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ABSTRACT

Carbocyclic ttnd heLerocyclic compounds are ilbiquitous in nature. Therefore, the

discovery and development of new ring forming reactions are of paramount interest to

synthetic organic chemists. Recently, the intramolecular cyclization of rr.active

intermediates, such as anions, cations, and radicals have provided a number of new

methods by which known and novel ring systems can be constructed. Cyclizations

involving tandem, or multiple sequences have gained considerable popularity due to their

high overall efficiency and remarkable speed by which these processes can yield complex

polycyclic ring systems.

Carbenes are another interesting class of reactive intermediates which undergo

characteristic reactions. The cyclization reactions of carbenes have not been studied to a

s\gnificant extent In particular. me work described in this thesis outlines the only study of

the intramolecular cydization of dioxycarbenes onto a tethered alkyne moiety.

The first section of this dissertation details the development of a convenient new

class of thennal dioxycarbene precursors. dioxyoxadiazolines I. which display many

significant advantages over previously used sources of dioxycarbenes D.
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The second section of this dissertation details the use of dioxyoxadiazolincs

possessing ~ tethered triple bond for the thenna! gencrJtion of dioxycarbcnes III which

are capable of intramolecular cyclization. It was found that the cyclization of u

dioxycarbent; onto a tethered triple bond results in the regioselective genc!"'Jtion, of

Wlother reactive intennediate, a 3,3-dioxyvinylcarbene (IV or V, depending on the nature

of R '), which can undergo a number of interesting intermolecular reactions. This approach

leads to the rapid construction of some interesting and rather complex polycyclic

heterocyles which are, in many cases, obtained with high rcgioselectivity and sometimes

even high stereoselectivity.

Meo~ Me~ MeoJOhctcrocyclic ~ ~ ~ - I .- hctcrocyclic
products • a ~ R' .. ~

products.
• 'P'

R' R'

IV III V

The resul~ described in this thesis mark the discovery and development of a new

synthetic methodology which may, by appropriate choice of the staning material, provide

a valuable tool for the rapid and selective synthesis of a number of heterocyclic ring

systems.
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Chapter 1: INTRODUCTION

"Carbenes", a term coined in the back of a Chicago tnxi cab by Doering, Winstcin,

and Woodward, I refers to a broad class of reactive intermediates that possess a divalent

carbon atom with two non-bonding electrons. These compounds (1) clearly violate the

"natural tetrnvalence of carbon" and, as a result. have intrigued both physical chemists and

theoreticians for many decades?-S Because of their divalence, carbenes are genemlly

highly reactive species that undergo rapid characteristic reactions with a number of

different substrates. In some cases these reactions display considerable synthetic potential.

x
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Figure 1

1.1 Electronic Configuration of Carbenes.

Carbenes have two low-lying states, a singlet (2) and a triplet (3). The electronic

configuration of a singlet carbene (2) consists of two paired electrons that occupy an in-

plane, "sp2 like", () molecular orbital. A higher energy p orbital, which is perpendicular to

the carbene molecular plane, is vacant in this state. Triplet carbenes (3), on the other
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hand, hav~ two ~mpaired electrons with the same spin; each of the electrons occupy one of

the two mutually perpendicular 0 and p orbitals.

The rcactivilies of singlet and triplet carbenes are generally very different and easy

to distingu~:;h; the former behave as electrophiles and/or nucleophiles, whereas the latter

arc more like mdicals. The ground state configuration of a carbene (singlet or triplet) is

dependent upon the relative energies of the a and p orbitals which, in turn, are detennined

by the nature of the substi tuents X and Y. Although carbenes can undergo reactions in the

excited state, most carbene reactions proceed via the ground state.

p-

p+. f t
~ring

Llliap
.1EoP

"~i)0+· _J_
T! So

Figure 2

As illustrated in Figure 2. a carbene will have a triplet (T1) ground state when the

energy difference between the 0' and p orbitals, denoted as tlliap, is smaller than the energy

(Epairing) required to overcome electron-electron repulsion between two paired electrons in

the same orbital. Conversely, if the AEop is larger than EpUiag. then the singlet (So) ground

state is favored. The energy difference between the triplet and singlet state for any given
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carbene is defined as .!lEST. By this definition, .!lEST is negative for triplet carbcncs and

positive for singlet carbenes.

A number of experimemal9.10 approaches have been used to detem1ine the ground

state as well as the magnitude of aEsT for a variety of carbenes. Computational methods

have also been extensively applied toward this purpose. llolS Recent advances in

computing power allow the use of ab-initio methods with very large basis sets and large

configuration-interaction (CI) to provide reasonable estimates of .!lEST for a variety of

carbenes.3•
16 Moreover, the dissociation-consistent CI method (DCCI), when combined

with experimental data, provides LllisT with unprecedented reliability for a handful of

carbenes.17,18

The parent carbene (X =Y =H), methylene, has a triplet ground state. TIle most

recent experimentally determined value of .!lEST for this carbenel9 has been found to be

- 9.02 kcaVmol. The use of computational methods to compute the geometry and the

aEST of methylene accurately has been an issue of much controversyll ever since the first

ab-initio investigation of methylene conducted by Foster and Boys in 1960.20 Recent!y,

high level ab-initio calculations using a very large basi~ set (through g functions on carbon

and d functions on hydrogen) and a large CI (over 70,000 configurations) have allowed

estimation of LlEsr for methylene to within 0.1 kcal / mol of the experimental value.
l6


































































































































































































































































































































































