TRANSFORMATION AND PERTURBATION

OF SUBSPACES OF A BANACH SPACE

By

NAGWA A.E.H. SHERIF, B.Eng., B.Sc., M.Sc.

. A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

September 1980



TRANSFORMATION AND PERTURBATION

OF SUBSPACES_OF A BANACH SPACE.



DOCTOR OF PHILOSOPHY (1980)

(Mathematics)

TITLE:

AUTHOR:

'SUPERVISOR:

NUMBER OF PAGES:

MCMASTER ‘UNIVERSITY
Hamilton, Ontario

Tranéformation and Perturbation of
Subspaces of a Banach Space.

Nagwa A.E.H. Sherif, B.Eng (Cairo
University)

B.Sc. (Hons.) (Cairo
University)

M.Sc. (McMaster
University)

‘Professor Z.V. Kovarik

»

vii, 119

ii



ABSTRACT

An n-frame on a Banach space X 1is E=(El,...,En)

where the Ejfs are bounded linear operators on X such

o}

that Ej¢0 , L E.=I and E.E, =8 (j,k=1,2,...,n) . This

5 3570 %k
thesis is concerned with the study of pairs of such n-frames.
It is shown that if two n-frames are close to each other
then they are similar. A parficular similarity, the direct
rotation comes naturally in connection with the geodesic arc
connecting the two frames when thé set of n-frames is regard-
.ed as a Banach manifold. For a pair of 2-frames, the-direct
rotation is charactérized. Another similarit&, the balanced
transformation which realizes the equivalence of the two
frames is'locally characterized and its closeness to the
direct rotation is investigated. These results are used to
obtain an error bound on invariant subspaceé under perturba-
tion. Our study, which is based on a functional calculus
approach, involves techniques and results from operafor
theory, perturbation theory, and differential geometry.

Some of the results are relevant to AQmerical spectral anal~

ysis.
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INTRODUCTION

Pairs of linear subspaces of a real n-dimensional
inner‘product space of equal dimension have been studied
since 1875 [20]. Since then, it has been known that such a
pair of subspaces has a number of angles equél to their
dimension asravset of unitary invariants. A treatment cf
the subject in somewhat more modern style is given in [1lu].
The subject was developed by.S.N. Afriat [1] and others.

The extension to the case of Hilbert space was completely
analyzed by C. Davis [{6]. He showed in this work that if a
pair of subspaces of a Hilbert gpace, or equivalently a pair
of ort@oprojectors, are close to each other in some sense,
then there is a unitary operater’ U which maps one of the
subspaces onto the other, while being as close és possible
to the identity. This unitary operator is called the direct

-

rotation.

In 1970 C. Davis and W. Kahan [9] unified the study
of a pair éf subspaces of a Hilbert space by introduciné the
angle 6perator © Dbetween the two sﬁbspgces. The direct
rotation mentioned above is related to the angle operator ©
by U=exp(J®) where J 1is a partial isometry and plays the

role of the imaginary unit.

For a pair of oblique projectors on a Hilbert space,



or in general for a pair of projectors on a Banach space X
a similar stddy was initiated by T. Kato [22, I, §u4.6]. A
similarity R between the two projectors with an expressibn
similar to.that of the direct rotation, namely R=expK was
developed by Z. Kovarik [25). Here K resembles the angle
operator © , and is called the oriented angle, and R 1is
called the direct rotation between the two projectors. When

the set of all projectors on X 1is equipped with a differ-

i
™~

ential structure compatible with its embigging in BX) ,
then the direct rotation R turns out to b éf particular

significance. This is because it gives rise to an interpol-
ating ﬁath between the two projectors, within the  set of all

projectors which is in fact a geodesic arc between them [261].

The study of a pair of projectors is of interest to
operator theory as well as to perturbation theory. From the
perturbation theory point of view, the study of a pair of
projectors helps to find by how much the invariant subspaces
of an operatorﬁwill change when the operator is‘slightly" )
perturbed. Results of this sort can be found in [71, (81,

[9] and [38]. There are also results in same spirit, which
differ in nature from those mentioneq above. The main concern
of these results is an estiﬁate of a sihgle eigenvector (See
for example [13], [21], [40]). The previous results were
mainly coﬁcerned with selfadjoint operator, and gelfadjoint

perturbation. The same problem was investigated from a diff-

erent point of view for a closed operator on a Hilbert space

\



(possibly non selfadjoint), as in 137].

The problem of perturbation‘of invariant subspaces
in a different notation means that you have a rebresentation
of an operator with respeét to a certain decomposition of
the underlying space which is close enougﬁgto be block dia—t
gonal, and 'we want to perform blotk diagonalization. A
result of this type for partitioned matrices was given in

[3u].

In this thesis the study mainly goes through two
broad lines. The first i1s concerned with the study of a
pair of n—framegi whgre by a frame we mean a decomposition
of the identity into n ' commuting projectors on a Banach
space. The case of 2-frame i§ treated separately where we
can.get more global results. Naturally some of our results
about a pair of projectors on a Banach space will generalize
those results for a pair eof orghcvaJectors on a Hilbert
space. Along the second line, we investigate the applica-
tion of this study of a pair of n-frames in perturbation
theory. Namely, in analogy with the previous results men-
tioned about perturbations of invariant suﬁspaces where the
framework was a Hilbert space .and considering onl§ orthogonal
2-frames, we sfudy the same problem in a Banach‘space setting'

with n-frames; n>2 . Our results allow usfto give an error
- §

bound on the invariant subspaces under pertd}batlons.

The results we obtain have applications relevant to



numerical analysis. The application of these results is
natural when we are lookiné for the eigenvalues and eigeﬁ—
vectors of an operator A which is close to a sufficiently
familiar operator AO . However, in many cases, we are
given only the operator A , and we try to determine its
eigenv&lues and eigenvectors by some approximate method,
then for the investigation of the results we obtained, we
artificially introduce an operator A0 , which is c¢lose to
A and about which we have some information. This method

2

is called artificial perturbation (See [12, §62] and [161]).

Chapter I is mainly devoted to known results which
‘'will be needed later. We also introduce the notation of

-

n-fram%hon a Banach space, and the block matrix representa-
2 | :

tion of an operator with respect to a particular frame.

In chapter II we discuss the direct rotation between
a pair of ﬁfojectors on a Banach space. We give a chapac{§
erization of the direct rotétion, which resolves a probiem
left open in [25]. Connectibility with geodesic arcs between
two nonsymmetpic involutions is investigated. We ‘describe
these geodesic arcs as the -:solutions of‘a system of differ-

ential equations which is arranged to reflect the algebraic

structure of the underlying manifold.

Chapter III deals with a pair of n-frames E and
F . We discuss'two particular similarities between E and
F . One is the balanced transformation, known in the con-

text of finite dimensional Hilbert spaces to be that



X
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unitary which realizes the equivalence while deviating
minimally from the identity in the Hilbert-Schmidt norm.

The other similariﬁy is the direct rotation which comes
naturally in connection with the geodesic arc connecting

the two frames. We give a local characterization of the
balanced transformation. The two similarities coincide in
the case of 2-frames as well as in some cases of n-frames;
n>2. We give examples to illustrate these possibiiities.

We conclude the chapter by showing that the two similarities

are still close to each other; at a distance of order ||B—FH3.

Finally, in Chapter IV we discuss the case when the -
two frames arise from an operator A and the perturbed oper-
ator A+H . We answer the natural question about'how far the
two frames .are in terms of the perturbation H and the
separation.of parts of‘the spectrum of the operator A
This result dependé on hoﬁ_to measure the differeﬁce between
the two frames, and how to measure the separation of two
operators. These two measures gre defined, and we justify
their usage. We treat the case.of a selfadjoiﬁt operator
separateiy and obtain results which generalize those known

1]

for orthogonal 2-frames.



CHAPTER I

PRELIMINARIES

In this chapter we will assemble definitions,
notations and some of the fundamental results which will be
needed in the séquel. The chapter is divided into four
sections. The first section is concerned with basic notations
and definitions. Section 2 deals with differential calculus
on Banach spaces, operational calculus as well as some basic
results from spectral theory. We state the major theorems of
these subjec%s in the'form in which we willbneed them later.
In Section 3 we define frames, discuss source spaces and block
matrix representations. In the last section we discuss: the

transformation functions for smooth paths of frames.

1.1. Notations and Definitions.

Certain notational conventions will be observeé through- |
out this work and these are given here for the sake of contin-
uity. Throughout X, Y will denote Banach spaces. We denote
by B(X, Y): the space of bounded linear operators from a real
or a complex Banach space to another. B(X, Y) becomes a

Banach .space under the bound norm .
all = sup{flax]] : JIx || < 1}

B(X) is B(X, X} with the additional structure of a Banach

6



algebra (under composition). The identity operator will
always be denoted by I and, when d;aling with several
Banach spaces, its domain will be obvious from the context.
For a positive integer n, B"(X) will be the n- fold

direct sum of B(X). It will be an algebra when multiplica-

tion is defined coordinatewise. We make B"(X) 1into a

Banach algebra by setting

IBll= 1By ,By,..vyB ) Il = max [l -

>
2 1<i<n

G(X) denotes the multiplicative group of invertible

elements of B(X). It is an open subset of B(X) , and we

will often’ use the fact that the map A — AT of G(X)
into itself is continuous and differentiable. .

The spectrum of A in B(X) 1is the set
o(A) = {Xe€ : AI - A 1is not invertible in X}

The complement of 0.(A) is the nesolvent set of A , it
consists of all Ae€ for which (AI-A)™' exists. If
A e B(X) then o¢(A) 1s a non-empty compact subset of ¢

contained in the closed ball |A]| < ||A|| . In fact, if
r(A) = sup{|A]| : Aec(A)} ,

(r(A) 1is called the spectral xadius of A), then



n 1/n ‘ n 1/n - 1/n
r(A) = 1lim A" ]| = 1im [P(A")] = inf [P(A)] ,
n-+e n-+e n>1

where P 1is an algebra norm equivalent to the original norm

with P(I) = 1

In case the underlying space is a Hilbert space H
then AeB(H) is said to be a Hilbert-Schmidt operator if

the quantity HAIIHs , defined by the equation

I

b

} 1/2

A Il = [ag llax,

is finite. Here {Xa’ acA}l is a complete orthonormal set.
IIAHHS will be called the Hilbert-Schmidt norm. Indeed, the
ﬁilbert-Schmidt norm is independent of the orthonormal basis
used in its definition. Also the Hilbert-Schmidt norm is *
unitarily invariant. In fact, the set HS(H) of all Hilbert-
Schmidt operators is é two-sided ideal in the Banach algebra
of all bounded linear operators in H . Moreover, if T e HS(H)

and Be B(H) then
Ml < Tl B 1 and  1IBT fhg < IBI| Tlhg. -

HS(H) with the Hilbert-Schmidt norm is a Banach algebra
without identity. In addition HS(H) ‘is a Hilbert space

with inner product defined by

(s,T) = g(qu, Tx,,)
) (Sx s XB) (XB’ Tx,) n

a,B



\

vhere {xq, acA} 1is a complete orthonormal system. We
remark here that every A ¢ HS(H) is compact and in fact
the Hilbert-Schmidt norm can be expressed equivalently by

8l = (}; a}f)l/z

where o, are the repeated singular values of A , that is

1/2

the eigenvalues of (A"A) , which means that

- * 172
: ||AHHS = (trace A A)

The n-fold direct sum of HS(H) is HS™(H) with inner

b ]

product defined by

(A,B)_ = = trace (B? A.) for n>2
no 2 3] =

|._-I
"o~

j=1

For details on Hilbert-Schmidt operators see [11l, ChapXI].

1.2. Differential Calculus on Banach Spaces.

-

Suppose X,Y are Banach spaces, U 1is an open sub-
set of X, f maps U dinto Y . If there exists TeB(X,VY)

such that

Lig lEGe) - £ - Thl L,
Lin TR

b

then f 1s said to be differentiable at x . In view of the
? .
uniqueness of the map T , we call it the Fréchet derivative

of £ at % and denote it by Ff'(x) or Df(x). The concept
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of partial derivative will be often used. For that, let f
be a continuous mapping of an open subset U of XIXX2 into
Y . For each point (al,az) of U we say that f 1is
differentiable with respect to the first variable if the
partial mapping

Xy > f (xl,az)
is differentiable at aj - The derivative of that mapping
which is an element of B(&L,V) is called the partial deriv-
ative with respect to the first variable and written fi(al,aQ)
or le(al,az) . For further discussion we refer to [10] and
(28]. Next we give one consequence of the contraction mapping
theorem, which is of local nature, namely the implicit function

theorem. i

Theorem 1.1. (The Implicit Function Theorem). Let X,V ,

7 be three Banach spaces and § a continuously digﬁénent-
Lable mapping of an open subset A of XxV Ainto I. Let
(x,,4,) be a point of A such that §lxy,y,)=0 and that
“the pantial denivative Dzﬂ(xo,yo) {5 a Linearn homeomorphism
of Y onto ‘Z . Then there is an open nedghborhood uo 0§
X in X such that, forn everny open connected ne&ghbonhood

U of x, contained in Uy there 44 a unique continuous

mapping w of U dinto Y such that ulxyl=y, , (x,ulx))eA

and  §{x,ulx))=0 fon any xel .. Furnthermore u L4 contin-

uoubty.diéﬁenentéabke in U, and its dendvative {5 given by
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]

a'(x) = - (Dzé(x,u(x)))- oD, 6lx,ulx)))

; Proof: See [10, 10.2]). ///

One of the most useful theorems in analysis is the
mean value theorem. We note that the formulation of that
theorem, in the case of Banach spaces, differs from the

classical mean value theorem (for real valued functions).

Theorem 1.2. (Mean Value Theorem). Let X VY be Banach

spaces, § a continuous mapping into Y 04 a nedghborhood

s of a segment S jodnding two points Xpr

§ 44 digferentiable at every point of S , then

x0+h of X. 1§

(x,+h) - §{x,)]| < |k "{x,+Eh)
itnghd = gixgll < Al sus Il 0xge8h

Proof: See [10, 8.51. ///

It was realized recently that a starting point of the

spectral theory is the operational calculus (See [153, [311]).
We start by defining what we mean by a general operational

4

calculus as given in [2u].

Definition 1.3. A general operational calculfus L8 an ordered

pairn {C,F] which consists of

(i) a topological algebra C of complex-valued functions on
g . a subset A of the complex plane, with ordinary pointwise
operations, which contains the restrictions to A of, poly-

nomials, and of
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(LL) a continuous nepresentation F(.} of C in B{ X}

such that F{1)=1.

Definition 1.4. An operator AeB(X) 44 0f class C if thenre

exists a general operational caleulus | C, FA(.)) such that
Falzl=A , any F,(.) with this property will be called an

C -openrational calculus for A .

If we take C=H(A) , the algebra of all complex valued
functions which are holomorphic in the open set A , with the
topology of uniform convergence on every compact subset of A

then an operator A is of class H(A) if and only if its

spectrum 0(A) 1is contained in A . In this case the repre-
sentation FA(') is given uniquely by

Fo(f) = »or | £02) (2I-A)"Y az , feH(A)

A 27l ‘ ’

T

where T 1s an oriented envelope of 0(A) with reépect to

f . For the proof of this fact, see [19], Theorem 5.2.5.

The above operational calculus is always called thé analyrtic
operational cafcufus. Throughout we will use analytic
operational calculus unless otherwise stated, and we write
f(A) for Fk(f). Now we determine how the spectrum of £f(A)
is related to the spectrum of A . The following result is

essentialiy due to I. Gelfand [17].

Theorem 1.6. (The Spectral Mapping Theorem). T4 {(X)eH(4)
and AeB(X) such that ofA)Gd then ol§(4)) = §(o(4)).

P
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Proof: See [19] Theorem 5.3.1. ///

We note here that most of the above concepts and results are

valid, in general, for any element in a Banach algebra.

1.3. Frames and Block Matrix Representations.

By a grame on a Banach space X we mean EeB™(X) s

where E=(E1,E2,...,En) and the Ej‘s satisfy

ne-~-13

(1.1 E;#0 , L EysI and E;E =64E  1<3, ken

that is, E.,E.,...,E is a finite resolution of the identity.
1°72 n

We denote the set of all n-frames on X by EngX) . Given a

frame E , it gives rise to a decomposition of X into the

direct sum

X = X1®X2$...@Xn , where Xj=EjX » 1<j<n

Also, given a frame E in B(X) , any operator AeB(X) will
have a partition with respect to this frame in tﬁe following
way:

In the above decomposition of X 1into the direct sum let

ij : Xj — X be the inclusion map and let s% P X — Xﬁ

be defined by' séx = ij € Xj so that ij € B(Xj,;X) and
s%eB(X,Xj) and

Yoo te : . LI
(1.2)  sii;=TeB(Xy), siiy=0eBlXy, X;) j#x  and is}=E;



» /"
v
Define
- ' y 3 1
(1.3) Ajk z sj Al e B(Xk’xj) 1<j, k<n o,
then the block matiix of A with respect to E 1is
FAH ............. Al
(1.4) (AL = '
E A2l ............. A2n |
\\
Ay e, A
. 'nl nn

Let BME(X) denote the space of all matrices of the form
(1.4) with entries AjkeB(Xk,Xj) . There is one Yo one
correspondence between B(X) and BME(X) . This is because
every AeB(X) defines. [A]EEBME(X) as shown above, while
if we have n° operators AjkeB(Xk,X.) , they will define

J
an operator AeB(X) as follows

n
(1.5) A = g i. Ajk sk e B(X)

Equation (1l.4) can be related to equation (1.5) as follows

A

A = [il,'iz,...,in] A

]
11 B0 - - - A 5

nl "n2 * °° nn
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while

1"
o 1

-

[A] Aliy...i ]

SI
°n|

Note that BME with the usual operations of addition and
multiplication (as partitioned matrices), becomes an algebra
and equations (l.4) and (1.5) define an algebra isomorphism

between B(X) and BME(X) . Further if we norm BME(X) by

(1.6) LAl ll = max T Ja.
B 1 ko 3K

then the above isomorphism becomes an algebra homeomor-
phism. The idea of using a block matrix representation

with respect to a particular frame E helps to use .the
familiar matrix ideas. Moreover it helps to avoid ambiguity
in some situations; for examp%e when wé disquss ElAEl , 1t
has null space (I-El)X ; but what really matters of its
spectrum is the spectrum of its restriction to ElX which

will be the same as the spectrum of Alq

Remark. In the setting given above ij,‘s% may be more

general, namely, if Xj's are Banach spaces linearly

homoeomorphi¢ to EjX 1<j<n , then any injections

ijeB(Xj,X) and surjections sﬁsB(X,Xj) which satisfy (1.2)°

will do. In case one of the Xj's is finite dimensional, a

3
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convenient choice of Xj’ij’sﬁ was indicated in [27, chap3l,

using a basis of Xj

In the following we use some notation from the theory
of partitioned matrices. Consequently, aﬁ operator AegB(X)
is said to be block diagonaé if [A]E is a block diagonal
matrix, and similarly A is block off diagonal if [A]E is

block off diagonal. We can express [Al. as [A]E=D+S

E
where
Ayq A VIR
. o | ang s = |Agn Ocreeees Ay
R 0 . .
A
nn
e 4
_nl A2 0 ]

D 1is called the diagonal part of [A]E and S 1is the off

diagonal part of [A] In terms of the operator A and

E *
the Ej's , the block diagonal part of A will be
n X

n
E.AE, (since [ ] E;AE.J. = D) , and the off diagonal
6 309 i3

j=1

part will be A- } EjAEj . Hence it’ follows that AeB(X)
is block off diagonal if and only if
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&

and A will be block diagonal if and only if A = ZEjAEj ,
B

as well as AEj z EjA 1<j<n . In that case A will be

invertible if and only 1if Ajj‘ is invertible 1<j<n and
-1 v =1, -1

.. = 5. A . d A
350 03 % Ty AR

diagonal, namely

consequently A will also be block

n
a”t = 7 i, aThos!
5219 33 73

1.4. Transformation Functions

Differentiable paths of frames were analyzed in
[22,111,54-5]. It was shown there, that if we are given a

continuously differentiable path
t — F(t) te [0,1]

of frames, then we can construct an operator valued function
U(t) (called the transformation function or Kato's transfor-
mation for F(t)) with the following properties;

(1) the inverse U(t)_l exists and both U(t) and
U(t)'l’ are continuously differentiable,

(2) F(t) = U(t) F(O) u()~*

For that pufpose we define

n
= 1 ' '
L(t) = 7 kzl(Fk(t) Fi(t) - F () F )
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and consider the differential equation
U'= L(t) U

for the unknown U . Since this is a linear differential

equation which has'a unique solution when the initial value
U(0) 1is specified , let U(t) be the solution of the above
differential equation with U(0)=I ., Similarly the differ-

ential equation

V = -VL(t)

has a unique solution for a given initial value V(0)
Let V(t) be the solution for V(0)=I . It can be shown

that U(t) , V(t) are inverses to each other as follows:
(uv)' = U'v + UV' = L(£)UV - UVL(t)

But the above equation is a linear differential ‘equation
in UV . Clearly Z(t)=I 1is a solution of the above
equation and satisfies the initial condition. By the

uniqueness, we have
ut)v(e) = I 0<t<1..
On the other hand

(VU)' = -VLU + VLU = 0



RN
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Hence

vit) U(t) = I 0<t<l
so that

vie) = Ut 0<t<l

and, and by direct calculation it can be shown that

1

F(t) = UCt) F(0) UT-(t)  0<t<l

as ‘claimed.

It is worth remarking that the transformation
fuqction is not unique. For sufficiently small t ,
another U(t) can be defined [22,I1I1,54.6], but the above
transformation function has the advantage that it can be
defined for-any continuously differentiable path of frames,
though the actual procedure for finding U is to solve a

differential equation.

As we will be considering Banach manifolds, some
concepts and results from differential geometry will be
needed. The standard textbook for that is [29]. Some of
the concepf§ carry over from finite dihensional manifolds,

these notations are adopted mainly from [3], [4] and [18].



@

CHAPTER II

DISCUSSION OF DIRECT ROTATIONS AND GEODESIC PATHS

2.1. Introduction

It is known that when two subspaces of a Hilbert
space are in some sense close to each other, then there
exists a unitary operator which maps one of th# subspaces
onto the other. A particular unitary was singled out by
C. Davis [6] and independently by T. Kato [22]. 1In fact
this goes back to Sz. Nagy [39], though in a different
expression. This particular unitary is called the direct
rotation. It maps one of the subspaces onto the other

while being as close as possible to the identity.

We give first the definition of the direct rotation

as introduced in [9]. To do so, let E,,E; be the ortho-

1
projectors on the two subspaces, then the frame [EO,I—EOJ
will be an orthogonal frame, and as it was mentioned before,

every operator on H will have a block matrix representa

I-E,]

tion with respect to [(Ey,I-E,

Definition 2.1. A unditanrny solution [u][E I-E
0’

04 UEO = E,U {4 called a ditrect wotation from EH Lo

20
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EjH 4f it satisfies the 4o0flowing additional condcticns

(&) C, >0, C,>0

] -
*

({4) S; =3,

0~

This unitary may be expressed as UszexpJ® where © is the

angle operator between E.H and -ElH and J 1s normal

0
with spectrum ¢{0,+i} . The operator 0 will give a
measure of how far EOH is from ElH . For a pair of

orthoprojectors EO,El , one can find in [9] the assumpticns
under which the direct rotation exists and is unique. If
EO,El are given then the square of the direct rotation is

easy to compute. Namely

2 .
u® = (2El-I) (QEO-I)

By a principal square root of (2E1~I) (2EO—I) we mean a
unifary U such that U +U is positive semidefihite. Davis
and-Kahan gave a characterization of the direct rotation
which will be given in -the next theorem. The pgoof can be

found in [9].

Théorem 2.2. Any dinect notation o4 EOH to E,H L4

a prinecipal Qquane noot o4 (ZEI—I) (ZEO-I) . ALso any
principal square rnoot of (2E,-T) (ZEA—I) 44 a dirnect

rotation provided L% takes Ept 0 (I-E1)H onto

(T-EO)H n EIH .

Y
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Observation 2.3. In the finite dimensional case, if

det (I+(2El-I) (QEO-I)) # 0 then the direct rotation is
unique. TFor if we suppose that U,V are two principal

square roots of (2E1~I) (2EO-I) , then U2 =

- -
= (2El—I) (2EO—I) =V

But then

(US+UU = T + (2E;-1) (2Ey-1) = (V +V)V

A}
¥

so that U +U and V 4V are positive definite. Also we

have

2

(U+U )2 = o1+ Ul o+ (ut

32 2 vl e (vhH2 2 (vev™)2

Since the positive definite square root of a positive def-
inite operator is unique, we have U+U* = V+V* and so
(U U = (V+V)V  implies U=V . Also in the infinite
dimensional case, we get uniqueness of the direct rotation

if -1¢0((2E;-I) (2E,-I))

Finally, the extremal properties of the direct
rotation were in&estigated in great detail in {9]1. It was
also. shown there.that the direé:\}otation takes an element
of EOH to ElH ‘py the most ecqnomical route. An exten-
sive bibliography on thg history of the subject was given

in the above mentioned work [3].
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2.2. Similarity between projectors.

Let EO,E be two bounded linear proiectors on a

1
Banach space X. In [22] Kato showed that if IlEl—E&|< 1,

then E, and El are similar. In fact, he gave an alge-

braic expression for that similarity in terms of EO,El

We have already presented the case of a pair of orthopro-

jectors in Section 1.

O’El and under more

relaxed conditions than those in [22], Kovarik [25]

For a pair of projectors E

constructed a similar&ty between EO and El which

resembles the direct rotation presented previously;
cf. Def 2.1. We shall show how to construct this similar-
ity. TFor this purpose, as well as future use, we need the

following trigonometry of projectors.

Lemma 2.4. “~For any two projectons E,,E, consdiden the

closeness operatorn

(2.1) C]=C1(EO,E

) .
o= (EprEy-T10

and the sepanration openatonr

Z
(2.2)  S;=5,(E,,E;] : (E,-E,)

Let T£=ZEL-I {{=0,1) be the associated involution with

E, and E, and Let V,=T,T + Then the foLlowing

0 1
Ldentitdes hold:

0
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(i) C,=C (B, E ) = T-E -E +E(E +E E,
-1
1 2 1(21+V 4V )
= T4 = g 1Y
(i) C (E,,E ) = ColI-Eg,T-E;) = C(E;,E))

[LAL) CI(EO’EI) commutes with bozth Eo and E,

(2.3) (4v) C,E =E0E150 and C,E =E,E E

150 17515059
(v) S,+C1=I
(i) s,(EO,I-E,f = C,(E,,E;)
(vid) S, (E,,E,) = %FT,-TO)Z - Lierev -vih

The proof is clear when done in the given order.

We can think of Sl as an operator analogue of

sin26 and C1 as 00526 where 6 is the non obtuse

angle between the ranges of EO and E If the Ei's

1
are one-dimensional orthoprojectors on the Euclidean plane
then indeed Cl=00528 and Sl=sin28 where 6 1is the

angle between them.

In the Hilbert space setting where {EO,El} is a
pair of orthoprojectérs,‘the separation operator has the
property OisliI . This property makes it possible to

define the operator ©O=arcsin (S?) , the operator angle,
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as a function of Sl’ it commutes with EO and El. How-
ever, in general Banach space this loses its meaning (since
any nonempty compact set in the plane can be o(Sl) ; see

Example 1[25]). 1In Theorem 2.6 below an oblique operator

angle in a general Banach space will be constructed. This

operator need not commute with E, and E, . The follow-
ing theorem exhibits a similarity between EO and El

under certain assumptions on O(Sl) . We shall outline the
proof, and especially mention those parts which will be
needed in the sequel. For the details of the proof we

refer to [25]. We shall need the following.

-

Definition 2.5. Forn a set NeB(X) , we denote by A{N}

the noam closed subafgebra of B(X) generated by N and the

{dentity and closed under invernsion Lf defined.

Theorem 2.6. Let EO’EJ be projectors in B(X]; EO#E]

1§ the numben 1 Lies in the unbounded component of the

complement o4 G(S,) then thenre exists an dinvolfution T
2

in A{E,,E,} such that E,=T_E T, and there exists
0’1 1 %70 %

KeA{TITO} such that the projecton valfued path

(2.4) t b— Et = {exptK) E, exp(-tK), 0<z<1

connects EO with E, . Moreoven T1T0=exp(2K) and

TIK=-KTI whene ‘Tt=ZEt—I.

The basic ideas of the proof are as follows: Let
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I' be a simple smooth curve in the complement, in the complex
plane, of O(Sl)u{O} connecting 1 with « . Note that T
exists by the assumptions on O(Sl) .  Let A=C\trace(l), then

the function
(2.5) ft(z) = Sinz(t arcsin/z)

is defined for t complex, and ze(0,1) . This function
can be continued to an analytic function on A. The

function ft(Z) has the properties:

f%(z)=% (1-vI-z) , fz(z)zuz(l—z), fz(ft(Z)):f2t(Z)

£.(2)E1 t=2"3 , 3>0 an integer.

ft(z)¢% , t=2"3 , 9>1 an integer.

We define

(2.6) S, = ft(sl) for all t complex.

- 1
It follows that St/2 > 5 (I—VI—St) , 80 that

Y2 = 1.8

(2.7)  (I-25,, S,

We construct, by induction, involutions T, for t=277 ,

j>0 integer such that

(T, *+T,) 7
= I, —_—— =1 -8 and Tt commutes with

.
* m t

(2.8) +
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By Lemma 2.4 T, satisfies (2.8). Assuming T, is con-

structed- satisfying (2.8), we construct T as follows:

t/2

To*Ty

(2.9) Tt/Z = [ 5 ] (I-2 St/2)

-1

Note that (I-2 S )—l is well defined since ft(z)fl/Z

t/2
t=2"J j>1 .° It can be shown that T.,, satisfies (2.8)

and furthermore T _,, Ty = T T for t=2739, §>0 . In

t Tt/2
particular for t=1 this implies that T, TO = Tl T% SO
2

that TLﬁ EO = E

from (2.9). With each Tt , associate V

1 T% and T% € A{EO,El} , as it 1is clear

¢ 5 VetTLT

Then we have

1 -1 1 -1
(2.10) Vt/2'7(I+Vt) (I'Zst/Z) = §(I'2St/2) (I+Vt)
= Te/oTo = TeTeyo
: ]
From (2.10) it follows that V2 =V and hence V2 o=V
. t/2 't 2-] 1

In addition it can be shown by induction and by using

equation (2.10), that Vt € A(Vl),t=2_3 j>0 an integer.

Also as one would expect, lim V . = I . The construction

j—»oo 2
of K goes along this line: there exists jO such that for

any >3, » |I-v _.ll<1 . ‘Define 2K. = 23 logv . ,
- . 2"'3 J 2"]
where the right hand side is defined by the Taylor series.

Since Vi/2=vt-, it follows that 2jlogv . 1s independent

2
of j &s long as it is defined. We call this value 2K .
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o 3
Now (2K) 277 = logV . 3>3., , so that (V. .)" =exp2K
73 0 27 )
Hence V, =exp2K and KeA(V,) . Similarly, for t=2"J

>0, Vt/?=exptK . In particular V3=epr so that

vV, T,=T,V, . Thus V, gives a similarity between E.,E
s 1% s

0 0’71

Now for t=273 3>0 ,

n _ _tK -tK
(2.11) Tt = e TO e .

For 0c<t<l we use (2.11) to define -T. and V. (=T .T,) ,
so that T. are involutions and Et=eth EO e TK

T
projector valued path connecting EO and El as claimed

is a
. o]
in the theorem. /77

Remark 2.7. We note that both T% and Vlﬁ provide a

similarity between EO and El , but one would use

Vli to measure how far El is from EO since V%+I as

El+E0 . Thus if El is a perturbation of Eq » V% will
be a perturbation of the identity, while the spectrum of any

nontrivial involution is always {-1,1}

Now given two projectors EO 5 El 5 EO¢El , we.
ask under what conditions they can be connected by a pro-
jector valued path which 1is a straight line segment. The

answer is given in the next proposition with a description

of such pairs.
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Proposition 2.8, Llet E

0’
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£, be different projectons «n

B(X). Then the foflowing statements are egquivalent
(<) Eto g B, + £y(Ej-E)) (s a progecton for
some €, ty#0 to?]
(L) S,(EO,E1)=O .
(LL4) Eo and~ E, can be connected by the projecton
. tr— E, = E, * t{E;-E,) , O<t<d
In each case the paitr ‘E , E, has the following block

0

!

matnix nepresentation with nrespect to the §rame {Eo,(I-EO)};

1 0 I A
(E,] = and (E,] = ,
whene AB=0 and BA=0

Proof: (ii) = (1ii). If Sl(EO’El) = 0 then it follows

from Theorem 2.6 that E, , E can be connected by a pro-

0 1
jector valued path Et = exp(tK) Eoexp(~tK) , 0<t<l From
(2.3) (vii) it follows that (I-Vl)2 = 0, so that
. (1-v))
. 1 1" 1., -
K‘- -5 jzl——j-—n = -5(I-V)) = (ElEQ - E4E))
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But

2 y ‘ 2
(E\Eq = EqE{) = (E[-Ey)" - (E-E)°

(cf. 1221 Eq. (4.35)); hence k%= 0 . The above path becomes

-

E, = E

+ o ¥ t(E;-Eg)  Oc<esl

(i) => (ii) , suppose that there is a projector which is

colinear with EO ' El , that is
Eto = EO + tO(El —'EO) t0 # 0, to # 1
is a projector. Since Eio = Eto , it follows that
0 = EEO - By - (t5 - £y) S, = 0
and ’ Sl =0

(iii) =>(i) 1is clear. TFor the characterization of the pair

E in that case see [25] Remark (c). ///

Eg » By

M

Remarks 2.9.

13

.(a) In the case of a Hilbert space and a pair of orthopro-

jectors, the condition S,=0 would imply that E, , E

1 0 1
have the forms given in Proposition 2.8 with B=A" , " so

that A®A=0 , hence A=0 and E,°E This means that the

1
separation operator in this case is a much stronger measure,



in that no two distinct orthoprojectors can be connected by an

orthoprojector valued path which is a straight line segment.

(b) 1If EO,El is a pair of projectors in a Banach space
then %(EO+E1) is not in general a projector. However,

it would be a projector if and only if Sl(EO’El):O.’ and
%(EO+E1) will correspond to E% in the projector valued

path t — E0+t(El-EO)

As we have mentioned in the above femark, %(EO+E1)
need not be a projector but the bisector of EO and El
will be obtained by ‘"straightening" %(EO+E1) to be a
projector, namely E35 = %(T%+I) will be the bisector of

EO R El where T% is given by equation (2.9) with = t=1

. E% will be the angle bisector of the acute angle between

EO s El . If we put iW=K in Theorem 2.6, then Vl=e21w
and §; = %1(2-e2lw - e"?™y - 5in%W . Hence W resembles the
oriented angle operator between EO and El In the next

‘lemma we generalize some trigonometric relations. They will

éhow that the particular similarity V,/2 is related”to the
particular angle bisector ELi in a way which generalizes
the known 2-space facts. This is similar to the results
ih [6], Section 4 in the Hilbert space setting with a pair

\

of orthoprojectors.

Lemma 2.10. -

-

A o _
(i) SinfW(E. E ) = Sin‘W(E, ,E,)
LT 0°7°% U3 |

I



(L4)
({44)
(Lv)

{v)

Proof:

1
= =(I-
u( T

sinZW(EO,E,

From (2

o
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- 1/2
v, ¢ U1 CLEGLE) /
C.E.E ) = Lrrec (e, )12y = ¢ (€, ,E,)
11 Epr By 0y VL E
7
Vy (Eg,E, )" = U, (Eg,E)
Since sinQW(E E) = S.(E.,E, ) = l(T -T )2 =
00 Ey = Sp(Eg,Ey) = Ty -T,
%?O-TOT%) , and T,Ty = T;T, then
- o a2
W) = (21 T T, T% = 8,(E,,E)) = sin’W(E ,E))
.10) it follows that
l(v svly = Logev) (1-2 5,07ty Lerev] 1y (1-2 s~
L ok Y4 1 L L
-1
2T+V. +V .
- 1 1 -1 _ -1
2 (1-72 S%) = (I—Sl) (I-2 S%)

- b
= Cl(EO,El) .

[y

Part (iii) can be proved similarly.

(v) follow directly.

/17

From (2.10),

(iv) and .
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2.3. Characterization of the Direct Rotation

In the previous section, the construction of V%
was dependent on the function ft(z) defined by equation
(2.5), where the domain of £, (2) is §\I' with T Dbeing
a smooth simple curve connecting 1 , <« and not passing
through zero. Hence V% may not be unique.. It was an
open problem in [25], to find conditions on the pair
{TO’Tl}\ which would allow us to characterize Tli or V%
before it is constructed. Results of this type for the
direct rotatioh«between a pair of orthoprojectors were given
in [6, Theorem 4.1] and [9, Proposition 3.3]. In this
section we will give a characterization of the direct rot-
ation between a pair of projectors in Banach spaces. First
we need‘the following definition.

Definition 2.11. Let T

g and T, be two involutions. A

0

dinect notation between T and TI 45 ReG(X) , which
satisfies the 6oé£owing conditions |

.
H]

. -1
(£) T, = RTOR

.. _ . _] ) 2_
({i4) R = ¢xpK wherne K = 7 Log T,T, ({i.e.R 'TITO’

We call R the principal direct notation if we use the

principal branch of the logarithm defining K . Also we

note that the definition of 'K implies that KT0+T0K=O .
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Here we use a holomorphic branch of the natural logarithm
whose value at 1 1is zero. Before stating the main
theorem in this section we need some lemmas which also

introduce some notation.

Lemma 2.13. The function § : §lz) = %%% maps conformally

Q = {z: Rez>0} onto D = {z: |z|<1}

Proof: The boundary of §, parametrized by t —it ,

, is mapped onto the unit circle t — %%%% , and

..co<-tioo
the interior point 1eQ 1is mapped-onto 0eD . Hence the
result follows by the Orientation Prinéiple (s, III, 3.211. ///

Lemma 2.14. The function hiz) = —£57 maps the set

1-z
D = {z: |z|<1} congormally onto the set G = £\{z: z=X+4Y
x=0 , ly|> 1} while plz) = —%— maps G conformally
- _ 1+/1+27 '

onto D.

2399£3 A standard result in conformal mapping [33] is that
Z —* %(z+%) .maps D' onto the complement of [-1,1] and
one composes this with rotation to get the map wzf(z)=
=%(%—z) which maps D conformally onto the whole w-plane
cut along the imaginary axis from -i to +i . For the

inverse, the quadratic équation £2+2wz-l=0 has a solution
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z = -w+/l+w2

which maps the w-plane cut along the imaginary axis from

-i to +i onto D , since the other solution =z =—w—/w2+l

maps « to <« . Composing the map f with inversion we
get
h(z) = —i— = 22
1.1 2
7(——2) l-z
z

and h(z) has the required mapping properties. To find the

-1

inverse of h , we choose that branch of f which maps

the complement of [-i,i] onto D so that

-1 1,2 Z
plz) = "=+ J(=)"+1 =
z z 1+ 42
will map G onto D . /17

We wiil use the previous lemmas to show that an
operator ReB(X) with the property Rez>0 for all zeo(R)

can be characterized in the following way.

Lemma 2.14. I§ ReB(X) , zthen Reo(R]>0 4if and onky L4
R=g(H)} , wherne HeB(X) , a(H)}<] and
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Proof: Suppose Reo(R)>0 , then Lemma 2.12 shows that the

function f(z)=§§% maps @ onto D . Defining

H= f(R) ,

the spectral mapping theorem [Chapter I, Theorem 1.6] shows
that o(H)eD , hence ©r(H)<l . Now, since g(z) = %;%
is the inverse of f , we have R=g(H) as claimed. On
the other hand, if R=g(H) with g and H satisfying
the above conditions, then‘Lemma 2.12 together with spectral

mapping theorem [Chapter I, Theorem 1.6] imply that Reo(R)>0

If we set L=R-R™% , then L can be expressed as

a function of H as the following lemma shows.

Lemma 2.15. Let ReB(X] , zthen Rec(R)>0 4if and only 4if

Lr-RTn(H) , with hiz)=EE . In this case H = p(L)

1-z
z

1+/1+2%

where plz) =

Proof: The proof depends mainly on mapping properties of
the functions h and p which were already discussed in
Lemma 2.13, using the spectral mapping theorem [Chapter I,

Theorem 1.6] the results follow. ///
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Let Q° = ¢\{z: z<0} , then if we define logz ,
zeQ2 as the principal branch of the logarithm and write
logz=logr+i® , <then this function is holomorphic and

satisfies

exp(logz)‘= z zef
gnd

log(expz)=z (-m<Imz<m)

If A,BeB(X) and o(A)kQ’ , o(B)e{z:-n<Imz<w} , then we
have explogA=A , and if we assume that o(exp(B))C92 ,’
then log(expB)=B . For the proof of these statements we

refer to [2, I, 8.3].

0 T,eB(X) and suppose ithat o(T,To)
ties in o, 9lf\{z:2<0} . Then ReG(X) is a principal

dirnect notation Lf and onfy 4if

(1) T, = RT

(2) block diagonal parnt of R = blLock diagonal

part of ™!

{3) Re o{R)>0
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Proof: If R satisfies the conditions (1)-(3), then Lemma

2.14 implies that

1

R = (I-H) ~ (I+H)

where 1r(H) <1 . This restricts those R for which condition

(3) 1is satisfied. Since the block diagonal part of R is

.1
EOREO+(I—EO)R(I~EO) = 7(R+TORTO)

condition (2) leads to

L+T0LTO ='O , L = R-R
In our block matrix notation this means that L is block

off diagonal. This in turn will imply that

20 _ 2
TpL Ty = =TgLTpL = LY,

and consequently

2

1,.2 2
7(L +T L~T0) = L7,

0

so that L2 is block diagonal. From lemma 2.1k, 2.15, it follows
that o(L)eG which in turn implies that o(I+L2) does not

2 is a block

intersect the negative real axis. Since I+L
diagonal, the square root of I+L2. can be calculated block

by block. Hence

H = L (T+/1+12)"2
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will be block off diagonal, since multiplication by a

diagonal matrix does not change the structure. Define

(2.13) K = g(H) ,

where
_ _ 1+z
£(z) = 2 arc tanhz = log—=
1-2
Here loglié = 2 ? L 5 2n-1 lz]<1
l1-z n=1 2n-1

o]
_ 1 2n-1
K =2 E ST H
n=1
P

It can be shown that odd powers of H will be block off

diagonal since H itself is block off diagonal. Hence

indeed
KTO + TOK =0
Furthermore
K = log(I-H) % (I+H) = logR
Thgs
R = expK = exp(—TOKTOS = To(exp—-K)T0 R
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hence
2 . -
(2.14) R™ = (expK) Ty (exp-K) Ty = TlTO
This follows from condition (1). Equation (2.13) implies

H = (eK—I) (eK+I)-l

But the function

maps the infinite strip
e“+l
{z: |Imz|<n/2} onto the open unit disk D . This implies

that o(K)={z: |Imz]| <7/2} so that o(2K)c{z: |Imz]|<w}.

By (2.1%) R%TlTO and R=expK . Hence exp2K=R2=TlTO SO
that KE% log TlTO and R 1is a principal direct rotation.

On the other hand if O(TlTO)CQ2 , then by (2.3) (1) we

21
have, Sl = 5(21_ TlTO-TOTl) . So

I—Sl =-¢(T1T0)

where ¢(z) = %(2+z+%) . Under the assumption on o(TlTO)

it follows also that o(I—Sl) does not intersect the

negative real axis so that 0(S;)Nn [1,*) =0 . Thus o(Slf

satisfies the assumption of Theorem 2.6. Hence if we take
=74 = [1,») and the principal branch of the logarithm,
then we have from (2.10) that

- -1 2 _
V% = expK , K = 3 log TlTO , and V% = TlTO



41

Further L = R-R_l = sinh K and
TLT. =T sinh K Tal = SinK(T_KT)= -L

. _1 . : -
since K —-jlog'TlTO implies that TOKTO = -K . Now
R = expK ,K= 3 log T,T  implies that Rec(R)>0 . This

completes the proof. ///

We remark here that T% satisfies the conditions
(1), (2) of Theorem 2.15 but not condition (3) (compare

this with Remark 2.7).

2.4, Riemannian Geodesics Between Nonsymmetric Involutions.

The Riemannian geodesics between symmetric involu-
tions were investigated in [26]. The geodesics are iden-
tified as minimal arcs between a pair of symmetric
involutions whose straight line distance is less than 2.

In this section we study the problem of Riemannian geodesics
between nonsymmetric involutions. First we formulate the
problem. Let Ty be a (non-trivial) nonsymmetric
involution on a Hilbert space H# . Then the similarity

is

orbit of TO

(2.15)  Y(H,T,) =-{v1"0v”l . VeG(H)}

we define
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{TeB(H) , T-T.e HS(H) and T 1is similar

(2.16) S(H,TO) Iy

i

to T.}

#

V(H,TO) n (TO + HS(H))

where HS(H) denotes the class of Hilbert-Schmidt operators.

We also define
(2.17) MHS(TO) = M(TO) N HS(H) ,
where

M(TO) = {H ¢ B(H) : TOH + HTO = 0}

Now if the topology of VHS(H’TO)' is strengthened to be
compatible with the Hilbert-Schmidt metric, we have the

following theorem.

Theorem 2.17. VHS(H,TO} 45 a manifold modeled on the

Hilbent space M, (T

nsTo!-

Proof: Since it is known that a ¢” structure is determined
by any ¢” atlas on VHS(H,TO) (cf. (4], Proposition 2.21),
then in order to show that VHS(HITO) is a manifold, we

need not specify a complete atlas. We first describe a chart
at FTO . We define an open convex MHS(TO) ﬁeighbourhood

v of 0O by

0
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Vg = {H e Muo(T)) [T HlLg < logl} ,

HS' "0

and define the mapping

-1 -
X : Hr— TO exp(xOH)

We claim that the range of X-l is in VHS(H,TO) . ow

KTH(H) = T, exp(T H) = T, expCsT H) exp(4TH)

0 0
R
= TO exp(%TOH) T, exp(%TOH) = exp(~%T0H) TO exp(%TOH)
(because T HT, = -H) . Hence X—l(H) is similar to T,
Let K =§TOH , thus
XH(H) - T. = exp(~K) T. expK - T
: 0 P g €XP 0

= (exp(-K)-I) Ty expK + T (expK-I)

0

Since H € HS(H) , exp(#K)-I is in HS(H) and so is

X_l(H)-T0 . X"l has a formal inverse

X : T+ T log(TOT)

0
To justify X , let T be in the range V  of x~1
That is T = Tb exp(TOH) , for some H in VO . Thus

mgT-Tll g = lexpToH-T g <explltgHlhyg-1 < explog2-1
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Hence ¥ is well defined on VYV and (V,X) 1is a chart at

1

T. . Since the mapping (W,T) — WTW is a smooth

0

action of G(H) on B(H) , and the restricted action to
VHS(H’TO)“ will be transitive from the definition (2.16) of
VHS(H,TO) , then we can describe a chart at any other point.
It follows that the change of zoordinates 1s smooth.
Namely: if(U,XU) is a chart at TO R (V,XV) is a chart
at T, and UNVED , then X K7' : X (UaV) — X (UaV)

is a smooth map of open subsets of (T,) . Now since

MHS 0
X described above is a homeomorphism, the manifold topol-
ogy will coincide with the topology given to VHS(H,TO)

This proves the theorem. ///

Let T Dbe any point in VHS(H,TO) . As the space
of tangency classes of smooth curves through T (See [29,
Iv.2]), the tangent space can be identified with the sub-
space MHS(T) of HS(H) in the following manner. If
a : (-e€,e)+B(H) has values in VHS(H) and o(0)=T , then
(a?)7(0) = «'(0)T + Ta'(0) =0 and a'(0) e M(T) . But
a(t)-TO e HS(H) implies that «a'(0) ¢ HS(H) . Hence

‘

a'(0) ¢ MHS(T) . On the other hand if H ¢ MHS(T) s

then a(t) = T exp(tH) satisfies the following relations
«®(r) = I for all t, al0)=T , a'(0)=H a(t)-T eHS(H)

Now yHS(H’TO) with MHS(T) equipped with the Hilbert-
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Schmidt inner product at each Te¢ VHS(H’TO) will Be a

Riemannian manifold.

A tangent vector fLield H on VHS(H,TO) -
neighbourhood U of Ty is a smooth function such that
for each TeU we have H(T) ¢ MHS(T) . By an agfine
connection we mean a function of two vector fields whose
value is again a vector field, that is, (H,K) r— DKH.
Moreover it has the linearity properties: For all f,g
smooth functions on U and K,L,M vector fields we have
(1) D
>

H = foDKH + g.D, H

FK+gL L

H+g . DL + (f'K) H +(g'K)'L .

(2) Dy (fH+gL) = £-D ¢

K

A connection is said to be symmetric if it satisfies

(3) [K,H] = DKH - Dyk

where the Lie bracket [K,H] = H'K - K'H . Now if we have
a Riemannian manifold and a symmetric connection which

also satisfies
(4)  (DyH,L) + (H,D,L) = (H,L)'K ,

then the connection is called the Riemannian connection.

R
T

MHSSTK) , then

If P, denotes the orthoprojector from HS(H) onto

(2.18) (DI;(H)(T‘) - P?(H'(T).K(T.)) ,

-
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defines a Riemannian connection on VHS(H,TO) . The proof
of the previous statement goes similar to that of the
symmetricvcase given in [26]. In principle there always
exists an orthoprojector of HS(H) onto (MHé(T)‘. The
following lemma shows how one would constrﬁct,such a

projector.

Lemma 2.18. 1§ PeB(H) 4is an obLigue projector, then zhe

onthogonal projector onto PH L& glven by

0 = p(p+p*-1) 2 P

Proof: We will construct Q by means of the operational
calculus. First we show that (P*+P-I) is invertible.

Using the identities in Lemma 2.4, we have

k¢ % ’ .”/
¢ = (P*p-1y? = Hrm? = 1 - KN > T

this is becauée T*-T is skew symmetric. Hence 0#0(C)

1f Q=PP# is a projector, then by its definition it will
be an orthogonal projéctor, in which case (|P|}1 "and con-
sequéntl? P itself will be an orthogonal projector. Thus
Q=P "will be the requ?réd projector. Since N(PP*)aN(P*) ).
this implies Oeo(PPg)‘. Further for 'X#O',K¢dC) we have

the followiﬁé partial fractions identity:
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(I-PP YA t1epc t(a1-0)"taa" iR

1

- - lepe -0t e101-e")

1
=
¥}

so that

[ 4

1

“lripetear-oy oty e”

(AI-PP)"T =

.The above equation shows that 0 is an isolated point of

O(PP“) . Hence we can define the spectral projector

1-Q = 7%§ JI (A1-pp")7L ax
|X]=¢
= i J tzeectt (ar-or 7ttt e i
lAt=e
- J e PCTH(AI-C) TR dh i Zoa W P
[A]=¢ + RNER |A|=¢
= 1-pc7lp"

— L)
so that Q=PC_1P* . One can easiiy check that PQ=Q and
QP=P so that R(QI=R(P) , also P Q=P" , QP*=Q  imply

Q)=N(?*) and hence Q 1is the orthogonal projector on

The lemma is proved. /17

‘It'was shown in [26, Lemma 1], that M(T) can be

complemented and PT:PfH = %(H-THT) 4is a projector with
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range M(T) . According to Lemma 2.18, it follows that

. R .
the orthoprojector PT on MHS(T) is

R _ 5t -2 %t

PT = PT(PT+PT—I) PT
A curve through T, is called a geodessic of DY if
Dg,a'=0 on the domain of o . For DR defined by (2.18)

the resulting second order differential equation is

% -2 13 . _
(2.19) PT(PT+PT-I) - PT(a') =0

In principle the differential equation (2.19) has locally

a unique solution with initial conditions a(O)=TO and
a'(O)=HO where HO £ MHS(TO) . In the following propo-
sition we will simplify the differential equation and then
reduce it to a system of first order differential equations
using Kato's transformation, introduced in Chapter 1.

Proposition 2.19. I{ Ty € BIH) {8 a nonsymmetric

involution and L4 Hy e MHS(TO) , HO#O , then, the

Riemanndian geodesdic Zhrough To

{5 the solution of the differential equation

in the direction of Ho

(2.20) o+ (a*a)a" {aa*) + Z(a*a)a(ﬂ)z(aa*) =0,

with the initial conditions a(0)=TO and a'(0)=H0



49

Funther, the above equation can be reduced to a system of

§irnst onden differnential equations (2.23)

Proof: The Riemannian geodesic through T0 in the

direction of HO is the solution of (2.19) with initial

conditions a(O)=TO , a'(0)=HO . First we show that
3
Pp=Pos . Recall that PT(H)=%(H-THT), and the scalar product

in HS(H) is given by (A,B)=tr AB* = tr B'A . Hence
* %
(PTH,K) = (H,PTK) = tr H (PTK)

= tp % H(K-TKT) = tr % HK =T KT

) 1 g 1 DI
=5 tr HK -~ 5 tr HT K T
- % tr HK - = tr T HT K
2
_ 1 B3 % % B
= -2— tr (H“T HT )K = (PT*H>K)

hence P;=P , and since N(P$)=N(P;) , equation (2.19)

T b3

reduces to PT* (a")=0 . Since

(2.21) P, (H'(DIK(T)) = F(H'(DK(T) - T (H (T)K(TNT )

with H a vector field, implies H(T) € MHS(T) , that .is

CTH(T)T+H(T)=0 , differentiating along K will yield



50

(2.22) K(T)H(T)T + TC(H'(T)K(T))T + TH(T)K(T) + H'(T)K(T)=0

Substituting from (2.22) into (2.21), we get

Ppa (HHDIK(T)) = %EH'(T>K(T> - (T TCH (TYK(T)T(TT ) ]

= L (MK 4 (T5 DY (H' (TYK(T))(TT ) + %(T*T)T(KH+HK)(TT*)=O
P 1" - l 11 & 1" o Jo '2 o
o O 7 7[& + a¥a a" ao® + 2(a*a) (a °) (aca¥®)]

Hence (2.20) is the differential equation for the Riemannian
geodesics as claimed. In reducing it to a system of first
order differential equations, the basic idea is Kato's
transformation [Chapter I, Section 4]. If a 4is a smooth
path of involutions in VHS(H,TO) and passing tﬁrough Ta
then there exists a transformation functi?n U(t) such

that

alt) = U(t)a(o)Uu ™ X(t)

where

U'CE) = L(t) UCt),U(0)=I , L(t)=% a' (B)alt).

-

Now o being a geodesic, it satisfies -

a™ + a* a" a® =0

But L=% a'a , so



51

2

a" = 2L'a + 4L% = 2L' Ua(0)U™L + uL? Ua(o)uTl

Hence we obtain the system,

2

(2.23) (20" Ua(@U™E + 4.2 Ua(0 Ul IwTH " a0’ UF

2 ya(oyutly = 0

+whH® o%co) utreL vaco) UL 4 ouL
and U'(t) = L(t) U(t)

with initial conditions

u(o)=T , L(O)=% al0) a'C0) . ///



CHAPTER III

CLOSENESS TO GEODESICS

In this chapter we study the similarity between
a pair of n-frames E and F . Special attention will
be paid to two particular similarities, namely the bal-
anced transformation and the direct rotation which arises
from the geodesic connecting E,F . We give a local
characterization of the balanced transformation. We
also show that, in general, the balanced transformation
is different from the direct rotation. Nevertheless, the
balanced transformation defines a frame-valued path,
connecting E and F , which is close to the geodesic
copnecting E and F . We also show that ‘the difference
between the direct rotation and the balanced transformation
is of order HE—FH3 . Finally, we show that this order
cannot be improved in general. Throughout this chapter
and the next chapter we make the assumption that n 1is

fixed, and we say simply "frame" to mean "n-frame".

3.1. Closeness and Similarity Between Frames

" We begin by recalling that E being a frame means
that EeB™(X) and that the components Ej of E satisfy

l
52
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(3.1) Ej¢0 . Ejzl » ELE = ijEk 1<j,k<n

Recall also that the set of all EeB™(X) and satisfying
(3.1) is denoted by E"(X) . Two frames E and F are
said to be similar if there exists an invertible operator
VeB(X) such that VEj=FjV » j=1,...,n , or shortly VE=FV
In Chapter II, we have already discussed similarity between
2-frames. For a given pair of frames E and F one can con-
struct an operator A which intertwines between E,F

By that we mean AeB(X) such that AE=FA . The following

lemma provides means for such a construction.

Lemma 3.1. Let A,BeB™(X) and CeB(X) . Let

Pg AlC) ¢ B"(X) x B"(X) x B{X)——B(X) be given by

n
(B,A,Cl— ]

B.C A. .
F i i

1
Then P 44 a continuous trilinear map. Moreover, if E,F
are fixed efLements in E™M(X) , then Pr piBIX)—B(X) 4s
a projecton. ALso SeB(X) 448 a simifarity between E,F

L% and only 4if . SeG(X) N Range (PF E) . -

Proof: The statement that Py ,(C) is continuous and
b
trilinear 1s clear from the definition. Using equation

(3.1) it can be proved that P, . is a projector, and
Y
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n
for any AeB(X) , the operator S = ) F.A Ej intertwines
=1
SE in components.)

between E and F . (Just write FS
If S§ 1is invertible then it will be a similarity. On

the other hand, if S 1is a similarity between E and T ,

n
then certainly S = J FjSEj and the lemma 1s proved. /17
j=1
Let
2 .
(3-2) Cj = (Ej+Fj"I) P jzl,...,n )

and suppose that each Cj is invertible. Define

n
(3.3) S = S(F,E) = PF,E(D = g F. E.

S intertwines between E and F and the above condition

implies that S 1is invertible, where S-l = ZEjCSle

This follows from F.E.F. = C.F. = F.C. and E.F.E. =
3730 33 33 333

= C.E, = E.C. . The similarity given by (3.3) 1is not

1] J ]
balanced since S(F,E)-l # S(E,F) wunless all the Cj's are

‘the identity operator. However, a balanced transformation
can be constructed, under more restrictive conditions on
the spectrum of the Cj's , as given by the following

proposition.

Proposition 3.2. Let E,F be two frames; E#F . Assume

that the spectrum of each Cj , 1<j<n , does not separate

0 grom o . Then the operatonr
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‘-/\\ j

n

) -1/12
(3.4) U = U[F,E) .—.'iE.=[ZF.E.) lye.F.E,)
14 J j=1 JJ j=1 I 5

I
LI e I
-
(@)

{8 a similanity between F and E which {5 also balanced.

Funther U(F,E) and U(E,F) have the block matrix rephre-

sentation [U(F,EV] = (u )y, C7TOFEID = 1)ty
wizh '

) -1/1 -1 L -1/2
whene

- n ;
Pl s P il e ¢

Proof: Since 0 lies in the unbounded component of the comple-

4

% —
ment of the spectrumof each C. , every Cj is well defined (cf.
(36, Chap.10]). Clearly ] F.Co* Ej intertwines between

E and F . Since Cj commutes with Fj and Ej and

E.F.E.
J 173

= E.C.E. by definition (3.2) of Cj , it follows
n .
that ) F.CT¥E. is invertible and its inverse is

! E. CT%Fj . Hence U(F,E) 1is a balanced similarity.

T= ] E;F4E5  is block diagonal (with respect to the
frame E). The block diagonal elements of T are (see

Chapter I),



n
s!{ ) E.F.E.]i. = s!'C.i., = slF.i, =
] ] 13 ]

T.. F. ..
33 521 3373 379 3533

so that
_1 _1 -
7% osogicTt gL = F, L0
7] ‘ 1533
Hence
_1 n _1
T = Vi TI?s! = JE, CIE, ,
521 J 33 j=1 J ]

which proves the last équality in (3.4). It remains to find
the entries of the block matrix of U(F,E) and U(E,F)

By (3.4)

a -5
UCF,E) = [ 21 j J]

Thus we need only to find the entries of the block matrix

of S = F.E. . But [S] = [s.. 1% ﬁere
SR (51 = D855 =1 ¥
ot e - . .
Sjk = sj Slk = Fk,jk . Similarly since we can express

(2]
)

n
-l T—l[ ) Eij] we can find the entries of the block
1=1
matrix of S'l, namely -(F )~l F. . Now (3.5)
gk 3,373 153k
follows since U(F,E)=ST™? and U(E,F)=T?s"! /77
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Remarks 3.3.

1. The similarity given by (3.4) will be called the balanc-
ed transformation. If E and F are frames of orthopro-
jectors on a Hilbert space then U(F,E) will be unitary

and is the same as the one defined by C. Davis [7], where
the underlying Hilbert space was finite dimensicnal. 1In

the general Banach space setting, it was introduced by

Z. Kovarik [27, Proposition 1].

2. If we assume that ||E-F|| <1 , then the assumption of
Proposition 3.2 will be satisfied since the definition
of the norm in B"(X) implies that IlEj-Fjl|<l and hence

-
Cjﬁ will be defined by the binomial series.

3. The assumption that E#F implies that E does not
commute with F , since if it does, then the identities

(see [25] Remark c)

E.+F.-I)(E.-F.) = (F.E.-E.F.) = .-E.)(E.+F.-1I
( 5 F3 ) ( 5 j) ( 5 E Fj) (Fj ])(L] : )

will imply that Ej=Fj , J=l,...,n

Now we turn to the study of the direct rotation
between two néarby frames E,F . This direct rotation
comes up in connection with the study.of EMNX) as a
Banach manifold. For a given frame EeEé(X) , the

similarity orbit of E is
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(3.6) ¥M(X,E) = {FeE™(X) : F is similar to E} .

1

{VEV™ VeG(X)}

The similarity orbits were studied 'in [27] and it was shown
there that they have a differential structure as given in

the next theorem.

Theorem 3.4. Let EcE™(X) .- Then E™(X,E) defined 4in

(3.6) 4is a negularly embedded split submanifold of 8" (X)

which can be modelfed on the Banach space

n
{3.7) M(E) = {LeB(X] : z E.LE .=0}
j=1 J 4

Further, the tangent space can be identified with

n
H.=0
Ry

3.8)  F(E) - {HeB™(X) : H, = E.H.+H.E, I<j<n,
(3.8) (){eu j o EHHE I T

Proof: See [27]. /77

As a Banach manifold, E"(X,E) is equipped with"///
a suitably defined connection. The geodesic lines through
E in the direction of HoeF(E) are given explicitly by

the arc

(3.9) t t+— exp(tL) E exp(-tL)
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where

n
1
(3.10) L =3 Z (4 .E. - EjHOj)e M(E)

In principle, it is known that for two nearby frames there
exists a geodesic arc connecting them [29, IV, 82]. This
means that, given E and F sufficiently close, there
exists a geodesic t +— a(t), tel0,1] such that a(0)=E,

«(1)=F and

(3.11) a(t) = e™™ E et | o<tzl ,  LeM(E)

In particular,

n
(3.12) F=(expL) E exp(-L) , ]
j=1

J

We call R=expL the direct notation between E and F .

E.LE. = O
J 2

The name is justified as follows. In the case of Hilbert
space, if we have frames of orthoprojectors then, under
more restrictions on the 3imilarity orbits, the similarity
orbits will be Riemannian manifolds [27, Chapter 8]. Con-
sequently the geoéesics will be locally minimal and the -
arc length of (3.11) between "E=a(0). and : F=a(l) will

be l|L||HS . Hence L resembles the orieﬁtedangle between
the.tﬁo frames, and indeed R is a direct rotation be%Ween

E and T . We call L the generator of the geodesic |

J



between E and F . It is clear that the existence of L
is guaranteed by the closeness of E and F . Equatlon
(3.11) shows that L can be defined as the solution of

the system of equations

. n
F. = (expl) E, exp(-L) 1<j<n ,* J E.LE.=0
J J - j=l J ]

In fact the above system is equivalent to a siﬁgle opera-~

tor equation

. (3.13) explL- P E(expL) + P (L) = 0

§
)

for the equivalence we refer to [27, Chap. 9]. Adding up

oz, &

the above results for two frames E and F which are
sufficiently élose, the direct rotation R befween E
and F 1is R=expL where L is the solution of the
operator equation (3.13); moreover L can be obtained as

the limit of the sequence

(3.1%) Ly=0 , Lm+l L -P E, gL - expiﬁf? plexpL ),
m=0,1,
the transfopmation Lo *Lne1 being contractive.

The next proposition answers the question about the

ﬁdésibility that two frames can be connected by a frame

i
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i3

valued path which is also a straight line segment.

Proposition 3.5. ‘Let E,F be two frames, then the Line
segment connecting E and F wifl be 4in EMX) 4§ and
only Li§ the Cj’A defined by (3.2) satisfy Cj=I ,

j=1,...,n .

Proof: From the definition of a frame it follows that E
and I as elements iﬂ.the algebra B"(X) are idempotents.
If we define C=(Cl,.f.,Cn) Fhen the above condition
,amounts‘to Cc=I in ~ B™(X) . Since (F+E—I)2 = é , we
can apply Propositidn 2.8 to show that the line segment
éOnnectiné E and F. lies in the set of idempotents in

Bn(X) . This means that
F(t) = E+t(F-E)

is an idempotent for all 0<t<l'. Component-wise this means
Th;t Fg(t) = Fj(g) 0<t<l , j=1,...,n . But since
Fj(t) = Ej+t(Fj-Ej) , and E,F being frames implies that

n

L Fj(t) = I 0<t<l , for F(t) to be a frame we peéd
J=1 ‘ ‘

only to show that F,(£)F(t) = 0 j#k . We do this by

showing that F(t) is similar to E .- Note that

| Oy (B 3F, (1))

¢

/;/

" 2:
I- (Fj(t)~Ej)

I.- tz(Fj-Ej)2_= I, §=1,...,n .
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n
Hence S(F(t),E) = } Fj(t)Ei is invertible and its inverse
j:

n
is } E, F.(t) . Thus
521 3 ]

o Fneon) 5 Frae)]
X ~ E. EF = F.
SEJS [kZle(t)Ek 3 kzl 1 Fi () J(t),

j = 1l,...,n .

But .E being a frame implies ijt) Fk(t)=0 j#k. That
is t — E+t(F-E)' lies in E™(X) . The converse is
easy to show, for if the line segment t +—+ E(t) =

= E+t(F-E) lies in E™(X) , then E (t) = Es+t(F4-E,)

j=1,...,n 1is a projector. Thus

L w2 _ - 2_ _ 2
0 = ES(£)-E5(t) = (£°-t)(Fy-E))"

which implies that Cj=I j=1l,...,n . This completes the

proof. /// _ )

We conclude this section by gointing out that the
above proposition shows that the similar#ty orbits given
by (3.6) are ruled manifolds.

¢

3.2. Local Characterization -of the Balanced Transforﬁation

In this section,we continue to study the balanced
t .
transformation introduced in Section 1. Recall that the

balanced transformation U(F,E) is

|
'
)
|
i
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U(F,E) = ] F. CI7E. .
5513 173

“Note that as F—E , U(F,E) — I. Hence if F is

sufficiently close to E , certainly U will be close
to the identity. Throughout we will assume that E and

F are sufficiently close frames. Define

(3.15) X = 16gU(F,E) ,

so that U(F,E)=expK . The following lemma records some

properties of the block matrix of expK .

Lemma 3.6. For K defdined by (3.15) we have

n
(1) expK' = J F.lexpK)E. ,
.-"j=TJ J

(2] s4inh K 4s bLock off diagonal. That is

u'MS

E. ( KyYE. =
i j (sinh K) j 0

(3) zhe block diagonal part of expK 44 equal to the
block diagonal part of cosh K .

Proof: Lemma 3.1 shows that epreRange(PF E) whence (1)
- - -9
follows. Since sinh K = %(epr—exp(~K))= %(U(F,E) -

- U'l(F,E)f , WwWe can apply equations (3.5) with- j=k
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to find that the diagonal blocks of U(F,E) and U “(F,E)

b
F5.33
As expK = sinh K + cosh K, the operator sinh K being

are equal to Hence sinh K 1is block off diagonal.

block off diagonal implies (3). The lemma is proved. ///

The next theorem shows that K as defined by
equation (3.15) may be equivalently defined as the solution

of the operator equation (3.16) given below.

Theorem 3.7. 1§ |[E-F|| 48 sufficiently small then

K=LogU(F,E) 4is the undique solution o4
{3.16) expK - PF,E(QXpK) + PE,E(Ainh K) = 0,

with the propenty that K — 0 as F — E .

Proof: First we show that K=1logU(F,E) 1is a solution of

(3.16). This follows directly from Lemma 3.6. But since

U(F,E) = [ } F.E. ][ ) E] 3 J]—l/z

implies that U —I
321 373 .

as F —E , we have K — 0. To show the local unique-
ness of K , we appeal to the implicit function theorem.

i

For that, let E be a fixed frame and define

Ki

v : B(X) x B(X) ——B(X)

by
Y(F,K) = expK - PF,E(GXPK) + PE’E(sinh K) .
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It follows from Lemma 3.1 that the map P g(.) is a smooth

’

map. Hence ¢ will be a smooth map. Also
v(E,0) = 0 .

The partial derivative of ¢ with respect to the second

variable at (E,0) is

Dzw(E,O) = IeB(B(X))

This can be justified as follows’

wFE,H) - Y(E,0) = expH PE,E(eﬁpH) + PE’E(sénh H)

. = g . = ontd
Since expH = ngoaT and sinh H = L TnFi)T @ one has

H+0(|H|%) , so that

expH = T+H+0(J|H|%) and sinh H

Y(E,H)-y(E,0)

epo-PE,E(I+H+OQIHH2))+PE’E(H+OQ|HH3))

B+0(|H|[%)

Thus D,(E,0) H=H and D, ¥(E,0) = I¢B(B(X)) . Then

the conditions of the implicif funcfion %heorém are sat-
isfied. Hence (Theorem 1.1) there exists a neighbourhood
Wy of E in Bn(X) and a smooth function. g0'%g —-+B(X).
sgch that $(F,K)=0 if and only if K=g0(F)- fér FeW

0
So if we take w;wonE“(X) and gﬁgolw : W—B(X) , for

such a neighbourhood, K=g(F) is the unique solution of
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(3.16) with the property that K —0 as F——E . The

conclusion of the theorem follows. ///

The previous theorem helps to characterize the

balanced transformation locally as follows.

Theorem 3.8. Let E,F be two grames and suppose that

1)V is a similarnity between F,E
(2) ||E-F|| 44 sufficiently small,

{3} V  is close to the identity.

Then V will be the balanced Zransformation between E

and F 4§ and only {§ it saztisfies

(3.17)

nes-ss

™
<

'
<
™

n
<

Proof: ‘It follows from Lemma 3.6 that the balanced trans-
formation satisfies (3.17). On the ofher hand, suppose " V%
satisfies (3.17). Then condition (3) implies that K=logV
is well defined, V=expK. V being ; similarity implieé
epr=.§lfi(éng)Ej . Now equation (3.17)himpliés that KX
éétis%ies equation (3.186). Henée by Theorem 3.7
K=1ogU(F,E) which reads that V=U(F,E) . This proves the
'theorém, 111/

In case of a 2-frame the above theorem takes the
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following form.

Corollary 3.9. Let E=(E,,EZ), F=(F1,F2j be 2-grames.

Then unden the same assumptions as in Theorem 3.8,

2
Ve = F.E. v A F
g jEj € A(E,F)
‘ 2
if and onfy if ) E.(V-V

This corollary can be also deduced from the semi-
global characterization of the direct rotation given in
Theorem 2.16. This is because in case of 2-frames the

direct rotation and the balanced transformation coincide.

As we mentioned in the introduction, the balanced

transformation U(F,E) ., for sufficiently close frames

and E , defines a path connecting F and E in ER(X)

‘as follows.

(3.18) t +—= (exp tK) E exp(-tK) , 0<t<l

where 'K=logU(P,E) . A glance at the geodesic between F

and E , given by equation (3.11), shows that the path

(3.18) will be a geodesic provided K=1logU(F,E) e M(E) ;

“ where M(E) 1is defined in (3.7). This always happens in
-case of a 2-frame‘(3ee Theorem 2.6)., Still, it might

~ happen in case of n-frame n>2 as will be shown in



example 3.10 below. At the end of the next section, we

give an example for the other case when the two paths do

not coincide.

Example 3.10.

Let E. = e.eT

68

3 3173

ors on @3 (3=1,2,3) , and let Q=e€H

Clearly HeM(E)

then exp(eH)

<

Lk(H) =

Then
Ll(H) =
1
exp(€H) = |-l
.

1l -1
0 1
1 0

.
1t~ W

k=1

3

il
i=1
i#k

H has eigenvalues O,l;-l .

f(Ak) Lk(H) , Where

(H—AiI)

}\k"li

Let f(\)=ef

be the coordinate project -

_ 1,2
’ L3(H) - —2"'(H "H) s

[ow TR = }

0 -1
0 1
0 0

A
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e R

TSRSy B T aes A gk bons o e B A

1 l1-e™®  _1+e7F
exp(eH) = |-1+e® -1+ef+e™® 1-&7F| |
-1+e®  -1+ef 1
— —
1 1-e® ~1+e®
exp(-eH) = [-1+e™® _1+e"F+e® 1-eF
“1+e” 8 L1+e7€ 1

If we let F=QEQ-l with Q=exp(eH) , then F will be a

frame and Q will be the direct rotation between E and

n n -1/2
F . Now we compute U(F,E) = ( ) F.E.] [ ) E.F.E.}
RS T R ) B VY- e
Direct calculation gives
0 1 0 0
n n e -
J F.E. = Q 0l , Y E.F.E.=|0 (-Me™+e” )" 0
j._.l 1] :]=l ]
1 0 1

U(F,E) = Q = exp(eH).

In fact for the above particular example,. we can even show
more. Namely, for any HeM(E) with eigenvalues {-X,0,A}

the balanced transformation between E and F, where

'F = exp(eH) E exp(-eH) will be exp(eH).: This is because

i

in this case we have

- - Ae ~Ag
gxp(sH) = Pl + e P2 + e HP3

]

where
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P, = 20%uh, P, L_Ow+r?) and Py = (aHtr?)
\ 2\ 2)
Now
Ae . -Ae
exp(el) = H02-H%) + (HHHY) + S (AR
\ 2) 22

From the characterization of the balanced transformation
(Theorem 3.8), in order that exp(eH) = U(F,E) we have to

have the diagonal elements of exp(eH) the same as exp(-eH)

a
2 -
For that let [H ]E = FHij) , then
) H.. eAe e—XE
Cexp(eH)).. = 1 - L)+ H + H
13 AT LYV
3= 1,2,3
H.. -A€ Ae
(exp(-€eH)).. = 1 - -l% + 7 He. 9—7 H..
1] 2\ 22 1] 22 J]
j = 1,2,3

(because HeM(E) implies the diagonal elements are zeros).
We remark that this example does not fall into the list of

instances given in [27, Chapter 10, (i) - (iii)].

3.3. Closeness Between Direct Rotation and B®lanced Trans-

formation

In this section we investigate how close the balanced
transformation is to the direct rotation between two given

frames E and F . Both similarities offer interpolating
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paths between E and F in EM(X) . The direct rotation
R=expl gives the path (3.11) where the generator of the path

satisfies the operator equation (3.13), i.e.

expL - P (expL) + P (L) =0 ,

0 .
and the balanced,transformation U(F,E) = [ N F.E.]

1/2 j=1
[ 7 E:| i j] gives rise to the path (3,18) where K is

the solution of the operator equation (3.186), i.e.

expK - P (epr) + P (51nh K) = 0.

Note that two similarities between F and E are related by
an invertible E-diagonal operator, that is S,T are similari-
ties between F,E if and only if S=TD where D 1is an
invertible E~diagonal operator. We use this fact to transform
the equations (3.16) and (3.13) into equivalent forms which
are more suitable, in our opinion, for finding an estimate for
|R-U(F,E)|| . Now since F can be represented as l"=QEQ"l ,

we have expL=QD and epr=QD0 , where D,D0 are invetible

E-diagonal operators.

Lemma 3.11l. Under the Transformation .F=QEQ'7 , equations

- {3.13) and (3.16) have the equivalent f§orms

(3013)7 0 - P (D) + P c(Rog{QO)) =

(3.16)" 2m0 < Pg,e(0g) * P gloink Logla0y)) = 0



72

Proof: To show that (3.13)' is equivalent to (3.13), we note

first that L being a solution of (3.13) implies

n n
expL = P .(expL) = ] F.(expL)E. = Q E.'Q-l(expL)E.
F,E_ j=l J J j:l :] J
P
Let D = Q_lexpL ; thenygwe have D = PE E(D) . Next
?

P (L)=0 implies P (log(QD))=0 , hence D satisfies
E,E E,E .
(3.13)'. On the other hand, if D satisfies (3.13)', then

P being a projector implies P, .(log(QD))=0 , and

E,E. E,E

Pe B(D)=D , so if we put L = log(QD) , then L satisfies
b

(3.13). A similar argument shows the equivalence between

(3.16) and (3.16)'. ///

Next we use a method of solving operator equations of
the form G(A)=0 where G is a function defined on an open
subset of B(X) . This method is known, in case of real
equations, as Newton's method. Its generalizétions and mod-
ifications were investigated in detail in [23, XVIII]. We
will be interested in the special case when the operator .,

equation has the form

G(A) = w(A)y + R(A) =0 ,

where the solution A0 of the .approximate equation  w(A)=0
is known. Then‘on the basis of der;ain“conditions‘we can
draw a conclusion about Ih*-Aoll where A% is the

solution of G(A)=0 . Our intention is to use this idea
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- :
‘to get an estimate on -||expL-U(F,E){| . This will be given

" "in the next theorem.

Theorem 3.12. Consider the operator equations (with a fixed

QeG (X))
(3.19) . G(Q,D) = D-Pp (D) + Pp {LoglQD]) = 0
(3.20) =(Q,0) = D-Pp (D) + P gloinh Log(eDl) = O .

Then (0,0%) is a solution of (3.19) and (2,0,] 4is a
sobution of (3.20), whene 0*=077(expl), LeM(E) 44 given
by (3.13), and Dy=Q ' (expK) with K=fog U(F,E] . Funther-

L mone

G(2,0)

-

5(0,0) + R(2,D)

whexre

<

(3.21) R(Q,D) = Pe E(tog{QD) - s4inh 2og(QD))

and

(3.22) |bexpL-U(F,El]| = 0| e-FJ°)

Proof: ' The statements that (Q,D*) and (Q,DO) are solu-
jtions of (3.19) and (3.20) follow directly from Lemma 3.11.
Also, (3.21) fo;lows'from (3.19) and (3.20)., Ih order to

‘prove (3.22) we need to find estimates on R(Q,D) , m(Q,D)
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and their derivatives. We start by observing that from our
o

as§hmptgon that E and F are sufficiently close, we know

that QD 1is close fo the identity if Q is. From (3.21)

we have

4
R(Q,D) PE E(log(QD) - sinh log(QD))
. ] '

Let

13}

R(Q,D) log(QD) - sinh log(QD)

| .
We use the functional falculus approach to bound ﬁ(Q,ﬁb R

\

that is BN

‘R(Q,D) = 5=r J £(X) (A-QD)'l'dx ,

: T, '
. " l

where I' ={X: |A-1{ ="p<1} and £(A) = logh - sinh (log))

" And as we observed above we can assume that ]|I-QD|[<§ ,

§ = %‘ .., By this we can bound’ H(A—QD)-;H for Ael .as
8 S o

follows. For "Ael , A=l+pe%" and

(-1 = [pet® - (qp-1y 17 - AN

o : [ v . O
.= ptlem Wy ok miKE gk
. . T k-_- 0 - . N R . i -

“ S0 [l(a=p)™H || < M = F/p L Since £(X) = logh - sinh (logh)

and Ael”, we have _
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f()r) = ‘logh - °z° SM
&A= Ly T (T
and from
® ]
logh = - J (1-))
j=n
we obtain
(1-0)° 5
f(N) = - 3T + 0((1-2)7)

so that for  XeTl |f(k)|?b3/5 . The above infegfal expression

w

ofznﬁ(Q,D) gives

[IRCQ,D) || < g? nax Iffk)l M (2mp)

AED
2 3
AR
Hence N
2 ) .
(3.23) IIR(Q Bl < & 0° IPg gl =
’N‘ - i

We will dénote by R' (Q,D) the derivative of R(Q,D). with

..\

respect to D . The derlvatlve of R(Q, D) is given eiﬁlic— .

-

1t1y by (See [36, 10.351)

b

R'QDIH = e l £(0) (A-QD3™F Qa(A-gD)Lran T ¢

2n1.

S D
l | \ o ' .
O IR@mE| < & edlall il
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"Thus

) ' 4
(3.24) ||R (Q,D ]l < o llall IPg gl = o

We will find a bound on the second depivative, using its

explicit expression. From

R'(Q,D)H

1 -1 -1
=T f £(x) (A-QD) = QH (A-QD) = dA ,
r

we obtain

R'(Q,D+K)H-R' (Q,D)H = ﬁ-fj £O0) {(A-Qm‘ltqm-qm'l, o +
. I\ '

+ QH(A-.QD)‘lqkl(A-QD)‘l + oh|xnﬂ} a .
It follows that

IR Q,DEklf < & o* 1 [l NIkl 1Bl

and

(3.25)  |R"CQ,D) || < 22 ol Il Q2 = p .
5 Plfe,El .

Next we bound 7"(Q;D) . Since

m(Q,DY = D ~ P, +(D) + Py . sinh(log(QD)) ,

’
.

E,E

! similarvargumenf as above gives
- A " N 4 ’

s ! 3 oy
17 Q,0)mK]] < [|Ql% 1]l [1K]| #°. max lg(1)]

! AeT

|
t,
|
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where . 4

1

g(z) = %(z-z = _[(1-2)+0(1-2)2]

Hence
Vs

1 8 2 -
(3.26) {lm (Q,D)|< 5 [lQll” IPg gll = x -

Clearly a in equation (3.24) can be made less than 1 by

taking p small enough. Let

Here ¢,k,p are defined in (3.23), (3.25), (3.26) respect-
ively. Now if- a<l, h<l/2 we can carry out the successive

approximations on.

S(D)

‘D - 6(Q,D)
" with the majorizing function’
o(t) = (K5B) thrater

which indeed majorizes S (see [23], XVIII). Also h<l/2:

v .

implies that ¢(t) has real fiied'poiﬁts and._

_1-/I7h g
Ty ™ h I-a

will be the unique root of - t=¢(t) in [0,8] .
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Now appealing to Theorem 1 [23, XVIII, §2], we see that the
successive approximations starting at D will converge to

D" and HD*—DOHUi fo = 0(p%) . Hence

llexpL - UCF,E)|| E o|F-E|f*)

This completes the proof of the theorem. ///

Remark 3.13. The estimate (3.22) justifies in the finite
dimension§l problem the use of U(F,E) instead of explL .

The reason is that U(F,E) ‘ﬁas an algebraiic expression while
L is-obtained by an iterative procesé, If an iterative pro—'
cess is set up for computing L , a good initial gpproximation

would be K .

We now give an example to show that-the order .in (3.22)

cannot be improved in general.

¢

Example 3.1Y.

Let 'Ej=ejé§' be the coordinate projectors in 3
Let
0 1 0
H= |0 0 1
=6 7 0

The eigenvalues are 1;2{-3 and
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exp(eH)
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-1
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-3¢
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-5¢%+ ge
2
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8
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Similarly '

Q'l = exp(-€H)

= %ﬁ 30e'€-123-2€+ 203¢  _5e7%+ ge 6. 363%  _g5e 4 ye2F
' 30e-€—2ue-2€- 6e38 -Se-€416e-2€+ 9e3€  _5e7E4 8e"28
EPeTE-use'2€+1se3€ 56”4327 %€ 2763%  _5e C41ge%E

Certainly Q # U(F,E)

since the diagonal elements of Q

e

3e

+ e

_3e38

+.9e38

e

and Q_l are not equal.
3. -1/2
U(F,E) = F.E [ E.F ]
’ j§l JZ 317373
' - . 3 _~¢ 3_~2¢ 1l 3e

FlEl = Q diag {7e - £e + ks .50 ,(%

‘ - s 1l -¢ 4 -2¢ 9 3¢

F2E2 = Q.diag {0 > ~je  t ze tosett T, 00y,

_ . 1 -¢ 4 -2¢ g 3¢
F3E3 = Q diag {0 , O ,-~Ee "+ 3e + 55 ,
3 -1
= ) F.E. = Q diag Q

521 ]
- 3 -& 3 -2¢,1 3¢ 1--e 4 -2, 9 3¢ 1l -e 4 -2¢
T dise {f@e oo Fe 5 tppe o cpe tee

3 3¢

20 A /
and }

Z E. = diag Q diag Q d '

73 J 3 o .
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UCF,E) ~Ly-1/2

Q diag Q- (diag Q diag Q

Q/f(diag Q'l)(diag Q)'l

So that explicitly
U(F,E) = Q diag {A,B, B}

The first diag 1nal element A is

10-60e”+0(e ") -

The second and third diagonal elements B are

2 3 4
_V/60+70€2+20€3+0(€U) =1+ €S 4 O(ﬁu) .
20+70e°-20e”+0(e ")

Hence

UCE,E) = Q (1+0(e’))

¥ +

~and ' - -

luCr,E)-q|l <]l ote)
But |[|F-E|| = 0(e) , Hence

luce,Ey=Qll =0q|F-Ef)

and the order cannot be\improved to odIF-EH&)_:



CHAPTER IV

PERTURBATION OF INVARIANT SUBSPACES

Let A be a selfadjoint operator on a Hilbert space
H and H be a "small" selfadjoint perturbation of A .
Then a question arises concerning how much an invafiant
subspace of A will change under the perturbation H .
This question is related to the geometry of a pair of sub-
spaces and an answer té this question must be based on such
geometry. This problem was investigated in [7], [8] and [9].
Taking the angle operator © mentioned in Section 1, Chapter
II as a measure of the difference between the subspaces, it
was shown in the above mentioned Qorks that, bounds on
trigonometric functions of the operator aggle ® can be
obtained from the gap between parts of'thé spectrum of A or
A+H , and the perturbation H . In the pregent chapter, we

study the same problem in the Banach space setting.

' In Section 1 we give the formulation of the problem
and we show how to associate with A -and A¥H spectral
projector frames E "and F respectively. The result depends
on twa mé;n ingreqients. The f;rst is a measure of the separ-
ation of the spectra of two operators. This will be developed
in.Section 2. The second is a measure of how faﬁhtﬁe two
spectrdl projector'frameé E, f are. As a medsure of that

L3

b
82
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we'take the generator L of the geodesic between E and F
which we called the oriented angle. Its use as a measure is.
already justified in Chapter III: In Section 3 we get a
bound for L , obtained from the separation of parts of the
spectrum of A and from the perturbation H . Finally in
Section 4 Qe consider the same problem, except that the
frames E and F arise from selfadjoint operators A ,

A+H in a Hilbert space H . In this case E and F will
be.orthoprojector frames. As it was mentioned before; a
detailed study is already known in the case of 2-frames.

We study the case of n-frames whére n>2 and we give a
‘result of a different nature than the one given in Section 3.
In fact our result generalizes some of those known results
for 2-frames [9].

[a]

4.1. Spectral Projector Frame of a Linear Operator

Let AeB(X) be a bounded linear operator on a
Banach space such thét the spectrum of A , o(A) , is sep-
arated into several non-empty parts Ol(A)""’oh(A) . Each
cj(A) . lijiﬁA¥ is a spectral set (i.e. open and closed in
~0€A)) and is enclosed by a simple Jordan curve ij (or a
finite collection of simple closed Jordan curves). It is

known [11, VII, 3.20] that the spectral sets give rise to

spettral projectors Bj 1<j<n , where chlis defined by
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1

(4.1) Ej = 7%; J (AI-A)"" dx , 1<j<n ,

.
]

each associated with the spectral set Oj » and they satisfy

n
(4.2) Ej¢0 , jZlEj=I , EjEk=6jkEk (j,k=1,...,n)

A commutes with each Ej , 80 that A 1is decomposed accord-

ing to the decomposition

X = Xl®X2@ cos GXn >

where Xj=EjX . The part AIX. of A 1in Xj has spectrum
oj(A) and AIX.sB(Xj) . Equa%ion (4.2) indicates that E
is a frame. Wejcall it the spectral projector frame assoc-
iated with A . The cpmmﬁtativity of A with all the Ej's
mean that A has a block diagonal matrix with respect to
the frame E. / ‘ R
Now we discuss how the spectrum of A changes when
A undergoes a small perturbation. In the finite dimension-
al céée, the spectrum consists 6hly of eigenvalues, and it
is known that theégfz;nvalues of an operator A depend on
A continuously T[22, II, §5-81f Even in general Banach
space, the spectrum o(A) changes continuously with A if
the perturbation commutés with A [11, VII. 6.10]. There
are other kinds of restricted continuity of the spectrum.

For example, 0(A) changes continuously with A +1f - A

?
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varies over the set of selfadjoint operators on a Hilbert
space [22; VIII, §1.2]. However, this is not true for more
general perturbation%, nevertheless the spectrum is still
an upper semicontinuous function from B(X) into the com-
pact subsets of the complex plane [i, I, 567, By this we
mean for each AeB(X) ‘and each neighbourhood V of o0(4),

there exists a neighbourhood U of A in B(X) such that
ag(B)eV (BeU)

Roughly speaking) the upper semicontinuity says that o(A)
does'notfgxpand suddenly when A is changed continuously,
but it may very well "shrink" suddenly [22, IV, §3, example g

3.81.

We showed above that O(A) &is upper semicontinuous.
In faet a finer result can be shown. Namely, each separated
part of o(A) 1is upper semicontinuous. .This will be clear
from the next theorem, whose proof can be found in [22, IV,
§3.u4].

-

Theorem 4.1. Let AeB{X) have spectrum Aepanaied as above.

Let

i

X = X (A)6...0X [A) L ]

be the associated decomposdition 05, X . Then there exists

a 6>0 depending on A and the Pj'é with the §olLowing .

-
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properties. Fon any HeB(X) with [{H|| <6, A+H has spec-
thum Likewise separated into n  non-empty parts o,(A+H},...,
on(A+H) and each oj(A+H) {6 Ancluded in Fj . In the

associated decomposition
X = XI(A+H)0...9xn(A+H) ,

ﬁ,(A+H),...,Xn(A+H) are Lsomorphic nespectively with

Xp(A), .00, X (A) " :

'Under the assumpgion that the -perturbation H of A
is sﬁfficiently small, the spectfum of A+ﬁ will be separaf-
ed into ol(A+H),...,0n(A+H) . In a similar way to what we
did with A we can-aefine the spectral projectors 'Fj
associated with the sPectrél sets oj(A;H) j=l}...,n .

Namely

e

[

F. = oir I OI-a-0)"1 an > 1<i<n
. .

By the same argument as before Fj will satisfy (4.2). Let
F=(Fl,...,Fn) » then F will be the spectral ppojeétor
frame associated Qith nA+H . We pose the problem'és'fbll-
ows: given A , let ﬁ Bg a small perturbation of A :'
Associate with A and A;H tﬂe'spectral projecton frémes

E-and P respectively. It is Ehown that to Fraw a

[

conclusion about how far F is from E , we,haQe to put..‘

restrictions on the separdtidn of the parts of the spectrum of
” T . L)

A . To summarize, we want to pound a measure of the differ-

\

\
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»

ence between E and F by a function of the perturbation

H and the gap between the parts of the spectrum of A .

4.2, The'Separation of Two Operators

Let X,Y be Banach spéces."Let BeB(X) and
CeB(Y) . Then B ‘and C define an Opefator TeB(B(X,¥))

by
(4.3) T(P) = PB - CP ,  PeB(X,¥)

The above operator equation was studied by Lumer and
Rosenblum [7] (also in [32] and [35]) when P,B ahd C
_belong to a Banach algebra. Their techﬁiques, which apply

here, éhow that
(4.4)  o(T) = o(B) - 0(C) = {B-y: Bea(B),yeo (O}

We use the above result to define 3 measure for the separa-
tion of the_spéctra of- B and C . 'Since the distance
between the spectrd may change violently with small pertur-

bations, it cannot be takgn as a reasonable measure of the
v’ ) - . :

separétion of~the‘spectra. ‘However, for self-adjoint .

operators on Hilbert spaces, the distanee between the spectrd
. : %

3 . . ' .
can be "used as a measure due to the eontinuity of the spectra.

‘as mention%d in Section 4.1,

o

‘Definition 4.2. - Let BeB(X]) and CeB(Y) . -Then the separa-

'
o Lo LN
.

r
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tion between B and C , denoted Sep(B,C) 4s

. N ogem
Sep(B,C) = ,
0 Oeo(T)

where T 4is defined by (4.3). ~

Theorem 4.3. The separation of B and € satisfies-the

"

inequality

" Sep(B,C) < 4inflo(B)-clC)]| .

. )
14 Sep(B,C)#0 tﬂgn
N

X

"~

Sep(B,C) = Lg\‘ HTiP){I.
I f” Ty
\ .
Proof: Equation’(u.u) impli%ﬁ¢thaf 0¢0(T) if and only if
o(B)a(C)=0 . To show tbg'flrsf statement, we note that if
0eag(T) , then it holds au#omatically.' If 0¢0(T) , then
r(T-l)ﬂlT-lll. This, together with (4.4), implies the
inequality. The second statement is clear, since if .T-l
exists, then
JrY 7Y = dne fTERY || L
lIP{l=1
We remark that the function Sep is not symmetric.
However when X and vy "are Hilbert spaces and P in (4.3)

"is restricted to HS(X,Y) -so that TeB(HS(X,Y)), then in

this case Sep is symmetric and is the same as the distance
Y

s
EZS
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between the spectra of B and C 1if they are selfadjoint

(see [37], Theorem 2.6).

Now we show that taking IIT—J'H"l as a measure of
the separation is justified. It will be shown that Sep
stable under small perturbations.

Theorem 4.4.- The function
Sep + B(X) x B(X]) — R’
is Lipschitz continuous with constant 1.
Proof: First we show that
-Sep(B+H, C+Q) > Sep(B,C) - [[H|| - ||Q]] -
If Sep(B,C) - ||H|| -||Q]] < 0 then the above inequality is

satisfied. So we consider the case when’fﬁ3
Sep(B,C) - |[H|| - |[Qf| > ©
Let KeB(B(X,Y)) Dbe defined by

K(P) = PH - QP .

If S=T+K .is invertible, then Sep(B+H, C+Q) = ||s~1|t .

Now y

S I
Il < NIEl+ Jlell < sepcs,0) = |74

i

is

R el Y oy




Since

-1 Hi
H(s-T)1™ || < SepB.Cy < 1

" then from S = [I+(S-T)T_l]T , it follows that

s7t =17l 7 (ofres-mTh" .

n=0
Tﬂus ’
-1 -1 .1

e e
and

s~ d s et adiie D s gt -

| © sl + ol

So

Sep(B+H, C+Q) > Sep(B,0) - [lall - flall .

From the above inequality, it aiso follows that
Sep(B,C) > Sep(B+H,. C+Q) - ||H]|| - [|Q] .
Adding up, we have

|Sep(B+H, C+Q) - Sep(B,C)| < |[[H|} +]lall .



4.3. Efror Bound

In the setting of Section 1, the smooth path
A(t) = <?t H 0<t<l .

connects HR=A(0) wityy A+H=A(1) . According to Theorem 4.1,
o (A(t)) will be separated into n parts oj(A(t)) 1<j<n ,

for all te[0,1]. Moreover, each oj(A(t)) will Pe enclosed
by T. . The ¢pectral projectors fj(t) associated with the

]
spectral setﬂ oj(A(t)) are then given by

<
X . -1 .
- (4.5) ) Fj(t) =z m] (AI-A-tH) dax , 1<3<n, te(0,1]
. I'.
J

For each t, 0<t<l , f(t):(fj(t))g=l will be the spectral
projector frame corresponding to A(t) . Since t F— A(t) ,

0<t<l is a smooth path in B(X) , it follows that

— ) n
(4.6)  t +— E(t) = (?j(t))j=l

is a frame valued continuously differentiable path, with

?é(t) = 5%? [ (AI--A—‘CH)-l I’I(AI--A-*CH)"l dx , 1<j<n .
. r. ’
]
In particular,
(4.7) ?3(0) = 7%1 J (AI-A)"L HOAI-A)"% dA »  1<j<n .
r.

J

RS * SOV

LR

S
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Furthermore, it follows from F
~(4.8) ?3(t) F.(t) + ?j(t) ?é(t) = ?%(t) , J3=l,...,n .

Also

1o~

n
F;(£)=1 implies that )

1=1 ]

Equation (4.6) gives an interpolating continuously differ-
entiable .path connecting’ E=F(0) and F=F(1) within E™(X)
Recall that E™(X) denotes the set of all frames in B (X)

Theorem 3.4 showed that EnﬁX) is a,Banach manifold and the

-
tangent space T(E) at EcE™(X) was identified with

T(E) = {HeB™(X) : H. = E.H. + H.E.
(E) {HeB (XD 5 5Hy 5E5

IHy = 0, 1<j<n}

It follows from equation (4.8) that F'(0) -is indeed in the

. tangent space at E . Let

- - | n
Hy = F'(0) = (00,

]

Define L as follqﬁs

(v.9) L =27 (R, E -E 8. .
¢ O

We note that



93

(4.10)

1He~3
t1

. 118 . n
LE.=7‘ZEjHOjEj—ZE.H.E. =0 ,
j=1 =

so that LeM(E) , where M(E) is the model space defined

by equation (3.7).

We remark that L as defined by equation (4.3) was
used to define Kato's transformation which we have mentioned
in Chapter I. Further - L datisfies

A ﬁ.E.-E.H.]= TR LB = - ] R,

2 321 0373 3703 521 0373 j=1 - 0]
The eduality of thé three members of the above equation

follows since

[}

o~ o, oo 2.1
F.(0)E. + [ E.F.(0) J (F.(0)°) =
] =1 J 3 521 ]

1 I

Ho~ag

j

H
Hes-3

(F.(0)) =0
1 7 :

\
// ]
In what follows, we try to bound L defined by
equation (4.9), though our goal is to find a bound on the

generator L of the geodesic between E,F . Finding an

estimate on L will be the first step to bounding } .

Adopting the notation introduced in Chapter 1, and
fixing the frame E , the spectral projector frame corres-

ponding to A , we have \

o s e B I AoV —RA




9y

- -
L/ All
(4.11) [A]E = A22 0 ,
0
‘A

Hll .o o o Hy
(u‘ﬁlz) [H]E = Hzl . . ¢ Lo H2n

_I:Inl L] . . » Hnri‘

We use (4.11) and (4.12) to find the entries of the block

~ t
matrix of Fj(O) . This will be given by the next lemma.

= ! e n

»

\/ !
Ei1i
0 0
E'
LRy
~ ! ! ~ ! 5 -~ ! a~
CF 00 dg = (B q Biiam Ee i vl " Ei in
3 -
i,é+1,4
0 : -0
B
i,nd
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~ 1
Proof: Recall that Fi(O) as given by equation (4.8) is

=1 _ 1 -1 -1
Fi(O) = 5T J (AI-A) H ()\i[)-A) dx
r.
1

Let

)n

[F;(0)1p = (Ej 0% o)

i,ik

Expressing A and H by their block matrices, as given by

(4.11) and (4.12), in the right hand side of the above ex-
»

-

-~ 1
pression of Fi(O) , we get

B2 | Or-a. 0"t H. I-a 7Y aa
i,k 271 33 jk kk

i

- By our assumption on the spectrum of A , we know that Fi

encloses only ’G(Aii) , and therefore

o
E

i3k ° 0 j#i and k#i

w1 O
Also>since Ei Fi(O)Ei=O , as it follows from (4.8), we have

~1 ~ 1

Ei,ii=0 . That 1s, in matrix representation, Ei,jk has all
entries zero except for the ith row and 1™ column.
ol ©
We now study Fi(O) more closely: the only values
~t L. ~ .
of E to be considered are when 3j2i or k=i. If we

i3k

e



2

36

~

fix k=1 , then with each j we associate the following map

(.
Sji: B(Xi, Xj) —— B(Xi,xj) h
1 -1 -1 .0
(Q-l3) Sji(Q) .- 7?I [ (AI—Ajj) Q (AI-Aii) dA
r.
i
The next theorem determines the inverse of Sji , j=1,...,n ,

J#i .

Theorem 4.6. The map Sji :

-1 -1
$,000 - g | T 7T g Grea )

r.
4

dx, QsB(Xi, Xj)

{8 a bounded Linean map and it is the invense of the map

T whene

ji

(4.14) T..(P} = PA.. - A..P, PeB(X., X.)
14 L

Proof: It is clear that TjieB(B(i;, Xj)) . We will show

that )

T.. S.. = 8S,, T.. = I
ji 31 ji “ji

From (4.14) we have

» - -



g7

|

and by (4.13) this expression equals

1 -1 -1 1 . -1
=T [ (AI—Ajj) Q(AI~Aii) Aiidk - 5T I Ajj(AI-Ajj)
T. . I. "
i i ;
QUAI-A. )L dx
il
But since
-1 -1
A..(XI-A..) = =T+ A(AI-A..)
i3 I 33
and
e ™~
-1, -1 \
(}\I"’Aii) Aii - "I + }\(XI"Aii) Y . \\
\\
) {

we have . W

T,.(S..(Q)) = »ir QAI-A. )Y dx = | (AI-A.0)"roan

jit"ii 2m1 ii 33
‘ . r.
i

1 LN

By the operational calculus

*

1 -1 -
.
1
and for Jj#i ,
\\ 1 -1 . ‘
VLT j (AI-A..) dx = 0

v

C b o pteen e g
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& x
v .1 -1 -1
I.
1

This reduces by similar domputa%ions to

v

and the theorem is proved. ///

. The above theorem says that

~ 1

. Ei,ji = Sji(Hji) 3=l,...,n;5 JEL

1

where S Tji

ca = , and T.. 1is given by (4.1%4). This gives
Jji Jj

~ !
only the entries of [Fi(O)]E in the it column.

r ~

Similarly if we fix Jj=1i in Ei 5k then
=t .1 -1 -1
Ei,ik = 5T J (AI-Aii) Hik (AI-Akk)_ dA
I,
i
where k=1,2,...,n, k#i . With each k we associate a
bounded linear map Sik as follows
_ 1 -1 -1
Sik(Q) = 5T { (AI-Aii) Q (kI-Akk) da ,

9, k
1

with QeB(Xk, Xi) . By the same argument as in Theorem 4.6,

we have, Sik is the inverse of Tik defined by

Tik(P) = Aiip - PAkk kzl,---,n k#l
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~ 1

We alsc note that E. ., = S. (H
1,1k ik
-1

Six 7 Tix -

ik) k=1l,...,n k#i where

In Section 2 we defined a measure for the separation
of the spectra of two operators. Specializing this to the

case where B=A.. , C=A.. , we obtain
ii 33

2t

Sep(A i, A:.) = ||Tji

33

By Theorem 4.6 we have

-1 L -
(4.15) Sep(A,;, Ajj) = Hsji|| i,3=1,..5p  JF1 .

The following theorem will give a bound on L as defined
by equation (4.9) in terms of Sep(Aii, Ajj) and the pertur-

bation H .

Theorem 4.7. Let AeB(X) , and suppovse that the spectrum of

A, 0lA) , £s separated into n non-emply panrits Oj(A)
Let E be the spectral projector frame cornesponding to A -,

and HeB{(X) be a penturnbation of A with F Zthe spectral

profecton frame associated with A+H . Set
g = min SeplA.., A, ..}
1<4, f<n e i1
if4 N
&nd
3
TIEIS (13 1s
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then

(.16 )L < Eywg)

Proof: From equation (4.9) we have

~ n -~ 1 ~ t
L= ] (F(OE, - EF (0
LoV i iti
1=1
and
N LAY
By the way we normed BN (X) , ||E| = max||BiH , SO that

1<i<n
~ n
LI < HEll L HE ol -
1=1
' ot
We will use the block matrix structure of F.(0) developed

. ~ !
in Lemma 4.5, and Theorem 4.6 to bound Fi(O) .  Recall from

Chapter I that the norm defined in BME(X) is

1

1TE, €01l = nax }z(uﬁl,jku .

Direct calculation shows that

IE. Il < nllEl NE; €0 Il

But for i=1,...,n

, ’///,\/ - L
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~ 1 - (..l )n
[Fi(O)]E - Ei,jk j,k=l 9

where

Ei,jk =0 j#i, or k#i , or i=j=k
~' ( ) . .#D
~ 1 B '
Fi,ik = 5, (H,) 1k<n , kAL .
\

Equation (4,15%) impliks

~

|E

l [ ' . .
i,ji” 2 Sep(Aii’Ajj) ”Hjill }i]in y JEL

oy A~

| 1

- <
1,1k” - Sep(Akk’Aii

y lHi ] 1gksn , k#i .
Hence
=t 1 .
HEi,jk” < ] ”ij” - 1<3, k<n ,

and consequently

n;?;(o>JEH < % 150

But since
- n 1 ) 2 n v -
LN < NEN E N llL< dlEl? T ITF 03]l
i=1 - i=1
we havé

HTle S . vor
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The rest of this section will be devoted to finding
in estimate on L , the generator of the geodesic between
E,F . In Chapter III we discussed how to obtain the gener-
atér L , and it turned out that it can be obtained as the .

solution of the operator equation

(4.17) expL - PF’E(expL) + PE,E(L) =0

Theorem 4.8. Under the assumptions of Theorem 4.7, Let

LeB(X) be the generator of the geodesic between E and F .

Then
IL-T]| < K [JexpL]| \

where K A& a constant given by (4.18) below.

Proof: Consider the map

¢(F,L) = expL - PF,E(expL) + PE,E(L) FsB“(g), LeB(X)

Clearly ¢ 1is a'smooth‘map B (X) x B(X) —— B(X) . Further
¢<E,O)=C R ¢é(E,O)=;eB(B(X)) , where ¢;(E,O) denotes the

partial derivative wifh respect to the second argument.

Hence the éonditions of the implicit function theorem are
satisfied. Therefore there exists é neighboﬁrhood Ug of

E in B™X) and a neigﬁﬁourhood vV of (E,O0) 71n BM(X) x ~—
B(X) and a unique smooth map L,: U .———*B(Xi suchgthat

0 0
for each ‘FsUO we have - (T, LO(F))e Vv and _¢(F,L0(F))=O .
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So if FeUOn EN(X) then L=L0(F) will be the generator of

the geodesic between E and F . The actual procedure of
O‘J

finding L goes as follows: For a fixed FeUgn Enfk) =

= UCIJO define a function
F _
p (L) = L - ¢(F,L), LeLO(UO)

We will show that wF is a contraction map for any TFeU
To do so, we show first that for every €>0 , a &>0 can be -
found such that wF(L) maps the sphere |[L||<e into itself

for ||F-E||< 6. Differentiating wF we have

F/' 1 1 1
p (L) =1 =~ ¢2(F,L) = ¢2(E,O) - ¢2 (F,L)

t 1 1
1F W Il < 11 6,(E,00 - o (F,L| .

»
1 .
By the continuity of ¢,y v the qunatity on the right hand side

can be made arbitrarily small. So let

W et dLll e, IF-Ell< o) .
Since #1(0) = -¢(F,0) , then

e ol = [1CF,0) || < [[6(F,0) - ¢(E,0]| .

By the continuity of ¢ , the right hand side in the above
inequality can be made as small as we please by reducing § ,

let § be sufficiently small that . /

j .
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H6F |l = 1l (F,00 - $(E,00]] < e(l-0) , (JIF-E || <&) .
Now for ||F-E|8 and |[L]| <¢ , we have

Hef il < vfo ] + [vfw - vFo

| A

e(l-a) + sup |lvf oL || IIL]] .
0<8<l

[ A

(Here we have applied the mean value theorem for the second

quantity). Thus
F —
T (L) ]| < e(l-a) +ea= ¢

Hence wF maps the sphere ||L|lke into itself, while the
derivative is bounded by a constant «e(0,1) . That is WF
is a contraction with o as a contraction factor. Hence
there exists in the sphere |[L||<e a unique fixed point L
of wF , which implies ¢(F:£3=O , where L will be the
geodesic between E and F . Knowing that wF is a con-

TS /f¥action, we can obtain L by successive approxiﬁatiqns.

~

.Starting the successive approximation at L , we obtain

_ . F -
0 Ln+1 =y (Ln) , n=l,2,...

| o
w o
(k3

Thus from the error formula for the successive approximations
o
{0 el e g5 Ilop-koll n=0,1,...

Since L1=L-¢(F,L) and PE,E<L)=O /(Qitigffollows from .

(4.10)) we obtain
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l|lL-L]] <

~ _ 1 ~
HLl'L” - 1'?&" H(i)(P)L)”

expL||

| A

[lexpl - pF,E

| A

-j_——_Ct- Hl = pF,EHHeXPLH .

This completeg the proof of the theorem with

e e

L

= /17

(4.18) K = 1 - P

rell -

We note here that the estimate

(5.19) [expL]] = | Eo&n—?uin‘ijo [

~

is often overestiﬁﬁfgg, a better estimate can be given by .
A

(4.19") |jexpL|j<inf e-tH!L+tI”
teR

This 1is because
expL = exp(L+tI-tI) = exp(-t) exp(L+tI) , teR ,

So that

o-tH LI . te

llexpL|| < et |lexp(L+tD)]| < R

We will give an example to show that the strict inequality

sign may hold in (4.19) and eguality in (4.19').




=

" .

Example 4.9,

L =
Thus

explL
where

Pl =
Hence

explL

We use here the Euclidean norm,

Note that L
Hence ||L|] =
that expl

1N
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Let T %
S/
0 -1 {
w__wWith eigenvalues " 1, -i
1 0
/
/
i -1 -
= e Pl + e P2 ““
.
L+iI P = L-iI
21, ° 2~ 21
cosl -sinl
sinl cosl
i.e.

is skew symmetric

1 Since L

is unitary, so

is skew symmetric, it follows

[lexpL| = 1

On the other hand ||L*tI|| = v1+t° and

Inf
teR

and indeed '

exp inf

exp(-t+]|L+tI|]

. teR

»

?

1 -
t+;l+t2 i

exp inf (-

teR.

1

r(L*L) = p(-L%)

Ll = Cruen) 1t/ 2.

r(I)

and

t+/1+t2 )

1

|lexpL|| < expl| L|= e .
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[lexpL|| = inf exp(-t#H|L+tI|]
teR

ing theorem which at the 8age time answers the open question

[9, X, Question 3], thouglf we have a more general setting.

Theoreny1.10. ‘Let AeB(X) , pose thg spectrum of

A, o(ﬁ) = !Z oj(A) whene the Oj(A)'A are disfoint spec-
thal sels. Jlet E be the Apectkaﬂ projecton frame corhres-
ponding to A |, and Let H be a small peizhnbation of A,
with F Zhe specitral projector frame assoclated with A+H
Then we have the 6o££owing.e5£gmate on the orndiented angle L

between E and F
Ll < Ky (L) + || L]
whenre

Y(T-) = 1”-6 e"t"'”l-*tI”.

LeR

and

1Tl < & 1fHll

Proof: Since ||L|| <||L-Lj| +||L|| , then Theorem 4.8 together
with inequality (4.19) give an estimate on the first'term.

For the second term we use theorem 4.7. i
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- d

4.4, Error bound in the selfadjoint case.

In the previous section we coﬁisdered an operator A
with the spectral projector frame E associated with it and™
the spectral projector*&rame F associaéed with A+H . If
A and \? aﬁe selfadjoint operators on a/ﬂilbert space H

)

N
then the f&g@EF E and F will be orthSprojector frames.

s

In this section we will be mainly considering this case.

Suppose that the spectrum of o0(A) 1is confined to
n intervals Ij , 3J=1,...,n and E=(El,...,En) is the
spectral orthoprojector frame associated with A . E will

z:give rise to the decomposition of H as follows:

-~
{
H =%® oo BH

her H, = E.\k .
where 3 5 )

N~
Let *
H

sjs$ = E. , sgs. = I , sﬁs. = 0 j#k j,k=1,...,n

" Also let

g. : HOH. —— H
s y

such that
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$.3% + g,8% = I
5383 7 S3°3
qﬁ )
Hen % = I - E. = E. d S%s. = 0 = s¥%s.
¢ 5585 TS B 7%
g g’}
Clearly
)
Ay, )
[A]E = 0
0) .
| P

For small selfadjoint perturbations H , the spectrum of
A+H will be contained in the intervals Jj » J=1l,...,n .
Let F be the spectral orthoprojector frame of A+H . As
above [ gives rise to the decomposition of H into the

direct sum

1

Similarly let tj j=1,2,...,n be the injections of Hj
into H , hence as before
t.t¥ = F., t¥t. = I and t*t. =0 j£k (3,k=1 n)
1 T S T B k-3 SRR

1
For each j let fj: HOHj —— H be such that

F is the spectral projector frame of A+H , therefore
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r—' M
By
0
[A+H]F = o) .
B
S nru

~

With respect to the frames [Ej, Ej] and [Fj, ?j] , the

operators A and A+H will have the following block matrix

representation
A.. 0
3]
[A][Ej, e C . ’
O A..
- 11
r_-_B._ N
33
[A+H][F., £ ° .
] J - —
0 B..
- 11

As mentioned before, the distance between the spectra of two
selfadjoint operators is a stable measure of the separation
of the spectra. This will be the measure we use in the next

theorem.

Theorem 4.11. Let A , A+H be as descadibed above, and

suppose

4.20) dist(o(B..) , olA..)) >6&. , 6.>0 , f=1,...,
( ) ddiszl ( jj) ol Jj)) 29, ] j=1, n
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Then

4.21 £8. F.E.|| < H .
( )] i ¥ jH < n|[H]]

S

ALso Let VI(F,E) = LF.E. , and set & = min
o T<jen
SI1-vil < n [[H]] -
.Funthermone «f we assume also that
dist(o(B..] , alA..)) > &. ; f§=1,...,n
(of jj) ( jj)) 298, J
then
SIIF-€ll < [} »
In panticular forn n=2 we have
Sllsinoll < 14|l
Proof: Since
% o ~ %
A = s.A..s. + S.A.. S. =1 .
373385 7 %3833 %5 IT el
g".v
and
A+H = t.B..t% + ©.B..¥% 3=1,...,n-
B335 F T4Bysty 3Fheeene
we have for j=1l,...,n
Hs. = (A+H) . - As. = (A+H) . - 5. A..
3 55 T 03 °5 7 %5

i3

’
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Taking the adjoint of the above equation, we get

. STH = s, (A+H) - A..s. )
’ ] ] 33 3
and multiplying from }he right by %j
P - P ~ P ~ ~
s. Ht. = s.(A+H) t. - A.. s. t. = s. t. B..
] ] ] ] 37 3 J 3 1)
o~
- A.. s. t
33 ) ]
Set
X “I. & B(F.H, E.H) “H E.eB(F.H, E.H)
. = s.t. € . . s . T S, € .H, k.
37 %5 3 Q5 = s j 3 j

and the above equation becomes

.= ¥, B., - A.. X,
Q] X] 3] J3 3

This operator equation was considered in [9, V], and under
our assumption (4.20), Theorem 5.1 there can be applied to

our situation, to give v .
S.HX. ] < .
%1l lhoy |

This leads to

’ S~ ~ ~ R o~ ~
6' 't' : 6' E'F' : 6' F'E' * * : . »
flestll = egiEsFl = olFsE, Il <llssaEsll = NEgmEs
consequently
(4.22) 6.|F.E.|| < |F.HE.|| < ||H 521,...,0 .
) SIEE < IEEE < EIL 3el,..0n

")
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Adding up we get inequality (4.21). Since

V= V(F,E) = ] F.E. ,8= min §, ,
j=1 3 1<izn

/ﬁ\‘
we have

AT-vll < n il

v

$F.E.

by virtue of (4.21) and 1I-V 4E5

If we further assume that dist(o(B..) , o(A,:)) > 8

33 3377 =73
3=1,2,...,n , then an inequality similar to (4.22) can be
obtained namely

§.||F.E. F.HE. =1, ... )
Jl 3 ]H <l 5 JH j l,, ,N

Lemmas (6.1), (6.2) in [9] together with the above inequality

and inequality (4.21) imply

A

§:|F.E.+F.E. F.HE.+F.HE. 521y ... ,0 .
) SSIESESELES] < [IFSHES+FGHE, || < {[R]] 3=1,...,n

But since

§.||FaE.+F.E.|| = 6| (F.E.+F.E.)(2E.-I) ][ = §.||F.-E.
]H 4 Ey ]ll JH $E4+ESES ( 3 ) || ﬂl 3 .]H

-~

(the bound norm being unitary invariant), hence we have

6.|F.~E. j=1,... .
IFs-E5 b < Hl 3=1,..04n
0

This implies

dIP-Ell < [tH]| -
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For 2-frames this is exactlyéthe sin® Theorem [9], since

llFl-ElH = |{sin0]|| =||F2—E2H . This completes the proof.

Remark 4.12. We mention here that, in a private communica-

tion Davis wrote, that under assumption (4.20), he got a

stronger estimate than that in (4.21), namely

LS. %.E. < [tHIl . 3
1265 .24 < Nl

P
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