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ABSTRACT

An n-frame on a Banach space X 1S E=(E l ,· .. ,En )

and Ej Ek='0 j kE}( (j, k=~ , 2 , ... , n) . Thi s

with the study of pairs of such n-frames.

are bounded linear operators onwhere the E.' s
J' n

that E.~O , [E.=1
J j '= 1 J

th~sis is concerned

x such

It is shown that if two n-frames are close to each other

then they are similar. A particular similarity, the direct

rotation comes ~aturally in connection with the geodesic arc

connecting the two frames when the set of n-fra~es is regard-

,ed as a Banach manifold. For a pair of 2-frames, the direct

rotation is characteriz~d. Another similarity, the balanced

transformation whi~h r.ealizes the equivalence of the two

frames is locally characterized and its closeness to the

direct rotation is investigated. These results are used to

obtain an error bound on invariant subspaces under perturba­

tion. Our study, which is based on a functional calc~lus

approach, inv'olves .techniques and results from operator

theory, perturbation the?ry, and differential geometry.

Some of the results are relevant to numerical spec~ral anal~

YS1S.
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INTRODUCTION

Pairs of linear subspaces of a real n-dimensional

inner product sface of equal dimension have been studied
1

since 1875 [20]. Since then, it has been known that such a

pair of subspaces has a number of angles equal to their

dimension as-a set of unitary invariants. A treatment of

the sUbject in somewhat more modern style lS given in [14J.
~

The SUbject was developed by.S.N. Afriat [1] and others.

The extension to the case of Hilbert space was completely

analyzed by C. Dav~s [6J. He showed in this work that if a

pair of subspaces of a Hilbert space, or equivalently a pair

of ort~oprojectors, are close to each other in some -sense,

then there is a unitary operat~r~ U which Qaps one of the

subspaces onto the other, while being as close as possible

to the identity. This unitary operator is called the direct

rotation.

In 1970 C. Davis and W. Kahan [9J unified the study

of ~ pair of subspaces of a Hilbert space by introducing the

angle operator 0 between the two sUbspaces. The direct

rotation mentioned above is related to the angle operator e

by U=exp(J0) 'where J is a partial isometry and plays the

role of the i~aginary unit.

For a pa~r of oblique projectors on a Hilbert space,

1



2

or in gen~ral for a pair of projectors on a Banach space X

a similar study was initiated by T. Kato [22, I, §4.6]. A

simil~rity R between the two projectors with an expression

similar to,that of the direct rotation, namely R=expK, was

developed by Z. Koyarik [25]. Here K resembles the angle

operator e, and is called the oriented angle, and R is

called the direct rotation between the two projectors. When

the set of all projectors on X is equipped with a differ-
I

entiaI structure compatible with its embedding in B(X) ,~
~,

then the direct rotation R turn~ out to bft of particular

significance. This is because it gives rise to an interpol-

ating path between the two projectors, within the'set of all

projecto~s which is in fact a geodesic arc between them [26].

The study of a pair of projector$ is of interest to

operator theory as well as to perturbation theory. From the

perturbation theory point of view, the study of a pair of

projectors helps to find by how much the invariant sUbspaces

of an operator~will change when the operator is 'slightly

perturbed. Results of this sort can be found in [7]', [B],

[9] and [38]. There are also 'results in same s~irit, which

differ in nature from those mentioned above. The main concern
\

of these results is an estimate of a single eigenvector (See

for example [13], [21], [40]). The previous results were

mainly concerned with selfadjoint operator, and selfadjoint

perturbation. The same problem wa~ investigated from a diff­

erent point of view for a closed operator on a Hilbert space
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3.

(possibly non selfadjoint), as in L37].

The problem of perturbation of invariant subspdces

in a different notation means that you have a representation.
of an operator with respect to a certain decomposition of

the unde+,lyi~g space which is close enough"'to be block dia- \'

gonal, and 'we want to perform block diagonalization. A

result of this type for partitioned matrices was given in

[34] .

~In th~s thesis the study mainly goes through two

, broad lines. The first is concerned with the study of a

· pair of n~frames, whgre by a frame we mean ~ decomposition

of the identity into n' commuting proj ectors on a Bano"c:h

space. The case of 2-frame is treated separately whe~e we

can ,get more global results. Naturally some of our results

about a pair of projectors on a Banach space, will gener~lize

those results for a pair Qf or~~~projecto~s on a Hilbert
~~''';r

space. Along the second line, we investigate the applica-

tion of this study of a pair of' n-frames in perturbation

theory. Namely, in analogy with the previous results men­

tioned about perturbations of invariant subspaces where the
. ,

framework was a Hilbert s~~ce.and considering only orthogonal

2-frames, we study the same problem in a Banach space setting
• I

with n~frames; n>2. Our,results allOW ust to give an error
\

bound on the invariant sUbspaces undBr pert~~ations.

The results we obtain have applications relevant to
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numerical analysis. The application of these results is

natural when we are looking for the eigenvalues and eigen-

vectors of an operator A which is close to a sufficiently

familiar operator AO ' However, in many cases, we are

given only the operator A , and we try to determine its

eigenvalues and eigenvectors by some approximate method,

then for the investigation of the results we obtained, we

artificially introduce an operator AO ' which is 610se to

A and about which we have some information. This method

~s called artificial perturbation (See [12, §62] and [16]).

Chapter I i~ mainly devoted to known results which

'will be needed later. We also introduce the notation of

n-fram~ on a Banach space, and the plock matrix representa-
()

tion of an operator with respect to ~ particular frame.

In chapter IL we discuss the dire·ct rotation between

a pair of pr.ojectors on a Banach space. We give a cha~

erization of the direct rotation, which resolves a problem

left open in [25]. Connectibility with geodesic,arcs between

two nonsymmetric involutions ~s investig~ted. We aescribe
~

these geodesic arcs as the-solutions of a sys~em of differ~

ential equations which 1s arranged to reflect the algebraic

structure of the underlying manifold.

Chapter III deals with a pair of n-frames E and

F. We discuss two particular similarities between E a~d.
F. One is the balanced transformation,. known in the con-

text of finit~ dimensional Hilbert spaces to be that
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unitary which realizes the equivalence while deviating

minimally from the identity in the Hilbert-Schmidt norm.

The other similarity is the direct rotation which comes

naturally in connection with the geodesic arc connecting

the two frames. We give a local characterization of the

balanced transformation. The two similarities coincide in

the case of 2-frames as well as in some cases of n-frames;

n>2. We give examples to illustrate these possibilities.

We conclude the chapter by showing that the two similarities

are still close to each other; at a distance of order II E-F 11
3

Finally, in Chapter IV we discuss the case when the'

two frames arise from an ope~ator A and the perturbed oper-

ator A+H. We answer the natural question about'how far the

two frames .are in terms of the perturbation H and the

separation.of parts of the spectrum of the operator A .

This resul~ depends on how to measure the difference between

the two frames, and how to measure the separation of two

operators. These two measures ~re defined, and we justify

their usage. We treat the case. of a selfadjoint operator

separately and obtain results which generalize those known

for orthogonal 2-frames.



CHAPTER I

PRELIMINARIES

In this chapter we will assemble definitions,

notations and some of the fundamental results which' will be .

needed in the sequel. The chapter is divided into four

sections. The first section is concerned with basic notations

and definitions. Section 2 deals with differential calculus

on Banach spaces: operational calculus as well as some basic

results from spectral theory. We state the major theorems of

these subjects in the form in which we will need them later.

In Section 3 we define frames, discuss source spaces and ~lock

matrix representations., In the last section we discuss- the

transformation functions for smooth paths of frames.

1.1. Notations and Def~nitions.

Certain notational conventions will be observed through­

out this work and these are given here for the sake 9f contin­

uity. Throughout, X, Y will denote Banach spaces. We denote

by 8(X, y). the space of bounded linear operators from a real

or a complex Banach space to another. B(X, Y) becomes a

Banach, ,space under the bound norm

II A II = sup{ I¥\x'il II x II < l}

8(X) is 8CX, X} with the additional structure of a Banach

6
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algebra (under composition). The identity operator will,
always be denoted by I and, when dealing with several

Banach spaces, its domain will be obvious from the context.

For a positive integer n, Bn(X) will be the n - fold

direct sum of B(X). It will be an algebra when multiplica­

tion is defined coordinatewise. We make Bn(X) into a

Banach algebra by setting

max liB, /I
1 · ~
<~<n

G(X) denotes the multiplicative group of invertible

elements of B(X). It is an open subset of SeX) , and we

-1will often' use the fact that the map A~ A of G(X)

into itself ~s continuous and differentiable. ,

The ~pe~t~um of A in SeX) is the set

a(A) = {AE:e AI A 1S not invertible in X}

The complement of ~CA) is the ~e~otvent ~et of A it

consists of all A£e for which (AI-A)-l exists. If

A £ SCX) then a(A) is a non-empty compact subset of e

contained ~n the closed ball IAI ~ IIAII

rCA) = SUp{IAI : A£a(A)} ,

In fact, if

(rCA) ~s called the ~pe~t~al ~ad~u~ of A), then




































































































































































































































