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ABSTRACT

,/~. In this thesis we make an extensive study of

the algebraic solutions of the functional equation

where the unknown function “:* »J maps a ring . to?an

abelian group .

YN

¥

After proving some general results abqut the
solutions of the equation, we study it over rings
generated by their units, over number rings, and over
polynomial rings. We find that over a large class of
rings, the equation is equivalent to Cauchy's functionj
al equation, and we give ideal-theoretic criteria to
specify when it is not.

Our methods involve a wide variety of techniques

a class of functional equations which generalizes the

¢

above equation.
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CHAPTER 0

INTRODUCTINN

Functional equations have been studied by mathe-
maticians ever since the theorv of func¢tions besan in the
e1qghteenth century. They apprear in virtually everv
branch of mathematics, and every student of ﬁathematlcs
is no doubt familiar with the concept of a functional
equation—an equation involvina functions which are
considered to be the unknown elements, and which must
satisfy the equation for all values of the variables.
Despite their frequent occurrence, the systematic study
of functional equations as an oraqanized subilect i1n 1ts
own right began only recently,

One of the first equations to be studied exten-
sively 1is the equation of additivity—Cauchy's functiconal

equation:

Cauchy discovered in 1821 that the only continuous solutions
S +«R »[P of this equation are the linear functions:

fix' = »x, where -~ ¢ R. (For this and other general

references in this introduction, see the book by Aczél [1],

which coﬁfEiQs an extensive pre-1962 biblioagrarhy of

‘-
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papers on functional equations.) Five years later, Abel
solved Cauchyfgéequation for continuous functions, on the
~ complex numbers 7:0 ~(. , -

In 1875 Dérboux improved Cauchy's result by showiﬁg
that if a solution “:R - R of Cauchy's equation_is cont-
inuous at any point, it must be continuous everywhere,
and in 1889 he showed tha%yﬁhe same conclusion follows,
if £ is non-negative (or non-positive) on any interval
of the form (0,a) or (-«,0), where a>0,

The concept of a Hamel basis (a basis for R as/f
Q-vector space) was invented by G. Hamel in 1905 to
describe the general solution of Cauchy's equation for
functions f:R - R. He showed that any solution can be
constructed by choosing arbitrary values for 7 on a Hamel
basis for R, and then extending the function to all of R
by linearity. The topvology of the reals does not enter
into this result—it is strictly algebraic in nature,

Pexider in 1903 investigated the following
generalfzation of Caucﬁy's equation:

Slxtu) = alx) + wly)
where'gil three functions f, 7, and % are unknown. He
showed that the solutions of this must satisfy

flr) - F£(0) = a(x) - 2(0) = kix) - k(D) ,

and that the function ¢(x) = flx) - () must be a solution

e
IT
.

of Cauchy's equation.
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If 4 and * are abelian aroups, thgn the solutions
4 »~ 5 of Cauchy's equation are, by défiﬁitioﬁ, the
group homomorphisms from 1 to 3. So in this general.
setting, the study of Cauchy's équatioﬁiis sihgly the
study of the groun HoﬁZfA,P’——an*%bﬁgct of great import--
ance in abelian group theory. : -

Cauchy's equation is an example of an 1lgebraic
functional equation. By this we mean an equdtion in--
volvng only known and unknown functions, variables, and
algebralc operations (addltlon, subtraction, multlpllc—
atlon, lelSlon, and—functlonal compositiéh) appliea

to the functions and Gariable§. A few other well-known

examples of such functional equatioéns are:

.

(Jensen's, equation).

i

r(x+u] 5(m)+’{v)

3
& 2.

flxtu) + flx=3) = 2f(x)7(v) (D'Alembert's edquation)

A
.
&

|
<
S
1

o

Slz)fly) + F(x)aly) ~ (cosine equation)
Plr,Flu,z)) = F(F{z,«),F(x,2)) (autodistributivity).

The (abbreviated) history of Cauchy's equation

n

. ) \ .
that we have traced illustrates the general development

of the study of many algepraicefunctioﬁal equaéions. The

)

equation first arises from another branch of mathematics

+

or from some physical application, or .perhaps to illustrate -

or clarify a general principle in the theory of functional

equations itself. (The origins of Cauchy’s equation lie
. ™ ‘ s - .

.



. thén solved under some regu

. By gen ralizing”the equation itself or by varying the

‘ |
> & /

. ’ 4
in the problems of the parallelogram of forces, the meas-
urement of areas, the introduction of the normal/

probability distribution, and others.) The equation is

rity assumptions on the

e/

unknown functions—pefhaps differentiability, continuity,

integrabilify, or measuyability—whatever is needed for

the appiications at ﬁand. As the range of applications

increases, and as the equation.develops its own math-

ematical interest, an -

ffort is made to weaken the °© ot

" regularity assumptiofs under which solutions are obtained.

Thgreventual goal is‘usually to obfain a complete,

general algebraic solution of the equétiéﬁ (without
regularity conditions), as such a solution depends only *
on. the form of thezequatién itself and on the algebraic

structure of the domain and range of the unknown functions.

domain anhd range of the unknown functions, we can discover
which of these elements i's most essential in determining

Vv

the structure of the set of solutions.

In this thesis, we will study the following func-

tional equation (known as Hosszi's functional equation)

~

_from the algebraic point of view that we have.described

- above.

flx) + f(y) = f(x+y—$y) + flzy) (H)
N . :

~

This equation arises from the theory of measures’

. 4
\‘:' -



4 . 5
<gnd more generally, from the -study of valuations in
igftice theory. Let C be a collection of subsets of a

se% X .which contains the empty set and is closed under

X

the' opératlons of flnlte unlon and complementation.
\ © ot

. Recall that a function u defined on £ and with values in

R is called a finitely additive measure on X if it
satisfies the eguation..

. ‘ ' W(E) + u(rF) = w(EVF) .
for all E,F ¢ C satisfying EnF = @, (See Bachman and
Narici [3], pages 188-195 for an application of such
'measures t# the so ~called "measure problem".) Thls
condition is equivalent to W(E) + u(F) = u(EVF) + u(EnF)
for all E,F ¢ C. :Thé collection C has the structure of
a complemented lattice, with the meet and join being

intersection and union, respectively. In this context

our equation becomes

? u(E) + u(F) = W(EVF) + Uu(EAF) .

For general lattices, functlons u satlsfylng £hlS equatlon
-are called vaZuatzons _(see Birkhoff [4], page 230). From~

any complemented lattlce we can construct a ring with

the samé:elements by setting x+y = (xVy)A(xAy)

z+y = zay for Bll elements x,y of the lattice (where the

Q
superscript % denotes complementation). Then

‘.

so that the equation defining a valuation on a lattice

-
' s )
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becomes W(E) + u(F) = w(E+F-EF) + u(EF). This is Hosszid's

E]

equation.
| mM.,Hosséﬁ first Studied'équation4%H)ffon real-
valued differentiable functions on R. He ghowed that
such solutions §f (H) must be of the form f(x) = ax+b
(where a;b € R). We will cail‘éuch functions affine
Ziﬁear. Ifewe differentiate edugt#on (H) Qith respect
to z, and éhen‘set x=1, we éet f'(1) = f'(y)—that is,
f "has constént derivative, and ﬁence is affine Hineaf.’

At a conference on functional equations in Zakopane,

Poland in 1967, HosszG posed the problem of solving (H) .

for measurable real functions.

" the affine linear functions are the only solutions’on R

Fenyd [13] solved HosszéG's problem in 1969 by
showing that the measurable real solutions of (H) are
agaid affine linear. He later extended his investiéﬂgions

to the equation {._ . : . « — .

Tn

f(ao+a1x+a yfﬁsxy) + Q(b0+b1x+b2y+béxy) = hix) + k(y)

2
with f,g,%,k:R + R unknown functions,"and’ai,bi e R,

. (£=1,2,3,4) arbitary constants (Fenyo [14]). Solving
» . i . .

"this equation for meqshrablé real functions . turns out to

be basically equivalent to solving equatioh (H).

In the meantimg, éwiatak.IZO] had shown thaf 4

. 3y ‘c - G . N ! .-'1'
" which are continuous at the pair of points o and-a+*a "-1I

(0 # a e'R). Dardczy [8) and Swiatak [21] later showed



co | 7
that if ; solution fR +R is Lebesgue integrable on certain
- finite intervals, it must again be affine linear. .
The f%rst algebraic result on Hosséﬁ’s equation
?was the general solution of the equaﬁidn (wi;h no
reguia;ity restrictions) fof fhngtions f:R »~R. Blanusa [5]4/
and Daréczy [9] showed independently that anf such solution
\is of the form f(x) = ¢(x)>+ f(0), where ¢:R + R is «an
. arbitrary solutjon of Cauchy's functional equatioﬁ. Such
functions we will ca%l af}ine.“ ' . ;&
‘éwiatak [22]‘extende& this result by showing Fhat
if f:F » ¢ is a solution of Hosszl's equation, where F
is a field not of characteristic 2 or 3 and ¢ is an
abelian group with céitain restrictive pfopérties, then-
¥ must be affine. . She poéed the natural problem of s
dispensing with the conditions on ¢ required in her
result.’ Tﬁis problem was so;véd'by Davison [11], who

also dropped the characteristic condition on F by brovipg

the following theorem.

-

THEOREM. Let F be a field with more than four elements,
and lét G be an- abelian group. A functian f:F + G
satisfies Hosszﬁfs-eqqatioh if and only ff(it;is

affine.
3 a - - "
It is clear that, assuming the known theory ofh
Cauchy's functional equation, all the previously
mentioned results concefning HdSszﬁ's equation follow

t),
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as corollaries of this thebrem.
| _-Davison had solved. Hosszi's equation for the two
prime fields excluded in the above theorgm }n!a pfevious
paver [10]! in which in fSct he solved the equation for
functions f:Z = G and f:Z/nZ + ¢. The results of this
papgr showed that on suit;ble rings there ére solutions
of Hosszﬁ's equation which' are not affine. ‘
| In éhis thesis we Will»continue the study of
Hosszi's equation for functions defined on classes of
rings more general than those on which it was previously
étudfédt "In doing so we will be able to see more clearly
what aspects of the algebraic structure of the ring over
which we are studying the equation affect the structure
of the solutions of the equation. W;E%éve seeﬁ that
over certain rings, the solutions are simply the affiné
functions, while over others, there are further solutions.

We will try to illustrate the reasons for this in our

study. We will also briefly consider generalizations

- of Hosszd's equation. Many of our results, apart from:

any -interest they may havglin themselves, also involve

techniques that may be applicable to the'aigebraic

¥

study of other equations.
In Chapter 1, we study some general properties

A 3 ‘e & ' .
of the solutions f:R - G of HosszG's equation, where

R is a ring (always with identity) and ¢ an abelian



-another special.class’qf number rings deécéibed in

Fl
»

group. ‘Among other thingsj we prove three reduction
theorems (Propos;tions 1.4.1, 1.5.1,_;nd 1.5.2) which
allow us to redﬁég our study of (H) over R to a study over
direct factors and, in some cases, homomorphic imaifs

1 -

of 7.

In the second chapter, we studykthe eqyation over
r;ngs generated by their unips( and we abply our results
to local rings. : , .

Chapter 3 deals with the study bf,Hosszﬁ‘g equation
over number rings. we give a cémpleté sqlutién of ;Hé/ A
equatlon over cyclotomic'rings‘of integers, and over : ‘

A
Corollary 3.2.2. For all numbgi/;éngs, we desc;ibe _
those solutions'fvwhiéh‘ha?e the property that the
function ¢(x) = f(x) .- f(0) is even or odd.

In éhapter\4, we consider -therequation for |
functiohs‘def;ned'%n polynomial rings, and we use our
results to determine the continuous solutions oz £he,
equation over singly géﬁe:ated tép?iogical élgepras.

Finaliy, in Chapﬁer‘s, wF examine various -
generalizations of ﬁpsszﬁ's equétibn.

roo- ) o

vy

»
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This thesis is deveoted to the study of the

52

0

. EQUATION

H

f!

A

functional equation o
CUflz) + Fly) = f(x+y-;;?/+<f(xé) . " (H)

which we call Hosszi's functiéndl equation (6r;simplj,
equation (H)). In thié‘chapte#,vwe will aééemble,
| definition%ﬁ:aescribe“certain égnst;uctionsf and prove
some géﬁer@l fesults whigh we will require in the sequel.

‘We will study the equation for.unknown functions
f:R~G from a ring R td an abelian droup G. Oﬁe can see
from the form of the equation that this is a very '
naturalasétting in which to study it.
. If ffﬁ +G and g:R =G aré two functions which
satisfy (H), then f+g (ﬁheipoinﬁwise sum) will‘clearly
qiéo satisfy i?. Moreover; so will the function F:Rr »¢
- Eefined by F(r) - ffr) - Feo). ;Since.fhis function has
.the property that ?(0)‘= ¢, we see that éveryi;olutibn
of;(Hf différs 5y a constant function from oné whose
value at b‘is'the zexc elemen;gof the ghagé group. We

solutions of
-

will therefore reSprict‘aﬁffétteﬂtion to

L]

- =10-, -
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(H) with this property, ,and we will call such solutions
Hosszi functzons on R. Functions whlch satlsfy the '
equation f(lx+y) = f(x) + f(y) (Cauchy s equation) will

be called additive or Cauchy functions. Cauchy functions

are\clearly always Hosszq. —

1.1 - ODD AND EVEN HOSSZU FUNCTIONS

-In this section we will introduce two functional

'eduations which characterize the ogd and even HosszUW\_ -

functions. By an odd function, of course, we mean'

ohe that satlsfles f( x) = -f(x) for all x in its

domaln, whlle an even function satisfies f(-x) = f(w).

Every additive functlon is clearly odd—if it is ‘also

even, then its image must be a group o£~expone;£ two.
Swiatak [20] showed that any odd Hosszd function

on R ﬁﬁstlpe additive, and BlanuSa [5] was able .to use

thi§ fact to show that every Hd%szﬁ function on R is

additive. 1We will £f£ind Sotﬁ the odd and even Hossz{

fpnctioné useful in our study,‘partiéﬁlariy in Chapter 3.

PR

Pﬁoéoszfrog 1.1;5. The funetion f:R-C is an odd.

Hoss i function if and only if £(0).= 0 and f .

é&tisfiea‘the'}uhctionaliequéiioﬂ o
f(:c).,:+ f(é) + ffxy) =.fl'bx+y-l;x})j). ‘ - ‘—('HO)

¥

PROOF. 1If f is an odd Hasszu function, then
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~

fl-x) + fl(-y) = flxy) + fl-z-y~xy).

Using: the oddness and rearranging terms, we obtain
equation (#°) .
Conversely, if f satisfies (HO), setting y = -1

in the equationlshows immediately that f is odd. Now
fe-x) + f(-y) + flxy) = f(-x-y+xy),
so using the oddness again, we obtain equation (H). |]]

For the even Hossz(G functions, we hav&% similar

4 =

characterization, given in the following result.

PROPOSITION 1.1.2. The function g:R~>G is an even
Hossztt function if and only if g(0) = 0'and g
satisfies fhe Ffunctional equation

;g(x) + gly) = glzxy) + glx+y+xyla . (H®)

.
.

PROOF. 1f we‘replaéé f by g, the word "odd" by "eveny,
and (Ho)lby (Hé)"in:the proof of Proposition 1.1.1, we

will obtain the desired conclusion. ||| - 3

If f:&-*G.is‘an arbitrary solution of (Hof; then
sefting x=y=0.in the eqqation,showsithat 2f(0) = 0, :hus
tﬁe.function Yla) = flzx) - f£(0) also satisfies kHO).
S;miiaf?y,\if’g:ﬁ-fﬁ satisfies (He)k then so does the

function Xx(z) = gfx) - g(0)." So as in the case of
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equation (H),-solutlons of (H ).and (He; will differ bf

constant solutlons from solutlons with the property

that their value at zero is zero. ; ‘ ‘
Because thé techniques used in studying (H), (HO)[

and (Hé) are often so similar, we will frequently make

use of the following conventions. If the statement\of

a result is of the form “"for (odd, even) Hasszit funetions,

A (respectively B, C)hqlds”, then we are to ihterpiet

it as three results;\iha 'is, the sentepnce or phrase A

holds for Hosszu functions, whlle B and C hold ‘for odd

and even Hosszu functlons respectlvely. Slmllarly, the

statement ffov odd (even) Hosszu funetions, A (respect-

ivqu BP holds"” is to be interpreted as two results in

one, in the obv10us fashion. The proofs of such combined

»results w111 be 101ned together in/the same way as their

-statements.

g B . ) : @

1.2 - THE HOSSzU GROUPS

We-will now construct three Hosszd functions on any

i

ring‘R which will, in a Sense, be the general solutions

Y

~of eqﬁations (H), (HO), and (ﬁe) respectively—that is,

they wmll have the universal property for Hosszu functlons

Al

described in Proposition 1. 2 1,

Let F(R) be the free’ abellan group on the se§ of

_ elements of R, w1th the canonlcal embeddlng e: R‘+p(ﬁ)

N
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Let J/(R) be the subgroup of F(R) 'generated by the'set
, {e(xty-xy) + c}xy) - elx) - e(y) : x,y € R} vV {c(0)}, and
let7J0(R) and <9(R) be the subgroups of F(R) generatea by
the'Sets {elx+ytay) - elxy) - elx) - ely) : é;y eR} U {(2)}
and fc(x;y+xy)A+ elzy) -~ elx) - e(y) : x,yeR} U {e(0)}
respectively, (Note the relétionships between.tﬁe eqdétions
(4), (H®), and (H®), and the éubgroups of F{é) we have
.defined aone.) Now let H(R) = FéR)/J(R), H(R) = F(R)/JO(R),

and #(R) = F(R)/J°(R), with canonical maps p:F(R) ~3(R),

Ve

b, F(R) »#O(R), and p_:F(R) ># (R).

o Define %, hd, énd n® by.thé compositions h = peoc
hd = p,oCn and %e = p,oc reépecéively. ‘The abelian group
H(R) is called the‘Hosszﬁ group of R, while h:R>FH(R) is

* called the universal Hosszd function on R. (The corres-

% €

. pondlng objects with the superscrlpts and will have

d

the same names quallfled by the adjectives odd}and even

respectively.) .

\PROPOSITION 1.2.1. (i) h:iR +J(R) is a Hossgﬁ funotion,
while h® and n® are odd a%d even Hogsau functéons,d
respectively. (ii) If f:R>C is any (odd, even)
Hosszﬁ'fdéctioq, where G is an abelian group, then
there 15 a u;ique group homomOrpﬁiém f*;ﬁfﬁ)-*G

:(rpspeetzvely f*.ﬁ-(ﬁ)**G F*:H°(R) > 6) such that

f = ftoh (reSpectzveZu F = f4oh%, £ = f%ohe).

®

PROOF. Part (i) is evident. from the above constructions.
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~an,! Suppose nhow that f:R~+G is a Hosszu function,

A

\1
‘ﬂ Since F(R) is a free abelian group on the set of elements

of R, there is a unique group homomorphism y:F(R) » ¢ such
=Ehat f = Yee. Since f satisfies (H) and f(0) = 0, we
Mknow that Y(J(R)) = 0. Thus J(R) (the kernel of p) is
contained in the kerngl of ¢, so that ¢ factors

uniquely through p—say w f*ep. Then f = Yoe = ftapoc
= f*oh. This provas oart (1) for Hosszd functions, and

the proofs in the odd and even cases are similar. H

Since %° and R are themselves Hosszd functions,
there exist group homomorphisms n?:H(r) +H°(R) and
‘n:3HR) ﬁe(R)wsuch that k% = n%h and 2% = nn (by

part (77) of the above proposition).

R LY
n® n°
- HNE(R) h #°(R)
~ . e o 7
~ o n/
\\\ b 4 /4’,
TN(R)-T

Since h° andnho are dense functions (that is,
their images generate their ranges), it follows that

n® ana n? are, e%gmorphlsms, so that #°(r) and $€(R)

are homomorphlc images of H(R).

The construction used in the defiRition of the

Hosszi group of R and its universal Hosszd function

@/ N |
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gives us a combinatorial method for finding directly
the general solution of  (H) over R. In general, however,
it is impractical to use this direct method, which

involves actually computing the subgroup J(7) of F(3). ,

One case where it can be used is over the ring of

rational integers.

&
~

FYAMPLE: (Davison [10])
H(z) ~ zerezec, .
hill —— Z@ZQZ@CZ
\ B s (n, [-5], [-%], A(n))
Here [x] denotes the greatesf integer less than or equal

to x, while A:Z-fcz is the function which takes n to

i

2{mod 4), and to 0 otherwise. (For the
proof of this‘result, see [;0].) From the above descrip-
tion of h:Z +3HZ), we can readily show that N°(Z) = ZQCE
and that jf(l) > 2852, with odd and even uni§ersal Hosszi
functions given by
1ol Z0C,

! Rp————r fn, X(nl)y
Rl e sy 1602

N ee————— (n+2[--§-],‘)\(n)) '.

1.3 - DAROCZY ELEMENTS AND THE ADDITIVE NUCLEUS
& -

We will use the universal Hosszu functions to

define the following subsets of a ring Z.

.
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S(R) = {der: hid-u) = h(t) - h(y) for all y ¢ R}
Qtr) = {a e B : h(a+k) = k(1) + h{x) for all x-e R}
A () = (b e & : Whery = 07tk # n7(x) for all x € R
Q°(7) = (b e R : W (btx) = W%(b) + hS(x) Ffor nll x € R}

The set &(F) is called the set of Dardozy elements
of &, after 2. ??réczy [9), who first pointed out the

significance of ‘this set in the solution of (H). We

.,gall QR) the additive nucleus of R, while &’{R) and

af(r) are thg»oéd and even additive nuclei of R,
respectively.'

It is elear thata(r), cC(R), and Q°(R) are subgfoupsﬁm
of the additive structuré of R.. Moreover, if d € £&(R)

and a € ((R), then for all y ¢ R,

h{a+d-y) = hia) + h(d-y)
‘= h(a) + R(d) - h(y) = R(asd) - Biy), = . .

) : :
so that a+d ¢ A(R). - , 1,

Also, if 4 and d' are both. Dardczy elements éf
R, then for all z ¢ R,

e N . &

R(d-d'+xz) = h(d) - hid'-z)
‘= h(d) - h(d') + h(z} = h(d-d') + hlz),

-

and so d-d’ € Q(R). These two facts show that if (%) -

is nonempty, it is an additive cosét of QfR) in R.
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From P;oposit'bn 1.2.1, it follows that if f:R~+¢

is an (odd, eQen) Hos zﬁ‘functiOp, and if'a € A(R)

(respectively a c.aP(R , a € a?(R)), tﬁen flatz)

'='f¥e4~¢;iifiﬁfer all-z ¢ R. Since #° and h° are

Hosszd funétions, this means that A(R) < Oé(ﬁ)ﬁand
O(R) € B°(R). ‘Rlso, if d e(R), then °(drz) =
ord) - 1no(-x) = h"o(d)f/+ »%(x) for all = ¢ R (since h°
is odd), so that % e 8°(RJ. Henceo@(R) g‘QP{R);

, Combining éhese facts, we see that
H /-\

‘ . \ - ) )
©Ariv (Qer) +dl(R)) € Q°(R)
and Q(R) € Q°(R) NN Q% (R).

1

* Of eourse, every (oda, even) Hosszd function on R
will be addltlve if~ and gnly if. a(R) ='R (respectively
0.(R)/r7r“ﬁ.(R) f , by deflnltlon of the aéhitive

A
nuclei. Asye w111 see later, determlnlng the structure
!

of the addltlve nu¢leus of a ring wgzl be our main tool

LS 5 ' ©

in solving Hosszl's equation over that ring.
If u is a unit,{invertible element) of the ring R

with the property that 1 -u 15 also a unlt, we say that

u 1s an exceptzonal unzt In this case, 1—&”1 = (u 1)u

p

= -(1-ulu 1, which is 1nvef!ﬁble, so that I-u -1 .is also
an exceptional unlt These unlts are - lmportant in the

study of Hosszi's equatlon because their existence can

tell us something about_the contents of the‘setzﬂﬁﬁ)
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< ,
(and‘hence of A(R)) -as the following results show. The

first proposition below is due to Davison [12] in the

» form given, although it was partially latent in the work
of Dardéczy [9].
PROPOSITION 1.3.1,

If u 78 an exceptional unit in

R, then wru"l ¢ §(r), and w1+ (1.1 e Brn).

By using the equation (H), we see that

3

PROOF,
L
hiz) + h{y) + h(z)
= hixy) + h(x+y-z2y) + h(z) "
"h{xy) + h(xz+ysz-xyz) + hix+y+z-xy-x2-Yy2+2yz)

]

hix+y-xy) + h(§y+z-xyz} + hizyz) ,f

where the last twy of the above four expressions are
o .

obtéined from the second by expanding it using .(H) in

- two different ways.

" Since the.expressioh Kiz) + k(y) + h(z) is invariant
~ under the permutation of vé;iables which sends « to y,
y to z, and 2z to z, all four of the above expreséions

must be'invariant under this permutation. This tells

~ us.that

hizy) + h(xatys-zyz) = h(yz) + h(zytxz-zyz), and

h(x+§ny) + hlxytz-zyz) = hiytzeyz) + h(yz+x;xyz).
Since u is an exceptional unit, we can substifute x = wu,

Y ='uT1, and z';'(u-z—l)'zu"z into the first of these
two equations'(wheie w £ R is arbitrxary) to ob;aip

. Ta
-
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(120)h T 2wt w o)l o
Nt -1 -1 )
Now substitute x = (u "-w)(I-u) , y = u, and
-1
z = u

into the second equation of-the above pair to.get

Reuwru™ ow) + hew) = mwruTT1) # R

Setting w = 0, we see that h(u%u—z—l),+ h(1) = h(u+u“j),

ot

2

and hence h(u+u "-w) = h(u+u-1) - h{w). Since w is

arbifrary, we have that_u+u'g e Htr). Ilj

’

unt

PROOF.

1] =

using the above proposition,aﬂd the fact thatz&(ﬁ) 1
~ coset of JUR) in R. 1[!

can see that 1f we could prove 1 e Q(Rr), then d(Rr) WOuld
have to be equal to Q(R) (since Q(R) 1s closed under
addltlon) The follow1ng proposition glves a situa

in whlch thls is the case.

Y ’ i 1

COROLLARY 1.3.2. If R has at least one exceptional

£, then 1 e (R}, so that HR) = 1 + A(R).

If u is an exceotlonal unit, theh'
-1

[(1- u)+(1~u) ] - [u—.+(1-u) ] + [u+u

Under the hypotheSLS of the above corollary, we

L8

H

PﬁOPOSfTION 1.3.3.- If R has at Zeast oné \ex eptional

unit, and if RIR)~contazns a unzt of R, the

.
L]
. '
‘ . !

Let a”e.A(R) be a unit, and let z € R'be arbitrary.

a(ﬁ;a— A%R).
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Let y ‘= ’a'"‘]x. 'fhen h(lzatay) = h((l-a) + y - (1-a)y)
S n(12a) + B(y) - W(1-a)y) (using equation (H))
o n(1-a) + h(y) + h(a) - [F(a) + h((1-a)y)]

h(1-a) + h(y) + h(a) - hla+y-ay) -(since a € Q(R))
= nlz-a) + h(y) + h(a) - [h(a) + h(y) - hiay)]
= h(1-a) + hlay). | - ‘

, Sind% y _zx, this means thaé h(l-at+x) = h(l-a)+h(x)

for all « £ R, S0 tha—;jl -a €. a,(R), and hence (1-a)+a
=1¢€ OIR). Sé by Corollary 1. 3, 2, we see that ]
AR) = B(ry. " S N 3

—

" The preceding results enable us to find elements .’

-

L

of A(R}) if we know that R has an ex%ﬁ{ebt‘ional unit u. For.
example, 1"u w1 will belong to Q,(R), and if thisiis

o agam a unlt then Q(R) w1ll be equal to D(r).

. PROPOSITION 1.3.4. Every . Hosszu function ;;\;\:;\\\éx\
. ‘ | g

odd if and onZy zf Q(R) = BR).

PROOF. By Proposition 1.2.1, ’every Hgsszﬁ“ 'funct'm}; on

R 1is“ ‘odd if and only if h:R -;J#(R)' is odd; that is, |
hi-%) + h(m2§= 0 for all 'z ¢ R, or, féw}iting fhis,
h(‘0—.;c) \ylzafxe) ‘-*=~‘h{0)" This means prec:.sely that -0 ¢ o<9(1?)
I Slnce DR) is a coget of A(R), which always contalns 0,

it follows that 0’ e‘JHR) if and only if Q(R) = J%R). l]]
~ \

If.every Hosszi function.on ‘R is odd,'



-

a3
a function f defined on R (and satisfying f(0)=0) will

satisfy (H) if and only if it satisfies (HO) (by Propo-.

sition 1.1.1). This will turn ou£ to. be a useful fact,

since the equation (Ho) is often easier to work with

than (H).

L 4

From the preceding proposition~we can also conclude

that if A(R) = H(R), then Q(R) = Q°(R).

PROPOSITION 1.3.5. If u is a unit in R, then,
2(u-1) € A°(R) o -0°(R).
PROOF. For all z,y € R, " _?
, . g -
r(x) + Wocy) + n%zy) = hO(x+y+xy), and
RO (x) .+ WO (-y) + hO(-zy) = n°(z-y-ay).

-
[

Adding these two equations and usind the oddness of

- %, we get the eguation

L ]

2h%(z) = Wo(x + Ti+x)y) + ho(z - (1+z)y).
'J~ ' i, -
If w € R is a-unit.and z.¢ R is arbitrary, then setting
z = u-1 and y = ul(u-1+2) we see that '
L f C .

1

21 (u-1) = 1P (2awme1) +'2) + h9(-2).

By letting z=0, we can fshow that 2h%(u-1) = 1°(2(u-1)),:

nd ‘so the’ preceding, eqiption becomes’

'\& #002(u=1)) +'1%(z) = nO(2(us1) +72) .
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Thus 2(u-1) ¢ a°(R). .
We also know that
e (x) + he(y) = he{xy) + hé(x+y+xy), and
Re(z) + he(-y) = WS (-zy) + K% (z-y-zy). .

)
Subtracting these equations and using the even-ness of n®

we see‘that '

Ny
-~
8
+ .
-
~
o
~
]

(e - (1+x)y)

Performing the same substitution as.
before, we get' 1°(2(u-1) + 2) = n%(-2) = n%(zJ, anad

~~'sett1ng z 0, it follows that né (B(u 1)) = 0. Thus
‘\» .

W2 (u-1) + z) = he(2(u-1)) £ r%(z),

so that 2(u-1J & & (r). [l[

Note that if a € o.(R) then h%(2a) = h%(a)+h®(a)

I = k (a)+h (- a) = h fa*a) = 1r%0) = 0.

Now, for any rlng R, let U(R) denote the set of
those elements of ‘R Wthh are sums of unlts. Clearly

* U(R) is a subrlngzof R. - We will call it the untt ring of R.
: COROLLARY‘i;s.a.‘ 4U(R) 0.(3) o a?(R) I

PROOF. By the precedlnq prop051tlom**fbr any unlt u € Ry

2(u-1) € QO(R) n Q_(R) But -u is also a unlt so that

'2( ~u-1)" also belongs to thlS intersection., Hence
. Qe -
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~2(u-1)-2(-u-1) = 4 ¢ 3°(8) n Q°(R),.and so

2(u-1) + 2(u-1) + ¢ = du e Q°(R) N O°(R). - T

) 4U(R) ‘3

g . ¢ 0°wmn Q°cri. || | : '
. | | . |

P - 1.4 - DIRECT PRODUCTS OF RINGEW
F i ! - 3

R x S8, we mean the cartesian product of-® and § with

cobrdinate~wise multiplic&tion and addition. If we

~ L b

have two functlons f: R->X and g: S-*X (where X is an . f
abelian group), then the direct product of f and g is the

function fxg:R xS + X defined by fxg((r,s)) = f(r) + g(s).

PROPOSITION 1.4.1. If R and 5 dre riﬁgs; thgh any

(o&@,'even) Hosszé funetion .F:R XS > G 15 the difect

produot\of two (odd, even) Hosazﬁ funet?bns SPE R-*G N X
T and‘f2:5-+6 ConverSeiy, any such direct product

,of (od& even) Hossidl functzons will be an (odd even)

oy

Hosszu functzon on R2<S
) ) ‘-“¢ >
PROOF The second statement is obv;ously true, so we
will Drove the flrst for Hosszﬁ functlon&. (The proofs

‘for the odd and even cases will-be. v1rtua1Ly 1dentlcal )

- Let (ﬂ,s) € Rﬁ<5 and let f: R><S + G be Hosszu
Then F((r;s))

f((r,O) + (0,8) - (r,a)-ro s)]

~

lt.

f((r,@)) + f((o s)) - f((r 0)-(0, s))
Fl(r,0)) + f((O s))

]

kwhere'we have used equation (H)).
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.
Now define f,:R~C by f,(r) = f((r,0)), and f,:5~>G by
fg(s) = f((0,8)). Clearly fl and fq are HosszuU functions
(being restrictions of f}, and so f((r,s)) = fz(r) + f2(s)

is the decomposition of f required by the statement of

the proSBsitéeaﬂ 11

v

-

This'proposition will élearly generalize to any
flnlte direct product of rlnqs. - This redyces the problem

of solv1ng Hosszi's eq&atlon over a rlnq to solving it

over its dlrect factors.

Y (S
5

1.5 - IDEALS-IN THE ADDITIVE NUCLEUS

If every Hosszu function on a ring R is aéditive,
then so is every Hossgﬁ funetion on a homomorphic image
R/I of R (where I is an ideal in R). Fof if f:R/I~G
is Hosszd, and if.Q:R-+R/I is the canonical map, then

fev will elearly be Hosszd on f, and hence additive.

]

Now if 7,5 € R/I, then f{¥ + 8) = fou(rts)

1]

fov(r) + foev(s)

Fr) + f(s), -~

]

1

so that f is also additive. : I ~—
_The statements of the above paragraph will}zlso

hold for odd Hosszi functione, since v is an od&> nction.

“
We w;ll call f Fov the iift of f to R.

A partlal converse to ?he above is nrov;ded by

ifhe'follow1ng prop031tlon.
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r,s ¢ B, and so by definition of h', hir+sd + A(I) =

°

“

’PROPOSITION'Z,5.J. Suppose that QA(R) (respectively
a°(r), 0?(R)) contains tﬁe idéql I of R. If évery
(odd, even) Hossau funetion on R/I (respectively R/I,
R/2I) is addi%ive, éhen guery (odd, even) Hosszl

function on R is ad@jtive.

N~

PROOF. Since the identity function on R is a Hossza
function, there exists (by Proposition 1,2.1) a group
homomorphism w:H(R) +R such that weh = idR (the identity

function.,on h). Define h':R/T +:ﬁ{R)/h(I) by

R'(pe) = hir) +N(I)

.4

for all r = r+I € R/I. (Note that h(I) is a subgroup of

JM(R) since I< (L(R).) The map h’ is well-defined since

I € Q(R), and is Hosszd on R/I since h is Hosszd on-R.

1
i > HiR)
h
- y o :
R/T —— ——> JI(R)/H(T)

By hypothesis, h’ (being Hosszd on R/I) will be

additive. Thus h’(r+s+I) = h'(p+I) + h'(s+I) for all

4

h%r) + his) + h(I). 'The fact that thése two cosets in

H(R) are equal means that there is an 7 €I such that
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hir+s) + h(Z) = hir) + h(s) + h(0). Applying the function

T to this equation, we see that r+s+7 = r+s (using n°h=idR),

and so 7=0. Thus h(r+s) = h(r) + h(s)—that is, h is

o

-~

additive. Hence any Hosszd function on R is.aéditive.
The same proof can clearly be used for the case

of odd Hosszd functions, but since the identity function'

is notv(in general) even, we have to use a different

argument in the even case. ’ »

As we have seen in Section 1.3, n%(2a)=0 for all

a € ae(R)l Thus he(ZI)=0, and so

né(2itx) = Béc2i) + né(x)

[t}

It

he(x)

for all Z eI and for all xeR. This shows that %° is
constant on the cosets of R modulo 2I; and hence there

is a unique function g making the following diagram

commute.
- \‘ he e , i
-7 g
R/2I .

Obviously g is an even Hosszd function, and®so by hypo-
thesis must be additive. Hence 7% is additive, and the
proposition is proved. {11

'If the ideal I.of the above broposition is in fact

. -
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a direct j&mmand of R (summand as an abelian group), then
we can describe all Hosszd functions on R in terms of the

* Hossza functions on R/TI.

PROPOSITION 1.5.2. Suppose that ((R) (respectively

)

— . 0°(Rr), QP(R)) contains the ideal I of R, and that
R = B®I for some subgroup B of R. Then every (odd,
even) Hosszit function on HNié the sum of an additive

function and the 1ift of an (odd, even) Hosszi

T functioﬁ on R/T.
. . ‘ ;

"PROOF., Let f:R+G be a HdsszG Ffunction, and let p:R ~+B
, ) _ .
. be the projection of R onto the subgroup B. Define

fz:R-+G by fj(f) =‘f(p(r)). We will show that fz is a
'Hosszidl function.

]

. :’ - ' Let r,s be arbitrary elements of R, and éuppose

g that r = b+i, s = e+j, whede )b,c€B and 7,j € I. Then

it

F,(r) + £ (s) = Flotrf) + flots))

F(b) + fle) -

ht

f(b+e-be) + f(be).

b

Let ¥ = be - p(be). It is clear that ke I. Then-

Fibtarbetk) + flbo-k)

f(btc-bc) + f(be)

It

f(b+e-pi(be)) + flp(be))

i

R Flo(b)+plel-plbe)) + flp(be))
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~

|

f(oi{r)+p(s)-plrs)) + f(o(rs)

[}

frp(r+s-rs)) + flplrs))

il

£ - o
,](r+s rs) + jz(rs)

J *
(where we have used the fact that k ¢ A(R), and that

.

0(rs) = p((b+i)le+i)) = olbetic+bitii) = plbe)). This

‘shows that fl is Hossza.

It is clear from its definition that,fzis constant

>

on the cosets of R modulo I, and hence is the 1ift of a
Hosszd function on R/TI.

~ Now let fz = f - fz' Then

]

fzfr%s) flr+s) - fz(r+s)

it

f(b+it+e+i) - filb+e)

]

flb+te) + f(i+J) = F(b+c)

= F(i) + f(j)

i

F(b+i) - f(b) + floti) - fle)

!

Flr) - f,(r) + f(s) - f(s)

b= fz(r) + f£.(s). ’

"2

1 v 2

‘Hence fg'is additive, and f = f, + f, is fhé required

decomposition of f. 111



CHAPTER 2 '

RINGS GENERATED BY THEIR UNITS

The class of rings which are additively generated
by their units includes fields, local rings in general,
division rings, rings of matrices over division rings
not of characteristic two (Wolfson [25] and Zelinsky [26]1),
and others (see, for éxample, Fisher. and Snider ([15]). '
In this chapter we will develop some general techniques
for dealing with the study of Hosszd's equation over this
class of rings, and then we will examine Hosszd functions

on local rings in more detail.

2.1 - GENERAL RESULTS

THEOREM 2.1.1. If R has at least one exceptional unit
and ig additively generated by its units, and 1f Q(R)
contains a unit, then every Hosszi function on R is

additive i1f and only if every Hosszi functioﬁ on R/ZR

18 additive.

"r®00F. As we have seen in Section 1.5, if every Hosszua

function on. R is additive, then $o is every HosszQ function

on R/2R. 'Suppose therefore that every Hosszt function * .,

on R/2R is additive. .Since Q(R) contains a unit and R

has an exceptional unit, A(R) = H(r) By Proposition 1.3.3,

5

»
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similar but simpler theorem, which is an immediate

31
' and so Q°(R) = Q(R). This means that ! ¢ Q(R) (Corollary
1.3.2); and 2(u-1) ¢ &(R) for all units u ¢ R (Proposition’
1.3.5). Thus 2u.= 2(u-1) + 1 +.d ¢ Q(R), and since
every element of R is a sum of units, 2z € A(R) for all

r €R. Thus . .2F ¢ (R}, and the theorem follows by

Propmosition 1.5.1. I

For ‘the odd,a?é even Hosszd functions, we have a

&

A

consequence of Cofollary 1.3.6 and Proposition 1.5.1.

—— ————

THEOREM. 2.1.2. If-R is additively generated by its .
units, then every odd (euven) Hossziu function on R
is additive 1f and only if every odd (even) Hosszi o

function on R/4R (vespectively R/8R) is additive. |||

s
FY

If 2 is a unit of R, then 27 = ¢R = 8R = R} so’

we have the following corollary of the above two theorems,

~ ' RS

COROLLARY 2.1.3. If R is additively generated by its

unifs, and if 2 is a unit of R, then every odd (even)

aﬁéig-%?.-\

Hosszit function on B is additive. If moreover R has

=

at least one exceptional unit and QA(R) contains a

~

“unit, then every Hossza#t function on R is additive. |||

EXAMPLE. 1If F.is a fiéld”not of chargcteriétic 2, then
by the abovelcérollary, every odd (even) Hosszd. function

. -“’ " ‘f )
on F is additive. If V is a finité~dimensioqgl‘vector

- : . "
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soace over F, then by Corollary 7 of Fisher and Snlder [15],

every element of R = EndF(VJ (the ring of F—vector space

AN

endomorphisms of V) is a ssum. of two units. ' Hence every

‘0dd and even Hosszi function on R as'Qell will be additive.

' If we assume moreover that the characteristic of

i
L

F is npt equal to 3, either, then both 2 and 3 are units

in F (és-well as in R), so.that PPl B I (2+2"1)

% \ o belongsi to the addltlve nucleus of both F and R, by
‘ Proposition 1 32 l and Corollary 1 3.2. So by Corollary

; . -’ 2;1'3!

every Hosszﬁ function on Both F and R is additive.

2.2 - LOCAL RINGS TN

!
All our results until now have been valid for : ‘\:

.non—commutatlve as well as commutat1 e rlngs. From“now
I
on, however, we will restrict our att ntlon to commut-é
- !

ative rings. I
B X . /’ 4

Recall that a local ring is a commutative ring-
. e Vo
with exactly one maximal'ideal. We will normally write
o«
such rings ‘as a palr (R, m), ‘where R denotes the ripg and

"m'is its maximal ideal. (Note that R # m, by definition

. of a maiiﬁal ioeal, unless R = 0.) Tﬁe'quotient ring R/m .
will be a fleld, and we denote~the,cerdinaf&ty of this
.field.by,#fm), and we will write @(é} % © if R/m ie/“
infinite (with the coqveneion,that o>n for all narural

5\t . &
numbers n). We call N¥(m) the norm of m,
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=

¢

Léf (R,m) be a local ring. Obv;pﬁ%ly, all the

Q;Lements of R not 1n m are units, since otherwise m

»

would not be max1mal QIf-x & m, then I+x £ m, so ot

~ -
]

x = (1+x)+(-1) exhibits x as a sum of twao unlts. This

~
e

shows that R is addltlve}y generated by its units, and

_so_we can apply the theorems of the preceding secinn to//////"’”
Iocal rings. o * //}//
£ B . .\ /

PROPOSITION 2. \1 If ?R,m) 18 a Zocal-ring with

¢ N(m) >2* then- Vias’ at Zeast one emceptzonal untt.

If N(m) > 4, then\ (R) contazns a unit.’

o
. -

«* PROQF. Clearly if r & F does not belong to m or ' 1+m,

then r is.an exceptiongl unit, so if ¥(m) > 2, R will

*“Eave exceptlonal unlts - Now suppose that N(m) >4, and

3

consider, the equatlon x ;x?+2x-1 = 0. This equation

will have. at most three robts in~the field R/m. Since

R/m has more than four eieménts, there will be a nonzero -
velement (say w) of- R/m whlch is not a root of the equa-~

‘,‘tlon. Suppose that w =u+m, wWhere u € R. .Then w # 0 ’
means that u‘gm, SO that'u’is a unit of R. .

= . Sl
pression is alsc a'unit of R. "Nou\;{;;\\,ﬁ :
ry Y LSRN
' u5-2ﬁ2+2u-1 = éleu)(-uzfu;l) | . K

Leru) (1-u-u”
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fCOrollary 1.3.2). But this is also a unit, so that

- of R generated by the set {u+u"

Y/
. X T
! ./“\1

Since this is - a unit, all its factors must be ﬁhits; in

particular, I-u is a unit, so that u is an eXCeptioﬁal

unit and hence Z-u-2"L ¢ G(R) (by Proposition 1.3.1 and

..................

ea,
""""
g,

Q(R) contalns a%&nlt |||

-..
g, ‘e."
",

THEOREM 2.2.2. If (R‘m) %S a loecal rzng, aRd if
Nim) >4 and 2 gm, then every “Hosszl functzon on R
18 additive. .
A -~

. ",
PROOQF. Thls theorem now follows 1mmedlately ﬁ;om CorQl—

_,}.
é

lary 2.1.3 and PrOpOSltlon 2.2.1. L]I

We now‘turn-to the more'comp;icated case when
2¢m (so that 2 is not a unit in k) In thlS case we

will ‘'only consider finite local r1ngs~—the solutlon of

Hossz('s equation over 1nf1n1te-loca1 rings in which 2»

is not a unit remains an open problem.

+ For any ring R, let A(R).béithejadditiva subgroup
u is ah’exceptiénaz

unit in,R};‘ If R is a local Tring with maximal ideal of

norm qreafer-ﬁhanA4,,€hen“Proposition 2:2.1 together

C with Propos;tions‘1,3.13and 1;3,3~shows that A(R) < . Q(R).

\

| THEOREM 2.2.3. If (R,m) 4s a finite local ring witﬁ

Nim)h 54,'then_every Hosézﬁ'functidm,oﬁ»R is addigive.



. J"

.. *N(m) >8). Suppose that ¥(m) = n

PROOF. By Theorem 2.2.2, we can assume that 2 € m.

R/m must be a field of cﬁaracteristic 2, and hence, sjince

N(m) x4, the field must have at.leastzeight,elements (
1 and that m has ny '
exementéu Clearly every element of R not belonging to
the cosets m-and/1+m wiil,be an-exceptionél unit of R,

o) that R has (n -Z)n exceptlonal units.

Suppose now that L+ -1 y+y -1 for two exceptional

units x'y'aR. Then « y+y = xy2+x, so that (by—l)(xﬁy) =

A7

Since all“zero lelsors in Wi must lie 1n81de m, either
. %

- -2 .
x-y em or xy-1 eﬁ‘(whlch means that x- y em). Suppose .

~ 8
that x-y em. Then y =ty where u em, so that

-

(i2-1+mug(u) = a. Now if =z -1 em, then x would have to

. belong to 1+m, which it does not since it is an excep—

. tiorlal unit. This means that @2;1 is a unit, and hence

- @

so is x2~1+xu.' We can therefore conclude from the last

—equatioh.above that u =0 (by multiplying- by (x?-1+xu)fz),

and 50 =Y. ‘The pOSSlblllty that =z- y -1 em will lead in

a 51m11ar fashion to the conclu51on that xr= y 1. _Thus
-1

LFx = y+y lf and only 1f r=y or x=y‘1; for-exceptional

~ L]

unlts x,y € R. .
ThlS fact allows us to conclude that s;nce R has
(n -2)n exceptlonal units, there w;ll thus be exactly"

%(an)nzelements iﬁ'Rxo% the foim'u+u'1'(for u an

a

0.

-

exceptional unit) and. so A(R) will have at least %(n ~2in,

2

v . " _.' ~ "_.t-}

o : . . . -



Ndw, we know that =

‘then there is an element 6 of R such that R=Q&(R)V(8+
. . N [ . - .

that 1 (and hence -1) belong to' O(R). Tt:ius'

-Rearranging terms we see thé.t Hi2x) = h(x)-h(—x)- =

distincts elemtents. Since A(R) & Q(R), this means that
AcR) will have at least ‘this many as well. Thus the index

of the subgrdup {(R) in R will satisfy

"

."J n1n2 . ’ 2n1n2
a [R:a(ﬁ)] < I .
,2(7’1“12{3)71 n1n2 2n2
) Y '_ Zrz]‘) L 4
T n, -2 * n., -2 )
’ 1 "7

> 8, so that 1 ‘

u<%< I".’?o | ,
=% ’ -

v i) Y . ‘- -
Hence [R:Q(R)] < 3, and so [R:Q(R)) = 1 or &. If it is

1, then a({?)' = R, and the proof is complete. CIf it

We know by Propositien 2.2.1 and the results of -

Section 1.3 that every Hosszd function on R is odd, and

L]

v

h( z) + h(Zx- 1) (using (H))

i

hi(x) + h(-1)

h( x) + h(2x)°~+ h(c‘-l,)_
,_,.a.'

L]

2h(z), for all xeR. .
- Now let y be an arbltraly elgment of R. since
arm v (6 + WR)), elther y eQ(R) or"y = 6+a' for

some aea,(}?) ’{‘hen - . ;

4
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R(8+a) + H(0)- . ,
h(a) + 2h(8) . @

h(a) + h(28)

-

“h(y) + h(8)

It

41

hta +-28) v . X‘

<

hi(y + 6).

:This’shows tQFt ® e &(R), and hence Q(R) =" R.. |11

o
A

From the two preceding theorems, we ‘can immediately

-~

“ '

- concludé th;t'all‘Hosszﬁ functions are additive on all . .

flnlte flelés of order greater than‘four- and on‘ail
olnflnlte flelds not oﬁubharacterlstgc two. .Davison [11]

Showed that thl§ is also true for inflnlte "fields of
_A . M »

characterlstlc two.

In the followang examples we glve the Hosszu group
and the’ unlversal Hosszd functlon ‘for each fleld with .
four or fewer elements, showxng that the hypothe51s

LA

N(m) >4 in the precedlng theorems is necessary. - N

°

‘ ?XA:MPZE 1. - d#(lFZ) =?Z s BiF,—>1Z ) .

Lot o0y
‘ Pl >

Exaupre 2. H(F,) =17, h F;—%Z
' | :lne;->0\4//~\" b
| . : 12 \' o _

. - S - . :rzh%—%ﬂ

‘EXAMPLE";%. ”!F.‘ = {0, 1, w, 1+w '.u;g-:m+1}~_
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+

dd,(F4})=Zx02, h:F —>1Zxc,

-

O (0,0)

I (0,1)
P (1,0)

P 14— (1,1)

The calculations involved in these examples are

. quite straightforward and are left to the reader.

2

2.3 - ODD AND EVEN.HO$S20 FUNCTIONS ON-LOCAL RINGS'

v

- 1f (R, m) is a local ring with Zinm then 2. is a

“unit 1n R, and so by Corollary 2.1.3, every odd or even

Hosszd function on R wrll be'addltlve. If (R,m) ;s a v

- ‘finite ‘local ring with 2 em, then we’ have already shown
that except\“v;hens R/m is isomorphie to }F,z or fF4, every - Q oot
-Hosszd fur}ction on R is additive. We therefofe examine

' ' the o0dd and even Hosszd functions in these, twoex'ceia'tional_ Coo

— cases. . R, ' ‘

e T “ ‘ "Since the deflnlng generators of A(R) belong to

) g&(ﬁ*), and since O (R) contains HR) (see sect\l}on 1. 3),
we know that A(R) € 0°(R). |

| Suppose now that (R m) is a flnrl:e local r:Lng

. with N (m) ='4. Then R will consist of four cosets modulo

" *

m, which.'we may write m, I+m, w+m, and Il+w+m, where
wgf;_cwi em and 2w, 2enm. <
- a ;" .



_that 6f R. Thus V=1+m. Since ¥ €A(RS€ R (R, we have

— ' t
EVery -element of the cosets w+7 and I+w+m will be

an exceptional unit of R. Moreover, if = € w+m, then

-1 s . s
x = € I+w+m, and conversely, so that if x is an exceptlonal .

unit, wtx € 1+m.

As in the proof of Theorem 2.2.3, we can show that
if x+x"1,= y+yi1 for exceptional .units. x and y, then -

i=y or x=y'1.) Thus the cardinality of the set

- {uru™? : u is an exceptwonal unit in R}’

4
5 +

willnbe exactly one-half of'the cardiﬁality ef the set
of exceutlonal units, whlch in our case is half the
cardlnallty of the ring 1t$el£\\‘Thus v contalns Jone
quarter of the elements of R. But we have seen’ that

V'¢1+m, and the cardlnallty of I+m also is a quarter of

1+m < aP(R) rand hence a150 m = 1+(14m) € a.(R) ThlS

" \meanSﬁthat the (addltlve) 1ndex of Q°(R) in R is at most

.2, and so we can show, as in the proof bf Theorem 2.2.3,

that‘OP(R)==R._ We have proved the fellowing theorem. ~

THEOREM 2. 3 1, If (R, m) i8 a fzn¢te Zocal ring wzth

N(m) > 2, then every odd Hossali fumction on R is

addiéive. SO

—

If N(m)-2 then R may cr may not have non- addltlve

odd HosszG functlons, as the following examples show.

..z .
o e
* - - ' " f - .

v
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'the following result.
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EXAMPLE 1. F, | . ‘
Every odd function on Fggis clearly additive.

EXAMPLE 2. C4

" pefine f:C,>C, by f(2)=1, F(0)=f(1)=f(3)=0. Then f

is an odd Hosszd _function, but f is not additive, since

FC1) + F(1) # £(2).

\

EXAMPLE 3. F (x1/tx%) -

Any function from this ring'inté‘c will be an odd Hossz( °

2
function, and clearly not all such functions are additive:

Anymlpcal ring (R,m) with’N?m)==2‘and with less

.

than five elements will be isomorphic to one of these
¥ ?/ R > ? -

three’ examples. ( f
Note from the examples 0f the preceding section
that if (R,m) is local with ¥(m) =2 or 4, then R will have.

non-additive even Hosszd functions. - This fact, coupled '

. : » . :
with the remarks at the beginning of this section, proves

THEOREM 2.3.2. - If (R,m) is a finite local ving, then
- S o '
every -even Hosszii function on R is additive if and

only if N(m)'# 2 or 4. |||

We will need these two’' theorems in Chapter 3.

{

<
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CHAPTER 3

NUMBER RINGS,

Q a

By the term "number rimg", we mean the ring of
integers in a finite extension of the rational field Q—

 that is, the ring of those elements in such an extension

which satisfy a monic palynomial over the ring of rat-

ional integers Z. Number rings fsrm an important and

extensively studied class of commutative rings, and,.we
will see in this chapter that' the study of Hosszu s
equation. ( and the assoc1ated:gEuatlons (H ) and (H ))
over such rlngs glves us a deeper 1n31ght 1nto why all

Hosszu functlons on some rings are addltlve, whlle over

o

other rlngs there are-non- addltlve ones.
Throughout this chapter we will make free use of

well~known facts about number rings—facts which can be

3

found in most algebraic. number theory texts (see, for

example,QWeiés [24] or Narkiewicz T18]). We have already

‘seen the general‘éolution of-XH) ober Z, the simplest
’

‘ number ring, in. the example in Sectlon 1.2.

As we have seen from the oreceding chaoters, the
~

unitsvgg‘a ring, and espeCJa;ly the exceptional unlts,
play an important role in solving Hosszid's equation

-41~ .,
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" monic integral polynomial, say

42

over the ring. In number rings it is often difficult to
find exceptional units. However, we do‘know enough .
abqpt fhe ordinary units of such rings to enable us to
determine. whether or not they have non-adﬁitivé odd or
even Hosszd functions; and this we do in the first
section pf this chap;er, In the second section, we prove
some results about all Hosszi functions gn number rings
and then apply these results to cyclotomlc number rings,
for whlch we do know a lot about the exceptional units.
In the third section we introduce a technique for ;tudylng
Hosszﬁ;s equaﬁion over rings which ére finitely generated
as abeli;n groups. Finally, in Sectign 4 we use these

techniques to completely describe the non-additive.odd

and even Hosszd functions on &4ll number rings.

2

©.3.1 - ODD AND EVEN HOSSzU FUNCTIONS ON NUMBER.RINGS:

In view of Corolla}y 1.3.6, Qé will first deteyj
mine.gbme prdpérties Sf the unit r;pg of a numbe;\ring;

Let‘ﬁ bélan extension of Q of degfge n, and let .
6% be the f%ng:of integerp in k. Let L beuthe smélleét
subfiéld of,K‘coptaining'U(éﬁ).

. If = is any element of 6;, then z will satiéfy a,

K ko1 Ct. =
) N +a1x + e +ak = Oﬁ



5

whefé a, e, i=1,2,...,k, and ak#o. Then

k-1 k-2 _
x(x +a,x +...+ak_1) = -=ay
so that
k-1 k-2
o {x +a, +...+ak_]) -,
) ) flak) ’

This shows that the inverse. (in X) of an? element x of 5;
is a rational multi§le of sums and differences of powers
of z. This in turn means that if R'is a subring of é%,
the smallest subfield of X containing R is simply Q-R
_(this ;roduct being taken in X). Hence the rané of R

as an abelian group, 'and the degree over Q of the smallest

»
subfield of X containing R, will be identical. In partic-

ular, the rank of U(@?)“will be equal to the dégree of

Fel

L over Q.. ' i o
| PROPOSITION 3.1.1. The rank of U(B,) ie equal to the
« rank of Z&,,and the degree of the extension [K:L] tis

either 1 or 2. Moreover,- [K:L] = 2 only if all the ,

embeddings of I into U are real, dnd K is an imaginary

quadratic extension of 'L: o«

PROQF: The first statement is clear from the above
remarks, since U(é%) and ét both  have the same field of
fractions in X (namely I).

-

Now recall that [£¥:Q} = »n and suppose that

P
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L

{L:Q)= m. Let r, and 2r, be the number of real and

1
imaginary embeddings, respectively,‘of X into €, and lgt

.

s, and 2s, be the anatogous constants for L. Then it is
&

well known that = =r1+2r2,

"By the Dirichlet-Minkowski Unit Theorem (see

and m==sz+233.

Narkiewicz {18], page 100) the rank of the group of units

of 6& is r1+r2—1, while that gﬁ\éi“ii'sz+sz—1. But by
definition of I, &

- and é& have the same group of units:

Thus r1+r2 = sj+32.

£
Suppose now that X #L. Then [X:L] > 2, so that

"13 2m. Thus r1+2r2 > 232 9°

qnd so subtracting, we get —31‘3 232. Since r, and s,

are both non-negative, this means that r1=32=0. Hence

and so nm=2m, and the proposition is proved. |||

+4§ Bu# 2rj+2r2 = 231+2s

2’

r. =&

2 "1’

LEMMA 3.1.2. If M is an exteysion of © of degree %,

and if A ts.an (additive) subgroup ofv&% of rank %,

~F

then A eontains a nonzerq ideal of §, .

-

‘.PROOF. Since [M:Q]f= L, 6& is a free abelian group of

‘rank £, so that 4 is a subgroup of 6L of the 'same rank.

Thus there will exist a basis [a,, ... ,a,] of @, as
a Z-module, and positive raticnal integers mz,mz,...,mz‘

having thg\prOpgrty that . divides I {(for 7 = 1,

2,...,2~1) and {mzaz, e ,mlall is g Z-module basis for

"4 (see Fuchs [16], page 78). Then mléz will be an ideal



‘y
of 6L contained in 4.

g !
—

What we intend to do.is to show that 09(5§) and
,aeré%)‘are of rank n (where n=[k£:Q]) and*thus conclude
by the above lemma that these additive subgroups of é&
contain.a nonzero ideal. This will allow us to use
Proposition 1.5.1. ©Note that if I is a noﬁ;erg ideai of
é&, then é&/I is a_finite ring. “ ,
. By Corollary 1.3.6 we know that | E
wib) s @b n 0%id,) . L a
. . .
L0 From Proposition 3.1.1 we know that the rank of U(%(), :’\F
and hence the rank of 4U(@k)’ is equal to the rank of i
*”‘“@E, so by the agobe Temma, 4?(0k) will contain a non-
zero ideal of 5%. This ideal in turn will coqtéin'a
e
integer a.‘ Thus

_ oc(%‘ (=

—

non-zero principal ideal off@L generated by a ragispal
, e
wb) < O?(ng a el

e

If K=L, then this shows that QO(@k).and ae(Gk) oth contain

a nonzero ideal of 5}. We will show that this is also

true when X#L, in which case by %roppsition 3.1.1, [X:L]=2

and K is an, imaginary quadratic extension of the £

2

ield
[ € R. This means that K = L(E), where E° is some nega-
tive element of'éé?—tha is, £ + b = 0 for sone pel.
Thus R = C& + 6%5 is a .s ’ring of C& of ran%ln, so that

L
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_th;are exists § ¢ N ‘'such that if z+y§ ¢ ‘%{ (x,y eL) , «then

ET-4

8z ¢ 69L and §y e”,&L. - A
If f I?Ls ‘an odd Hosszd function on @K' then from

th)b equation (8°) it follows that for any «.,%, € l%,

\ . : _
f(:clg) + f(ax2£3 + fl-ax,z,b) = f(x1"E+ux2€«-ax1x2b)

aw-
i

Using the - fact that a% ¢ a° (l?’K), we can conclude that

Fle8) + flams) = f(xlgfaxéz) ’ (*)

[ \ . .

. for all Lisky € Q'L' .

Now let z+yf be an arbitrary element of 01'( (x,yel).

Then, using equation (Ho_),

fladTE) + flxt+yl) + fladt(zf-by)) = fladtE+a+yL+adt(zE-Dy))

-

for all.t ¢ !95 Now use the fact that acS'rby e u@' ao((?];)

(s:.ncé Gy £ @-) and the equation {*) to conclude’ that
Flaty) + f(aﬁ.(xfl)&)e f(:r+ye+aérfa~+ua) ’ (¥*) *
for all z+y& e @K and for all t ¢ <9-L. - (We can use (*) .
.since bz € G‘ ) : ~ , - S +
Choose one nonzero element from each of the

(flnltely many) cosets in (9’ of the ideal a69 Ccall ~

~
this set of coset represent;atlves S,- and let ' -/
D, T et ) . :.‘
' AU :
m="1 g . “\”"‘"
s€S , . -

<
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C1f w +w,E is an arbitrary element of (%(, then
~

‘S(“’j‘l) belongs to some c’i’:set in' (9' of 36(9’ (51nCe 6(w +1)

€ @'), so that there Wlll exist z ¢ @ and 8 € S such that

Hence 5((w,_—az)+1) =.8,, SO if we

set x = wy-0Z, Y=, and r=v?rs;1 (v € (95 arbitrary) in

’ equation (**) (noting that g, divides w), we see that

‘G(w1+1‘) = 8, + afz.

?

f(wl-az+b2€) + flamvg) = f(w1+w2£-az+anv£).

~

But az € al% E:ao(d’K), so that T,

T floprugE) + FlaivE) = F(2 v EraToE).

/ < . .
* N

+w2£ is dn arbitrary element of 2z

-shows that onr-(} < Q° ((91()\&,« Let B be a rational’ integer

in mr&” Then 6&5 Courl9£C[L0(l9), apd’ B€9 :.a(9’

CO. ((9), SO, zhat B& * 8(95 is a subgrqup of éf(&) of

SN rank 7, and hence by Lemma 3.1.2, @ has a nonzero J.deal
. ) .
I contalned Cf(&I{) . | ¢ . " :

)qu i/f we.had chosen f to be even Hossz

L

<

Siri‘be Wy this equation

ﬁ\ rather .

tﬁan odﬁ; én then4used‘equatien (He) instead of (H )

'whlle" follo :Lng through the steps of the Qabove argument; g
i

& ;
i

we would also have arrlved at equation "{*) for our even
i

equatlonw?*) we replace z, by -az, and z,

. . (. :
gnd if we then rearrange terms and use the even-
we see that .-

Flazyl) - flaz 8 flaz Brazge) o . 0
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If we now centlnue the argument as before, Stlll

usxng %) 1nste d of (H ), butrthls time using the
\

precedlng equallty for our new, even_fq,lnstead of the
: ’ ) \ /
equality (*) as before, we will again Qﬁow that f satis-

fiks (**). Thus we ¢ show as above that B¢9E-I+B£9€ ‘a-e(&),

Il

and so we have proved tﬁe foiEowxng proposition.

N\ - ) )
PROPOSITION 3.9.3. zOEhe?e 18 a nonzero ideaZ I of

»

(9 with the property that \z e 0° (O ) af (6. |11
\\‘ O-
We are now in a posrtlon to prove the maln

- theorems\of this section

- #
t
.

s : ©
THEOREM 3‘1 4.. Every odd HosSzu fu ctzon on the' nwmber

% R " -ring & is additive 1if and only if ew ry zdeal of é¥

L8 of norm greater than 2. ) \\
. . \

.,
\
X

PROOF Recall that the norm of an ideal J in the ring

o ‘ ’ R is the cardlnailty of the factor ring R/J. &\\, . i
o 3 . < By PrapOSLtlon 3.1.3, é} has a nonzero 1dea1‘I \

} C contalned 1n Q?(éL) Suppose that I has.the prime de om- ',
| position I = P"‘szo--PZﬁ where the P"J are distinct \\“ -

prime ideals of'ék Then by the Chlnese Remalnder Theorem,

. : | nl "‘nz . nx
; G/ : %{/Pl x @K(P_Z ST K/pk :

We.know by Proposition 1.5.1 that every odd Hosszt function

&
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. four elements. This means that it is isbmorphic either

) .... \ - . ‘ ' \
' : 49

]

" ‘on 6% is additive if and'only if every odd Hosszd function

on 6;/1 ie edditive,.wﬁich in turn is true (by Pfoposi;ion_’
1.4.1) if end only 1if every odd Hosszd junction'oﬁ each

of the fectors 0’/P"i is additive. _Note that these

factors are finite local rings ‘with max1mal ideal P /Pn°

and that the norm of- phls,maXLmal 1dea1 is-equal to the

norm of Pi in Q;. ,Thus by(Theorem 2.3.1, if evefy ideal- .
in ﬁk has norm' greater than 2, then evefy odd Hoeszﬁ‘
funcﬁioh on é&/?ii will be addziiﬁe, and hence e@ery odd-
ﬁosszﬁ function on GL'will be additive. |

' o

' On the other hand, if é} does have an ideal"P

of norm 2 (P is necessarlly prlme), then the norm of

PZ will be 4, so(that &/p? will be a local rihg with

to Example 2 or Example 3 of Section 2. 3, and- thus w111

have non-addltlve odd Hosszu.functlons,,so that éL has
1!

non- addltlve odd 'Hossz ' Ffunctions as welL. !1{

For the even Hosszid functions we have a similax

. theorem,

THEOREM 3.1.5. Every evén Hosest function on & is

K .
additive if and only if ﬁk has pé ideals of norm 2 or 4.
PROOF. 1If ﬁé has an ideal of norm 2 or 4, tﬁen it will '

have,EZ or;F as a homomorphlc image, so from the examples

el

-l
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of Section 2.2, we can see that dk will have nonadditive
even Hosszd functions. = . . g S

. LI ! .
Kmhhs a nonzero~ideal I

By Proposition 3.1.3, &
containéd in aé(0-) Let 2I Q szo--Q *, where the

'Q 's are dlstlnct prime 1deals of éL Then using

Proposition 1.5.1 and the same argument as béfere in the

AN

odd case, we can.show that'everv eveh Hosszd function on

-

0’ is: addltlve 1F‘every even Hosszu function on éL/Q

[

is addltlve for 1=1 2,...,t. This w1ll be true if.no

*

ideal of é& has .norm 2.or 4, by Thedrem 2.3.2. _ [[|
’ ’ ' N

If ¥ is a quadratlc exten31on of @, then the ;deal

-~

Z@L (which has norm 4) elther will be prime, or else w;l%\

factor into two Z/ame ideals each of norm 2. The former

case occurs if tHe .discriminant of K (wxitten d(K)5 is

coﬁgruent to 5 modulo’ 8, while the latter case occurs

for all other dlscrlmlnants (see Narkiewicz [18], page

=

166). 8o the follow1ng result is an 1mmed1até“consequence
O Fid . . . -
of the'two preeedlng theorems. : ] '

A

COROELARY 3.1.6. If éylié a quadratic number- ring,

then there wLZZ exts' non- addztzve euen Hasszu functLOHS
ot Uy, and every od Hosszu functtan on &- will be

addzttue af and onlly if d(K).-S(mod 8). lll

o
g

K
3.4 a,ghaEFcteriza ion of the odd and even Hosszd functions
A .

/ , Y .0
For general /rumber rings & we will give in Section
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that occur! when (¥ does have an ideal of norm 2 or 4.

\ X . ; ,

LY

3.2 - HOSSz{ FUNCTIONS ON NUMBER ‘RINGS

-
/

For certain number rings we can apply our know=
ledge of the odd and even Hossz(G functions to come to

sqme'conclusioﬁs'about all Hossz@ functions on those

rihgs.‘ From Theorem 3 l 4, we see that if there exist

A}

non~add1t1ve odd Hosszu funﬁ%&ons on GP then ‘there is
en ideal of norm 2 in 5&. But. then by Theorem 3.1.5, oo o

ék wili also have non—édditive even Hosszi functions, .
. : 4 “ ¢ B ' .

and- from Example L'of Section 2.2, it is clear that not .

A

) all f thesewwill be‘odd So if we can 'show fhat every

‘Hosszd functlon on 6&

X //ggat every Hosszi functlon on éL is in fact addltlve. R

\

This fact, coupled with Proposxtlon 1 3. 4§ glves us the

lS odd, we' Wlll already have shown

next result. ' o ' -
, . Ce

. THEOREM 3.2.1.° If afﬁk) =r£%4§); then every Hosbsad

-4

. ”
fyniiﬁon on & is additive. ]||‘ i
o o

. The follow1ng'corollary‘ls a consequence of the

,,a_“

above theorem and the remarks 1mmedlately precedlng

T,
N

PerOSltlQn 1.3_4f_ o " e

-

P
.

(9‘ contains ‘an exceptional unit

f‘ X | ‘
u wtth the pr erty that I-u-u -1 Ls-a7so a unmt then
A .

COROLLARY 3. 2. 2.

: every Hosszii functzon on GL i addztmve. ‘all]

®

' ) ‘ . ,<
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As an épplicaﬁion-of thié'corollarf, we. - will

‘y

-

study'ﬁosszﬁ‘functions oﬁ cyclotdmic numbér rings.
Let g - denhote. a primitive @—fh root of unify[
and let §; be tﬁe ring of integers in the cyclotomic
field_@(c ).~ ft is well known (see Weiss [24], page 267) -
~ that 1f m is a power of a prime number, then. (I- - 4/01- c )
is a unit in éP while 1f m is composite, 1~cm is a

zunlt in 6;, where g is any natural number Eelatively

<. ’

prime to m. ‘ : ’ ST
r. Now suppose—tﬁaé.m%isqa‘positive integer not of
_the form 273°%, where r,s eN. . THen n will have a prime:
divisor .p not equal to 2 or 3, and 5; will thus be a sub=

- ring ofmé%. Since p is odd,

® -

. 2
I, 1 -z
: SR S g— “ o
.p 1 - z;p ‘- T \___’/_'{

Wlll be a unlt in 19, and so Cp will be an exaeptlonal
. unit in 5;.‘ We will now show that 1-7- C )-1- C )7 is

also a unit.’

‘  L¥+§p+E;1 = 4+gp+cg 1.
o A A S cp—aé .-c;“?)
= ‘—;p(l+§p+cg : .+(}§*4) e "
{1 - P8 N ¥
. P T :

-

¢

Since p is rélaéively éfimé to 3, p will also be relatively
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prime to p-3, so that -the last expression above is a unit

" in (9;), and hence a‘_ls‘o in (9;” This shows that &% satisfies

the hypotheses of quoll\a‘ryFB.z..Z, *and hence ev;ery ‘Hosszd
function on (%1 ié additive.

Let us now suppose that m = 22’:36, where both,r
and s are naturavl numbers greater than or equal to 2.

Then C will be a pr::.ma.tlve m/ 6~ th root of unity, so that

1~ c will be a unit 1n &/6 (s;nce m/6 1s compos:Lte) » and

hence J.n (9;" But 1-z;r = (1~ 2; )(1+; ), so that 1+C /

1s a “qnit in 19;7 Also, C will. be a prlmltn.ve n/2-th

root c.>f unity., ;so that l—z;m‘w:Ll], be & 5}{1@ in @;?/2 (‘and’
hence in (9;1). ' ‘

Now, 1-; “is a unit‘in 19 and hence an exceptional§

’unit. We Wlll now show that 1-(1~- z; )-(1~ Ci J is a um.t.

C-(1?§1 ‘ : B

il

1-(1-{;m)-(1-Cm)

fcg-c 1

v JC

Sms

'1+z;

It

.1'—‘C

\

BERY

Thls will be’ a unit, sihce it is the quotient of two units.

-

50 agam, by Corcrllary 3 2. 2 eyery Hosszid function on.

’

‘ 0’ J.s addn.tlve. ) .

y Q/If :m is of the form 2%, 3%, 293%, or 2V 3, where

’_\ g-,*s e N, thena&‘m will have a prime ideal of norm 2, 3, b;r .

K

Vs

[ N .
. -
B
. , .
. . . .
/! -
(\ ' ~ N
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4 (see Weiss [24], pages 2Q2-263), so .that thefe'will

exist non-additive Hosszd functions on 6; (as we can see
from the examples of Section 2.2). "We summarize our

results in the following theorem.

\

\ THEOREM .3.2.3. FEvery Hosszfi function on the cyclotomiec

number ring 5% is additive i1f and only if m is not of '~

\the form gp, 38, 2*53, or 2p-3, where r,s é N, l[l N

CQROLLARY 3.2.4. If the number ring (,

ﬁr%mitiveum—th root of unity,-whefe m. 18 not of the

form 2%, 3%, 2-3°

containg a

y or o' 3 Lr,g e NJ, then every

' Hosszti- function og'C§ 18 additive,

. \ ) y
RROOF. C? will .contain Cﬁ, which as we have seen in

Y

proof of the ébove(thedtem contains a unit with the

% «

property required in Corollary 3.2.2. - ||| N

3.3 - DIVISIBLE HOSSZU FUNCTIONS

~ non-zero integei n, there exists an element =z [in the \\~
group such that nx=g. The divisible groups afe prebiselg

\ 3

. the injective abelian groups (see Fughs [16],| page 107). \ \\

N o o« - . ‘ Co T
Yy } If ¢ is any abelian group, then we (can embed |’ into-a - X~ \
.- divisible group DG, ‘called the divisible hull|of ¢. - %

< * f v
.
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1 M :

It is minimal in the sense that if E is another divisible

group containing G, then there® is a monomorpnism‘from'DG?

to E leaV1ng the elements of ¢ flxed Moreover, Dé is

unlque up to 1somornhlsm. (See Fuchs [16], pages: 106 107.)
Let d:G + DG denote a fixed embeddlng of.G into

DG. Iﬁ R is any ring, and f:R-+ G any gosszp“ﬁpnctlont-}

then clearly def:R~> DG is also a Hosszi function. I1fF

is odd or even,:then dof will alsoc bé odd or even’respec_

R &
tively. Moreover, if f and’'y are two different Hosszd

functlons from R to &G, then clearly def ana deg will be’

(3

dlfferent Hosszu functlons from R to. DG (51nce d is a-’

\.

monomorphlsm) Thls neans that the set of Hosszu functlons

from R to ¢ is in one- to—one correspondence with the set |

of thoSe HosszG functions from R to DG whose 1mages lie

entlrely in d(G)

If f: R-*G is a Hosszd functlon,\then a corestrtctzon

of f is a ‘Hosszil funotlon“g:ﬁ-+H with the property that,

there exists a group monomorphism b:H>G such that $pog=f. .

We w111 also say that fis a eoextenszon of g. The dis-
cussion of the precedlng paragraphs tells us that every

Hosszu functlon on R 1s a corestrmct;on of a Hosszu

functlon from R into a lelSlble group Let us call a

Hosszu functlon f R-*E‘whose range E is a lelSlble group
a dzvzstble Hosszu functzow.

Let Qd@v(R) = {aSR f(a)+f(x) f(a+x) for . aZZ x €R,

iwand'for all divisible Hoaszu f-on R},

f},



56

A}

o

and let Q°div(R) and (®div(R) denote the analogous objects
‘for the odd and even divisible Hosszd functions respec-
B '

[

< tively.
PROPOSITIO;V 3.3.1. P
'(a)‘Every (odd,,even)'Hossz& funotion on the ring é'
.18 the corestrictioh of an (odd, even) divisible
Hosszu functzon un R,
(b) Let a: ﬂ(R) > DOHR) be a fixed embedding of.}HR)
°,1nto mts dzvzszble thZ If. f R~+E 18 a divisible

Hosszil funatzon, then there exists q gréup homomorph@sm

V:DH(R) + E such that wodoh = f (uhere h is the univ-

ersal @béézﬁ funetion on R). :

() QR) = ddiv(R) :
((r) = adiv(R) R
& (R) = Ediv(R)

P@OéF. Part (a) has just been shown above.

"(b) Let F:JR) » E be the unique group homomorphism:

J

dL P

satisfyiﬂg foh = f (Pfopositioﬁ,}.z.l). : _ o]

o Slnce divisible groups are lnjectlve, and 'since

d is a monomorphlsm, there ex1§ts a group homomorphlsm




"W:DIR) ~-E such that yod =F. So Yodoh = foh = f.

57.

(¢) Clearly Q(R) ¢ Qdiv(R) (by part (bY and the'

definition of Q(R)). On the other hand, 'if = € Adiv(R),
then dok(x+y) = deh{x) + dohry)‘de“all y e R, ‘since doh
is a diviéible Hosszd function. Hence d(h(x+y)) =
d(%(m)fh(y)), and so h(x+y) = h(;} + h(y), s%nce d is
one-to-one. Hence r € d(R), and go A(R) = adiv(R).4

- The proofs of:the other tQQ parts of (¢):<will be

similar. d1F

This prbposition tells us that if we can find
all the divisible Hosszd functions on R, we can charac-
terize all Hossz{ functions on k as corestrictions of
these. ( . o u

Recall from Section 1.5 that if J is.an ideal of

. R, sthe 1lift f}R-+G of g function f:R/J + (¢ is 'defined by

flr) = f(r+J), for all r e R. The next theorem provides

a strengthening of Propositions 1.5.1 and 1.5.2 for rings
W . -

"which are finitely generated free Z-modules.

. THEOREM 3.3.2. If R-(in its additive structure) is a
finitely generated free abeiian gro;p, and if I is an
* ideal of R containe; in (A(R) (respectively QC(R)) o
then every diéisible @oészﬁ function (respecfiéely
od& Hossazau funct%on) Qfé-{p 18 %he sum of an aéditive

funetion f153-+0 and the Lift of a Hosszél function
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N7 (respectively odd Hosszd function) f2§R/I - D.

*PROOF. Since I is a subgroup of the finitely generated

* free abelian group R, we can find a'basis [al’az""’an]

of R as a Z-module (where n is the rank of /) such that

: _ . ) }
[mlal,mzaz,...,mnan] is a paSLS for I, for some n?n neg
ative integers Masevest, (See Fuchs [16] page 78).

Lét f:R~>D be a divisible Hosszd function. For
‘ i=1,2,...,n, choose z €D such that mox. =flm.a.) (using

the fact that D is divisible). Define f,+R>D by

n n ’
: 'fz{.z Kiail = 1 kgmg
t=1 1=1 ]

fdf‘all.ki eZ., Let fZ:R-*D be the function f—fz. §

e R eI T T, PRRRRSIPRSRTIY WE, e e e A L2

Obviously f1 is additive, and hence Hosszid, so that f2

will also be Hosszd.

Lgt a.ejy {e} thatvq = Zlmiél + 12m2a2 + e +annau

for séme list of integers [Zz’zz""%ln)' Now, since
m.a. € I & Q(R) for i=1,2,...,n, we know that
’ \ ‘»‘. o

n .
7:inf(miai) »

fla)

]

n

n

) l.m.zx.
R A %
i=1

,
fz[.z Zimiai]
=1

= fzfa)'.

Lt}

)

Thus if y € R, }2(y+a) = flyra) - f (y+o) = flu)efla)-f (y)-f (a)
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= f(y) - flfy) = }2(y). Hgnce Ehe fuﬁction }2 is constant
on the cosets of Ikin,R,'and'so is the lift of a Hosszd
.function fg:R/I - 5. ?hus f = f1+f2 is the decomposition
6f4f required:in the statement of thq»theorem,

(i  The odd case is proved in the same way. []]

COROLLARY 3.3.3. If R and I are as in the preceding
theorem, then o+l € Q(R/I) (respectiueZy-O?(R/I))

implies z € Q(R) (respectively Q°(R)).

PROOF. Suppose that z+I ¢ Q(R/I). Using the notation

of the preceding proof; if f:R->D is any divisible Hosszid
; .. s
function, t