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ABSTRACI 

. 1h<~ theory ot self-tuning regulators and related 'toPics in 

~inear ~~tic contro~ theory have been examined. A unifying 
" 

treatment of the theory of self-tuning regulators has been .presented, 

and an attempt made to clarify the confusion surro~ding certain 

aspects of these regulators. The notation is that of Box and Jenkins 
• 

(1970) . 

Self-tuning control of a steam jacketed stirred tank was 

successfully implemented. The experilOOntal program was designed to 

illustrate points from'the theory that have caused confusion... in 

previous industrial and pilot plant implementations. 
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GrAPTER 1 

INTROruCTlO:-J 

~/"Ih~casing nwnber of industrial processes are being controlled, 

by digital comp~rs. In many ,instances, the control objective is to keep 

the process outp~t as close to the desired setpoint as possible. Classical 

design techniques used to tune feedfonvard or feedoack control loops t 
. , 

require the process output to have a satisfactory response when subject to 

a deterministic forCing function or satisfy certain specified stability 

margins. Such design criteria (as percentage overshoot, decay ratio, phase 

" and gain margins),may ignore the nature of inhelent process'disturbances, 

resulting sometimes in stable but poor regulatory control. Proportional­

Integral~Derivative type controllers may not adequately control processes 

characterized by long dead times and certain drifti,ng stodlastic distur­

bances. 

The approach of Box and Jemkins (1962. 1963, 1970) and AstrOm (1967, 
" 

1970) was to ~n controllers to compensate for diSturbances inherent to 

a particular process. 'Data was collected lUldcr open or closed loop, and 

models of the process' dynamics ant.! di'S"thrbances identified ·off-line. foeed­

fon.ara or feedback controllers were then designed to minimi:c. fluctuations 

6£ the proce-:;s.out,put·from its target value. 
,,' .. • 

TIle Jata'~~dl1cctioll and subsequent off-line analysis can be time 

consuming, and re~tuire con:)idcrab~e expertise h'hidl few indus"trial people 

have. Another possible drah'lnl;l;k to this off-line des ign of the controller, 

is that the process d)l1hnUcs and dis turbances may change appreciably Wi~l 

- 1 -
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time. This re'dentification of the dynamic and disturbance mQde~~ 
J 

[rom nc\V' dat 

This led AstrOm and Witterunark (1973) to develop a self-tuning re-

gulat~lr, in which only those parameters that appear in the optimal regula~or 

are identified on-line. 1110 parcUneters of a model are. estimated at each 

sampling -interval by a recursive estimation technique, and used in a control 

lal" as if they were exactly knOIVJl. If the parameter estimates converge, 

and several \V'eak condition.¥~re satisfied, the resulting controller is the 

same one that could have been designed off-line, had the process dynamJc 

and stochastic models been known. 

111e self-tuning. regulator overcomes the need for data collection 

experiments, and extensive off-line analysis and c9ntrollcr design. It is 

easily implemented with a minimwn of specialized training. ~linor modifi~ 

cations to ti,le estimation algori tlun allows the 5e1£- tuni.ng regulator to 

track changing process and'disturbance characteristics. I t is not nec- • 

essaI)' to collect neH <.lata, reidentify the process dynamic ~U1d disturbance , 
. 

models and rcclcsign the controller off-line. 

There have been powerful theoretical teclUliques developed to study 

the convergence properties uno stability of the self-tuning re&JU!ator. 
l 

Extensive simulations of the self-tuning !'egulator have been n.'ported. 

Industrial applications to the control of paper Jl1.1chines, an are clushcr, 
J 

and a batch digestor have demonstrated thi-lt sclf-twling regulators arc 

qui te robu~ t to assumpt ions in the i r de r iva hon. 
" 

111C purnose of this thesis is to 

(1) present a ,lUlifying treat"~nt of the theor}' of sclf-tW1ing 

regulators and clari fy the, con fusion surrounding certain 



aspects of these controllers; 

(2) to gain a familiarity wit·h the self- tuning regulat?r by 

3 r 

I wri ting the necessalj' mini -computer softlvare and implem:mting 

self-tuning control of a pilot plant process; . .\ . 

(3) to examine the limitailons of the"self-tuning regulator and 

to suggest areas that require further investiga~ion. 

The remainder of the thesis is outlined as follow5'(: 

Chapter nyo: The'representation, fitting and diagnostic checking of the 

process dynamic ~d disturbance models of Ast~m (1970)"and Box and 

Jenkins (1970) is examined. The design of minimum variance controllers, 

constrain~d controllers, the sensitivi~y of the resulting closed loop 

systems, the choice of sampling interval and problems of closed loop iden­

tification are reviewed. This extensive background will aid in the under-

standi~g of self-tuning regulators. 

Chapter TIlree: 1110' theory of the self-tWling regulator is presented here 

,using the notation of Box and Jenkins (1970). TIle theoretical develop­

rr~Ilts of LjWlg and NittO'nmark (1974), the recursive estimation sdleme, 
I 

and 'problems of parameter identification are ftiscussed. A proposed self-
I' 

\. tuning constrained· controller of Clarke ~ndG~ythroP (1975) is sltO\..n to' be 

in error. A sinrulation is presented to bring some of the concepts in this 

chapter together. 

. 
Chapter Four: TIle applications of self-tuning r gulators to the control 

of industrial and pilot plant processes are rcvich d. Insights, extensions 

and problems that have arisen in implementation are discussed. 

'" . 
. , 

, 
~ 
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Olaptcr Five: TIle self-tuning regulator: is used to control a steam 

jacketed stirred t<!~ heater. Different methods for eliminating offset, 

and the use of the sample auto and cross correlation ftmctions as diagnostic 

tools are discussed. It is demonstrated that all the controller parameters 

may be estimated. The robustness of the self-tuning controller to different 

in~ut disturbances is also considel~d. 

Chapier Six: This chapter summarizes the most important aspects of this 

\\fork, and gives suggestions, for further work in this'area. 

" 

,. 

~: ... 

.' 



OJAPTER 2 

A REVIEW OF LINEAR S1D~TI C CO>ITROL MORY 

2.1 Representation of the Dynamic and Disturbance ~bdels 

Consider a process, Figure 2.i,'where the opportunity exists to 

measure the process output and take control action at equispaced inter­

vals of time, t=O, T, 2T, .. ", \vhere T is the sampling interval. 

;/ 

manipulated 
variable 

Process 
process 
output 

f-i!:,'Ure 2.1: Representation of a Dynamic S),stcm 

Astrali! (1967. 1970) and Box <Ula Jenkins (l9u2, 1963 j 1970) represent the 

* discrete linear transfer fWlction relatilllg the process output Yt , cUlt! 

the manipulated variable, lJt as 

* * y 
t (\\-1":; wOU t _b 

- w U s t-b-s (2.1) ---. , 

- 5 -
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111cre are b whole p~riods of delay betbre the effect of a change in the 

manipulated variable is observed at the output (b includes the transport 

delay plus an additional period of delay for the sample and hold. This 

is discussed in section 2.6). The manipulated variable is held consta~t 

* in the interval nT < t :s (n+l)T. Yt and Ut are deviation vari.ab1es: from 

their steady sta~ values. 

-k -k 
,,~~") Defining an operator z such that z Ut = Ut - k , (2.1) may be 

iwritten, more compactly as. , 

(2.2) 

V(Z-I) is called a transfer flUlction of order (r, 5, b). TIle process 

is open loop stable if 6(z-1) has all its zeros (in z-l) outside the 

unit circle, and is referred to as minimum phase if w(z·l) has all its 

zeros outside the tUlit cirde. 

I f the transfer function IS represented by ratios of polynomials 

in :-1, then the output from this dynmnical system is an aggregate of 

past inputs and outputs. 'lhis representat ion provides a sensible cla$s 

of transfel' flmctions ,Uld is justified in its OhTI right, \vithout. consid-

cration of the underlying continuous process. Tn SOIllC inst,mccs it is 

pO$sible to relate the discrete ~lodel to the continuous process, if the 

latter may be descrihed by a line~lr di [fercnti:tl equation of the fonn 

" 

, .-Il *. 
(.1 - .TID - T '\ D~ -.,. - T 1) ) Y ( t) .. n 

(2.3) 



111is is discussed in Box and Jenkins (1970). 

In ,essentially al.! processes there arc disturbances or noise 

corrupting the process output, Figure 2.2. 

Figure 2.2: Representation of a dynamic 
system affected by disturbances 

IIcre :oJ t represents the total cffect on the process output of all unob­

served disturbances acting Ivithin the system, which in the absence of 

some compensating action would cause the process output to drift away 

from its target. value., These 10<lu disturbances may not be of ~ teter~ 
mlnistic nature such as stept rrun!, or acceleration flU1ctions. ,\strom , 

(1970) and Bo~ and JenkIns (1970) characteri:e these stochastic dis-

turoanccs .by auto- regressive integrated moving ~lVerage (ARHl\ (p,d,q)) 

t.ime series models,of tho fonn 

7 

:-..J
t 

:::: l2. of) 
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.... 
TIle {at's} are a white noise sequence, or a series of random shpcks ~ 

roughly nornally distributed '\'ith mean zero and'variance 0
2 a TIw' 

IOOving average term e (z -1) ~ and the 'autoregressi ve tem </l (z -1) have all 

the i r roots outside the uni t circle (in z -1) • The presence of d roots, 

usually 1 or 2 ~ on the unit circle allo\olS the disturbance to be of a 

drifting or nonstationary nature. The stochastIc,disturbance may be in­

terpreted as the output from a filter Hz-I) driven by' whiterise. 

__ a_t ___ 1~~ ______ ~_(:_:_1_). __ ~~_~_t __ )~ 
linear filter 

01 

Fi~rc 2.3: Interpretation of the disturbances as an 
output of a linear filter driven by \oJhite noise 

'I1h,~ future behavior of a det~nninistic ftmction 'can be exactly 

predicted frolll a record of its past history. 111is lnfonnation is not I 

sufficient to uniquely dctcnninc the future behavior of a stochastlc . 
flUlction. HO\,cver, the past history of .:l stochastic funet ion is sucn· 

.! 

cient to prctlil:t its future probahilit)' distJ'ibution. Although onc rn.1Y 
. 

p~dict the 'future value of a stochastic fUJlction there loJill be some 

unccrtaintr associated \\'ith this estimate. 

. ' 



Box and Jenkins (1970) representation of figure 2.2 is 

, -1 
Y = w(: ) U 

t 6c;=r) t-b 
(2.5) 

\.,rhereas AstroID (1970) u.ses the notation' 

+ (2.6) 

Both fonns are capable of providing an adequate representation of a uyn-

runic-stochastic system. The Box and Jenkins notation provides more 

insight into 'the nature of the process dynrunics and stochastic distur-

bances, as one may distinguish these sep.:lrately. The common denOlllinator 

mixes up the dynmnic and st~ch~tiC models in Astrom' 5 representation • 

. and it is more simply a mathematical reprC'sentatlOn of the output. ft 

will be seen in the next section th~t the Box-Jen1.ins notatlon penni t::; 

greater flexihili t)' \\hen ident i fying, fi tt mg and dlecking JyllamlC and 

s tocha'S t le TOOJe Is from input/output da t~l. 

IJentlflcation, Fi tt in~ and ,Test ing of Dvnamic/Stod13StlC ~Iodc 1 ~ 
)on )-, T .. fL • 

.., ., ..... 

Box ~U1d Jenkins (1~)70) propose .ill 1 terat 1\'e procedure 0 f . 

to build drnwlUc and stocha~tl.c rrodels, Cross correlatIon tedullquc~ 

<Ire emplo!,cJ to provllle a preliminary idcnt i fieation of the orJers lr, 

/ 

5, b) of the transfer flDlction .. and initial paramet~r estimatc$~ Tc~tlve 
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estimates of the orde.rs (p, :ct,..~ Qf the stochastic disturbances~ and 
'.~ I 

inItial parameter estimates are obtained using statistical propertles 

10 

of the I\RI~l'" time series JOOdels. Both models are fitted sinrultaneously 
" 

to ensure that one obtains the best estimates of the paraIlle'ters, using 

the ma.ximum likelihood criterion. Diagnostic checks detect model in-

adequacies and may suggest model Improvements. 

A multlple regression approac~ is used by :\strom (1970) to build 

f' dynamic and stochastic models. t>lodels O'f increasing order are fitted, 

and discrimination bet\\'een them is based on whether the reduction in 

sums of squ:lres for the rodel of i'llcreased order is statistically sign-

ificant. Dia.\,.'l1ostic analysis of the model residuals is llsed to evaluate 

rodel adequacy. 

The Box and JenklIls approach appears to be rrcre flllxible and 

appealing from an engineering pomt of vie\~. 'Ih) preliffilnary ldcntlfi-

,. cation of the stochastic ITXJJcl requires that the effect of the proces~ 

d}1K1JlllCS be removed from the data. DynamIc JOOJels developed [rom :1 

theoretic.!l anal"::>l::> of the process may he used If aV:lll..lhle. nne is not 

reqlllred to tre.lt tht~ proccss as a "black ho:\.". It "'as flr~t thought 

th..lt the tech~liquc5 employed br Box ,mJ Jenkins ll~r;'ll) and -\strom ll~)";O) 

reqlll red that the data be collected "'1\J.1e the system 1S operated lU1Jer 

open loop condltlOns. ::;aktv .l.nd prodlh.:tlon COIl"tralllt" may prohihit 

this. [t may he necess,lry to lllq)lcmellt a feeJb,lck controller to kCt'p 

the process van.!oles In the operat lIlg region \\hcre one \,ants to ldentl fy 

thelf d:-'11311llC ~lJld sto(hastlc heh3 1:ior. If a time lll\'an:mt I ll11car feed-

back 'controller 1S used dul"in~ the period ot Jata colic-ctlon. Box ,tnd 

'~lacGrogot (197 -l) "h..lve sho\\n that the use of a nonc:lswl rr.cthod l cross 

" , 
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correlation) to identlfy the process dynamics, will in fact hlentify 

\ the inverse of the implemented controller. If the data must be'- colleCfcd 

in closed loop', they suggest ttl<~,t a 'dIther signa,l:~ uncorrelated Ivi th the 

process output be injected into the process input. Identification tech-

nlques and residual checks are outlined. SoderstrCim et al. (1974, 1975, 
. . 

1970) suggest that $Ivitches betIVcen several feedback laws will also in-, , 

Sure identifiability. 

Even if one has an aprion knowledge of the orders of ,the dyn---" 

amic and stochastic models, and a time invari~t, linear feedback 'con­

troller \dth no external dither signal is used during the collection. of 

,.t:J data, thetSstillk1.ted parameters may not bd: lUlique. For different control­

lers, SoJer5trom et a1. (197.l) and Box and 1'>lacGregor' (19711) gi,Ye necessary 

and sufficient conditions that must be satbfied if the esti'mation space 

is to be nOl1singular. 

The open loop estiJll:ltion methods of 130~ .md Jenkins ll~)7ll) ~Uld 

l 

t\strom (1970) may be used on dosed loop data in a str~llghtfon\aru m.U1ncr~ 

ir,nonng tht' prgsen~c of a fCl>do.lck controller (SoJer$tr~m, ot a1. (197·1)', 
, 

Box ..md ~h~Cregor (1~7('I) if: these I\elx~s:-;arr anJ sufficlcnt conJitions 

an~ sat lS [wd. or the cont roll er lS t 1I11C- vary in!!, a nonllllear fLUtet (on 

of the proce~:- lHputs ~llld outpub I or i r ,ut external ll(thcl" ~igJ1al 15 

employed 1Il the f('cdhack loop. 

'lhe \It,thods of Bo:\ and Jenkins (l!l':"ll), Box .lIlU ~lac(;rcgor 
and .'G t rom ll:)-Il) pn.wule ,1 -;rstl..'IlJat H': .lppro,ldl for the idcntl fH:at ion I .. 
fi ttlng and lli.lgno:-;t iC ched 11\~'of PrQcc::;~ JynaJlIlc and, stocha8tic model ~. 

.. 

It 1"; not l1('ce:>sJr), th:tt the JJta be collt.'cteJ \.hile the process is open- , 

tcd 111 :Ill open loop malUlt.'r if cert,lin precautions arc ta~en. Once the 
u • 

. \ 

I· 

, 

, , 
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., 
dynamic and stochastic models have been identified, a controller may be 

\ ., I 

de§igned to ,c,0mpcnsate for the effec~ of_the disturbahce~~n the process 

output., 

... 

2.3 Design of a Mininn.nn VariarJ..(:e Feedback Co;trol1e~ .. 

The outpqt of the system 4epicted in F~gure Z.2 is 

w(z-l) U 
Y b = ~ +Nb t+ 0 (z ) t . t+ 

... 
• (2.7) 

The total' effect of the disturbance on the output would be cancelled if 

the control acti~ 

,-

(2.8) 

Here taken. This is phy4ically unr~alizable, as .the value ~f the ois-
I 
I ~ 

turbance b steps in the i future is WlknO\\'Th L t seems reasonable then to 

action base~ on some' prcdicted"val~e of the oisturbnnce I . , take control 

C:.9) 

" 
~ 

~ \vherc :-Jt+b<t is the b step ahead pn~diction of the disturbance based 

solely on inf<?nnation available at time t. Thus at tiJOO t+b the error 

at the output "'ill be equal to the forccas terror. 'fl1e disturbance Nt +h 

I may JJC hTi ttcn as 

.' 

, 

-I 
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.' 
A 

N = e + N t+b t+b t+b/t 
(2.10) 

I 
, 

, I where et~b is the prediction or forecast error. There are many ways one 

might predict the' effect of the disturbanc,e b steps in the future, put' 

the most sensible predictor \vould be that '''hich minimizes the variance 

ot; the b· step ahead prediction error. This is. equivalent then, to min-

~ imizing the variance of the profess output. The criterion for designing 

the controller is 

(2.11)·-

where E{} denotes the madlematical ~A~ectation operator. If Nt + b is 
/ 

, - h'ri tten as 

~t+b 
-(b-l) 

tj!b-1 z 

, -1 
\vherc. L4 (: ), is of order b-l (the first b terms of 2.12). 

It is shO\\7l in ndx ,and Jenkins (1970) that 

(2 .l~) 

. (2.13) 

(2.14) 

is the p'fcdictor,which miilimizes the variance of the b step ahead predictf0n, 
, . 

• o 



j 

, \ 

error. 1111's forecast errot is given by 

(2.15) 

The minimum variance control strategy is therefore 

. 
(2.16) 

It is more convenient to compute the control action based on the error 

e
t 

the dj fference betlveen the process oU,trut \ and the setpolnt Y
sp

' 

Substitut1Pi1of (2.15) into (2.16) gives the minimwn variance strategy 

L
3

(Z·I) 

L
4

(;:·I) 
e = 

t L4(Z~1)~(z-I)Vd et 

(2.17) 

From (2.12) it is seen that the {at's} may Qe interpl'f'tcd as the one 

step ahead forecast error. , 

The output of the <;loscd loop system, Fi!-Ttl'l'e 2.4 is 

(2.1S) 

~ 

14 

(In figure 2.4 the sign of the crrOI"tcrm on e
t 

is opposite to canven- P 
tional not~tion. The negative ,sign is included in the controller block). 

" 

/ 



\ 

y 
5 

+ 

( 

feedback 
controller 

.... -

' ... 
dis turbance 

pTocess 
dynamics 

+ 

Figuro 2.·J: rceJback control scheme 
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If Dez-
1

) is the minimwlI \rariance ccontrol1cr, (2.17) then the output of 

the closed loop system is a moving average process of order b-l, (2.15). 

The va ri ancc 0 [ the Olltput is 

) 

var{ e f+h} = (l+ljJi ...... + (2.19) 

I f the Oll tPllt is a moving average prqycss order h-l, the autocorrelation , 

function 

E{Y(tlY(t+rJ} 
:: i (2.20) 

y 

I 



and the cross correlation function 

P (T) 
ul' 

= E{U(t)Y(t+T)} 
o (J 
u Y 

(2.21) 

2 vanish [or T ? b, ",here (J is the variances of the process output and y 
2 

CJ is the variance of the manipulated variable. 
u The sample auto and , 

16 

cross correlation function may be computed by' (Box and Jenkins (1970)) 

N~1 ~ 
E Y(5)Y(S+T) 

r (r) :; 
5=1 (2.22) yy N ') 

E )'"'(5) 
5=1 

and 
N-T 

E U(s)Y(5+r) 
r (L) 

ul' 
(2.23) 

I" 

'n1C variance of the estimatctl cross and aut@ correlations are given by 

l3artlett (1046, 1955). ~'nH~SC ftmctions can be computed to verify if the 

implemented controller is the minimum variance controller. " 

Suppose the process .~lynami cs arc represen~c9 by a fi rs t ortler 

tr~lJlsfcr function with one wh01{' perioJ of delay 

:': 

Y '" t 

w 
o U 

-1 t-l l·lSz 

and the stochastic Jisturb~Ulcc, by an ARI:-lA (1,1,0) model 



Then 

1 
Nt = ---_"'1'"1- at ' 

V(1-tj>z ) 

/ 

17 

(2.26) 

. 
I f no control action were taken, the presence of Nt would cause the process 

output to drift away from its target valve. Nt +1 may be \vritten as 

TIle minimum variance controller (2.17) is 

Taking Y =0 with no loss of generality thcn sp 

vU =- (1+4»_ Y + 
t Wo t 

~ Y + <PVUt_l w t-2 o 

2 . 
,.,rith thiS controller the variance of Yt is 0 u' 

(2.27) 

(2.28) 

(2.29) 

111e prcsence' of thQ IJU t tern indicates that the controller has 
~ 

integral action. 111e miniJm,Jl1l variance controller ahJays has intcgral 

action if the disturbance JOOdcl is nons tati onary. The effect of the 
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integral action is to eliminate offset. Thus the minimum variance con-

troller \vill be able to satisfactorily handle the occasional set point 

change or deterministic load change. 

2.4 Design of Constrained Controllers M 

It may happen that the variance of: the manipulated variable is 

too large to implement if the minimum variance controller is used. This 

is true particularlly if the sampling interval is too short compared wi t.h 

the process dynamics. In that case 'one wants to minimize the variance 

of the output, subject to :l constraint on the variance of the manipulated 

variable. "-The design criterion is now to minimize 

(2.30) 

• 
where t; might be interpreted as cost per unit of cant rol act ion taken. 

The solution to l2.30) involves the solution of the discrete 

Wiener-!lopf equatIOn. Wilson (1970) details a solution for this. Al-

tcrnatively the dynamic, stochastic mexicl may be transformed to state 

space Conn ~UlJ (2.28) minimi:ed by soh'ing a Riccati cquatio!''} (MacGregor 

(1973)). If the disturbance model h; nonstationary then one must minimi::c 

(2.31) 

a~ the variance of U
t 

in (2.] 7) will be theoret ically infinite tluc to the 

pole on the unit circle of the controller. 

~ecentl)' Clarke et a1. (1971, 1975) h~l\'e~proposcJ hhat appears 



to be a very simple solution to mdni~zing (2.30) or (2.31). Yt+b may 

be \\lTi tten as 

"" -*_ ....... , 

l " 

+ e 
t 

(2.32) 

Mlere Yt +b/t . IS the b step ahead prediction and e't is the prediction 

error. , 
~ 

Since Yt +b/
t 

is determined from past data, Y
t

+b/ t and e
t 

are 

uncorrelated. Thus (2.30) may be written as 

(2.33) 

This equation is minimized by setting its derivative \dth respect to 

19 

Ut to zero and solving for Ute Since Ut is a combination of past inputs 

and outputs, all of whidl are known. Clarke et 0.1. (1971, 1975) conclude 

that the e,x-pectation operator in (2.33) may be dropped. However, MacGregor 

and Tidwell (l~76) show that this conclusion is incorrect. If the tm-

comli tional expectat ion operator, which is the integral over the probab­

ility density fooction of the random variable Ut • i.e .. 

(2.34) 

is JroppeJ the (Lll1ction 

, 
13 = Yt +h/ t + cu; (2.35) 

'. 
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is minimized. TIlCY call this a shortsighted optimal controller as it 

sets the instantaneous b step ahead prediction error to zero, subject to 

a constraint on the magnitude of the input signal. -The optimal cbntroller 

that minimizes (2.30) is averaged over the distribution ftmcti6n of possible 

control actions. The effect of Ut on the variance of Y
t 

at lead tiwes 

greater than b is taken into accOlmt, whereas Clarke's algorithm chooses 

the control action that considers the effect on the output only to time t+b. 

A.s a tesult the optimal strategy (2.30) result in a smaller variance of 

the process output for 't;he saroo reduction in the variance of the manipulated 

variable. When ~=O Clarke's solution reduces to the optimal minimum var-

iance controller 2.16. 

Although Clarke's soiution does not minimi::e the stated objective 

fW1ction it does provide a sensible class of controllers. The design of 

11 constrained controller by this opt imul cri terion . is e<lsicr than the 

Jesign based on the alternative optimal <;;riterion l2.30, 2.31). 

Minimiz.ing (2.35) results in the control action 

1 
• -1 
wtz ) ---=-r: t 

,S ( z. ) 

y 
t 

I f this controller lS implcmentcll. the process output i~ ~l high 

ord~r autoregressi \'c mov1Jlg average process 

~ ~(z.-l) w(:-l) 
- ---:y: + - -I 
Wo Lie:) ~(: ) 

w(;:-l) 

.: lz -I) 

(2 • .3~) 

, I ' 



For nonstat~onary disturbances, Clarke's algorithm can be modified to 

minimize 

The result ing controll,cr is 

\7lJ = 
t 

The process output is then 

)' I ( -1) t = '4 : 

w(:·I) 
+ 

1,16(:·1) 

. , 

1 

L. 
-1 Y

t lJ!.( z ) 
Wo L

4
(z·l) 

-1 we:: ) 
+ ----

1,16(:-1) 

The constrained cOllfrollers can' be c:'\-pressed in the form 

. . 

(2.38) 

(2.39) 

(2 .. lO) 

where 11(::-1) is ',1 ratIO of pol}11umials in : -1 11H~ \'a~i<ul.cc of U
t 

is 

then l;\strom (1970)) . 't -.. 
) n -J a 

f· 11(: -1) <1:-
\'ar tu } = /I (::) z-t 

2rrj 
(2.42) 

- 11 
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",here the path of integration is in the positlVC dire-ction aro\D1U the- lUllt 
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circle. A .. <;trom l1970) has detailed a solution to (2.42) that is suitable 
, 
for madlinc or hand calculation. TIle variance of Y

t 
is evaluated in a 

similar fashion. 

'Rle effect of increasing'; for the optimal constrained controller 

and Clarke's solution is to shift the poles of the closed loop system 

tOh'ards the :eros of 6(;:-1). 

To give an indication of the difference between the tKO methods 

consider the example from the previous section. The process' is 

Y .2 
t 

= ----.-
1-.9z- 1 (2 . .t3} 

TIle variance of IJU
t 

for the tmconstraiDed ffilnimum variance con­

troller is 78.3, and that of Yt is 1.0. Figure 2.5 shows the percentage 

decrease in the- variance of VU
t 

that is possible for a given percentage 

lllCTcase in the vananc(' of Yt for the controller Jesigned to minllni::c 

cri terion (2.31) by solution of the discrete Wiener-Hopf equation, and 

that dC'si!,'l1eJ to minilni:c (2.38) by Clarke's procedure. for this examplo, 
( 

the difference beth'cC'h,,),the t\vO methods is quite $lIlall for increaseg in 

the output \'ari:mce of less tll~n fivC' percent. 

1'11c curves in figure 2.5 ;.ll'C proJuced hy dlOosing v;.lIues of r.. 
(( ;: 0). and eV;.lluating the integral.(2 . .t2) to obtain the van:m.ce of 

IlJUt <U1d the vari~U1c.:e of Yt' Clar~e's prOCelilire is straightfol1.;ard as 

[. appear-- e~-rlicitly in the controller. It is more difficult to ~hoo~c 

[, for critepon (2.31) as it Jocs not appear explicitl}, in the final 

controller [onn obtained by $olution of the discrete Wiener-Hopf equation. 

For both criteria, " is adjust~~ until the variance of Y
t 

"and the variance 
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of VU
t 

arc jo intly acceptable. 

It 1$ also posslblJe to 'twlC' a controller on~l.ine by adjustmg 

:: :md Jeciding \~hether the response of the mput and output arc sarIs' 

factoD'. This is Jane more easily Ivith Clarke's algorithm as ~ enters 

the controller explicitly. 

• 
2.5 Sensitivity of the Optimal SolutlOn 

, The variance of Y t is very sensitive to variations in the para­

meters If wlz· 1) contalnS roots lying inSIde the unIt circle (in :-1 

space), i.e., the J:l1arnics are nonminimum phase (,\strom (1970). TIle 

effect of t11C' controller 0(;:-1) is to cancel the poles and :eros of the 
. 

process d:l1amics ~ replace them ,,,i th its OI\TI. 
. 1 

If those :eros of w(: ). 

in the true process, lying ins ide the lUllt ore 1L~ differ slightl), from 
( 

thct;e ident i fil'J in the moJcl then imperfect cancellation \\'111 result. 111(' 

closed loop tr,ansfer fW1L't ion (2.18) l\'ill then cont .. lin poles lyin~ insIJe 

the Wllt eHcle- .Uld the \'ar1ancc of the controlled vanable hIll increase 

rapIdly. TIle controller (~,l:-) 1" still the 1II1111mUm \'Orl.lllCC cOiltroller 
,'I> 

lif "t.' have perfect c;Ulccllatton), hut tho \'ariance of the proc(,5~ output 

IS very senSlt1ve to dKmg<.'s III the S\l~tem parall~ter~. 

l11c solution to tlll~ prohkm IS to n:'quirc th.lt all the poles of 

the (ontrolh'f lIe outside the unit cll'de. \strom's solutIon ll~)711) is 

to move the IUlJcSll'CJ poles to Lnfu1tty. <dt;:-1) lila\, he r_~torcd:.1$ 

-1 
'" l :: ) 

-' -1 + -1 
.<' l: ) w ~: ) l":·-l·l) 

" 

l' 
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hhere w-(:-l) contains the S zeros lymg 1l1sl<.lc ,the tmit circle <lI1d 

-+- -1. + -1 ' 
w (: ) contalnS the S zeros of w(z ) lying outsIde the unit Circle. 

D(Z-l) must not contain the :eros of w-(Z-l). -I11e~[ore (2.13) is 

h'Ti tten as 

-1 '-1 -b' -1 - -1 
,+,(z-) =1.4 (: )+: L

3
(z )w(z) 

, -} -
The order of 1.4 (z ) is b-l+S. 111e resulting controller is 

+ -1 - -[ . 
w (: )w (z ) 

, -1 
L3 (z ) 

y 
L~(z-f)l t 

(2.-l5) 

(2..l6 ) 

.2$ 

The output of the doseu loop s)'s teIn IS then .1 mov ing averdge process of 

o rJc r b - 1 + S - . 

r\ loo\'e flexible approadl ho\oJever, IS to llse a constr~llneJ con- ' 

troller (mll1l1nize (2.30) or l2.3;'). Increasing i. progressl\'21y slurts 

the roots of the ~ontrollcr tt~ulsrer function from out~ide' the lDlit cLn.:le 

to\~anls InflJ1lt)'. If the control i~ constrawcd by solution of the 
, 

\','tencr-lIopf equation lor RH,;attt solutlOn) an\" non::01'O value of r. h'tll 

st.lbill:e the \'ari~mce of lit' no JIldtter hO\." small. 1'.01" the method of 

Clarke et a!. (1~)71, 1~)~5), there \{ill be some' threshold' value of r. 

greater thlUl :.cro beyond h'hlCh it \\ill st.lbili:::c the v;lr.lan~e 0.1' U
t
.· 

If controller tran:;fer flUlct-'lon 1S ~tablli:ed by con~tr~llnlng 

the control, 1IlStC<lJ of by Astrom's method, 1t is posslble to deslgn 

a controller that Ilas a lo\,cr vanance of the manipulated ,'anable for 



o 

., 

the same output variance. 

to implement. ..Q 

, 
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However, the latter solution is I1U.lch easier 
/ 
I, 

2.6 Optimal Choice of the Sampling Interval 

The prime consideration when choosing a sampling interval is, that 

not too nruch sl1'ould nappen to the process betl"een sampl ing intervals. 

Early \\'ork in digital control led to the following guidelines (Shinsk), 

( (1967)) 

( 

'~ 

Flo\y , 

Level and Pressure 

• . Temperature 

Sampling Time 
(seconds) 

1 

5 

20 

, \ 

These guidelines reflect the fact that some loops are faster than others. 

In Figure 2.4 Nt represcnt~ the total effect on, the output of all un­

ob~erved dis.turbances acting wi tl-lin the system. TIle presence of the dis­

turl>ances are the reason for hav.ing the cDntroller. and the sampling time 

should be dlosen so that good control is maintained in the presence of \. 

these disturban.ces. 

I f a dynwnic S'tochas t ic !!lode 1 is mown ,it a sampling interval !, 

M~cGregor (19'76) has shown hall', the parameters of the proccs? dyn~ic and 

stothastic model change if the sampling intervAl is changed to art 'integer • 
, - \ 

multiple of T. Neh' data 'is not Te<:luired to. inv~stigate- the effect of .. 
the sa~ling interval on the variance 9£ tHe process ~l?ut and output . 

. ' 
It is snmvn that the variance of the process 'Qutput increas.e~ very little ,: 

, ' . 
as the sampling rate is decreased. unt il the samp! ing 'rate approaches the 
tI ,~ , ~-r 

\ . , , .. 
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proces? dead time. If the sampling rate is decreased further the variance 

of the output increases rapidly. There Nill be a significant reduction 

) 

in the· variance of the manipulated variable as the sampling ratc is de-

creased. I f the dynamics are minimum phase at b=l, it is concluded that 
~ 

there is little to be gained by sampling at a faster rate (at least in 

so far as the stochastic ~isturbances are concerned). 

The zerOs '0£ w(z-l) that lie' inside the unit circle can be intro­

duced By the sampling of a continuous process at discrete time intervals. . . 
I' 

Suppose that the underlying continuous process may be described by a 

first order differential equation 

T • ddtC,t) + yet) U(t) = g -T
d 

(2.47) 

where 'rd is the transport dclay. If the proces.s is sampled every T seconds 

then (2.47) may be written as 

T dX~t) +·~(t) = g U(t-(f+c)~) (2.48) 

Here f is the number of pure periods of delay and c is the fractional period 

of dclay (0' -:; c < 1). I f the inputs to the process arc changed only at 

sampling times then it is easily shown that the uisctctizcd version of 

this process is given by 

y = gO-oS) (I-v+ vZ-1)z-(f+l) 
t 1 lJt 

y = 
t 

1-6z -

g(146) tl-\l+ vz-1)z"b 
l-6z- 1 Ut 

(2.49) 
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",here 

b = f + 1 (2.50) 

<5 == exp (-T/'r) (2.51) 

v = (2.52) 

If v is greater than O.S then the discrete transfer function may be 

nonminiJJU.1J1l phase even though the lUlderlying continuous process may be 

minirrrum phase. 

If the sampling interval is short relative to the process dynamics 

then c-+l.O' By L'Hopitals rule 

lim 
6-+1 

v = c 

[quation (2.47) may bc \{J"ittcn as 

, 

(2.54) 

'thus only \\'hen the fractional periou of ue lay is less tha.n 0.5 will the 

discrete process be 4ini'!1lun phase. for higher .order processes a similar 

3I1alYsis can be done, howevcr, the ~ffect of the Eract lonal period of uclay 

is not as clear. l1111S the sampl ing interval must lie selected wi th some 

care. 

I 
I 
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2.7 Discu:;sion of Minurnun Variance Control 

Stochastic control- appears to be well suited for control of in-

dus trial processes characterized by long dead times and dri fting dis tur-
, -

bances. The weakness of many modern control strategies is that they require 

an exhaustive knowledge of the process dynamics and disturbance statistics, 

yet provide no means of determining these. Box and Jenkins (1970) and 

Astr~m (1970) have provided teclmiques so that one can build dynamic and 

stochastic models from input/output data. These model~ are ysually of low 

order. The orders of the'noise model rarely exceed two. Dynamic IOOdels .. 
of a complex process are usually s imple (~Ios ler et a1. (1966)). TIle trans-

,. 
fer function dlaracterizes the major time constants and the delay handles 

the effect of the distrib4ted p~raJ1leters and transport lag. Where applicable, 

minimum variance feedfoI1vurc.l control can be implemented. 

l1\cre are very [ew reported indus trial applications of minimtun 

variance control. It has been used in the pulp and paper industry for 

control of basis \V(~ight and moisturc content on a paper madline, ,\strOm 

(1970), and for the viscosity control of a polymerization process, MacCrcgor and 

On processes [or Ivhich stochastic control is well suited, 

tilC proccss characteristics may he changing, 'C<.'grell ;1nd IIcdqvist (1!.l74). 

If the parameters of the dynamic and sto~hastic models change vcr), sIOl.,rly, 

orie might periodically re~estimate these. 'l1\is is a laborious task and 

necessitates a plant experi~nt. One might try to estimate the pa~allletcrs , 

from closed loop operating data. '1110 feedback controller must be nonlinear, 

time varying or an extcmal "dither signal" supplied to insure that unique 

parameter estimates arc obtained t lUlles:; certain necessary and sufficient 
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conditions are satisfied. 

To ensure that the controller is always optimal, one might try to 

- update the parameters of the dynamic and stochastic models at every 

sampling intenral, compute the mininrum variance control signal and imple­

ment it. TIlis concept of an adaptive algorithm is shmvn in Figure 2.6 

(Wittenmark (1975)). 

Process 

Controller 

Parameter 
Calculation', 

P:ll'aJllctcr 
Estimator 

I 

Figure Z.u: AJaptive control scheme 

This strate!_.'y is [I'aught \vitl! the pr'ohlems of panuneter estimation 

in clo5ed loop. The requirCllIcnt5 necessary to insure consistent parameter 

estimates conflict with the pI:imary goal-good control. 

l[ one \.;ere \ ... illing to sacrifice quality of control, hO\.; \"ould .. 
one estimate the parurnetcrs? The maximum 1 ikelihood\mcthod \,'Quld he 

.computationally too cumbersome to implement at eve!)' . sampling invertal. If 
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the purpose of building d)l1amic and stochastic models is to control the 

process, th.en one is not interested in current estimates of these para­

meters. Only those combinations of parameters which appear in the minimwn 

variance controller need be well tLUled. Astr~m and Witterunark (1973) 

have developed an algoritJun where only those parameters whidl appear in the 

minimum variance controller are estimated at each sampling interval. TIle 

• model fonn is ch~sen so that these parameters may be<'1estimated recursively. 

It is assumed that the parameters are constant, but a slight modification 

to the algorithm will allow the parameter estimator to track slowly drifting 

parameters. 

The algoritlun has good transient behavior and requires very little 

knowledge of the process d)l1amic and stochastic models. The theory of 

self-tuning regulators is discusse~ in the next chapter. The applications 

of self-tuning regulators to the control of industrial processes is exam­

ined in dwptcr four . 

., 



O[APTER 3 

lllEORY OF SELF-1WING REGUL\TORS 

3.1 Introduction 

TIle principle theoretical developments of self-ttming regulators 

are discussed in AstrOm and Wittenmark (1973), lVittenmark (1973), LjLU1g 

and Wittenmark (1974), and most recently by Clarke et al. (1975). It is 

presumed that the process may be described by a model of the fonn 

(3.1) 

This notation is mathematically convenient to deal wi th, and from this 

convenience stems the motivation for the self-tun ing reg!llator algori thm. 

However, it is felt that the Box and Jenkins (1970) description of the 

process dynamics and dis turbal1ces , 

(3.2) 

is more appealing from an engineering point of vie",. ,1110 separat ion of the 

process dynamics and Stod1astics. c10arly indicates th~ fonn of the estinlat:lOn 

model in an ailiptive environment, anti hOI" a knOll/ledge of the process 0)11-

amics llIay b(' used if they are kno\~11. It is readily seeH ho\oJ to modi fy 

the estimation scheme so that integral action is included in the controller. 

If the stochastic disturbances are nonstationary or the process is subject 

to tietenninistic load chaiigos, direct application of the self-tuning regulator 

l 
I 
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resul ts in a contro ller that is sensitive to parameter uncertaini tics, 

and \vill not eliminate the resulting offset. Unless the structure of 

the self - tUlllng regulator correctly accounts for nonstationary disturbances, 

the self-tuning controller of Clarke et a1. (1975) \vill not p:oduce the 

stated results. 

The theory of self-tlU1ing regulators is discussed in this chapter 

using the notation of Box and Jenkins (1970). It is hoped to clarify aspects 

of the self-tuning regulators that have caused confusion, and it is felt 

these uncertainities are best resolved using.this notation. 

3.2 Theory of the Self -TlU1ing Regulator 

Consider the Box and Jenkins representation of Fi,gure 2.2, 

(3.2) 

Using (2.l·q the disturbance model can be expresseJ as 

- (3.3) 

multiplying (3.2) by L
4

Cz' l ) ~Uld substituting (3.3) into the result yieltb> 

-1 
The prediction error L.l(z )a

t
+b is Wlcorrelateq \\ith. {Yt,Yt -1 .•. } and 
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,L d__ : 0 
with (V'l.\, VlJ

t
_1 ,. ".J and may for convenience be replaced by, e t+b' 

l::quation (3.4) is of the fonn 

(3.5) 

\"here 

aO(:-I) 0 0 -1 0 -mo (3.6) = aO + al z + ..... + a z 
mo 

BOez- 1) B BO -1 0 -~ (3. 7) = + z + ..... + B.{',o z 
1 

It is easily verified th; t the orders of rno and .to are 

1110 = r + ma..x (q-b, p+d-l) (3.8) 

eo = s + p + b - 1 (.3.9) 

1 f the parameters of (3.5) \,ere k.n~\'Jn, the control action 

o -1 -1 -1 

vllu
t 

= -a ~z: 2 y = -6 ~ Z. ) 
1.2(:: ) 

"t (3.10) 
BO(::-l) t w(z-l) -I -1 

L4 (z ,) Hz. ) 

) 

M)ulJ lIunimi:c Ln- t+bl. 

-1 -1 Suppose that Hz )Ot: );:: 1.0. It is seen from (3.5) that the 
\ 

process output is nO\'I expressed as a tUreet function of the minilllUlll var-

iance controllor parameters. If these ''Iere LUW10''In one migl1t try to identify 

them from a Ilodel of the [ol1n 



. 
( 

3S 

~, 

Yt+b' = 
-1 

a(: )Y
t 

+ B(Z-l)V~t + Et+b (3.11) 

I",here 

-1 -1 
~ 

-m (3.12) a (z ) = eta + <:tIz ... + Ct z m 

and 

B(:-1) BO + B z-l -i 
(3.13) = + ... + BeZ 1 

The number of whole periods of delay, b and the order of the pole, d 

lying on the unit circle of the ilisturb.anc.e are presumed known. Equation 

l3 .11) ac1mi ts least squares est imat ion which may be expressed recurs i ve ly . 

TIle parameters could be uj"1dated at every sampling interval and used in the 

control 1m ... 

v(11 
t 

(3.14) 

as 1 f they Ive~ exactly J..IlO\VI1. One is not trying to identify the process 

dyn~unic anJ stochastic parameters. Only those combinations \\Iuch appear 

in the minunwII vanance controller arc estimated . 

• TIl is algoritlull does not milliJlu:,c E .{y2 t+b} as it fail,:; to account 

for parameter lU1certaLnltles, lA-strOm and IHttcnmark 0973)). :\lgoritlulls 

USlllg parametL'r unccrti.liIII tics in the conq)utat ion of the \;ont 1'01 ~ilgnal arc 

known as 'cautious controllers', (\\ittelUlIark (1975). Large control actions 

arc not permitteJ unless the controller parameters arc M~ll estimatcJ. 
-1 -1 . 

Thc restriction that 6(: )ul= ) = 1.0 appears to limit the use-

fu1ness of thi:;; scheme, ktlohn,<lS a self-tuning regulator. Iloh'cver, }\strOm 
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and I~itterunark (1973) have proved two theorems which show that this a1gor­

it)uTI JTlay have some desired asymptotic properties J irrespective of the 

-1 -1 proJuct S(z )8(z ). 

'!1~<;<?!"<;'!lJ: U the parameter estimates <li' i=O,l, .•. m and B
1

, i=O,l, ... .e 

of (3.11) converge as t-+<», \\There m and t are of arbitrary non zero order, 

and the closed loop system is such that the output is ergodic (in the 

second moments) then 

= E{Y(t4Y(t+,t)} = 0 • ~ = . .. • b,b+l ......... b+m 

and 

P J (1:) 
IJ uy 

v 
y 

= E{V'\J(t)Y(t+r)} = 
0 n \J J 

v U Y 
o , T = b ,b+l, .. .. b+t 

(3.15) 

(3.16) 

Tb~<?~'!l_~: A.s~LUne that the sy·stcm may be JescnbeJ br equation (3.2). 

If the sclf-tlUling regulator is useJ \Vith m=mo anJ .(,:::£0, anJ the para-
~ -1 ~ ~1 

reters estimates converge so that a(: ) and Bl: ) !.lave no comnon factors, 

then th<:. regul~ltor l.Jill converge to the mlJ1imuJll variance controller. 

'111eorem 1 states, that 'the usc of least squares estimation anJ the 

control lUI'; (3.1·1) I"ill reduce certain of the .luto 3JlJ cross correlat ions 

at the output to zcro a<.:conling to (3.15) :Uld (3.10), if the parameter 

f ~ II) '11' . }. ( - 1) ( -1) estimates 0 (.). convC'rge. lCre is no rcqUll'ement t lat 6:: 6\: ::: 

1.0/ If '\"lr) :md PvJUy(t) vanish for all 't ;;: b, '111eorem ~ states that 

the orders of <:4lZ- 1) and IH:- 1) have not been tmder estimateJ and. the con­

troller (3.1-l) is the same one that coulJ have been designed had the process 

d)namic and stodlastic models (3.2) been mOlm. '111cre is no guarantee that 

,--I 

, , 
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the parameter estllnates will converge. Ljung and Nitterunark (197.'t) have con-

5tructed~an example ,,,here convergence of the controller pur<lJ'OOtcrs (3.11) 

to the optimal parameters is theoreticully impossible. 

The motivation for the self-tunlng regulator stems from tl1e fact 

that if 6(z-l)8(Z-1) ~ 1.0, tlle process output may be eA~rcssed as'an explicIt 
... 

function of the minimum variance controller par.lJlleters. ,\ computationally 

efficient algon thm may be then used to es t.t.matc these parameters. Conver­

gence of the controller parameters to the optimal values fOr an arbltrary 

6(z-1)8(Z-1) hoas a surprising result (Astr(lm and \vittenmark (l9i3)) as ilie 

, output of the process is no longer an explicit function of only the mWllnwn 

variance controller parameters. 

TIle follo,,,ing analys IS lS an atteuq)t to ShOh' tlwt the process may 
... 

behave as though it were being generated by a model of the fonn (3.11) even 

though, .) (;: -1) e ( ;: -1) i 1. O. 

The system (3.5) may be \~ritten as 

+ 
L t+b l3.17) 

_O~-2 
tl> -,._ + t • It l3.1S) , , 

The controller parameters are estlJllateJ from the nlOJcl l3.11) an~l the 
\ 

control actlOn (3.14) taken at ever)' sampling interval. If the control 

actlon (3.14) is substitutcd into (3.17) tllcn 



• -1 
- ~lt-l,z 12 'BO(z·1)Yt_1 J + ~~[aO(z-I)Yt_2 

B(t-l,z ) 

~(t.2,z-1) 0 -1 
- x _l' B (z )Yt-2 1 + 

D(t-2,z ) 

o 
+ t.t+-b 
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(3.lS1) 

1£ the process is open loop stable, i.e., 6(::' -1) has all its roots lymg 

outside the unit circle, ,O(Z-l)is a convergent pol>~orrUal in z-i, and 

the £.? weights decrease with mcreasIng 1. 111e process output then dep-
1 

ends to a decreasing extent on the succeSSlve tenus in (3.19). Further-

JOClrc the tC1iJl$ in the square brackets in (3.1Y) tend to be small due to 

the control actlon (3.14). 'Ole output therefore appear$ to he nearly 

generated by a model of the form (3.11). LHlJnation of the millllllum var-

1.lI1Ce controller par3l1\('ters \,lth this model fonn nti~ht then be Justlficd. 

,\strOm and \~ltterunark l1973) Jefine a self-twllng or sclf-JdJll~tlng 

strategy ..lS an .:llgorltlun uslllg par~uneter estimates that are constant but 

LUlknO\\n. ;md that converges to the optlllla1 :.olutlon that coulU have been 

.. 
cnbl'J above \\111 not as)ll1\ltOtlcall,' mimml:e EI\;' } for an '\rbitrl1"\" , t+b •• 

controller {OI1H. II t 1"111 stlll l'eout.:c ccrtalH :lutG ;md cross corrdat ions . 
to :l"ro ~\:-; in l3.1S) .UlJ l3.1o)1. If the orJL'l' of the controller (3.1") ~::: 

lUlJI.'r('~tll!\.1teJ it l.S posslble to Jesign a regulator that results tn a 

slIIa1h.'1' output vunanco. 'lI11lS the con~roller l3.}.t) I\'ill onl)' be sclf-

tllllln~ 1 f 1 t$ order has not been lmJerest imateu. l11e tcnninology ~elf ~ 

ttUling 1:)1 a ttllo h~ been W;C(; 4uite looselr in the Iltcraturc to refer 

j 
~ 

" I 



to an algorithm where the parameters of an arbi trary controller fonn, .. 
.... 

i.e. PID are tuned recursively. 
" 
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... . 

Som.~ corollaries from TIleorem 2 are (Astrom and I\'i tterunark (1973)): 

1) if m > mo or l > lo Theorem 2 still holds 

2) if m > rna and t' > to 
~ 1 ~ 1 

then a(z- ) and B(z- } contain 

common factors if the estimates converge, and The~rem 2 does 

not hold. 
f 

TI1ere are two approad1es to implementing a self-tuning4egulator. 

I f the process dynamic and stochastic mode1~ are known, .e and -rn are 

knO\\TI. A.1 ternati vely one can select values for In and .e.,' and implement 

the self- ttming regu1at~r. 'If the parameter e,s~imates converge certam 

auto and eros.::; corre.la.t..i.ons .l\'ill be ~ero_ If these al;e not. zel'O lor all 
, 

lags greater than the number of \\thole periods of delay. then the order of 

the controller should be increased. TI1e use of diagnostic tools sug,gcsted 

by 'Dleorcm's 1 and 2 allah'S one by sw.:c.e%lve modifi~ation to select the 

correct order for the optimal controller if it is unknO\m. 

3.3 Structure of the Estimation ~Iodcl -
The controller parameters arc estimated from a model of the f011n 

(3.11) . 

,,,here the input and output se4uence (Y t' Y t -1 ' .. " U
t 

J Ut -1 ... ) are dev - . 

iation vari~b1es· from their mean vahtes. ,I t is unlikely that a real 

process is linear over the entire range ,.",here the input and output may 

vary. 
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One is trying to control tile pr9cess about its steady state value 

and the parame,te~ of (3.11) nrust reflect the behavior of the process 

and disturbances in th~s ~egion. Consequently the input' and output 

sequence are expresseJ as deviation variables. 
, -

The mean value of the controlled variable will be its set point. 
I... 

TIle mean value of the ~ipul,ated variable necessary to maintain the out-

put at its set point, may not be known, and will change if the set point" 

.of the controlled variable is altered. If d=O, then (3.11) may be \~itten 

+ v + (:5.20) 

. ) 

• I """'-" ... 

111e sequence fUt ' s} ,are deviations of the manipulated variable 

from some reference value ~ which is an apriori estimate of the steady 
, 

state value -of" the manipula'ted variablc. Thc differencc bcth'cen the 

chosen reference valuc and the true steady state ,'alue is 1"eflected in 
.,:, - ~ ~ 

v, an additional paraJllet~r to be estimated. If the steady state value 
<> 

is not exactly knoh'O and v not estimated, th~ controlled ,varial,)le will ,. 
have offset. 

If the Uisturbrulce is n~nstatiollary; .i.e. d > 0, the s~cady state 

,value of. the manipulated variable need .not be knOlVJ1, since the control 

action (3.14) wiil, be eA"'P~s~ed only in tcnns of vtUt:' ~ I'f the parwne,tc,r . 

~stilllates 'of (3.11) convcrg~-1,thc -intc?ral .;c'tioh in the contro~ler .(3.14) 

insures that there is no offset in'tho control1c~ variablc, It is net 

necessary that th~ Qr$1ers~ III and.t of ~(z-l) and B(z-l) be equal to,mo 
> 

'and'i.o to eliminate ofeset in 'this ,mariner.' 
\ - 'If , 0 

, 
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One proposal, for overcoming pffset in the face of nonstationary 

" disturbances (Seborg et al. (1976») is to use a non-integrating fonn of 

t,the sontroller (d=<O in (3.14», but increase the oider of B(z -1). This 

allows the self-ttming algorithm to force an additional root of B(z-l) 
, 

towards the tmit circl~, thereby creating integral action in an indirect 
. ' 

way. !-Iowever, this s.eems pointless because it is known apriori that the 

op.timal controllet must be of the form (3.14) with d > O. 

The additional complication introduced by 'trying to estimate the 

') extra pole of B(z -1) near unity would uswilly not be trivial since it, is 

]Q1mffi that ill-conditioning o~ the estimation space results when para­

meters lie near st~billty\ boundaries (Box and Jenkins (1970»., Further­

more, the variance of the controlled variable may be sensitive to para-

'~ter variations.' The roots of'the controller may bounce inside the unit 
•• t" "~ ~ 

circle and _the controller 'transfer funct:'iol1 will become unstable. The 
~ 

analys'is of the sensitivity of the closed loop system to parameter un-

certainities is -analogous 'to the Case where the p'rocess dynamics are nOn­

mihimwn phase. 

TIle nwnber of whole periods of'delay b, and 'the order of the pole 

d, (!,lsual1y 0 or 1 depending on whether or not the disturbance is ~tat~onary) 
.. ,,' 

'" . 
lying on the unit circle in the disturbance model are presumed knO\ffl. It 

. is reas'onable to expect that b will be knOl\1l, 'notipg that it equals' one, 
4 ' 

plus the integer portion ,of· the transpqrt delay aivided by the sampling 

inteh,al. > ~c number of whole periods of delay i~ a fWl<lament{ char­

act~ristic of the process and shoul,d be, known~ However, there will be a 

rapid degredatiQn in. the ability to control the proc~ss .1f b is less than . . 
<, th~ t~e number 0t'whole periods of d~lC;ly; In situations wltere ~he nwnber 
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of whole periods of delay is tmknown it is better to overestimate b rather 

than underestimate it (Wittenmark (1973». 
( 

, 
Box and Jenkins (1970) characterize process disturbances by 

low order ARI~~ time series models of the form ,r 

(3.20a) 

In most physical processes, d will usually be 0 or 1,. (Box ,and 

Jenkins (1970»). If the process output(drifts away {rom its target 

value, then the disturbance can be adequately characterized with d = 1. 

It is not unreasonable then to expect that d will be knoNn. 

3.4 Deterministic Disturbances 

TIle distutbances (load or setpoint) affectirg a process may b7 
detenninistic rather than stochastic. They may still be modelled by the 

methods of 13ox<\ and Jenkins (19'(0) ar:d Astrom (19.10) a1 though th~ in'ter­

pretation of at is different. Instead of·the disturbance Nt being con­

sidered as the out(>ut of a linear filter driven continuous1y by white 

noise, (Figure 2.3) a dctcnnini tic disturbance is the output of .n linear 

fil'r driven by one shock or 

be mode Hod as: 

1 
-1 

1 - z 

For example step disturbances may 

(3.21) 

,,,here at is an impulse at time t, of magnitude equal to the size of the 



) 

/) 
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. step change. If the disturbance is detenninistic a controller based on 

the minimum variance strategy will remove the total effect of the distur-

bance within b sampling intervals, as the future behavior of the disturbance 

is exactly known from a record of its past history. These controllers 

are referred to as 'dead beat' controllers (Ragazzini and Franklin (1958)) 

rather than unconstrained minimum variance controllers. 

TIle self-tuning regulator may converge to a dead beat controller 
• 

, . 
if the process .is subjec~ to detenninistic disturbC!-11ces (Wi t tenmark , (1973)). 

Analysis of the design of these controllers shows that the model form for 

estimation of the regulator parameters should be 

(3.22) -. 

I 

where d::;l for step disturbances and d=2 for ramp disturbances. For pro-

cesses aftected hy detenninistic and stochastic disturbances the controller 

(3.14) may converge to a regulato.r which is ne1 ther dead beat nor minimwn 

variance, but whose values depend,ed' on the relative size of each disturbance. 

The most useful loode1 for estimation of the controller parameters 

is (3.11) \~ith d=1. TIlis is the correct structure [or process subject 
c, , 

to drifting t)1)es of stochasti~ dj,sturbrulces, "Or to step distut;:bam.:es. It 

is wmecessarr to. knO\~ the steady state value of the manipulated variable t 

<md the integral action in the controller insures that the controlled 

variable is not biased frolll its target value. 

" r 



3.5 Self-Tuning Feedfonvard-Feedback Control 

Consider the situation in Figure l.1. In addition 

process 
dynamics 

44 

, \ Figure 3.1: Combined feedfonvard and feedback control scheme J 

to the unobserved disturbances Nt' fluctuations in the process output may be 
. 

attributed to a varlab~e Zt~ ,.,hid1 CM be measur~d but not manipulated. If 

~ 
there ,.,ere no unobserved disturbances Nt t and no coutrol action taken,. the 

I 

process output woul~ equal 3t t where 

• Z ,. 
t 

(3.23) 

Zt is referred' to as a feedforwarl variable. . In the case ,,,here b t ~ b, 

(i.e. where the manipulated variable U
t

, can canpensate for the measured 

disturbance before it rendles. the process Qutput Yt ) the controll'er minimizing 

•. " \ . 
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2 
E{Y t~b} is given by (Box and Jenkins (1970) ) 

vdu = -6(Z-12 • 
I -1 L

2
(Z-1) 

(w,(z. 2idz ' + Y ] (3.24) 
t w(z -1) 6 (Z-l) t-] <p(Z-1)L

4
(z-l) t 

where 
I 

I j = b - b (3.25) 

I -1 -1 
L2(z ) and L4(z ) are defined as before. (If b < b then I7dZt _j has not, 

yet occurred at time t and the controller (3.24) is not physically real-
A! 

izab1e. A "minimum variance forecast" of 'iJZt _ '!t is made and substituted 
, . ! -1 J 

in (3.33) in p1ac~ of w1 (z_l) VZt _,. TIlis procedure is outlined by Box 
IS (z) J 

et al. (1974).) 

I f the parameters of (3.24) were tmknown one might estimate them 

from a model of the fonn 

\..,rhere 

-1 -1 
v(z ),=vQ+vl~ 

and use them in the control Im'~ 

-n 
+ ••• + v z n 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

as if they \..,rere 'exactly knO\o.JIl. 11le de\Telopment par~lle1s the case outlined 

, . 

; , 



ui (3.2),. and only the result will be stated. If the parameter estimates 

of (3.26) converge then (Witterunark (1973)) 

P d (r) = 0, 
V uy 

P d (1) = 0, 
V zy 

1 = b, b+ 1 , ... b+m 

1 = b, b+l, ... b+i 

1 = b-j, b+l-j, .. ,b+n-j 

(3.31) 

(3.32) 

(3.33) 

The optimal values for i, m, and n are lo, roo and no, and are given by 

to = r + s + p + b - 1 

rna = r + r + max(q-b, p+d-l) 

no = s'+ r + p + b - I 

(3.34) 

(3.35) 

(3.36), 

In addition if l= lo, m = mo, and n = no, and certain weak\conditions are 

satisfied, then the controller (3.30) is the same one that could have been 

designed offline, had the disturbance and both dynamic models been known 

CWittenmark (1973)). I 

Inclusion of the feed forward variable in the estimation model 

(3.26) may possibly increase the order of the'terms a(z-l) and B(z-l). 

MOre than one feedforward variable may be included in the estimation model 

(3.26) and controller (3.30) if they are available. 

3.6 Decoupling in Multivariable Situations 
I 

Self-tuning regulators may be used to decouple a multi variable control 
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problcm. Consiucr the sItuation shOhn in figure 3.2, where for simplicity 

3 th'O Ulput thO output system IS ucpictcJ. 

l' 
2 

Fit,'Ul"e 3.2: Representation of a mul tivariable process 

It '1110re 3re four transfer functions, U1 to 1'1' l) to 1'2' U2 to 1'1 :U1U 

U2 to 1'2' c3d1 having their Oh11 uead times. If U
1 

did not affect Y2 

then Y
l 

is a tNO input one output process. (This is a COJlUJlOJ1 situation 

in control of p:lper machines, wherl' 'the moisture content can he controllcll 

by mOlllpulatlng the lI1put to the ur)' b;1sis wcight control loop, as h'cll as 

thl' thIck stock flolv \\'hid1 uoes not InfJul'l1ce the urr baSIS h'ci.l'ht.) rhe 

output Y., is controlleu hy m:mipulating 0,. U-, enters the other control 
~ 

loop as 3 fceJfon~oru variable :lJ1U b hanulcd by IIIcthods discussed in the 

previous sectlOl1. rhus the self- nming rcgul;,ttor rna)' be llsed to uecouple .. 
a lllultlvo.ri3blc proccs$. 

" 
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3,7 Constrained Control 

Recently Clarke et al. (1971, 1975) proposed a strategy claimed 

to minimize 

(3.37) 

As pointed out by MacGregor and Tidwell (1976) they incorrectly 

account for an expectation operation and in fact minimize 

(3.38) 

which was tenned short sighteu optimal control lrefer to section 2.4). 

Clarke et al. prove that minimizing (3.38) is eql)iv~lent to minimizing 

(3.39) 

\vhcre r 
I 

[ = L > (3.40) 

TIlis identity fOnlL.s the basIs for the ir derivation of a self -ttuung con-

troller to minimize (3.38). (I f the dIsturbance is nOl1stational")' it is 
L ") , 

necessary to minimize E{(Yt+b + t: VllJ
t
)'"} because the variance of Ut is 

theoretically infinite. '1110 rC$ults of this section ure modified from 

Clark'e's algorithm "to account for this.) By defining this neN flUlction 

tt+b' it is ~een that the system (2".2) may be written as 
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(3.41) 

1 t the parameter:> of (3. H) ,,,ere knOM1 the control action 

> ' 

= _ aOCz- l ) y 

BOCz· l ) + ~6(Z-1)6(z-1) t 

- 6(z·1)Lz(z·1) , 
(3.42) 

"ould minimize (13.39). The effect of ~ is to possibly increase the order 

of denominator of the controller. If the parameters of (3.41) are unknowns 

Clarke et n1. (1975) suggest that they be estimated from a model of the 

fOIm 

I': t+b (3.43) 

, -1 
where the orde,r of B (: ) may be increased over ..the lUle~nstrained rninilllLUn 

vari;U1ce controller. If the process Jynamic and stochastic models are LUl-

known, the value of r, that \vill reduce the vari~lnce of lIt by a g,iven 

<UllOunt \dll be unknO\~ and· it Hill be necessary to search for this v~lue 

by trial (md error. 'nlCre have been no reported ,lpplications of Clark I 5 
, 

algorithm. Clarke's paper is fraught ,dth many errors and a corrected 

version is gl\'cn in ,\ppenJix C. 

, 



3, 8 NonminiImun Phq.se Sl~ms 
.. . 

Hinimum variance and dead ,beat controllers are very sensitive to 

variations in the parameters of nonminimum phase dynamics. Strategies for 

'detwling' these controllers are readily implemented in a nonadaptive 

environment (refer to O1apter 2.5). In an adaptive envirorunent these systems 

are difficult to handle. 

Sampling of a continuous minimum phase process may result in a 

discrete model which is nonminimum phase, i.e. some roots of w(z-l) lie 

'inside the unit circle. A discrete process may be minirntIDt phase at one 

operating l,evel and nonminimwn phase at another, depending \\'hether the frac­

tional pedo\! of delay passe;> a certain critiCal value. Flow processes 

would have t~s problem. (A paper machine operating at different speeds 
\ 

is a cOlmnon indus,trial example.) ",,\ solution is to increase the sampling 

intcnral so that this shl [t in ,lnd out of nonrninimum phase does not occur. 
(-

HOl\'ever, the ,sampnng rate may be fixed due to h:u'dh'are restrictions. 

AstrUm and Witterunark t1974) have proposed a strate!:.I)' to asymptoticl~' 
, 

minimize the variance of Y' subject to the cOrl!>traint that t.he closed loop 
t 

have all its :eros outside the unit drcle. It is not a practical strategy 

;:1S it involv0s a rcal time factol:i;~ation of a polynomial in :-1, and solu­

tion of a set of linear equations, 'IlIC' simplicity of the hasic Self-tlUling 

algori thm is lost and P1'gblcms lIIay occur .\"ith est.imation of the parrunetcrs. 

It is impossible to directly estimate the controller pammeters since tho 

process output cannot be expressed as an,explicit fUIlction ~f the parameters 

"'e wi~h to esti-mate. 

Alternatively, ,\strOm (1974) ~uggests. that one try to identify 

, the paranlcters of the process dynamic and stochastic IOOdels, 
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(3.2) 

'I11e parameters of (3.2) are estimated at every sampling interval using 

recursive maximwn likelihood estimation or an equivalent method. These 

methods essentially require repeated applicatiorr of least squares to 

identify the dynamic and .stochastic parameters. The state variable re-

presentation of (3.2) is reconstructed at every sampling interval and a 

Ricatti equation solved to minimize var{Y
t

} + ~ v~r{~rlut}' 

Estimation of the process dynamic and stochastic parameters requires 

that one have an apriori knowledge of the structure of both the process 

dynmnics and disturbances. There is no function that can be computed to 

indicate optimality of the controller) as the process output will be a 

coniplex ARHV\ time serie·s. l~entifiabil1t)' problems should not arise as 

the controller 'I{ill be nonllnear and time varying. This algoritlun 15 

computationally'lIIore time consuming than the ordinal"), self - twung regulator. 

Clarke's algorit9nl ll~7S) lIlay be used although the value of r. 
... " , .. 

that moves all the pol of the closed loop outside the Wlit circle II/ill 

probably not l_~~ .... his 15 the 1Il0st appealing method of deallllg Idth 

norunUllJllLUTl phase sptOUl'> other than increasing the samr{!jng interval. 

3.~ StalHlitv of the Closed Loop System ' , 

LjWlg ano \iittcJUnark (E)7S) have proven that the self-ttUling 

1 9 I I, . 1 . . I' I -1 ) ( • 1 ) regu ator las a stavl t:mg propcr~y ,nen. ~ \: 0: = 1. (). Suppose 

the output of the process may be expressed as 

I 
t 
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\ S2 

-' 

o -I" 0 -1 0 
= (l (z )Yt + 13 (z )U

t 
+ v

t
+

b 
(3. t4) 

TIle requi rement that v~+b be a moving average process of order b-1, 

o is rela.xed. v
t

+b is any disturbance, stodlastic or detenninistic with the 

restriction that 

(3.45) 

The parameters of the minimum variance controllet are estimated , 
fro~\the model 

\\ 
+ ' t.:t+b (3.-lo) 

I f the number ot Imole penods of delay is kno\\n, 'the orJers of 

-.l (:: -1) ,md Be: -1) not having been lUlucrcstimateu, then the regulator 

(3.U) 

will stabilize the system t3.44) in the sense that 

~ ~ y2 ls ) < C.., with probah1l1ty one 
5=1 

(3 . .1:') 

1 t is not necessary that the paz-amoter estimates converge. If 

the system is minimum phase then as well 

.. 
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.-

1 t "> 
t [ U"(s) < C3 \vith probability one (3.48) 

s=l 

The constants Ci are independent of t, but dependent on the sequence 

{v.} , i = 1,2, ... t. 
1 

If BO is fixed then it rust be- chosen so that 

.Swo < BO < 00 ~ to insure stability of the closed loop . 

. Th'i5 stab~lizi~erty is important as it guarantees that 

the output of the clos~d loop will remain bounded (although this limit 

S3 

may be t.m.satisfactory from an operating standpoint) irrespective of the 

characteristics of the disturbances. 'flle self-tuning rcgulato~ cannot 

'be sho\,n to have this stabilizing property for an arbitrary 6(Z-1)tl(z.-1) 

pol)llomial, as the system cannot be written in the fonn (3 . ..t-l). 

'nli~ stabilizing prop('rty c~m be briefly described as folloh's. 

If tile output of a pro<.:e~s approaches lJ1stability, Ljt.m.g and l\'ittcnJll..'lrk 

(1975) show that the controller parameters of (3 .. 11) quickly approach 

those of the mUllmUJh variance controller. 1110 process Otltput is'then 

fore<>d into the -;tabil ity region by the control actIon 

(3. H) 

It is not necessary that t11C controller t':>timates (3.11) converge. 

On a real process the self-tlUling regulator may not have this 

stabilizing property, even if S(:-l)U(:-l) '" 1.0 ('~le to nonlinearitite~ . 
.. 

, 'Dle moClel of the process d)l1amics and dis turhanccs can he !'cvc~ly strained 

if the output moves far from its stead), state value' and this stabili:ing 

property may not be realized . 

.. 
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. . ... 
, . 

3:10 Least Squares Esti~tion 
i 

Introduce the vectors 

e (3.50} 

The controller parameters are estimated from the ~del (3.11) which may 
be wri t ten as 

T . 
y = x (t-b)e +(E : t . - . - I t~ 

. . , 

(3.51) 

The parameters 'of 3.51 are determined so that th~ 'least squ<;lres criterion: 
1 • 

t 
L 

s==1 

" 
2 

E: (5) 

, 
is minimized. TIle ~olution to this is 4\endall 'and Stuart Ci966) 

whc're 

• ,-I 

T t 'f ex X) = r x{s-b)x(s-b). 
. s=b+l 

·t 
XT y:: E tJs-I))¥(s) 

5=b+1 

This may be ex~rcssed'recursivelYt (SOderstrOm et ale (1974a») as 

(3.52) 

(3.S3) 

(3.54) 

(3.55) 

.\ 

. " 
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(3.56) 

K(t) = J:(t-l)x(t-b) 

1 + xT(t-b)£(t-l)x(t-b). - - -
(3.57) 

T 
f(t) = E,(t-l) _ PJt-l)x(t-b)x (t-b)£.(t-l) 

1 + ~T (t-b)RC -l)~(t-b) 
(3.58) 

The notation,'is that a double bar represents .a matrix and ~ single bar . 
a vector. £(t) is the symmetric matrix (~T ~-1 at time t. If (3.51) 

converges to the optimal solution, and b=l (i.~. e::
t 

is white noise) 

ret) is proportional to the varic:IJ1ce-covariance matrix of the parameters. - -' 
eSee Appendix B). 

Initial est:i!mates 8(0) and r.eO) are needed to start the recursion. . - -

From a Bayesian viewpoint 8(0) represents the prior expectation of tl, and 
,- -

£(0) a matrix proportional to the covariance matrix of the prior dis­

tribution of e. The prior mean will strongly influence the estimates of 

the parruneters at all ·future times' if the elements of P,(O) are chosen 
/ , 

small. In order that ~(O) not Wlduly influence the recursive estimates, 

Nittenmark (1973) suggests that J~(O) be chbsen as IOal to 100a~, where 

ex is the variance of the owtput variance, Y, and .I~ is the lUli t matrix. 
• 

However, the magnitude of ~(O) and I:(O) depend upon the scaling (WIltS) 

of bot!l the {Yt's} and the {v<iut'S} series. dlOosing equal diagonal J 

elements evarianCe,6) would implr having rore prior infonnation on the B 
, 

parameters than the Cl parameters or vice-versa. Therefore, choice of q 

noninfonnative .e.cO) sho~ld depenu on both tile variances of Y
t 

and 9du~ 

J 

' . 

J 
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(It may therefore be advantageous to scale the process inputs and outputs 

such that their vari,ances are roughly equal.) 

Since the diagonal ele~~ts of ~(t) represents var(ei(t)!var(c t )), 

tile choice of a noninformative g(O) should just involve insuring that these 

variances are sufficiently large that the prior confidence region on each 

ei (0) will include any even remotely possible yalue of 8i' TIle elements 
. 1 . 

of l:(O) may be dlosen smaller if one feels ,that good prior infannation is -: ,....... ... 

available (e.g. from existing controller parame~ers) or one simply:wants 
( . 

to restrict the movement of the~arameters from the initial ~(O). 

It is important to not~ that equation~ (3.56) to (3.58) are derived 

for the estimation of parameters that are constant, but lU1lmOh'I1.· They 

are nat capable of tracking changing parameter values as evident from 

the fact that !!(t)" decreases· to the nl,lll matrix in u pos~tive definite 

sense. 

3.11 Time Varying Parameters 

~(t) '{IIaY be prevented from approadling the null matrix by using 
. 

an exgonentially discounted least squares appi'oach. Instead of minimizing . ~ ... 
, 

(3.52) the criterion is to minim~zc 

\vhere 0 « ,\ ~ 1. 

t 
E 

s=1 

t·-s"') . 
:\ c "ls) .. 

with ~(t) ~d ~(t) defined ilS 

( 

.. 

(3.59) 
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~(t) 
= ~(t-1)~(t-b) 

;: + ~T(t~b)f?(t-l)~(t-b) 
(3.60) 

and 

PCt) = E(t-l) 
~ 

1 ~(t-l)~Ct-b)~T (t-b)eCt-1) 

A ;>.. + ~'f (t-b)E.(t-l)~(t-b) 
. (3. 61) 

The use of >., the discounting factor "reduces the influence of 

" past data on the current estimates, and they will then reflect the most 

recent charact~ristics of the data. Effectively (1=;>..) data points are 

included in the estimation of the parameters. TI1is quantity is referred 

" 

I 

to as the ~totic sample length (Clarke et 3:1. (1975)) .. A is. usually 

in the range . ~ -: A < 1. O. 'The smal,ler the valUe of A the faster j_ 
algorithm "'PI track changing parameters, but the greater will be ,the 

variance of the parameter esq,mates. Hence the value of X is usually 

chosen to provide a compromise between the speed of tracking and the 

smoothness of the ,estimation sequence. 

111e choice of the noninfonnati ve prior PJO) will strongly influence 
~ . 

the parameter estimates aCt) at all future times only if A = 1.0. If 

A < 1.0 then the effect of P(O) dies out and the consequences of lll1derest-
" 

,imating the magnitude ~f element of )~(O) may not be long .lasting! 

Al ternati ve1y, the controller panuncters may he interpreted as the 

time varying states of a KJlman filter (lVicslandcr (1969)). In its simplest 

version, the estimated parameters arc' asslD11ed to follow a random \Valk ' 
" 

A 

= e. (t-l) '+- V·lt) 
1 1 

i = 1, 2, ... m+l+2 (3.6'2.) 

, . I 
I 
1 
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{v i (t)} is a sequence of independent white noise variates with covariance 

matrix R. 'Dlis again leads to the recursive estimation scheme given in 

" 

(3.56) with ~(t) remaining as in (3.57), but P;(t) now expressed recursively 

as 

Ret) = I?,(t-l) 
~(t-l)x(t-b)XT(t-b)~(-l) + R 
1 + ~T(t-b)?,,(t-l)~(t-l) -"," 

(3.63) 

R is positive semi-definite and prevents R(t) from approaching the null 

matrix. In this formulation the parameters may all be time varying at 

different rates. B would probably be mad~ diagonal and the larger 

the elements the faster is the adaption for that parameter, but the, noiser 

is the estimate. It is not obvious hOlV' to select the elements of ~ to 

reflect an ~symptotic san~le lengtll. ~ntcrprelation of the controller 

parameters as the time varying states of a Kalman filter rcquires a 1II0re 

sopnisti'cated understanding of the process dynamics and stodlustics. In 

many instances this will be LlllknOM1. The estimation of time va'l)'ing para­

meters seem_~ to be handled most easily by the llse of the discotmting f;lctor 

since its effect on the estimation scheme is more r~dily apprcciated. 

ScI f - tLUling regulators \vere dcsigned to control processes ,1050 
parameters were constant but unknown. I t would seem reasonable to e:'l'cct, 

\yith one of these above estimation s\:hc/Ilos, that the sclf-twling str~teg}' 

would control processes '''hose parameters dlanged slOl.,ly relative to the 

process dynamics. 

3.12 Parameter Estimation under Closed Loop ConoitiOI)s 

If a process is operating in 'closed loop, with a linear, time I 
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invariant feedback controller as discUssed in Chapter 2, it is knO\vn that 
. I I' 

it may not be possible to uniquely identify the parameters of the process. 
/ 

dynamic Md stodwstic mode~. If the parameter estimates. of the model 

-1 -1' d.. 
Yt +b,· a(z )Yt + B(~ )VlUt + ~t+b. , 

converge, the controller 

• I 

(3.11) 

(3.14) 

w'ill reduce to a constant regulator. Under this c~ndition it is sholvn in 

~ Appendix A that one parameter may always be expressed as a linear comb­

ination of the rClllaining ones if (3.14) is the minimum variance controller. 
, 

;\strom and Ivittenmark (1973) ~uggest that one par~ter, BO' be fixed. TIle 
n· g, 

• parameters in the controller /\1 , i :: O,l, ... m and ~', i ;:: l,Z, ... f. are 
# A nO '" 80 

all ratios with re~pect to BO'. By fixing. BO (an cs timate of wO) one simply 

wUI scale' up or down the values of the parameters (~i' Bi ) estimated by 
. 

the on-line estimation algQritJun. Even though the dlOicc of 130 is arbrtrary 

in that, the same rat iu of controller parameters can theoretically be obt(tinC'u, 
• 

it has been sho\\11 that for stability of the closed loop system i.t is nee-. 
~ 

cssary that .SwO :' BO <: 00 (Ljwlg,and lVittclUlI.1rk (1974)). Although this 

-1 -1 
result \Vas <.lcrived fur the case I"here 6(z )O(z. ) = 1.0, if the control~cr 

-1 
(3. H) is J~imum variance the process output may behave as though .5 (z I) 

e(z-l) = 1.0, when in fact it i~ an arbitrary polynomial in z-l. One might, 

expect '~his re::;triction on BO to holdlunder less restrictive conditions if 

the tontroller l3.14) is minimwn varianc«. 1110 rate of convergence of the 



" 

60 

estimated parameters is strongly influenced by the choice of BO and is 

most rapid when BO '= Wo (Cegrell and Hedgvist (1975) I Wittenmark (1973)). 
~ 

BO has been fixed in the reported applications of the self-tyning 

regulator. In most instances a reasonably adequate 'model of the process 

was available, arid so an estimate of w~ could be made. \\'hen this infonnation 
, 

has been unavailable difficulties in selecting a satisfactory value of BO 

have been reported (Cegrell and lIecigvist (1976)). 

Ho\iever, it is not actually necessary to fix one parameter when 
, 

employing the self-tuning reguiator since the parameter estimates are non-

linear, time varying ftmctions of the input and eutput. If the estimates 

converge they become less and less time varying. However, the least squares 

criterion' 

t 
min VI (~) = 1: e:

2
(s+b) 

5=1 
(3.52) 

includes the infonnation from the process ,.;hen the controller 'vas nonlinear 

an<.l time varying. 'Ihere ,'/ill not be a singulari ty in the estimation space 

although in the limit (t-,oo) one will approach singularity (possibly.giving 

problems on finite ,,,ord minicomputers). 

If a disc;ollllting factor is· used then tJle parruootcr estimates will 

never really converge since they will be ha~ed on a finite 5ample l,cngth. 

l1w shorter the asymptotic sample length (l~A') tJle mOTe they will vary, and 

'the sin&'lllari ty in the estimation. sp~ce should never arise. In practice I 

tf the true parruneters are ~lot time v,nying and the asymptotic sample 

lellgth is long enough that the parameter estimates become essentially con­
\ 

stant over a long period of time '(~fter the in it inl transient has been 
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discounted, then ~(t) c.ould become vel)' nearly singular", "moJever, as C(t) 

has been prevented from approadling tho .null matrix one would eA-pect the 
, 

parameter estimates to start v::rying due to the high corrclatio~s among 

them. It would then appear as though the process dynamic or disturbances 

were changing. In practice it would appear unnecessary to continu~ estim-

" 
ating BO once a reasonable estimate had been obtained, and one might fix 
~ 

BO after a short period of time (by zeroing the row and column of ~(t) 
~ 

corresponding to BO)' 

3.13 Start-Up Situations,.and Biased' Estimation 

If the self-tuning algoritJun is started off with ~(O) = 2., the 

process output may drift away from its target value until better parameter, 

estimates are available for use in the controller (3.14). If this initial 
~ 

transient in the proces~ output is intolerable, then one might e5timate the 

controller parameters by the recursive estimation scheme, but use an existing 

PID controller to compute the control sibrnal instead of (3.14). \\~lcn one 

has reasonable estimates of the parameters, the feedb.ack cont roller (3 .l-n , 

based on the cstimated pararooter wbuld be u.~~d. 

/ImoJcver, consistent (usymptotically lUlbiaseJ) estimates"of the min-

imum variance controller parameters can only be obtained from the estimation 

_ 1Il0de-l (3.11) if the implemented contro~lcr is of the correct [onn, and the 

estimates converge to those of the mintmum variru~cc 'ctl'lltroller (Appendix B). 
,. \ 

It is impossible to obtain consistent estimates of the mininn.un varirulce con-
. . 

troller parameters if an arbitntry feedback control1er is used. If the para-
. 

·meter est.imates are tracked, but not used initia11r in the computation of 
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the control si&1J1al, it is important that>. < 1, othen..,ise one Ivill ahvays 

have biased estimates. 

3.14 Convergence of the Parameter Estimates 

The difference equations' describing the parameter estimates are 

stochastic, nonlinear and time varying functions of the input and output~ 

making aRa1ysis of the estimation s'ituation extremely difficult. Sinn.ll-

ation? of the self-tUning regul~t~r have been the primary tool for such 
- -

analysis. AstrOm and Wittenmark (1973), Wittenmark (1973), Chang (1975), 

Sastry et' a1. (1976) and Clarke et a1. (1975) have nuioorous examples of 

sirru1ations examining the effect of ~(O), ~(O), ,\ and 13
0 

on the transient 

and asymptotic behavior of self- tuning regulators. 

Ljung apd Ivittenrnark (1974) have shoM1 that a set of deterministic, 

ordinary differential equations may describe the expected trajectot"ies of 

the parameters. Let the system be described by (3.1),. and a model of, tlle 

form (3.51) 

(3.51) 

is used to estimate the minillUJm varioncc controller parameters. 

Introuuce 

(3.,04 ) 

(3.oS)-

• J 

.' 

o 
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111en for sufficiently large t and \vcak conditions (Ljung and Wittcnmark 

(1974)) the ordinary differential equations 

d!( r) 
(3.66) ~-= 

d. 

eIR(·) 

d. = Rer) - B(t) g(~ .R(r) (3.67) 

will describe the expected trajectories of the estimated parameters: The 

ficticious time t is related to t by 

" ~ .en (t) (3.68) 

if the discounting. fact-or is one. Denote the vector of minillltUTI variance 

o 
controller parameters by 2. ' Le. 

(3.09) 

If f(uO) is a globally a..sYII"Ptotic stationary point of (3.00), \.;here ~Cr) 

is positive definite, then 

tim ~(t) ~ ~o Idth pro!)abilit)' Olio 
t-~ 

(3. 70) 

I\hen one par,antetcr is estiJOatcJ it.is possible to 50h'0 (3.66)0 anJ 
. 

(3.67) analytically. Stability of the closed loop equations may be in-

vestigated as well as possible convergence points, which arc the solutions to 

t , I 

I !, 
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de 
-- = I~( T)iC.~_CrJ) = 0 (3.71) 
dT 

For more complicated systems the d~fferential equations may be linearized 

. or nwnerically ?-.ntegrated to investigate the convergence properties of 

the algorithm. LjlU1g and Nittenmark (1974) were able to construct a system 

\.,rhere the parameters of the ntinimum variance controller were nO-t a globally 

asymptotically stable solution-to (3.66). Thus the parameters of the self-

tuning regulator coul~ not converge to those of the minimum variance con­

troller. 

Analysis of the differenti-a1 equations is difficult if more than 

one parameter is to be estimated. If n parameters are to be estimated at 

least ~ nCn+3) simultaneous dift~rential equations must he solved.' The 

elemcnts~of i(~) and ~(.Q), .the theoretical auto und cross correlations be­

tween the input llild outPllt i!re difficult to evaluate. Several examples 

are shm</O in Appendix D: 
111e parumeter estiinates 0 (t) may converge to 3 station~ll)' solution 

• 
of (3.66). 

,t' , 

Due to the presence of the disturbances there is a non :ero 

probability that the solution will depart from t1lis region lUlless it i::; 

globally as)mptotically s,table (l.jung and Wittenmark (1"974». As a result 

the controlle r panulleters lJIay not Ji rectly converge to dlose ot the minimlun 

variance controller but may jtunp bet",'een variou$ convergence points. If 

the estimated parameters tend to\"ards the mininum vanance control.ler, they 

will not converge to another solution of (3.66) (Ljung and Wittenmark (1974». 

'TIleorems 1 and 2 of Section 3.1 statc,d that if the parameter est­

imates of t1re n.:>Jel l3.11) converged, and the order o{ Cl(z-l) and 8.(zl-) 

1 

I, 
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h'ere not tmLierestirnateJ then the resulting regulator Ivould be the rniniIlllDTl 

variance controller. I!owever, there is no guarantee of parameter convergence. 

ThCJ rate of convergence is influenced by many factors. 'Ihe rc lati ve 
.. 

rate 0 [ convergence bethleen ~he (l and B parameters is influenceJ by the 

-1 -1 
si.l:,mal to noise ratio, var{v(: ) }U/var{;p(z )at +b}. If the parameter 

estimates are highly correlated. the rate of convergence ,dU be slo\\!. 111e 

rate of convergence may be ~mproved by the use of a discounting factor. This 

is readily seen by exandning (3.17). If the estimation equation,di~counts 

data where t:t+b '\ras far rerno~ed from e:~+b' tae rate of convergence of the 

controller parameters is increased. A typical strategy is to set .\. = .95 

at the start of the estimation anJ increase it ,after thirty to fifty sampling 

intervals. 

111e transient behavior of the estimation scheme is also mfluenced 

by I~(OJ and 2.(0}, however, the long "tenn InflllcnceCof thc~c values tiles out 
~ 

if a JiscoLUlt~ng factor is employed. If So is fixcJ, convergence is most 

rapid ,{hen Bo = wo ' ((egretl and Jll'ul\vist (19"iS)). 

Al though convergence of the regulator pur~uneters to the JIIl1HmLUIl 

vari;mcc parruneters is not as~ured, inJustrial applications .lllll ~lIlU,llation 

examples indicate that cant 1'0 1 is VCIY gooJ I~ i thin thl.,'llt)' ~nJllpllllg lIltervnls t 

even if the p,IT:unetcr est.ullutcs Iwvc not rcacheJ their final \'alul.'s. 

3.15 ?imul.lt ion of a Sdf-Tlulin~ Regulator 

Let the proccs$ d)11nrnh:'s anu Jisturbrulccs be Jcscribcd .IS 

. ' . 
• 

I 1 
Y

t
+ l :: • .. T U .. ----.--a 

t -1 t+1 1 - .!Jz- tl - .-l: )v 
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11115 i0he same example used 1n d1<lpter 2. nus system was sirulated 
• 

USIng a sequence of':--J(U,l) lUtts) • The presence of the disturbance causes 

the process output Y t to drift away from its target value of 10. 0, Figure. 

3.3. 

50.0 

:r 30.0 
I-
:J 
(l.. 

10'.0 I-
~ 
0 

til 
UI -10.0 w 
0 
0 
a: 
0.. -30.U 

-!In .0 

0 ~ao 400 1:00 800 1.000 

I .; SP~PLE NuMBER 

figure 3.3: Open loop behavior of the process (3.72) 

Since the disturbance is nonstationary a model of the fonn (3.11) with d=l 

(3.11) 

is used to es,tlmate the controller par8meters.. \~e are not estl:mating. the 

parameters of the process dynamic$ and stochas tic disturbances, 

The \'ariancc of VUt is alnlOst tl\'o orders of magnitude larger than 

the varirulce of Y t (Section 2~4) for the unconstrained minimum varirutce 

• 

. , 
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. , 
j' 

can t rolle r. Bet ter Cant roI lias obtained by making the, trans fannat ion 
, 

VUt .... VUt/1O. 'nlC minimum ,v::lriance controller for (3.72) is now 

or 

:: -

, 
Vu = 

t 

A model of the form 
1 

-

(1.4 ". 1.66z- 1 + .36z- 1) 
2 -.8z- 1 Yt 

, , 
Yt+l = ~OYt + a1Yt -1 + a 2Yt - 2 + BO?Ut + B1vUt _1 

, 

+ E: 1 t+ 

(3. 73) 

(3. 74) 

67 

'"as 'used to estimate the cont roller parameters, in the fi l~t siU1Ulation . . 
51. 1~.cO) W::lS lOr. and ~(ll) = Q. A JiSCOlUlt lIlg factor \ c .9S 1 .. ;:1:; u$ed 

for the fi rst SO sampling lI1tervals, after which \ = .998 wa$ u$ed. ,U 1 

!-he paralJl('tcrs ,,'ere estimated 
B· • 

(l. 

and the ratios ~ , i = 0,1,2, 
BO 

BO ~U1J 

/ 
/ 

~ are plotted in Figure 3.·l, Ille controller ratios are Hot c!o:;c to their 
130 
correct values afte I' 1000 sampling intervals. ret" the cO!ltrol 1S very good. 

'ille auto and cross corrolatlOn funct ion. computeJ over Vhe last 9S0 ohservatIons 

is plotted III Figure 3.5 . 

.. ~ 

-
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All values beyond lag zero should De zero if tl)e control is minimum var· 

iance. Since these functions 'are computed from a finite number of obser-

• 

.. vatiom; 'tthey li.hl not be exactly z~ro . . Bartlett (1946) has ShOhlJl that for 

, a movin~ ave~ge process of order b.-I ,the varia9tce of the co~uted auto~ 
, 

corr.elatiQns, beyond lag b are given by 

(3.76) 

\.mere pyy(K)' is the theoretical auto correlation at lag K.· TIle' variance 

of the cross correlations'beyond lag b,are approximately given by (Bart~ctt 

,(195S)), as 

'. . t: . ." 1 (\ "b-l '. 2: 
"'var (r cl Cr)} :t'N-""C 1 + 2,4, P d (K»., T ~ b (3.77) 

Qily k=l fJ uy 
,,. 

" 
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The approximate two standard deviation limits on the auto and cross 
• <. • 

correlations '(2/1N in this case as b=l) are shown in Figure 3.5. It is 

seen that the control appears to be minil11U11 variance. The variance of 

Yt and the variance of VU
t 

are compared to their theoretical values in 

Table 3.1. 
J 

To check the simulation the self-tuning regulator was also started 

off \vith ~(O) = .001 1 and the ndnimum variance controller parameters. 

The estimates remained very c1Qse to their optimal values • 

. The self-tuning algorithm of Clarke et al. (1975) lias simulated 

in the $econd simulation S2. The model fo~ for identification of the 

controller parameters; lvas 
II 

or 

The tileoretica1 constrained controller is (2.39) 

= - (1.4 - 1.66z-1 - .36z- 2) 
2.5 - 1.6'Sz-1 

I 

(3.78) 

(3.79) 

(3.80) 

I 

~emembering tllat'the t:ansformati?n VU
t 

+ VUt / lO chrulge~ Wo from .2.to 2.0. 

, Th~ ~on trpUer ratios !!.. , i = 0 ,'1,2, DO and !i are ShOlffl' in Figure :;.6, 
. , BO BO I 

and the sample auto corre-lation flJIlCtion o'f !(t) , t:4>~(T) is plotted in 
-'" ... . , . 

Figwe 3.7. 

.. 

'! 
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If the 95% confidence interval is taken as 2//iN then the resulting control 
, 

appears to be optimal. The variances of Yt and VUt are compared to their 

theoretical values in Table 3.1. 

Simulation var Yt var QUt 
y 

unconstrained 1.00 0.79 10.00 . , 

Sl 1 ... 02 0.90 Q..98 

constraJned 1.10 0.410 10.00 
'\ 

S2 1.13 0.4'79 9.98 

Table 3.1: Simulation results for the constrained 
. and unconstrained self-tWling regulator 

There is a 9.7~ increase in the var of Y
t 

comp~red to the first simulation 

\oJhh a corresponding decfe"'ase in the variance Of~VU~ of 47t., Referring 
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to Figure 2. ~ for this system, it is seen that for a 10.0% increase in 

the variance . of Y
t 

it is expected that there will be a 47~ decrease In 
, 

the variance 0t VUt · The simulation resu1 ts agree well with these expected 

results, 

3.16 SlD11Tlary 

The parameters of tile model 

(3.11) 

are estimat~ at every sampling interval by recursive least squares, and 

used in the control law 

I • 
(3.14) 

, 
as if they \1ere exactly known. If the pa'rrunetcr estiJpates converge, the , 

-1 -1 .. 
order!3' of a(z ) ~nd B(z ) have not been underestimated~. and severnl 

weak conditions are met t. the resul ting regulator is' the J~inirnum variance 

control~r ~ This is the same ~~c that Gould have been des igned had the 

process dymunic dnd stodmstic models been kno\oJI1. I!owever, there is no 

guarantee that thc paramcter estiall?tes will- converge. 

'TIle bilSic self-tuning algorithm of Astr(Sm and Wittelunark (1973) 

\.,ras discussed in this thapter. 
. . 

It was shmm hO\'I detenninistic dist~lrbances, 

feedforward variables, multivariablo decoupling and constrained control arC -. 
incorporated in the fr3IJlework of $elf-tuning regulators. l1lcre was .con-

siderable discussion concerning the' structure of the estimation model t 
_ • -. Il . : 

\ .. 

) 
'1 
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and the importance of includin~ differencing if the disturbances are non­

stationary. The choice of the sampling interval i~ important as difficulties 

in direct,implementatioQ of the self-tuning regulator may occur if the pro­

cess dynamic model is nonminimum pha~e. Least squares estimation, methods 

of handling time varying parameters and convergence properties of the para­

meter, es.tima tes were also topics discussed. The next chapter will revie\oJ 
, 

applications of the self-tuning regulator to the control of industrial.and 

pilot plant processes. 

'. 
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GJAPTER 4 

LITERAWRE REVIEW 'OF PROCESS APPLICATIONS 

There have been several practical implementation~ of self-t~ng 
regulators to control pilot plant and industrial processes. The purpose 

of this chapter is to review these applications, indicating insights, , 
extensions of the basic theory, and to identify some of. the problems that 

have occurred in its implementation. 
< 

In "Adaptive Control of a Paper Machine", Wittenmark (1974) exarn-
• i 

ined the feasibility of implementing a self-tuning regulator f9r the moisture 

control loop on an industrial paper machine. Feeqback control \."as combined 

wi th a feedfon."ard signal froll} an upstream part of the proc~5s. The con-

. troller was of the form 

~l ~ ~lz-l + 
A - 2 . 

\1U· ;:: 

Ct
3

Z 
Y

t + B z -1 
x -2 1: B3z -3) t BOCl + B2z 

1 

(4.1) 

,~ 
,."here z 'vas the feedf6nrard signal. TIle structure of the controller and 

. t 
~ A' 

I dloice of Bo (whim '''as fL'(~) '''ere bas~d qn a reasoh,Q.b+i" good knowledge 

of the process dynam.i;c and s tochas tic models. 
--, 

The self-tuning regulator had good transient behavior and within 

fifteen sampling inter.vals the regulator was providing good control. TIle 
t 

controller required a'l~rge number of parameters. to maintain good control . ; 

f 

as the process had a long transport delay and large s1;oci.la.o:;tic dist~rbances. 
'. 

7S 
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A similar application was renorted by Cegrell and Hedqvist (1975) 
I 

in "Successful Adaptive Control of a Paper ~1achines", where the control 

objective '~as to minimize fluctuations in the moisture content'and·basis 

weight. The process was a input-two output coupled system, the dynamics 

of 'vhich ''Jere well known. Infonnation from the basis weight loop was usoed 
.. 

in the estimation of tile controller 'parameters and compu~ation of the 
, 

moisture content control signal, essentially decoupling the system. 

The transient behaVior of the controlfer was good and when a for-

.. 

.. 

getting factor \."as carefully dlOsen, the parameters of the re'gulator were 

close to ,their optimal values within twelve sampling intervals. The auto 

correlation of the pro,cess output indicated the optimality of the controller. 

TIle performance of the self- tuning regulat<?r was compare<1 to existing control 

.algorithms-discrete proportional integral controllers. The difference 

bet\."een a ,,,ell tuned PI controller and the self- tWling regulator was small 

during steady-state operation. PI control1~r5 ,,,ere seldom well tuneJ. though, 
, 

because the Jynamcis of the paper machine ch<U1ged ,vhenever a different grade 

of paper was manufactured. I f the process was noisy, and the scI f - tlll1ing re-
, 

gulator was implemented, [elver paper breaks occurred, resulting in increaseu 

product~on. At the time the paper was ,,,ri tten, the self-tuning regulator 

haJ. been in continuous operation for several months . 
• 

Cegrell and Hedqvist (1974) discuss the application of a self-tuning 
. 

regUlator to control the Kappa-number (inuication of ,wood pulp delignification) 

and a number of subprocesses on a cOl,ltinuous Jigcsto~. 111is paper primarily 

descr~bcs the development of a mechanistic mod,el to desc.ribe the ~te Q£ .:-,. " 
delignification. 'Ole unknown dynamic pariJneters of this model arf\ estimateJ 

and Used to determine.an '·optimal" temperature set point. ignoring the 
.. 
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7"7 , , 

effect q£ the process disturbances on this calculation. The results of 

the proposed Kappa-munber control scheme are not presented. Only self-
, 

tlIDing control of the chip level in the digestor is examined, although 

~:Vres~~-v.~~ rather confusing beca~~ the controller is designed to 

minimize the change in chip level fluctuations. 

Borisson and Syding (1976) have descriped "Self-Ttming Control 
~ 

of an Ore Crusher" where the ob.jective of the study was to evaluate the 

economics of installing a digital computer for process control. (The 
'II 

process control compVter w~ at the Lund Institute of Teclmology, S''c'eden, 
. 

1800 kilometers from the industrial'process.) High production rates on the 

orr ~her were difficult to maintain. due to long transport· delays, cl\anging 

or~aractenstlcs and \oJear of tt)e crusher jaws. A self-tWling regulator 

Has used to control the crusher power. An asymptotic sample length of one 
" , 

hour was used in the estimation scheme, and BO was fixed, al though ~nlues 
. . 

be,.t:\.;een 1 and 100 all gave good results .. ' 'This apparent insensitivity of 

80 I<las due to the tIUly time varying nature of th"e proc~ss .. So much 'new' 

infonnation ,</as being' made available to the es timation scheme at every 
, 

sampling interval tlmt the absolute value of DO was not crucial and it 

CQuld' easily have been estimated. 
-

'11\e reduction in the variance of t~lC cnlsher power realized by im-

plementing the solf-tlUling regulator, as compared to conventional \analog . ' -

PI controllers, meant that the set point of the crusher power' could be . 
moved closer to the valve at \<lhich thennal overload occurred. A ten percent 

increase in production could be realiz.ed und it 'vas concluded that there 
, • ,#0 "-

'vas significant· economic incentive to install a digital coo'trol system to 

implenID~t a self-tuning regulatbr. \ . ... 

... 

# 
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"-
Industrial application~ of the self-tuning regulator have been 

" 

reported only in Europe, and many of the people reporting these applications 

h,ave had a' close affiliation wi th the Lund Institute of Technology. TIle 

processes on which the self-tuning regulator has been implemented were 

characterized by dynamics ''lith long transport delays, stochastic distur-

. bances and in scrre instances, time vaxying parameters. 

,APp)fcat~on of self-tuning regulators for the control of an in­

herently distu!bance free processes subject to detenministic load changes 

have also been if!.vestiga'ted 'at the University of Alberta. In "An Application 

of a Self-Tuning Regulator to a Binary Distillation Colunm.", Sastry et al. 

(1976) controlled, the top product composi tioll by manipulating the reflu'( 

flow ra te, for load and set point changes. Neither an integrator nor a 

constant term was included in the controller anu therefore offset ''las 
. 

observed in the controlled variable, ,,,hich they were lUlable to ex-plain. for 

feedrate and step disturbances it \."as ~ound that the sclf- tuning regula'tor 
, 

gave improved transient response over conventional PI controllers. 

Chang (1975) invest igated the application of a 501£- tLUling regulator 

to control a, pilot sca~c double effect evaporator. 111C concentration of 
. '. 

product from the second effect \~as controlled by maniIJulating the s;tream 

f!Olv. .interaction bet\\cen the self-tuning loop and level controllers pro­

duced severe o!:1cillut ions in a numbor of process variables J lletcss i tating 

the reduction in level control gains, .when the input stream , ... as subject to 

load disturbances. Chunges in setpoint prouuced offset ''lhich'may be ex-

plained again by the fact that neither an integrator nor a constant tom 
, • . J). 

\vaS, inclUded iW the controlle r. 111e controll(~r attempted to re/oove the 

effect of offset by IOOving the roots of B(z-l) very close to the Wlit circle 
" 

d 

I 

.. 
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producing a high gain controller, which might explain the necessity of re­

ducing the· level controller gains. The auto correlation ftulction of the 

output was never plotted to check for controller optimality. 

The {ollo\.Jing critical conunents can be made about some of the above 

appl~cations. A clear understanding of the theory of nonadaptive minimum 

variance controllers would probably have removed much of the confusion in 

the application of these controllers such as to the ways of eliminating 
~ 

offset. In all applications 80 was fixed, although the reasons for doing 

so we·re not always tmderstood. ~_ The controller parameters (3.11) \~ere id­

entified in every application although some authors implied that they were 

estimating the parameters of the process dynamic model. There was also no 

.discussion concerning the selection of sampling interval. 

Thr application of self-tuning regulators to control industrial pro­

cesses have shO\.Jll these regulafors have good transient as \vell as asymptotic 

behavior. It has been possible to modify the structure of the controller 

to include feedforward tenns t and to automatitally decouple an inherently 

multivariable control system. Not only have most applications been tech­

nically succ~ssful, but there has 'been economic incentive to support their 
I 

pcnnanent installation. 



QL-\PTER 5 

SELF- 'roNING CO~TROL OF A STEt"'1 JACKETED 
STI RHED TANK HEATER 

S.f Introduction 

This chapter will describe an application of the self-tuning regul­

ator for temperature control of a jacketed steam heated continuous stirred 

tank. A schematic of the apparatus is ShOlVIl. in Figure 5.1 along with , 

typical operating conditions, and is described in detail by Huynh (1974). -TIle control objc.c1;ive \~as to maintain the \~ater temperature in the second 
"" , , 

tank at a desired valve by adjw;ting the steam f1b\~ to this tank. Temper-

ature disturbances were artifi~ially int rodlslced into the inlet wa1;er temp­

erature by manipulating the steam flow to the fi rst tank. The flON rate 

of water into the first tank was regulateJ with a digital PI controller. 

Control action on this flow loop \~as taken every five seconds. 

AssLUning total coildcnsation of the s team and negligible heat losses. 

an energy balance on the second tank gives 

" \ 

dY + Y = ldf 

y :: Toof 

U ::; V2 -
, \,K 

K ;:;I _, 

Fe p 

, 
I\,U 

~ 

T;)UT 

V2 

- so -

(5'.1 ) 

(5.3) 

(S.-O 
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and 

• 

" 

~I 
r = F 

81 

'0 

(5.5) 0 

Here T is the outlet temperature, degrees Celcius, V is the voitage to the . 
valve transducer, As is the heat of vap~rization of ste~ at supply con­

di tions, M is the mass of '~ater in the tank, F is the mass flow, rate of 

. water into the t,ank and Cp is the heat capacity of water. It is known that 

the steam flow is roughly proportional to the square of tHe voltage applied 

to the valve transducer, for the 'second tank (Huynh (1974))., TIlerefore 
~ 

The ~teady state values of T and yare Jenoted by f und V. Substitution 

of numerical valves into (5.1) gives 
/-" .)i 

... 0 9!. + v = 68 U-v: dt 1 • 
(5.7) 

" 

11lC- tank may be modelled by a first order tr~ms-fer fWlctl\lll. '111e 
"'. 

purpose of this chapter is not simply to ev~lwtc the ability of the sc:lf-

tuning regulator to co~trol this process., as it is controlled adequatel), 

by a well tuned iligita!l PI controller. TIljS apparatus provi(~es a safe , , . 
I 

process on \vhich to gain ;,L, fmniliarity with the implementation of self­
I 

tuning re!>tulator. TIle use of the, diagnostic tools Cn1eorem'~ 1 and 2 of 
1 . 

Section 3.2) for vcrificat ion of the correct model order, the ab'lli ty to 

estimate BO' different, methods rOI' estimating offset and the v~bility of 

the estimation routine to track tUllC \'arying par~ters are aspects of the 
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, 

sel'f-tuning regulator that "'ill be investigated. 

\. 

5. 2 Computer Ilardware '\ru1d Soft",a re 

TIle apparatus was interfaced to a dual processor-shared Disk 

System. A 256 K \vord fixed head disk was shared by Data General Corporation 

NOVA 2/10 and ~OVA 1200 computers. This a,rrangement is described in more 

d~tail by Tremblay (1975). All analog to digital (AID) and digital to 

analog CD/A) processing, output and logging routines and operator commun­

ications with the computer were handled by a Generalized Operating System ~ 

Executive CGOSEX), \vritten by Tremblay (1975). lUI application programs 

were l'lTitten in Data General Corporation FortraJ,1 IV with the exception of 

one Assembly language progrrun which linke_d the user's program to eOSEX • 
... 

The programs for the self-tuning regulator arc very compact, con-

sisting primarily. of a series of subroutine calls. The recursive least 

squares subroutine is very short. j\h.lch 0 f ~he matrix mul tipl ication that 

would appear to be requircd (Equations 3.56-3.58) is eliminated by recog-

-nizing quaelratic fOnTlS anel the symmetry of some matrices. A flow diagr:ull 

for the self-tuning package is outlined in Appcntlix E, ldth source listing 

of the import~l11t sub rout lnes. 

There lvas one modi fication to the apparatus over that used by 

Huynh (1974). An air to close control valve (~linilll flow co}ri'rol 'Valve, 
".\) 

d-im D) and an electropn~uJllatic trans'ducer (Fisher Typc 5-l6) \,cre installe.ci 

so that the \\'ater HOIv rate could,'be manii)ulatctl from the computer. 'Ole 

. 
flow rate h'as mcasured ,dth an orifice meter arlel a differential pressure 

transducer . 

. . 
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In ord~r to introduce unknmvn disturbances into the temperature 

of the second tank stochastic variations were introduced into 'tHe valve 

of the first tank. The (square of the voltage applied to the valve trans­

ducer on the first tank was determined every four minutes from the auto 

regressive model 

2 
.7S VI ,t-1 (S.8) 

,,,here VI is the mean correcte~ vOltage applIed to the valve transducer. 

TIle J at} were. a sequence of nonnally dis tributed random numbers 

wi th mean zero, and variance' i~4 volts 4. 111is variance was chosen so 

that 95% of the valve settings would be in the range 1-81 volts squared, 

the operational range of the valve transducer. 

The process measurements were fil tered every fi ve seconds by a 

first order digital filter 

W 
t 

.7S = ------"'i~ r Z t 
1 - .2Sz 

" 

(S.9) ....... 
t. 

where Zt is the raw data and IVt -i.s th~ filtered data~ A filter constant 

of . ~'5 implies that twenty - five percen t of the current f il te red value is 

obtained from past infolmation. 

It \vas stressed in Chapter 2 that Nt (Equation 2.4) repreS(H~ts 

the total effect oftserved at the output if no control action Ivere' taken, 

includin'g sensor noise,' AID noise as \VeIl as inherent disturbances WIthin 

"'t11e process. 'lhe effect of a high frequency measurement noise superimposed 

on a low frequency process disturbance, is to Illask out the latter. This 
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~ . 

reduces the drecastabilit)' of the process dis""urbance and ~:~~biiitY to" 

control dle proccss. Filtering renoves SOffiC' of the high 'frequency comp· 

onen ts from the measured var iables and reruces the variance of the measured" 

variab'le. TIlis insures that the control action is based on a signal that 
~ 

is \\'e11 knO\Vl1. 

T1~e para.meters of the control~r were ~pdated and control action 

takcn ever}' t\~o minutes. For the input disturbance (S. 8), Huynh (1974) 

showed that the variance of the temperature for tank two increased ra)idlY 

if the sampling interval \~as larger than,~tl"o minutes. 

5 . 3- Experimental Program 

TI1e results from a series of self-tuning controller e:\.-periments on 

the steam jacketed st;irred tank \~ill be analyzed in this section. For con-

venient reference the important characteristics of each run are slnranari::ed 

in Table 5.1. These experincnts were dlOsen to illustrate certain aspects 

of 'the theolY from Chapter 2. 111e correct structure of the estimation model 
-;.. , 

\ .. as on<\ area that was discussed extenSIvely, and the first fel" experimcnts 

will exnntine' the effect of different moJe1 fonlL,) on our ahill t)' to control 

the process. 

For run ,\001 the model structure ,,'as 

~I 

(S .10) 

TIle (lIt')} \,'ere deviations of \,<iter tcmperature, from the setpoint of 73.()oC. 
"-' 

TIle st~ady-statc value 0' the HPs} \\as estimated to be 25 volts squared. 
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Run \wllhcr 

~. 

r ..,. 

AOOl 
" 

1>" 

A002 

" . \0113' 

,. 

.\(II\.l 

I 
I 
I 
I ,. 

AUOS _. 
;.; 

. \0.00 
-~-~ 

i 

:::::. ~ 

)+ 

< 

NlUnhcr of Parameters Differencing 'Conuncnts 
IJentified " 

-1 Bt z- 1) 
, 

.J ( : ) " 

.~ 2 
., 

o no no P(O) = lOO! 
n~ preliminary i ~ ification 

I 

A~ ~.O . 
,,<", stel) chang~ at sample number 48 , , 

2 
., yes . no rcO) = lOOl . 

)- -- -_'1 no prelimipary ident ificatiO'n 
r A = 1.0 . , 

• 
.., .., yes no I:CO) = lOOt· ' . -

p-reliminary ident i'fication for 8 samples 
A = .9S to reto,rd 30 
>. = .98 record 31 to end 
~tep change to 65°C ~t. sample nUl,nber 71 
~ 

, .., 2 no yes e.CO) = 1001 - - ~ 

preliminary identificatioll for 6 samples 
. A = .95, to record 30 .. 

• >. = 1.0 reco"rd 31 to end 
- step change to 65°C at sample nUinbcr 71 . 

:. 3 no , yes NO) = 1001 
- .. preliminary identiHcation for Q samples, 

A = .95 to record 30 . , - .\ = 1.0 record 31 to end . - J 

step d\ange t9 ()SoC at' samplc nUinber .71 r 

- . - - open loop 

TARLE 5.1: I:xpcrimcntal Conditions'for runs A001 - ,\006 
co 
(J1 

.. 
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D r 

£(0) ,~as ioo I and !(O). was O. 

and the control signal 

The parameters of (S.10) were es'timated, 

, 
J 

(5.11) 

implemcnt?d every two minutes. 'DIe setpoint of the controlled variable 

I.;as .change~ to 65°C at sa.rrqJle number forty-eight. 

The, contr011ed temperature, the volt~ges'squared to the valve 

transducer and the temperature of the inlet feed are ,plotted in Figure 

5.2. 111e pointer (t) on each of the plots indicates Ivhen the estimated 

parameters were used in the computation of the control signal. 111e mean , 

value of the control signal d~d not tum ou1: to be 25 volts squared, and 
~" , 

Slnce neither integral action or a constant tenn appear in the controller, 

the tempcratur~ deviates 5igniClcantly from its setpoint. 'I he plot of 

the controller parameter r~tio5, Figure 5.3, indicates that the controller 

'vas trying to, eliminate 'offset by moving the' root 0(.8(::-1) close to the 

unit circ'le. l11is accounts for the'han'g-bang nature of the cdntrol siJ.,'1lal" 

figure 5.2. 

'I1K'orcm 1 of Chapter ~. 2 5ta~cd that if the parameter estimates 
.... ""'" ..... 

{uO' \Xl' BO' HI} <:=onvergcd then pyy(r) anu P J (r), 
• 'V uy 

boen zero. Had thebe 'parameters converged, non zero 

T = 1,2 I.,ould have 

values of p (r) yy 

and P d (T) beyond T. = Z indicate tj1at the order of the controller must 
- 'V U}' 

be increased. 
• 

'D1e sampJc auto correlation r (r) and cross correlation r lly ( T), yy , 
~ig~C' 5.4 (based on input/output data to record number 44) do not lie 

"'ithin t1le approximate 95-;' confidence intervals for these est.iJnates, and 
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Flgure 5~4: Sample auto and cross correlatlon 
function for nm A001 

that the par3ITleters have yet to converge a1 though ther appear to be changlng 

very slm"ly. (It is to be noted that the auto and cros~ corre13tlons were 

computed :lbout- t11e /I~an \(al ue of the lnput and output sequence and not 

the reference values.) 

111c controller par:lJJlcters \\'ould appear to be \~ell CnlJll3teu, TIle 

cffect of the control actIon 1:-; to induce temperature OSCillations, pro-

vhhng good infonna Hon for the Cgt im:ltlOn of the controller parameters. 

'nIt: structure of the controller though appears to be lIlcorrect tlue to the 

'presence of Illgh auto ~md crass. correlatIons at high lags (T . ~) . 
. 

111e tempel"ature' into the second t:Ulk dunng thls nUl has not the 

desired AR(2) process dl~ to J mistaken illq)lcmentatlOn of (5.8). TIllS \o.as 



uncorrected [or the first :;;eries of c>-l)CrLncnt.:5. ~cverthelcss "this represents 

a disturbance a<:=tll1g on the system. ..\ s41mpling Intcrval greqter than t,."o 
4 

Ilunutes. might he morc appropriate for this disturbancc, as the process 

wouhl damp out the high frequency fl uctU3tions. 

tor RlUl N102 the model structure , ... as 

+ v + (5.12) 

111e reference value of the manipulated variable '\,3:; agaIn 25 vol ts 

Sljuared. TIle of!sct in Y.
t 

should be eliminated by th~ inclusion of the 

v tem as it Ivill compensatc for the dIfference bethcen the estunated steady 

value of the manipulated \'ariable and its .t rue value. TIle input and output 

are plotted l,n Fi!.Jtlre S. S. 'l1lC Input ,ooes not have the b.mg - hang Dc-hanor 
, -1 

seen HI run ,\001. :md the roob of 13(: ) ate not close to the lUll t C1 relc 

tFtgure 5.6). l11C controlll'l' parlllJl:'tcrs l'stlinatl.'S have not cOl1\'t.'rged qs 

indicated by the non :cro auto and cross corrl'la t lOns at lag l, 2. Figurt' 

5.7. 

,. 

, .. 

"" 

\ , 
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Figure 5.7: Sample auto and cross correlation 
Jimction for run A002. 

A sWnrnary of tlle results for the first 0"'0 runs are shown in.... 
, 

Table 5.2. 111e initial transient in the output \"'as not' included in the 
1 

calculation of these quantities. 

Run 2 2 V (} y o U . o ... 

~, A-OOl 8.4 471. 72.1 

A-D02 2.6 .07.0 73.9 , -' . 
.\ . ~ 

Table 5.2: Comparison of results for runs AOOI, A002 

The inclusion of v has almost eliminated the offset (Y = 73.7). 
sp ~ 

, 
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'1 
f We would not expect t1!at, t1le offset \<lould be 'totally rerooved unless the 

r , 
, 

cont~oller parameters have converged. SinQe'b=l~ the rndnimum variance 
, , 

controller, should produce an output \<lhich is white noise. 

Poor parameter estimates initially,'resulted in a control signal 
. r, 

that,moved the process, output to 50°C (Figures 5.2 and 5.5). The stochastic 
../ ' , 

disturbances are masked by ,vhat appears, to be a maj or load disturbance, and 

the parameter estimates may be those Oi' a deadbeat controller. After this 
\ . 

initial excursion the process oufput reflects the stochastic disturbances, " 

and the controller parameters should move' away from the.deadbeat controller 

i towards the .minimum variance cO!ltroller. The c.onvergence. will be slo\~ 

because <:>f the dec;rease in magnitude of the elements of ~(t) due to large 

excursioq initially., 

In runs AOpl <lJ'id A002 the estimation was startpd off with !(O) = 

O. ' In ~m '/\00 3 w~ again used ~O) = Q, however" the parameters \,'ere iden­

ti tied for eight sampling intervals. prior to being' used to calculate the , 
control s"ignal. A discounting factor of ,\ :;: .95 was used wltil sampling . , 
interval 30, af~,er \\Thich ,\ = .98 was used. A dlaJlge in setpoint \Vas made 

after 70 san~les. 

as in 1\002. 

lhe parameters \"erc estimated from the saJJle model ~tructu'rc 
" 

..., '" 
Yt+l = (lOY t + (Xl\-1 ... BOUt + B1Ut - 1 + v +' Lt+l (5.13) 

~. 

, c, 

/ TIle input"und'output sequence, Figure 5.8 indicate that t1le transient 

response.was much improved,as compared to the fir::;t No runs. The'init'ial 
" 

parameter estimates from the preliminary identification stage \"ere not' . , 
close to their final controller values, Figuro 5.9. 'Ihe-rc is no advanta'gc 



. " 

figure 5.8: Process output, input dis turbanoe ~d man i . 
pulateJ variable ~equenccs for run :\003 

" 

9S 
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in contlnuing the lcngtli of the prclirrUnary identification stage, prior 

to implementing the self- tlUling controller, to twenty or thirty sampling 

intervals as one is not identifying the desired'parameters. 
~ 

Bl is very poorly estimated, and it is'not until sample 4S that it 

. appears to settle down. In spite of the poor estimation of BI the control 

signal and process output are not adversely affected. The controller para­

meters have not converged as indicated by the fact that ryy(i), and r uy(i) 
tI' 

are non zero for T = 1,,2. 
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, 
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') 

Figure 5.10: Sample auto and cro'5s correlation 
fWlction for nul A003 

6 8 10 

TIle par,uncter estimates fluctuate IOOre than \,':15 obs~rved in nms 

AOOI ,md A002, "'hich is the result of including a forgetting facto'r in , 

the estimation, 111C long tenn influence of the forgctting factor is not 

seen as the as)1nptotic sample l(>ngth of SO, is not far removed from the 
, ... 
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length of the experiment. OVer heating of the stirrer motors prevented 

the experiments from continuing pa~t about three hours. 
~ 

Instead of including a v tern to eliminate offset in the controlled 

variable, integral action may be included in the controller. The minimum 
\ 

variance controller will only contain integral action if the disturbance . . 
is nonstationary. In run A003 the input temperature was drifting up\var<b and 

integral action may be justified. 

A model of the fonn 

(5.14) 

was used for identification of the controller r.arameters. 'flle par3ITleters 
~ 

,,-ere estimated, but not used in the computation of the cqlltrol signal 

for the first slx sampling intervals. A forgct.tin¥ factor of ,\ := • ~)S \\as 

used for the first 30 sampl ing intervals, after \\'hich ,\ = 1.0 was useu. 

Again a setpoint ch3Ilge is made at t =: 70. The temperature and voltage 

squared to the valve transducer arc shOlm in Figure 5.11. '111e controller 

ratios arc plotted in Figure 5.12. Although the estimates seem to be 

changing veI)' little, the auto and cross, correlations indicate that the)' 

have yet to converge, Figure 5.13. 
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., 

\ I 
16 8 10 

It appears that the est:im..'lte~ have converged after record 63. It 

would have been interesting to have continued the experiment for another 
b 

tJ1irty saJl1pl,ing intervals at the smne operating conditions to evaluate the 

optimality of the controller at ,,,hat appears to be com'crged parameter '* 
values. 

11lC incll1$l~n of i~tcgral action has cOmple~y eliminated the 

offset in the controlled variable. TIle results from ~ A003 and AOO.J are 

sho\,n in Table 5.3 (up to the setpoint changes). 

It appears as though the elements of !?,CO) = 100 1. \vere chosen too 

small for the B parumcters, as the var~ance, of v'\J
t 

is ,.0£ same. order of . 
magnitude as the initial diagonal element. The inclusion of a forgetting 

'. 
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.~ : f"~ 
factor of A = .95 [or approximatel), 2S sampling intervals has removed the 

• 
effect of choosing !'.to) = IDO .1. by sample numI)er 30., 

. 
Rtm 2 2 y-o y a . u 

AOO3 2.4 25.7 '73.8 

AOO4 2.8 162.3 73.7 
....... .... 

Table 5.3: Comparison of results for runs A003, A004 

1l1e parameter estimates have not converged, and the auto and , 

cross correlations provide no guidelines as to w}~ethcr the controller 

structure is correct. It was indicated in Chapter 2 that there might be 
~ 

h.igh correlation among the paraneters if BO '''as estimateu. This hJgh'cor-.. 
relation could result in slow COll\'ergence. PCt) is proportional to the 

variance-covariance matrix of the parruooters ~(t), and the correlation 

~triX' of the parameters rlt) is approximated by nonnullzing f,lt). ,Refer 

to .\ppendb: B for more dotai Is, Table 5.4 ShO\\'5 rat sample munber 70 

for nUl AOO ... 

111 1(,) BO Bl 

I 

r = -.94 1 

.98 .. 91 1 

.~-" ,76 - . ti2 .84 1 

Table 5.4: Correlation among pal'ametcr~ for 
run ,\OO~ at sample Blunber 70 

r 
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'Ole correlation .bellicen the parametC'r~ is f:lirly high, and this may can· 
... 

tribute to the slOlv convergence of the parameters. 

;51ow convergence may also result if the model fonn is incorrect, 

as discussed in Section 3.2. It was deci3ed to increase the order of . 
(; 

The controller parameters were estimated- from 

a model of the form 

(s.lS) 

AI though ,the model structure of run ,\003 resul ted in better control than 

run A004, with muc.h less control action requiN.'cJ, the parareters fluctuated 

ITUlch mOre. In addition, it wa..c.; felt that integral action in the controller 

I\,US a more appealing way of criminating offset. ,\ forgcttlllg factor \ 

= .95 was used until sampling interval 30, aftenvarJ:; \.:: 1.0. The para' 

meters h'ere tr~cked for six sanq)ling intervals 1'1'101' to bemg lIsed in the 

computation of the control ~;ign;ll. 111C tanl-- temperature anll \'01 tage squarod 

applied to the valve tr:m$c.lw:cr arc plot.teJ in Figure S.l.t. 111e output 

looks like it ilia), be \\'hitc noise: 111C parameter ratios, Figure 5.15 have 

converged unJ appc~ll' to be opt illlal as indicatec.l hy thc Juto anJ Cf'05S cor' 

relation functions, ~ib'Ure S.lo. 

111e level of the disturbance ,,,,as ch:mglflg in this c:q>criment. 

Figure S.l.l inJic:ating that liltegral action \\'ould appear 1U tho optImal 

con trolle r. 
) 
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For run ADOS the variance of the output ,."as 1.76, the mem value of the 

output 73.8 and the varIance of the manipulated var1able 93.3. TI1e 

voltage squared to tJle valve transducer was \\ell inside the operatlon 

linuts (~-81 volts squared) indlcanng that It would not be necessary to 

cons~r~lln tJK' variance of \,U
t

. 111(' controller par>UnCter r:ltlos. vanances 

of the m~mipulated vanable and process output anJ mean value of the 

process output are sUJltman:ed In Table 5.6, for runs AOOl-AOOS. 

l1w controller parameter ra tlOS from nm to nm are di fferent 

as \ .. ould be e.\1)ected. since the hnal controller valves are dependent 

pn the structure of the estUllatlon model and nature.of the incoming dis-

turbance .. TIle temperature disturbance en..tering the second tank. ,.;as not 
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the Sane in each run al though the same vol tage sequ~nce \.,as sent to the 
\ ~ . 

valve transduce~ of tank one. The open loop response of t~e process is .... 
l shown i~ Figtlre' 5::17: In this expe17iment the disturbance IS stationary 

over most ~f the ~xPeriment; 
... , 

. The distu.rbance entering tank b/o iR run AOOS, Figute 5 .14 app~ars 

to be the sum of a slowly dri fting disturbance, upon which is superimposeci 
." 0' 

the generated higher fTequen~ AR(2)'ci1sturbance. The qisturbance enter-

, ing $e second tank may be m:>delled by <> 

T. 
./-n,t 

, 

tr 
1 = - a + 
'V t 

\ 

(5,16) 

~nd {at} are t\vO mutually independent \vhi}e noise sequences, 

~ .. 

mean zero, . 2 2' 
van~nces d a and a a' The sum of the two stochastic processes, 

"(5.16) may be written as, Box and J:enkins \(1970), 

T. 
111,t 

(5.17) 

]he disturbance at the 9utPUt, Nt (2.4) \.,rui reflect the chaJ"acteristics 

of this input disturbance, plus any intermi dis turb.ances. llms the min-

imum variance controller 

(2.14) 
b 

may be very well inClude 'three past inputs and outputs, as did tho con-
, 

troller for run AOOS. 

"l'he mistake menti<>ned previously in implementation ot the temperature 



Figure 5.17: Opcn loop response of the proccss, nul A006 
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disturbance in the first tank was corrected. TIle open loop response of 

the process to this new disturbance is shown in Figure S.18. OVer 20-30 

sampling intervals the distu~bance appears nonstationary. The controller 

parumeters were estimated from a model of the fonn 

(5.18) 

TIle vol tage squared to the- valve transducer,' and the output temper­

ature are shown in Figure S.19. The controller ratios, Figu're 5.20, are 

tllose of the minimum variance controller as indicated by the 3uto and cross-
" A A 

correlation function, Figure 5.21. The parameter ratio Bl/BO has converged 

near zero, indicatin~hat the minimum varianc~._ controller may ,,,ell be the 

PI controller 

( 
(5.19) 
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Pro,ccss output, input- disturbance and maru­
pulated variable sequences for run 13002 
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co rrel a'tion 

111e last experiment, B003, was to investigate whether the minimum 

variance controller would remain optimal if the process dynrunics changed. 

The set point of the water flow rate remained W1changed at 30 lb lInin for 

30 sampling intervals, after whidl it was rampe \VJl twenty pe rcen t ove r 

forty samPliIlj.nterValS and stepped back The con-

troller fom h'as identical to that in IQffi B002. niti(11 parameter (,5t-

DIlates 2.(0), ar variance-covariance matrix ~(O), "'ere those at the con­

elusion of run BU02. 'nlC forgetting factor Nas dwnged to .98 to allow 

the estimatIon routine to track time varying parameters, TI1e input VUt t 

and output \ arc shown in Figure 5.22, and the controller ratios in 

Figure 5.23. The measured flow rate is shown in Figure 5. 2.t. The controll-

er ratios cilange negligibly over the first si~ty sampling intervals. At 
~ 



, 4 

llS 

sample sixty, a large disturbance affected the flo",rate, which the 

Jigi tal PI controller ,"'us unable to handle. 111is rapid change in flow 

rate excited the parameters and they started to drift away from their pre-. 
o ,~ 

viously unchanged valves. At sample munber seventy, the flo\vra te was 
-

stepped back to 30 lbm/m..i!:n. at which point the controller parameters changed 

~iaPl:dlY, reflecting an increase in information . . 
The rate of change in the enthalpy input to the second tank was 

actually very small during the ramping of the flow rate. The decrease in 

flo", rate wa..<>- offset by 'an increase in temperature of th~ter from the 

first tank. In hindsight, one would not expect the controller parameters 

to dlange significantly. At sample mUllber seventy, there \\"<1S a S igni ficant 

increase in the r' e 0 enthalpy input ·to the second tank 'Md the controller 

paraJOOters chang a, reflecting this ne\" infonnation. Experimciltall}, it 

was impossible to implcncnt a twenty percent increase in \"atcr flO\" rate, 

a~ the signal required to reali:c this change saturatcu the valvc tral1s-

ducer. 'nle auto and cross correlations, figure 5,25, shO\" that the con-

trollcr was optimal [or the duration of the cxperiment. 
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Rcsul ts for experimental nms B001, B002 and B003 are sUllunarized in Table 

5.7 

Run var Yt var !JUt V 

BOOl 10.32 0.0 72 •• J 

8002 0.97 97.1 73.6 
Bl)03 O.SS 63.0 .. - .. , ~. ' 

Tabl\;! S.:': Sur!]n .. ry of results for nms 
13001 " BOO:! ,uld B003 

5.4 Use of the Auto ~Uld Cro!:>$ CorrelatIon FunctlOn as Dial.!nostic Tools 
~--~~~~~~--~--~,~~~~--~~~~~~~~~---------

TIlcorem 1 of Chapter 3.2 .;tated that if the parall~tcr estinutcs 

of th0 mode 1 



.. 
\ 

... II Y .... BO"l<lu
t 

...... + 
rn t-m 

.. 

converged arul the unplcmcnted feedback controller \~as 

then 

~\-r l r) :::;: O. 't ::: b+ 1, ••• b+m 

aIlli 

,; 
vdy 

(1) = 0 r = o+l, ... b+( 

~ 
I 

rzo 

(3.11 ) 

(3.8) 

• 

There \~erc no 3.SSlunpt ions concenung th.e nature 0 f the lUlJcJ;ly Lng 

process drn~lJI\lc or stochastic ,,'Odels. Unc of the purposes of du::; ex-pcr-

lInental progr.un \o.'a$ to ex;ulIlne the lItlllt)' of tJus 'lheorel1l III ~llJing'ln 

tlll.' selection of the correct (:olltrollcr stlucturc. 

'Ih,~ s.unplc auto and c I"OS$ corn:l.lt Lvl1 func t Ion lLunpeJ out qUIckly 

I .. hcn tJlL' lI11IUIIILlJ1 VUrI.lI1ce (ontrol}cr form \,~L" correctly chosen. tSl'e for 

I 
ex.unplc c.\l)CrlJllcnts AtlllS <U1J ROO':.)' I"or l'xpelloimcnts .\001 to .\O~H the 

/~- ... 

controller r.nios c/l.mgeJ .It .1 r.ltl' "'hich diJ not appc~lr to be slgnificantl\' 

5101\'l'r th~l runs ,\005 -uhl BOll2. Yl't }' tt) , >"y , 

hl're not :cro, indicatIng that tllc controller parameters had not convcrged. 

,-

\ 



• 

121 

Consequently at the COnclU$l'tln of these experiments one could. not decide 

\"hcther tl)c optimal controller £onll had been correctly chosen. 

Convergence of the controller par..uneters may be ~low if its structure ~ 

1S not optimal, as indicated in Chapter 3.6. 'Ihe output of the process' 

\vill be. a couple t\RDLt.\ time series, and t:.t+b in' (3. 7) \~ill be correlated 

with {Y t , Yt-l""'} and {Ut' Ut - 1 , .•• }. Since the controller structure is 

not optimal this 'res1dual correlation' Hill persist .md this may result 

in slo\\l convergence of the controller parameters. 111e ~;.,:perimental results 

are in good agreement with this explanation. Simulations of self-tuning 

regulators ha\'e also sho\Vn that the auto and cross correlations damp out 
,.. 

quickly if tHe mil)imum vaTiancc structure flas beeIl chosen. The e;.,.-penmental 

auto and cross correlations \Vere computed \-Ji th about forty pai rs of lnput, 
, , . 

output data. Use of the auto and cro~s con;clatlon functions are very use:, . . 
[ul 1I1 testing for controller optimal1ty, requiring rclat~v~ly £e\\ samples 

to inl,llcate \.;hether the prop<.'r stnlCtul'c has been choscn. I f the opt ill~l . -. 
structure has not been' chosen, convergence of the c·oi1troiIer. pai~uneters may 

be slO\v. If the parameter estirnatc~ h..lve not convergeJ, although they 
~' 

may <lppear to be changing vcr)' ~lol.;ly, the auto ~UlJ cro~s con-elauon 
. 
funct lon~ pro\'~\.le no infonnat ion as to hOI\ to mod i fy the controlier s tntCturC' 

• 

to m~e 1 t optlinal. 

5.5 Set Point Changes 

TIle response of the tank. ,tt.lllqx.'raturc to a change 1n set POll1t \,'as 

examined in runs A001, A003, :\004 ,U1U .\005. r-;ear the conclusion of these. ... ...~ 

runs, the set point of the controlleu variable \\.lS c~aJ).ged from 73. ~ °C 
\ , 
to osoe, and held constant for 7 t,.,;cnty sampling l1ltcrvals. 
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In run AOOl" the set point was changed, at. sample number forty-eight. 

Neither an integrator or constant tem \~ere included in the controllf}'f. 

" 
~ \ 

TIle perforinance of the controller at this new set point' is mudl better, 

'Figure 5'.2, as the I Jrean level of the ~ipulated variable is closer to . ' 

tl}e reference valve that \Vas used in the estimation scheme-. 

I f a c::onstant Qtenn 1,s identified, as was done in rw1 A003, and the 

process is linenr over the range of operation one \vould only expect that 

a .fhange in set point w~:)Uld change this constant term' j Possibly due to 

correlation among the parameters ~ nonlinearities in the process,.all of 
" 

them actually dlange, Figure 5.9. 

If the ,controller has inte~ral action one would exp~ct that a change 

a • 
"'- ln set point \vould cause the can troller parameters t-o move aivay from their 

previouslY identified valves, returning soon aftenvards if the process 

were linear over the entire range. Unfortunately in runs A005, A004 and 
'l 

> 

A005, the change, in set poin.t coincicled with a change in the characteristics 
, , 

of th~ msturb<J,!1ce, Figures S.Sy S.l1 and 5.14. 1111S makes it impossible 

to comment on the effect of set point changes on the parameter estimates. 

The mean values of the contr?,l1ed variable aft~r the change in sot 

poi.nt ai'c shmm in Table S.S. After an initi-31 very short .... transient period 

the control'lers rapidly establisheo gooo control over the temperature at<\. .. 
. -the nCli set point CbS°C) with no apparent offset. 

" 

" .... .. 

\ 
" . 

• 

',' 
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RWl Y °c -
AOOl 64.9 

~ 

AOO2 66.3 

AOO3 65.6 

AOOs 65.5 

Table 5.8: ~~an value of the tank temperature 
after set point change to 65°C 

5.6 Precision of the Parameter Estimates 

123 

}. 

The controller parameters are estimated from a model of the fonn 

(3.11) 

and used in the computation of the control signal 

(3.14) 

as if they. were exactly known. 111is s('!ction \'Jill examine the precision 

of the parameter estimates, how thl::; influences the estimation scheme and 
~ 

the effect of estimating BO' ,-

In run B002 the contrqllcr parameters ,\,erc estimated from the model 

(S.lS) 

The !\oIQ standard lieviation c'onfidel\ce limits of the parameter estimates are 
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shO\\11 in Table 5.9 at several points in time. The controller parameters 

are poorly estimated in spite of their being the optimal controller valves. 

If it were possible to reduce the variance of the estimated parameters, 

the rate of convergence might improve. 

I Parameter Sample Nt.mtber 
, 

, 40 70 (enJ} 
A 

ClO 2.58±1.09 2. 20±1. 03 
A 

"" Cl
i 

-1.43±O.89 -loOO±O.SO 
A 

Bo O. 28:t0 .13 0.28±O.l2 
A 

B1 , -O,OS±0.07' -0. OhO. 06 
-

Table S. 9: ."-pproximatc two standard deviation 
confidence. intervals for parameters 
of run B002 

"Lbe lurge variances in .. the estimated parameters is due large~'to 
, -r---

the presence of high correlations 3JJlong them, Table 5.10 as the joi,ni con-

fidence region 0 f the pnrameters is large. 

A 

ClO 1 

(ll -.88 1 
A 

Bo .96 -.88 1 

Bl . S4 - • 73- -. S2 .1 

o 
Table 5.10: Correlation matrix of the estimated 

parameters at sample 70 for run B002 
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) 
\ 

h.-en though there exists correlation arrong some of the parameters, it has 

been feasible to estimate all the controller parameters. 

If b > 1,' the residual, c~ will contain information about the con­

troller parameters (see Equation (3.4)). In least squares estimation this 

information is not used. Convergence of the controller p~rpmeters might 

be improved by estimating them from a model' of the fonn 

where 

-1 
::: 1 + 1112 + ••• + 

.. 
-b+l 

TT
b

_
1

z 

(5.20) 

(5.21) 

This requires that recursive maximum likelihood estimation or an equi\'Ulent 

method be used. 

Huynh (1974) identified the process dynamic and stochastic models 

for the steam jacketed stirred tank as 

. 168 U + ___ _,.1-----..-

1-.01z-1 t -1 ~ -1 at + 1 
~ v(1-.30z -.l/z ) 

(5.22) Yt +! = 

The disturbance \vas generated by (S. 8) . 'Ole minimum van~mcc controller 

for (5.22) can be \.,ritten as 

(S.23) 

where tet,ns involving Yt-3' Yt-4' etc. are small. 'l11e self~tuning controller 

parmreters in run BOO 2 lS .19) have converged, to values close to those in 

(5.23). 
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BI) is an estimate of Wo in the process dynamics. Identification 

of the complete set of controller parancters has shO\m that Wo may have 

shifteu (the confidence limit on Bo = .281:..13). In this implementation 

had "0 shifted to a .10 and we fixed EO at O:r 7 convergence would have been 

exceedingly slow. 111e parameters of the controller may be well tuned 

even though the characteristics of the process dynamics or disturbances 

dlange. -rile perfonnance of the sel£~ing regulator should not be jeo­

paridized by a poor apriori estimate of BO' when it can be readily estimated. 

5.7 Sunnnary 

111e self-tuning rebTUlator \vas successfully implemented to control 

the temperature of a jacketed~stcam heated stirred tank. TIle necessity of 

estimating a constant tena, or includiq.~ differencing in the estimation 

ncdcl to eliminate offset \~as examined in nms :\001-A004, It , .. as found that 

the sample auto and cross correlation fWlction Here very useful in testing 

for cont roller optimali t)' and paramcte r ~onvergcnce. '111c rate of conver-

gence of the controller parameters \vas IIDst rapid when the minimum var-

iance strw;tuf<.' had been choscn \.,hkh agrees \VeIl with the hypothesi:; in 

OlJpter 3. The sclf~tuI1lng regulator gave a smooth response to set pomt 

changes ,dth no tesulting offset. It \"as demonstrated that it I"as possible. 

to estimate all the controller parameters, and it \.,as not necessary to fix 

one. 

I:uturc \vork on the stirred tanks might include application of("the 

self-tWling controller of Clarke and Gathrop (1975). rhe next chapter revie\~s 
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the most import~ nt aspects of this '''ork t ex:amtnes some limitations of the .. 
self - tlUling tutor ;mJ suggc~ts 1rcas that require further invest igation. 

~ 

..J 

• 
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SlRvN\RY AND CO~CLUSla'JS 

An attempt has ,been made in this thesis to provide a unifying treat-

!rent or overvie\oJ, of the theory of se I [- tW1ing regulators. Topics in 1 inear 

stochastic control theory were reviewed, followed by an extensiv~ discussion 

of self-tuning regulators,. A critical review of process applications in-

dicated some problems that have occurred in several implementations of 

these regulators. It is felt that this overview is important, as it has 

brought together most of the relevant theory and related topics. Some of 
f 

the confusion SUlTowlding aspects of self-tuning regulators 5 tem from the 

fact that similarities and relationships between different topics 4are not 

fully lmJcrs toad. 

'111e Box and Jenkins (1970) rcpresent:ltion of d}llamic and stochastic 

processes was compared :UHj contras t('J to that proposed by '\S trt1m (1970). 

Ill' the latter's rcpT(~sentation there is no provision for IllOl1elling non-

statlOnary disturbances. Consequently, minimum variance controllers have 

no integral :Iction and the controlleJ variable Illay ~avc offset. Elimin­

ation of offset \.;as one of the problems cncountcrC'd in application of self-

nming regulators. \\11e-1l the theory is pre-sentell using the notation of Box 

and Jenkins integral action enteI"$ the controller 1n mlobvious manner 

h'hen the disturbances (stochast ic or detenninistic) arc non:-;tat10nary. Br 

correctly accowlting for Ilonstationa'rr disturbances in the estlmation model, , , 

one avoids the nontrivial problems of estimating an allditlon~l parameter-

Iring ncar stabilit}' bOlUldarios oC the process. ,\5..l result the self-tW1ing 

- 12S 
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, , 

regulator should be less sensitive to process parruneter variati,ons. 

The discussion on the selection of the sampling interval has pre­

viously .been neglected, but it is important that it be se~ected with some 

care. The'nunilier of paran~ters to be estimated increases, if the process 

is sampled at a fast rate compared to the process deadtime. However, if 

'the disturbances are stodwstic little improvement in control is achieved 

by choosing the sampling interval to be much shorter than the process dead-

time. Sampling of a continuous process may result in a discrete dynamic , . 
model that is non minimum phuse, and the self-tuning re!,'Ulator algori tlull 

must be modified to account for this. TIle complexities of the modified 

algoritJuns require a more sophisticated knowledge of the underlying pro-

cess dynamics ':lIld s tochas tics. 'I1te JIlOS t appc:.Iling methoJ 0 f hanJl ing non­

minimwll phase systems is to chJnge the sampling interval if this is possible. 

1110re ~s considerably confusion' in the literature conccnung the 

estimability of all the controller parameters. In fact. it is possible to 

estimate all the controller parameters"since the self-twling controller is 

;l time varying fWlction of the process input and output. This is an impor- . 

tant result, since if one parameter is fixeJ, the $tabili ty of the process, 

anu rate of convergence of the rclll.lilllng p;lr~l1llCter is uepCntlellt on hOI'; 

. 
close the vallll' of the fixed parametc.r is to its tnlc lbut probab ly lffi-

known) \'aluc. 

11H.~re \~as a long di:;cussion 011 sc1f~twling constrained control, 

least squares estimation, convergence of the parameter estimates. stability 

of the closed loop sys tern, anu the incorpol'ation of feeJfol,,,ard variables 

and multivariable decoupUng. Self-tW1ing constraining control \vill only 

( -' ;-
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prodill:e the desired results if the e:,timation model correctly accounts for 

nonstationary disturbances, if tne)' arc present. Selection of the sampling 

interval, and structure of the estimation model affcl:t the stab i li ty of 

the closed loop. By cons~dering aU these topics in this tlfesis it is , 

possible to see their interdependence. 

Another objective of this thesis ,.;as to gain a familiarity with 

implerrenting a self- tWling regulator to control a pilot ,plant proQ:!ss. TIle 

self-tuning regulator successfully controlled the temperature of a steam 

jacketed stirred tank. Although this is an easy process to control, the 

application to a real process a110\';5 one to investigate ~pics in the thcory 

that have led to problems, or caused con[us 101} In previous applicat ions. 

Diagnostic toob used to check for controller optimality and paramcter 
~ 

convergence ,,,ere found to be very useful. Estimation of a constant tenn 

and the inciuslOn of integral action in the e::.timat ion moJel \\'ere lI1ethod...:; 

examined for eliminating offset. I t \"'~l:, also found possible to estimate 

all the controller parameters. '11K' rate of convergence of the controllcr .. 
parameters \ .... a~ most rapiJ ,.,.hen the nunilllum variance structurc ''''~b cbosen. 

'l1us result agrees well \Hth an intuit i\rc eXl)}anution presen.teJ in Chapter 

'3. There h~ve heen sl'vcral rcporteo applicatlons of ~elf-tlu1iJ\g regulators 

to control "industrial ano pdot plant :'),5tCI1I5 prol:csses, so tlus port ion 

of the thesis is not wliquc .. \1or ,"as the process difficult to controL. 

1I0wcver. the nece~sary softh.J T'C \~as ,.;ri t ten . .lIlJ ,.;i th the f~ullil inr it}' 
\' 

gained from this proJcct. the .1pplicatlOn 0 f a scl f- tWling regulator to 

control more Ji ffkul t and chall~ng,il1g plocess should proceed smoothly. 

'J11e self-tuning regulator '~'oulJ dppear to be a \'cry pmicrful lIeans 

of controll lng processes '.;ith nonstationary (detcrnllnistlC or ::.tochastic) 
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disturbances and large lleadtimcs, as the cont roller includes d('a~ti/l'C comp-

cnsat iOIl. \\11e 1'0 there is strong economic incentive to maintain product 

quality hithin a speClfied range, minimum variance contrellers are fl 

sensible class of controllers. 1I00"ever. deslgIl of minllllUffi variance ~Uld 

constrained minllnwn variance controllers requires a plant c).-periment, and 

extensive and sophisticated off-line analys is 0 f data. If these (ontrollers 

are to be effective ne,,, process data from design e;.:periments must be 

collected i( t1lt~re are shifts in operating level (i.e. grade or selectivity 

changes) or the process characteristics change ,\'ith time (i ~~ Jecaying 

catalyst). TIle sel f- tWling regulator by contrast. is simple to usc, re-

quiring a minimum of experimental effort and can continuously tunc the 

cont rol1er panuneters, thus tracking slO\dy changing process characteristics. 

There may be difficulty in applying self-tunin~ regulators to con­

t rol proce~ses that are nonmuunllun phase or that have chong ing process 

dcndtimes. 1111~ Iatte\' is the morc $erious problem. If, for cX~U1~)le, the 

nwnber of \\'ho Ie pl)rlods of delay sll"i fts from thrL'l) to four, thc Jclay lIsed 

til the estimation model and the dil11(,Ilsion of tho controller ,,,ill be lll1Licr-

l'stimateo. 1\...::. ",'ell tho ·process lIIay move in an~l out of nOllminillltllll phase 

,~'lth Sillftll1g oeaotlilles. lhese phenomena could lead to process instabilitic'" . ' 

~l::Ul)' of these proh1cll1..'::' can be solved by a judicious d\oicL' of the sampl ing 

intc-rval. It lIIar not be nl)ccssary to sample the process so rapidly that 

there are three or four \\hole perio~l-; of delay to n~ali:e gooJ control. 

By tncl'l)using the s:unpllllg interval the effect of changing lleautlltlCS C..lll 

hc'reduced. 

11w scI f- tLUling regulator' has not been used to control extremely 

non-linear processes or those ha:v lIlg problems with changing JeaJt line . 

.. , 

i 
I 



I urther im"cstigatlon into these areas IS requi red. One of the unreal i zed 
. 

ob.iccti\·e~ of this theSIS I\'as to use the self-tW1ing re!,'Ulator to control a 

catalytIc pad,cJ bed reactor carrying out the extremely temperature ~ensitive 

il),orogenolrs IS of butane re;lctlOns. TIus process is dl ffi(;ul t to control, 

tun; lJ1g 'hlgh heats of reaction, radIal and axial tcmp~aturc gradients and 

extrclltdy non-linear behavior. It has hoped to try different self- tuning 
• • 

regulator cont"1guratlOns and compare the resul ts ,,,i th PIn algon thms and 

nultivariate linear quadratic control studles that have been completed 

lJutan (1976). A lengthy mlnJ. -computer breakdO\vo prevented these studies 

from being completed for tIllS thes is. /lO\\'e\'('r. this proj ect is bemg pursued. 

An obvious extenslOl1 of thc univanate self-twlll1g regulator is to 

multivariate <.;e1 f-twling regulators to ~K(OW1t for process lIlter-

reactt0/15. PrcllllunaIl' \\'or1 (Borisson ll~}:-5)) suggests that the llultl-

Val' tate O)11aJ1I1C :mo ~ tochas tlc lood(' b he reprL'ser~teJ as 

-1 -1 -1 
\\l1e1'e A(: I. B(! ) :U1J. (.:{: ) art' Illatrix POl)1101ll1al:; .UlJ ~t ~ru\ll !:!t 

arc vector::, of process Inputs and outputs: ,\ wther ~tr.llghtfon\arJ ox­

tension of the scl [-tlUlin~ re'gulator concept \\.15 pl'Oposcd therL' Ul ,~tHch 

the paramet("'rs of the Inultit'arl..1te mllllllltUn \".lrJ.Olnce controller hero to 

be us ttlllated frolll a mode 1 of the (ann 

anJ llsed lJl tJ\C con t ro 1 l..1t\ 

\ 
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J 

+ B U ) TJ}-t (6.3) 

at \:\C1")' smnpling interval as If they I\'ere exactly knOhTI. It lS douhtful 

that \\ Lth this approach plant or indlJ.Strial applications \.;ill be reall:eJ. 

Lven for t\,O inputs and t,.,ro outputs a large munber of parameters must be 

cs tlrnated. Convcr-gence ca.n be cxcruiat mgl}' S lo'~ Jue to poor candl ClonIng 

among the parameters. For the multivariate self-tuning regulators thc 

[eh'cst number of parameters lrust be Identifled that account for Jrost of 

the varIation in the process outputs. 'I1us reqUlres that ~tatlstlcal 

tedmiques such as '!TK)uel reduction be used. Obviously this requires ..l 

~ophisticatcd undcrst:.mdmg of the prol.:css J>11.lmics and ~tocha$tic". 

I!oh'cver, hithout appl1cation of sOllle model rcJuctlOll tC'c1uuques the Imllti-.. 
\\1riatc scif-tunlllg regulators :lppe.1~· too cumbersome to lise. 

'Dlis.. the:: 1S has tncd to present .1 lUlif)" ing ~lpproach to till' theory 

of sdf-tLUllng ret,'Ulators. \":itl! the lUlderst .. Uldlll).! g.lincd (rom tlu~ "ork 

it IS felt that 1I10re chu!,lengmg applH;.ltioJls and C'xt(,IlSlOIlS of the h.1S ic 

he rC311:.:eJ. 

\ 

( 
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- APPeND! x A 

PARAMETER ESTIMATION IN CLOSED LOOP 

~lost teclmiques for estimation of the parameters and identification 

of tile structure of process dynamic and stochastic models require per­

turbation of the process input while the process is run under open-loop 

condi tions . For a variety 0 f reas.ons thi~ mode' 0 f ope ration may be un­

satisfactory. Only recently have the consequences of identification of 

process dynamic and stochastic models been thoroughly examined, Box and 

~~~Gregor (1974, 1976) and Saderstr~m et al. (1974,1975,1976). 

Necessary unci sufficient concii tions are given so that one may obtain 

tmique estimates of the process dynamic and stochastic parameters ",hen' 

the feedb-ack controller is linear and time invariant. 

In the literature on self- tW1ing regulators when trying to estimate 
aO &1 B1 

parameters of the controller (-,- , -:::- .. ,' ~ , .. ), there is n great 
. BO, BO BO 

the 

deal of confusion as to whether these can be obtajncd by estimating all 

thc parametcrs (':0' -~1 , .. " Bo" .:) from equation (3.11) sinccthis con-
~ 

taiJ1$ one redundant parancter. If one parameter is fixed Ci .c. BO) th~ 

stability of the closed loop <Ulu rate of convergence of the remaining 

paralllct!crs is dependent on how close this fixed va)ue is to the true 

valve. AstrOm and I\'ittenmark (l973) gave the following cxample to snO\v 
. 

that one may not be able to wliquely estimate aU the parametcrS (aO' u
1

' 
~ 

••• , BO' B1, ···)· 

Let the process dynamic and stochastic model be 
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(Al) 

In this particular example the parameters in the estimation equation are 

also the process parameters. The minimum variance controller parameter 

is (a/b). Suppose the parameters of (Al) are obtained by minimizing the 

least squares criterion 

( N 
VI (a,b) = L 

5=1 

Suppose the feedback controller 

(A2) 

eA3) 

-is implemented during the collection of the data. Now (A3) may be written 

as 

(A4) 

where c is any scalar. Adding this expression to the quantity inside the 

brackets of (A2) then 

VI (a,b) 
N 2 = E (Ys + (ck-a)Ys _I - (b+c) Us-I) 

5=1 
(AS) 

There is no unique solution that minimizes CA2) as it is seep that 
I 
\ 
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(.\6) 

also minimizes lA2). Fro~this example it \\'as concluded that all the 

parameters of the model (Al) could not be uniquely estimated when the con­

trol \\'as generated by a I inear feedback law. 

This example does not really describe the estimation situation that 

one encounters with the self-tuning regulator. 
'-I '-1 

Unless 6{z )8{z ) = 1.0 

and b=l, the parameters of the estimation equation (3.11) are not those of 

the process dynamic and stochastic models. As well, if the controller para-

meter estimates are being used in the computation of the control signal, 

the control law is a nonlinear, time varying function of the xnput and 

output sequence. Thus all the parameters of the model (3.11) may be est-

imateJ. 

By \vuy of illustration, suppose that one is trying to estimate the 

parameters of the mininum variance controller from a nndel of the fonn \ 
J 

(/\7) 

At time t, the least squares es timates of 00 and 130 arc given by (con-

ditional upon initial effcct!?) 
-1 

N yZ N .. , :-J 
aO L ~ U5-1 

y 
s-1 L y Y 5-1 s=1 5-1 5=1 ::;=1 s 

= lAS) 
N ~ ') ~ 

60 
~. y U r V(r E y Y 

LS:l 
-;-1 5-1 5=1 5=1 5=1 s 5-1 
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I [ the control law 

= kY . 
t 

(A9) 

is ~ed then (A8) may be ,.;ri t ten as 

-1 

N 
a O 

l: Y y 
5-1 1 k 1 

5=1 5 

= (AIO) 
N 

y2 k2 
BO E k k .., 

5=1 5=1 

a
O 

and ~O are perfectly correlated and theTe is a singularity in the est­

imation space. I f the control law 

(All) 

is used at evel)' sampling interval then it is obvious that a l and 130 may 

be uniquely estimated, which is the case ,,,hen 

> '-1 
k 1\' 'YU) = It t z , t ) 
.~ t' t '-1 

B(z ,r) 

If the parancter estimates converge then 

I 

(A12) 

(.\13) 
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1I00~ever; the least squares criterion 

• N 
nun V(~) = 1: 

2 
E: (5) (tU4) 

s=l 

still contains infonnation from earlier on \vhen the controller \~as time 

\rarying and nonlinear. 
, 

Let us nO\v examine \vhether or not one parrureter in the estimation 

equation (3.11) will always be a linear combination of the others or to 

what eAtent this previoU$ analysis depends or to Hhat extent this previo~ 

analysis· depends on the structure of the process dynamic and stochastic 

models. 11,i5 is an asumptotic analysis and presumes that the controller 

para.JOOters e estimated from the model 

. (AlS) 

\ 

have converged. The least squares $olution for ~ gives ~.\ppondix B) 

(~ :< )~ '" X1' y 
'- ~ -t -t+b 

A 

1 f _6 converges $0 that Y -t+b is a moving avcrnge process of order b-l 

then 

(A17) 

I 

where E{} denotes mathematical e).-pcctation. Since i 'f Q, (~~ \) is not 

of full rank (:\oble (196~)). Bohlih (1971) lU1J Box and ~lacGrcgor (1976) 
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though, t}wt the parameters of the rninimtun variance controller 
B~ 

... 0 , ... ) are identi fiable if the control is ntinilll.lln variance 
BO 

optimal as soon as the transport delay is knO\\TI. , '£11is implies that the rank 

of (~ ~t) is just one less than the ntnnber of parameters being estimated. 
A -1 A_1 

(Implicit here is the assumption that the orders of a(z . ) and B(z ) have 
A -1 A_1 

not both been overestimated, in which case a(z ) and B(z ) would contain 

common factors (Section 3.2». lhus, as,mptot ically only one parameter 

can be expressed as a linear combination of the ~emaining ones~ 

If rt+b is not a roving average process of order b-l, and the 

parameters £. converge to some values, then it is easily seen that at leas~ 

" one parameter can be expressed as a linear combination of the rcmaininw 

ones and this is all that can be said. 

I t is seen that asymp't;ot ically ~ one par:uneter may ahvays be e:\:pn~ssed 

as a linear combination of the remaining ones. In practice though, all the 

parameters of the model (3.11) can be uniquelY iucntified the feedback COI1-," 

... 

troller based on is a nonlinear, t illlc vary ing runct ion 

of the input an 
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APPE:--JDIX 13 

CO)JSIS'n~,-:CY I~.\'D llFFIeI~~CY 

OF THE LCAST SQUARES l;STI~IATES 

'" 

Statistical aspects of the least squares estimation scheme will be 
, 

examined in this Appendix. 'Consistency of the controller parameters will 

be examined, and there will be a brief discussion conceming the efficiency 

of the least squares estimates. 

,132 Parameter Cons istency 

TIle process dynamics and dis turballces arc described by a model of 

the form 

,(131 ) 

.' 

where the {atls} arc a sequence of nonnally distributed mean :ero.,vari:1ncc 

2 
a random variables. 11lCY have co\'ariancc structure a 

E (at a ,l '" 0, j ~ 0 
t+] 

TIlc ,output of the proce.5S may he Ivri tten as 

- un' 

(132) 

lB3) 



where 

YtT~;hO(Z-,I)Yt + BO(z-l)~~t)(1 + f.~ ;:-1 + ••• ) 

-1 
+ L4 (z )u t +b 

aO(z-l) = 6(Z~1)L2(Z-1) 

BO(z-l) -1 -1 -1 = w(z )L
4

(z )Hz ) 

f;°(z-l) = 0- 1 (z . 1) e -1 (z ~ 1) 

are defined from 

(B4) 

(BS) 

(B6) 

(B7) 

(BS) 

'111C total hhtory of thc process to time t, may bc expressed comp~ctly 

+ ••• ) + 0 
~ t+b 

(B9) -

where 

uno) 

o and tJ is the vector of nunillllm var~ancc ~ontrollcr parruootprs. i.e.. ... 

o 0 O· 0 0 0 .• = l" u 1'0' u 1 v '. 0 I l' .. '-'mo; • D 

,l 

(Bl1 ) 
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" 

, \";'rOm and WittcJunark in the :-;cif- tlUllng regulator 'problem suggest that 

one try to estimate the minimum variance controller parameters eO from a 

model 0 f the form 

(Bl~) 

-1 -1 
If the orders of a(: ) and B{z ) arc correct, then the total histOl)' of 

the model out\>ut to tiro t may be wri tten as 

!:.t+b = ~ ~( t) + Ii.: -t+b .(B13) 

where 

~(t) = (LlO' a l '. , . 
a BO' B1 • •. B )T 

1Il0' eo (Bl.l) 

It is aS$um:~d in tIns analysis t.l,Klt the correct orders of ct(:::~l) anti. 

B(;:_1) arc knOhll. '111C parametars of (BI3) arc cstimat~J hy least squares. 

'nle estimates ~(t) arc given by ll\enJall ~U1J Stuart tl!lt1h)) 

~l t) .::: (\,'T X ) - 1 xT Y 
''1 't "1: -t+b llHS) 

(~' \) must he nonslIlgular and tIllS reqllire~ tlHlt the 1I11plcmenteJ COll­

trollL'r b't, time varYlIlg or nonlinear. The e~timates ~lt) are lInbl~l'J If 

t HI (» 

\"herc E{ } denotes Ilklthematical expectatIon. Substitution of (ElS) into 

(BIb) gives 
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[{~(t) } (B17) 

In 1Il0st rcgrcsslOn anal>,si::;, the clements of 1;, arc related to the settings 

of inJepenJcnt variablcs, i.c. pressure or temperature. These are asstuned 

to be fixcd quantit ies. The expectation operator in (B17) would thcn 

paS's through these valves as E{kY} = kE{Y} ''''here k is a constant. :--Jaw, 

the elements of ~ are Metions of "the random variables {Yt , Y
t

-
1

, •.• 

,;.:y,dUt , v'1\_l"'}. One must take a conditional expectation of (BI7). It is 

assLUred that at any time t I that Y t +b IS a random variable and that {Y t 1 

Yt - 1, ... \It\Jt' \It\Jt_1'''} are fixed s~nce they have occurred. '11m::; (819) 

is \.,rritten as 

(B1S) 

\\11en the output of the process (813) is substituted for !t+b' thcn 

, 

E{o(t) } 

o +, < 

- t+h 

tJ 
to. t+b 1$ a 1I))\'ing 'Iverage pn)t;Cs:> of orJcr h-1 

o 
tt+b + ••• + 

+ ••• ) 

(HE») 

lB20) 

(B~l) 

-



.. 
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t; 0 is nOlmally dj.:;tributcd with mean zero," variance (1 + 1jI12 
t+b + ••• + 
., , '\ . 

'iib
w 

1)<:1 wand covariance structure - a 

o 0 2 b-l 
cov{t:t t:ttk} = "a 1: w)" I/Ib+l-]") 0 < k < b-1 

j=k 

= 0 k > b (B22) 

where IjIO = 1. O. 
'J ,,0 

A time t+b, =-t+b is a r3!ldom variable \'lith expectation 

equal to zero, and (B~9) may be 'Hi tten as 

o O· 
+ ~., ~ 2 _0 + .•• ] ... t-

If 6lz- 1)O(:-1) = 1.0 then E{~{t)} = ~Ot and the estimates 

all-laYS unhlu:;cd if the' correct ll~dcl structure is chosen. 
< 

\ (82'})' 

~ 

of ~(t) are 

If &(z-l)t'I(z-l) 

f 1.0, as ,l/oulJ be c;q>cctcJ in most cases, then if the implemented controll~r 

is of the ntinimum variance fOnTI) }\Strom and \Httenmark tl973.) shQ\?d that 
, ' 

the estimatc~ of ~(t) ,,,ill be consistent (asymptotically unbiased) if the 

estlmates converge. I 'Ole te.lm in the square brackets of lB24) is cqw11 to 

:ero by virtue of the fact that for all time (t-j), j , 1, the self-tuning 

fCh'1.l1ator has set ~_j ~(t) = Xt - j ,~O = .12. •. 

This analysis h.a~ sOJOO implications for st.artup sittk1.tions. If 

Juring startup of the self~tuniIlg algorithm. the parameters of (B13) arc 

I • 
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• 
identifie~, and an existing controller, i.e. PID, is used to sompute t~e 

c.ontrol ~ignal, one ,..;ill not in ger.cral be estimat·ing the minimum var- . 
\ 

i:).Jh.:e controller parameters. 
~ 

To prevent this initial unbiasedncss from 
t 

influencing future-estimates, the identification stage should be kept 

as ,short as possible. 'I11e use of a discounting factor (.\) less than one 

will also insure that futuic estimates are not unduly influenced from 

data which occurred I"hen the parameter estimates ,"ere far removed from 

their optimal valves . 

. 
B3 Efficiency of the Least Squares Esti-mates 

The most efficient estimate of a 'parameter may be defined as that 

one which has the smallest variance. lKcndall and Stuart (l90o)). The 

vari[mcC-CQvnriance matrix of the controller parruneter estun..1:tes is given 

by 

(B~5) 

Substituting lUlS) and B17) into (B25) then 

(B20) 

I 

If}hc paraJreter c:;timates ~(t) have f.;onvergcJ to the min~ariance 

controller parallx;!tcrs., then dsynq)'totically 

, .. 

.... 
• . 

. ' 
~ 

. . 
". .' 

• 

, 
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. " 

E{ (Y E{Y}) CY "E{'y. })Tr, !. 

. -t+b - -t+b -t+b -t+b 

'E{ 0 .OT} 
= ~tTb E.t+b (227) 

, I 

€t+b is ~ moving ,average p~cess of orde'T .b-l, with covariance structure 

(B22) • Thus (B27) 'may be written as 

o OT 
E ~t+b ~t+b = ~ 

. , 

where the elements M .. are giv.en by 
. 1). . . , . 

~l .. 
~J 

b-l ~. 
2 

= <Xa 0 k;=ji-j I .p~i-j 1'~b+1-li+j I 
~ ~ --

o < li+jl < b-l ~ 

= Q b~li-jl 

{\ , 

(B28) 

'f 

(B29) 

(B30) . 

It; ~. • 

TIle variance-covariance matrix of't~ parameter estimates is therefore 

given by 

(B31) 

, / , 
, ... I)en b=l (B31) . re4uacs to " 

(B32) 

--~-

• 
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th.~ usual least squares result, and the correlation mat,rix of the parameters 

is given by' l:(t), the elements of which are ' 

r.. ;: 
'1) 

c .. 
1J 

Ic .. c .. 
H JJ 

(B33) 

The c .. ts are the elements (ij) of (X
T !)-1. Since one is not identifying 

1 J. '-="'t =t 

the mo.ving average p~rameters it is impossible to detennine the true var-
. 

ianc~-covariance -matriX' of the parameters of b > 1. 
"""---

The least squares estimates of the controller parameters may not be 

the most efficient estimates. If b > 1 information about the controller 

It may be possible to reduce the variance' 

of the estimates by simultaneous identification of the controller para-

-1 • meters and the moving average parameters 14 (z ) by say a recursive max-

imum likelihood procedure (SoderstrVm et al. (1975)). 

\ 



APPENDIX C 
« 

CONSTRAINED C(NTROL PROCEDURE OF 

CLARKE AND GAWIHROP (19 7S) 

" 

The self-tuning controller of Clark and Gawthrop (1975) is reder­

ived in this Appendix. - It is shown that if the controllers ,parameters 
" 

1 
converge then the self-tuning controller will minimize, 

, 
" 

(Cl)' 

~ 1 

wh~re Yt +b/ t is the b-step ahead forecas t of the output and E; > 0, and 

that the same strategy will minimize 

(C2) 

It will not ~nimize the cost function claimed by Clarke and Gawthrop 

(1975'), namely 

11 d_ 
var Yt + f,; var Vllt (C3) 

It is important to demonstrate that mi~zation of eCl) is equivalent 

,to minimization of eC2) because this f~nns the basis of the development 

of the self-tuning controller 'to minimize ee2) and because (C2) by itself 

does not appearr'to be a ~ensible criterion. 

Consider the representation of the closed-loop system in Figure 2.4 
• 

- 148 -
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I " 

" , 

using'the notation of Box and Jenkins (1970) 

\ 

(C4) mJy be written as 

or 

where 

~(z~l)e(z-l){Yt+b + ~v<1It}, ~ o(z-1)L2(Z-1)y~ 
I 

; (w(z·1)L
4

(z-1)4J(Z-I)+ ~o(z-l)e(z-~)} vdu
t 

+ ~)6(Z -1)L
4

(Z -1?3
t
+
b 

. 

+" O. 
e t+b 

\ 
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{C4) 

" 

(CS)" ' " } 

(C6) 

(Cn 

(ca) , 
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Taking mathematical expectations' of (C8) 

whe~e a; is the variance of ~a~ r S J • They are distributed N.(O. ;) l'lith co­

var.iance struct1,lre 

j ;: 0 (CIO) 

0' -1 lL 0' -1 -1 
The cross product between [B (z Y'llt": a (z )Y t 1 and ~ (z )at +b 

vanishes as, the latter is th~ b s'tep ahead forecast error which is com­

plet~lY t:Illcorrel~ted with ~11 information at time t. The variance of the 

fore~ast e~r ~l + L!,l + L~,2 + ••• + L~,b_l)d! is fixed, independen~ of' 

any control action .th~t may be'tak~n. nle ,expression 

is greater- than or equal to, ,zero, and tho· control action' 

, ' 

'. 
" 

'. 
I ., ,:~ , 

'. ~ . 
. > 

" , 

. " ~ 

. ~, . 

," " 
~ .. 



will minimize (C8). 

. I f the para.meters of the controller (eI2) are unknown, Clarke 
f . 

I proposes that the parrureters of the npdel 

\... 

~t+b = B' (z-l)~rlut + at (z-l)Y
t 

+ ,Et+b (C13) 

, . 

be estimated at every sampling interval and used in the controller 

(C14) 

" 

as if they were exactly known. If the controller (C14) is optimal in 

the . sense of minimizing E{ ~"2 t+b} then 

E{~(t)~(t+T)} = 0, t > b , (CiS) 

151 

The resulting controller is the same one that couldJ18Ve been de· 
, , 

signed had the process 'dynamic and stochastic models been lalmm. This is 

not shown fonnnlly by Clarke and GUI'Ithrqp (1975) J but analogies are made 
" 

to the unconstrained self-tuning regulator since equations (C6). and (CIS) 

, .are duals of (3.5) and (3.11). 

On first -&~ance the. cost func~pn to be minimized~ E{(Y~~b +$vdu
t
)2} 

c1o~~ I].ot appear reasonable. ' 'E~-pansiQn, of CG2) gives 

" 

.. 
. . 

13{¢,2 t+b} J:. var ~t+b ',t ~2~ar V~t + 2' .COV, o't~bvdut) fC16) 

, . 

• I 
• 

, , 
, .. 

.,,, 
• ~. I 

, . , " 

" ,,~ 

" . 
" . 

, ' 
" ' 
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There is no reason in generai ''lhy the design criterion for the controller 

should involve a covariance betlveen the inpu~ and output. 

Consider for the moment the development Qf a strategy for the min-
• t 

imizatlon of'an alternate cost function. The process dynamic and stochastic 

models may be lvritten in the fOTIn 
J. 

-I A 

Y - w(z ~ v~- + N + 0 
t+b - -1 d \1t t+b/t e:t +b cS(z )'l 

eel 7) 

(CIS) . 

, ' 

Here again e:~+b is the minimum :variance forecas~Yt+b and it's 
. " . 

completely w:correlated with all info:rmat~on up\-.to ~ime t. Yt+b/t, is the 

~n~ variance forecast o~ Yt +b base9. solely on i~onnation up to" tilre 

t. Sq~ring (C18) and add~ng ~tu2 t to»oth ,sideS., then 

, 0 
Taking mathematical expec~~tion5 of (C~9) rcmemb~ring tllut'E:t+b 

c~rrelated \ddt 'CY t' Yt"-l"'" vclut , v'\Jt_l' ~. '.)' ,then on~' ~ets .. '-' ' , ' 

\ . 

(el!» 

where' 0 2 0 is the varianc~ of t'he forecast error. Clar~e and· Gawthrop 
II> '£ ' " ' ',' ",' 

,ci.97Sj d~~£erent;iat~d (C2~)" \"~~h re~~c~ ,t~ ,vdu~ ,~d set, the Te~~~,t '1:~. ze~~' 
< " ~ • ~ t' •• ~. • • • I. v~ .' ..... ': • • 

, .' 

II • 
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to find the control strategy ,,,hich· they thought minimized val' Yt+b + 

~ val' vduto However, the~ ignored the 'expectation operator' ''Ihen they too~ 

this derivative" and as .. shO\VI\ by MacGregor and Tidwell (1976), minimize th~ 

objective function 

(C3) 

\ 

MacGregor and Tidwell refer to this as an 'inStaneous f or 'shortsighted' 

opt4nal controller as it does not take into accotmt the effect of ~e 

'. r aont'rol actionqn the output at lead t~11V;}S ,greater than b, whereas 

the Weiner·Hopf sOlution~ lm.ic.h minimizes val' Yt + ~" val' vdu; ~ccounts 
for this. Consequently the increase in the variance, of Y t' for a given 

reduction in the variance ~£ vdut , \~i1l be larger if, the controller is 

designed by Clarke's algorithm (Refer to Section 2.S for an example). 
.." , 

eel) may be ''Iri tten as 

(e21) 

Taking dcriv~tl,ves ''lith respect to V<Ut and sett,ing the result ,to zero then 

, . 

• J .. , 

" , 

; (,. . '. , .. ' 
F 

D (e22),' 

. . 

, . 
. ~ ." 

~ ." . 
" 
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L (Z·l) '. 
Z -I d is the b step ahead forecast of Yt+b given only the information 

4l(z )V ' 

at tire t " and it is not a nmction of 9<\'t. ' 
The control action rrdni~zing (el) is then 

(C23) 

"-
~ 

Expressing at in terms of Yt by substituting the control action (C23) into 

and then substitut~g ~lat result back in~o -ee23) gives 

(e25)-

\' 

, . 
Substituting '~l 

-1 LZ!z) 
L (z, ) ~ 

3 . ~(z -l)VO: 

, '-

(C26) 

~cn (elS) , may be \"~itten ':1S 

, ~ . 
,.. . , . \ ~ 

" ' 

,1 

.. 
\ . . , 

, ~ I' 



a • 
Comparing (e12) and (C30) it is se n that minimization of E{(Y

t
+b + 

sQ~t)2} is equivalent t~ minimiza ion of Y~+b + ~ (Vdu
t
)2 . 

, 0 
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If the disturbance is nons ationary it is necessary to minindze . ' 

"'2 (L 2 -. 
Yt+b + E;(V""Ut ) \'1here d > o. The arian~ of Ut is theoretically infinite 

if d > 0 due to the pole of order 

Controllers designed to minimize 
c 

not .in general ,stabilize the vari 

on the unit circle in the controller. 

"';+b/t + E;Ui or E{~¥t+b + .~ Ut )2} will 

The resul ts in this Appendix 

are corrected to account for this 
. "2 . The cost funct10n Yt +b/ t s ('Vdut ) 2 that Clarke and Gathrop (1975) < 

minimizes, leads to useful contro 1er designs. Their self~tuning controller 

is a clever extension of the basi self-tuning algorithm and provides an 

easy means af constraining the rna itude of the control action. 

(/ 

... 
" 

.. 

" 



APPENDIX D 
, , 

~IEnlons OF CONVERCENCE ~YSIS 

In this Appendix the ordinary .diffe'rential equations J which may 

aescribe the expected trajectories of the recursively estimated parameters, 

liill be examined. A simple one parameter example is solved., and it is 

shown that the .complexi ty of t1!e 'differen~ial equations increases rapidly 
. i 

if mbre parameters are to be estimated. 

It is assumed that the process may be described by a. model of 

the fonn 

CDl) 

The parameters of the minimum variance controller are estimated from a 

model of the fonn 

(02) 

Under weak conditions e!.JUllg and Wittenmark (1974)) J -the ordinary differ­

ent'ial equations . 

dO , -= = Be -r)!(!) 
dt· ~ 

(03) 

.. 
- 156 .. 

• 
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(04) 
, dt" 

'" 
may"~scribe the expected trajectories of a(t), where 

T 
f(~ = E {~(t) (Yt+b - ! (t)~) (DS) 

and 

(p6) 

, is' related to t by 

T :t in(t) (D7) 

if the .discounting factor (~) is one. If the ~ctor of minimwn variance 

controller parameters, eO, is a globally asymptotic stati~arY solution 

to (D3) then (Ljtn1g and WitteJ1J!Ulrk (1974)) 

"0 .tim e (t) ..jo 0 
t~ - -

, 

with probability one (DS) 

Ljwg and h'ittenmark' examine quantitativaly !JIlder \~bat conditions !o 

mayor may not be \a globally flSurnptotic solution to (DS). Theil' results 

may be described briefly as folloh's. 

R(i) is taken as the wit matrix.. The differential equation (D3) 

15 linearized about !O'to give 

, , 

, . 
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eD9) 

From (OS) f(!o) = 0. eD9) may be written as 

(D19) 

where 

(Dll) 

~ is a function of auto and cross covariances. By a judicious choice of 
I , 

values for A(z-I), Bez- I ) and C(z-l), Ljung and Inttenmark (1974) ,.;ere 

able to make the trace of M positive, indicating that at least one eigen­

value had a positive real part. Thus ~O \oI~ not' a globally asumptotic 

solution to (D3) and the self-tuning regulator should not converge. 
~l~ 

-This 'vas verified ld th a similation. ' 
, I 

As an example of the solut~on of the simultane~us .ordinary cliffe.}'-

ential equations (D3) and (D4), consider the system 

-1 
Y '" b U + 1 +CZ a ' (D12) 

t+b ,0 l+llZ-1 t l+az- I t+l 

This exnmple 1s discussed in l~i tterunark lU)73). TIle minimum variance 

controller is 

(Dl~) 
, . ' 

'- , . ~ 

• 

" 

The parruooters of the mininimi varian~ c.optroller are estiJllllted fl'Om th~ . .... . . . ... 

.' " 
, , 

" ' , . 
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, . 

Yt+l = aYt + BoUt et +1 . " " 

, . 
~ . , 
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(D14) 

To redUce the complexity of the differential equations consider B~ fixed 

to 1.0. Then 

,1 

, 

i(~ = E{'Yt Yt +1} = '\'Y(l) . ~ (DlS, I 

and 

(D16) 

where the auto covarianc,es are computea fur the closed loop sy~tern; .. 

-b ,. + 1+cz-1 a ' . 
Y

t
+1",,"I' ·o.Y 1 

l+az -1 ,t l+az -1 t+ ' 

/ 
1+cz-

1 
/ 

• Yt = l+(a+~)z -1 at : 

or , 
(DIS) .' 

1£ Y
t 

- H(Zl)3
t

, then the" auto correlation,nt lag k is lven by (Ast'rlim 

(1970)) / 

'\I (k) = yy Z!fi .. 
/ 

, (D19) 

~e path of in~egrati~n is in the positive direct on. . Letting d "" a+b 

then' 

2' 
'i. 

. , -1 i 
, , °a. 

T 
. Cl+c.z J (l+Cr 

. 
vyy(l~ .= dz ' . . (Q20) --:-.. 2rrl ,(1 +d"z:" 1~.( 1 +1) 

~ 



.. 

a 2 
. a f =-
2rri 

(z+~? (1 +cz) dz 
(z+d) (1 +dz)' 

t> 
(021) 

160 

Letting 0'; = 1. 0, (D21) is evaluated, using residue calculus (Jenson and 

Je f~reys (1963)) as t 
~ 

v (1) = Cz+c) (l+cz) 
yy l+dz 

(D22) 

z= -d 

(023) 

fc"(a+~)]2 
vyy(O) = 1 + x 2 

l-(a+ba) 
.(D24 ) 

The orrl:inary differential equations (03) and (D4) become 

~ A ~ ? 

da = R·. [c-(a+ba)] {l-c(a+bu)] 
de \ 1 _ (a+b~) 2 

(D25) 

.. 
(026) 

• 
, ~se simult~us~nlinear different~al equati~ns were solved with.a .~ 

'. fourth order Runge.K~ta tOOthod ~d an tni"tial step siZe o~ .001. a, b 
" ~ . ' 

and c wi~ taken as (-0.95, 1.0, -0.45). 

(013). 

• 

" ... 
ThO' miniJrum variance control is 

.' 
't 
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Ut = -0.50 Yt CD27) 

Figure 01 shows the trajectories of a for R(O) = 5.0 and different starting 

values of a. (0) • 

~ ~ 

~IGURE D1: Trajectories of a for R(O)=S'.O and a{O)=O.5 aJ}~ -1.0 

The differential equations can be readily solved when only a few 

parameters are to be estimated. The next e~arnple shows the difficulties 

encountered ",'hen several parameters are to be e5til)lated~ Let the system 
~ .. 

~ ,. ~ 

I" 

~ 'Q . 

I 



-1 1 + cz 
1 at+l 

1 
-

+ az 
(D28) 

TIle minimum variance controller for (D28) is 

u = (a-c) y 
t b +b z-l t o 1 

(D29) 

The controller parameters are estimated from the model 

,(D30) 

\ 
i(~) = E{~(t)Yt+l} ::- (Vyy(1) v (l~ (2)) (D31) uy uy . '-...... . 

'-..... 

'-
./ ~--and 

v (0) v (0) v (-1) , 
yy uy uy 

M(!) = E{x(t)xT(t) J= v (0) v (0) v (1) 
(D32) uy uu uu ,- -

v (-1) uy v (h) uu v (0) uu 

, 
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The difficulty in solving U1C differential equatigns lies in evaluating 

the auto and c~oss cov:trianccs. Y t and Ut are hi,gh order ARIM4 timc series, 

It is not fe~ible to evaluatc the auto covariances by residue calculus. 

but Astrom (1970) details a method for finding auto covariances \"hich are 

of the funn 
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CrO'ie (1976) has extended this method for auto covariances at lag k, 

showing that 
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th'cir· .. iJ can be easily shown- that the covariance bct,,,ecI! Y
t 

and U
t 

is given 

by 

vUy(k) 
_ 0; 1 

2lTi T 

when k=o Astrom's solution is easily modified so thuf these cross co­

variances can be reasily calculated. The cross covariances at lag k~ 

,. 



164 

k I 0 are not easily evaluateq using these methods. Alternatively, for low 

order auto regressive-roving average processes, the auto and cross correl-

ations v (k) and v (k) may be evaluated by solving a system of simul-uu uy 

taneous linear ~quations. TIlis is detailed in Watts and ~la.cConnick (1970). 

For processes involving estimation of more than one or two para-

Jreters, simulation \vill probably remain the tool for analysis of conver­

gence. This is not to say that the differential equations are of no use. 

LjlUlg and Wittenmark (1974)', lVittenmark (1973) and AstrOm and l'litterunark 

(1973) have used these differential equations in simple cases to examine, 
~ 

the effect of fixLl& BO on stability of the closed loop, and convergence 

points to (D3) if the number ,of l~ole periods of delay for the model (D2) 

is different from the true process delay. Convergence of the estimated 

parameters to those of the mininrum variance controller has been ShOM1 not 

to be assumed. Examination 0.£ the differential equations has provided in-
..... - ' 

sights that h'ould not be apparent if simu1:~rtion ... were the sole tool of --------analysis. 

\. 

.. 
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Call1ng Sequence for the Self-TunIng Regulator AlgorIthm 

IN THIS APPENDIX THE CALLING ALGORITHM FOR THE 
SELF-TUNING REGULATOR IS OUTLINED A BRIEF 
DESCRIPTION OF THE SUBROUTINES IS FOLLOWED BY 
A SAMPLE CALLING ROUTINE WITH LISTINGS OF THE 
SUBROUTINE'; 

SUBROUTINE UYINCR 

PURPOSE 

USAGE 

TO ~EEP TRAC~ OF THE PAST 10 VALUE~ OF THE 
MANIPULATED AND CONTROLLED DEVIATI6N VARIABLES, 
(U-USSP) IN THE VECTOR US10 AND (Y-YSP) IN THE 
VECTOR YSIO 

CALL UYINCR(Y,YSP,USIO,Y510) 

SUBROUTINE FORM 

PURPOSE 

USAGE 

TO COMPOSE THE VECTOR X (T-f..:') OF NA PAST VALUES OF 
(Y-YSP) AND NB PAST VALUES OF (U-USSP) IF A 
CONSTANT TERM IS IDENTIFIED THEN THE TOTAL NUMBER 
OF PARAMETERS IN THE CONT~OLLER IS NP=NA+NB+l, 
OTHERWISE NP=NA+NB THIS VECTOR IS USED FOR THE 
PARAMETER UPDATING ROUTINE, IN WHICH CASE K=B (THE 
NUMBER OF WHOLE PERIODS OF DELAY), OR IN THE 
COMPUTATION OF THE CONTROL SIGNAL, FOR WHICH ~=O THE 
INFORMATION PLACED IN THIS VECTOR COMES FROM USI0 
AND YSI0 

CALL FORM(X,YSI0(1+~),US10(1+k),NA,NB,NP) 

SUBROUTINE RLS 

PURPOSE 

USAGE 

TO UPDATE RECURSIVELY THE PARAMETERS, THETA, OF THE 
MODEL 

DEV = THETA*X(T~) + E 
WHERE DEV IS THE OBJECTIVE FUNCTION 

DEV = YSIO(l) + ZETA*USIO(B) 

~~~ t~~~Y~}8~E8Fcb~t~b[HE CONSTRAINING FACTOR ALLOWS 

CALL RLS(DEV, X, THETA,LAMBDA,P,K,$,NP) 

SUBROUTINE STRCL 

PURPOSE TO COMPUTE THE ABSOLUTE CONTROL SIGNAL (I E NOT 
THE DEVIATION SIGNAL) BASED ON THE ESTIMATED PARAMETERS 

USAGE CALL STRCL(U,USSP,THETA, X,NP,NA) 
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C THIS IS A TYPICAL CALLING SEQUENCE FOR THE USE OF THE 
C SELF-TUNING REGULATOR PROGRAMS 

C 
C GET NEW OBSERVATION Y 
( UPDATE VECTORS OF INPUTS AND OUTPUTS 

CALL UYINCR(Y,YSP,USIO,YSIO> 
c 
c 

c 
C 

FORM X(T-B) FOR RECURSIVE LEAST SQUARES 
CALL FORM(X, YSIO<1+S),USI0(1+S),NA,NB,NP) 

C FORM OS.JEC T I VE FUNC T I ON FOR RECURS I VE LEAST SGIUARES 
DEV=YSIOCl)+ZETA*USlO(l+B) 

C 
C 
C CALL RECURSIVE LEAST SQUARES 

C 
( 

CALL RLS(DEV, X,THETA,LMBDA,P,k,S,NP) 

C FORM XCT) FOR COMPUTATION OF CONTROL SIGNAL 
CALL FORM(X,YSIOC1),USIO(1),NA,NB,NP) 

c 
C 
C COMPUTE CONTROL SIGNAL 

C 
C 
C 

c 
c 

CALL STRCL(U,U~SP,THETA,X,NP,NA) 

UPDATE USI0(1) 
USIOCl)=U-USSF 

C IF CONTROLLER HAS INTEGRAL ACTION CHANGE USSP 

C 
C 
C 

IF(INTEGRAL ACTION)USSP=U 

FINISHED 

.' 



'0 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 

C 
,~ 

c 
c 

1 

3 

4 
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SUBROUTINE RLS(DEV, X, THETA,LAMBDA,P,~, S,NP) 

RECURSIVE LEAST SQUARES IDENTIFICATION ALGORITHM FROM 
A COMPARATIVE STUDY OF RECURSIVE IDENTIFICATION 
METHODS, PAGE 20, BY 
SODER';TRUM, T , L.JUNG, L , GUSTAFSUN, I 
REPORT 7427,LUND INSTITUE OF TECHNOLOGY, LUND 
SWEDEN 

DEV - DEVIATION FROM TARGET 
X - VECTOR OF INPUTS AND OUTPUTS 
THETA - CURRENT PARAMETER ESTIMATES 
LAMBDA - FORGETTING FACTOR 
P - COVARIANCE MATRIX OF PARAMETERS 
K - VECTOR OF WEIGHTING FACTORS 
S - WClRt-:ING AREA 
NP - ~ PARAMETERS TO BE ESTIMATED 

DIMENSION P(NP,NP), X(NP), THETA(NP),S(NP),k(NP) 
REAL '", LAMBDA 

GET DENOM I NATOf" FOR UPDATING P AND .. MATRICES 
SUM=O 
00 1 1=1. NP 
DO 1 ,J=l,NP 
SUM=SUM+X(I>*X(J>*P(I,,J) 
CONTINUE 
DEN=SUM+LAMBDA 

. , • 
UPDATE ~ MATRIX, GET PREDICTION ERROR 
ERRS=O, 
00 ::; I=l,NP 
SUM=O 
-DO 2 .J.= 1 , NP 
SUM=SUM+P(I.J)*X(J) 
CONTINUE 
S(I)=SUN 
K(I)=SUM/DEN 
ERR~=ERRS+X(I)*THETA(I)'~ 
CONTINUE 
ERRS=DEV-ERRS 

, 
UPDATE P MATRIX AND GET PARAMETER ESTIMATES 
DO 5 1= 1. NP 
DO. 4 ,)=1, NF' . 
P(I,J)=<P(I,J)-SCI)*S(J)/DEN)/LAMBDA 
CONTINUE 
THETA(I)=THETA(I)+k(I)*ERRS 
CONTINUE 
RETURN 
END 



c 
c 
c 
( 

c 
c 
c 
c 
c 
c 
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SUBROUTINE UYINCR(Y, YSP,USI0,YSI0) 
THIS SUBROUTINE I-.EEPS TRAC,", OF THE LAST 10 VALUES 
OF U-USSP AND Y-YSP IE DEVIATION VARIABLES 
I) - CURREN'- VALUE OF THE CONTROL SIGNAL 
Y - CURRENT VALUE OF THE DEPENDENT VARIABLE 
USSP - REFERENCE VALUE FOR THE CONTROL SIGNAL 
YSP - REFERENCE VALUE FOR THE DEPENDENT VARIABLE 
1)510(10) - STORAGE VECTO~ 
Y510(lO) - STORAGE VE(TO~ 

DIMENSION U510(10),Y510(10) 
DO 9 .J= 1. 9 
1== 11-.J 
U510(I)=U510CI-l) 
YSIO( I )=YSI0< 1-1) 

9 CONTINUE 
U510(1)==0 0 
YSI0(1)=Y-YSP 
RETURN 
END 

SUBROUTINE FORM(X, YSI0,USIO,NA,NB.NP) 
DIMENSION YSIO(NA),USIOCNB), XCNP) 
X(NP)=l 0 
DO 0 1=1, NA 
XC I )=YSIO( I) 

9 CONTINUE 
DO 10 l=l,NB 
X ( NA+ I ) =U81 0 ( I ) 

19 CONTINUe: 
RETURN 
END 
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• 

SUBROUTfNE ;TRCL(U.USSP. THETA. X.NF.NA! 
DIMENSI0N X(NP). THETA(NFI 
':,Ur-I=I:' 
EVALUATt CONTROL SIGNAL 
DO 1 C; I;' 1 , NF' 

SUM=SUM~X(I)*THETA(I) 

CONTINUt 
U=U;SP-~UM/THETA(NA+l I 

RETURN 
END 

I ' 
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