave-function,
whatever the dynamics, twist and turn to offer a possible resolution of some
outstanding problems? We think we have the answer. The p-wave amplitudes
of the mid-sized spinor components can be pulled inward and enhanced in

magnitude quite apart from the behaviour of the pure large spinor compo-

nent.
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A relativistic framework that properly describes the vacuura will not
allow the Klein paradox. We would very likely be able to find positive g, and
negative g, outside the Breit framework sphere of description that resolves
the celebrated a;-rm discrepancy within some higher relativistic framework.
Of course, if the dynamics requires much tuning to arrive at a highly con-
trived interference to resolve the discrepancy completely, then other dynamical
data which come into play, to fix the meson-nuclear couplings for example,
will then heip elucidate whatever true divide exists between a resolution
attributable to relativity and that attributable to intrinsic non-locality. Af-
terall, we are reasonably assured of both notions: that nature marches to
Einstein’s beat as opposed to Newton's, and that nucleons are indeed, like

us and our pets, extended objects in more than one place at once.
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Vacuum polarization in
one dimension -elementary examples

1.1 INTRODUCTION

The content of this appendix is certainly removed, in subject matter,
from the thrust of this thesis. It does point out some notable consequences of
the “physics of the small component” which permeate all of relativistic for-
mulations of fermion physics, either of fermions in isolation. pairs, or many
body systems.z414) In particular, what it holds in common with the Breit
equation work is the novel physics associated with enkanced small spinor com-
ponents due to constructive addition of repulsive vector and attractive scalar
interactions. The lower component of the spinor sees stronger dynarnics than
the upper component and consequently the E < 0 single particle states of the
Dirac Sea, in which the lower components ere the large components acquire
much structure in the vicinity of an external potential. We introduce two

1-dimensional toy models here in which we calculate both the redistributed
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fermion number density of the vacuum and the peculiar acquired fractional
fermion number. or charge. of the dynamically altered vacuum. The section
immediately following was published as a short note to Europhysics Letters.
It describes the treatment of a 1-dimensional external potential of a spatial
5-function form with mixed scalar and vector couplings. It is remarkable in
its simplicity as an illustration of vacuum polarization. The section following
that involves a simple embellishment. We exchange the spatial dependence
for that of a square well. The problem is less amenable to analytic techniques

however and offers essentially the same physics at a glance.
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1.2

EUROPHYSICS LETTERS 1 November 1986
Europhys. Lett.. 2 (9), pp. 661-665 (1936

Vacuum Polarization and Fractional Fermion Number:
an Elementary Example.

Y. NocaMI(*)

Theoretische Physik 1I. Ruhr-Universitdt Bochum
D-4630 Bochum 1, Federal Republic of Germany

D. J. BEACHEY
Department of Physics. McMaster University - Hamilton, Ontario, Canada L8S 4M1

(received 28 April 1986; accepted 16 July 1986)

PACS. 03.65. — Quantum theory; quantum mechanics.
PACS. 11.90. ~ Other topics in general field and particle theory.
PACS. 21.60. — Nuclear structure models and methods.

Abstract. — For the Dirac field in one space dimension subjected to an external static potential
in the form of a delta-function, we obtain the density :(x) and the fermion number | stz)de of

the vacuum. The fermion number varies continuously depending on the strer;g‘th of the
potential.

In recent years there has been a growing interest in the role played by the vacuum in
quantum field theory (see, e.g. ref. [1]). The vacuum probably has a rich structure yet to be
disclosed, and it would be useful to study models such that one can work out the vacuum
structure explicitly. The purpose of this note is to examine the vacuum of the Dirac field in
one space-dimension under the influence of an external static potential of the form of a delta-
function. For this system we can explicitly obtain the vacuum density s(x) and the fermion

number N = I (@) dx . It is interesting that N turns out to be nonvanishing in general; it

varies continuously depending on the strength of the exte:nal potential. There are several
systems known to have fractional fermion numbers [2], but our example is perhaps the most
elementary. B

The Dirac equation in one dimension reads as

(axp+3m+ V=B, ¢

where ¢ has two components. For z and 3 we use the Pauli matrices 7, and 7, respectively.

(*) On leave (January-July 1986) from McMaster University, Hamilton, Ontario, Canada L8S 4M1.
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Other notations are standard. We use units such as ¢ = # = 1. The potential that we assume is

‘)I
V=_["‘ 0 ls‘(::). )

0 2
The potential can be written as a combination of a scalar and a vector type, ie.
V=.3V, + Vv. IfV= Vsu then Jtl = ;&3. Ifv= Vv, then :‘q = ;\2.

The solutions of the Dirac equation can be classified in terms of parity. Let us begin with
the even-parity solutions. The lower component of an even-parity ¢ is an odd function of x,
and hence the A.-part of V has no effect on it. If (and only if) 4; >0, there is an even-parity
bound state. Its energy is given by (%)

Ei=my=m -1 +4}). . (3)
The wave function is
E. + .
hix)= "‘(_21m...m_) by z{exp[—xrl, 4
El +mr
where r=jx|, and
xy = A(Ey +m)=2ma /(1 +2D) . (5)

The density is [¢u® = 43 g =, €xp [~ 2 7], which is normalized as [ |[*dz =1.
The scattering states are given by -

B cos (kr+ )
hla) = — =ik ox A (6)
2k m '_F sin(kr +4,)

where E = = Vm~+ k=, The phase shift ¢, is given by
tgey=AE +mik=ak(E-m). ()

The normalization of Yy(x) is nontrivial. It is determined such that the completeness relation
U+ 3 [ dhillednta) =dm =) (®)
n -

is satisfied. Here it is understood that the term ¢y, is dropped when there is no bound
state, i.e. A; <0. Also the summation in (8) implies that the sum is taken over positive- and
negative-energy states. What we have obtained is a relativistic generalization of(4].

In the odd-parity case, there is a bound state when A, <0. Its energy is

Eo==ma=—m(l - 231+ 43, 9

(1) If we take a square-well potential and let the width of the well approach zero after solving the
Dirac equation, tgA, appears in place of 4; in all the following results. This «discrepancy» has been
discussed in detail recently [3]. We do not focus on this problem in this note because it is not essential,
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and its wave function is

ix-_- Py
dplz) = \/ﬁfi,—m'ﬂ Es—m rlexpl—=r], (10)
- 1
where
%2 = Aol Bg —m) = —m(l — A3 + 23) . (11)

The odd-parity scattering states are given by

ik x_.
- ——— =sin{kr+14)
(@) = 3 /E—&én E-mr (12)

€08 (k1 + 9)
with

tgde= AolE — m)ik = Ao ki(E 4+ m) . (13)

One notices that 'y for odd-parity states is obtained from the even-parity counterpart by
hy— As and m—» —m.

Having determined the wave functions, we can now examine the vacuum structure. The
density in the vacuum is

#e)= 3 {lgP = M@)ol - (14)

Here the suffix i refers to b or k, and the summation is over all negative-energy states. The
second term in the brackets differs from the first in that the interaction is switched off. Let
us show how we calculate s for the even-parity states. With ¢ of (6), we obtain, for zz' >0,

w2 ') =

= % [cos k(r—r+ % cos(r+r')— ( 1+ —’E—,‘)ﬁ_ {x,cos k{r+r')+ksink(r+ r')]] . (15)
st ]

This equation is valid irrespectively of the sign of 4;. When 4, <0, < 0 and there is no
bound state. We still use m, defined by (3), although it no longer represents a bound-state
energy. Using (15), we obtain

fevnn(®) = = %Xi 80q) exp{~ 2 7] +

1{  dk m-x%) k sin 2kr
| ——=—— i Mm-m + ~ o8 2kT 4+ My xy = } » (16)
2=J Vi +m? [( T i k“l"ﬁ}

where 8(z) = 1 (0), if % >0 (x < 0) (%), The k-interpretation can be changed into an integration

along the imaginary k-axis from im to i%. Then with k— iz, we arrive at
3 exp[—2rr
Fm(z)':% (m - my) Ko(2}mir) --12-m:x1 f dy, pl=2r | ) an
.-q. (,‘. _xl)‘\/nz_mzj

(*) We assumed that #, <1. If 4, >1 a negative-energy bound state-of positive parity appears
which gives an additional contribution to feven.
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where &,(2!mir) is a Hankel function. The reason why we write !» for some of the m's will
become clear in the next paragraph. The fermion number of the vacuum is given by

Newn = J fevenl)dx = _Tl' tg= . (18)

If the particle is charged. then N is the ~vacuum charge». Equation (18) resembles the
fermion number obtained by GOLDSTONE and WILCZEK (5] for a soliton model (their eg. (9)).
But our model is entirely different from theirs. Since m is the only parumeter with
dimension in the model, it is natural that N,y.n is independent of 7. On the other hand, zeven
obviously depends on m. Its range is ~ 1/2m.

The 2044 can easily be obtained from geven by the substitutions: 4;— 4z, m— — m (hence
#, = #2). Perhaps it would be worthwhile noting that s(x) of (14) can be rewritten as [6]

{Z @f - 3 [W@F}. (19)

wEe) WE>0

12—

sHx)=

This expression holds for : = zeven + fodd, but not separately for seven and soqq. If the
potential is a pure scalar, i.e. A + A2 =0, then there is a complete symmetry between the
positive- and negative-energy spectra, and hence z(2) = 0. The fermion number is given by

N=-Ligra +tga .

If 2, +42=0, N=0 as expected.

As a numerical illustration, let us take m = 4,76 fm~! = 939 MeV, and %, =x, = 0.6 fm~%,
Then m; =me= 932 MeV. We have in mind a ~nucleon» bound in a pure vector type
potential with a binding energy of 7 MeV. Noticing that tg™' i, =# sin™'(x,/m), we obtain
N =0.040. Table I shows zeven and oaq ts. . The z's blow up as r—0. At r=0.1fm,
:=—1.067 fm™!, which is nonnegligible compared with the even-parity bound-state density
# expl—2¢;7]=0.53 fm~! at the same distance.

TABLE L. — The densities squen and soqq it 107 fm™" vs, r in 107* fm for the parameters given in the
text.

r ~ Feven ~ Fodd
2 978 1012
3 5 . 355
1 735 733
5 643 633

10 342 327

20 108 101

30 36 33

There is an interesting possibility which may have relevance to real nuclear structure,
Consider a ~shell model potential» of the form of V = 3V, + V.. Suppese V,<0 and V,>0;
they are both very large in magnitude, but V,+V, is only weakly attractive (negative).
Then -V, + V. will be positive and very large. In terms of our model, this means that
~ 725> 5, >0 and hence — xa>> %, > 0. In this case, for the same «nuclear binding» which is
determined by #,, the vacuum polarization can be very large. Recent Dirac phenomenology
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in nuclear physics suggests that the nuclear shell model potential is a combination of such V',
and V. [7). Therefore, «nuclear~ vacuum polarization may have significant effects. It is
possible, however, that the fractional fermion number is a peculiar feature of the problem in
one dimension. If this arises also in three dimensions, it would lead to various bizarre
possibilities.
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1.3 VACUUM POLARIZATION AND FRACTIONAL
FERMION NUMBER FOR A SQUARE-WELL POTENTIAL

The development in this section mirrors that of the previous section
in the choice of spinor matrices and notation. We can explicitly write the

dynamical equations for each isolated component as:
A {(E —V) - (m+ S)z}e,h,. (41.3.1)a
The scalar and vector interactions are now of a form:
V(z) = V,0(z + 0)0(~z + a) (41.3.1)b
S(z) = 5,0(x +a)O(—z +a) (41.3.1)e
The fact that, piecewise, § and V have no z-dependence is responsible for the
interchangability of spinor components %, and ¥, in (41.3.1)a. The continuity
of each component at the boundaries of the interaction region (—a,a) assures
current conservation. As before, we define the quantities
Ay = (V, £5,) (41.3.2)
such that A, = A, = V, = 0 We also, for simplicity, retain the definition:
r=|x|.

Inside the well, (r < |a]) the positive parity bound state wave-function

takes on the simple form:

¥, () = Q cos(kzx) (A1.3.2)a
_ +ik@sin(kz) '
U@ =Frm-n) (41.3.2)b
while outside it becomes:
¥ (z) = Ne™™ (41.3.2)c
b,(2) = +(§) il¥ke™ (A1.3.2)d

(B +m)
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Continuity of both components at the boundary and overall normalization

enable us to eliminate \V in favour of Q:

N = Qe cos(ka) (A1.3.3)a,

then to obtain Q entirely in terms of dynamical quantities:

Q= cos? ka)[ ]+ [2E+A -\ ] mn(’ka) [7m -\ - ,] -3
- K E+m E+m- E+m—,\
(A1.3.3)b,
and finally to establish an eigenvalue equation:
21y (E—m+ A )0E+m) _
cot*(ka) E+m- ) m—F) = (A1.3.3)c.
In the above, x and k are given by:
k=+vVm?-E? (A1l.3.4)a
and
k=V(E-m+MHE+m=),) (A1.3.4)b
For the odd parity bound state, the wave-function is given by
_ +iR sin{kzx) .
o (x) = —__(E— mEh). (-11.3.5)a
i, (x) = Reos({kx) (AA1.3.5)b
and
z, +iSke™"" .
th(z) = +(;)——(E ) (A41.3.5)c
P, (z) = Se™ " (A1.3.5)d

inside and outside the well respectively.

S = Re"® cos{ka) (A1.3.6)a,
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o

cos*(ka) , —2m 2E+ X =Xy, sin(2ka) —2m+ A, + A, }_
e R B o R ey
(A1.3.6)b.

The energy eigenvalue E is determined by:

, (E+m=X)m-FE) _ |
cot?(ke) ~ E T B - 0 (A41.3.6)c.

Turning now to the scattering states, for positive parity, we have:

¥, (x) = Acos(nz) (A1.3.7)a
wy(z) = %%"_(i;}) (A1.3.7)b

for r < a and
b, (z) = Beos(éx + (2)8) (A41.3.7)c
(@) = gy e + ()9 (AL3.7)d

for r > a. Analogous to x and k, we have introduced:

£=VE?-m? {41.3.8)a
and
n=vV(E-m+AHE+m=2X) (41.3.8)b
Matching conditions yield
4= poslfatd) (41.3.9)
cos{na)

where the remaining normalization B will be discussed further later on. In

the negative parity case, the scattering continuum states have the form:

+inC sin(nz)
(E—m+ A,)

¥,(x) = C cos(nz) (A41.3.10)b

¥, (2) = (A1.3.10)a
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for r < a and

+igD
(E—m)

vy (r) = Dcos(§x + (%)é) (A1.3.10)d

v (x) = sin(&x + ('-:})6) (AL3.10)c

for r > e. Continuity eliminates C' quite simply:

_ Dcos(fa + &)

C= wos(7a) (41.3.11)

and D will be discussed in the same context as B, in the light of the normal-
ization convention and interplay with the density of states. The scattering
phase-shifts for the positive (6,) and negative (6_) parity continuum states
can be compactly expressed by the following:

E(E £ mF A, )cot(na)cot(§a) + n{E £ m)
COt(ﬁt) = WE £ m)cot(€a) — E(ELm T A, )cot{na)

(A41.3.12)

The normalization convention coupled with the density of states in
the two continuums must be consistent with the completeness relation (equa-
tion (8) of the previous section). If we enclose the entire system in a box of
length 2L and demand no leakage of current at the edges, the surviving lowest

order term of the normalizations B and D scale with L as:

E+m ‘
B - SIE (A1.3.13)a
E-m ’

The density of states g(€) is readily seen to be a constant w.r.to £ and linear
w.r.t. L in the limit of L — oo. In the positive and negative energy continuums,

this translates into a density w.r.to energy E:

L. |E|

g(E)_.(;)_EH\/—z_-ﬁ'z——z

(A1.3.13)c
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The polarization of the vacuum due to the square well is simmply the
net change in aggregate density of the filled negative Dirac sea from the
unperturbed free negative energy continuum.

Ap(z) = f;m dEQ(E){'-”t(-T)'i’(I) - fo(I)ﬁ?(I)} + Z wfg‘(:c)wa,-(r) (A1.3.14)
- E
The last sum above refers to bound states pulled from the negative energy
continuum, regardless of whether or not E; is pulled above 0. The free con-
tinuum states o(z) are generated from (41.3.7)c,d or (41.3.10)c,d by setting
M=0andé, =0.

We denote Ap_, Ap,, and Ap, as the respective contributions from
the negative parity scattering states, positive parity scattering states, and
bound states pulled from the vacuum. (Ap, is simply the final term of
(41.3.14).) The continuum contributions for r < a can be written:

1 4=

de cos?(nr) + hE sin®(yr) 2 ) }
A —_—— . 2 - =} ¥l 2
p+(r) 2r Jo €2+ m? (Edm {cosz(nr) + h¥1hE sin?(nr) cos™(§r)—hy" sin*(¢r)

(41.3.15)a
where the compact dimensionless quantities:
_E+m
A (41.3.15)
_E-m+)
h S e (A1.3.15)c

have been introduced. Since E, in this integral, is drawn from the negative
range (—oo, —m), we must select the negative root: E = —/¢§24+m2. Forr > a

we have the very simple:

Ap+(r) = i-? ‘/:o ._52\/_%{ sin®(€r +6,) — sinz(ﬁr)} (41.3.15)d

where (41.3.12) can be utilized to yield §, .
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We obtain. from analytic integration of the density of states over
negative energy. and confirm numerically via coordinate integration of p{r)

above. that the vacuumn acquires a net fractional fermion number of:

- 1
Ny =1 [ dEE) - 0.E)
1

T

1 e 06 05,
—;L df('¥+6_£)

1 1
= ;{5_(@ - 6_(0)} + ;{5,,(@) - mo)}

1((A=A)a) . 11\ —A)a
-l

= %(,\2 -\)a (AL.3.16)

“+co
=1 fo dE(9(€) - 9.(6))

We must add a unit of charge for every bound state originating from the
—E continuum. This structure could be made arbitrarily richer than in the
é-function case by strengthening the A.'s and/or increasing the well radius
a. With a selective combination of the three dynamical parameters. we can
generate a less crude 1-dimensional simulation of nuclei than in the previous

section. We include two examples for this purpose. In the first case, we set:
A, =0.066fm.”; A, = 0.440fm." Y, a=30fm.

and in the second, we have:
A, = 0.066fm.™}; A, = 3.000fm."; a=30fm.

In both instances we roughly simulate the average nuclear binding of about
6-7 MeV. We augment the strengths of the scalar and vector couplings un-
reasonably in the second example while maintaining their sum S$+V to bind
an assortment of vacuum states. The vacuum polarization density for both

these examples is shown in Figures Al.1 and A1.2 following.
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Figure Al.1 Square well vacuum polarization density
for smalil A‘
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Figure Al1.2 Square well vacuum polarization density
for large )\'
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With the added parametric freedom supplied by the range a. we have
in the square well, the additional observation that the vacuum polarization
density profile is more or less featureless other than being tightly confined
to the potential range. As we see in Figures Al.l and Al.2. however. the
vacuum bound state and continuum densities can exhibit many features on
their own. One might have supposed that spatial oscillations in Ap(z) would
appear much like Friedel oscillations in crystals around an impurity. The key
difference here is that we have a Fermi sea of infinite depth with energies

€ (—00,0). We could see structure on a length scale

1
£culoj]

arise if the integrals
of (1.3.15)a,d were truncated at a finite cutoff, The two illustrated vacuum
polarization profiles of Figures Al.L and A.1.2 are for a lightly and a heav-
ily polarized vacuum respectively. There are respectively 4 and 11 bound
vacuum states. One positive and one negative parity particle valence state
is supported in each example, The bin&:ﬁngs for the weak polarization case
are 10.2 and 2.85 MeV. For the strong polarization example, they are shifted
slightly to 9.83 and 1.43 MeV. The continuum particle number is (from direct
spatial integration of Apcontinuum (2), -3.6429 for the light polarization case.
The total vacuum fermion number Ny is: +0.3571, consistent with equation
(41.3.16). The heavily polarized case, has a continuum contribution to Ny of
-8.2 which offsets the integer 11 from the rich bound state vacuum structure.

The total Ny is, as expected, +2.8.
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Two body relativistic equations with a
separable interaction in one dimension

2.1 INTRODUCTION

In a recent paper Munakata, Ino, and Nagamurazs),( MIN) solved for
the wave function and energy eigenvalue of a fully relativistic bound two-body
system in one dimension. Their system consisted of two equal mass Dirac
particles bound together by a contact interaction - i.e.. the particles interact
only at zero separation. They examined this system with scalar, vector and
pseudoscalar couplings and solved both the Breit and Salpeter equations.
(The Breit equation is sometimes referred to as the Kemmer equation or
Fermi-Yang equation.)

They concluded that a field-theoretic formulation —-namely the Salpeter
equation yields no bound state solutions for such a system. A lone solution
with vector coupling was found using the single particle formalism -the Breit

equation. They suggested that pair effects, accounted for in the Salpeter

137
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treatment. but omitted in the more naive Breit treatment. are responsible
for weakening the interaction to an extent that binding becomes impossible.

The conclusion that bound states which exist in the Breit treatment
fail to survive in a Salpeter treatment was also reached by Gléckle. Nogami,
and Toyama. [74,{ GNT), who assumed a spatially extended Gaussian inter-
action. To obtain the fully covariant contact interaction limit, the Gaussian
range was made to approach zero. They found that Salpeter solutions became
more tightly bound, contrary to MINs’ suggestion. GNT further suggested
that the solutions would vanish at a critical range e = a. = 5. = %ea:p{;‘fi
where m is the particle mass and g, ; is the coupling strength of the vector or
scalar interaction. At this point the binding reaches —2m. GNT’s spectrum
as the range a — 0 was extracted numerically and they experienced difficulty
in their calculation for a range a < 1074(1/m).

The impetus for the investigations in this appendix is as follows.
Partly, we wish to clarify the difference between the two investigations MIN
and GNT. This is, admittedly, slightly removed from the central theme of
this thesis, but it is an interesting exercise and mathematical curiosity. In
addition though, we seek insight in this section on the divergence of the
field-theoretic Salpeter formulation and purely quantum-mechanical Breit
formulation from one another. We can draw some comfort here from the
similar spectra of the two pictures when interaction ranges are of the order
> (1/m) (like the physical models in our 3-dimensional Breit treatments of
chapters 3-6).

In regard to the first motivation, MIN’s zero-range interaction is sub-

tly different from GNT’s and leads to subtly different spectra in the Breit
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treatment. In addition. GNT obtained a bound solution to the Breit equa-
tion with a scalar coupling -a state which has no counterpart in the analysis
of MIN. If the Breit solutions are sensitive in this way to the prescription
to obtain the contact interaction, might not this hold also for the Salpeter
solutions? In the following pages, an interaction of the separable type is used
to analyse this problem. A limiting procedure, not unlike that of GNT. is
employed to obtain the contact limit. A distinct advantage of the separable
ansatz is that the spectrum is obtainable by analytic means over all range
length scales. We find that the Breit and Salpeter spectra with this form
closely mimic the spectra of GNT at finite ranges. We confine the discussion
to the states with positive parity only.

The Salpeter solutions do indeed disappear at a critical range: a; =
%emp{:q‘—:’i— 1} near the value GNT suggest. However, we find a second critical
range aq, = -%—emp{ﬁ — 1} two orders of magnitude lower than the first, at
which a scalar coupling solution to the Salpeter equation reappears. This
is a lightly bound state which survives all the way to the contact limit.
The numerical work of GNT stopped at a much longer range so possibly
their system also has a zero range scalar solution to the Salpeter equation.
Sections 2.4 and 2.5 are devoted to the analysis of the separable interaction
with vector and scalar couplings respectively.

Breit and Salpeter equations with finite range interactions are, in
general, not strictly covariant. Despite this, much use is made of them in
modelling physical systems such as the deuteron (¥ — N bound Pair) [20),(27]
or meson {g — ) bound pair.(sg),(3s)

In practise, the Breit equation is simpler to solve and interpret. How-

ever, physically it breaks down at length scales of about the Compton length



140 Appendix I

1/m because of the improper accounting of antiparticle effects. Thus the two
alternative frameworks are expected to diverge at small ranges. In section
2.6 we take a quantitative look at this divergence and suggest a lower cutoff
interaction range for which the Breit formulation is acceptable. First, how-
ever, the model and the calculations will be sketched and then detailed in
the next two sections.

2.2 OVERVIEW OF THE MODEL AND PROCEDURE FOR
EXTRACTING THE BOUND STATE SPECTRUM

The Breit equation for two like-mass particles can be written as:

{(os-culp+ (6, +8)m - E}otp) - 5 [ da To-a)¥@ =0 (4221

Here, p = }(p, - ;5,) represents the conjugate momentum to the relative
co-ordinate z = (z, — z,) and E is the total energy of the system in the
center of mass (c.o.m.) frame. In one dimension, the particle spinors have
two components each and the two-particle wave function ¥ therefore has

four components. We take the interaction to be of either the scalar or vector

types.

Islp—q) =956, ®BU(P—a) (A2.2.2)a

Iv(p-a)=gy(1 -0, 8, )U(p—9) (A2.2.2)b

Here, U(p—q) is a simple function which we will take to be the same in both
scalar and vector interaction cases. Also, for simplicity, we will adopt the

spinor representation of GNT who wrote:

X, (p)

-1 Xa (P)
¥(e) = | (o)

X.{p)
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This basis is chosen such that I(p — ¢) is always a diagonal matrix. (This
representation was introduced in an earlier publication involving the same
authors.iz7)) The y;(p) satisfy a system of coupled integral equations dictated

by (42.2.1).

-Ex,;(p) + 2my,(p) = x(p) (42.2.3)a
2my, (p) — Ex,(p) — 2px.(p) = -L;( (42.2.3)b
~2pX,(p) — EX,(p) = g‘ L4,(p) (42.2.3)c

Here, 4, = [dg U(p—q)x,. A fourth equation y, = 0 follows from the selection
of the c.0.m. frame of reference where (p, + p,) = 0. The coupling constants
(9,+ 94, 9,) of equations (42.2.3)a —c become (g, g5, —g5) in the case of a scalar
coupling and (0,9,,9,) for a vector coupling. As pointed out by GNT, a
positive parity state has even y, (p) and x,(p) and odd x,{p).

The Salpeter equation is identical in form to the Breit equation with

the following modification as pointed out by Salpeter.y We alter equation

(A2.2.1) by:

I(p—q)— (A1+(P1 WA, (P2) — A_)A (P )) I(p—4)
where

Ay 1{& el i +ﬁ‘m]}

:2 /p?+m2

is the projection operator onto free particle states of £ energy.
In the c.0.m. frame and in the y; basis, we obtain the following system

of equations in the Salpeter treatment:

"EX1 (P) + 2mx, (P) = ﬂa‘A:( p) (42.2.4)a
2my, (p) = Ex,(p) - 2px,(p) = 2—-—A (p) - A (p) (A2.24)b
—2px,(p) — Ex,(p) = ———Mp) (A2.2.4)c

27w
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Here, w = 2{p) = m

Equation sets (42.2.3)a — ¢ and (A2.2.4)a — ¢ represent the Breit and
Salpeter treatments respectively and are applicable in general for any static
interaction in one space dimension. The dependence of the equations on the
interaction is entirely contained in the 4;(p).

At this point we can introduce the separable ansatz chosen for our

interaction. U{p, ¢) introduced in equations (A42.2.2)a and b takes on a form:

U{p,q) = v{p)v(g) (A2.2.5)a
with
B2 ,
v(p) = i (A2.2.5)b.

Details of the solutions of systems (42.2.3)a — ¢ and (A2.2.4)a - ¢ with this
selection are included in a sub-appendix but we will outline the procedure
here.

The 4,(p) now take on a simple form:

400
Adp) = ( / dqv(q)x.»(m)v(p) — Ba(p) (42.2.6)

-0

where the B, are constants to be determined. The left hand side (lLh.s.)of
both systems of equations (42.2.3)a — ¢ and (A2.2.4)a — ¢ can be manip-
ulated to isolate the Y,(p). One can then simply carry out the operation
J dpv(p) - {both sides} to obtain two systems of algebraic equations in the
constants B, pertaining to the Breit and Salpeter treatments. Both systems
are homogenous however and we must seek trivial determinants among the
coefficients of the B,. This sifts out the energy eigenvalue(s) as a function
of coupling strength g,, mass m, and interaction parameter 8 (introduced in

(A2.2.5)b). 1/8 is essentially an intersction range. At this point we note that
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in the limit 3 — =c. v(p).U(p.q} — 1 which corresponds to MIN's contact
interaction. The Fourier trausform of v(p) is xde~1¥1 which combined with
the & of (A42.2.1) behaves as a spatial é-function in the 4 — o limit. Nor-
malization of the momentum-space wave function uniguely determines the
B.-constants and consequently the 4,(p) functions on the (rh.s.)of equations
(A42.2.3)a — ¢ and (A2.2.4)a— c. The y,(p) on the {Lh.s.)of these equations can

be isolated algebraically to determine the wave function itself.

2.3 DETAILS OF THE CALCULATIONS

The separable nature of the interaction in this work greatly simplifies
the solution of the Breit and Salpeter equations. Take, for example, the Breit

system. Using (42.2.3)a — ¢, one can isolate x,(p):

2rE(E? - ‘14(p2 +m?)) {91 (4p* = E)4,(p) - g:(2mE)-'L1(P)} (42.3.1)

X: (P) =
Letting o = /m? — E?/4 and using equation (42.2.6) to replace the 4 (p) by
B, v(p) we obtain:

_ up) 2 _ a2 - }
3WE(p2+a2){9|(E 4p*)B, + 2mEB, ».

Likewise, x,(p) and x,(p) can be isolated. Now taking

v, (p) =

+00
[ dvutp, o) = B
we obtain:

+0 g (E? - 4p*)v(p)*® mo[t° . wp)? 15 _
{—1+ BxE_/ dp (p? + a?) }B‘ + {‘Tﬂj:m dp(Pz'*'ﬂz)}H2 =0

(A2.3.2)

This is one of three homogenous equations in the constants B,,,. With

the ansatz of (42.2.5)b, the integration can be carried out simply. Equation
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(42.3.2) and its two counterparts must comprise a singular system to avoid

B, = 0 trivially. Specifically, the (Breit) system is:

[g, (K -L)- 1] B, + [292%1'{] B, =0 (42.3.3)a
[29‘%1’\'] B, + [g,I{ - 1] B, =0 (42.3.3)b
B, =0 (42.3.3)c

where i’ = %{%ﬁ% and L = m-@':‘:ﬁ—)r. We see immediately that B, = 0. This
is a consequence of v, (p) being odd in p. With a vector coupling, the energy

eigenvalue is determined by:
1-g,K =0 (42.3.4)
With a scalar coupling, E is fixed by:
1- (QQL;‘-“-)2 —gs(2K - L)-g?KL=0 (A42.3.5).

These expressions vield the closed form expressions for E listed in Table A2.1

when 8 — oc. The momentum-space wave function in this limit reduces to

the form:
2m v
_%| E 4 1 ‘
¥(p) = = g o v{p) (42.3.6)
—zp

Recall that as 8 — oo, v(p) = 3,‘-3;_57 — 1. g, is either g; or g,,. Thisisin
agreement with MIN’s equation (27) although our normalization constant N
is consideré.bly more complicated. For a scalar coupling, we obtain a term in
the wave function component y, (p) which disappears for large 8 as O(1/83) but
upon integration over p gives a finite contribution which is accounted for in
N. The exact expression for N is not highly illuminating but it is important

to point out that the O(1/3) contribution to ¥(p) behaves strangely upon



Appendix II 145

Fourier transforming to co-ordinate space. (). transform of ¥(p) in (42.3.6)
includes an additional term 5(z) in the component \, ().

n(e) = —%e"jl:l

As 3 — oo, the height of n(z) does not vary and the area beneath it shrinks
to zero. The Salpeter energy eigenvalue and amplitude are determined in
the same way. Equations (42.2.4)a — ¢ can be manipulated via the proce-

dure (42.3.1) — (42.3.2) to obtain the following system of equations in the

coefficients B, ,,:

\ i
[2{1—1 - 1] B, + [“;’"E I1|B, =0 (42.3.7)a
smElp 4 ™1 _4]B, =0 (A2.3.7)b

2T T
[%*J ~1|B, =0 (A2.3.7)c

Here we have introduced the two integrals encountered in the Salpeter treat-

ment, I and J.

_ B I(E)-

I=s@—m [ ;32 t g ] (42.3.8)a
Nk 83(8? — 2a?) 1o

J= (al’a_ /32)2-[+ 2(a? — ﬂf;z Jht 2(a? < %) Ja (A2,3.8)b

Here, Z,(E) = -I-g[cos“l{l — £y £5}. The quantities Jiaaa are complicated ex-

pressions in 8 and m with the following forms: Let

A= cos'l{ -1} for B<m

= 2In{

m} for B>m.
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and let
P (m.3)=23*- m?
P,(m.3) =83 —8m?3* + 3m*
P,(m, 3) = 486°% — T2m?3" + 54m* 3% — 15m°
P,(m,3) = 4448° — 44m?F* + 14m*,
then:

A
Jl—2ﬁ 8% = me|
S
% = 287 - m?) |28 /187 - 7]
1 :

- [ hA o]
PTeAA - m2? 2818 - m? ]
<ol

W= 48;6'3(/32—!?12)3 23 lﬁ2—m2| 4|

For 8 =m, {3, 12+ J3,J,} become simply {2z, 52, [on7+ 525y} respectively. The

energy of the bound state is determined by:

(1 - Q‘LJ) (1 - MI) =0 (42.3.9).

T T

for a vector coupling, and by:

2
(1 + %J) (1 o8y (gs”‘“)ﬁﬂ) =0 (42.3.10)

g

for a scalar coupling. In the 3 — oo limit, these expressions reduce to those
given in sections A2.4 and A2.5 respectively.
The Salpeter amplitude ¥(p) obtained with a scalar coupling in tke

3 — oc limit takes the form:

2m ,
_9 | E N muv(p) ,
T =g-1 o i ol ( W e (42.3.11)

_2p
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The amplitude contains a term which disappears as O(1/In(3/m)) so
it does not contribute to the above expression directly. However. this term.
upon integration over p, contributes a finite amount tov the normalization
N'. This is quite similar to the situation found earlier with the Breit so-
lution in this limit. Unlike the Breit case however, the co-ordinate space
Salpeter amplitude ¥(z) does not pick up a residual term analogous to n(z)
which survives in the contact limit. The residual term here vanishes also as

O(1/1n(8/m)) instead.

2.4 THE COVARIANT LIMIT WITH VECTOR INTERACTION

As seen in the last section, the determinant of the coefficients of
the B, yields a secular-type equation which can be quite complicated. Much
simplification occurs in the 8 — oo limit however. The Breit equation with
a vector coupling reduces to the simple eigenvalue equation: %‘E -1=0.
This yields E = VI:T";N_)’- in agreement with the solution obtained by MIN.
This agreement is somewhat coincidental since in general our spectra are
different from those of MIN. A subtle conspiracy of relationships brings this
about. The integrated quantities 4,(p) = v(p) f_f':: dqu(q)x;(q) which appear
in equations (42.2.3)a — ¢ correspond to the 4, which MIN define as A, =

;":: dgx,(g). MIN’s contact interaction simply amounts to setting v(g) =
v(p) = 1 and therefore A, is independent of p. Upon integrating (A2.2.3)a
over p, MIN obtain:

g oo
—E4, +2md, = 4, f dp
i -Co

For this to describe a normalizable bound state, either g, or A, on the

(r.h.s.)must be zero enabling the (Lk.s.)terms to remain finite. For an even



148 Appendix II

parity solution. 4, = 0 since \,(p) is odd and 4, and A4, must be non-zero
to avoid v,(p) = \,(p) = \,(p) = 0. The requirement g, = 0 1s satisfied in
the vector coupling case. This allows the integrated equation (-12.2.3)a to be
solved. In the separable interaction, the 4, themselves are integrable over p
and remain so for any value of 3, the inverse range. As mentioned in the
detail of the last section, the amplitude ¥(p) is in near agreement with MIN
but differs in a seemingly bizarre manmer in the normalization.

MIN and GNT found no solutions to their Salpeter equations with
vector coupled interactions. This is concluded in this work also. Our energy
eigenvalues for the Breit and Salpeter equations as a function of 8 are il-
lustrated in Figure A42.1 Our Salpeter solution becomes more tightly bound
as 3 increases and disappears altogether at 8 = %ez”'*'% At this point, the
binding reaches 2m. This is in good qualitative agreement with the findings
of GNT. MIN had speculated that the Salpeter equation would only allow
a weaker binding as spatial range decreased. This is not supported by our
result. We point. out that the Salpeter equation yields a symmetric energy
spectrum about E = 0. The secular-type equation (42.3.9) which determines

E is an even function. In the 8 — oo limit, this equation reduces to:

v 1 o _wE . o
2 ln(2b’)+1+41r 87 L(E)=0

Here, I,(EF) = ;r‘mcos“(l - 2%’-;) > 0 for |E| < 2m. The In($3) term dominates
for large 8. The (Lh.s.)approaches —co logarithmically. This offers strong
support that the covariant 1-d Salpeter equation cannot support a bound
vector coupled bound state regardless of the prescription used to define the

covariant interaction. (See Table 42.1)
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Figure A2.1 Separable Vector Interaction Energy
Solutions
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2.5 THE COVARIANT LIMIT WITH SCALAR INTERACTION

The Breit system of equations for the scalar separable ansatz vield
the same asymptotic wave function and energy eigenvalue for 3 — oc as in
the vector coupled case (replacing g, by g ). Here also, the normalization is
complicated by the nature of the ansatz. We once again obtain finite contri-
butions to the normalization integral from terms in ¥1¥ which disappear as
1/8 in the limit.

Since none of the couplings g,,9;,9, vanish, MIN’s coupled integral
equations offer no solution for the scalar coupled Breit equation. GNT found
a solution in the contact limit with energy £ = m. This falls
into agreement with our solution in the weak interaction limit: g5 < 1. The
difference is attributable to the separable nature of the ansatz used in this
paper. [7g)

Our scalar system within a Salpeter treatment provides a surprising
result. As can be seen in Figure .42.2, the Salpeter spectrum has a lightly
bound state for 8 = m whose binding increases as ;3 is increased until £ = 0.
This occurs very close to 3 = 22"+, No bound solutions exist for the next
three orders of magnitude in 8! A weakly bound solution reappears for 3 very
close to %e"""":‘. The approximate critical 8-values are obtained by taking the
asymptotic expansion for large 8 of the secular-type equation (in this case,
(42.3.10)). We retain orders O In(£)) and O(1) and ignore orders ('J(%i ln(-,%))
and higher. We obtain:

9-E*
8t

2
[( ~Sein(By b1 Lo - )0 - £27 r.(E))] - S-I,(E) =0

The -%ﬁln(ﬁ) term changes the sign of the square bracket contents at 8 =

—’;‘-e(“”"'%) -E-C)(ﬂ“;3 ln(%). For 3 larger than this critical value, the system retains
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the solution shown in Figure 42.2. In the limit J — x. E approaches the value
¢ which is the root of the equation: Z,(E) = g:—:nr Again, —¢ is also a solution.

In their investigation with a Gaussian interaction, GNT concluded
that no scalar solution seems to exist for a range smaller than a critical value
Q= ;%-e_ % . This corresponds quite closely to an inverse range 3 = %e{%-i-%).
In fact, the solution of GNT at finite range agrees quite well qualitatively with
our right-most Salpeter solution of Figure 42.2. GNT experienced difficulty
in their numerical evaluation of the energy eigenvalue for short range {or
large B). It is quite possible that their scalar interaction yields a bound

-(1z) :
95°a.. There is a strong

state solution for very short ranges -say a., = e
possibility that these slightly different formulations corroborate one another

qualitatively.
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Figure A2.2 Separable Scalar Interaction Energy
Solutions
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Table A2.1 SUMMARY OF CONTACT INTERACTION E-EIGENVALUES

Reference: 1.) MIN 2.) GNT 3.) This work
r ] tim _—-[2(p—-q)]? lim g
Ansatz U(p, g): 1 Lmemlatemal ﬁ—mm
H . 2m 9 2m
Breit vector case: ;e 2mecos(g, /4) Wi
. . . 2m 2
Breit scalar case:| no solution y rreverrar) W e
Salp. vector case: no solution no solution no solution
Salp. scalar case: no solution no solution, * g k¥
* GNT found no solution in a numerical search for a2 10™*m"1
*% s is the toot of the equation cos™(1 — 2—::'7) - g—:ﬁ;a(e)]d = 0.

For g, = 1,2 = £1.95096m

2.6 BREIT AND SALPETER EQUATIONS WITH EXTENDED
RANGE INTERACTIONS

Figures 42.1 and A2.2 illustrate how differently behaved the Breit
and Salpeter solutions can be for a short range interaction. This can be
attributed to the inability of the Breit equation to properly account for
anti-particle screening effects. The Breit equation involves fermions which
propogate forward in time only.

The scalar and vector interactions with extended range yield the

spectra illustrated in Figure A42.3. This is a magnification of the top right
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corners of both Figures A2.1 and 42.2. At the range of the Compton wave-
length (4 = X). the Breit and Salpeter picture binding energies 2m — E differ
by ~ 10% for the vecior interaction and by ~ 3% for the scalar interaction.
The discrepancy in the vector case is reduced to 1% at about 1/3 = 7/m. At
this range, the scalar interaction discrepancy lies around 0.018%.

This has some significance for the nucleon-nucleon {N-XN) interac-
tion. If the N-N system indeed requires a relativistic treatment. the Breit
equation may provide a sufficient description. It is more managable than the
Salpeter equ..:ion technically and its interpretation is more straight forward.
The interaction range for nucleons is an order of magnitude larger than the
Compton wavelength -(1 to 2 fm cf. 0.21 fm).

It has long been considered that an admixture of attractive scalar
and repulsive vector interaction components comprises a large portion of the
N-N interaction.(goge) We reproduce the deuteron binding energy of 0.0024m,,
with couplings of g, = 0.30 and g, = —0.25. The Breit and Salpeter equations
vield binding energies which differ by only 0.15%. The discrepancy increases
rapidly as 8 approaches m and beyond. 3 = m yields a discrepancy of 2.8%
and at 3 = 10m, the bindings disagree completely (B.E.sa = B.E.gr 1.56).
Again, we see the binding strengthen, not weaken, as the interaction range
becomes smaller.

On the whole, our model offers support for the utility of the Breit

equation for the N-N system.
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Figure A2.3 Extended S and V Interaction Bound State
Energy
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2.7 SUMMARY AND DISCUSSION

The separable systems treated in this appendix shed light on two
areas of interest,

In the limit of the inverse range parameter approaching oc the Breit
and Salpeter equations become fully covariant. We find three bound positive
parity solutions to these covariant equations —one each for the Breit equation
with scalar and vector coupling, and a third solution -a scalar mediated
bound system in the Salpeter formulation. The Salpeter spectrum is fully
symmetric about E = 0 so we obtain a mirror solution with E < 0 also which
could be considered a fourth covariant system with properties identical to the
+E solution. It is interesting that the spectrum of the covariant interaction is
sensitive to the prescription used to describe the interaction. The models of
MIN, GNT, and this paper involve the Fourier representation of a 6-function
in momentum space, a spatial Gaussian with width approaching zero, and
a separable ansatz with range (§) approaching zero respectively. Our results
would concur with MIN's if we interchanged the order of the operations
of 1.) integrating the equation systems (.42.2.3) and (A2.2.4) over p and 2.)
taking the contact interaction limit: 3 — oo, Our results agree qualitatively
quite well with GNTs’ Gaussian results for the values of range common to
both investigations. They suggested that a scalar solution to the Salpeter
equation did not exist but our surprising result hints that this conjecture
may be incorrect.

We also looked briefly at the Breit and Salpeter equations for inverse

range parameter 3 ~ O(m). The spectra of the two equations depart from
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each other at around this order of 3. Our model offers some support for the

utility of the Breit equation for the N-N system.
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OPEP and the Breit Equation

The best established feature of the N-N interaction is the “long”
range tail and relatively strong tensor coupling associated with the exchange
of a single pion. In the Schrédinger equation, the OPEP (One Pion Exchange
Potential) is first derived field-theoretically from the pion propogator and nu-
cleon form factors in the lowest order of perturbation theory. (See, in particu-
lar, p264-265 Eq.#s 4.370-4.375 of Sakurai (g).) The resulting spatial/spinor
dependent quantity is then simply “placed” into the Schriodinger equation.
It is characterized by the Yukawa tail radial dependence: Z,(r) = &—.

r

The discussion which follows will touch on three possible ways of
including the well established long range behaviour of the N-N interaction in
the Breit equation: a pseudoscalar form, an axial vector form, and a contrived
alternative.

The incorporation of the OPEP into the Breit equation is, at first

glance, a straight forward operation. The pion is a pseudoscalar meson, so

159
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the logical spinor/spatial dependence to include in Hiny would seem to be:
(3,3,)(T,T,)P(r)

with P(r) = —G?Z,(r). The bare coupling G? = 14.7 is much too large. This
presents an overriding difficulty which excludes this possibility. It sets the
strength of the pseudoscalar interaction at one order of magnitude larger
than the nucleon mass scale! In the reduction of the Breit equation to a
Schrodinger-like equation, the form W + P{r) + ... appears often and in the
denominator of the effective interaction. The effective interaction obtains a
singular point at some positive value of r. This situation in the Breit equation
precipitates the infamous Klein paradox -a clear regime of inapplicability of
a purely quantum mechanical equation.

When one carries through the reduction to a Schrodinger-like equa-
tion favouring the pure large spinor component, simply setting P(r) =0 and
retaining the derivatives P'(r) and P"(r) indeed yields the traditional OPEP
interaction. This fact is anticipated by the agreement of the Breit formalism
with full fledged Quantum Field Theory to first order in perturbation. ()

In this sense, the Schrodinger equation of conventional nuclear physics
is written with the OPEP put in by hand. P'(r) and P"(r) appear directly
but P(r) is strictly absent.

An axial vector coupling between the nucleon and pion, on the other
hand, leads to no such difficulties with large coupling as the axial interaction
is defined with a modified coupling constant. In the tail region,

Hint = (0D (13 10 7,57,)A)

with A(r) taken to be: —(7, - 7,)/3g2Z«(r) with the usual definition of the

coupling: ¢* = (55)°G?
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In the case of the spin-singlet. this coupling leads exactly to the
desired Yukawa tail favoured by the NN scattering data partial wave analysis
(r2) and so we made use of this form in the CSB problem of chapter 3 and the
relativistic singlet state effective range case of chapter 4. However, the tensor
dependence which mixes the I = (j—1) and I = (j+ 1)-wave in the spin triplet
configuration is an extra order in (33%)* smaller than in the desired OPEP.
This tensor coupling is far too small to remotely explain the triplet data,
(including the ! = 2 component of the deuteron) and heuce for the triplet
work, a more thorough treatment was necessary. The OPEP interaction plays
a more significant role in our triplet analysis than in the singlet work in which
our focus was charge symmetry.

To bring about a satisfactory resolution of these problems we are led
to the remaining option. We drop any pretense that the Breit equation will
retain more field theoretic rigour than the Schrédinger equation by virtue of
it being relativistic. To obtain both the proper strength and tensor coupling
in the OPEP part of the Breit equation. we must resign to putting it in by
hand. It is therefore on the same footing as the OPEP in the Schrédinger
equation. We appeal to a field-theoretic framework to obtain it but then
use it in & less rigourous quantum mechanical framework. The lowest order

contribution from pion exchange is:
Hinty = (o (5, - B}, D)@, - DI} 2e(r)
inty oM 1 '3 1 2 L

To obtain direct and tensor strengths of the traditional OPEP (i.e.
as in the pseudoscalar coupling) and avoid encountering the defeating bare

coupling G? we must simply translate this into configuration space.

IA{l’nt, = 51 ’ EzUaa(r) + AUA(r)
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where:
- G Y o - lﬁ'
U,r= (Zﬁ)-(r‘ . T:)F-s-(") {A3.1)a
and:
- G a2, - - 1t 1 1
Ualr) = (53R - B2 = 2 20(0)] (43.1)b

The operator A is given by:

| S,
A= (,'.E){(U: cF)a, - T)}
In more traditional notations. the operator 3,5 is favoured over A and:

g Gy e gtz 2 a0 g g Lz
H"“!P - (2114') (Tl * T:l){al 02[3"'7-'(r) + 37'“:(,)] +512[3"'=(r) 3'.“:(r)]}
where:

51253A—51'52

The elimination of the smaller spinor components in favour of the
pure large component of ¥ leads to Schrédinger-like equation’s with interac-
tion tails in both the central and tensor parts which are in agreement with
the nonrelativistic OPEP to lowest order in (%) There are further spurious
contributions which come about as signatures of the eliminated components
but they are one further order removed in tais ratio ~ 1 /200.

We turn now to the regularizing of our OPEP within the region of nu-
cleon overlap. The partial wave analysis which strongly favours the OPEP tail
draws upon fits of the higher / partial waves in the r > 2fm. region where other
nuclear forces are greatly diminished. Within the shorter range, the OPEP
should depart from the pure Yukawa form due to the smeared out nucleons
(i.e. form factors). Treatment of the pion exchange here is generally phe-

nomenological since the other contributions to the nuclear force are thought
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to dominate. The cutoff Yukawa used in the CSB. and singlet-effective range

[el=mari_ = Ay

expansion work (chapters 3 and 4). namely, Z-{r) = - . sutfices
to eliminate any singularity in the effective interaction at some finite » for
the 1S, case. The same ansatz. however. leads to a large tensor part in the
near region which overly restricts the parameter space for the strong cou-
plings g, and g, which also must be small enough to avoid such singularities.
We therefore desire to limit the OPEP influence in this region by a more
moderate ansatz and introduce controlling parameters ¢, , = U, (r =0) and
¢\o = U, (r = 0) to keep the OPEP contribution tame enough to not greatly
intrude on the g,.g, parameter space but at the same time offer some control
over the very important tensor portion of the interaction since it is vital to
the S/D-mixing of the deuteron and scattering states. We acknowledge other
possible contributions to the tensor portion at short range by relaxing the
connection between U, (r) and U, (r) in the region of small r. c,,, and ¢,
are therefore independent. Since the Yukawa tail is inviolable at larger r. we

define U, (r} and U7, (r) as follows,

-
Y

2 -
r S .;.n_ => Lca(r) = 92 {Cccﬂ + Ca-a{ ,'4 + cr.m.'. ,‘5 + caua rB + Cmﬂ' l" + Cmﬂlrﬁ}
L3
2 . 7
rS === Uy(r) = g {eg + ea ™ +eur®  agr® Henr +ener’
T

Outside of the pion Compton length, the quantities U, (r) and U, (r)

tevert to their dependences {43.?)a,b above, on Z.(r) of the Yukawa form:

e(-mﬂ")

2
r2;;=>31r(")= "

The coefficients c,,, and ¢,, are chosen to match radial derivatives
up to 4th order at the matching radius. The 4th derivative of Z,(r) appears
explicitly in the Breit radial equations so continuity one derivative beyond

that yields sufficiently smooth effective interactions.
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