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Abstract

Results of W.G.Dwyer and E.M.Friedlander on étale K-theory of the S-
intcgers O3 in a number ficld E are used to express the higher étale tame and
wild kernel in terms of arithmetical invariants in the cyclotomic Z;-extension
of F = E((1). Furthermore, properties of these groups are discussed, such as

higher rank formulas and Galois descent.
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1 Introduction

Over more than two centuries the ideal class number of a2 number field has
interested and clearly fascinated many mathematicians. The problems and
applications relating to the class number are widespread, just to mention
the class number problem for imaginary quadratic fields or the still unknown
GauB conjecture on totally real quadratic number fields as well as the Van-
diver conjecture on the divisibility of the class number of Q({, + ¢;*), where
¢, denotes a primitive p-th root of unity.

The by far most famous result regarding the class number h(E) of the num-
ber field E is the analytic class number formula: Let R(E) the regulator,

D(E) the discriminante of E and u(E) th group of roots of unity in E, then

2n{E). (2r)=(E) . R(E) - h(E)
#u(E) - \/ID(E)| ’

where (g(s) is the Dedekind ¢-function of E and {E : Q] = ri(E) + 2r2(E).

lm(s — 1)(s(s) =

This formula should not be seen as a way to calculate explicitly the class
number k(E), but rather as a local-global principle. Namely, the (-function

e(s) possesses a convergent Euler product expression
¢a(s) = [I(1 = NGY™) , Re(s) > 1,
P

where the product runs over all finite primes in E, and the analytic class

number formula now says that the local factors give results on the global

1



1 INTRODUCTION 2

arithmetic of the number field.
It is common to modify the {-function by oo-factors in such a way that the
new function Zg(s) satisfies the functional equation Zg(s) = Zg(1 — s).

Moreover, the Euler product of Zg(s) then clearly runs over all primes in E.

As we do so often in mathematics we can ask for generalizations of the
analytic class number formula. A first such approach is given by replacing
the number field by curves or even projective varieties. For example, let E
be an elliptic curve defined over Q. Then the {-function—usually called the
L-series of E— is constructed by local data and exists at least conjecturally.
The corresponding formula is then known as the conjecture of Birch and
Swinnerton-Dyer.

Another idea is to stick to the number field E, and evaluate, il possible, the

(- function at negative integers. For the Riemann (-function {q(s), we have

(el =n) =—Bu/n,

where B,'. denotes the n-th Bernoulli number, and the Dedekind (-function
can be evaluated at negative integers by means of the gencralized Bernoulli
numbers. But this is not exactly what we are looking for. Instcad we would
like to evaluate the {-function at negative integers in terms of invariants
closely related to the number field E—such as the class number and the

regulator.
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Motivated by an analogous result for global fields of characteristic p > 0,

J.Birch and J.Tate formulated the following

Conjecture 0.1 (Birch-Tate) Let E be a totally real number field with ring

of inlegers Of, then

# K>(Ok)
wO(E)

where w(E) 1= maz{m : Gal(E((n)/E)? = 1} and K,(Og) is the tame

e(-1)==

kernel of E.

Nowadays, this conjecture is almost a theorem, i.e., it is known to be true
up to 2-torsion, and if F is an abelian (and totally real) number field, the
2-part is also valid. The proof of this conjecture is based on several, very
deep results in algebraic number theory, which we will now present here.

But before we do so, let us add the following generalization of the Birch-Tate

conjecture to higher K-theory and arbitrary number fields.

Conjecture 0.2 (Lichtenbaum) Let E be a number field with ring of in-

tegers O and 1 > 2 an integer, then up to 2-lorsion

#XK2i_2(Ok)
#Htor K 1(0g) ’

where R;_, ts the.higher regulator defined on Ky;_1(Og) and (g(s)* stands

(e(1—)"=%R;i,-

Jor the leading coefficient in the Taylor ezpansion of (g(s).

Note, that by the work of A.S.Merkurjev and A.A.Suslin on K3(Og) we have

#l-tor K3(Og) = w{?(E), and in the case of a totally real field we also know
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from A.Borel that R; = 1. Thus the Lichienbaum conjecture indeed gen-
eralizes the Birch-Tate conjecture. The cases, for which the Lichtenbaum
conjecture is valid, are precisely the same as [or the Birch-Tate conjecture

with the exception of a few imaginary quadratic number fields and i = 2.

One of the major ingredients in the proof of the Birch-Tale conjecture is
Iwasawa theory of number fields. But let us first consider the function ficld
case. Remember that this was the motivation for J.Birch and J.Tate. Let
C be a curve of genus g over F, and F = F,(C) its function field. If {¢(s)

denotes the {-function of C, then we know from A.Weil that

H?il(l — 0ig™")
(1-¢g*)1-q-%)"’

where the a;‘s are the eigenvalues of the Frobenius acting on the Jacobian

{c(s) =

J = J(C) of C. As we know, this result has a far reaching generalization
to smooth, projective varieties X over F;, namely the Weil conjecture. The
proof of the Weil conjecture makes heavy use of étale cohomology and its
properties, and countless other theories. For example, the Lefschetz Fixed
Point Theorem in étale cohomology implies the expression of the ¢-function
as a product of determinants, and hence in particular the above formula, cf.
cHa.pter 3.

Note, that for the Dedekind {-function—also called the continuous case-——the

recent work of C.Deninger gives the local factors (including the co-factors)
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in a uniform way and leads to conjectures, which are analogous to the Weil

conjecture.

Now Iwasawa's contribution was to construct an l-adic analogue for num-
ber fields. Let E be a totally real number field, ! an odd prime and F,, =
E(W;), where W), = Qifz,(1) is the group of all {-th power roots of unity.
Further, lel Ae = I-tor Pic(Os), O the ring of integers in F,. Then for
cvery integer j one can associate to the eigenspace €;A,, in a natural way a

characteristic polynomial
§i(T) = char Homa,(€;A0, /7))

which plays the analogous role to [[32,(1 — &T) in the above formula. On
the other hand, for every integer ; and every Dirichlet character x one can
construct a power series H(T, x) using Stickelberger elements and the arith-
metic in cyclotomic fields. This construction is due to K.Iwasawa for E = Q
and due to P.Ccligne and K.Ribet for an arbitrary totally real numbér field.
Moreover, we set I := Gal(Fo/F), F = E((), and A := Gel(F/E). If
k:F— U,(l) resp. w: A — p;_; denote the cyclotomic resp. the Teichmiiller

character, then one can show that for u = &(), 70 € I' a topological gener-
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ator, and s € Z; — {1}

H' —1,0) = Li{w'™,s) if j # 1 mod #A

1

(w* —u)- Li{id,s) il 3 =1 mod #A
where Li(x, s) denotes the l-adic L-function associated to x. The Main Con-
jecture in Iwasawa theory, which has been proven by A.Wiles, relates now

the characteristic polynomial ¢;(T') and the power series H(7T',w’), namely

Theorem 0.3 Let E be a totally real number field and G;(T) = g;((1 +
T)-! —1). Then for j =1 mod?2,

(Gi(T)) = (H(T,w))} in A =z/(T]].

The remaining step concerning the proof of the Birch-Tale conjeclure is an

Iwasawa theoretical description of the tame kernel, which is duc to J.Coates.
Theorem 0.4 Let E be a totaly real number field and ! an odd prime. Then
l-tor K3(OFg) =~ e_1A(1) .

The proof is based on the following deep resulis.
(1) For j = 1,2, there are isomorphisms
Ka2-i(O) @1 = H(0F,14(2)) ,

where OF = Og[}].
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(ii) The tame kernel K2{Og) is a finite group.

The first assertion was proven by J.Tate and later by A.S.Merkurjev and
A.A Suslin. The finiteness of the tame kernel was shown by J.Garland, and
generalized to higher K-theory by A.Borel. That the theorems 0.3 and 0.4
now imply the Birch-Tate conjecture follows from standard arguments in

Iwasawa theory, cf. chapter 4 and 5.

Let us recap what we have done so far. First we considered an appropriate
characteristic polynomial G;(T'} in A and then we constructed a power series
H(T,x), which is closely related to the arithmetic in cyclotomic fields. Next
the Main Conjecture says that these two elements are equal up to a unit in
A. Since the power series H(T, x) is essentially the l-adic L-function L, s),
we obtain a relation betweeen G;(T') and the Dedekind {-function {g(s) at
negative integers. Finally we used the Iwasawa theoretical description of the
tame kernel to prove the Birch-Tate conjecture.

Clearly we would like to take the same approach for the Lichtenbaum con-
jecture. But unfortunately this would lead to nowhere, since the l-adic L-
function is simply trivial in all cases other than E totally real and j = 1 mod2.
Moreover, the construction of the power series H(T', ¥} depends on the fact,
that the base field E is totally real. Nevertheless, there is a slight hope

that a generalization of Coates‘s result to higher X-theory could indicate the
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right construction of H(T, x} as well as the correct relation to the Dedekind

¢-function.

To find such a generalization was the starting-point of this thesis. Simpli-
fying Coates's proof we will see that his arguments give rather a statement
on the étale (I-adic) cohomology of O3, and thus the theorem 0.4 is then a

simple consequence of (i) above. More generally there is the following

Conjecture 0.5 (Quillen) Let E be a number field, | an odd prime and
Of = Oe[3]. Then for j =1,2 and i > 2, the Chern classes induce isomor-
phisms

K»i;(0) @ 11 = HL(03, 11(3)) .
By introducing étale K-theory, which can be computed by the {continuous)
étale cohomology via a fourth quadrant spectral sequence, W.G.Dwyer and

E.M.Friedlander proved the s ‘rjectivity of the Chern class map. In chapter

5, cf. 5.9, we prove the étale-theoretical generalization of 0.4, namely

Theorem 0.6 Let E be ¢ number field, | an odd prime and S the sel of
infinite and l-adic primes. Then fori 2 2 and G, := Gal(E(W/E), there

are ezact sequences
0 — (UL @ U/z,(i — 1)) /ymaz. div. = K_,(0F) = AS(i-1)> =0,

where maz. div. (US) @ Qufz,(i — 1))C= ~ K§_,(0F) ®2, ¥/2,-
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Using Iwasawa theory we can compute the structure and order of the left-
hand group in the above sequence, cf. chapter 4. Furthermore if OF denotes
the ring of S-integers in F, = E((.), then for every ¢ > 2, we obtain a

non-degenerate pairing
torp X {—1) x imK§_,(0%) — Qifz,,

where X = Gal(My/F.) is the Galois group of the maximal abelian I-
ramified, pro-l-extension of Fp, = E(W}), cf. 5.14. From this pairing we
deduce Galois descent for K5 ,(0f) in the cyclotomic Z-extension Foo/F
as well as conditions for the triviality of K& _,(03), cf. 5.15-5.17. Another
consequence of the pairing is that we can calculate the order of K& _,(03)
by evaluating the characteristic polynomial of £_story X at ! —1, cf. 5.18.
Another classical invariant of 2 number field E is the wild kernel W K,(E).
Following G.Banaszak, M.Kolster and T.Nguyen Quang Do we can define
a higher wild kernel, in the algebraic as well as étale case, cf. 2.32. If we
replace the units by the so-called Gross kernel ker go, € US @ Z; and the
ideal class group by a certain idelé class group Co, cf. chapter 6, we obtain

after solving a few technical problems the following analogue of 0.6, cf. 6.16

Theorem 0.7 Let the notations be as in the previous theorem. Then for

i > 2, there is ezact sequence

0 — (ker goo ®z, U/7i(i — 1)) /maz. div. = WK _4(E) = l-tor Co(i—1)%~ — 0,
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where maz. div. (ker goo ®z, U/7,(1 — 1))%> ~ K§_,(OF) O, ¥/7;.

As for the higher étale tame kernel Kji_,(O%) we can construct a noun-

degenerate pairing
toraX(=1) x imW K¢ _,(F,) - @/1;,

where X is a certain A-quotient module of &', cf. chapter 6. The same ma-

chinery as above then applies to the higher wild kernel, and analogous results

follow.

A crucial argument in the proof of the last two theorems is the triviality
of H2(0%,%/7)(i)} for i > 2 or equivalently the finiteness of AZ(i —1)%
resp. I-tor Coo(i — 1)%=, cf. 5.5 and 6.15. This is supposed to be truc in a

wider sense, namely

Conjecture 0.8 (Schneider) Let E be a number field, [ en odd prime and
Of == Og[}]. Then fori#1,

Hé’,(Og, Q/z,(i))=0.

As mentioned above the Schneider conjecture holds for ¢ > 2, and for i = 0
the assertion is equivalent to the well-known Leopoldt conjecture. If 2 =1,
the cohomology group HZ(OE,Q/z,(1)) does not vanish unless the number

field E has a unique l-adic prime, but the group of Galois invariants of the
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ideal class group Afoa“’ is still finite. This was conjectured by B.-H.Gross
and just recently proven by T.Nguyen Quang Do, cf. 7.5.

We consider his proof and consequences towards the Schneider conjecture
in chapter 7. We also explain there, why one can assume without loss of
generality that the Iwasawa p-invariant is trivial. Concerning the Schneider
conjecture we use cup-product arguments to obtain a reformulation in terms
of K& ,(0OF) and WK ,(E), cf. 7.11. This gives us at least under cer-
atin conditions the validity of the Schneider conjecture. It should be pointed
out here, that this conjecture is not even known to be true for the rational
numbers Q. At the end of chapter 7 we calculate higher rank formulas for

K& ,(0%) and WK$_,(E), which imply divisibility criteria, cf. 7.14.

In the last chapter we consider (I,1)-regular fields, which generalizes the
earlier concepts of I-regular resp. l-rational fields, introduced by G.Gras and
T.Nguyen Quang Do. Since the property (I,1)-regular is periodic mod[E((;) :
E), it is enough to consider positive values of i, which then translates into
the triviality of K§! ,(03). G.Gras, J.-F.Jaulent and T.Nguyem Quang Do
studied the problem of a going-up lemma for l-regular resp. l-rational fields.
For (I,{)-regular fields this means that we have to deal with the question of
Galois descent for étale K-theory, cf. 8.12. The advantage of our approach

lies in the fact, that we get very explicit results and can deduce quite easily
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examples, which satisfy the imposed conditions, cf. 8.15 and 8.16.

Notations: For every abelian group A, the kernel of multiplication by m is
denoted by ,A = ker(A 5 A). I n > 1, (, stands for a primitive n-th
root of unity, and the cardinality of a set M is denoted by #M. Any other

relevant notation will be introduced and frequently repecated in the text.

Acknowledgements: 1 would like to thank Manfred Kolster for his advice and

encouragement, and further Grzegorz Banaszak for his interest and many

helpful conversations.



1 Cohomology

This paragraph provides the basic definitions of the various cohomology
theories of which we will make frequent use in what follows. We start
with the cohomology of a profinite group G with coefficients in a G-module
M. For this, let G be a fixed profinite group, e.g., the absolute Galois
group Gg = Gal(E*?[E) of a field E with separable algebraic closure E**?,
Let M be a discrete G-module, and j > 0 an integer. The group of j-
th cochains is defined by C7 := {¢: G/ = M} ; here G° := {*} is un-
derstood as the one-point set. In the usual way we have differentations
di : Ci{(G,M) — C*(G,M) , and so we obtain the cochain complex
C(G, M) := (C¥(G, M); d).

Definition 1.1 The cohomology of G with coefficients in M is the homology
of the cochain complez C(G, M) := (C¥(G, M); d?), i.e., for j > 0, the j-th
cohomology group Hi (G, M) of G with coefficients in M is defined by

H (G, M) :=kerd [imdi .

A somewhat more functorial approach is given by the following. We fix again
the profinite group G, and consider the category M(G) of discrete G-modules.
It is well-known, that M(G) is an abelian category with enough injectives,
to be precise, M(G) is an abelian category satisfying AB5 and AB3*, and

having generators, cf. [78]. So we can define the right derivatives R'T(G,")

13
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of the functor T(G,-) : M(G) — Ab, T(G, M) := MS . lere and in the

following, Ab denotes the category of abelian groups. Then
Hi(G,M) = RT(G, M),

namely H#(G,) and R'T(G,-) are both universal §-functors in the sense of
Grothendieck, cf. [32], and they coincide in dimension zero. In particu-
lar, Hi(G,) are functors from M(G) to Ab, which in fact arc additive. At
this point we are not going to discuss the basic properties of these cohomol-
ogy functors such as the existence of restriction and corestriction (transfer)
maps, compatibility with direct sums and direct limits, cup-products and
cohomological dimension etc. . The reader who is unfamilar with these con-
cepts should consult any standard text-book on homology and cohomology

of groups, such as [8] or [83).

If E is a field with absolute Galois group Gg = Gal(E*?/E), we denote as it

is usual in the literature, the Galois cohomology groups by H#( E, M) instcad
of H¥(Gg, M).

Example 1.2 Let E be a field with separable algebraic closure E'P, then
HO(E,E*?) = E*, HY(E,E*?) = 0 by Hilbert '90°, and H*(E, E**) =

Br(E), the Brauer group of E. So if n 21 is an integer, which is relatively
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prime to char(E), then the Kummer sequence of Galois modules
0 — pta — (E*) 25 (B¥2) — 0

yields
0 — pn(E) — E* 2% B* — H'(E, ) — 0
and

0 — H*(E, pn) — Br(E) = Br(E).

A quite important concept is the notion of Tate twists of a Galois module M.
For this, let E be a field and { be a prime different from the characteristic
char(E). Forv 21 and i € Z, we set
piv Qzpve 1 @ ppv = S ifi>0
Z/lrz(t) =9 /12 ifi=0
Hom(Z/1vz(-1),2/I*z) ifi<0
By acting diagonally on the tensor product and canonically on the Hom-
group, Z/1vz(i) becomes a Gg-module, which as an abelian group is isomor-
phic to Z/j»z. Furthermore, let Z;(1) := limpu., then for ¢ € Z, we set
z(1)®z,...0 (1) =2f ifi>0
(i) =4 u ifi=0
Hom(ti(—1), 7)) ifi<0

This definition is compatible with the above, since for example

I;'_m(p;., ® pp) I;:_mp;u ®a, lg';mmv .
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Now let M be a Gg-module, and suppose that M is also a Z/{z-module

resp. Zi-module, then for i € Z, the i-th Tate twist M(z) of M is defined by
M(i) = M @22 Z/1"2(7)

resp.

M) = M @z, ()
Again as abelian groups M and M(i) are isomorphic, but in general not as
Gg-modules.
A different approach to Tate twists is given by the following. Let x : G — 2
be the cyclotomic character given by the action of Gg on Wy = limpup. If M
is a Gg-module, which is also a Z;-module, we define a new module M[i] as
follows: The underlying set of M[i] is M and the Galois action is given by
gom := x(g)'-g(m), where ¢ € Gg and m € M. Then this new definition of
the Tate twist is actually compatible with the one given above, namely for
all ¢ € Z, there are canonical isomorphisms M(z) ~ M([i] of Gg-modules.

The compatibility of cup-products in cohomology with Galois action gives

the following trivial result, cf. [85).

Lemma 1.3 Let E be ¢ field, | a prime different from char(E) and d, :=
[E(¢w) : E]. Then fori = j mod d,, the cup-product with a generator of

HO(E,Z[v2(7 — 1)) yields canonical isomorphisms

H*(E,Z/12(3)) = H™(E,2/112(j)) -
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If E contains the group of all I-th power roots of unity W;, we obtain by

passing to direct limits in 1.3
Hi(E,Q/z,(i)) ~ HI(E,Q/z7,)(3) .
If E does not contain W, we still have the following

Proposition 1.4 Let E be a local or global field, | an odd prime different
from char(E), and i € Z. Then
(i)
wE @) =] T
2/wf)(E)T ifi#0
where w("(E) := maz {I* : [E(() : E) divides i}.
(i)
Idtor Br(E) ifi=1
0 ififl

H*(E,@/7,(3)) =

(iii)
HI(E,Qfz,(i))=0forj >3

Proof: (i): trivial. (ii): For ¢ = 1 this follows immediately from 1.2
by passing to direct limits. Suppose now that i # 1, let F = E(()
and F,,/F the cyclotomic Zi-extension with Galois group I' = Gal(F/F).
Set G 1= Gal{Fy/E). For the l-cohomological dimension of G, and
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Gal(E*?|Fy), we have cdiGo < 1 and cdiGal(E*?[F) < 1, cf. [83],

and thus the Hochschild-Serre spectral sequence
E3} = HP(Goo, H(Foo, U/1(2))) = HPF(E, Q1/7,(2))
degenerates, in particular

H*E,Qfz)(i)) = H'(Geo, H'(Feo, U/7(i)))

~ HYGoor H (Fuooy Q/2,(1))(i — 1)) since Wi C F,

1R

HY(Goo, (F& @ f7,)( — 1)) by 1.2
Let A = Gal(F/E). Now ! does not divide [F : E], and thercfore
HY(Goo, (F& ® /))(i — 1)) = H'(T, (Fa, @ U/2,)(i = 1))* -
Since i — 1 # 0, we have H'(T, (F% ® Q/z,)(i — 1)) = 0 from the lemma

below. (iii): This is clear from cdi(E) < 2, <f. [83]. 0

Lemma 1.5 Let F be ¢ local or global field containing a primilive l-th root
of unity ¢, | # char(F) a prime, and Foo [ F the cyclotomic 2;-ezlension with
T = Gal(Foo/F). Then for a discrete I'-module M and i # 0, we have

HYT\(M ®Qi/z7,)(i)) = 0.

Proof: The case i =1 is proven in [92), and the general case follows along

the same lines. Q
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Remark 1.6 The groups H'(E,Q/z,(i)) are eztensively discussed in [82],

but see also below.

Recall that cohomology is compatible with direct limits, e.g., H'(E, Qi/z,(i)) =
limHi(E,2/1¥7(3)}), and we might ask ourselves what happens, if we pass to
the projective limit. One problem is immediately clear, namely the projec-
tive limit is not an exact functor. Nevertheless, we define the so-called l-adic

Galois cohomology groups by
Hi (B, 2,(3)) = imH (E,2/11(i))

Even if these groups are of certain interest, they lack functorial properties
such as the existence of Hochschild-Serre spectral sequences etc. . One way
out of this dilemma is to consider Z; in its natural topology, which is the
subject of continuous cohomology introduced by J.Tate, cf. [93].

For this, let G be a profinite group and M a topological G-module, i.e., a
topological, abelian group, on which G acts continuously. For 5 2 0, we set
Ci.(G, M) := {¢: G = M continuous }, and in the same way as above, we

obtain the continuous cochain complex Coont(G, M) := (CZ,ne(G, M); &)

Definition 1.7 The continuous cohomology of G with coefficients in M is
the homology of the complez Ceont(G, M), i.e., for j > 0, the j-th continuous
cohomology group Hi, (G, M) of G with coefficients in M is defined by

Hgont(G, M) = kGT‘ diont /im df::r}t .
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Jannsen’s definition of continuous cohomology is analogous to the above, i.c.,
deriving a certain functor. For this, let M(G)¥ be the category of inverse
systems over N in M(G). It is obvious that A(G)N is an abelian category.
In addition, M(G)N has enough injectives, cf. [43], and hence we can define

for (Mn, ¢a) € M(G)",
H (G, (Ma, ¢2)) := RITN(G, (Mn, $n)) ,

where I'N(G, ) is induced by ['(G, -). The connection to continuous cohomol-

ogy is given by the following result of Jannsen, cf. [43].

Theorem 1.8 Let (Mg, ¢n) € M(G)N, and suppose thal (Mn,¢n) salis-
fies the Mittag-Leffler condition—M-L condition for short. Consider M :=
limM, as a topological G-module, then for j > 0, there are funclorial iso-
morphisms

Hipne(G, M) = H(G, (Ma, ¢n)) -

Since Ab satisfies AB4*, i.e., the second derivative of lim is trivial, we have

functorial sequences for (Mn, ¢.) € M(G)N,
0 — lim' H (G, M,) — HI (G, (M, $a)) — limI (G, M) — 0
arising from the Grothendieck spectral sequence of composed functors

E;'q = ILmPRqP(G, Mn) = Rp-l-qu(G, (Mn:¢ﬂ) ’



1 COHOMOLOGY 21

where lim” stands for the right derivatives RPlim.

A generalization of Galois cohomology is, as we will see, étale cohomology.
But the reader should keep in mind that étale cohomology was not defined
in scarch for a generalization of Galois cohomology, but rather in order to
find a suitable "Weil-cohomology’, cf. [18].

Let X be a scheme, and X the (small) étale site on X. A presheaf P of
abelian groups on Xy is a contravariant functor P : X4 — Ab, and the
presheaves form an abelian category P(Xy) in an obvious way. Further-
more, P(X,) satisfies ABS and AB3*, and posseses generators, cf. [32],
thus P(X,) has enough injectives. Now the sheaves, which are roughly
speaking presheaves whose sections are determined by local data, form a full
subcategory S(Xa) of P(Xy).

Example 1.9 (i) Let A be an abelian group, and for Y — X in X, let cy be
the number of connected components of Y, then Ax(Y — X) := A =[[A
is called the constant sheaf cbrresponding to A.

(i)) For Y — X in Xy, Guax(Y — X) := D(Y,Oy)* is a sheaf on X,
where (Y, Oy) := Oy(Y) are the sections of the structure sheaf Oy. Ifn is

invertible in I'(X, Ox), in other words, X is a scheme over Z[1], we have the

ezact Kummer sequence of étale sheaves
x
0 — pox — Gnx - Gm,X — 0,

where p, x ts just the kernel of multiplication by n.
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If the reference to the scheme X is clear, we omit the subscript X in Ay,
Gm x, etc. .

A fundamental result of A. Grothendieck states that the natural functor
t : 8(Xa) = P(Xa) has a left adjoint o : P(Xs) — S(Xa), cf. [1]. From
this we see that S(Xg) is an abelian category with generators. Another
consequence is, that ${X) satisfies AB5 and AB3*, thus 5(X¢) has enough

injectives. Hence the following definition makes sense.

Definition 1.10 Let X be a scheme, and S € S(Xa). Then forj 20,
Hj(X,S) = RT(X, 5)

is called the j-th étale cohomology group of Xe with coefficients in S, where
I'(X,-) : S(Xa) — Ab is the section functor.

Remark 1.11 There is also a cohomology theory defined by cochains, cocy-
cles, etc., namely the Cech-cohomology H*(X,S). But in conirast to coho-
mology of groups, the Cech-cohomology and the just defined étale cohomology

do not agree in general. They are related to each other by a spectral sequence,

of. [84].

Let X be a scheme, and Gy, the étale sheaf defined in 1.9, then H}(X, Gm) ~
Pic(X), where Pic(X) is the group of isomorphism classes of locally-free,
rank one Ox-modules, cf. [37] or [65]. If in addition, ! is invertible in X,
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then the Kummer sequence in 1.9 yields by passing to direct limits
0 — I(X,0x) ®Q/z, — HL(X,W;) — l-tor Pic(X) — 0.

Specializing to number fields, to be more precise to rings of integers in a
number field, gives the following. Let E be a2 number field with ring of
integers Og, and OF = Og(}] the ring of S-integers in E with S-units UE.
Then for X = Spec(03), we certainly have ['(X,0x)* = Ug as well as
l-tor Pic(X) ~ A, where AZ is the Sylow-I-subgroup of the S-ideal class
group Cl(O%F) of E, cf. [37]. Therefore, the above sequence becomes in this

particular case
0 — Uf ® U/z, — H}(Spec(0F, W) — Af — 0,

and thus it is obvious just from this sequence that certain étale cohomology
groups of X = Spec(O%) play an important role in the arithmetic of a number
field E. Furthermore, we will later give an explicit description of the groul;
H}(Spec(OF), W)

As we said earlier, étale cohomology generalizes Galois cohomology. This is
done in the following way. For a field E, let X = Spec(E) and fix a separable
algebraic closure E**? with Galois group Gg = Gal(E*?/E). In other words,
we choose a geometric point # — X = Spec(E*?) and set Gg = m(X, Z).

For P € P(X4), we define the stalk at T by

P: (= Mp) := limP(Spec(F)) ,
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where the limit runs over all [F : E] < co. Then P; becomes a discrete G-

module via o* : Spec(F?) — Spec(F), 0 € Gg. On the other hand, given a

discrete Gg-module M, we define

Sm : Xe — Ab
(Y - X) — Homg,(H(Y),M)

where H : Fin Et/X — Gg-sets is the functor defined by H(Y) := Homx(z,Y)
and Fin Et/X is the category of étale schemes of finite type over X. Then
Sir is, in fact, a sheaf, cf. [65], and the just defined correspondence induces an
equivalence of categories S(X«) « M(GE), cf. [65]. Since ['(X,S) = Cs,
we get canonical isomorphisms, Hi,(X,S) ~ Hi(E, S) for j 2 0.

As for Gg-modules, we can define the notion of the i-th Tate twist of sheaves

of Z/lvz-modules resp. Z;-modules. This is done analogously to the case of
Gg-modules on page 15 using the sheaf yy defined in 1.9. Suppose that ! is

invertible in X and j > 0, then
Hi(X, 2(3)) = BmH{(X,2/1v2(3))
are called the l-adic cohomology groups of X.

Remark 1.12 Let X be a smooth, projective variely over the finile field Fy,

char(F,) = p # I, and X := Xo x¢,F2? the extension to the separable closure

F5? of Fy. Then

Hg,(X, Qi) := Hf‘(x, 2)(2)) @z, &
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is a Weil-cohomology for X, cf. [14] and [34].

At this point we face the same problem with the l-adic cohomology groups
of X, as we did with l-adic Galois cohomology, i.e., the lack of spectral
sequences etc. . Again we have to make our cohomology theory 'continuous’.
For a scheme X, S(X) is an abelian category with enough injectives, cf.
above, and hence the same is true for the category of inverse systems S( X))V,

cf. [43]. Thus we can make the following

Definition 1.18 Let X be a scheme, and (Sn,¢n) € S(Xa)N. Then for
320, we set
HI (X, (Sny$n)) := RITN(X, (S, $n)) »

where IN(X, ) is induced by T'(X,-). Ifl is invertible in X, and S = (Sp)

ts an l-adic sheaf, then for 3 20,
Hin(X, 8) = Hi(X, (Sv))

is called the j-th continuous (étale) cohomology group of X with coefficients
in S.

As for continuous cohomology of groups, we have functorial sequences in X

and (Sm d’n) € S(Xét)N

0 — lim Hi (X, §n) — H¥ (X, (Sn,#a)) — limHi(X,S,) — 0.
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We have seen that étale cohomology generalizes Galois cohomology, cf. above,
and it is not surprising that the same is true for continuous cohomology.
Namely for a field E with absolute Galois group Gg = Gal(E**?/E), let
X = Spec(E) and T — Spec(E*P) be a geometric point. We know that
S(X«) — M(GE) given by § — S induces an equivalence of categories
and (X, 8) = SS&. Let S, € S(Xu)N satisfying the M-L condition and
Sz = lim(S,)z, then S; is a topological Gg-module, and we deduce from

1.8, there are functorial isomorphisms
Hj(-Xv (Sn)) jad Hgont(Ev S.t) ) J 2 0 .

Next we state without a proof a theorem of Jannsen on Q;-cohomology, which

generalizes an earlier result by J. Tate, cf. [93].

Theorem 1.14 Let X be a scheme, 1 invertille in X and S = (S,) a torsion-
free l-adic sheaf on Xz, We set S® Qu/z,:= lim(S @ Z/1v7) € S(X4), and
forj 20, _Him(x, S®Q):= Hg',,,,,(x, 5) @z, Q. Then there is a long ezact

sequence
cor = HLo(X, ) = Hi,(X,50Q) B Hi(X,S50Q/z,) & HIHL(X,5) = -+

functorial in S end X with the properties

(a) imé = tor-HI}M(X,S$)
(b) kerd’ = maz. div. H(X,S5 ® Q/z)
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In the following, we also need a slight generalization of continuous cohomol-
ogy. Let A be the category of ordered finite sets m := {0,1,...,m} and
monoton maps as morphisms. A simplicial scheme sX is a contravariant
functor sX : A — Sch, where Sch is the category of schemes. Then in a
natural way, there is an étale site sXy on sX, and a sheaf S is given for
each m € A, by sheaves S,, on X, and compatible morphisms, cf. [25]. The
sheaves on sXg form an abelian category S(sX,) with enough injectives,
and for § € S(sXs) and j > 0, we define the cohomology group of the

simplicial scheme sX with coefficients in S by
i(sX, ) == R (limH}(Xm, Sm) -

Furthermore, if (S;) € S(sXg)N is an inverse system on sXg and j > 0, we
define
Hi(sX,(Ss)) := Ri(limlim Hg(Xm, Smpn) -

A different approach is given in [20], and U.Jannsen showed that thev agree,
cf. [43]. Note that we can associate to a scheme X the constant simplicial

scheme sX, and obviously for j > 0,
Hj(X,(Sﬂ)) = Hf(sX,(S,,)) .

At the end of this paragraph we want to consider the cohomology of number
fields, and in particular of rings of integers. Let E be a number field, [ an

odd prime, S a finite set of primes containing all infinite and l-adic primes.
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Further let OF the ring of S-integers in E with S-units U = (O£)*. For any
prime p of E, the completion of F at p is denoted by E,, and if p is a finite

prime, the residue field of E, by k,.
For simplicity, we write H,(0S,Z/¥2(:)) instead of H 3, (Spec(0%), 1/ v2(3)),
and so on . We already know that
HY(E,Q/z,(1)) ~ E* @ U/z,,
which is called the 'universal Kummer radical of E ?, as well as
0 — US ® U/z, — HA(0F,@/2/(1)) 25 AF — 0

is an exact sequence, where A§; is the Sylow-/-subgroup of the S-ideal class
group of E. The cohomology group H'(0%,/z,(1)) and the map ¢g can

be described explicitly via Kummer theory. Namely let
AY) = {ll—ymodz ®@z€ %Z/Z@ E*:v(2)=0modl*Vp g S},
where v, is the (normalized) discrete valuation corresponding to the finite
prime p. Then we get a commutative diagram
AR —  HY0,2[r2(1))
! !
AEY —  H(OF,2/112(1))

and compatible morphisms

Pg: AP — wAf

#®z — [P
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so that ALY := imAY) ~ HL(0%,Q/7,(1)) and $E := limpl) ~ ¢p.

Remark 1.15 From the above sequence and Dirichlet’s unit theorem, we get
co-tk HL(O%,Qi/z,(1)) =|S]-1.

We will see later, that fori > 2, co-rk H}(0%F,Q/7,(2)) depends on the parity

of ¢ and not on §. Conjecturally, this is even true for: <0, cf. 1.25.

For i # 1, HL(02,Q/2,(?)) does not arise from the sequence of sheaves
0— pup — Gy Xy Gm — 0, since Gy, is not an l-adic sheaf and so we can
not take Tate twists. The right way to look at H%(OF,Qi/7,(2)) — even for

i = 1 — is to consider the sequence of inverse systems of sheaves

0 — Z)(i) 25 2)(3) — Z/ra(i) — 0.
Applying continuous cohomology and passing to direct limits yields
0 = Hine(OF,2:(3))®2, /2, = Hiy(05, U/7,(3)) — I-tor HIFL(05,2:(3)) — 0.

Proposition 1.16 Let E be @ number field, | an odd prime and S a finite
sel of primes containing all infinite and l-adic primes, and OF the ring of

S-integers in E. Then
(3) Hony(OF, 1(3) = HL(OF,u(3) .

(i) rheHon(03,1i()) = co-rk H(0%,Q/7,(i)) .
(i)  HL.(0%,7(1) ~ USeu.



1 COHOMOLOGY 30

Proof: (i): Since H(Og,Z/1*2(i)) is finite for all v > 1, cf. {90], we have
lim'H3, (0%, 2/1*2(3)) = 0 is trivial and so HZ,., (0%, (7)) ~ HZ(0Z,z:(3))
is a finitely generated Z;-module. (ii): This is clear by (i) and the exact

~ sequence above. (iii): Since A% is finite and U§ is finitely generated, we get

H:ont(OIsB:zf(l)) ~ Hélt(ogszl(l))
= limHu(0%,2/17(1))
~ lim(Ug @ Z/Iv1)

~ Ug@l;.
]

We can also compare the 2;-rank of H}(0%,Zi()) with HZ(O0%F, Zi()), but

at first we need the following

Lemma 1.17 Let A be a Dedekind domain and | an odd prime, which is
invertible in A. Assume that A does not coniain all I-th powers of roots of
unity. Then fori#0,

H(A, (i) =0.

Proof: Without loss of generality we can assume that A contains {;. Let
K = Quot(A) be the quotient field and & : Gk = I' — Z} the cyclotomic
character. Then HY(A,Zi(z)) is the kernel of Z; 1oty 2;, where y€T isa

topological generator, and by our assumption this map is injective. o
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Proposition 1.18 Let E be a number field, | an odd prime and S a finile

set of primes containing all infinite and l-adic primes. Then
rky, Hi(0F, (3)) = rky HE(OF, Li(i))+S ro(E) ifi#£0,i=0 mod?2
T1(E) + TQ(E) ifi=1 mod2
In other words,
ra(E)+1 ifi=0
co-rk Hy(OF, /2,(i)) = co-rk H3(OF, U/z,())+ ro( E) ifi#0,7:=0 mod 2
ri(E)+r(E) ifi=1 mod?2

Proof: Counsidering the short exact sequence of inverse systems
0 — 7(i) 25 1(i) — Z/12(i) — 0

gives the long exact sequen'ce
0 — HO3,n(i)) X HRO%,u() — HY0%,2/iz(i))
— HM(05,2(i) X HL(0%,z()) — HY03,2/12(3))
— H3(03,m()) B Hi(0%,2()) — HXOF,2/1z(i)) -0,
and the assertion folloﬁs from

2 . . ro( E) if 1 =0 mod 2
(1Y 4 HI(08,2/12(3)) = o(E )
=0 ri(E)+ro(E) ifi=1mod?2

cf. [90]. 0
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We can also relate the cohomology of rings of integers to the cohomology of

number fields, namely the so-called localization sequence in étale cohomology,

<f. [85).

Theorem 1.19 Let E be a number fleld, | an odd prime and OF the ring of
S-integers, where S is a finite set of primes containing the infinite and i-adic

primes. Further let ¢ : Spec(E) — Spec(Of) be the canonical morphism.
Then

(Z/12(2) spectog) — t+(Z/12(3)) spec(E)
is an isomorphism of sheaves on Spec(0%), and there is a long ezact sequence
0 — HLO0,2/r2(i)) — HME,Z[/r2(i)) — @pes H (K, Z/1v2(i - 1))
o HLOL,2/12() — HYEZ/12() — @ugs H'(k 2/ 12li - 1))
- 0.

Proof: For the first assertion, it is enough to show that it is an isomorphism
at every stalk, and this follows at once, cf. [17]. Next consider the Leray

spectral sequence
P = H2(08, Bu. 2/12(i)) = HPH(E,2/12(i) .

Let F := R%.,2/1v2(3), and for p € S, ¢, : Spec(k,) — Spec(OF), then for

g=21,

F— Py F
vES
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is an isomorphism of sheaves on Spec(OZ), since it is an isomorphism at every
stalk. Furthermore, ¢, is a finite morphism, and hence there are isomorphisms
HI (0%, o0 F) =~ HP(ky, 4 F)

= H(ky, (5F)e,)

1

HP(kpy (R 0 2[1°2(3))e, )

cf. [35], where Z, : Spec(k:®) — Spec(k,) is a geometric point. Since étale
cohomology commutes with direct limits and cdik, = 1 as well as cdi0F < 2,

we get E2? =0 for ¢ #0,1 or p > 3 and thus we obtain the exact sequence
0 — HAOF,Z/r2()) — HYE,Z/12())) — @pes Ho(ky, (GR".2/12(i))s,)
— H(0%,2/r2(i)) — HYE,Z/12(3)) — @pes H'(kp (R W Z/12(i))e,)
—- 0.

Let, be the maximal unramified extension of E;, then
(GRW2/r2())s, = HYE,Z/r2()
~ HY(E,Zfiz(1))(i —1) ,since (v € Ez,
~ Zflvz(i—1) , since p [,

cf. [83], and the theorem is proven. o
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Corollary 1.20 Let the notation be as in 1.19, and suppose thati # 1. Then

there ts a commutalive diagram

Hclont(og‘i Z[(?.)) — }Ic}ont(Ea Zf(""))
L b
Hi(0F,1(2)) — HY(E,u(i)

and an exact sequence

0 - Hi(0%,Q/z(})) —» HYE,Q/7(i) - @pes Hk;, U/z,(i - 1))
~ HAO5,%/z(i) -0 |
Proof: The vertical isomorphisms in the diagram follow from the finiteness
of H}(Og,2/1v2(i)) resp. H*(E,Z/1vz()) forall v > 0. Since HO(ky, Zi(i — 1)) =
0 by 1.17, the bottom horizontal isomorphism follows from passing to the
projective limit in 1.19. The commutativity of the diagram is clear by
functoriality, and so we deduce the upper horizontal isomorphism. By 1.4
H?*(E,Q/z,(i)) = 0 for i # 1, and passing to direct limits in 1.19 yiclds the

above sequence. o

Next we state the duality theorems of Tate-Poitou, cf. [36] and [90], for

Galois modules over local and global fields.

Preposition 1.21 Fori € Z and 0 € j < 2, there are canonical isomor-
phisms

G = c: : Hi(E,, 7)) — H*™(E,, Q/z,(1 —1)) .
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Proof: Let G, = Gal(E:*?/E;) be the absolute Galois group of the local
field E,. For any finite G,-module M, let MP := Hom(M, (E:*")*) be its

dual module, then the pairing M x M? — (E;?)* induces the cup-product
Hj(ElnM) X Hz_j(EP:MD) — Hz(Evv(E;ep)*) .

Composing with the invariant inv, : H3(E,, (E3**)*) 5 Qi/z, gives isomor-
phisms

H3(E,, M) = H*(E,, MP)"

cf. [66] or [83]. For M = Z/}v2(i), we have MP = Z/[»z(1 — i) and passing

to the projective limit yields the assertion. O

For a proof of the global Tate-Poitou duality theorem, cf. [36] or [90].
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Theorem 1.22 Leti € Z, then.
(i) The kernels of the natural morphisms

H}(0Z%,/7,(i)) — Dy H(E,,Qifz,(i))

and
H(08, 211 1)) — @y HA(Ep, (1 — 1))
are canonically dual to each other. |
(it) There is a canonical ezact sequence
0 - HY(0F,Q/7,(1-i) — @i (Enn(i)” — HHOELG)
- H(0%,9/z(l 1) — @uHE, () —~ HLOF1E)
— HA03,/7(1-9) — @O HELG) — HAORHE) —0.

In [82] P.Schneider proposed the following

Conjecture 1.23 (Schneider) Let E be a number field, I an odd prime and

S a finite of primes containing all infinite and l-adic primes. Then fori# 1,
H}(0%,/7,(i)) = 0.
Recall that for i = 1, we have
H3(0%,/2,1)) = (/2"

where gi(E) := #{p C E : p|l} is the number of l-adic primes of E, ci. 1.16.

Putting the rank and co-rank formulas together, we get
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Lemma 1.24 Fori # 1, let By_;(E) be the kernel of the localization map

H}(OF,Q/z,(1—14)) — GI?H‘(ENQI/Z;(I -1)).

Then the following assertions are equivalent.
(i) Hi(OF, U/z,(3) = 0.
ro( E) +1 ifi=0
(#) co-rk HY(OF,Qf7)(i)) = { ry(E) ifi0,i=0 mod?2
r{E)+ra(E) ifi=1 med?2
(t22) HXZ(OZ, () is finite .
r(E)+1  ifi=0
(i) ke, H(OF, 2(2)) = { ry(E) ifist0,i=0 mod2
. ri(E) +7o(E) ifi=1mod2
(v) Ri-i(E) is finite.
Proof: The equivalence of (i)-(iv) is clear by 1.16 and 1.18. On the other

hand we obtain from 1.21 and 1.22 the exact sequence
0 — HYOEU/n(1-i)) — @i H'(E,, /7,1 ~1))
— HH(0F,7:()) — R_i(E)—0,
where * stands for the Pontryagin dual, cf. [36] and [82]. Since ¢ # 1, the

first two groups in this sequence are finite, cf. 1.4, and thus the equivalence

of (iv) and (v). (

Using K-theory, in particular Borel's computation of the algebraic K-theory
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of rings of integers and Soulé’s resp. Dwyer and Friedlander’s results on the
chern classes, we will see in chapter 2, cf. 2.28, that the Schneider-conjecture
is true for i > 2. Another interesting case is i = 0, which is precisely the

Leopoldt-conjecture, namely.

Conjecture 1.25 (Lgppoldt) For a number field E and a prime [, let E

the compositum of all Z;-eztensions of E. Then
Gal(E/E) ~ £;\B)*

Remark 1.26 (i) The Leopoldi-conjecture is proven for abelian exlensions
over the rationals Q and over an imaginary quadratic field, cf. {9], as well
as in several other specific cases, cf. [69]. (ii) We staled here an equivalent
version of the original Leopoldi-conjecture on the non-vanishing of the l.
adic regulator. For more on this subject, cf. [95]. (iii) It is also known
that ro(E) + 1 < rky,Gal(E[/E) < [E : Q], ¢f [{1], and we define the
Leopoldt defect 55°F > 0 by rky,Gal(E/E) = ry(E) + 1+ S5, (iv) Since
HY(0%,2/1+7) classifies the cyclic exiensions of & of degree < IY, which are
unramified outside I, the Leopoldt conjecture is a special case of the Schneider

conjecture.



2 K-theory

As paragraph 1 this paragraph has an introductory character. Even if we
define algebraic and étale K-theory in a quite general context, when it comes
to examples — or say applications -, we will be mainly interested in the K-
theory of number fields and rings of integers. Let us start, where algebraic
K-theory has its origin, namely with the Grothendieck group of an exact

category.

Definition 2.1 LetC be an exact category, and assume that the isomorphism
classes of objects in C form a set, e.g., if C is a small category. Then the
Grothendieck group Ko{C) of C is defined by

KO(C) = .F/'R. N

where F is the free abelian group on the isomorphism classes of objects in
C, and R is the subcategory generated by classes [M] — [M1] — [Ma] for each

exact sequence0 - M, - M - M, =0 inC.

When we consider rings and schemes, we assume that every ring is noetherian
and contains 1, and that every scheme is locally noetherian. So if R is a ring,
then X = Spec(R) is a scheme. Now let R be a ring and P(R) the category
of finitely generated, projective R-modules, then we set

Ko(R) 1= Kol P(R)

v

39
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Example 2.2 (i) Let R be a field or a local ring, then every projective mod-
ule over R is free, and so Ko(R) = 2. (ii) Let R be a Dedekind domain, then
Ko(R) ~ 2 ® CI(R), where CI(R) is the ideal class group of R, cf. [68].

For any small category C, let BC := |NC| be the geometric realization of
the nerve NC of C. Then BC can be considered as a CW-complex, whose n-
cells correspond to the non-degenerated n-simplices of NC, i.c., the sequences
Xp = -+ — X,, in C, which do not contain the identity. In particular, the

0O-cells correspond to the objects in C.

Example 2.3 Let C be the category consisting of

one) = {0,1}
Mor(C) = {0580,181,0-~1},

then BC = [0,1] CR.

For any exact category C, we denote the Quillen-category of C - also called
the @-construction - by QC, cf. [80]. Let 0 € C be a zero object in the exact

category C, then for any M € C, we have canonical maps""
iM:0—>Mand jpr : M =0,
which induce morphisms

iM;:O—vMandjfw:O-—»M
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in QC. Thus we obtain paths w(ian) and w(j};) from {0} to {M} in BQC,
and thus a loop
s = w(fiy) o wlipn)™?

at {0} in BQC.

Theorem 2.4 Let C be a small, exact category and 0 a zero object in C.

Then QC is a small calegory, and there is an isomorphism

¢: Ko(C) > m(BQC,{0}),
M] ~ [sm]
where sps is the loop defined above, and [-] stands for the isomorphism resp.

homotopy class.

Proof: We just give here a sketch of the proof, for details cf. [80]. It is
straightforward to show that ¢ is a well-defined homomorphism. Further, it

is enough to show that the induced functor
¢" : m(BQC, {0})-Sets — Ko(C)-Sets

is an equivalence of categories. From the theory of covering spaces we know

that
m{BQC, {0})-Sets «— (Cov/BQC,*)

I

is an equiir/a.lence of categories, where (Cov/BQC, *) denotes the category of

covering spaces overBQC with base point *. Furthermore, it is not hard to
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see that

(Cov/BQC,*) +«— { invertible functors QC — Scts}
(E,p) — (F:zw p~t{z})
is an equivalence as well. We define
¥ : { invertible functors QC — Sets} -— Ko(C)-Sets,
F — F(0)
then we obtain a commutative diagram
m(BQC, {0})-Sets 2 Ko(C)

! T
(Cov/BQC,*¥) +— {invertible funclors QC — Sels} .

Using the universal property of QC, we deduce that 1 is an equivalence of

categories, and the theorem is proven. D

The above theorem motivates

Definition 2.5 Let C be ¢ small, ezact calegory. For m 2> 0, the m-th
K-group of C is defined by

Kn(C) == mma(BQC, {0}) ,

where BQC is the geometric realization of the Quillen-calegory QC, and {0}

is a zero object in C.
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Remark 2.6 K;(C) is well-defined, i.e., independent of the choice of the
zero object 0. Given any other zero object 0, the groups mp41(BQC, {0}) and

Tm+1{BQC,{0}) are conjugate to each other.
Next we define the K-theory of rings and schemes by

e Let R be a ring, and P/ R) the category of finitely generiied, projective,

left R-modules, then form > 0,
Kn(R) :== Kn(P(R)) .

e Let X be a scheme, and Sh(X) the category of locally-free Ox-modules

of finite rank, then form >0,

Km(X) = Kn(Sh(X)) .

Let us observe a technical point here. P(R) and Sh(X) are of course not small
categories, so actually we are considering a skeleton of P(R) and Sh(X).
This is good enough, since the K-groups do not depend on the choice of the
skeleton, cf. [80]. Note that the above definitions are compatible, since P(R)
and Sh{X) are equivalent for X = Spec(R).

Proposition 2.7 For every m > 0, K, gives rise to a covariant resp. con-
travariant functor

Ky : Rings — Ab

resp. Kn: Schemes -— Ab.
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Proof: Since P(R) and Sh(X) are equivalent for X = Spec(R), it is
enough to show the functoriality of K, : Schemes — Ab. Let f: X —= Y be

a morphism of schemes, then the inverse image

fr: Sh(Y) — Sh(X)
G +— [71G®p0, Ox
is an exact functor. Using the universal mapping property of the Quillen-

category gives a functor Qf* : QSh(Y) — QSh(X), and thus a morphism
fm : Km(Y) = Kn(X). =

Let X be a scheme and F € Sk(X) a locally-free Ox-module of finite rank,

then
F®?: Sh(X) — Sh({X)

G +— F®o,G

is an exact functor, and so it induces a morphism
(F@.: K.(X) — K.(X).

Furthermore, if 0 — F; — F — F; — 0 is an exact sequence in Sh(X),
then 0 — FA®? ~— FQ? — F,@7 — 0 is an exact sequence of exact

functors, and by [80] we obtain
(F®. = (78 + (F287). : Kn(X) — Km(X),

i.e., the functor (F@?). depends only on the class of F in Ko(X). Thus we

can make Kp(X) into a commutative ring resp. K, (X) into a Ko(X)-module
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by setting
Ko(X) x Kn(X) — w{X) .

([7),2) — (F@N)m(2)

Replacing X by a ring R gives the analogous result for the category of rings.

In [68] J. Milnor defined the nowadays called Milnor K-groups of a ring R.
For this, let GL(R) be the general linear group, £(R) the group of elementary
matrices and Si(R) the Steinberg group with generators z;;()), A € R. By
v : St(R) — E(R) we denote the canonical map, which sends a generator
z;;(A) to the elementary matrix e;;(A) € E(R). Then the Milnor K-groups

are defined by

Ko(R) ifm=0
KM(R):={ GL(R)/E(R) =GL(R)® ifm=1
kere fm=2
Since 0 — KM(R) — St(R) — E(R) — 0 is a universal central extension of
E(R), cf. [68], we get KM(R) ~ H,(E(R),7), the Schur multiplier of E(R),
cf. [8].
Let us assume at this point, that R is commutative. Then the determinant

det : GL(R) — R* induces the split exact sequence

0 — SL(R) — GL(R) <4 R* — 0,
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and so

KM(R)~ SL(R)/E(R)® R"* .
Example 2.8 Let R be a field or a principal ideal domain, then K}M(R) ~
R*.

By definition, the group K2 (R) gives all the non-trivial rclations in the

group of elementary matrices, and for a field, we have the following result,

cf. [62].
Theorem 2.9 Let F be a field, then

KM(F)~ F*® F*[({e®1—a :a € F\{0,1}}),
i.e., KM(F) is the universal symbol group of F'.

This result as well as 2.2 and 2.8 motivate the following definition. Let FF be

a field and m > 0, we set
KM(F):=(F*®™ [({a: @+ ®am :a;+a=1for 1 <j<k<m}),

where (F:*)° := Z by definition. It is well-known, that the Milnor K-theory
of a field does not agree with the algebraic K-theory; this happens already
for m = 3. But nevertheless, Milnor K-theory is of interest in its own,

e.g., the connection to quadratic forms or higher dimensional local class field
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theory, just to mention a few aspects. Even if K31(F) # K3(F), the following

question comes naturally to our mind
Is KM(R) = Kn(R) form=1,27

It turns out, that this is indeed the case, cf. 2.12. We give now a different
approach to K-theory of rings, which actually was Quillen’s first definition of
it, and which also allows us to be more precise for low dimensional K-groups.
Again let GL(R) be the general linear group of the ring R, considered as a
discrete group. We denote by BGL(R) the classifying space of GL(R); this is
an Eilenberg-MacLane space K(GL(R),1). Therefore, BGL(R) is connected

and

GL(R) form=1
tm(BGL(R)) =

0 form>1
Remark 2.10 That we used the notation BC for the geometric realization
of a small categoryC, is no coincidence. Namely, let G be any discrete group,
and define a category G by Ob{G} := {*}, Mor{*,*} :== G. Then BG ~ BG
as topological spaces, cf. [89)].
By attaching 2- and 3-cells to BGL(R) we obtain a space BGL(R)* - unique

up to homotopy - with the following property: There is an inclusion
i: BGL(R) — BGL(R)*

such that
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1. ¢y : m(BGL(R)) — m(BGL(R)*)isgivenby GL(R) — GL(R)/E(R) =
GL(R)® .

2. For any local coefficient system L on BGL(R)*,
i, : H.(BGL(R),L) — H.(BGL(R)*, L)
is an isomorphism.

Here, H.(X, L) denotes the singular homology of the space X with cocflicient
in L. In the literature the attaching of 2- and 3-cells is known as the plus-
construction, and it was Quillen who showed, that both approaches, the Q-

and plus-construction, agree. Namely we have, cf. [28] or [89).

Theorem 2.11 For a topological space X, let QX be the loop space, then

there is a homotopy equivalence
BGL(R)Y — (2BQP(R))s ,

where the subscript o denoles the connected component of the trivial loop at

{0} € BQP(R). In particular form > 1,
Tm(BGL(R)*) = Tm41(BQP(R), {0}) = Ka(R) .
Corollary 2.12 Let R be a ring, then KM(R) ~ K,.(R) form =1,2.

Proof: For m = 1, this is property 1 of i : BGL(R) — BGL(R)*. For
simplicity, we set X := BGL(R) and X* := BGL(R)t. Let F(i} be the
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homotopy fibre of X xx+ X*' — X*, where X+ denotes the path space
of X*. Recall that X% is path-connected, and thus F(z) is well-defined.
Since X* is a CW-complex, the universal covering space X+ exists, and the
pull-back
X xxs X+ - X+

! i

X BN &
has a homeomorphic fibre F(2). Furthermore, we know from the theory of
covering spaces that X x x+ X+ is the covering space of X corresponding to
E(R) C GL(R) = m(BGL(R)). In other words, X xx+ X+ ~ BE(R) =

K(E(R),1). The long exact sequence in homotopy theory gives

m(BE(R)) — m(X*) — m(F() — m(BE(R) — m(X¥),
I I I I |
0 o (X+) m1(F(3)) E(R) 0
and G := m;(F(2)) acts trivially on ker(mm(F(2)) = 7m(BE(R)) for m > 1.
If m = 1, this action is given by conjugation, and so the above sequence
is a central extension of E(R). On the other hand, it can be shown that
H\(G,7) = Hy(G,2) = 0, cf. [88],and therefore, the extension is universal,
i.e.,

Ky(R) ~ my(BGL(R)*) ~ KM(R) .



2 K-THEORY 50

In [7} Browder considers algebraic K-theory with coeflicients Z/kz via ho-
motopy theory with coefficients. Let us recall the basic definitions here. For
m 2 2and k 22, let ¥} := Cyg = 5™ Uyxs €™ be the mapping cone of the
cofibration

gm-1 xk gm-1 _d Ykm’

cf. [88]. Since the mapping cone C; of the map i is homeomorphic to the
suspension £5™-1 ~ §™ we obtain by continuing with the procedure the

long co-exact Barratt-Puppe sequence
Slf_&sl_*ykz_%s?__’“.ﬂsm—l_’Ykm_

For any topological space X and m > 2, we set m(X;Z/k2Z) := [V}*, X].

Taking homotopy classes [-, X] in the Barratt-Puppe sequence yields
Ta(X; 2/kZ) = 71 (X) B -+ = 1 X5 2/k2) - m(X) - m(X) .

Definition 2.13 Let C be a (small} ezact category and BQC the geomelric

realization of the Quillen-category QC of C. Then the K-groups of C with
coefficients in L/ kg are defined by

Kn(CiZ/k2) = -

Tm41(BQC; T/ k7) ifm>1
Remark 2.14 Since BQC is an H-space, K,.(C;2/kz) is a group, cf. [98].

Even more;ié:i;uc, Ko (C;Z/kZ) is an adbelian group and k- K.(C;Z/kz) =0
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resp. (2k) - Kn(C;Z/k2) = 0 depending on k £ 0(2) or k=0(2), ¢f. [7] or
[72].

In all what follows, we are only interested in the K-theory of schemes, and
cven more important to us, of rings. So let X be a scheme, e.g., X = Spec(R),
R aring.

With all the notations from above we get the long exact Bockstein sequence
Kl X;2/82) = K1 (X) 35 Koy (X) = -+ 25 Ko(X) — Ko(X;2/kz) — 0,

which is functorial in X and the coefficients Z{/kz. Specializing to k = I¥,

v 2 1 and [ a prime, we extract the short exact sequence
00— Kn(X)®Z/1v7 = Kn(X;2/1vT) = 0 Ka(X) — 0.
Passing to the direct limit yields
0 Kn(X)®@Q/z; = Kn(X;Q/7)) = ltor Ky (X) — 0,

where K (X; Q/z,) := imKn(X;Z/1v7). As usual, passing to the projective

limit causes more problems, but nevertheless, we make the following

Definition 2.15 Let X be a scheme and | a prime. For m > 0, the l-adic
K-groups of X are defined by

Kn(X;2) := imKn(X;2/1vz) .
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As in chapter 1 for cohomology, the l-adic K-groups do not behave as we
want them to do. By comparing this to cohomology it scems to be clear
what we have to do, if we want to consider K-groups with Z;-cocfficients and
certain properties. Namely, we have to take the projective limit ’inside’, and
this leads to continuous K-theory defined by Banaszak and Zelewski, cf. (3].
For m > 2, let ;2 := limY,?, then the continuous K-groups of X with

coefficients in Z; are defined by
KZ™(X;0) == [Yis; BQSh(X)).

In (3] the basic properties of continuous K-theory are proven such as a com-
parison theorem with l-adic K-theory, i.e., for m 2> 1, there is a short exact

sequence
0 — lim! Knaa (X32/177) = KS™(X; 1) = Kon(X52) 2 0,
and the existence of a long exact Bockstein sequence
oo KOG T) S KE™ (X 2) = Ka(X32/107) = KRD(XGT) = e

Now we consider the algebraic K-theory of number fields and rings of integers.
Let E be a number field, S a finite set of primes containing the infinite primes
(and not necessarily all I-adic primes) and OZ the ring of S-integers with S-
units US. For any prime p, the completion of E with respect to p is denoted by

E,, and if p is finite, the residue field by k,. Quillen computed the K-theory
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of finite fields, cf. [79], and we have
Kn(k)=1 0 fm=2;372>1
Z/(q{—l)l fm=2j—-1,7>1and g, = #k

From the work of Borel, cf. [5], we know that
f

Q fm=0
QIsI-1 fm=1
Kn(0£)®Q=1 0 fm=0(2), m>2

QiEHNE) fm=14),m>5

L Q) if m =3(4)
As in cohomology, cf. 1.19, the K-theory of the number field FE is related to
the K-theory of the ring of integers Of by a localization sequence. Namely

by Quillen, cf. [80], we have the following commutative diagram with exact

TOWS

Kn(0f) = KuB) B @psknalk) —  Kaa(05)
! ! l !
Kn(OF:2/k2) ~ Kn(EiZ/i2) % @yes Kmaalki2/ke) — Knm-s(OF:2/k2),
where the vertical arrows are given by the corresponding Bockstein mor-

phisms and the 8™’s resp. 90*’s are the so-called boundary maps.

For m = 2, 3% is induced by the tame symbols 7, : E* @ E* — k;, and
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Moore’s reciprocity law, cf. [70], implies that 8% is surjective. Obviously,
Ky(k,) — Ki(ks;2/kz) is surjective, and hence 87 is surjective as well and

we obtain the commutative diagram
0—+ K03) — KiE) - Bpes Ka(k,)) — 0
! l !
K:(0%5Z/kz) — Ka(EiZ/kz) — @pes KilkiZ/kZ) — 0.
Note, that the left arrow of the bottom row is not injective in general. For
S = Sw, K2(0g) = K2(Og) is called the tame kernel of E. One might hope

that a diagram as above holds in a wider sense, and this is indecd the case

by the next theorem, cf. [87].

Theorem 2.16 Let E be a number field, S a finile set of primes containing

all infinite primes andm 2 1, k € Z. Then
(i) There is @ commutative diagram with ezact rows

0—  Km(0F) - Kw(E) = @usKomall)) — 0
! ! !
Kom(OFi2/k7) — Kam(Bi2/k7) — Dygs Kom-a(kniZ/kT) — 0.
(ii) There are isomorphisms
Kam41(08) = Kzmia(E) .
It was J.Tate who first proved a theorem relating K-theory of number fields

with Galois cohomology, cf. [92] and [93]. Namely for a number field E and
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an odd prime [, there is an exact sequence

0 — HY_(E,2(2)) ®2, U/7, = H(E,Q/2,(2)) — l-tor Kz(E) — 0

and thus an isomorphism
l-tor H2 (E,7;(2)) = l-tor K,(E) .

Then A.S.Merkurjev and A.A.Suslin, cf. [63], extended Tate’s result by de-
termining the kernel and the cokernel of K.(E) % K.(E) , m = 2,3.
Namely
0 — HYE,2/r(2)) — Ks(E) & KqE)

— HY(BE,Z/1r2(2)) — Ko (E) 5 Ky(E)

- HYE,Z/rz(2)) — 0
is an exact sequence. This was partly (and independently) proven by M.Levine,
cf. [59]. If S contains all l-adic primes, we might as well replace E by OF
and H*(E,Z/iv2(2)) by H};(0%,2/12(2)), and as a consequence we obtain

for § = 1,2 and an odd prime [,
Kyo j(0%) ® 1t =~ H}(05,2/142(2)) .
This is a partly verification of the Quillen-conjecture, cf. [81].

Conjecture 2.17 (Quillen) Let E be a number field, | an odd prime and
S a finite set of primes containing all infinite and l-adic primes. Then for

12 2 and j = 1,2, there are isomorphisms

ch;;: Kzi-j(ofg) L~ Hgg(og‘: Zl(i)) )
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where ch;; are induced by Chern classes, cf. below.

Remark 2.18 Since the K-groups of rings of integers are finitely generated
by Borel’s work, we deduce from the localization sequence in K-theory and
from Quillen’s computation of the K -theory of finite fields, that fori > 2 and
i=12,

Ky j(Oe)®@i= Ky {05)®1:.

C.Soulé has constructed morphisms ch;; via étale equivariant Chern classes
due to A.Grothendieck, cf. [33], and has also proven surjectivity of ck;; in
certain cases, cf. [85], as well as ch;; @ id : Kyi;(05) ® @ = HI (0%, Qi)
is an isomorphism, cf. [86]. We recall very briefly the definition of the map
ck;;, for details cf. {85].

Let R = OF be the ring of S-integers in a number field E, where S con-
tains all infinite and l-adic primes. Suppose that P is a finitely gener-
ated, projective R-module of bounded rank over all residue fields k,, and
p : G — Aut(P) a representation of a discrete group G over P. For i > 0,

v 2 1, A.Grothendieck, cf. [33], defines Chern classes
chi(p) € H(R, G;Z/12(3))

where H},(R,G;-) denotes the étale equivariant cohomology with trivial G-
action on R, cf. [8]. The Chern classes satisfy certain propertics, just to

mention
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Functoriality: If f: (R — R', G = G', P — P') is a compatible system of
morphisms, then

chi(f*(p)) = f*(chi(p)) .

Additivity: Let 0 — P, — P — P, — 0 be an exact sequence of R[G]-modules,
projective over R. If p, py and p; denote the corresponding represen-

tations, then

chi(p) = chi(p) U chi(p2) .

The natural representation id, : GL,{R) — Aut(R"), for every n 2> 1,induces
ci(ids) € HE(R,GL.(R);Z/1*2(?)), and the above properties imply that
(¢i(3dn))n form a compatible system under i, : GL,(R) — GLn41(R), i€,
i5(ci(idn)) = €i(idny1). After passing to the direct limit GL(R) = imGL.(R)
we obtain ¢;(id) € HZ{R, GL(R);Z/1vz(i)). The Kiinneth formula induces a
map
2 _
HE (R, GL(R);2/1v2(i)) — €D Hom(Hx(GL(R),2/1'7), H}(R, 2/12))
j=0
and so for 0 < 7 <24,

chij(id) : Hyj(GL(R),Z/1"7) — H}(R,2/12(3)) -

Composing this map with the mod-I Hurewicz map Ky_;(R;Z/1vz) —
Hyi_;(BGL(R)*,2/1v7) = Hyi_;(GL(R),Z/1*2) yields a functorial morphism

chig s Ko j(R;2/1v2) — Hi(R,Z/1a(3))
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and passing to the projective limit, we finally obtain
chij t Koo j(R) ® T — Hi(R,1,(3)),

since the finite generation of K ( R) for all m > 0 implies lim Kq;_;(R; Z/v7) =
Kz.'_._,'(R) ® Z;.

In a series of papers, cf. [19] and [20], W.G.Dwyer and E.M.Fricdlander
studied étale K-theory of simplicial schemes X over Z[}], and proved the
surjectivity of cki;, 7 = 1,2, in full generality, cf. 2.24. To define étale
K-theory would require quite a lot of work in topology, and fortunately for
us, the exact definition plays no role in our considerations and does not give
us any further understanding. Since étale K-theory can be computed via a
spectral sequence, whose E,-terms are given by continuous cohomology, cf.
2.19, we omit the details of étale K-theory and rather list a few functorial

properties. For any m > 0 and a prime [, étale X -theory gives rise to functors
K#%(.): Simp Schemes/z[.}.] —  Z;-modules
K&(-;2/ivz) : Simp Schemes/z[%] — Zif{vz,-modules .
Here, Simp Schemes/z{1] denotes the category of simplicial schemes over

z[}]. As for algebraic K-theory, the groups K&(X) and K&(X;Z/I*7) are

related to each other by a long exact Bockstein sequence

oo KE(X) S K(X) = K&(X;2/1v7) = K& (X)) = --- .
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Let R be a ring and assume that } € R, then for m > 0 the étale K-groups
of R are dcfined by

KR(R) = KZ(Spec(R))
KAR1/1rz) = KZ(Spec(R);Z/17),
where Spec(R) is considered as the constant simplicial scheme. In [20]
W.G.Dwyer and E.M.Friedlander constructed highly non-trivial maps from

algebraic to étale K-theory of rings, such that

KR —  K&R)
! !
K.(R;Z/rz) — KX (B;Z/r7)
becomes a commutative diagram of rings — here, we have to assume that

I # 2. For a proof of the next theorem, cf. [20].

Theorem 2.19 Let X be a simplicial scheme over Z[}] with ediX < oo.

Then there are strongly convergent, fourth-quadrant spectral sequences
(i) EF™ = Him(X,1(§)) = K{(X)
(i) EP™" = Hi.(X,Z/rz(})) = K&, (XZ/r2),

where by definition Z)() =2/17(3) = 0 for ¢ =1(2).

Corollary 2.20 Let E be number field, S a finite set of primes containing

all infinite and l-adic primes, and O3, the ring of S-integers in E. Then for
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X = Spec(E) resp. X = Spec(OF) and i > 2.
(i) Ho(X,2i(3)) > K§_J(X) forj=1,2.
(i) HL(X,Z/r2(i)) = K§_\(X;2/r7).
(i) 0— Hi(X,2/12(d)) — K3 (X;2/1r7) — HE(X,Z/pa(i - 1)) - 0
is an ezact sequence.

() H&(X,Z/r2(i)) S Kz (X)®y1/l7.
Proof: (i),(ii),(iii): All differentials dP9, r > 2 of the spectral sequence in
2.19 are trivaial, so in all three cases £3'"% = E%~%, Since E docs not contain
all I-th power roots of unity, HZ, (X, 2)(i)) = 0 by 1.17, and the assertion

follows immediately from 2.19. (iv}: Again we have HS (X, Zi(?)) = 0,

and thus H3(X,Z/1v7(: — 1)) ~ w HL (X, Z:(i — 1)). By (i),{ii),(iii) and the

Bockstein sequence in étale K-theory we get the claim. 0

Corollary 2.21 Let the notation be as in 2.20. Sei B, = E(W)), and

let OS, be the ring of S-integers in Eo,. Then for X = Spec(Ee) resp.
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X = Spec(03,) and i > 2.
(i) H,.(X,u() = K, (X).
(i) 0— HZL. (X, 2(2)) = K3l _o(X;Z/1°7) = HY(X, Z(i - 1)) = 0
is an ezact sequence.
(i) HL(X,Z/rr2(3)) = K§_,(X;Z/1r7).
(i) K§o(X;Zjrz) S HL(X,Z/rz(i-1)).

Proof: Analogous to the proof of 2.20. Just observe, that in this case

2i(i 1) = HY(X, (i — 1)) # 0 and HA(X,2/p2(i)) = 0. 0

Corollary 2.22 Let F, be a finite field with char(Fq) = p # 1. Then for
X = Spec(F,) and i > 2.
(i) Hon(X,2()) = Ki(X).
(i) K3 o(X) = Ho(X,2(i - 1)) .
(iii) Hi(X,Z/r2(i)) = Kii (X;Z/r7).
(iv) K§ (X;Z/irz) > H(X,Z[iz(i-1)).
Proof: Since H},(X,Z/1vz(3})is finite and cdiF = 1, weget H2 (X, Zi(3)) =

HL(X,2i(i)) = 0 as well as H4(X,Z/1v2(2)) = 0. Therefore, the corollary is
trivial by 2.19, o
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Remark 2.23 All morphisms occuring in 2.20 - 2.22 are edgemorphisms
with respect to the corresponding speciral sequence 2.19. So they are funclo-

rial in X and the coefficients.

As mentioned earlier W.G.Dwyer and E.M.Friedlander proved the surjectiv-

ity of the Chern class map for rings of integers, cf. {20], to be more precise.

Theorem 2.24 Letl be an odd prime, and R a field or the ring of S-integers
in a global field, where S is a finite set of primes containing all infinile and

l-adic primes. Suppose that R salisfies
1. }€R
2. ediRL2.
Then form 21,
Kn(R;2/17) — KR(R;Z[112)
is surjective.

Remark 2.25 Forl =2, we have to assume in addilion that v > 2 and that

R contains a primitive 4-th root of unity (4.

Corollary 2.26 Let F, be a finite field, char(F;) = p # [, | an odd prime.

Then form > 1.
(i) Ku(Fiilliz) S KZ(FiZ/1vz).

(i) KnF)®Z > KE&(F,).



2 K-THEORY 63

Proof: A finite field Fy certainly satisfies the condition in 2.24, and hence
Kna(Fi;Z/1vz) — KE(F;2/iv7) is surjective. Since both groups are of the
same finite order, cf. page 53 and 2.22, it is, in fact, an isomorphism. The

second assertion follows from

Kn(F)® 2y = limK . (Fy;2/147) =~ LmK&(F;2/1vz) ~ K2(F,) .

Corollary 2.27 Let E be a number field, I an odd prime and S e finite set

of primes containing all infinite and l-adic primes. Then form > 2,
Kn(Of) ® 2t — KH(0F)
is surjective.

Proof: The conditions in 2.24 are satisfied for OF, and thus we obtain as

in the proof of 2.26 the chain of morphisms
Kn(02)®71 S limK.(0%:1/17)
— HmKZ(O%;2/17)
= KH(0F),
where the middle morphism is surjective. The isomorphisms follow from the

finite generation of K,,(OF) and K&(03). o
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By the work of Borel, cf. page 53, for ¢ > 2, Ky_»(03) is finite, and
so the same holds for K5 _,(O%). Since the later group is isomorphic to
HZ_.(O%,7i(?)), we have proven, cf. 1.24,
Theorem 2.28 Let E be a number field, I an odd prime and S a finite set
of primes conlaining all infinite and l-adic primes. Then fori > 2,
H(OF.Qfz(i)) =0,
i.e., the Schneider conjecture is true fori 2> 2.
If we want to obtain analogous results to 2.27 for the number field E, it is clear
that we have to modify our arguments. First of all, everything works equally
well for the odd-dimensional K-theory of E, since Ka;_1(0F) = K1 (E) by
2.16 and K§t_,(03) ~ K§_,(E) by 1.20 and 2.20. For the even-dimensional
K-theory of E, we still have the following
Corollary 2.29 Let E be a number field, | an odd prime. Then fori > 2,
l-tor Kz;_2(E) — l-tor K§!_,(E)
is surjective.
Proof: From the long exact Bockstein sequence we get the commutative
diagram
Ky i (E;Zjrg) — wKa o(E) — 0
! !
Kz 1(EiZfir2) — wKi o(E) —0,
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where the left vertical arrow is surjective. Passing to the direct limit gives

the assertion. m)

Note that the above proof certainly carries over to the ring of S-integers
O3 in the following sense. For i > 2, Ky 2(0F) ® 2 — l-tor K5} ,(0%) is
surjective. But as we see, this does not give the finiteness of K§f_,(03) =~
H2 (0%, 2(7)), and so we could not deduce the theorem 2.28.

If we want to compare étale K-theory of number fields and rings of integers,
then immediately the word localization sequence comes to our mind. But
there is not ad hoc a localization sequence in étale K-theory. We can go
around this problem by considering the cohomological one and using the
above results, relating étale K-theory to cohomology. Recall our standard
notation for number fields on page 52. For 1 > 2, we have a commutative

diagram with exact rows

0 — HX(0%,2/1rz(i)) — Ki,(08:2/rz) — HI(0%,Z/ra(i~1)) —
! ! n
0 — HXE,Z/rz(i)) - Kji,(EiZj/rz) — HY(EZfrz(i-1) -

Using the localization sequence in étale cohomology, cf. 1.19, and appealing

once more to 2.20 as well as 2.22 we deduce the long exact sequence for i > 2,

0 = KEL(05:2/r2) — K. (BiZ/iz) — @ues K o(keiZ/172)

K§t 2(08:2/1v) — K§_,(B;Z/irz) — Byes K§ia(kiZ/rz) — 0.
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For the odd-dimensional étale K-theory, we already know that
K3t (OF) = K§t_(E),i>2

and for the even-dimensional étale K-theory, we proceed as follows. By
passing to the direct limit in 1.19 and applying 2.28, we get

0 — HL(O0E,Q/7,(3)) — H(E,Q/1,(1)) — 69 HO(ky, Q/2y(i-1)) 2 0,i > 2,
pES

and after dividing the maximal divisible subgroup H1,(Og, Zi({)) resp., we

finally obtain

Lemma 2.30 Let i > 2, then with the above nolations there is an ezact
sequence

0~ Kff_ 2(05') — I-tor K§}_,(E) — @ K§_g(k,) — 0.
pES

On the other hand, we could pass to the projective limit in the long cxact

sequence above, and then

0 — limker j — K§t ,(05) — limK§_,(E;2/1'7) — €D K3 (k) = 0,
pES

is exact, where jp : K§¢_,(0%:2/Iv7) — K§_o(E;Z{1v1).
Lemma 2.31 Leti > 2, then we have

limker jo =~ l-tor (lg'_m‘ ,.,K.gg_l(E))

(14

-tor (I-div K§_,(E)) .
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Proof: By passing to the projective limit in the commutative diagram

HYE,Q/7,(3)) — @pgs H(k,, U/7)(z = 1))
! !

HYE,2[12(i)) — @pgs H' (ko T/ 126 = 1))
we obtain the commutative diagram with exact rows
0o HL(OR2(3) — Hor Hy(B,2U(0) — @ygs HilbnZili—1)) =0

Iy l 1

Hy(0%:1(1)) —  HYB,u(i)) — @usHulk,n(i-1)) —0,

where the kernel of the middle vertical map is equal to I-tor im! HY(E, Z/vz(i)).

Now identifying the cohomology groups with the corresponding K-groups,
e.g BB, 1(3)) = limK$!_,(E;2/177), we deduce

limker ju = I-tor (lim*K§_,(E;Z/1"7)) .
Since K$¢_ (E)®z, Lt/ 1v7; ~ K§i_,(0F)®,2i/ 147, satisfies the M-L condition,
we get
Itor (lim'Kg (E;Z/17)) o Ior (lim! v Kf_o(E))
~ ltor (l-div.Ifgﬁ_z(E)) :
The second isomorphism is obvious, since I-tor K£_,(E) does not contain

any divisible subgroup. m

There is a more natural setting for the group of l-divisible elements in
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K£ ,(E). At this point we follow ideas of G.Banaszak, M.Kolster and
T.Nguyen Quang Do, cf.[2], [53] and [76], who defined higher algebraic and
étale wild kernels of a number field E. Let us first recall the definition of the
classical wild kernel W Ky(E). For this, let A = (A;); ¢ Ko E) = @, p(E,)
be the morphism induced by the Hilbert symbol (-,-),. Here, and in the

following €; stands for the sum over all non-complex primes p of E. Then
WEK,(E) := ker A,
and by uniqueness of reciprocity, cf. [70], there is an exact sequence

0 — WEKy(E) — K3(E) = @ 'W(E;) T w(E) — 0,

=2 .,
where 7(((,),) 1= 1™ with my := #u(E,) and m := p(E)}.
Following Schneider, cf. [82], let

D;(E) = ker (H‘(E, Q/z,(?))/maz. div. — %H‘(E,,,Qt/z,(i))/maa:.div.) yiF 1

where - /maz. div. stands for dividing by the maximal divisible subgroup resp.

Then D;(E) equals the group of I-divisible clements in I-tor /] (E, (1)),

coni

ie., for i > 2, D{E) =~ limkerjp. Since for i # 1, H2 (B, (i) =

O

H?(E,, (i) is finitely generated and H?(E,, Qi/z,(i)) = 0 by 1.4, we have

HY(E,, /z,(i))/maz. div. = H2n(Ey,1(3)) -
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Furthermore, we know that the Schneider conjecture is true for ¢+ > 2, cf.

2.28, and so in that case

0— Dy(E) > H(0%,Qf1,(i))/maz.div. — @,y H'(E,, [7,(i))/maz. div.
n L
HZ,. (03, 2(3) — Dot Hone(Es 21(3))

is a commutative diagram, where by 1.22 the cokernel of the {lower) horizon-
tal map is equal to H3(O5, Q/z,(1~i))" = WEY(E)". Since H2,,(E,, Li(i)) ~
HO(E,,Qi/z,(1 —1))* by 1.21, we obtain for : > 2,

l-tor Kg;_o(E)

!
l-tor K§t o(E) — @ppo HYE,,Uf7)(1 —i))* — H°(E,Q/7,(1-1%))* - 0.

!
0

It is clear what we are up to now, but let us first consider the case { = 2. Let
6 : E* — H}L(E, 7;(1)) be the connecting morphism induced by the exact

sequence of Galois modules
0 — (1) — lim(E*)* — (B**)* — 0,

and gg : K2(E) — H? .(E,7/(2)) the unique morphism —the so-called
Galois symbol—such that gg({a,b}) = 8ga U égb, cf. {93]. For the local

Galois symbol, we simply write g, = gg,. With all these notations we get
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the diagram

Ltor Ko(E) =  @ppol-tor Ka(E,) 25 Dy poo [-t0r 1( Ey)
e { @ T @evail?
Itor H2o(By2i(2) = @ppoo Ham(EnZi2) =2 @yp0 HO(E,, U/2(-1))"

where eval(!) has still to be defined. Nevertheless, the left square is commu-
tative, and we want to define evalgl) such that the right square becomes com-
mutative as well. Thus we are left with the local case. Let I := #tl-tor u(E,)

and consider the diagram
l-tor K2(E;) = Z/vz(1)
,I, gp T cuulg)
HX(E,,2/r1(2)) = H(E,%/rz(-1)).
The map ), is given by Kummer theory and the local norm residue sym-
bol, which is induced by the cup-product with inv='{% mod Z}. If we sect
evalM : (Z/1r2(-1))* — Z/1vz(1) by eval((¢) := ¢(1+1"Z), then a straight-
forward, but tedious calculation shows the commutativity of the diagram,

and therefore also of the diagram above. Now for i > 2, we define evalli- :

WE-NE,) = WE(E,) resp. evalt-1: WINE)* 3 WI)(E) in the
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same manner as above and we obtain for : > 2,

l-ior I(g,'_.z(E)
! N
ML

Ltor K& ,(E) 5 @ppo W (E,) - W N(E) > 0.

Definition 2.32 Let E be a number field, | an odd prime and 1 > 2.

(i) The Sylow-l-subgroup of the higher wild kernel is defined
by
l-tor WKy o(E) := ker Ai_y .

(ii) The higher étale wild kernel is defined by

WS _,(E) = ker A, .

Remark 2.33 (i) As we have shown, this notion of the higher wild kernel
is consistent with the one for the classical wild kernel. Unfortunately, we do
not know of any appropriate definition for l = 2, neither in the algebraic nor

in the étale case. (ii) In (2] Banaszak showed that
I-tor WKy _o(E) » WKE_,(E})— 0

is canonically split oﬁto the group of I-divisible elements in l-tor Ky;_»(E).
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We see in chapter 6, that just like the relation between HZ,,, (03, Zi(i}) and

cont

K&__(0%), there is a linkage between certain subgroups of 12 (0%, Zi(:))

resp. HL(O%,Qfz,(1)) and WKS§_,(E). But let us close this chapter with

the following

Proposition 2.34 Let E be a number field, I an odd prime and 1 2 2. Then

#l-tOT‘Kzi-z(Of:) — #Kﬁ_g(O%) - nvl!#Wlidl)(EF)
Eldor WKz (E) #WEKE,(E)  #WFVE)

Proof: With all the notations we have the commutative diagram with exact

IOWS

0— ldor WKy a(E) — ltorKaz(E) — @ WENE,) - WENE) -0
! lid l
0— l-tOT K!i—2(0f;) — I-tOT‘ Kz,‘_g(E) — ®PE$ I-tor I(z,‘_s(kp) —{.

For p & S, WENE,) ~ HYE, (i — 1)) ~ H'(k,,Zi(i — 1)), thus the

formula

#l-tor Kna(0F) _ Mo #WE ()
#l-tor WKo_2(E) #WHN(E)

follows at once from the diagram, cf. also [2]. The sccond formula is evident

from Ky;_a(k,) o~ K& _5(k,), cf. 2.26. O



3 Preliminaries on Iwasawa theory

Much of Iwasawa’s work on cyclotomic fields was inspired by Weil’s solution
of conjectures on curves over finite fields, cf. [96] and [97]. We recall briefly
a few of these aspects, which are crucial for understanding Iwasawa’s ideas.
Let X be a smooth, projective variety over a finite field F, of char(F,) = p,
and X := X Xg Foe the variety over a separable closure Fyes of F; obtained
by extending the scalars. For every r > 1, let N, be the number of points of
Xoo, which are rational over Fyr, i.e., whose coordinates lie in Fgr. Certainly,
these numbers N, are of great interest from a number-theoretical point of

view; just to mention NV, of the Fermat curve over the finite field F.

We define the Z-function of X by
oo Tr
Zx(T) :=exp (Z Nf—r—) ’
r=1
which we consider as a formal power series in Q[[T']]. The analogue to the

Riemann ¢-function—more generally, Dedekind {-function—is given by

Lemma 3.1 Let X = C be a curve over Fy, and F := Fy(C) its function
field. Then

Zx(¢*) =101 - N(p)™)*,

P

where the product runs over all primes p of F and N(p) denotes the absolute

norm of a prime p.

13
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Proof: If deg(p) := [k(p) : F,] denotes the degree of p, where k(p) stands
for the residue field of p, then N(p) = ¢%#®). Since there is a one-to-one

correspondence between closed points z € X and primes p € F, we got

N, = ¥4, d - as, where a4 denotes the number of primes resp. closed points

of degree d. So the right hand side in 3.1 becomes for u := -2,

o~ 1

(R

d=1

Taking the logarithmic derivative and expanding it into a geomelric series

gives

_:'_‘Z (Ed.ad) .u';=ZN,.-u'_l .

r=1 \ d|r
After integrating and taking the exponential we get the formulain 3.1. O

In 1949 A. Weil formulated conjectures on the Z-function Zx(T") of a smooth

variety over Fy, cf. [97].

Conjecture 3.2 (Weil) Let X be a smooth, projective variety of dimension

d over Fy. Then

 Pux(T)- Pux(T) - ..~ Paacrx(T)
Zx(T) = == Po,x(TJ;-...-Pgd_x(?[‘)x

and each P; x(T') is a polynomial with cocfficients in @ ficld of charac-

terislic zero,
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2 Px(T) = 12, (1 — a;;T), where oy are algebraic integers with lasil =

g,

3. Zx(T) salisfies a funclional equation

1
Zx( ) = +q*EPTEZy(T),

where £ is the self-intersection number of the diagonal A of X x X.

4. If X is oblained by reduction mod ¢ of a smooth, projective variety Y

over a number field, then
b; 1= deg P; x(T) = rka H;(Y(C)) ,
where Y(C) is the complez manifold defined by Y, cf. [37].

Weil also proposed the idea of a suitable cohomology theory for X, so
that one could count the fixed points of a morphism f : X, — X as
for singular cohomology via Lefschetz’s Fixed Point Theorem. Clearly, this
requires a cohomology theory with coefficients in a field of characteristic
zero, and as Serre showed, there can not be a cohomology theory over the
rational or real numbers, nor over Q,. Then A.Grothendieck in collaboration

with J.-L.Verdier and M.Artin developed étale topology and cohomology. In
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particular, they defined cohomology groups with cocflicients in Q;, cf. 1.12.

Namely,
Hit(XW?QI) = ]Igl!(‘xoovzl) ®1; Ql 1

[ a prime different from char(F,) = p. Along several theorems on {-adic
cohomology they proved a Lefschetz’s Fixed Point Theorem. If f: X —

Xoo has isolated fixed points, then the Lefschetz number
L(f) := Y (=1YTrace (f : Hi(Xoo, Q) = Hi(Xoo, Q))

equals the number of fixed points counted according to the multiplicities.
Now the Frobenius automorphism of Fy« induces a morphism ¢ : X0 = Xoo
by acting on the coordinates of a point z € Xo. Il is plain from the definition

that N, equals the number of fixed points of ¢, and hence

Substituting back into the definition of the Z-function we get
Zx(T) = exp (T2, L(¢")T)

= exp (D22, £ Trace (¢ : Hi(Xoo, Q) = Hi(Xoo, ))%)

3o det (1 = T" : Hi(Xeo, Q) = Hi(Xoo, Q)

where P;x(T) := det (1 = Tp" : Hi(Xoo, Q) = Hi(X0,Q1)), 0 < 7 < 2d.

Thus the first part of the Weil conjectures is thereby proven. Furthermore,
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Poincaré duality in {-adic cohomology implies the functional equation with
E = 32(—1) dimqH},(Xoo, Q). The last statement follows from the compar-
ison theorem between étale and singular cohomology of smooth, projective
varieties, cf. [65]. Note, that the polynomials P; x(T) are not ad hoc inde-
pendent of 1, so to be correct, we should have denoted P; x(T') by PJU;)f(T)
instecad. But P. Deligne, cf. [14] and [15], finally succeeded in proving the
remaining and hardest part of the Weil conjectures, in particular P;x(T)
has integer coefficients. Next we specialize to the case X = C a curve of
genus g = g(C). In order to calculate the Z-function Zx(T) of X, we have

to determine the polynomials P; x(T'), and thus the maps
((P')j : Hgt(Xw, Q) — Hgt(Xm: ),

which are induced by the Frobenius ¢ : X,o — X,. Clearly, (¢*)° = id, and
so Pox(T) =1 —T. Furthermore, since Fy« contains all /-th roots of unity,

we have
Hgt(XOO:QI(l)) = Hﬁ,(Xm, Ql)(l) )
and so,
Pix(T) = det(1 - Tp" : Hi(Xoo, (1)) = Hi{(Xoo, Qu(1)) .

Note, that ¢* is induced by the Frobenius acting on X, and not on the l-adic

sheaf Z;. From the exact sequence of sheaves

0 — Z/pz(1) — O%_ 25 0% — 0,
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-1
oL

we obtain in conjunction with H}(Xe, 0% ) = Pic(X), cl. chapter 1, and

H}(Xeo, 0%, ) = 0, which is a consequence of Tsen’s theorem, cf. [66],
H}(Xoor@(1)) = (limker (Pic(Xoo) 5 Pic(Xw)) ®r,
H3(Xoo, (1)) = (limeoker (Pic(Xoo) 5 Pic(Xoo)) ©2, @ -

Now consider the commutative diagram with exact rows

0 — Pidd(Xoe) — Pic(Xe) =% 72—0
1 xw 1 xe Lxe
0 — Pi®(Xew) — Pic(Xe) 25 72— 0,
where deg : Pic(X) — Z is the degree map. The group Pic®(X,,) of divisor
classes of degree zero is isomorphic to the Jacobian variety of X, which is
an abelian variety of dimension g, cf. [56] and [67]. Hence the lelt vertical
arrow in the above diagram is surjective and pPic%(X,,) ~ (Z/v2)%, cf.

[56]). Finally the commutative diagram

Pic(X) 2% 1
le | x(deg ¢*)=xq

Pic(X.) <5 1
and the considerations above show that
HY(Xoo, Q1)) ~ (impPic®( X)) ®2, @ =~ QF

Hi (X, (1)) ~ (ImuZ/1') @, =~ @
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as well as P, x(T) =1 — ¢ - T. Putting all things together we obtain

2.1 —aT)
)= =)

where a;, 1 <1 < 2g, are the eigenvalues of ¢ acting on (lim i Pic®( X)) ®g,
Q =~ Homg,(l-tor Pic®(X),/z;)} ®x, Q.

What is of interest for us at this point, is, that on the one hand we have
the analytically defined zeta-function Zx(T') and on the other hand the al-
gebraically defined characteristic polynomial of the Frobenius acting on a
certain vector space. The connection between them is then given by the
Lefschetz's Fixed Point Theorem, which implies the description of the zeta-
function as a product of determinants, cf. above.

One of Iwasawa’s contributions was to find an l-adic analogue for a number
field E. For the zeta-function, we take the l-adic L-function attached to
a certain character. At least this makes sense, if F is a totally real num-
ber field. Furthermore, for the Frobenius, we choose a suitable generator of
T' := Gal( E(W1)/E((1), and the Jacobian is replaced by A, := limA, resp.
AS == limAS, where A, resp. AS is the Sylow-I-subgroup of the ideal resp.
S-ideal class group of E((i») . But before we go into the details, we give a

short introduction to A := Z[(I')}-modules and their basic properties.

Remark 3.3 Just recently C.Deninger, cf. [78], proved some astonishing

theorems on the Riemann (-function (q(s), which led him to a list of conjectures—
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the so-called Deninger conjecture—, i.e., there should crist a global coho-
mology theory for X = Spec(Z U {o0}) consisting of compler veclor spaces
HI(X/L), 7 = 0,1,2 of countable dimension togcther with an operator 0
satisfying certain properties, including a Lefschetz‘s Fized Point Theorem.
As for étale cohomology, this would imply a description of (q(s) as a prod-
uct of determinan:s, where the determinant of an operator is defined by the
regulized product over its eigenvalues. The significance of the Deninger con-

Jjecture can be seen just from the fact that the Riemann Hypothesis is a trivial

consequence of il.

Let I be a prime, and T’ a compact, abelian group isomorphic to the additive
group Z;. Forn 2 0, let T, C T such that I'/T, ~ Z/inz, so Ty =T. Then

for a fixed topological generator vy € T,

Z[0]) = lim2(T/Ta] — 2]

v — 14T
is an isomorphism, and A := Z,[[T]] is a noctherian, regular, local domain of
Krull dimension 2 with maximal ideal ({,T") C A. In the following we identify
Z;[[T']} with A via the above isomorphism. If p C A is a prime ideal of height
1, then p = (I) or p = (P(T)), where P(T) is a distinguished, irreducible
polynomial, cf. [95]. A typical example how A-modules arise is given by
the following construction. Let E be a field and E,,/E a Zj-extension, i.c.,

Gal(Ee/FE) ~ i, and N /E,, an abelian pro-l-extension with Galois group
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X = Gal(Ny[/Ey). Suppose that Noo/E is a Galois extension with Galois
group G = Gal(N./E),

Then X admits a structure of a A-module by defining for vy € T, z € X
7(3:) = '7"7""?_1 ]

where 4 € G is a lift of v to Ne,. For the rest of this chapter, we make the

following

Assumption : All A-modules in question are finitely generated as A-modules.

Proposition 3.4 For a A-module X and e prime p of height 1, let X, :=
X ®a A, be the localization of X with respect to p. Then.

(i) LetzeX,B €A, thenxz®1/8=0in X, if and only
if there ezists @ € A\p such thata -z =0 in X.
(i) If X is not A-torsion, then X, # 0 for all p.
(itt) If X is A.torsion, then X, =0 for almost all p.
(iv) X is finite if and only if X, = 0 for all p.
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Proof: (i): cf. {6]. (ii): Trivial consequence of (i). (iii): Let {z;,...,2,} C
X be a set of generators and u; € A, 1 < j < n, suchthat g;-z; = 0. Set
# = [1#;, then - X = 0 and p is contained in finitely many prime ideals.
Thus by (i), X, = 0 for almost all p. {iv): Let {z},...,2z,} € X be a minimal
set of generators. If n = 1, then X ~ A/ A, where A C A is the annihilator
of z; € X. If X is finite, then we must have A = (I*, P(T'}™) for suitable

k,m > 1, and so X, = 0 for all p by (i). The converse is trivial. Suppose

now that n > 1, then
0 —<z > X — X/<z2:,>—0

is an exact sequence of A-modules. By induction and exactness of localiza-

tion we are done. ]

Definition 3.5 Let ¢ : X — Y be a morphism of A-modules. Then ¢ is
called a pseudo-isomorphism if , : X, = Y, is an isomorphism for all p.

We write X ~ Y, if there ezists a pseudo-isomorphismp: X — Y,

Remark 3.6 (i) By 8.4 ¢: X = Y is a pseudo-isomorphism if and only if
ker v and coker  are finite.

(i) ~ is not an equivalence relation, e.g., (I,T) ~ A, but A o (I,T). It
can be shown, that ~ is an equivalence relation on the category of A-torsion

modules, cf. [98].
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A-moduies behave almost as nicely as modules over principal ideal domains,

namely we have the following structural result, cf. [38).

Theorem 3.7 Let X be a A-module. Then there exists a unique A-module
E(X) = AD DL, A/p;i, where e; 2 0 for 0 < j < m, and p; are prime

ideals of height 1 in A, such that
X ~ E(X)}.

Modules of the form E(X) are called elementary A-modules. For the most
part, the pseudo-isomorphism X ~ E(X) still gives us enough information
on X, when we consider the elementary module E(X) instead. For a classi-
fication of A-modules up-to isomorphism, cf. [44]. We denote the A-torsion
module of X by A-tor X = 4X and the torsionl free quotient module by
X/A-tor X = faX. For X and E(X) as in 3.7, we define the divisor of X by

div(X) := Zﬁj 3 T

i=1

in particular, div(X) = div(4X). Next we introduce two invariants asso-
ciated to X, namely the so-called - and p-invariants, which measure the

complexity of X —rather ¢4 X. For a prime ideal p of height 1 in A, we set

’

0 ifp=(I)
Alp) := ¢

| deg P(T) if p = (P(T))
) | 1 ifp=() |

|0 ity =(P(T))
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and extend this definition by linearity to the divisor group of A. Finally for

a A-module X, we define
AX) = Mdiv(X)) and p(X) := p(div(X)) .
Furthermore, the characteristic ideal (polynomial) of X is defined by

char(X) =] P
j=1
where p; and ej, 1 < j < m are given by 3.7. Certainly, A(X), p(X) and

char(X) just depend on 4, X. For convenience (and simplicity), we make the

following notation
wpi=q" =1=01+T)" -1 forn>0
bo:=wo=Tand §, i=wyfwpy forn2>1
Vam '=Wnfwp=€1-.2bmn  form>n>0.
Lemma 3.8 Let X be a A-module and forn 2 0, let X, := X/w,X. Then
(i) dime, (Xa/IX,) < o for alln > 0.
(i) X is a A-torsion module if and only if dimq,(X ®z, Q) < 00
if and only if dimq, (X, @z, Qi) is bounded independently of
n 2> 0.
(i) X is a A-torsion module with p(X) = 0 if and only if
dime X/1X < oo if and only if dimg, Xa/1X, is bounded in-
dependently of n 2 0.



3 PRELIMINARIES ON IWASAWA THEORY 85

Proof: Let ¢: X — FE(X) be the pseudo-isomorphism from 3.7, then the
kernel and cokernel of ¢, : X/ws X — E(X)/waE(X) are bounded inde-
pendently of n > 0. Hence it is enough to prove the lemma for an elemen-
tary module, and then again we are reduced to the cases E(X) = A and

E(X) = A/p® with p = (I) or p = (P(T")). The lemma follows now easily. O

Proposition 3.9 Let X be a A-module, ane suppose that for ¢ll n > 0,
X/wa X is finite. Then there exist integers ng and v(X) such that for all
n 2 no,

#FX[wn X = p(X) - "+ MX) - n+v(X).
Proof: Since X/w,X is finite for all n > 0, X is a A-torsion module by
3.8, and so there exists an elementary A-torsion module E = E(X) such
that E ~ X, cf. 3.6. Since an elementary A-module does not contain any

non-trivial finite A-submodule, we get the commutative diagram with exact

TOWS
0—- E —- X —= A =0

lwn lwn .l,wn
0= F —- X —= A =0,

where A is a finite A-module. The finiteness of A implies kerw, 4 = A and

coker w, 4 = A for n 2> 0 large enough. Henc>

#X[/wnX = - H#EfwE ,n>> 0,
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with some constant ¢ > 0. Thus it is enough to prove the formula for an ele-

mentary A-module E. This can be done directly, for details cf. [57] or [95]. O

Lemma 3.10 Let X be a A-module, then
ker (X/wn){ el 4 X/w,,,X)
is bounded independently of m > n > 0, and therefore,
limker (X/wa X — X/wnX)
is finite.

Proof: Let ¢ : X — E = E(X) be the pseudo-isomorphism of 3.7, then

we obtain a commutative diagram

Xjwn X 28 Xfw, X

! !
Ejw,E 7 Elw.E,

and there is an integer N > 0, such that for alln > N,
ElwnE 2% ElwnE
is injective. Thusform > n > N,

ker{X[w, X — X[wnX) C ker(X/w, X — Efw.E) .
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But #ker(X/w, — Efw,E) < maz(#ker g, #coker p)2. a

Remark 3.11 We might as well replace w, by v., in 8.9 and 8.10, where

e > 0 is a fized integer.

Now suppose that X is a A-torsion module, then by 3.4, X, # 0 if and only
if p divides div(X), and we define

Px: X — B, X;.
r — (z@1),
Lemma 3.12 Let X be a A-torsion module, then kerix is the mazrimal

finite A-submodule of X.

Proof: Let Y be a A-submodule of X, and ¢ : ¥ — X the canonical
embedding, then

Y — X

Lor Lux

®,% & ox
is a commutative diagram. Thus, Y C ker ¢x if and only if ¥x o ¢ is trivial
if and only if (s;) o ¥y is trivial. If Y is finite, then by 3.4, ¥, = 0 for all p,
thus Y C ker ¢x. Conversely, if Y is not finite, then Y, # 0 for at least one
p. Therefore, 1y is not trivial, and by exactness of localization ¢, : Y, — X,

is not trivial either, so Y € keryy. o
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Definition 3.13 Let X be a A-forsion module, then
B(X) := cokerPx

is called the co-adjoint end

o(X) := Homy,(B(X), /1))

the adjoint of X. They are A-modules in a natural way.

Remark 3.14 (i) If X is finite, then f(X) = o(X) = 0. (ii) B is a right and
pseudo-left exact functor on the category of A-torsion modules, and obviously

dual statements for a.

We can give a more precise description of the co-adjoint and adjoint of a

A-torsion module X. We call a sequence of elements {0} € A admissible, if

1. oe(l,TA.

3. o.#0foralln>0.

2. onp1 €Eon-(LTHA.
For example, {wn}, {€n+1} and {vnm} are admissible sequences. If X is a A-
module, then {0y} C Ais called X-admissible, if {on} is admissible and for all
n > 0, o, and div(X) are relatively prime. It is plain from the definition and

3.7, that given a A-module X, there always exists an X-admissible scquence

{on}.
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Theorem 3.15 Let X be a A-lorsion module, and {o,} an X-admissible

sequence. Then there are non-canonical isomorphisms
B(X) = limX[on X and o X) = Homg, (limX/on X, Q/2,} .
Proof: Let
¢x: X@wlimtA — @, X,
z® T:IT,' — (2@ é)
be the diagonal embedding. Then following Federer, cf. [22], éx is a A-

module isomorphism. Consider
X@rlimiA — X @4 lim-AfA
L !
X, — B(X) ,
where the vertical arrows are given by ¢x. The assertion follows now from

the isomorphism limX /e, X ~ X ®, Ig‘_‘m,—lﬂ-A/A. D

Remark 3.16 Let f : X — Y be a morphism of A-torsion modules, and

suppose that {g,} is an X -admissible as well as Y -admissible sequence. Then
limX/o. X — UumY/oY
N 1
BX) - B(Y)

ts commutative,
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For a A-module X, we define a new module X! by X! = X (cquality as

sets) and inverted I-action. The next theorem is due to lwasawa, for a proof

cf. {22].
Theorem 3.17 Let E be an elementary A-torsion module, then
o(E)~ E~'.

Corollary 3.18 Let X be a A-torsion module.

(i) oX) does not contain any non-trivial finile A-
submodule.

(i) a(X)~ X1,

Proof: By assumption there are an elementary A-torsion module F =

E(X) and a finite A-module A, such that
0—FE—X—A—0
is an exact sequence of A-modules. Taking adjoints and applying 3.14 yiclds
0 — a(X) — a(E)

with finite cokernel. By 3.15 and the fact that an elementary A-module doces

not contain any non-trivial finite A-submodule, we are done. O

So far it was essential that the A-module X is a A-torsion module in order
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to get relevant information on X resp. X/w,X. In certain cases we can do

even better. Namely, let X be a A-module and n,a > 0 integers, then we

define i(n,e; X) > 0 by
#X/(wnX + l“X) = JilnaiX)

The invariant i(n,a;X) is certainly additive in X, and if X ~ Y, then
i(n,a; X) — i(n,q;Y) is bounded independently of n,a > 0. In particular,
i{n, a; X) is finite, since this is true for an ciementary A-module. For a proof

of the next proposition, cf. [39].

Proposition 3.19 Let X be a A-module, and E(X) = A @ BT, A/p;" be
the elementary A-module associated to X, cf. ref3.7. We set d =3 ;degé,,,
where the summation runs over all those j, such that p; = (£n,) Jor some

integer n; 2> 0. Then there exist an inleger ng and an inleger-valued function

a(n), such that
i(n,a; X) — ((eol® + d)a + pl™ + (A — d)n)

is bounded for n > ng and a 2 a(n). Here, A = A\(X) and p = u(X) are the

A- and p-invariants of X.

At the first glance the above proposition does not seem to give any valuable
results on X. But if we can calculate i(n,a; X') by a diflerent method—and

that is what we will actually do for certain A-modules, cf. chapter 4,—tien
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we get the information on g, g and A back. Let us add a simple, but quite

useful lemma at the end of this chapter.

Lemma 3.20 Let X be a A-module, and n > 0.
(1) If Xr, = X/w.X s finite, then X" is finite.

(i) IfX isin addition a A-tersion module, then Xr, is finite
if and only if XT is finite.

Proof: Let p: X — E = E(X) be the pseudo-isomorphism from 3.7, then

0— kerop — X —+ E — cokerp —0

L wn dun {un Lon

0— kerp — X — E -— cokeryp — 0

is a commutative diagram with exact rows. Since ker ¢ and coker ¢ are fi-
nite, it is enough to show the assertion for an elementary A-torsion module
E = E(X), and hence we can assume that E = A/(I) or E = A/(P(T)), for

which the lemma is obvious. w]



4 Iwasawa theory of number fields

In this chapter we study A-modules over number fields, and by using Kummer
theory and basic class field theory, we can make precise statements on certain
A-modules. Even if most results are still valid for the prime { = 2, we assume
for simplicity, that [ is an odd prime.
Let E be a number field, [ an odd prime and E./E a Z;-cxtension with
intermediate fields E;, n > 0, and Ey = E. We set T := Gal(Eo/E) =~ 7,
and forn 2 0, 'y := Gal(Ee/ E,), so Ty = I'. For example, let E../E be the
cyclotomic Z;-extension, i.e., Ey is the unique subfield of E(W,) such that
Gal(Ey/E) ~ ;. After choosing a topological gencrator v € T, we identily
Z){[T']] with Z;[[T]] via

Z(r] — z(T]],

v +— 14T

cf. page 80. If X is a pro-I-group which admits a I-module structure, then
X becomes a A-module via the above isomorphism. Let Noo/FE. be an
abelian pro-l-extension, and assume that N../E is a Galois exiension, then
X := Gal(Neo /[ Es) is a A-module as defined on page 81. Forn 2> 0, let N,
be the maximal abelian extension of E, contained in N, then X/w, X =
Gal(Nn/Eo). By Nakayama’s lemma, X is a finitely gencrated A-module if

and only if X/woX is a finitely generated Z;-module, cf. [13].

93



4 IWASAWA THEORY OF NUMBER FIELDS 94

Froposition 4.1 Let E,/E be a Z;-extension of the aumber field E, and
My /Eo the mazimal abelian pro-l-exiension of Ey, which is unremified
outside . Then X = Gal(My/FE) ts a finitely generated A-module, and
hence by 3.7

X ~ Acﬂ @@A/p?’ 3

j=1

where p; C A are prime ideals of height 1 and e; are integers.

Proof: From the maximality of M, it follows at once that M /E is a
Galois extension, and so A is a A-module. If M, is the maximal abelian
extension of By = E contained in M,,, we have to show that &' /wpX =
Gal(Mo/E,) is a finitely generated Z;-module. Let K be the compositum
of all Z;-extensions of E, then by class field theory [Ms : K] < oo and
Gal(K/E) = T EVE with 1 4 ry(E) + 657 < [E: Q) cf. 1.26. O

For a Z;-extension E, / E, we fix a couple of notations. Let ng = no{Eo/E) be
the smallest integer n such that all primes, which ramify in the Z;-extension,
are totally ramified in E/E,, and r = r{E,/E) the number of ramified
primes. Clearly, if p ramifies in E,,/E, then p is an l-adic prime and there is
at least one ramified prime. It is not necessarily true that all l-adic primes
ramify, but this is the case for the cyclotomic Z;-extension E.,/E. Let O,
Ug and Ag be the ring of integers, the units and the Sylow-I-subgroup of the
ideal class group CI(E) of E. For the fields E,, we simply write O,, U, and
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Ap instead of Og,, Ug, and Ag,. Furthermore, if S is a finite sct of primes
containir.g all infinite and l-adic primes, then the corresponding objects are
written with a superscript, so OS5 denotes the ring of S-integers in E, and

§O On.

Proposition 4.2 Let E/E be a Z;-eztension, and L.,/E, the mazimal
abelian, unramified, pro-l-eztension of Ec,. Then Xy 1= Gal(Loo/Ew) is a

A-torsion module.

Proof: Since X is a quotient module of X, it is a finitely gencrated A-
module. Let L, be the maximal abelian extension of E, contained in L, so
Gal(Ln/Eyx) = Xoo/wnXo and we have to show that dimq,{ Xeo /W Xoo @z, Q1)
is bounded independently of n > 0, cf. 3.8. We denote the subficld of the
Hilbert class field of E, belonging to A, by H,, i.e., Gal(H,/E,) = A, under
the reciprocity map. Then for n > no, Gal(Ln/Hy) =~ I, -...- I , where
I, = 7, is the inertia group of a ramified prime p;. Since [H,, : E,] = #A4, <

0o, we get

diin (Xm/wnxoo ®Il Qf) S r—1.

Remark 4.3 Let LS be the mazimal abelian, unramified pro-l-eztension of

E, in which all l-adic primes of E, are complelely decomposed. Then along

the same lines as 4.2, X3 := Gal(LS,[Es) is a A-torsion module.
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Corollary 4.4 Suppose that E contains a primitive I-th root of unity ;. and
let E./E be the cyclotomic Z;-extensivn of E. Then for the constant eg in

4.1, we have eg = ry(E).

Proof: Let 6£°°7 be the Leopoldt defect for the field E,. With the notation
of 4.1 we have

Leop

GQI(M"/EW) = X/wux ~ ZP(E)-IH+5n @ Bﬂ N

where B, is a finite group for n > 0. Since X is a A-torsion module by 4.2,
one can show using Kummer theory that 82 < A(X), cf. [29], i.e., 65°P is

bounded independently of n, and the corollary follows immediately. |

We reprove 4.4 below and give also a description of the A-torsion submodule
of a certain quotient module of &, cf. 4.14. One of Iwasawa’s first results is

a formula on the growth of the class number in Z;-extension, cf. [38].

Theorem 4.5 Let E./E be a Zi-eztension, and A, the Sylow-l-subgroup
of the tdeal class group of E,. Then there exist integers A = AE) 2 0,

p=u(E)Y20,v=v(E) >0 and N > 0 such that for alln > N,
#A, = plitinty

Proof: Recall the notation in the proof of 4.2, and let ¥, := Gal(Loo/ Eoo Hyp,)-

Then for n > ng,

An 2 Gal(Hy/Eo) o Gal( EooHu/Eoo) 2 Xoo [y, nYeo »
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and since #Xeofvy Yoo = #Xeof Vo, - #Yoo 1y 1 Yoor the formula follows

from 3.9. 0

Remark 4.6 (i) Of course, there is a similar result, if we consider S-ideal
class groups. (ii) If E.[E is the cyclotomic 2;-eztension, then it is conjec-
tured thal p = 0, cf. [§2]. This is known to be true, if E is an abelian number
field, ¢f. [24] Iwasawa has also shown that the conjeclure is not valid in an
arbitrary 2-extension Eo[E, cf. [42] or [57]. (iii) If EL/E is the cyclo-
tomic Z;-extension of a totally real number field E, then not a single ezample
of a field E is known such that A > 0. Following Greenbery, cf. [29], it is
conjectured that A = 0. Unforlunately, not much is known in general about
this conjecture. It has been shown for just e few specific ezamples. (iv) If
Ew/E is the cyclotomic 2;-eztension, then for p # |, the order of the Sylow-
p-subgroup of the ideal class group CI(E,) of E, is bounded independently of
n 20, cf [94]

Proposition 4.7 Let E,/E be a Zj-extension, and set Ay, := limA, resp.

AS = limAS. Then the orders of the groups

ker(An, — Am) and  ker(A, — Ag)
resp.

ker(AS = AS) and ker(AS — AS)
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are bounded independently of m > n > 0.

Proof: It is enough to show that for m > n > ng = np(£,/E), the order
of ker(An — A.) is bounded independently of m and n. The proof for the
S-ideal class groups follows then along the same lines. With the notation of

4.5 we haveform > n > ng

Fker(A, = Ap) = #ker(Xm/yno_nYmi'ﬂ oo/VM‘mY.;o)

< #X°°/Yoo * #ker(YW/Vm,nYm M m/vm,myoo) b

and we deduce the proposition from 3.10. o

Corollary 4.8 Let E,,/E be a Zj-eztension, and US resp. US the group of

S-unils in E, resp. E,,. Then the orders of the groups
H'(Cw/T, U3) and H'(T4,US)
are bounded independently of m > n > 0.

Proof:  This is immediate from 4.7 and the well-known isomorphisms

ker(AS — A3) > H'(T'o/T'm,US) and ker(AS — AS) ~ HY(T',,US). O

It is natural for us to consider Homny,(Ace, Q/7,) resp. Homyq,(AS,, Q/z7,)—
remember what we said on page 79—and we can’ make now the following

statement
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Proposition 4.9 Let E,/E be a Z;-extension, and X, resp. Yo as in the

proof of {.2. Then
Homyz, (A, /7)) ~ a(Yoo) ~ X~} ,
and with similar notations for A3, cf. 4.9,
Homg,(AS,,Q/7)) ~ a(YS) ~ X571

In particular, Homy,(Aw,Q/2,) and Homg,(AS,Q/z2,) do not contain any

non-irivial finite A-submodules.

Proof: As usual we just prove the assertion for Homgz,(Ae, /z,). With

the notation from above
A ™~ li.mXoo/UnomYm .

The finiteness of Xoo /Y, implies limXo /Y, = 0, and hence
Aw > limYo/y, .Y, -

We set 0y := Upyno4n. Since Yo/0,Y, is finite, {on}nz0 is disjoint from

div(Yoo), and hence {0,}n>0 is an Yeo-admissible sequence. By 3.15 we get
Hom!l(Aool Q‘/z’) ~ Q(Ym) 1
and again since X, /Y., is finite, we obtain

a(Yo) ~ Xoo™t .
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The last statement is obvious, since the adjoint a(Y,,) does not contain any

non-trivial finite A-submodule, cf. 3.18. a

So far we considered arbitrary Z;-extension, and therefore the results are
of a quite general type. One might hope that the situation gets better, if
we consider the cyclotomic Z;-extension E./FE, which indeed is the case.
Furthermore, we want to apply Kummer theory, which means that we have
to have enough roots of unity contained in our base field. Hence we just
adjoin them and tak: suitable eigenspaces. To be precise, let F := E({;) and
Foo[ F the cyclotomic Z;-extension of F with intermediate fields F,. We set
Goo = Gal(Fo [E) =T x A, where I' := Gal(Fo/F) and A := Gal(F/E) is
cyclic of order d := #A dividing I — 1. Further we define G, := Gal(F,/E)
and Iy := Gal(F/F,). The action of Go on Wi = Qi/z,(1) induces the

so-called cyclotomic character and its restriction to ' and A,
X' Go — It
£: T — U,m Czr
w: A — . CIF.

Next we fix a topological generator of I' in the following way. Let I¥ =

#Wi(F), then set

| kyn
u = exp(lF) = > or € U,(l) ,

!
aso ™
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and let 40 € T be the preimage of u under x. Whenever we make a 1-
module, which is also a Z;-module, into A-module, we do it by mecans of
this fixed generator 4o € I'. It should be pointed out here, that even if many
results on I'- resp. A-modules depend on the choice of a topological generator
v € I, any other generator than 4y would work cqually well.

Now the orthogonal idempotents in Z;{A] are defined by

g 1= ! S wi(r)r
d TEA

and satisfy
1. gi-e5=di¢; .
2. 2?:1 g;=1.
3. g-p=wiple;,peA.
The following lemma is obvious from the definition and the propertics (1)-(3).
Lemma 4.10 Let M be a Z;-module with continuous Ge-action. Forj € 1,
let MUl := M,,; := ;M. Then
(i) M posseses a decomposition into eigenspaces with eigen-
values wi(p) corresponding to the action of pEA, e,
M =@i., MU
(it} The decomposition of M into eigenspacés is compalible
 with the T-action, i.e., for vy € T, v(MU1) = pmll,
(iii) There are canonical Goo-module isomorphisms M(i)2 =~

M(3)a = (e_iM)(¢) and €; M(3) ~ (e;.:M)(3) .
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Since F, contains all I-th power roots of unity, Kummer theory gives a

pairing
<> Gal(Keof Foo) X Fiyy @ Qf7, — Wy = Qufz,(1)

where Ko, is the maximal abelian, pro-l-extension of F,. By pairing we

always understand a non-degenerate pairing. For g € G,
< g(z),6(a) >=g(< z,a >) =< z,a >X9)

and thus

Gal(Koo/Foo) = Homy (FX @ Qfz,, W)

is a Goo-module isomorphism. Regarding the decomposition into eigenspaces,

we obtain for i + j = 1 mod d the pairing
<> Gal( Koo/ Foo) x (Fo, @ U/ — Wy = Qu/z7,(1) .

Let M. be the maximal abelian, pro-l-extension of Fi, which is unramified
outside I, and & := Gal(M./Fs). Then the orthogonal complement M :=
Gal( Koo/ Moo )t is given by

M = AR = limlimA® |

—-h

cf. [41] or [60]. Since étale cohomology commutes with direct limits, we
obtain from Kummer theory, cf. chapter 1, M ~ HL(0S ,Qi/z,(1)). Fur-

thermore,

<> A XM — Qifz(1)
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is again a pairing of Go-modules. Twisting with —1 induces the pairing
<> X (=) x M — Qifz,

with the property < g(z),9(a) >= g(< z,a >) =< z,a >, g € G. Thus
X(—1) and M are dual to cach other in the sense of Pontryagin, so e.g.,

X(—1) = Homg (M, Q/z;) is an isomorphism of Ge-modulcs.

Remark 4.11 Instead of the above isomorphism we often find in the litcra-

ture the e-construction and a corresponding pairing
<<-,->>:A..’ x M _’Q‘/Z:-

The T-module structure of X = X (equalily as sets) is defined by v -z :=
()7 Nz), ¥ €T, z € X. So X is the (—1)-twist X(—1) with inverse
T-action, and in particular X = X as T-modules. Afier fizing an isomor-
phism W, ~ Q/z,, the above pairing satisfics € v z,a =< z,7(a) >.
Contrary to the usual T-module structure on Homy, (-, Q/7,), we define for
f € Homg(M,Q/z)) = Homg(M,Q/z)) (again equalily as sels) and
v €T, (v f)a) := fly(a)), which is just the canonical T'-module struc-
ture on Homg,(M,Qufz,) inverted. With these notalions we gel a I'-module
tsomorphism

X ~ Homy (M, /7)) .
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In terms of A-modules, this leads to the following construction. Let T €

(1,T) C A be the power series such that
(1+T)1+T) =u = &(n),

where 7o is the fized topological generator of I'. Then e : A — A defined
by € = &(T) = € = ¢(T) is an involution of A over Z;, and we define for
Eeh e, (-2 = é:r:. One sees immediately that both constructions are

compalible with our fized isomorphism Z)[[T']] = A.

As metioned above we reprove 4.4 and give a more precise statement. Let
NS = Fo('Y/US) be the field generated over F,, by all I-th roots of S-
units U2, then NS C M., and Gal(M.,/NS) is the orthogonal complement

of (US ® U/z,). Thus, if Y5 := Gal(N5 /F,,), then we obtain the pairing
< " >: ys(_l) X Uoso ®Ql/z' —3 Ql/z' .

For simplicity, we set Z := (1), and for n > 0, let Z, := (US®Q:/z,)* be
the orthogonal complement of U ®Qt/z,. Since US®Qi/z, C (USQ@Q /7)™,

we have w,Z C Z, C Z and hence
Z/Zu = Homl:(Uf ® QI/Z,, QI/Z,)
Znfw,Z = Homg,((US ®U/2)™/US @ /7, ¥/7,) -

Let s, be the number of I-adic primes in F,. Since F,, is the cyclotomic Z;-

extension of F, all l-adic primes eventually ramify, i.e., s, = sy, for n > no,
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and we denote the number of l-adic primes in F by s = s(F,/F). For

n > ng, we deduce from Dirichlet’s usit theorem and the above
Z/Z ~ z;‘:(F)-I“-I-a-—l .
Since H* (T, Q/7,(1)) = 0, cf. 1.5, 4.8 implics
Zn/w,,Z ~ Ham!:(Hl(rm U:fo)? /7))

is of bounded order independently of n. Therefore, i(n,a; Z) - (r2(F)I™ 4
s — 1) - a is bounded for n > ng and @ > 0, and thus by 3.19, there is a

pseudo-isomorphism

wz:Z — E(Z):= AP g é; A&,

i=1
with =%_, deg &, = A(Z) = s — 1. Since Z is a torsion-free Z;-module, Yz is,

in fact, injective. The following lemma is trivial, but worth mentioning.

Lemma 4.12 Let v € T be our ﬁa:e& topological generator and u = x(y,) €

U,m. Then for i € 2, there are A-module isomorphisms
AGE) = A and Af(g(T))(E) = A (g(u=¥(1 + T) ~ 1)) -
Putting all things together we have proven the following, cf. [41],

Theorem 4.13 Let N3 be the field generated over F,, by all I*-th roots of S-

units UZ, and set Y5 := Gal(NS /F,,). Then VS is a torsion-free Zj-module,
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and there is an injective A-module morphism
t
Y — A O @ DA/, (1 +T) - 1)
j=1

with $%_, degé,. = s — 1 and finite cokernel.
¢

i=1

Corollary 4.14 Let M., be the mazimal abelian, pro-l-eztension of F,
which is unramified outside I, and X := Gal(My/F.). Then X does not
conlain any non-trivial finite A-submodule and there is an injective A-module
morphism

X — APl g @A/p;i

i=1

with finite cokernel.
Proof: Let M = HL(0S,Q/z,(1)) as above, then
0 —US®@QUfz;— M — AS — 0
is an exact sequence. For NS as in 4.13, this implies
Gal(Me/N3,)(—1) =~ Homa (AS,Qi/7,) .

" By 4.9 the later group is isomorphic to the adjoint of a certain A-torsion

module Y3, and the corollary follows now directly from 4.13. =}



4 IWASAWA THEORY OF NUMBER FIELDS 107

Corollary 4.15 Let N, be the field generated over I, by all I"-th roots of

units Uy 0f Foo, and YV = Gal(Ne/Fs), then there erists an integer sg,
0 < sp £ s, such that
to
Y — AP P A/, w1+ T) - 1))
i=1
is an injective A-module morphism with 1%, degé,, = so — 1 and finite

cokernel.

Proof: Since Y(—1)/w,Y(~1) is dual to (Us ® U/z,)™, which contains
U. ® Q/z,;, Dirichlet’s unit theorem implies that rhy, Y(-1)/waI(-1) 2

r3(F)™ — 1. On the other hand, the surjective morphism
VS (=1)fw, ¥5(~1) — Y(=1)[w, V(1) — 0

and the calculations above show that there exists an integer s, 0 < 39 < 3,
such that for n > 0 large enough, rkz, Y(—1)/w, Y(~1) = r2(F)I* + 50 — 1.

The assertion now follows again from 3.19. o

We have seen that fi(Y°(—1)) = ys(—l)/torhys(_l) is contained in A™(F)
with finite cokernel, say H. As usual when finite groups are involved, one is
led to the question what else other than the finiteness is knewn about this
group, e.g., order, exponent etc. . Even if we give a precise statement on H,
cf. 4.16, this result will be of a rather theoretical than pratical use.

Again let Z = Y5(~1) and E(Z) = A"\F) @ @}, A/(¢,,) as above, then for
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1 € Z, we get the commutative diagram with exact rows and columns

0 0 0
! ! 1

0~  toraZ(i) — 2() - faZGE) —0
l i !

0= toraB(2)(i)) — E(2)E) — A=P(E) =0,
l ! l

0-  A{i) = BE — HE 50
1 l !
0 0 0

diagram 1

where A, B and H are finite A-modules.
Case (a): i =0

Let m := maz {n;: 1 <j <t} and assume that n > m, then w, : A/(fn,-) —

A/ (,fnj) is the trivial map, i.e.,

E(Z)r“ = (torAE(Z))r" = tO‘l"AE(Z) and wn-torAE(Z) = 0
zl“n

(toraZ)'» = toraZ2 and wh-toraZ = 0.
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Hence we obtain from the middle horizontal map in diagram 1 the split exact

sequence
0 = tora E(Z) — E(2)}w,E(Z) = (Aw,A)*F) = 0,

and in particular, E(Z)/, E(Z2) is Zi-torsion-free. From this and diagram 1

we deduce
torg, 2w, Z = ker(Z|w Z — E(Z))w,E(2))
= im(B™ - Z/w,2)
~ im(BT» — HT»),
and on the other hand we have
tore,Z fw,Z = Znjw.Z
=~ Homll(Hl(FmUoi)v Ql/lg) .

Since B and H are finite A-modules, B™ = B and H'™ = H for n > 0 large

enough, and thus the following

Proposition 4.16 Let H be the cokernel of X(—1)/tor,x(—1) — A",
cf. 4.14. Then for n > 0 large enough,

H o~ Homz. (Hl(rm Uéso)a Q‘/zl)

o0

o~ Homyg,(ker(AS — AS),Q/z) .

Case (b): i # 0
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Recall the isomorphism of 4.12

A(l) =~ A and A/(Eﬂj)(f') = A/(Eﬂ,‘(u-i(l + T) - 1)) b

where u = x(70) € Ur\Ur*' and I° = #W(F). Since &, is irreducible and
w(u'(n;—1) # 0foralln > 0,1 # 0, w, and n; (u™ (14 T)—1) are relatively
prime. Hence

wn 2 8/ (6:,)() — A/(6,)(E)
is an injective morphism with finite cokernel isomorphic as Z;-module to
z’[aﬂj]/wn(an,-)Zx[an,-]s where ay; := u'(;; —1is a root of &, (u~i(1+T)-1).

Thus we obtain the following commutative diagram with exact rows and
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columns
0 0 0
l 1 !
0 — A(3)Fn B(i)~ H(i)"™
! ! !
0—  taZ(3)/w,1,2(3) Z()/w,2(i) I2(@)w,fx2()) =0
i ! !
0= aE(Z)()/w, s E(Z)(5) E(Z)(#)w, E(2)(3) (Aw, AP S0
l ! l
A(3)fwa A(3) B(i)/waB(3) H(@)jw H(E) =0
! l l
0 0 0
diagram 2

From the diagram we conclude
rkz,Z(3)}w, Z(i) = ra( F) - I
and
0 — toraZ(i) fw,tory Z(i) — tora, 2(i)[w, Z(i) = H(E)™ — 0

is an exact sequence of finite Z;-modules. In certain cases we can calcu-

late the structure and order of tora E(Z)(i)/w, tor, E(Z)(i), and appealing
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to the left vertical column in diagram 2 this gives us at least the order of

Lora Z(3) Juw,tory Z(1). Namely we have the following
Lemma 4.17 Let Z := Y3(-1) and E(Z) := AP @ @!_, Af(e,,) as in
4.13. Then fori #0.
(i)
toraB(2) (i) wotors E(Z)(i) ~ €D Z/itntize @ Z/i1z.

Jing=0 JiniE0
1) If€w;, =T, i.e,, nj =0 for all j, or if n 2 0 is large enough, then
) 2

tora E(Z)(2)/w, tor, E(Z)(i) = (Z/1etntnligy=1 |
where s = s(Fo [ F) is the number of l-adic primes in F.,.
Proof: (i) Since wy = T is relatively prime to &, (v~'(1 + T) — 1), we get
coker (1o 2 A/(£,)(5) = A (6, )(i)) = Ti/1ensts~*-11z,

For n; = 0,we have by definition of u = &(y0), v{u= — 1) = e + n(i), and
for nj # 0, vi(€n;(u™ — 1)) = w(u="™ — 1) — (=" ~1) = 1, and thus
by additivity the claim.
(ii) For an; = u'(p; — 1 and n > n;, we have wn(an;) = ¥M" — 1, and hence
coker (wn 3 A/(6,)(3) = 8/(6,)) = Ll un(an,) o)
& (Zifjetnbnlilg, ooty |

Since T}, degén; = s — 1, the assertion follows again by additivity. 0

The next corollary is obvious from the considerations above.



4 IWASAWA THEORY OF NUMBER FIELDS 113

Corollary 4.18 Let the notations be as in the previous lemma. We define
jo:=#{j :n; =0} and j, :=#{j : nj # 0}, then fori # 0.
(:I'

#iof‘nz(i)/wotorAZ(i) = poletu(i)+i ,

and ifn; =0 for all j or if n > 0 is large enough, then
#toraZ(i) fwatory 2 (i) = (I+mratidys-t
(i)
#torg, Z(3) /w, Z(i) = Poletn(i)+h | #HET
and ifn; =0 for all j or if n > 0 is large enough, then
#tory, Z(i) [, 2(3) = (IHnHa@)s-1 2 g (3)=

Remark 4.19 Ifwe consider Zo := Y(—1) and E(Z) := APl A/(En,')
with 30, deg n; = so — 1 as in {.15, then the above calculations show, that
as long as i # 0 we might replace Z by Zy, H by Hy ete. . But it should be

pointed out, that 4.16 does not have an analogous formulation.



5 The higher étale tame kernel

Using earlier results of Tate on K-> and Galois cohomology, cf. [92], J. Coates
proved in {11] among other things an Iwasawa theoretical description of the
Sylow-l-subgroup of the tame kernel K3(Og) for a totally real number field
E. Namely, let { be an odd prime, F' = E((;) and F./F the cyclotomic Z;-
extension of F. For the intermediate field F, let A, be the Sylow-I-subgroup
of the ideal class group and AZ, = limA; the minus part of A, then Coates’s

result reads

l-tor K(Og) ~ (AZ(1))%= ,

where Go, = Gal(Fo/E). In a series of papers, cf. [47),[48),[51],[52], M. Kol-
ster generalized this to arbitrary number fields as well to the prime I = 2.
Simplifying Coates’s and Kolster’s arguments it turns out that the above
isomorphism and its generalization are rather statements on K§(O%) than
on K(Og). Keeping this in mind generalizations to arbitary number fields
and higher étale K-groups follow quite easily.

Let E be a number field, [ an odd prime and F = E((;). Moreover, let F../F
be the cyclotomic Z;-extension of F with intermediate fields F,, Fy = F, and
Go = Gal(Fw/E) > T x A. All other notations will be standard, cf. page

94. Recall the exact sequence
0 = Heone(OF: 21(0))®, /2, — HL(OF, U/z,(3)) — Itor H2,,(0F,2:(3)) — 0,

114
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and for j = 1,2, ¢ > 2, the isomorphisms, cf. 2.20,

Hl.(OF,1(i)) = K3f_;(0F) .

Zi—j
The finiteness of K§f_,(O%) implies the exactness of
0 — K3 1(0F) @z, U/z7; — Hi(0F, U/7,(i)) — K3 ,(0F) — 0.
On the other hand we have for M = H},(0%,,Q/z,(1)) the exact sequence
0 —US®U/gy(i-1) = M(i-1)— A5 (i - 1) — 0.

The idea now is to study Galois descent for M(i — 1) =~ HL(03,,Q/z,(i)),
i.e., to consider the restriction map HL (0%, Q/z7,()) = HL(05,,Qi1/7,(:)),
and further to find a morphism K§t_, (0%) ®z, U/z; — (US ®Q/7,(i —1))%
such that

K& (03)®, Qfz, —  HYO%,9/7))
i l
(US @ fz,(i —1))0> — HA(0S, /7,(i)°"

is commutative.

Remark 5.1 Using the explicit description of M = limlimAY), cf. page 28,
we might as well give a direct proof for the exactness of the above sequence,

which then also shows that

0 — Upo ® Qfz,(i — 1) — M(i — 1) — Ago(i —1) — 0
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is still exact. Il is worth mentioning that there is no such sequence on finite

levels.

For the Galois descent, we have the following

Lemma 5.2
() Ifi#0, then
HY(0%, Qu/1,(i)) ~ HY{0S,, «/2,())™
and
HE(OF, Q/7/(3)) = H'(Goo, HR(0Z,, U/z,(3)) -
(ii) Ifi=0, then

0— HYGw,Ulz)>Qfzy — HL(O0E,%f7) — HMO0S,Q/7)%= —0

is an ezacl sequence and
H7(0%, /7)) = HY(Goo, HH(O3,, Q/z)) .

Proof: Consider the Hochschild-Serre spectral sequence
B3 = HYGoo, HY(05,, Q/7)(3))) => HE™(OF, @u/7(3)) -
Since cd)Goo =1 and ¢dj05, =1, we get E}? =0 for p > 2 or ¢ > 2. Thus
HE (0%, U/2,(3)) = H'(Goo, Hi(OS,, U/2,(3)))

and

0 — Ey° — HY(0F,Q/7,(3)) — E* — 0
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is an exact sequence. Furthermore, E;° ~ I/'(T', Qi/z,(i))2. Let vy € [ be a

topological generator, then H'(T",Qi/7,(7)) is the cokernel of
1—:Qif7,(1) — Q/fz,(3),

which is multiplication by 1 — x(7)' on Q/z;, and so E}°* =0fori# 0. O

Remark 5.3 The above proof also shows that F®Q/z, ~ H'(Fw, Q/z,(1))

satisfies Galois descent. For a 'direct’, bul somewhat complicated proof cf.

[46].

On the finite level we still have the following
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Corollary 5.4 Let T, := Gal(Fo/Fy) and G := Gal(F,/E) with the con-

vention g =T and Gy = A.

() Ifi#0, then
H}(0%, @/7)(i)) ~ HY(0%, /z,(i))*"

and

0 — HYGn HL(OS,Q/z,3)) — HAO5,%/z,()) — HE(O%,Q/z,(i)"
= H*G., HLOS,Q/1,(2))) —0

is an ezact sequence as well for j =1,2

Hi(Ga, HY(05,/2,(1))) = Hi (G, HA(0S, Q/2,(1))) .
(i1) Ifi=0, then

0 — HY(Gn, /7)) —» H(OF, U/7;) = H3(05,Q/2,)% — 0

and

0 — HYGn HWOG,U/z,)™) — HA(OF,%/z) — HE(O03,/z,)%
—  HYGn, HY(05,¥/z7)™) —0

are exact SEqUENCES.

Proof: (i) Again we consider the Hochschild-Serre spectral sequence
E}® = H?(Gn, HI(03,/7,(1))) = HE"(0%, /z,(3)) -

From 5.2 we obtain £3° «— H'(G4,Q/z,(i)) = 0, which by the finiteness
of H3(03,Q/z,(i)) implies E¥® = 0 for k > 1, i.e., E?? = 0 for p # 0 and
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g # 1,2. A simple spectral sequence argument gives the assertion. (i) This

follows immediately from the commutativity of the diagrams

Hi(0F, /) — HY{OF,%/z,)%
l !
Hi(03, /7)) — H}(03, /1)
with surjective vertical arrows and
HZ(0F, /1)) - HZ(03,/7,)°
8! N
HY(Goo, HI(O3,, /7)) ~ H'(Ta, HA(O5,, %/7,))% .

a

Next we consider the exact sequences relating M(: — 1) with ideal class
groups and units, cf. above. We are interested in their Galois cohomologi-
cal behaviour. Since HY(Go, U ® Q/7,(i — 1)) is dual— in the sense of
Pontryagin—to Y{)(—1)G=, cf. chapter 4, we get by diagram 2 in chapter 4
and 4.19, HY(Geo, U @ Qfz7,(i — 1)) = 0 for i # 1. Hence, if i # 1, then

0— (US @ Q/z,(i — 1)) — M(i —1)% — AS (i —1)% = 0
and
0= (U ®Qf7y(i — 1))% = M(i —1)% o Ay (i —1)%= = 0

are exact sequences. Even more is true, namely
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Proposition 5.5 Let E be a number field, | an odd prime, F = E({;) end
Fo/F the cyclotomic Z;-extension. For the intermediate field F,, let A,
resp. AS be the Sylow-I-subgroup of its ideal resp. S-ideal class group. Set
Ao = limA, resp. A3 := limAS. Then for i # 1, the following are
equivalent.

(i) HZ(O0Z,Q/z,(i)) = 0, i.e., the Schneider conjecture is

valid for E and l.

(it) AS (i —1)%= is finite.

(iit) AS(i—-1)g, =0.

(iv) Ax(i —1)%= is finite.

(v) Ax(i-1)g, =0.

Proof: By 4.9 we know that
Homnyg,(Aco, /7)) = o(Yeo) and Homg,(AS, Q/z7)) ~ (Y3),

where Y, and Y are certain A-torsion modules. The above consideration

gives the chain of isomorphisms, ¢ # 1,

HE(OF, /1,(3)) = H'(Goo, M(i—1)) = HY(Goo, Aco(i—1)) = (Yoo )(1 - i)%)

as well as
H3(0%,9/2(3)) = H'(Geo, M(i—1)) = HY(Guo, AS,(i-1)) = (a(¥E)(1 —i)=)" .

Since aYe) and oY) are A-torsion modules, which do not contain any
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non-trivial finite A-submodule, the equivalence of the assertions is now obvi-

Ous. 2

Remark 5.6 Fori =1, the situation is quite different. Namely in that case
we have co-rk (US ® Q/7,)6= = |S| ~ 1 and co-rk H (G, US @ Ufz,) =
gi(E) =1, where gi(E) denotes the number of l-adic primes in E, cf. chapler
4. But on the other hand, we know that co-rk MC8= = co-rk H},(0%,Q/z,(1)) =
|S]—1 and co-rk H(Goo, M) = co-rk H}(0F,/2,(2)) = gi(E)-1, cf. 1.18.

Thus considering the ezact sequence
(%) 02U @U/zy 2 M- A5 -0

one might suggest that Afoc‘” is finite or equivalently H'(Go, AS) = (AS)6., =
0. This would follow immediately, if (x) splils as a sequence of A-modules—
certainly, it is split ezact considered as a sequence of abelian groups. In [77]
T.Nguyen Quang Do showed that (x) admils a pseudo-splitling. As always
for A-modules, this is already enough to oblain the finileness of Afoa‘”, but

¢f. also 7.5.

Corollary 5.7 For a given field E and an odd prime |,
HZ(0F, /7 (3)) = 0

for almost all i € 2.
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Proof: Since the characteristic polynomial char(XS) of X5 has only

finitely many roots, the corollary follows from 4.9 and 5.5. ]

Corollary 5.8 Suppose that F = FE(({;) is a CM-field with mazimal real
subfield F*. Furthermore, assume that the p- and A-invarianis of F1/Ft

are trivial, ¢f. 4.6, Then for alli —1=0mod?2,
HE(0%+,Q/2,(i)) = 0.
Proof: Fori—1=0mod2, we have
AL~ 1)% (@ AZ)E - 1)F C AT (- 1),
and by assumption A7, = 0. ]

At this point we are already far enough to prove the Iwasawa theoretical

description of K§!_,{(Of) mentioned in the beginning of this chapter.

Theorem 5.9 Let E be a number field, I an odd prime, F = E((}) and Fo,/F

the cyclotomic Z;-extension with Galois group Go, = Gal(F/E). Then for
t 2> 2,

0 — (U ® Q/zifi ~ 1))/ K&t (OF) @2, U/z, = Kf_2(05) = AS,(i-1)5% = 0
and

0— (Uoo ® @/7)(i = 1))%= /K& (05) @2, U/z7, = K&_5(0F) = Axs(i-1)%= — 0
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are exact sequences, and in particular
K$_(02)®2,2/7; ~ maz. div. (US@Q/7,(i-1))%" ~ maz. div. (Uo®Q/7,(i-1)) .

Proof: Since the Schneider conjecture is valid for ¢ > 2, cf. 2.28, we obtain

the finiteness of AS (i — 1)%= and Ay (i — 1)%= from 5.5, and thus
maz. div. M(i — 1) C (U, ® Q/z,(i — 1))%= C (US @ Q/z,(i — 1))~ .
On the other hand
maz. div. HL(OF, U/z,(1)) ~ K5 _,(03) @, U/7,,
so that we get the commutative diagram with exact rows
0— K3 .(08)®yU/z, — Hu(0F,/2(i)) — Kii,(0F) —0
! N !

0= UPU/g(i—1))F — M@E-1)% - AB([I-1)C> =0,

and the theorem is proven. o

Remark 5.10 Let E be a totally real number field, | an odd prime andi—1 =
1mod2. Then (Upo ® U/z,(i — 1))~ =0, and thus

K§i_5(0F) = Aw(i—1)% .
In particuler, for i = 2, we get

I-tor Ko(Og) o Ag(1)%= ,
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which is precisely Coates’s result mentioned in the beginning of this chapter.

Passing to the direct limits over the sequences in 5.9 we get on the infinite

level the following

Corollary 5.11 Fori > 2, there are exact sequences

0 = UZ @ Q/2(i — 1)/limK$_,(05) ®, Ufz; — HmKH_,(05) — AS(i-1) - 0
and

0 — U @ U/1,(i = 1)/limK¥ | (0F) ®r, /7, = 1imKE 2(03) = A(i—1) = 0.

Remark 5.12 Since OF, contains all I-th power roots of unity, HL (03, 7)(3)) ~
K§t (0S)) is torsion-free, which implies limK$_,(0%) # K& _ (0S). But

K§ (03 @1, U/ Z; C (K§t_,(03,) ®, &/ Zz)r" )

Jor all n 2 0 and passing to the direct limit yields

0— HmKE (07)®r U/yy — M(i-1) — HmKf (05) —0
l lua |

60— K, (05)®,QUfyy — M(i~1) — ltor K& (05) —0.

It is not clear to us, whether the lefl or equivalently right arrow is an iso-

morphism or not.

Since ker (A5 — AS) is finite independently of n, say of exponent I™, a

similar sequence to 5.9 resp. 5.11 already exists on finite level, namely
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Corollary 5.13 Fori > 2 and1 < v < n—n,, there is a split exacl sequence
0 UF @ #2/2(i — 1)/ K&t (05) ®r, £11/7, = K& 5(05) = v AS(i = 1) = 0,
and

UZ @ B2/2(i — 1)/ Kt (05) ®r, £T/7, = (X[ 1rz) -1 |
where gi(F,) denotes the number of l-adic primes in F,.

Proof: From the diagram

0 Ki,(0D)@uwlfny, =  HLOSma(i)) - wKf,(05) —0

1
0~  U7®wZ/z(i-1) - HLO5,Z/trz(1))(i~1) — wASi—1) —0
! ] !
0> US®@Q/zi—1) - M(i—1) - AS(i—1) —0

we get after certain identifications, e.g., H},(03,2/1r2(2)) = H},(05,2/1ng(1))(i - 1),
for z € K§},(05) @, w7, C HY(0S,2/m2(1))(i - 1),

M elUse I“i“l z/z(i -1).
Therefore,
K& (05 @y, /27, CUS @ £2/7(i - 1),
and the rest of the corollary is then obvious. o

Next we describe the image of im K _, (03)®,,Q/z, = US @Q/7)(i~1) via
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Iwasawa theory. At first we recall a few notations from chapter 4. Let M,
be the maximal abelian, pro-l-extension of F,,, which is unramified outside
S, and N2 the field generated over F, by all I-th pc;wer roots of S-units US
of Foo. We set X := Gal(Moo/Fo) and Y5 := Gal(NS [ F.). Then Kummer

theory induces pairings of A-modules
X(-1) x M — Q/z,
and
V(-1 xUS @ U/, — Qfz, .

Let N := (toraX(—1))* be the orthogonal complement of the A-torsion
submodule of X(—1). Then by 4.14 N € US ® Qi/z,—we even have N C

U ® /2y, cf. 4.15,—and for all ¢ € Z, we get the pairing
ys(—i)/torAys(—i) X N(i — 1) — Ql/z!
resp.
Since (¥5(—1)/tor, ¥S(—i))T™ = O for all n > 0, we get (i — 1)/wo N (i — 1) =
0 by duality, which implies
US®Q/z(i -1)™/N(i -1y =~ (US@U/z,G-1)/N( - 1))“‘
o~ Homz,(inys(—i)/wntnys(-—i)aQf/zl)-
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By diagram 2 in chapter 4 iAys(—i)/wntAyS(..i) 1s finite for 1 £ 1, and so
maz. div. (US ® Q/z,(i — 1)) = maz. div. N(i = 1) .

But for : > 2, we have by 5.9
maz. div. (US ® Q/z,(i — 1)) = K#_,(05) ®, /1, ,

and hence for i > 2, we obtain from diagram 2 in chapter 4

NG =1 K (09 @2 U7y = Homa,(2itor (faY*(~)rn, U/2,)
o~ HOTR:,(}'I(I - i)r"gQ'/ZI) 1
where H is the finite A-module defined by diagram 1 in chapter 4. The

finiteness of H implies
imK§ 1 (05) @, Qfz; = limmaz.div. N(i —1)T"
= HmN(i—1)™
= N(i-1),

and we have proven

Theorem 5.14 Let N := (torpX(—1)}* be the orthogonal complement of
the A-torsion module of X(—1) in the pairing X(—1) x M — Qfz,. Then
fori>2,

EmK§_,(07) ®, U/z = N(i-1),

and there is a pairing

toraX(—1) x limK$t ,(03) — Qi/fz, .
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Since N(i — 1)/wa N(i — 1) =0, cf. above, we obtain the exact sequence
0— N(iE—1)" o M@GE-1)™ o (limK§_,(05))™ -0,

and dividing by the maximal divisible subgroup K§}! |(0%) ®4, Q/z, yields

the exact sequence
0= (H(1 —i)')" — K§f_,(03) — (imK$ ,(05))™ -0,

where * stands for the Pontryagin dual. Let {* be the exponent of the finite

group H, then for ¢) = i, mod I*1,
H(i,) ~ H(ig) as I',-modules,

and so we can find an integer ns; > 0 independent of ¢ € Z, such that for all
n 2 ny

HQ-i™"=H(1-i)~H.

Thus we obtain

Corollary 5.15 Let H be the finite A-module defined by diagram I in chap-

ter 4, then for alln 2 0,
0 (H(1—8)™)" — Kt ,(05) - (limKt ,(08))™ — 0

is an exact sequence, and there is an integer ny > 0 independent of i > 2,

such that for all n > n,,

0= H* = K3t ,(07) — (limKg o(05))™ — 0
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ts exacl as well,

Corollary 5.16 If K§_,(03) = 0 for some n > 0 and some i > 2, then

K ,(05)=0 foralin>0 and all i > 2.

Proof: Suppose K§f_,(05) = 0 for some n > 0 and i > 2, then by 5.14
and 5.15,

H(1— i)™ = 0 and toraX(=i)/watoraX(—i) =0,
which already implies H = 0 and tor, X = 0. O

Unfortunately, the condition of the above corollary is hardly ever satisfied,

namely we have

Proposition 5.17 Let s = s(Fo/F) be the number of l-adic primes in F,,,
then K§_,(05) = 0 for somen > 0 and i > 2 if and only if s = 1 and
AS=0 foralln>0.

Proof: We may assume that n > 0 is large enough, and so by duality we

obtain from 4.18

#(US @ U/7,(i— 1) /K& (05) @2, 2, = #L-tor Y5(—i)fw,¥S(—i)
— (Ic+n+u;(l—i)):—l . #H(l — i)l",. .

Hence 5.9 implies

K$ ,(05)=0ifandonlyifs=1, H=0and AS(:—1)'*=0.
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Since Homa (AZ,,Q/7;) ~ Gal(M/NS)(-1), the triviality of AZ (i — 1)
already implies A3, = 0. Using H = 0, we deduce that AS = 0 for alln > n,.
But since s = 1, the norm map AS — AS_, is surjective for all n > 0, and

thus AS =0 for all n > 0. The converse is trivial. 0

Irom what we showed above, we can now calculate the order of the even-
dimensional étale K-groups of a number field E by evaluating the character-
istic polynomial of a certain submodule of tor,X at negative integers. For
a totally real number field E, this automatically leads to the Main Conjec-
ture in Iwasawa theory—now proven by A. Wiles—, which has to be seen
as the l-adic (number theoretical) analogue to Weil's description of the ¢-
function of a curve over a finite field, cf. chapter 3. We stick here to our
standard notations, so E is an arbitrary number field and so on. By 5.14
limKgt ,(05) = M/N (i — 1), and so for j + (i — 1) = 0 mod #A, we get
(limK§{_5(03))°= = (e, M/N)(i - 1),

cf. 4.10. We know that (;M/N)(i — 1)V is dual to (&;-jtoraX)(—1)r, and
the order of the later (finite) group can be calculated via the characteristic
polynomial of &,_jtorpaX. Namely, since forpyX does not contain any non-

trivial finite A-submodule, the same is true for the eigenspace extory X, k =

1 — 7. Hence there is an exact sequence of A-modules

Tk
0 — grlory X — @A/(fm(T)) - D=0,
r=1
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where Dy is a finite A-module. Twisting the above scquence and noting that

(Bris A/ (£ (T)) (1)) = 0, yields the exact sequence

0 — Di(—i)F = (extoraX)(—i)r — (é_él A (frra (' (1 + T — l))) = Di(=i)r > 0.

r

Thus for g;(T) := I~y fer (u(1 + T) = 1), we get

F(lmKg (05 ))%= F#(extora XY (—i)r

#(®rta A/ (feor (' (1 + T) = 1))

= [ulgi(u=1-1))
Combining this formula with 5.15 gives

Proposition 5.18 Leti > 2 and j + (: — 1) = 0 mod #A, then
#KE (0F) = M0 e )1 -0,

Now suppose that E is a totally real number ficld, and let x = w’ be the
Teichmiiller character. Following Iwasawa’s ideas, cf. [40], P. Deligne and
K. Ribet showed using Stickelberger ideals that one can associate to a Dirich-
let character x a power series G(T', x"'w) € Quot(A), such thal for u = &(70)
and s € 7;-{1},

G(u’ - 11 X-lw) = Ll(Xas) ’

cf. [16]. Here Li(x,s) denotes the l-adic L-function of E and Y, i.c., the

continuous function Li(y,-) : Z;-{1} — C; uniquely determined by the values
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on ncgative integers

Li(x,1 —n) = L{xw™,1 = n)- [[(1 — xw™()N(p)* ) foralln > 1,
ol!

where L(i, s) is the classical L-function attached to ¢. We set
Gi(T):=gi{(1+T)" 1),

where g;(T') is as above, and

) G(T,w¥) if j #£1 mod #A

H(T, ) o= (Tyw?) if j %1 mod#
(1+T—u)-G(T,w) ifj=1mod#A,

then H(T,w’) € A, cf. [13]. Now the Main Conjecture proven by A. Wiles,

cf. [99], states that these two elements of A generate the same ideal, i.e.,

Theorem 5.19 Let E be a totally real number field, and w the Teichmiiller
character on A = Gal(F/E), F = E((;). Then for j =1 mod 2,

(G;(T)) = (H(T,w)) .

Remark 5.20 For the prime ! = 2, we have to modify the assertion slightly,
cf. [21], and then it remains valid at least for an abelian (totally real) number

field E, cf. [99].

Since the units U} of the maximal real subfield F} of F, have index 1 or 2
in U, £;(Us ®Qi/27;) C (U ® Q/2;)~ = 0 for j = 1 mod 2, and hence for

j=1mod?2,

;N =0 as well as (€U ® U/7))(i — 1)/ K&t (05) @, Q/fz,=0.
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Considering the exact sequence
0 = (exGal(Meo/Neo))(—1) — (extora X)(—1) — (extoraV)(—1) — 0
wegetfork=1—3,7=1mod?2,

(exGal(Mo /N ))(=1) =~ (extora X)(-1),
and hence _
gi(T) = char((extoraX){~1))

= char(Homy(c;A, U/2,)) ,

so that the analogy with the function field case becomes now cvident, cf.
chapter 3. We can also give a more precise statement of 5.18 in the case E

totally real and i — 1 =1 mod2. At first we get for j + (i — 1) = 0 mod #A

K3 ,(02) = (limK§ ,(03))%
&~ Age(i—1)C,
and so by the Main Conjecture
#K3i 5(08) = |H(u (-1 —1,09)
|G(u=0=* —~ 1,w) |7 if 5 & 1 mod #A
[u=t=1 —uf . |G(u~ -1 — 1L, i =1 mod #A .

In order to evaluate the right hand side further, we need the following

Lemma 5.21 Let K be an arbitrary number field, | an odd prime and for

i # 0, wf(K) == $H(K,Q/fz/(i)). Further let KooKy be the cyclotomic
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Z;-extension of Koy = K((;), and u = &(vy), where v € T' is a topological

generator and x : I' — U} the cyclotomic character. Then

,. if i # 0 mod [Ko : K]
w{(K) = ,

lu=G=1 —u|;! ifi=0mod[Ky: K].
Proof: If i # 0 mod [Ko : K], then clearly w?(K) = 1. Otherwise,
IFlw(K) if and only if ¢° = 1 for all o € Gal(K((r)/Ko) if and only if

¥ (¢ir) = (i if and only if I"|(u* — 1). 0

We know that H$(Og, Q/z,(3)) = torg, HL,.,(0%, 2i(1)) in general, but in the

case we are considering we already have
w{(E) = # Hons (05, 1)) = #K4_,(0F) -
Furthermore, it follows quite easily, cf. [13], that
Gt — L)l = |¢e(1 - i)l
Putting all things together we finally obtain

Theorem 5.22 Let E be a totally real number field andi —1 = 1 mod 2,

then
#K5_2(0%)
#K355 1 (0%)

Since the Quillen conjecture is valid for Kz and Kj, cf. 2.17, we get

= Ies(1 = )™

#l-tor K(0F) = wf(B) - [(e(=1)I7* -



5 THE HIGHER ETALE TAME KERNEL 135

‘The tame kernel over p|l vanishes on elements of I-th power order, which

means l-tor K3(Og) = I-tor K3(0%), and we have proven the so-called Birch-

Tate conjecture up to 2-torsion, i.e.,

Conjecture 5.23 (Birch-Tate) Let E be a totally real number field and
wi(E) = #H°(E, Q/1(2)), then

#K3(0x) = w®(E) - |[¢p(-1)] .

Remark 5.24 (i) Motivated by an analogous resull for curves over finite
fields, J. Birch and J. Tate formulated this conjeclure at the International
Congress of Mathematics, Nice,1970, cf. [91], and we have seen that il is
nowadays a theorem up to 2-torsion. (ii) Using his results on the structure of
the Sylow-2-subgroup of K2(Og), i.e., the Iwasawa theoretical description of
it, ¢f. [48], M. Kolster then showed that the Main Conjeclure for the prime
I =2, ¢f [21], implies the 2-part of the Birch-Tate conjecture, cf. [49].
Thus, for an abelian (totally real) number field E, the Birch-Tale conjecture

is true in full generality.

Certainly we would like to generalize 5.22 to arbitrary number ficlds and
t—1=0mod2, i > 2, at least conjecturally. In order to do so, let us
firstly take a look at the analytic class number formula, which we state in
the following equivalent form

.ty r2(E)— h(E
lim s~ 7)1 (5(s) = £R(E). _wu(l(.)E-)' ,
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where R(E) = Ro(E) is the usual regulator of E and w!)(E) := #H°(E, Q/z(1))
is the number of roots of unity in E. This formula tells us two things, firstly,
up to a non-zero rational number the leading coefficient of the Taylor expan-
sion of the (-function at s = 0 is given by the regulator of E, and secondly,
this rational number is precisely—up to signs—the quotient of the order of
Ko(Og) := Ko(Og)/Z ~ CI(E) and the torsion part of K,(Og) = Us. So
any generalization depends now first of all on the existence of higher regu-
lators defined on Ka;_1(Og). For this, let R(z — 1) := (27(,)""R, then the
complex conjugation p acts diagonally on z#°™(£:€) @R(: —1), and we denote

the fixed space by {(2H°™(£:€) @ R(i — 1))*. Obviously,

dimg(ZH""‘(E'c) QR(: — 1))-1- — rq(E) ifi—1=1mod2

ri(E)+r(E) fi—1=0mod2.

For i > 2, there are highly non-trivial morphisms
rie1 1 Ko 1(0g) — (27E) @ R(i — 1))t
extending the usual regulator map, and A. Borel has shown, cf. chapter 2,
1. kerr;_; is finite.
2. imr;_, is a lattice in (ZHom(E€) @ R(: — 1))*.

3. If R;_, denotes the volume of the lattice in 2., then (g(1—1)* ~q« Ri_;.
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Here, {g(1 — #)* denotes the leading cocfficient in the Taylor cxpansion of
Ce(s) at s = 1 -1, and q+ means equality up Lo a non-zero rational number.
The R;_1’s are called higher regulators. In analogy with the Birch-Tate
conjecture and the analytic class number formula, S. Lichtenbaum proposed

the following beautiful conjecture, cf. [61],

Conjecture 5.25 (Lichtenbaum) Let E be a number field, i > 2 an inte-
ger, Ri_y = Ri_1(E) the higher regulator of E end wl)(E) := # H(E, Q/1(3)).
Then

#K2:-2(OE)
wi)(E)

Ce(l— i) = +Ri s
Remark 5.26 We changed here the original conjecture by replacing the or-
der of the torsion-part of Ky;_1(Og) with wl(E), since otherwise it would
already fail for E = Q and i = 2; namely, #K3(Z) = 2 and #K3(Z) = 48,

but Ca(~1) = ~3, of. [58].



6 The higher étale wild kernel

Our purpose in this chapter is to give an Iwasawa theoretical description of
W K3i_;(E) analogous to the one for Kgt_,(0%), cf. 5.9. As we mentioned at
the end of chapter 2, there is a close relation between the higher étale wild
kernel WK{} ,(E), i 2 2, of the number field £ and certain subgroups of
H},(O%,2/1v2(3)). By investigating these groups very closely we will see that
not just the result will be similar to 5.9, but also the way to derive it will be
quite the same.

Again we use our standard notation, e.g., ' = E((;) and F,,/F denotes the
cyclotomic Z;-extension with intermediate fields F,n2>20.

First of all we have to deal with certain subgroups of H(0%,2/1#2()). For
i € Z, consider the localization map

H}, (0%, Q/z,(3)) =4 GB H*(E,, (1)) ~ @ HO(EN Q/z,(1-2)),

it i
and let

m((i) : HY(OF, 1/12(3)) — HY(08, /2,(0)) “Y @ B2 (E,, 1.(i)) .
pll

Then for i # 1 and v > 1, we set
H4(08,2/12(3)) = ker n(3)

and
HY(08,/7,(4)) = limker x)(3) = ker loc(i)

138
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Then from chapter 2 we obtain the exact sequences

0~ Ki.(0F)®nvlifzy — AY05,2/12(i)) ~ wWKE(E) —0

2i=2

and

0— K .(02)®Qlzy ~ HL(OF,Q/y(i) —» WKE(E) -o0.

1—2
Now the first step is already done, namely the linkage between WK, § . (E)
and 'cohomology’. Next we have to find a subgroup DY) ¢ Ag” and a

sequence, which are analogous to

AL = imAY o~ limHL(05,2/12(1)) = HL (0%, Q/2,(1))

and

0 US@Qfz; = HL(08,Q/7)(1)) » A =0,

so that we can relate A}(O%,2/12(i)) resp. HL(0$,Q/z,(i)) (and hence
WK{i_,(E)) to rather classical objects in number theory such as units and
(ideal) class groups. As in chapter 2 let us first consider the case i = 2. For
1 £ v < n, the cup-product induces an isomorphism {}(1) : AP(1) 5

H}(0%,2/1v2(2)), and we define

D(1) = (1)) { A4(05,2/1+2(2))} -
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We deduce the commutative diagram

D(1) — Al)(1)
n L
0— }?3‘(05,2/191(2)) - H}:(OE:Z/I"Z@)) = Dot l”Hg(Fn.p,.,zi(g))
l 1 ]

0— pWKg‘(Fn) — 1vat(Of) — @Dn], guI’V;(Fﬂ,pn) = ebnll Z/I”Z(l) .
Since K§'(07) — @, 2/1*2(1) is induced by the Hilbert symbols (-, ), , cf.

chapter 2, we immediately get
D) = {Il" modZ®z € $Z/z® F¥: ((w,2)p =1 for all p, Joo}.
On the other hand for the arbitrary number field E and v > 1, we define
DY = {Il—v modI®z € FL[IQE* : z = a,-b with a, € N,,b, € E; for all p foo} ,
where N, i= a0 V(E;((in)*) is the local cyclotomic norm group of E,, and
D) = limDY) .
That our definitions of Dg) are compatible is a consequence of the following

Lemma 6.1 Let K be a local field, [K : Q] < co and e > 1 mazimal with
Ge € K*, | an odd prime. Then for alln > 0,

N(K(C’G"-!’I)*) = NK . I{*tn N

where Nk is the cyclotomic norm group of K, i.e., Nk = Nmso N(K (Gim)*).
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Proof: Tor all m 2 n, K((etn) = K(VE*) N K((etm), and so by local
class field theory

N(K(Getn)) = [ K" N(K (Cetm)*) .

m>n

On the other hand,

K" Ng = [ K" N(K(Cesm)*) .

m>n
Namely, C is obvious and 2 at least if I # p, i.e., il K((je+n)/ K is unramified.
Now suppose that K /K is ramified, then for my > 0 large cnough, there
are prime elements =, € K%, such that N(r,) € Ng for all m > mg. Now

let 2 € Nyn KM N(K(Cotm }*), then
z = 25 N(upnm!m) with 2z, € K*, v, € Upn, tm €1,
and 50, N(tp) = 2z, N(mp) '™ € zK*" N, i.e.,
2K*" N A N(Uy) £ 0 for all m > my .
Since zK*" N is closed and N(Uy,) compact, we get
zK*" Ny N O NUn) #£0,
m2me

say, u € zK*"" Nk and © € Nmym, N(Un) © Nk, and thus

zE K*!“NK .



6 THE HIGHER ETALE WILD KERNEL 142
a

For the number field E, let N, := E3, if ploo and Xg :=[], N, C Jg, J the

idelé group of E, then by Hasse's norm theorem
()
0 Ne®p2/z - DY 'S \(Jg/E*XE) — 0

is an exact sequence, where hf,.;”(,l, mod1I ® z) := (b,),mod E*Xg with z =
ap - b and Ng := 59 N(E}) is the cyclotomic norm group of E, i.e., E, is
the n-th layer in the cyclotomic Z;-extension Eo/E. Since E*/N, is torsion-
free, the above sequence is, in fact, split exact. Passing to direct limits yields

the split exact sequence
(o)
0 — Ng ® Qi/z, » DI ", Ltor (Je/E*XEg) = 0.

Obviously Ng C U§ and u(E) € Ng, but the Z-rank of Nz seems to be
inaccessible in general, just a few examples are known, cf. [4]. Another
disadvantage is, that E*Xg is not necessarily closed in the idelé topology
and hence (Je/E*XEg) does not correspond to an abelian extension of E
via global class field theory. One way out of this dilemma is to consider
the closure. Let E*Xf be the closure of E*Xg in the idelé group Jg, then
E*Xg/E*Xg is I-divisible, cf. [50] or [54], and hence for Cg := Je/F" Xz,

we obtain the split exact sequence

=)
0— ker?z'g) — Dg) "5, +Cg—0,
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and passing to the direct limit yiclds

2o
0 — ker s = DEM 5 Lior Cp — 0.

Following Sinnott, cf [23], we have

Proposition 6.2 Let E be a number field,  an odd prime and Cg = Je [T~ X5
with Xg = [], V,, where N, is the local cyclotomic norm group of E,, if
p foo, and N, = E¥, if ploo. Then the class field belonging to Cx is the maz-
imal abelian eztension LS of E, which is unramified outside 1 and contains
the cyclotomic Z;-eztension By, of E such that all l-adic primes of By, split
completely in L§. Thus

Gal(L%/E) ~ Cg .

FPurthermore, if LE denotes the mazimal pro-l-eztension of E conlained in
. B p

L§, then [L§ : L] < oo is prime to I.

Our next goal is to give an interpretation of kerﬁg), v > 1, and ker B,
which are determined by the so-called Gross kernel of E, cf. 6.5. Let log; be

the l-adic logarithm normalized via log;(l} = 0, and define

Ap: EB* — @uli-p
z v+ Toulog(Ng,jq(2)) v -
Let im Ag be the closure of im Ag, then im Ag = Doy logi(NE, 19, (E})) - p =

D, £ /N,,, and by restricting Ag to U§ and then extending it to US ® Z; by
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lincarity, we obtain the exact sequence, cf. {23],
0 kerge = USQ@2Z B TmAg 505 CI5(E) >0

with kg(3, b, mod N;) := (b,) mod E*Xg. The kernel of gg is called the
Gross kernel of the number field E. By reciprocity rkzimge < gi(E) — 1,

where g;( E) denotes the number of l-adic primes in E. We define the Gross

defect 65 > 0 by
rky ker gg = r1(E) + ro(E) + 68,
where r)(E) and r(E) have the usual meaning. The Gross conjecture reads

Conjecture 6.3 (Gross) Let E be a number field, ! an odd prime and 6Gr°
the Gross defect. Then

58 =0,

The above version of the Gross conjecture is due to Jaulent, cf. [45]. It was
known to be true for abelian number fields, cf. [31] or [45], until recently

T.Nguyen Quang Do proved another equivalent version, cf. 7.7.

Theorem 6.4 Let E be a number field, | an odd prime and E. the cy-
clotomic Zi-eztension of E with intermediate fields E, and Galois groups
Ty := Gal(Ee/E,). Further let A3 be the Sylow-I-subgroup of the S-ideal

class group of E, and Af_ := limA$, . Then the following assertions are all
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equivalent.
(i) &g =0.

(ii) (AE_)' is finite.

(iii) (A$)r is finite—in fact (A5 )r =0,

(iv) (AZ, )C has bounded order independent ofn > 0, G, :=

Gal(E,/E).

Proof: Since ker (A — AZ_) has bounded order independent of n > 0,
cf. 4.7, the equivalence of (ii) and (iv) is obvious. Let LS be the maximal
abelian, pro-l-extension of E., which is unramified outside { and all l-adic
primes of E,, split completely in LS,. Then X2 := Gal(LS /E.) is a A-

torsion module and there is a pseudo-isomorphism, cf. 4.9,
Homg (Af,Qfz) ~ o(YS) ~ X5,

where Y3 := Gal(LS,/EoHS) € X3 and HS is the Hilbert class ficld
corresponding to Aﬁno. Here, ng 2 0 is the smallest integer such that all
l-adic primes are totally ramified in Eo/E, for all n > ng. By 6.2 we get
6§ = 0 if and only if [L§ : Es] < oo if and only if X3 . is finite, which
by the pseudo-isomorphism is the case, if and only if (AZ_)" is finite. Since
X?$ is a A-torsion module, the finiteness of X5 1 is equivalent to the one
of Xfor, cf. 3.20. Again by the pseudo-isomorphism this is equivalent to
(AE_)r is finite. But since Homa,(AZ_,Q/z,) ~ o(Y5) does not contain

any non-trivial finite submodule, cf. 3.18, this already implies (AF_)r = 0.
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Hence the equivalence. O

R sesp. ker G

The relation between the Gross kernel ker gg and ker resp. kerhg ' is

given by the following result, cf. [50].

Theorem 6.5 Let E be a number field, l an odd prime and ker gg the Gross
kernel of E. Then

ker'ff(;) = kergg ®, ]]?ZI/Z,
resp.
ker'E{Em) = kergg ®z, Ufz,,

and so in particular, there are ezact sequences

0— kerge®z wlifzy —» DY —  wCg =0

resp.

0— kerge®gQfz, — D};m) — ltorCg —0.
The next step is to describe the Gross kernel via Iwasawa theory. Let F
be the cyclotomic Z;-extension of F = E((;) with intermediate fields F,, and
Galois groups I',, := Gal{F../F,). Any other relevant object in the extension
F/F is simply indexed by n, i.e., we write D), ker g, C., etc. ir;gtead of

D}"{?, ker gr,, CF, etc. .

Lemma 6.6 Let DI := limD(®), then D) is a Ty-medule in a natural
way, end

D™ = Dl .
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Proof: That I', acts naturally on D! is obvious. Further we know that
Ag‘;")r" = AlP), cf. 5.2, and clearly Al N D) = D)) which immediately

gives the assertion. 0

Passing to direct limits in 6.5 we obtain the exacl sequence of I',-modules
0 — ker geo @z, Uf7; = D) = I-tor Coo — 0,
where ker go, 1= limker g, and Cy = limC,,. Recall the Kummer pairing
X(-1)xM —Q/z,

where M = Al®). Let N := (toraX(—1))* be the orthogonal comple-
ment of the A-torsion module of X(—1), and K, := Foo( *V/Ker goo) the ficld

generated over F, by adjoining all I-th roots of ker go, with Galois group

Z5 := Gal(Koo/Fu), then
Z5(~1) x ker g @z, U7, — U/7,
is again a pairing, and we have the following

Theorem 6.7 Let E be number field, | an odd prime and F = E((). Then

with the notations as above there is an injective A-module morphism

25 4 Ana(F) EBéA/(&‘J.)(l)

i=1

with finite cokernel, where TiL, degéy; = 657° = maz §¢°. Thus

N C ker goo @2, U/,
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with equality if and only if §57° = 0 for all n > 0.

Proof: We set Z := Z5(-1), and let Z, := (kerg, ®z, Q/z;)* be the
orthogonal complement of (ker g, @z, Q/z;) in the above pairing, then wZ C

Zn € Z and

Zlz, =~ Homy(kerg,®z U/7,%A/7)
n gaFNEE
resp.
Lnfw, 2 o~ Homz,((kergoo Qg q‘/zl)r"/kﬂ‘gn ®z2, Q/z) Q/z;)

>~ Homg,(ker(l-tor C, — l-tor Cy,), Q/7,) by 6.6.
Since I-tor C, C X3, Jwo XS, we get
ker(I-tor Cy, ~ I-tor C) € ker(X5 fuw, XS, — X5 fw, XS)

and the order of the later group is bounded independently of m > n, cf.
3.10. Therefore, Za/y,, Z is finite independently of n, and so we obtain as in

chapter 4 for )%,
H
Z ~ K" o DA/(¢,,)

=1

with T3, deg£,; = 6§°. The assertion of the theorem is now evident. O

Replacing U3, ® Q/z, by ker goo ®z, Q/z, tesp. V5 by Z5 at the end of

chapter 4 we obtain from 6.6
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Lemma 6.8 Let H be the cokernel of X(—1)/tory X (~1) = A7), of. 4.14.

Then for n > Q large enough

H =~ Homg (HY Ty, kerg), /7))
~ Homy(ker(I-tor C, — I-tor Cs), /7)) -

The above theorem also gives the following characterization of the Gross

conjecture

Corollary 6.9 Let F = E((;), then the following are equivalent.

(2) 85r° =0 foralln>0.
(i) HY(Ta, DY) = D) is finite for all n > 0.

Proof: Let M, be the field corresponding to the group D{) via Kummer
theory, then by the above theorem Gal(Mo/ Koo )(—1) = Homy,(I-tor Con, /7))
is a A-torsion module. Thus I-tor CLp is finile if and only if l-tor Coore, is

finite. Assume that 6§67 =0 for all n > 0. Then by the above thcorem
0 — AT — DEI™ 5 Lior OTr — A, — D{}, = Itor Coor, — 0
is exact. But
Nr,, & Homg, {faX(~1)",Q/z,) = 0 and N =~ (Q1fz7,)20" @ (finitc)

as well as

D™ ~ D) o (Quf7,)FW" @ (finite)
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cf. 6.5 and 6.6. Therefore, I-tor CI» is finite, and so is I-lor Coor,- Appealing
once more to the sequence gives, H' (I, D)) = D)L is finite. Conversely,

assume that D{);. is finite and consider the sequence

0 — (kergw @1 Qt/z,)r" — Dgg’)r" — l-torCl»
—  (ker goo @z, U/7))r, — Df,?’r,_ — l-tor Coor, — 0.

With the notation from the above theorem, we get for n > 0 large enough,

(ker goo ®2, U/Z)ra = Homa,(2™,Q/7)
~  Homg,((tora2)',Q/z,)
~ Homg,(toraZ, Q/z))
~ (Q,/z')ﬁg"’e(ﬁnite),

and from the sequence we deduce §5" = 0. O

Note that the corresponding result for A is not satisfied, i.e., AR, o~

H3(0%,/7,(1)) # 0, cf. 5.6. There is another trivial consequence of the

theorem 6.7, namely.

Corollary 6.10 Let E be a number field, | an odd prime and Fo, = E(W))
with Galois group Gy, := Gal(Fo /| E). Then fori # 1,

0 — (ker goo @z, Q/7;(i — 1)) — DI (i — 1)%% — I-tor Coo(i — 1)%= — 0

is an ezact sequence, which remains ezact in the caset = 1 as long as we

assume 67 = 0 for all n > 0.
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Proof: By duality
(ker goo @2, U/7)(i — 1)), = Homy, (Z5(—i)% Qu/7,),

and the triviality of Z5(—i)¢= follows along the same lines as for Y5(—i)C,
cf. diagram 2 in chapter 4. The second statement is obvious form 6.9 and

its proof. =

The sequence in corollary 6.10 is one of two which are of intcrest to us. The

other one is
0 — K5_1(0F) ®2, U/z, —» HL(OF, Q/7)(i)) » WK ,(B) - 0,
and we want to find the relation between D{&)(i — 1) and H}(0%, @ /z,(:)).
First we need the following
Lemma 6.11 Let E be a number field, | an odd prime and F, = E((\).
() Letd,:=[F,:E] andi,j €2,i,j#1, then fori=j modd,,
H}(0%,2/1r2()) =~ HL(0%,2/12(3))(i - ).

(it) Fori#1, the cup-product induces an isomorphism
H}(05,, U/2,(i)) = D) - 1).
Proof: (i) This follows from the commutative diagram
Hi(0%,2/r2(i) = @y wHYE, /gl - )"
1 [
HY(0%,Z/12(G))(E = 5) — @pp wH(E,, U/2,(1 - ) (i - 7).
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(ii) For m 2 n > v,

HINOS, 2 (i) —  HA(03,Z/rz(i))
L 4
(03, 2/r2())i -1) - HAO5,Z/1r2(1))(i - 1)
is commutative, and so cup-product and direct limit are compatible. Hence
we get
HLOL, @/n,(3)) =~ lmlimHL(05,2/1va(i)
~ limlimDM(i —1)

= DENi-1).
]

The remaining step is to show Galois descent for HL(OS,Q/z,(?)) resp.
HY(O0L,@/z,()) := imALO0S,Q/7,(7)), i > 2. From the definition of

A},(-,Q/7,(?)) it is clear that we have to consider the exact sequence

0~ HWOZ,Q/z() — HLO5/1E) = B (Byuip H*(Fronr 1i(3))
= HOF,Qfz,())" =0 ,

cf. also chapter 2. Here, the first sum @D,y runs over all l-adic primes

of the field E. Let G, := Gal(F,/E), then the G,-module structure on

@y 1o H*(Fap,, (7)) is defined in the following way., If v € G,, then 7 :

Fop, = Fupp, is an Ey-isomorphism, and therefore we obtain 2 morphism
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¥ 1 H}(Fop , 2i(2)) = H*(Fuqp., Zi(7)), which induces

T el’nh’ f:P(Fﬂ'pn,Zz(i)) —_ el’nh’ 1{2(1'1"‘,“,21(1')) .
z = () — (=) = (v"(z,))

We let G, act on @, (evnlv H’(Fn_,,n,Z;(i))) componcntwise.

Lemma 6.12 With the just defined G, -module structure on @y it H2(Fap, 1i(3)),

the map

locy, = loca (i) : HL(0S, @ /7)(3)) — P (GB 1-12(;7,,,,,“,2,(1')))

P]l palp

is a Gn-module morphism.

Proof: From the commutativity of the diagram

HL(O0S,Q/7,Gi)) 5 HL(05,Q/z/(:))
{ tocs,, 1 tocys,
HY(Fap 2i(i)) 5D HYFarg,, (i)
we deduce
loca(v°(2)) = @pu DB, locs, (v°(2))
= @D, s locy, (7(2))
= @D, 7°(l0c,,(2))

= 71"(loca(2)) -
Q

Recall the definitions of eval{~") resp. eval{~!) on page 70, c.g., let ™ be
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the order of the finite group HO(Fy, Qi/z,(i — 1)), i # 1, then

evally 1) . .
HO(F, Q{1 — i) = 2/l 2(1— i) 257 o(F, Qui/2,(6 — 1)) = 2/im2(i — 1)

is a Gnp-module isomorphism, namely for ¥ € G, and x : G — I the

cyclotomic character, we have

1(eval{~D(p)) = 7(e(1 +1m2))
= x(7)"e(1+1™7)
= (1(e)(1 +1™1)
= evall~(7(y)) .
In the same manner eval{~) resp. @ eval{—") are Galois equivariant maps.
By the naturality of the map c;, : H*(Fy, ., 2i(2)) — H(Fy,,, Q/z7,(1 - 1))",
cf. 1.21, we finally obtain the exact sequence of G,-modules

0 — HL(0S, /z,(3)) — HAH(OS,/z,(3)) » D WINF,,. ) = W EF,) ~0.

all

For ¢ # 0,1, consider the commutative diagram, cf. 5.2,
HL(0%, /7)) - S W (E,)
1l 1 @diag,
H(05, /7)™ = @y (@ W (Fan))™

where diag, : W~)(E,) — (evnln W"(i-ll(Fn.v.. ))Gﬂ is defined in the follow-
ing way. Let a, be a generator of W""(E,) and wi™ .= #WENE,),
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then diag, (a,;):=a € V.’,{"")(Fn'p“) with 2, € {1,.. .,w,“'”} and diag, =
@diag, .

Since cdiEy < 2 resp. cdiFy, < 2, the transfer map tr : H} (P, ,Zi(i)) —
H?(E,, 7;(%)) is surjective, and hence the same is true for tr : W, l'_I)(Fﬂﬂ,“) —
W',("—l)(E,). As for © = 2, it is easy to see that this alrcady forces diag, to
be injective, and since #W")(E,) = #(®,, )y W= (F,,,))%, we get the

commutative diagram with exact rows
0 — I?}g(og-, /7 (i)) - H},(O%,Q:/z,(i)) — Dt W:(i_l)(Ep)

IR it IR
0 — fI}:(Oﬁ,Ql/z;(i))G" — HY05,/,(i))* — Do (GBWW:"'"’(F“.N))G"

- wE) o

11
- WEBE) oo,

Proposition 6.13 Let E be a number field, ! an odd prime, F = E({;) and
F,, the cyclotomic 2j-extension of F with intermediate fields F, and Galois

groups G, = Gal(F,[/E), n < co. Then fori#0,1,
Y02, /2,(6)) = AL(OF, /2 (i)™ .

Prooft For n < oo, see above. We choose successively generators of

w1 Fap ), n 2 0, such that {eval}'."n}n?_o becomes a family of mor-
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phisms compatible with the limits. Then by passing to the direct limit the

assertion follows for n = oo as well. (]

Proposition 6.14 With the notations as in 6.18,
0 — H'(Ga, Q/z;) — H}(0F, /7)) = HL(05,Q/7,)° — 0
s an exact sequence for n < 0.
Proof: This is obvious by 5.2 and 5.4. m

Using the above considerations we also obtain new formulations of the Schnei-

der conjecture, cf. 5.5.

Theorem 6.15 Let E be a number field, Fo, = E(W}), 1 an odd prime and
G := Gal(Fo/E). Then fori#1, the following are equivalent.

(i) H3(0F,9/7,(i)) = 0, i.e., the Schneider conjecture is

valid for E and .

(i) l-tor Coofi —1)8= is finite,

(iii) l-tor Coo(i ~1)g,, = 0.
Proof:  Since @y, 1y W' (Fup,) = WIE,) = (@y,1 W™ (Frp,))
is surjective, we get

Ii.mHl(G,‘, @ m(i-l)(an..)) =0,

pnlp
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-1

and hence

HY(Goo, Hi(03, U/2())) = HY(Gooy HY(OS,, Q/7,(i)))

Hi(0F, @/7,(3)) -

1

By 6.10 and 6.11 we have

H'(Geo, HY(0S,Q/2/(3))) > HY(Go, DE)(i - 1))
& HYGo, l-tor Coli — 1)),

and the theorem follows now in the same way as 5.5. ]

We are now able to state and prove the Iwasawa theoretical description of

the higher wild kernel mentioned in the beginning of this chaptcr, namely

Theorem 6.16 Let E be a number field, | an odd prime and Fo, = E(W))
with Galois group Gy, := Gal(F/E). Then for i > 2, there is an ezact

sequence
0 — (ker goo @2, U/7)(i — 1)) /maz. div. = WKL _,(E) — l-tor Coo(i~1)= — 0,
where maz. div. (ker oo ®z, U/7)(i — 1))%> =~ Kf_ (0F) @1, ¥/7,.
Proof: Fori > 2, I-tor Coo(t — 1)% is finite and so
maz. div. DE)(i — 1)°= C (ker goo ®z, Q/2,(i — 1)) .
Under the isomorphism H4(0F, Q/2,(3)) = D{)(i — 1) we have

K$ (0%) ®1, Q/7; ~ maz. div. Die)i — 1)C= |
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and thus we get the commutative diagram

0— K3t (0%) 1, /7, — HL(OF,Q/1(i)) » WK (E) -0
1 1t !
0— (ker goo ®2, Uf7,(i —1))6> — D£g°)(i —1)%= 5 [Lior Coo(i—=1)F= 0,

form which the theorem follows. (]

Remark 8.17 (i) A 'different’ argument for 6.16 is given by the following.
Since imK3}_,(05) ~ N(i = 1) — ker goo ®2, Uf2,(i — 1), ¢f. 5.14 and
6.7, the above diagram is commutative and since WKE_,(E) is finite, the
same is true for I-tor Coo(i —1)%. But we do not gain any new information
from this. (i) Let N := (toraX(—1))* be the orthogonal complement of
toraX'(—1) in the pairing X(—1) x M — Q/z,, and assume that the Gross
conjecture holds. Then by 6.7 ker goo ®z, Q/2; = N, and thus

(ker goo ®z, Q/2)(i = 1))°= [ K&t (0F) @2, /7, = (H(1 —i)C=)"
This follows from diagram 2 in chapter §{, namely

N =1)% Imaz. div. =~ Homg,(I-tor faX(~i)G.., U/1,)
~ Homg(H(1 - i)G‘”,Q’/Zc) .

Passing to the direct limit in 6.16 implies
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Corollary 6.18 Let §5™ = maz 68, ¢f. 6.7. Then fori > 2, there is an

eracl sequence
0 — (Qfz,(i — ))& = LmWKE _,(F,) = I-tor Coo(i — 1) > 0.

Since ker(l-tor C,, — l-tor Cy) is finite independent of m > n > 0, say of

exponent [* we still have on the finite level
Corollary 6.19 Fori > 2 and1 < v < n—y, there is a split exact sequence

0 — ker g ®, w21/7)(i - /K& (0F) @, wlifz; = WS _5(Fy) = pCu(i — 1) — 0.

and

ker gn @z, B21/2,i = D/ Kt , (05) @y, /2, (225",

Proof: The proof of 5.13 carries over word by word. o

Let X 1= Gal(M/Fe), where M., corresponds via Kummer theory to D),
ie.,
X x D) — Qifz,
is a pairing of A-modules, and since imK$_,(03) ®q, /7, 2 N(i = 1), for
i>2,
tory X x imWK§_,(F) — Q/z,

is a pairing as well. By replacing X by ¥ and US ® Qi/z, by ker goo @1, Q/z,
in the end of chapter 4, we obtain some more analogies of WK _,(+) with

2:—2( )
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Corollary 6.20 Let H be the cokernel OfX("'l)/torAX(—l) — AP of.
4.14. Then foralln >0,

0= (H(1 =)y = WKE_(F,) — (EmWEKE (F.)) -0

is an eract sequence, and there is an integer ny, > 0 independent of i > 2,

such that for all n 2 ny,
0— H® = WKG_,(Fa) = (EmWK§_y(Fn))™> >0
is exacl as well,

Corollary 6.21 If WK ,(F,) = 0 for somen > 0 and i > 2, then
WK _,(F,) =0 foralln > 0 aend all i > 2.

There is also an analogue to 5.17, but clearly we do not get any information

on the number s = s(F./F) of l-adic primes in F,.

Proposition 6.22 WK ,(F,) = 0 for some n > 0 and i > 2 if and only
ifl-torCro =0 foralln > 0.

Proof: By 6.16 we have WK§_,(F,) = 0 if and only if H(1 —:)T™» = 0 and

(I-tor Coo(i — 1)) = 0, from which we deduce
H=0and l-torC, =0.

Using H = 0 and 6.8 we get I-tor C, = 0 for all n > 0 large enough. But

the nerm(restriction) map I-tor C,, — I-tor C,_; is obviously surjective, thus
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l-tor C,, = 0 for all n > 0. The converse is trivial. (]

Combining 2.34 and 5.22 we obtain

Proposition 6.23 Let E be a totally real number field and i — 1 = | mod 2,

then

#WK'ff..z(E) =

#WOE) - (s(1 i) '
n#wNE) |,

Let us return to the case of an arbitrary number ficld.

Proposition 6.24 Let E be a number field, ! an odd prime and Fy, = E(W))

with Galois group G, = Gal(F[E). Assume that the Gross conjecture

holds, then for everyi ez,
Fl-tor Coo(i — 1)% = #AS (i — 1)C> |

Proof: Recall the notation from 4.9. Since the Gross conjecture holds,
Ltor Cp ~ X3 fw, X3, and hence l-tor Coo > imXS fw,XS. From the

finiteness of X3 /w, X3 we obtain by the theory of adjoints, cf. 3.15,
Homg,(l-tor Coo, Qf7)) =~ o X3) .
On the other hand we know
Homg (AS,, Q7)) ~ oY) .
Since X2 /Y3 is finite, we get

0— a(X5) — o(¥3)



6 THE HIGHER ETALE WILD KERNEL 162
with finite cokernel, cf. 3.14. This implies
A = ltorCoo — 0

with finite kernel, and we deduce the formula. a1

Remark 6.25 The previous proposition in conjunction with 5.5 also gives

an allernative proof of 6.15 under the assumption of the Gross conjecture.
The next corollary is an immediate consequence of 2.34.

Corollary 6.26 Let the notation be as in the previous proposition. Then for
i>2

#lors Yo (~i)e, = #(US @ U/n(i-1))°/Kg  (05) @y U/z,
— _ \Ge . Hpp#WE(Ep)
= #H(1-1) —H#W.“—‘“W— )
where Y° := Gal(N3 [Fo) with NS, := Foo( "Y/US).

Another quite interesting application is the following

Corollary 6.27 Let F = E((), I* = Wi(F) and jo resp. 1 as in 4.18.

Assume that the Gross conjecture holds, then for i > 2,

(otDletml-Nti = [T #WEV(F,).
vl
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Proof: Follows immediately from 4.18 and 6.26. 0o

For a given field F, this corollary enables us to calculate Jo and j;, e.g., let
t=2and F = Q({n) withm=1.r, then
Jo=g(F)=1land j, =0,
ie., fn_,. =T in 4.13 and hence
{F)—1

VS — AP g (A/((1+ (1 +T) - 1)

is an injective A-module morphism with finite cokernel.



7 The finiteness of A3 (i — 1)0«

We begin this chapter by discussing the Gross conjecture, i.e., the finiteness
of AS%=, cf. 6.4, and to some extent also its proof, cf. [77]. We also ex-
plain, why we can assume without loss of generality, that the p-invariant
of the cyclotomic 2;-extension F/F is trivial, cf. 7.5. In the second part
we study the Schneider conjecture, i.e., the finiteness of AJ (i — 1)®= and
l-tor Coo(t — 1) for i # 1, cf. 5.5 and 6.15 or 6.24, and its relation to
étale K-theory. This leads then automatically to higher rank formulas for
K$t_o(O%) and WKE_(E).

Let E be a number field, { an odd prime, F = E(({;) and F,, the cy-
clotomic Z;-extension of F with intermediate fields F, and Galois groups
I'n = Gal(Foo [ Fy), n 2 0. As in chapter 4, let LS be the maximal abelian,
pro-l-extension of F,,, unramified outside S, and in which all /-adic primes
are totally decomposed. Then X3 := Gal(L$ /F,,) is a A-torsion module,
cf. 4.3, and the Gross conjecture for F, is equivalent to the finiteness of
X5 /waX3, ef. 6.4. 11 —1 > 1, then we know that X5 (i — 1)/wn X35,(i— 1)
is finite, cf. 5.5. Following P. Schneider, ¢f. [82], we can make an even better

statement.

164
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Proposition 7.1 Leti —1 2> 1, then there is a canonical isomorphism
RED s XS (1= 1) fwn XS (6 — 1) = WEKE_,(F,),
which is compatible with direct limits, and thus we get
R BmXS (i — 1) fwa X5, (i = 1) =5 imW KL ,(F) -

Proof: For simplicity, we assume that n > ng = ng( Fio/ F), i.e., all l-adic
primes in F, are totally ramified in F,, and thus I, ~ Gal(Foop, [Fap,)

Since 1 —1i # 0, we have H'(I',,Qi/z,(1 —1)) = 0, cf. 1.5 or the proof of 5.2.

Hence we get the commutative diagram

HY(02,/z(1-13)) = @y p H' (Fap,., U/7,(1 ~ 1))
1 1
HLO%, /21 =)™ = @y H'(Fuope U/7i(1 ~ i)™,
and
ker (HA(0, @/2,(1 = i) = @,y HY(Faape,, /(1 — i))™)
= ker (HY(0, /7,(1)) = @y .y H'(Faoyp,o, U/2,(1))) (—i)F
=~ Homg (X3, Wi)(—i)T»
2 (X6 -DfwxS(~1))
By Tate-Poitou duality we have
ker (H3,(05,Q/z(1 = i)} = @y, H(Frp,, ¥/2(1 - i)
= ker (HA(05,2,(3)) > @y HH(Fun, 2(1)))"
= WK, (F) .
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The compatibility of A{~") with direct limits follows from the morphisms

involved. O

Corollary 7.2 Leti —1 > 1, then
AS(i = 1) ~ BmWKE_y(Fy) -
Proof: For Y3 := Gal(LS,/FoHS ) as in 4.9, we have
ALG=1) = (Y2 va¥E) G- 1)

> BYI)i~1)

=~ B(YS(i-1)).
Since X3 /Y3 is finite, B(YS(i ~ 1)) = (XS (i — 1)) is surjective with finite
kernel. By the previous proposition wy is an X3 (i — 1)-admissible sequence,

and thus BmX3 (i — 1)/w. X3 (i — 1) = B(XS (i — 1)). Putting all things

together, we obtain a surjective A-morphism
with finite kernel. 0

Consider
li‘mWKzéf__z (F“)

l \ﬂ'i-)
M@E-1)/NGE-1) —»  AS(i-1),
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then the fundamental result in [77} is the following

Theorem 7.3 Leti—1 > 1, and suppose that the p-invariant of Foof I s
triviel, cf. 4.6. Then

T(t—1) : BmWK§E_,(F,) — AS(i—1)
has finite kernel.
From 7.2 we obtain

Corollary 7.4 With the nolations as in 7.3,

T(i — 1) : imW K _o(F,) — AS (i — 1)8=
s a pscudo-isomorphisim.

Regarding the Gross conjecture we have

Theorem 7.5 Leti—12>1, then
w(i— 1) : imWK§_(F.) — AS (i — 1)G

ts a surjective A-module morphism with finite kernel, and the Gross conjec-

ture 15 valid,

Proof: Consider the commutative diagram with exact rows
0— kerge @z, U/z,(i —1)/N(i - 1) = EmWKE (F) — ltorCu(i—1) =0

! l l
0— US®Uz(i-V/NiE-1) — UmKYE,(F) — AS(i-1) =0

]
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cf. 5.11 and 6.18. Then we deduce the exaci sequence
0— (kergoo @z, Ql/z,/,/\f) (i—1) - kerx(i—1) — (Uﬁ, ® Q:/z,/ke,-gm ®z, Q'/Zr) (i-1).

Since the dual of the left resp. right group bas trivial g-invariant, cf. 4.13
and 6.7, we can assume without loss of generality that the y-invariant of the

cyclotomic Z;-extension F,/F is trivial. Hence we obtain from 7.4
w(i—1): imWKE (F.) — AS(i—1)

is a pseudo-isomorphism. Since (ker 9 Oz, U/2,/ N) (1-1) = (Q/z,(i = 1))5<°,
cf. 6.7 or 6.16, this already implies the validity of the Gross conjecture and

an isomorphism
BmW K, (Fn) — ltor Coo{i — 1) .
Therefore, we are left with showing that the canonical map
7 i ltor Coy — AS,

is surjective. But this is obvious, since the Gross conjecture holds, and thus
in particular

XS Jwpn XS ~ l-tor Cy .
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Remark 7.6 As mentioned carlier, ¢f. 5.6, the Jact, that MIN — AS
admils a pseudo-splitting, already implies the Gross conjecture,

Regarding the Galois invariants A3,(: — 1) and I-tor Coo(i — 1), we know

the following

. AfoG“ and l-tor CS= are finite, since the Gross conjeclure holds, cf.

6.4 and 6.24.

o AS (i ~1)%= and l-tor Coo(i — 1)8= are finite for i — 1 > 1, since the

Schneider conjecture is valid fori > 2, ¢f. 5.5 and 6.24.

When considering the Schneider conjecture it turns out, that the idelé class
group I-lor Co, and the higher wild kernel W K¢ _,(E) scem to be the right
objects. This does not come as a surprise; namely M. Kolster proved a
reflection theorem for WK$_,(E) generalizing the well-known "Spiegelung’

theorem of Leopoldt, cf. [53].

Lemma 7.7 Let i € Z, and suppose that ;1 H = 0, where H is the finite

A-module dcfined in diagram 1 chapter §. Then
0 — eiaker goo @z, Q/7,(i —1) — €21 DI (i — 1) = &i_yI-tor Coo(i — 1) =0
is a split exact sequence of A-modules, and thus
0 — (ker goo ®z, U/z,(i — 1)) — DI} i — 1) 5 l-tor Cooli — 1) — 0

is split ezact as well.
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Proof: We alrecady know the exactness of both sequences, cf. 6.10. Since
the Gross conjecture holds, we have ker g, ®2, Q/z7) = N, where N =
(toraX(—1))}* is the orthogonal complement of the A-torsion submodule of
X = Gal(My/Fy)(—1). The split exactness of the first sequence—and
thus of the second as well— follows now from duality and the assumption

€i-1H =0, cf. chapter 4. ]
For all » > 1, the Hochschild-Serre spectral sequence
E}" = HYGoo, H(03,,2/112(2))) = HEF(O%,2/12(3))
almost dcgenerates, i.e., there is an exact sequence
0~ HY(Geo, H{05,,2/12(3)) — HA(OF,2/1°2(3)) = HA(OS,, 2/12(i))°* — 0
and an isomorphism
HE(OE,2/12(3)) = HY (G, HY(0S,, 2/ 112(3))) .

All remaining terms are trivial. Clearly HS,(05,,2/1v2(:)) = 2/12(i), and

fori€zand v > 1, we sct

J-H}(0%,2/12(3)) == HA(OF, 2/1'2(3)) | HY (G, 2/ 1v2(5)) »

and similarly

f-H4(0%,2/12(3)) := HL(OF,2/12(3)) | HV(G oo, 2/ 12(i)) -
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Then for G, := Gal(F,/E), we have

ny

f-Hi(OE, 2/ 1*2(3)) = HY(OS,,2/12(3))° and f-H} (05, 2/12(3)) ~ J- 103,217 (i)™
as well as
§-BH(08,2/12(i)) = Y08, 2/12()™ and J-BL(05,2/1-2(5)) = 11305, 2/t24i))"™
Let I° = #W)(F) and suppose that €;_yH = 0. Then for 1 <v<e+n, we

obtain the commutative diagram with exact rows

0 (kergu/p 8z, B/2(i = 1% — [-IN(052/r2d)) B WColi - 1)

! | tres l

0= plkerge ® Ufz)(i—1))S% —  LDENi—1)6= wColi— 1) 0.
Remark 7.8 (i) Let v = e + n, and suppose that i — 1 Z 0 modl. Then

ker gu/up ®z, wi7)(i — 1) is a cohomologically trivial G-module, cf, [64]

or [83], and hence the upper right, horizontal arrow in lhe above diagram is

surjective. (1i) Leti > 2, then I-tor Cooi —1)® is finite, and thus for v > |

large enough, the bottom row is ezact without assuming €;.¢H = 0. Bul the

disadvantage is clear, namely v > 1 depends on i > 2 and we can not gain

eny information on the inleresting case i < 0, [lence the tmportance of 7.7

is now evident.

Theorem 7.9 Leti—1# 1, and suppose thatl ;. H = 0. Assume that there

ezisin 20 and v, 1 < v < e+n, such that

rkpl-tor Co(i = 1)% =0,
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then

Hi(OF, Q/7,(:)) = 0.

Ifi— 1% 0 modl, the converse is also satisfied for v = e + n.

Proof: By 6.15 the triviality of HZ(OF, Qi/z,(2)) is equivalent to the finite-
ness of I-tor Coo(i—1)%, and thus the first part is clear by the above diagram.
The kernel of wi-tor Co(i —1)% — witor Co(i — 1) has bounded or-
der independently of n > 0. Moreover, if sp : pltorCy (:=1)F= —
wD{}(i —1)%= denotes the morphism induced by the section I-tor Co(i —
1) = D{)(i-1), then pnores=osw : wl-tor Cop(i — 1)5 — pl-tor Cu(i — 1)~
is a section of wl-tor C(i —1)% — pl-tor Co(i — 1)®=. Hence by 7.8 the

sccond part follows as well. m

Corollary 7.10 Suppose that there ezist n > 0 and v,1<v<e+n, such
that

rkpltorC, =0,

then for all i # 1 with g;_ H =0,
Hi(OE, @fz)(i)) =0.

Let us now consider negative twists, i.e. the case i < 0, in particular. If

we want to relate this to étale K-theory, which is rather the case i > 2, it
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becomes clear that we have to use cup-product arguments. To be precise, lot
dn 1= [E((in) : E], then for i = k mod dand 1 < v < 7, the cup-product

induces an isomorphism, cf. 1.3 and 6.11,

H3(02,2/112(3)) = Hi(0$,2/1-2(k)) (i ~ k)
resp.

H(O8,2/10(3)) = BL(08,2/w2(k))(i = k) ,

which is compatible with the cup-product in étale K-theory, cf, [20], c.g., for
k2> 2,

HiOB.2/r2()) = HA(O$,2/pa(k)i - k)
1 1
K3 ,(08) @, Lf1rz, = K$_2(0F) ®2, 1t/ 1og, (i ~ k)

is a commutative diagram, cf. 2.20.

Theorem 7.11 Leti # 1 be an integer and d, := [E((n) : ). Then the

Jollowing are equivalent.
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(i) HZ(03%,Q/7,(3)) is finite, i.c., the Schneider conjecture
ts valid for E and .

(ii) Forsomen 21 andi=kmodd,, k>2,

rkn K& _,(08) =0.

(iti) Forsomen>1 andi=kmodd,, k> 2,

rkWKE_,(E)=0.

Proof: Consider the exact sequence
H2,(0%,1,(3)) 55 H2,,(0%,21(3)) - HZ(0%,2/1m2(3)) - 0

arising from 0 -+ (i) X% z(i) — Z/;z(i) — 0. If H2 (05, 7,(4)) is
finite, then rkm H3(Og,2/172(i)) = 0 for some n > 1. The cup-product
isomorphism implies rki» H3,(0%,2/1n2(k)) = 0 for i = k mod dn, k > 2, and
hence rki K§f_,(OZ) = 0. Similarly for the converse. The equivalence of (ii)
and (iii) is obvious, since the order of W*"V)(E,) is bounded independently

ofk-—-l mod d,. m]

Let us consider the Leopoldt conjecture more closely, i.e., the case i = 0 in

the Schneider conjecture. Since for i # 0, H(Gs, Q/z,(i) = 0, we have for
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=

n>1landd:= maz(d,,2)
H(Geo, ¥/7/(d)) ®2, wT1/2; = H'(Goor 2/ 172(d)) -

But H%(Goo, U/z,(d,)) =~ HY(OF, U/2,(dyn)) = L-tor HL(OF, 2:(d,)), and we
get the commutative diagram with exact rows
H(Goo, /2(da)) ®r, 527, S HGuo,2/12(dn)
! !
0  K¥ _ (O ®nwlfy — HLOEZ/rdy) — wkE (05)—0.
Since I-tor K3y _ (Og) contains an clement of order I", we deduce the fol-

lowing

Proposition 7.12 The number of independent cyclic ezlensions of E of de-

scee I*, which are unramified outside 1, is given by

rhn Hi(05,2/177) = 1 4+ ro(E) + rkin K&, (O3,

2dn—2
where d, = maz(dy,2), d. := [E((w) : E).
For the {"-rank of the higher wild kernel of E, we have the following

Proposition 7.18 The number of independent cyclic extensions of E of de-

gree I*, which are locally embeddable inlo a Z;-extension, is given by

rhn HY(05,2/1n2) = 1 + ro( E) + rknWKE, __(E),

2d,-2

where d, = maz(dy,,2), dn := [E((w) : E].
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Proof: This is clear, since

0> K& (05) @y, 22i/7, — HL(05,2/1r2(da)) » wWKE_(E) >0
is split exact and A}(03%,2/1"7) classifies such extensions, cf. [74]. 0

The results in 7.11-7.13 are enough motivation for us to compute higher rank
formulas for K§! ,(03) and WKS_,(E). The following approach is due to
M. Kolster in the case K(Og), cf. [52]. Since it goes through for all : > 2
as well as for the higher wild kernel, we consider it now briefly.

For : #£ 0 and v > 1, we have
HGoo, U/7(3)) @2, 5%/7; = H(Goo, 1/ 172(3))
cf. above. Thus for i > 2 and v > 1, we get the split exact sequences
0 — fa-K§t_\(OF) @z, w8/1) — [-HL(0F,2/1v2(3) — v K§,(0F) — 0
and
0= fa- Kt (09)®uwlifz) — f-HY(03,2/12(i)) — wWKE _,(0F) - 0,

where fy,-K§_,(OF) := K§t1(0F)/1-tor K _(0%). Since we know the Z;-

rank of K§!_,(Og), we obtain the following

Lemma 7.14 Lett > 2 and v > 1, then

rkw K3l 5(0%) = rku f-Hi(0F,2/142(i)) — ki(E)
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-1
-1

and
rkp WK§_,(0F) = rkun f-HL(03,2/1r2()) - ki(E) |
where
K(E) = ri(EY+r(E) ifi=1mod?2 .
ro( E) if i =0 mod?
Thus in order to calculate higher rank formulas for K£f_,(03) and W K3!_,(E)
we are left to determine the higher rank of f-H}(0%,Z/1v2(i)) and f-11L(0%,2/11(3)).

By Galois descent we haveforn > 1 and v > 1,
f-HY(05,2/12()) = f-HL (05, 2/r2(i))™

and
f-B3(05,1/12()) = f-BH(03,2/12(i) ™" ,

cf. above, and if v € e+ n, the cup-product induces isomorphisms

f-H4(OF,2/1r2(d)) = f-H} (03, 2/vra(1))(i — 1)%

and
f-H}(0F,2/a(3)) = [-H}(03, /(1)) — 1)% .
Ifi— 1% 0 modl and v = e + n, then we can compute the {“-rank of

[-H}(0%,2/1°2(3)) and f-H},(0%,2/1v2(i)) via the exact sequences, cf. 7.8,

0— (Uf/p,, ® #2/7(i — 1))"" — f-H}OS,2/pz(i)) = pAS(i—1)% = 0
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and

] Gn =~ . .
0 — (kcr.g"/plv ®I( ‘Luz:/z‘(z - 1)) —_ f—}f}t(og, 2/192(1)) —_ [vcn(z - I)Gl'l — 0 .

Namely from 7.14 we get the following

Theorem 7.15 Let E be a number field, | an odd prime, F = E(() and F,,
the cyclotomic I;-ezlension of F with intermediate fields F,,, n > 0. We set
Gn = Gal(FL.[E), Go = A, and let I° = #W,(F). Furthermore, let i > 2,

and suppose that i — 1 £ 0 modl. Then for1 < v <e,

rkw K ,(03) = rhw (US /e ® B2/2(i — 1))° = K(E) + rhw AS(i — 1)
and
riu WK ,(E) = riy (Fer 9o/ ®x, $21/2,(i — 1))~k B)+rku Coli=1)2 .

Forv=e+n,n>1, we have

rhwK§t_2(08) = rkw (U3 /e ® 52/2(i - 1))6" - ki(E)
+rk (!"Ag(i - 1)6“/ imol_, (i~ 1))
and
rku WK o(E) = rhu (Ker ga/pp @, 52/2,(i = 1)) 7" - k(E)
+rky (#Cali = 1) fiman_ (1= 1))
where ki(E) is as in the above lemma and a?_,(i—1) : p1 AS_ (i = 1)t =

wAS(E = 1)% resp. 42 (i — 1) : p1Cpoy(i — 1)G=1 = W Cu(i — 1)C~,
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As mentioned earlier, these formulas were already proven for K;(0%) in [52]
as well as similar results for the prime I = 2. It is also remarked there,
that these rank formulas are not the sum of two positive integers and an
illustrating example due to J. Hurrelbrink for the case I = 2 is givea. However

for an odd priine I, we have the following

Corollary 7.16 Let the notations be as in the previous theorem, and suppose

that e;_;H = 0. There exisisn > 0 independent i > 2 such thal forv = e4n,

rkn K5t ,(OF) = rk (I”Ag(i - 1) /im a_,(i— 1))

and

rkwWKE_(E) = rky (#Cali = 1) fimap_ (i = 1)) -

Proof: Since for n > 0 large enough, H(i — 1)% ~ ker(pAS(i — 1)% —

wAS (i - 1), we get by assumption
oo g

(U8 ® 22726 - 1) ™ = 0 (US @ /(i - 1))

But (US @ Qi/z,(i — 1)) ~ (U/2,)5E) @ (torg, Y5(—i)c,,)", and the second
summand is finite, independent of i — 1 % 0 mod{. The proof for W K§}_,(E)

carries over word by word. o

If we impose a further condition on i and H, we get an even betler result for

WKS ,(E), but by a different method. Namely
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Proposition 7.17 Let the notations be as in 7.15. Furthermore assume that
giodl = 0 and ey = 0. Then there erists n > 0 independent of i > 2

such that forv=c+n,
rhWKS_(E) = rkpl-tor Ca(i — 1)% .
Proof: Since¢;_yH =0, we get an isomorphism
WKE_J(E) = ltor Coo(i — 1),

cf. 6.16. Morcover, the other assumption implies, that there exists n > 0

independent of ¢ 2 2, such that for v = e +n,
‘vcoo(i -_— l)G“ o~ ]vcn(i — I)G“ N

cf. the proof of 7.9. 0

Remark 7.18 If E is a totally real number field and § = 1 mod 2, then
gill = 0, c¢f. chapler 5. Thus the extra conditions in 7.16 and 7.17 are

satisfied fori —1 =1 mod 2.

The above rank formulas are obviously of a rather theoretical type. Let us

add at least one corollary, from which we can deduce divisibility criteria for

K3i_2(Og) and WK ,(E).
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Corollary 7.19 Suppose that i — 1 # 0 mod | and {F : E] = 2, and lef

1<v<e Thenfori—1=1mod?2
rkp K8 ,(OF) = m + rkpker(AT — AS)

and

rkn WKE_,(E) = m + rkpker(l-tor Cr — l-tor Cy)

where m is the number of I-adic primes in E, which decompose in I, and for

t—1=0mod?2,
rhwK£ (OF) = ai(B) — 1 + rkn AS,

and

TkguWKﬁ_z(E) =g(EY—1+rkpl-lorCg,

where g(E) denotes the number of I-adic primes in E.

Proof: We just show the formulas for K§!_,(O0%). The proof for W K$t_,(E)

again carries over word by word. Consider the surjective morphism
Nep®id : UR/p ® $2/1 — US © &2/1 .

Then for i — 1 = 1 mod 2, (UF /. ® $2/2(i - 1))2 ~ ey(UF /1 ® %2/7) =
ker Np/p ® id, and thus

rhw (VS e @ 52/2(i = 1)) = m + k() .
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Similarly, AZ(i — 1)8 & ker(A} — Af). For i — | = 0 mod 2, we have
pAS(i = 1)2 = W AS® ~ L AS
and
(V& e @ #2/20 = 1)) = (Neye @ id) (Uf /. ® $2/2) = US © 322 .

Hence in both cases, the corollary is an immediate consequence of 7.15. O

Example 7.20 Let d € Z, d # 1 and square-free. Set E = Q(Vd), K =
Q(v=3d) and F = E({) = Q(Vd,/=3). Let k() resp. hS(:) denote the

ideal resp. S-ideal class number, and assume that i —1 % 0 modl. Then for

i—1=1mod?2,
3 JKE (OF) ifand only if d#6mod9 and 3 JhS(K)
if and only if d#6mod9 and 3 Jh(K),
and fori—1=0mod?2,
3 IK5_2(0%) ifandonlyif d#1mod3 and 3 JhS(E)
ifand only if d#1mod3 and 3 JR(E).

Of course there are analogous results for WK _,(E). But since the order

of the idelé class group is rather unknown, we would rot get any explicit

statements.



8 (l,i)-regular fields and Galois descent

Several authors have studied the arithmetic of I-regular fields, cf. [26], [27),
[45] and [71]. Following a suggestion by T. Nguyen Quang Do we introduce
the notion of (I,1)-regular fields, and relate this property to étale K-theory,
which then leads to the problem of Galois descent.

As usual let £ be a number field, ! an odd prime, F' = E({) and F,, the
cyclotomic Z;-extension of F' with intermediate fields F,, Iy = F. For
n < o0, we set Gy, 1= Gal(F,/E), G := A.

For any number field K, let K be the maximal pro-I-extension of K, which

is unramified outside S and X3 := Gal( K$/I)*. Then
X§ ~ HL 0%, /7)),
where * stands for the Pontryagin-dual, and thus
XS a gt g s
where T% is the (finitc) Z;-torsion submodule of X£. Morcover for all v > 1,
wTg = (coker : HL(OF, ¥/z)) 5 HL(OF, /1))

and there is an exact sequence

0= (WTR) - HA(OF,2/t'2) ~  (ker : HA(OF, /z)) 5 1305, /7)) —0.

2

@[y

183
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As a special case we get the following result, quoted as the wrong duality in

[10] and [55])-

Proposition 8.1 Letl £ v £ e+n, and suppose that the Leopoldt conjecture

is valid for F,,. Then there is a pairing

w17 % K§(07) @2, w2ifz(~1) = pe
where T :=T§ .
Proof: By assumption there is a pairing

wT3 x HA(03,2/1v2) - /1y .
Since (v € Fy, we get
T3 x H{ (03, 2/r2(2N-1) = 2/r2(1) = v

and the assertion follows from the isomorphism

H(05,1/1r2(2)) ~ K$(0S) ®1, /1,

cf. 2.20. 0

Of course there is also the notion of the right duality. Namely, let K be a

number ficld containing (i, then we have exact sequences

0  HenlOX1)/1.HY (O%,72) — HMO%,Z/iz) — (HA(OS,7,) —0

1

0= Hon(Ok1@N/1. 1Y, (05, 1,(2)) — HMOE.,2/12(2)) — K&O0%)

cont

-0,
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o
o

where the vertical isomorphism is induced by the cup-product. Let I be the

compositum of all Z;-extension of K. Then

Ax

HepndOR T 1. 113, (08.,7))

cont
= {Imodz®ae AP(-1): K(Ja) C i}

and

Crx = Hgont(offiz!(2))/l'H1 (Oi-,l;(?))

cont
= {imodz®ce AP(1): {¢c} =1in K»(05)} .

In [12] J.Coates posed the question, whether
A =Ck ,

in other words
KEHOR) =~ (HE(0%,1)

~ (TR TEY
and thus a pairing (the right duality)

TE/-TE x (KEOR)(=1) = .

But as R.Greenberg showed, this is wrong in gencral, <f. [29]. He also proved
that Coates’s question has an affirmative answer for the field F., provided
n > 0 is large enough and the Leopoldt conjecture is valid for F,.

Next we make the following
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Definition 8.2 Let E be a number field and | an odd prime. Fori € 2, E
is called (1,1)-regular if H}(0%,2/12(7)) = 0.

From the above sequence we immediately get

Corollary 8.3 E is (I,0)-regular if and only if the Leopoldt conjecture is
valid for £ and T = 0.

Corollary 8.4 E is (I,1)-regular if and only if ¢(E) = 1 and 1 JhS(E),

where gi( E) is the number of l-adic primes in E and hS(E) 1= #A%.

Proof: Since HZ(0F, Q/z,(1)) ~ (Q/7,)*E)-! and U§ ® Q/7, is the max-
imal divisible subgroup of H},(0Og, Q/z,(1)) the assertion is obvious from the

exact sequence
0 - U @Q/fz7 — HL(O0L,Q/2,(1)) - AS = 0.
O
The property (1,)-regular depends just on i mod d, d := [F : E], and in the

view of the previous corollaries we can assume without loss of generality that

i>2
Corollary 8.5 Leti > 2, then E is (1, t)-regular if and only if K& _,(0$) = 0.

Proof: Since Kff ,(0OF) ®z, Q/z, is the maximal divisible subgroup of

H},(OF,Q/1,(?)), the assertion follows again by the exact sequence

0 — K5 1(0F) ®1, /7, —~ HY(OF, U/z,(i)) — K§i_,(05) — 0.
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O

In [27] and [71] (4,0)-regular ficlds are called L-rational, and I is called -
regular if E is (,0)-regular and Q((; + ¢;!) € E. From the above and the
rank formulas in chapter 6, the equivalences for I-rational resp. l-regular

fields stated in [27] are now all obvious.

Remark 8.6 There is also an analogous resull for the vanishing of W K4_(E),
t 2 2. Namely fori € 2, E is called (l:z')-regular, if the kernel of Tr,(l)(i) is
minimal, i.e., ker 1{)(i) = H., (08, 1i(?)) ®, 12:/7). Then X§ has 1o be
replaced by the so-called Bertrandias-Payan module X5, ¢f. [75], and the
corollaries 8.9-8.5 as well as their proof carry over word by word. In par-
ticular since w{*)(1) is the trivial map, the properties (I,1)-regular and (I,1)-
regular are just the same. It would be interesting lo know, whether one could
modify the property (I:i)-regular in such a way that it remains the same for

i#1 and (I, 1)-regular is equivalent to the vanishing of l-tor Cj.

For a finite Galois l-extension L/E with Galois group G, G. Gras studied
Galois descent for the torsion submodule 7, which certainly requires a well-
defined G-action on T¢. This can be done in the following way. Let S,qm be
the union of S and all ramified primes in L/E. Then T5" is a G-module

in a natural way, and by [74] there is an exact scquence

0= @ ully)—TFm TS 0.
PESram—5
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Thus 77 becomes a G-module. Under the assumption that the Leopoldt
conjecture is valid for L (and hence for E) G. Gras then proved a genus
formula for (T )¢ /T§ involving the so-called Gras logarithm, cf. [26]. Healso
introduced the notion of primitive ramification, cf. [26], and then together

with J.-F. Jaulent proved the following, cf. [27]

Theorem 8.7 Let E be a number field containing Q((i + ("), where l is an
odd prime, and L a finite Galois l-eztension of E. Then L is (I,0)-reqular if

and only if E is (1,0)-regular and L/E is primilively ramified.

If E contains Q((; + {;!) and so does L, the property (I,0)-regular is equiv-
alent to the vanishing of K5{(O3) resp. K&(07), cf. 8.5. Hence the above
theorem has to be seen as a going-up lemma for the triviality of K§'(-). We
see that the generalization of 8.7 to (l,i)-rcgular fields depends on Galois
descent for étale K-theory, which we consider now.

Let L/E be a finite Galois extension with Galois group G, S the set of infi-
nite and l-adic primes, and T’ = S,,,» the union of S and all ramificd primes
in L/E. To begin with we consider Galois descent for the odd-dimensional

étale K-theory.

Lemma 8.8 Fori > 2, there is an isomorphism

K& (E)~ K& ,(L)° .
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Proof: Since Spec(L) — Spec(E) is clearly an étale Galois covering, we

have the Hochschild-Serre spectral sequence
E3? = HP(G, Hon L, 2u(3))) = HEXS(E, T(3)) .
Since H2 (-, Zi(i)) = 0 for i # 0 by 1.17 and cd;L < 2 resp. cd)F < 2,
EfM=0forqg#1,2.
Hence we obtain an isomorphism
HY,o (B, 2(3)) = HL(L,1())° .
The assertion follows now directly from 2.20, cf. also 2.23. o]

For the odd-dimensional étale K-theory of rings of S-integers, we proceed as
follows. By 1.20 we have a commutative diagram
HL(0500) 5 Hiw(L,2()
1 iy
Hy(0f,n() = H'(Lu())
and we define the G-action on HY ,,(0f,Z(i)) (and hence on K£!_,(05)) via

the isomorphism
Hgont(of’l Z;(t)) :" Hgont(Ll Zl(i)) *
This is justified by the following. By 1.19 we have the exact sequence

0 — H(0%,Z/ra()) - HM(L,Z/1a(i)) — %H"(’%,Z/Pz(i -1)),
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where kqy is the residue field of L corresponding to . There is a natural
G-module structure on @qgs Ho(ky,2/1v2(i — 1)), which is functorial u the
coefficients, cf. chapter 6. Thus passing to the projective limit gives a nat-
ural G-module structure on H}{Of,2,(1)), which by the above commutative

diagram is compatible with the G-action on H},(0F,7(i)). Summing it up

we get

Lemma 8.9 Fori > 2, there is a natural G-module structure on K&_ (O5)

and an isomorphism
K§t,(08) 5 K,(05)°

The situation for the even-dimensional étale K-theory is more complex. Since
we are mainly interested in a going-up lemma for the triviality of K&_,(0%)

resp. K§! ;(0F), we assume from now on that L/E is a cyclic l-extension.

Since
Spec(07) — Spec(0%)
is an étale Galois covering by construction, we can apply a spectral sequence

argument and get the following

Lemma 8.10 Let L/E be a cyclic l-eztension with Galois group G and T

the union of S and all ramified primes in L{E. Then fori > 2, there is an

exact sequence

0 — HY(G, Kit 1(OF)) ~ K§i_,(OF) — Kt ,(0T)° — H*(G, K§_,(0])) - 0
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and
#K3,(0F) = #K8_,(07)° .
Proof: Coensider the Hochschild-Serre spectral sequence
B2 = HP(G, Hae(OF, 2:(i))) = HER(OF, 24(3)) -

Then HE, (-, Zi(2)) = 0 for q # 1,2, cf. proof of 8.8, and hence we get the

exact sequence
0 — HYG,HLu(OL () — Han(OF, () — Han(OL,1(0))°
- H¥G, Hl. (0L, 1(i))) —0,
and for p > 3, isomorphisms
HPY(G, H2,,,(OF, 2(i))) S HP(G, Hiynt(OF, 1))
Since G is cyclic, we obtain for p > 3
HP=(G, HZ, (01, 1(i))) = HP™(G, Hiont (O, 22(3)))

and the second assertion follows from the first and the fact that the Herbrand

quotient of a finite G-module is trivial. a

Corollary 8.11 Let the nolations be as in the previous lemma. Then for
i > 2, K§_,(O7) satisfies Galois co-descent, i.e., the transfer Tr induces an
tsomorphism

Tr: K§f_,(0L); > K& _,(0F).
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Proof: Since cdiOF <2, thetransfer Tr: HZ(0,2/1v2(3)) —» HZ(OT,2/12(:))
is surjective, cf. {85). But HZ,,,,(OT, (1)) is finite, and thus H2 (0T, 2/ (i) ~
HZ..(07,7,(i)) for » > 1 large enough. The corollary follows now from

8.10. (]

Since Spec(0f) — Spec(OZ) is not an étale Galois covering, unless L/E is
unramified outside S, we have to argue differently for the Galois descent of
K3!_5(07). Recall the localization sequence in étale K-theory, cf. 2.30,
0 — K3 ,(0F) — Ltor K3t (L) — €D K 3(ky) — 0.
BES
Hence for § C T, we get the exact sequence of G-modules
0 — K3 ,(07) = Kff_,(OF) — €B K3l _a(kz) — 0
9el'-§
as well as a corresponding sequence
0 — HZ(0F,213)) = HL(OL, 2()) » D HZ.(Ls,2i(i)) - 0,
TS
cf. chapter 6 for a discussion on the G-module structure. Note, that for g JI
and i > 2,
Ho(km Ql/l,(i - 1)) = HI(L!B’ Ql/zl(i))
~ HEo(La, T(3)) -
Identifying H°(E,,Qi/z,(i)) with its image under the diagonal
HY(E,, @/7,(t)) = P HO(Lq, ¥/7,(3))

3p
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gives a spectral sequence

E® = HP(G, @D H(Ly, U/2,(3))) = HP3(E,, Q/z,(i)) .

2lp

In the same manner as above, cf. 8.10, we get the exact sequences

0 = HY(G, @, H(Ls /7)) — HY(Ey, /7)) = (@app H (Lo, ¥/2(0)))°
= HY(G,@q), H(Lo, U/7,(1))) — 0

and

0 = HYG,@gpy Hane(La,1(0)) = Hae(Eny1i(3)) — (@upp Hoe(Lw, 1()))°
= HYG, @y Homs( Loy (i) — 0.

Since G is cyclic, kernel and cokernel of H?2

cont(EMz'(z)) —+ (lep com(L'Jh zf(t)))G

are of the same order, and we obtain from 8.10

Theorem 8.12 Let L/E be a cyclic l-extension with Galois group G, S the
set of infinite and l-adic primes and T' the union of S and all ramified primes

in L/E. Then fori> 2,

#K3_,(05)°
FKE,(05)

where Tr : HY (O, 1(?)) — HL,..(OL,2i(?)) is the transfer and Ng :

= #tcoker (Héom(ogs (i) imTr— @ Hiond EoT(i)}/im NG) ;

pET~S

Doty Hons(Ls 2(3)) = Bty Hl( Lo 2i)) i the cohomological norm map.

Even if the order of @,¢7_s Heont(Epy Li(2)) /im Ng can be easily computed,

cf. 8.14, the above formula is practically inaccessible, which is not surprising
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since primitive ramification is of the same type. But the theorem gives us at

least some information, which generalizes a remark in [26)

Corollary 8.13 Let the notations be as in the previous thcorem. Suppose
that # K& ,(05) = #K&_,(OF). Then the number of vrimes, which are
ramified outside S, is less or equal to 1 4 r(E) 4 ro(E) if i — 1 = 0 mod 2,
and to 1 + ry(E) ifi —1=1mod?2.

Let us consider the case that E is a totally rcal number ficld and i — 1 =

1 mod 2. Thus HL,(OFL,2i(i)) ~ HY(OE,Q/z)(?)) is finite and cyclic.

Firstly, we need the following

Lemma 8.14 Let L/E be a cyclic l-estension of local fields over Q,, p #
I, and G the Galois group. The ramification indez and residue degree are

denoted by e and f. Furthermore, let q = #E be the order of the residuc
field. Then fori > 2,

#H(G,HO(L,Q/2,(i))) = coker(H'(E,Q/z,(3)) = H'(L,/7,(:))°)
= [min{u(e)uie’ ' -1)}

Proof: Let H C G be the inertia group, and K its fixed field. Since ! #

p = char(E), L/K is tamely ramified and cyclic, thus elgf — 1. Furthermore

Hi(L,Q/2/(3)) = Hi(K,Q/z,(3)) for j = 1,2, i.e., Hi(L, /z,(i)) is a trivial

H-module. Hence

HY(K, Q/7,(5)) 55 H (L, /(i) = H(K, /z,(3)),
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and taking G/ H-invariants yields
HY(B,@/7,()) 25 H\(L,Q/7,(:))° = H'(E, @/7,(1)) .

Since HY(E,Q/z,(i)) ~ K#_5(E) is cyclic of order (') the lemma

follows. Note, if L/E is ramified, then
min{vfe),n(¢"' - 1)} > 1.

a

For cach finite prime p C E, let e, be the ramification index in L/E and
g = #k, the order of the residue field of E,. Since for j = 1,2,

H(G, D H(Lg, U/2)(3))) > Hi(Gy, HO(Lo, U/2,(3)))

Pp

non-canonically, where G, € G is the decomposition group with respect to
p, the above lemma enables one to compute the order and structure of the
cokernel of

D H(E, /1)~ D (D H (L, ¥/2,())) .

peT-S pET-S gip

If L/ E is a cyclic l-extension of totally real number fieldsand i —1 = 1 mod?2,

onc can then calculate the order of

HYG,H(L,@/z(1)) ~» D HG,D H(La, ¥/7,()))

pET~8 Plp
and thus of # K& _,(05)% /# K& _,(0S). We omit the details here and rather

consider the case when K§f_,(07) satisfies Galois co-descent.
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Proposition 8.15 Let L/E be a cyclic l-eztension of totally real number

fields and i — 1 =1 mod 2. Then

#K5(05)° _
#ERE0F) ~

if and only if one of the following is satisfied
1. L{E is unramified outside S.

2. There is ezactly one prime p, which is ramified oulside S, and w{')(E) =

wp)(Ep) (# 0).

In particular, L is (1,1)-regular if and only if E is (I,1)-regular and one of

the above conditions is salisfied.

Proof: Assume that #K% _,(05)% = #K& ,(0%). Then

BB, /2,()Tr(HYL, /z,(i))) = D H(Epy Q/2,())/Tr(H(Ly, /2,(5)))

pET-§

is surjective. Thus T = § or there is exactly one prime p € T — § and
w)(E) = wf)(E,) by 8.14. The converse is also clear. Since K ,(05)% =0
if and only if X3! ,(Of) = 0, the second part follows directly from the first
and 8.5. o

Example 8.16 Let L be the decomposition field of f = X — 12X 4 14 and
E = Q(v5). Then L and E are (3,2) = (3, 0)-regular.
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Proof: [ is (3,2)-regular by 7.20, and the conditions of the above propo-

sition are satisfied. a
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