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The free vibrations of skirt supported pressure vessels 

are -studied in -this thesis~ hath canti.le've:t-ed and fixed:'pinned 

systems are a::>n~dered. A hierarchy of rrodels" ranging from a 

rigid mass (vessel) supported by a flassless Euler-Bern0ulli beam 

(skirt) . to a rrodel in which both oomtx::lnen~ are represented by 

Tinoshenko ~, is sUbjected to analysis. Several typical 

n1.llll:!rical exarrples are cons'ide,red for both sets of boqndclry 

conditions. The results of these calculat.ions indicate that 
.' 

whereas the cantilevered system may be modeled with fair accuracy, 
, , 

carp~ed to the rrost sophistica'ted nodel corrs~dered, by a rigid . , , 

mass supported by a massl€ss beam capable of, undergoing shear 

deformation, ,it is necess~\ to ffi?del all ~nents of thf= 

fixed-pinned system by Ti..Iros~e 0 be~, i .c. the no'st sol?his

ticuted rrodel considered. The first t:w:J node shapes for all 

rrodels of a typical case of each configurC!tion a.(e shown. Finally" 

sorre carrrents on the rrodeling and analysis of specific;: realistic 

• 
systems are made. 
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CHAPTF:R 1 

j 1.1 lJ<,.-'nQral. 

In recent years oonsiGerable effort ~(s heen ~evotcct to 

developing sophistiC;:i ted rret..lx:>ds of analysis to aid in the design of 

stroctures ... /hich will o~rate under conm tions requiring a high level· 

of oonfidcnce in their structural, int~ity. 'I'he~e' r:-ethods include 

rethCI'M.tical mxelinq, ones based on raterials sCir.nce, thJse hased 

on'ratiOn.:lllY evolved d~c.;im crhri.l., ~tc. Pressure w:ssel systP.r1S 

1 

.:ire ruronq'such structures. Scm::! such systems consist of a co~1ratively 

. heavy pressure vessel, p::lssibly ():m~"l.in inq h~lt c.'(ch.:mo(> e101T'er1ts or 

other innurds QS well as a MJrkinq fluid, which is sunrortm by un 
• 

.:llnost cylindrical support skirt, Fi(l. (1.1). 111c vessel 1:S connected 

by rQlat.iv.ely .soft externals such as pipinq. 'lhesa SYRtems occur in 

the process ann p:.,,-.rer gonor.1tion industrH~s, as \''011 ,lS ahoard nuclear 

powered. ships ~md in other induc:;triul scttinqs rlealinq ,.;i th the? ocne-

r~t~on, oonverSlon or storaqe of r>~~rQy. 
) 

1'.2 Pur-rose of Rcsc.1rch. 

, 
It is tho purp:>se of this ro[X)rt to stu:iy the free vihrations 

of such skirt-vessel coromations, in crder to d(~tcrrnine their dvncuni.c 

char~cteristics and to develop, if.pos6~le, siroplc forMUlae, ~1sed on 

deta~led analysis of skirt-vessel ~ystcms, which r..ay he implied to esti-



. . 
nate the natw;;al frequencies of sudl sySte1ns. 

On occasion, one 1'E.y wish to provide additional support or .. 
oonstr.aint to the sys'tem in order to raise ~ts ~tural freqt.encies of 

• I 

vibration when the frequenc:!-es of expecte;'J external excitations ?I'e 

close to the predicted natural f~cles of the cantil,evered system 

. shoHn in Fig. (l.l.a). One simple way to raise the frequencies is to 

pin the top of ,the ves.:;e~ to a SUPFOrt attached! to a ceililf9 or deck 

above the pressure vessel. This arrangement is showrl in Fig. (l.l-b),. 
" 

The present work concerns itself with tl:le study of a nunber 

of cases o~ eaf\of the configurations shown in Fig. (1.1) l1:5'ing a 

hierarchy of"S'ix rocx:lels of increasing conpl,exi ty . The m::Jst simple 
~ t., • , 

J 

nodel ronsiders the skirt as a massl~ss sprinq having the characteris-

tics of an Euler-Bernoulli beam and the pressure vessel, incluclinq its . .., 

contents, as a rigid b:xly [1]* while the TrOst sophisticated rodel CGn

f siders the system .;lS an asserrblaqe of Tinoshenko be~~" 

In the following chapter the hierarchy of rrodel s¥sterrs is 

described while in subsequent Chapters the analyser of the models arc , ) . 
,,/ .,. 

perfonred and frequency and rrodal shape results for tyP.lCc:l.l cases are 

pre~ented. Finally c:oniTIents anel conclusions b;lScd on these results 

" 
are given. 

- .--...... ~. 

* , ' 
Nurrbcrs in squar.e brackets indicate references listed at the 

end of ,this \..ork. In [1) the JllJdel is analyzed with:mt reference 
i to any particular application. 

>, 
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CHAPTER 2 

'!HE HIERAOCHY OF M:JDEIS. 

2.1 Basic Ass~tions. 

In ~fonning the dynamic sttrly of the skirt-pressure vessel 

system, six rratherratical m:x'iels, as rrentioned before, are oonsidered. 

It was taken into account that the hierarchy o( m::xi~s used in this 

~~.!o-' be able to srow the effect of each 'ParaI"leter on the dynamic 

char cteristics of the kessur~ vessel-skirt ~tructure. The sane hi~-
Is is ~ed to analy~e roth" of the oonfigurations shovm in 

Fig. (1.1). Alth:mgh ult.inarely it will be seen that different deqrees 

of sophist:).cation are necessary to provide compa.rabl~ est.im:ltes of the 

natural frequencies of the oonfi~tion shOwn in Fiq. (l.l.a) and the 

oonfigtiration shown in Fig. (l.~b). In all. cases the interaction of the 

contents qf the vessel with the rest of the system is neglected other 

than to include their mass with the ooss of the vessel. '!his asslll11p.tion 

is proOObly reasonable for a full, pressurized vessel; its ....or"th, rrore 

generally, is not clear but to Itake any other assumption would make the 

problem intraCJtable Ol"' alm:>st so. In any event,. the lessons to be 

learned fran the present study nay 00 applied to rrore sophisticat.eq 
~ 

analyses which include' ~ dynamics of the vessel's conten ts . The axial 

load in the skirt a~ well as that in the pressure vessel aiso are neglec-

ted in this study because they are at rrost a percent or "t\-oQ.of the shell 

buckling load~, conservatively est.im:tted (2j, for these elevents and an 
"-



" 

, 

"-
i.nperceptible '};X)rtion of the ex>lum buckling l~ds. It is reasonable, .. 
for typical syst.errs of the sort considered here, to assume tba t shell 

vibration frequencies and rrodes need not be studied s,ince the excita

tions to be expected will usually have frequencies below 102 Hz and the . . 
lowest shell frequencies will likely be several times this value; this 

will be ~de clear by perusal of [3]. Further, to sirrplify the analy-

sis, it is assurred that the sUH?Ort skirt, which is -frequently slightly 

tapered, nay be represented adequately by a hollow cylindrical beam and 

that the ring usually connecting the skirt and vessel is replaced by a, 
, \. rt :: 

ma.ssless rigid connecOOr. A final sirrplificatioQ. made is to neglect 

the typically small stiffening of the skirt-vessel combination by ex

ternals such as piping. 'lhese assumptions are comron to ail m:::x1els of 

5 

the hierarchy. .Further assumptions may be rrade for each nodel individually. 
,-
I. 

2.2 Description of the Hierarchy of l-bdels" 

'!he hierarchy of rrpdels which is used in cp.rrying out this 

study may be characterized in accordance with the assumptions used ih the 

analysis of the skirt-vessel combination., Six different ITOdels are used 

in this st.udy I Fig. (2.1), and rroy be d~scr ibed as follCMS: 

l-txlel ( I) : We ass.lIre in this m:xlel that the skirt llBy be r,e-

presented by a massless Euler-~moul,li beam and that the pressure vessel 

and its contents behave as a rigid b:xiy~ Tho ra,tionale for this npdel 

is that th~ pressure, Vessel is stiffer than the skirt, sorret.l.mJs by an 

order of lna9T1itu:1e, and ti13t the mass of the skirt ~s rarely as much as 

~ percent of the total nass of the system and usually less than that. 
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H:rlel ·(II): In this m::del it is asstIl1Ed that the supp:>rt 

skirt deforms in shear as ~ll as flexure. othel:wise this rrodel is the 

same as M:x:1el (J:). '!his adlitional degree-of-freedan in the behavior 

of the skirt 'is of great i.np:)rtance since the supr:ort skirt is usually 

a ra,ther smrt beam. 

~el (III): Here, the mass of' the skirt is considered J.n 

the analysis, as well as its stiffness, and so the sKirt will be analyzed 

as an ~er-Bernoulli beam with ness. Otherwise it is the sarre as M:::x:1el 
, , 

(r). '!his change in m::x1ellig does rrore, however I than rrerely take into 
~ 

. account the snaIl additional mass of the skirt; it changes the Jrodel 

from one with a finite ntll'ntY->-r of degrees-of-freedom to a continoous 

~ system with an infinite spectrum of natural frequencies.) It sh~uld be 

• noted that in case flail M:ldel (I) has tw::> deqrees-of-freedom while in 

case lib" it has only one ,degree-of-freecbm. 

M:x:1el (IV); , * Here the skirt is rrodeled as- a Tirroshenko ream 

rather than as an Euler-Bernoulli beam with IMSS, i.e. shear qefornat:ions 

and rotatory inertia are accounted for as ¥.ell as' flexural deflections 

"'" and transverse translational inertia. This rrodel rtlay be considered as 

an extension of either Model (11)- or lWeI (III). 

M::x1el (V): NcM both the skirt and the pressure' vessel are 

rrodeled as Euler-Bernoulli beams. '!his is one of the sin'picst rrcdels 
. 

which allows one to' assess the influence of the flexibility of the 

vessel on the natural frequencies of the system. 

* '!he reader lll1familiar with the theory of the Tinoshen}co beam 
will find a lucid and detailed acrount in ,[ 4] . 



8 

Z'vbdel (VI): This ul tinate rrodel in the hierarchy used to 

stu:1y skirt-pressure vessel systems is the one in which roth elerrents are 

taken to be TiIroshenko beams and it is, 'finally I the yardstick against. 

which all' of the other rrodels are to be rreasured. If a siJTpler nodel 

provides frequency est.ina tes comparable to those provided by rtx1e1 (VI) 
" 

then tl;le simpler rrcdel will be considered .ad~te to describe the sys-

tem. 

It is clear that various other sinplified m:dels to describe 

the skirt-vessel system could be FOstulated"l e:g., the skirt might- be 

represent~ by a massless shear beam and the vessel by a Timoshenko 

beam. However, it is relieved that no further didactic purpose would 

be served by so extending the present VvOrk. L. Such m:x1els, especially 

suitable for particular situations, will be devis'ed and analyzed without 

difficulty by the interested reader after a l=€rusal of this work. 
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aIAP'IER 3 . , 
, .,,~ 

DERIVAT;ICN OF F'REX]UENCX EQUATIONS. 

3.1 The NJtations and Sign Cohventions: 

Before presenting the analysis of the various IOOdels for both 

o::mfigurations of the skirt-vessel system, nost of the notations and 

the sign oonventions to be used in this study will be given; we note 

that not all variables and paraireters appear in the analysis of each 

m:xlel. 'lhe notations and conventions confonn to ~se used in (4]. It 

seems sirrplest to present this material graphically and this is done 

in Figures (3.1) - (3.2) ; also see Appendix-A. Figure (3.t-a) sl1c.1..vs 

the nonstandard sign oonvention of [4 J for berrling m::.:mmts, which makes 

eminent sense in the study of Ti..rroshenko beams, as well as the 'usual, 

rroGlern convention for .transverse shear forces and distributed loads. 

In. Fig. (3.l.b) the transverse displacerrent of the neutral surface and,' . , 

the rotation of a cross section of the beam are shown. Finally, Fig'. 
. . 

9 

(3.2) 'shows the coordinate systems tQ be used as' well as the diagranmatic 

representation of the skirt and pressure vessel as uniform beams. It 

has proven easier to v.ork with the vessel considered to consist of h..o 

• 
parts, which join at the vessel's junction with the supp::>rt skirt, rather . . . 

than as one body; this ap~roach aLso provides the formula tion for a three 

rorrp::ment system which is a natural gen&alization of the systEm studied 

,here., 'lhis generalization is of serre pr~ctical .inp:>rtancc becaUse the 
, 

innards of a ~sse,l ooy in<;leed be nonuniformly distributed ever its length " 

and it is even p;:>ssible to imagine that the vessel itself differs above 
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ahd telON its junction with the skirt~ The choice of coordinate systems 
, . . "", 

is made for a practical reason, namefY that this choice effectively rB-

duces the rrOst romplicated frequency detennimnt's considered in this 

stwy to ones of sixth order,whereas having all the xi !X>sitive u~d 

leads, if X2 were rreasured from the skirt vessel junction, leads to de-
. 

tenninants of eighth order; Le., for the coordinate systerr$ chosen, six . . 

'of the twelve arbitrary constants of integration are easily eliminated . ' 

when l-bdels V and V! are stumed. ' 

In the follc:wing sectiors the l~ling scheme' will be that the 

Latin nurreral indicates the con:esfOndinq nodel in the hierarchy given in 

chapter 2- and the letter indicates the correSFOnc1inq configuration in 

'Fig. (1.1). 

3.2 J\nalysis of Model (I)-a. 

I 

As has been indicated previously; this case. has been studied 

by Tinoshenko [1] for 'the ';"'11 vibration\: pl~tc 1lC, ;,ttached to a 

pr isrnu tical b.:\r A!3, Fig. (3. 3 . L\), ussuming tha t tl~ x-y pl~e is n 

• principal plane of the b..'lr Md the center of Il\3SS of the plate, C, is 

on the prolonqa tWn of the ax.i. S 0 f the bur. Proceedinq wi th the~e 
• I • 

ussumptions, n quadrCltic frequency equation WClS Obt...1incd, the solut.lon 

of \vhich is 

6BI 1 

(3.2.1-) 
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where w is the natural frequency in rad/scc, EI is the flexural rigidity 
) 

of the b:l.r (corresponding to the skirt), Ll is the lenqth of the ~, e 

is the distance between the pl<?tc (corrcsoonding to the vessel) 'center 

of mass arid end of the b::"lr I i is -the radius of gyr,ation Or the pluw 

Wlth respect to the ru<.is nornul to the plate through C and III is the total 

mass of thc~plate. 

, 
This oC]t.Ultion given by Tirroshenko can be used to obtain the 

nuturul frequencies of M:xlpl (I)-a, Fig. (3.3.b), by letting 

e = 

i 
I 

~ £1 :: 

2 
(L2 + L-d 

12 

tot.:ll l'l'kISS of the vcs&21 und its contentS 

flCXI.U"i11 ngldity of thc skirt 

1 

(3.2.2) 

3.3 ·{'cdcl (TI)-a. a,ssless 1'iJroshcnko I3ccun Supp:?rtinCf,Cl Riqid ~hss 

Consider nON, the C:1SC of <) Il\)sslcss 'l'inDshc!rlkQ Dcmn, The 

0ltUtions glV(;'n ,in [4] Lcco~, Wh(:'J1 no distributed load ucts, 

EX d·' "J 
" ·'l\G ([, ~~) 0 <3.3.U --' + :00 

cb,.' cb: '1 

d,' 
+ 

d:'w 
0 (3.3.2) 

ch: 
= 

(L'{': 

... 

where A .is cros.s-soctional MCo of tl1C elas tic beam, 1\2 is the so-called 

shear cocfficHmt ill1d ~ 1,5 the unqle bc~ i1 cross-sectional plu,rye and 

l 
) 
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the horizonta.l plzmc passing throuqh th= y';'axis; this inplies that planos 

t-.rhich arc nonml to the team cJ.xis in tho undcform::d state gonerally do 

not rom,ul'l norm::ll to tho beam axis in the de forrred state. 

~ 

'The boundary conm tions (b. c) for the ccJ.se of M:x1e 1 (II) ""'a , 

Fig. (2.l.b) , ~ 

at x :: '0 W = 
and tV = 

X ::: Ll R = 

c:md Q = 

0 

0 

ddl 
EI , 

cl.x 

K
2J\G ( ~I + 

• 
~) 
llx 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

\·;l1('rc M ,111d Q Clrc the rrorrcnt .:>nd shcttr force exorted by the nqld 11l1SS 

on the end a f the beLlIll. 

EqwtlOn (3.3.2) provide's 

ctw 
cL"{) ;: canst. ;:. 0 

~~llbs'tltutlnq from (,1) into h.c. 0.3:6) 

, 
,,' ;\C I 

US1J)l] cq. (b), l~1U-ltlon (3. J. 1.) lx~'Om..:~ 

E1 d\. _ Q o , 
<..L"{~ 

, .... , 

Intcqr,lt-Inq t\"i(."\' and llSll1t] b.e. (3.3.4) r0sults In 

(u) 

( 3 • 3 • 7) 



r:r .,I (3.3.8) 

and substItution of (3.2.8) and (3.2.3) into (3.2.2~ results in 

EIw == 
- x 3 v2 
Q r - C 1 ~ + C.' x (3.3.9) 

From (a), (b), (3.2.8) 'and <,3.3.9), the constant C2 can be obt:.c."1ined and 

(3.3.9) bccorrcs 

(3.3.10) 

With the cud of (3.3.5) and (3.3.8) the constant Cl Cilll be fOlmo and 

finally (3.3.8) and' (3.3.9) bccoJ'l'(') 

[ '- QLt l 
1 

ftL1J I~ (Ll) "" 2+ E1 
(3.3.11) 

[ Q 
1 

E1Ll F~; 1 1 
,L 1 

\'V (1,1) . - IT (r + -) .:. ., 
K'i\G' -

(3.3.1~) 

16 

'lh-:- kinetic energy of the svslan oonsists of ene.rqy of rot:.c.l.t.ion 
,'" ,.6, 

of the nuss .:U::out its CCJ1Wr of H\ISS C and of tr,1l1s1atory cnC'rqy of the 

r.u ss CP.J1 trr . 1hLLS 

T 
ll\ 
'} - e (3.3.13) 

Substi tutinq T ill L"HTriU1<JC IS (>(Tu-l.tions of rrotlon [.1), ,tllC 

follO\vlJ I 1 c),:pre~s,lOns for fi .::U1d Q .:lrc obt..lin~xl 

- c ~, (LI> ) (3.3.14) 

, 

--
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.. ' 2 '2" -
M '= - m [- e WlLI) .+ (e, + 1 ) 'V<L )1 ~ . 

by inverting (3.3.11) and (3-.3.12), ~ressioJ)s for Q d M can be ob

tained in tenns ~f, W (Ll) and ~ (Ll} 

Q = 

M = 

where 
f3 = 

EI 
B 

EI 
13 

L3 
1 

( 12 

, '\: 
L2 

[<_I +~) 
3 '/AG 

EILl 
+ -) 2 

K AG 

" ' 

(3.3.'l6) 

'V (·.h-w J (tl ) . 2 (L l ) :. 

~ , 
' ~ 

(3. 3.1-7) 

\'1ith the aid of equations (3.3.16) ,and (3.3.17), IT and M can' be elimina

ted from equations ,,(3.3.14) and (3.3',15').. '.rhus ,we have 

(3.:?18) \ 

(3.3.19) 

w(t1 ) = R sin wt 
1 } (3:3.20) 

tJ1 (Ll) = Rz sin wt 
~ 

" 

By substituting (3.3.20) into (3.3.18) and (3.3.19), we obtain: 
" 



\ 

(3.3.21) 

In order to obtain .a nontrivial solution of .this system of 

simultaneous, lin~ algebraic equations, 'the determinant of the coeffi-
. . 

dent n>atrix of ,(3.3.21) and ,(3.3.22) nrust be set equa,1 to zero, Le. 

= 0 (3.3.23) 

, , . 
Expanding (3.3.23), the fo11:owing frequency equation is obtained: ' 

. I L2 '2' L2~ 
± [eL}+(e2 + ,1.2)+(-1-+ y)]-- 4i2(1~ + Y)} (3~3.24) 

EI 
where y :;: ~2AG-' 

and, recall, 

• ¢'" 

L3 , 

13 :;: (l~ + :y L}). . 

'. 
,. 

-'-' 

18 
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3:4 l-trlel (III}-a and (V)-a. i) Euler-Bernoulli 
a Rigld Mass I and ~l A System of Euler-Bemoull 

3.4.A - Derivation of' tions of 'r"otion and Boun , 

Consider the whJle syst;em to be elastic, use .. 
axes shown in Fig.Q.4), and divide the system 'into three seg:rrents of 

lengths Ll, Lz and L3 in order to obtain the equations of IlPtion and 
I' 

. . 
the l::oundary rondi tions by IreallS of Hamil ton t s principle [5]. 

that 

+ (L 
oWl , 

W =w - x )- .+ w , 
2 (X2, t) 1 (Ll, t) , 2 2 ·axl (L

I
, t) 2 (X

2
' t) 

I 
, 

(3.4.1) aw 
(L 

1 - '. w = w - - x )-' • + w 
, 3 (x3 ' t) 1 (Ll,t) 3 3 .JX 1 (LI,t) 3{X 3 , t) 

- -' '\ . 
\'lhere w 2 ( t) und w 3 ( t) are the elastic displncerrents of segrrents xz, x3' . " , 

2 and 3 respectively. In the limiting case of the !igid m::x1e1 of the 

-, vessel, W2. and W3 are set equal.to zero. hIe have let x2 = x2 and 

X3 = x3 since this approximation is consistent with the, snaJ,l.dofiection, 

'linear theory being used in this study. 

N~', making use of equations (.3.4.1), the kineti.c energy of 

the syston my be written as 

T = . tl~ (wJ ct.'l 
o ' 

0.4.2) 



.; 
~---). --

W2(X 2 .1) --_\ 

.. 

FIGURE 3.'~: DECOr-1?OSITION OF h'? NfD \"3 IrJ InDElS OlD Nm (\f), 

20 . 
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...mere the m· .:u:-e masses per' unit length for the i -th segrrent. 
~ 

The total strain enerqy is 

u = (' 
0' 

clxl :- t' 
o 

EI.2 _" 2 
-2- (w2) dx2 + t 

o 

21 

(3.4.3) 

Also, in g~eral, one should cons'ider the ~rk, W, of external (general-'. 

ized) forces. 

tv -
_ 'dw. L. 

~ 

€lx, + [M. (-2) + Q. w. ] 
~ . 1. rix. J. 1 

J. o 

.. '(i = 1,2,3) 

- -

(a) 

where, Pi is the clistrit>ute~ load and Hi and Qi ure the. rrorrents and 

shears acting upon the ends of eac)1 segm.:mt. ~Vh(m \oJe redl,.lce the system 

bo our specific cuse, i.e. 

tv = o. 

4,{. 

P. :::: Q == M. ::!: 0, we note that 
J. i 1 

By ,lpB.,lying Iktmilton's principle for clastic solids, 

I
t;:> 

. S (T - U + H) dt = 0, 

tl 

~ nay obbin the nppropriatc fOrlllul.:ltion of our probll2ftl. 

(b) 

Substi tutinq cqs. (3.1.2) ,Uld (3.4.3) into (3 . .}. 4) yields 

• 
'iv 
WI + ml~) 6 WI d'<l 

(3.4.4) 
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+ rnz-(w 1 (L 1, t) 

+ 

+ 

" 
()OW} 

'" 
Ell W dO, t) 

JX 1 (0, t) 
+ E.! 1 W' l (O, t) (WI I'(O,t)" 

" a~v2 
~" 

aOW? 
E.Iz ~2 (Or t ) 

()X2 (O~ t) 
- EI Z W-

JX 2 (LZ., t) 2(L2 ,t) 

II, .a. ._"t 
+ EI? w 2 (0, t) 6W + EI? W - . 

2(0,t) ~ 2 (L2 it) 6, W (L ~ t) 
, 2 2 r • 

" JOW3 _" JOWl 
E13 W '-- - EI i W 3 (L3 I t) 3(O,t)tlX3 (O,t) JX 3 (L3, t) 

\ 



, 

" \ 

I) 
l 

() 

+ EI, W::(L"t) oW, (L"t)} dt = 0 
(3.4.5) 

For, any arbitrary tirre interval (tl-t2), tl)e inte~ands of the 

double and single integrals (inclu::1ing the integra-t;:ion with respect to 

tine) must vanish"indepehq,ently w Therefore the equations of rrotion are: 

(3.4.6) 

~ ~undary modi tions for the system are: 

:.: 0 
(a) 

I ~ 

" at x2 = 0 . EI2 w2 (O,t) = 0 

- III (b) (3.4.7) 
Elz w3 (O,t) =.0 

" at X3 = O .. : EI3 w3 (O/t) = '0 

. _t •• (c) 
EI3 w = 0 

(O/t) 

and at the jt.U1cti0n of the three segn-ents , i.e. I xl = L1, x2 = L2 and 

x3 = L3 

, 

23 

f 



, 

" 

·. 
dWl •• 

+ (LZ-X2)ax- + w2]dx2 
1 (Ll,t) 

and (3.4.8) 

L ., 

+ f 3~3[~1(Ll't)-(L3-X3)::1 < + ~3](LrX3)dx3 
o < 1 (Llt t) 

" 
- - -' .-"' 

as v..ell as W2 = W3 = W2 = W3 = 0 (3.4.9) 

3.4.B Frequency f.<::!\ation for the System when the Three Parts are 
Elas tic, M::xlel (V) -a. 

In this section the entire system is considered to be elastic. 
, < 

Revert' to total displace.rren ts, in order to put equations ( 3 • 4 .6) in the . 

si.n'pler form 

iv - .. 
EI. w. + m. w. = 0, 

).). 1 1 

Furthernore, boundary condi tians 

wI '('0, t) 
:::: 0 

w.l (0, t) 
:::: 0 

w" == 0 
2 (O,t) 

w"t 
2 (Q,t)· = 0 

w" ,3(O,t) 
::: ° 

wt~\O, t) :; ° 

i :::: 1,2,3, , (3.4.10) 

(3.4.7) berorre 

(3.4 .l~) 

.. 



and b·c·s (3.4.8) and (3.4.9) reduce to 

and 

L3 -

w2 dx2'+ f m3 ~3 dX3 

o 

I , 

- VI =::. w 
(L2ft) (L3,t) 

(3.4.12) 

(3.4.13) 

Using the Irethod of separation of variables, the solut'ion of 

equations (3.4.10) may 00 obtained' [1] . Since we seek PJriodie solu-

tions in time it is assumed that 

(3.4.14) 

25 

Substituting equation (3.4.14) into equation (3.4.10) yields the following 

ordinnry differential equotion 

.iv l; 
~I/ . + a ' W. .:: 0 
~ ~ 1 

(3.4.15~ 

the solution of which is 

W. (x) = B. sin il.X. + C. cos a.x. + D. sinh a.x.' + F. oosh a.x: 
~ 111 l 111 111 1 1 

I; 

where a. 
1 

i "'.1,2,3. 

.. ,.. . 0.4.16) 



26 

t 

~ If \\B now substitute equation (3.4.14) irto (3.4.11) through (3.4.13), 

the follCMing i:oln1da.ry conditions on the m::xle shapes are obtained: 

= 0 

111 

= w~ (0) = 0 (3.4.17) 

" 
uC 

W 
3 (0) = W 

'3 (0) = o I 

. 
(3.4.18) 

, , 

and 

vI = W = 11 
1 (L 1>- 2 (L2) 3 (L3) 

, , , (3.4.20) 
h\ (L l) 

=- ~v 
2 (L2 ) 

~ W 
3 (L 3) 

~tions (3.4.15) subject to b.c.s (3.4.16) leads to 

(3.4.21) 



Subst,ituting (3.4.21) into the toundary conditions (3.4.18) through 

(3.4.20) yields 

c 

.~ 

+ 133Rz·(S~ a3L3 - sinh a3L3) + C3R2 (cos a3L3 - cosh a3L3) == 0 

(3.4.22) 

~ere Rl 

=' 0 

(3.4.23) 

and 

- B2(Sin u2L2 + sinh a2L2) - Cz(cos u2L2 + CX)sh uZL2) = 0, 

(3.4.24) 

(3..4 ,25) 

27 
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and 

where RS = and =-

, 
... ~. ,; .. 

• 'I., 
.. ~ ~<I ": ... 

;/ Q: ' 

... ~ (3.4.26) 

(3.4.27) 

Equations (3.4.22) throuqh (J.4.27) fonn <1 system of six hOmJ-

geneous linear alqebraic L~ations in six unknowns, B 1, C1 , ... ,e3' 

Again, !or the system to l1.1ve a nontrivi<11 solution, the deter-

minant of the coefficient matrix must vanish. This provlCles the desired 

frequency equution fr~ which the frequencies and, ultim:ltely, \.,rith the 

use of the sirnultancous equations, the rrodcs nuy be obtained. 'Ihereforc, 

\vB set 

(\1:' -----., 

* :: 0 (3.·1.28) 

I 

~--------------aC6 

/J 

Now for any nurrcric.:l.l cx..-unplc, the nqtllroll frequencies lmy lx; obt:...lined 

dS the roots of the tr:msccndcnt:.J.l cqu.ltion (3.4. ~8) 

for the llet,uled frequency determimnt see Aopenclix C.1. 

r~ '~. 



l:4.C Frequency EcJuetion for the System when Considering the Vessel 
to 00 Rigid (Mxlel (III) -a). 

In this limiting case, with the stiffness of the pressure vessel 

approaching infinity, Le. oonsidcred to be rigid, the elastic deform-

- - . 
ations, w2 and w3' must be set equal to zero in the prcceding case. 

'!his yields the equation of notion 

and the boundary concli tions 

.' 

"I 
EI w 

l(LJ,t) 

= 0 

(L2 

:: J m2[~1(Ll,t)+ 
o 

(3.4.29) 

(3.4.30) 

29 ., 

~"'" (3.4.31) . 

J\ .... 1 
(L,,-x"')-:l - ) (L.,-x.,}cl"{., 

. - 'X1(LJ / t) - - . 

(3.4.32) 
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The solution of (3.4.28) is given, using separation of variables, 

1:>y (3.4.14) and (3.4.15) 'and proceeding by an entirely analogous analysis, 

the: following IM.y be obtained, (note m2 :: m3) 

= 0 (3.4.33) 

and 

B1[(sin a}LI+sinh a 1L1)+R2(sin a ILl-sinh a IL 1)+R3(oos alLi-oosh alL I)J 

+CI[(COS alLl+cosh alLl;~2(COS 31Ll-cosh ~ILl)-H3(Sin alLl+sinh alLl)J 

= 0 (3.4.34 ) 

where m? L2 + L3 
Rl "" alL 1 (.,..;:..) (-L- ) 

ml 1 

- L2_L 2 
2 m", 

R" = ~(uILl) (--=-) (22) 
<- m l 

~ 

L~ 

1 

- L~+L,3 1) 3 m" 
R3 ::: 3(u 1L 1} L~) (_"_3) 

~ 

m1 
L3 

1 

Far the system to h~W0 nontriyi.11 solutions, the determi.nant of 

the c.'OCfficicnt rrutrix of equations(3.4.33} and (3.4.34) must be cqt.ul , 

to zero. TIms the frcqu:mcy equation i~ of t.hc siIrpler form 

:;: 0 (3.4.3S) 

* &~ l\ppendL,< C. 2 

* 
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3.5. M:tthercatical Anal ¥Sis for the System' using '1'i.noshenkO Beam 'lheory. .. 

Mxlels (IV and V1J -a . 

3.5.A ,teri vation of ~tion~ of M:>tion and Bo\IDdaTy Condi t:ions : 

'!he dynamic Euler-Berr)Oulli beam, thec?ry is the IIOst a::.mronly 
.. 

. '. used beam theory for technical applications and it proceeds upon' b-.u 

\ 

. ( 

assUIT'ptions, one, kinenatic and the other: kinetic in nature. The first 

is that planes which are nomal to the. beam', axis in the tmdefonned state 

remain plane and nonnal to th~' beain axis in the deforrre(}....s~te. !Ihi.s· 

,assumption is .equi valent to assuming the beam to be rigid with respect . . 
to shear defomations, Le. that all defomations of ~e team are due 

. . 
to longitudinal fibre extension and a::>n;:>ression alone. The second 

assumption is that the effect of rotatory' inertia is assured to be . 
negligible compared, to transverse translational inertia. and, therefore, , 

,. 
the term (p ltV) is neglected. . 

, In sore cases, ~cial1y for short !::earns, the effect of shear 
"-# ,.,. 

deforrrations and (rotato.pr merna should be taken into accotmt. In 

. such cases l the need for the use of what is usually referred to cfs the 

T.i.rroshen.ko ~ theory .arises. 'lhis theory ~es into accoW1t roth 

transverse .translational and ~tatory inertia, and defoJ,:11\3tions. due to 

roth the. flexure and she~ defonnations of the beam. 

Nod, considerinq the system shown in !-'ig. (3.5), it is clear that 

W2 (xz,t) .. = \"l(Ll,t) - IP 1(Ll,t) (L2- x2) ~ w2 {X2,t:) 

~2(X2,t} =.- ·l(L lr t) + ~2(X2/t) 

w"3(~3,t) ~'wI(Lllt) -+- 1/1 1 (Ll,t) (L3- X'3) ~ \$3 (Xs,t> 

(3.5.1) 



\. 
\ 

Note: 02 cind.03 

LIE ON X 1 AXIS 

. 

w (X.~) 
3 ~. 

FIGURE 3.5: DECOMPOS.IT~ON OF W2 AND W3 IN MODELS <IV), AND NIL 
.\ 

32. 
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where wz, w3, ~2 and '~3 are elasti<::' def~rrcations.' 

The kinetic energy for the system is [4] 

1 JLi 
'. 2 

,T = -2 0.. (1. tjJ, 
l. l. l. 

, 0 
i = 1,2,3, 

and ti 1 • ~ lJ! ' 8w. 
U :::: [M .:-2 + Q(~. + _1) ] c1x, , i = 1,2,3, 

2 . eX, l. 3x . l. 

0 l. l. 

INhere wI = wl' and 

J 
'. (3.5.1) 

cont. 
'. 

(3.5.2) 

(3.5.3) 

The constitutive equations (generalized stress-strain law) for 

the -Tim:::>shenko beam theory' are: 

(3.5.4) 

where A is the cross-sectional area, C is the shear rrodulus and K4 is 

33 

a numerical factor call~ Timoshonkols ffi1Gar coeffic~t [6Jwnich depends 

upon the shape of the cross section: in our C1se of ., thin walled circul.:u-, . 

cylinder K2.= 0,53. Substituting from (3.5.4) lnto (3.5.3) yields 

f
L. ...:i. 'l , 1 1. (}'fi~ 

U = I [EIi (()x) + 
, 1. 

O. ' 

Again, for oUr case I 

? 
K': A. 

1. 1 

3w,2 
G f.j;, + ~X ]c1x. 

\'I'l. JX.I :1. 
(3.5.5) 

1. 
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L. 

W ; I . (~i ow{)dXi + IHi I
L . 

lJi. +Q. W. ~== 0 
~ . ~ 1 

o o 

Applying Hamilton r s principle we have . . 

dt = 0 

ot/!. + A. w. OW. )dx. 
~ ~ ~ ~ ~ 

aw. 
2 G (- + _1) ) 1:: -K.A. lJi.., \) lb. 
~ ~ 1. ox· ~ 

1. 

a~. a2W. 
+ K~A. G ( ., ~ .. + --):. ) OWl'] (lxi' 

. ~ 1 (}x~ ax~ 

, ulJ!. 
1 -- £1,- 0V', 

l.uX. 1 
1 

L. 
1 

o 

'1 

... ()w. L. 
~ - ~ - 1 K.A.G(IJ!.+ - ) ow. 
1 1 1 dXi , 1 

o 

-
where i = 1 ~ 2, 3, 'and wI:: w 1 and t)i 1 - t/J 1 

". 

dt = 0 

34 

(3.5.6). 

(3.5.7) 

(3.5.8) 

.. 

Now expanding < 3.4 .8), Qlbs ti tuting from (3.4.1), and rearranging 

the terms yields 

(L I? n WI () 2w 1 . 

+ J. LKIA1G <aX'} + ;)X,2 ) - ptA} WI - PI]6 WI dx 1 
o 1 

.. 
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.. . ~ rL3... :.:. .. 

W1(L1,t)+ W2)(L2~X2jdx2 - J (P3I3(~ll(Ll,t)+ W3} + P~3(Wl(L'l/t) 
o 

;)~ 
.' a1jlZ -I L

2 ()~ 3 L3 
- Ell _16 

~l(O,t)-" EI2~X2 0 ~2 0 - EI3- 6 lh eX 1 . ;)X3 0 

~ 

2 dW 1 2 _ dW2 - L2 
KIAIG(,~ 1 + -a -) 6 w1(O,t)- K 2l\2G{1jI2 + -a -)6 Wz 

xl X2 0 

= o (3:S.9) 

( 



... ,' 

For an arbitrary tine interval (t 1 - t2), the integrands of the 

double and single integrals nrust vanish separately. In addition, ~ 

introducing the specific nature of the problem under consideration, 

- -
Wl(O,t), = w2 (L2J t) = w3{L 3,t) = 0 

= 0 

the following resul ts are obtained. 

'!he equa. tions of llOtion are: 

d 2,~ 1 2' 1M 1 
EI} -2- - K}A IG (tV 1 + -) - P 1 I 1 tJ! 1 = 0 

dX 1 ax 1 

'!he b:mndary conditions for the system are: 

(a) 

·(b) 

z" , 

(3.5.l0) 

(3.5.11) 

(3.5.l2} 

.' (a) 

(3.5.13) 

'(b) 

36 . 
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" 

w l{O,t) = Ij.tl{O,t) = 0 

at X2 = 0, . _ 

(3.5.14) 
. dw 

2 - z 
kzAzG (Wz + -. } 

dX2 (O,t) 

= 0 

and the j'Ul1Cti9!1 conditions are: 

(3.5.15) , 
" 

(Lz- X2) ~l (Li/ t )+ wZ)dx2 

(3.5.16) 



3.5.B 

With the aid of (3.5.1),'which defines the total displacements 
, . 

of the systemr the equations of rrction may be put into the fo11ow0g , 

fom: 

" "2. I 

EI. tJI. - K. A. G (w. + w.) 
~ ~ ~ ~ ~ ~ 

p.I.tjJ. = 0 
l.~l. 

2. I II 
K.A.G(tP. + w.) p .A.w. = 0 

1 k ~ ~ ~ 1 1 

i 1,2,3 

< < 

The boundary conditions becOIre 

w1(0,t) = tP l(O,t) = 0 

aw <>tP 2 
(W2 + _2) =- , ~ 0 

~X2 (O,t) dXZ(O,t) 

dW dlJ! 3 • 3' 
0 (1/13 + -) =- = 

aX 3 (Oft) ()X 3 (0,t) 

while the junction conditions are 

(3.5.17) 

(3.5.18) 

(3.5.19) 

(3.5'.20) 

38 ' 
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and 

w = w = w l(Lpt) 2(L2,t) 3(L3,t) 

(3,.5.21) 

.. 
Equa tions (3. 5.17) are the <Appropriate Tinoshenko beam equations. 

The solution of these equations again may be obtained by using the rrethod 

of separation of variables, see ~ppendix B. '!he solution is 

= w. (x) 
1. 

sin wt 

1jJ == \D; (x) ~ sin wt 
i (x, t) :r .... 

(3.5.22) 

1-1
1
, (x) = B. s1nh A . X" + C. cosh A . X. + D sin A". x. + F. cos A . x . 

1 1). .1. 1. 11. 1. i ... 1. 1. 1 . 21 1 

a. 
'P. ( ) = -....!- (B. oosh .A11.'Xl." + 

1 x Ali 1. 
sinh .\ .x.) 

11. 1 

8· 
+~ (0. cos A".X. -.F. sin ,\ .x.) 

A2i 1. .1 1. 1. 2x 1. 

where 

b'l 't bL.l2 ~ ,W 
+ a.w2)~ -'.\ = [ ( 1 (...2:.-) ] 

Ii 4 1 2 

b 'l '\ b~UJ2 ~ ,W 

+ a.w2)~ + " . = [( ...!.- (.:..!:.....-) r 

(3.5.23) 

21 4 1. 2 (3.5.25) 

p . 
.2:. (L+ £2' ) 

E. K.G 
1 . 

.. 

.. 



~ 

,/ 
\ 
\ 

a. = 
1 

a. = 
l-

and 
B· = 1. 

(l. A. p.wz 
l- (2:. _ _1._) 

E I. 2G 1. K. 
). 

(i = .1,2,3) 
J 

(3.5.25) 

(cant) 

NOW substituting equations (3.5.22) into equations (3.5.18)' 

through (3. S. 21) yields the following form for ~e ·boundary conditions 

and junction conditions on the node functions. 

Hi (0) == 0 
(3.5.26) 

/1(0) 
== 0 

, 

t 

== 0 

40 

'Wz (0) . 
I .... (3.5.27) . 

"¥Z(O) + v~2 (0) == 0 

~ roo -
, 

'f'3(0) = 0 
I .(3.5.28) 

W3 (O) + H 3 (0) 
.", 0 

w == W2 (Lz) , 1 (L 1) 
::;: 

W 3(L3) (3.5.29) 
. 

. \f!l(Ll) == - \{I2 (L2) = 'l'3(L~) (3.5,.30) 



\ ' 

L2 

EI1~Ll) + p,W' J [ I''¥2 + A, W,(L, - X,)] <ix, 

o 
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dx 3 - 0 (3.S.31) 

o (3.5.32) 

Proceeding as in'section 3.4.B, we find that six of the twelve 

constants in equations (3.5.23) and (3.5.24) may be elimil:lated with the 

aid of equations (3. 5. 26) through (3. 5. 28). Using the condi tions at 

the j1.IDction, ·(3.5.29) through (3.5.32) r the following six equations 

are ob~ined. 

),21 ex 1 
B 1 [sinh AIIL 1 + (-) (-) sin :\2 lL 1J + C 1 [cosh "llL 1 - COS '\2 lL 1J 

>-'.ll 131 

),2Z (12 

- B2 [sinh ),12L2+(A12)sin 'A22L2J-C2[cosh :\12L2-(~)cos "22L2J = 0, 

(3.5.33) 

, B 
AZl Qz 

(A12) sin A22L 2J +C:,[cosh A12L2 - (l)2) cos \~2L2} 

>.'23' 03 
A13L3+(-,-rsin A23L3]-C3(oosh },13L 3-<-:l3)COS A23L3J = 0, 

,\ 13. I-' 

(3.5.34) 



Ct 2 
),2 2L2) ]-+C2 [ (-, -) (sinh 

. "12 

sin ).22L2) j = 

'$ A 
(sinh "13L3 - (~) (~) sin A L) cq An ~. 23 3 

,( . 

>'12 
),12L 2-( ),22.) 

42 

0, (3.5.35) 

, 



43 

P l3w 
2 

Cl >. 2 

[(cosh .A t )L3 + (2) (~) cos 1.2 ~3) 2 B 3 ).23 
A13 

Cl
3 

I. 2 
(1 + - (.-U) )] } = 0, (3.5.37) 

83- 1.23 

and finally, 

+ 

= 0 (3.5.38) 

For the system to h--wc nontr·iviul solutions, the dctcrmln,:lI1t of 

the coefficient Imtrix must be equ .. l1 to zero. 1:rom this the. frequency 

~~tion and tho frequencies nuy re obt.lined .-:lS before. {\guin, the 

frequency equation is of the form 
, 

011 a 1:>- (\ ltl 

, .)21 a').) * -.... == 0 (3.5.39) 

.1.; 1- a6/i 

* See Aprx;ndix C. 3 



3.S.C Frequency ~tion for the §Ystero when the Vessel is Considered 
to be Rigid (r-txlel (IV) -a) • 

Now consider the pressure vessel to be a rigid l::xx1y, i.e., the 

elastic defonmtions are set equal to zero. Since 

- -
w2 = W3 =. '~2 = th = 0, (3,5.40) 

\\B have as the equations of rrotion 

a2 Wl 2 dWl 
Ell -2- - KIAJG(th + -;)-) ~'PIIl~I ::: 0 

ax 1 x 1 

(3.5.41) 
2 (It/! 1 a2w 1 

. ~ lA IG <-) - + -) - P lA lW 1 = 0 
Xl 3X~ 

The l:oundary condi tions are 00\.; 

at Xl = 0 

w1{O,t) := tP1(O,t) = 0 (3.5.42) 

and' a t xl' = L 1 

.. 

44 

P Y\3 (w 1 (L I, t):+- (L3-X 3) 'yi 1 (L I, t) ) 

(3.5.43) 

\ 
" 



(3.5.44) 

'Ihe solutions to equations (3.5.41) haye been presented in the 

preceding'section by equations (3.5.22) through (3.5.25), for i ='1, 

and hence 

, . 
+ F 2 cos }.2IX 1 

ell 
. 'i'1{X)- = -"XlI (B1cosh AllXl + Cl sinh ).llX t) 

81 
+ -,- (01 COS ~ 1X1 - FI sin A21 Xl) 

"2'1 

(3.5.45) 

Substituting from ~tion (3. 5. 2~) into equation (3 '1~ 42) • 
. " 

through (3.5 .. 44) yields the following' ooUndary conditions on :the rrbdal 

flU1ctions 

and 

" 

\'11(0) = 

"l'1(0) = 

, . 

'0 
(3.5.46) 

o .. 

(3.5.47) 

45· 



" , 

L3 + L3 .r 
where Rl = P2A2W2 ,[( 2 J "3) + A: (Lz + L3)], 

(3.5.48) 

L2 _ L2 

• and . R4 '= KiA1G,,-t- P2Azw2 ( 2 2 3) • 

~ote that segments 2 and 3 are assuned to have the sarre. cross sec

. tional area hnd the sarre nass density. 

Now in equations (3.5.45), subject to b::>undary conditions 
.; 

(3.5.46), two of the constants can be eliminated and ~, with the aid 

of b::>unqary con¥tions (3. 5.47l, the following 't:i-X) equations are ob

tained. 

. a 
, + C1.[Rl' (~) (siflh 

,\ 11 

(3.5.49) 

46 

.A:n 0 1' 0, 

'D 1 [R3 (sinh All'L} + ('fi7> (~)Sin ).211. 1) + Rd).~~) ~cosh A11L1-cos ).211.:) 

," A lCl 
, ( h \ (~) (-.2..) ) ] - RS <X:?s II L 1 + All . B 1 COS" 21 Ll 

.' . \ 
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I 

; ex ~ll ' 

-r Cl [R3'(cosh AIILl-OOS A21Ll)+~ (~) (sinh "I ILl:" (r-) (~.sin A2ILl) 
11 . 2,1 °1 . 

A 
R (sinh \ L + <_21) S"'" '21Ll)] 5 ~ll 1 All ~'A = o (3.5.50) 

where Rs 

Again, for the system to have a nontrivial solution, the deter-

minant of the coefficient natrix in eqUations (3. 5.49) and (3. 5. 50) must 

vanish. 

Hence the frequency equation is of the sinpler form 

::: 0 (3.5~51) 

3.6 Ana~ysis of Model (I)-b. . 

We now turn our attention to the case when the pressure vessel 

is pinned 'at the top as sho,-m :in Fig. (Ll.b). In this case the system ., 

. is redu:;ed to a single d~ee-of-'freecbI11' narrely the angle of the rota-
• I • ~ • 

tion of the rigid vessel ~ut an axis, through the pin. 

Fig.(3.6.a), is given'by 

::: 

* See Appendix c. 4 . 

TI1is angle, (.p) 

(3.6.1) 

* 

\ 

.. 



Elerrentary rigid body rrechan.ics shows 'that, for the system 

shown in Fig. (3.6.b) 

[M + 6. • L 2 ] (3.6.2) 

The fprmulae of elenentary beam theory proyide 

'Q-L3 - 2 
1 MLl 

WI (LI) = 3EI - 2E1 (3.6.3) 

and - 2 
dIN 1 QL} 11£.,} 

ClX 1 (LI)' 
= 2E1 E1 (3.6.4) 

~ 

With the a'iCi of equa lions 0,6.1) , (3.6.3), and (3.6.4) the follcwing 

expression~ for M, and Q may be obtained 

- 2EI 
M = ....-{ 2L} + 3LZ) 1> 2 

Ll 

(3.6.5) 

and 
- 6E1 
Q = --r (Ll + l2L2) cP (3.6.6) 

L} 

Now using -equations (3.,6.5) and (3.6;6) th~ equation of notion. 

(3. 6. 2) berorros 

L2 + 3L L' + 3L2 

¢ + 12£1 (1 1 .2 2), ~ = .0 
mLi \. (L2 + L3) 2 

(3.6.7) 

so tha t the na tural frequency of 1'1:>001 (1) -b is 

w == I: ~t (_L..:....~ -+-(L-:_L...:.~_LL=-2 3-~-:2:-3_L=~T 0.6.8) 

... 

48 
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FIGLRE 3.6: SINGLE DEGREE-eF-FREE1X>M SYSTEM. fIODELS (I & [I)-b. 



" 

50 

3.7 Analysis of rbdel (!I)-b. 

Again a rigid pressure vessel, pinned at its top, is considered, 

but now it'is supported by a'skirt'modeled as a massless Timoshenko 

beam. As iri the case of t-bdel (I) -b, for this single degree-of-freedom 

." system, 

is p::>ssible, as in ~el (I)-b, to write expressions for M and 

\ - 6EI LIL + 2(L~/3 + a) 

\ M = --'--
[2 ,_] ¢ 

Ll 2 
\ 12a + Ll 
\ . 

and \ 
\ , 

~ 6EI L1, + 2L,., 
== [ .. J ¢ 

Ll Z 
12a + Ll 

where 
2 

Cl ::: EI/K A(", 

The equation of notion is 

or 

(3.7 .. 5) 

so that 

(3.7.6) 



" , 
" . 
" 

Equation (3.7.6) reduCes to equation (3.6.8) if K2AG -l- co , Le., 

3.8 Analysis of t-bdels (III) -b and (IV) -b. 

In these tw:::l cases a rigid pressure vessel, pinned at its top, 

is supported by a flexible skirt with mass. Since the role of these 

tv.o rrodels is, again, to assess the validity of the asstmption made in 

MXlels (I) -,a through (II) -b that the, mass of the skirt nay JJe neglected 

for typl.cal real systems and since that assunption can be assessed by , 

Models (III)-a and (IV)-a, no seParate detailed analysis for these two 
, ' 

mxlels will be given arid the interested reader nay obtain the frequency 

determinants for these t\«) nodel's by 'following the sarre procedure des-

cribed in sections 3.4 and 3.5 and imp::>sing the following lxnmdary ron-

di tions. For 

and for 

a) Model (III)-b 

b) . Mxlel (IV)-p 

= 
wI (L

1
) 

~ 

\ 

" 

51 
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3.9 Analysis or ttxlel (V) -b. 

'!his case dif fers from the case of M:X1el (V) -a in only one parti-

cular/ nanely the l:olDldary conditions at the top of the pressure vessel, . , 

i.e. at Xz = 0, equat~ons (3.4.17) (b) 'ar~ replaced by 
, , 

::; 0 

" 
(3.9.1) 

::; a 

since a free end is row replaced by a pinned end. Consequently the 

only change m the rrodal functions' is that Wz (x) is given nCM by 

(3.9.2) 

instead of equation (3.4.21) (b). 

Once again, substituting equations (3.4.21) (a) and (C).I and 

(3:9.2) into the l:x:>tmdary conditions at'the jtmction, equations (3.4.18) I 

~3.4.19) and (3.4.20), yields the following six equations. 

, 
B1 (s'in a,lLl ,- sinh olLI') + Cl (cos alLl - cosh a1Lt> 

:;; 0, 

- cosh aI"L1) '- C1 ~sin alL l + sinh alL1) 

°2 
cos 02L2) + D2 (- ·cosh <)2L2) == 0, 

. a1 

= 0, 

(3.9.3) 

,'(3.9.4) 

(3.9.S) 

/ 
/ 

/ 
/ 



( 

and 

B2 cos a2L2 + Dz cosh azL2 + Ih(!X>s a3L3 + cosh a3L3) 

- C3 ( sin a3L3 - sinh a3L3) = 0, 

BI (sin alLt+ sinh aILI) + Cl (ens alLI + ensh alLI> 

-:' £2 (sin a2L 2 - a2L 2). Rl + D2 (sinh a2L Z - azLz) Rl 

+ B3(sin a3Lg- sinh a3L3)Rz+ C3(COS a3LrOOsh a3L3)Rz 

= 0, 

= O. 

where Rl through R4 have been defined in section (3.4). 

(3.9.6) 

(3.9.7) 

(3.9.8) 

As before, the freqreney equation nay be 'obtained by sett.ing 

determinant of. the coefficient matrix for equations (3.9.3) through 

* ( 3. 9 • 8) egual to zero • 

As previously rrentioned, N::xlel (III) -b is obtained from l-bdel 

(V)-b by again letting w2. = W3 ,.. 0 at the appropriate {Xlint in the 

2ll1alysis. 

.. 
3.l<1 Analysis of MJdel, (VI) ":'b. 

Finally, uS in the C.:lse of M:x:lel (V,--:b, only the l:otmdary con-, 
~ / 

ditidns at Xz = 0 need be changed in the analysis of ~el (\!.I)-a. , 

See Appendix C. 5 

! 

53 

---



54 " 

1he appropriate boundary conditions are 

W2 (Q,t) = ~2(O,t) = a 

which lead to the following six equations for the constants of integra-

cion. 

(3.10.l) 

" <q 
- C3[co~h A13L3 - (S;) cos AZ3L3J = 0, (3.10.2~ 

C't
3 f3 

+ B 3 [ (-A -) (cosh A 1 3L 3 - (-» cos ,\\;->3Ls)] 
13 . a.) 

.. 

(%3 Al] 
sin.:\ :nL3) ] + C 3 [ ~-A -) (sinh. ). 1 3L 3 - (-) = 0, . 

13 '\23 
(3.1.0.4) 

fh[EIl\'(.l (s:inh AllLl +. 
A21 • 
(~) sin A21 L l)J 

,\ I 1 

+ C1[E1l(tl (cosh 
1'1 

\21 L I)] A llLI - (-). COS 
\' 1 

.. , .1 
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= 0, , (3.10.5) 

P2A2
w2 

- 1)] , B2[ :\ (co%p ,\ 12 L? 
12 

o 2 
A12 .,A 2w 

l)J + D2 [ '-\ (~) (OOS A22L2 -
, 12 "22 



(3.10.6) 

Again equa tions {3 .10 .1) through (3. 10 .. 6) provide the fr~ncy 

* eqw.tion for rudel (VI) -b. Also M::x1el (IV) -b is obtained from ~bdel 

- - - -(VI)-b by letting W2 = W3 = "'2 = $3 = 0 in equations (3.5.1) and pro-

ceeding in the analysis by the sane procedure as before. 

'. 

* See Appendix C.6. 
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QN'TER 4 

NUMERICAL EXAMPLES AND RESULTS. 

We nON present nurrerical results fOl;" four typical skirt-vessel 

external geometries and for each of these four different vessel wall . 

thicknesses are considered, i.e. a total of sixteen georretries are exa-
'\ \ ' . 

mined. Each of these is consid~ fOJ; both sets of boundary conditions. 

()nly the first two natural frequencies, nodel permitting, are calculated 

for each case and model, since the higher frequencies usually are not 'of 

interest. If required, the third and higher fr~cies may be calcu

lnted easily using the same .procedure which is used to calculate the 

first two fr~ncies. 'l'he COIll?uter program used was based on a stclnd-

ard Fortran IV subroutine for evaluating det(;mllinants and required no 

great progranming effort since it nurely involved a narching routine to 

determine values of the fr~quency for which the determinant Vi1I1ishcd, 

Le. at which it' changed sign, see Appendix D. 

In n11 cnses the vessel and skirt ~re assl1m~d to be Rude of 

steel with <l $p8cific weight of 490 Ibs/ft 3 , a Young t s m:xJulus of 29 x 

* 106 .psi., ar:d u. Poisson's ratio of 0.3. 'Ihc specific ~ight of the . . . / 

vessel's contents was taken. to be 105 Ibs/ft 3 ., i.e. 90% water by voll.ll1B 

cmd 10~ steel.' The first skirt-vessel corrtiin.Jtion considered was 

* Poisson's ratio is needed to find 1(2[6J 



A) Ll = 6 ft. I 6 ft., ,L3 = 4 ft. ,and R = 2 ft. 

where R is the outer radius of the vessel anI the rrean radius ot" the 

skirt. '!he other cases were 

B) Ll = 6 ft. , L2 = 10 ft. , L3 = 5 ft., and R = 2 ft. 

C) Ll = 6 ft., L2 ::: 4 ft. , L3 == 6 ft. , and R = 2 ft. 

and 

-~ D) Ll = 6 ft., L2 ::: 7 ft., 1..3= 8 ft., and R = 2 ft. 

The skirt thickness is always taken to be 0.5 in. while the vessel 

thickness is considered to be 1 in., 2 in., 4 in. , or 6 in. The first 

thickness representing, perhaps, a roiler and·the last one a nuclear 

reactor. 

'The results are presented in eight tables below, each of ~'hich 

gives the first b...o natural frequencies for eaGh rrodel of a given case 

(or the four vessel thicknesses a:msiderecl. h'e find it convenient, for 

ec1.se of p~scntc1.tion, to limit each table to either the cantilevered 

system or to the fixed-pinned system. 'Ihe lIpI=Cr ni.m1ber in, each entry 

is the fund."l..!'rent...'1l ro tural fr~ency, in Hz., of the e~le oonsidered 

ar1d the lower nl.urDer is the second f.r~cy. 

FigUres (4.1) through (4.8) sro.v the firs t uvo m::x1e shapes for 
, 

the various m:x]els 9f case A for roth tha cantilev€'xed and fixed-pitmed 
. 

systems when thickness is 1 in. These are nonmlized with res~t to 

W ; in each case. FOJ:" those m:xlels \oJhcre shear de~ot'Tl'\1tions are taken rrex . . 
into uccount this provides the relative rragnituQe of\ftas "'~~l. The 

" 
) 
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reader srould note the dramatic differences in node shapes for the 

various mx1els of the fixed-pinned system as op[.X)sed to the corrparatively 

minor differences in the rrcde sha,FeS for the various m:xlels of the 

cantilevered system. A cauti0n::uY note. While the node shapes for W 

do indeed provide the shape of the deflected neutral surfaces of the 

system, there is nC? corrp:trably s.irrple way of visualizing the rrode 

shapes for \fIwhich is, recall, the angle o.f rota~on of a cross-section 

of the skirt or vessel. 

, , 

\ 

, 



~J Thickness, 
I 

1. 
I 
I 

1 in. I 
I 

I 

! 2 in. 
I 

4 in. 

r 
6 in. j 

I 

I 

~ Thicknes_s , 

-
1· in. 

2 in. 

4 in. 

6· in. 

TABLE 1 

I , 
I 

, , 
I I 

I I II III , IV V I 
I - ! 
i I 

, 
! 

41.5 I 36.1 41. 3 I 35.1 , 40.6 

I 
( 

I . 
218.9 I. li7.2 214.0 1 105• 7 193.0 

, I 

r I , 
36.1 t 31.4 I 35.9 

I 
30.6 35.6 

I 
190.3 ! 10L8 I 187.1 92.6 t 176.5 

I 

I I i 

\30.0 26.1 

I 
29.9 25.5 29.5 

158.0 84.6 156.0 77.7 149.6 

I 
26.5 I 23.1 26.5 22.6 26.4 I 

I 
139.9 I 7'4.9 138.6 69.2 j 135.0 

Natural Frequencies for qmtilevered 
System 

Case-A 

TABLE 2 

I , 
I . 

I II III 'Iv I V 
. I 

I 
195.3 96.6 190.1 91. 7 I 63.4 

- - 2472 613.3 ! 22~. 5 , 
J 

169.8 83.9 166 .. 2 80.3 j 55.4 

2464 611.0 j 202.7 - -
141.0 69~7 139.0 67.2- j 45. 7 

- - 2450 6DS.8 117"1. 9 
_l , 

124.8 61.7 123.4 59.8 I 40.9 
• 

, 
I 
I VI 
! 

34.2 

95.5 , 

! 30.2 

I 87.5 , 

25.4 

75.2 
I 

I 22.5 

67.6 

VI 

51.0 

118.7 

t 44.7. 
I . 
1

109 . 7 

38.0 

95.0 
, 
I 33.2 

~ j - - 244§, 160.7.. 7 , 155.1 85.8 . 
I 

. ~ 

N.at~al FrC<j'...leI1cies for Fixed-Pinned System._ 

ease-A .. 

r"~ 
60 
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TABLE 3 

~I I I : I I 
I i II . III i IV V 1 

'l1lia:kne!2lS" .• I I I 
I I I \ 

i ! I I 

I 
I 

1 in. 24.4 22.8 24.4 22.4 23.3 I 
165.5 82.5 162.2 I 78.4 1 137 . 8 I I 

I , 

I 21.2 \, 19.8 21.2 '19.5 20.7 
2 in. 143.9 71. 7 141.7 68.5 1 129• 3 ! 

I 
I 

17.6 16.4 17.6 16.2 17.2 
4 in. 

119.5 59.6 1~r·57.3 111.1 

! 
-. !'" 

15.6 t 15.6 14.6 14.4 I 15. 4 
6 in. 105.8 j 52.8 105.0 50.9 100.7 

I 

Natural Frequencies for Cantilevered Sysbem. 

case-B 

'mBLE 4 

~\ 
~ I 

I i ! III I 1 

Thickness I I II IV 
\ 

V 
\ 

I I 152.1 73.0 149.1 70.8 I 42.0 
. 1 in . I 

- - 24~5 610.8 I 158.1 I 
! 132.3 63.51. 130.4 

I 

I 
I 

61.9 I 36.6 2 in. 
I 

I 

- - I 2450 609.1 1146.4 I 
1 I I ! I 

109.8 52.7 108.5 51.6 
I 30.2 I in. 
I 

4 

I I I I - - ·2445 607.4 i 124; 7 I 

I' 

I I r--r '-! \ I 6 in. 
97.2 l 46. 7 96 • 4 i 4 5 • 9...; 2 7 . 1 

- j - 1244~ I 606.6 1112.9 i , 
I 

Natural Fre.que.qcies for Fixed-Pinned System: 

Case-B. 

61 

VI 

21.1 

70.2 

18.9 

64.4 

15.9 

55.3 

14.2 

~9.6 

VI 

36.8 

83.9 

32.3 

77.4 

27.0 

66.6 

23.9 

59.9 
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TABIE 5 

~ I 
i 

I Thickness I 
I II III I IV V . VI , 

r 
I 

I , I 

1 
! 

• , 
I I 1 

58.0 47.0 1 57.5 I 45.2 57.1 f' 44.5 
1 in. i . 

j 
\ 

90~O I 
j 

156.8 154.9 82.5 126.1 I 71. 3 
! I 

I 

, 

I 
" ! 1- ~ 40.9 , 

I 
50.5 50.1 39.5 49.9 I 39.2 

I 2 ~n. I 

I \ 

I 136.0 78.2 I 135.0 72.1 119.9 ! 66.3 I , 

i I I I 
I 

4 in. 41. 9 33.9 , 41. 7 33.0 I 41.2 

I 
32.8 

65.01 
, 

113.0 112.3 60.2 j 103.8 57.5 
I , 

I , 

I 
) 

i 

1 

I 37.1 30.0 ; . 37.0 29.3 36.9 I 29.2 I 6 in. I I 

i I 
: I 100.0 57.5 ; 99.6 53.6 94.3 51. 7 i 
I 

Natural Frequencies for cantilevered System. 

Case-C. 

TABLE 6 

~ I I 
i 

I 
: Thickness : 

I II III 

I 
IV V VI 

! I 

I 

\ 

' I , 
i 

I 

1 153.7 78.7 I 151'.5 I 75.5 79.7 5<i.4 ! in. I .. I - - 3450 I 608.8 126.3 I 81.5 
I 

, , I' 
I ! : \ 133.6 68.4 134.2 65.9 69.7 . 50.1 : 2 in. I 

120.4 . I ! I - - , r 2446· i 607.6 I 76.0 

I i 
I 

I 
I I j 110.9 56.811Q\Io; 9 55.0 57.6 42.1 
I 4 in. .l I 
I - - 2442' 606.4 I 104.5 66.1 \ I I , 

", 

I 
I ! I I ! I . 98,.2 ~O. 3 1 97.7 ~ 49.2 I 51. 6 37.5 

6 in. I I 

I 1 2440 . ! 6QS.8 i I 

l - - 95.1 ! 59.8 . 
Na tura1 Frequencies for Fixed-pirmed Sys.tcm. 

Case-C. 



\ 
~ Thickness 

1 in. 

2 in. 

4 in. 

6 in. 

TABLE 7 

I II III IV V 

34.2 31.6 34.1 30.7 33.4 

117.9 59.4 116.7 57.5 85.6 

29.8 27.5 29.7 26.8 29.3 
'" 10~5 51. 7 101.7 50.2 84.7 

24.7 22.8 24.7 22.3 24.3 

85.1 42.9 84.7 41. 8 75.2 

2H9 
."~ 

20.2 21.9 19.8 20.7 

75.4 38.0 75.0 37.1 69.0 

Natur.a1 Frequencies for Canti1erered System. 

case-D. 

TABLE 8 

VI 

29.7 

48.8 

26.3 

45.7 

22.1 

39.6 

19.6 

35.7 

~ I II III IV V VI 
Thicknes 

1 in. 

2 in. . 
4 in. 

6 in. 

117.7 57.6 116.5 56.4 50.8 45.9 

- - 2445 607.6 87'.8 50.1 

102.3 50.1 101.5 _49.1 44.7 40.5 

- - 2442 606.6 . 85.5 47.2 

85.0 41.6 84.5 40.9 37.1 33.8 

- '- 2440 605.7 ' 75.4 41.2 

. 
75.2 36.8 74.9 36.3 33.2 30.0 

_. - 2438 605.3 69.1 . 37.1 

Na~ural Frequencies for Fixed-Pilined System. 

case-D. 
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QIAP'I'ER 5 

It is inrrediately evident from examination of Tables l, ~, 5, and 

7 that for the cantilevered systems Model (II)-a, a relatively simple tMD 

degree-of-freedom model, orovides reasonable estimates of the first two 

natural frequencies when compared to the most sophisticated model considered, 

M::x1el (VI)-a. However, it is equally. clear from Tables 2, 4, 6, and 8 that 

no simpler model provides a reasonable approximation to the freouencies 

calculated from H:xlel (VI)-b for th~ fixed-pinned systems. This difference 

in reh.:tvior of the differeotly considered skirt-vessel systems is not 

difficult t:o fathom since the pin constraint at the top of the pressure 

wssel induces signifj..cunt flc..'illre and shearing of the tx>rtion of the 

vessel above the connection of the vessel to the skirt; this is clearly 

evident in Flgure (4.8). T.:ililes 2, 4, 6, and 8 would seem to indicate 

that this conclusion is indenendent of vessel thickness. The conpar.1tive. 

ubsence of these effects \oJhcn the vessel is free .:tt the top is equally 

evident in Flqure (4.4), which differs little trom F'i~rure (4.2). 

Our study h~.1ds us to the conclusion that the use of Tinoshenko 

b<;am..:; to m:xlcl skirt-vessel systems 1S feusible and th.:lt this nodel should 

be used for other th.m c.1ntilevcre<i skirt-vessel systems of [lOIJl1.L"ll pro-

r-ortions when u beam theory nock:l is used to nodel the system. If the 
~ . 

situat~on warrants, it is also the way to model cantilevered systems 

SlJlce r-Wel (II) -a, which provides ~ excellent approxirration to the 

fundaient.:ll fr~nCYl provides only a fuir estilrate of the second 
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~ " 
·natural frequency of the system. If one reauires hiqher ,fre---

~ncies . th~ bf course, one has no other choice than' to 'use M::.xlel -. . 
. , 

(VI) for reasonable results· (at least witnin the hierarchy of m::dels 

oonsidered here) for any set 'of roundary conditi~ns . . . 
_11 . ' 

We note, .riow, that we haVe not exhausted reasonable rnxlels for 
"-

. skirt-vessel systems since it is certainly reasonable, for exarrple, -' to' . 
nodel the skirt by a rra~sless·team capable ,of Undergoing shear defurn-

\ 

ation and the vessel' by ·a T~shenko .beam. '!his is suggested by -the 

results ,for fudels (I) and (I'II) anct r.bdels (II) and (IV). 'These e~les 

show tpe snal~ effect of the skix:t ma~s on the natura~ f!eqtJencies of .. 

. skirt-vessel systeins. ~s j,s easily ~derstood since -for our exarrpl~s 

the skirt weighed ~ut' 1, 500 lbs. ~¢l the vessels, including con ten ts, 
• I • t-

ranged in weight from 'abJut 15,000 to 56,000 Ibs. ~ver, little c0m

pUtational advantage wuul~ be obtained from. use of. this rrodel, as com-
. . 

pared to the use of MJdel (VI). 

Finally, we note that; so1lEWl'¥tt: nore realistic m:x3els of snirt-
, , ' 

vessel systems may be stu::iied with:mt undue difficulty. for cXarrple" 

the ends of the vessel and awropriate FCr,tions ',9,f ~e i.rmards, such as 

tube 'sheets, nay' ~ m::xleled ,as a' riqid nnss attached to cylindrical 
, 

.. ,' ~rtion of the vessel. SF stud~es pro~ly are perfo~d ~s.t ea~ilY 

using fifUt;e e~t technigoos~ with Tim::>shenkO beam ele.ne1ts, rather . 
, -t t"> • • ..' 

than by the analytical neti1cxis used in this' tnesis where analytical -
iet:.lfxls were .. ~wropria~ since tm najor p~ of the pr~sent W)rK' ~s 

to {5ttrly' the 9ynanU.c tn::xieling of sk~-press~' vessel systems ruther ... . . , . . .... 
than to px:pvi~ precise design data for ~d.cular coofigurations. 

• • "J • 

, . 
" 

• ..... 
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APPENDIX A 

Length of the' skirt. 

length of the portion of the ve1;sel atove the junction. 

Length of the portion of the vessel below the junction. 

Coordinate axes for the i-th segrrent. 

M::x:iulus of Eiasticity. 

Cro$s-sectional ITOvenents 'of inertia for the i-th seqrrent. 

Masses pel! lIDit lengtli for the i-t.1-] segyrent. 

'Ibta'l ~~placerrents for the i-th segrrent. 

Elastic displacements for the i-th s~gment. 

Angle between a cross-sectional. plane and the horizontal 
plane passing through the y-axis. 

Cross-section.;tl area of the i-th segrrent. 

Hass density of the i-th segrrent. 

Shear nodulus. 

Tirroshenko's shear coefficicQt o~ ·the i-th segrrent. 

Differentiation with respect to t.llre, ~t 
<'l 

Differentiation with resrect to X, dx . 

Natural frequencies of the system. 

Oonstants of' integration. 

Di<stributed load. 

. 'Ibml mass of the pressure vessel and its contents. 

75. 
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APPENDIX B 

SOWTION FUR TDDSHENKO 'BrnM I S EQUATICNS. 

The "Ti.nnshenko beam I s equations of notion are 

to I 

EI ~ - K2AG(y + w ) - pI~ = 0 (1) 

, It •• 

~2AG(~ + w ) - pAw = 0 (2} 

By eliminating 1./1 from equations (l) q,nd (2) we have 

(3) 

To solve equation (3) the rrethod of separation of variables is errployed 

and since we seek periodic solutions in t.irre it is assl..llTed that 

w (x, t) == W (x) • sin cUt (a) 
(4) 

~ ~I (x, t) .::: \l1x) • sin (,)t (b) 

Substitubng from equation (4) -a into equation (3) yields J 

" + b2w2 W - aw 2 W = o (5) 

. , , 

where b 4 P E = (L+ -) 
E j(2G 

2 
a = . £. (~- ~) 

E I t<~ 

(6) 

A 
') 

~ve note that usually I > ~ 
j( 2G 

Equation (5) is C1Jl ordinary d~fferential equation of' the fourth 
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order, the solution of which is 

\J1ere B, C, D, and F are the cons~ts of integration and 

(8 ) 

NON, from equation (2)' we have 

" 
\</ - W (9 ) 

(., 

Substitutirig from equation (4) into equation (9) yields 

, 
~x) (lO) 

sili'stituting from equatiOI) .(7) into ~tion (lO)anq integrating once 
\ .. . ..... 

results in 

~x) 
B + (x;-) (D cos A2X - F sin :\~x) + II (11) 

where (X = 2 2 
(~ t \ ) '\ 1 ' 
K=:G 

8 = 

arid \v'e note that equation (1) requires th:lt the constant of integration 

(II) in equation (11) should.be equal to 'Zero. 
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APPENDIX C 

'mE FREQUENCY DE'I'ERtIDiANTS 

c.l Model (V)-a 

The frequency dete~t. of M::Xlel (V) -a is of the sixth order 

and its elerrents are: 

all = sin alL I - sinh alL I 

al2 ::; cos alL] - cosh al~ 

a13 = - (sin a2L 2 + sinh a2L2) 

a 14 = - (cos a2L 2 + rosh a2L2) 

a15 = 0 

a16 = 0 

a2l = cos alL} - cosh a ILl 

a22 = - (sin alLl+ sinh alLl) 

an ::; Rs (cos a 2 Lz + cosh a 2Lz) 

<124 = - Rs(sin u7 L Z - sinh .:12L2) 

a7:' = 0 

a2G =:; 0 

= 

78. 
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= 

= 

= 

'a3S == 

• 
a36' == R2 (cos a3L3 - cosh .a3L3) 

.. = 

" 

aS1 = 0 

aS2 ::: 0 

a 53 = sin a 2L2 + sinh ().;>L2 , 
u')4 ::; cos a2L2 + cosh u 2L2 ~ 

ass :::: - (sin a3L3 + sinh a 3L,) 

as(, = - (cos a3L 3 + cosh il3L ,) 

o 

o 
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a S 3 = cos a 2L2 + cosh a ZL2 

a64 = - (sin a2L2 - sinh azLz) 

a65 = R6(COS a3L3 + cosh a 3L3) 

aG6 = R6 (sin a3L3 - sin a3L3) 

. rn.w 2 

where a. = 1. i 1,2,3, EI. = 
.1. 

1. 

a3 
. = ai 

az 2 I2 
RI = (-) 

al I I 

a3 2 I3 
R2 = (-) 

al I} 

u2 3 I2 
R3 = (-) , 

al II 

a3 3 13 
Rl, = .(-) 

al II 

a:: 
Rs -

a} 

a3 
and R6 ::: 

.11 

.. . 



C.2 Model (III)-a 

Here, the frequency detenninant is of the second order and 

its elerrents are: 

= (cos alL} + cosh alL) - RI«sin alL l - sinh aIL I ) 

R2(~s alLl - cosh alL l ) 

a12. = - [ (sin alL} - sinh alL}) + R} (cos alL} - cosh alL}) 

- R2(sin alLl + sinh alLl) ] 

= 
I 

+ R3 (cos aLL} - cosh aIL I ) 

~e R} 

und 

<,. 
,< 

81. 
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C.3 M:x1el (VI) -a 

AI though this rrodel of the sKirt-vessel system is the rrost 

" 

82. 

sophisticated model considered, it also leads be a sixth order frequency 

determinant so that the algebraic structure o~ Model (VT)-a is the 

sane as that for M:x:1el (V) -a. '!he corrplexity of individual elerrents 

in the frequency determinant is, of course, greater in the present node!. 

llie elerrents of this c1eterminant are: 

a12 = cosh ~ 11 Ll - COS ).21 L l 

[sinh A 12L2 + 
A22 

a 13 = (-) sin A22L2] 
A12 

[co~h A12L2 -
a:: 

\22L2J a 14 = - (-) cos 
82 

a 1 5 = 0 

a 16 = 0 
.~ 

{11 
(\21 ::: (cosh \ IILI - cos \' ILl) ). I 1 

<11 All B} 
a?'"> = (sinh , 11L'1 (-..!..) (-) sin \;~ILl) >- ... ~ I 1 :\ 2 1 1.1 1 

('12 :~ I) 

a Z3 = (cosh A.12L2 - (-'-) cos \2ZL Z) 
\12 '2 

, . 
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2 al al ,/ 
al; 1 = K lA1Grcosh AlI Ll (;\ 11- -)+ cos .\ 2 1 L I (-)., -) (l + 2l)] 

All 1 1 B1 

? ill ~1 
a42 :;;: KIA1G[sinh A11L1(\11- -)+ sin A21L} (All + -)] 

>. } 1 A21 

2 
P2A 2w 

a43 = -[ (cosh A 12L2 - COS A 22L2) ] 
\12 

P2A2W2 
Ct 2 A12 

A'22L 2) ] a = -[ . (sinh .\ 12L2 - (-)(-) sin 
!t4 A12 32 A22' 

'> 
P )A3w .... 

A23L 3)] aI,S = -[ (cosh :\. 13L3 -cos 
A13 

P3A3W2 
°3 A13 

\23 L ,)] a46 :;;: -[ (sinh \ 1 3L 3 - (-)(-) sin 
,\ 1 3 R 3 A,1 

a '31 = 0 

aS2 :;;: 0 

\ ~ -, , . 
as 3 ~ sinh \ 12 L .) + (-) 

A L: 
sin \2.'L~ 

'4 

(I" 

C\: II :::0 cosh \ 1 ~ L;> (..;-) cos \:'2L2 
b2 

\ 7 l 

as ') .- - [slnh \ I II., \ + ~\) ,sin \:'3L3J 
1 ) 

[cosh 
<13 

USc, \ 1 3L 3 - (-) cos \ 2JL,J 
1'1 

:;;: o 

:::: o 
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°2 62 
a63 = (cosh A12L2 (-) 

A12 °2 

°2 A12 
a61f = {sinh ;\12L 2 - (-) sin ).2~2) A12 A22 

/ 

°3 
(cosh A 13L~ -

83 
ass = (-) cos A23L 3) 

).13 Q3 

<X3 A13 
aS6 = 

A13 
(sinh Al 3L3 - (-) sin ),23L 3) 

A23 

where Al i' >. 2i' ai' and s· ~ (i = 1,2,3) are defined in sec. (3.5). 

C.4 MOdel ~rv )-a 

Again, as in the case of M:xlel (III) -a, the frequency determin-

ant is of the seoond order and its elements are: 

::: 

::: 

= 

°1 
R1 (,--)(cosh Al1Ll - cos A21 L l) + R2 (sinh AIILl + 

1\ 1 1 

A21 °1 A21 
(Ill) (61) sin A21 L l)-EI}01 (sinh Al lLl+ (>:il) sin A2.l L l) 

t 

85. 
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a1 A 11 S 1 

~2 == R"l (cosh ,\ 11 L l-COS ,\ 21Ld +R!. (-r-) (sinh '\11 L'1-(-) (-) 
I' 11 A21 a 1 

An 
" sin A2 1L l) Rs (sinh Al1 L l+ (-) sin A21 L l) 

A 1 1 

L3 + L3 12 
wher~ Rl = P02W2 [ ( 2 3} + 

AJ, 
(L 2 + "L3) ] , 

3 

~ 
L2 L~ -

R2 == i'J2A;::w 2 ( '2 1) 
2 

R3 == 02;\;""/ (L2 + L3) 

~ 

L2 L2 

R .• >:'iAI G + 
') 

( 
'2 3) == P Y'2'-'.lL 2 

~ 

Rs == ~lA1G '11 

C.5 fbdel (V) -b. 

The clerrcnts of the frC{~ncy determinant ,u-e: 

d 1 1 :::: Sin alLl - sinh .11 Ll 

<1} :- "" cos ",}L I - rosh aIL} 
, 

ai, ::; ~i'rt .1-, L-
oO ~.~ 

ill t. ::= sinh ~:'L2 

.::11 :, 0 

, , 

.) II) 
.., 0 

.' 
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where Rl through ~ have been defined in section (C.2) 

'''''-. 
I 
~ , 

'\ 

aS1 = 0 \ 

aS2 = 0 , 
as 3 = sin a2t 

aS1t = sinh a2LZ 

aSS = - (sin a3L 3 + sinh a3L3) 

aS6 .= - (cos a3L3 + cosh a3L3) 

I 

a6l = 0 

a62 = 0 . 

a63 = cbs a2L2 

a6lt ": rush a2 L 2 

u E.:> = cos a3L~ + cosh a 3L3 

ull6 = - (sin a 3L3 - sinh a 3L3) 

C.6 M:x1el (VI) -b 

Tho elcwents of the frequency determinant are: 

\2} ('(1 

all = sinh .\ IILl + (-.\ -) (71) sin A ~ 1 L1 
1 I 1 

a 12 = ~ '11LI 
-,COS \ 21L 1 

I 
\ 



al3 == 

a14 ::: 

a15 = 

au; == 

an ::: 

a22' ::: 

a23 :: 

a2~ :::: 

a 25 
:::: 

d25 :::: 

a 31 = 

• 

<r 

" 

sifih A12L,2 

- sin A22L2 " 

0 
... 

0 

°1 
-A -(cosh 

1 I" 
A IlLl cos "21Ll) 

c11 All B1 
-(sinh \ IILl (-)(-) sin ),,21 L l) 
All \21 eq 

~I ex 2 

. cosh ~12L2 
AI? 

62 
A22L2 - ),,22 

. cos 

0 '\ 
a 

" 

\21 
EIjcq (.sinh >. IILI + (-) sin ,,\~ ILl) 

A 11 

" ~,/I:,(L1~('t2 " r~l\2w'· 

( 

(\ 

---- sinh \ 1 ;>L2 .-/. . -, (sinh Ar2L2 - Al'2 L ::) 
,\ "I :: ~>. 1 ;' 

sin 

" 
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-( 
j')JI3w203 8 3 ~ 1 3 

a35 = (sinh A}3L 3 {-) sin ).23L 3) 2 03 .\23 
A13 . 

P sA3 W2 
(~) 

2 (sinh A i3L3 - sin A23L 3) ] 
>. r 3 

.\23 

= 

,,\ 2 
a1 . 0 \ 

2 
), 21 L ;~~-il) (1 + 2l.) ] a41 = v1A1G [cosh All L 1 (\ 1 1 - -),,-) + COS 

1 1 S 1 

\ ') c'l qr 
, 

~2 == Kll\1 G [sinh "I ILl nIl - -) + sin \21 L l (\21 + -)] All \;' 1 

pzA;;>w 2 

a43 ::: -[ (cosh .\ l2L2 - I)] 
\ 12 

0')lbW 2 A 12 
<'l L, 4 ::: 

[ '- . 
(-) (cos ),22 L2 - l)J 

A12 An 
r 

, ') 

"-[ 
,l3A ,uJ" 

elL,S == 
, (cosh Al 3L 3 cos \23L 3) ] 
A 1 3 

• • 

-[ 
Pll\3 w2 ('(3 :I. 1 3 :fin \;>3 L]») <l I, (; == (sinh \1~'b3 - - (-) 

\13 63 ·'23 

I 

, 
~ .. 
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. aS1 = 0 

aS2 = 0 

sinh ~12L2 
.~. 

aS3 = 

".-' 

aS4 = sin ).22,L2 

[ sinh 
"23, "\ 

ass = ~13L3 + (-) sin A23L 3 ) 
A13 

- [ cosh 
0.3 

A23L3 J as; = A 13L,1 - (-) cos 
83 

a61 = 0 

a62 = 0 

((2 

a&3 Jf - cosh 
)'12 >-12L ::: 

" 
S;, 

aGI\ = - -cos A22L:, 
A22. 

0.3 . H3 
a6S = Ii) (cosh A 13L3 - (-) 

l\~ 
cos :\23L 3) 

(\3 
(sinh 

:\ 11 . 
sin \ 21L 3) aG6 .-

AI3 
:\ 13L 3 - (-) 

'\23 .. 

(3,5) , 

/ 

) 
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~ l'ENDIX'D 

en U'IER PR:GW1 

The corrputer program listed in "this appendix was written to 

solve the tianscendental frequency equations for the nodels of, the hier

arc~y used in, this study using an D'1S. Library routine, SUBrourINE 
'-

ZREAL 1, which calculates n real zeros of a real function E' where the 
• 

ini tial guesses are not kna.vn to be goOd. The listed program is for 

the case of M:x:1el (VI)-a, the rrogt sophisticated nodel, and the only 
, '> • • 

difference between this 'case ~d any other IJOdel in ili~ prog.r:~ng is 
, . '. . 

in the 'function F, whic.!1 is the frequency Ci,eterminant: ' 

. List of Symt:ols Used in the Program: 

X 

\v 

N 

U 

XLI 

AI 

001 

002 

XU 

XI2 

E 

G 

XI< 

... 
Frequency,in rad/sec~ 

Frequency in H~, .' ~ 
Size of the fr~ determinant. 

Poisson IS r<?-cio. ." 

Lengi:!l of 'i-th ~grrentr (1:= 1,2,3). 

Cross-sectional area of i-th segnent, (I = 1,2,3). 

M:l.ss density of the skirt. • 
M:lss density ot the vessel and its contents. 

rbrrent of. inertia of the cross-section of the skirt. 

MJmcnt of inertia of the cross-section of the vessel. 

~tx1ulus of elasticity .. 

Shear m:x1ulus. 

Timoshenko snear coefficient. 

,/ 

.; 

" 

-
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C·~···~··~~·&··~4.~.~4.4.~_._A4+.4 .. ~ •. ¥44 .•. 4+~ •• ~.~ •.••• ~. 
C PROG~AH FOt; Oe.Tt.I'HI~G TW£ FiEf)E"'C!~S OF HODEL ( VI )-A .... 

, C ..... ··1f+··· .. · .... • ........ JI.· ..... ··...,. ..... - ......................................................................... ... 

ATTaCHII~SLIB. ~ . 
FTt-.CP=j OPT=O) 
LOSET,LI3::IHSLIe. 
L GO! 
1. ~400 ENe OF RfCORD . 

PROGRAM TST (lNFU1,JUTPLT,TAF~~=IhPUT,TAPE6=O~TPUT) 
OI"1EtlSICN X(3) , W(3} . . 
EXT £ F. ~j A L F . 

'READ {5,·} (XCI) 1=1,3' 
HPITE Cbl.l1> (X(I), 1=1,3> 

11 FCq}(AT (jF10.4) . 
00 1 J::2,151 
Xi =FLO.AT (J-U"Z.G.O 
Y = F(X!). 
H?ITE (6,12) Xl ,Y 

1 corH INUE 
CALL ZP::Al1(F,1·.E-03,1.E-1l6, 1.E-02,2,3,X,~DO,!£~} 
HRITE (6 l2) x ,. 

- 12 FC~HAT (SX.6E13.6/) 

/ 

P I = 4. 0'" .A T A ~l ( 1 • 0 ) 
CC :: 2. 0"" PI 
DC 2 I = ,1.3 
W(!)· = X(I)/CC 

2 CO'/i I~jUE 
'rl ~ I T f:. C6, 1 3 ) 'rl' 

13 FCRHAT <1Hl,3Fl:.t./) I • 

\ 

STOP . . 
E NI) , 

F lJ ' I-C T J 0 Ii F ( X ) 
'CI~~t,SICI~ ACf:,E;) 
H = 6 
lJ·=O.3 , I 
E:: Z9.0+1 L !..0"10C:JJuO.O 
G,= E/(2.a"C1.C+U» 
RC1 = 1~.217.39f 
XK =: 2.0"C1.0+U)/C-+ • .Q+~.c~U) 
X 1'1 = 1. 219 /., S' 2 
EIl :: E"'XIl 
Xli - 6.0 
XL2::: 7.0 
Xl"3 = 8. 0 " 
Al = 0.:;:-CfE95' 
XIZ = 1.<3E62G2 
tJ.? :: 1.0252(16 
RC2 = 4E,.lE9P29 
81 ::; (~Ol/F)'" (1. 0+::1 (XI<"G» 
82 = (~02/[)" (·l.!;+!:/ (XK'"'G» 
r:3 :: B2 
Sl. = (QOI/E) .. C/lj/YI1-RC1 .. X· .... 2/.(XK"Gl) 
S2 ::; (~02/E:)'" (A'Z/XI2-i;O;:·X ..... 2/ (XK-G»' 
S3 = S2 

, < 

o 1 1 ::; C .( ~ 1 ... .. 2· X ~ ,. 4 I ~. 0 +Sl"'X"'-t 2' ...... o.~- (81'" X"'''' 2/2.0»· ... a.s 
021= .( (91~,·2. XJl.1I.4/4. 0 
DC?= «8Z""Z .. X ..... 4/l..0 
022=: {(P,2·"'2·X"'4/4.D 
01'3 = D21/ n l1 
020 = D221012 

'j 

, . 

+ S 1 ... X ..... 2 ) ....... G .::; +- ( [3 1" X ..... 2 I 2 • 0 ~ ) ...... iJ. S 
+~z~x ..... 2) ....... 0.:-- U3?"'X"'''2/2. 0) ..... tI. 5 
+ S 2 ~ X" .. Z ) ... -+- c.:.' + (B 2 ... · X .... Z I 2 • D) ) .... o. 5 

I 
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- ...... .. -- ...... -_. .... ... - _.... _ .. -. - -... -- - - ... - - - ... _...... ....-

\ 

: 

'. 

r 



AC5,3) =. '::II1HCYU-+D20"Sn.cv2) 
ACS,4) = COSHCY1)-C2S'"'CC:CY2) 
A ( 5 , 5 ) :: - (SJ 'J H ( II ) .... 0 .3 e .. S I u ( Z 2 ) ) 
A ( 5 , 6) ::;: - {CO 5: H ( Z 1 ) - C 3 !:! .. COS ( Z 2 ) , 
AC'=>,1> ::;: 0.0 ~ 

·AC6,2>·:: 0.0 
A ( 6 , .3 ) = (C 121 (11 2) ... (C C 5 f"' C Y 1 ) - (1. 0 1 C~ :3 ) .. C IJ S ( y 2) ) 

_ A (S , I.f) == (C 1 21 0 1 2)'" (S:: r: H ( Y 1 ) - ( 1. 0 102 l) .. S J " ( Y 2 ) ) 
A C 6 , :;) = ( C 1 3 1 0 1 3 ) • ( C C s:- H C 7 1 ) - ( 1 ~ 0 / C.~ 8 ) ... COS ( Z 2) ) 
A C S, 6) = (C 131 0 1:5) "'! ( SrI, H ( Z 1) - C1 • D / 0 ~ 8) .. S ! ~: ( Z 2» 
K= 2 
L=l 

5 DC 10 I=K,N. . 
R = ~cr,u I ACl,U ~ 
0010J=KN '"-,) 

10 ACI,J) :;: c.d,J) - A(l,J) .... 0 

IF (K-N) 1~,20,20 
15 L= K 

K==K+l 
GO TO' 5 

20 OT =1. 
00 25 l:: 1 ~~ 

2~'OT = CT ~ ACL,L) 
F = OT ... 
p~Tu;m 
EW) 

t 6400 U:O'OF PECC~D 
EI-li) LISTI/'.G 
t IS Li 0 C £ II C 0 F P FCC ~ ) 
t. fJ':'" 0 0 E t: f) (. F ~ ,-" n D 1 
t 6400 Uti:; (iF F.LCO~) 

a ___ , ___ ... _._ "",._._._ ... _ • .I'~ _0 __ ....... _ .. _ ..... _ ....... _ .'. 

, 
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