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The free vibrations of skirt‘supported pressure vessels ’
are .studied in this thesis; both cantilevered and fixed-pinned
systems are cong’}dered. A hlerarchy of models,. ranging from a
rigid mass (vessel) supported by a massless Euler-Bernoulli beam
(skir:t) .to a model ';n which both components are represented by
Timoshenko beams, is subjected to analysis. Several tyvical
numerical examples are c.ons'ide:red for both sets_, of boundary
“ conciit.iong. The results of these tg:alculations indicate that

whereas the cantilevered system may be modeled with fair accuracy,
compared to the most .;;qphisticefted model ‘oo?fé,idered, by a rigid
mass _supported by a massless beam .capable of, undergoing shear

deformation, it is necessary, to model all camponents of the

|

fixed-pinned system by Timoshenko beams, i.e. the mosf sophis-

ticated model considered. The first two mode shapes for all

models of a typical case of each configuration are sw. Finally,.

~

some comments on the modeling and analysis of specific realistic -
R }
systems are made.
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CIAPTFR 1

o INTPODUCTION =

1.1 General.

In recent years consicderable effort has been devoted to
developing sophisticated methods of analysis to aid .in the deéign of -
structures which will ocerate under conditions requiring a high level.
of confidence in their structural intearity. These methods include
mathematical modeling, ones based on raterials science, téhose hased
on'rationally evolved desicn critmria, atc. Pressure 'mssel svstems

are among’ such structures. Scmd such systems consist of a commaratively

-

‘heavy pressure vessel, rossibly containing heat exchance elaments or

other innards as well as a working flu;ié, which is sumrorted by an
abmost cylindrical support skirt, Fiag. (1.1). The vessel is connected
by relatively soft externals sugh as piping. These systems occur in
the process and power generation industries, as well as aboard nuclear
powered ships and in other industrial settings dealing with the acene-

ration, conversion or storaqe of eneray.
[ )

1.2 Purpose of Research.

It is the purpose of this report to study the free vibrations
of such skirt-vessel cormbinations, in arder to determine their dvnamic
characteristics and to develon, if possible, sirple forrulae, based on

detaaled analysis of skirt-vessel systems, which may be aoplied to esti-—

’

[
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mate the natuxal frequencies of such systems.

. On occasmn, -one may wish to provide additional sxpport or
oconstraint tw the syst.em in order to raise its natural frequencms of \
vibration when the frequencies of expected e?(ternal excitat_ions are
close to the predictéd natural frequencies of the cantilevered system
- shown in Fig.(l.l.a). One simple way to raise the frequencies is to
pin the top of .the vesse.l‘to a support attached to a ¢eiling or deck

above the pressure vessel. This arrangement is shown in Fig. (1.1.h).

The present work concerns itself with the study of a nusni?e.r
of cases of eaghof the configurations shown in Fig. (1.1) using a
hierarchy 6 six models of incréasing compl‘exity.‘ 'n?e :most sirple
rmodel considers the skirt as a massless spring ha;zinqw the characteris-
tics of an Euler-Bernoulli beam and the pr_es.sura‘a vessel, including its
contents, as a rigid body [1]* u;hile the most sophisticated rodel con-

siders the system as an assemblage of Timoshenko beams:.

'Y

In the following chapter the hierarchy of model systems is
descnbed while in subsequent chapters the analyses of the models are
per formed and frequency and modal shape results for tymcal cases are

presented. Finally comments and conclusions based on these results

v
3

are given.

s o

Numbers in square brackets indicate references llsted at the
end of .this work. In [1] the model is analyzed wlthout reference
7 to any particular application.



A
i
-

PRESSURE
VESSEL—

CONNECTING ! :
/f"TmNG'_“\\\
m

SUPPORT

SKIRT _\

\_‘ﬁ

T
L
- (a) I(b)_

FIGWRE 1,1: SKIRT SUPPORTED PRESSURE VESSELS,

.
-

I e "W, W " VR, i O W

L(

7
/
Y




THE HIERARCHY OF MODELS.

2.1 Basic Assunptions.

In performing the dynamic study of the skirt-pressure vessel
system, six mathématical models, as mentioned before, are considered.
It was taken into account that the hierarchy of nodéls used in this
study s be able to show the effect of each f)aramete; on the dynamic
characteristics of the égtessuré vessel-skirt étructure. The same hi;ar—
archy o 1s is used to analyze both of the configurations shown in
Fig. (1.1). Although ultimately it will be seen that different degrees
of sophistication are necesséry to provide comparable estimates of the
natural frequencies of the confi tion shown ip Fiq.l (1.1.a) and the
oonfigt{ration shown in Fig. (1.1?3)2.‘ In all cases the interaction of the
éontents of the vessel with the rest of the s!ys‘(ce:m is neglected other
than to iinclude their mass with the mass ,of the vessel. This assumption
is probably reasonable for a full, pxlessurized vessel; its worth, more
generally, is not clear but to make any other assﬁrpti(m would make the
problem intraatable or almost so. In any event, the lessons to be
learned from tge present study may be applied to more sophisticated
analyses which include the dynamics of the vessel's contents. The axial
load in the skirt as well as that in the pressure vessel aiso are néqlec—-
ted in this study because they are at rost a percent or two of the shell

buckling loads, oons\:arvatively estimated [Zj, for these elerments and an



imperceptible portion of the colum buckl}ng\loads. It is reasonable,
for typical systems of the sort considered here, to assume that shell
vibration frequencies and modes need not be studied since the excita-
tions to be expected will usually have frequencies below 102 Hz and the
. lowest shell fréquencies will likely be several times this value; this
will be made clear by perusal of [3]. Further, to simplify the analy-
sis, it is ‘assmned that the support skirt, which is -frequently slig}}tly
tapered, may be represented adequately by a hollow cylindrical beam and
that the ring usually oonnecting the skJ.rt and v?lssel is replaced by a.
massless rigid connecter. A fi_n\al si:rplific.;tio%x made is to neglect

the typically small stiffening of the skirt-vessel combination by ex-

ternals such as piping. These assumptions are common to all models of

the hierarchy. Further assumptions may be made for each model individually.

1%
4

2.2 Description of the Hierarchy of Models.' ) ' .

The hierarchy of mpdels which is used in carrying out this
study may be charac.terized in acoordance with the aséumptions used ih the
analysis of the skirt-vessel combination. Six different models are used

in this study, Fig. (2.1), and may be described as follows:

Model (I): We assume in this model that the skirt may be re-
presented by a massless Fuler-Bernoulli beam and that the pressure vessel
and its contents behave as a rigid body. The rationale for this model
is that the pressure Veséel is stiffer than the skirt, sometimes by an
orde;: of magnitude, and that the mass of the skirt is rarely as much as

ten percent of the total mass of the system and usually less than that.
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Model (II): In this model it is assumed’ that the support
" skirt deforms in shear as well as flexure. Otherwise this model is the
same as Model (I) This additional degree-~of-freedom in the behavior
of the skirt'is of great importance since the §Ltpport skirt is usualJ_,y

a rather short beam. b

-

. Model (IIT): Here, the mass of the skirt is considered in
the analysis,‘ as well as its stiffness, and so the skirt will be analyzed
as an E_!ulér-—Bemoulli beam with mass. Otherwise it is the same as Model
(1). This change in modeling does more, however, than merely take into
‘account the small additional mass of the skirt; it Mges the model
from one with a finite number of degrees-of-freedom to a continuous
system with an infinite spectrur.n of natural frequencies.} It should be
noted that in case "a" Model (I) has two dedrees—of-freedom while in

case "b" it has only one,dégree-of—freedom.

Model (IV): Here the skirt is modeled as- a Timoshenko beam”
rather than as an Euler-Bernoulli beam with mass, i.e. shear deformations
and rotatory inertia are accounted for as well as’ flexu;*al deflect_:ic‘:ns l
" and transverse translational inertia. This ‘model \;f\ay be mﬁsidered as

an extension of cither Model (II)- or Model (ITI).

~

Model (V): Now both the skirt and the pressure vessel are
modeled as Euler-Bernoulli beams. This is one of the simplest models
which allows one to assess the influence of the flexibility of the

vessel on the natural frequencies of the system.

*

The reader unfamiliar with the theory of the Timoshernko beam
will find a lucid and detailed account in {4].



Model (VI): This ultimate model in the hierarchy used to
stmﬁy s.kirt-pressure vessel systems is the one in which both elements are
taken to be Timoshenko beams and it is, finally, the yardstick against.
which all>of the other models are to be measured. If a simpler model
provié?gs frequency estimates comparable to those provided by Model (VI)
then the simpler model will be considered ‘ade'quate to describe the sys-

tem. .

It is clear that various other simplified models to describe "’*j'
the skirt-vessel system could be postulated, e.g., the skirt might-be
represented by a massless shear beam and the vessel by a Timashe’nko
beam. However, it is believed that no further didactic purpose v;ould
be served by so extending the present work. = éuch models, especially
'sﬁitable for particular situations, will ke devised and analyzed without

difficulty by the interested reader after a perusal of this work.

L 4

e

~
iy



CHAPTER 3 £%

DERTVATION OF FREQUENCY FQUATIONS.

3.1 The Notations and Sign Cohventions:

-

Before presenting the analysis of the various models for both
configurations of the skirt-vessel system, nmost of the notations and
the sign conventions to be used in this study will be given; we note.
that not all variables and parameters appear in the analysis of each
model. The notations and conventions conform to those used in [4]. It
| seems simplest to present this material graphically and this is done
in Figures (3.1) - (3.2); also see Appendix-A. Figure (3.1.a) shows
the nonstandard sign convention of [4] for ber;ding moments, which makes
eminent sense in the stx._ldy of Timoshenko beams, as well as the usual,
modern convention for transverse shear forces and distributed loads.

In. Fig. (3;.1.b) the transverse displacement of the neutral surface and -

the rotation of a cross section of t“ihe beam are shown. Finally, Fig.

(3.2) shows the coordinate systems to be used as well as the diagrammatic
representation of the skirt and pressure vessel as uniform beams. It

has proven easier to work \gith the vessel oconsidered to consist of two
parts, which join at the vessel's juxjxction with the support skirt, rathexr
than as one body; this app:roach also provides the fommlatior-\ for a three
oonq;onent system which is a nat;Jral generaliz.ation of the system studied
‘here.. This generalization is of some practical importance because the
innards of a vessel m'ay fnc_ieed be nonuniformly distributed ever its length -

and it is even possible to imagine that the vessel itself differs above
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and below its junction with the skirt. The choice of coordinate systems
<, '. : ) -~ A * . R
is made for a practical reason, namely that this choice effectively re-

duces the most oomplicated frequency determinants oonsidéred in this
si:udy to ones of sixth order,whereas having all the X5 cositive upward

. leads, if xp were measured from the skirt ve.ssel junction, l(eads to de-
terminants of eighth order; i.e., for the coordinate systemd chos’en, six
“of the twelv;a arbitrary constants of inteération are easily eliminated

when Models V ana VI are studied. '

-

~ _ In the following sectiors the labeling scheme will be that the
Latin numeral indicates the corresponding model in the hierarchy given in_
chapter 2'and the letter indicates the corresponding configuration in
"Fig. (1.1).
3.2 Analysis of Model (I)-a. L 1 .

v
Ais has been in.dicf:ited previously,‘ this cé’xse. has been studied
by Timoshenko [1] for ‘the small vibration \}f a plate BC, .attached to a
prismatical bar AB, Fig. (3.3.a), assuming tha:t the %~y plane is a
principal plane of the bar and the éc-znte'r of mass of thgplate, C, is
on the prplox"xqati.on of t:h'c‘axis of the bar. Proceeding with these
assumptions, a quadratic frequency equation was obtair;cci, the solution

of which is

¢

2 _ GBI .1
1,2 7 3 . S 2hi2)_ 2 32
’ 2432 241 2 2
TLE [y 4 3, et )]h,{l +I3e , 3eHi?)y T 3i
L L} ‘1 Ly Ly

(3.2.1)
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where: w is the natural frequency in rad/sec, EI 1s the flexural riqidit;y
of the bar (corresponding to the skirt), L; is the length of the bar, e
is the distance between the plate (corresponding to the vessel) center
of mass and end of the bar, i is the radius of gyration of the plate
wirth respect to the axis normal to t'hc; plate through C and m is the total

mass of the-plate.

\

This equation given by Timoshenko can be used to obtain the

natural frequencies of Model (I)-a, Fig. (é.3.b) , by letting

. . . 1

L.o- L, \
e - ———————————

.2 v

(L, + Ly)°

;T 12 : L (3.2.2)

m = total mass of the vossel and its contents
-BI = {lexural r1q1dity~of the skirt .’ J

3.3 -ledel (TI)-a. Massless Timoshenko Beam Supporting.a Rigid Mass

A

Nnsic now, case a massless Timoshonko am, e
Considor the ¢ of a ssl T honko Be Th

cquations given in [4] become, when no distributed load acts,

dw

41 N
o
(@R

BT v OAG (p 4 =) =0 (3.3.1)
dx? ax C 9
Lo ¥ L. ~ ENEIER-

dx+

-

-

where A 1s cross-soctional arca of the elastic beam, K° is the so—called

shear coefficient and ; 1s the angle between a cross-sectional plane and
t ) ) 1



the horizontal plane passing through the y-axis;

15

this inplies that planes

which are rormal to the beam axis in the undeformed state generally do

not remaiw normal to the beam axis in the deformed state.

The boundary conditions (b.c) for the case of Model (II)-a,

Fig. (2.1.b), are

at x =0 w = 0 {
and py = 0
— aw
X = Ly M o= RBI 3o
- 2 dw

(3.3.3)

(3.3.4)

(3.3.5)

(3.3.6)

where M and Q are the moment and shear force exerted by the rigid mass

on the end of the beam.

I-:i;uatton (3.3.2) provides 8
B N .
(r + (‘L‘( - (.OnSt. e D ......

Substituting from (a) into b.c. (3.3:06)

Q

po= KL
"‘\AI\\(‘; 1]

Using oq. (b), oquation (3.3.1) becomes

EIQ'J";-'—CY = 0

dx-

Integrataing twice and using b.c. (3.3.4) results

“as

(3.3.7)

in
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2 4

LI, = Q3+ C)x J (3.3.8)

pof %

and substitution of (3.2.8) and (3.2.3) into (3.2.2) results in
‘ — y3 «2 .
Elw = -Qz-C x+C,x (3.3.9)

From (a), (b), (3.2.8) ‘and (3.3.9), the constant C; can be obtained and
(3.3.9) becomes

3

R | 2 T A N
Ew = S3F -0 F + ELQ (3.3.10)
R x?AG

2

With the axd of (3.3.5) and (3.3.8) the constant C; can be found and

finally (3.3.8) and’ (3.3.9) become

v oo 7 .
Yaup OB LT *7*%} (3.3.11)
, [ & Em ML
o T B PGt o)t (3.3.12)
L K AG” R

The kinetic energy of the systom consists of eneray of rotation
of the mass about its center of mass C and of translatory encrqy of the

miss center.  Thus

m . . 0
T = = (w -y
( l'ﬂq))

m Den
+ o= 12

¢ (Ll)

(9]
G
—
(%]

)

-

Swstituting T un Lagranqge's caquations of motion [4], the

followin s expressions for 1 and Q are obtainad

- m(w(Ll) - o "‘(Ll)) (3.3.13)
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M= mmewy 2+ ih vy )l o G345

-4

by inverting (3.3.11) and (3.3.12), expressions for @ and M can be ob-

tained in terms of W(Ll) and w(L])
L
- ET 1 - .
= BL .. : 3.3.
R 5 \
g- B [, EL 5y (3.3.17)
B 3 2 3.
where Lf BIL
‘ B = W + 5 )
K AG

With the aid of ;equatiorxs (3.3.16) .and (3.3.17), Q0 and M can be elimina-

ted from equations .(3.3.14) and (3.3.15): Thus we have

3

e .o BT L;- :
" [w(‘Ll)- ® q‘(Ll).] ¥ 8 [-2— w(Lﬂ * W(Lx)] =07 (3.3.18) \\
0. » gr, B Ei k‘
- . Vi Loy \.,__ 1 EI _
e Yo" e Wapd *5a 2 Yo+
-L1 .
+TW(L1)] = 0 (3.3.19)‘

Assune w(le) and q,(Ll)- to be harmonic in time i.e:

we . = R sin wt ,
(L1) 1 } : S (3:3.20)

l}l(Ll) R2 sin wt

-

By substituting (3.3.20) into (3.3.18) and (3.3.19), we obtain:



18

EI Iy - ' :

[73- - mo? Ry # [+ moe] R, = 0 (3.3.21)

EIL, ' L% ET

[-2_3- + mwe]Ry + [-——- (__3.+ ) - mw? (e2+ 12)]R2 0 (3.3.22)
; K°AG

In order to obtain a nontrivial solution of .this system of
simultaneous, linear algebraic équat’ions, 'the determinant of the coeffi-

cient matfix of (3.3.21) and (3.3.22) must be set equal to zero, i.e.

S [EE‘:L + maZe]

ETL, L2 =0 (3.3.23)
. . . 1 .

— + moZe] [EI —~ + By - ma2(e? + 12)]

- 28 K AG

Expanding (3.3.23), the foll‘éwing frequency equation is obtained:’

’ ' 2
2 ; 1
o) , = = [ [eL; + (€2 + i) + (—+ )]
, , . 3
2fmi
. J L% - ' L% S
£/ lelyre? + i+ + NI - 425+ V) (3.3.20)
where - Yy = KQAG
. ¢
) : N ,
and, recall, g = | = + yLy).
. -



~

19

3.4 Model (III)-a and (V)-a. i) Euler-Bernoulli Supporting
a Rigid Mass, and 11) A System of Euler-Bernoull) Beams. '

3.4.A - Derivation of Bouations of Motion and Bou.mdary‘ nditions.
4 . . .

Consider the whole system to be elastic, use coordinate

axes shown in Fig.{3.4), and divide the system into three segments of

AY

lengths L;, L, and L3 in order to obtain the equations of motion and '

the boundary conditions by means of Hamilton's principle [5]. Note

»

that
. ‘ \ awl o
Vago,0 T imen TP TR T Y
N . Y © (3.4.1)
- AW, _ .
4w3(x3,t) - wl(Ll,t) ) (La - xa)ﬁl—(L t) 3(x3,t) "
where ;12 (52, 8) and Qz(x3,t)‘ are the elastic displa-cen‘ents of\éegrrents

2 and 3 respectively. In the lmutmg case of the rigid model of the
vessel, wz and W3 are set equal to zero. We have let x, = X, and
X3 = %3 since this approximation is consistent with the small .deflection,

‘linear theory being used in this study.

Now, making use of equations (3.4.1), the kinetic energy of
the systcm may be written as
Iy

. ;\1 .2 Lh E\’) . ' D\:’)-' - z
T = — (wy) dx; + 5 [w1 (Ll,t)+ (Lo~ \2)'_?_ C+ wa] dxg
0 * 0 1(LIJ ) .
.I‘L_3. 73 ) . av:,‘ 5.
+ } -2—-[wl w6 (L3=x3) Frva + w3] dxy  (3.4.2)
. 0 1 ¢ l(Ll;t) f
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where the r-ﬁi are masses per unit length for the i-th segment.
The total strain enerqgy is ‘

x EL, ., b2 EI, _u 2 E EI, _n 2
u = T (wl) dxl + T (wz) dxo + 5 (W3) dxs (3.4.3)
0 0 -

0
Also, in general, one should consxder the work, W, of external (general--.

. ized) forces.

Ll - awi - Li

W= (py wy) axg + [M, (=) + 0w ] (a)
0 1 0
“(i=1,2,3)

~ where P; is the distributed load and M, and Q.l are the. moments and
When we lreduce the system

shears acting upon the ends of each segment.
M, = 0, we note that

to our specific case, i.c. Pi = Qi = s
(b)

W = 0.

-

. ,

By applying Hamilton's principle for clastic solids,
ts '

[ S(T-u+W) dt = 0, (3.4.4)

wa may obtain the appropriate formulation of our problem.

Substituting eqs. (3.4.2) and (3.4.3) into (3.4.4) yiclds

+

t;[ Ly AV e »
{—- (EIy wy +mw 8wy Aty =

£ L 0



L, ]

_iv
f [B1, wp, + m2w2 + mz(w
0

L3 ,
_iv
J [E13 wy + m3W3+ ms GM
0.

L,
[‘J m2 Wy, b
0

+

36w,

EI, w
1 I(Llrt)]

¥ (L, t)

_n 8&7’2

2
2 w2(0 t) Ix_.

2(0 t)

2{0, t)

.l.

EIZ W Z(O,t)

&

'*".. (Lz"X2)
=~ (L3-x3)

(Lz‘Xz)

(L3-x3) ——

+ EI, w

+ BI, w

-EIw

3w 1
+ (L2 Xz)ax

1L, E) -1 (Ll,t)

W)

- (L3~X3)e=— o™

L(L, ) I(Ll!t)

3;?1‘

+ ‘f’z)ldxz
XLy, t)

Wy

X + W3)dX3 -EX IW
1(Llit-)

WL,

3;‘}1 =

= + wy) {Lz~xp)dxp
awl - -
. +w3) (L3z—x3)dx;

1{L1,t)

"

1{0,t) Sy

1(0,t)

J 6;;?

—EIw

2(Ly,t) :>x2 Lo, 0)

_mnt

2(Ly,t) s w

A

2(L,t)

—

36\:/3

'3(L3,t) ax3(L £

22

) Jowpdx,
;

) Jow dxs

2110w,



+ EIzw

7] - "

.
3(0,£)™3(0,¢) T EL3 ¥

Pl

8

3 (L3,t) N3 (L3]t)

dt

23

= 0

... (3.4.5)

'E‘or\ any arbitrary time interval (ti-t3), the 'mtegrands of the

dowble and single integrals (including the integration with respect to

tire) must vanish indepehdently. Therefore the equations of motion are:

. S as “
EI Wl +mywp = 0 ] .
-iv - = - awlv; .
EI, w, +m, W, = ~ msz{(Lllt)-f-(Lz—xz)-é-}-{—l-(L o 1 L (.4.8)
: y
L3 W3t m3 wy = Smgiw, o TRy o
(Llrt) ) xl(Ll,t) b
The bqundary conditions for the system are:
at x);= 0 W = 0 .
1(0, t)
. (a)
Yi0,8) = O
at x =0 " Elg Wy 4y =0 (3.4.7)
_m (b) .4.
EI, W, (0, £) =0
at x3 = 0. ; El, »‘33((“:) =0
_m (c)
EIz w (0,t) =0

and at the junction of the three segments, i.e., x) =Ly, X = Lz'and

e X3 = L3



m Lz_ . 3W1 -
= : + (Lp=Xg) e + Woldax
EIL wl(Llft) m2[w1(L1't) (Ly X2)3x1(1_,1 £) wpJdx;
0 R !
JL3_ . 3‘:71 =
+ i - (L3~x3) ‘+ wiyldx
0 ’
and . . (3.4.8)
’ " LZ_ . 3\'!;1 1
LW w0, T mz[wl(Ll,t)HLz-xz)’ﬁ?c—l'(Ll t)‘“. wa ] (Lo=x5) a5
+ m3[w ~(L3=%X3) e + W3] (L3~X3)dx3
6 I(LAl,t) axl(Ll’t) ’
"
as well as W, = Wy = Wy = 6'1; = 0 L (3.4.9)

3.4.B Frequency Equation for the System when the Three Parts are
Elastic, Model (V)-a.

" In this section the entire system is considered to be elastic.
Revert to total displacements, in order to put equations (3.4.6) in the .

simpler form

ET. vl +m w., = 0, i=1,2,3, (3.4.10)
1l h 3 1 ’

Rirthemore, boundary oconditions (3.4.7) become

Yie,8) © 0

“io,8) = °

Y20,8) = © (3.4.11)
w:’:'(O,t) = 0

" Y308 O ’

wl" - O

24



and b-c-5  (3.4.8) and (3.4.9) reduce to

‘ L2 Ly
" I - e )
EI; wl(Ll,t) = J <My Wy AXp o+ j m3 w3 dxi

0
. (3.4.12)
Ly (L3
Eh Wy, v~ - I mawy (Lp=x2) dxo+ [ mgws (L3=X3) dX3,
: 0 ”
ad  VimL,e T M@, T Y3t X
(3.4.13)

. SEIEE =W
wl(Llrt) (L2rt) (L3lt)

Using the method of separation of variables, the solution of
equations (3.4.10) may be obtained [1] . Since we seek periodic solu-

tions in time it is assured that

Y ow,o= W (0 - sin et B (3.4.14)

25

Substituting equation (3.4.14) into equation (3.4.10) yields the following

ordinary differential ecuation

wY o+ oal W, o= 0 (3.4.15)
1l 1l p ) . *

the solution of which is.
W.(x) = B, sina.x, +C. cos a.x. + D, sinh a.x. + F, cosh a,x,
i i ity i it i it i 14

ceee (3.4.16)

1Y . ‘
where ai = ., 1=1,2,3.



t
™ If we now substitute equation (3.4.14) into (3.4.11) through (3.4.13),

the following boundary conditions on the mode shapes are obtained:

] , -

26

"oy T Yip 5O
wﬂ ‘qﬂl‘ O »
2(00 2000 , , | (3.4.17)
wl! _ Wul , _
3(0) '3(0) 9
L, L
1w - - ¢
EI, WI(LI) = - J m2w2W2dX2 - [ m3w2W3d><3( ’ (3.4.18)
0 0
L; . : Lj
. ) A 0
and
o = W - W
¢ (L) 2(L,) 3(L3)
iy , " ' (3.4.20)
1Ly T 2w T M,

equations (3.4.15) subject to b.c.s (3.4.16) lcads to

Wy = B (sin a;x,~ sinh a;x;) + C,(cos ax,- cosh a;x,) (a)

Wy = Bz(s:in aXyt sinh a;x;) + Cp(cos asx,t+ cosh arxs) (bY

Wy = B3(six; asxst sinh ajx3) + C3(cos asxsy+ cosr{ a3xX3) (c)
(3.4.21)



-

Substituting (3.4.21) into the boundary conditions (3.4.18) through

(3.4.20) yields
Q B)(sin aiL+ sinh a;L;) + Cl(oo’s a L, + cosh a,L;)
- BQ'RI(Sle azL, - sinh asz) - C2+Ry(cos ajLs - cosh asz)

+ BSR‘Z‘(S,in a3L3 ~ sinh a3L3) + C3R2 (cos a3L3 - oosh a3L3) = 0

(3.4.22)

a, 2 I, ajs 2 14
where R) = (-é—l-) -i—l-“ and Rp = (-é—l) I—l— ’

p \
B](cés ajl) + cosh ajLj) - Cy(sin ajL; - sinh a;jL;)
+ ByR3(cos azLp = cosh azLy) - CyR3(sin ajL, + sinh asLy)
+ B3Ry (cos a3zLj ~ cosh asLy) - C3Ry(sin ajL3 + sinh a3Liz) =" 0
©(3.4.23)
. b
- az 2 Iy ajz 3 I3 .
where Ry = (ET) T:- and Ru = (g:) f]. '

5
B)(sin a Ly - sinh a,L;) + C,{cos a;L, - cosh a,L,)

- By (sin ayL; + sinh aply) - Cj{cos ajL; + cosh aL,) = 0,
(3.4.24)

B)(cos a L - cosh a\L,;) - Cy(sin a;L, + sinh a;L,)

¢

+ B2Rs(cos azL; + cosh azLy) = CaRs(sin ajsLy - sinh ajzLs) = 0,

e (3-4,25)

"Bo (sin asL, + _Sil';h asz) + sz (cos asL, + cosw asz)

27
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. .
a &

~ B3(sin ajL3 + sink ajLj3) - Cy(cos ajLli + cosh ajLj3) = 0,

-

cee O (3.4.26)

and
B, (cos ajL,; + cosh a,L,) - C,(sin a,L, - sinh a,L,)
+ B3R5(Oos 213143 + cosh a3L3) - C3R6(Sin a3L3 - sinh 63L3) = 0

(3.4.27)

as ajz
where Rg = — and Ry = —.

aji aj
Equations (3.4.22) through (3.4.27) form a system of six homo-

geneous linear algebraic eauations in six unknowns, B,, C, ,...,Cs.

Again, fgr the system to have a nontrivial solution, the deter-
minant of the coefficient matrix must vanish. This provides the desired
frequency equation from which the frequencies and, ultimately, with the

use of the simultancous equations, the modes may be obtained. Therefore,

we set

dl] (’ll:‘ ————— 1

]

t

sl t *
a2 anzp ' = 0 (3.4.28)
| ]
) 1
= A6 ,
; 4
e

Now for apy numerical example, the natural froquencies may be obtained

as the roots of the transcendental cquation (3.4.28)

»

For the detailed frequency determinant see Anvendix C.1.
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&4.C Frequency Equation for the System when Considering the Vessel
to be Rigid (Model (III)-a),

In this limiting case, with the stiffness of the pressure vessel
approaching infinity, i.e. considered to be rigid, the elastic deform-
ations, w, and W, must be set equal to zero in the preceding case.

This yields the equation of motion
EI, w]' +mpw; = 0 : (3.4.29)

and the boundary conditions

at xy = 0
1]
Y10, 6 = wl(O,t) =0 , (3.4.30)
at Xy = Ll
y e )
EI w = m, (W Liy=Xn) o dx,
(L), t) J ! YLy, t) ( )Dxl(Ll,t)]
[Lﬁ [v g
I(Lllt) . 3)( [y - :
0 . (LY, t)
" LE " 3‘:\1'1
= - - + A =Noa =X»]1AXA
LI YLy t) m. [wl(L1,t) (L: \)3‘\’1(1,1 t)](Lz X)) dX
ILE y Wy
' Mgy, @ol L Jlmeds

(3.4.32)

29
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The solution of (3.4.28) is given, using separation of variables,
by (3.4.14) .and (3.4.15) "and proceeding by an entirely analogous analysis,

the following may be obtained, (note m; = mj)

BIE(COS a1L1+ cosh alLl)—Rl(sin B.ILI"' sinh alLl)-Rz {cos alLl-cosh alL.l)]
[ (sin a,Lj-sinh a,L)+R; (cos aiL,~cosh ajL;)~R, (sin a L +sinh a)Ly) ]

= 0 ' {3.4.33)
and -

B,[(sin a L +sinh a;L;)+R,(sin a L;-sinh a,L))+R4(cos a;Lj-cosh a;L) ]}

+C1[ (cos aL,+cosh alLl)sRZ (cos aLy~cosh ajLy)-R3(sin ajLj+sinh a ;)]

= 0 (3.4.34)
where m L,2* L,
R Al ) )
2 My Lg"Lg
Ry, = %YlayL)) («F) (—2 ,

o ™ L”
1
1 ; m, LS+L-§

Ry = @Iyl (&) ( 3) . -

mo L

For the system to have montrivial solutions, the determinant of
the coefficient matrix of equations(3.4.33) and (3.4.34) nust be equal

to zero.” Thus the frequency equation is of the simpler form

*
- = 0 (3.4.35)

*

See Appendix C.2
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3.5. Mathematical Analys:.s for the System’ Using ’Ih.nnshenko Beam 'I‘heory
Mdels (IV and VI)-a.

3.5.A Derivation of Equations of Motion and Boundary Conditions.
The dynamic Euler-Bernoulli beam theory is the ms’t':‘oarmonly
used beam theory for technical applications and it p;:dceeds upon’ two
. . £ . . .
assumptions, one kinematic and the other kinetic in nature. The first
is that planes which are normal to the. beam axis in the wndeformed state

remain plane and normal to the beam axis in the deformed~state. This:

~assumption is .equi'valeng: to assuming the beam to be rigid with respect

to ;c,hear defbrmations, i.e. that all deformations of the beam are dx‘le
to longltudmal fibre extens.lon and compressmn alone. 'I‘he second
assumption is that the effect of rotatory inertia is assumed to be
negligible ocompared. to transverse translational inertia and, therefor‘e,

the term (p I$) is neglected. ° Q ’

In some cases, specially for ;hort beams, the effect of shear
: U

" deformations and étatm;y inertia should be taken into account. In

* such cases, the nced for the use of what is usually referred to as the

Timoshenko beam theory arises. This theory takes into account both

transverse ‘translationaﬂl and got;atory inertia, and deformations due to

X

both the. flexure and shear deformations of the beam.

Now, considering the system shown in Fig. (3.5), it is clear that

N 3

Y2t L0 T g, PR Wy
2008 T 7 V1m0 T V20,0

S (3.5.1)
") C V1,0 Y e, e T XY ’fws(xs,t)

31
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Y3xg, ) V1L t) — V30, 8) o
where w;, w3, U, and ¥3 are elastic deformations.
’ The kinetic energy for the system is [4]
W =
T o= L lo (I, 92 +A, w?) dx,, i=1,2,3 ' (3.5.2)
‘ 2 i'7L i i7i i’ ey ’
0
and ‘ '
L[ e A : '
U = ‘i‘ [M"é—)“{z")- Q(wl + 5;;)] Xm, 1= 1,2,3, (3.5.3)
o

(}where wiiw,  and ¥, I 9.

The constitutive equations (generalized stress-strain law) for

the Timoshenko beam theory-are:

M = EI -?i
aX . ’ 0
‘ (3.5.4)
= 2 2&’. N
Q KAG (b + 52)

where A is the cross-sectional area, ¢ is the shea;: modulus and K? is

a numerical factor cal.lgzd Timoshenko's shear coefficient [6]}which depends
upon the shape of thé cross s;ection; in our case of' A thin walled circular
cylinder K2 = 0,53. Substituting from (3.5.4) into (3.5.3) yields

L, - : ‘
V=3 f [EIi('a'x’“i> + kg Ay G(Ty 3-—-xi) ]dxi' ~ (3.5.9)
0 - ’ ° - . . ’

Again, for our case,



where i

t
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L. L
o e e a5 = L L& i_ -
0 : 0
Applying Harni:tton's_principle we have
12)
f S(~-U)y dt = 0 (3.5.7)
f
t L; .o .
= o - +
| I P Ty ¥y * S0y + Ay W, W )dx,
ty 0
Ly a2$. aw
+ J [-(e1, —2— -KAG(‘P +5——) )6 v,
0 , 1
av 32- ;.
+ KAG(———+ l)<Sw,]dx
X3 ax.
1
I L _oaw. L.
-EI =26, | - AG@ s =2)ew | tiat=0  (3.5.8)
18x 11 1 xi i 1 .
0 -0
= 1}213, .and ‘;]E W] an(i El = lpl .

\

Now expanding (3.4.8), @mbstituting from (3.'4.1), and rearranging

the terms yields

3)(1

R

3

{Ll ) D\bl 82w1

v &

t; L1 3241 W,y
{ J [ EI}, — - klAG (b +——-) -0 11'1'1]6 ¥y dx,
t

T LA G Goy* ) - pr Ay wy = pJs wy dx

0 BX'I
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H

- LZ 3292 2 3;\’2 .. 1) -

+ f [512""7 - koRyG(Yy+ 'a-}-(;) - 0212(*V1(L1't5‘+¢2)]5 Yo dx,
0 9K4

L o, - 3% '

2. 2 ‘1’7_ 2 . -

I [KzAzG(———2—+ —) - PRy (W I(L J£) (Lz'xz)wl(Ll,t)W2)]§Wzdxz
O ) 8 2 .

L3 32“‘ ¢ 9‘;’3 . - ) -

j [I:Ir-——- - CAG Pyt 92118 vj dxy

3)(3 3 ’
0 ,
9, 32{{:

L3 ‘
, *.J [K3A3G(

T SR SRS ERDLIELE
0 '9)(3 Ll 1s

co r Lo . . ) . o
TSN R TV MR R
- 0

tLa

\Ul(Lllt)'q. ;‘.Vz) (Lz"‘Xz))dXz - J (031 ( + d}a) ES 03A3(w

1(Ly,t) 1 (L, t)

’avl
4 (La=x3) Y10t wa) (Ly- x3)) dx3'~ EI, ax1(L1 t)]
' . ! E 3

2 ‘e . .
4+ § wl(Ll,t)[— f QZAZ( (Ll t) (L2 X’)) QJl(Lllt)'f' w2) dxz v/
0

Ly wy o
0 s
o, w, _ |, W, _ L3
- EI, _3;(—; $ lpl(o t) EIZB ) Wz 0 - EI35;(~ 6 ¥y 0
é -
2 awl aW L2
- .KlAlG('bl + -5;2-—) & wl(O,t) 2A2G(Wz + —--—-)LS W2 0
‘ 1
5 - 3\-:]3 _ L3 ‘ .,
= A6y + 37(—3;) § Wi . }‘ ¢ = 0 : (3.5.9)



For an arbitrary time interval (t; - tj), the integrands of the
double and single integrals must vamsh separately. In addition, by

introducing the specific nature of the problem under consideration,

.36

¥i0,8) = 2L, ) T i@, - 0 CN
(3.5.10)
Y108 T Y2yt T Vamae 0
the following results are obtained.
The equations of motion aré:
8%y, ’ , Bw, .. .
EIl 5 - KlAlG(wl + '5;('—') ~ 01 I] ‘Pl =0 " (a)
axl 1
. (3.5.11)
avl 32w1 ’
KlAlG (ax +-—-—-—-) = p1 Alw]_— 0 (b)
axl
32{;} T 3w
EI - K A G(y, + ———) - I = I (a)
2 axf 208G, X, pa 12 ‘4’2 ~pals ‘PI(LI t)
- (3.5.12)
o, A%, . .
4 2 -
KzAzG( 2 axz ) Q2A2W2 DzAz (wl(L t) (Lz Xz)wl (Ll,t)) (b)
and | W, 5 W, - .
EI + ) - iliq = - .-
3 5;23— '<31\3‘. (V3 3x3) p3l3vs p3I3¢'1(L1,t) (a) |
' ' (3.5.13)
D&a 32 w3

3}\3@( S+ —2—)— 03A3w3- oaAafwch t)+(L3 Xa) UL, t) (b)

'}lhe boundary conditions for the system are:.



~
Yio,8 = Y0 T O
at X2 = 0, - -
. aw aw . . ’
2 - 2 2 .
K2A2G (gy + 'é;{—— ) = EI’Z Y = { 4
2 {0,t) 2 (0,t)
at X3 = 0, R -
: ow 3y
2 -
&‘3A3G(!{)3+-é§-§—) ':':EI3 .-3—)?2 = J
3 {0,%) 3(0,t)

and the junction conditions are:

Ny
B
I(Lll t

L;
= f [9212("' ;l;l + ;2) + 02A2 (w )"'(Lz"xz)
)
0

{Li.t) 1{Ly, t

L3
‘1{'1 (L]It) + wz) .(L?.'XZ)}dXZ *O‘f [0313(¢’1 ('Lllt)+ ltb3)

+ 03?\3(‘:*:’ + (L~ X3) v

' +
1{Ly,t) WLy, t)

s e

P4

aw Ly N
2 1 e ée -‘:
KAG{Yy + =) : ="[, pzl\z(wlml’t)— (Lz- x2) ¥, (Li,t)+ waldxz -

R (Lyct) .

0

~ -

Yo (Lo, t). T Y2l ) T Maa, ) T Yamg,n T O

2

L3
- ( 93'1\3(w}(Lht)+ (Ly= Xy, pt w3)dxs,

37

(3.5.14)

W3 (L= x3) Jdxs,

{3.5.15)

(3.5.16) ‘
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3.5.B Frequency Equaﬁion for the System Considered as a Collection of
Timoshenko Beams (Model (VI)-a),

with the aid of .(3.5.1'),' which defines the total displacements
of the system, the equatic;ns of motion may be put i.nto. the foliowg’_ng :
form:
’ " 2 t .
-— - 1, =
EL vy = xgBy00; +wy) = oylyyy = 0 -
(3.5.17)

2 ' " _ o -=
KiAiGlb; +wi) - p;Aw; = 0

The boundary conditions become

Yio,8) - Y000 T 0

aw . By (
(Vy + —2) : 2 = 0 . (3.5.18)

, 0,8)  20,8)

i

~

( ) 3W3) . 011)3
Yy + = e— = 0
30,0 30,0 )

while the junction conditions are

(L,
! 2 o . \ i
1w, o [o2Ta2 + 0oAowy (Lp= x,)] dx,

J

0

EL,

1
(L4 . .-

> R | SN Ly . |
KRG by + W) " =] eohawadxg=| TpgAgwidxs (3.5.20)

S 0 0
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and

Y1t T V2, T ViLg,t)
’ (3.5.21)
ll’l(l‘"’lrt) =_w2(L21t) - l'1}3(1--'3tt)
Equations (3.5.17) are the appropriate Timoshenko beam equations.
The solution of these equations again may be obtained by using the method

of separation of wvariables, see'Appendix B. The solution is

Wi (5, £) = W. (x) » sin ut
’ o (3.5.22)
Vi, ty T P09 ¢ osin ut
W, = B,sinh A .X, + C.cosh X .X, + D, sin ) .x, + F. COS ) .X,
1(x) i 111 i 111 i J2171 i 2 !
2000 (3#5123)
. Cti ) . .
L = —_ e + 3 .
P, (x) )‘11 (Bi. ocosh }‘Iixi' sinh )‘lixi)
By .
+ ~—~—— (D, cos A .x. -.F, sin 2} .x.) (3.5.24)
Azj_ 1 21 1 1. 21 1
where .
1.4 N ' bg-\oz !S -y
} = 1 + 2y M - 1
Vi T L= ra) i - 910,
b wh 2w ‘15' '
i = LT+t s (17
: {3.5.25)
p.
2. 1 E
by = == (Ll+ =) 4
A E . K;G, "



2
a. .= i (é&. - piw) ,
7 B L g
i
2
P.w 2‘
a, ( ; + A7),
i el 4
1 2
apd 5 = (piw~.. )\24)
2 3G 21
i
(i=12,3)

{3.5.25)
(cont)

Now substituting equations (3.5.22) into equations (3.5.18)

through (3.5.21) yields the following form for the-boundary conditions

and junction conditions on the mode functions.

W‘l(o) = 0
/1/1(0) =0
\Ijz(O)~ =0

t

Vo0 Y Yo = °

'

\L’a(o) =0

\1}3(0) + WS(O) 0

ey T My T Yy
\I/L(L;) = ‘\Vz(Lg) \ya(ig)

40

(3.5.26)

(3.5.27)

.(3.5.28)

(3.5.29)

(3.5.30)
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2
' L 2 '

EII\I/(LI) togw | [ IV, + B Wally - %)) dx,
0
-3

- p3w . [ I3\I/3.+ Aq Wa(Lg - X3)] dX3 = 0 (3.5.31)

Ly L3
' 2
’ 0 ' 0

v

Proceeding as in section 3.4.B, we find that six of the twelve
constants in equations (3.5.23) and (3.5.24) may be eliminated with the
| aid of equations (3.5.26) through (3.5.28). Using the conditions at
the junction, (3.5.29) ;:hrouqh (3.5.32), the following six equations
are obtained. -

21 @y
Bilsinh ALy + (Tﬁ) (-éq) sin 3 Ly] + Cilcosh ALy - cos Ay L)

A22 R as »
- Bz[Sinh A12L2+("X;";)Sin A22]'_'2:]"(:2[0051'1 }\12L2_(§;)COS 322112] = 0,

(3.5.33)

A ) ' a
. ¥ 22 » 2
Bf [sinh AppLy + (-ﬂ-z-) sin Az?Lz] + C_A[cc?sh Ay,L. —»('{{E) cOs 1\221‘2}
. A3 <3
oy Ba[S.th A13L3+(-:{1—;)‘SJI1 ,\23L3]"C3[(D5h /\13L3'(~E;)COS X23L3] = 0,

~

cee (3.5.34)
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{‘.
ay 0‘1' Al By
81[(-——) (cosh A1jLy-cos MpiLy)] + C1[(——) (smh AL~ (-—) ("-*)sm M 1Ly ]

a B A

1
+Bz[ ("“_") (COSh A12L2 ('_') 00S Ay 2L2) ]"‘Cz[ ("_"‘) (sinh llZLZ ( 2
l sin MoL)] = 0, (3.5.35)
T a 8. e Ava

2 . 2 . 12
82[('3;2") (cosh A L,- (-&Z) cos A22L2)3+C2[‘(—A—21—2—) (sinh AYZLZ ‘(";\;;)sm"‘zsz'z)]

o B ‘ a ]
+83[ (37) (cosh A3Ly = () cos Ly ] + O3l 53 (sinh AjLy -

A ‘ 5
\ - - (——-) sin A23L3)] = 0,  (3.5.36)

A2 1 By
Bl[EIlal(s‘ﬁ‘: ALy + (-;\T;)sj_n ML ] + CylET 1y (cosh Yy lLxm(;)cos X Ly ]

]

paliw ap B, Ay,
+ Bz[""‘;\@—‘* (simh Aialy ~ (2 (579 sin AppLy)
12
pP2A, ) .
- Q—'-('L (sinh AoLp - (—-—-—) sin XyaLs)]
A2 322
12
2
p2lw ap Ma
+ Cz{“"'_""—z [(cosh \,L, + (7)) ©os Xholy) - (1 + (—-—-) )]
)\12 i ‘ 22
- 2 B
_ 021\210 ( N \ 2 012 -\1: 2
""—"—'l,’ COS \yﬁL[" (-—)(\ ) oS \« )Lo) (l + ‘é"‘("r—') )]}
A2 . 22 ) 2 A2
2 .
0313\.0 (13 63 Al3 ~
- 33[“-;5-— (sinh Xy ;L5 - o) (—;73) sin A, ;Ls) . ‘
13 -
) - °3A3w . Ma .
3 (Sl kla 3 - ('3\—2_3) sin A23L3)] -
M3 , N
01w “a X2 Ay, 2
3 3 13 13
~ C4f 5 [(cosh Ay3L4 + (-\—2—-;) cos Ay4L;) - (1 + (T:a_) )]
M3 ’ ) ' 2



2 2

o A @y A,y
- —):2—"' [ (cosh X 3Lj + (-é;') (“)“2‘;) cos AzqL3)
13
ay Aygo2
- (1 4 — (-—-—-—) )] } = 0, (3.5.37)
By M3
and finally, )
2
a

By {<1A1G[oosh Ayl (x11—~——) + cos AZILILA——) 1+ __—-)]}

N

8
2 . 21 ‘ —

0,,}\24.02

COoSs )\2 2[—-?) ]

2 ay Ay, .
= G [P (sinh dppl; - G () sin Yilo)]

“ 4

(COSh )ﬂ13L3 0S A: 3L3)]

1

- C3 [———W (sinh A]]La (—)( ) sin \73[.43)] = 0 (3.5.38)

For the system to have nontrdvial solutions, the determinant of
the ¢oefficient matrix must be equal to zero. From this the frequency
equation and the frequencies may be obtained as before. Again,the

frequency equation is of the form

arl ajo- — -~ A5
' *
' a1 A = 0 (3.5.39)
ag ) agg

See Appendix C.3



3.5.C Frequency Equation for the System when the Vessel is Coﬁsidered
to be Rigid (Model (IV)-a).

Now consider the pressure vessel to be a rigid body, i.e., the

elastic deformations are set equal to zero. Since

Wp = w3 = .9, = ®3 = 0, (3.5.40)

we have as the equations of motion

32w1 ) W, .
ETy —— ~ K]A]G(’\P]-F-—-—) -."plI]llJI = 0
ax} %1
(3.5.41)
, W, 32w -
~'<1A1G(*5->-<—-+ —""‘5') ~ p1A W) = 0
1 8x1
The boundary conditions are now
at xy = 0
and at x; -= L,
L
W, \ J 2. . )
EI = - h ~- -— -~ )
% looTat g, gy p2lo 0y gy~ Gomxalv g )

(La=xz) ] ax,

L3
- Wy -— - v
0 .
(L3-X3)] dX3 . (3.5-43)
4 , . . L 2



A >

v

L2
% 6 (o ol T (Lyy ydx
’<1~1 AP, : = P22 1(L, t 27X2 1{Lq,t) 2
1 (LIIF) 0

L3 i
_{ “ p3A3(wl(let)+(L3"X3)UJ1(L1.'t))d)(3
0 -

e (3.5.44)

The solutions to equations (3.5.41) have been presented in the
preceding’ section by equations (3.5.22) through (3.5.25), for i =1,

and hence

—
4

=
i

1(x) BISiDh Aix 1+:C]COSh )\11)(1:*' Dlsin‘ Ao Xy
+ F,c08 X1x1
- (3.5.45)

f

a1 ’ )
- -)-\'II(B],COS}'] X“xl + C1 sinh )‘llxl)

6 Nl
+ -ii—; (D) cos 1\21){1 - F, sin LPR XI)
Substituting from equation (3.5.22) into equation (3.5",42) -
through (3.5.44) yields the following' boundary conditions on the modal

functions
W = -0 ‘
1(0) (3.5.46)
\yi(m = 9
R
and .
, :
ELNW )y ~ ?1\91_(L1) FR W gy = 0
, - , . (3.5.47)

| . ) n
- xAG.W - R =
Ry Wy ~ ™% Yy "\pl(Ll) 0

.
..
. . . I
- 3 4
. i
.
»

45
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LP+1d 1

e 3 2 ‘
where R; = pzAsz[(-——-?——-—) * g (L2 + L3)],
: \ 2
L -1y
Ry = poAzw? (—-——2—-—*-), C

(3.5.48)
R3 = 02A2w2 (LZ + L3)I
2 2 Li j Li
K1A1G + poAw (————-2———-——)

I

.and . Ry

it‘\Iote‘ that segments 2 and 3 are assuned to have the same cross sec-

‘tional area and the same mass density.

4

Now in equations (3.5.45), subject to boundary oconditions
(3.5.46), two of the constants can be eliminated and then, with the aid

of boundary oonci;tions (3.5.47), the following two equations are ob-

tained. '
ay . . Aol %y
BI[RI (-x-;-'l-) (COSh )\l ILI- COs AzlLl)‘f‘ RZ (Slnh AllLl'f‘('i—) (é—l-)Sln A’ZILE)
11 .
: . n A21 . o
— EIjay (sinh Aj;L; + (7\‘1—1‘) sin 223L1) ]
. 1 M By '
+ CLER]_-(;\-;T) (sinh Ay Ly- (—A—Z_l.) (-a—i-)sm >‘21L1)+ R, (cosh Ay Ly~ cos AnyLy)
s 81 . .
~ EI %) (cosh. A\ Ly - ap oS AoiL) 1 = 0 (3.5.49)
: , Aa1 @y oy
Bl[R3 (sinh )\ll'Ll + (m) (E‘)Sln ’X21Ll) + Rl; ("):'r') (COSh AllLl-COS AZIL:)
i ; ' i
Aoy 2 0

- RS(O:)‘Sh ALy + (m)('é‘l“) cos AzyLy) ]

R
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/ al ‘ X“ ~

. . . _

. - R5(51nh >\11L1 + ( ) sin XLy ] = 0 .. (3.5.50)
- 2 N ]

where RS = KlAlG All . ~ 1Y

Again, for the system to have a nontrivial solution, the deter-
minant of the coefficient matrix in equations(3.5.49) and (3.5.50) must

vanish.

Hence the frequenéy equation is of the simpler form

an ayo .
= 0 © (3.5.51)

. ' 'fam azz

3.6 Analysis of Model (I)-b.

We now turn our atténtion to the case when the pressure vessel
is pmned at the top as shown in Fig. (i 1.b). In this case the sys.tem'
is reduced to a single degree—of-freedom, namely the angle of t.he rota-
tion of the rigid vessel about an axis through the pin. '1)115 angle, (¢)
Fig.(3.6.a), is given by | &

aw: Y1)

(3.6.1)

sl
i
§
A
|
(=

. .
See Appendix C.4.
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Elementary rigid body mechanics shows that, for the system

shown in Fig. (3.6.b)

T+ L’ s = - [f+3. L] (3.6.2)

The formulae of elementary beam theory provide

oL ’m?
i)™ T T O | (3.6.31
-2 - &
and aw QL, ML, .
1 _ - (3.6.4)
ax 2ET EI "
1(L1)‘ . -

With the aid of equations (3.6.1), (3.6.3), and (3.6.4) the following

expressions for M and { may be obtained .

M o= ?11-3%( 2Ly + 3Ly) ¢ - ' (3.6.5)

Ly
and
o ~ 6ET
L)

Now using equations (3.6.5) and (3.6.6) the équation of motion.

' (3.6.2) becomes

2
+ 4
5, 11 &y * 3L, + 3Ly

$ =3 = 0 (3.6.7)
mbLy O (L, + Lj) ' )

so that the natural frequency' of Mddel (I)-b is

- 2 2 1%
-y . LT+ 3LL + 3L
Yy = 12151 - (T 172 2)J (3.6.8)

3 7
RS (L, + L3)

48

Q= — (Ly +L2L2) ¢ ’ t3.6.6).
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Rigid Mass

.Massless Beam

W, :

FIGWRE 3.b: SINGLE DEGREE-OF-FREEDOM SYSTEM, MODELS (I & [I)-b.



3.7 Analysis of Model (II)-b.

Again a rigid pressui'e vessel, pinned a”tA its top, is considered,
but now it-is supportea by a skirt modeled as a massless Timoshenko
beam. As in the case of Model kI)-b, for this siflgle degree~of~freedom

system,

_ - i)
T Yy T

+

(3.7.1)

w it is possible, as in Model (I)-b, to write expressions for M and

i

, L.L + 2(L/3 + qa) '
\ - 1
o= 822 1 (3.7.2)
\ ! 120 + L} ~

and \\\ ; .

_ L, + 2L, .

9= L2 Ty, (3.7.3)

- ! 120 + Lj :
where o = EI/-<2AG

The equation of motion is

2 - . = ' ,

? (L, + Lg) ¢ = - [M +Q - Lz] . (3.7.4)
or 2°, .2

. L,L, + L, + L7 /3 + a

. 172 2 1 :
o+ 36!:1'; - [ s l1]¢ = 0 (3.7..5)
~mLy (Lp+Ls) | 120 + Ll
so that the natural frequency is .
: 2 p) 1%
_ swer ke t L, *LY/3ta
= i — 5 (3.7.6)
! (12a + L) (L, + L)
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e

T -t Ny

R

14

Equation (3.7.6) reduces to equation (3.6.8) if %8G + , 1.e.,

a - «

3.8 Analysis of Models (ITI)-b and (IV)-b.

In these two cases a rigid pressure vessel, pinned at its top,
is supported by :':1 flexible skirt with mass. Since the role of these
two models is, agai.r't, to as.sess the validi‘ty of the assumption made in
Mpdels (I)-a through (II)-b that the.mass of the skirt may be neglected
for typical real systems and since that assumption can be assessed by
Models (III)~a and (IV)-a, no §eparate detailed analfsis for these two

models will be given and the interested reader may obtain the frequency

- determinants for these two models by following the same procedure des-

cribed in sections 3.4 and 3.5 and imposing the following boundary con-

ditions. For

a) Model (III)~b

E)w1 .Y ﬁLl)

e

Z)Xl (Ly) Lo

and for R ) ’
b) "Model (IV)-b
W
HL,)
L,

“1wy)



3.9 Analysis of Model (V)-b.

. This case differs from the case of Model (V)-a in only one parti-
cular, namely the boundary conditions at the top of the pressure vessel,

i.e. at x, = 0, equations (3:4.17) (b) ‘are replaced by

" Y00) < . -
" ‘ (3.9.1)
WZ (O)

/ ’

»

since a free end is now replaced by a pinned end. Consequéntly the

only change in the modal functions'is that W, (x) is given now by

WZ(x2) B, sin a,x, + D, sinh a,x, (3.9.2)

instead of equation (3.4.21) (b).

4

Once again, substituting equations (3.4.21) (a) and (c), and
(3.9.2) into the boundary conditions at the junctien, equations (3.4.18),

(3.4.19) and (3.4.20), yields the following six equations.

By (sin a;L; ~ sinh a;L;) + C)(cos ajL; - cosh aiL)
- B; sin asly — Dz sinh apLp = 0, ' : (3‘9.3)‘
By (cos a\L; - cosh ayL;) =~ C,{sin a|L; + sinh a;L;)
’ a a
2

¥ 82(5% . ©OS a,Ly) +'Dz(al rcosh azL,) = 0,  (3.9.4)

B, sin azL, + D, sinh a,L, ~ Bi(sin a;Ly + sinh a,L,)

- C3(§:OS asL3 + cosh ajLj) = 0, : (3.9.5)
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B2 cos asLy + D2 cosh azLy + ﬁa(pos asLi3 + cosh asLj)

(3.9.6)

3

"' C3( sin a3L3 -~ sinh a3L3) = 0,

B; (sin aLy+ sinh a;L,) + C;{cos a;L; + cosh al,)
- By (sin apLy = agly) Ry + Dy (sinh asly - a'sz)Rl "

+ Bj(sin a3Ls~ sinh as3L3)Ry+ C3(cos asLi-cosh azL3)R;

= 0, (3.9.7)
and . ~
B (cos a L)+ O~OSh a1Lj) - Cy(sin a;Ly - sinh a;L;) -
+ By(cos asL; — 1)Ry — Dy {cosh asL, — 1 )Ry
+ Bj(cos asli-cosh ajLi3)Ry~C3(sin a3L3+s§ﬂ1 asL3)Ry

N : : ' = Q. (3.9.8)
" where R) through Ry have been defined in section (3.4).

As before, the frequency equation may be obtained by setting
determinant of. the coefficient matrix for equations (3.9.3) thmﬁgh

(3.9.8) equal to zero'.

}
As previously mentioned, Model (III)-b is obtained from Model
(V)-b by again letting Ww,.= w3 = 0 at the appropriate point in the

analysis.

]

-

3.10. Analysis of Model (VI)<b.

F'maliy, as in the case of Model (V)-b, only the boundary con-.
vy

ditions at 3{2 = 0 need be changed in the analysis of Model (VI)-a.
¢ : " ]

’

.* : ‘
See Appendix C.5

—
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The appropriate boundary conditions are

Y20,t) - Y200,0) T O

which lead to the following six equations for the constants of integra-

tion.

Azr ¢ .
By[sinh Aj,L; + Gy g7 sin Ap1LyJ+ Cylcosh ALy = cos Ay L]

- B2 sinh ;\12L2 - DZ SJin A‘\22L2 = 0, . . (3.10.1)

A23
By sinh AjpLp + Dy sin AjsLp — Bs[sinh )\13L3+(--1-;)Sin Ap3L3]

A
a3
- C3[00§h X13L3 - (E-—) cos )\23L3] = 0, (3.10.2)
. 3

a " a A
1 : 1 , 11
B\l[(““‘,\“) (cosh A}iLi=~ cos Az L) ] + Cx[(m) {(sinh A“Ll—-(;‘—z-l—)

By . ' ¥ B
(aT)sm AZILI)]+B2[(—A—E)cosh AIZPZJ—D2[(E)COS \oLols 0,
: ... (3.10.3)

a g

2 . 2
Bo[ (+=) cosh Ay,L = Dol {~—) cOS Xs,L T
2Li53 12L2] ( 2[(X22) 22L2]

o 3]
3 3 -
+ B3[(577) (cosh 231y - (30 cos dasly)]

. sy ) >‘13 ) .
o+ c3[e;]—;) (sinh Ay 3Ly = (3—) sin A,3L)] = 0, - (3.10.4)

Ay
. 21 . i
By[EI}a) (sinh X)L, + (-/\-"i"l-) sin A»1Ly) ]

. Bl
+ Cl[EIIGI(mSh XIILI - (;“;‘)‘ COS XZILI)]
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pZIZw a, . pZAzm
A2 , Ay
< N v
praz Moo B, oAzw A122 .
- Dy 2 (/\zz) (o) sin Azolo= -—-r-("*—") (sin AzzLp=Apol2) ]
: 12
o1 w3a Al3
373w g
A3
slnh Ay Ly =( )sin A,,L4) ) .
”;{'3-‘ ( 13k =5 23L3
17
. 9313h)20. kl 2 }\132
- C3|—p— (COSh 7\13L3+(—1~—-) oS )\23L3) 1+ ( )
, A3
D A wZ Q A
33 3, , 13,2
- 7 ({cosh ALyt (27) (577) <0s Ay3L3)
A3 B3" A23" . .

-

) < ))) - *(3.10.5)
63
and, finally,
. ' Wy @y ‘
By [x1MG <°°sh Akt G g+ cos Aol (_.4) gy D ]

ay

2 . _ B
+ Cl[KIAlG(Smh Yl By = gt sin Al Ot 2 ]

Ol\w

- 82[ (OO%[’I X}zL? - l)] >

02]\2(02 A]n

+ Dz[—;;— (57 (008 Apaly - Ll
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p.A w? .
J-\"\
93A3w2 ) C13 A 13 {-—-3 .
- Csl T (sinh x13L3~(§—3-) (E) s;n Xp5L3)] = 0. (3.10.6)

Again equations (3.10.1) through (3.10.6) provide the frequency
*

equation for Moddel (VI)-b. Also Model (IV)-b is obtained from Model

(VI)-b by letting wz = w3 = ¢2 = §3 = 0 in equations (3.5.1) and pro-

ceeding in fhe analysis by the same procedure as before.

W,

* See Appendix C.6.

.
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CHAPTER 4

NUMERICAL EXAMPLES AND RESULTS.

We now present nurerical results fo;: four typical skirt-vessel
externai ggonetries and for each of these four different vessel wall .
thicknesses are considered, i.e. a total of sixteen geometries are exa-
mined. Each of Qhese is considep_ied for both sets of boundary conditions.
Only the first two natural freqﬁencies, model permitting, are calculated
for each case and model, since the higher frequencies usually are not of
interest. If required, the third and higher frequencies may be calcu-
lated easily using the same .procedurg which is used to calculate the
first two frequencies. The computer program used was based on a stand-
ard Fortran IV subroutine for evaluating determinants and required no
great programming effort since it merely involved a marching routine to
determine value.;s of the frequency for which the determinant vanished,

i.e. at which it changed sign, sece Appendix D.

In all 'cases the vessel au.xd skirt were assumed to be made of
steel with a specific weight of 490 lbs/ft3, a Young's modulus of 29 x
106 psi., and a PoissOn's.ratio of 0.3 . 1he specific weight of the
vessel's contents was taken to be 105 ll'os/ft3., i.e. 90% water by volume .

and 10% steel. The first skirt-vessel combination considered was

}

. ,
Poisson's ratio is needed to find x2[6]



»

A) Ly =6 ft., Lp=6 ft., .Ly=4 ft.,and R = 2 ft.

where R is the outer radius of the vessel and the mean radius of the

skirt. The other cases were

B) L, = 6 ft., L, =10 ft., L3 =5 ft., and R = 2 ft.
and i

. ) \.f '
D) L= 6 ft., Ly=.7ft., Ly=8ft, and R=2 ft.

The skirt thickness is always taken to be 0.5 in. while the vessel
thickness is considered to be 1 in., 2 in., 4 in., or 6 in. The first
thickness representing, perhaps, a boiler and-the last one a nuclear

reactor.

The results are presented in eight tables below, each of which
gives the first two natural frequencies for each model of a given case
for the four vessel thicknesses considered. We find it convenient, for
ease of presentation, to limit each table to either the cant;ilevered
system or to the fi:«ced—pinned system. The upper mmber in each entry
is the fundamentz:l‘natural frequency, in Hz., 'of the example considered

S

and the lower mmber is the second frequency.

>

Figures (4.1) through (4.8) show the éirst two mode shapes for
the various nwdels of case A for both the cantilevered and fixed-pinned
systems when thiciuieés is 1 in. These are normalized with fespect to
wma>€ in each case. For those models where shear deﬁormat;ions are taken
into acoount this provides the 'r'élative magnitu‘de of \I/ as well, The

1p
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H

reader should note the dramatic differences in mode shapes for the
various models of the fixed~pinned system as opposed to the comparatively
. minor differences in the mode shapes for the various models of the

cantilevered syétem. A caixtionary note. While the mode shapes for W

do indeed provide the shape ‘Of the deflected neutral surfaces of the
system, there is no comparably simple way of visualizing the mode
shapes for \I/which is, recall, the angle of rotation of a cross-section

of the skirt or vessel.



TABLE 1

T
Model 5 :
icmszd I II sS S Y VI
i i i
41.5 | 36.1 | 41.3 | 35.1 | 40.6 34.2
7 1 . .
PAl 21809 [137.2 | 214.0 (105.7 |193.0° | 95.5
| |
_ 36.1 | 31.4 | 35.9 | 30.6 | 35.6 30.2
2 in. 190.3 !'101.8 | 187.1 | 92.6 |176.5 87.5
4 in. y30.0 | 26.1 | 29.9 | 25.5 | 29.5 25.4
158.0 | 84.6 | 156.0 | 77.7 | 149.6 75.2
x
_ 26.5 | 23.1 | 26.5 | 22.6 | 26.4 22.5
6 1n. L 139.9 | 74.9 | 138.6 | 69.2 [135.0 | 67.6
Natural Frequencies for Cantilevered
System
Case-A
TABLE 2
! I
Thickness I II 11X v \Y VI
. i
o [195.3 96.6 | 190.1 | 91.7 | 63.4 51.0
1'in. - - |2472 613.3 | 221.5 | 118.7
< |
: 169.8 | 83.9 | 166.2 | 80.3 | 55.4 44.7
2 in. - - 12464 611.0 | 202.7 |109.7
s in. 141.0 | 69.7 | 139,0 | 67.2 | 45.7 38.0
- - {2450 608.8 | 171.9 95.0
4 .
6 in 124.8 | 61.7 | 123.4 | 59.8 | 40.9 33.2 |
- - Ja44s. |607.7 155.1 | 8s.8 |

Natural Frequencies for Fixed-Pinned Systemn..

™~

Case-A..



TABLE 3
el | | |
] . ! .
Thighass R 4 IIT | v vooovI
1 in. 24.4 | 22.8! 24.4 | 22.4 | 23.3 21.1
165.5 | . 82.5 | 162.2 | 78.4 | 137.8 70.2
: 21.2 1 19.81 21.2 ! -19.5 | 20.7 18.9
2 in. 143.9 |\ 71.7 ] 141.7 | 68.5 | 129.3 64.4
17.6 | 16.4 | 17. 16.2 | 17.2 15.9
4 in.
119.5 | 59.6 | 118.3%\..57.3 | 111.1 55.3
’#/—/)
_ 15.6 | 14.6 | 15.6 | 14.4 | 15. 4] 14.2
6 in. 105.8 | 52.8 | 105.0 ? 50.9 | 100.7 49.6
Natural Frequencies for Cantilevered System.
Case-B
TABLE 4
—todel | | o |
N I IT 1T v v ‘ VI
152.1 | 73.0 | 149.1 | 70.8 | 42.0 | 36.8
Lin - - }2055 | 610.8 |158.1 | 83.9
5 in 132.3 | 63.5! 130.4 | 6.9 | 36.6 , 32.3
- - {2450 609.1 |146.4 | 77.4
. { 1
4 in 109.8 | 52.7| 108.5 | 51.6 | 30.2 | 27.0
: -, - |2445 607.4 | 124.7 f_ 66.6
. 907.2 | 46.7| 96.4 | 45.9_ ¢ 27.1 | 23.9
6 m. 4 ! "; .
- 1 - 2442 | 606.6 [112.9 | 59.9

Natural Frequencies for Fixed-Pinned System.

C@S&"B .




TABLE 5
1 ol f
i Model 11 T | W v o, VI
| Thickness !
’ i | 1 ;
E Lin | 8.0 1 47.01 57.5 | 45.2 | S7.1 ¢ 44.5
: : : ,
' 156.8 | 90.0| 154.9 | 82.5 | 126.1 | 71.3
| j
R ¥ I | |
S 50.5 | 40.9' 50.1 | 39.5 1 499 1 39.2
| | 136.0 | 78.21 135.0 | 72.1 | 119.9 ! 66.3
L
. 4.9 | 33.9 % 41.7 | 33.0 | 41.2 | 32.8
113.0 | 5.0 112.3 | 60.2 | 103.8 57.5
| 1 ! |
' 64n. | 371 ] 30,0, 37.0 | 29.3 36.9 E 29.2 |
: | 100.0 | 57.5; 99.6 . 53.6 | 94.3 © 51.7

Natural Frequencies for Cantilevered System.

Case~C.
TABLE 6
el i l

I IT 111 IV v VI
i Thickness i
| I in i 153.7 { 78.7 | 151.5 | 75.5 | 79.7 56.4

s — - 12450 608.8 | 126.3 81.5

; , - 1
; . ''133.6 | 68.4 ] 134.2 | 65.9| 69.7 | 50.1
! 2 in.
g - - [2446- | 607.6 | 120.4.| 76.0
‘ 4 in 110.9 56.8 { 1099 55.0 57.6 42.1
| - - |2442 - |606.4 | 104.5 | 66.1

1 !
‘ | ! g i t
e in '98.2 | 80.31 97.7 ¥49.2 sl.e | 37.5
| ~ - {2440 [ 605.8 | 95.1 | 59.8|

Natural Frequencies for Fixed-Pinned System.

. Case—C.
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TABLE 7
F% I | I v s VI
Thickness
1 in. 34.2 31.6 34.1 30.7 33.4 29.7
117.9 59.4| 116.7 57.5 85.6 48.8
2 in. 29.8 27.5 29.7 26.8 29.3 26.3
1035 51.7 101.7 50.2 84.7 45,7
4 in. 24.7 22.8 . 24.7 22.3 24.3 22.1
85.1 42.9 84.7 41.8 75.2 39.6
6 in. 2119 | 20.2| 21.9| 19.8 | 20.7 19.6
75.4 38.0 75.0( . 37.1 69.0 35.7
Natural Frequencies for Cantilerered System.
Case-D.
TABLE 8
\‘%\ I 11 III v v V1
Thicknes :
1 in 117.7 ' 57.6 116.5 56.4 ' 50.8 45.9
- - 2445 607.6 87.8 50.1
2 in 102.3 50.1 101.5 .49.1 44.7 40.5
» - - 2442 606.6" 85.5 47.2
4 in. 85.0 41.6 84.5 40.9 37.1 33.8
- - 2440 605.7 75.4 41.2
6 in. 75.2 36.8 74.9 36.3 33.2 30.0
- - 2438 605.3 69.1 . 37.1

Natural Frequencies for Fixed-Pinned System.

Case-D.
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CHAPTER 5

- CONCLUSIONS

It is immediately evident from examination of Tables 1, 3, 5, and
7 that for the cantilevered systems Model (II)-a, a relq\t.ively simple two
degree~of-freedom rmodel, provides reasonable estimates of the first two
natural frequencies when compared to the nost sophisticated model considered,
Model (VI)-a. However, it is ecually clear from 'I‘a.bles 2, 4, 6, and 8 that
no simpler model provides a reascnable aporoximation to the freauencies
calculated from Model (VI)-b for the fixed-pinned systems. This difference
in behavior of the differently considered skirt-vessel systems is not
difficult to fathom since the pin constraint at the top of the pressure
vessel induces significant flexure and shearing of the portion of the
vessel above the connection of the vessel to the skirt; tl"xis is clearly
evident in Figure (4.8). Tables 2, 4, 6, and 8§ would seem to indicate
that this conclusion is independent of vessel thickness. The conDaratiye.
absence of these effects when the vessel is free at the top is equally

evident in Fiqure (4.4), which differs little from Figure (4.2).

a our study leads us to the conclusion that the use of Timoshenko

beams to model skirt-vessel systems 1s feasible and that this model should
be used for other than cantileve;‘ed skirt-vessei systems of normal pro-
portions when a beam theory modgl is used to nodél the system. If the
situation warrants, it is also the way to model cantilevered systems

since Model (II)-a, which provides an excellent approximation to the

fw)danmjltal frecuency, provides only a fair estimate of the second



' than to prpvide precise d&slgndata for par;icular configurations.

73,

-natural fnecue})cy of the system. If one reauires hiqher -fre-

quenCJ.es then bf course, one has no other ch01ce than to use Model

h

< {(VI) for reasonable results - (at least w:.thln the hlerarchy of models

*

)
considered here) for any set of boundary conditions.

’ A . .
We note, -ri?w, that we have not exhausted reasonable models for
‘ AN

’ sklrt—vessel systems since 1t is certainly reasonable, for example, to

mdel the sk;.rt by a massless beam capable of undergoing shear deform-

ation and the vessel by a Timoshenko beam. This is suggested by - the

* results for Models (I) and (‘I'II) and Mddels (II) and (IV). ' These exanples
show the small effect of the sk.u:t mass on the natural frequenc;.es of - '
- gkirt-vessel systems. 'Ihq.s s easily understood since - for our exanples

. t:he.ski.rt weighed about 1,500 1bs. and the vessels, incli:ding con'ten'ts,

ranged in weight from -about 15,000 to 56,000 lbs. HOWever llttle com-
putational advantage vx)uld be obtained from use of. this model, as com-

pared to the use of Model (VI).

'

Fi:vmally,‘we note that soxpewhgg: more realistic models of skirt-
vessel systems may be studied without undue difficulty. TFor ekample,'
the ends of the vessel énd appropriate portions 'p_f 't;he innards, such as
tube.'sheets, my~ be modeléd as a rigid mass attached to cylindri@;

portion of the vessel. Such studies probably are performed most easily

usmg finite elément tec:hnlques, w;th 'l‘uroshenko beam elements, rather

than by t:he analytical methods used in t.hls thesxs where analytical -

rethods were, approprlate since the najcx purPOSe of the present work was

. to study the glynamlc modelmg of skl:c_t—-pressu;e vessel systens rather

v
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S
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APPENDIX A

NOMENCLATURE

ILength of the' skirt.

Length of the portion of the vebsel above the junction.
Length of the portion of the vessel below the junction.
Coordinate axes for the i-th segment. ~ ‘

Modulus of Elasticity.

Cross-sectional movements ‘of inertia for the i-th segment.

. Masses per unit length for the i-th segment.

Total displacements for the i-th segment.

Elastic displacements for t:_he i-th segment.

_ Angle between a cross-sectional. plane and the horizontal

plane passing through t?he y-axis.
Cross-sectional area of the i-th segnex;t.
Mass.density of the i-th segment.

Shear modulus. '

Timoshenko's shear coefficient of the i-th segment.
i )

Differentiation with respect to time, T -

. L . . d
Differentiation with respect to x, I= -

Natural frequenéies‘ of the system.
Constants of integration.

Distributed load.

Total mass of the pressure vessel and its contents.
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APPINDIX B

SOLUTION FOR TIMOSHENKO BEAM'S EQUATIONS.

The Timoshenko beam's equations of motion are

"

t

EI v =~ «?AG(y +w) - pIs = O : (1)

<?AG(y +w) - pAw = O | (2)

By eliminating Y/ from equations (1) and (2) we have

1

EIp, " 01

EI'wV+ Av'\;-(pI+———)w +-——w = 0 (3)

To solve equation

and since we seek

We note that usually‘% > —

k2G k%G

(3) the method of separation of variables is employed

periodic soluticons in time it is assumed that

W(x) « sin wt (a)

wix,t) = '
(4)
“ix,t) = W0 - sin ot (b)
Substituting from equation (4)-a into equation (3) vields .
WY b b2 W - awiW o= 0 (5)
. 2 R E
where b = = (L4 —)
E «2G
(6)
a = % (% - Piz—)
I g

Equation (5) is an ordinary differential equation of ‘the fourth

76.
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order, the solution of which is

W, , = Bsinh \;x + C cosh \;x + D sin A\,x + Fcos A\,x  (7)

(x)

where B, C, D, and F are the constants of integration and

b4 T2 % .
Ea +aut)? - &5 ]

2

(8)

y ‘
Ay = [ (b:) +Qw2)%

o

2.2 %
r 575 ]

Now, from equation (2) we have

R : " (9)
KzG - /\

4
Substituting from equation (4) into equation (9) yields

’ "

2
= - [ Rw .
\I/(x) - [ «2G Moy ™ ¥ ! : (10) \

A

sﬁb‘stitutinig from equation .(7) into é@x@p;on {10)and integrating once
¥ - - —~. .

Y S

results in T
3 .
%@ = = (57 (B oosh dyx + C sinh 3x)
+ (i—z) (D cos Ax - F sin Xox) + 1 : (11)
2 2 2 2
where @ = (2— + 1)), 8 = (&),
. € <G ) %G T

and we note that equation (1) requires that the constant of integration

() in equation (11) should.be equal to zero. o . J



APPENDIX C

THE FREQUENCY DETERMINANTS

C.l Mxdel (V)-a ‘

The frequency detern)};nant‘ of Model (V)-a is of the sixth order

and its elements are:

ajy; = sin a;L; - sinh a1,

a1 = cos ajly - cosh'alL_

ayz3 = - (sin a,L,; + sinh ajyL,)

a, = = (Cos a,L, + cosh a,L;) -

ays = 0 N
ajg = 0

az) = cos a|L; - cosh ajl

az; = ~ (sin aL,+ sinh a;L;)

a,3 = Rg(cos a,L, + cosh a,L,)

ajsy, = - Rg(sin a,L, - sinh a;L,)

ase = 0

aze, = 0 \ .

ay] = s51in alLl + sinh c'l]Ll



a32

a33

asy

aszg

ay)

ay 3
ayy
ays

y¢

asi

asz

il

]

cos aiLy + cosh ail)

~ Ry (sin a,L, - sinh a,L,)
- Ry (cos ajyLy - cosh ajLs)
R, (sin ajLy - sinh ajL;)
R; (cos ajls -'c.:osh.a3L3)

- »

[3

cos a L, + cosh alill

- {(sin a;L; ~ sinh a;L,;)
R3{cos asL, - cosh a,L,)

~ R3(sin a,L, + sinh a,L,)
Ry (cos a3Lj3 - cosh azLji)

- Rg(Siﬂ 83L3 + sinh a3L3)

sin a,L, + sinh a,L, °
cos ayl, + cosh a,l,

- (sin ajL3 + sinh ajLa)

t

(cos ajL3 + cosh ajlj)

79.

g



agy = ©os a,L, + cosh a,L,

agy = = (sin asL, - sinh aj;L;)
ags = Rglcos azlLi + cosh asli)
agg = = Rg(sin asli ~ sin ajzLj3)
ﬁiwz
al = BT ! i=1,2,3,
i
a3 = a3
az 2 I ,
as 5 Iy
R = — —_—
2A (al) I] 14
a 3 Iy
R3 = ('a—;) T\l v
az 3 I,
R = S (— - )
[ (al) Il ]
ap
RS = 'a-'; ’
as
Rs = ot
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C.2 Moxdel (III)-a

Here, the frequency determinant is of the second order and

its elements are:

a;; = (cos a;L; + oosh a,L) - Ry(sin a;L; -~ sinh a,L,)
~ Ry (cos a Ly - cosh a;L,) .
ayjo. = = [ (sin a;Lj - sinh ajL;) + Ry (cos ajL; - cosh ajLy)
- Ry (sin ajL; + sinh ajL;) J
" a21 = (Sln alLl + Slnh alLl) + RZ(SJ.I'I alL] - Sln}'i alLl)
+ R3(COS alL] - ¢osh alLl)
azpy = (cos. a;Ly + cosh a)L;) + Ry{cos ajL; - cosh a L)
- R3(sin a:Lj + sinh a)|L;).
m, L, +L, :
. where Ry = a|Lj{=) (;—-I:——) '
. my 1
oy L2 - L2
1 2 M P2 7 M3
R, = E’(alLl) (=) (=) ,
my L]
m 3 3
_ 1 3 Mo Lyt Ly
and R'i - 3’ (alLl) (__") (—'——_3——) . [
m
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C.3 Model (VI)-a A

Although this\ model of the skirt-vessel system is the most
sophisticated model considered, it also leads to a sixth order frequency
determinant so that the algebraic structure of Model (VI)-a is the

same as that for Model (V)-a. The complexity of individual elements

A

in the frequency determinant is, of course, greater in the present model.

The elements of this determinant are:
_ Agypm @y
ajy = sin Aply + G G sin Ak

au = cosh \11L1 - 08 )\21L‘
Az2
ayz = - [smh AioLo + ()\]2) sin )‘ZZLZ:}
ay
ay, = - [cosh AL, - (55) cos Ag2L2)
ayg = 0
ag = 0
- B
a9
apy = )\—1-1— (cosh \};L; - cos \; L))
@) M By
’ azp, = -;\—I-l— {sinh YLy - (_X_;T (:{1—) s1n ‘\ZILI)
Ly RES

|

»
-~

a3y = (cosh XjpLy = (=) €OS A;,Lo)
12 . 12 =



azy

azsg

azeg

a3}

a3o

asj

Ay

A3y

Q734
°

|

#

3

= (sinh X)Ly - () sin Xp2L»)
Y ( 1252 (*22) 22L2

M

A2y

ELy aq(sinh ALy + () sin dp L)

8

1
EI] o {cosh lllLl - (a"‘) (0.0 )\21L1)
1

9212w2u2 .
5 (sin R}sz ( )('l‘\'_"') sin ??L
A2 22
0 oRgw? SRS
- ——— (sinh A\pL; - (572) sin AoLo)
Az # '
polowla, ‘g 2
X ~ ') + .
"‘“‘;’2"‘“" [(cosh 120 ( 22)
12
p?i\zkuz ay Myp 2
- —"T[ (oosh ,\12L?+(:é':) ('\-«-) CcoS \QQLQ)"
\2, ot V22
031'-3w3u3 8'; )
(O
A3
f 3R 0" A13
- oi\h \ L - —
\y (o st )
i 1'}
p3 Iy s ‘13

\Yx

" 31\? ‘)
Q:oql

(oosh Ap by + (\

———

23

Ay A
1 \13L3*‘("‘“) (\

Iy

3

sin \2 qL*§>

~
“

) 0SS 1»3L

)

]

)

(l+ —;—-

.
h Vsl = (=) () sin A,
i\l - () ?3) sin \;;0)

> cos \?3L3>—(1 +< T

(!3
+—
;"3

83.
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Y13
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2
ay o A

2 21
, | o, By
ayy = thlG[snm )‘IILI(\llm All)+‘sm >‘21L1 (x?l + )\21)]
2
927\20.1
ay; = _[T (cosh XjsLy = oS AgyLp) ]
02A2w2 ’ ' a A
a = =[-5—— (sinh A;;L, - (33) (=) sin A35L;) ]
b L A2 “ 82" Aa2"
p3A3w2
Ayg = —[ A3 (cosh )‘131-"3 - .00s A23L3)]
Aawl A
2227 (sinh D (Y s Ly) ]
a - _ si Ly - (—/)(+—) sin \,»
g s 1363 B 5 )‘j"l 2343
asy = 0
asy = 0
‘oo
a53 = si_n}'l \IJ_L.? + ("'\T:) Sin ’\2.)[‘:
€
Aey, = cosh )\1ng - (E—:) 0s \f‘QL.’
_ : Aoy
ass = = [swh Ly + IS sin Apl)
L3
ag; = 0 )

it
(]

ae';
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az B2

agy = 12 (cosh A;,L, - (;—2-) cos AyL,)
a ‘a2

dgy = ';1—2 (Sl.nh A12L2 - (3";;) sin Azaiz)

/

aj L B3

as = 373 (cosh Ay3L3 - (;;) cos Az3L3)
a3 , A\ts

a6 = 375 (sinh Xy3L3 - (72—5) sin Az3L3)

C.4 Model (IV )-a

Again, as in the case of Model (III)=-a, the frequency determin-

ant is 'of the second order and its elements ars:

»

Qa

a;; = Rl (-)-\-—~) ((I)Sh >\11L1 - COs 7\2]L1) + R2 {sinh 7‘111‘1 +
11
A2y o A

21
(-XTT) ('B‘T)Sln A21L1)-EIa; (sinh 7\11L1+(XT—1—)SJJ) A21Ly)

o) n_ B
ajz = R (;—1—{) (sinh Ay;1Lq *(f—z—l‘) (37750 A21ly)+Rz {cosh Anly -

Ay ay ay :
a = Rz(sinh A;;Ly+{~—) (=) sin A, 1L;)+Ry (~—) (cosh ) (jLq-
21 3{ 110 (hl)(sl)s 21Ly) u(hl)( 111
RS 3|
cOs XZILI) - R5 (COSh .)llLl-}. (-A'—I—-]—) (-BT)CI)S XZILI)



where Ry

R3

C.5 !Model (V)-b.

Y

@ . A By
Ry(cosh A)1Ly~cos A3 L1)+Ry (5—=) (sinh AyyLy=(5—) (=)
PRI 21 @y

: A2y
Sin X21L1) - RS (Sinh XHL1+ (m) sin leLl)

L; + Lg 1, )
QzAg&)z[(“—‘—g——') + A (LQ +'L3)],

2 2

L, - Ly

o] 21\20)2 ("*—?—'—) ’

pArw?(Ly + L3)

- L, - L
-~ 5y —
KI:\IG + O?Azm‘ ( ' )

KII\XG \}1 '

The elements of the froquency determinant are:

SR

Lll-\

ayy

aypy

g

'

Qg

#

#

sin aybLy — sinh aL

cos a)L; - cosh a L

- Shl‘ a-»L-

© sinh a-l.»>



azi

azg

az3

azs

aA2¢

as

asap

a33

ass

ase

ay |

ay2

ays

it

“

cos ajL; - cosh a1l

- (sin ajL; + sinh aL;)

a2
— a
(al) CcOos sz

a2 )
(-a-i—) cosh a 2L2

e

-

sin a;L; + sinh a;L,
cos ajL; + cosh alL; .

- Ry (sin asLs; - asLs)
Rl(siéh aL, = a,L,)

Ry (sin asLjy - sinh ajlj)

Ry (cos. a3Liy - cosh asLsj)

cos aly + cosh ajl,

- (sin aiLy - siph ajLy)
R3(Cés asLa - 1)

"QR3 (COSh a2L2' - l)

R;, {(cos ajL3 ~ cosh ajLj)

- R,{sin ajL; + sinh a;Lj;)



where R; throtigh Rg have been defined in section (C.2)

asy = 0 A /
as; = 0 %
asy = sin azl'r v
s

asy = sinh a,L;
asg = = (sin ajzL3 + sinh ajLj)
asg = - (cos asLj + cosh aszlLiz)

. §
ag; = 0
agz = 0 .
agy = cos asLo
agy = .cosh asL,
ags = ‘ cos ajliy + cosh ajl;
agg = =~ (sin ajL3 - sinh ajLj)

C.6 Model (VI)-b

The elements of the frequency determinant are:

- ' Aoy ooy
sinh A]}Ll + (‘X‘l—l') (‘f:-l-) sSin x:lLl

i

a)

‘

ajz Q@Siknh -.Cos XLy

Wi

s



{_~

ars

ary

az3

24
25

dzs

a3]

A3y

)

= Sil:ﬂ'l )‘12L;_7

sin A5,L o

ay

= All'(COSh )\IlLl - COS )\21L1)
ST A By ,
Co= m(sxnh 1107 - (-A—;l-) (0‘—1-) sin A, Ly)
I .
= ;1—?-' - cosh xy,L,
B,
= - }‘5—2' * COs AzoLp
= 0 \ »
= 0
V2y
= BT (sinh dLy + () sin dail) M\
. 1 :
£y
= EIyy (cosh 11,0y - (&) cos \21L1)
p?Iﬁcu:az p?]\'zmz
MWip A
\ e
c polpwiay W™ By
=\ - > )
’\12 ) 2?2

’ D?A'_)mz Xl." 2‘
12 o

. Y
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a3

Ay y

aL.S

Ay

N
S '\‘ 90.
a
. ’ k"\\
2 -
0 p3ljwagy eirh A By (*13) L)
- —— (s8] ) Ly - — {~—) sin
53 ks~ oy 553 2303
pahyw? A .
- _'2"_ {sinh )\13L3 - (TLB') sin )\23L3) ]
A 23
BRSE
0313w s (113)2 oz <1+(A13;
- ————— [0 8l X +(——) <Os )‘ — )
A§3 13+3 K23 2373 A23
Q3A3w G Ay3 2
+ — cosh Ay3Lst '——("——') COS’ 2—3L:9
A5
a3 A)32
R
( B4 123) “
2
&
2
¥ 1A,G [COSh AIILI(\II - ——“0 + COs AZIIJN}——— y (1 + ]
a) %

x14G [sinh A Ly (A, - X}jﬁ + sin VL (V) + \ﬁl)]

<«

Dzhng .
“[ '——\"1‘;"‘ (COSh >\12L2

1)]

(—) (€S Az,Lp = 1)]

Ara Az
‘)3A3u)2
-[ 5 (cosh \y3L3 = cos A,3L3) ]
| ]
f)‘}‘ABWZ (!3
- — (sinh \jshy - (—-) ;'m \53La) ]

- mewaee



where M, Apisr ¢y, and 83 (1= 1,2,3) have been defined in section

(3.5).

. a5}

&s2

as3

dsgy

arsg

asg

ag)

253

g

Adgs

ag¢

i

0
. 4
sinh AIZLZ
sin X22L2
. A3, %,
- [ sinh }13L3 + (;:;ﬁ sin k23L3 ]

&3
~ [ cosh n3Lg - (55 05 23l I

0

@2
1o cosh Xy ,Ln

Bn ‘ ' >
- = COS Apolin
XZZ 2242

m‘ (mSh A 1 31;3 - ('&";) (e8] \23L3)
%3 . AERI
YT; (sinh X13L3 - (X;;) s1n \23L3)

\
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.
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R e
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. The computer proéram listed in this appendix was written to
solve the transcendental Frequency equations for the models of:the hier-
'archy used J.nt.hz.s study using an IMS Libréry routine, SUBROUTINE
ZREAL 1, which calcula't'es n real zeros of a real func'tion E where the
initial guesses are not known to be good. The listed program is for
the case of Model (VI)-a, 'che’ rnos’t! sophisticated rrodei, and the only \
difference k;et_:weén this case and any other model :Ln the pmg:émﬁng is

in the function F, which is the frequency ‘d_eteminant:-

.List of Symbols Used in the Program:

X Frequency.in rad/sec -

W Frequency in Hz. /
N Size of the fr;qxqefc; determinant.

u Poisson's ratio. ‘ ) -

XLI Length of ‘i-th segment, (I = 1,2,3):
AI Cross—éé‘ct.ional area of i-th segment, (I =1,2,3). -
RO1 Mass deilsity of the skirt.

RO2 Mass density of the vessel and its contents.

XIl Moment of ..inerti.e_x of the cross-section of the skirt.
X12 Moment of inertia of the cmés;section of t};e vessel.
E © Modulus of élasticity.‘
G Sflea.r.modulus.

XK Timoshenko shear coefficient.
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