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ABSTRACT

The theory of se}f-tguning regulators and related ‘topics in
1‘inear st q&tic control theory have been examined. . A unifying
’fcreatment of the fheory of self-tuning regulators has been presented,
and an attempt made to clarify the confusion surrot,’mding certain
aspects of these regulators. The notatiod is that of Box and Jenkins

*

(1970) . .

Self-tuning control of a steam jacketed stirred tank was
\
successfully implemented. The experimental program was designed to
illustrate points from the theory that have caused confusion-in -

previous industrial and pilot plant implementations.
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CHAPTER 1
INTRODUCTION

An”ihqreasing number of industrial processes are being controlled .
by digital computers. In many instances, the control objectivé is to keep
the process output as close to th:e desired setpoint as possible. Classical
design tec}miqt.;es used to tune feedforward or feedback control loops,
require the process output to have a satis’factory response when subject to
a deterministic forcfing function or satisfy certain specified stability
margins. Such design criteria (as percentage overshoot, decay ratio, phase
and gain :nargins),may ignore the nature of inhe?ent process disturbances,
resultixig sometimes in stable but poor regulatory control. Proportional-
Integral-Derivative type controllers may not adequately control processes
charactc;rized by long dead times and certain drifting stochastic distur-
bances. . -

The approach of Box and Jc,nki{r}s (1962, 1963, 1970) and Astrdm (1967,
1970) was to d;s,Lgn controllers to compensate for disturbances inhcrent to
a particular process. ‘Data was collected under open or closed loop, and
models of the process dynamics and disthurbances identified off-line. Feed-
forward or feedback controllers were then designed to minimize. fluctuations
éf the process. output-from its target value. i

The data‘“é:glvlection and subsequent off-line analysis can be time
consuming, and require considerable expertise which few industrial people

have. Another possible drawback to this off-lipe design of the controller,

is that the process dynamics and disturbances may change appreciably with

!
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time. This requires re'deqfification of the dynamic and disturbance models
from new dat 4

This led Astrom and Wittenmgrk (1973) to develop a self-tuning re-
gulator, in which only those parameters)that appear in the Sptimal regulator
are identified on-line. The parameters of a model are estimated at each
sahpliné*interval by a recursive estimation technique, and used in a control
law as if they were exactly known. If the parameter estimates converge,
and several weak conditions*are satisfied, the resulting controller is the
same one that could have beenndeSigned off-line, had the process dynamic '
.

and stochastic models been known.

The self-tuning, regulator overcomes the need for data collection

" experiments, and extensive off-line analysis and controller design. It is

.

easily implemented with a minimum of specialized training. Minor modi fi-
cations to the estimation algorithm allows %he self-tuning regulator to
track changing process and disturbance characteristics. It is not nec- * ‘
essary to collect new data, rcidentify the process dynamic and disturbance

models and rédcsign the controlicr off-line.

There have been powerful theoretical techniques developed to study }
the convergence properties and stability of the self-tuning regulator.
Extensive sinulations of the self-tuning regulator have been rcporteh.
Industrial applicuti?ns to the control of paper machines, an ore crusher,
and a batch digestor have denbnstrnted‘that sclf-tuning regulators are
quite robust to assumptions in their derijvation.

The purpose of this thesis is to

(1) present a unifying treatment of the theory of self-tuning

regulators and clarify the confusion surrounding certain




aspecté of these controlizrs; i .
(2) to gain a familiarity with the self-tuning regulator by
writing the necessary mini-computér software and implementing
self-tpning control gf a pilot plaht process;
(3) to examine the limit;%ions of the self-tuning regulator and
to suggest areas tha; require further investigation.

The remainder of the thesis is outlined as followsk

a

Chapter Two: Thé representation, fitting and diagnostic checking of the
process dynamic 9nd disturbance models of Astrtm (1970)-and Box and
Jenkins (1970) is examined. The.design of minimum variance controllers,
constrainqd controllers, the sensitivity of the resulting closed loop
systems, the choice of sampling interval and problems of closed loop iden-
tification are reviewed. This extensive background will aid in the under-

standing of self-tuning regulators.

Chapter Three: The theory of thé-self'tuning regulator is presented here

using the notation of Box and Jenkins (1970). The theoretical.develop-
ments of Ljung and WLtteqmark (1974), the recursive estimation scheme,
and ‘problems of parameter identification are Piscussed. A proposed self-
tuning constrained controller of Clarke and(k?;throp (1975) is shown to'be

in error. A simulation is presented to bring 'some of the concepts in this

chapter together. S

Chapter Four: The applications of self-tuning regulators to the ‘control

of industrial and pilot plant processes are rcviewed. Iﬁsights, extensions

and problems that have arisen in implementation are\discussed.




Chagfer Five: The self-tuning regulator is used to control a steam

jacketed stirred tqqk heater. Different’methods for eliminating offset,

and the use of the sample auto and cross correlation functions as diagnostic
tools are discussed. It is demonstrated that all the controller parameters

may be estimated. The robustness of the self-tuning controller to different

input disturbances is also considered.

7

-

rd

Chapter Six: This chapter summarizes the most important aspects of this

work, and gives suggestions for further work in this-area.



CHAPTER 2
A REVIEW OF LINEAR STOCHASTIC CONTROL THEORY

&

2.1 Representation of the Dynamic and Disturbance Models

Consider a process, Figure 2.1, where the opportunity exists to
measure the process output and take control action at equispaced inter-

vals of time, t=0, T, 2T,..., vhere T is the sampling interval.

U Y '
t t .
N
Process 7
manipulated process
variable . output

Figure 2.1: Representation of a Dynamic System
Astrom (1967, 1970} and Box and Jcnk@ns (1902, 1903, 1970) represent the
- *
discrete linear transfer function relating the process output Yt' and

the manipulated variable, Ut as

*

* *
Y, - §,Y e 8Y

t - Plt-1 A T I LN
- wSUt'b-S (2.1)
R o adN
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There are b whole periods of delay befbre the effect of a change in the
manipulated variable is observed at the output (b includes the transport
delay plus an additional period of delay for the sample and hold. This
is discussed in section 2.6). The‘manipulﬁted variéble is held constant
in the interval nT < t s (n+l1)T. Y: and Ut are deviation variables from
their steady stata values.

. Defining an operator 2% such that 27Xy

T t
/written more compactly as.

= Ut-k’ (2.1) may be

1. - R R
Y* N V(z-l) U = (2 1)2 b 0 - Wy~ 2 wSZ U
t sy - 627 82t t-b
(2.2)

V(z'l) is called a transfer function of order (r, s, b). The process
is open loop stable if 6(2—1) has all its zeros (in 2_1) outside the
unit circle, and is referred to as minimun phase if w(z’l) has all its
zeros outside the unit cirele.

If the transfer function is represented by ratios of polynomials
in i—l, then the output from this dynamical system is an aggregate of
past inputs'and outputs. ‘This representation provides a scn;ible class
of transfer functions and is justified in its own right, without consid-
cration of the underlying continuous process. In some instances it is
possible to relate the discrete model to the continuous process, if the
latter may be described by a linecar differential cquation of the form

-

o] *.
(1 - T,D - T,0" -...- Tnn") Y (t)

= (59 R ILERE smnm) U(t-1y) (2.3)



-

This is discussed in Box and Jenkins (1970).

In essentially all processes there are disturbances or noise

corrupting the process output, Figure 2.2,

. cly
t V(2 l)=w(z- b

8z )

Figure 2.2: Representation of a dynamic
system affected by disturbances

Here N, represents the total cffect on the process output of all unob-

served disturbances acting within the system, which in the absence of

some compensating action would cause the process output to drift away

from its target value., These load disturbances may not be of ageter—

ministic nature such as step, ramp or acceleration functions., Astrom

(1970) and Box and Jenkins (1970) characterize these stochastic dis-

turbances by auto-regressive integrated moving average (ARIM\ (p,d,q))

time series modelsyof the form

v 6 ~—(l
- 8(z ) . 1 q°
Vt - = N
L O A  RCIL IR

(2.4
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The {at's} are a white noise sequence, or a series of random shocks,
roughly normally distributed with mean zero and variance oza. The
moving average term 0(2-1), and the ‘autoregressive temm ¢(z—1) have all

their roots outside the unit circle (in 21

}. The presence of d roots,
usually 1 or 2, on the unit circle allows the disturbance to be of a
drifting or nonstationary nature. The stochastic disturbance may be in-

terpreted as the output from a filter w(z—l) driven By‘white/poise.

£

linear filter

o Y

Figure 2.3: Interpretation of the disturbances as an
output of a linear filter driven by white noise

The futurc behavior of a dctoréinistic function can be exactly
predicted trom a record of its past history. This information is not ,
sufficient to uniquely determine the future behqyior of a stochastic
function; However, the past history of a stochastic function is suffi-

»

cient to predict its future probability distribution. Although one may

predict the ‘future value of a stochastic function therc will be some

uncertainty associated with this estimate.



wvhereas Astrém (1970) uses the notation

- -1 -1

. _ Bz Y C(z ")

Y, = U + a
toaz ) TP A b

-

(2.5)

(2.6)

Both forms are capable of providing an adequate representation of a dyn-

amic-stochastic system. The Box and Jenkins notation provides more

insight into ‘the nature of the process dynamics and stochastic distur-

bances, as one may distinguish these separately. The common denominator

/

mixes up the dynamic and stgchastic models in Astrom's representation,

and it is more simply a mathematical representation of the output, Tt

-

will be scen in the next section that the Box-Jenkhins notation permits

greater flexibility when identifying, fitting and checking dynamic and

stochdstic models from input/output data.

-

R

2.2 Identafication, Fitting and.Testing of Dvnamic/Stochastic Models

Box and Jenkins (1970) propose an 1terative procedure of

[DENTIFICATION » ESTIMATION ~ DIAGNOSTIC QIECKING

...................................

4

.........

to build dymamic and stochastic models, (ross corrclation techniques

arc emploved to provide a preliminary identification of the orders (r,

s, b) of the transfer function, and initial parameter estimates.

Té;?htlve

i~ ———
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ostimates of the orders (p,3d}\4% ?f the stochastic disturbances, and
initial parameter estimates are obtained using statistical properties
of the ARIMA time series'nndels. Both models are fitted simultaneously
to ensure that one obtains the best estimates of the parameters, using
the maximum likelihood criterion. Diagnostic checks detect model in-
adequacies and may suggest model improvements.

A multiple regression approach is used by Astrom (1970) to build
dynamic and stochastic models. Models of increasing order are fitted,
and discrimination between them is based on whether the reduction in ,
sums of squares for the model of increased order is statistically sign-
ificant. Diagnostic analysis of the model residuals is used to evaluate
model adequacy.

The Box and Jenkins approach appears to be more flexible and
aﬁpealing from an engineering point of view. The preliminary identifi-
cation of the stochastic model requires that the effect ot the process
dynamics be removed from thg data. Dynamic models developed f{rom a
theoretical analvsis of the process may be used 1f avullabie‘ ne is not
required to treat the process as a "black boa". It was first thought
that the techniques employed by Box and Jenkhins (1970) and Astrom (1970)
required that the data be collected whale the system 1s operated under
open loop conditions. Satety and production constraints mav prohibit
this. [t may be necessary to implement a feedback controller to Keep
the process variables in the operating region where one wants to identify
their dyvnamic and stochastic behavior. If a time invariant, linear feed-

back *controller 1s used during the peried of data collection, Box and

‘MacGrogor (1974) ‘have shown that the use of a noncasual method (cross

.
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correlation) to identify the process dynamics, will in fact identify

the inverse of the implemented controller. If the data must be\cbllec;ed
in closed loop, they suggest that a 'dither signall;uncorrelaied with the
process output be injected into the proécss input: Identificat}on tech-
niques and residual checks are outlined. Soderstrém et al. (1974; 1975,
1970) suggest that switches between several feedpack laws u?}lhaléo in-
sure idcntifiapility. :

Even if one has an apriori knowledge of the orders of the dyn-"
amic and étochastic models, and a time invariant, linear feedback ‘con-
troller with no extemal dither signal is used during the collection. of
data, the,estimated parameters may not bé unique. For different control-
lers, Soderstrom et al. (1974) and Box and MacGregor (197v) give necessary
and sufficient conditions that must be satisfied 1f the estimation space
is to be nonsingular. ¢

X The opén loop estimgtion methods’of_Bo; and Jenkins (1970) and
Astrom (1970) may be used on closed loop data in a straightforward muiner,
ignoring the presence of a feedback contrgller (Sodcrstrc}m“ et al. (1974,
Box and MacGregor (1970)1) if: these nccessarf and sufficient conditions
are satistied, or the controller is time-varving, g nonlinear function
of the process mputs and outputs, or il an external dither signal 1s
employed 1n the feedback looﬁ. . "

The Methods of Box and Jenkins (1970), Box and MacGregor (1974)

and Astrom (1970) provide a systematic approach for the identification,

L 4
L]

fitting and diagnostic cheching of process dvnamic apd stochastic models.
It 15 not necessary that the data be collected while the process is opera- .

ted 1 an open loop mamner if certain precautions are taken. Once the

3
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«

1 ) .
dynamic and stochastic models have been identified, a controller may be

designed to compensate for the effect of the disturbances.on the process
output.

-~ . - '
~

2.3 Design of a Minimum Variancé Feedback Controllex.’

The output of the system qepicted in Figure 2.2 is
. A
-l . ) A
v, =22 )y 4N ST 2.7

- t+b 6(Z§) t - t+b . ‘)4

>

The total effect of the disturbance on the output would be cancelled if

the control acti§h

e . » |
U, - L)y | @

| T

¢

were taken. This is phy$1cally unreallzablé as the value of the dis-

turbance b steps in the;future is unknowns It seems reasonable then to

%

take control action based on some prcdicted“valﬁe of the disturbance

_-seh g ”
Ut = —:)—(—;_T)— Nt"'b/t ) , -.9)

. ‘ H
!

where N t+b/t is the b step ahead prediction of the disturbance based

solcly on 1nf0rmation avallable at time t. Thus at time t+b thé crror
at the output will be equal to the tforceast error. The disturbance Nevh
~may be wrltten as

a0
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Newb = Spap ¥ Nespyt (2.10)

‘ where € b is the prediction or forecast error. There are many ways one
might predict the effect of the disturbance b steps in the future, put’
the most sensible predictor would be that which minimizes the variance

of the b step ahead.prediction errér. This is equivalent then, to min-

imizing the variance of the progess output. The criterion for designing

the controller is

(2.11) ¢

] 2
J 319 E { Yt+b-}.

\ t
' where E{} denotes the mathematical expectation operator. If Nt+b is

/ .
- written as

(b-1)

Newp = #02 Dagy, = (v gz 7 v vy g2
’ c o, ) + 11, Z-b -+ )a 2 a2 U
- | B e DA, (2.12)
~ p
=Lz ha , + Lz ha (2.13)
4+“ t+b 3 “t .M

wherc‘L4(;-ll is of order b-1 (the first b temms of 2.12).

It is shown in Box and Jenkins (1970) that

. ) ) 1L (z Da -
_ 1 2 t (2.14)

is the pfedictor which minimizes the variance of the b step ahead prediction

Q

4
S ; o .
\ |
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error. This forecast error is given by

-1 (-} .
Crely | L4(~ )at+h (2.15)
The minimum variance control strategy is therefore .
’)‘ U, = LﬁiE;;l Lz Ha ~ (2.16)
t w(z' )" 3 ‘t ‘

It is more convenient to compute the control action based on the errcr

©, the difference between the process output Yt and the setpoint YS

P
Substitution of (2.15) into (2.16) gives the minimum variance strategy

LD ey LED
1

_-seh R
azh L Dehed

(2]
wiz 5 L4(z'1)

t

(2.17)

From (2.12) it is secn that the {at‘s) may be interpreted as the one

step ahead forecast error.

The output of the glosed loop system, Figure 2.4 is

sz’ h “j‘

c a .
1 - v P

b (2.18)

<

(In TI'igure 2.4 the sign of the errorsterm on e, is opposite to conven- }>

t
tional notation. The ncgative sign is included in the controller block).

/

{
.
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o ;
disturbance v(z

=
<i
Ve

feedback proce;s
controller dynamics

Figure 2.4: Feedback control scheme

If D(znl) is the minimum variance controller, (2.17) then the output of
the closed loop system is a moving average process of order b-1, (2.15).

The variance of the output is

-

> "
Yagapt = (1407 *et up_ o™ (2.19)

1

V"F(ct¥b} = vnr{L1(:

If the output is a moving average process order b-1, the autocorrelation

function

5 (1) = EDIOY(ten))
)’y ™

(2.20)
o

Yy

15

“«
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and the cross correlation function

o (1) = EUOY(E+D)) o (2.21)

g o
uy u’y

vanish for t > b, where ozy is the variances of the process output and

ozu is the variance of the manipulated variable. The sample auto and
A Y

CTOSS corrélation function may be computed by' (Box and Jenkins (1970))

14

N-1
I Y(s)Y(s+1) N
WO = . (2.22)
Y (s)
s=1
and
N'T EY ¢
I U(s)Y(s+*1)
(0 = = —— (2.23)
jZ U"(s) I Y"(s)
s=1 s=1

r .
The variance of the estimated cross and aute correlations are given by

Bartlett (1946, 1955). “Thesc functions can be computed to verify if the
implemented controller is the minimum variance controller. ™
Suppose the process .Jyramics are represented by a f{irst order

transfer function with one whole peried of delay

v

X

w
= o 2.2
Yoo T Ve (2.9

and the stechastic disturbance, by an ARIMA (1,1,0) model
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S
N, = ———1a, ~- (2..25)
v(l-4z 7)
Then X
W
Y, = —2_y +—L (2.26)
2 T T N

If no control action were taken, the presence of Nt would cause the process

may be written as

output to drift away from its target valve. Nt+1
1-9271 T
‘ ¢p+l-¢2
N = a 7" a (2.27)
t+1 T T (1 ez L%t
The minimum variance controller (2.17) is .
e P W S W Tl -
Ue === ) T St (2.28)
o v (1-¢z 7)
Taking Ysp=0 with no loss of generality then
-. (U*9e) p+8+8¢
vy, =~ 2~ Y o+ LY
t N t ws t-1
-8y v U (2.29)
wy t-2 t-1 "

with this controller the variance of Yt is cza.

The presence of the VUt term indicates that the controller has

integral action.

action if the dist

©

The minimum variance controller always has integral

urbance model is nonstationary. The effect of the
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integral action is to climinate offset. Thus the minimum variance con-

troller will be able te satisfactorily handle the occasional set point

change or deterministic load change.

2.4 Design of Constrained Controllers

It may happen that the variance of the manipulated variable is

too large to implement if the minimum variance controller is used. This

g

is true particularily if the sampling interval is too short compared with
the process dynamics. In that case ‘one wants to minimize the variance
of the output, subject to a constraint on the variance of the manipulated

-

. . e N
variable. The design criterion is now to minimize

«

2 2 -
I, = B{Yy,, * €U)) (2.30)

where £ might be interpreted as cost per unit of controi action taken. ‘
The solution to (2.30) involves the solution of the discrete

Wiencr-tlopf equation. Wilson (1970) details a solution for this. Al-

ternatively the dynamic, stochastic model may be transformed to state |

space form and (2.28) minimized by solving a Riccati equation (MacGregor

(1973)). I the dJdisturbance model is nonstationary then one must minimize

., 2 ' -
I, = B(Y[,, * £(WU)7) (2.31)

as the variance of Ut in {2.17) will be theoretically infinite due to the

pole on the unit circle of the controller.

Recently Clarke et al. (1971, 1975) have,proposed what appears



-

to be a very simple solution to minimizing (2.30) or (2.31). Yt+b may
be written as
Yeop = Yerp/t * St (2.32)

-

—~

N

Where Yt+b/t is the b step ahead prediction and & is the prediction
f !
error.

S%nce Yt+b/t is determined from pastmdata, Yt+b/t and e, are
uncorrelated. Thus (2.30) may be written as

‘

2
t+b

N

I = EiY t+b/t T 52Ut

2 _ A
1 + sUt) = var e, + E{Y

} (2.33)
This equation is minimized by setting its derivative with respect to

U, to zero and solving for U,- Since Ut is a combination of past inputs
‘and outputs, all of which are kﬁown. Clarke et al. (1971, 1575) conclude
that the expectation operator in (2.33) may be dropped. However, MacGregor
and Tidwell (1976) show that this conclusion is incorrect. {f the un-

conditional expectation operator, which is the integral over the probab-

ility density function of the random variable Ut’ l.e.

* Y

vl 20 o o2 2 R
B e * SV = 1 (e * SV pWAY (2.34)

-

is dropped the function

-

A 2
, 2 5 =
I3 \t+b/t cUt {2.35)
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is minimized. They call this a shortsighted optimal}controller as it
sets the instantaneous b step ahead prediction error to zero, squect to
a constraint on the magnitude of the input signal. - The optimal controller
that minimizes (2.30) is averaged over the distribution function of possible
control actions. The effect of Ut on the variance of Yt at lead times
greater than b is taken into account, whereas Clarke's algorithm chooses
the control action that considers the effect on the output only to time t+b.
As a ¥esult the optimal strategy (2.30) result in a smaller variance of
the process output for the same reduction in the variance of the manipulated
variable. When ¢=0 Clarke's solution reduces to the optimal minimum var-
iance controller 2.16. .

Although Clarke's solution does not minimize the stated objective
function it does provide a sensible class of controllers. The design of
a constrained controller by this optimal criterion is easicer than the
design based on the altermative optimal griterion (2.30, 2.31).

Minimizing (2.35) results in the control action

e
0, = e - Y, (2.36)
L4(: ) ez ), £l ) .
-1 .
§{z ) woll(: )

I{ this controller 1s implemented, the process output is a high

order autoregressive moving average process .
: g wiz’h L wieh
. _1 wo LI(-‘ ) \3(- ) I
\t = Ly(z ) - y a, (2.37)
iy .“__T_(Z )
W . =




For nonstationary disturbances, Clarke's algorithm cap be modified to
minimize

_ 2 2
Iy = Yeapye * 50U (2.38)

The resulting controller is

Loz 1
w, = - . - — Y (2.39)
oLeh wE) e, weh "
vs(z) Yo Ly(z’7)
The process output is then
y
£ p(z ) w(z )
= “_l + "_1 (2.40)
( -l) 0 Ly(z ™) vs(z )
Y, = L,(: a
t 4 e w(:-l) t
w. 1

U, = H{z Na . ‘ 2.9

wherc H(:'l) is-a ratio of polynomials in =Y. The variance of U, is

then (Astrom (1970))
a Vo
57, N \ X
var {Ut} - 2 f_ H(z ?) H{=) %z (2.42)

2ni

n

-1

!

where the path of integration is in the positive direction around the unit

’

<

—-—
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to
tv

circle. Astrom (1970) has detailed a solution to (2.42) that is suitable
for machine or hand calculation. The variance of Yt is evaluated in a
similar fashion.

The effect of increasing & for the optimal constrained controller
and Clarke's solution‘is to shift the poles of the closed loop system
b

towards the zeros of &(z

To give an indication of the difference between the two methods

consider the example from the previous section. The process-is

a
2 t
Y, = U, i (2.43)
LT S it PRI

The variance of VUt for the unconstrained minimum variance con-
troller is 78.3, and that of Yt is 1.0. Figure 2.5 shows the pcréentage
decrease in the variance of VUt that is possible for a given percentage
mcrease in the variance of Yt for the controller designed to minumize
criterion (2.31) by solution of the discrete Wiener-liopf equation, and
that designed to minimize (2.38) by Clarke's procedure. For this example,
the difference hetwcc&g&hc two mcthods is quite small for increases in
the output variance of less than five percent.

Ihe curves in Figure 2.5 are produced by choosing values of ¢,

(¢ » 0), and evaluating the integral (2.42) to obtain the variance of
vdUt and the variance of Yt' Clarke's procedire is straightforward as
£ appears explicitly in the controller. It is more difficult to choose
¢ for criterion (2.31) as it does not appear explicitly in the final

controller form obtained by solution of the discrete Wiener-Hopf equation.

For both criteria, £ is adjusted until the variance of Yt‘and the variance
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of vU_ are jointly acceptable.
[t 15 also possible to 'tune' a controller on-line by adjusting
5 and deciding whether the response of the input and output are satis-
factory. This is done more easily with Clarke’s algorithm as ¢ enters
the controller explicitly.
4

2.5 Sensitivity of the Optimal Solution

The variance of Yt 1s very sensitive to variations in the para-
meters 1f w(z~1) contains roots lving inside the unit circle (in .:'1
space), i.e., the dvnamics are nonminimum phase (Astrom (1970)). The
effect of the controller D(:'l) is to cancel the poles and zeros ot the
process dynamics amy] rcplaée them with its own. If those zeros of w(:.l),
in the true process, lying inside the unit circle differ slightly trom
thé&e identified in the model then imperfect cancellation will result. The
closed loop transfer function (2.18) will then contain poles lving inside
the unit circle and the variance ol the controlled variable will increase
rapidly. The controller (2.17) 1~ sti1ll the mimimun variance controller
(1f we have pertect cancellation), but the variance of ihe process output
15 verv sensitive to changes in the svstem parameters.

Ihe solution to this problem 1s to require that all the poles of

the controller lic eutside the unit circle. \strom's solution (1970) is

to move the undesired poles to infinity. .d(:'l) may he factored us
- SRS SIS |
w(2 l) oz ) w iz ) . (2.4
I3

[V —



i}

where w'(:'l) contains the $§ zeros lying inside the unit circle and
+ . + - e . -
w (2 l) contains the 5 zeros of w(z 1) lving outside the unit circle.

- - - %
D(z l) must not contain the zeros of w (z 1). Therefore (2.13) is

written as
_ G

b L;(z‘l)u’(z'l) (2.15)

<
—
]
—
1}
da -
~
ti
N’
*
re

1 - -
The order of L4(z 1) is b-1+s . The resulting controller is

s L;(:-l)u '
» U = ':1 - - . T -I Yt
t w+(1 Yw (2 7) Ld(z ) .
|~_1 .
_seh BB ,
G, - Y, (2.36)
Wiz h Ly(z )

The output of the closed loop system is then a moving average process of

4

order b-1+s . - - .

A move flexible approucﬁ however, 1s to use a constrained con-
troller (mmmize (2.30) or (2.35)). Increasing ¢ progressively shifts
the roots of thc.controllcr transfer function from outside the wnit circle
towards infmity. It the control is constrained by solution of the
Wicner-Hopt ecquation (or Ricatti solution} anv nontero value of ¢ will
stabilize the variance of Ut’ no matter how small. Tor the method of

Clarke et al. (1971, 1975), there will be some 'threshold' value of £

greater than cero bevond which it will stabilize the variance of Ut.'

.

e
It controller transfer function 1is stabilized bv cohstraining :

the control, instead of by Astrom's method, 1t is possible to desipn

a controller that has a lower variance of the manipulated variable for
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[

the same output variance. However, the latter solution is much easier

e

to implement. ' i

-

2.6 kOﬂtima‘l Choice of the Sampling Interval

The prime consideration when choosing a sampling interval is that
not too much skould happen to the process between sampling intervals.

Early work in digital control led to the following guidelines (Shinsky
(1967))

3

Sampling Time

v

(seconds)
Flow - 1
Level and Pressure 5

P -

. * Temperature 20

These guidel‘ines reflect the fact that some loops are faster than others.
In Figure 2.4 N, represents the total effect on the output of all un-
observed disturbances acting within the system. The presence of the' dis:
turbances are the reason for having the contreller, and the sampling time
should be chosen so that gocsd control is‘maintained in the presence of «
these disturbances.

If a ,dynamic stochastic model is known at a suampling inter\\fal T,
MacGregor (1976) has shown how‘th‘c param;aters of t}ie process dynamic and
stothastic model change if the san;rpling interval is changed to an ‘integer *
multiple of T. New data is not reciuired to_invésﬁgate' ‘the effect of
hthe sanpling inter;ral on the variance Qf_ tife process input ax;d output.

It is shown that the variance of the process utput increases very little.

as the samplirig‘rafze is decreased, until the sampling rate approaches the
8 : ) - o .
Sy .

. . ’ L
« P

v

Ll

o
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process dead time. If the sampling rate is decreased further the variance
of the output increases rapidly. There will'be a significant reduction

in the- variance of the mani;ulated,variable as the sampling ratec is de-
creased. [If the dynamics are minimum phase at b=1, it is concluded that
there is little to be gained by sampling at a faster rate (at 1eas} in

so far as the stochastic disturbances are éoncerned).

The zeros of w(z'l) that lié inside the unit circle can be intro-
duced By the sampling of a continuous process at discrete time‘intervals.
Suppose that the underlyiﬁg continuous process may be described by a
first order differential equation

r DO o y(e) = g utry (2.47)
) . N
Qhere 4 is the transport delay. If the process is sampled every T secoqu

then (2.47) may be written as

B vy =g U (2.48)

Here [ is the number of pure periods of delay and ¢ is the fractional period
of delay (0°< c < 1). If the inputs to the process are c¢hanged only at

sampling times then it is casily shown that the discretized version of

this process is given by

y = {1-8) (1-y* sz hy () |
t T u,
1-sz

-1, _-b '
g(1-8) 1-v+ vz )z
YT e (2.49)
. 1-82 .

- e



where .
b=f+1 (2.50)
Y
5§ =exp (-T/1) (2.51)
l1-c
ve388 (2.52)
1-68 ‘

If v is greater than 0.5 then the discrete transfer function may be
nonminimum phase even though the underlying continuous process may be

minimum phase.

+

If the sampling interval is short relative to the process dynamics

then &-1.0 By L'Hopitals rule

Lim o, oo (2.53)

§->1 \
. . I
Lquation (2.47) may be written as

_ g(1-8) (1-crez’h y
l-\Sz-1

Y t-b

¢ (2.54)

LN

Thus only when the fractional period of delay is less than 0.5 will the
discrete process be h@ni@um phase. For higher order processes a similar

analysis can be done, however, the effect of the fractional period of delay
«® i f
is not as clear. Thus the sampling interval must be selected with some

&
‘care.
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2.7 Discussion of Minumun Variance Control

Stéchastic control appears to be well suited for control of in-

dustrial processes characterized by long dead times and drifting distur-
-

bances. The weakness of many moderin control strategies is that they require
an exhaustive knowledge of the process dynamics and disturbaﬁbe statistics,
yet provide no means of determining these. Box and Jenkins (1970) and .
Astrdm (1970) have provided techniques so that one can build dynamic and
stochastic models from input/output data. These models are usually of low
order. The orders of the'soise model rarely exceed two. Dynamic models
of a complex process are usually simple (Mosler et al. (1966)). The trans-
fer function characterizes the major time consfants and the delay handles
the effect of the distributed parameters and transport lag. Where applicable,
minimun variance feedforward control can be implemented.

There are very few reported industrial applications of minimum
variance cohtrol. It has been used in the pulp and paper industry for
control of basis weight and moisturc content on a paper machine, Astrom &
(1970), and for the viscosity control of a polymerization process, MacGregor and
Tidwell (1977).  On  processes for which stochastic control is well suitcd,
tiic process characteristics may be changing, Cegrell and Hedqvist (1974).
If the parameters of the dynamic and stochastic models change very slowly,
oni¢ might periodically rc-estimate these. This is a laborious task and
necessitates a plant experiment. One might try to estimate the parameters
from closed loop operating data. The feedback controller must be nonlinear,
time varying or an external "dither signal' supplicd to insure that unique

parameter estimates are obtained, unless certain necessary and sufficient

3
-
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conditions are satisfied.

To ensure that the controller is always optimal, one might try to

“update the parameters of the dynamic and stochastic models at every

—

sampling interval, compute the minimum variance control signal and imple-
ment 1t. This concept of an adaptive algorithm is shown in Figure 2.6

(Wittenmark (1975)).

U Y
= Process
i P
Controller
L
Nvd
Parameter
Calculation\‘
-

Parameter -
Iistimator :‘

Figure 2.0: Adaptive control scheme

This strategy is [raught with the pr}oblems of parameter estimation
in closed ioop. The requivements necessary to insure consistent parameter
estimates conflict with the primary goul-good control.

I{ one were williing to sacrifice quality of coxfix:ol, how would

one estimate the parameters? The maximum likelihoodimethod would be

,com)utationalii/ too cumbersome to implement at every.sampling invertal. If
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the furpose of building dynamic and stochastic models is to control the
process, then one is not interested in current estimates of these para-
meters. Only those combinations of parameters which appear in the minimum
variance controller need be well tuned. Astrdm &nd Wittenmark (1973)
have developed an algorithm where only those parameters which appear in the
minimum variance controiler are estimated at each sampling interval. The
.model form is chosen so that these parameters may be?estimated recursively.
It is assumed that fhe parameters are constant, but a slight modification
to the‘algorithm will allow the parameter ?stimator to track slowly drifting
parameters. |
The algorithm has good transient behavior and requires very little
knowledge of the process dynamic and stochastic models. The theory of
self-tuning regulators is discussed in the next chapter. The applications
of self-tuning regulators to the control of industrial processes is exam-

-

ined in chapter four.




GIAPTER 3
THEORY OF SELF-TUNING REGULATORS

3.1 Introduction

A

The principle theoretical developments of self-tuning regulators
are discussed in Astrtm and Wittenmark (1973), Wittenmark (1973), Ljung
and Wittenmark (1974), and most recently by Clarke et al. (1975). It is

presumed that the process may be described by a model of the form

Yirb ""1’l U+ S ay, .1)

Az

This notation is mathematically convenient to deal with, and from this
convenience stems the motivation for the self-tuning Tregulator algorithm.
However, it is felt that the Box and Jenkins (1970) description of the

process dynamics and disturbances,

TR A e

Ve(z

is more appealing from an cngincering point of view. _The separation of the
process dynamics and stochastics, clearly indicates the form of the estimat:ion
model in an adup'tivc environment, and how a knowledge of the process dyn-
amics may be used if they are krown. It is readily seen how to modify

the estimation scheme so that integral action is included in the controller.
If the stochastic disturbances are nonstationary or the process is subject

to deterministic load c]miigos, direct application of the self-tuning regulator

el
- R
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results in a controller that is sensitive to parameter uncertainities,
and will not eliminate the resulting offset. Unless the structure of
the self-tuning regulator correctly accounts for nonstationar} disturbances,
the self-tuning controller of Clarke et al. (1975) will not pfoduce the
stated results.

The theory of self-tuning regulators is discussed in this chapter
using the notation of Box and Jenkins (1970). It is hoped to clarify aspects
of the self-tuning regulators that have caused confusion, and it is felt

these uncertainities are best resolved using .this notation.

3.2 Theory of the Self-Tuning Regulator

Consider the Box and Jenkins representation of Figure 2.2,

-1 -1
_wlz (= )
T o T .2
sz ) v )

Using (2.14) the disturbance model can be expressed as

) -1
-1 L,(z )
6(z ) -1 -b 2 -
- oz ) ol g - (3.3)
ez hy vz T

multiplying (3.2) by L4(z'1) and substituting (3.3) into the vesult yields

- -1\ -1 - .
sz Do) (Y by e Dagy) = 0@ L ETY,
- - -1
+wiz hy sl , (3.9
- .o -1 . ) P C v
The prediction error LJ(z )at+b is uncorrelated hlth'{\t,\t_l...} and



with (VdUt, VdUt_l,..t.} and may for convenience be replaced by, €0t+b’

Ekquation (3.4) is of the fomm

L 4

d(zfl)e(z-l) (Yt«b‘€0t+b) = “0(‘2-1)Yt+BO(Z—l)vdUt 3‘1 (3.3)

where

0. 0 -1 0 -

a {z )=0.0+0.lz +...+eLmOZmO (3.6)
- |

8%zl = BY + B‘l) 2t e B, z_éfc R,

It is easily verified thit the orders of mo and £o are

mo = r + max (q-b, p+d-1) (3.8

Lo

n

s+p+b-1 (3,

1{ the paramcters of (3.5) were known, the control action ‘

-1 *
. 0, -1 RS L,(z %) ‘
. vdUt = Spee Y, = *’(Z_I) .2 q - Yt (3.10)
B (z ") w(z ) L“(z ) ez ) .
- . .2
would minimize [L{Y t+b}'

Suppose that 5(:‘1)0{:-1) = 1.0. It is seen from (3.5) that the
b ¢

-

process output is now expressed as a direct function of the minimum var-

iance controller parameters. If these werc unknown one might try to identify

them from a model 65 the formn

4
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Y= o2y, ¢ B, v e . (3.11)
where

szl =a v qzte a2 (3.12)

0" % e e ‘ 12
and
SN -1 Y
B(z 7) = BO + Blz t L., F BZZ (3.13)

The number of whole periods of delay, b and the order of the pole, d
lying on the unit circle of the disturbance are presumed known. Equation
(3.11) admits least squares estimation which may be expressed recursively.
The parameters could be updated at every sampling interval and used in the
control law

-a z—l) : .

gy, = 22z )y (3.14)
t -1 t

Bz %)
as 1f they were exactly known. One is not trying to identify the process
dynamic and stochastic parameters. Only those combinations which appear
in the minumum variance controller are estimated.

This algorithm does not minimize E ‘{YZ } as it fails to account

t+bh )
for parameter uncertainitics, (Astrdm and Wittenmark (1973)). Algorithms
using parameter uncertainities in the computation of the control signal are
known as ‘'cautious controllers', (Wittenmark (1975)). Large control actions
are not permitted unless the controller parameters arc well estimated.

The restriction that 6(:'1)0(2-1) = 1.0 appears to limit the use-

fulness of this scheme, known. as a self-tuning regulator. llowever, Astrom
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and Wittenmark (1973) have proved two theorems which show that this algor-
ithm may have some desired asymptotic propcrties, irrespective of the

product é(z-l)e(z-l).

.........

of (3.11) converge as t-», where m and £ are of arbitrary non zero order,
and the closed loop system is such that the output is ergodic (in the

second moments) then

o (x) = BXE) = g 2 pobel,.ubem (3.15)
yy d
and Y
; (1) = E{VdU(t)Y(t+t)} =0, 1t =b,b+l,...b+2 (3.16)
d o.d o
viuy Vuy

-

Theorem_2: Assume that the system may be described by equation (3.2).
If the self-tuning regulator is used with m=mo and {=fo, and the para-
meters cstimates converge so that ;(:-1) and é(:il) have no common factors,
then thg.rcgulator Wwill converge to the minimum variance controller.

\ Theorem 1 states that the use of lecast squares estimation and the
control law (3.14) will feduce certain of the auto and cross corrclations
at the output to zero according to (3.15) and (3.10), if the parameter
estimates of (3.11) converge. There is no requirement thut'stz‘l)e(;'l) a
1.0 1f pyy(r) and ovduy(r) vanish for all 1 ¢ b, Theorem 2 states that
the orders of a(z'l) and B(:.l) have not been under estimated and the con-

’

troller (3,14) is the same one that could have been designed had the process

dynamic and stochastic models (3.2) been known. There is no guardntee that

At o e e




the parameter estimates will converge. Ljung and Wittenmark (1974) have con-
structed’an example where convergence of the controller parameters (3.11)
to the optimal parameters is theoretically impossible.

The motivation for the self-tuning regulator stems from the fact
that if é(z-l)e(z—l) = 1.0, the process output may be expressed as an explicit
function of the minimum variance controller parameters. A computationally
efficient algorithm may be then used to estimate these parameters. Conver-
gence of the controller parameters to the optimal values for an arbitrary

6(z_l)etz-l) was a surprising result (Astrom and Wittenmark (1973)) as the

* output of the process is no longer an explicit function of only the minimum

-

variance controller pafaneters.

The following analysis 1s an attempt to show that the process may
behave as though it were being generated by a model oE the form (3.11) even
though~o(z-1)6(:-l) £ 1.0.

The system (3.5) may be written as

- V- RURES DO RV IS B
= (TN 2 BIE V) (e v

t+b (3.17)

where

SIS NOS!

sl oty e e V2t (0

1= S e . (3.18)°

The controller parameters are estiumited from the model (3.11) and the
\

control action (3.14) taken at every sampling interval. If the control

action (3.14) is substituted into (3.17) then
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-1 0, -1 000 -1
Yo = ol hy, 80 ey

1

. Eltt'l,z ! 'BO(Z-l)Yt_l) > ig[ao(z‘l)Yt_z

B(t-1,z ")

0

ez o)
a(e-2,27h o -1
.1 BT e (3.19)

s(t-z,z’I)

If the process is open loop stable, i.e.: 5(:'1) has all its roots lying
outside the wunit circle, Eo(z-ljis a conveygent polynomial in z'i, and
the 52 weights decrease with increasing 1. The process output then dep-
énds to a decreasing extent on the successive terms in (3.19). Further-
more the terms in the square brackets in (3.19) tend to be small due to
the control action (3.14). 'I"he output therefore appears to be nearly
generated by a model of the form (3.11). Estumation of the minimum var-
rance controller pm’*:uneters with this mddel form might then be justified.

Astrom and Wittenmark (1973) define a self-tuning or self-adjyusting
strategy as an algorithm using parameter estimates that‘arc constant but
unknown, and that converges to the optimal solution that could have been
obtained had the p:.n'mmtcrsz been hnown. They show that the straregy des-

? - .
¢ribed above will not asymptotically minimize L(Y™__, } for an arbitrary

t+b
controller form. (It will still reduce certain auta and cross corvelations

to zero as in (3.15) and (3.10)). If the order of the controller (3.14) 1s

uwnderestimated it s possible to design a regulator that results i a

smiller output varianco. Thus the cor{,troller (3.14) will only be self-

tuning 1f 1ts order has not been underestimated. The terminology selt-

w

tuning regplator has been used quite loosely in the literature to refer

S
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to an algorithm where the parameters of an arbitrary controller form,

A
i.e. PID are tuned recursively.

Y
Some corollories from Theorem 2 are (Astroﬁ and Wittenmark (1973)):
1) ifm>moor ¢ > £o Theorem 2 still holds
2) ifm > mo dnd ¢ > fo then &(z'l) and é(z-l} contain
common factors if the estimates converge, and Theorem 2 does
not hold. . .
There are two approaches to implementing a self-tuning .regulator.
If the process dynamic and stochastic model$ are known, £ and m are
known. Alternatively one can select values for m and £, and implement
the self-tuning regulator. 'If the parameter es;iﬁates converge certain .
auto and cross correlations .witl be :eré- 1f these axe not zero for all
lags greater than the number of whole periods of delay, then the order of
the controller should b; increased. The use of diagnostic tools suggested
by Theorem's 1 and 2 allows one by successive modification to select the
correct order for ihe aptimal controller if it is unknown. .

N L)

3.3 Structure of the Estimation Model

The controller parameters arc estimated from a model of the form

Yo, = ez hy, - Bz vy, + et (3.11)

wvhere the input and output sequence {Yt, Yt-l""’ u., u ..} are dev-’

t’ Tt-1°

iation variables- from their mean values. It is unlikely that a real

process is linear over the entire range where the input and output may

vary.
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One is trying to control the brqcess about its steady state value
and the parameters of (3.11) must reflect the behavior of the process
and disturbances in this ;egion. Consequently the input and output
sequence aré echresse&.7 as deviation variables.

The mean value of the controlled variable will be its set point.
T;ne mean vaiue of the manipulated variable necessary to maintain the out-
put at its set point, may not be known, and will change if the set point
of 'the controlled variable is altered. If d=0, theh (3.11) may be written

-

.
- as , e v

‘

. . Y ..1 : -‘1 ~
Vewp = 0 (2)Y, + BGTT, + v+ e

e+ (3.20)

»

The sequencél {Ut 'ﬂs}‘are deviations of the manipulated variable
from some reference valv.'ze', which is an apriori estimate of the steady
state value of the mmxipujla'ted rvariablbe. The difference between the
chosen reférer}ce value and the true steady state value is veflected in
v, an additiorlal parameter to be estimated. If the steady state value
is not exactly‘ }énown and v noz estinu"itcd,\thq c‘ontrolled wvariable will
have offset.

If the disturbancé is nonstationary,.i.e. d > 0, the steady state
.value of the .ma.nipula‘ted variable need not be known, since the control
action (3.14) wiil,be ezq)res's"'ed oniy in tems of VdUt. ‘ If the parameter .
estimates of (3.11) converge, the ‘integral action in the controller (318
insurcs that there is no‘offs'ef in’'the controlled variable. It is net
x}e\cessat"y that tixe, orders, m and £ of ;:(z'l) and B(z-l) be equal to.mo
-and Lo to eiliminat‘e‘ ot;fSet in this manner." o

-

*
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One proposal for overcoming offset in the face of nonstationary
4 Q

disturbances (Seborg et al. (1976)) is to use a non-integrating form of

ithe controller (d=0 in (3.14)), but increase the order of B(z-l). This

allows the self-tuning algorithm to force an additional root of B(z_l)
towards the unit c%rcle, thereby éreafing integral action iﬂ an indirect
way. However, this seems poinfless because it is known apriori that the -
optimal controllet must be of the form (3.14) with d > 0.

The additional complication introduced by "trying to estimate the
gxtra pole of B(z'l) near unity would usually not be trivial since it is
known that ill-ponditioning of the estimaiion space results when para-
meters lie near stabilitw‘boundaries (Box and Jenkins—(1970)). Furthef-

more, the variance of the controlled variable may be sensitive to para-

'meter variations. The roots of the controllervmay bounce inside the unit

cxrcle_and_the controller ‘transfer func%ion will become unstable. The -
anélysis of the sensitivity of the closed loop system to parameter un-
certainities 1is-analogous to the case where the process dynémics are non- °
minimum phase.

The number of whole ﬁeriods of' delay b, and the order of the pole

d, (usually 0 or 1 depending on whether or not the disturbance is stationary) -

o

lying on the unit circle in the disturbance model are pfeSumed known. It
is reasonable to expect that b will be known, noting that it equals one,
plus the integér portion of-the transport delay divided by the sampling
1nterval. The number of whole periods of delay ig a fundamentgg/char~
actéris%ic of the process and should‘be,known: However, there will be a
fapid.dégredation in the ability to control the process if b‘is less than

the true number o?/whole periods of delay. In situations where the number

b
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¢ -

of whole periods of delay is unknown it is better to overestimate b rather
than underestimate it (WittenmarK (1973)).
Box and Jenkins (1970) characterize process disturbances by

low order ARIMA time series models of the form

-1
= 8z 7)
N, = y—=— 2 . (3.20a})

In most physical processes, d will usually be 0 or 1, (Box and
Jenkins (1970)). 1I1f the process outputtdrif%s away from its target
value, then the disturbance can be adequately characterized with d = 1.

It is not unreasondble then to expect that d will be known.

3.4 Deterministic Disturbances .

The disturbances (load or setpoint) affecting a process may be
deterministic rather than stochastic. They may still be modelled b; the
methods of Boxxand Jenkins (1970) and Astrom (1Q70) although the inter-

pretation of a_ is different. Instead of.the disturbance Nt being con-

t
sidered as the output of a linear filter driven continuously by white

. noise, (Figure 2.3) a determinidtic disturbance is the¢ output of a lincar
filyer driven by one shock or impuise. For example step disturbances may

be modelled as:
)3

(3.21)

&

where a, is an impulse at time t, of magnitude equal to the size of the
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~step change. If the disturbance is detemministic a controller based on
the minimum variance strategy will remove the total effect of the distur-
bance within b sampling intervals, as the future behavior of the disturbance
is exactly known from a record of its past history. These controllers
are referred to as 'dead beat' controllers (Ragazzini and Franklin (1958))

rather than unconstrained minimum variance controllers.

The self-tuning regulator may converge to a gead beat controller

if the process is subject to deterministic diéturbqnces (Witténmark,(1973)).

Analysis of the design of these controllers shows that the model form for

estimation of the regulator parameters should be
, -1 -1
Y., = a(z DY, + BE YU, + e, (3.22)

where d=1 for step disturbances and d=2 for ramp disturbances. For pro-

v

cesses affected by deterministic and stochastic disturbances the controller

(3.14) may converge to a regulator which is neither dead beat nor minimum

variance, but whose valucs depended on the relative size of each disturbance.

The most uscful model for estimation of the controller parameters
is (3.11) with d=1. This is the corrcct structure for process subjcct
to drifting types of Stochastic disturbances, Qr to step disturbances. It
is unnecessary to. know the steady state value of the manipulated variable,
and the integral action in the controller insures that the controlled

variable is not biased from its target value.

e v mmmman Aremnet—-
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3.5 Self-Tuning Feedforward-Feedback Control

Consider the situation in Figure 3.1. In addition

~n
Z vo-1 '
t : w (2-1) 2 b
S (z )
Y
U S N 1
—_— m(z_ ), >
§(z ™)
process \
dynamics

Figure 3.1: Combined feedforwa}d and feedback control scheme \E

to the unobserved disturbances Nt’ fluctuations in the process dutput may be

attributed to a variable Zt’ which can be measurgd but not manipulated. If

el : .
there were no unobserved disturbances Nt' and no control action taken, the

]
process output would equal Zt’ where

' '1 ' too] ’ — i '
\ - W~ wyZ Seiw_ 2
Z, = S5 ) Zyp' = = : r Ly (5423)
5 (z7) 1 -512«_'.._ 6r'z

!

. . ~ '
Zt is referred to as a feedforwar&’variable. In the case where b > b,
(i.e. where the manipulated variable Ut’ ¢an compensate for the measured

disturbance before it reaches. the process output Yt) the controller minimizing
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E(’ ;) is given by (Box and Jenkins (1970))

a1 el a ’ L,(z )
. - 5(2_1) , [wTCZ-l)VdZt-' ¢ I Y] (3.24)
w(z ™) § (z ) J ¢(z )L4(Z )
where '
Ceb e - 29)
Lz(zﬁl) and L4(Z'l) are defined as before. (If b < b then vdZ,.; has mot,

yet occurred at time t and the controller (3.24) is not physically real-

t

izable. A "minimum variance forecast' of vZ is made and substituted

. S | t'j/t

in (3.33) in place of L& vZ, ;- This procedure is outlined by Box
§ (z7)

et al. (1974).)

If the parameters of (3.24) were unknown one might estimate them

from a model of the fomm

-1 -1 -1,.d
Y, =« by, vy vy Zys * epp  (3:26)
where
-1, _ -1 -m
alz 7) = ag *ayz Tt a2 (3.27)
Bz ) = By« Bzt e e B2t (3.28)
-1, _ -1 -n o
v(iz ") = ) Yz teet vz (3.29)
and use them in the control law
. vzl 0 azh
v‘U = - (= vz, .+ —= Y. ) ) {3.30)

oy v ey ¢

-

as if they were exactly known. The development parallels the case outlined

) ———
v N .
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i (3.2), and only the result will be stated. If{ the parametér estimates

of (3.26) converge then (Wittenmark (1973))

pyy(T) =0, 1 =b, b+l,...bm (3.31)
o 4 (t) =0, 1t=b, b+tl,...b+{ (3.32)
v“uy

p 4 (1) =0, T =b-j, brl-j,..\bn-] (3.33)

Vizy
The.optimal values for £, m, and n are Lo, mo and no, and are given by

o=1r +s+p+b-1 (3.34)
mo = r' + r + max(q-b, p+d-1) (3.35)
no=s'+r+p+>b-1 (3.36),

In addition if £= Lo, m = mo, and n = no, and certain weak\conditions are
satisfied, then the controller (3.30) is the same one that could have been
designed offline, had the disturbance and both dynaAic models been known
(Wittenmark (1973)). f

Inclusion of the feedforward variable in the estimation model
(3.26) may possibly increase the order of the terms a(z'l) and B(qu).
Mare than one feedforward variable may be includ;d in the estimation model

(3.26) and controller (3.30) if they are available.

¢

3.6 Decoupling in Multivariable Situations

Self-tuning regulators may be used to decouple a multivariable control



problem. Consider the situation shown in Figure 3.2, where for simplicity

a two 1nput two output system 1s depicted.

Figure 3.2: Representation of a multivariable process

» There are four transfer functions, Ul to Yl, U“l to \'2, U3 to Y1 and

U2 to \’2, cach having their own dead times. If U1 did not affect Yz

then Yl is a two input onc output process. (This is a common situation

in control of papér machines, where "the moisture content can be controlled

by manipulating the 1nput to the dry basis weight control loop, as well as

the thick stock flow which does not intfluence the dry basis weight.)  The

output Y, is contrpolled by manipulating U,. U, enters the other control

et

loop as a feedforward variable and is handled by methods discussed in the

previous section. Thus the self-tuning regulator may be used to decouple
.

a

a multivariable process.
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.

3,7 Constrained Control

Recently Clarke et al. (1971, 1975) proposed a strategy claimed

to minimize
T TS TR T (3.37)
1 t+b t )

As pointed out by MacGregor and Tidwell (1976) they incorrectly
account for an expectation operation and in fact minimize

S

I = ?2t+b/t * El(VdUt)z (3.38)

which was termed short sighted optimal control (refer to section 2.4).

Clarke et al. prove that minimizing (3.38) is equivalent to minimizing

=By, » v = B ) 3.39
13 = E{( ++b £V lt) Y o= E{¢ t+b (3.39)
where —~/ ¢
1
. £
£ = — (3.40)

This identity forms the basis for their derivation of a self-tuning con-
troller to minimize (3.38). (If the disturbance is nonstationary it is

2 ' .
necessary to minimize E{(Y + € VdUt)"} because the variance of U, is

t+b
theoretically infinite. The results of this section are modified from
Clarke's algorithm to account for this.) By defining this new function
%4 1T is seen that the system (2.2) may be written as

\
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6(2‘1) 5;(:—1)(?t+b ~ t(t)+b) = aO(Z-I)Yt +
1) + sscz'l)v(z'l)jvdut (3.41)

It the parameters of (3..11) were known the control action

¢

vdut S 8

u

- —— Y
Bz Y) + g6z Doz hy *

- sz L, (7Y ..
= - _ - - Y (3.42)
w(z l)L4(z I)a(z l) + £6(z I)o(z lJ t )

would minimize (#3.39). The effect of ¢ is to possibly increase the order
of denominator of the controller. If the parameters of (3.41) are unknowns

Clarke et al, (1975) suggest that they be estimated from a model of the

form -

(3.43)

- ,,'1- » ' ,,’1
b = a2V + B () v“lut .

Ct+h

where the order of B' (:'l) may be increased over £he unednstrained minimum
variance controller. 'If the process dynamic and stochastic models are un-
known, the value of £ that will rcdl'xce the variance of Ut by a given .
amount will be unknown and. it will be necessary to scarch for this value
by trial and error. There have been no reported applications of Clark's
algorithm. Clarke's paper is fraught with many errors and a corrected

version is given in Appendix C.
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3.8 Nonminimm Phase Sygtems

A 4
- 4 .

Minimuym variance and dead,‘beat controllers are very §ensitive to
variations in the parameteré of nonminimum phase dynamics. Strategies for
'detuning'  these controllers are readily implemented in a nonadaptive
environment (refer to Chapter 2.5). In an adaptive environment these systems
are difficult to handle. ‘

Sampling of a continuous minimum i)hase process may result in a
discrete model which is nonminimum phase, i.e. some roots of w(z-l) lié
inside the unit circle. A discrete process may be minimm phase at one
operating level and nonminimum phase at another, depending whether the frac-
tional perio\l of delay passes a certain critical value. Flow processes
would have this problem. (A paper machine operating at different speeds

\ .
1s a comron in&ustrial example.) &\ solution is to increase the sampling
interval so that this shift in and out of nonminimum phase does not occur.

(J\/
However, the sampling rate may be fixed duc to hardware restrictions.

Astrom and Wittenmark (1974) have proposed a strategy to asymptotichy - '

minimize the variance of Yy subject to the constraint that the closed loop
have all its zeros outside the unit circle. It is not a practical strategy
as it involves a real time factorization of a polynomial in :°1, and solu-
tion of a set of lincar eqixations. The' simplicity of the basic self-tuning
legoritﬁm is lost and pyoblems may oceur with est imation of the parameters.
It is impossible to d‘irectly estimate the controller parameters since the
process output camnot be expressed as an explicit function ef the parameters

we wish to estimate.

N

Alternatively, Astrom (1974) suggests.that one try to identify

the parameters of the process dynamic and stochastic models,

3




-1 -1
w(z 7) 6(z
Yoo = — U+ —zr—-%—-a . (3.2)

The parameters of (3.2) are estimatéd at every sampling interval using
recursive maximum likelihood estimation or an equivalent method. These
metho@s essentially require repeated application of least squares to
identify the dynamic and .stochastic parameters. The state variable re-
presentation of (3.2) is reconstructed at every sampling interval and a
Ricatti equation solved to minimize varth} + £ vér{vdUt}.

Estimation of the process dynamic énd stochastic parameters requires

that one have an apriori knowledge of the structure of both the process

dynamics and disturbances. There is no function that can be computed to /f“"/

indicate optimality of the controller, as the process output will be a
complex ARIMA time serics. Identifiability problems should not arise as

the controller will be nonlinear and time varving. This algorithm is

computationally more time consuming than the ordinary self-tuning regulator.

C}erke's algorithm (1975) may be used although the Qélue of ¢

that moves all the polg} of the closcd loop outside the unit circle will

his 1s the most appealing method of dealing with
. . ST
nonminimun phase systems other than increasing the samgling interval.

3.9 Stability of the Closed Loop System

.

Ljung and Wittenmark (1975) have proven that the self-tuning
regulator has a stabilizing property when‘s(:-l)a(:~1) = 1.0. Suppose

the output of the proccss may be expressed as




0 1) 1 0

_ 1w 0, -
Y = a (z )Yt + B (z )Ut + Vesh (3.14)

t+b
The requirement that Vg+b be a moving average process of order b-1,

is relaxcd.vg+b is any disturbance, stochastic or deterministic with the

restriction that -

t

z vz(s) < C
s=1

(3.45)

i

1

4
i

i The parameters of the minimum variance controller are estimated

[}
f rorr\l\\the model

- -1y -1 .
= u(z )\t + B(z )Ut + €reb (3.36)

If the number of whole periods of delay is known, the orders of

W(z7h and B(:-l) not having been underestimated, then the regulator

A

. -alz )
Ut —EZETI;-\t\\~ (3.11)
will stabilize the system (3.44) in the sense that 1%
1 o2
" Y(s) < C, with probability one . (3.47)
s=1 “ )

[t is not necessary that the parameter estimates converge. If

the system is minimum phase then as well
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t 5
r U(s) < CS with probability one (3.48)
s=]

)

The constants C; are independent of t, but dependent on the sequence
{vi} , 1=1,2,...t. If BO is fixed then it must be chosen so that

.Swo < BO < = , to lnsure stabili‘ty of the closed loop.

A}

This stabilizizgﬁ@f)erty is important as it guarantees that

the output of the closed loop will remain bounded (although this limit

may be unsatisfactory from an operating standpoint) irrespective of the

characteristics of the disturbances. The self-tuning regulator cannot

‘be shown to have this stabilizing property for an arbitrary 6(2'1)8(2'1)

polynomial, as the system cannot be written in the form (3.44).

This stabilizing property can be briefly described as follows.
If the ou.tput of a process approaches instability, Ljung :i!‘ld Wittemmark
(1975) show that the controller parameters of (3.11) quickly approach
those ol the minimuh varian‘ce controller. The process output is' then

forced into the stability region by the control action

u, = ‘“(“ “T#‘”‘ | (3.14)

B(z

It is not necessary that the controller estimates (3.11) converge.
On a real process the self-tuning regulator may not have this

stabilizing property, cven if 6(:'1)0(:'1) = 1.0 c&ue to nonlinearitites.

N “
. The model of the process dynamics and disturbances can be seveigly strained

if the output moves far from its steady state valuc and this stabilizing

property may not be realized.

s
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- 3:10 Least Squares Estimation

L] r
Introduce the vectors
. R ) . ¥

' i t °, T ‘
vy, vfiut_l,... vdut‘_z) (3.49)

x(t) = (Y,,Y

e Ye-17 Yeome

- S T
8 = (&g ¥ps--- Gy By By,.o.By) (3.50)

¢

The controller parameters are estimated from the model (3.11) which may

1

be written as - e .
!

[1

.

Y, =

T
Lo T X

(t-b)Q *+fe,i - o C(3.51)

4

»
i

el
e
N

The parameters ‘of 3.51 are .deterni‘g.ned so that the’least squares criterion:
< L < . -
o S .
t o . g
JA
V(@) = 1 e%(s) (3.52)
s=1 ) ’ ’ .

\ <

is minimized. The solution to this is Kendall and Stuart (f966))

A
o) =i txy (3.53)
whee
: . e .
X X} = & x(s-b)x(s-b)". ' (3.54)
" s=b+1 -
T ’ -t .
XY= : X(s-B)Y(s) L - . (3.55)
s=b+1

This may be expressed recursively, (Stderstrom et al., (1974a)) as

#
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?

8(t) = 8(t-1) + K(t)[Y, - X' (t-b)o(x-1)] (3.56)
where s |
k(t) = EeDx(tb) (3.57)
1+ xI(t-b)R(t-1)x(t-b) -
p(t) = p(t-1) - BCE-DX(-b)x (-b)pCe-1) 3.58)

1+ xT(t-b)P(-1x(t-b)

<

The notation,’is thaf a double bar represents .a matrix and a single bar
a vector. P(t) is the symmetric méfrix (g? g)'l at time t. If (3.51)

converges to the optimal solution, and b=1 (i.e. e  is white noise)

t
P(t) is proportional to the variance-covariance matrix of the parameters.

(See Appendix B).

Initial estimates 6(0) and P(0) are needed to start the recursion.

From a Bayesian viewpoint 8(0) represents the prior expectation of 8, and
R(0) a matrix proportional to the covariénce matrix of the prior dis-
tribution of 8. The prior mean will strongly influence the estimates of
the parameters at allifuture,times'if the elements of 2(05 are chosen
small. In order that 6(0) not unduly inffuence the recursive estimates,
Wittenmark (1973) suggests that P(0) be chbsen as 10al to 100al, where

a is the Quriance of the output variance, Y, and I is the unit matrix.
However, the magnitude of ©(0) and P(0) depend upon the scaling (units)
of both the {Yt's] and the {Vdut's} series. Choosing equal q;agonai
elements (variancgs) would imply having more prior information on the B

t
parameters than the « parameters or vice-versa. Therefore, choice of a

noninformative P(0) should depend on both the variances of Yt and vd'Ut

o)

e R e
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(It may therefore be advantageous to scale the process inputs and outputs
such that their variancés are roughly equal.) . ¢
Since the diagonal elemgpts of P(t) represents var(ei(t)/var(et)))
the choice of a noninformative 2(0) should just involve insuring that these
variances are sufficiently large that the prior confidence region on each
ei(O) will include any even rémotely possible value of ;. Tﬁe elements
of P(0) may be chosen smal%er if one fee1§,tgaf good Prior'infOrmation is
available (e.g. from existing controller parameters) or one simply: wants ?
Fo restriéf the movement'of the‘paraﬁeters from the initial 6(0).
It is important to note that equations (3.56) to (3.58) are derived
for the estimation of pafameters that are constant, buF unknown.- They
are not’capable of tracking chaﬁging parametér values as evident from
the fact that P(t) decreases-to the nuyll matrix in a positive definite
sense.

’

3.11 Time Varying Parameters

¢

P(t) wmay be prevented from approaching the null matrix by using

an exponentially discounted least squares approach. Instead of minimizing

&

(3.52) the criterion is to minimize

e ] ' )
B8 e (s) (3.59)
s=] *

where 0 << ) < 1.
This-leads again xo_gqugtion 3.52, (§§99;$trbm et al. (19742)), but -

with K(t) and PB(t) defined as .

-
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Kk ;(t-l%;(t-b)
. X+ x7(t-b)P(t-1)x(t-b)

it

(3.60)

and ‘ \

P(t-1) | 1, P(t-Dx(t-b)x (t-b)B(t-1)
A Aoa+ 57f(t-b)g(t-1)5gt-b)

P(t) *(3.61)

The use of A, the discounting factor ‘reduces the influence of
paét data on the current estimates, and they will then reflect the most
recent characteristics of the data. Effectively (T%XJ data points are
included in the estimation of the parameters. This quantity is referred
to as the ﬁgymggotic sample leﬁéth (Clarke et al. (1975)). - X is usually
in the range .95 < X < 1.0. The smaller the value of A the fasfer the
algorithm will track changing parameférs, but the greater will be the
variance of the parameter estimates. Hence the value of } is usually
chosen to provide a compromise between the speed of tracking and the
smoothness of the .estimation sequence.

The choice of thq noninformative prior P(0) will strongly influence
the parameter estimates é(t) at all future times only if X = 1.0, If
2 < 1.0 Fhen the effect of P(0) dies out and the consequehccs of underest-
‘imAtiﬁéithe magnitude of element of P(0) may not be long lasting,

Alternatively, thc controller paramcters may be inycrprcted as the
time varying states aof a Kdlman filter (Wieslander (1969)). In its simplest
version, the estimated parametérs are "assumed to follow a random walk

e

éi(t) - éi(t-l) SVt 1= 1,2, .., mes2 (3.62)
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{vi(t)} is a sequence of independent white noise variates with covariance
matrix R. This again leads to the recursive estimation scheme given in
(3.56) with K(t) remaining as in (3.57), but P(t) now expressed recursively

as

B(t) = P(t-1) - P(t-1)x(t-b)x  (t-b)R(-1) , " (3.63)
1+ xT(t-b)P(t-1)x(t-1)

R is positive semi-definite and prevents P(t) from approaching the null
matrix. In this formulation the parameters may all be time varying at
,different rz;tes. R would probably be made diagonal and the larger

) )
the elements the faster is the adaption for that parameter, but the noiser
is the estimate. It is not obvious how to select the elements of R to
reflect an asymptotic sample length. Interprelation of the controller
parameters as the time varying states of a Kalman filter requires a more
sophisticated understanding of the process dﬁmnics and stochastics. In
many instances this will be unknown. The estimation of time varying para-
meters secms to be hadled most easily by the use of the discounting factor \‘
since its effect on the estimation scheme is more rcgdily appreciated. |

~

Self-tuning regulators were designed to control processes \\%OSC >

parameters were constant but unknown. It would seem reasonable to expect,
with one of these above estimation schemes, that the self-tuning strategy
would control processes whose parameters changed slowly relative to the

process dynamics.

3.12 Parameter Estimation under Closed Loop Conditions

If a process is operating in’'closed loop, with a linear, time

-
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invariant feedback controller as discissed in Chapter 2, it is known that
f

it may not be pos;ible to uniquely identify the parameters of the process
y .

dynamic and stochastic models, If the parameter estimates of the model

-1 -1y
Ve T e+ 30 yolu, et (3.11)
converge, the controller
. { -a(z * . ]
vdu Y, (3.14)

B(z)t

will redace to a constant regﬁlato’r. Under this condition it is shown in

.
'

. Appendi_x A tha}t one parameter may always be expressed’ as a linear comb-
ination of the remaining ones if (3.14) is the minimum variance controller.
th.rbm and Wittenmark (1973) suggest that one parameter, fSO, be fixed. The

X parameters in the cqntroller—lg% , 1 =20,1,...m and g—;-, i=1,2,...2 are
all ratios with re::.pect to I;U' By fixing éo (an estimate of “’0) one simply
will scale up or down the values of the parameters (‘;i’ l}i) estimated by
the on-linc cstimation algorithm. [Lven though the choice of 130 is arbitrary
i:} that the same ratio of controller parameters can theoretically be obtained,
it has been shown 'that for stability of the closed loop syStem it is nec-
essary that .Swo © !}0 < o (ijlg‘ and Wittenmark (1974)). Although this
result was derived for the case where «S(z-l)o(zfl) = 1.0, if the controller
(3.14) is mirinimum variance the process output may behave as though 5(:-‘1)
e(z'l) = 1.0, when in fact it is an arbitrary polynomial'in z-]'. One might,

expect this restricticn on BO to holdlunder less restrictive conditions if

the controller (3.14) is minimum variance. The rate of convergence of the
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estimated parameters is strongly influenced by the choice of B0 and is
most rapid when By = wy (Cegrell and Hedgvist (1975), Wittenmark (1973)).

ﬁo has been fixed in the reported applications of the self-tuning
regulator. In most instances a reasonably adequate ‘model of the process
was available, and so an estimate of wb could be made. When this information
has been unavailable difficulties in selecting a satisfactory value of éD
have been reported (Cegrell and lledgvist (1976)). ‘

However, it is not actually necessary to fix one parameter when
employing the self-tuning féguiator s;nce the parameter estimates are non-
linear, time varying functions of the input and eutput. If the estimates
converge they become less‘and less time varying. However, the least squares
criterion -

t

min Vl(g) = g
s=1

e2(stb) - (3.52)

includes the information frem the process when the controller was nonlinear
and time varying. ‘There will not be a singularity in the estimation space
although in the limit (t-~) one will approach singularity (possibly .giving
problems on finite word minicomputers). ‘

If a discounting factor is used then the parameter estimates will
never really converge since they will be ha§ed on a finite sample length.
The shorter the asymptotic saﬁplc length (T%XO the more they will vary, and
‘the singularity in the estimation space should never arise. In practice,
tf the true parameters afc not time varying and the asymptotic sample N
1ength-is long enough that the paramcter estimates become\?ésentially con-

stant over a long period of time (after the initial transient has been

»
e
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discounted, then P(t) could become very nearly singular. lowever, as P(t)
has been prevented from approaching the null matrix one would expect the
paraméter estimates to start varying due to the high correlations among
them. It would then appear as though the process dynamic or disturbances
were changing. In practice it would appear unnecessary to continue estim-
ating éO once a reasonable estimate had been obtained, and one might fix
ﬁD after a short period of time (by zeroing the row and colum of P(t)
corresponding to éo).

N

3.13 Start-Up Situations_and Biased Estimation

"If the self-tuning algorithm is started off with 8(0) = 0, the
process output may drift away from its target value until better parameter .
estimates are available for use in the controller (3.14). If this initial
transient in the proces$ output is intolerable, then one n&éht estimate the
controller parameters by the recursive estimation scheme, but use an existing
PID controller to compuée the control signal instead of (3.14). When one
has reasonable estimates of the.parametcfs, the feedback controller (3.14),
based on the estimated parameter would be ugéd. L

llowever, consistent (usymptétically unbiased) estimates®of the min-
imum variance controller parameters can only be obtained from the estimation
~model (3.11) it the implemented controller is of the correct form, and the
estimates converge to thosc of the minimum variance ¢@ntroller (Appendix B).
It is impossible to obtain consistent estimates of the minﬂﬁnn variance con-
troller parmnctérs il an arbitrary feedback cantrolier is used. If the para-

meter estimates are trached, but not used initidglly in the computation of

PR



the control signal, it is important that x < 1, otherwise one will always

have biased estimates,

3.14 Convergence of the Parameter Estimates

¥

The difference equations describing the parametér estimgtes are
stochastic, nonlinear and time varying functions of the input and output,
nmkihg analysis of the estimation situation extremel& difficult, Simul-
ations of the self-tuning regulator have been the primary tool for such
analysis. Astrom and Wittenmark (1973), Wittenmark (1973), Chang (1975),
Sastry et'al. (1976) and Clarke et al. (1975) have numerous examples of
simulations examining the effect of P(0), 9(0), A and ﬁo on the transient
and asymptotic behavior of self-tuning regulators.
Ljung and Wittenmark (1974) have shown that a set of detemministic,

ordinary differential equations may describe the expected trajectotries of

the paramcters. Let the system be described by (3.1),.and a model of the

*
form (3.51)
Y = tT(t-b+1)o + g (3.51)
tvl = - t+l ’
is used to estimate the minimum variance controller parameters.
Introduce
. , T <
£(9) = E {x(t-b+1)- (\t+l-§ (t-b+l)e)} | (3.04)
G(8) = E {x(t-br1)x! (t-b+1)) (3.05)"
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Then for sufficiently large t and weak conditions (Ljung and Wittenmark

(1974)) the ordinary differential cquations

ds (r)
= R(x) £(8(7)) (3.66)
dr . '
dR(1) -
T4t = R(T) - R(W GO R() (3.67)

will describe the expected trajectories of the estimated parameters. The

ficticious time t is related to t by

¢ (t) _ (3.68)

if the discounting factor is one. Denote the vector of minimwm variance

controller parameters by go, il.e,

0o_,0 o0 0 0.,0 0
0" = (uo, Upseeedp s BU_’ Bl.... Bﬁo)

NER)
I _f_(go) is a globally asymptotic stationary point of (3.06), where R(x1)
is positive definite, then

-

Cim §_(t) - 9_0 with probability one - (3.70)

ol o] f

When one parameter is estimated it.is possible to solve (3.06)- and

{3.67) analytically. Stabiiit); of the closed loop equations may be in-

vestigated as well as possible convergence points, which are the solutions to

I

e
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El—% = R(1)£(o()) = 0 , (3.71)

dr
For more complicated systems the djifferential equations may be linearized
“or numerically integrated to investigate the convergence properties of
the algorithm. Ljung and Wittenmark (1974} were able to construct a system
where the parameters of the minimum variance controller were not a globally
asymptotically stable solution-to (3.66). Thus the parameters of the self-
tuning regulator could not converge to those of the minimum variance con-
troller. ’

Analysis of the differential equations is difficult if more than
one parameter is to be estimated. If n parameters are to be estimated at
least —%— n(n+3) simudtancous diff_crential equations must be solved.: The
elements,of £(0) and ((8), .the theoretical auto and cross correlations be-
tween the input and output are difficult to' evaluate. Several examples
arc shown in Appendix D.

The parmneéer estimates 5(1:) may converge to a stationary solution

)
of (3.66). Due to the presence of the disturbances “there is a non zero
prohut;ility that the solution will depart from this rcgion unless it is
globally asymptotically stable (Ljung and Wittenmark (1874}). As a result
the controller parameters miay not directly converge to those of the minimum
variance controller but may jump between various convergence points. If

the estimated parameters tend towards the minimum variance controller, they

will not converge to another solution of (3.66) (Ljyung and Wittenmark (1974)).

Theorems 1 and 2 of Section 3.1 stated that if the parameter est-

imates of the model (3.11)‘c0nverged, and the order of a(z1) and B(zl')

K] ~,
o~
o

Rl Y

1
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were not underestimated then the resulting regulator would be the minimum

variance controller, lowever, there is no guarantece of parameter convergence.

Thes rate of convergence is influenced by many factors. The relative
rate of convergence between the « and évparameters is influenced by the
sjgnal to noise ratio, var{v(:'l)}Ut/var{w(z'l)at+b}. [f the parameter
estimates are highly correlated the rate of convergence will be slow. The
rate of convergence may be improved by the use of a discounting factor. This
is readily seen by examining (3.17). If the estimation equation .discounts
data'where Seab was far remerd from 52+b’ the rate of convergence of the
controlle; parameters is increased. A typical strategy is to set A = .95
at the start of the estimation and increase it after thirty to fifty sampling
intervals. ¢

The transient behﬁvior of the estimation scheme is also influenced
by ékO) and 0 (0}, however, the long temm 1nf1ucnceQbf these values dies out
if a discounting factor 1is employed.\ If éO i§ fixed, convergence is most
rapid when By = vy, (Cegrell and Hedavist (1975)).

Although convergence of the regulator parameters to the minimuan
variance parameters is not assured, industrial applicuations and simulation
examples indicate that control is very good within twenty sampling intervals,

even if the parameter estimates have not reached their final values.

3.15 Simulation of a Sclf-Tuning Regulator

Let the process dynamics and disturbances be described as

-

(93]
~1
2
—

. 1
L Y = > - U, + "-"'—"“'—_T-— a {
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This isq/éhe same example used 1in Chapter 2. This system was simulated

using a sequence of N(0,1) (at's) . The presence of the disturbance causes
the process output Yt to drift away from its target value of 10.0, Figure

3.3.

50-0 i A A A L. A A, A A

30.0

10%0

-10.0

PROCESE OUTPUT Y

"30-0

—50.0 T ) 3 Y 2 2 v — T hd 2
e 200 400 €00 800 1000
, SRMPLE NUMBER
Figure 3.3: Open loop behavior of the process (3.72)

Since the disturbance is nonstationary a model of the form (3.11) with d=1

[

Y a(:'l‘)\'

]

+ B(z‘l)VUt + ¢ (3.11)

t+l t t+1

is used to estimate the controller parameters. We are ndt estimating the
parameters of the process dynamics and stochastic disturbances,
, The variance of VUt is almost two orders of magnitude larger than

the variance of Yt (Section 2.4) for the unconstrained minimum variance
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controller. Better control was obtained by making the, transformation

VU, -+ vUt/IO. The minimum variance controller for (3.72) is now

1

~ - -
’ 1 N - Z
VUt .. (.4 1.662-1 + .36z 7) Yt (3.73)
2 -.8z
or . .
] [} . J
VU, = - LTY o+ L83Y, - L18YL 5+ WU (3.74) /’/
A model of the form /
) /
| | S /
Yoy = %¥p *ag¥eoy * oV * ByTUL * By

/

{3,/75)

. ' ) - . - - »
was used to estimate the controller parameters, in the f{irst sipulation
S1. P(0) was 101 and 9(V) = 0. A discounting factor \ = .95 was used

for the first 50 sampling intervals, after which \ = .998 was used. :\il
the parameters werc estimated and the ratios ?——l— , 1 =0,1,2, BO and

g-i« are p,lottcd in Figure 3.4, The controllch(x)*atios are not close to their
cgrroct values atter 1000 sampling intervals, yct*the control 1s very good.

The auto and cross cprrelation function computed over the last 950 observations

is plotted 1n Figure 3.5,

£ o -
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Figure 3.5: Sample auto and cross correlation
function for simulation Sl
N t )

All values beyoﬁd lag zero should be zero if the control is minimum var-
iance. Since these functions ‘are computed from a finite number of obser-

. vations they will not be exactly zera. . Bartlett (1946) has shown that for

“ a moving average process of order b-1 the variahce of the computed auto-
correlations'beyond’lag b are given by

b-1, 2
var {r (t)} (1 +2 I p

at

(KD, w2 b (3.76)
where pyy(K)'is the theoretical auto correlation at lag K. Ihé variance
of the cross correlations beyond lag b are ﬁpproximatel& given by (Bartiett
{1955)), as o I

" “b-1 2

re ‘
"var {r (v} =~ (l +2 £, p (h)) T >b (3.77)
. vduy V’" R 1 Vduy f
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The approximate two standard deviation llmltS on the auto and cross
correlations (Z/AV fh this case as b=1) are shown in Figure 3.5. It is
seen that the control appears to be minimum variance. The variance of
Y, and the variance of vUt aré cdmpared to their theéretical values in
Table 3.1.

To check the siéulation the self-tuning regulator was also started
off with P(0) = .001 L and the minimum variance controller parameters.
The estimates remained very close to their optimal values.

- The self-tuning algorithm of Clarke et al. (1975) was simulated
in the second simulation S2. The model‘fbrm for identification of the
controller parameters wés

4

1] [}
(Yt+1'+ .SVUt) = aOYt + alYt-l + aZYt.-Z + BOVUTZ

)

+ BlVUt 1 41 (3.78)
The theoretical constrained controller is (2.39)

-1 -2

v (1 4 - 1,662 .36z )
VUt = ‘I Y, _ (3.79)

2.5 - 1.65z .
or
Wy o= L56Y |+ 664Y, o - 144V, 4 669U (3.80)

~ N . 'l
remembering that the transformation vUt + VUt/lO changes ”0 from .2.to 2.0.

" The contrpller ratios §i~, i=0,1,2, ﬁo and gl are shown in Figure 3. 6
‘ 0 0

o

and the sample auto correlation fynction of.g(t), r¢¢(r) is plotted in

Figure\3.7.‘
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. \ Figure 3+7: Sample auto correlation functibn‘f.
for simulation S2
' If the 95% confidence interval is taken as 2//N then the resulting control
]
appears to be optimal. The variances of Yt and VUt are compared to their
theoretical values in Table 3.1.
Simulation var Y, var vu; Y ’
unconstrained 1.00 0,79 10.00
Sl 102 0.90 9.98
constrained 1.10 0.470 10.00
\
4 s2 1 1.13 0.479 9.98

~

Table 3.1: Simulation results for the constrained
. and unconstrained self-tuning regulator

. ' . 1
k'l

There is a 9.7% ipérease in the var of Yt compared to the first simulation

. . L . — .
with a corresponding decfease in the variance of vUt of 47%. Referring

n
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to Figure 2.5 for this system, it is scen that for a 10.0% increase in
the variance of Yt it is expected that there will be a 47% decrease in

1
the variance o‘f VUt. The simulation results agree well with these expected

results.

3.16 Summary ‘ -

The parameters of the model

Y, = a(z"l)Yt + E.(z'l)v‘iut

d t+b © + €t+b' ' (3.11)

are estimated at every sampling interval by recursive least squares, and

“used in the control law ) . :
f, ~ ' ’l
_ -a(z
vy, - —;3—(71-)1 Y, : (3.14)

\ \ '
as if they were exactly known. If the parameter estimates converge, the

ordery of a(z—l) and B(z'l) have not been underestimated, and several
weak conditions are met, the resulting regulator is the minimum variance
controll&r. This is the same one that gould have been designed had the

process dynamic dnd stochastic models been known. However, there is no

v
)

gu.xmntee that the parameter estmates will converge.

The basic self-tuning algorithm of AstrSm and Wlttemnark (1973)

was discussed in this chapter. It was shown how detemministic aist;xrhaﬁces,
feedforward variables,‘ multivariable decoupling and constrained control are
incorporated in the framework of self-tuning regulators. There was con-

siderable discussion concerning the structurc of the estimation model,
re na

- . . : ,

o
-

\ . . : ~
. .



and the importance of including differencing if the disturbances are non-
stationary. The choice of the saﬁpling interval is important as difficulties
in direct;implementation of the self-tuning'regulator may occur if the p}o-
cess dynamic model is nonminimum phage. Least squares estimation, methods
of handling time varying parameters and convergence properties of the para-
meter estimates were also topics discussed. The next chapter will review
applications of the gelf-tuning regulator to the control of industrial, and

pilot plant processes.,

¢



CHAPTER 4

LITERATURE REVIEW OF PROCESS APPLICATIONS
v c

There have been several practical implementation# of self-tuning
regulators to conérol pilot plant and industrial processes. The purpose
of this chapter is to review these apglications, indicating insights,
extensions of the basic theory, and to identify some of the problems that
have occurred in its implementation.

In “Adaﬁtive Control of a Paper Machine', Wittenmgrk (1974) exam-
ined the feasibidity of implementing a self-tuning regulator for the moisture

control loop on an industrial paper machine. Feedback control was combined

with a feedforward signal from an upstream part of the procdss. The con-

.troller was of the form ) - .
a. + ozl 4 a 22,
21 1 3 ..
e B (L+BzLt+Bz%+B 2"3) Yt
0 1 2 -3
ot /:‘ - _l 1 %_2‘ o :‘_3 VZt (4-1) v
Bo(l + Blz + B2 + BSZ ) :

where z, was the feﬁgfdrwﬁrd signal. The structure of the controller anq
'choiée of ﬁé (which was fixed) were based en a reasohgbiy good knowledge
of the process dynamic and stochastic models. —

The self-tuning regulator had good transient behavior and within
fifteen sampling intenvals the rggulato} Qas providing good centrol. The
controller required a‘large number of pa;ameters.to maintain gooa control

]
as the process had a long transport delay and large stochastic disturbances.
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‘A similar application was reported by Cegrell and Hedqvist (1975)
in "Successful Adaptive Céntrol of a‘Paper Machines'', where the control
objeétive was to minimize fluctuations in the moisture content and.basis
weight. The proces5 was a input-two output coupled system, the dynamics
of which were well known. Information frgm the basis weight loop was used
in‘the estimation of the controller parameters and coypu;ation of the .
moisture content control signal, essentially‘decoupling the system.

The transient Behavior of the controller was good and when a for-
getting factor was carefully chosen, the parameters of the regulator were
close to.their optimal values within twelve sampling intervals. The auto
correlation of the process output indicated the optimality of the controller.
The peffbrmance of the self-tuning regulator was compared to existing control
.algorithms-discrete proportional integral controllers. The difference
between a well tuned PI controller aﬁd thé self-tuning regulato; was small
during steady-state operation. PI controllers were seldom well tuned though,
because the dynamcis of the paper machine changed whenever a different grade
of paper was manufactured. If the process was noisy, and the self-tuning re-
gulat;r was implemented, fewer paber breaks occurred, resulting in increased

production. At the time the paper was written, the self-tuning regulatbr

had been in continuous operation for several months. .

v
L]

Cegrell and‘Hcdqvist (1974) discuss the application of a self-tuning
regulator to cont%ol the Kappﬁtnumber (indieation of wooq pulp delignification)
and a number of subﬁrocesses on a continuous digestor. ~This paper primarily
describes the development of a mechanistic ﬁgdpl‘to describe the ggte of

; -

delignification, The unknown dynamic parameters of this model are estimated

and used to determine an 'optimal" temperature set point, ignoring the

-
.
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cffect of the process disturbances on this calculation. The results of
the proposed Kappa-number control scheme are not presented. Only self-
tuning control of the chip level in éhe digestor is examined, although
gpe resg;;sﬂnié rather confusing because the controller is designed to .
minimize the chahge in chip level fluétﬁations. o

) " Borisson and Syding (1?76) have descr}bed ""Self-Tuning Control

of an Ore Crusher" where the objective of the study was to evaluate the
economics of installing a digital computer fgr process control. (The
process control compﬁier was at the Lund Institute of Technology, Sweden,
1800 kilometers from the indﬁstrial'brotess.f High production fétes on the
oré erusher were difficult to maintain.due to long transport delays, cha;ging
ore characteristics and wear of the crusher jaws., A self-tuning regulator
was used to control the crusher power. An asymptotic sample length of one
hour was used in the estimation scheme, and ﬁg was fi#ed, although values
between 1 and 100 all gave éood results. * This apparént insénsitivity of

éo was due to the truly time varying nature of the process. . So much 'new'
information was béingfmade available to the estimation scheme at every
sampling interval tlrat the absoluge value of BU was not crucial and it

could easily have been estimated.

. The reduction'in the variance of ihe crusher bower realized by im-
plementing the solf-tuning regulator, as compared to conventional analog

PI controllers, meant that the sct point of the crusher power‘dould.be

moved clgscr to the valve at which thermal overload occurred. A ten percent
increase in production could bc'realiZed and it was conclu%sd that there

was significant economic incentive to install a digital control system to
implemgnt a self-tuning regulator. . V. v

.
- s

- -
.
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Indus’trial applications of the self-tuning regulatsr have been
reported only in Europe, and many of the people reporting these applications
have had a’close affiliation with the Lund Institute of Technology. The
‘processes on which the self-tuning regulator has been implemented were
characterized by dynamics with long transport delays, stochastic distur-
-bances and in some instances, time varying parameters.

. App ‘cati\on of self-tuning regulators for the control of an in-
herently disturbance free processes subject to deterministic load changes
have also be:'en i;}yestiga‘ted ‘at the University of Alb‘erta. In "An Application
of a Self-Tuning Regulator to a Binary Distillation Column', Sastry et al.
(1976) controlled the top product composition by manipulating the reflux
flow rate, for load and set point changes. Neither an integrator nor a
constant term was included in the controller and therefore offset was
observed in the controlled variable, which they were unable to explain. TFor
feedrate and step disturbances it was found that the self-tuning regulatér
gave improved transient response over conver’ltional PI controllers.

Chang (1&575) investigated the application of a self-tuning regulator
to control a pilot scale double effect evaporator. The concentration of
product from ti\e second cffect was controlled by 1:1anipulat'ing the stream
flow. Interaction between the self-tuning 10;)p and level controllers pro-
duced severe oscillations in a number ot process variables, nctessitating
the reduction in level control gains, when the ipput stream was subject to
load disturbances. Changes in setpoint produced offset which’ may be ex-
plained again' by the f'act' thzit neither an intcgrator nor a constant:43 temn
was included ;nx the controll.er. The controller attemp’ted to remove the
effect of of{set by moving the rovts of B(z'l) very close to the unit CiI'C].‘?

<
@ 3 <
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produg}ng a high gain controller, which might explain the necessity of re-
ducing the level controller gains. The auto correlation function of the
output was never plotted to check for controller optimality.

The following critical comments can be made about some of the above
applications. A clear understanding of the theory of nonadaptive minimum
variance controllers Qould probably have removed much of the confusion in
the application of these controllers such as to the ways of eliminating
offset. In all applications éO was fixed, although the reasons for doing
so were not always understood. . The controller parameters (3.11) were id-l
entified in every application although some authors implied that they were
estimating the parameters of the process dynamic model. There was also no
‘discussion concerning the selection of sampling interval. .

The appliéation of self-tuning regulators to confrol industrial pro-
cesses have shown these reguiéfors have good transient as well as asymptotic
behavior. It has been possible to modify the structure of the controller
to include feedforwvard terms, and to automatiéally decouple an inherently
multivariab}e control system. Not only have most applications been tech-

nically successful, but there has been economic incentive to support their

permanent installation.



CHAPTER S

SBLF-TUNING CONTROL OF A. STEAM JACKETED “
- STIRRED TANK HEATER

5.1 Introduction

This chapter will describe an application of the self-tuning regul-
ator for temperature control of a jacketed steam heated continuous stirred
tank. A schematic of the apparatus is shown in}Figure 5.1 along with
typical operating conditions, and is described in detail by Huynh (1974).
The cantrol objectjye was to maintain the water temperature in the secon5—~
tank at a désired vaive\by adjusting the steam flow to this tank. Temper-
ature disturbances were artificially introduced into the inlet water temp-
erature by manipulating the steam flow to the first tank. The flow rate
of water into the first tank was regulated with a digital Pl controller.
Control action on this flow loop was taken every five seconds.

Assuming total condensation of the stecam and negligible heat losses,

an energy balance on the sccond tank gives

T It +Y =K.U . (5.1
where . ‘ 4
Y = TOUI‘ - TOU’I‘ (5.2)
u = v2i. W (5.3)
' ASK
K = T—m (5'4)
PLP .
i v
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’[i'pical Operating Values

tank capacity: 180 lbm
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saturated steam 2330 psig o
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water flow: 30 lbm/min
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e Figure 5.1: Schematic of the Steam Jacketed Stirred Tank Heater
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(5.5) -
Here T is the outlet temperature, degrees Celcius, V is the voltage to the
‘\valve‘ transducer, )‘s. is the heat of vaporization of steam at wppiy con-
ditions, M is the mass of water in the tank, F is the mass flow.rate of
water into the tank and Cp is the heat capacity of water. It is known that
the steam flow is roughly proportional to the square of the voltage applied
to the valve transducer, for \the second tank (Huynh (1974)). There fore
F_ =KV ‘ ' (5.6)
The steady state values of T and V arc Jdenoted by T and V. Substitution

of numerical valves into (5.1) gives’
};’

'
6.0 f+ Y = .68 U (5.7)

The tank may be modelled by a first order transfer funcdion. The
purposc of this chapter is not simply to evaluate the ability of the self-
tuning regulator to control this procéssg as it ‘is controlled adequately
by a well tuned ‘digita"l PI controller. This apparatus prov%dcs a safe
process on which to g;:in a. fz)ndliai"ity with tle implementation of self-
tunji‘ng regulator. The use of the diagnostic tools (Theorem's 1 and 2 of
Scc:tion 3.2) for verification of the correct model 'order; Ehe ab‘flity to
c-st;mutc By differen‘t\ methods for estimating offset and £)1e .ability of

the estimation routine to track time varying parameters are aspects of the



self-tuning regulator that will be investigated.

?
a“

R -

5.2 Computer HardwareNand Software

The apparatus was interfaced to a dual processor-shared Disk

-

System. A 256 K word fixed.head disk wds shared by Data General Corporation

NOVA 2/10 and NOVA 1200 computers. This arrangement is described in more
detail by Tremblay (1975). All analog to digital (A/D) and digital to
analog (D/A) processing, output and 10gg§ng routines and operator commun-
~ications with the computer were handled by a Generatized Operating System
Executive (GOSEX), written by Tremblay (1975). All application programs
were written in Data General Co;poration Fortran IV with-the exception of
one Assembly language program which linked the user's program to GOSLX.

The programs for the self-tuning regulator are J;ry compact, con-
sisting.prihmrily of a series of subroutine calls. The recursive least
squares subroutine is very short. Much of the matrix multiplication that
would appear to be required (Equations 3.56-3.58) is eliminated by recog-
nizing quadratic forms and the symmetry of some matrices. A flow diagram
for the sclf-tuning package is outlincd in Appendix £, with source listing
of the important subroutines.

There was one modification to the apparatus over tﬂat used by
Huynh (1974). An air to clese control valve (Minim flow copf?él valve,

o

trim D) and an electropneumatic transducer (Fisher Type SJh)ﬁzérc installed
so that the water flow rate could-be manipulated from the computer. The

flow rate was measurced with an orifice meter and a differential pressure
. ‘

“
[}

transduccr.

9 AN
L} - .
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”

In order to ip}roduce unknown disturbances into the temperature
of the second tank stochastic variations were introduced into “the valve
of the first tank. The square of the voltage applieduto Ehe4Valve trans-
ducer on the first tank was determined every four minutes from the ;uto

regressive model

-

(5.8)

where Vl is the mean correctedd voltage applied to the valve transducer.
The jat} were.a sequence of normally distributed random numbers

with mean zero, and variance 144 volts4. This variance was chosen so

thét 95% 6f.the valve settings would be iﬂ-the range 1-81 volts squared,

the operational range of the valve transducer. i

The process measurements were filtered every five seéonds by a

first order digital filter

o 75 '
W, o=z , . (5.9)

l = .252 [

where Zy is the raw data and‘wt-is the filtered data. A filter constant

of .25 implies that twenty-five percent of the current filtered value is

¢

obtained from past information.

It was stressed in Chapter 2 that Nt (Equation 2.4) represents
the total effect 6§sefved at the output if no control action were taken,
including sensor noise, A/D noise as well as inherent dfétqrbanccs within

*the process. ‘The effect of a high frequency measurement noise superimposed

on a low frequency process disturbance, is to mask out the latter. This

y | (
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reduces the [g;ecastability of the process disturbance and our ability to.

control the process, Filtering removes some- of the high‘frequency comp -~

onents from the measured variables and reduces the variance of the measured:
variable. This insures that the control action is based on a signal that
r , is well known. ’

The parameters of the control;ér were ﬁpdated and control action
taken everf fwo minutes. For the input disturbance (5.8), Huynh (1974) .
showed that the Variance‘of the tempegature for tank two increased r;Eidly ‘

if the sampling interval was larger than®two minutes.

5.3 Experimental Program

[

The results from a series of sélf—tuning controller experiments on
the steam jacketed stirred tank will be analyzed in this section. For con-
venient reference the important characteristics of each run are sumﬁari:ed
in Table 5.1. These experiments werc chosen to illustrate certain aspects
of the theory from Chapter 2. The correct structure of the estimation model
was onc;Zrea that was discussed oxtcﬁélvcly, and the first few experiments
- will examinc the effect of different model forﬂm on our ability to control
the process.

For run \001 the model structure was

~ -~ }"

g B0, v B (5.10)

1 TR Ty -1/ rel

The (U's} were deviations of water temperature, from the setpoint of 73.0°C,

(2%
The steady-state value ot the {U's} was estimated to be 25 volts squared.

v
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Run Number © Number of Paramcters Differencing ‘Comment s .
Identificd . 1

‘1(:-1_) B(z_l) . ] . . \

* no no P(0) = 1001

no preliminary idenfification
A= 1.0

step change at sample nunmer 48

A001

~o
ro

o
~

ADO2 2 ves no P(0) = 1001
\/) no preliminary identification
X=1.0-

4

AOD3 2 2 yes no P(0) = 1001 .

preliminary identification 101 8 sample>
A= .95 to retord 30

A = .98 record 3l to end

step change to 05°C at.sample number 71
4

to

no yes P(0) = 1001

preliminary identification for 6 samples
A = .95 to record 30«

. X = 1.0 record 31 to end

- ] step change to 65°C at sample number 71

RGITR T2

(92]

A0S 3 no , yes P(0) = 1001,

= . - prellmlnary identification {for 6 >amples
A = .95 to record 30

s A= 1.0 record 31 to end .
step change to 05°C at sample number 71

A0Go - - - - open loop

™

S8

TABLE 5.1: kLkxperimental Conditions for runs A0Ql - A0OG
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P(0) was 100 I and 8(0) was 0. The parameters of (5.10) were estimated,

and the control siénal . o '
‘ ’
-a a . )
b2y -2 Ay
Up == Y 2 e T 5 B o G
0 0 0

implemented every two minutes. The setpoint of the controlled variable
was .changed to 65°C at sample number forty-eight. .
The contreiled temperature, the voltages-squared to the valve
transducer and thedtemperature of the inlet feed are plotted in Figure
5.2. The pointer (*) on each of the plots indicates when the estimated

parameters were used in the computation of the control signal. The mean

- value of the control signal did not turn out to be 25 volts squared, and

4o , .
since neither integral action or a constant temrm appear in the controller,

the temperature deviates significantly from its setpoint. The plot of
the controller parameter rptios, Figurc 5.3, indicates that the controller

was trying to eliminate offset by moving the root of'B(:-l) close to the

unit circle. This accounts for the bang-bang naturc of the cdntrol signal,.

Figure 5.2.

-~

Theorem 1 of Chapter 3.2 stated that 1if the parameter cstimates

{uo, o BU’ Bl} converged then pyy(t) and p d Qr), t = 1,2 would have

: viuy
been zero. Had these ‘parameters converged, non zero values of pyy(f)
and p 4 (1) beyond v = I indicate that the order of the controller must

- vuy
be increased.

The sample auto correlation ryy(r) and cross correlation ruy(r),

Eigpré 5.4 (based on input/output data to record number 44) do not lie

within the approximate 95% confidence intervals for these estimates, and

R
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are taken as non zero. This indicates

1.0 . ] 1.0
A — \_/>\
= | 3 |
0 R RN . 0 ST - N —
o |2 4 ]6 8 10 o 2| 4 6' 8 10
-1.0 -1.0

Figure 5.4: Sample auto and cross correlation
function for run A001

2
that the parameters have yet to converge although they appear to be changing

very slowly. (It is to be noted that the auto and cross correlations were
computed about. the mean yalue of the 1nput and output sequence and not
the reference values.)

The controller parameters would appear to be well estimated. The
effect of the control action 1s to induce temperature oscillations, pro-
viding good information for the estimltion of the controller parameters.

The structure of the controller though appears to be incorrect due to the

-~

‘presence of high auto and cross correlations at high lags (T - 2).

fl

The temperature into the second tank during this run was not the

desired AR(2) process due to a mistaken implementation of (5.8). This was

< .
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uncorrected for the first series of experiments. Nevertheless this represents
a disturbance acting on the system. A saqpling interval gregter than two
mnutes might be more appropriate for this disturbance, as the process

would damp out the high frequency fluctuations.

For Run A002 the model structure was ~
. . . ~ . . . ,
\t*l uOYt + Jl\t_l + B()Ut + Blul + v < (5.12)

t+l

The reference value of the manipulated variable was again 25 volts
squared: The offset in Yt should be eliminated by the inclusion of the
v term as it will conpensate for the difference between the estunated steady
value of the manipulated variable and 1ts true value. The input and output
are plotted in Figure 5.5. The input does not have the bang-bang behavior
seen 1n run N0, and the roots of é(:’l) are not close to the unit circle
(Figure 5.6). The contrqllcr parameters estunates have not converged as
indicated by the non zero auto and cross correlations at lag 1, 2, Figure

- H

5.7.
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Figure 5.7: Sample auto and cross correlation

Sfunction for run AQ02.

A summary of the results for the first two runs are shown inr.’

Table 5.2. The initial transient in the output was not’ in¢luded in the
?

calculation of these quantities.

Run Lczy ozu Y
? A-001 | 8.4 471, | 72.1
A-002 | 2.6 | &7.01 73.9

L}

. .
Table 5,2: Comparisan of results for runs A00Ll, ACGO2

.

A]

The inclusion 0f v has almost eliminated the offset tYS

X

p,: 73.7).
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We would r;ot expect that the offset would be totally removed unless the
cont;joller parameters have converéed. Singe b=1, the minimum variance
controiler_ should produce an output which i; white noise. .

Poor parameter estimates initially,‘rgsulted in a control —sign:al
that moved the process. output to 50°C (Figures 5.2 and 5.5). The stochastic
disturbances .;re masked by what appears,' t0 be a major load disturbance, “and
the parameter estimates may be éhose of a déadbeat controller.} After this

B 1y [ .
inittal excursion the process output reflects the stochastic disturbances, =

anc_l the controller parameters should move’ away\frcm i:he_deadbeat controller
; ‘towards the minimum variance controller. The convergence will be slow
because of the deqréase in magnitude)of the elements of P(t) due to large
) excursion in\iltially.- b
Q In 1:uns A001 and A002 the cstimation was started off with 08(0) =
9_ “ In run‘\003 we' again uscd 9%40) = 0, however, the pa‘rameters were iden-
tified for eight sampling intervals, prior to being ﬁsed Jto calculate the
. control signal. A discounting factor of A = .95 was uscd until sampling

interval 30, after which A = .98 was used. A change in setpoint was made

after 70 samples. The paramcters were cstimated from the same model Stmctu;;e

. as inm A002Z, /r—“

‘ | \_’\__// \
Nyt*l = qut + al\t-l #* B()Ut + BIUt-l Vv teig (AS,13)

t

P
*

. . ~
: / The input-and output sequence, Figure 5.8 indicate that the transient

v ’ responsc was much improved,as comparcd to the first two runs. The initial
. parameter estimates from the prcliminary identification stage were not'

<« ~ T A .
. , close to their final controller values, Figure 5.9. ‘There is no advantage

- ©
« . & i
B . ’ "

’ . . ¢ b . . . N - s
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PARRMETER RATIODS
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identification stage, prior

in contrnuing the length of the preliminary

to implementing the self-tuning controller,}to twenty or thirty saﬁpling

H

intervals as one is not identifying the desired parameters.

~

Bl is very poorly estimated, and it is' not until sample 45 that it

. appears to settle down. In spite of the poor estimation of B, the control
signal and process output are not adversely affected. The controller para-

meters have not converged as indicated by the fact that r

yy(T), and r uy(1)

>
are non zero for © = 1,2.

\ —

1.0 ' 1.0
AN
G z | |
B . 5
0 1 I T T T 0 I I l I hd l A
0 2z 4 6 8 10 10 2 q 6 8 ;0
-1.0 ' -1.0
z-/
!

Figure 5.10: Sample auto and cross correlation
' function for run AGO3

-

The parameter estimates fluctuate more than was observed in runs
A001 and A002, which is the result of including a forgetting factor in
the estimation, The long term influence of the forgetting factor is not

seen as the asymptotic sample length of 50, is not far removed from the

’
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lcngtﬂ-of the experiment. Over heating of the stirrer motors prevented
the experiments from continuing past about three hours.

Instead of including a v term to eliminate offset in the controlled
variable, integral action may be included in the controller. The minimum
variance controller will only contain integral action if the distuybange
is nonstationary. In run AQ003 the input temperature was drifting upwards and
integral action may be justified.

A model of the form
+B'

Y, + a.Y

P t+1 %0t 1't-1 (5.14)

ot * ByWin * Fen
was used for identification of the controller parameters. The parameters
were estimated, but not used in the éomputation of the control signal

for the first six sampling intervals. A forgct;ing factor of A = .95 was
used for the first 30 sampling intervals, after which A = 1.0 wa; us;d. :
Again a setpoint change is made at t = 70. The temperature and voltage
squared to the valve transducer arc shown in Figure 5.11. The controller
ratios are plotted in Figure 5.12. Although the estimates seem to be
changing very little, thc auto and cross, correlations indicate that they

have yet to converge, Figure 5.13.
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Figure 5,13: Sample auto and cross correlation
function for run A0O4 . : -
It appears that the estimates have converged after record 63. It
would have been interesting to have continued the experiment for another

b
thirty sampling intervals at the same operating conditions to evaluate the

optimality of the controller at what appears to be converged ‘parameter ®
values.

The inclusion of ix}tégral action has complekz.neliminated the )
offset in the controlled variable. The results from A003 and A004 are
~ shoin in Table 5.3 (up to the setpoint changes)’. ‘ .

It appears as though the elements of P(0) = 100 I were chosen too
small for the B parameters, as the variance of \7':1Ut is of same order of

magnitude as the initial diagonal element. The inclusion of a forgetting
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factor of A = .95 for approximately 25 sampling intervals has refioved the

effect of choosing P(0) = 100 I by éample number 30. .

2 2
Run | o v o”, |- Y

A003 | 2.4 25.7 1 °73.8

AOO4 | 2.8 1162.3 | 73.7 -

¥
k3!

.

Table 5.3: Comparison of results for runs A003, A004

The parameter estimates have not convcrged; and the auto and
cross correlations provide no guidelines as to whether the controllc£
strucfure is correct. It was indicated in Chapter*é that there might be
high correlation among the parameters ?f éO was estimated. This highrcor-
relation could result in slow convergence. P(t) is proportional to the
variance-covariance matrix of the parameters 0(t), and the correlation
matrix of the parameters T (t) is approximated by normalizing P(t). Refer

to .\ppendix B for more details, Table 5.4 shows ' at sample number 70

for run AOO..

« & By B,
. 1 ]
[o= -.94 L
98  -.91 1
o~ .76 -.62 .84 1 |

Table 5.4: Correlation among parameters for
. run AOO4 at sample number 70

3
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The correlation .between the parameters is fairly high, and this may con-

A d

tribute to the slow convergence of the parameters. '
Slow convergence may also result if the model form is incorrect,
as discussed in Section 3.2. It was decided to increase the order of

- - < ,
alz l) and B(z 1) by ome. The controller parameters were estimated:from

a model of thq form

Yooy = og¥y YooYy *oes¥eog * B, * By,

(5.15) )

Although the model structure of run A003 resulted in better control than
run A004, with much less control action required, the parameters fluctuated
much more. In addition, it was felt that integral action in the controlier
lwhs a more appealing way of eliminating offset. A forgetting factor
= ,95 was used until sampling interval 30, afterwards \ = 1,0, The para-
meters were tracked for six sampling intcrvals prior to being usced in the
computation of the control signal. The tankh temperature and voltage sqyuared
applied to the valve transducer are plo;}cd in Figure 5.14. The outpu"
looks like it mdy be white noise. the parameter ratios, Figure 5.15 have
converged and appedar to be optimal as indicated by the auto and’cross cor-
relation functions, Figure 5.10.

The level of the disturbance was changing in this experiment,
Figure 5.14 indicating that integral action would appear in the optimal

controller.
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Figure 5.14: Process output, input disturbance and mani-
pulated variable sequences for run AVUS
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"Figure 5.16: Sample auto and cross correlation
. function for run A00S

5

For run A00S the variance of the odutput was 1.76, the mean value of tﬁe
output 73.8 and the variance of the manipulated variable 93.3. The
voltage squared to the valve transducer was well inside the ope}atlon
limits (1-81 volts squared) indicating that 1t would not be necessary to
constrain the variance of VUt. The controller parameter ratios, varliances
of the manipulated variable and process output and mean value of the
process output are sumnarized in Table 5.0, for runs AU01-A00S,

1 ‘ The controller parameter ratios from run to run are different
as would be expected, since‘thc final controller valves are dependent

on the structure of the estimation model and nature.of the incoming dis-

turbance. .The temperature disturbance entering the second tank was not

R
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A 3 R G, B .2 2
B B ;5_1_ , EZ '{3—2 B_l El ﬁg (Zc§2 5'4u
0 0 0 0 0, 0
. R
AUl .20 9.8 5.5 0. -.941 0. 0. 8.4 | 4m
VR 3 1.8 .66 0. | -.32 0. | -21.0 2.6 | 57,
W03 .13 2.7, .04 0. .39 0. | -13.1 24 | .
| AUD4* 28 0.5 -2.5 v. 27 0. 0. 2.8 | 162.3
© L A0US 28 | 7.3 | o-6.1n 4.4 .30 451 0, 1.8 |- 93.3
A006T - S - - - | 4 -
|

* integral action in controller

Y

open loop response

L
-

Table 5.6 & 5.7: Sumnary of fesults for Runs A00T-A00G

} — -/
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. over most of the exberiment;

‘ ing the second tank may be modelled by

108

- v
. 2

the same in each run although the same voltage sequence wds sent to thé

valve transducer of tank one. The open loop }esponse of the process is

-

shown in Figure 5.17. In this experiment the disturbance is stationary’

-

. The disturbance enteriﬁg tank two im run A005, Figure 5.14 apﬁgars

to be the sum of a slowly drifting disturbance, upon which is superimposed

" the generated higher frequency AR(Z)'d?sturbance. The disturbance enter-
1Y .

o

e y‘
> 04

1 o :
a, (5.16)

2
"¢’22) * .

1
T. = = a, *+ -
in,t vt (1-¢1z41

N [
where_[at} and {at} are two mutually independent white nolse sequences,
. . .

Iy

. ) 2 . :
mean' zero, variances ¢, and o The sum of the two stochastic processes,

a’ .
»+(5.16) may be written as, Box and Jenkins (1970). . 3
- M i -1 -1 * <
-1 - &g,z - £52 "
o gz ) " . 1 2 :
T. = —-a_ = ~— — a (5.17)
st e o - My 2 L uy2 ") ¢

Jhe disturbance at the eutput, Nf (2.4) will reflect the characteristics

of this input disturbance, plus any internmal disturbances. Thus the min-

\ s
imum variance controller e

s

-1
1 Lo(z 7).
. -8(z . 2
1 Yt (2.14)

w(z™) Lyt ye(z'h S .

may be very well include three past ihputs and outputs, as did the con-

troller for run A00S.

. . °

‘The mistake mentioned previously in implementation of the temperature
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disturbance in the first tank was corrected. The open loop response of
the process to this new disturbance is shown in Figure 5.18. Over 20-30
sampling intervals the disturbance appears nonstationary. The controller '

parameters were estinfated from a model of the fédmm

v

' (5.18)

.

gel = %¥¢ T #Yeo1 * BTy * B

v, _

1717 1

The voltage squared to the valve transducer, and the output temper'-
ature are shown in Figure 5.19. The controller ratios, Figure 5.20, are

those of the minimum variance controller as indicated by the auto and cross-

)

correlation function, Figure 5.21. The parameter ratio él/ﬁ has converged

0
near zero, indicating/{hat the minimum variance controller may well be the

d

(5.19)

PI controller

W, = -8.0 Y+ 4.0 Y, 4
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The last experiment, BOG'S, was ‘to investigate whether the minimum
variance controller would remain optimal if the process dynamiés changed.
The set point of the water flow rate remained unchanged at 30 1b/min for
30 sampling intervals, after which it was ramped dpwn twenty percent over
forty sampling intervals and stepped back to its ownjginal valve. The con-
troller form was\ identical to that in Run B002. The finitial para;ncter est-
wmates 8(0), and variance-covariance matrix P(0), were those at the con-
clusion of run BU02. The forgetting factor was changed to .98 to allow
the estimation routine to track time varying parameters. The input U,
and output Yt arc shown in Figure 5.22, and the controller ratios in
Figure 5.23. The measured flow rate is shown in Figure 5.24. The controll-

er ratios change negligibly over the first sixty sampling intervals. At
< .

s
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sample sixty, a large disturbance affected the flowrate, which the -

digital PI controller was unable to handle. This rapid change in flow

rate excited the parameters and they started to drift away from their pre-.

vious}y unchanged valves. At sample number seventy, the flowraté was

stepped back to 30 1bm/min. at which point the controller parameters changed
“~apidly, reflecting an increase in information.

The rate of change in the enthalpy input to the‘éccond tank was
actually very small during the ramping of the flow rate. The decrease in
flow rate was offset by an incrcasé in temperature of thg\ﬁiter from the
first tank. In hindsight, one would not expect the controller parameters
to change significantly. At sample number seventy, there was a significant

increase in the rygte oX enthalpy input to the second tank 'and the controller

parameters changgd, reflecting this new information. Experimentally it

- was iépossible to implement a twenty percent increase in water flow rate,
as the signal required to realize this change saturated the valve traps-
ducer. The auto and cross corrclations, Figure 5.25, show that the con-

troller was optimal for the duration of the experiment.
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Results for experimental runs B001, B002 and B0O03 are summarized in Table

5.7
Run var Yt var VUt Y
BOO1 10.32 0.0 72.4
BOO2 0.97 97.1 73.6
B(QO3 0.88 63.0 73.7

Table S$.7: Summary of results for runs
BOOl, BOO2 and BOO3

5.4 Use of the Auto and Cross Corrclation Function as Diagnostic Tools

Theorem 1 of Chapter 3.2 stated that if the parameter estimates

of the model
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B2, o * epu . (3.1b
converged a;ld the 1mplemented f{eedback controller was
S S
Vd'Ut = -g— (aoYt oot ath_m + Blvdut~l_+"'+
0
BzvdUt-z) : (3.8)
then -
t
p),y(r) =0, ¢ =b+l,...btm
and )
SN (t) =0 t© = Db+l,...b+{
: vy o

There wer-:: no assumptions concerning the nature of the undexlying
process dynamic or stochastic models. Une of the purposes of this exper-
unental program was to oxamine the utility of this '11\cox:cn| i awding ‘an
the selection of the correct controller structure. g

The sample auto and cross correlation function dumped out quickhly
. ,

when the mimmun variance controller form was correctly chosen. (See for

! C .
example experiments AUOS and BOOZ.)  Por experiments \O0OL to \OQI the

controller ratios chdanged at a rate which did not appear to be significantly

slower than runs A005 and Bo02, Yet, "\.\.(r), = 1,2 and (r) v = 1,2

¥
vuy

were not zero, indicating that the controller parameters had not converged.
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Consequently at the conclusion of these experiments one could not decide

whether the optimal controller form had been correctly chosen. 5
Convergencé of the controller parameters may be ilow if its structure .

15 not optimal, as indicated in Chapter 3.6. The output of the process’

will be a couple ARIMA time series, and e in (3.7) will be correlated -

Y

with (Y t_l,.'..} and {Ut, Ut-l""}' Since the controller structure is

£
not optimal this 'residual correlation' will persist and this may result

in slow convergence of the controller parameters. The experimental results
are in gbod agreement with this explanation, Simulations of self-tuning
regulators have also shown that the auto and cross correlations damp out
quickly if’;He minimum variance structure has been cheosen. The experimental
auto and cross correlations were computed with about forty‘Paiys of'lnput,
output data. Use of the auto and cross corxclatlon'functions are very use-.
ful 1n testing %or controller optimality, requiring relatively few samples

to indicate whether the proper structure has been chosen. If the optimal
structurc has not been chosen, convergence of thé controller pafaheters may
be slow. If the parameter estimates have not convbrged, although they

may appedar to be changing very slowly, the auto and cross correlatian
kunctlons prov}dy no iqfonnation as to how to modify the controller structure

to make 1t optinal.

5.5 Set Point Changes

The response of the tank .temperature to a change in set point was ’

examined I runs AOOL, AOU3, AUO4 and \WOS. Near the conclusion of these .
.‘ b

-~
-

runs, the set point of the controlled variable was changed from 73.7 °C

. , N
to 05°C, and held constant for-twenty sampling intervals.

> LY

e
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N
| In run A001, thehsef point was change&vatAsample number forty-eight.
Neither an integrator gf constant tem were included in the controller.
The performance\of the controller at this néw set point'is much bettér,
-Figure 5:2, as ghe'mean level of the‘ménipuléted variable is closer to
the reference valve that was used in the estimation scheme.
If a constant temm is identified, as was done in run A003, and the

'

process is linear over the range of operation one would only expect that

.

a ?hange in set point would change this constant term., Possibly due to
correlation among the parameters and nonlinearities in the process, ga11 of
them acfually change, Figure 5.9.

1f the controller has integral action one would expect that a change

. °in set point would cause the controller parameters to move aivay from their

previously identiffed valves, returning soon afterwards if the process

. 2

were linear over the entire range.‘ Unfortunately in runs A008, A004 and

AOOé, the change in set point coincided with a cﬁange in the characteristics

of thé\disturbqpce, Figurcé 5.8,‘5.11 and 5.14. This makes it impossible

to commcnt‘on the effect of sct point éhanges on the paramecter estimates.
The mean values of the contrqlied variable éftqr the change in set

point are shown in Table 5.8. After an initial very short “transient period

>
“

the controllers rapidly established good control over the temperature at.

-

the new set point (b5°C) with no upparént offset.
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Run Y o’
A00L 64.9 '
A002 66.3
A003 65.6
A005 65.5

v

Table 5.8: Mean value of the tank temperature
after set point change to 65°C

L

5.6 Precision of the Parameter Estimates

The controller parameters are estimated from a model of the form

= a(z’l)vt * B(z'l)vdut t e,

Yt+1 1 ‘ (3.11)
and used in the computation of the control signal
Wy, - :élilél Y : C5.14)
t 1;(2— ) t ~ ‘

as if they were cxactly known, This section will examine the precision
of the parameter estimates, how this influences the estimation scheme and
the effect of estimating By

In run B002 the controller parameters were estimated from the model

»

v

Y = q,Y, + o,Y + B

el = o0¥g P oog¥eoy BT BT e

17Ve-1 (5.15)

0 t+l

The two standard deviation cenfidence limits of the parameter estimates are
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shown in Table 5.9 at several points in time. The controller parameters

P

are poorly estimated in spite of their Being the optimal controller valves.

If it were possible to reduce the variance of the estimated parameters,

.

\1 the rate of convergence might improve. ~
{ | Parameter Sample Number
‘ 40 70 (end) |
a 2.58:1.09 . 2.20£1.03
&1 * .1.43:0.89  -1.00£0.80
B, 0.28:0.13  0.28:0.12
B, . -0.05:0.07"  -0.0L+0.06

«

Table 5.9: .hpproximate two standard deviation
confidence. intervals for parameters
of rum B002

The large variances in the estimated parameters is due large§§‘to

»

-

. .’
the presence of high corrclations among them, Table 5.10 as the joint con-

fidence region of the parameters is large.

s 0.0 l
@y -.88
BO ‘.96
- ”l .54
53

Table 5.10: Correlation matrix of the estimated
parameters at sample 70 for run B002
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4
Inen though there exists correlation among some of the parameters, it has

been feasible to cstimate all the controller parameters.

Ifb > 1, the residual.eo will contain information about the con-

t
troller parameters (see Equation (3.4)). In least squares estimation this

information is not used. Convergence of the controller parameters might

be improved by estimating them from a model of the form

(5.20)

Yt+b = a(z'l)Yt + B(z-i:)vdut + w(z-l)at+b

where

i

nzhy =1 nlz'l oot nb_lz'b+l

™

(5.21)

?

This requires that recursive maximum likelihood estimation or an equivalent
F J

method be Jsed.

“

Huynh (1974) identified the process dynamic and stochastic models

for the stcam jacketed stirred tank as

B

—_— . 108 1

Y =08y
oz b Y g-L3027

bl
T de+1 (5.22

-.17z 7))

The disturbance was generated by (5.8). The minimum variance controller

for (5.22) can be written as

oo e 17y . .
- U = -TLTY ¢ SATY, L rl6dY (5.23)

where terms involving Yt Yt-4’ ctc. are small., The self-tuning controller

-3’
parameters in run B0O02 (5.19) have converged to values close to those in

(5.23).




BU is an estimate of v in the process dynamics. Identification

of the complete set of controller parameters has shown that wo may have

)

0
had “0 shifted to 0.10 and we fixed éO at 0.17 convergence would have been .

shifted (the confidence limit on é = ,28:.13). In this implementation

exceedingly slow. The parameters of the controller may be well tuned

even though the characteristics of the process dynamics or disturbances
k

change. The performance of the self.—ﬁthning regulator should not be jeo-

paridized by a poor apriori estimate of éO’ when it can be readily estimated.

>

[ ’ ']

5.7 Summary

_ N
The self-tuning regulator was successfully implemented to control

the temperature of a jacketed-steam heated stirred tank. The necessity of
estimating a constant term, or includigg differencing in the estimation
mode] to eliminate offsct was examined in ‘runs AQ0L-A004, It was found that
the sample auto and cross corrclation function were very useful in testing
for controller optimality and parameter convergence. The rate of conver-
gence of the controller parameters was most rapid when the minimum var-
iance structure had been chesen which agrees well with the hypothesis in
Chapter 3. The sclf-tuning regulator gave a smooth l‘eS[)O;ISC to set point
changes with no resulting offset. It was demonstrated that it was possible |,
to estimate all the controller parameters, and it was not necessary to {ix
one. -

Q Future work on the sti,z:rcd tanks might include applicafion of(‘fllc

‘self-tuning controller of Clarke and Gathrop (1975). The next chapter reviews



127

the most importdnt aspects of this work, examines some limitations of the

self-tuning reghlator and suggests areas that require further investigation.

Y
\\
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SUMMARY AND CONCLUSIONS

v

An attempt has been made in this thesis to provide a unifying treat-
ment or overview, of the theory of self-tuning regulatoré. Topics in linear
stochastic control theory were reviewed, followed by an extensive discussion
of self-tuning regulators, A critical review of process applications in-
dicated some problems that have occurred in several implementations of
these regulators. It is felt that this overview is important, as it has
brought together most of the relevant theoryf and related topics. Some of
the confusion surrounding aspects of self-tuning regulators stem from the
fact that similarities and relationships between different topics “are not
fully understood. .

The Box and Jenkins (1970) representation of dynmamic and stochastic
processes was comparcd and contrasted to that proposed by Astrom (1970).
In the latter's rcpresentation there is no provision for modelling non-
stationary disturbances. Conscquently, minimum variance controllers have
no intcgral action and the controlled variable may pave offset.  Llimin-
ation of offsct was one of the problems cncountered in application of self-

’
tuning regulators. When the theory is presented using the notation of Box
and Jenkins integral action cnters the controllcrim an obvious manner
when the disturbances (stochastic or deteministic) ave nonstationary. By
correctly accounting for nonstutic;nu'ry disturbances in ghe qstuuution model,
one avoids the nontrivial problems of estimating an additional parameter

lying near stability boundaries of the process. As a result the self-tuning

- 128
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regulator should be less sensitive to process parameter variations.

The discussion on the selection of the sampling interval has pre-
viously been neglected, but it is important that it be selected with some
care. The number of parameters to be estimated increases, if the process
is sampled at a fast rate compared to the process deadtime. However, if
the disturbances are stochastic little improvement in control is achieved
by choosing the sampling interval to be much shorter tﬂan the process dead-
time. Sampl%pg of a continuous process may result in a discrete dynamic
model that is non minimum phase, and the self-tuning regulator algorithm
must be modified to account for this. The complexities of the modified
algorithms require a more soéhisticated knowledge of the underlyihg pro-
cess dynamics and stochastics. The most appealing method of handling non-
minimum phase systenﬁ’is to cthQe the sampling interval if this is possible.

There is considerably confusion’ in the literature concemning the
estimability of all the controller paramcters. In fact, it is possible to
estimate all the controller parameters-since the self-tuning controller is
a time varying function of the process input and output. This is an impor-
tant result, since if one parameter is fixed, the stability of the process,
and rate of convergence of the remaining parameter is dependent on how
close the value of the fixed parameter is to its true (but probably un-

~

known) value.
P
There was a long discussion on sclf-tuning constrained control,
least squares estimation, convergence of the parameter estimates, stability
of the closed loop system, and the incorporation of feedforward variables

and multivariable decoupling. Self-tuning constraining control will only

”



produce the desired results 1f the estimation model co}rcctly accounts for
nonstationéry disturbances, if they are pre;cnt. Sclection of the sampling
interval, and structure of the estimation model affect thé stability of

the closed loop. By considering all these topics in this thHesis it is
possible to seé their interdependence.

Another objective of this thesis was to gain a familiarity with
implementing a self-tuning regulator to control a pilot plant process. The
sel f-tuning regulator successfully controlled the temperature of a steam
jacheted stirred tank. Although this is an easy process to control, the
application to a real process allows one to investigafe ?%pics in the theory
that have led to problems, or caused confusion in previous applica£ions.
Diagnostic tools used to check for contro}ler optimality and parameter
convergence were found to be very useful. [Estimation of a constant term
and the incluglon of integral action in the estimation model were methods
examined for eliminating offset. It was also found possible to estimate
all the cgntrollcr parameters.  The rate of convergence of the controller
paruameters was most rapid when the minimum variance structure was chosen.
'1h15 result agrees well wath anp intuitive explanation presented in Chapter
3. There have been several rcportcd applications of seclf-tuning regulators
to controlsindustrial and prlot plant systems processes, so this portion
of the thesis is not uniquc.- Nor was the process difficult to control.
However, the necessary software was written and with the familiarity
gained from thi§ project, the application of a self-tuning regulator to
control more ditficult and challenging process should proceed smoothly.

The self-tuning regulator would appear to be a very powerful means

of controlling processes with nonstationary (deterministic or stochastic)
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disturbances and large deadtimes, as the controller includes deagdtime comp -
ensation. Where  there 1s strong economic incentive to maintain product
quality within a specified range, minimum variance contrellers are a
sensible class of controllers., lHowever, design of minimum variance and
constrained minumm variance controllers requires a plant experiment, and
extensive and sophisticated off-line analysis of data. If‘these controllers
are to be effective new process data from design experiments must be
collected if there are shifts in operating level (i.e. grade or selectivity
changes) or the ﬁrocess characteristics change with time (i.g, decaying
catalyst). The self-tuning rcgulator by contrast, is simple to use, re-
quiring a minimum of experimental effort and can continuously tume the
controller parameters, thus tracking slowly changing process characteristics.

There may be difficulty in applying self-tuning regulators to con- .
trol processes that arce nonminimun phase or that have changing process
deadtimes. The lattey is the more serious problem. If, for example, the
nunber of whole periods of delay shifts from three to four, the delay used
1n the estimation model and the dimension of the controller will be under-
estimated. As well the process may move in amd 6ut of nomminimum phase
with shifting deadtimes. These phenomena could lead to process instdbilitiCS.
Many of these problems can be solved by a judicious choice of thq sanpling
interval, [t may not be necessary to sumplé the process so rapidly that
there are three or four whole pcriods of delay to realize good control.
By incrcusing the sampling interval the cffect of changing deadtimes can
be “reduced. ‘

The scltf-tuning regulator has not been used to coutrgl extremely
non-linear processes or those hayxng probiems with changing deadtime.

4



lurther investigation into these areas 1is required. One of the unrealized
objectives of this thesis was to use the self-funing regulator to controi a
catalytic pached bed reactor carrying out the extremely tempcrdture sensitive
nydrogenolysis of but;ne reactions. This process is difficult to control,
having high heats of reaction, radial and axiil tempdrature gradients and
extremely non-linear behavior. It was hoped to try different self-tuning
regulator configurations and compare the results with 5ID algorithms and
multivariate lincar quadratic control studies that have been completed
(Jutan (1976)). A lengthy mini-computer breakdown prevented these studies
from being completed for this thesis. However, this project is being pursued.
An obvious extension of the univariate self-tuning regulator is to
multivariate self-tuning regulators to account for process inter-
reactions.  Prelimanary work (Borisson (1975)) suggests that the multi- f
variate dynamiL und‘stochastlc models be represented as

AZTDY, = BETOU 0T sy (0.1)

where A(:-I), B(:'IJ nnd.C(:-l) are matrix polynomials and Et and gt
S \7
are vectors of process inputs and outputs. .\ rather straighttforward ex-

tension of the self-tuning regulator concept wuas proposced there in which

the parameters of the multivariate mihumen variance controller were to

.Y

be estimated from a model of the tform

S T -1 ,
Yoo =z 0BG O ey (e.-)

and used 1n the control law

4 .
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R Uy = By Hsz Y, ¢ B e BUD) (6.3)
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-

at cvery sampling interval as 1f they were exactly known. It 13 doubttul
that with this approach plant or industrial applications will be realized.
Lven for two inputs and two outputs a large number of parameters must be
estimated. Convergence can l:e excruiatingly slow due to poor conditioning
among the parameters. For the multivariate self-tuning regulators the
fewest r‘xun}ber of parameters must be identified that account for most of
the variation in the process outputs. This requires that statistical
tec?miques such as 'model reduction be used. Obviqusly this requires 4
sophisticated understanding of the process dynamics and stochastics.
However, without application of some model reduction techniques the malti-
variate self-tuning regulators appear too cumbersome to use.

This thesis has tried to present a unifying approach to the theory
of seclf-tuning regulators. With the wnderstanding gained from this work
it 1s felt that more challenging applications and extensions of the basic

theory gan be realized.
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" APPENDIX A

PARAMETER ESTIMATION IN CLOSED LOOP

Mosf'techniques for estimation of the parameters and identification
of the structure of process dynamic and stochastic models require per-
turbation of the process input while the process is run under open-loop
conditions. For a variety of reasons this mode of operation may be un-
sati§factory. Only recently have the consequences of identification of
process dynamic and stochastic models been thoroughly examined, Box and

MacGregor (1974, 1976) aftl Soderstrom et al. (1974, 1975, 1976). . .

- Necessary and sufficient conditions are given so that one may obtain

unique estimates of the process dynamic and stochastic parameters when'
the feedback controller is linear and time invariant.

In the literature on sclf-tuning recgulators when trying to estimate
ag & ﬁl _
the parametcrs of the controller (E— . Ea ceny E— ...), there is a great
’ 0~ B t ‘

deal of confusion as to whether these can bé obtained by estimating all

~ -

the parameters (uo,'&l,..., BO,..T) {rom equation (3.11) since this con-
tains onc redundant paramcter. If one parameter is fixed (i.e. ﬁo) the
stability of the closed loop and rate of convergence of the remaining
paramcters is dependent on how close this fixed valuc is to the true

valve. Astrom and Wittenmark (1973) gave the following example to show

A

that one may not be able to uniquely estimate all the parameters (ao, 4y
eey BO’ Bl"")‘ ‘ ] |

Let the process dynamic and stochastic model be

- 134 -
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Y=aY~ibU + a (A1)

In this particular example the parameters in the estimation equation are
also the process parameters. The minimum variance controller parameter
is (a/b). Suppose the parameters of (Al) are obtained by minimizing the

least squares criterion

‘ N 2
Vl(a,b) =L (Yt maY, g - bUt) (A2)
s=1
Suppose the feedback controller
u, = kYt (Aj)

is implemented during the collection of the data. Now (A3) may be writt;n

as
—c(Ut - kYt) =0 (A4)
where ¢ is any scalar. Adding this expréssion to the quantity inside the

brackets of (A2) then

N
2
Vl(a,b) = sil (Y, + (ck-a)Y_ ; - (b+c) Us-l)

(A5)

There is no unique solutjon that minimizes (A2) as it is seen that

AY
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~

Vl(a,b) = Vl(ck-a, b+c) {\6)

also minimizes (A2). TFrom.this example it was concluded that all the
parameters of the model (Al) could not be uniquely éstimated when the con-
trol was generated by a linear feedback law.

This example does not rcally describe the estimation situation that
one encounters wifh the self-tuning regulator. Unless s(igl)efz'l) = 1,0
and b=1, the parameters of the estimation equation (3.11) are not those of
the process dynamic and stochastic models. As well, if the controller para-
meter estimates are being used in the computation of the control signal,
th; control law is a nonlinear, time varying function of the input and
output sequence. Thus all the parameters of the model (3.11) may be est-
imated.

By way of illustration, supposé that one is trying to estimatc the

parameters of the mininum variance centroller from a model of the form \\
}

Y =

t+1 Ot() (:\7)

Yt + BOVUt + €rel
At time t, the least squares estimates of a, and BO are given by (con-

ditional upon initial effccts)

-1
/ y N
A N, N o) I
a I ¥ U__, Y. LY Y
0 i so1 1 s=1 S 1 s-1] |52 8 s-1
(A8)
R N N ” N
B LY. UL T owUs Y. Y
\ 0 L_=l s-1 "s-1 -1 3 1 ) s=] S S l/
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If the control law

YU, = kY, ‘ (A9)

: ' -1
-] N ( 1 ()]
a, E YS Ys—l 1 k 1

s=1
5 —— . (A10)
N

" 2 2
B Y k k k

O+ =, s=1

I L J s=1 L J L.

A

© agand By are perfectly correlated and there is a singularity in the est-

imation space. 1f the control law
vu, = k(Yt, vUt)\t (Al1)

is used at every sampling interval then it is obvious that oy and BO may

be uniquely estimated, which 1s the case when

\ , : L;.(;-l t)
k(\t, VUt) = 1*--—_—1-2—-— (:\12)
B(z ~,t) .

If thc parameter estimates converge then

k(Yt, VUt) + k (A13)
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However; the least squares criterion

min V(8) = ge%g (AL4)
s=1 '
still contains information from earlier on when the controllér was time
varying and nonlinear.

Let us now examine whether or not one parameter in the estimation
equation (3.11) will always be a linear combination of the others or to
what extent this previous analysis depends or to what extent this previous
analysis depends on the structure of the pro;:ess dynamic and stochastic
models. This is an asumptotic analysis and presumes that the controller

parameters 6 estimated from the model

Y, =X (D)o + ¢

b © (AL5)

t+b

\

Y

have converged. The least squares solution for ¢ gives B\ppendix B)

}}t)o = \ Y t+b ’ (Alo)

b4

I'f 8 converges so that it+b is a moving average process of order b-1

then ‘L

1 S .
(X, Npftor =0 (AL7)

<2
where E(} denotes mathematical cxpectation. Since @ # 0, (\1‘ ._\'t) is not
. ‘

of full rank (Noble (199)). Bohlih (1971) and Box and MacGregor (1976)
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hagc shown though, that the parameters of the minimum variancc controller
(:g-, i% y aee E% »+..) are identifiable if the control is minimum variance
BO B0 BO

optimal as soon as the transport delay is known. , This implies that the rank
of (ﬁt Xt) is just one less than the number of parameters being estimated.
(Implicit here is the assumption that the orders of &(zil) and é(z_l) have
not both been overestimated, in which case &(z'l) and é(z_l) would contain
common factors (Section 3.2)). Thus, asymptotically only one parameter

can be expressed as a linear combination of the %cmaining ones.

If Xt+b is not a moving average process of order b-1, and the
parameters é converge to Some values, then it is easily seen that at leasF
one parameter can be expressed as a linear combination of the rcmaining/,
ones and this is all that can be said.

It is seen that asymptotically, onc parameter may always be expressed
as a linear combination of the remaining ones. In practice though, all the
parameters of the model (3.11) can be uniquely identified tpe fccdbuck con-

troller based on arameter estimates is a nonlinear, time varying f{unction

of the input and\output)scquence.’



' APPENDIX B

CONSISTENCY AND BFFIGIENCY
OF THE LLAST SQUARES LSTIMATES

L

Bl Introduction

Statistical aspects of the least squares estimation scheme will be
examined in this Appendix. 'Consistency of the controller parameters will
be examined, and there will be a brief discussion conceming the efficiency

of the least squares estimates.

B2 Parameter Consistency

The process dynamics and disturbances are described by a model of

the form

<

Y ~ m(:-l) U + U(.:-l) a (Bl)
r-/t+b sz ) ¢ m t+b ‘ o

where the {at's} are a sequence of nomally distributed mean zero, . variance

2 . .
94 random variables. They have covariance structure

h(ut ut+j}

H
<
-
LS
feed
/

(B2)

=0 j =0 (B3)

-

The output of the process may be written as

a1} I
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01, a0 -] 0 -1,
e 2@ G wup @ s e e

v L,z Dag,, (B4)
where
L = seThL e (B)
B9 = w2 e (B6)
el = sl heleh (87)

GO(:«I) is the order mo and Btzbl) is of or®r Lo. Lz(z'l) and L4(z_l)

are defined from

-1 : - Lo(z )
o(z _ -1 2
S L i R e (BS)
ve(z ) 4 . V(2 l)

‘The total history of the process to time t, may be expressed compactly

as #e,
-

where

Y = (Y

, ¥
Yoo X o) (B10)

t+h t+b-1
U SR . :
and v~ is the vector of minimum variance eontroller parameters, i.c.

00 0 0 0 L0 0
Y = L(XU, ul veoo ulrno’ Bu: Bl o BKO) (Bll)
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v}

+ \,Xrom and Wittemmark in the self- tuning reguiutor:‘prohlem suggest that
" . . 0
one try to estimate the minimum viariance controller parameters & from a

model of the form

S N -1
Yo, = oz Y, B v e, (B12)
If the orders of a(:'l) and B(z'l) are correct, then the total history of

the model output to time t may be written as

Youp = % 80+ gy . (B13)

where
T
8(t) = (ag, ayeene w05 By Biooo Byo) (B14)
[t is assumed in this analysis ghat the correct orders of az™Y and

B(:‘lj ar¢ known. ‘The parameters of (B13) are cstimated by least squares.

The estimates §_(t) are given by (Kendall and Stuart (1900))
o T -1 T .
o(t) = (.\.t Xt) ‘\t 1t+l) (BLS)

T . ’
l;t ._\t) must be nonsingular and this requires that the mplemented con-
troller be time varying or nonlincar. The cstimates 0(t) are unbrased 1f

-

0

Lio(t)) = o (B16)

where E{ } denotes mathematical cxpectation. Substitution of (B1S5) into

(Blo) gives
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Lis(t)t = 15{(.&3 .\'t)'l (1 Yeup) (B17)

In most regression analysis, the elcments of X are related to the settings

of independent variables, i.e. pressure or temperature. These are assumed

~

to be fixed quantities. The expectation operator in (Bl7) would then
“pads through these valves as E{kY} = KE{Y} where k is a constant. Now,

thc’elements of X are functions of‘the random variables {Yt’ Yt—l""

,~ﬁdut, VdUt_l...}. One must take a conditional expectation of (Bl17). It is

s

assumed that at any time t, that Yt+b 1s a random variable and that {Yt,

Yt-l"" VdUt, VdUt_l...} are fixed since they have occurred. Thus (B19)

is written as
E{é(t)} = (YI X )_l XT BLY, ) (B18)
— ~t -3 et +h

When the output of the process (B13) is substituted for It+b’ then

S B = ) xp e Vol

- t""h

e Y (B19)

S 15 a4 moving average progess of order b-1

t+b

0 __‘l . _,'b"'l . >
(t+b (1- + Wl- +t.,..t "1)'},“ )dt"’b (B_())

i

(B21)

H

.1
Ly Dagy
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X .
©eab is nomally distributed with mean zero, variance (1 + wf oLt
b} b ‘
¥, ,)a” and covariance s@cture .
b'l a R t -
‘ b-1 ‘
0 0 2
covie, Y =al T v, d’b+1-j’ 0 < k<b-1

€tk a 5=k j

-0 i kK> b (B22)

where ¢0 = 1.0, A time t+b 2 b is a randOm variable with expectation

equal to zero, and (Bl9) may be written as

E{é(t)} - (;t X)) xt 2" ared ey
\

=20 1y \9\\ X, (6] %y o

+ F’g Xt-z 9_0"".‘-] \‘s \(824)

If 6(:'1)0(:-1) = 1.0 then L{o{(t)} = 00. and the estimates of 0(t) arc

always unbiascd if the correct model structure is chosen. If 6(1"1)0(2-1)
# 1.0, as would be expected in most cases, then if the implemented controll®r
is of the minimwn variance Eoﬁn, Astrom and Wittenmark {1973) sho\$~d that
the estimates of 9(t) will be consistent (asymptoﬁcally unbiased) if the

estimates converge. ' The tem in the square brackets of (B24) is equal to

zero by virtue of the fact that for all time (t-j), j > 1, the sell-tuning
oV
B o= ()‘.
t-j =
This .mal)sm has. some implications for startup situations. If

recgulator has set \ j c(t) = \(

during startup of the self-tuning algorithm, the parameters of (B13) are
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e §|Ii .
identified, and an existing controller, i.e. PID, is used to compute the
control signal, one will not iq gereral be estimating the minimum var-
i%nce controller parameters. To preveﬁ% this initial unbiasedness from
influencing future estimates, the identification stage should be kept
as short as possible. The use of a discounting factor (A) less than one
will also insure that future estimﬁtes are not unduly influénéed from

data which occurred when the parameter estimates were far removed from

their optimal valves.

B3 Efficiency of the Least Squares Estimates

The most efficient estimate of a parameter may be defined as that
one which has the smallest variance, (Kendall and Stuart (1966)). The
variince-covariance matrix of the controller parameter estimates is given

by
covia(r)) =E((B(t) - E(o(t))) (9(t) - L{a(t))) T (B25)

Substituting (B15) and Bl7) into (BZE)‘thcn

T covie(n} = 0 X)) B, - LY )

ey © EDaph '+ X 08 X0 7 (B20)
. ‘ '
d = ]

If the parameter estimates v(t) have couverged to the minimunévariance

controller parameters, then dsymptotically
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. g T .
E{(It+b "B ) My © E{Xﬁb}) B
0 0T -
= E{.E't+b £t+b} . ) . - . . (BZ?)

[

. - v N ) .. , L3
€.+p 15 @ MOVing average process of order-b-1, with covariance structure

(B22). Thus (B27) -may be written as

0T

0 -
" Feepepn - 8 - o (B

»

4 3

where the elements Mij are given by

. - [ ]

b-1 .
2
M. = a-. . o
ij ~ “a k?ii‘j) wjll'JI Q)b"l“ll*’:’l .
I ‘ . 0< |itj)<b1a ,  (B29)
= 0 SR N ] - (B30)
o ) 1 -

. A P . )
- The variance-covariance matrix of ‘the parameter estimates is therefore

Y
Q

given by - | E D
1

s T AL ST T
= P Ay M PLVIRR, § B
cov(d(13) = (] 30" K MR Q{ o

©

when b=1 (B31) reduces to

covip(t)} = (X X))V v2 S e

’
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the usual least squares result, and the correlation matrix of the parameters

is given by L(t), the elements of which are .

SR JP— ) 1 o ©(B33)

The Ci; 's are the elements (ij) of Qg:f &)"1. Since one is not identifying
the mov1ng average parameters it is impossible to determine the true var-
iance-covariance -ma;trix‘ of the parameters of b > 1. e
The least sqﬁiares estimates of the controller parameteré may not E:j
the most efficient estimates, If b > 1 information about the controller
parameters js contained in e:g +b* It may bé possible to reduce the4 variance’
of the estimates by s-inmltaneous identification of the contﬁller para-
meters and the moving average parameters L4(z'1J by say a recursive max-

imum likelihood procedure (Soderstrom et al. (1975)).



APPENDIX C

CONSTRAINED CONTROL PROCEDURE OF
CLARKE AND GAWTHROP (1975)
\\

The self-tuning controller of Clark and Gawthrop (1975) is reder-
ived in this Appendix.- It is shown that if the controllers parameters
» 1
converge then the self-tuning controller will minimize

)

9§+b/t + E' tvdut) 2 ‘ ' (C1)

™

~ 1
where Yt+b/t is the b-step ahead forecast of the output and £ > 0, and

that the same strategy will minimize
2 2 ”
E(o? ) = B((Yy *+ evU0%) (c2)

It will not minimize the cost function claimed by Clarke and Gawthrop

(1975), namely
var Yt + 5” var VdUt (C3)

It is important to demonstrate fhat minimization of (Cl) is equivalent

to minimization of (C2Z) because this fgnns the basis of the d;velopment
of the self-tuning controller ‘to minimize (C2) and because (C2) by itself
does not appear'to be a sensible criterion. |

Consider the representation of the closed-loop system in Figure 2,4

- 148 -
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_ using’ the notation of Bax and Jenkins (1970)

sz hyezh 1y, + L, (2 Y, cap)

?\&\ ' a(z'?)Lz(z'l)Yt,+ w(zil)L4(z*1)6(i'1)Vdut T {c4)

Y

)
(C4) may be written as

Je(z ey b * evdU£} - 6(2'1)L2(z'1)Y£

. wz L, e+ gazhe™y vy,

+(‘;(2\)6(z-1)1‘4(z-1?3t+b : ) '(CS),\? /

or . ¢
e o', -1, ©
_ 9 (z ) . B0 (z ) d'U
brep = T et VU
§(z 7)o(z ) 8(z JG(Z B
S o (cs)
~where ' )
0, -1 '
e = L Doy, . «n

The control strategy minimizing E(@zﬁb} islobtﬁained'as follows

‘9 ‘ (z )vdu + a (z 1)Y
A O .
e T T G e ) KR

: . [ 0% )vdu + o (2 l)Y
‘o . N v

6(z )e(z )

L4(z )3t+b + ["4(z )at+b]2 o e

|
v
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»

4

Taking mathematical expectations of (C8)

8Nyt + Py,
E ([ ey 1%
s sz

2 )
E{‘p t"'b} =

2 > 2 2
B G R TV SRR WS D L ()

\
where oZ is the variance of {ai'sl. They are distributed N(O, i) with co-
variance structure .
| E{a, at+J} =0, j>0
2

g
a)

i

j=0 (C10)

, o', -1 . 0. -1 -1
The cross product between [B~ (2 ’)VdUt +a (z )Yt] and Ln(z )at+b

vanishes as the latter is the b step ahead forecast error which is com-

pletély uncorrela;ed with all information at time t. The variance of thé

forecast error (1 + Li 1 ¥ Lz 2 o f b_l)d:' is fixed, independent of
1

.

any control actlon that may be taken, The expression

. SR LIS | & 0, -1 ;o

. BT (2 VU, el (2 )Y -, :

E (] S et L) B ey
, 8(z )9@2 )} ’

1s greater than or equal to. zero.and the*control action

, Dl _&Ez\)l‘z(z b -
\le,’t"ﬁb"‘g——_l)l“'t Ve o

(z )L (2" )¢cz )+e;6(z )9(
e T (cm
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\}rill minimize (C8). . ! )
If the parameters of .the controller (C12) are unknown, Clarke
/ proposes that the parametersbf the model
\» ‘ :
=8 v, o hY, ey, N (5 )

' ) -
be estimated at every sampling interval and used in the controller

VﬁU ‘r'("—r)‘ Y - (C14)
B (z L ?

~as if they were exactly known. If the controller (C14) is optimal in

} t.hen \ ‘

the sense of minimizing E{s% b

E(e(t)o(t+c)} =0, t > b o (c15)

The resulfing contfoller is the same one that could have been de-
signed had the process 'dynamic and stochastic m&els been known. This is
not shown formally by Clarke and Cawthrop (1975), but analogies are made
to the uncoxxéfrai:mcd self-tuning regulator since equations (C6) and (ClS)
_+ eare duals of (3.5) and (3.11). . n
On first glance the cost function to be minimized, E{ (Yt+b +gvdut)2}

does not appear reasonable.’ Expansmn- of (G2) gives

~

E{@zﬁ_b} = var Yo + g2 Zvar vdU + Z cov (¥ +deU ) ECJ.6)
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There is no reason in general why the design criterion for the controller
should involve a covariance between the input and output,
Consider for the moment the development of a strategy for the min-

imization of an alternate cost function. The process dynamic and stochastic

models may be written in the form

.l ~
o wz 0
Y,c W = —L-Il——&_ \7‘1Ut + Nt+b /t + €evb (c17)

§(z )V
- Y ‘ (C18)
t+b/t ¥ S+b o -

Here again eg +p Is the minimum variance forecasw—o'{ Yt+b and it's

completely uncorrelated with all infoymation upgto‘.time t. Yt*rb /t is the

minimum variance forecast of Yt% based 'solely on information up to time

. 4 [
t. Squaring (€18) and adding £ Uzt to both sides, then

2 «

AZ ) - { 1 2 -~ l
Yo + € 0Up*? t+b/t LR Y n
0 0 2 . | ‘
" Cp t ’(et+b) - {€19)

Taking mathematical expect_ationé of (C19) remembering that- egﬂ) is un-

correlate& with ~(Yt, Yt:l’ oo ’Vdut’vdut-l"' ,.) -then one gets

. t N . *
var Yt+b + svar VdU E{Yti-b + 'E‘(VdUt)? + Gzeo‘. (€20)

<

where 02 0 is t:he varlance of the forecast error. Clarlie' hnd (‘awthrop

-C197S) dlfferentlated (CZO) thh respect to vdu\ and set the result to. zero,

-
o
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to find the control strategy which- they thought minimized var Youp *
£ var vdUt. However, they ignored the 'eXpectation operator when they took
this derivative, and as.shown by MacGregor and Tidwell (1976), minimize thg

objective function

+£(dU)2 “ . ' (€3)

k.v ALY

t+b/t

MacGregor and Tidwell refer to this as an 'in&:a:‘iebus' or 'shortsighted'
optimal controller as it does not take into account the éffect of the
caontrol actlon on the output at lead times ,greater than b, whereas

the Weiner-Hopf solutlon, w}uch minimizes var Y + £ " var VdU acccunts
. for this. Consequently the increase in the variance, of Yt’ for a given

reduction in the variance of vdUt, will be larger if the controller is

-
dgsigned by Clarke's algorithm (Refer to Section 2.5 for an example). .~

(C1) may be written as e
- -1 (2 ) ‘
¥2 4y 52 el )y . Ly o
+E o - a.)
t+b 6(7_ I)VEI o(z I)Va t

"j 5' (VdUt)Z (CZ],)

L 4

Taking derivatives with respect to v‘lut and setting the result to zero then

| | L d eh |
N(z vdu 2(2 )a (b) [ 2 a ]) X
(a(z )v C6(z I)va dvdu ¢(z'Ijvd L :

+e;'v‘1ut=0 : e (c22) .



154

L Cz )
—-——T—H is the b step ahead forecast of Yt +b glven only the information

¢(z v
at time t, and it is not a finction of VdU

The control act1oq minimizing (Cl) is then

Lz(z'l) ‘ S
-I a

- vdut - - ¢(Z_13V — a, | (C23)

N

§(z o wg

Q ' ' .
Expressing a, in terms of Yt by substituting the control action (C23)} into

- * —l‘ —— f =
Y‘l‘; = ———1)——“22_ > VdUt\*' [1.44(2-;) + z'bLS(z'l)]at . (C24) )

and then substituting that result back into (€23) gives

-1 . . ‘ .
‘ ~L (z ™) 1 .
vy, = § Y, (C25)
t L(z)wzl‘ +§_'_(1+zb (zljt
- vz ) wg - L4(z )
Y.
Subsi:ityt’ing a1 . '
L. (27" —————I—-Jinz ) | - (C26)
z.") = - .
3 T ez )V -, :

then (C25) may be written as

- . 5(:».'1;L,<z'1-) .
VT A T,
u(z )L (z )¢(z ) + w5 8(z )¢(z )

s . . ‘. e ¢ - et

® ~ .
- ’ L4 N . ) N ‘/
N .

(@n
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Comparing (C12) and (C30) it is seg
EVd'Ut’)Z} is equivalent to minimiza
If thé disturbance is nons

o2 2 S
Yt+b + &:'(vdUt) where d > 0. The
if d > 0 due to the pole of order

Controllers designed to minimize

not .in general stabilize the varidnce of Yt‘

are corrected to account for this.
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en that minimization of E{ (Yt+b +
£ (vdu )

tationary it is necessary to minimize

tion of Yt+b

variance of Ut is theoretically infinite
d on the unit circle in the controller.

Az U ) } w111
“o

2
t+b/t E,U or E{(Y

t+b "
The results in this Appendix

. o2
The cost function Yt b/t

minimizes, leads to useful contro

ller designs.

1 15(\7dUt)2 that Clarke and Gathrop (1975)

Their self-tuning controller

is a clever extension of the basif self-tuning algorithm and provides an

easy means of constraining the magnitude of the contrel action.

fed

2



APPENDIX D
METHODS OF CONVERGENCE ANALYSIS

In this Appendix the ordinary ,diffe'rehtial equations, which may
aescribe; the expected traje’ctories of the 'recursivvel)f estimated parameters,
will be examined. Asimple one parameter example is solved, and it is
shown that the complexity of the ‘differential equations increases rapidly
if }niam paﬁnetem are to be estimated. ~

It is assumed that the process may be described by a modei of
the form

B(z1

-1
Y = u, + &

D1)
t+b A(Z" ) t A(z' ) at"'b (

The parameters of the minimum variance controller are estimated from a
model of the form

A

. |
Yoy T X (08 % ey . (02)

Under wea]g tonditions (Ljung and Wittenmark (1974)), -the ordinary differ-

ential equations

e .
dr - . - . ) .

« -7 <156 -



157

dR(7)
“dr

= R(1) - B(7} G(®) R(7) R O

'\'ﬁ‘ .

may\chCI'ibe the expected trajectories of 6(t), where

il

£8) = E (X() (Y, - X (0D (05)

and

G®)

E(x(t) x (t)) (D6)
v 1is' related to t by

T 8a(t) “ - ' (07)
,// s
if the discouﬂting factor (z}) is one. If the ector of minimum variance
controller pérameters, 9_0, is a globally asymptotic sta'tior.xary" solution

to (D3) then (Ljung and Wittenmark (1974))
3

timg(t) » 87  with probability one . (D8)

b ke ]

Ljuhg and Wittenmark examine quantitatively under what conditions 9_0

may or may not be a globally asumptotic solution to (D3). Their results
may be described briefly as follows. | . . t,
R(?) is taken as the wnit matrix. The differential equation (D3)

. . a0 . :
is linearized about 8 to give . .

RAY
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& 0. 4£(0) - |
=£@) v (8-8) —1} g - (D9)
s ' @ |e
From (D5) £(8%) = 0. (D9) may be written as
ae -8 - .
————=(2- M (D19)
dt R ‘
where . ‘ : )
as(e) -
\ M= — | o (D11)
a | o

¢
-

f

M is a function of auto and qross.covariances. By a judicidus choice of
values for A(z'l) , ﬁ(z_l) an& C(z‘l), Ljung and Wittenmark (1974) were
able to make the trac;e of M positive, indicating that at least one eigen-
value had a positive real part. Thus _8_0 was not- a globally asumptotic
solution to (DZ':L and the self-tuning regulator should not converge.

-This was verified with a similation.-

As an example of the solut';'ton of the simultaneous ordinary differ-

ential equations (D3) and (D4), consider the system

?

1

b 1+cz” : : oy
Y = ————:I-U *—=ra {D12)
t+b l+az F 1+az t+l

This example is discussed in Wittenmark (1973). The minimum variance

controller is : !

U= Y L
The parameters of the mmmum variance contyoller are estimated £rom the

W
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model N

- Yeep = e * Bolph Sy . k (D14)

To reduce the complexity of the differential equations consider B;) fixed
to 1.0. Then

& s .

£9) = B, Yy )= v (1) . Nt
and ‘ “ 1
_ G© = B Y - 3, O (D16)

where the auto covariances are computeé for the closed loop syétém/

- -1
" ~b 1+cz
N 4 o - GY + —-—-—-T . . tDl?)‘
t+1‘ 1+az 1 ) 1+az L 1 .
or :
P -1 - ' /
. ) Yt._.__{:&"_,___,l.at /I (D18) ..
| 1+(atba)z , .

h Y

ify = H(z'l)‘at, then the auto correlation at lag k is .given by (Astrdm
(1970))

(L) = f.‘l, # zkH'(z)li(z-'l) g—z— ((1519)

Zni

,
et

then'

vy = e 3S Qrez” J(l*cq dz

. D20}
S A (1+dz” }(1+?) .
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2 »
¢ o
_.a é gz+c!(1+cz! &z (021)
2ni (z+d)(1+d~) ,
. 2
Letting o =

a= 1.0, (D21) is evaluated, using residue calculus (Jenson and
Jeffreys (1963)) as,
A

v (1) = (z+c) (1+cz)
Yy

(D22)
Ardz z= ;d
o (@ = le(@be) Q-claba] (023)
4 1+ (atba)ff
I“,? similar~fashion v () is eval
v (0} =1 + fe: (arba) 12 oy 7
4 1- (a+ba) 2
The ordinary differential equations (D3) and (D4) become
o i K . ‘
g% = R‘,[C'(a+buJJ {}'g(a+bu)lA I (D25)
Y 1 - (a+ba) . .
. .
. . . i ﬁa ) i i &
Coe , .- %}s R - R Q.+[c (a+ )] ) (D26)
¢ 1- (a+bu)

_ These sxmultaneousﬂn?nllnear dlfférentxal equatlonb were solved with .a

. fBurth order Runge- Kstta mathod and an initial step size of .001. a, b

-
-

and ¢ nere taken as ( 0.95, 1.0, -0.45). The mlnnmxn variance control 15
N {
(D13). . .
o N .
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U, = -0.50 Y, , (D27)
Figure D1 shows the trajectories of a for R(0) = 5.0 and different starting

values of a(0).

L

-~ A &
FIGURE D1: Trajectorics of @ for R(0)=5.0 and «{0)=0.5 and -1.0

L]

The differential equations can be readily solved when only a few

parameters are to be estimated. The next example shows the difficulties
" t >

encountered when several parameters are to be estimated. Let the system

# @
k be . N o *
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-1
Y = EQ:ElfTT U + l_:_EE;; a1 (D28)
t <1+ az t l + az t :

The minimum variance controller for (D28) is

u, = —&€) vy - (D29)

b0+blz

The controller parameters are estimated from the model

Yt+l = aYt + BOUt + Blut-l €l (D30)
Consigerlng B0 as
£(8) =

'and ( 7 \ti\\f\\

vy (0 v (@ v D)

= E(ﬁ(t)é?(t)}=' vuy(O) vuu(o) vuu(l) (D32)

Yy (1) v, v (0

fop)
Ve
@
—
1

The difficulty in solving the differcntial equations lies in evaluaiing

the auto and cross covariances. Yt and Ut are high order ARIMA t;me ;éries.
It is not feasible to evaluate the auto covariances by residue calculus,

but Astrtm (1970) details a method for finding auto covariances which are

of the form v



o

> -1 )
v (0) = 2 P(z)P(z ) . dz (D33)
@ § oo

Crowe (1976) has extended this method for auto covariances at lag k,

showing that

2 - -1
g - P, (2)P,(z ™)
S I R e
ani Q)
_1 ‘
{ Pz(Z)Pz(Z ) dz
- _1 d ?- ) (334)
Q(z)Q(z ) - . .
. . | ‘.\ N~
where , \ \
P(z) = P(z) (cos(FD) z° + cos(?rw)\)‘ ' ‘ (D35)
and )
P,(z) = P(2) (sin(Gz* + sin3T | @36)
if : ' - '
_ -1 o
Yt = Hy(z )at (D37)
and ’ .
. -1 : .
Ut = Hu(z )att (D38)

-

their- it can be easily shown- that the covariance between Yt and Ut is given

by
¥ ~.
R | o N ‘
vuy(l\) —-—2"1 § zig,(z )Hu(z ) > B39

when k=0 Astrom's solution is easily modified so tha; these cross co-

variances can be reasily calculated. The cross covariances at lag k,

163
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kK # 0 are not easily evaluated using these methods. Alternatively, for low
order auto regressive-moving average processes, the auto and cross correl-
ations vuu(k) and vuy[k) may be evaluated by solving a system of simul-
taneous linear equations. This is detailed in Watts and MacCormick (1970).
For processes involving estimation of more than one or two para-
meters, simulation will probably remain the tool for analysis of conver-
gence. This is not to say that the differential equations are of no use.
Ljung and Wittenmark (1974), Wittenmark (1973) and Astrom and Wittenmark
(1973) have used these differential equations in simple cases to examine,
the effect of fixing ﬁo on stability of the closed loop, and convergence
points to (D3) if thelnumber,of whole periods of delay for the model (D2)
is different from the true process delay. Convergence of the estimated
parameters to those of the minimum variance controller has been shown not
to be assumed. Examination of the differential equations has provided in-

sights that would not be apparent if siﬁﬁlntionwggfe the sole tool of

- ‘.\v
analysis. ‘
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Calling Sequence for the Self-Tuning Regulator Algor:ithm

IN THIS AFFPENDIX THE CALLING ALGORITHM FOR THE
SELF-TUNING REGULATOR IS OUTLINED A ERIEF
DESCRIFTION OF THE SUBROUTINES IS5 FOLLOWED EY
A SAMFLE CALLING ROUTINE WITH LISTINGS 0OF THE
SUBROUTINES

SUBROUTINE UYINCR

FURFOSE T NWEEF TRACK OF THE FAST 10 VALUES 0OF THE
MANIFIULATED AND CONTROLLED DEVIATION VARIAELES,
(U-JSSP) IN THE VECTOR H510 AND (Y-YSF) IN THE
VECTOR Y=S10

USAGE CALL UYINCR(Y, YSF, U510, YS10)

SUBROUT INE FORM
FIURFOSE TO COMFPOSE THE VECTOR X(T-K) OF NA FAST VALIUES OF
(Y=YSF) AND NE FAST VALUES OF (U-UJSSF) IF A
CONSTANT TERM IS IDENTIFIED THEN THE TOTAL NUMEER
OF FARAMETERS IN THE CONTROLLER IS NF=NA+NE+1,
DTHERWISE NF=NA+NE THIS VECTOR IS WUSED FOR THE
FPARAMETER UPDATING ROUTINE., IN WHICH CASE K=E (THE

NUMBER 0OF WHOLE FERIODS OF DELAY):, OR IN THE
- COMFUTATION OF THE CONTROL SIGNAL, FOR WHICH k=0 THE
INFORMATION FLACED IN THIS VECTOR LCOMES FROM 1J510
AND Y510
USAGE CALL FORMOX, YS10(1+k), US10C(1+k ), NA, NE, NF)

SUEROUTINE RLS

FURFDSE TO UFDATE RECURSIVELY THE FARAMETERS, THETA, OF THE

MODEL
DEV = THETA®X(T-&) + E

WHERE DEV IS THE OBJECTIVE FUNCTION
DEV = YS10(1) + ZETA*UJS10(E)

EBE &gﬁ%¥EA?NEBFCSE¥ahEHE CONSTRAINING FACTDR ALLOWS

LISAGE CALL RLS(DEV, X, THETA, LAMEDA, F, K, S/, NF)

SUBRIDUTINE STRLCL

PURFOSE TO COMPUTE THE ABSOLUTE CONTROL SIGNAL (I E  NOT
THE DEVIATION SIGNAL) BASED ON THE ESTIMATED FARAMETERS

SASE . ECALL STRLIL U, LUSSF, THETA, X, NF, NA) "
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THIZ IS A TYFICAL CALLING SEQUENCE FOR THE USE OF THE

SELF—=TUNING REGILATOR FRIJGRAMS

GET NEW OBSERVATION Y
UJFDATE VECTORS OF INFPUTS AND OUTFUTS
CALL LIYINCR(Y, YSF, US10, YS10)

FORM X(T-E) FOR RECURSIVE LEAST SIIJARES
CALL FORM(X, YS10(1+E), U510(1+B), NA, NE, NF)

FORM OBJECTIVE FUNCTION FOR RECIRSIVE LEAST SHUARES
DEV=YS510(1)+ZETA*JS10(1+E)

CALL RECURSIVE LEAST SGUARES
CALL RLS(DEV, X, THETA, LMBDA, F, K, 5, NF')

FORM X(T) FOR COMRPUTATION 0OF CONTRIZL S IGNAL
CALL FORMCX, Y510(1), 1351001}, NA, NB, NF)

COMFUTE CONTROL SIGNAL
CALL STRCL (U, USSF, THETA, X, NF., NA)

UFDATE DS10(1)
U510(1)=U~UssF

IF CONTROLLER HAS INTEGRAL ALCTION CHANGE USSF
IFCINTEGRAL ACTION)YUSSF=IJ

FINISHED
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SUBRIDIJTINE RULS(DEV, X, THETA, LAMBDA, F, k, 5, NF)

RECURSIVE LEAST SLNJARES IDENTIFICATION ALOGORITHM FROM
A COMFPARATIVE =TUDY OF RECURSIVE IDENTIFICATION
METHODS, PAGE 20, BY

SODERSTRUM, T » LJUNG, L ., OUSTAFSLUN, 1

REFIORT 7427, LUND INSTITUE OF TECHNOLOGY, LUND

SWEDEN

DEV - DEVIATION FROM TARGET

X — VECTOR OF INFUTS AND OQUTFUTS
THETA — LURRENT FARAMETER ESTIMATES
LAMEDA — FORGETTING FACTOR

F — COVARIANCE MATRIX OF FARAMETERS
K - VECTOR 0OF WEIGHTING FALCTORS

5 — WORKING AREA

- NF - #% PARAMETERS TO BE ESTIMATED

DIMENSIGON F(NF, NF), XINF), THETA(NF), S(NF), k (NF)
REAL h, LAMBDA

GET DENOMINATOR FOR UFDATING F AND k MATRICES
SUM=0

DO 1 I=1,NF

DO 1 J=1,NF

SUM=SUM+X(I)#X(J)*F (L, .J)

CONT INUE

DEN=SLM+LAMEDA ’ -

X 8 -
UFDATE b MATRIX, GET FREDICTION ERROR
ERRS=0
DD 3 I=1,NF
SUM=0
DI 2 Jd=1,NF
SUM=SLIM+F (I, J) %X (1)
CONT INUE
S ¢ 1) =5SUM
k ¢ I)=SUM/DEN
ERRS=ERRS+X (1) *THETA(I) M-
CONT INUE
ERRS=DEV-ERRS |
UFDATE F MATRIX AND GET FARAMETER ESTIMATES
DD 5 I=1i,NF
D3 4 J=1,NF
PCI, J)=(F(I,.J)-5(1)%5(.J)/DEN) /LAMEDA
CONT INUE
THETA(I)=THETA(I)+k ( 1) #ERR%
CONT INUE
RETURN
END

-
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SUBROUTINE UYINCR(Y, Y3F, U510, YS510)

THIS SUBROUTINE KEEFS TRACK OF THE LAST 10 VALUES
OF U-USSF AND Y-YSF IE DEVIATION VARIABLES=

J - CURRENT VALUE OF THE CONTRIOL STHNAL

Y - CIRRENT VALUE OF THE DEFENDENT VARIAEBLE

LSSk - REFEIRENCE VALUE FOR THE CONTROL SIGNAL

YSF — REFERENCE VALUE FOR THE DEFENDENT VARIABLE
Us10C10) - STORAGE VELTIOR

Y510(10) - STORAGE VELTOR

DIMENSION US10C10), ¥Y510010)
DO v J=1, %

I=1i-d

UsS1o(l)=1s10¢1-1)
YS10(I)=YS10(I-1)

CONT INUE

us10(1)=0 0

Y510(1)=Y~YSF

RETURN

END

SUBROUTINE FORMOX, Y510, US10, NA, NE, NF)
DIMENSION YSI0(NA), LUSIO(NE), X (NF)
X(NF)=1 ©

OO % I=1, NA

X(I)=Y510C(1)

CIONT INUE

DO 19 I=1, NE

X{NA+I}=US10(1) '
CONT INUE

RETURN

END -



N
.

SUBRIOITINE STRCL (L, IJ2SF, THETA, X, NF , Néa
DIMENS ION X (NF ), THETA (NF )

S =0

EVALIATE CIONTROL SI0GNAL

Do 19 I=f, NF

SUM=SUM+X (1) # THETACTD )

CONT INLE

=SSk =S s THE Té ( Né+ |

RETIJRN

END
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