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ABSTRACT

In this study, we have attempted to empirically assess the efficiency of a
sample of Bangladeshi farmers in the cultivation of rice, the most important
crop in the country. That sample is drawn from Khilghati, a village 1lying
about 95 miles north of the capital city of Dhaka. Cur empirical analysis is
based on survey data collected by Khandker (1982} for the 1981-82 crop year.

The importance of farmer efficlency in Bangladeshi agriculture camnot be
overstated glven the predominance of agriculture in the economy, low crop
yields and linmited land supplles relative to population. While the adoption of
"Green Revolution" technologies involving the use of more productive seed
varieties and fertilizer imputs are undoubtedly important for increasing
ylelds, and while progress has been made in that direction, attention also
needs be paid to improving the efficliency of farmers within the framework of
any technoloqy, be it of the traditional or more modern kind. The data for
Khilghati provides an opportunity to examine this question. In particular, we
construct indices to assess the efficiency of Khilghatl farmers in the
cultivation of the traditional, wet-season "Aman" and “Aus® rice crops, and
the dry season, new-technology "Boro™ rice crop.

Several efficiency indices are estimated for each crop. Thus, we construct
multi-factor indices of technical and allocative efficiency, as well as
factor-specific efficliency indices which are indicators of the efficiency of
individval factor usage. Technical efficiency refers to the effiziency of
factor use in the physical sense and is an attribute of the production
function, while allocative efficiency is a cost concept, and is associated
with the question of whether a firm utilizes inputs in the "rigat" (that is,

cost-minimizing) proportions.
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Technical and allocative effliciency can be modeled and estimated in
different ways [Schmidt (1986)]. In this study, given the nature of the data
available, the efficlency indices are constructed from deterministic and
stochastic Cobb-Douglas production frontiers. In the deterministic case, all
departures from the £rontler are taken to represent inefficliency, while
stochastic ifrontlers additionslly allow for statistical nolise. The estimation
of the production frontier generally {though not always) lnvolves assumptions
about the distributlon of the technical inefficiency term in the deterministic
case, and additionally statlstical nolse in the stochastic case. To examine
the sensitivity of the estimates, we consider two alternative assumptlons
about the technical inefficiency term - one, that it follows a half-normal
distribution and two, that it follows an exponential distribution. These
distributions imply that technical inefficliency places the firm on or below
the deterministic/stochastic frontier. In the stochastic case, we assums that
the disturbance term reflecting statistical noise is normally distributed witk
zero mean and constant variance.

The deterministic frontier is estimated by two versions of the corrected
least squares (COLS) as well as by linear and quadratic programming
techniques, while the stochastic frontier is estimated by the COLS and maximum
likelihood methods. The distributional assumptions stated earllier are critical
aspects of the estimation strategy, particularly in the stochastic case where
they are needed in order to separate technical irefficliency from statistical
nolse. Cur results indicate that the efficiency estimates are somewhat
sensitive to estimation mechod and distributional assumptlons, though
primarily in the deterministic case. More Iimportantly, we £ind that the
relative ranking of farmers along the technical oxr allocative efficiency

spectram is largely independent of estimation wmethod and distributional
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assumptions under the deterministic and stochastic approaches. The major
dlfference between the two approaches is that, under the latter, the average
level of technical efficiency is clearly higher, with statistical nolse being
an important reason for departures from the deterministic kernel. This polnts
to the importance of allowing for statistical noise. The following discussion
deals with estimates obtained from the stochastic frontier, unless noted
otherwise,

The estimates of technical efficlency suggest that Khilghatl farmers are
highly efficlent in the cultivation of all crops, with at least 70 pexcent of
farmers having a technical efficiency index in excess of 80 percent. Average
technical efficlency ls about 90 percent in Aman, and about 85 percent in Aus
and Bore cultivation. In allocative terms, farmers are markedly less
efficient, and the Inter-crop variation is also greater. Thus, average
allocative efficiency 1s in the 70-75 percent range for Aman and Boro, but
only about 50 percent for Aus. Alternative distributional assumptions have
only a minor impact on the allocative efficiency estimates and a somewhat
larger lmpact on the technical efficlency estimates.

We used our estimates of technical and allocative efficiency to examine a
number of Iissues. Thus, correlation analysis provides limited evidence to
indicate that a farm household's technical (allocative) efficlency indices are
related across crops, lndicating perhaps that efficient cultivation practices
are crop-specific, and that farmers' growing experience and/ox learning by
doing also vary across crops. We also found little evidence to support the
view that technically more efficlent farmers are 2also allocatively more
efficient. In addition, we examined the widely held view that better educated
farmers are relatively more efficient in the technlcal and/or allocative
senses, in a regression context. Only allocative effliciency in Aaman

cultivation and technical efficiency in Boro cultivatlon were found to bear a2
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statistlcally significant positive relatlonship with farmer educatlon.

our factor-specific estimates of efficiency suggest that farmers are least
efficient, in the physical sense, in the use of labour (the relatively
abundant factor), and generally most efficlent in the use of land (the
relatively scarce factor}. The inefficiency of labour usage 1s substantial;
however, the greatest gain (in terms of cost saving) would be reallzed
through the elimination of inefficlency Iin land or other Iinmputs, and not
labour.

Several implications £ollow from our findings. Farmers appear to be as
efficient in the new-technology Boro crop as in the traditional Aman and Aus
crops. A policy of encoeraging the adoption of such HYV crcps is thus
well-founded. However, attention clearly needs to be paid to improving farmer
skills within the existing crops. For instance, rural development policies
could be geared to Iimproving allocative skills, perhaps through rural
education, and more effective management of extension services and ruxal
co-operatives. Our estimates point to a substantial cost saving via such an
improvement. Those policies would probably have to take account of possible
differences in efficlent cultivation practices across crops. Policles aimed at
improving the efficliency of highly scarce inputs such as land could also go a
long way towards Improving the overall efficiency of farmers. In fact, since
the relative price of land can be expected to increase over tiwme, the cost
reductions by improving the efficiency of land use could be substantial.
Finally, it may be that institutional constraints on individual behaviour
foster inefficiency. For example, the lack of access of smaller farmers to
credit, government-supplied chemical fertilizer and public services may lead
them to make inefficient choices. Bnsuring greater access to those farmers

could be important in promoting greater efficlency.
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CHAPTER 1
THE NATURE AND ORGANIZATION OF THE STUDY

The focus of this study is on the measurement of efficlency of farmers in
Bangladesh, a primarily agzicultural economy. Schultz's 1964 contention that
farmers in developing countries are poor but efficlent provided a strong
impetus to empirical studies in the area.l Earller studies by Tax {(1953) and
Hopper (1957} appeared to confirm this contention.2 The tests for efficlency
also gave rise to numerous studies which explored the role of varlous factors
in fostering greater efficiency. In this context, the role of education, both
formal and informal, was explored by many investigators. As the survey article
by Lockheed (1980} suggests, better educated farmers tend to be more efficient
than uneducated ones.3 The exploration of static efficiency soon spilled over
into questions pertaining to dynamic efficiency. That is, notwithstanding the
static efficlency of farmers (il.e. within the framework of a given technology)
in developing countries, the guestions being posed were: do farmers adapt to
changing technology, how successful are they, and what are the £factors
explaining their response.4 This is an important set of questions In countries
like Bangladesh where the government has actively sought to encourage the
adoption of "Green Revolution™ technologies.

In the context of poor, agriculture-based economies, the question of
efficlency is an extremely important one. Clearly, whether farmers are more or
less efficient in any sense could mean significantly different standards of
living, given the dominance of farming in economic activity. Thus, if farmers
are Inefficlent, government policies aimed at Increased efficlency could be

extremely important in <fostering higher standaxds of 1living for a large



proportion of the population. It 1s, therxefore, also important to explore the
reasons underlying that inefficiency so that the appropriate policles for
reducing it can be fashioned. The significance of these issues should not be
understated for Bangladesh agriculture, the focus of this study.

Bangladesh is a predominantly agricultural economy, characterized by
extremely high population pressure and very 1low standards of living.
Population growth has averaged about 2.1 percent per annum through the
eightles, and the density of population was a high 769 per square kilometer in
1989. In splte of the decline in the share of agriculture in gross domestic
product through the seventies and eighties, agriculture accounted for close to
50 percent of gross domestlc product by the mld-elghties, and continues to be
the source of livelihood for a majority of the population.5 The production of
foodgrains, particularly rice, is the major agricultural activity. Thus, while
rice and wheat together accounted for an average ofkmore than 83 percent of
gross cropped area during the 1980-1982 perlod, rice itself accounted for 80
percent of cropped area, and for 93 percent of foodqrains produced over that
period.6 Jute is the other major crop grown; it competes with rice for
productive resources, as thelr growlng seasons overlap. While Bangladesh ls a
net importer of <£foodgrains, Jute 1s the major export commodity. Thus,
agriculture plays a significant role, not only in supplylng the wage-goods
for the populatlon at large, but as the major source of the foreign exchange
required to develop the industrial sector sector of the country so that the
vast surpluses of labour in agriculture can be absorbed. Consequently, rapid
agricultural growth can be expected to play a leading role in determining the
standard of living of the vast majority of the populace. Thls can be achieved
through faster capital accumulation and increased productivity. However, given

that Bangladeshi agriculture is based on small landholdings, and the potential



supply of cultlvatable land is limited, increased farmer productivity acquires
even greater significance, and greater efficiency of resource use is a
potentially lmportant channel through which increases In productivity can be
attained. This requires not only greater efficlency within the framework of
older technologles, but also a rapid and effliclent adaptation to the newer
ones.

The government Initiated the spread of "Green Revolution" technologles
during the early sixties, and since then there has been an impressive Increase
in fertilizer use, irrigated area and the cropped area under high-vielding
seed varletles, particularly in the productlon of zice.7 ﬁevertheless,
Bangladesh agriculture 1s still primarily based on largely traditional farming
practices, and agricultural ylelds are among the léwest in the world. The
unequal access of small farmers to Iimportant, new technology inputs, as a
result of a number of soclal and institutlonal barriers, has undoubtedly been
one lmportant factor in impeding the efficient adoptlion of the new technology,
particularly in the production of the high-yielding winter rice crop which
requires timely avallabllity of water supplies and inputs such as fertilizer
[ses, for instance, Ahmed and Freedman {1982)]. Whether that inefficiency is
significant, and whether it varies to an appreciable degree between
high-ylelding and other crops ln Bangladesh agriculture, remains an emplrical
issue, and one which we attempt to address in this study.

Our study examines empirlcally the efficlency question, using as our
sample a group of farmers taken from the village of Khlilghatl, which lies some
95 miles north of the capital city of Dhaka. The data for this village for the
three cropping seasons, running f£rom April 1981 through March 1982, were
collected by Khandker (1982) through three sets of interviews conducted during

the July 1981-March 1982 interval. Khilghat! is quite typical of villages in



Bangladesh, though in contrast to some other villages It speclalizes malinly
in the production of rice which occuples almost 30 percent of the cropped
area, a figure well above the national average. It grows three rice crops
during the year, the cultivation of the high-yielding winter rice reflecting
the adaptation to new technolugles. Our prlmary focus ls on the measurement of
the efficlency of Khilghati farmers, both in the technlcal and allocative
senses, and the determination of whether there is a pattern to the variation
in efficliency across crops, and of what £factors appear to explain inter-farm
efficlency dlfferentials.

The concept of efficiency lies at the very foundations of economic theory.
Several types of efficiency can be identified, each corresponding to different
aspects of the production process. Thus, technical efficlency can be
represented by the production functlon/frontier, which shows the maximum
output producible from any given set of inputs, while economic efficiency is
represented by the cost function/frontier and subsumes both technical and
allocative efficiency, the latter requiring the correct factor proportions to
produce any level of output. The broadest concept of efficiency is tllustrated
by the profit frontier which requires not only that the firm is economically
efficient (that Is, technlcally and allocatively efficient), but also scale-
efficient, in that it chooses the profit maximizing level of output.8 The
conditions for efficiency can also be extended to deal with multiple output
technologies. At the theoretical 1level, the production, cost and profit
functions are alli frontiers in that each specifies the maximum/minimum
attalnable values. From the empirical viewpoint, therefore, the problem is to
estimate those functions, such that actual output or profit does not exceed

frontier output or profit, and actual cost is no less than frontier cost.

In his pioneering study, Farrell (13857) showed how one could measure



technlcal, allocative and economic eiflclency by estimating a non-parametric
production frontler, characterized by constant returns to scale. However,
frontier estimation, particularly of the parametric type, 4id not receive much
attention for many years after that. In 1968, Aigner and Chu showed how a
parametric production frontler could be estimated by programming methods.
However, even their work was followed by only a relatively few attempts to
empirically measure parametric frontlers. It is only over the past decade or
so that the measurement of such frontiers has attracted considerable attentlon
but there is now a substantial literature on the subject. Much of the earller
empirical literature on frontier estimation viewed the frontier as being
deterministic, so that all departuzres from that frontier were attributed to
inefficiency (Farrell (1957), Algner and Chu_(lSS&}, Timmer {1970}, are some
examples]. A more general approach was suggested subsequently by Algner et al.
(1977} and Meeusen and van den Broeck (1977), who regarded the frontier itself
as being stochastic., As 3 result, departures from the deterministic kernel
could represent both random factors beyond the control of the f£irm (that is,
statistical noise) as well as inefficiency. Parametric, stochastic frontiers
are now commonly used in empirical studles, even though theoretical frontiers
are deterministic. The primary advantage of stochastic frontiers stems from
the fact that thelr use reduces the danger of lnefficiency being confused with
statistical noise.9 On the other hand, they suffer from the drawback that
specific distributional assumptions about the statlistical noise and
inefficlency terms are needed in order to estimate flrm-specific efficiency,
and the estimates can be sensitive to those assumptions. This problem can be
dealt with more satisfactorily if panel data are avallable [see, for lnstance,
Schmidt and Sickles (1984), Cornwell, Schmidt and Sickles (1%890), and

Kumbhakar (1990)). However, the sample used in this study is cross-sectional;



consequently, in order to cbtaln firm-specific estimatas of efficiency, we
have had to make distributional assumptions about the statistical noise and
inefficiency terms. We, nevertheless, consider alternative assumptions to
examine the sensitivity of our results.

As stated earlier, our interest in this study lies i{n the measurement of
technical and allocatlve efficlency in rice farming in the Bangladeshi village
of Khilghatl. As a consequence, we do not consider questlons pertalining to

scale etfficiency and profit frontiers. Either the cost frontier or the

production frontier can serve as the basis for measuring a farmer's techrical
and allocative efficiency [(see, for instance, Kopp (1981), Lovell and Schmidt
(1979) and Kopp and Diewert (1982)1. This |is straightforward when the
technology is self-duval. The use of the cost frontier as the relevant
efficiency standard is ruled out in this study in view of the absence of
sufficient factor price variation among the farm households in our sample.
Thus, we estimate a production frontier and construct farm-specific technical
and allocative efficiency indices for each of the three dominant crops in
Khilghati. These are the "Aus" {spring), the broadcast "Aman" (summer) and the
high-yielding "Boxo"™ (winter) rice crops grown over the crop cycle beginning
in March. In addition, these indices are constructed from both deterministic
and siochastic production frontiers. The production frontier yields two
alternative measures of technical efficiency. One is an output-based index and
the other is a generalized Farrell, input-based index (see Kopp{1981)]. Since
the two are ldentical only under rather special conditions, we compute both
indices. The allocative efficiency indices computed are these suggested by
Kopp, and are also generalizations of the Farzell index. The input-based
technical and allocative efficiency indices additionally enable us to estimate

the extra cost resulting from both technical and allocative mistakes. The



aforementioned indices of technical and allocatlive efficlency are multi-
factor indices, in that they cannot tell us anything about the relative
efficiency of different factors. It Is possible, however, to estimate both
factor-specific technical and allocative efficiency indices for each farm
household, and this we also do for each farm household and crop, using the
approach suggested by Kopp.

The estimation of parametric production frontlers raises some speclal
consideratlions, apart from those that are common to all empirical studies,
hmong the latter Is the important guestlion of functional form. In thils study,
the production function is assumed to take the Cobb-Douglas form. While, on
prior grounds, a more general specification {e.g translog) would be
preferable, many £frontier studies have successfully applied the simpler
Cobb-Douglas function. In addition, as we arque in Chapter 2, the latter is
not without some advantages in a frontlier setting, particularly in the context
of the measurement of allocative efficiency. Once the functional form is
specified, the production frontier can be estimated in a number of different
vays. To begin with, the deterministic €£rontier need not be estimated by
statistical methods, and thus requires none of the assumptions assoclated with
single equation econometric estimation. Thus, following Algner and Chu (1968),
wve minimize (1) the absolute sum and (il) the sum of squares of the dlfference
between frontier and actual output, each under the constraint that actual
output is no greater than frontier output at each observation. Wwith a
Cobb-Douglas frontier, the former is a 1linear programming problem and the
latter is one of quadratic programming. Of course, since we merely compute
the frontier, it has the drawback of having no formal statistical properties.
As it turns out though, the linear programming and gquadratic programming

Festimators® are in fact identical to the maximum likelihood estimators, under



the assumption that the disturbance ln the log-linear Cobb-Douglas function
follows an exponential and half- normal Qdistribution respectively ischmidt
(1976)].10 However, the usual properties of maximum likelihood estimators do
not apply since one of the regularity conditions upon which those properties
depend is vlolated.ll

¥e also estimate the deterministic f£rontier by statistical methods. We
assume that the disturbances in the frontier functlon are identlically and
ind:pendently distributed, that the input guantities are independent of those
disturbances, that technical inefficiency is unknown to the farmers, and that

farmers maximlize expected or median profits. Under those assumptions, ordinary

least squares gives consistent estimates of all parameters except the

12

intercept term. However, ordinary least squares does not estimate a

frontier, so0 we modify that method and adopt what can be termed the
"corrected" least squares method (COLS for short). We consider two alternative
versions of COLS. Both give consistent estimates of the intercept as well [see
Greene (1980)]; however, one requires an explicit assumption about the
distribution of the disturbance term and does not guarantee that actual
cutput will not exceed frontier output. In light of the fact that the resultis
can be sensitive to that speclification, we consider two alternatire
distzibutions - the exponential and half-normal - to represent technical
inefficlency.

The estimation of the stochastic frontler depends upon distributional
assumptions in a more fundamental way. A distributional assumption ls required
for both components of the disturbance term - one reflecting statistical nolse
and the other reflecting technical inefficlency. The former is assumed to
follow a normal distribution, while the latter is assumed to follow, as in the

deterministic case, either an exponential or a half-normal distributien. In



this study, the productlon frontler 1s first eatimated by the CCLS method, and
then by the asymptotically more efflclent maximum likelihood methed. Because
the maximum likelihood function, in this case, is not the standard type,
analytical formulae for the parameters cannot be derlved. Solutions have to be
sought through numerical optimization. Whether we use the COLS or maximum
1ikelihcod method, the distributional assumptions stated above are crucial
requirements for separating technlcal inefficlency from statistical noise, in
order to estimate the stochastic frontler at the level of the individual farm.

The study is oxganized as follows. In chapter 2, we discuss three sets of
lasues. First, in Section 2.2, we present an overview of the theoretical
concepts of technical, allocative, economic and price efficiency. Section 2.3
contains a detailed discussion ot the alternative approaches to the
measurement of efficlency, the starting polnt belng the non-parametric
approach first suggeste¢ by Farrell (1957); this material 1s provided in
sub-section 2.3.1. Sub-section 2.3.2 discusses the notion of parametric
frontlers as efflclency standards, drawlng-a dlstinctlon between deterministic
and stochastic frontiers, and now they can be used to model inefficiency. The
methods and problems of measuring technical and allocative efficiency from a
knowledge of elther the production or cost frontier, as well as those of
measuring factor-speclfic technical and allocative cfficlency arxe also
discussed. We conciude this sub-section by examining some of the problems that
arise for the measurement of allocatlve efficiency when a £firm's actual
output, the basls for efficiency measurement, differs from the output the flrm
expected to produce. This is a potentially important problem and appears to
have been largely Iignored in the literature. We discuss some of the major
measurement lssues ralsed by this problem.

In Section 2.4 we examine the problems of specification and estimation of



frontiers. our purpose here 1s to review those aspects of specification and

estimation that are somewhat unlque to frontlers. sSub-sectlon 2.4.1 addresses
the problem of specification in the broad sense. Thus, we discuss not only the

question of <functional form, but also the implications of various
distributional assumptions and how the problem of separating statistlical nolse
from technical inefficiency can be dealt with. The estimation methods (alluded
to in the foregoing pages}, and the assumptions underlying them are reviewed

in sub-section 2.4.2. Section 2.5 concludes by summarizing the main polints of

the chapter.

The purpose of Chapter 3 is twofold. First, in Section 3.2, we present an
outline of our sample economy, the village of Khilghati. Our discussion is
brief and we concentrate on those characteristics of Khilghati that have a
direct bearing on this study, such as the structure of economlic activity
[discussed in sub-section 3.2.1) and the nature of tenancy arrangements,
factor maxkets and employment [discussed in sub-section 3.2.2). The second
objective of this chapter is to provide a clear presentation ¢f our models and
the estimation strategy. This is done in Section 3.3 . We first discuss the
considerations governing our choice of production £rontier for Khilghati, the
input set included and the problems of measuring factor prices needed for the
measurement of allocative efficiency; this discussion 1is provided in
subsections 3.3.1 and 3.3.2. In sub-section 3.3.3 we outline our estimation
strateqy, as well as the computatiocnal procedure for obtalning each of our
efficiency indices. Section 3.5 is a summary of the chapter.

In Chapters 4 and 5, we present and evaluate ocur findings. Chapter 4 deals
with the results based on a deterministic frontiex, while those from the
stochastic frontier are examined in Chapter S. One of the qgquestions we

attempt to address in these chapters pertains to the 1likely causes for
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inter-farm as well as inter-crop varlatlons in allocative and technical
efficlency. In particular, we examine whether factors such as farmer education
and/or membership in agricultural co-operatives are important in this context,
and whether their role varles slignificantly across crops. In Chapter 6, we

summarize our £indings and point to some important implications that follow

from them.
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10.

FOOTNOTES TO CHAPTER 1

Schultz (1964).
For a contrary view, see Shapiro (1983).

Lockheed et al.'s examination of thirteen studies suggests that education
does have a positive impact on technical efficiency, and that the
likelihood of a positive impact 1s greater the more modernizing the
environment. While some writers like Phillips (1966) have guestlioned some
aspects of the Lockheed et al. interpretation of these studies, the
growing evidence is that there 1s a threshold education level, below which
education has only a minor impact on technical efficlency.

See, for lnstance, Jamison and Moock (1981).

Thus, up until the early elghties, about 75 percent of the labour force
was engaged In agriculture. See Khandker (1982), p. 157, footnote 1.

Tnese fiqures are taken from Alauddin and Tisdell (1988), p. 199.
Ibid., p. 2060.

The term allocative efficlency ls often used to imply profit maximization.
In this study, we use it to signify equallty between the ratio of marginal
products of any palr of factors and their respective prices, which
corresponds to cost minimlzation.

Deterministic and stochastic £frontiers have been surveyed by Forsund,
Lovell and Schmidt (1380) and Schmidt (1986). Recent developments in the
area are the subject of a paper by Bauer (1999). The literature surveyed
in these papers deals primarily with the econometric estimation of
parametric frontlers. In the operations research/management science
fields, however, a parallel literature, emphasizing a non-parametric,
mathematical programming approach has also grown rapidly. This alternative
approach, popularly known as "Data Eauvelope Analysis" (DEA), was ploneered
by Charnes, Ccoper and Rhodes (1978, 1981), and has recently been surveyed
by Seiford and Thrall (1991). DEA represents a non-parametric extension of
Parrell (1957) and utilizes mathematical programming techniques to
construct frontlers. It, therefore, imposes no functional form nor
distributional assumptions on the data. However, it has the drawback that
statistical noise 1s ignored (all frontiers are deterministic), and the
statistical properties of the estimates are unknown. In our study, the
focus is largely on econometric frontiers. We do, however, estimate some
deterministic frontlers by programmling methods.

In the deterministic frontier, a one-sided disturbance term is required to
represent technical inefficiency. The exponential and half-normal
distributions meet this requirement. In the stochastic frontier, a
specific assumption about the distribution of the variable reflecting
statistical nolse is also required.
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11. Schmidt (1976}.

12. See, for instance, Kumbhakar (1987).
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CHAPTER 2

THE HEANING AND MEASUREMENT OF EFFICIENCY: A REVIEW

2.1 INTRODUCTION

In this chapter, our purpose is to review the major theoretical and
empirical issuves pertaining to the measurement of firm eifficiency. We begin
with a brief discussion of various ways in which the efficlency of a firm can
be characterized (Section 2.1). Section 2.2 deals with the various approaches
to modeling and measuring efficiency, and their problems. In that sectlon, the
discussion proceeds on the assumption that the relevant efficiency standard
used for measuring firm efficiency 1s known. The problems relating to the
specification and estimation of those efficiency standards are discussed in

Section 2.3. Section 2.4 summarizes the chapter.
2.2 THE CONCEPT AND TYPES OF EFFICIENCY: A THEORETICAL OUTLINE

In theory, firm efficiency can be of three types, depending upon which
aspect of the firm's productive process is being referred to. These can be
described in precise fashion by considering a firm that produces a single
output with the help of a vector of production factors.l We assume that the
£irm buys the services of factors and sells its output at £ixed prices. It is

further assumed that the underlying technology can be represented by the

production function:

y = £(x) (1}
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where y is output and x is the vector of production factors. The production
function of a firm depicts the maximum output that can be produced from any
given vector of Inputs. In that sense, the function described by (1) depicts
an efficlent transformation of inputs irto output. More formally, a production
plan {y°, x°} is technically efficient 1if y° = f(xol, and technically
inefficient if y° < £(x°). That is, any plan that places the firm below the
frontier represented by (1) is inefficlent in a technical sense. Technical
inefficiency could arise if the technology is not fully known, or if it is
poorly implemented (bad management}, or a combination of both. In view of the
fact that the production function is the primary constraint on the firm's
behaviour, technical efficiency (or the lack of it) is a critical factor in
the overall efficlency of the firm.

If the production function (1) is well behaved, a £irm's efficiency can

also be studled in terms of its dual - the cost function - which is:

cC = ¢y, r) {2)

where C stands for cost and r is the vector of factor prices. The cost
function shows the lowest cost for producing any given output, given factor
prices and the underlying technology (1). If the production plan of a firm
satisfles (2), then that plan can be said to be economically efficient. More
formally, a production plan {yo, xo} is economically efficient if r*x°=
C(yo,r), and economically inefficient if rexC > C(yo,r).

A third representation of efficiency can be made in terms of the profit
function, on the assumption of profit maximization given (1), (2) and a £ixed

product price p. Under this assumption, we can write the profit function as:
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I = 0O(p, ) {3)

where I1 stands for profit. The profit frontier shows the maximum profit
attainable, given the technology and product and factor prices. The production
plan {yo,x°} can be said to be price efficient if (poyo-r'xol =N({p,r}.
Price inefficiency thus arises if the profit earned from a given production
plan is less than the maximum attainable profit.

Bach of the aktove functions represents a particular type of efficiency,
and in light of the fact that each embodies optimality of some kind, each can
be viewed as a frontier in that no production plan that is feasible can place
the firm above it in the case of the producticin or profit frontier, or below
it in the case of the cost frontier. Frontiers have come to occupy a central
place in the study of firm inefficiency. In particular, once a frontier can be
estimated such that all observations are bounded by it, firm inefficlency of a
particular type can be evaluated in terms of departures from that frontler.

It follows from the foregoing discussion that price efficiency is the
broadest of the three types of efficiency dealt with. In pari:icular, the
existence of price efficiency implies economic efficiency, while the latter
implies technical efficiency. On the other hand, technical efficiency lis
necessary but not sufficient for economic efficiency, and the latter |is
necessary but not sufiicient for price efficiency. Clearly, economic
efficlency requires something more than technical efficiency, and price
efficiency requires something beyond economic efficiency. These additional
requirements for economic and price efficiency necessitate two additional
efficiency concepts - namely, allocative and scale efficiency. These can be

illustrated as follows.

In oxder for a production plan to be economically efficient, the given
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output must be produced at minimum cost. If that plan is inefficient Iin a
technical sense (input use is in excess of the minimum required), this would
translate into extra costs and hence economic inefficlency. However, even if
the productlion plan is technically efficient, costs could be above the minimum
if the inputs are not used in the "right" proportions. Thus, economic
efficiency requires not only that the production plan be technically
efficient, but that it alsc involve using inputs in the "right" proportions.
The latter requirement is known as allocative efficiency, and is met if the
ratio of marginal products of any pair of factors equals the ratio of their

prices. That is,
fL(x) / fj(x) =T/ rj for all i and j (4)

wheze fi and fj are the marginal products of factors i and j respectively.
Thus, technical and allocative efficiency imply (and arze implied by) econcmic
efficlency, and departures from the cost frontier (economic inefficiency)
could reflect technical or allecative mistakes, or both.

A production plan that is economically inefficient (due to technical or
allocative mistakes, or both) must also be price inefficient, since then the
firm could not be maximizing profits. However, even if the plan were
economically efficient, that would not be sufficient for maximum profits,
since the firm could be producing the wrong output. Economic efficiency
guarantees that the chosen ocutput is produced at minimum cost, but it does not
guarantee that that output maximizes the difference between revenue and cost.
To ensure the latter, the firm must additionally choose the correct output
(scale). This requirement is known as scale efficiency, and is met if, under

our assumptlon of a fixed product price P, marginal cost equals product price.
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That is, if p= C:‘r . where cy is marginal cost. Thus, technical, allocative and
scale efficiency imply (and@ are implied by) price efficiency. It €follows,
therefore, that departures from the profit frontier (price inefficiency) could
reflect technical inefficiency, allocative inefficiency, scale inefficlency,
or some combination thereof.

The brief sketch above provides the basic theoretical framework that
underlies most empirical approaches to efficiency measurement, whether or nect
those approaches adopt the theoretical concept of a frontier. In this study,
we do not deal with the non-frontier approach to efficiency mea:m:n:ement.2 It
is assumed that efficlency standards can be represented by the relevant
frontiers, and our discussion in the rest of this chapter looks at the
problems of modeling inefficiency and the specification and estimation of
frontiers. Further, since the primary focus is on technical and allocative
efficiency, we do not discuss scale, and hence price, efficiency. In most
cases, our discussion can be modified and extended to deal with the latter

type of efficiency or with more general multiple-output technologies.

2.3 THE MEASUREMENT OF EFFICIENCY: A REVIEW OF ALTERNATIVE
MODELS

Approaches to the measurement of efficiency differ according to the choice
of efficiency standard, the manner in which '1nef£iciency is modeled and the
methods used to estimate the standard. The purpese of this section is to
present an overview of the issues relating to the choice of the efficiency
standard and the modeling of technical and allocative efficency.3 We begin
with the pioneering , non-parametric work of Farrell (1957), which was the

precursor of the nawer and moxe general parametrlc frontier approaches.
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2.3.1 THE FARRELL APPROACH

In his now classic 1957 article, Parrell proposed indices that could be
used to measure hoth the technical and allocative efficiency of a firm. He
chose as the efficiency standard the unlt isoquant, which under his assumption
of constant returns to scale is fully represerntative of che entire technology.
Empirically, the efficliency standard was the outer envelope of the convex hull
for one unit of output, constructed from the observed input-output ratlos by
linear programming techniques. In the two input case, Farrell's efficlency
standard can be represented by the curve abcd in Figure 1 below. This could
be replaced by a smooth isoquant without changing the analysis. Farrell used
this unit isoquant to propose measures of technical, allocative and economic
efficiency.

Consider an actual factor combination - say that given by point G in the
flgure. Farrell proposed that the technical efficlency of G , denoted by TE(G)

can be measured as
TE(G) = OH/0G {5)

where H is the technically efficient production plan whose factor ratio is
identical to that of G. Note that 0 < TE(G) < 1 and {1 - TE(G)] represents
the proportionate reduction in both inputs required to eliminate technical
inefficlency, holding the factor ratio constant.

Farrell also proposed a measure of the allocative efficiency at G that was
independent of the technical inefficiency at that point. Suppose that factor
prices are such that the isocost line ff’ is tangent to the linear segment be.

Any factor combination on that segment Is an optimal one. Farrell's index of
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allocative efficlency, AE(G), Is then:

AE(G) = 0J/OH (6)

where J uses the same factor ratlo as G and costs no more or less than any of
the optimal combinations along bc. This measure of allocative efficiency is
clearly independent of the degree of technical inefficiency at G, and thus
measures the inefficiency arising only out of allocative mistakes. Indeed, (1
-AE(G)] measures the proportionate cost saving that would be achicved by
eliminating allocative inefficiency by moving from factor ratio H to any ratio
consistent with the segment bc. Note that, in this framework, TE(G) can also
be given a cost Iinterpretation. In particular,[l - TE(G)] measures the
proportionate cost saving possible by eliminating technical inefficiency (that
is, by moving from G to H).

On the basis of these measures, Farrell proposed that the overall economic

efficiency of G, EE(G), would be indicated by the product of TE{G) and AE(G).
That is,

EE(G} = (OH/0G)(0J/0H) = 0J/0G (7)

It is clear that {1 - EE(G)] measures the proportionate cost reduction
resulting from the elimination of technical and allocative inefficiency.

Alternatively, this cost reduction can be viewed in terms of its components as

follows:

Overall cost reduction = 1 - EE(G) = JG/0G

But JG/0G = (JH + HG)/0G = JH/OG + HG/0G
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= [1 - TE(G)] + {1 - AB(G)]

In summary, the Farrell approach is %o estimate a non-parametric
efficiency frontier and, under the assumption of constant returns to scale, to
propose linput-based measures of technical and allocative efficiency. Attempts
to extend the approach to non constant returns and/or nonhomogeneous
technologies proved cumbersome':4 As a result, Farzxell's measures were not
applied much. An important step in the development of effictency measurement,
itself a consequence of Farrell's work, was the specification of the
efficlency standard in mathematical form. This fostered the development of the
now commonly-used parametric approaches to efficiency measurement. While most
of the newer parametric approaches involve measures of efficiency that are not
of the Farrell type (that is, are not input-based), Kopp (1981}, in a useful
paper, showed how generalized Farrell indices of technical and allocative
efficiency could be obtained from a parametric frontier function that was not

restricted to constant returns to scale and/or homogeneous technologles.s

These generalized Farrell indices are discussed later in this section.
2.3.2 PARAMETRIC FRONTIERS AND EFFICIENCY MEASUREMENT

A logical extension of Farrell's non-parametric approach was the
specification of the relevant efficiency standard in mathematical form. This
permitted the analysis to be generalized to non-homogeneous technologies, and
facilitated the development of alternative measuxes of efficiency. Once the
form of the parametric frontier 1s specified, it can be estimated by
statlstical, and in some cases by non-statistical methods from sample data and
the efficiency of actual productlion plans can then be evaluvated in terms of

departures from the relevant frontier. In particulaz, the production frontier
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can be used to measure technical efficlency, while the cost and profit
frontiers enable the estimation of economic and price efficency. Since our
primary Iinterest in this study is on technical efflclency and allocative
efficlency, our discussion will deal primarily with those types.
Nevertheless, much of this discussion carries over (with minor modifications)

to price efficlency.

Deterministic vs. Stochastic Frontiers as Efficiency Standards
Parametric frontiers as efficiency standards can be either deterministic
or :atoc:has’cic:.6 Much of the earlier literature on the subject [see for
instance Aigner and Chu (1968) and Timmer 1971)) dealt with frontiers that
were assumed (implicitly} to be deteministic.? Under this scheme all
departures £rom the relevant <£frontier represented inefficiency. Thus,
considering the case of production, the technical efficiency of any production

plan can be measured by the following index:

v = y/f(x) (8)

vhere y is the actval output and f£{x) the frontier output associated with the
preduction plan, and the technical efficiency index w lies in the zero-one
interval. Notice that w is an output-based measure of technical efficiency,
focusing as it does on the proporticnate amount by which output could be
increased by eliminating that inefficiency. It is thus conceptually different
from the Farrell Input-based index, which measures technical efficiency in
terms of the degree of excessive input usage. Under the Farrell restriction of
constant returns to scale the two indexes are identical, but under more

general conditions this would no longer be true, a point discussed in greater
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depth later in the chapter. With minor modifications, the above discussion
carries over to the measurement of economic efficiency in terms of departures
from the deterministic cost frontier. Of course, those departures indicate
inefficiency arising from both technical and allocative mistakes. A

deterministic cost frontier with economic inefficiency can be written as

C=Cly, r)v (%)

where C is actual cost, C(.) is the cost frontier, r is the vector of factor
prices and v is an indicator of economic efficiency. An index of economic
efficiency is then simply (1/v) which lies in the zero-one interval. and
indicates the proportionate cost saving possible through the elimination of
economic inefficiency. However, the additioral costs separately attributable
to technical and allocative mistakes cannot, in general, be ascertained from a
knowledge of actual costs and the cost frontier alone, just as a knowledge of
an actual production plan and the production frontier alone tells us nothing
about allocative inefficlency. We turn to these issues shortly.

Our discussion thus far has dealt with the measurement of efficiency under
the assumption of deterministic frontlers. Their primary drawback, from the
empirical viewpoint, is that they attribute all departures from the relevant
frontier to inefficiency. However, in light of the fact that departures from
frontiers may well reflect factors of a random nature, entirely outside the
control of the firm, the deterministic approach is clearly simplistic from an
empirical viewpoint. We thus turn to the logical generalization of the
deterministic frontier - the stochastic frontier developed by Meeusen and van

de Broeck (1977) and by Algner et al. (1977).

A stochastic frontier permits departures fzom the deterministic kernel to
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result both from inefficiency and from random factors beyond the control of
the firm. It is nevertheless possible to isolate these two types of departure,
and hence to measure technical and econnmic efficiency in terms of those
departures from the reievant frontiers. The Dbasic idea behind stochastic
frontiers can best be illustrated by considering a stochastic production
frontier, though our exposition applies equally to cost <¢c profit frontiers. A

stochastic frontier that embodies technical inefficiency can be expressed as
y = f(xje’ ° (10)

vhere the production frontier is now stochastic and represented by f£(x)e’ and
e " represents technlcal inefficiency. The index of technical efficiency is
now modified to

el = y/E(x)e” (11)

Thus, once the stochastic frontier is known, the technical efficiency of any
production plan can be obtained. More specifically, under certain assumptions
and the appropriate estimation methods (to be discussed later), it is possible
to estimate both u and v and thus measure the technical efficiency of each
firm. The above composite-error model has been used extensively to model
inefficiency in the many empirical studies undertaken since the earlier work
of Muesen and van den Broeck and Aigne:r et al.8 However, productlion and cost
frontiers (deterministic or stochastic) in them =lves indicate only the degzee
of technical and allocative inefficiency, respectively. Nevertheless, it is
poss.ble to use eithexr frontier to measure both technical and allocative

efficiency. We turn next to this and related lssues.
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Measuring the Technical and Allocative Components of Economic

Inefficiency

In principle, the measurement of both technical and allocative efficiency
can proceed in two (not entirely independent} ways. First, one can generalize
the Farrell approach to allow for non-constant returns to scale or non
-homogenecus technologies and measure either type of efficiency using elther
the production frontier or the cost frontier along the lines suggested by
Kopp (1981), Kopp and Diewert (1982) and Zeischang (1983). Secondly, one can
explicitly model allocative inefficiency in much the way that technical
inefficiency is modeled. This approach was first suggested by Schmidt and
Lovell (1979), and subsequently extended or used by Schmidt and Lovell (1980)
and Kumbhakar (1987).

Kopp (1981) showed that a parametric production frontier, restricted
nelther by constant returns to scale nor homogeneity, could be used to obtain
Farrell-type measures of technical and allocative efficiency.9 These
generalized Farrell measures can be illustrated with the help of Figqure 2
below for the two-input case. Consider the production plan {yo, x°}. This plan
is depicted by point G and the isoquant labelled yo in the figure. In order to
asgess G's inefficiency without Imposing constant returns to scale or
homogeneity, output effects have to be removed. This is achieved by comparing
the actual factor combination with the technically efficient combination
required to produce the same output at the same factor ratio. The latter
combination is H, and in line with Farrell, a measure of technlcal efficency
is

TE(G) = OH/0G (12)

Notice that this input-based measure would in general differ from the
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output-based measure given by either (8) or (11). Thus, suppose the frontier
function implies an output of y' for combination G. This is depicted by the
isoguant y‘ in the figure. Let y. = l\yo, {Xx > 1). Then the output-based
technical efficiency measure is simply (1/X\). Suppose further that 0G = @ OH,
¢ > 1. Then the input-based measure of technical efficiency is simply (1/¢).
The two would be identical iff A = ¢. But it is evident that this would occur
only when the returns to scale are constant. Thus, the technical efficiency of
G as measured by the output-based measure would be higher (lower) than that
based on the input-based measure accordingly as the returns to scale were
decreasing (N > ¢) or increasing (A < ¢).

While it is expected that the input- and output- based measures wculd
differ under general conditions, the important issue pertains to the ranking
of two firms or alternative production plans by each of these measures.
Consider, by way of example, two firms that produce the same output y° but
with different factor combinations. Let us suppose at first that the frontler
technology is homogeneous but displays non-constant returns. In thls case, the
cutput-based and input-based measures would differ, but they would rank the
firms identically. Thus in Figure 3 (a) below, G and D represent the observed
factor combinations of firms 1 and 2, respectively, y° is the identical output
produced, and y. is the techrically efficient output that could be produced by
G and D. Clearly, here both firms are egually inefficient according to either
measure, even though the degree of efficiency depends upon which measure one
looks at. Consequently, if it is the ranking of firms one is interested in,
elther measure would do. However, if the frontier technology s not
homogeneous, the two measures could rank the same pair of production plans

differently. This situation is described in Figure 3 (b). Here, while the

output-based weasure would assign both f£irms the same efficlency ranking, the

28



FIGURE 2

cad Cbd

28



input-baseé measure would not. In the particular case shown, firm 2 ls
relatively more efficient according to the input-based measure.

The radial nature of the generalized Farrell index of technical efficiency
me2ns that it can be given a straightforward cost interpretation. Thus, given
factor prices, we can draw the isocost lines gg' and hh' in Figure 2. Then 1 -
TE(G) shows the percentage cost saving attalnable through the elimination of
technical inefficiency, since this is simply the proportional reduction in
both inputs required to eliminate technical inefficiency. The output-based
measure, on the other hand, cannot be given that interpretation. 1In
particular, (1 - yoly') is, in general, not the percentage cost saving
possible by eliminating technical inefficliency. However, we can exploit the
relationship that exists between the input-based and output-based measures

{for a homogeneous technology) to show that
o, =
1-TEB(G} = (L/RTS) (L -y /y) (13)

That is, the generalized Farrell input-based technical efficlency measure can

indirectly provide information as to the extra cost resulting from technical

ineffi.ci.ency.10

Kopp has shown that it 1is also possible to construct a Farrell type
measure of a production plan's allocative efficiency from a knowledge of the
production frontier. Thus, consider again the production plan represented by
factor combination G and output y° in Fiqure 2. For the given output, the
technically and allocatively efficient comblnation is F. To isolate allocative

*{inefficiency, we merely need to locate the combination J which costs the same
as the allocatively and technically efficient combination F but which involves

the same factor ratio as G. The measure of G's allocative efficiency (AB)
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is then given by:
AE(G) = 0J/OH (14)

the logic behind this index can easily be explained as follows. Technical and
allocative mistakes are costly. In terms of Flgure 2 this results in extra
costs equal to fg. However, a part of this cost can be attributed to excesslive
input usage (technical inefficlency). This is simply hg, since had the £firm
been technically efficlent, it would have chosen H and hence reduced cost by
that amount. However, H is allocatively inefficient, and@ the cost reductlon
possible by eliminating this inefficiency (by moving to F) 1s then simply £h =
£fg - hg. It is easily seen that in proportionate terms this cost reduction 1is
simply 1 - AE(G), so that AE(G) can readily be interpreted as an index of the
degree to which the given production plar is allocacively efficient. It is
then possible to combine the generalized Farrell measures of technical and
allocative efficiency to obtain a measure of the economic efficiency (EB} of

the given production plan. This weasur: is
EB(G) = TB{(G).AB(G) = (OH/0G) (0J/OH} = CJ/0G (15)

Notice that 1 - EB(G) is the proportiomate cost saving possible through the
elimination of both technical and allocative inefficiency. Thus, the Farrell
approach can be extended to obtain measures of technical, allocative and
economic efficieacy for non-constant returns, non-homogeneous technologies
from a knowledge of the production frontier. Given the cost interpretation of
these measures, all that 1s needed are the costs of combinations F, #, G and J

once the production frontier is known. Of course, G and y°, along with factor
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prices, are given by the data. It is then possible to solve for F, H and J
using the equation for the y° isoquant, the factor ratio corresponding to G
and the flrst order conditions £for cost minimization. The computations are
stralghtforward for the Ccbb-Douglas case even in the multliple input case,
though with other flexlible-form and/or non-homogeneous technologles the
required solutions would typlcally involve numerical tr».‘:t:hod:».ll

So far we have dlscussed how the Farrell approach can be generalized to
give measures of allocative and technical efficiency from the preduction
frontier. But Kopp and Diewel.:t (1982) and Zeischang (1983) show how these
measures can be distilled from a knowledge of only the cost frontier. For
self-dual frontiers this 1s not surprising. The main contribution of these
studies 1is that their wmpethodology can be used even when one considers
flexible-form frontilers that do not display the self-dual property. We
illustrate the Xopp-Diewert methodology for the two input case with the help
of Figure 2 , though it can easily be extended to many inputs. The essence of
the problem is to identify the points F, H, and J with a knowledge of only the
cost frontier, the actual combination G, the factor price ratio and on:nt:pl:d:"!‘2
The point F is easily identified because according to Sheppard's Lemma

r o _
x = acly, Tr rz)/azi_ i=1,2. {16)

The polnt J can be identified as follows. By definition
r’'x = ¢ (17}

where ¥ is the cost of combination F. Also, we have
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a
= 8
X"/ %, x /X% (18)
These two equations can be solved for the combination J, ylelding
x” =1/ c% x° i=1,2 (19)

vhere the superscript G is for factor combination G.13 The next step is to
obtain the technically efficient combination H. Again, from Sheppard's Lemma
we know that

H _ o H H _
XL - a C(y r I’. ¥ Iz ) / aIi_ i - 1,2- (20}
where ri" are the factor prices at which combination H would place the firm on

its cost frontier. We also know that
G a
= X / x, (21)

(20} and (21) thus represent a system of three equations in four unknowns, the
two £factor quantities and their respective prices. However, since only
relative prices are needed to determine H, we can normalize by setting the
price of any one factor to unity. This ensures equality between the number of
equations and the number of unknowns. Thus a solution for the remaining price
and the two factor quantitles represented by H can be obtained. The
generalized Farrell indices of technical and allocative efficiency can be
obtalned in the usuval way.

An alternative approach to measuring both technical and allocative

efficiency is to independently model allocative inefficiency by permitting
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departures from the £irst vider conditions for cost minimization [see Schmidt
and Lovell (1979)}. Thus, the model incorporating technical and allocative

inefficiency can be written as

y = f£ix) eV {22)
£(x) /E(x) =(r /)T, 1=23...,n (23)

where the T, Measure allocative inefficiency. Note that once the production
frontier 1is known, the T, ¢can easily be calculated by using (23). The
rationale then, of specifying the entire system given by (22)and (23),1s
primarily empirical. That is, instead of estimating oniy (22} and measuring
allocative efficiency by applying the results obtained therefrom teo{(23), the
entire system is estimated to account for the cross-equation constraints.
Theoretically speaking, however, the extra cost of each of technical and
allocative inefficlency is the same as that implied by the corrxesponding
generalized Parrell indices discussed above, when the frontier is self-dval.
This can be seen by considering, for instance, the Cobb-Douglas frontier case.
Because of the self-dual nature of this function, it is easy to show that the
cost function with both technical and allocative inefficlency using (22} and

(23) st

o/ & y:/é eV e(11./45 Ju e D-1né

C=Bnpi\- (24)

where the @«  are the output elasticities, Zai= & lIs the returns to scale

parameter, and D = 2 (ajféi ‘rj + 1ln [a1+ Eaje-aj]. It can be seen from

{24) that the impact of technical efficiency on cost is given by e(l/ 6)“,

while the impact of allocative inefficiency is eP 1% It follows that the
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proportionate increase in cost due to technical inefficiency alone is

AC/C = (1/8)u
= (&) Iy 7y° - 11 (25)

because from (22) it Zollows that u = ln(y./yp) = (y’/yp—l}}s But, as we saw

earlier [(see (13)], the right hand side of (25) is simply (1 - TE). Siamilarly,
it can be noted from (24) that the proportionate Increase in cost above
frontier cost due to allocative inefficiency alene is D - 1né. But this is
precisely the interpretation of (1 - AR), where AE is the generalized Farrell
allocatlive efficiency index given by (14) above. Note that the measurement of
the extra cost of technical and allocative inefficiency, using the equation
system (22) and (23), is possible because the cost function can be derived
given the self-duval nature of the Cobb-Douglas production function. However,
in the event that the technology is not self-dual, the cost function cannot be
derived. In this case, one can use the production £rontier to evaluate
technical and allocative efficiency according to (12) and (14). Alternatively,
when only the cost frontler is known, one can use the Kopp-Diewert method

outlined above to obtain both technical and allocative efficiency.

Factor Specific Measures of Efficiency

Our discussion of technical efficiency in the foregoing pages deals only
with the efficiency of total factor employment. In other words, neither the
genexalized input-based Farrell measure nor the output-based frontler measure
tells us anything about the contribution of specific factors to technical
inefficiency. However, as the studies by Kopp (1981), Lovell and Sickles

(1983) and Kumbhakar (1988) show, it is possible to construct input-specific
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indices of technical 1inefficiency and to determine the addition to cost
resﬁlting from each of these types of inefficlency. Factoz-specific indices
are useful from the policy voint of view, to the extent that they polnt to the
factors upon which managerial effort could be concentrated to achieve the
greatest improvement in efficiency.

The idea behind the Kopp indlices of single-factor inefficliency can be
i1lustrated with the help of Figure 4, in which G 1s the actual factor
combination, and yo is the actual output produced. The distance SGt is the
ninimun amount of factor 1 required to produce the given output, when factor 2
is fixed at 0S units, whlle the distance Tl{* is the minimum amount of factor 2
required to produce that output when factor 1 is fixed at OT units. Thus, part
of the inefficlency of G is due to the excessive use of factor 1 by an amount
equal to GtG units, the remainder being due the the excessive use of factor 2
by the amount K'G. We can thus measure the technical efficlency of factor 1 by
the ratio SG*/SG, and similarly measure factor 2's efficlency by the ratilo
TK*/TG. The cost to the firm resulting from single factor inefficlency can be
gauged by bringing in factor prices, for which the various lisocost lines shown
can be dréun. It is clear then that we can measure the technical cost
efficiency of factors 1 and 2 by the ratios OM/0G and ON/OG, respectively,
since they indicate the cost saving that could be realized by eliminating the
inefficiency associated with each factor. The major drawback ln gliving these
indices a cost interpretation is that, unlike the multi-factor index discussed
earlier, they are not independent of factor prices. As a result, the
efficiency ranking of factors can change for a sufficiently large change in
relative factor prices.

It is also possible to measure the allocative efficiency of each factor.

thus, for factor 1 this measure i3 0J/0M while for factor 2 it is OJ/ON. BEach
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measure indicates the cost saving that could be had by moving from elther of
the technically efficient combinations 6" and K' to the economically efficlent
combination F. Note that the product of the technical and allocatlve
efficlency indices for each factor is the index of {(muiti-factor) economic
efficlency developed earlier. The question of factor-specific technical
inefficiency has been tackled differently by Kumbhakar (1988}, in that that
efficiency 1s explicitly modeled. In particular, using the Cobb-Douglas
functional from, he postulates the following stochastic production frontier:

v

y =anzinz’ e (26)

vhere v represents statistical noise, and 'ii. represents the technlcally
efficient level of each factor relative to the fixed factors (z,). Factor-
specific inefficiency is then introduced by assuming that the technlcally
efflcient levels of the factors are related to actuval levels accozding to

X = X exp (ti} ’ i=1, 2,...,n0. (27)

vhere ti < 0 is the factor-specific measure of technical inefficiency. This

implies that the production function (after taking logs) can be written as
Iny=a + Za,‘mx,‘ # 2"‘1‘1 + Eﬁ"z‘ £ v (28)

Further, the first-order conditions for cost minimization, written to allow

for allocative inefficlency, can be expressed as

Inx. ~lnx =lnr -lnx +in{la/ a) + & (29)
3 3 1 3 ] 1 i
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where the é& measure 3sllocative inefficiency. The system of equations
represented by (28) and (29) is almost identical to the Schmidt-Lovell nmodel,
the only difference belng that technlical inefficiency is now factor-specific.
It is possible to estimate the parameters of this system and obtain estimates
of allocative inefficiency (the vector &) as well as factor-specific technical
inefficiency (the vector Z). The extra proportionate cost that can be

attributed to the i*" factor is then given by
~(W/r)al. (30)
L

and the extra cost attributable to the technical inefficiency of total factor
usage is “fl/rlEO%fi- In comparison, the latter extra cost in the
Schmidt-Lovell paper 1s (1/r)u, where u measures the technical inefficiency
of total factor employment. In a subsequent paper, Kumbhakar (1989) obtained
factor-specific technical efficiency indices from a factor demand system
based on the flexible, symmetric-generalized-McFadden cost function.

This concludes the discussion of the various approaches to the measurement
of economic efficiency and its components. Our discussion has assumed that the
relevant frontiers are known. Before turning to the problems of specification
and estimation of frontlers, we examine briefly the I1mplications (for
efficiency measurement) of a complication that arises when technical

efficiency 1s not foreseen.

Foreseen vs. Unforeseen Technical Inefficiency: A Complication
In the previous section, we saw how the components of economic efficiency
could be measured for an individual £irm with the help of the generalized

Farrell indices, once the firm's actual output y°, the factor combination used
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x° and the production frontier are known. The implicit assumption has been
that actual output y° is identical to the output the f£irm expected to produce
(say y°). However, as Schmidt (1986} has pointed out, if y° snd y* diverge,
important implications follow for the measurement of (allocative) efficlency.
Yet this Iissue has been given 1little attention in the lliterature (see,
however, Kumbhakar (1987)]. Our purpose 1s to explore briefly the impiications
of a divergence between y° and ¥°.

Consider f£irst the case of a deterministic frontiex. Here, y° and y’ would
coincide if technical inefficiency were entirely known to the f£irm, and in

general would diverge m:hem.dse.l6

That divergence is of little relevance for
efficiency measurement if the technology 5 homogeneous, since ther the
measure of aliocative efficiency would be the same whether or not there were a
divezgence.u However, 1f the technology is not homogeneous, the allocatively
efficient factor ratio 1is not independent of output. A divergence between
yoand y® would mean that allocative efficiency at those two outputs would no
longer coincide. It would be correct to evaluate allocative efficency at y*
and not at y°. However, it is then not possible to attribute the departure
from frontier (minimum) cost at yo to technical and allocative inefficlency
alone, so that the generalized Farrell index of economic efficiency cannot be
derived as the product of the indices of technical and allocative efficliency.
These points are 1llustrated Iin Flgure 5. Figure 5(a) shows the
homogeneous casc. Her:. the measure of technical efficlency is, as before,
OH/0G. Note though that even though yo and y* diverge, the allocatively
efficient factor ratio is identical at those outputs. Consequently, AE at y°
is 0J/0H, which is equal to AE at y", which in turn is given by 0J°/OHT In
the non-homogeneous case illustrated in Figure 5(b}, on the other hand, the

allocatively efficient factor ratios differ at y° and y*. Since allocative
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efficiency should be evaluated at y° it is clear that the product of the
technical efficlency 1index OH/0G and the appropriate allocative efficliency
index 03°/ OR® no longer gives the generalized Farrell index of economic
efficiency. Note that the distance ar is the amount by which actual cost
exceeds frontier cost at y°. 0f this, br is unambiguously the result of
technical inefficlency. However, the cost of allocative inefficiency is cd,
and this can be more or less than ab, so that, while (br + cd) does measure
the extra cost that can be attributed to the two types of inefficiency, it
does not reflect the departure from frontier cost at y°. It is nevertheless
possible to view the dlvergence of actuval cost from frontier cost at actual

ocutput (ar) as being made up of the following components:

c* - C(yo) =ar = br + ¢d + {ab - cd)

where C* is the actval cost of combination G, and C(.} is the minimum cost of
producing y°. Note that br is the cost of technical inefficiency and cd that
of allocative inefficiency. The last bracketed term is the amount by which ab
overstates the cost of allocative inefficiency. In other words, it is that
part of the additional cost resulting from unforeseen fluctuations in output.

when the frontier itself is stochastic, similar issues are involved,
although there is the added complication that output is random so that,
independent of whether technical inefficiency is foreseen or not, actual
output will almost certainly differ from expected output. The implications of
this inherent randomness can be seen by considering first the case with no
technical inefficlency. Here, for any given realization of the random variable
v (say vo), the ex post frontler is a simple multiple of the deterministic

frontier. Consequently, it can be used to measure allocative efficlency in the
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usual manner. The problem Is that actual output will most likely differ from
expected output. For the reasons discussed above, this would not matter as
long as the technology were homogeneous, but in the non-homogeneous case
allocative efficiency would differ at y° and y°. Thus, even without technical
inefficiency, the amount by which actuwal cost exceeds frontier cost at yo
could be more or less than the cost of allscative inefficiency (evaluated at
y'). An additional problem is that expected and actval output are based on
different frontiers. Thus, actual output is based on the ex post frontier
(that is, a given realization of v), while expected output is likely to be
based on the stochastic (random) frontier. As a consequence, this can lead to
awkward results. In particular, expected output can be greater than frontier
output, given v. One way out of this problem is that instead of dealing with
the ex post frontier, we adopt the average (mean or median) frontier as the
efficiency standard. In the homogeneous case, the allocative efficiency
computations would not differ depending on whether the ex post or average
frontier were used. In the non-homogeneous case, one would have to compute
allocative efficiency at the expgcted level of output, which could be taken to
be the output implied by the average frontier for the chosen factor
combination.

The introduction of technical inefficiency raises no new problems when the
technology is homogeneous. Then, whether we use the ex post fzontier or the
average frontier, and whether technical efficiency is foreseen or not, the
measure of allocative efficiency is unaffected. In the non-homogeneous case,
the measure of allocative efficiency is affected by unforeseen £luctuations in
output, which can arise because of purely random factors as well as unforeseen
technical inefficiency. The effect of random factors can be allowed for by

dealing with the average frontier. Then, whether technical inefficliency is
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foreseen or not, the measurement of allocative efficiency ralses the same set
of issues as the deterministic frontier.

The above discussion suggests that the assumption of a homogeneous
technology greatly facilitates the messurement of technical and allocative
efficiency. In particular, not only do we not have to make any assumption
about whether technical efficiency is foreseen or not, we also do not have to
worry about defining and measuring expected output.ls The cost of the
homogeneity assumption is that we impose a prior restriction on the data, one
that may not be justified. An alternative approach is to assume that technical
inefficiency is foreseen, in which case there are no unforeseen effects upon
allocative efficiency except those arising because of random influences when

the frontier is stochastic. In this latter case, the effects of random

influences can be dealt with by working with the average Erontler.l9

2.4 EFFICIENCY MEASUREMENT: THE PROBLEM OF SPECIFICATION AND
ESTIMATION

In this section we look at the problem of specification of models of
efficiency measurement as well as the methods that could be used to estimate
them?0 The problem of specification involves not only questions of functional
form of the efficiency frontier to be estimated, but also of the assumptions
relating to the efficiency variable. These questions play a major role in the

methods of estimating the relevant frontiers.

2.4.1 THE PROBLEM OF SPECIFICATION

The question of functional form is an impoxtant one, but there is 1little
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prior guidance from theory as to the appropriate form of the efficliency
frontier. In general, most empirical studies in the realm of production and
cost proceed on the premise that the functional form should be as general as
possible to capture a wide variety of possible structures. Thus, for example,
the translog functional form is generally preferred to the additive CES or
Cobb-Douglas models. The cost of adopting more flexible forms, however, is
that there is a sharp increase in the number of parameters to be estimated,
and a potentially serious collinearity problem. It is, thezefore, not uncommon
for investigators to adopt more restrictive functional forms.

In the area of frontier estimation, the vast majority of studies have
opted for the Cobb-Douglas functional form. One reason for this is that the
analytics of frontier estimation are rather complicated even when the relevant
frontier takes the relatively simple Cobb-Douglas form. In addition, the
self-duval property of the Cobb-Douglas form, not shared by the more flexible
forms, makes it particularly uvseful for identifying technical and allocative
inefficlency by estimating a single frontier. Needless to say, the
Cobb-Douglas form may be too simple to characterize real world technolegles.
However, flexible functional forms raise potential collinearity problems,
particularly when the production £frontier is estimated directly, and as
pointed out by Bauer (1990), estimating an overly flexible form may lead to a
loss in statlstical efficiency. Furthermore, as we have seen in the previous
section, a homogeneous function such as the Cobb-Douglas enables one to
circumvent the problem of defining and measuring expected output, unless we
assume additionally that technical inefficiency is foreseen. This latter
assumption, while useful in the non-homogeneous case, leads to other
estimation problems, to be discussed shortly. In any event, whatever the

chosen functlional form, the maln drawback of the parametric approach as
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oppesed to the non-parametric approach Is that It imposes a particular
functional form on the data.

In any study of frontiers, the specification problem of crucial importance
is that relating to how the inefficiency variable u is modeled. This is
because one's assumptions about the distribution of u acruss %irms {though not
necessary in the estimation of deterministic frontiers) can significantly
affect the estimates of efficiency. Unfortunately, once again theory is of
little assistance here. The only restriction is that the range of u is such
that output (cost} is bounded by the relevant frontier. However, there are a
number of alternative specifications of the distribution of u that satisfy
this criterion, and on a priori grounds there appears to be no compelling
reason for choosing one over the other. As Schmidt (1986) points out, the
need to make specific assumptions about the distribution of u and v,
constitutes the primary weakness of the statistical estimation of frontiers.
In what follows, we discuss the common assumptions about u and v. Following
that, we discuss estimation methods, and how they enable the measurement of
the various types of efficiency discussed above.

We deal with the production frontier, although the analysis can easily be
extended, with minor modifications, to the cost {or profit) frontier. As we

saw earlier, the production frontier with technical Inefficiency can be

stated as

y = £(x} ' ° (31)

In the deterministic case, the frontier is simply £(x), while in the

stochastic case it is f(x)e'. In the latter, since v represents the influence

of random factors outside the control of the firm, it is usually assumed to be
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unbounded. A common assumption is that v is normal with zero mean and constant
variance. However, in both the deterministic and stochastic cases, u is
assumed to be non-negative, restricting output to 1lle below or on the
frontier. The usual assumption about the one-sided distribution of u is one of
the following:

{a) the u are independent normal variates with zerc mean and constant

variance, truncated at zero. That is, the u are half-normal;
(b} the u are Gamma variates wlth parameter un;

(c} the u are distributed exponentially with parametex 7.21

The Half-Normal Case
when each u follows a normal distribution with zero mean and c¢onstant

varliance a;z , truncated at zero, its probability density can be written as

v
o

Pu) = 2 (an-mo'u-’" exp{- o/ 2 o'uz) Q (32)

Letting k = e " and making the transformation f£rom u to k, the probability

density of k can be shown to be
P(k) = Ak " exp { - (10K)%/ 20,7} (33)
where A = 2 (2m“’zau“ and 0 <k =< 1.
The first moment of k measures the average level of technical efficiency, and

can be shown to be

E(k) = Be™ = 2 [1 - &(o,)] exp (af) {34)
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where 2 (.) ls the standard normal distribution functlion. The mode of the

distribution of k, which is the point at which P(k) is maximized, can be shown

to be
M (k) = exp (-a;z) (35)
while the median is
_ -
M,(k) = exp ( 20 "/3) {36)

It is clear that the distribution of technical inefficiency depends critically
upon the variance of u. In particular, the half-normal assumption for u is
flexible in that it permits a large number of possible configurations for the
distribution of firms according to technical efficiency, and this is perhaps
one reason for its popularity in frontier studies. Panel A in Figure 6 below
depicts the approximate shapes of the dQistribution of k (technical

inefficiency) for various values of the variance of u.

The Gamma Case

If u follows a (one-parameter) Gamma distribution, its probability density

can be written as

E-u un-1
Plu) = , RZ20,7n>0 (37

Cin)

where I'{n) = I e u? *du for - < u < 0, is the Gamma integral. Making the

Qa

transformation from u to k, where k = e = , the density of k is:
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[1ln(1/k}] 7
Plu) = , 0
T'(n)

IA
F

< 1 {38)

The average level of technical inefflciency, as measured by the expected
value of k, can be shown to be

1

K[ 1nk (1/k}] 772
B(k) = I
F{n)

&k = 277 (39)

[=]

The mode of k is as follows:

l1if 06 <n<1l
Ho(k ) = indeterminate if »n = 1 {40)
o~ (n - 2)

it p>1
There is no analytical expression for the median of k when (1-1) is not a

positive integer. When n = 1, the median is that value of k for which
n .
.i.'i = 1/2 (41)
k!
j=o

The Gamma assumption for u results in a somewhat peculiar distzibution of
technical inefficiency for plausible values of w. Panel B in Figure 6 shows
various shapes of the Gamma density. It is clear that this particular
specification would force the majority of firms to be relatively inefficient
for m» 2 1. Only the case where 0 < 7t < 1 would allow most firms to be
relatively efficient. This drawback of the Gamma density can be overcome by

adopting the two-parameter Gamma or the exponential distribution. we
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FIGURE 6

PANEL A: THE HALF-NORMAL CASE
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confine our attentlon to the latter.

The Exponential Case

If u is exponential, its probability density is

-ru

Plu) = p e . rz0 {42)
Thus the probability density of k can be written as follows
Pk} = » k¥ * , 0<k=<1 (43)
The mean of k is
i
- r-1 - ' d
Btk}) = [krk dx = [“r] (44)
=]
The median can be shown to be
M k) = (2 Y7 (45)

The mode depends on . In particular,

unity if » > 1
Ho(k) = indeterminate if » = 1 (46)
2exo I£ 0 < » <1

The shapes of the distributions of technical inefficiency 1implied by the

exponential density are illustrated in Panel C of Figure 6. It is clear that,
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in contrast to the Gamma density, a 1large majority of £lrms would be
relatively inefficient only if » were positive but less than unity. However,
should > be greater than unity, a majority of £firms can be expected to be
relatively efficient. Since a Gamma distribution permits a majority of firms
to be relatively efficient only for a rather restricted range of its parameter
73, while both the half-normal and exponential cases are much more flexible in
this context, the latter distributions have most commonly been adopted in the
literature.

it might be noted that the specification of the distribution of the
technical 1inefficiency varlable u is not necessary for estimating
deterministic frontiers, since they can be estimated by non-statistical
methods. In general, however, and particularly when the £rontier Iis

stochastic, the distributions of both v and u need to be specified.22

Using
appropriate methods, it is possible to estimate both the average level of
technical/allocative inefficiency by obtalning point estimates of the mean of
u, as well as the technical/allocative linefficiency of each £irm in the
sample. While estimating average inefficiency is relatively straightforward,
once the relevant parameters are known, the estimation of each flrm's
inefficiency requires some further elaboration.

when the frontier is deterministic, the measurement of each £firm's
inefficiency presents no special difficulties, since that inefficiency can
easily be measured in terms of departures from the estimated frontier.
However, when the frontier 1is stochastic, the estimation of each firm's
inefficiency requizes separating the departures from the deterministic kernel
into those reflecting statistical noise (v) and those reflecting technical
inefficiency {u}. In the early frontier literature, it was thought that this

could not be done. Consequently, earlier studies were simply able to estimate
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the average level o0f inefficiency E(u} given that E(v-u)= -E(u}. This was
viewed as a major drawback e¢f the stochastic frontier vis-a-vis the
deterministic frontler. However, in an important paper, Jondrow et al. (1982)
were able to demonstrate that it was possible to estimate inefficiency at the
£irm level in a stochastic frontier framework. We briefly discuss their
approach.

Jondrow et al. argue that since £ = v - u can be estimated, and since <
contains information on u, it should be possible to estimate u from the
conditional distribution of u given &£. In keeping with common practice we
assume v to be a normal variate with zero mean and constant variance. Let us
first consider the case where u is half-normal. Under the assumption that v

and u are independent, their joint density takes the form

2 2 2 2
flu,v) = __2__e-1/2[v /e, t u/au] (47)
MNe e
e v

t =90 and - @< v <+ oo Then making the transformation from v to £, we get

E(u,s) = £(u,v) |dvsde} , which can be shown to be

f{u,c) =

2, 2 2 2
1 e—a/z [u/ou -(;i-u)/av ] (48)

MNe e
ua v

It can also be demonstrated [ see, for instance, Aigner et al.(1977)] that the

density of £ reduces to
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2 - sz/ 20':
fle) 2 —————— & [1 -8 (&0/o)] (49)

211 ¢

where 3(.) is the standard normal cumulative distribution function and

2 z 2z
o =0 + o
v

2 r A= ou/ov. Then the conditional density of u given &, £(ule),

which is simply £(u,&)/f(£) can be shown to be

-
flule) = 1 = e ~ /2 [(u - a8 ) e, ]z (50)
< n 0" [1 - B(p /0.}]

for u = 0. p‘ = - [au/a] %s and o= (auo-v/o-)z. Thus, given &, u follows a
normal distribution truncated at zero, with mean ,u' and variance a.z.

In order to estimate the inefflciency at each sample polnt, an estimate of
u at each point is needed. as Jondrow et al. point out, a point estimate of
either the mean or mode of the conditional distribution of u can be used. It

is easy to show that the mode is

M_(ale) = M iEe <0

=0 ife=290
while the mean lis
Pler/e) EA
Blu|«) = & -
. [1 - 3(en/oN] o (51)

With the appropriate estimation technigues, it is possible to estimate &£ as

well as the other parameters, A and ¢. These then provide the necessary
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information for computing £irm-specific estimates of u from either the mean or

mode of that varlable.

It can also be demonstrated that i1f u follows an exponential distribution

with parameter 7, the density of v given & is

2 z
1 e z/zav {u + e, Q) (52}

flule) =
¥ 20 o, [1 - 2(Q)]

foxr u 0. Note Q2 = (& + o'vzr)/ o Thus, the nonditiocnal distribution of u is
that of a normal variable with mean -avn and variance o-vz, truncated at zero.

It is easy to show that the mode of u given & is

!iotule:) = ~o if-oc2>0 (53)

0 if-coQ ¢

while it can be shown that the mean of u given & is

£(Q) - a (54)
- @)

whexe @(.) 1s the standard normal density.23

EB{ule) = ov[ :

This ends our discussion of specification 1issues involved in the
estimation of frontlers. We turn next to the problems of estimation.

2.4.2 ESTIMATION METHODS

While the estimation of stochastic frontiers must proceed along

statistical lines, that is not necessarily so in the case of deterministic
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frontiers. Earllier studles of frontlers applied programming technigues to
estimate deterministic production frontiers [see for instance Aigner and Chu
(1968)]1. However, most studies since then have used the more powerful tools of
statistical estimation theory. We briefly discuss the non-statistical

approac, and then move to the statistical approaches.

The Non-Statistical Approach
Consider the deterministic production frontier f(x,®), where & is the

vector of parameters. The problem is to estimate # such that
Y= f(x,&) (55}

where y is actual cutput. Since any number of estimates of the parameters can
be consistent with this requirement, some criterion for obtaining unique
estimates is needed. Aigner and Chu (1968) suggested two alternatives, both of
which force the estimated production surface to 1lie as close to the
observations as possible. This is done by imposing a minimizing constraint on
the estimated residuals. Thus, they suggested minimizing the sum of squared
residuals or the sum of residuals , each subject to the constraint (S5). If
£(.) is linear, there is a linear programming problem; if it is guadratic, a
quadratic programming problem is implied. One difficulty with this approach lis
that it is very sensitive to outliers, particularly when the quadratic
programming specification is used. In order to deal with the outlier problem
Timmer (1871) suggested that the frontier be estimated, and then some
pre-determined percentage of observations be deleted. Alternatively, efficient
observations could be discarded one at a time until the estimates stabilize.

As Forsund et al. (1980) point out, this would be a useful procedure provided
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the estimates stabilized fairly gquickly. The greater problem with the
programming approach is that, since it is non-statistical, the estimates have
no ldentifiable propertles. Therefore, no statistical inference is possible.
The Statistical Estimation of Deterministic Frontiers

Deterministic frontiers can also be estimated statistically, by modifying
the ordinary least squares (OLS) approach, or by the maximum likelihood (ML)
methed. As is well known, under the classical assumptions, the QLS estimators
are consistent and efficient?4 However, the estimation of frontiers by OLS
raises two major problems. First, given the one-sided distribution of u, the
classical assumption of zero mean is violated. This means that even though the
slope parameters are consistently estimated, the intercept is not. Second, a
frontier estimated by OLS is not a frontier at all, in that observations can
and will lie above it. This makes the measurement of efficiency at the level
of the firm awkward. Both difficuities, however, can be addressed by modifying
the OLS method as follows.

Consider the estimation of the production frontier (with technical
inefficiency), which is assumed (without loss of generality) to be of the

Cobb-Douglas rforms:
lny = a, + zaj lmz-i -u (56)

With 2 minor modification, (56} can pe wrlitten as

Iny = (ao - )+ Eaj lnxj - (o - u)
or {57)
- v -
iny = B, + 2% 1nxj W
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where ﬁ; = (cb -z, Blu) = 1, and w = -{u - 22). Note that since E(w) = 0, OLS

estimation of the frontier gives concistent estimates of the slope parameters
and of ﬁb {though not of &, since it is not identified). If a specific

distribution is assumed for u, the OLS residvals can be used to obtain

consistent estimates of E(u) from the estimated moments of u. It is then
oY

possible to "correct"™ the OLS intercept ﬁa to obtain a consistent estimate of

a
=]

>

a = T (58)

The "corrected" OLS method (COLS) was first suggested by Richmond (1974), who
examined efficiency measurement using this approach under the assumption of 2
one parxameter Gamma distribution for u. This assumptlion implies that the mean

and variance of u are both equal to 7. Thus, a consistent estimator of 7 can

be obtained from the OLS residuals as follows:

§ = i ef / (T-n-1) (59)

where the e, are the OLS residuals, T is the number of observations, and n s
the number of slope parxameters. Then a consistent estimator of the intercept
can be formed as ﬁs + 7; that is, by shifting the estimated equation up by 7.

¥hile COLS is a relatively simple method of estimating the frontier, it
dées not guarantee that all observations will lie on or below the frontier,
thezeby making it difficult for measuring firm-specific technical efficiency
in a meaningful manner. Another potential problem is that the correction term

in COLS (the mean of u) is dependent upon the distribution assumed for u, and
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different distributions can lead to quite dissimilar estimates of effliciency.
For instance, if u is assumed to follow an exponential distribution instead of
a Gamma, the mean and variance of u are {1/y) and (1/2)° respectively. The
correction term is consequently + (1/?!1/2. That this may result in large
differences in the estimate of average efficiency 1s seen by noting that when
Richmond's mean efficiency for Morweglan manufacturing (based on the Gamma) is
recomputed under the exponential assumption, it £alls from 87% to only 69%
{Forsund et al. (1980)]. Both of these difficulties with the COLS method can
be dealt with 1f, after estimating the model by OLS, the frontier is shifted
upward {(that is, the intercept adjusted) until no residuval is positive. As
Greene {1980) has shown, thls ylelds a consistent estimator of the Iintercept
term. Apart from being a simple method of estimation, it Imposes no
distributional assumptions on the data.

The deterministic £rontier can also be estipated using the maximum
likeithood (ML) method. This method requires a specific assumption about the
distribution of the disturbance u. The popularity of the ML method arises not
only because it is based on the appealing criterion of finding those values of
the parameters most 1likely to have generated the sample, but also because,
under general conditions, ML estimators are consistent and asymptotically
efficient. Their main difficulty is that they tend to be computationally
burdensome and impose specific distributional assumptions on the data. The ML
principle in a frontiexr context can be demonstrated as follows.

On the assumption that the u are independent and identical random
variables, each with density function P(uil'al, where & is the parameter

vector, the log likelihood function L of the sample observations Y, is simply

T
Liy|®) = ) 1n By [8) (60)
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since the Jacobian of the transformation from u to y !s unity. The HL
estimators of the parameters are then simply those that maximize L. In the
deterministic frontier context, the ML estimators are really programming
estimators, since optimization is subject to the inequality constraints y <

£{x). In fact, Schmidt (1976) has shown that the ML estimators of the
Cobb-Douglas frontier function parameters are the linear and quadratic
programming estimators of Aigner and Chu (1968), if u is exponential and
half-normal, respectively. Thus, for instance, when u is half-normal, the log

likelihood function of the sample is

T
2 1 < 2
L = (T/Z)ln('Z/l'I) - (T/lenau- 72[ ll'lyi-- ao-Jz‘allnxtj] (61)
u i B

Maximizing L with respect to c:ruz yields the ML estimator
T 4

o? = z{lny.t -a - Ectiln x} /T (62)
L J

Substituting this in (61) and ignoring the constant term, we get the

concentrated log likelihood function Lc

T
Lc = (T/2) 1n [ Z{ 1n A —_Zcxiln x.‘j}-z/ T] -~ (T/2) {63)
- 3

The maximization of Lc requires the minimization of the sum of squares of

zesiduals subject to the constraint y < f£(x). This Is clearly a quadratic
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programming problem. Similarly it can be shown that if u is exponential, ML
estimation involves minimlizing the sum of residuals subject to the same
constraint, and this is 2 llnear programming exercise[see Schmidt (1976)]).

A major shortcoming of the ML approach here is that since u is restricted
to be non negative, lny ranges from minus infinity to £(x, ©) and is hence not
independent of the parameters. This violates one of the regularity conditions
of the ML method [Schmidt (1976}). 1In particular, the variances and
covariances of the estimators are not known, so that the usual properties of
ML estimators are not known and no statlistical inference is possible. However,
Greene (1980) has shown that while the range problem exists irrespective of
the distribution of u, It is possible to obtain the variance-covariance matrix
of the estimators and to prove the uswal asymptotic properties under certain
conditions. In particular, Greene argues that the regqularity condition lis only
a sufficient condition, and that provided the other regqularity conditions are
satisfied, the usual ML results follow for a certain class of distributions.
Thus, Greene shows that if the density of u is zero at u = 0, and the first
derivative of the density of u with respect to its parameters approaches zero
as u tends to zero, the usuval ML results follow. The half-normal and
exponential distributions do not satisfy these conditions, but a number of
other distributions do (for example the Gamma and log-normal).

The major drawback of a deterministic frontier is that it does not allow
for statistical noise which characterizes all data. One important consequence
is that estimates of inefficlency are contaminated with statistical noise.
Deterministic frontlers then can be expected to understate the degree of
efficiency. We turn, thus, to the estimation of stochastic frontiers which

explicitly allow for statistlcal nolse.
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The Estimation of Stochastic Frontiers

The stochastic frontier can be estimated by COLS or by the ML method.
Both methods glive consistent estimates, although the latter is 1likely to be
more efficient asymptotically. In elither case, specific distributional
assumptions about v and u are needed. The most common approach is to assume
that the v are 1dentically and independently distributed normal variates with
zero mean and constant varliance, whlle the u follow either the half-normal or
exponential distribution. These assumptions play a major rele not only in
estimating the parameters, but also in enabling the separation of the
statistical nolse from technical inefficlency, a prerequisite for generating
firm-speciflc estimates of technical efficlency. The COLS method involves
estimating the frontler by OLS and then, as in the deterministic case,
adjusting the constant term by an estimate of EB(s)=-B(u)}. A consistent
estimator of the latter can be obtained from the moments of u, themselves

obtained from the OLS resliduals. Thus, for example, if u is half-normal,

1/
B(u} = [ 2/ N ] o, (64)

This requires an estimate of o, which, as shown by Schmidt and Lovell (1979),
can be obtained as follows. The OLS residuals can be used to obtain consistent

estimates of the third central moment of &, By, which is given by

/ 2 [ n-4 ] 3
By = n n v (65)

This ylelds
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/3
57 - [ / 0 [HT_T4 ];s] (66)

where ;:’ is the consistent estimate of u obtained from the OLS residuals.
With this estimate, we can obtain an estimate of E(s), which is then used to
adjust the constant term in the production frontier in order to obtain a
consistent estimate of that parameter.

In order to estimate the technical inefficlency for each firm, we need to
estimate the mean (oxr mode) of the conditional distribution of u given &. as
is clear from equation (51) this requlires estimates of £ as well as of Oy and
o,- An estimate of e, is given by equation (66), while an estimate of o can
similarly be obtained from the second central moment of £ estimated from the

QLS residuvals. In particular, it can be shown that
r -—
u = la=+ua=] (67)

Substituting the consistent estimates of H, and auin this equation, we can
solve for a consistent estimate of o . This then enables the estimation of a
from the mean of the conditional distribution of u given £, as in equation
(51). Note that the estimates of a_“z and avz axe also indicators of whether
statistical noise or technical inefficiency is the relatively more important
cause of departures from the deterministic portlon of the stochastic frontler.
The foregolng approach can be applied to estimate the stochastic frontier and
firm level technical inefficiency £for alternative speclfications of the
distribution of u.

A relatively more efficient alternative to COLS is the ML approach, even

25

though the COLS estimates are easier to compute. The ML approach in the
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present context does not provide analytical expressions for the estimators, so
these have to be obtained through numerical optimization. This is because of
the more complicated 1likelihood function, which now involves the probability
density of the sum of a symmetrlical and a one-sided disturbance. Consider, for
instance, the case where u is half-noxma’ and the production £function Iis
Cobb-Douglas. The probability density of £ is then given by equation (43). The
log 1likelihood function L of the sample 1lny (ignoring the term involving II)

can be written as
2 z T
Liy/a,0) = - (T/2)1ne” - (1/267) Zc.f + Y [1 - 2(e/o)]  (68)
’ S

whezre #(.) is the standard normal distribution function, & = auz+ a-\l’z and

A= "u/"v . The first ordexr conditions for maximizing L are:

T T P
s o Zsf v X z £ =0 (89
¥, 2 2¢ 20 20 (3 - &)

1 1 19
z
P&,
o __1 Z rtr = 0 (79)
FoN o (1-2)
T T
@ 1Inx |
o .1 Zc.‘lnx‘. b 2 z S = 0 (T1)
2, % 3 o 1-3)
3 - 4 *

for 3 = 0,1, 2,...,n. Further, 1“";_5 = 1 for J = 0, and ¢ 1s the standard
normal density evaluated at the same point as 2.

It is clear from these (n + 3) equatlons that analytical sclutlions for the
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parameters cannot be obtained, and numerical methods have to be used. Note
though that equations {63} and (70) imply that the ML estimator of oo is

e =mge’ (72)
However, note further that the estimation of o is not independent of the a,,
since the €. are functions of the latter. Nevertheless, (72) can serve as a
starting point £for generating an iterative solution [see Lovell and Schmidt
{1979)1.

The foregoing discussion deals with the estimation of production
frontiers. With minoxr modifications, it appllies equally to the estimatlion of
cost frontiers. Whether one estimates a cost frontier or a production frontier
depends upon what assumptions about the input and output variables appear to
be approprliate. Thus, the direct estimation of the production function is
appropriate 1f, as we have assumed, input quantitles are uncorrelated with
the disturbances. As shown by Zellner, Kmenta and Dreze {1966), thls condition

is met 1f firms maximize expected proflts.26

On the other hand, the estimation
of the cost frontier would be appropriate 1f input quantities were endogenous
but cutput exogenous. In practice, however, which approach is taken ls often
determined by data availability. Thus, the estimation of a cost frontier
requires data on output as well as factor prices, while a production frontier
can be estimated with data on output and input quantities. In cross-sectional
studies, particularly at the micro level (such as the one in this thesis) the
estimation of cost frontiers is ruled out because of the general absence of
factor price varlation across units.

It 1s also possible to estimate the production frontier with technical

inefficiency Jjointly with the first order conditions for cost minimizatlion
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with allocative inefficlency !equations (22} and (23)]1. As polnted out
earlier, the primary purpose of joint estimation is that by taking into
account cross-equation error correlations and restrictions on parameters, more
precisely estimated parameters can be obtained. Schmidt and Lovell (1979) have
applied the ML method to such a system on the assumptions that the productlon
function is Cobb-Douglas, the v are normally distributed with zero mean and
constant variance, the u are half-normal, and the (n-1) allocative
inefficiency vectors Tor Tgeeeey T _are each normally distributed with mean m
and variance-covariance matrix Z. 27 As Schmidt (1986) has pointed out, while
joint estimation might lead to efficiency gains, the consistency property of
the estimators depends upon whether the entire system is correctly specified -
that is, not only in terms of the functional form but alsc the distributional
assumptions. The system can be estimated alternatively by a non-linear
three-stage 1least squares procedure, which requires no distributional
assumptions. However, these assumptions are eventually needed to separate the

statistical noise from technical inefficiency.

2.5 SUMMARY AND CONCLUSIONS

In this chapter, we have discussed the concepts of technical and
allocative efficiency, and the approaches to modeling and estimating them. At
the heart of the issue is the notion of a frontier, which depicts the optimum
value of production or cost, and serves as the efficlency standard. Wwe have
focused on the problems of spectfication and estimation of parametric
frontiers, both deterministic and stochastic, from cross-sectional data on a
sample of firms. Knowledge of either the cost or production frontier is

sufficient to enable the cecmputation of both technical and allocative
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efficiency. Frontlers that assume that all departures from the deterministic
production or cost function represent inefficlency are deterministic, while
for stochastic frontlers these departures are seen as reflecting both
inefficiency and statistical noise. Deterministic frontlers can be estimated
either by non-statistical or statlstical methods. The former do not involve
distributional assumptions, and hence have no statistical properties. Such
frontiers can also be estimated statistically by the COLS or ML method. The
former would, under certain conditions, give consistent estimates, but the
properties of the latter method cannot be evaluvated except in cerxtain cases
since one of the regularity properties required to establish the propertlies of
ML estimators is violated. In any event, both methods require specific
distributional assumptions about technical or economic inefficiency. The main
drawback of the deterministic frontler is that by not allowing for statistical
noise, whick all economic relationships exhibit, it may lead to a significant
overestimation of the degree of efficiency. The problem of statistical noise
is taken into account by the stochastic frontler whose estimation depends on
distributional assumptions in a more fundamental way. In particular, those
assumptions are required not only to estimate the frontier by either the COLS
or ML method, but also to separate, at the level of the firm, inefficiency
from statistical noise. We have examined some of the common assumptions about
the distribution of inefficliency and statistical noise. However, there are no
a priori grounds that establish what the correct assumption is.

As Schmidt (1986) has polnted out, while the theoretical basis of
efficiency measurement is sound, the empirical study of frontiers is beset
with difficulties. Empirically, inefficiency is measured in an essentially
residual manner, and can be sensitive to specification not only in terms of

functional form, but also in terms of the list of included inputs and
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distributional assumptions.28 In addition, the desirable properties that we

attribute to our estimators are dependent on whether the model is correctly
specified in the broad sense. Specification issues are, however, largely an
empirical question since there are few prior guidelines as to the correct

specification. In our study, we attempt to address some of the specification

issues that have been raised.
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10.

FOOTNOTES TO CHAPTER 2

The analysis can be extended to deal with multiple outputs. This we do not
do here, as our study deals with an essentially single-output firm,

Note that the difference between the frontier and non-frontler approaches
is largely empirical, not theoretical. In the £frontier approach the
objective is to characterize and measure inefficiency as deviations below
or above the relevant frontier.

There is now an extensive literature on the subject. See the survey papers
by Forsund et al. (1980) and Schmidt (1986). For more recent and other
parallel developments see Journal of Econometrics (19990), Vol.46,
Numbers 1/2.

See, for instance, Farrell and Fleldhouse ([1962) and Seitz (1971).

Similar efficiency measures were alsc suggested by Forsund and Wjalmarsson
{1974). Kopp, however, nicely integrates the non-parametric, Farrell
approach with the parametric approach.

In this section, we assume that the relevant frontier 1ls known and
concentrate on how the various types of efficlency can be measured.
Section 2.3 deals with specification and estimation issues.

Indeed, the efficlency standaxrd adopted by Farrell was deterministic.

See, for instance, Forsund and Hjalmarsson (1974}, Algner et al. (1877},
Schmidt and Lovell (1979), Lee and Tyler (1978}, Kalirajan (1981), Pitt
and Lee (1981), Huang and Bagl (1984}, and Kumbhakar (1987, 1988) as a
representative sample. For a more complete listing see the survey papers
nentlioned in fooktnote 3.

Kopp developed his measures for the deterministic case. However, his
approach c¢an be applied to a stochastic frontlier since, ex post, a
stochastic frontier differs from a deterministic one only by a
meltiplicative factor (the realized wvalue of v). Alternatively, since a
stochastic frontier Is random, one can consider the average of that
frontier for the purpose of efiiciency measurement. Some of the
difficulties of measuring efficiency with a stochastic frontler are
discussed later in this chapter.

The relationship between the two measures, as expressed by ({13}, is
straightforward for homogeneocus technologies. When the technology is not
homogeneous, the RTS are no longer a parametric constant, but depend upon
scale. However, for the given factor ratloes, since frontier and actual
output are known, the RTS in that range can be estimated and (13) applied
to glve the approximate relationship between the output-based and
input-based measures.
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11,

12,

13.

14,

15,

1s.

17.

18.

19.

20.

Notice though that, given the radlal nature of the Farrell index, the TE

index can be computed by taking the ratic of the technically efficient
to actual quantity of any one factor input.

See footnote 9.

Equation (19) follows from the fact that (18) implies

J a, J
x =~ = (x1 fxz } X,

which after substitution into (17) ylelds (after some manipulation)

F _F a, a
x1 =C/ [r1 + rztxz /x‘ )1

This can be seen to be identical to (19). Note that in (19) all the
variables on the right-hand-side are known.

See Schmidt and Lovell (1379). The model represented by (22) and (23) can
be extended to accommodate flexible functional forms as well as panel

data. See, for example, Kumbhakar (1989, 1990) and Schmidt and Sickles
(1984).

This is because, according tootheoTaylor series expansion, ln(y./yo} is
approximately equal to [(y - ¥y )/y 1.

If technical inefficiency is known (foreseen), it is like another input

(e.g. management), although unlike other inputs it is unobservable. See
Kumbhakar (1987).

A divergence between actual and expected output is relevant only for the
measurement of allocative efficiency, and that too only when the function

is not homogeneous. Technical efficiency can continve to be measured as
indicated earlier, whether or not divergence exists.

Of course, in the deterministic case, we would not face the problem of
defining expected output if technical inefficlency were foreseen. In the
stochastic case, this would be necessary even if technical inefficiency
were foreseen because output is inherently random.

Clearly, the assumption that technical inefficlency is known is a
simplification. But as Schmidt (1986) points out, the opposite assumption
is no less a simplification, since the truth probably lies in between.

We are concerned in this section with estimation issues when the sample
constitutes a pure cross-section of firms. Estimation from panel data is
thus ignored. See Schmidt and Sickles (1984), Schmidt (1986) and Xumbhakar
{1987) for issues arising in that context.

Other distributions have also been considered. Thus, Stevenson (1980)
considered a normal distribution with a non-zero mean, truncated at zero,
Lee (1583) dealt with the flexible four-parameter Pearson family of
distributions, and Greene (1990) proposed a two-parameter Gamma
distribution.
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22.

23.

24,

25.

26.

27.

28,

Note that a stochastic frontier camn also be estimated without making
distributional assumptions. However, those assumptions are eventually
needed to separate statistical nolse from inefficiency. This issue is
dliscussed shortly.

See Jondrow et al. {1982). Note that (50) or (53), and (51) or {54) are
not entirely £free of statistical noise. They also do not provide
consistent estimates of u in that some varfability in v is inherent and
remains whatever the sample size. Waldman (1984} considered estimators of
u and found the Jondrow et al. estimator to be optimal.

These assumptions are that the elements of the disturbance vector are
independently and identically normally distributed with z2ero mean and
constant variance, and that the explanatory variables are independent of
the disturbance term.

On the other hand, a Monte Carlo study by Olsen et al. (1980) found that
when u is half-normal, COLS performs as well as the ML meth.d.

An a lternative to expected profit maximization is median profit
waximization (Kumbhakar (1987)]. However, as Kumbhakar argues, neither Af
these behavioural assumptions guarantees that the inputs would oe
independent of tne disturbance term. In partioalar, if technical
inefficiency {u) iIs known, it can hardly be assumed@ to be independent of
the inputs. Thus, independence between u and the inputs requires the
additlional assumption that technical inefficiency is unknown to the firm.
The independence assumption is a strong one, but one that is commonly
employed (often implicitly) in studies that involve the direct estimation
of production frontiers.

This model allows for systematic as well as unsystematic allocative
inefficiency by permitting E{T) to be nonr-zero and zero, respectively. See
Schmidt and Lovell (1379) and Kumbhakar (1987).

One also needs to address the problems that arise when actual output
ditfers from the output the firm expected toc produce.
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CHAPTER 3

THE NATURE OF THE SAMPLE ECONOMY, HMODELS AND ESTIMATION METHODS

3.1 INTRODUCTION

Our sample economy is the village of Khilghati, lying some 95 miles north
of the capital city of Dhaka. Data for a 100 households, out of a total 410,
were collected through three interviews of the household heads during the
June, 1981 - April, 1982 time interval, these interviews corresponding to the
three cropping seasons. Households included in the sanple were selected
according to two criteria: one, the household head ués or had been married,
and two, the household cultivated some of its own land.1 The purpose of this
chapter is primarily two-fold. First, in Section 3.2, we outline the broad
features and important structural and institutional characterlstics of the
village of Khilghati. This section provides the background for the
specification and estimation of the models used to measure the different types
of efficiency. The specification of the models, the estimation strategy and
the computation of the various effiziency indices are covered in Section 3.3.

Section 3.4 is a summary of the chapter.
3.2 THE NATURE OF THE SAMPLE ECONOWY: THE VILLAGE OF XHILGHATI

In terms of economic and social organization, Khilghati is quite typical
of villages in-Bangladesh and other densely populated countries of the Indian
sub-continent. In 1981-82, it covered an area of 2.9 square miles with a
population density of over 900 persons per squaze mile and a literacy rate of

54 percent, both of which are above the corresponding national averages.
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Agriculture !s the primary source of llvellhood, with crop cultivation based
<n famlly farms beling the dominant economic activity. Thus, almost 84 percent
of total monthly lncome is derived from agriculture, while crop income itself
accounts for about 66 percent of total income 2and almost 81 percent of
agricultural income. Farm size is typlcally small, reflecting the pressure of
population and the fragmentation of hoidings. Methods of production are
largely unmechanised, with animal power being the primary capital input.
However, government irrigation projects and the greater availabllity of
chemical fertilizer have combined to enable some reorganisation of older
production techniques and the adoption of newer, high-ylelding seed varleties
(HYV). Thus, by 1980-82, more than 26 percent of the area under foodgrains was
under HYV, compared to an average of just 2 percent during the 1967-69 period,
while irrigated area increased by about 13 percent and the quantity of
chemical fertlillzer, in terms of nutrients per acre, almost quadrupled between

those two perlods [Alauddin and Tisdell (1988)]).

3.2.1 THE NATURE OF ECONOMIC ACTIVITY IN KHILGHATI: AN OVERVIEW

The bulk of economic activity in Khilghati revolves around the cultivatlion
of various food and non-food crops. In the latter category, jute is grown, but
the village is overwhelmingly a rice-based economy, as almost 90 percent of
total cropped area is devoted to that crop. By contrast, at the national level
rice occupied about 80 percent of the total cropped area during the 1981-82
period [Alauddin and Tisdell (1988)1. The dominance of rice in Khilghati
relative to other crops is clearly seen in Table 3.1 below, which shows the
percent distribution of total cropped area by type of crop, as well

as the associated cropping seasons.

The availability of irrigation water in the Khilghatl region during the
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dry winter months has enabled farmers to grow and harvest three paddy Crops

during the year. as a Consequence, Khilghati farmers grow rice throughout the

year. Broadcast "Aus" paddy is planted in the spring months of March and

April and the crop is harvested in July/Auvqust. At that time, transplantation

of "Aman" paddy is undertaken and the crop is ready for harvesting by

November/December. Durlng the following winter months the fertilizer-intensive

high-yielding "Boro™ paddy is grown. The increased importance of the winter

TABLE 3.1

The Cropping Pattern

Crop Cropped area Cropplng season
(percent}
Rice 89.6 Whole year
of which
Broadcast paddy 17.2 March/april - July/August
Transplant paddy 44.8 July/August - Nov./Dec.
HYV paddy 27.5 Nov./Dec. - March/april
Jute 7.4 March/April - July/August
Wheat 2.3 Nov./Dec. - March/April
Oilseeds 0.6 Nov./Dec. - March/April

Source: Adapted from Khandker (1982}, Table 4.13, p. 130.

HYV rice crop is evidenced by the fact that it now occuples almost 27 percent
of cropped area. Though Khilghati grows only the HYV winter rice, the local

non-HYV winter rice is also grown in other parts of the country. However, for

the nation as a whole, upwards of 70 pexcent of all winter rice is now of the

high ylelding variety (alavddin and Tisdell (1988)1}.

0f the other crops grown in Khilghati, wheat and jute are the only on.s of

any significance, with oilseeds accounting for under one percent of cultivated
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area. Wheat, of the hlgh-ylelding varlety, competes with the HYV winter rice,
and has begun, in recent years, to compete more vigorously with rice in the
diet in rural areas. However, it is of small importance in Khilghati during
the period of our sample, occupying only 2-3 percent of total cropped area.
Jute appears to be relatively more important and represents the only cash crop
grown by the village. Its growing season colncides with that of broadcast Aus
paddy. Consequently, it competes with that crop for productive resources. The
relative importance of different crops is also reflected by the fact that
while all 100 households in the sample grow Aman, 92 grow Aus, 95 grow Boro
and 86 grow jute, only 29 households grow wheat and £ grow ollseeds.

Overall, it appears that Khilghati is essentially a single crop economy
from the perspective of the entire crop year. But if the period of analysls is
the crop season, this assumption is largely wvalid only for the summer and
winter crop seasons, in which the respective rice crops are dominant. In the
spring season, jute appears to compete with rice for land and other productive
resources. Thus, in that season, Khilghati can be viewed as a two-crop
economy. From the point of view of efficiency measurement in a two-crop
framework, we can measure technical and allocative efficlency for each crop as
discussed in Chapter 2. However, it is also possible to measure output-mix
efficiency to gauge the extent to which households are efficient in choosing
the correct output propertions. In this study, however, we do not look into
the question of output-mix efficlency. 1Instead, we treat the village of
Khilghatl as though it were a single crop economy, and thus confline our

attention to the three rice crops grown during the crop year.2

3.2.2 TENANCY, FACTOR MARKETS AND EMPLOYMENT
Tenancy arrangements in the sample economy are essentially of two léinds.

Households are either strictly owners, or both owners and tenants. The former
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group does not participate in the merket for langd services, while the latter
group consists of farmers who are either net suppliers or net buyers of land
services. In the sample, there are no farmers who are elther pure tenants or
pure manager-owners. Owners and owner-tenants are about evenly balanced in the
sample, with some 52 percent of the households belng owner-cultivators, and
the remaining 48 percent being owner-tenants. These figures suggest that
households in Khilghati participate rather actively in the local land market,
although the amounts transacted are relatively small, given that owner-tenants
cultivate only about 29 percent of all land in the sample. Of the 279 acres of
land owned by the 100 households in the sample, about 20 percent (57 acres)
was put on the rental market in the period under study. There are two types of
rental arrangements - share tenancy and fixed-rent tenancy. Under the former,
the tenant pays as rent a fixed share of the produce from the land, while
under the latter the rental is a lump-sum cash payment. Both types of rental

arrangements exist in Khilghati, with about 48 percent of rented land being

subject to share tenancy.3

In an absolute sense, the size of the household farm in Khilghati is
small. By Bangladeshi standards, however, our sample shows much varlation in
farm size. Table 3.2 below shows the distribution of households according to
size and the average productivity of land for each size group. It is clear
that the bulk of household production takes place on relatively small
holdings. In particular, about 70 percent of the households cultivate holdings
of 3 acres or less, with the average sample holding being 2.72 acres. Further,
the same 70 percent of households account for only 45 percent of the total
land cultivated. There does not appear to be any systematic relationship
between farm slze and productivity, though the data do suggest that

productivity ls lowest on farms of fcur acres or more.
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TABLE 3.2

The Distribution of Households by Farm Size and Land Productivity

Parm size Percent of Percent of land Land productivity
{acres) households cultivated (Taka per acre)

0.1 - 1.0 10 3.0 5,292

1.0 - 2.0 34 19.2 4,603

2.0 - 3.0 26 22.4 4,077

3.0 - 4.0 13 15.1 5,053

4.0 + 17 40.3 3,895

—————————— - A S e - e e o T o kS L L S T S S

Source: Compiled from Khandker (1982), Table 4.14, p. 130 and Table 1V,
P. 320. Note that each class interval above contains all farm
households with farm size equal to and less than the upper
limit of that intezval.

Apart from land, which is the principal income-earning asset in Khilghati,
and whose ownership is the major determinant of the socio-economic status of a
household, labour power is the most important source of income for households.
Within the farm household, labour is provided by adult males and females, as
well as by minors (those under the age of 15). This labour is allocated among
different types of activities. Table 3.3 below depicts the distribution of
family labour among activities. It is clear that Khilghati households allocate
the bulk of their labour services to crop cultivation. Apart from the
cultivation of crops, non-crop activity also appears to be important, with
about 24 percent of total family labour input being devoted to that activity.
On the other hand, a very small proportion of family labour is supplied in the
form of agricultural wage employment. Hofe also that, in spite of the
dominance of crop cultivation, a substantial proportion of family labour is
supplied to non-agricultural activities. Of course, there is variation among
households in the extent to which these activities are undertaken. Thus,
marginal farmers would typically engage much more in agriculturair wage

employment to supplement their crop income, while farmers higher up on the
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TABLE 3.3

Total Family Labour Input by Type of Activity

Type of actlvity Percent of households
1. Crop cultivation 41.9
2. Agricultural wage
employment 4.8
3. Non-crop production 23.7
4. Non-agricultural activity 29.17

Source: Calculated from Khandker (1982), Table 4.17, p. 140.

socio-economic scale would engage much more in non-agricultural employment by
virtue of their greater accessibility to such employment.4 The sex and age of
family members is also important here. Thus, typically women and minors are
limited in terms of their off-farm employment opportunities because of social
restrictions, although these restrictions are likely to be weaker in the case
of marginal farmers. In addition, given the nature of crop cultivation,
females and minors typically engage in other non-crop productive activities.
While a substantial 42 percent of family labour is allocated to cIop
cultivation, the xellance on hired labour is also quite signiflcant. Thus, of
the total amount of labour input used in crop cultivation In the sample
economy, as much as 42 percent represented hired 1abour.5 Coupled with the
fact that a rather significant amount of family labour seeks employment
outside of agriculture, this suggests that there is significant labour market
participation by Khilghati households, although women do not appear to
participate to the extent that men do. Hired workers are either permanent

workers attached to the household or casual workers whose services are
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purchased when needed. Typically, in Khllghatl (as in other villages |in
Bangladesh and South Asla) a significart proportion of attached workers are
minors; however, attached workers constitute a relatively small proportion of
the total hired labour force. Only 28 percent of our households reported
attached workers.

The degree of mechanization in Bangladeshl agriculture is low, as is to te
expected given that cultivation is predominantly based on small, fragmented
holdings. Thus, the dominant form of capital input In Xhilghatl (as elsewhere)
is animal (bullock) power, and this input is usuvally owner-supplied. Some
renting of bullock power exists, but thls is quite limited. Khilghati
agriculture is therefore largely traditional. An important exception to this
is the use of high-yielding seed varieties. These seed varieties are
fertilizer-intensive and require timely and adequate water supplies. Through
various programmes lnltiated In the early sixties, the government has promoted
the spread of modern irrigation and developed & system for the wider
application of chemical fertilizer. In Khilghati, this has enabled not only
the adoption of a high-yielding spring rice varliety, but also of a
high-yielding dry season rice variety. Thus, in addition to the traditional
practice of wusing manures, high yielding seed varieties and the use of
chemical fertilizers also appear to be an integral part of farming practices

In our sample economy.6

3.3 THE MODELS AND THE ESTIMATION STRATEGY

In this section, we first specify the models used for the measurement of
technical and allocative efficiency of Khilghati farmers, and then outline the
estimation strateqgy. Khandker (1982) and Khandker et al. (1987) have

examined the allocative efficiency of the farmers in our sample in terms of
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departures from the €£irst-order conditions for proflt maximization. Qur
study, however, differs in jimportant respects from theirs. First, their
studies are more aggregative in that the efficiency question is not examined
from the point of view of individual crops. Rather, on the implicit assumption
that the decision-making period of households 1s the entire crop year, they

consider an aggregate of different crops and the inputs associated with thelr
production. The present stidy, in contrast, involves disaggregation to the
level of the individval crop, with the decision-making period being
consequently assumed to be the relevant cropping season. The second, more
important Qdifference is that the aforementioned studies do not adopt the
frontier approach. In those studies, the estimated production function, thus,
does not corzespond to the theoretical concept of a production function, and
cannot therefore be used for obtaining meaningful farm-specific measures of
technical efficiency. Furthermore, while their approach enables them to
examine how serious departures from the profit-maximizing couditions are for
each factor, the extra cost (that is, foregone profit) of thosa departures
cannot be obtained. In our study, not only are we able to estimate the cost
saving attalnable through the elimination of technical and allocative
inefficiency separately, we are able to do so by household and major Crop. We

also attempt to explain empirically the inter-farm, inter-crop differences in

efficiency of both types.

3.3.1 THE FUNCTIONAL FORM

Our measures of technical and allocative efficiency are obtained by estimating
both deterministic and stochastic production frontiers. Each type of frontlexr
is estimated for each of the three rice crops groun'ln Khilghati over the crop

year - Aus broadcast paddy, Aman transplant paddy, and Boro HYV paddy. Our
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choice of the production £frontier as the basis of efficlency measurement is
predicated on the absence of sufflcient €factor price wvarlation needed to
estimate a cost or profit frontier. In estimating the production frontler, the
first major problem 1is that of specifying the functional form of the
deterministic part of the frontier. While £lexible <Zunctional forms are
preferred a priori, the main practical problem with them is that they may
introduce a high degree of multicollinearity. Thus, for example, in the case
of the translog model, flve extra parameters have to be estimated 1f a fifth
factor is included. With simpler functional forms, 1like the CES or
Cobb-Douglas model, on the other hand, the number of extra parameters would be
only one. In line with the common approach in frontier studles, we adopt the
homogeneous Cobb-Douglas functional form to represent the underlying
technology. A significant empirical advantage of adopting a homogeneous
functlon such as the Cobb-Douglas is that we do not have to worry about
divergences between actual and expected output in the context of efficiency
measurement. As we saw in Chapter 2, such divergences may ralse significant
difficulties for the measurement of allocative efficiency.7

One of the questions that arises in estimating a frontier preoduction
function from cross-sectional data is whether one can, a priori, assume that
all farmers face the same technology. This is undoubtedly an important issue,
and the approximate legitimacy of the assumption (common in the empirical
literature) would depend upon the nature of the cross-sectional units being
examined and the level of aggregation adopted. In our study, the analysis is
conducted at the level of the individual farm household. In addition, the
production frontiers we deal with are crop-specific. Coupled with the fact
that we are concerned with farmers from the same village, these factors
suggest that the adoption of a common frontier to represent the underlying

technology in Khilghati is a reasonable assumption. Further support for that

81



assumption comes from the studles by Khandker (1982) and Khandker et al.
(1586) who, working with the same group of farmers, examined the gquestion of
whether the preduction function is the same for (i) small and large farmers,
and {ii) owner-cultivators and owner-tenant cultivators. These questions have
attracted a great deal of attention in the literature on agriculture in less
developed countries. For instance, numerous findings suggest that small farms
are more productive (per acre) than large farms. However, the tests conducted
by Khandker and Khandker et al. with Khilghat!{ data showed that technology
does not appear to vary slignificantly according to either farm size or tenancy
status. Even though these studies are aggregative, in that all crops are
aggregated into a single output, while this study is crop-specific, their

results put our assumption of a common technology for all farme:iz on a firmer

footing.
3.3.2 THE INPUT SET AND FACTOR PRICES

The next question pertains to the choice of inputs te be included. This
question acquires added significance in a frontier context for the following
reascn. In general, the random disturbance reflects the influence of omitted
factors, and the exclusion of relevant variables blases the results. But in
frontier estimation, there is an additional dimension to the problem. In
particular, estimates of efficiency are likely to be sensitive to the number
of factors included, given the way efficiency is measured. By allowing €for
statistical noise, the stochastic frontier is less likely to suffer from this
difficulty than the deterministic frontier.8 On the other hand, the inclusion
of a very large set of inputs is not only too demanding from the data point of
view, but would lead to a sharp reduction in the deqrees of freedom and a

severe collinearity problem. Consequently, we adopt an approach that attempts
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to strike a balance between the largest input set that we could consider for

inclusion, given the data, and the set dictated by manageability and

estimation considerations.

For Khilghati, we can identify four major inputs - land, labour, animal
power, and chemical fertilizer. Fertlilizer is a modern input, and its usage is
important particularly for the dry season rice c¢rop. It is easiiy measured,
and its inclusion in the production function is clearly warranted. Farmers in
the sample also use pesticldes, but on a very limited scale. Hence, they can
be excluded without any significant effects. However, since we lump together
different types of Efertilizer, we are assuming that they are perfect
substitutes for each other. The land input should reflect the total amount of
land (owned plus net land rented) used in thc production of each crop.
Ideally, it should also be gquality-adjusted. However, the absence of the
appropriate data rules this out.9 In any event, the assumption that all land
is of approximately the same quality may not be an unduly restrictive
assumption £for Khilghati. Thus, our land input is the total operational
holding of the household. We argqued in the previous section that, like much of
peasant agriculture in Bangladesh, physical capital in Khilghati is quite
rudimentary. The primary capital asset, other than land, is represented by
bullocks that are used to plough the land. This greatly facilitates
measurement, since otherwise we would face the difficult task of having to
aggregate a number of heterogeneous capital assets. Thus, our capital input is
the services of a pair of bullocks, measured in animal days, used to produce
each rice crop.

The labour input is the most troublesome one, primarily because of its
evident heterogeneity. 2 typical household's total labour input is
differentiated not only by sex and age, but also by source (family vs. hired

labour). Thus, corresponding to each source, there is a further classification
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according to sex and age (adults and minors). There are, as a result,
potentially eight labour varliables to be considered. The simple aggregation of
all eight into a single labour input wvariable would appear to be too
restrictive a procedure, Implying as it does that all labour Inputs are
perfect substitutes. Nevertheless, some aggregation 1s needed to avold a
collinearity problem. Much of the empirical 1literature on the production
functions of farmers in less developed countries tends to ignore the problem
of labour heterogeneity, while the studies that address the issue deal
primarily with the heterogeneity of family vs. hired labour [see, for
instance, Bardhan (1973), Huang (1971), Brown and Salkin /i974), Deolalikar
and Vijverberg (1983}, and Nath {1974}]. However, heterogeneity with respect
to age and/or sex is also potentially important. Khandker (1982) and Khandker
et al. (1986) have examined the question of the heterogeneity of labour by
both source (hired vs. family labour) and age and sex for the village of
Khilghati. Their findings support the use of an aggregate of the labour inputs
obtainedl by taking a weighted sum of the services of adult males, adult
females and minors. The weights are the wage rates of the categories relative
to the wage rate for adult males. In particular, they f£find that the
disaggregation of the labour input, elther by source or by age and sex, does
not lead to results that are significantly different from those resulting from
such aggregation. However, these findings are not entirzely conclusive, in
view of the fact that their testing procedure involves using the F ratlio to
test specifications that are not nested, a procedure that is incorrect.
Nevertheless, it could be argued, a priori, that given that adult female
labour and minors axe involved in crop production on a very limited scale in
Khilghati, the disaggragation by age and sex may not be important. In this
study, the labour input is a simple aggregate of family and hired labour. iIn

light of the limited role of adult females and minors, we consider only adult,
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male labour (hired plus family).

There have been numerous nonfrontier studles which suggest that educatlon
and other similar attributes (such as membership of co-operative societies or
exposure to extension services) have a favourable impact on the technical
efficiency of farmers in less developed countries [see the survey paper by
Lockheed et al. (1980)). Studies of this type estimate a nonfrontier
production function with education as an explicit "management-input™ variable.
The results, in general, appear to support the Incluslon of such a varlable in
the production function. However, in a frontier setting, technical efficiency
is explicitly modeled by the variable e™™, and inter-farm variations in that
variable would likely reflect, amongst other things, the variations in farmer
education. In other words, if education is relevant, its effect is represented
by e—“, so that incloding education separately is not necessary. One
alternative to the inclusion of education as an input variable ln the frontier
function is to argue that educated and uneducated farmers do not shaze a
common production frontier. If a separate frontier is estimated -~ educated
and uneducated farmers one can then test whether educated farmers are, on
average, more technically efficient. However, there are no compelling reasons,
at least for our sample, for assuming that the frontier technology differs for
educated and uneducated farmers, and therefore we take a different approach.
If education does indeed have a favourable impact on technical efficiency,
then one would expect any of the technical efficiency indices proposed to be
positively correlated with an appropriately defined education variable. 2
similar argument could be made for the relationship between allocative
efficiency and education. This question can be addressed once the technlical
(and allocative) efficiency indices have been obtained for each farmer in the
sample. The approach can also be extended to deal with other

"management-input" variables. Thus, for instance, agricultural co-operatives
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in less developed countries serve as a conduit for Information about more
productive farming practices, particularly those pertaining to HYV
cultivation. Since HYV cultivation is risky, agricultural co-operatives play
an important role in disseminating technical knowledge requized for successful

HYV c:ult.i*.aration.]"J

To the extent that membership enhances management ability,
one would expect members to be more efficient than non-members. The same
argument could be made for exposure to agricultural extension services. Thus,
we do not include an education variable, nor one reflecting membership or
nonmembership in an agricultural cooperative explicitly in the production

function. Instead, we examine their role in explaining inter-farm variations

in efficiency, after the construction of the efficlency indices discussed in

the previous chapter.11

In addition to factor quantities, we need factor prices in ozxder to
compute the allocative efficiency indices, and the costs associated with
factor-specific technical inefficiency. The measurement of the relevant factor
prices is a relatively straightforward matter when markets are well developed
and the appropriate prices can be readily 1déntified. Difficulties arise for
identifying the appropriate prices when markets are fragmented and
undeveloped, and transactions are governed by kinship and other social and
institutional factors. In addition, as is true for the rural areas of less
developed countries of the region, large landholding households in Bangladesh
dominate the soclal, political and economic life, and exercise economic and
political power. One implication of this is that large farmers are not price
takers in the factor markets, an assumption implicit in the measurement of
allocative efficiency in Chapter 2. However, for the sample at hand, we can,
by and large, ldentify and measure prices of the factors included in the
production function. And, while there is variation in farm size, there do not

appear to be households in the sample that could be regarded as being truly
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large. In any event, the number of the relatively larger farmers is quite
small. as a consequence, we feel our assumptlon that all farmers are price
takers in factor markets to be reasonable. We briefly discuss our factor price
measurement procedure below,

We have seen that Khilghati households rely quite significantly on casual
hired labour in crop production, and that this lahour is again dominated by
adult males, since social custom inhibits the participation of both adult
females and minors ln the labour market. As Hossaln (1977) and Khandker (1982)
argue, the market-determined wage of casuval hired labour could serve as an
approximate indicator of the opportunity cost of adult family labour devoted
to crop preduction.

The measurement of the price of the services of land ralses significant
difficulties. This is because the rental market for land is not well
developed, and matters are further complicated by the exlstence of different
types of tenancy arrangements. Land rental also happens to be dominated by
kinship and patronage. Thus, a significant portion of the land rtental
arrangements under share tenancy were between relatives, and there |is
therefore no gquarantee that rentals reflect the true scarcity value of the
land. In general, rental arrangements under either type of tenancy system are
historically determined, with only infrequent recontracting, and may not
reflect the current opportunity cost of land services. On the other hand, the
sheer pressure of population suggests that, under both types of tenancy, land
rentals would probably rot diverge signiflcantly from their opportunity costs.
Following Khandker (1982), the rental per acre, as determined under the
fixed-cash tenancy system, is used in our study to represent the rental price
of owned or rented land.

The rental market for bullock power is limited in Khilghati, as most

farmers utilize the services of owned bullocks. There is nevertheless some
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buyirg and selling of the services of bullocks, and the rental for bullock
power quoted by the farmers in the sample appears to be gquite uniform over the
sample. That rental price is taken to represent the opportunity cost of using
owned bullock power. Much of the chemical fertilizer used by farmers comes
through government agencles, and Is sold at government-determined prices,
which thus are very simlilar for all farmers. However, it is well known that
larger farmers typlcally have better access to inputs such as these, and often
the small farmers {usually pure tenants) have to purchase their supplies in
the black market, where prices are significantly higher. On the other hand, in
our sample the variation in fertilizer prices is quite limited, polnting
perhaps to the fact that all farmers have reasonably equal access to
government supplies. Table 3.4 below summarizes the definitlons of all the
output and input varlables used in this study .

In conclusion, it might be noted that, like farmers in other developing
countries, those in Bangladesh have unequal access to technical knowledge,
factor markets, and public services in general.lz The position of the farmer
on the soclo-economic scale is an an important factor in determining access.
Thus, small farmers with little or no land of thelr own have limited access to
technical knowledge because they lack education and/or because they are unable
to become members of co-operatives or to benefit from public services such as

13 They also typically

those offered by government extension service workers.
have only limited access to factor markets and bank credit. As a result they
are often unable to acquire subsidized inputs, such as chemical fertilizerz,
sold through government agencies, as large farmerx are able to pre-empt a
large proportion of existing supplies for themselves. It seems 1ikely,
therefore, that the degree of access to technical information, to public

services, and to factor markets has an important influence on £farmer

efficiency. For example, the lack of access to technical knowledge will likely
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TABLE 3.4

Yariable PDefinitions

Variable symbol Definition
Y Crop cutput (maunds)
X, Adult labour-hired plus family (man-days)
X, Cropped area (acres)
X Bullock power (animal-days)
x, Chemical fertilizer (kilograms)
L Wage rate of hired adult males

(Tk. per man-day)

I, Rental on land (Tk. per acre)
I3 Rental on bullock power (Tk. per animal-day)
r, Unit price of fertillzer (Tk. per maund)}

Notes: 1 maund = 37.3261 Kg.

result in lower technical efficiency. In a similar vein, if a farmer is unable
to acquire inputs (such as fertilizer) because of limited access to factor
maxrkets, this may lead to an even more inappropriate choice of factor
combinations, thereby lowering allocative efficiency. The relative importance

of these factors in determining the degree of farmer efficlency 1s difficult

to examine empirically.

3.3.4 THE ESTIMATION APPROACH

In this sub-section, we outline the complete frontier models, the

estimation strategy, and the assumptions underlying it. We estimate both
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deterministic and stochastic frontiers for each of the three rice crops. The
deterministic kernel of these frontiers ls assumed to take the Cobb-Douglas

form, in the four factors of production defined in Table 3.4.
Estimating the Deterministic Frontier

For each of the three crops, the deterministic frontier with technical

inefficiency is given by

1ny.‘ = a ¢ _,z aj In xi.j - o (1)

with u 2 0 for all i = 1, 2,.., T. Here i indexes the farms in the sample,
and j =1, 2, 3, 4 indexes the four factors of production.

As indicated in Chapter 2, the deterministic frontier can be estimated by
non-statistical or statistical methods. Under the former approach, we compute
the frontier, as suggested by Aigner and Chu (1968}, by minimizing either the

expression given by (2) or that given by (3), each subject to the constraints

given by {4) below:

I o~ < -~ -

Z ] a + E.: a, In xi_j - 1n yi_‘ {2)
T . . 4 . 2

Z ] a, -+ %aj in xi_j-ln y‘ (3)

in Y, =< a, + Zo:j, 1n x‘,.j, aj20£o: 3= 1, 2, 3, 4 and )
i =1, 2,..., T.

The * symbol specifies a computed value. The former is a linear programming
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problem, while the latter is a quadratic prograwming problem. Thus, our flrst

set of estimates s obtained by the application of llnear and quad:zatic
programming techniques. Of course, these estimates pcssess no statistical
properties and are sensitive to outliers in the data.

We also estimate the deterministic frontier by statistical methods, and
these are based on certain assumptions. In particular, we assume that the u
are identically and independently distributed with mean m and variance o;z,
and that the explanatory variables are uncorrelated with the u - This latter
assumption is satisfied if farmers maximize expected or median profit, and
technical inefficiency is unknown. As we saw in Chapter 2, under these
assumptions, OLS estimation yields consistent estimates of the slope
coefficients, but not of the intercept.14 However, the OLS method does not
estimate a frentiexr, since with this estimation method the estimated function
will not be the uppex bound to all observations. A solution to these
difficulties is to "correct" the OLS intercept estimate. Two types of
correction are possible. The flrst involves adjusting the intercept term until
no residval is positive. We call this estimator COLSl. The second involves
adjusting the intercept by u, the mean of the distribution of the Q. We label
this method COLS2. Either one is a consistent estimator of the intercept,
though COLS2 does not guazantee that actual output will not exceed frontier
output. In addition, while COLSl does not impose a specific distributlonal
assumption (about the uil on the data, such an assumption Is required to
implement the COLS2 approach. In the latter case, we consider two alternative
possibilities, in order to determine whether the results are sensitive to
distributional assumptions. In the first, we let the u follow a half-normal
distribution, in which case the estimate of u can be shown to be

- Vz -
Efu) = (2/M) o, (5)

)
]
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where o, is obtained from the OLS residuals as follous:ls

;u=[

where the G are the estimated OLS residuals, and (T-5) represents the degrees
19

1r2

0%/ (T-9) ] (6)

w1

of freedom. Our alternative assumption is that the u follow an exponential
distribution. As is well known, the mean of that distributlion is simply equal
to its standard deviation. Consequently, in this case, the estimate of i would
be given by the expression on the right-hand side of (6). In other words,
under COLS2, the OLS estimate of the intercept iz adjusted by (5) if the u
are half normal, and by (6) if they are exponential.16

The production frontier can also be estimated by maximum 2ikelihood (ML).
0f course, thls requires specific assumptions about the distribution of the
u. As we sav in Chapter 2, given the Cobb-Douglas functional form, the ML
estimators are simply the linesr and gquadratic programming estimators
discussed above, according as the distribution of the u is exponential or
half-normal respectively. However, as we noted in that chapter, these
estimators possess unknown statistical properties. Thus, since we obtain the
linear and quadratic programming estimators, there is no reason for applying
the ML method.

Once the production frontier has been estimated by the different methods
outlined above, the various efficlency indices can be computed. In particular,

the output-based farm-specific technical efficiency index, TTk(y), is
TBlY) = ¥ /¥ | (n

where the y in parentheses indicates that this is an output-based measure, y?
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is the actual output of the i*"  farm household, and y: is that household's
frontier output and is given by
- -

- _ - o
Yy, & = Aj_i;‘xi-il (8

whexre i = antiloeg ;o' ;o being the consistent estimator of « .
Similarly, we also compute the input-based, multi-factor generalized
Farrell technical efficiency index for the 1“‘ firm, '!'E‘(x), as follows:
-

- L= ]
TE () = x. ./ x;

g j=1,2, 3,4 (9)

3
Here, x?j is the actwal quantity of factor j used by the ilh household, while
x:j is the technically efficient quantity of that factor required to produce

that household's actual output.n Note that the x:J. satisfy the requirement

L » < (=] :
[xi_j/xi_k] = [xi_j/xi_k] for all j = k (10)

It can also be shown that an ideniical index of technical efficiency can be
formed by taking the ratio of the cost of the technically efficient input

vector x- to the cost of the actual input vector xo. That is,
L d . * o
r° o /r x. (11)

where r is the vector of factor prices. Either (i0) or (11) can be used to
compute the input-based technical efficiency index. Note that [1 - 'rEt(xll

gives the proportionate cost savinags attainable through the elimination

of technical ineffic!enéy.

The estimated production frontier can also be used to obtain
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factor-specific Iindices of technical efficiency. Thus, we soive Zor the

-

: th .
technically efficient guantity of factor j for the i*" firm (x,u), given
1
actval output and the actual quantities of all other factors x, (k= j).‘e

. .th .
The technical efficiercy index for the JLh factor of the i' firm, TEi(xj), is

then gliven by

T (x) = x, /30, for 3 =1, 2, 3, 4 (12)
i=1,2, ..., T

Note that this Index ls not radial In nature. Therefore, it itself cannot be
given the cost Iinterpretation of the multi-factor index (10}. A cost

interpretation becomes possible if we compute the technical cost efficiency
index, TCE (xj), for each factor. For the ith household and the jlh factor,

this index is

TCE (x) = [rj ;ci_j LB x?k ] / r‘x? {13)
Here, the numerator is simply the cost of the technically efficient level of
the jth factor plus the actwal cost of all other factors, while the
denominator is actual cost of all factors.It can be seen that one minus the
index (13) indicates the cost reduction possible by eliminating the technical
Inefficiency associated with factor j.

We can also compute the multi-factor allocative efficiency index, AB(x),
for each household. This requires finding the allocatively efficient factor
vector for the ith household . x:. given actual output y?. This vector is
obtained as the solution to the following system of five equations ~ the

frontier isoquant equation for actual output, and the £irst-order conditions

for cost minimization:
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y> = Apxi {14)
[N jot (%
akrj/ajzk] = (xi_j/x.‘k] for 3 = k (1%)

Ve then £ind the factor vector xo that costs the same as the allocatively

efficient vector x* by solving (16} below
r'x = r’ x (16)

subject to the restriction

® ® o o
X, /*, = X / x,, forallij=k. (17)

The allocative efficiency index for the 1*" household is then glven by
o -
AE (x) = X, / x; for3i=1,2 34 (18)
We can easily show that one minus this index measures the cost reduction
possible through the elimination of allocative inefficlency. The overall index
of economic efficiency for the i firm, BB (x), is then

BE (x) = TE (x). AE, (x) (19)

Again, one minus this index measures the cost reduction possible through the

elimination of both technlcal and allocative l.nef!iicl.:m:y.]'9
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This leads us to our final firm-specific efficiency index - the index that

th

measures facter-specific allocative efficiency. Thus, the 3 factor's
0
allocative efficiency index, ABitle, can be shown to be 2
A.E_‘(xj) = 'I'Ei_(x} . AEi_(x) /TCEi(xj) (20)

While (13) can be used to determine the cost saving possible by eliminating
the technical efficiency of factor j, the index (20) points to the additional
cost saving possible if all factors are subsequently adjusted to their
allocatively efficient 1levels. This concludes the discussion on the

computation of varlous efficlency indices.
Estimating the Stochastic Frontier

The stochastlc frontier with technical inefficiency can be written as

+

Iny = o +,'=Zaj Inx. + ¢ (21)

-~

where £ = v-ou, and the v, represent statistical noise. The stochastic
production frontier itself is the deterministic part of (21) plus the V.. Our
objective is to first estimate (21), and then to separate statistical noise
from technical Inefficiency in order to obtain the frontier.

The model (21} can be estimated by the COLS2 method or by the ML method.
In either case, we need to make specific Jistributional assumptions. While
retaining the assumptions underlying the estimation of the deterministic
frontier, we assume additionally that the v, are independently, identically
and normally distributed with zero mean and constant variance a;z, and that

they are independent of both the explanatory variables and the u.. As before,
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ve consider two alternative distributional assumptions about the u - flrst,
1%

that the u follow a half-normal distribution, and second that they are

exponentially distributed.

Under the COLS2 method, we first estimate (21} by OLS, and adjust the
estimated intercept by the mean of the v estimated from the OLS residuals.
This adjustment differs £rom the ones in the deterministic case because now
the disturbance term is a composite of both statistical noise and technlcal

inefficiency.21 When the u are half-normal, thelir mean is

1,2
E() = [2 /n] o, (22)
In order to estimate E(u)}, we need an estimate of-o;. The latter can be
obtained by first obtaining a consistent estimate of the third moment of the
s (fxrom the OLS residvals), and then equating the sample third moment to the
corresponding population moment [see the discussion in Chapter 2, Section

2.4.2 for the expressions involvedl].

When the u follow an exponential distribution, the adjustment term, the

mean of the ., is given by

E(u) = r (23)

In order to estimate », we once again use the third moment of the

€., which can be shown to be

By = -2 (W’ (24)

Again, the OLS residuals provide a consistent estimate of Mo which can be

equated to the population third moment given by (24). The latter equation can
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then be solved to obtain an estimate of .

While the COLS2 method has the alvantage of being relatively simple, the
ML approach is more efficient asymptotically. Of course, since the_4si are
unbounded, the range problem which precluded the derivation of the statistical
properties in the deterministic case no longer exists. As we showed in Chapter
2, the ML method requires numerical optimization techniques in order to
estimate the relevant parameters, since maximizing the likelihood functlion
does not lead to explicit sclutlons for the estimators. Both estimation
methods provide consistent estimates of the production parameters and of the
variances of the u and the s . However, in oxder to estimate the production
frontier, statistical nolse has to be separated from technical inefficiency.
As we saw in Chapter 2, Section 2.4.1, this can be done by forming the
conditional density of the u given €., and then estimating either the mean or
the mode of the conditional distribution. In this study, we consider only the

mean. When the u, are half-normal, their conditional mean is

P le N fo) 3 N
LN 1 ] {25]

Elu/s) = (e o fo) - —
L A Y u v
[1- &i(stklo}] o

where ¢ = (oi+ af}*’z.k.= A A and ¢ and £ are the standard normal density
and distribution functions respectively. Both the COLS2 and ML methods yield
consistent estimates of the parameters A AT and A, vwhich along with the
estimates of the composite disturbance €, provide all the information required
to estimate the u using (25;. Of course, with these estimates it is easy to

obtain estimates of the V.. As a consequence, we are able to estimate the

stochastic frontier liself.
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if the n are assumed to follow an exponential distribution, it can be
L8

shown that the mean of the conditiomal distribution is given by

10,) o
E(u/s) = < -t (26}
L o1- @)

where Qiz (si_+ a:ﬂ/crv. Again, the application of either of our estimation
methods provides an estimate of each of the elements on the right hand side,
so that the u and hence the v, can be ol:;t:aj.ned.22

once the stochastic frontier has been estimated, efficiency measurement
can proceed in the manner outlined for the deterministic frontler above since
the estimated stochastic frontier will differ from the deterministic frontier
only by a multiplicative factor - namely ;.t, the estimate of v . Note that
alternatively we can define a mean ox median frontier, and use it as the
efficiency standard. We do not adopt this lattex approach in the present
study.23 Note though that our choice of the homogeneous, Cobb-Douglas function
means not only that either approach would give the zame estimates of
efficlency, but also that we avoid the problems for efficiency measurement
arising out of unforeseen fluctuations 1in output (particularly ln the
stochastic case). In particular, unforeseen technical inefficlency and/or
inherent randomness in output have no impact on the allocatively efficient
factor ratios when the function 1s homogeneous. Table 3.6 presents a summary

of our estimation strategy and the efficiency indices computed.
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TABLE 3.6

Sumnary of Estimation Methods and Efficiency Indices

Estimation methcd Efficiency indices Crops
Deternministic frontier la. Output-based TE index Aus Paddy

1. coLsl b. Multi-factor TE index T =78

2. COLS2 2. Multi-factor AE index

3. LP 3. Multi-factor EE index Aman Paddy

4. QP 4. Factor-specific TE index T =30

5. Factor-specific TE cost
index "

Stochastic frontier 6. Factor-specific AE index Boro" Paddy

1. COLS2 T = 83

2. ML

Notes: (i) COLS, ML, LP, and QP stand for the corrected least squares,
maximum likelihood, linear and quadratic programming estimat-
ors, respectively, and T stands for the sample size.

(i1) TB, AE, and EE stand for technical, allocative and economic
efficiency, respectively.

3. 4 SUMMARY AND CONCLUSIONS

In this chapter, we have outlined the broad features and discussed the
nature of economic activity in our sample economy, the Bangladeshi village of
Khilghati. Survey data for a sample of 100 households from this village are
used for the purpose of measuring farmer technical and allocative efficlency.
Crop cultivation is the major form of economic activity, with rice being, by
far, the dominant crop grown. Khilghati grows and harvests three rice crops,
each corresponding to the three crop seasons. Production techniques are
largely traditional, although the availability of water during the dry season,

and the gradual spread of the "Green Revolution™ have enabled farmers to adopt
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high-yielding seed varieties and to use other modern lnputs such as chemlcal
fertilizer. We compute both multi-factor and single-factor indices of farmer
efficlency. The steps Invelved in the computation of the various efficiency
indices have been discussed at some length in this chapter. Our efficlency
indices are derived for each of the three crops on the basis of both
deterministic and stochastic production frontiers which are estimated from
output-input data for the crops, under the assumption that households are
price takers in factor markets. While the productlon functlon is assumed to be
of the Cobb-Douglas form in four inputs - land, adult labour, bullock-power
and chemical fertilizer - the production frontiers are estimated under
alternative assumptions, in order to determine the sensitivity of the
efficiency indices to estimation methods and to assumptions regarding the
distribution of technical inefficiency across households.

We conslder not only both the deterministic and stochastic versions of the
production frontier, but also the half-normal and exponential distributions
to represent the technical inefficiency term. In addition, we estimate the
deterministic and stochastic frontiers by two modifications of the OLS method,
as well as by the maximum likelihood approach. In the deterministic case, the
ML  estimators are in fact programming estimators, but their statistical
properties are not ¥nown. This problem with maximum likelihood is not
encountered in the stochastic case, which allows departures from the
production function to reflect statistical noise and technical inefficiency.
This complicates the estimation procedure, particularly since one now needs to
separately estimate these departures in order to obtain indices of technical
efficiency for each household. Following Jondrow et al. (1982), we achieve

this by estimating the technical inefficiency variable by the mean of its
conditional distribution.
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11.

FOOTNOTES TO CHAPTER 3

See Khandker (1982), Chapter 3 for details on survey design and for a
more elaborate description of the data. Our discussion in this section
draws selectively from that materlal.

Thus, we do not examine the extent to which Khilghati farmers are
efficient in their cholce of output proportions.

The land market in rural Bangladesh is dominated by large landholders and
patron-client relationships. Furthermore, kinshlip factors are important as
well. Thus, in our sample a significant porxtion of the land that was
rented on a share basis reflected transactions between relatives.

In general, marginal farmers, particularly those that are pure tenants (of
vhich there are none in our sample), are likely to have limited access to
employment off the farms of large 1landholders. As Ahmed and Freedman
(1982) point out, the general existence of surplus labouzr, and the absence
of written contractual agreements, give these landlords the power to
appropriate the labour not only of the tenant, but alsoc of his family.

The study by Ahmed and Freedman suggests that in rural Bangladesh it is
primarily the larger landholding classes that employ hired labour to any
extent.

Chemical fertilizers are distributed at subsidized rates through
government-appointed <retailers at the wvillage 1level or through
agricultural co-operatives.

Only a small number of frontier studies employ flexible functional forms.
Those of more recent vintage that do adopt a translog model. However,
those studies deal with the measurement of technical efficiency [see, for
instance, Kallrajan (1986), Kalirajan and Flinn (1983} and Kopp and Smith
(1980)]1. They, therefore, are not confronted with the problems that arise
in the measurement of allocative efficiency when more general
nonhomogeneous technologies are consldered.

This is because in a deterministic ccantext, variations in output not

explained by variations in inputs is assumed to reflect differences in
technical inefficiency.

One way of allowing for land quality is to consider two types of larnd,
irrigated and nou-irrigated. However, we do not have the requisite data.

According to Ahmed and Freedman (1982), while membership in agricultural
co-operatives and other similar organizations in Bangladesh has grown,
participation is largely confined to large farmers and owner-tenants. Pure
tenants' participation is generally 1limited, and their channels for

information tend to be of the informal type (namely, relatives and
friends).

This approach has been adopted by Kalirajam and Flinn (1983) in their
study of technlcal efficlency of rice farmers in the Philipplnes.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

See, for instance, Ahmed and Freedman (19682) and Islam (1978).

The study by Ahmed and Freedman shows that the inablility or unwillingness
of small farmers to participate in co-operatives reflects, respectlively,
the fact that these farmers often cannot meet the requirements for
membership, modest though those might be, and the fear of unequal
partnership since such organizations are often dominated by large
landholders. The dominance of large farmers in credit co-operatives, for

instance, has been documented in the studies by Blair (1978) and IBRD
(1974}.

The assumption that technical inefficiency is completely unknown Iis
probably incorrect, but no more so than the assumption that 1t is
completely known. As Schmidt (1986) points out, the truth is likely to

lies somewhere in between.
Note that since the u.  are half-normal, a-uz is not the variance, but

rather the second moment about zere. The second moment about the mean (the
variance of the u_;), on the other hand, is given by:

viu.) - nm-2 o2
i i1 u

Under COLS1, we have ;°= 50 + e(max), where e(max) is the largest OLS
residual, while in the case of COLS2, o= Eoi- u. Note that Eo is the OLS
estimator of a .

Notice that (9) holds for all j, given the radial nature of the index.
Thus, it is necessary merely to compute this index for any one factor.

of course', this makes ;ij and the actual quantities of all other factors a
technically efficient combination for the actual output y°.

This is because we can alternatively express [l - EEi_(x)l as follows:
[r - TE (x)il1- AE (x})

Equation {20) follows from the fact that the product of factor-specific
allocative efficiency and the index of technical cost efficiency is

identical for all factors, and is equal to the multi-factor indax of
economic efficiency. See Kopp {1980).

Since £, = v, - nu, E(e .} = - E(u,), as E(v.} = 0 by assumption.
3 + v, L * v

Under the COLS2 approach, we f£irst adjust the intercept by adding the mean
of the estimated OLS residuals. After the adjustment we recompute the
residuvals. It is this latter set of residuals that is used to separate
technical inefficliency from statistical nolse in both (25; and (26).
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23. Either frontier would give the same estlimates of technical and allocative
efficiency. It is important to note though that, if the average frontier
is used as the efficliency standard, we cannot use actual output in the
process of computing our efficiency measures. This 1is beccouse actual
output reflects both statistical noise and technical 1nefficiency, while
the average frontler is deterministic. Consequently, it is not actual but
the average output that wowld be produced as a result of technical
lgefficiency alone that is relevant. This requires adjusting actual output
y_ as follows

-~

Y= (v, /e

when we are looking at the median frontier, and as

~ -~

b4

¥ = (y? /ei) e

when we are dealing with the mean frontier. In both expressions, ¥ refers
to adjusted output. Note that the use of the average f£frontier is
equivalent to a deterministic frontier approach, since the population mean
of a stochastic frontier is a deterministic frontier. In other words, we
can rationalize a deterministic frontier as the mean stochastic frontier.
The crucial difference, however, is that with a deterministic frontier
efficiency is computed with respect to actual output, while with the
average frontier this 1is done with <respect to average output.
Computations of the latter type are clearly moxe meaningful in that they

adjust for statistical noise which the computations of purely
deterministic frontiers do not.

104



CHAPTER 4

DETERMINISTIC FRONTIERS: ESTIMATION AND RESULTS

4.1 INTRODUCTION

In this chaptex, we present and discuss our estimates of technical,
allocative and economic efficiency of Khilghati farmers in the production of
the three rice crops - Aus rice, Boro rice and Aman rice. These estimates are
all obtalned by estimating a deterministic Cobb-Donglas production frontler in
four inputs - land, fertilizer, bullock power, and adult, male labour. The
results from the stochastic frontier, our primary interest in this study, are
dealt with in the subsequent chapter. In order to enable an orderly treatment
of the large body of results, this chapter is organized as follows. Section
4.2 deals with the crop-wise estimates of technical efficiency. It begins,
however, with a brief _discusslon of the ordinary least squares estimates of
the production function, since those estimates are required for applying the
various corrected least squares (COLS) approaches for estimating the
production frontier. In Section 4.3, we present and analyze the allocative and

economic efficiency indices by crop. We conclude the chapter with a summary of

our findings in Section 4.4.
4.2. A CROP-WISE ANALYSIS OF TECHNICAL EFFICIENCY IN KHILGHATI
We first briefly discuss the OLS estimates of the Cobb-Douglas function

applied to each of the three rice crops cultivated in Khilghati. Those

estimates are presented in Table 4.1. The Cobb-Douglas function appears to
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Eit the data for each rice crop rather well and each estimated function 1is
highly signlflcant at even the one percent level of significance. The slope
coefficients of the estimated function are the input elasticities of output.
With a few exceptions, all are statistically significant.l With the exception
of the labour elasticity and possibly the bullock-power elasticity in the Aus
equations, the estimated input elasticities are quite plausible.2 The
importance of fertilizer is indicated by its highly significant elasticity.
Somewhat surprising 1s the finding that that elasticity ls larger in the aAman
equation than it is in the Boro equation considering that the latter is a
fertilizer-intensive, high-yeilding variety (HYV) of rice. The estimates also
indicate that the departures from constant returns to scale are slight, with
both Aman and Aus depicting mildiy decreasing returns and Boro showing
slightly increasing returns.

The production function estimated by OLS does not constitute a frontier
slnce observations lie above it. Furthermore, since the production frontier is
deterministic, the disturbance term will not have zero mean so that the OLS
estimator of the intercept will not be a consistent estimator.3 One can
attempt to address both these problems by appropriately "correcting™ the OLS
estimator. As we saw in chapter 3, there can be several corrected OLS
estimators, since the required correction depends upon the assumptions that
one makes. The first version of corrected least squares that we adopt (COLS1)
involves adjusting the OLS intercept upwazd by an amount equal to the largest
OLS residual. This leads not only to a consistent estimator of the intercept
[Greene (1980}]1, but also estimates a frontier in that actual output cannot
exceed frontier output. The second method we use (COLS2) involves two
alternate assumptlions about the distribution of the one-sided disturbance term

- one that it follows a half-normal distribution, and two, that it follows an
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exponential distribution. In each case, the QLS intexcept is adjusted upward
by the mean of the disturbance term which can be estimated from the OLS
:esiduals.‘ Both these versions of COLS2 are consistent estimators of the
intercept term. Their major drawback is that they do not guarantee (like
COLS1) that actual output will not exceed frontier output. This problem does
not arise if the mean adjustments of the intercept are at least as large as
the largest OLS residual. We applied COLSl and both versions of COLS? to each
of the three rice crops.

We also estimate the frontier by two non-statistical methods. Under the
first approach, we minimize the sum of residuals (departures from the
frontier) subject to the constraint that actual output is less than or equal
to fitted output at each observation. This is a linear programming problem,

“and is equivalent to maximizing the likelihood function under the assumption
that the disturbance term is exponentially distributed and the aforementioned
constraints hold. The second method involves minimizing the sum of squared
residuals under the same constraints; this is a quadratic programming problem
and is equivalent to maximum likelihood estimation under the assumption that
the disturbance term is distributed half-normally [see Schmidt (1576) and
Chapter 2 foi details). Thus, we have five different estimates of the
production frontier for each czop - three from applying corrected least
squares and two fror using the linear and quadratic programming estimators.
The main drawback with the programming estimators is that their statistical
properties are not known. The estimates of the frontier based on these
different estimation methods are presented separately for each crop 1in Tables

4.2, 4.3 and 4.4. These and other tables containing our results appear at the

end of the chapter.
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4.2.1 THE ESTIMATES OF THE PRODUCTION FRONTIER

The three COLS estimates for each crop differ from the OLS estimates only
in terms of the intercept term? Looking first at the results for aman rice,
note that while the linear programming (LP) and quadratic programming (QP)
estimates are similar, they differ quite substantially from the COLS estimates
in certain respects. 1In particular, while the labour and fertilizer
elasticities are not very different, the bullock-power and land elasticities
ara. There ls a sizable increase in the bullock-power elasticity in moving
from the COLS to the programming estimators and this is largely at the expense
of the land elasticity. This could reflect the greater sensitivity of
programming estimators to outliers in the data.

Turning next to the estimated frontiers for Boro rice (Table 4.3), note
flrst that the linear and quadratic programming estimates are identical.
Second, as in the case of the Aman frontier, the land elasticity decreases and
the bulldck-pover elasticity increases, both changes being large; again, this
is likely due to outliers in the data.

The same general sensitivity of estimates is observed when we consider the
results for Aus rice. One notable feature is that the labour elasticity, which
was very small under COLS, increases substantially under the programming
method and appears to be at the expense of both the land and bullock-power
elasticities. It seems, therefore, that the Aus frontier estimated by the
programming estimators differs from the COLS frontiers in a more fundamental
way tharn was the case witn the Aman and Boro frontiers. The question of how
significantly differences in the estimates of the parameters of the
deterministic production frontier affect measured technical and allocative

efficiency is a question we explore in the remainder of this chapter.
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4.2.2 THE ESTIMATES OF TECHNICAL EFFICIENCY

Having discussed the various estimates of the production frontier, we turn
now to presenting and discussing our estimates of technical efficiency. As we
indicated in Chapters 2 and 3, the index of technical efficiency can be an
input-based radial measure (the generalized Farrell, multi-factor index) or an
output-based index reflecting the farm household's actual output relative to
the frontier output.6 We have summarized our results in Tables 4.5 through
4.7 (the input-based estimates) and Tables 4.8 through 4.10 (the output-based
measure), which show (for each crop) the distribution of farm households by
technical efficlency as well as by estimation method. While the tables
present the results for both the input-based and output-based technical
efficiency indices, we confine our attention to the former, primarily because
the two are almost perfectly correlated. This is not surprising since, as we
indicated in Chapter 2, under conditions of constant returns to scale the two
measures are identical.

Table 4.5 depicts the results for Aman rice. Note first that
irrespective of the estimation method, no farm household has a technical
efficiency index under 50 percent. Note further that the COLS2 estimates are,
in general higher than those obtained by any of the other methods. Indeed,
several farm households were estimated by COLS2Z to have a technical efficlency
index in excess of 100. As we have argued before, the correction required by
COLS2 does not guarantee that actual output will not exceed the estimated
frontier output. For this reason, we find that average deqree of efficiency is
estimated to be higher under COLS2. Indeed, since the COLS1 adjustment is just
sufficient to make at least one household 100 percent efficlent, COLS2 would

necessarily lead to some households with a technical efficiency index in
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excess of 100 if the corxrection term {the estimated mean of the dlsturbance
term) is smaller than the largest OLS residuwal; this can be seen to be the
case for all crops by comparing the COLS1 and COLS intercepts. Thus while the
two COLSZ estimates are very similar, it is not surprising that the average
level of technical efficiency, which ls around the 90 percent level, ié nearly
10 percentage points higher than the corresponding average obtained from the
COLSIL, LP and QP estimates.

The results based on COLS1, LP and QP are very similar, with more than 60
percent of 21l farmers lying in the 70-80 percent technical efficiency range.
While definitely lower than the COLS2 estimates, the COLS1, LP and QP
estimates suggest a high degree of technical efficiency in the cultivation of
Aman rice. The estimated average level of technical efficiency under these
methods is in the 80-82 percent range, suggesting that the elimination of
technical inefficiency would lower costs by ahout 18-20 percent on average,
while for the most inefficient farmers, this cost saving could be as much as
40 pezcent.7 In summary, it seems that Khilghati households are highly
efficient {technically speaking) in the culti;ation of Aman rice, with only a
handful of farmers with technical efficiency below 70 percent. Since in
general technical efficiency tends to be understated in a deterministic
context, this finding would likely be supported further in the next chapter
where we consider a stochastic production frontler.

The technical efficlency results for Boxo are given in Table 4.6. One
major difference from the Aman results is that farmers are relatively more
evenly distributed along the technical efficiency spectrum, whatever the
estimation method used. For instance, the COLS1, LP and QP estimates suggest
that more than 15 pezcent of farm households have a technical efficiency index

under 50 percent. The corresponding figure is much smaller for the COLS2
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estimates which are again much higher, with the most efficient farmers
displaying technical efficiency well in excess of 100. The average level of
technical efficiency according to the COLS2 estimates is in the 85-88 percent
range and this is lower than the corresponding fiqures for Aman. But as was
the case for Aman rice, the two COLS2 frequency distrlibutions are very similar
with similar chazacteristics.

The COLS1, LP and QP estimates also show similarity. The LP and QP
frequency distributlons are identical, reflecting the fact that the LP and QP
estimates of the production function were virtwally the same. The average
level of efficiency according to these estimates is in the 70-73 percent range
and thus almost 10 percentage points lower than the corresponding flgure for
Aman rice. These estimates suggest that farm households could reallize a cost
saving in excess of 25 percent on average by eliminating technical
inefficlency, and for the most inefficient farmers, that saving could be as
much as 60 percent. CLearly, the results for Boro point to a more uneven and
variable performance as compared to Aman.

Turning next to Teoble 4.7 which contains the results for Aus rice, notlce
that they are quite diiferent in several respects from those for Aman and
Boro. First of all, not only is the average level of technical efflciency
much lower in Aus farming but it also varies considerably more across farm
households; and this is true whichever set of estimates one looks at. Second,
the similarity between the two COLS2 estimates and between the COLS1, LP and
QP estimates is no longer that marked. Third, one major difference from
previous results that stands out is that the CoLS1, LP and QP frequency
distributions of technical efficiency are fundamentally different from those
for COLS2. For instance, it can be seen that the COLS1 freguency distribution

implies that the vast majority of farm households (in excess of 60 percent)
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have a technical efficiency index under 60 percent; indeed, almost 40 percent
of the farmers lle below the 50 percent efficiency level. In contrast, the
COLS2 distributions remain markedly skewed to the left, implying that the bulk
of the farmers are concentrated in the high efficiency ranges. These
differences are also found when the programming and COLS2 results are
compared, though the differences are not that dramatic. Overall, these
differences in the frequency distributions lead to an average technical
efficiency level in the 78-83 percent range under COLS52, and in the 55-65
percent range under COLS1, LP and QP. The latter average implies a substantial
average cost saving through the elimination of technical inefficiency, that
saving being in the neighborhood of 70 percent for the most inefficient
farmers.

From the foregoing discussion it seems that in spite of substantial
differences in the COLS1 and LP/QP estimates of the production frontiexr, the
differences in the average level of technical efficiency are not dramatically
different for the Aman and Boro crops. The more significant differences in
that average arise when we look at the COLS2 estimates which, in the case of
each crop, lead to estimates of technical efficiency in excess of 100 percent.
The COLS2 estimates, therefore, cannot really be compared meaningfully with
those obtained from COLSl, LP and QP. The latter methods suggest that
technical efficiency is highest in Aman cultivation and lowest in Aus
cultivation, and the estimates themselves appear to be quite plausible.

While we have an interest in estimating technical efficiency levels, an
equally relevant approach is to look at the efficiency in an ordinal sense,
particularly in light of the fact that we observe efficlency levels to vary by
estimation method and czop.a In particulax, we would like to determine, first,

vhether a farm household's relative ranking along the technical efficiency
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spectxum is sensitive to the estimation method and, second, whether that

ranking is independent of the crop grown. We examine both these questions

next.

4.2.3 AN ANALYSIS OF TECHNICAL EFFICIENCY VARIATIONS BY ESTIMATION
METHOD AND CROP

We examine first the sensitivity of a farmer's ranking along the technical
efficiency spectrum to the estimation method for each crop. This is done by
computing Spearman's <rank correlation coefficient between the technical
efficiency indices obtained from the COLS1 and programming estimates of the
production frontier.9 There is no need to consider each of the COLS estimates.
Since they differ from each other only in terms of the intercept, each will
necessarily rank farm households identically. Of course, they could {and do)
lead to different estimates of the level of technical efficiency. The LP and
QP estimates differ in terms of both the intercept and input elasticities and
thus imply fundamentally different estimated frontiers. They could, therefore,
lead not only to different estimates of the average level of technical
efficiency, but also to a different ranking of farm households. Again, we
confine our discussion to the input-based indices since the Pearson as well as
zank correlation between each output-based index and its corresponding
input-based index was found to be unity. The rank correlations for each crop
are shown in Table 4.11. They show that there ls a very strong correlation
between the ranks of the technical efficiency indices derived from the CoLSs1,
LP and QP estimates of the production frontier. All correlations are in
excess of .90 for all crops, suggesting that the relative efficiency ranking

of farm households is, by and large, insensitive to the method used to
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estimate the production frontler, even thougﬁ that property ls not shared by
estimates of the average level of efficiency.l0
We saw above (Tables 4.7, 4.8 and 4.9) that the average technical efficiency
varles across crops. We now make an inter-crop comparison to determine whether
a farm household’'s relative efficiency ranking along the technical efficiency
spectrum is independent of the crop grown. One might expect a priori that farm
households higher up along the technical efficiency scale for one crop would
maintain that relatlve superlorlity in other crops as well. A strong version of
this hypothesis would require that the relative ranking of each farm household
is the same over all crops cultivated. A weaker version would require only
that the crop-specific technical efficiency indices themselves bear a strong,
positive relationship to each other.11 To examine both these types of
correlations, we compute Spearman's rank as well as Pearsen's correlation
coefficlients between the technical efficlency Indices for each of the three
crops. Those correlations are presented in Table 4.12. We report only the
results for the COLS1 and the LP technical efficiency input-based indices.
This is because the COLS1 and COLS2 indices are perfectly correlated and the
QP index is almost perfectly correlated with LP index. Note also that the
correlations reported are based on a sub-sample of 62 farmers; this group
represents those farm households that cultivated all three rice crops. The
results for both the LP and COLS1 estimates are very similar, and somewhat
suxprising. For instance, they suggest that a farmer's ranking in the
cultivation of Aman is entirely independent of of his/her ranking in the
cultivation of Boro, while the Aus ranking appears to be negatively related to
the Aman ranking. However, that negative rank correlation is small in value

and highly insignificant statistically. On the other hand, there does appear

to be 2 positive, albeit weak, relationship between the the ranking of farmers
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in Aus and Boro. In fact, the rank correlation coefficient is on the
borderline of statistical significance at the S percent level. The same
general pattern of results is observed if we examine Pearson's correlation
coefficients between the technical efficiency indices across crops. It seems,
therefore, that there is only mild support for the view that a farm
household's technical efficiency is correlated across crops. This suggests
that success in one crop need not imply success in others. In turn, this may
reflect the possibility that the knowledge and skills required for efficient
cultivation are crop-specific. These and other related issues are taken up

further in the concluding section of the chapter.

4.3 A CROP-WISE ANALYSIS OF ALLOCATIVE AND ECONOMIC EFFICIENCY
IN KHILGHATI

In this section we examine our estimates of allocative and economic
efficiency by estimation method for each of the three rice crops. Our
allocative efficiency index is the generalized Farrell, multi-factor index
discussed in Chapters 2 and 3. It measures the extent to which a farm
household is efficient in choosing inputs in the "correct" proportions - that
is, the proportions that equalize the ratio of their marginal products to the
ratio of their prices. The irdex is an indicator of the efficiency of total
factor usage and does not, therefore, tell us anything about the relative
contributions of different factors to overall inefficiency. The iudex measures
the proportionate reduction in cost that can be achieved through the
elimlnation of allocative, lnefficlency. The index of economic efficlency, also
a8 multi-factor index, is a measure of the extent to which a farm household is

successful in minimizing costs. It is obtained as the product of the
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input-based technical efficiency Iindex of the previous section and the
allocative efficiency index. Like those two indices, it can be given a
straightforward cost interpretation. In particulazr, it shows the %otal cost
saving attainable through the elimination of both technical and allocative
inefficliency. Both these indices are computed £for the deterministic,
Cobb-Douglas frontier In the manner described in Chapter 3.12 Our crop-wise
estimates of allocative and economic efficiency are presented in Tables
4.13, 4.14 and 4.15.

Before we evaluate the estimates, it may be noted that unlike the
estimates of technical efficiency, the estimates of allocative efficiency
based on the three COLS estimators are identical. This is not surprising since
the COLS estimators differ only in the manner in which the intercept term is
adjusted. This obviously leads to different estimates of techﬁlcal efficlency,
but changes in the intercept (though not in the input-output elasticities)
have no effect on the allocatively efficient factor proportions; hence the
invariance of the allocative efficiency Indices to the COLS estimators. Of
course, the COLS estimators of the production frontier are different from the
programming estimators. Thus, the allocative efficiency estimates based on the
COLS estimators are different form those obtained from the programming
estimators. The economic efficiency indices, on the other hand, are not
independent of the Intercept adjustment (since they depend crucially on

technical efficiency), and hence each COLS-based index of economic efficliency

is different.
4.3.1 ESTIMATES OF ALLOCATIVE EFFICIEHCY13

Consider first the efficlency indices for Aman rice in Table 4.13. The

11¢



allocatlive efficiency index, which is identical for the three COLS estlmators,
suggests that over 90 percent of farm households are §0-100 percent
allocatively efficient; over half the farmers are 70-80 percent efficient
while about 40 percent are 60-70 percent efficient. No farm household is less
than 50 percent efficient, and only just under 6 pexcent of farmers have an
allocative efficiency index in excess of 80 percent. The average farmer is
about 70 percent efficient. These estimates indicate that an average cost
saving of nearly 30 percent could be achleved through the elimination of
allocative inefficiency; that saving could be as low as about 17 percent for
the most allocatively efficient farmer and about 45 percent for the most
inefficient. In contrast to the distribution of technical efflciency, there
are no farmers in the sample that are even 85 percent (much less 100 percent)
allocatively efficient.

The distribution of allocative efficiency according to the LP and QP
estimates differs quite substantially from the COLS distributions; - indeed the
LP and QP distributions themselves are quite different from each other. Thus,
according to the LP estimates, almost all farmers have an allocative index
lying in the 40-60 percent range; only a little over 3 percent of farmers lle
in the 60-7¢ percent range, and none above 1t. This translates lato an average
allocative efficiency level of only 52 percent, compared with the 71 percent
average lmplied by the COLS estimators. Thé LP estimates indicate that even
the most efficient farmer in the sample could realize a substantlal cost
saving of 30 percent through the elimination of allocative inefficiency, while
that saving would be almost 60 percent for the most 1nefficient farm

household. The LP estimates thus imply a far greater degree of allocatlve
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inefficiency among farmers than the COLS estimates.

The QP results lle in between the LP and COLS results. Thus, over 95
percent of farmers lie in the 50-70 percent range, and only 2.2 percent lie in
the 70~80 percent range. This translates into an average allocative efficiency
level of about 60 percent, which lles between the LP and COLs averages.
Further, the most efficient farm household's allocative efficiency index is
about 75 percent while the most inefficient farmer has an index of 48 percent.
This again 1lles within the corresponding intervals for the COLS and LP
estimates. Thus, the estimates of the level of allocative efficlency and its
distribution by farm household are sensitive to estimation methoed and the
average level of allocative efficiency is lower than the average level of
technical efficiency in Aman cultivation.

We turn next to the estimates of allocative efficiency in the cultivation
of Boro rice. These are presented in Table 4.14. Looking first at the COLS
estimates, about 75 percent of farm households lie in the 70-100 pexcent
efficiency interval. As a result, the average level of allocative efficiency
is somewhat higher than that found for Aman, with the most efficient farm
household clearly being more efficient than the most efficient farm
household in the cultivation of Aman. However, the least efficjient farmer has
about the same level of allocative efficiency in both cases. The Boro
estimates obtained from the COLS method polint to a 25 pexceat cost saving
through the elimination of allocative inefficiency; the corresponding fiqure
for Aman is about 30 percent.

Turning to the programming estimates of allocative efficiency, we note
that while these are very different from the corresponding COLS estimates, the
LP and QP estimates are identical. However, this follows only because, as we

pointed out earlier in the chapter, the LP and QP estimates of the frontier
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production function were identical. Notlce that the QP/LP estimates of
allocative efficiency are not only much lower than those obtained from the
COLS method, but are lower than the QP and LD estimates for Aman rice. Thus,
for Boro it ls seen that more than 80 percent of farm households have an
allocative efficiency index lower than 50 percent. Unlike the frequency
distributions for COLS, the LP/QP distributions are clearly skewed to the
right, and this translates into an average level of allocative efficiency of
only 45 percent. Thus, the allocative efficiency indices as measured by the
QP/LP and COLS methods are far more different in Boro cultivation than in Aman
cultivation. The higher average level of allocative efficiency in Boro as
compared to Aman cultivation, as indicated by the COLS estimates, would
suggest that Khilghati farmers have been successful in adapting the newer HYV
technology embodied in Boro cultivation. The LE/QP estimates however, seem to
contradict that. On the other hand, the QP/LP estimates of the Boro production
frontier appear to be quite unrealistic. Both the land and labour elasticities
are substantially smaller compared to their COLS values. To some extent, such
differences were found for the land elasticity in the QP/LP estimates of the
Aman frontiexr. However, in that case, the differences were not nearly as big.
It seems reasonable to conclude that the allocative efficiency indices based
on the COLS method are perhaps more reasonable than those obtained under the
LP and QP me“-hods.

The allocative efficiency indices for Aus rice, presented in Table 4.16,
show that the average level of allocative efficiency, calculated from the COLS
estimates of the frontier, is only about 49 percent. This is much lower than
the corresponding averages for Aman and Boro rice and points to a significant
average cost saving of over 50 percent through the elimination of

inefficiency; for the most Lnefficient farmers that saving could be almost 70
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percent, while for the most efficient it is still a sizable 30 percent. About
75 percent of farmers lie {n the 40-60 percent range of the allocative
efficiency spectrum, and no farmer has an allocative efficiency index above 70
percent.

The QP/LP estimates, on the other hand, are very different form the COLS
estimates. In particular, the frequency distribution of allocative efficlency
iIs highly skewed to the left, with more than 70 percent of farmers in the LP
case, and 67 percent of farmexrs in the QP case 1ying in the 80~100 percent
allocative efficiency range. In both cases, this puts the average level of
allocative efficiency at a level that 1is one-and-a-half times the
corresponding average obtained under the COLS method. Thus, while the LP and
QP results are not only very different from those 6btained under the COLS
method, they are also quite different from those obtained for the two other
crops. Whatever the factors behind the inter-crop differences, the differences
between the COLs and LP/QP estimates can be traced to differences in the
estimate$ of the frontier function. It seems that the labour elasticity is
much to low, and the capital elasticity somewhat on the high side, under COLS
estimation. By the same token, LP/QP estimation appears to lead to an
unrealistically high labour elasticity, and a smaller than expected land
elasticity. Glven the particular configuration of factor prices, this leads to
the substantial differences observed. It seems likely that the Aus frontier
function is not well estimated by either the COLS or programming approaches,
and that tzrue values of the aforementioned elasticities lie in between those
obtained. If that were the case, the allocative efficiency indices would
likely not display the wide variations observed, and also would be somewhat
more in line with those observed for the other rice crops. On balance it would

seem that the average level of allocative efficiency ir Aus cultivation is
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much too high, based on the programming method, and perhaps too loQ based on
the COLS method.

Overall, the estimates of technical and allocative efficiency suggest that
Khilghati farmers have been successful in the cultivation of the
new-technology Boro crop in the sense that, in both technical and allocative
terms, the average level of efficiency in that crop compares favourably with
the average efficiency levels in the cultivation of the traditional Aman and
Aus crops. In particular, average allocative efficiency is highest 1in

Boro while average technical efficiency is not much lower than is the case for

Aman.
4.3.2 AN ANALYSIS OF ALLOCATIVE EFFICIENCY VARIATIONS BY METHOD AND CROP

In sub-section 4.2.3, we observed that the average level of technical
efficiency showed variation across crops as well as estimatlon method. We then
explored the question of whether the relative ranking of farm households along
the efficiency spectrum was sensitive to those variations. The purpose of the
present sub-section is examine this issue in the context of allocative
efficiency, variations in which appear to be more pronounced (both across
crops and estimation method) as compared to those in the case of technical
efficiency. This is particularly so in the case of Aus rice. The only
difference in the present analysis as compared to the one undertaken for
technical efficiency is that the allocative efficiency indices are, by
definition, the same for all COLS estimators; the COLS estimates are, however,
different from the programming estimates.

We begin by first examining the variations in allocative efficiency by

estimation method. For this purpose we computed Spearman's rank correlations
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between the allocative efficiency indices obtained by using the COLS1, LP and
QP estimation methods. Those correlatlons are shown in Table 4.16 for each
rice crop. It can be seen that, as far as the Aman and Boro rice crops are
concerned, no rank correlation coefficient is less than 0.90. This suggests
that in spite of the large differences between the estimates of aberage
allocative efficlency obtained from the COLS and programming approaches, the
relative ranking of farm households 1is, by and large, preserved. The rank
correlatlons for Aus rice, for which the diffexrencex in the COLS and
programming estimates of the average level of ARllocative efficiency were not
only much more substantial in comparison with the Aman and Boro crops, but
were also in the opposite direction, tell a different tale. With rank
correlations of about 0.54, it seems that the COLS ranking is quite different
from the LP/QP rankings. Thus, in contrast to the results for the aman and
Boro crops, the more fundamental differences in the COLS and programming
estimates of the frontier <function are reflected in both substantial
differences in the estimates of the average level of allocative efficiency as
well as in changes in the relative positions 6f farmers along the allocat:ive
efficiency spectrum. Nevertheless, the rank correlations are statistically
significant and their magnitudes point to a moderate, positive relationship
between the ranks.

We next turn our attention to the question of whether a £arm household's
relative allocative efficlency is independent of the rice crop grown,
particularly since the average level of allecative efficiency varies
substantially across crops (at least between the Aman/Boroe and Aus crops).
Table 4.17 s™ows the rank correlations (as well as the Pearson correlations)
between the allocative efficiency indices across crops. The correlations shown

are based on the COLS1 and LP estimates of the production frontier. The rank
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correlations show that the relative ranking of a farm household in Aman
cultivation is independent of its ranking in Boro cultivation, irrespective of
the estimation method. That independence extends to Aman and Aus as well Lf we
consider the LP-based indlices. On the other hand, there does appear to be a
positive relationship between a farm household's rank in the cultivation of
Boro and in the cultivation of Aus though that relationship appears to be only
moderately strong (but statistically significant) in the COLS case, and on the
weak side in the LP case.14 This pattern of rank correlations is mirrored by
Pearson's correlation coefficients. 6verall, there is some evidence in the
sample that the ability of farmers to choose the "right™ input propertions in
one crop carries over into other crops. That evidence does not appear to be
strong, but it is stronger than that found for technical efficiency. The lack
of a strong, positive xelationship may well reflect, as we arqued In the case
of technical efficiency, the possibility that allocative skills are
crop-specific. On the other hand, this may well rzeflect that possibility that
while there are many common factors that determine a farmer's ability in
choosing technically and/or allocative efficient factor combinations, their
relative importance in the cultivation of different crops may dliffer. For
example, farmer contact with government extension agents or with agricultural
co-operatives may have a favourable impact on efficiency in general. However,
that favourable impact may be stronger in the case of a new-technology crop
such as Boro rice as compared with the relatively more traditional crops such
as Aus rice. In addition, farmers may differ not only in the technical and
allocative information they have, but also in their ability to use that
information to their advantage. It is, thexefore, quite possible for various

efficiency indices to display crop-wise variations.

Having examined our estimates of allocative efficiency, we turn nexﬁ to
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the economic efficiency indices.

4.3.3 THE BSTIMATES OF BCONOMIC EFFICIENCY

The index of economic efficiency measures the ability of a farm household
to produce a given output at minimum cost. The index used in this study is the
generalized Farrell, multi-factor index of economic efficlency and is defined
as the product of the input-based index of technical efficiency and allocative
efficiency. As defined, every farmer's economic efficiency index can at best
be equal to each of its component indices, and in general will be smaller than
both. Our estimates of this index for each of the ric: crops are contained in
Tables 4.13, 4.14 and 4.15. For each of the crops, it is not surprising that
the average level of economic efficiency is lower than the average level of
either technical or allocative efficiency. Depending upon the estimation
wethod employed, the average value of the index varies from a low of about 42
percent to a high of about 89 percent for Aman, a low of 33 percent to a high
of 63 percent for Boro, and a low of 27 percent to a high of 55 percent for
2vs. The higher averages, in each case, are associated with the COL82
estimates which led to technical efficiency indices in excess of 100 fox
several households. Overall, the results suggest that allocative mistakes
contribute proportionately more to economic inefficiency than technical errors
in the case of Aman and Boro, though their xelative contribution to economic
efficlency varies with the estimation method used. For the Aus crop there does
not appear to be much of a difference in the xrelative contributions of
technical and allccative inefficiency 1€ we look at the COLS1 estimates. But
the LP/QP estimates imply that technical inefficiency contributes much more to

economic inefficiency than allocative lnefficiency. However, in light of our
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earlier argument that the LP/QP estimates of the frontier, more so than the
COLS] estimates, are questionable, it seems that it is reasonable to conclude
that allocative inefficiency is at least as important as technical
inefficiency in leading to economic inefficiency.

Barlier in the chapter, we examined the question of whether the relative
ranking of farmers in terms of technical and allocative efficiency is
independent of the method of frontier estimation and the crop grown. With
regard to the former issue, we found that irrespective of the particular COLS
or programming method used, the ranking of farmers according to technical
efficiency remains the same. That rarking is substantially, but not exactly
the same, if we compare the programming results with the COLS results. In the
case of allocative efficiepcy, the choice of COLS metﬁod cannot influence the
ranking since each COLS method must lead to the same estimate of allocative
efficiency. However, it turns out that the two programming estimators also do
not affect the ranking; and, theze is only a slight difference in the way the
programming and COLS approaches rank the farmers. Not surprisingly, the
economic efficiency ranking displays much the same pattern with high (in
excess of 0.92) rank and Pearson's correlation coefficients (not repozted
here) between the LP/QP and COLS economic efiiciency indices for all crops.
Thus, even though our estimates of the level of economic efficiency are
sensitive to estimation method, the relative position of farmers along the
economic efficiency spectrum is not.

We conclude our discussion of the economic efficiency estimates by
touching briefly upon the question of whether the economic efficiency of farm
households is related across crops. By examining Spearman's rank as well as
Peaxrson's correlation coefficients (not reported here}, we again £ind little

evidence to suggest that economic efficiency is highly correlated across crops
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either ia terms of ranks or levels. This is not surprising given our previous
findings for technical and allocative efflciency and the fact that the product
of those two indices define the economic efficiency index. There 1is,
nevertheless, some evidence that points to the existence of a positive,
statistically significant but weak relationship between the economic

efficiency indices for the Aus and Boro crops.

4.4 THE RELATIONSHIP BETWEEN TECHNICAL AND ALLOCATIVE EFFICIENCY

The technical and allocative efficiency indices estimated in this study
are defined to be independent of each other. In other words, a farm household
could be allocatively efficient even though it is technically inefficient;
or, it could be technically efficient yet allocatively inefficient. However,
the two types of efficiency need not be independent in the behavioral sense.
It seems highly probable that efficient farmers are more likely to lie closer
to their production frontiers and to their least-cost expansion paths than
inefficient ones. Thus, one would expect that technical and allocative
efficiency are positively related. Whether this prior expectation is borne out
in practice is essentially an empirical question, particularly since, as some
have argued, there need be no reason for static efficiency indices to be
positively correlated given that the goal of efficiency is essentlially a
dynamic problem.15 In other words, while allocative and technical efficiency
can quite reasonably be expected to be positively related over time, the
nature of that relationship in any given period is unpredictable [see Schridt
and Lovell (1980}]. Schmidt and Lovell (1980) proposed a model in which

2llocative and technical inefficiency are correlated. This model is an

extension of the model proposed by the same authors in an earlier paper which
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we discussed in Chapter 2. Unfortunately, their approach cannot be
implemented here since it requires variations in factor prices across the
units, and that is something that we do not have. Nevertheless, we can examine
whether the allocative and technical efficiency of Khilghati farmers 1is
correlated in each of the three crops. We do this by computing Spearman's rank
and the Pearson correlation coefficients between the technical and allocative
efficiency indices for each rice crop. Those correlations are reported in
Table 4.18 for the COLS1l, LP and QP estimation methods. They do not support
the existence of a strong, positive relationship between technical and
allocative correlations. Indeed, at the 5 percent level, all correlations are
statistically insignificant.

This concludes our discussion of the estimates of technical, allocative and
economic efficiency of Khilghati farmers on the assumption that the productlion
frontier is deterministic. In the concluding section of the chapter, we

summarize our findings and draw some implications.

4.5 SUMMARY AND CONCLUSIONS

We estimated a deterministic Cobb-Douglas production frontiex by
statistical and programming methods for the three rice crops - Aman, Boro and
Aus - cultivated in our sample economy of Khilghati. The frontiers were used
to generate estimates of the technical, allocative and economic efficiency of
farm households. Those estimates were found to be sensitive to the choice of
estimation method. In particular, the linear and quadratic programming
estimates were quite different from those obtained by applying three versions
of the corrected least squares method. This likely reflects the sensitivity of

the programming method to outliers In the data. It ls posslible that the
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programming estimates are less rellable than those obtalned by applying
corrected least squares.16

In general, we £found that the estimates of technical, allocative and
economic efficiency vary by estimation method and crop. Farm households appear
to be more efficient in Aman and Boro cultivation than in Aus cultivation.
Thus, averaqe technlcal efficlency is estimated to he above 80 percent in Aman
and below 65 percent in Aus. These figures point to an average cost saving of
about 20 percent in aman and 35 percent (or more) i{n Aus cultivatlon through
the elimination of technical inefficiency. The average level of allocative
efficiency was found to be generally lower than the level of technical
efficiency and It was highest in Boro cultivation and lowest in Aus
cultivation. Thus, allocative inefficiency appeared to be the relatively
greater contributor to economic inefficiency. Average allocative efficiency is
estimated to be around 75 percent in Boro and 50 percent in Aus.

In spite o *he variation of both technical and allocative efficiency by
estimation method, the ranking of farm households is, for the most part,
unaffected.” The average level of efficiency varies across crops and we
found little evidence to support a strong, positive relationship between
efficiency indices across crops. A statistically significant, but weak
relationship between the technical (and allocative) efficiency indices for Aus
and Boro was found. We also examined whether farmers that are relatively more
technically efficient are also relatively more allocatively efficlent. The
results did not support this. Interestingly, we found evidence to indicate
that Khilghati households have adapted quite well to the new-technology, HYV
Boro rice in that the average level of technical and allocative efficiency in
Boro cultivation compares very favourably with the corresponding averages for

the traditional Aman and Aus rices.
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We found that there are crop-wise variations of average efficiency and
that farmer efficiency levels/ranks across crops correlate rather weakly.
Nevertheless, it is not inconceivable that there are genuine inter-crop
differences in efficiency for the same group of farmers. Thus, for instance,
glven that efficient cultivation practices could vary across crops, a farm
household's ability to implement those practices could also vary across crops,
perhaps because of differences in the information available to it and/or in
its growing experience with those crops. It may also well be the case that
farmers are at different stages in the ‘"learning by doing™ process across
crops, although it is likely that this may partly reflect differences in
growing experience. These arguments suggest that managerial ability could
vary across crops and result in low correlations between efficiency
ranks/levels and in differences in the average level of efficiency across
crops. This may Dbe especially true when we are considering crops that are
radically different, as for example, the new-technology Boro rice and the
traditional Aman and Aus rices.

While the above arqument could be advanced to support our findings, some
caution is warranted. All our results are based on the assumption that the
production frontier is deterministic. This is a drawback in that such a
frontier implies that all departures from it are the result of inefficiency,
even though it is moze than likely that those departuzes partly reflect
measurement error as well as purely random influences. Both measurement error
and random effects can be expected to vary across individual households as
well as across crops. As a result, the differences in measared technical
efficiency across individuals and crops need not reflect genuine differences
in efficiency. Under these circumstances, the differences in average

efficiency and the absence of strong correlations in efficiency across crops
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that we have observed could reflect those effects. A major potentlal source of
measurement error is the land input. Quality differences in the land input can
be substantial across farm households, more so than in the case of other
inputs. Thus, wvariations in measured technical efficiency could reflect
variations In the quallity of land rather than in technical efficiency. Of
course, 1t is not clear to what extent measurement error and random influences
contaminate our efficiency estimates. It might be noted though that Aman and
Aus rice are raln-fed crops that depend crucially on the monsoon and are,
therefore, more likely to be subject to random influences (e.g. flooding or
drought) than the irrigation-fed Boro rice which is grown In the dry, winter
months. This may point to the greater dangers of postulating a deterministic
frontier for Aman and Aus than for Boro. In the next chapter, we examine
efficiency indices derived from a stochastic frontier that permits deviations
from the deterministic function to reflect both inefficlency as well as

measurement error and random effects.
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FOOTNOTES TO CHAPTER 4

The exceptions are the labour elasticities in the Aus and Boro equations.

The labour elasticity for Aus rice is too small. It Is possible that
this reflects 1labour's low productivity arising perhaps due to
underemployment of household family labour during the growing season.

However, one would then expect other labour elasticities to also be small,
and this is not the case.

3. The non-zero mean follows from the distribution of the disturbance term

which must be one-sided in order to meet the definition of a deterministic
frontier. We are assuming that input quantities are independent of the
disturbance term. This is justified if we assume that farm households
maximize expected or median profits and technical inefficiency is unknown
to the household. Under these assumptions, OLS estimators of all
parameters except the intercept are consistent.

For example, if the disturbance term is -u, u = 0, then the mean of u is

E(w) = (2/m° o, when u is half-normal and E(u) = (1/y) when it is
exponential. o, is the standard deviation of the -normal distribution and

{1/7) is the mean and standazd deviation of the exponential distribution.
The OLS residuals are used to estimate E{u) and this is added to the OLS
intercept to obtain the COLS2 intercepts.

The differences in the intercepts reported in Tables 4.2, 4.3 and 4.4 and

the OLS intercept are the estimates of the adjustments indicated in the
text and in footnote 4.

The individual farm household output-based index of technical efficiency
is obtained by computing exp(- u) where the u gre the OLS residuvals. The
input-based index is given by (LA /LA) where LA 1is the minimum amount of
land required to produce the actual output and it itself is given by

/% a
* - -3 *
LA = Ez/exp(ab}z]

a; is the corrected intercept, o, are the estimated input elasticities,
and

7 = [(F'r/m}"z &A/LA) s LAB/LA . ]

FT, KA and LAB are the actual quantities of fertilizer, bulleck power and
labour used by the farm household.

Recall from chapter 2 that [1 - TB(x)] measures the proportionate cost
saving made possible by eliminating technical inefficlency.

This may especially be true for Aus rice for which the average level of
technical efficlency, as estimated by COLS1, is only 56 percent.
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10.

11.

12.

13.

14.

15.

16.

17.

Spearman's rank correlation coefficient r, is defined as
r, = 1- [62d;"/n(n"- 1)}

where the di are the differences in the ranks of the two series being

compared and n is the size of thg/sample. For large samples, the standard
normal statistic z = r.(n - 1) "can be used to test whether the two

series are independent or not.

We also computed Pearson's ccrrelation coefficlent belween the technical
efficiency indices. They too confirmed the existence of a strong positive
relationship between the technically efficiency indices.

Large differences In the ranks of a few ohservations can substantially
lower the rank correlation between two serles, though the Pearson's
correlation coefficient between them can still be large.

Actually, the allocative efficliency index can be obtained in elther of two
ways. We could follow the method outlined in Chapter 3. Alternatively, we
could £ind the cost-minimizing levels of each factor for the actual output
produced. The ratio of the cost of the cost-minimizing factor combination
to actuwal cost is the index of economic efficiency. The allocative
efficiency index can then be obtained by dividing the economic efficiency
index by the lnput-based index of technical efficiency.

The calculation of allocative efficiency involves factor prices. Our
factor price data are all rental/hire prices per unit of factor services.
The units in which factor services are measured are explained in the notes
to Table 4.1. Other than the rental for land, all factor prices are
crop-specific. They vary across farms and crops, but that variation is
limited and in some cases absent. The land rental is not crop-specific and
is calculated by dividing the cost of land rented on a cash basis by the
amount of land rented on a cash basis. The modal value of the land rental
series was used to represent the opportunity cost for land services for
those housecholds that rented no land. In the case of bullock-power, most
households did not rent the services of bullocks. However, a few did and
the rental rate they paid was used to represent the opportunity cost of
using owned bullock-power.

In the COLS case, the correlations also point to a positive relationship
between household ranks in Aman and Aus. However, the relationship is weak
and barely significant at the 5 percent level.

See, for instance, Farrell (1957}, Forsund and Hjalmarsson (1$74) and Fuss
and McFadden (1970).

On the other hand, as faxr as Aus rice is concerned, the labour elasticity
appears to be unrealistically low, and the bullock-power elasticity
somewhat on the high side in the COLS equations.

An exception is the ranking of households according to their allocative
efficiency indices in Aus cultivation. We found that the rank correlation
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of that index computed by the COLS and programming methods was positive
and statistically significant, but it had a value slightly above 0.50,
pointing to some significant differences in the ranking of farmers.
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TABLE 4.1

OLS Estimates of the Productlon Function (by crop)

Input Varlables

Crop Constant 1n(LA) 1n{FT) 1n(KA)} 1ln(LAB) R? F

Aus 0.9082 0.3892 0.1357 0.4413 0.0125 0.857 116.5
rice (0.678) (0.184) (0.055) (0.135) (0.137)

Aman 1.4839 0.3167 0.2500 0.1885 0.1%11 0.965 616.5
rice (0.462) (0.130) (0.046) (0.114) (0.692)

Boro 1.8019 0.4587 0.1731 0.24%2 0.1623 0.836 300.5
rice (0.699) (0.618) (06.076) (0.115) (0.137)

Notes: i) LA = land input (in acres), FT = fertilizer (in maunds,
1 maund = 82 pounds), KA = bullock power (in bullock-
days), LAB = adult-labour (in man-days). Figures in
Parentheses are estimated standard errors.

i1) sample size is 78 for Aus rice, S0 for Aman rice, and
83 for Boro rice.
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Estimates of the Derterministic Frontier:

TABLE 4.2

Aman Rice

Input Variables

Estimation

method Constant 1n(La) 1In{FT) In{KA) In(LAB)
COLS1 1.71060 0.3167 0.23%00 0.1885 0.1511
COLS2(HN) 1.5822 0.3167 0.2900 0.1885 0.1911
COLS2(E} 1.6072 0.3167 ~ 0.2900 0.1885 0.1511
LP 1.0644 0.1282 0.2567 0.4099 0.1682
QP 1.2005 0.1769 0.2600 0.3478 0.1847
Notes: i) COLS stands for corrected least squares, HN

ii)
iii)

for the half-normal distribution and E for

the exponential distribution.

LP stands for linear programming and QP for
quadratjic programming.

The CCLS estimates differ from the OLS

estimates only with respect to the intercept.
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TABLE

4.

3

Estimates of the Deterministic Frontler: Boro Rice

Input Variables

Etimation

method Constant 1n(LA) In(FT) 1n(KAa) 1n(LAB)
COoLS1 2.1764 0.4579 0.1731 0.2492 0.1623
COLS2(HN) 1.9529 0.4579 0.1731 0.2492 0.1623
COLSZ(E) 1.9912 0.4579 0.1731 0.249%2 0.1623
LP 1.6450 0.2096 0.1757 0.5046 0.0667
QP 1.6450 0.2096 0.1757 0.5046 0.0667

Notes: See TABLE 4.1 and TABle 4.2
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Estimates of the Deterministic Frontler:

TABLE 4.4

Aus Rice

Input Variables

Estimation

method Constant 1n(LA} in(FT) In(KA) in(LAB)
COLS1 1.5189 0.3852 0.1357 0.4413 0.0125
COLS2 (HN) 1.1244 0.3892 0.1257 0.4413 0.0125
COLS2(E) 1.1793 0.3892 0.1357 0.4413 0.0125
LP 0.3637 0.1945 0.1582 0.2212 0.4368
QP 0.2966 0.173% 0.1593 0.2399 0.4368

Notes: See TABLE 4.1 and TABLE 4.2
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TABLE 4.5

The Dlstribution oi the Input-based Technical Efficlency Index:
Aman Rice

Relatlive Frequency (% of households)

TE(x)

{percent) CoLS1 COLS2(HN) COLS2(E) LpP QP

0 - 50 6.0 0.0 0.0 0.0 0.0
50 - 60 1.1 0.0 0.0 1.1 - 1.1
60 - 70 15.6 3.3 4.4 13.3 13.3
70 - 80 33.3 14.4 14.4 32.2 33.3
80 - 90 31.1 30.0 36.7 31.1 31.1
90 =100 18.9 52.2 44.4 22.2 21.1
Maximum 100.0 113.8 111.0 100.0 100.0
Minimum 58.4 66.5 64.8 58.0 58.7
Mean 80.1 91.2 88.9 81.7 81.7
S.D. 2.7 11.0 10.7 10.3 10.2

Notes: i) TE(x) stands for the input-based technical efficiency
index, and S.D. stands for the standard deviation.
11) Households with TE(x) equal to the upper limits of
the efficlency intervals are grouped in the next
(higher) efficiency interval.
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TABLE 4.6

The Dlstribution of the Input-based@ Technical Efficlency Index:
Boro Rice

Relative Frequency (% of households)

TE(x)

(percent) COLS1 COLSZ(HN) COLS2(E) LP QP

g - 50 3.6 1.2 1.2 6.0 6.0
50 - 60 12.1 1.2 2.4 12.1 12.1
60 - 70 33.7 7.2 9.6 19.3 19.3
70 - 80 30.1 19.3 27.7 32.5 32.5
80 - 940 14.5 28.9 25.3 15.6 15.6
90 - 100 €.0 42.2 33.7 14.86 14.6
Maximum 100.0 123.9 1i9.4 100.0 100.0
Minimum : 34.8 43.1 41.5 37.8 37.8
Mean 70.9 87.8 84.7 73.0 73.0
5.D. 11.9%9 14.8 14.3 14.4 14.4

Notes: See TABLE 4.5
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TABLE 4.7

The Distribution of the Input-based Technical Efficlency Index:
Adus Rice

Relative Frequency (% of households)

TE(X])

{percent) CoLsl COLS2(HN) COLS2(E) LP QP

0 - 50 38.5 6.4 6.4 17.9 19.2
5¢ - 60 28.2 5.1 9.0 24.3 23.1
60 - 70 15.4 15.2 23.1 21.8 21.8
70 - 80 11.5 16.7 21.8 14.1 12.8
80 - 90 3.9 19.2 15.4 11.5 i2.8
90 - 100 2.5 33.3 24.4 10.3 10.3
Maximum 100.0 149.6 141.5 100.0 100.0
Minimum 27.5 41.2 38.9 28.7 30.0
Mean 55.5 83.1 78.5 65.3 65.2
S.D. 14.9 22.3 21.1 17.8 17.7

Notes: See TABLE 4.5
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TABLE 4.8

The Distribution of the Output-based Technical Efflclency Index:
Aman Rice

Relztive Frequency (% of households)

TE(Y)

{percent) coLsl COLS2(HN) COLSZ(E) LP QP

0 - 50 0.0 0.0 0.0 _ c.0 0.0
50 - 60 1.1 0.0 0.0 1.1 1.1
60 - 70 15.6 2.2 4.4 1.1 11.1
70 - 80 33.3 l14.4 l14.4 31.1 31.1
80 - S0 31.1 31.1 36.7 31.1 33.3
90 - 160 18.9 $2.2 44.4 25.86 23.3
Maximum 1G0.0 113.6 110.8 100.0 100.0
Minimuam 58.8 66.8 65.2 59.2 59.6
Mean 80.3 g9l1.3 89.0 82.3 82.3
s.D. 9.6 10.9 10.6 10.0 9.9

Notes: TE(y) stands for the output-based technical efficiency
index.
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TABLE 4.9

The Distribution of the Output-based Technlcal Efficlency Index:
Boro rice

Relative Frequency (% of households)

TE(Y)

{percent) CoLS1 COLS2(HN) COLS2(E) LP QP

0 - 50 6.0 1-2 1.2 4.8 408
50 - 60 13.3 1.2 3.6 12.1 12.1
60 - 70 32.5 8.4 8.4 18.1 18.1
70 - 80 28.9 21.7 26.5 31.3 31.3
80 - 90 13.3 25.3 25.3 19.3 19.3
90 - 10¢ 6.0 42.2 34.9 14.5 14.5
Maximum 100.0 125.0 120.4 100.0 100.0
Minimum 33.2 41.6 40.0 39.5 39.5
Mean 69.9 87.4 84.1 74.0 74.0
S.D. 12.3 15.3 14.8 14.0 14.0

Notes: See TABLE 4.8
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TABLE 4.190

The Distribution of the Output-based Technical Efficiency Index:
Aus Rice

Relative Frequency (% of households)

TE(Y)

{percent) COLS1 COLS2(HN) COLS2(ZE) LP QP

0 - 50 37.2 6.4 6.4 20.5 20.5
50 - 60 26.9 4.0 8.9 23.1 23.1
60 - 70 17.9 19.2 21.8 21.8 21.8
70 - 80 10.3 17.9 21.8 14.1 14.1
86 - 90 5.1 19.2 16.7 10.2 10.2
90 -~ 100 2.6 33.3 24.4 10.2 l10.2
Maximum 1060.0 148.4 140.4 100.0 100.0
Minimum 28.3 42.0 39.7 29.3 29.6
Mean 56.2 83.3 78.9 64.6 64.5
s.D. 14.8 2r.9 20.9 17.8 17.9

Notes: See TABLE 4.8
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TABLE 4.11

Spearman's Rank Correlations Between Technlcal
Efficiency Indices (by crop)

Aman rice COLS] LP QP
COLS1 1.00

LP 0.95 1.00

QP 0.98 0.98 1.00
Boro rice

COLS1 1.00 . 1.00

LP 0.93 0.93

QP 0.93 0.93 1.00
Aus rice

COLS1 1.00

Le 0.92 1.00

QP 0.93 0.83 1.00

Notes: All correlations reported above are
computed £rom the input-based technical
efficlency index.
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TABLE 4.12

Inter—crop Rank Correlatlions of Technical Efficlency

| |

Estimation | Crop | Aman Boro Aus

method ! ! rice rice rice
| |
] |
] Aman ] 1.00
] rice | (1.00)
| |

COLS1 | Boro | -0.08 1.00
| rice | (-0.04) (1.00)
| |
| aAus | -0.14 0.22 1.00
l rice I (-0.14) (0.15) (1.00)
| |
| 1
| Aman | 1.00
| rice i {1.00)
l 1
LP | Boro | -0.09 1.00

| rice | (-0.08) {1.00)
I |
{ Aus i -0.12 0.21 1.00
| rice | (-0.10) (0.14) {1.00)
| ]

Hotes: The numbers in parentheses are Pearson's

correlation coefficlents.
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TABLE 4.16

Spearman's Rank Correlatlons Between Allocatlve
Efficiency Indices (by crop)

2man rice CoLsS1 LE Qp

COLS1 1.00

LP 0.91 1.00

QP 0.94 1.00 1.00
Boro xice

COLS1 1.00

LP 0.50 1.00

Qp 0.80 0.90 1.00
Ays_xrice

COLS1 1.00

LP ¢.53 1.00

QP 0.54 0.54 1.00

TABLE 4.17

Inter-crop Rank Correlations of Allocatlve Efflclency

| |

Estimation | Crop | Aman Boro aus

me thod | i rice rice rice
] |
| ]
i Aman | 1.00
] rice I {1.00)
| |

COLS1 | Boro I -0.01 1.00

] rice ] {0.05) (1.00)
] |
i Aus | 0.25 0.40 1.00
| rice 1 {0.28) (0.50) {1.00)

——————————— I I p— | — ——————— — s S D D . oy i o o e S .
| l
! Aman | 1.00
| rice | {1.00)
[ |

LP | Boro | - 0.04 1.00

| rice ] (0.11) (1.00)
| | .
| aAus | .0.05 0.18 1.00
| rice I (0.07) (0.13) (1.00)
] |
| I

Notes: Numbers in parentheses are Pearson's corxelation
coetficients. 149



TABLE 4.18

Spearman's Rank Correlatlons between Technlical
and Allocative Efficiency

|
Estimation | Aman Boro Aus
method | rice rice rice
i
[
COoLS1 i 0.04 -0.04 0.11
l (6.02) (-0.09) (0.11)
|
LP | 0.07 -0,.13 0.08
| (0.03) (-0.25) (0.08)
!
QP i 0.09 -0.13 0.086
1 (0.06) (-0.25) 0.08
|

Notes: Numbers in parentheses are Pearson's
correlation coefficients.
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CHAPTER 5

STOCHASTIC FRONTIERS: ESTIMATION AND RESULTS

S.1 INTRODUCTION

In this chapter, we present and analyze our estimates of technical,
allocative and economic efficiency on the assumption that the production
frontier is stochastic. A stochastic frontier allows departures from the
deterministic kernel to reflect random influences/measurement error {that is,
statistical noise}, technical efficiency or both. One of our primary zims is
to separate technical inefficiency from statistical noise. This can be
expected to lead to more reliable estimates of the frontier and of efficizncy.
On that expectation, our analysis is carried 3 step further in this chapter.
Thus, we also construct factor-specific indices of technical efficiency,
technical cost efficiency and allocative efficiency. These were discussed in
Section 2.3.2 (Chapter 2). Unlike the multi-factor indices that have been the
focus of our attention, factor-specific indices are indicators of the relative
efficiency of various factors. They could, thus, be useful in identifying the
factors uvpon which effort to improve efficiency would have the greatest
impact. A second issue examined in this chapter is the relationship between
the education of farmers and their efficiency levels. In particular, does
education foster efficiency ? Numerous emplrical studies of the agricultural
sector of developing countries appear to suggest that it does.1 Education can
be viewed as a major determinant of an individual's ability to read and wrlte,
or of his/her numeracy skills, factors which are llkely to be important in
determining his/her managerial ability. Thus, we examine whether the education

level of the farm housshold is an important determinant of its technical and

151



allocative efficiency.

The rest of this chapter s organized as follows. We begin in Section 5.2
with the estimates of the stochastic frontier, and then move on to an analysis
of our estimates of technical efficiency. Section 5.3 deals with the
allocative and economic efficiency estimates. One of the questions we examine
once again is whether allocative and technical efficiency are related. In
Section 5.4 we present and analyze the estimates of factor-specific
efficlency, while Section 5.5 examines whether our results support the
widely-held belief that education promotes farmer efficiency. We conclude the
chapter in Section 5.6 with a summary of our £indings and the broad

conclusions that can be drawn from them.

S.2 A CROP-WISE ANALYSIS OF TECHNICAL EFFICIENCY IN KHILGHATI

We saw In Chapter 2 that the stochastic production function can be

written as

y = E(x)e’™ (1)

As In the deterministic case, e = measures technical inefficiency while e
captures the effects of random factors and measurement error. The disturbance
u is assumed to follow either a half-normal distribution or an exponential
distribution. The random disturbance v, on the other hand, is assumed to be
normal with zero mean and constant variance. Under these assumptions, we
estimate the above function by two alternative methods - COLS2, which is
extended to deal with the stochastic nature of the frontier, and the maximum

likelihood (ML) technique. In either case, we get two sets of estimates, each
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corresponding to the particular assumption we make about the distribution of
u. Notice that, since v is unbounded, we do not need to ensure that the
estimated residuals are negative. However, the estimation of the above
function by either of the methods indicated does not provide an estimate of
the (stochastic) frontier. To estimate the stochastic frontier, we need to
separately estimate v and u; that is, we need to obtain an estimate of the
particular reallization of v. This car be done, as shown in Chapter 2, by
taking the mean of the conditional distribution of u given (v-u). This enables
the estimation of the stochastic frontier, and the estimates of the various
efficiency indices can be constructed as before.

Before we discuss the estimates of the production function, a word on the
COLS2 and ML estimation methods. The COLS2 method requires adjusting the

OLS intercept by the mean of the disturbance u, E{u), which is

E(u) = (2/M*F o (2)
when u is distributed half-normally, and

E{u) = (1/>) = °, (3)

when u is distributed exponentially. In the deterministic case, each of these
means could be estimated from the standard deviation of the OLS residuvals.
However, in the stochastic case, the OLS residuals are estimates of (v-u) and
not of u alone. Consequently, some additional computations, as indicated in

Chapter 3, are needed. In particular, in the half normal case, the third

moment of (v-u}, Mg+ can be shown to be
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B, = (2/M[ (-4)/T] aua (4}

M, can £irst be estimated from the OLS residuals to obtain an estimate of o R

Wi
which then enables the estimation of the mean of u from egquation (2). If u

follows an exponential distribution, the third moment of (v-u) is

uy = - 27 (5)

Again, the third moment is estimated from the OLS residuals and substituted in

(5) to obtain an estimate of » which is then substituted in (3) to obtain an

estimate of the mean of u.2
The ML method requires the derivation of the log-likelihood function on

the assumption that v is normal with zero mean and constant vaziance while u

is elther half-normal or exponential. Under the half-normal aszumption,

the log-likelihood function ca be written as

ko T
L = TIn(2) +Tin(o ) + E Ing (.0 %) + 21n§_ (~e Ao 1) (6)
£ . LS & = LY
vhere € = v-u, o = (a;2+ o;z)*’z, A= o;/av, #(.) is the standard normal
density, and #(.) is the standard normal Qdistribution function. Maximizing
this function yields ML estimates of the production function parameters, A and

o'. In the exponential case, on the other hand, the log-likelihood function

ls
2 2 £ ks
L= Tlalr) + (V/20r°0 % + 2) e + Y ¥ [ -6 /0, - ro_] (N

where » is the reciprocal of the mean and standard deviation of the
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(one-parameter} exponential distribution. Haximizing (6) vields ML estimates
of the production function parameters, » and o;z. We turn now to a discussion

of our re:ults. The tables containing these are presented at the end of the

chapter.
5.2.1 ESTIMATES OF THE STOCHASTIC PRODUCTION FUNCTION

Qur estimates of the function when £(x) is Cobb-Douglas are presented in
Tables 5.1, 5.2 and 5.3. Note that the estimated equations are estimates of
the deterministic kernel of the stochastic frontier. Frontier estimates can be
generated only when the stochastic term e" has been estimated. As was the case
for the deterministic frontier, the COLS2 estimates differ from the OLS
results only in terms of the intercept term, which has been éﬁjusted in the
manner described above. In general, it can be observed that the estimates of
the input elasticities for each crop are quite similar across equations and
are, in fact, close to their OLS counterparts. They are éll slgnificant at the
5 percent level except for the labour elasticity in the Aus and Boro
equations. Broadly speaking, while the ML and OLS estimates are similar, the
estimated standard erzors of the coefficients under ML estimation are
generally lower, thereby attesting to the greater precision of the ML
estimates.

Along with the estimates of the elasticities, we alse estimite several
other parameters. These are the variance of the normally distributed variable
v, and the variance of the half-normally/exponentially distributed variable
u.3 These variances are obtained from the second and third moments of the OLS
residuvals in the case of the COLS estimates. Under the ML method, these

variances are obtained from the ML estimates of the parameters of the
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half-normal/exponential distributions. From the variances of v and u we can
estimate &, the ratio of the variance of u to the varlance of (v-—u).4 This
statistic performs a useful function since it is an indicator of the relative
importance of technical Inefficiency and statistical noise in explaining the
varlations ln output across farm households.

Looking at the zresults for Aman rice, it can be seen that the inter-farm
variations in output do not appear to be dominated by elther statistical
noise or technical inefficliency. According to the COLS2 and ML estimates
under the exponential assumption, only about 20-24 perxcent of output
variations are a result of inefficiency, while the corresponding range under
the half-normal assumption is 38-54 percent. Thus, under the half-normal
assumption, technical inefficiency variations are the more important, while
the opposite holds under the exponential assumption. Note though that under
either the COLS or ML method, the variations due to technical inefficliency
are lover in the exponential case than in the half-normal case. Nevertheless,
in elther case, the variations due to statistical noise are large enough to
validate the estimation of a stochastic fronttier.

For Boro rice, technical Inefficlency appears to play a relatively more
important role in the variations ln output than is the case in the cultlvation
of Aman rice. This is more so according to the estimates of & based on the
half-normal assumption. But even those estimates imply that statistical noise
accounts for at least 20 percent of the observed variations in output. In the
exponential case, statistical noise accounts for roughly half of those
varlations.

The estimates of © for the Ans crop, on the other hand, clearly suggest
that 70 percent or more of the observed variations can be traced to

statistical noise. This, in fact, confirms our contention in the previous
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chapter that the technical efficiency estimates for Aus were more likely to
reflect factors other than inefficiency.s Overall, while the relative
importance of statistical noise in explaining the variations in output varies
across crops, in each case statistical noise 2ppears to be important, a result
that supports the assumption of a stochastic frontier. The foregoing
discussion also indicates that the deterministic estimates of technical
efficicncy were likely underestimates, particularly in the case of the Aus
crop.

Before we turn to the estimates of technical efficiency, we briefly
indicate how the stochastic frontier was estimated - that is, how we separated
statistical noise from technical inefficiency. The details of the procedure
are outlined in Chapters 2 and 3. As we have indicated in those chapters,
farm- specific estimates of u can be obtained by estimating the conditional

mean of u given (v-u). Our estimates of that mean in the half-normal and

exponential cases are respectively

E(u) = - c&u;v/;) [«2:1/3)/{14(;{/;)} - ::ci/;)]
E(u) = - ;V[NA)/I].—&(A)] - a]

-~

vhere ; is the estimated residual, o, and ;;. are the estimated standard
deviations of the normal variables u and v respectively, o = ;;z+ ;;2, A =
;;/;;, #(.} and %(.) stand for the standard normal density and the standard
normal distribution function, respectively, and A = (;/;h) + ;;;.6 In the
COLS2 estimation, the estimated OLS residuals are used to estimate the means.

Under maximum likelihood@ estimation, the required estimates can be obtained

from the maximum likelihood estimates of A, ¢, y and o, which are parameters
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in the likelihood function under either of the assumptions about the
distribution of u. Once u has been estimated in this fashlon, v can easlly be
estimated. As a consequence, a particular realization of the frontier
function, f(x)ev, becomes known. That function then can be used to obtain all
the efficiency indices very much along the 1lines followed in the

deterministic case. We turn next to a discussion of the efficiency indices.
5.2.2 THE ESTIMATES OF TECHNICAL EFFICIENCY

Our estimates of the input-based and output-based technical efficiency
indices are presented in Tables 5.4 through 5.9. However, we confine our
discussion to the former since the two indices are almost identical because
the production function estimates imply near-constant returns to scale.
Looking at the results for Aman rice, presented in Table 5.4, it can be seen
that the vast majority of £farm households are highly efficient in the
technical sense. In particular, in contrast to the results £for the
deterministic £frontier, more than 90 percent of the households have a
technical efficiency level in excess of 90 percent if we look at the COLSZ and
ML results based on the assumption that u follows an exponential
distribution. The results for the half-normal case are only slightly
different. Of course, the efficiency levels estimated from the COLSZ method in
the deterministic case cannot be compared with the estimates obtained in the
stochastic case because in the former, the technical efficiency index is not
quaranteed to be no greater than 100, and we found this to be the case for
several households.7 It is interesting to note that, in spite of this, the
average efficiency levels in the stochastic case are higher than those

obtained under the COLS2 estimation method in the deterministic case. On the
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other hand, the distributions of farm households in both cases are similar in
that both imply that the majority of farmers are relatively efficient. The
technical efficiency indices do not appear to be very sensitive to the
estimation method employed. The average level of technical efficiency is in
the 82-95 percent range, with the most efficlent farmers being about 96-97
percent efficient while the most inefficient farmers have a technical
efficiency level in excess of 70 percent. These numbers suggest an average
cost saving in the 5-11 percent range through the elimination of technical
inefficiency. In the deterministic case, that cost saving was about 20 percent
(looking at the COLS1, LP and QP estimates). It seems, therefore, that as far
as the cultivation of Aman rice is concerned, most farm households do not
differ much in the level of efficiency, and that level is high. Note that this
is also reflected in the small standard deviation relative to mean technical
efficiency under each estimation method. Thus, the deterministic frontier
appears to have underestimated the technical efficiency of farm households in
Aman cultivation.

We saw above that variations in technical inefficiency play a relatively
more dominant role, relative to statistical noise, in the variations in output
in Boro cultivation as compared to Aman. This is reflected in the frequency
distributions of technical efficiency for Boro in Table 5.5. There ls greater
varlation in technical efficiency levels across farm households as compared to
the results for Aman. While the bulk of farm households lie in the higher
ranges of the technical efficiency spectrum, there is a greater proportion
lying in the lower ranges as well. In addition, while there are differences in
the frequency distributions of the technical efficiency indices according to
estimation method, those differences do not translate into substantlal

differences in average technical efficlency,which 1lies in the relatively
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narrow 81-89 perzent range. Compared to the COLS1, LP and QP results obtained
in the previous chapter, the level of technical efficiency is deflnitely
higher in the stochastic case, averaging about 10-15 percentage points above
the average technical efficiency levels obtained in the deterministic case.
There is also less varlation in efficlency levels across farm households, as
compared to the deterministic cese, largely because some of the variation
about the deterministic function is accounted for by statistical noise. The
estimates of the average level of technical efficiency in Boro cultivation
point to an average 10-20 percent cost saving that could be achieved through
the elimination of technical inefficiency; for the most inefficient farmers
that saving is quite substantial (at least 50 percent}.8 Again we note that
average efficiency levels based on the exponential assumption are higher as
compared to the half-normal case.

We next consider the results for Aus rice; these are presented in Table
5.6. The results are dramatically different from those obtained in the
deterministic case. There is a strong indication that in the latter case, the
estimates of technical efficiency are contaminated by statistical noise. In
fact, in the previous sub-section we saw that a substantial proportion of
departures from the deterministic function for Aus reflect statistical nolse,
implying that technical inefficlency 1s not that important a reason for
inter-farm variations in output as implied by the deterministic frontier. This
point is borne out by examining the frequency distributions involved. Notice
that the vast majority of farm households lie in the 70-30 percent range along
the technical efficiency spectrum according to the estimates based on the
half-normal distribution, and in the 80-100 range according to those based on
the exponential distribution. Once again, the exponential results point to

generally higher efficiency levels, averaging in the 82-90 percent range. Even

160



the most inefficient farm households have efficiency levels no lower than 62
percent. Under the COLS1, LP and QP estimates in the deterministic case, the
efficiency level of the most inefficient farmer was a low 30 percent. The
average cost saving achievable through the elimination of technical
inefficiency is in the 10-20 percent range according to the stochastic
frontier estimates; in the deterministic case, the corresponding range was
35-45 percent. Hence, farm households appear to be far more technologically
efficient in the cultivation of Aus than implied by the results of the
previous chapter.

Thus, in spite of the fact that the estimates of the deterministic portion
of the stochastic production function are only marginally different from those
in the previous chapter, the results point clearly to the importance of not
attributing all variations in output to technical inefficiency. The need to
separate variations due to inefficiency from those reflecting statistical
noise is clearly demonstrated by the results for aus cultivation. Farm
hcuseholds appear to most efficient technically in Aman cultivation, but that
superiority is not substantial. Technical efficiency In the cultivation of the
new-technology, Boro rice is again found to be in line with the efficiency
found in the traditional Aman and Aus crops. However, farm households appear
to be more widely distributed across the technical efficiency spectrum ln Boro
cultivaticn, with a greater percentage of households lying in the lower
ranges, as compared to the other 'czops. Thus, £or Instance, the most
inefficient farm households in Boro cultivation have a technical efficiency
index as low as 43 percent; in contrast, the lowest technical efficiency Index
stands at 62 percent for Aus and 72 percent for Aman. It seems that the
technology for Boro is implemented much less uniformly than ls the technology

of the traditional crops. The gains from an improvement In technical
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efficiency are likely to be greater than what 1is indicated by the average
levels of technical efficliency in Boro cult:iv.ralf:.ion.s

In Chapter 4 we conducted an analysis of the wvariations in technical
efficiency across farm households. Our aim was %o determine whether in the
light of differences in the estimates of average efficiency by estimation
method and crop, the relative ranking of farm households along the technical
efficiency spectrum is sensitive to both estimation method and the crop grown.
In the present context, given the relative stability of the distribution of
the technical efficiency index by estimation methed, it is hardly likely that
the ranking of households would show any significant differences. Indeed, we
calculated Spearman's rank correlation coefficient between the technical
efficiency indices obtained by the COLSZ and ML estimation methods for each
crop. In almost all cases, those correlations were virtually perfect, pointing
to the high degree of stability of the different technical efficiency indices.

As for the question of whether a household's efficiency ranking is
Independent of the crop grown, the apparent similarity of technical efficlency
estimates across crops does not gaarantee that significant differences in
household rankings do not occur across crops. To examine the relationship
between the technical efficiency of farmers across crops, we computed
Spearman's rank correlation as well as Pearson's correlation coefficients.
The results are displayed in Table 5.10 for the COLS2 and ML estimation

methods based on the assumption that u is half-normal.lo

There is only one
positive rank correlation (that between Aus and Boro), the other two being
negative. In all cases, however, the rank correlations are not statistically
significant at the S5 percent level. The same pattern is displayed by the

Pearson correlation coefficients. Thus, we find no evidence to suggest that

_technical efficiency ranks or levels are positively correlated across Crops.
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We had reached a similar conclusion in the deterministic case. In that case,
we had argued that differences in the effects of random factors and
measurement error across individual households and c¢rops may have been the
reason. While we cannot rule out these factors in the current context, since
there is no assurance that we have been able to completely or accurately
remove the effects of those factors, it seems that success in the cultivation
of one crop does not guarantee success in the cultivation of others, pointing
perhaps to the crop-specificity of skills and/or differences in farmers'
experience in growing the different crops. This is quite conceivable if we
compare the new-technology, Boro rice with the tradlitional Aman and Aus rices.

We next turn to our estimates of allocative and economic efficiency.
5.3 THE ESTIMATES QOF ALLOCATIVE AND ECONOMIC EFFICIENCY

The indices for allocative and economic efficiency are computed in much
the same manner as in the deterministic case. In the stochastic case, the only
difference is that the frontier used“to make the computations is represented
by the particular realization, f(x)ev, of the stochastic frontier. Since the
estimate of the particular realization of the random disturbance v ls
farm-specific so is the production frontier. In the deterministic case, all
farm households faced exactly the same production frontier. O0f course, this
difference between the deterministic and stochastic cases is merely one of

scale, We begin first with a discussion of the allocative efficiency indicos.

5.3.1 THE ESTIMATES OF ALLOCATIVE EFFICIENCY

The estimates of allocative and economic efficiency are presented lIn
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Tables 5.11, 5.12 and 5.13. In this sub-section we examlne only the allocative
efficiency indices. As in the deterministic case, note that the two COLS2
estimates of allocative efficiency are identical for each crop. This is
because the COLS estimates differ only in terms of the intercept, and this
cannot affect the allocatively efficient factor combinations. Note further
that the COLS2 economic efficiency indices reported@ in this chapter are also
identical to the COLS2 indices obtalned in the deterministic case. This too lis
to be expected since the only difference between a stochastic frontier and a
deterministic frontier estimated by COLS2 is that, apart from the different
intercept adjustments, the former additionally involves scaling the
deterministic function by e, and this is also equivalent to an intercept
adjustment. We have included the COLS2 estimates in the table in order to
enable an easy comparison with the maximum likelihood estimates. The latter
involve different estimates of not only the intercept but also of the input
elasticities. They, thus, can be expected to lead to different estimafes of
allocative efficlency. How dlfferent the estimates of allocative -efficiency
are depends on how dramatically the ML estimates of the input elasticities
differ from those obtained by applying OLS. Since we have already seen that
the ML and COLS estimates of those elasticivies are qulte similar, the
allocative efficlency indices should display a pattezn very similar to that
displayed by the indices derived from the COLS2 estimates. On the other hand,
the LP and QP estimates of the previous chapter are very different from both
the ML and COLS2 estimates, and we can expect substantial differences in the
corresponding allocative efficiency indices.

For Aman rice, the results for which are presented in Table 5.11, it is
evident that the ML estimates lead to only marginally different estimates of

allocative efficiency as compared to the COLS2 estimates. The allocative
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efficiency distributions are very similar; this leads to an estimate of the
average level of allocative efficiency of about 70 percent under the ML method
in both the half-normal and exponential cases, and this is just under the
average of 71 percent implied by the COLS2 estimates. Of course, the ML and
COLS2 estimates are very different from those implied by the LP and and QP
estimates. It may be recalled that the averages based on the LP and QP methods
were 52 and 60 percent respectively. Thus, the ML method in the stochastic
case does not change our view of the allocative efficiency of farm households
in the cultivation of Aus rice. It seems that, on average, farmers can expect
about a 30 percent saving in costs by eliminating allocative inefficiency. In

contrast, the LP and QP estimates implied a cost saving of at least 40

percent.

The results for Boro rice display the same general pattern. The allocative
efficiency estimates based on the two sets of ML estimates are very similar
with the exponential case implying marginally higher allocative efficiency.
The ML estimates are also very much in line with the COLS2 estimates, with the
former implying an average of 77 percent as compared to an average of 74
percent based on the COLS2 method. These averages are significantly greater
than the 45 percent average implied by the LP and QP estimates. The ML
estimates imply an average cost saving of about 23 percent through the
elimination of allocative efficiency. This is somewhat larger than the
corresponding saving implied in the crltivation of Aman. Thus, while farm
households appear, on average, to be more efficient technically Iin Aman
cultivation, the opposite is true in the allocative sense.

The general pattern observed for Aman and Boro is seen to hold for Aus.
The two sets of estimates of allocative efficiency based on the ML estimatlion

method are very similar with an average allocative efflciency level of about
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50 percent. This is only marglnally higher than the estimate implled by the
COLS2 method. The frequency distributions are also very similar. Agaln, the ML
estimates are very different from those obtained by the LP and QP methods.
Thus, while the COLSZ and ML methods Imply an average allocative efficiency
level of about 50 percent, the corresponding LP/QP average 1s greater than 80
percent. Indeed, while the LP and QP estimates imply that most farmers are
highly efficient in the allocative sense the opposite is implied by the ML and
COLS2 estimates. Agaln, it seems likely that the LP and QP methods
overestimate allocative efficiency while the ML/COLS2 methods underestimate
it.ll If this conjecture has validity, the average cost saving attainable
through the elimination of allocative inefficiency is perhaps around the 40
percent level. This still implies a high level of allocative inefficiency in
an absolute sense, as well as in comparison to the other crops.

On balance, it seems that farm households are relatively most efficient
in the allocative sense in Boro cultivation and that for all crops the
average level of allocative effliciency is lower than the average level of
technical efficiency. In that sense our findings for the stochastic case are
not very different from those obtained with the deterministic frontier. This
is not surprising given the relatively slight differences in the ML and COLS2
estimates of the input elasticities of the production frontier.

We turn next to the question of whether the relative position of farm
households along the allocative efficiency spectrum is affected by the
estimation method. In light of the fact that the COLS2 and ML estimates of the
frontier differ only slightly, and that the efficiency distributions
corresponding to those estimates are very similar, it is not surprising that
the rank correlations between the allocative efficiency indice§ based on

different estimation methods were nearly perfect. It will be recalled that in
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~the deterministic case, there were high correlations between the COLS1/COLS2
and LP/QP allocative efficiency indices for Aman and Boro, but those
correlations were far from perfect in the case of Aus rice.12

The more interesting question is whether allocative efficiency is related
acroess crops. In the previous chapter we did find a positive and statlstically
significant relationship between the allocative efficiency rankings in Aus and
Aman, and between the Aus and Boro rankings, using the COLS1/COLS2 estimates.
However, those correlations were relatively moderate (under 0.50). Since the
COLS2 estimates of allecative efficiency in the stochastic case are no
different, we can expect to get the same correlations. How those correlations
are affected by the ML method can be seen by examining the rank correlations
presented in Table 5.14. It is clear that the correlations of the indices
based on the ML method are very similar to those obtained under the COLS2
method, primarily because the ML frontier estimates vary little from the COLS?2
estimates of the frontiex.

In concluding our discussion of the allocative efficiency indices, we note
that the findings match closely those obtained in the deterministic case underz
the COLS estimation method. For all cxops, there appears to be greater
variation in 2llocative efficiency than in technical efficiency across farm
households, and the average level of allocative efficlency is lower than the
average level of technical efficiency. Farm households appear to be relatively
most efficient in the allocative sense in Boro cultivation, and the least
efficient in Aws cultivation. Given that the technical efficiency levels were
also relatively high in Boro cultivation, these results further confirm the
finding that farmers ia Khilghati have been largely successful in adapting te
the new technology, Boroe rice crop. Of course, the measured allocative

efficiency indices suggest that further improvement in efficiency could bring
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substantial galins, more so in the cultivation o0f Aus. wWe also find some

evidence polnting to a positive relationship between allocative efficiency in

Aus and Boro cultivation, and between Aman and Aus culbtivation.

5.3.2 THE ESTIMATES OF ECONOMIC EFFICIENCY

While the ML estimates of allocative efficliency were found to differ only
marginally from the COLS estimates, and the latter are themselves identical to
the COLS estimates in the deterministic case, the technical efficiency indices
based on both methcds in the stochastic case are very different from the
technical efficiency indices obtained in the deterministic case. This points
to substantial difference= in the estimates of economic efficiency in the
stochastic and deterministic cases; and, since the technical efficiency
Indlces are more reliable under the stochastic frontier assumption because the
effects of statistical noise are removed from them, the estimates of economic
efficiency based on the stochastic frontier are also likely to be more
reliable. |

The estimates for Aman rice (Table 5.11) show that the indices of economic
efficiency do not vary much according to estimation method. Thus, average
economlc efficiency varies approximately in the 60-65 percent range, pointing
to an ovezall average cost saving of about 35-40 percent <hrough the
elimination of both technical and allocative inefficiency. Fer the most
efficlent farmers this saving is 3just over 20 percent while for the 1least
efficient it could be almost as great as 50 percent. The 60-65 percent
economic efficiency level is substantially greater than that implied by either
tbe LP or QP estimates, and somewhat higher than those obtained by the COLS1

method of estimating the deterministic frontier.13 Thus, overall a
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considerable cost saving could be achieved in the cultivation of Aman through
efforts aimed at reducing technical and allocative efficiency. However, since
technical efficiency is at a high 1level, most gains are to be had by
concentrating efforts in improving allocative skills.

The estimates of economic efficiency in Boro cultivation show a little
more variation than those for Aman. However, the average economic efficiency
index, which varies in the 60-5S9 percent range, is in line with the Aman
index, pointing therefore to similar cost saving through the elimination of
technical and allocative errors. However, this range for average economic
efficiency is considerably higher than the estimate of average economic
efficiency obtained in the deterministic case. 1In fact, the LP and QP
estimates implied an average economic efficiency index of only 33 percent. The
roughly similar average economic efficiency levels in Aman and Boro
cultivation arise because, while average technical etficiency is higher in
Amar cultivation, this is offset by the higher average allocative efficiency
in Bezro. But, as in the case of Aman cultivation, proportionately greater
gains can be achieved in Boro cultivation by correcting allocative errors.

The resuits for Aus (Table 5.13) are very different not only from those
obtained for Aman and Boro, but also from those obtained under the COLS1
method in the deterministic case. On the other hand, the LP and QP estimates
point to an average level of economic efficiency that is consliderably higher.
The average level of economic efficiency is in the 40-50 percent range, and
this is well below the corresponding range for Aman and Boro. In addition,
that range is about one-and-a-half times the COLS1 average, and somewhat lower
than the 53-55 percent average obtained under the LP and QP methods. The
difference between the stochastic results and those based on the COLS1

estimates in the deterministic case is predominantly due to the substantially
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higher estimate of technical efficiency obtalred under the stochastic
assumption. The dlfference between the stochastic results and ‘the
deterministic LP/QP results reflects the wvery high allocative efficiency
levels implied by the LP and QP estimates. Wwhile the stochastic frontier
11kely provides 2 much more realistic picture of technical efficiency in Aus
cultivation, the poorly estimated labour elasticity in all cases makes the
allocztive efficlency, and hence economic iIndices somewhat unrellable.

Nevertheless, It seems reasonable, given the more rellable estimates of
technlical efficiency, to conclude that the elimination of allocative
efficiency in Aus cultivation would result in a proportionately larger cost
reduction, even though we cannot be very certain about the magnitude of that

reduction.

5.3.3 THE RELATIONSHIP BETWEEN TECHNICAL AND ALLOCATIVE EFFICIENCY

We examined the relationship between allocative and technical efficliency
in the context of a deterministic frontier, and found little evidence to
suggest that the two bear a strong positive relationship to each other. Wwe
briefly examine whether the move to a stochastic frontier alters that
finding. We have seen above that estimating the stochastic frontier by the ML
method leads to materially different estimates of allocative efficiency.
However, we found that while technical inefficiency does play an important
role in explaining inter-farm variations in output, statistical noise, too,
accounts for a substantial proportion of those variations ard the relative
importance of statistical noise varies across crops. The estimates of
technical efficiency under the stochastic approach are, therefore, likely to

be more reliable, and the question that we examine now is whether the new
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estimates of technical efficiency correlate with the estimates of allocative
efficiency. Thus, we report Spearman’'s rank as well as the Pearson correlatlon
coefficients Dbetween the two efficiency indices, by estimatlon method and
crop, in Table 5.15. It is apparent that there is virtually no relationship at
all between the ranks or levels of technical and allocative efficiency in
Aman and Aws cultivation. While there does appear to be a positive, but weax,
relationship in the case of Boro, none of the rank correlations are
statistically significant at the 5 percent level. We conclude, therefore, that
farmers' technical skills are unrelated to their allocative skills. We reached
the same conclusion in the deterministic cass. This means that adjusting for
statistical noise basically provides more reliable estimates of technical
efficiency, though it does not appear to make a difference to the ranking of

households along the technical efficiency spectrum, so that no relationship

between technical and allocative efficiency is found.14

5.4 FACTOR-SPECIFIC EFFICIENCY

So far we have dealt with the estimates of multi-factor technical
efficiency. These indices measure the inefficiency of total factor usage, and
cannot provide information as to the relative importance of different factors
in causing inefficiency. Thus, a given level of technical efficiency, as we
have measured it thus far, could have been produced by a relatively excessive
use of labour and a relatively frugal use of land, or the reverse pattern of
input usage. Consequently, the multi-factor indices of technical efficiency,
useful as they are, obscure the fact that factors contribute differently to
inefficiency. The usefulness of factor-specific indices of efficlency is that

they measure the relative efficiency of different factors and can thus
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indicate the areas where efforts to improve efflcliency need to be directed.l5
In this section we estimate a set of factor-specific efficiency indices
for the Aman, Boro and Aus rice crops. These indices were discussed in Chapter
2 and are (a) a factor-specific technical efficiency index (b} a technical
cost efficiency index and (c) an allocative efficiency index. The
factor-specific technical efficiency index is the ratio of the technically
efficient employment of a factor to the actual employment of that factor,
given the actual quantities of all other factors, for the level of output
actually produced. This index is thus an indicator of the proportionate amount
by which the employment of a factor can be reduced without reducing the level
of output, holding the quantities of all other £factors constant. The
definition of this index implies that it cannot be radial in nature as are the
multi-~factor indices discussed above. Therefore, the index cannot be given the
cost interpretation associated with the multi-factor indices. Nevertheless, it
is possible to construct a cost-based, factor-specific technical efficiency
index. This is index (bl above, and it measures the cost reduction possible
through the elimination of factor-specific technical inefficiency, again given
the actual levels of all other factors. The technical cost efficiency index is
defined as the ratio of the cost of the technlically efficient level of a
factor plus the cost of all other factors to the cost of the actual employment
levels of all factors. The distinction between the indices (a) and (b) is not
trivial. (a) measures excessive factor employment in the physical sense, and
{b) measures efficiency in a cost semnse. It is possible that the most
efficient factor in the sense of (a) need not be the most efficient factor in
the sense of (b). For example, a farmer's usage of land may be relatively the
most excessive. However, if that excessive use of land is eliminated, the

proportionate cost saving may be smaller than that achievable through the
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elimination of the technical inefficiency associated with some other factor
whose excessive use is relatively less than that of land. This difference
follows from the fact that the factor-specific technical efficiency index tis
not radial in nature. The cost of the technically efficient level of a factor
plus the cost of the actunal quantities of all other factors expressed as a
percentage of mninimum cost (for the actval output produced) 1is the
factor-specific allocative efficiency index (c). It indicates the cost saving
possible by adjusting the technical efficlent level of a factor and the
actual levels of all other factors to their cost minimizing levels. As we
showed in Chapter 2, the product of the technical cost efficiency index (b)
and the allocative efficiency index (c) is the multi-factor index of economic
efficiency.

We estimated each of the aforementioned factor-specific indices for each
‘of the crops. Our results are presented in Tables 5.16, 5.17 and 5.18. Only
the results derived from the ML method, based on the assumption that the
disturbance u is half-normal, are shown since all other estimation methods
lead to wvery similar results for the stochastic frontier. Instead of
presenting the detailed results in the form of frequency distributions, we
have shown only the major summary results.

We first examine the results for Aman rice. Looking at the land input, we
note that its average technical efficiency index stands at 67.4. This
indicates that farm households could produce the same level of output if the
inefficiency in the use of land were eliminated - that is, 1f the employment
of the land input were cut by 32.6 percent. It can be seen that the
inefficiency in fertilizer usage is about the same, while that of labour is
the highest. Labour employment could be reduced by almost 43 percent with no

reduction in output. Note though that the most efficient farmers have roughly
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the same level of eifficiency in the employment of all factors; at the lower
end of the efficiency spectrum, however, the greatest inefficiency is
associated with the labeur input, which cculd be reduced by more than 80
percent without adversely affecting output. This indicates significant
overutilization of labour. However, it is possible that the survey data for
the labour input overstates the extent to which it is productively employed.
The technical efficiency of labour also shows much greater variation than the
technlcal efficiency of the other factors. This is seen by noting that the
standard deviation relative to the mean is almost 30 percent for labouzr, while
the corresponding figures for land, fertilizer and bullock-power are 21.2
percent, 21 percent and 26.1 percent, respectively. However, the fact that the
factor with the greatest technical inefficiency is not necessarily the factor
which would lead to the greatest saving via the elimination of its technieal
inefficlency, can be seen by considering the average value of the technical
cost efficiency index. Thus, while labour's usage is most inefficient in the
physical sense, the prevailing factor prices imply that the greatest cost
saving (37.1 percent) occurs by eliminating the technical inefficiency of the
fertilizer input. Eliminating the physical inefficiency of the labour input
would involve a cost saving of only 26 percent. Of course, our discussion is
in terms of the average farmer. The factor with the greatest cost saving
would In general vary across hcuseholds. What additional cost saving is
potentially possible once a particular factor's technical inefficiency has
been eliminated can be determined by looking at the allocative efficiency
index. Thus, if fertilizer's technical inefficiency is eliminated, a cost
saving of 37.1 percent can be realized; if, in addition, all factor quantities
are then adjusted to their allocatively efficient levels, a cost Saving of

_just under 2 percent can additionally be realized. Factor-specific allocative
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efficiency ix the greatest for the fertilizer input, and the lowest for the
iabour input. In other words, the relatively most technically efficient factor
in the cost sense is also the factor with the lowest allocative efficiency
index.

The incidence of factor-speclfic technlcal inefficlency is generally much
highexr in the cultivation of Boro rice. For Instance, whlle the average
technical efficiency index for land 1ls sliuhtly greater in Boro than in Aman,
the corresponding indices for labour, ferti_lizer and bullock-power are lower,
averaging 42 percent, 46 percent and 40 percent respectively. The latter are
much lower than the average levels found in Aman cultivation, and suggest that
there is significantly more over-utilizatlon of factors in Boro cultivation.
Note also the relatively greater varlation in the technical efficliency indices
for fertilizer, bullock-power and 1labour as indicated by their standard
deviations relative to their respective means. For instance, the technical
efficlency index for the most inefficlent farmers is under 2 percent for
fertillzer and labour and only 3 percent for bullock-power, suggesting that
for those farmers much of factor employment is largely unproductive. In the
physical sense, therefore, land 1s the most =fficlent input with an average
technical efficiency index of about 68 percent. Again, while the labour input
is the relatively least efficlent In the physical sense, it is clearly not the
factor on which managerlal effort to improve efficiency should be concentrated
if the objective is cost saving. The greatest cost saving would be achieved by
eliminating technlical inefficlency in the exployment of bullock-power or
fertilizex. Bither of these factors would yleld a cost saving of mere than 30

percent if used in the correct amounts. The land input would yield a cost
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saving of just under 30 percent, whiie the cost saving from an efficient use
of labour would be a low 8 percent. Hote that for the most efficient farm
households, the cost saving from greater efficiency in the utilization of the
labour input would be virtually zero, while 1t iould be at least 12 percent
for the other factors. While the cost saving attainable via the elimination of
factor-specific technical inefficiency varies substantially across factors,
the additlonal saving through an adjustwent of all £factors to their
allocatively efficient levels lies within a relatively narrow range for land,
fertilizer and bullock-power, varying from a low of about 6 percent in the
case of fertilizer and bullock-power to a high of about 9 percent in the case
of land. For the labour input, on the other hand, that additional cost saving
averages a high 30 percent.

Looking at the technical efficiency indices for the four factors in Aus
cultivation, the major dlfference is that virteally all of labour employment
is redundant. This is quite unreasonable, but is to expected, given the very
low labour elasticity in the Aus productlon function. That low elasticity was
seen to be partly responsible for the low levels of allocative efficiency
found in earller sections. Factor-specific technical efficiency indices are
likely to be even more sensitive to the estimates of the input elasticitles,
since they are more closely tled to a factor's productivity. Bullock-labour is
the relatively most technically efficlent factor with an average index of
about 65 percent. The efficiency of land 1s only marginally lower, but
fertilizer is substantially inefficient with an average technical efficiency
index of only 29 percent. Notice that in spite of some rather different
estimates of factor-specific technical efficiency the Aus results fit into a
general pattern displayed by the Aman and Boro crops too. In particular, in

all cases, labour is the relatively most 1inefficient, with 1land and
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bullock-power appearing to be more efficient than fertilizer (at least, in two
of the three crops). The substantial inefficiency of labour usage in the
physical sense does not carry over to the technical cost efficiency index.
That index shows that the elimination of technical efficiency in labour
employment would bring an average cost saving of less than 25 percent, while
the elimination of inefficiency in the usage of either one of the-othez inputs
would involve an average cost saving in excess of 50 percent. Of course, there
are substantial variations in the factor-specific technical cost efficiency
index, with the least efficient farmers being in a position to realize an even
greater cost saving through the elimination of technical inefficiency., While
we have seen that the greatest cost saving is achieved via the elimination of
technical inefficiency in fertilizer usage, the additional cost saving by then
adjusting all factors to their cost minimizing proportions would be under 4
percent. In contrast, in the case of labour, that additional cost saving is
about 55 percent.

In concluding this section, we take note of several points. Our estimates
indicate that, on average, most factors individually display a high leve} of
technical inefficiency in the physical sense. On balance, land and
bullock-power appear to be used relatively most efficiently, although in
absolute terms the technical efficlency index for land, which is an extremely
scarce resource in rural Bangladesh, is below 70 percent. For all crops,
technical inefficiency is easily the greatest in the employment of labour,
reflecting perhaps the underemployment of its family component. On the cost
interpretation, however, the greatest saving comes not from eliminating
technical inefficiency of the labour input. In fact, the results point to
substantial cost saving via the elimination of technical inefficiency in the

usage of either of the other three inputs. Of course, which factor represents
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the best avenue for realizing the greatest cost saving varles across farm
households. Note also that the relative importance of different factors In
generating cost reductions via the elimination of technical inefficiency
depends on relative factor prices. Changes in those prices could alter the
ranking of factors in terms of the relative amount of cost savings they could

each potentially generate.ls

S.5 EDUCATION AND EFFICIENCY: AN ANALYSIS OF THE RESULTS

At the empirical level, the effect of farmer education on efficiency has
been given considerable attention in the economic development literature. By
and large, most studies suggest that education has a positive effect on farm
productivity. The £findings also indicate that a minimum of about 3 years of
education is required for that positive effect. There can be little doubt that
education is an important factor in the overall economic development of
agrarian economies such as Bangladesh. It seems reasonable to argue that
educated farmers are more likely to be receptive to, and to adopt newer
technologies. The level of education of a farm household is likely to be an
important determinant of its ability to acquire, understand and implement
relevant information required for the efficient cultivation of crops,
particularly of the new-technology variety. On the other hand, it is easy to
overplay the importance of education relative to experience in general, and
experience in the cultivation of specific crops, in particular. Nevertheless,
the more radically the production methods differ from tzaditional ones, the
more can education be expected to be an important influence. Our purpose in
this section is to examine whether the efficiency (both technical and

allocative) of farm households is dependent on farmer education levels.
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To begin with, we categorize farm households in our sample into four
groups - those with no education at all, those with between 1 and 3 years of
education, those with 4 but less than 7 years of education » and those with
educatjon in excess of 7 years. For each of these groups we computed the
average level of technical and allocative efficiency by estlination method and
crop. OQur results are reported in Table 5.19.

Looking at the results for Aman rice, there seems to be little indication
that education has a positive impact on technical efficiency. If anything,
farm households with 1~3 years of education have a slightly higher technical
efficiency than farmers with no, or even more education. On the other hand,
farm households with more education appear to be more efficient in the
allocative sense. This is borne out by each of the allocative efficiency
indices presented. These rosults are somewhat surprising, in that we would
expect education to be similar in its impact on technical and allocative
efficiency. On the other hand, we found that technical and allocative
efficiency in Aman cultivation do not appear to be correlated. This may lead
to a correlation between education and allocative efficiency, but none between
education and techrical efficiency. The results for Boro rice are quite
different. Thus, technical efficiency seems to be positlively related to the
education level of farm households, though the results indicate that educatlon
beyond the 6 year level has no impact. This is quite in 1line with
expectations since the beneficial impact of education can be expected to taper
off beyond some threshold 1level of education. Noteworthy is the result,
however, that education does not appear to be positively related to allocative
efficiency. In fact, it seems that more educated farmers are relatively less
efficient in the allocative sense. This s, of course, contrary to

expectations, but is in line with our earlier f£inding that technlcal and
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allecative efficiency in Boro cultivation are not related. The figures for Aus
are qulite similar to those for Boro rice. In particular, technical efficlency
appears to be a little higher for households educated up to 3 years, but lower
compared to those with more than 3 years of education. Further, as far as
allocative efficiency is concerned, better educated farmers appear to be less
efficient. This again is contrary to expectations. Thus, the results presented
in Table 5.19 show that the better educated farmers appear to be technlically
more efficlent in Boro cultlivation, and the same direct zelationship is found
between allocative efficiency and education in Aman cultivation. We also
examined the education-efficlency relationship in a rzegresslion context,
allowing for the possibility that that relationship might be a non-linear one.

We considered two alternative regression equations:

zi. - r:?t) * ﬁin. * ﬁaEi.z ¥ (i.

InZ = B, + BE +BET + 7
where 7 stands for the technical/allocative efficiency index and E for the
education (in years) of the head of the farm household. Either form allows for
the impact of education to vary with the level of education. A priori, the
expectation is that ﬁ; > 0 and ﬁé < 0. We found that all regressions fit the
data very poorly, with overall explanation being below 10 percent and with the
exception of the technical efficiency regressions for Boro and the allocative
efficiency regressions for Aman, all of the equations being statistically
insignificant at the 5 percent level. In the insignificant equations, none of
the education variables is statistically significant. In spite of the poor

fit, the statistical significance of the technical efficiency regressions for
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Boro and the allocative efficiency regressions for Aman are noteworthy. 1In
both sets of equations, the education wvariables have the rlght signs;
education has a poslitive lmpact on efficiency, but that effect declines with
an increase in the educational level. Thus, these findings are in line with
those in Table 5.19. The regression results for Boro and Aman are as follows

{standard errors in parentheses):

Boro 1. TE = 83.18 + 1.3925E - 0.0800B° R® = 0.08, P(2,80) = 3.58
(1.244) (0.694) (0.068)

2. 1nTE = 4.413 + 0.0179E - 0.001E° R® = 0.08, F(2,80) = 3.43
(0.016) (0.009)  {0.00%)

Aman 1. AE = 69.47 + 0.8918B - 0.07S0E° R® = 0.04, F(2,87) = 1.90
{0.780) (0.524}  (0.059)

2. 1nAB = 4.24 + 0.0130E - 0.0011E° RZ = 0.04, F(2,87) = 2.00

{0.011) (0.608) (0.005)

We also considered the role that household membership in co-operative
societlies might play in fostering farmer efficliency. Such membership provides
farmers access to information on improved cultivation practices and
could,therefore, have a favourable impact on efficiency. However, the
inclusion of a dummy varlable to capture that effect did not materially change
the results. While membership in co-operatives was found to have a positive
impact on efflciency in most regressions, that effect was not statistically
significant.

The inability to £find any relationship between technical efficiency and
education in Aman and Aus may largely be due to the fact that farm households
appear to be very similar in terms of technlcal efficiency. This «an be seen
from the very low standard deviation of the technical efficlency lindex

relative to the mean for both those crops. It is interesting to note that the

181



allocative efficiency index for Aman shows greater variatlon and this might
perhaps be reflected in the positive relationship between education and
allocative efficiency found for that crop. It is not clear why there appears
to be nc relationship between allocative efficiency and educatlon for Boro and
Aus. One possibility is that the estimates of allocative efficiency for Aus
are not reliable, as we have pointed out before. It could also be that the
variations in allocative efficiency in Boro are perhaps also more closely tied
té growing experience (more so than in the traditional crops) than to
education alone. Finally, institutional constraints {rather than inefficiency
alone), which determine a farmer's access to timely credit or fertilizer
inputs supplied by government agencies, may be reflected in the indices of
allocative efficiency, thereby weakening any tie that might exist between
education and efficiency.

Thus, while we do £ind that efficiency and education are positively
related and, as we might expect, the positive =ffect of education declines

with the level of education, that evidence Is not unlform across ail crops.

S.6 SUMMARY AND CONCLUSTIONS

In this chapter, wve estimated a stochastic Cobb-Douglas production
frontier and used it to estimate farmer efficiency in the cultivation of rice
in the wvillage of Khilghati. A deterministic frontier assumes that all
departures from it are due to inefficiency, while a stochastic frontier
explicitly recognizes that those departures are also llkely to reflect
statistical noise. One of the major tasks in this chapter was to separate
technical inefficiency from statistical noise so that more reliable estimates

of technical efficiency could be obtained. How the stechastic approach affects
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the estimates of allocative efficiency depends <£fundamentally on how the
estimates of the input elasticities are affected.

The production function was estimated by the COLS2 and ML methods. The
former estimates differ from the corresponding deterministic estimates only in
terms of the intercept adjustment Iinvolved. The ML method, based on the
assumption that u is either distributed half-normally or exponentially, can
lead to estimates that are different from those obtained by the COLS2
approach. But in our case, the ML estimates are only marginally different
from the COLSZ ones. The main benefits from the stochastic approach were
two-fold. First, the ML estimators have smaller standard errors pointing to
greater precision of the estimates. Second, in estimating a stochastic
frontier we also separate inefficiency from statistical noise. Indeed, our
estimates indicate that while the importance of statistical noise {relative to
technical inefficiency) in explaining the variations in output varies from
crop to crop, statistical noise does account f£or a substantial portion of
those variations in all crops. This is particularly true for Aus rice, for
which as much as 70 percent or more of output variations can be traced to
statistical noise.

We separated statistical noise v from inefficiency u by estimating the
conditional mean of u given (v-ul), and found that the technical efficiency
indices are quite significantly affected. Average technical efficiency in Aman
is the highest (approximately 90 percent compared to 80 percent in the
deterministic case), but that average is not appreciably lower in both Aus and
Boro, pointing %o a high level of technical competence in the cultivation of
all crops. The high level of technical efficiency in Boro also suggests that
Khilghati farmers have successfully adapted to the new-technology crop.

However, in comparison to Aman and Aus, the farm households appear to show
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greater unevenness in technical efficiency.

We also found that the technical efficiency ranking of farmers in one crop
is largely independent of their ranking in other crops, suggesting that the
skills required for efficient technical management might be crop-specific.On
balance, the results show that Khilghati farmers are much more etfficient
technically than implied by the deterministic frontier, and that the average
level of technical efficiency varies less substantially across crops.

The estlmates of allocative efficiency based on the COLS2/ML methods were
similar, but differed substantially from the LP/QP estimates of the previous
chapter. In general, the average level of allocatlve efficiency was highest In
Boro (75 percent} and lowest in Aus {50 percent). Of course, in the case of
Aus, the very small estimated labour elasticity accounts for this. It is quite
1likely that allocatlive efficlency ln Aus cultivation is probably higher. we
also £ind that farm households appear to relatively more inefficient in the
allocative sense than they are in the technical sense. This suggests that the
elimination of allocative Inefficiency would bring greater proportionate cost
gains than the elimination of technical efficiency. Thus, for instance, the
elimination of technical inefficiency in Aman would result in an average cost
saving of 10 percent while the elimination of allocative inefficiency would
reduce costs by as much as 30 percent.

Ve found some evidence to indicate a weak-to-moderate relationship between
allocative efficiency across crops. On the other hand, we found very limited
evidence to suggest that technical and allocative skills are correlated across
crops. The results from the deterministic frontier also implied this.

We also constructed some factor-specific efficlency indices. These indices
are useful in that, unlike the multi-factor indices discussed so far, since

they measure the inefficiency assoclated with individual factors, they provide
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information regarding the sources of inefficiency; that information could be
useful in devising a strategy for improving efficiency. Our results indicated
that, in the physical sense, the greatest inefficiency is associated with the
labour input; this finding is uniform across crops pointing %to generally
substantial over-utilization of that input. Even though the average technical
efficiency levels of land and bullock-power are much higher, in absolute
terms, the averages are quite low. For example, the average technical
efficiency index for land lies in the 62-68 percent range, suggesting that
land utilization could be reduced by more than 30 percent without reducing
output. This high level of inefficiency of land use is disturbing in a country
like Bangladesh where it is an extremely scarce resource due to the
significant population pressure on land. In spite of the significant physical
inefficiency of labour, it is not necessarily the input upon which effort to
improve efficiency needs to be expernded, if cost saving is the objective.
Thus, the cost saving {on average) from eliminating the technical inefficiency
of labour in Bero cultivation is only 8 percent, while eliminating the
inefficiency in land use would lower costs by as much as 30 percent. While the
elimination of technical inefficiency in land use lowers costs by about 30
percent, an additional cost saving of 10 percent can be realized by adjusting
all factors to their allocatively efficient levels. Our estimates in general
suggest that even if there are constraints on a farmer's ability to adjust
relative factor proportions, the adjustment of a single factor in the
direction of greater efficiency could bring substantial saving in costs,
though that factor could differ across both households and crops. It needs to
be borne in mind that the estimates of the cost of technical inefficiency are
not independent of factor prices. A sufficiently large change in relative

factor prices could substantially change the ranking of a factor in terms of

185



the propcrtionate cost saving that it could generate.

We £finally examined whether technical and allocative efficlency are
positively related to the education level of farm households, as many studies
seem to indicate. We did find some evidence indicating that education does
have a favourable impact on efficiency, but that Iimpact declines with the
level of education. However, this finding was confined to technical efficiency

in Boro cultivation and to allocative efficiency in aman cultivation.
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10.

11.

12.

FOOTNOTES TO CHAPTER S

See page 1, Chapter 1 for references.

The COLS2 estimators in the stochastic and deterministic cases are
identical except for the manner in which the intercept is adjusted. The
input elasticitles in both situatlons are the same.

Note that, under the exponential assumption, the variance of u is (1/72;.
However, under the half-normal assumption, that wvariance is not o -

Rather, it can be shown to be [ IT1-2/M] auz.

Since we assume that v and u are independent, the variance of {v-u)} is the
som of the variances of v and u.

In fact, we had argued earlier that both Aman and Aus, being rain-fed
crops, are more dependent on the monsoon and hence more likely to be
subject to random influences than the dry-season Boro crop. This seems to
be borne out by the estimates of &.

. < . z . a
Note that since o © is not the variance of u, ¢ is not the variance of
ul

(v-u).

In the stochastic case, though, none of the farm households had a
technical efficiency index in excess of 100 under the COLSZ estimation
method.

0f course, in the deterministic case, the average cost saving for the most
inefficient farmers was found to be even greater.

One reason for the greater variation in technical efficlency levels in
Boro cultivation may be that farmers have adapted at different rates as
well as with varylng degrees of success to the new technology.

We do not consider the exponential case since, as we indicated above, the
technical efficiency indices obtained by applying different estimation
methods were almost perfectly correlated.

The reason for this is that, as we indicated in the previous chapter, the

labour elasticity is likely overstated in the LP/QP case and understated
in the COLS/ML cases.

In the deterministic case, the relatively low correlations for Aus
reflected the substantially different estimates of the input elasticities.
In the stochastic case, on the sther hand, the COLS2/ML estimates st those
elasticities are very similar. This accounts for the smaller differences
in the estimates of average allocative efficlency in the stochastlic case.
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13.

14.

15.

16.

We do not compare the economic efficlency indices obtained by applving
COLSZ in the deterministic case to those obtained by applying the same
method under the stochastic frontier assumption, because in the former
case many farm households were found to be more than 100 percent

technically efficient. This makes the economic efficiency index for those
farmers quite meaningless.

That is, even though the ML method leads to vastly different estimates of
technical efficiency, it does not alter the relative ranking of farmers
along the efficlency spectrum. We can therefore, expect the same pattern

of correlations between technical and allocative efficiency as that found
in the deterministic case.

These indices were discussed in some detail in Chapter 2 {Section 2.3).
For additicnal details, see Kopp (1981).

In general, if relative factor prices remain relatively stable, the
results suggest that either land, bullock-power or fertilizer is the
greatest potential source of gain (in terms of cost saving) via the
elimination of factor-specific technical inefficiency. It is possible
though that relative factor prices do change over tiwe. However, given the
increasing scarcity of land relative to the population it has to sustain,
it is more than likely that the relative rental price of land would rise.
In that case, the potential cost saving via the elimination of technical
inefficiency in land would be even more substantial when compared to the
saving that the elimination of inefficiency ia labour use might generate.
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TABLE 5.4

The Distribution of the Input-based Technical Eflciency Index:
Aman Rlice

Relative Freguency (% of households)

TE(X)
(percent) COLS2(HN) COLS2(E) ML { HN) ML(E)
0 - 50 0.00 0.00 6.00 0.00
50 - 60 0.00 0.00 0.00 0.00
60 - 70 0.00 0.00 0.00 0.00
70 - 80 3.30 0.00 7.80 0.00
80 - 90 35.60 7.80 42.20 5.60
90 - 100 61.10 92.20 50.00 94.40
Maximum 96.00 97.20 96.40 97.40
Minimum 77.10 82.80 71.90 B4.60
Mean 90.40 94.10 88.80 94.70
S.D. 4.30 2.80 5.80 2.70

Notes: 1) TE(x) stands for the input-based technical efficlency
index, and S.D. stands for the standard devliatlon.
ii) Households with a TE(x) equal to the upper limits of
the efficliency intervals arxe grouped in the next
(higher) efficiency interval.
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TABLE 5.5

The Distribution of the Input-based Technical Effliciency Index:
Boro Rice

Relative Frequency (% of households)

TE(x)
{percent) COLS2 (HN) COLS2(E) ML (HN) ML{E)
0 - 50 1.20 1.20 1.20 ¢.00
S¢ - 60 1.20 0.00 " 0.00 1.20
60 - 70 12.00 1.20 7.20 1.20
70 - 80 27.170 7.20 19.30 7.20
80 - 90 34.90 38.50 44.60 56.60
30 - 100 22.90 51.80 : 25.30 33.70
Maximum 57.00 96.30 95.80 96.50
Minimum 43.10 49.60 48.70 50.60
Mean 81.30 88.40 83.80 89.30
S.D. 10.690 7.50 8.80 7.10

Notes: See TABLE 5.4
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TABLE 5.6

The Distrlibution of the Input-based Technical Efficlency Index:
Aus Rice

Relative Frequency (% of households)

TE(x)
(percent) COLS2(HN) COLS2Z2(E) ML ( HN) ML{E)
g - 50 0.00 0.00 0.00 0.90
50 - 60 0.00 0.00 0.00 0.00
60 - 70 5.10 0.00 6.40 0.00
70 - 80 24.40 S.10 24.40 3.80
80 - 90 £62.80 35.90 €1.50 33.30
90 - 100 7.70 59.00 7.70 62.80
Maximum 92.40 95.00 92.70 95,40
Minimum 64.60 73.50 62.40 75.20
Mean 82.90 89.40 8§2.50 90.10
S.D. 6.00 4.20 6.70 3.90

Notes: See TABLE 5.4
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TABLE 5.7

The Distribution of the output-based Technical Efficlency Index:
Aman Rice

Relative Frequency (% of households}

TE(Y)
{percent) COLS2(HN) COLS2Z(E) ML {HN) ML(E)
60 - 50 0.00 0.00 0.00 0.00
50 - 60 0.00 0.00 0.0¢Q 0.00
60 - 70 0.00 0.00 0.00 8.00
70 - 80 3.30 0.00 7.80 0.00
80 - 90 35.60 6.70 41.10 5.60
90 = 100 v1.10 93.30 51.10 94.40
Maximum 96.10 97.20 96.50 97.40
Minimum 77.40 B3.635 72.30 84.80
Mean 90.50 94.20 89.00 94.80
s.D. 4,20 2.70 5.70 2.40

Notes: See TABLE 5.4. TE(y) stands for the output-based technical
efficiency index.
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TABLE 5.8

The Distribution of the Output-based Technical Effliclency Index:
Boro Rice

Relative Frequency (% of households)

TE(Y) )

{percent) COLS2(HN) COLS2(E) ML (HN) ML(E)
0 - 50 1.20 1.20 1.20 1.20
50 - 80 2.20 0.00 0.00 6.00
60 - 70 10.80 1.20 8.40 1.20
70 - 80 32.50 8.40 19.30 7.20
80 - 90 31.30 39.80 44.60 10.80
S0 - 100 21.70 49.40 26.50 79.50
Maximum 96.80 96.10 95.70 96.30
Minimum 41.60 48.10 47.50 48.90
Mean 80.60 88.00 83.30 gg.s80
S.D. 10.90 7.70 9.00 7.40

Notes: See TABLE 5.7
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The Distribution of the Output-based Technical Efficlency Index:

TABLE 5.9

Aus Rlice

Relative Fregquency (% of households)

TE(x)
{percent) COLS2(HN) COLS2(E) ML (HN) ML(E}
0 - 50 0.00 0.00 0.00 0.00
50 - &0 G.00 0.00 8.00 8.00
60 - 70 5.10 0.00 6€.40 0.60
70 - 80O 23.10 5.10 23.10 3.80
80 - S0 62.80 34.60 62.80 33.30
90 - 100 9.00 60.30 7.70 62.80
Maximum 92.60 95.10 92.90 95.50
Minimum 65.20 74.00 63.10 75.70
Mean 83.20 89.60 82.90 90.30
S.D. 5.90 4.10 6.50 3.80

Notes: See TABLE 5.7
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TABLE 5.10

Inter-crop Rank Correlatlions of Technical Efficiency

l 1
Estimation | Crop i Aman Boro Aus
Method | ] rice rice rice
———————————— | ———— e A S A | ———————————————— i T i T A Ty P
| Aman H 1.00
| rice | {1.00)
| | .
COLSZ(HN) | Boro i -0.08 1.00
1 tice ] {-=0.05) (1.00)
i |
| Aus | -0.16 0.20 1.00
| rice | {(-0.22) (0.12) (1.00)
| i
____________ l ——— — — - —— — . o - l Sk e S T T A . T A Y S — —— T i S A ————
| l
| Aman | 1.00
] rice | (1.00)
| I
ML (HN) | Boro i -0.07 1.00
| rice ] (-0.05) (1.00)
| }
| Aus | -0.16 0.18 1.00
! rice | (-0.21) (0.10) {(1.00)
| ]

Notes: The numbers in parentheses are Pearson's correlation
coefficlents.
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TABLE 5.11

The Distribution of Allocative and Economic Efflclency: Aman Rlice

Relative Frequency (% of households)

AE COLS2 (HN) COLS2(E) ML (HN) ML(E)

and = s s o m s T e e e ——wmm e e

EE
(percent) AR EE AE EE AE EE AE EE
0 - 30 0.9 .0 0.0 0.0 0.0 0.0 0.0 0.0
30 - 40 0.0 o.C 0.0 0.0 6.0 0.0 0.0 0.0
40 - 50 0.0 0.0 6.0 0.0 6.0 5.6 0.0 0.0
50 - 60 1.1 23.3 1.1 11.1 2.2 36.6 3.3 14.4
60 - 70 42.2 61.1 42.2 58.9 55.5 46.6 47.7 61.1
70 -« 80 51.1 4.4 51.1 30.0 38.8 11.1 44.4 24.4
80 ~ 100 5.6 0.0 5.6 0.0 3.3 0.0 4.4 0.0
Maximum 83.5 77.4 83.5 79.4 8i1.8 75.5 82.6 78.6
Minimum 55.5 52.1 55.5 54.0 54.4 47.0 54.6 53.2
Mean 71.2 64.2 71.2 67.0 69.4 61.7 70.1 66.4
S.D. 5.6 5.0 5.6 5.7 5.5 6.5 5.6 5.6

Notes: AE and EE are the allocative and economic efficiency indices
respectively; EE = TE(xXx)*AE.
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TABLE 5.12

The Distribution of Allecative and Economlc Efficliency: Boro Rice

Relative Fregquency (% of households)

AE COLS2(EN) COLS2(E) ML (HN) ML{E)
and @ Sommmm s e e e e e e e — e —ee————— -
EE

{percent) AE EE AR EE AR EE AR EE
o - 30 0.0 0.0 0.0 0.0 ¢.o0 0.0 0.0 g.0
30 - 40 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0
40 - 50 6.0 10.8 0.6 2.4 0.0 4.8 0.0 2.4
50 - 60 1.2 30.1 1.2 18.1 1.2 25.3 1.2 8.4
60 - 70 22.9 44.6 22.9 47.0 12.0 44.6 12.0 35.0
70 - 80 61.4 10.8 61.4 31.3 57.8 24.1 53.0 51.8
80 - 100 14.5 1.2 14.5 1.2 28.9 1.2 33.7 2.4
Maximum 92.8 80.6 92.8 80.1 93.2 81.7 $3.6 82.8
Minimum 52.3 34.8 53.3 40.0 55.3 40.5 . 58.7 42.4
Mean 74.0 60.2 74.0 65.5 76.5 64.0 77.2 68.9
s.D. 5.3 9.0 6.3 7.5 5.1 8.1 6.1 7.5

Notes: See TABLE 5.11
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TABLE 5.13

The Distribution of Allocative and Economic Efficiency: Aus Rlce

Relatlive Frequency (% of households)

AE COLS2(HN) COLS2(E) ML (HN) ML(E)

and 0 mm e e e e T e e S mSS S ST T

EE
(percent) AE EE AE EE AE EE AE EE
0 - 30 1.3 7.7 1.3 3.8 1.3 5.1 1.3 3.8
30 - 40 12.8 38.5 12.8 24.4 10.3 33.3 11.5 20.5
40 - 50 37.2 48.7 37.2 52.6 27.0 47.4 32.1 50.0
50 - 60 39.7 2.6 39.7 18.0 51.2 12.8 44.8 24.4
60 - 70 8.0 ¢.0 9.0 1.3 8.9 1.3 .0 1.3
70 - 80 0.0 0.0 0.0 0.0 1.3 0.0 1.3 0.0
80 - 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 69.2 61.7 69.2 64.4 72.90 64.2 70.7 66.1
Minimum 28.4 21.0 28.4 24.2 30.0 21.7 29.1 25.4
Mean 48.8 40.5 48.8 43.7 51.0 42.2 50.1 45.6
s.D. 8.1 7.6 8.1 7.7 8.3 7.9 8.2 7.8

Notes: See TABLE 5.11
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TABLE 5.14

Inter-crop Rank Correlations of Allocative Efficiency

| |
Estimation | Crop | Aman Boro Aus
method | | rice rice rice
| ]
| |
1 aman | 1.00
1 rice |1 (1.00)
i |
COLSZ2 (HN) I Bore | -0.01 1.00
i rice | (0.05) (1.00)
| }
| Aus 1 0.23 0.43 1.00
{ rice | {0.26) (0.52) (1.00)
} |
____________ | ———— . o o — | —— — . S o S Y T A T " S A ——
| Aman | 1.00
| Rice | (1.00)
l |
ML (HN) { Boro | -0.03 1.00
| rice | (0.04 (1.00)
| {
|  Aus H 0.23 0.39 1.00
! rice | (0.26 (0.50) {1.00)
{ |
] ]

Notes: Numbers in parentheses are Pearson's correlation
coefficients.
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TABLE 5.15

Spearman’'s Rank Correlations between Technical
and Allocative Efficiency

|

Estimatlion | Aman Boro Aus

method | rice rice rice
i
1 }

COLS2 (HN) i 0.04 -0.04 0.11
| (0.04) (-0.11) (0.10)
|

COLSZ2(E) } 0.04 -0.04 0.11
i {(0.06) {-0.11) {6.09)
|

ML (HN) | 0.06 -0.01 0.12
| (0.06) (-0.09) (0.11)
|

ML(E) i 0.04 0.01 0.12
] (0.04) (-0.09) (0.09)
|

Notes: Numbers In parentheses are Pearson's
correlation coefficlents.
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CHAPTER 6

SUMMARY AND CCHCLUSIONS

In this study, we have attempted to measure the efficiency of Bangladeshl
farmers in the cultivation of rice by examining a sample of farmers from
Khilghati, a village lying about 95 miles north of the capital city of Dhaka.
The data used were collected by Khandker (1982) and are for the 1981-82 crop
year beginning in March. The question of the efficiency of farmers in
less—-developed countries is an Important one since agriculture is the main
source of livelihood for the bulk of the population. Therefore, it is not
surprising that this issue has attracted considerable attention in the
development literature. Whether farmers are more or less efficient in the
static sense (that 1s, within the framework of a given technology) or in the
dynamic sense (that is, in adopting newer, more efficient technologies) has
important implications for the standard of living of the population at large.
In Bangladesh, the 1land is highly fertile; yet yilelds in agriculture 1in
general, and in rice (the dominant food crop) in particular, are among the
lowest in the world. Given the scarcity of land, which reflects the high
pressure of population, the government has attempted to encourage the more
intensive use of land from the cultivation of crops In the dry, winter season
and the adoption of new, high-ylelding varieties of seeds. Indeed, lmportant
strides have been made in the move towards the adoptlon of "Green Revolution"
technologies through various programmes initlated by the government in the
early 51xties. While the adoption of more productive varleties of seeds and
the more intensive use of scarce land resources are undoubtedly steps in the
right direction, attention also needs to be paid to improving the efficiency

of farmers within the framework of any technology, be 1t of the traditional or
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more modern kind. One of the aims of this study was Lo construct several
indices in order to assess the efficiency of Xhilghati farmers in the
cultivation of traditional and non-traditional rice crops. Qur results tell us
something about the incidence of different types of inefficiency in general,
how those types of Inefficiency wvary across crops, and the direction
government policy might have to take in promoting greater efficiency.

Issues relating to the measurement of efficiency were discussed at length
in Chapter 2. We first presented, in Section 2.2, a brief theoretical outline
of the well known concepts of static efficiency.These are the concepts of
technical, allocative and price efficiency. In this study, we did not deal
with the measurement of price efficiency. Instead, we focused our attention on
technical and allocative efficiency. As 1s well known, technical efficiency
refers to the efficiency of factor use in the physical sense. It is an
attribute of the production function which depicts the maximum output that can
be produced given input quantities, or the minimum input quantities required
to preduce a given level of output. Allocative efficiency is a cost concept;
it is associated with the question of whether a firm utilizes inputs in the
"right" proportions. If a firm utilizes inputs efficiently in the technical
and allocative senses, the firm is said to be economically efficient. Economic
efficiency Is itself an attribute of the cost function which shows the lowest
cost of producing any level of output. These concepts can be extended to deal
with firms that produce multiple‘outputs. However, our study is concerned only
with farmers who produce a single output.

At the theoretical 1level, technical and economic efficiency (which
subsumes technical and allocative efficiency) are essentially f£frontier

concepts. A frontier function depicts the optimum value of a variable given

the levels of its arquments. Thus, the production frontier (function) defines
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the maximum output given lnput levels, or the minimum Input levels required
for any level of output. Similarly the cost frontler (function) shows the
lowest cost of producing a given level of output. At the theoretical level,
inefficiency can be represented by departures from the relevant Erontler. For
instance, departures from the production trontier represent technical
inefficiency while departures from the cost frontier indicate technical
inefficiency, allocative inefficiency or both. Once the relevant frontier is
known, firms can be evaluated to assess thelr technlcal and allocative
efficiency.

In Section 2.3, we reviewed +#he various approaches to efficiency
measurement starting with the pioneering work of Farzell (1957). We considered
alternative modeis of efficiency measurement on the assumption that the
relevant frontier is known. Farrell's approach was non-parametric. He proposed
input-based measures of technicail, allocative and economic efficiency on the
assumption of a constant-returns-to-scale technology. Since his study, the
literature on efficiency measurement and the construction of frontiers has
grown substantially. One part of that literature, popularly known as "Data
Envelope Analysis®, deals with non-parametric frontiers and their construction
by non-statistical techniques [see, for instance, Charnes, Cooper and Rhodes
(1978, 1985)] and Seiford and Thrall (1990)]. The other part, on which this
thesis is based, focuses on the measurement of efficiency from parametric
frontiers and their estimation by primarily econometric methods [see the
survey papers by Forsund, Lovell and Schmidt (1980}, Schmidt (1986) and Bauer
(1990)]. Under the latter approach, efficiency can be modeled and measured in
different ways. Thus, if the production frontier is known, cne can construct
an output-based technical efficiency index which expresses actual output as a

proportion of frontier output. Alternatively, one can construct an input-based
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technical efficiency index which measures technical efficlency ln terms of the
proportionate amount by which a firm's employment of factors exceeds the
minimum required by the output level produced. Thls index is, as shown by Kopp
{1981), a generalization of the Farrell technical efficiency index in that it
can be computed for any any technology and is not <restricted to
constant-returns to scale technologies, as is the case with the Farrell index.
The generalized Farrell index is radial in nature and differs £rom the
output-based measure. The two coincide only under conditions of constant
returns to scale. The radial nature of the gene:alized-Farrell index means
that it can be given a useful cost interpretation. In particular, one mlnus
the input-based index indicates the proportionate cost saving that cculd be
achieved by eliminating technical iprefficiency. The output-based index does
not lend itself to such a cost interpretation. In this study, we estimated
both indices but found them to be very similar.

The generalized, input-based approach also enables the measurement of
allocative efficiency in a straightforward manner £from the production
frontier. The allocative efficiency index is a measure of the proportionate
amount by which the relative factor proportions enployed by a firm differ from
the cost-minimizing ones. Again, one minus this index measures the cost saving
that could be realized by eliminating allocative inefficlency. The product of
the input-based technlical and allocative efficiency indices is the generalized
Farrell index of economic efficiency. One minus this index shows the
proportionate savirg in costs that could be realized by eliminating both
technical and allocative Iinefficiency. The economic efficiency index |is,
therefore, an indicator of the proportionate amount by which a £irm departs
from its cost frontier. We estimated the aforementioned allocative and

economic efficlency lindices in this study. Note that the measurement of
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allocative and/or economic efflciency can also be approached in other ways -
see, for example, the studies by Schmidt and Lovell (1979, 1980), Kopp and
Diewert (1982) and Kumbhakar (1987, 1989, 1990) to cite a faw examples.
These alternative approaches were also reviewed In Section 2.3.

We also estimated a set of factor-specific efficiency indices {Kopp
{1981)]. The technical and allocative efficiency indices discussed above are
multi-factor indices in that they measure the efficiency of total factor
usage. However, they do not tell us anything about the relative inefficiency
of various inputs. OQur factor-speciflic technical efficlency index measures the
inefficiency of any given factor, given the actual employment levels of all
other factors. This jindex is not radial in nature and thus does not have a
cost interpretation. However, by bringing in factor prices, we can construct
a technical cost efficiency index. That index measures the cost saving that
could be achieved by eliminating the technical incfficiency in the use of that
factor. Note that the factor-specific technical and technical cost efflciency
indices can imply very different things. Thus, factor A may be ranked the
least efficient in the physical sense; yet it could be the most in the cost
sense. In other words, the technical cost efficiency index of a factor is not
independent of relative factor prices, while the multi-factor technical
efficiency index is. We also estimated a factor-specific allocative efflciency
index. While the technlcal cost efficiency index of a factor indicates the
cost saving that could be realized by eliminating the technical inefficiency
associated with that factor, the allocative efficiency index of the factor
measures the additional cost saving that could be realized by then adjusting
all factors to their allocatively efficient levels. An alternatlve approach to
tactor-specific efficiency has been proposed by Kumbhakar (1988).

All the efficiency indices mentioned above presume knowledge of the
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relevant frontier. It is important to distinguish between a deterministic
frontier and a stochastic frontier, particularly at the empirical level.
Approaches that attribute all departures from the production/cost function to
inefficiency assume an intrinsically deterministic frontier. Those that view
those departures as reflecting both inefficiency and statistical noise view
the frontier as belng Iintrinsically stochastic. Earlier empirical studies,
such as those of Aigner and Chu (1968) and Timmer ¢1970), dealt with
deterministic £frontiers. In view of the fact that statistical noise is an
important component of econometzic relationships, subsequent studies
invariably adopted the stochastic frontier. Stochastlc frontiers were
initially proposed by Schmidt and Lovell (1977) and Meeusen and van den Broeck
{1977). We estimated both deterministic and stochastic frontiers in this study
and used them to obtain the efficiency indices discussed above.

The estimation of frontiers raises a number of important Issues. These
were reviewed in Section 2.4. We first discussed the problems of
specification. A major problem in the estimation of production frontiers
(deterministic or stochastic) is the question of functional form. We adopted
the Cobb-Douglas functional form. In spite of its restrictive features it has
been a popular choice in frontier studies and possesses some advantages not
shared by more flexible forms like the translog function. For one thing, it
avoids the potential for collinearity in the translog case. More importantly,
as our discussion in Section 2.3 showed, a ‘non-homogeneous function raises
some awkward difficulties for the estimation of allocative efficiency since a
measure of expected output Is required to evaluate allocative efficiency
accurately. The homogeneous Cobb-Douglas function does not suffer from that
problem. The other important specification problem is the assumption about

the distribution of the disturbance term - that is, of technical inefficiency
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in the deterministic case, and additionally statistical noise in the
stochastic case. We reviewed some of the commonly made assumptions about the
technical inefficiency and statistical nolse terms in the production function.
In orde; to examine the sensitivity of the estimates to dis_ributional
assumptions we considered two alternative assumptions about the technical
inefficiency term - one, that it follows a half-normal distribution and two
that it follows an exponential distribution. These are only two of several
possibilities. Thelr main feature is that they are one-sided distributions so
that technical inefficlency places the firm on or ‘Lelow the
deterministic/stochastic frontier. In the stochastic case, we assumed that the
disturbance term reflecting statistical noise is normally distributed with
zero mean and constant variance.

Deterministic frontiers raise somewhat different issues for estimation
than do stochastic frontiers. In the deterministic case, observations have to
lie below the deterministic production frontier. Clearly, ordinary least
squares (OLS) would not enpsure that. Besides, on our assumption that farmers
maximize expected or median profit and that technical inefficlency is unknown,
OLS provides consistent estimators of all parameters of the frontier except
the intercept since the disturbance does not have a zero mean. We estimated
the frontier by "correcting™ the OLS method in two alternative ways. In one
case, we adjusted the OLS intercept by adding to it the largest OLS residual.
We called this method COLS1. In the other case, we adjusted the OLS intercept
by adding to it the estimated mean of the disturbance term reflecting
technical inefficiency. We called this method COLS2. Both COLS1 and COLS2 are
consistent estimators of the intercept. However, while COLS1 is
distribution-free, the implementation of COLS2 requires an assumption about

the distribution of the technical inefficiency (disturbance) term. We
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considered the two distributional assumptions indicated above. Note that while
COLS1 estimates a frontier in the true sense of the word - that is, at least
one £irm lies on the frontier and none above it - the COLS2 adjustments do
not guarantee that firms do not lie beyond the frontier. We also estimated the
deterministic frontier by the maximum likelihood (ML) method under the
assumption that the technical inefficiency term is distributed either
half-normally oxr exponentially. In the half-normal case, the ML method
involves solving a quadratic programming problem, while in the exponential
case, it is a linear programming problem. We estimated the frontier by linear
and quadratic programming methods as well,

In the stochastic case, we faced similar estimation problems. An
additional difficulty was the separation of inefficiency from statistical
noise. We followed the approach suggested by Jondrow et al. (1982). This
enabled us to obtain farm-specific estimates of technical and allocative
efficiency. In other words, that procedure enables _the estimation of the
particular realization of the stochastic frontier, which can then be used to
obtain farm-specific estimates of technical, allocative and@ factor-specific
efficiency. The parameters of the | production function and the assumed
distributions were estimated by applying the COLS2 and ML methods. These
Issues were discussed in Section 2.4 of Chapter 2.

The purpose of Chapter 3 was two-fold. We £irst outlined the nature of our
sample economy, the village of Khilghati. As far as cultivatlion is concerned,
Khilghati is essentially a rice~based economy with that crop accounting for
about 90 percent of cultivated area. It grows three varieties of rice, each
corresponding to a particular cropping seasen . The Aus and Aman rice crops
are the traditional crops and these are grown during the spring and summer

months. They are wet season, rain-fed crops and depend in an important way on
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the monsoon. Khilghati farmers alsc grow a new-technology Boro rice crop
during the dry, winter months. We measured the efficiency of farmers in the
cultivation of each of these crops. Based on our discussion in Section 3.2,
land, fertilizer, bullock-power and adult labour (family plus hired) appear to
be the major factor inputs, and though the markets for some of those inputs
are relatively limited and/or dominated by kinship factors, we could identify
the relevant market prices for the services of each. It was assumed that the
prices reflect the relevant opportunity costs reasonably accurately. 1In
Section 3.3, we outlined our estimation strategqy in greater detail and
discussed how the various efficiency indices were actually constructed. Our
findings were discussed in Chapters 4 and 5.

In Chapter 4 we discussed the results obtained by estimating
deterministic frontiers. The estimates of the parameters of the frontiers were
found to be sensitive to the estimation method. While the COLS estimates were
identical, except for the intercept term, and appeared to be qulite
reasonable, they differed quite substantially from the LP and QP estimates.
This was particularly so in the case of the Aus frontier. In that case, the
estimates of the labour elasticity appeared to be wunrealistically low by the
COLS method and too high by the LP and QP methods. While the Aus frontier
does not appear to be estimated well by either the COLS or programming
methods, the latter are highly sensitive to outliers in the data and their
results for Aus are more suspect.

The estimates of technical efficiency estimates vary by estimation method
and crop. One reason for the differences between the COLS land COLS2 estimates
is that the latter method led to estimates of technical efficiency well in
excess of 100 percent for a number of households. Otherwise, the differences

by estimation method are not large. At any rate, the ranking of firms in terms
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of their technical efficiency is only marginally affected by estimation
method. We found that £farm households seem to be the most efficient in the
technical sense in Aman cultivation and the 1least efficient in Aus
cultivation. Thus, according to the COLS1 and LP and QP estimates, the average
level of technical efficiency is about 80 percent or more in aman and 65
percent or less in Aus cultivatlon. These input-based indices, which are very
similar to the output-based indices, point to a cost saving of 20 percent or
less in Aman and 35 percent or more in Aus if technical inefficiency is
eliminated. The estimates for Boro lie in between with an average technical
efficiency index of about 70 percent. Thus, while the traditional {(and most
popular) aman crop displays the highest technical efficiency, it 15.
interesting to note that technical efficlency in the new-technology Boro rice
compares favourably with that in Aman, peinting to the relatively successful
adaptation to the newer technology. Nevertheless, we £ind that technical
efficiency varies much more in the cultivation of Boro. In particular, many
farmers in Boro cultivation have yet to achieve 'the average efficiency levels
attained in Aman cultivation. Since there appear to be varlations In technical
efficiency across crops, we also examined correlations among the crop-specific
technical efficiency indices. We found that the relatively more efficient
farmers in one crop do not tend to be relatively more efficient in other crops
as well. This is somewhat surprising but may reflect the possibility that
technical skills are crop-specific, or that the technical efficiency indices
are contaminated by statistical noise.

The estimates of allocative efficlency are alsoc found to be sensitive to
estimation method, especially in the case of Aus rice. The allocative
efficiency estimates are particularly sensitive to the estimates of the input

elasticities, and the significant differences in the COLS and LP/QP estimates
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of those elasticities account for those differences. we find that while the
allocative efficiency estimates based on the COLS and LP/QP methods for the
Aman and Boro crops show quite significant quantitative differences, the
results for 2Aus show major qualitative differences as well. Thus, the
estimates show that while average allocative efficiency in Aman and Boro is in
the 70-75 percent range according to the COLS1 estimates, it is in the 45-50
percent range according to the LP and QP estimates. That pattern is reversed
in the case of Aus, with average allocative efficiency being in the 80-85
percent range according to the LP and QP estimates and just under 50
percent according to the COLS1 estimate. Because of these major differences,
even the relative ranking of farmers according to efficiency 1levels |is
substantially different depending upon whether we look at the COLS or LP/QP
estimates. In light of the likely direction of bias in the estimates of the
input elasticities for Aus, we feel that the true average allocative
efficiency level probably lies between the COLS and LP/QP estimates. In any
event, all indications are that irrespective of the estimation method, the
average level of allocative efficiency is lower than the average level of
technical efficiency. The inter-crop differences in allocative efficiency are
relatively minor, at least as far as the COLS1 estimates are concerned, and
suggest that farmers are most efficient in Boro cultivation with an average
allocative efficiency level of 74 percent. The corresponding averages In Aman
and Aus are 70 percent and 49 percent respectively. Since the economic
efficiency index is the product of the technical and allocative efficiency
indices, its magnitude and variations are largely determined bj the its
component indices. Thus, we find that the average level of economic efficiency
is about 52 percent according to the COLS1 estimates and 33 percent by the

LP/QP estimates in Boro cultivation. The corresponding figures are 57 percent
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and about 55 percent for Aman and 27 percent and 55 percent for Aus. It seems
that the level of economic inefficiency is quite substantial in all crops,
pointing to an average cost saving of at least 40 percent through the
elimination of both types of inefficiency. Furthermore, given the greater
magnitude of allocative inefficiency, a considerable saving in cost can be
realized by elimirating allocative inefficiency. Again, we £find that the
new-technology Boro crop compares very favourably with the traditional crops
in terms of efficiency, although efforts to improve allocative skills in all
crops would likely bring substantial benefits.

Finally, in the deterministic case, we find that in spite of substantial
inter-crop differences, allocative efficiency 1is not entirely independent
between crops. In particular, we find some evidence to suggest that allocative
skills in Boro and Aus are positively correlated. However, that evidence is
weak. We also attempted to determine whether technical and allocative skills
are correlated. However, we found no evidence to suggest that they were in our
sample. While we would expect a strong positive‘ correlation between the two
over time, there is no compelling reason for static efficiency indices to
support that expectation at any given point in time.

The major drawback of the deterministic frontier is that it does not make
allowance for statistical noise. Consequently, the technical efficiency
indices are more than likely contaminated by statistical noise. We estimated
the stochastic Cobb-Douglas frontier by both the COLS2 and ML methods. Of
course, the COLS2 estimates differ from the COLS estimates of the frontier in
the deterministic case only in terms of the intercept adjustment. The ML
estimates can show more fundamental differences. Our ML estimates, under the
exponential and half-normal assumptions, did not result in major differences

of the production functlon parameters as compared to the COLS estimates in the
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deterministic case. They, therefore, dlffer quite substantlally from the
LP/QP estimates. One major implication is that the new estimates of the
frontier do not radically change the estimates of allocative efficiency
compared to those obtained by the COLS method in the deterministic case. The
primary gain by adopting the stochastic approach and using the ML method is
the greater precision of the production function estimates as evidenced by the
drop in the estimated standard errors. In addition, by allowing for
statistical noise, we get an idea of the extent to which the deterministic
estimates of technical efficiency were contaminated by it.

Our ML estimates indicate that while the relative importance of
statistical noise in explaining variations in output across farm households
varies across crops, its importance is sufficiently large in all cases to
validate the stochastic approach. For example, the ML and COLS2 estimates
suggest that technical inefficiency accounts, at best, for about 50 percent
and, at worst, no more than 20 percent of the variations in output in Aman
cultivation. The corresponding numbers are 80 percent and 45 percent for Boro
and 30 percent and 15 percent for Aus. In light of this evidence, there is
little doubt that statistical noise is too significant a factor, especially in
the traditional Aman and Aus crops, to be ignored. The estimates of technical
efficiency clearly support this. Not only is there a clear and marked
improvement In average efficiency levels, but inter-farm variations in
technical efficiency are also seen to decline. The average level of
efficiency is around 90 percent in Aman and around 85 percent in Boro. The
most dramétic difference is in the case of Aus cultivation. For that crop, the
average level of efficiency rises to the 82-30 percent range. This supports
our earlier contention that the rain-fed, traditional crops of Aman and Aus

are more likely to be influenced by random factors. The estimates suggest that
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technical efficiency s generally very high in all crops. Since growing
experience most likely correlates with efficiency, it is noteworthy that the
new-technology Boro crop continues to compare very £avourably with the
established Aman and Aus crops.

There is some wvariation In the estimates of technical efficiency by
estimation method. Thus, typically, the exponential assumption leads to higher
technical efficiency estimates but the differences are not substantial. Wwe
find very high correlations among the technical efficlency indices based on
different estimation methods. However, again, there is only 1limited evidence
to indicate that technical skills are common to crops since farmers' technical
efficiency rankings across crops do not appear to be correlated.

We also find that the allocative efficiency indices vary only a little by
estimation method and the rarmking of farmers by allgcative efficiency does not
depend upon the estimation method. In fact, excluding the LP and QP estimates,
the various allocative efficiency estimates are very similar. On balance, it
seems that farmers are, on average, about 75 percent allocatively efficient in
Boro, 70 percent efficient in Aman and S50 percent efficient in Aus. In light
of the more reliable estimates of technical efficiency, the corresponding
estimates of economic efficiency can be expected to be more reliable as well.
The average level of economic efficiency is in the 60-65 percent range in
aman, in the 60-70 percent range in Boro, and in the 40-45 percent range in
Aus. Even though the Aus numbers are pulled ‘down by the unrealistically low
labour elasticity, it is clear that a substantial cost saving can be realized
through the elimination of economic inefficiency in all crops.

We also estimated factor-specific efficiency using the COLS2 and ML
estimates of the production frontier. A significant feature of the results is

that, in the physical sense, labour is clearly the most inefficlent factor in
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that its use is relatively the most excessive relative to the minimum
required. The degree of labour's inefficiency is substantial, though it is
clearly overstated, 1in Aus in light of the very low productivity of labour
implied by its estimated labour elasticity. For aman and Boro labor
employment could be cut by 40 and 60 percent respectively without reducing
output. In general, thé inefficiency of other factors 1s also gquite high.
Thus, while land is the relatively most efficiently used factor, Its technical
efficiency level is less than 70 percent. This is quite disturbing given the
scarcity of land. Interestingly, even though labour is the most inefficient
factor in the physical sense, the elimination of technical inefficiency in
that factor does not lead to the greatest proportionate saving in costs. For
each of the crops, the elimination of technical inefficiency in the use of
either one of the other factors would bring about a greater proportionate
saving. Of course, the relative importance of different factors in
contributing to lnefficiency varies in both the physical and cost senses
across crops, and it is also likely to vary with relative prices of factors.
Since the relative price of land can be expected to rise given its relative
scarcity, our estimates clearly point to the importance of a more efficient
use of land.

Our final analysis of the results involved examining, in Section 5.5, the
role of education in promoting efficiency. A vast number of studies suggest
that education increases farm productivity. We calculated the average levels
of technical and allccative efficiency of farmers in each crop grouped
according to education level and found some evidence to suggest that education
does have a positive impact on efficiency. However, that finding was specific
to Aman for allecative efficiency and to Boro for technical efficlency. The

results also indicate that the positive impact of education is smaller the
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higher the level of education. We pursued the matter further by considering
that relationship in a3 regression context. In order to allow education to have
a positive but declining impact on efficiency, we introduced the education
variable non-linearly in the regressions. In terms of fit, 2ll estimated
regressions performed poorly, explaining less than 10 percent of the
variations In efficiency. Education was found to have a statistically
significant positive impact (which declines with the level of education) on
allocative efficiency in Aman and on technical efficiency in 2oro. The
inability to obtain similar results in the other regressibns could reflect the
rather limited variation in the technical efficiency in Aman and Aus; or, it
may be that other factors, such as growing experience and institutional
constraints on individual farmers, are important determinants of a farmer's
technical and allocative efficiency.

Several policy implicatlions can be drawn from the findings of this study.
Farmers appear to be as technically efficient in the new-technology Boro crop
as in the traditional Aman and Aus crops. A policy of encouraging the adoption
of such HYV crops is thus well-founded. However, attention clearly needs to be
paid to improving farmer skills within the existing crops. For instance, rural
development policies could be geared to improving allocative skills. Our
estimates show that farmers could benefit significantly by ralsing allocative
efficiency. Those policies would probably have to take account of possibly
important differences in efficient cultivation practices across crops.
Policies aimed at improving the efficiency of highly scarce inputs such as
land could go a lone way towards improving the overail efficlency of farmers.
In fact, since the relative price of land@ can be expected to increase over
time, the cost reductions by improving the efficiency of land use could be

substantial. Finally, it may be that institutional constraints on individual
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behaviour foster inefficiency. For example, the lack of access to timely
credit and government-supplied chemical fertilizer for smaller farmers may
lead them to choose inefficient input-mixes. Ensuring qreater access to those
{farmers could be important in promoting greater efficiency.

We conclude by touching upon some of the major limitations of the study.
First, the quaiity of the data is unknown. Farmers may not accurately recall
the precise amounts of particular crops grown and the quantities of inputs
used. Even if they did, there is no guarantee that they would have reported
those magnitudes accurately. We hope that, by adjusting for statistical noise,
we have been able to minimize the adverse consequence of measurement error. In
adopting the parametric approach, we are committed to choosing a particular
functional form. Clearly, our choice of the Cobb-Douglas function is a
restrictive one. Other possible specification errors arise from our
assumptions about the technical efficiency and statistical noise disturbance
terms. Thus, for imstance, if technical inefficiency is known to the farm
household, it is likely that input guantities and the disturbance terms would
be correlated. Distributional assumptions are needed to estimate efficliency at
the farm level and/or to estimate the parameters of the production function.
We saw that the efficiency estimates can be sensitive to distributional
assumptions. While our findings appear to be quite reasonable, it needs to be
remembered that technical efficiency is essentially measured as a residual,
and can be expected, in general, to be sensitive to the choice of functional

form, the inputs included and distributional assumptions.
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