OPTIMAL LEVEL SCHEDULES FOR MIXED-MODEL,
JUST-IN-TIME ASSEMBLY SYSTEMS

By

JULIAN SCOTT YEOMANS, B.ADMIN., B.SC.

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Doctar of Philosophy

McMaster University

© Copyright by Julian Scott Yeomans, August 1992

OPTIMAL LEVEL SCHEDULES FOR MIXED-MODEL JIT ASSEMBLY

DOCTOR OF PHILOSOPHY (1992) McMASTER UNIVERSITY

(Business Administration) Hamilton, Ontario
TITLE: Optimal Level Schedules for Mixed-Model, Just-In-Time Assembly
Systems

AUTHOR: Julian Scott Yeomans, B.Admin. (University of Regina)
B.Sc. (University of Regina)

SUPERVISOR: Dr. George Steiner ‘

NUMBER OF PAGES: xiii, 232

ABSTRACT

The usage problem which occurs in the scheduling of mixed-model
assembly processes operating under Just-In-Time (JIT) methods is examined. A
minimax objective function, which has not been considered previously for use
with mixed-model JIT systems, is introduced to control these processes. A
general integer programming model of the problem is developed with the goal
being to determine optimal sequencing methods for various formulations of this
model.

It is shown that the single-level, unweighted version of the model can
be solved to optimum using an algorithm which is polynomial in the total product
demand. A graph theoretic representation of the problem permits the calculation
of bounds on the objective value. Of particular significance is the upper bound
which demnnstrates that a feasible sequence always exists for each copy of
every product in which the actual level of production never deviates from the ideal
level by more than 1 unit. Symmetries within the problem are shown 1o exist
which substantially reduce the computational effort. Extensions to weighted
single-level problems are made.

A dynamic programming (DP) algorithm is presented for optimizing the
muiti-level problem formulations. The time and space requirements of this DP
are demonstrated. Tests of the DP's performance capabilities, characteristics
and limitations are performed. As the growth of the DP's state space could
severely restrict the problem size if all of the states are generated, a necessary
screening method, employing simple heuristics, is used. The results of the

testing indicate that the size of the problems which can be optimized is

i

constrained by the solution time. Conversely, the size of the problems that could
be optimized never became constrained by the storage requirements since the
simple heuristics acted as highly efficient screening mechanisms. The

experimentation also uncovered certain inherent sofution characteristics.

ACKNOWLEDGEMENTS

| would like like to express my deep cratitude to Dr. George Steiner for
his supervision of this research. His ime, effort, interest and thoroughness in this
study exceeded by far what could be considered the regular 'call of duty' for a
supervisor and has been greatly appreciated.

My thanks also go to the members of my supervisory committee, Dr.
John Miltenburg and Dr. Tac Jiang, for their interest and involvement. Particular
thanks must go to both Professor Miltenburg and Dr. Wieslaw Kubiak, of
Memorial University, for permitting ready access to some of their unpublished
research: not necessarily a common occurrence in the academic world.

I would like to thank my parents for their continuous support and
encouragement over all of the years. They always wished that their son would
become a doctor, but a Ph.D in Management Science...? | must also express my
appreciation to my brother Mark, another aspiring doctor, for never letting the
seriousness of research intefere with one's keen sense for the ridiculous.

Thanks go to Sebastian for digesting more preliminary draughts of this
thesis than could be considered humanly possible. Finally | would like to thank
my wife, Christine, for all of her love and support. | am especially grateful for her
understanding (tolerance?) and for never questioning my sanity (at least openly}
when ideas necessitated a transformation onto paper at the ungadly hour of three

o'clock in the morning.

TABLE OF CONTENTS

DESCHPIVE NOB... .ottt e e e e s ii
FoY o) = Lot U OO USSP OO P TP PP il
ACKNOWIEAGEIMENEScceiiiie et ot e e Y
TabIlE Of COMEENLS. . .eii ettt s e Vi
LISt OF FIQUIES.cce e b Xi
LISt OF TADIES...cceeeeiee e et e e s e s ar e b e b e Xii

CHAPTER 1 REVIEW OF JIT

11 INtrodUGHON 10 JIT ..ot ctee e cecrn e s rae s ate s st st e s 1
L2 J T Y BMIS .ot e s rr s b et e 2
1.2.1 LOW INVENOTIES ..ot ereeve e e seeesis s snmsansrnersssssvensennes &
|.2.2 Stable and Level Production RaeS......cccco i e 4
[.2.3 Reduction of Lot SiZeSovvieciie 4
L.2.4 PU SYSIEMS «.ovovicicviieceieere e e asesscsies st smmes et s sesees O
L2.5 QUALLY ..ot rie et e ree s bbb s a e 7
1.3 The Exporting of JIT from Japan......c.ccceiininiies i 8
1.4 The Implementation of JIT in North AMerica.........cocovveeiininniiinne 12
1.5 Performance ANEIYSIS ... veviiicciininin e s SR 16
1.6 The Scheduling of JIT SYStemS ..o 17
1.7 Goal of the StUAY ...ccovvreeeeree e e 24
CHAPTER 2 REVIEW OF MIXED-MODEL, JIT SCHEDULING
[T ItOAUCHION ...ttt et s 25
1.2 Mathematical MOAEL ...t e 26
1.3 Review of Mixed-Mode!, JIT Problem Formulations...........cccereniccennnnan 30
[1.3.1 Single Level Usage Prablem. ... s 30
11.3.2 Multi-Level Usage Problem... ..., 31
1.3.3 Weighted Multi-Level Usage Problem with Pegaingccoeveee. 32

vi

11.3.4 Loading FOrMUIBLIONcuvr ittt 33

I1.4 Heuristic SOIUtION TECRNIQUES. ...cev v et 34
1.5 OPUMIZAHON ...ciemeiiiiesrsinresrres serie s st st e 37
[1.5.1 Single Level OptimizZation ... i 38
1.5.2 Multi-Level Optimization. ..o e e 41
1.6 SUIMITIAIY . ..vcveeeerieerenmcerensesiss sorsbsassesesssssesat s et s s s bR s s e 41

CHAPTER 3 MINIMAX FORMULATION OF MiXED-MODEL, JIT

SCHEDULING PROBLEMS
I IOTOAUCHION v creirraass e aes eeeessssasssemesrsnes e sr s s s bnsss s maa s sen s nb s e 43
1.2 General MInimax MOGEL.ccveverrerinieniesie e ssa s 43
1.3 Minimax Problem FormulationsS. ... 48
11.3.1 Single Level ProblemSo it 48
111.3.2 Multi-Level ProbIEMS ... st s s s 49
111.3.3 Muiti-Level Problems with the "Pegging” Assumption.........c..ceu.e.. 49
[li.4 Nearest INEGEr POINEScocviriirresnrtenies st 50
I1.4.1 Nearest Integer Point TREOM@M.....c.cveecnniiiiinn s 51
1.5 Cyclical SOIUTONSciveeveerireiermiirnins serssee s s b st s s 58
il1.6 Single Level Assignment APPrOACH ... niniiini e s 61

CHAPTER 4 SINGLE LEVEL OPTIMIZATION

AY2% B {11 1o T (8101 (1] GO OO ORI OU PP STO P PSI PP TPTRIOD 65
V.2 Mathematical MOEL. veeerrcrersrer et se s et e 65
IV.3 Reduction to Release Date/Due Date Decision Problem ... 67
IV.4 Graph Theoretical Representation and Due Daie Algorithmcccewuee, 73
IV.5 Bounds on the Target VaIUB......ccovivirrierriinmees st resssesessassesssssssssnanes 79
IV.5.1 LOWEL BOUNGooevieeeeiccinrcrimresesn cesirrissssanenssransrasanss nasnnsssnasasnanas 79
IV.5.2 UPPer BoUNGoocoeieirecetites st st 80
V.6 OptiMal SOIULONS......coveeiicrieriiiii e b e s 84

IV.7 SUMIMEIY covivitieeierisisereeseenseess evcsassbessansssesnsassssessssssan s sassss s sssassssssssasasso be 85

vii

CHAPTER 5 COMPUTATIONAL EFFICIENCIES FOR SINGLE

LEVEL PROBLEMS
V2 I U T o (1 o1 4 [0] o OO U S UVUUPPP R PP RPRPSIY PP TPRTTRTRES 87
V.2 Relationships Between Copies of @ Product...............covin 87
V.2.1 Relationships Involving Early and Late Starting Times 88
V.2.2 Cyclical Relationships Between Copies of a Product.................... 90
V.2.2 Relationships Between Starts Within Each Tier ... 93
V.2.3 Factoring Properties of the Model ... rerereea 95
V.3 Determining the Target Values Which Create New Release Date
Due Date Decision Problems ... s 101
V.4 Extensions to Weighted Single Level Problems ... 104
V.5 SUIMITIANY «.eeovtieeer et et seasiss bt erababs s s s s s b 109
CHAPTER 6 MULTI-LEVEL OPTIMIZATION
VI T INETOGUGHION ..o e cieeiese e ceere e s a s e e bbb 111
V1.2 Matrix Representation.........c. e i 111
V1.3 Optimization Using Dynamic Programming........omennnis 113
V1.3.1 DP Algorithm for the Generic Minimax Problem...........coeeve. 13
V1.3.2 Optimization of Multi-Level Sum Functions ... 118
V1.4 Time and Space Requirements of the DP ..., 119
VI.5 Implementation of the DP ... 121
VI.5.1 In-Core Space RequireMents ... e 121
VI.5.2 Filtering Methods and Heuristic SOILIONS ... 122
VI.5.2.1 One Stage HeurstiC ... 123
V1.5.2.2 Two Stage HeuristiC ... e, 124
V1.5.2.3 Implementation of the Heuristics............ciinnnn 125
VI.5.3 Addressing of SIS ..o 126
VI1.5.4 Optimal SEQUENCEcovvriirrririnecemis s e 129
VEB SUMIMIAIY Loueuviireeieretie e irstsrsies s s s bbb 131

viii

CHAPTER 7 EXPERIMENTATION USING THE DP ALGORITHM

\VATIR IR [£ o (3101 ([0 4 DUTURURURU U OO eSO ETCUIUURTRPRN P PIPES 133
VIl.2 Testing Preliminaries and ASSUMPHONS ..., 135
VLI T 11112 =PTSRS OO PPUET U U COPOPPPRRPPOP 135
VI1.2.2 Generation of Product Requirements ... 136
VI1.2.3 Generation of the Number of Parts and Part Requirements....... 137
VI1.2.4 Generation of Problem INStances ... 137
VII.3 Two Level EXPEMIMENt ... et 138
VH.B.1 ANBIYSIS ..ot ettt e 144
VI1.3.2 Supplementary Testing of Two Level Problems. ... 150
V1.4 Four Level EXPEIIMEI!o i s 155
VILA. T ANGIYSIS ..ooveeeiiee et et s s 172
VII.4.2 Supplementary Testing of Four Level Problemscueeen. 17
VIi.5 Discussion of Experimental RESUIS ...t i, 180
VIELE SUMMEIY ...ooieeiieiee et resmress st ssaas st st s aas s s s s 182

CHAPTER 8 SUMMARY

VLT THheSiS SUMMANYot e ssa e 185
VIIL2 Extensions to this BeSEAICH ...t cerrerr st e et sens 190
BE R EREN CE S . ..ottt eeer s sessaesstsraeeteresaranaasaesssssaesaanssnss s bsnbasannnenanene 194

APPENDIX 1 UNIT TIME SCHEDULING ALGORITHM

1. I OGUCHION oo aeeeeeeeeeeeeenerarasraes ceseasasessaeessesasasannnssnsssssastnessessnunnrebsossssnnanses 213
2. Scheduling AIGOMINM ..o s 213
3. G OMCIUS O oot eeevs i eeeeaseeeseesess seranessassssarasssenasansseeeansssrssnsssssaesrnestorseaananns . 216

APPENDIX 2 A LINEAF TIME ALGORITHM FOR MAXIMUM MATCHINGS
IN CONVEX BIPARTITE GRAPHS

SR 13100 e 18 o i10) 1 IPUURURTOTR TR O TP R PO OR TP YOO PTSPRITIPRTIIE 217
2. Matching AIGOTItNMoooviiii e 218
APPENDIX 3 SAMPLE MULTI-LEVEL PROBLEM. ... 222

FIGURE

V.1

v.2

V.3

V.4

V.5

V.1

v.2

LIST OF FIGURES

PAGE
Level curves for the deviation of ideal production for each
copy over all time Periods. ..o 71
Deviations "attributable" to each copy of a product..............oeen 72
Bipartite graph of feasible starting times for 5 products induced
by a target value of T=0.85.........cooi i 74
Too few copies for too many start iMes.........on 77
Too many copies required to start for the available time................. 77
Calculation of early and late starting times of a product for an
instance of the weighted usage problem..........ooein. 105
Early and late starts for a weighted problem calculated from an
unweighted figure with product specific target line..............c.ooovvs 106

xi

LIST OF TABLES

TWO LEVEL TESTING WITH D,=1000

TABLE PAGE
VILE D=10, Ry 100 cecrcssensoressssssssss s smssssss s 140
VILZ =10, Rym20.. s ssssssosssssssssss s s 141
ViL.3 Ny=8, Rym100u it 142
VLA Rym8, Bym20oeeenseneesssnssssrss s 143
VII.5 Supplementary test with 1,=10, R,m100u e 152-3
VIL.G Supplementary test with n,=12, Rom100u e 154
FOUR LEVEL TESTING WITH D,=500

TABLE PAGE
VIL7 n.=8, R;=20, Rg=20, =20 oooooioeemmressmmensessssnssemsssssssis s 157
VI8 n,=10, Ry=20, Rg=20, By=20 oo s 158
VILS n,=12, R;=20, Ry=20, R =20 oo 159
ViL.10 n1=8, H2=20. R,=40, R 4=i:‘>0 .. 160
Vi1 n1=10, H2=20, Fia=40, Fl4=60 .. 161
V2 0,212, Ry=20, Rymd0, RymB0 oo s 162
VI3 n =8, R,=20, A,=100, R,=400 wccooovcvimmnn SO 163
Vil.14 n,=1 0, Fi2=20, R3=1 00, Ry=d00 oo 164
VIS5 n,=12, R,=20, R;=100, Rym800 oo 163
ViL16 n,=8, R,=20, R,=400, Ry=1000 i 166
VIL17 n,=10, R,=20, R,=400, R,E1000 s 167
VII.18 n,=12, R,=20, H3=400, R =1000 i 168

xii

VIL.1g
VIL.20
ViL.21
viL.22

n,=8, R,=100, Ry=1000, Ry=B000 wooocsververversenseessinsornorsoo 169

n,=10, R,=100, Ry=1000, R, =B000 ..coovivmicmiiimminnimsissseisinsenens 170
n,=12, R,=100, R;=1000, B,=5000 ..coooriimmiinniiiimcnmtissinsnienecee i71
supplementary test with n,=16, R,=20, R;=40, R, =60, D,=400.....17¢

SAMPLE MULTI-LEVEL PROBLEM

TABLE
Al
A2
A3
A.4

PAGE
Level 2 Part ReqUIrEMENTS......coverrrririniesssieneseescn st saeaens 222
Level 3 Part ReqUIremMENtS........oorirmiecrcnniiesre et 224-5
Level 4 Part ReqUIrEMENES......cccvvveeiinenenent et 226-7
Optimal production SEQUENCE.......oueeierreriite s ssrsssbainsnens 228-32

xiii

CHAPTER 1 REVIEW OF JIT

1.1 Introduction to JIT

Notwithstanding the inherent controversies surrounding its definition,
measurement and interpretation (Bailey & Hubert 1980; Caves et al. 1980) ,
productivity analysis is generaily recagnized as an effective tool for evaluating
the past performance and for assessing the effectiveness (both positive and
negative) of actions taken to improve efficiency (Eilon et al. 1976; Eilon 1962). it
is widely viewed that efforts to achieve the highest possible productivity will, in
themselves, reap economic benefits (e.g. see, Nelson 1981; Cosmetatos 1983).
With the rapidly fluctuating economic landscape of the 1980's, many North
American manufacturers have been obliged to adjust their approach to
production in order to retain and regain their foothold in an increasingly more
competitive global marketplace. The entrenched North American mindset of
using the longest lead time for producing the largest lot size to obtain the lowest
price would hold if one were basing price strictly in terms of manufacturing costs
(e.g. see Chyr et al. 1990). However, where is the benefit in achieving these
price reductions if the manufacturer is not producing exactly what the customers
want at exactly the time when they want it? One innovative approach used in
repetitive (& other) manufacturing industries to answer this question is the just-

in-time (JIT) strategy (Hannah 1987).

Ways of measuring and evaluating the effectiveness of JIT systems
are as plural and diverse (and also as controversial) as those for measuring the
effectiveness in traditional manufacturing. !n this study the focus will be on
measuring the effectiveness of scheduling in a JIT system. This chapter will
review the key features of JIT systems and will examine the applications and
implementation of these concepts in North American companies. Comparisons
to traditional manufacturing methods will be made and the need for the
scheduling of these JIT systems will be reviewed. This study will examine the
scheduling process in one particular type of JIT manufacturing environment;
namely that of a mixed-model, JIT assembly process. This assembly process
will be modelled in subsequent chapters and methods of optimization for

various formulations of this model will be sought.

.2 JIT Systems

The JIT approach was developed in post-Second World War Japan at
the Toyota Motor Company by Taiichi Ohno, the former vice-president of
manufacturing (Monden 1983). JIT emphasizes a continual process of
removing waste and inefficiency from the production environment through high
quality (Crosby 1984) and small lead times (Ohno 1988). The focus is one of
solving production problems so that manufacturing operations become
increasingly more efficient (Suri & Treville 1986). “"Just-In-Time" refers to the
actual production systerﬁ whereby operations are activated just (and only) as
they are nceded. The JIT concept goes beyond the strict bounds of the
production function and leads to more of a company-wide philosophy and way-
of life. Companies using JIT treat production as an evolutionary operation (e.g.

see Lambrecht & Decaluwe 1988); Bottlenecks to efficient production are

identified, focused upon and eliminated until new bottlenecks appear, thereby
regenerating the improvement cycle.

The successful implementation of a JIT system necessitates a high
degree of teamwork and cooperation by ail employees of a company {Crawford
1990: Johnston et al. 1989; Oliver 1990). Fukuda (1983) describes how this
.eam approach can be implemented. Wastes, such as scrap and rework, must
be reduced and eliminated through the high quality of the product itself
(Ebrahimpour 1985). Total Quality Control (TQC) is the systems approach to
quality improvement within a company, in which all employees are responsible
for the monitoring of product quality. TQC is a part of the JIT process (see
Hendrick 1987) and its use within Japanese companies is discussed in
Ishikawa (1985). The Japanese regard inventory as an "evil" (Wall Street
Journal, April 7, 1882, p26; Huang et al. 1984) as it takes up space and ties up
resources (Stevenson 1990, p624). Hali (1983) describes in detail how the JIT
process, by producing only the necessary parts, in the necessary guantities, at
the necessary times, results in very low levels of all types of inventory (.e. raw
materials, work-in-process and finished goods) which saves space (both in the
warehouse and on the shap floor) and frees up rasources which would normally
be tied up in the idle inventory.

Monden (1981[a], 1981[b], 1981[c], 1981[d]}), in a series of articles,
outlined the key features of Toyota's JIT system. Most of these features are
common to any JIT system (e.g. see Stevenson 1990, p626; Dilworth 1986,
p354; Gaither 1987, p538) and will be summarized below.

.2.1 Low Inventories

The most notable feature of JIT systems is the resultant low level of
inventory. As indicated, all the types of inventory are reduced freeing up both
space and resources. Production problems (i.e. poor quality, unreliable
vendors, etc.) which might be hidden in the inventory of a 'traditional
manufacturing environment are exposed in the JIT system and may be

corrected in the evolutionary approach taken in problem solving.

[.2.2 Stable and Level Production Rates

A JIT production system requires a uniform rate of production within
© the system (Monden, 1981[c]). Gaither (1987, p540) notes that Toyota, in its
monthly producticr, tries to keep the same production schedule for every day of
the month. Thus, "...if only a few of a particular {automobile] mode! were needed
in a month, some would be assembled in each day of the month. [f JITisto
work, stable and level production schedules are must.

Furthermore, the quantity of each part used in the assembly process
per unit time should be maintained at as constant a rate as possible. There
should be as little variability in the usage of each part by the process from one
time period to the next (Miltenburg 1989). This is the most important goal of a
JIT production system (Monden 1983) and Hall (1983) has referred to this as

levelling or balancing the schedule.

1.2.3 Reduction of Lot Sizes
JIT systems require small lot sizes in the production process (South
1986). In order to produce these small lots (often of size 1) it is necessary that

the changeover cost from one product to another (measured in time and other

resources) be negligible. These small lot sizes lead directly to reduced
inventory levels throughout the factory. Fukuda (1983) describes the reduction
of setup times for machines to the desired 'one-touch’ [i.e. very rapid] setups
(see also Spence & Porteus 1887).

To facilitate quick changeovers, JIT systems tend to arrange
equipment to handle streams of parts and products with similar processing
requirements. Monden (1983, p100) describes the 'U-turn format’, for the
arrangement of machines, where small groups of workers attend several
machines arranged in the "U" pattern corresponding to the flow of parts within a
particular machine group. This grouping of machines and the reduction of in-
pracess inventory allows for smailer factorieé to be developed if JIT is
employed. Workers are expected to be proficient in the operation of several
machines and must be able to assist their fellow workers in maintaining the
schedule should someone fall behind. This entails that workers be multi-
functional and capable of ; handling their own setups, making minor
adjustments to the machines in their charge, and being able to perform minor
repairs. [This contrasts sharply to the strong opposition to the multi-tasking
requirements by the manufacturing unions in North America (Inman & Mehra
1989).] Warkers are responsible for checking the quality of their work and are
expected to contribute to the problem solving process both for current problems
and for those that may occur in the evolutionary process of the JIT system

(Ishikawa 1985, p85 & p137).

.2.4 Pull Systems
A facility operating under JIiT uses what is known as a "pull” system

(for a more complete description of push & pull systems see, Pyke & Cohen

1990: Detoni et al. 1988). In this system, work is moved from operation to
operation only in response to demand from the next stage in the process. The
controt of this movement is the responsibility of the subsequent operation. Each
workstation pulls the output from the preceding station only as it is needed.
Output of the finished goods for the entire production facility is pulled by
customer demand. Communication occurs backward through the system from
station to station. Work moves "just in time" for the next operation and the flow
of work is coordinated in such a way that the accumulation of excessive
inventory between operations is avoided (Im & Schonberger 1988).

As production is not instantaneous some inventory must necessarily
be present. By design, a workstation produces just enough output to meet the
demand of the next station. Thus, either a workstation must communicate its
need for the preceding stations output sufficiently in advance or (more
commonly) there must be a small buffer stock between stations (So & Pinauit
1988). When this buffer decreases to a prescribed level, a signal is sent to the
preceding station to produce enough output to replenish the buffer supply. The
size of this buffer is dependent upon the cycle time at the preceding work
station. Production occurs only in response to the usage of the following
station. Work is pulled only by the demand generated at the subsequent
operation.

The communication of the demand can be achieved in a variety of
ways. The most commonly used device is some variant of the kanban card
system used at Toyota (the terms JIT production systems and kanban
production systems.are often interchangeable). When materials or work are

required from the preceding station, a kanban card is sent authorizing the

moving or work for parts. No part or lot can be moved or worked on without the
use of these cards. Monden(1981[b]) describes the use of kanban cards at

Toyota to control their JIT process.

1.2.5 Quality

With a system which is geared to maintaining low inventory levels, a
smaoth flow of work and a pull system, work disruptions can cause significant
problems (if not work stoppages) (Ebrahimpour 1985). The flow of parts will
cease until a problem is resolved and if the problem is major, the entire
production facility may be forced to cease operation (see also, Hendrick 1988).
Hence the quality of the product is of utmost importance for the efficient
functioning of a JIT system. As noted above, workers are responsible for
ensuring the quality of their work. The design of the product must also be of the
highest quality and this is the responsibility of upper management (Johnston
1989; Ishikawa 1985, p80). Furthermore, the materials that the workers use
must be of high quality. To ensure this, a company operating under JIT has a
limited number of highly trusted suppliers (Newman 1988; Fieten 1989). These
suppliers must be able to deliver high quality goads in the quantities needed at
exactly the time that they are needed (Hill & Vollmann 1986; Connell 1884). To
ensure this, most companies using JIT, have long term contracts (usually 3to 5
years) with a small number of suppliers (Burton 1988). Ishikawa (1985, p161)
gives a strategy for the selection of this limited group of suppliers (see aiso
Willis & Huston 1890). Limiting the number of suppliers and awarding them
longterm contracts contrasts quite sharply to industry norms of North America,
where shorter term contracts are usually put to tender and awarded to the

company that submits the lowest bid.

The points above summarize the key features of any JIT system. To
function successfully, a facility using the JIT approach must integrate all of these
factors. The major benefits arising from the use of JIT (Gaither 1987, p546} are:
Reduced inventory levels of raw materials, work-in-process and finished goods;
increased productivity levels and increased utilization of the equipment;
increased protiuct qualiry and a reduction of scrap and rework; a reduction in
lead times and a greatar flexibility in changing the production mix; a smoother
flow of production with shorter set-up times, multi-skilled workers and fewer
disruptions due to quality problems; reduced space requirements due to an
efficient plant layout and lower inventory levels; and, because the focus in JIT
manufacturing is on solving production problems, the manufacturing operations

become increasingly more streamlined and problem-free.

.3 The Exporting of JIT from Japan

Justis (1981) reported that many Japanese production techniques
had infiitrated North American manufacturing. Gilbert (1990) surveyed more
than 100 U.S. companies and found that the majority of them are using JiT
procedures in one form or another. Im and Lee (1989) discuss the
implementation of just-in-time systems in U.S. manufacturing firms. Many large
companies in the U.S. such as Sharp, Sanyo, Hewlett-Packard, Kawasaki,
Matsushita, Sony, Black & Decker and I1BM have adoptéd the philosophy and
practices of Japanese manufacturers to varying degrees; all with U.S. workers
(Gaither 1987, p550). Hence, JIT concepts have achieved at least an initial
foothold in North American industry.

The infiluence of this adoption by certain major companies has

necessitated changes in other companies with which they do business. In

response to its use of JIT, General Motors requested that its suppliers relocate

closer to its plants and make more frequent deliveries (Automotive News, March

22, 1982, p3). However, the use of JIT has not been the sole domain of major
U.S. indus*ries. Allaby (1986) reports that the JIT approach has been
successfully implemented at the Allen-Bradley facility in Canada. Laver (1991)
describes how Camco (Canada's largest manufacturer of household
appliances), using new JIT methods, is able to process 2 dealer's order, build
the appliance and ship the finished product within three days; as opposed to its
former 120-day manufacturing cycle. By adopting its kanban system, Camco
has been able to reduce its massive inventory costs, simplify its product design
(a new line of dishwashers in 1989 used 300 different components compared to
500 parts in the older version) and switch to a system of single sourcing (the
number of autside suppliers has been reduced to 500 from 1500 in 1886).
These examples have examined the use of JIT only in the larger manufacturing
industries.

There are examples where JIT has been used for far more diverse
applications than large, repetitive manufacturing. Finch (1986) and Inman &
Mehra (1990) study how JIT techniques have been applied to smaller
operations. Inman & Mehra, in surveying 100 companies, concluded that the
benefits for the smaller companies using JIT are as great as the benefits
accruing to the larger manufacturers. A number of these examples have been
cited in the literature. Finch & Cox (1986) examine the application of JITtoa
small bottling operation. Groenevelt & Karmarkar (1988) perform a case study
of a batch fiow shop produging a woven product under a JIT control system.

Gravel & Price (1988) consider if any of the elements of JIT are applicable to

10

the job shop environment. Cheng (1988) studies the use and perception of JIT
by the electronics manufacturers in Hong Kong. Carison (1989) uses a case
study to show how JIT concepts are applicable to warehousing and distribution
operations. Wildemann (1988) describes how JIT is used within the West
German manufacturing industries. Parnaby (1988) shows how JIT was
implemented at a small company in the United Kingdom.

However, not ali JIT techniques belong to the exclusive domain of
manufacturing. Billesbach & Schneiderjans (1989) answer the question "Can
JIT techniques be applied to non-manufacturing sectors?" with a definitive "yes".
They examine JIT methods in an administrative, office setting. In a rather
different vein, Smith et al. (1989) look at the medical supply system in Ecuador.
In their paper, the replenishment policies and supply shortages of the country's
health care system are examined, where the goal is to supply medical
personnel throughout the country with the appropriate materials just as they are
needed (i.e. just in time). Forbes et al. (1982) examine the manageriai
accounting practices needed for a medical equipment manufacturer whose
supply function operates under a JIT philosophy.

These examples have dealt with the successful implementation of JIT.
They have demonstrated how increasingly widespread the adoption of JIT has
become into a diverse realm of applications (worldwide) and would tend to
indicate that the inclusion of JIT in manufacturing (and to some extent non-
manufacturing) throughout the world is increasingly more desirable. Koten
(1982), however, reports that not all JIT concepts that were so successfully used
in the Japanese auto plants are readily transferrable to U.S. auto manufacturers

due largely to geography and demographics (see also Westbrook 1988).

11

Wilson (1985) advises a very slow transition to JIT, if at all, and says that
companies would be better off adopting only specific parts of JIT such as
reducing the cost of setups. Esparrago (1988) states that it is a lack of
understanding of the JIT philosophy by the North American firms that has
impeded its successful, universal implementation. Marshall (1977) points out
that the success of JIT may be largely attributable to the cultural and social
characteristics of the Japanese labour force. Ishikawa (1985, p29) disagrees
(rather begrudgingly) with this not uncommon outlook and concludes that
"nations other than [Japan)...can also succeed in these endeavors [of
implementing JIT]".

Some aspects of North American culture,however, may prove 1o be
too great a barrier to the verbatim copying of JIT as practised by the Japanese.
Most notably, the Japanese concept of lifetime employment with one company
would probably not succeed in North America. With the need for multi-
functional workers and the time period required for the necessary training to
oceur, Sugimori et al (1977) conclude that it is imperative that employees be
hired with the expectation of long-term employment. This philosophy is not
consistent with either employers or empioyees in North America. Liberman et al
(1990) conclude that in the auto industry, in both the U.S. and Japan,
productivity improvement over the last 40 years has been attained primarily
through more efficient utilization of labour. Studying these options wouid be a
fruitful area of work for those involved in behavioural research.

A company must consider many factors if it is to successfully
implement a JIT approach (Lee & Ebrahimpour 1984). Huang et al (1983)

simulated the adaptability of JIT to a North American production environment

12

and, for the variables they examined, concluded that any company wanting to
use JIT would require a lengthy transition period in order to prepare the
preduction environment. Furthermore, successiul implementation would most
likely occur in those firms which most closely resemble the Japanese
companies in terms of size, resources and market share [e.g. large
manufacturers such as automotive and appliance companies]. Regardless of
these caveats, it is very apparent that JIT has been adapted into the North
American manufacturing environment within companies of various sizes and
diverse technologies and studies of its potential applications must be made.

The questions of implementation wilt be addressed in the next section.

.4 The Implementation of JIT in North America

When traditional North American manufacturing techniques are
mentioned one is usually referring to the systems of MRP and MRP Il. MRP
(Material Requirements Planning) is a computer based information system
designed to handle the ordering and scheduling of the dependent demand
inventories (i.e the raw materials, component parts and subassemblies). It
begins with a schedule for finished goods that is converted into a schedule of
requirements for the subassemblies, component parts and raw materials that
wili be needed to produce the finished items in the specified time frame (for a
complete description of MRP see Orlicky 1975). A production plan for a
specified number of finished products is translated backward using lead time
information to determine when and how much to order. The requirements for
the final products generate requirements for lower-level components so that the
ordering, fabrication and assembly can be scheduled for the timely completion

of end items, while inventory levels are kept reasonably low (Stevenson 1990,

p583). MRP is an approach to scheduling and inventory controt designed to
answer the three questions; what is needed, how much is needed and when is
it needed (Bevis 1979).

MRP 1 (Manufacturing Resources Planning) is a second generation
approach to MRP that has an expanded scope which involves other areas of the
firm (i.e. marketing, finance) in the planning process. {Henceforth, MRP and
MRP 11 will be cotlectively referred to as simply MRP.] The expected benefits of
MRP were: low levels of in-process inventary, the ability to keep track of matenal
requirements, the ability to evaluate capacity requirements generated by a
given master schedule, and a means of allocating production time (Stevenson
1990, p606). MRP is a formali, computer-based system concerned with
projecting requirements and with planning and levelling capacity using a
computer. In contrast, JIT with kanban is a manual, 2-bin system where
supplies are replenished when a predetermined level is reached. A kanban
system operates in a very different fashion from the way MRP would control the
same facility. However, regardless of the approaches of the respective systems,
the goals are the same.

Stevenson (1990, p607) notes that MRP has not proved to be the
“cure-all that many hoped it would [be]." Lambrecht & Decaluwe (1988) note
that MRP experiences a lot of operational problems and Maher (1986)
concludes that MRP will not be satistactory for the 'factory of the future’, Indeed
Lambrecht & Decaluwe state that MRP imposes demands on the process that
cannot be met and that “inventory is too often the solution.” They deccribe two
case studies where JIT offers useful insights which were not gained from the

use of MRP. While MRP has long been proclaimed as the entire solution for the

14

control problems of almost all manufacturing environments (Bridgette 1976), it
has turned out to be only partially true.

In light of the successes that the Japanese companies have had with
JIT techniques, the question becomes, can JIT be transplanted on & large scale
into North America? Hall (1981, p21-31) and Schonberger (1982, p83-102)
examine whether the manual kanban systems used in JIT manufacturing may
be a viabie replacement of MRP. Parnaby (1988) found that while kanban
enforces a redesign of the manufacturing system [for the beter]. MRP creates
the "delusion that problems can be solved merely by the imposition of a
complex computer system upon a complex factary process." Suri & Treville
(1986) state that many firms that currently use MRP are hesitant to switch to JIT
due to potential disruptions that may occur during the changeover. Malley &
Ray (1988) conclude that an entirely new information system would be
necessary for such an implementation. Im (1989) poses the question of
whether the largely computerized North American manufacturers would even
consider switching to manual, kanban systems; thereby rendering their powerful
and generally expensive computer systems virtually redundant. Rao (1 989[a]}
surveyed fitty-seven FORTUNE 100 companies regarding their software use to
support materials management and found that all companies implementing JIT
also had an MRP system. Rao (1989[b]) noted that software companies were
planning to adapt their current systems to support JIT and that computerized
companies were prepared to switch their information systems to support kanban
manufacturing (see also Sewell 1990).

Several researchers have examined the process of implementing JIT

into the North American manufacturing environment. While some advocate a

15

complete switch to JIT production, most foresee a hybrid manufacturing system
in which both push and pull strategies are used in conjunction (Belt 1982) and
the best features of JIT are adopted. Willis & Suter {1989) present a conversion
life cycle system for the implementation of JIT. Lee & Ebrahimpour (1984)

provic & some of the salient features and prerequisites which must be met for
such a switchover to JIT production. Rao & Scherage (1988) describe the
change from MRP to JIT manufacturing. Olhager & Ostlund (1990) look at the
combining of push and puil strategies. They provide an illustrative case of this
push/pull integration in a make-to-order environment. Discenza & McFadden
(1988) look at the integration of MRP and JIT through the unification of software.
Sipper & Shapira (1989) develop a decision rule which enables the
classification of an inventory control policy for a production system to be either a
JIT system or a traditional system. Flapper et al (1991) describe how JIT can be
imbedded into MRP using-a 3-step framework when some (or all) of the
products are to be produced using JIT. They describe to what extent MRP can
be used to support JIT. While it might appear that the only way to implement JIT
is to dismantle the existing system, Miltenburg & Wijngaard (1991} provide a 3-
phase transformation process for the phasing in of JIT. They construct a 'gentle’
procedure for this change which causes as little disruption as possible to the
existing production system. Thus, methods have been researched which would
allow for the implementation of JIT into North America. If this implementation is
to be successful, then analysis of the performance of JIT systems must also be

undertaken. Performance analysis will be reviewed in the next section.

16

1.5 Performance Analysis

if JIT is to be implemented then studies of its potantial benefits and
drawbacks must be made. Performance analysis requires that some particular
measure of a firms efficiency (or some surrogate estimator thereof) be
examined, subject to certain limiting assumptions and constraints, which
facilitate the study. Whenever these assumptions are made, the inherent
limitations alluded to in the opening paragraph of this chapter are invoked.

In this effort, Crawford & Cox (1920) developed certain standards,
performance criteria and measurement techniques for evaluating JIT production
systems. As the intensive study of JIT has only occurred in the past decade,
they attempt to provide a standardized approach to the reporting methods for
the analysis of JIT. Similarly, Heiko (1989) attempts to smooth the barriers to
comprehension, so that practitioners of JIT can communicate their findings more
readily to the corporate managers not necessarily invoived in the manufacturing
process; thereby allowing the costs and benefits of JIT to be understoad by the
decision makers in a production environment.

Most of the published studies of JIT to date have been simulated (e.g.
see Fallon & Brown 1988) mainly to test conditions of inventory levels and to
determine the optimal number of kanbars to allow. For example, Lee (1987),
Huang et al (1984), Kimura & Terada (1981), So & Pinault (1988), Sarker &
Harris (1988), Philipoom et al (1987), Ebrahimpour & Fathi {1985), Cadley et al
(1989) and Gupta & Gupta (1989) all model certain production aspects of a firm
operating under JIT while simulating the variation in certain exaogenous
conditions. Other related work for finding the number of kanbans has also been

performed. Bitran & Chang (1987) investigate solution procedures to determine

17

the number of kanbans in a deterministic setting. Li & Co {(1991) present a
dynamic programming method for determining the number of kanbans at gach
stage of preduction in a multi-stage system. Wang (1990) uses a Markov
process to determine the number of kanbans in a particuiar system. Seidman
(1988) develops two tractable and optimal kanban control policies. Miyazaki et
al (1988) look at ways to determine the number of kanbans and the time interval
between when orders are placed.

Several studies have focused specifically on the efiect that JIT has
had on inventory. Toomey (1989) studies how inventory control strategies must
be adapted in various types of environments when JiT is implemented. Pan &
Liao (1989) use an order splitting modet to describe a JIT inventory system.
Luss & Rosenwein (1990) examine lot-sizing for JIT manufacturing and develop
a heuristic procedure that minimizes the inventory holding costs over all items.
Other studies of the JIT lot-sizing problem include South (1986) who derives &
minimum lot-size formula and Grant & Seastrand (1987) who look at multiple
operation lot-sizing. In a much different approach, Buzacott (1989) uses a

queueing network with blocking to describe the performance of a kanban

system.

.6 The Scheduling of JIT Systems

Not very much research, however, has been published on the
controlling of JIT manufacturing environments using scheduling techniques.
Egbelu & Wang (1989) study the role of order scheduling while a firm gradually
adopts JIT, with the objective being to minimize inventory costs. Wortman &
Monhemius (1984) examine how JIT and MRP would schedule a production

facility. Plenert & Best (1986) explore whether traditional MRP systems or JIT

18

would be better for controlling a particular facility. According to Okamura &
Yamashita (1979) , among other things, one problem that must be solved for the
effective utilization of mixed-model assembly facilities is the determination of the
sequence in which the products must be scheduled on the final assembly
process. As JIT manufacturing operates in a pull environment, once the final
assembly sequence for the products on a process is set, the scheduling for all
parts that feed this process is also set (theoretically). Groeflin et al (1989)
develop a heuristic procedure for determining the final assembly sequence for a
facility in which a JIT control system is employed. The objective of their
algorithm is to sequence the assembly process in such a fashion that the work-
in-process inventory of parts in the feeder shops is 'smoot-hed' (i.e. no large
fluctuations in inventory). They note that this sequencing problem is a complex
combinatorial problem and that "an efficient, exact algorithm is uniikely to exist "
(e.g. this is because if there are n end-products, there will be n! feasible
sequences to consider and, therefore, their problem suffers from the 'curse of
dimensionality’).

In the related literature, the design of scheduling algorithms for
flexible flow lines (e.g. integrated circuit board lines that feed parts to the final
assembly) has been investigated by Wittrock (1985, 1988), Kochar et al (1987),
McCormick et al (1989) and Rege (1988). The output of a final assembly
sequencing algorithm, such as the one considered in Groefiin et al, would
provide a demand schedule which could serve as the input for the scheduling of
such feeder processes. The interrelationships between final assembly and
operations in feeder shops is discussed in Luss (1989). Final assembly

sequencing is related to other production scheduling problems. For surveys of

19

various types of scheduling problems see, for example; French (1982), Baker
(1974), Conway, Maxwell & Miller (1967), Graves (1981), Gupta & Kyparis
(1987) and Lawler, Lenstra & Rinnooy Kan (1982).

French (1983, p9) notes that the objectives of scheduling problems
are never easy to state as they are numerous, complex and often conflicting.
[For example, Mellor (1966) describes 27 distinct scheduling goals.] The
performance measure chosen may often appear to be too limited to allow for the
accurate representation of the scheduling goals that tend to arise in practice. A
schedule which minimizes a component cost may be very poor in terms of the
total cost: where this total cost is a complex combination of processing costs,
inventory costs, downtime costs and completion time costs. Even the problems
of scheduling using simple performance measures can prove difficult as
solution techniques often require heuristic methods (e.g. Groefiin et al).

By the inherent nature of JIT, the scheduling objectives are a different
type of measure than those found in the 'traditional scheduling problems.
Namely, the JIT objectives are necessarily non-regular performance measures.
A regular measure, R, is one that is non-decreasing in the completion times of

the products (French 1982, p14). If there are n products, where product i,
i=1,...,n, completes at time C,, then R is a function of C1,Cz,...,Cn such that ;

C1sC1 \ 02502 \ ...Cnan

together imply that

-

R(C,.CpiCp) S RC;CpnnCy)

One seeks to minimize regular performance measures such as the makespan
(i.e the job with the maximum completion time), the total tardiness of all jobs,

and the mean flow time. Therefore, if two schedules exist such that no product

20

in the first schedule completes any later than it would in the second schedule, a
regular performance measure would dictate that the first schedule is at least as

good as the secand.

However, simply minimizing the completion times of the products in a
JIT system does not accomplish the goal of producing only the necessary
products in the necessary quantities at the necessary time. If a product
completes too early, then it will be held as inventory which, to a JIT system, is
just as bad as completing a job too late. JIT scheduling objectives, therefore,
must necessarily be non-regular performance measures as both the earliness
and tardiness of product completion times must be penalized. The goal is to
produce a schedule in which jobs are produced neither too early nor too late
with repect to their desired completion time.

Baker & Scudder (1990) provide a survey of the machine scheduling
problems with eariiness and tardiness penalties. They note that for problems
where products have distinct due dates, there are apt to be few special cases
where efficient solution procedures can be found and that most of the more
complicated, "interesting" problems are likely to remain refatively intractable.
Rinnooy Kan (1978, p3) notes that if one can prove that a scheduling problem
falls into a class of difficult combinatorial problems (i.e. NP-complete problems)
with the property that no efficient (i.e. polynomial) algorithm has been found to
optimally sotve any of the problems within this class, then the use of an
enumerative procedure for this problem is justified (see also Garey & Johnson
1979). Garey, Tarjan & Wilfong {1988) consider the problem of minimizing the
total earliness and tardiness on a single processor where the products have

different due dates. Hall & Posner (1991) note the relative importance of this

21

(Garey et al) paper, as it contains one of the first proofs of NP-completeness for
a single machine scheduling problem with a non-regular performance measure
(see Hall, Kubiak & Sethi 1991 for the NP-completeness proof of another non-
regular measure).

These features highlight two of the major problems encountered
when attempting to find optimal solutions to JIT scheduling problems. Firstly, as
the various products in JiT problems tend to have different desired completion
times (distinct due dates), solution techniques to problems which consider
earliness- and tardiness- type objectives for these JIT models may be
intractable. Secondly, non-regular performance measures are employed for
studying these JIT problems but trying to prove that the problems using these
measures fall into the NP-complete classification may be, in itseif, a very
imposing task . | ,

Bearing the above points in mind, the scheduling goals for controlling
the mixed-madel assembly line at Toyota are described by Monden (1983,
p181) as determining the product sequence an the final assembly pracess that;

1. Levels the load (total assembly time) at each station on the assembly
line, and

2. Keeps a constant rate of usage of each part on the assembly line from
one time period to the next.

With respect to the first goal (in what is referred to as the 'Loading’
prablem), if products with relatively longer operation times are sequenced
successively, then delays in compieting the product may occur and could cause
the stOppa.ge of the assembly line. To counteract this type of problem, Okamura

& Yamashita (1979) developed a complex heuristic procedure for minimizing

22

the risk of stopping the conveyor for the assembly line model-mix sequencing
problem.

The secand goal (the so-called ‘Usage’ problem), is considered to be
the most important goal for JIT production systems (Monden 1983, pi 82). Hall
(1983) has referred to this as the problem of levelling the schedule. Monden |
describes how this usage goal is met using Toyota's "Goal Chasing Algorithm."
With a pull system in effect, the product level becomes the focus o control for
scheduling. Toyota's goal chasing algorithm is a heuristic procedure which
determines this end-product sequence by myopically minimizing the sum of the
deviations of cumulative part requirements from the average part requirements '
necessary to produce an endproduct.

Miltenburg (1989) formulated the usage problem as a quadratic
integer programming problem with the assumption that the different products
require the same number and mix of parts. This assumption reduces the
solution procedure to determining the final assembly sequence of the end
products without the need to 'keep track' of the effect that this sequence will
have on the lower production levels. This is because, under the assumption,
variability occurs only at the product level. In Miltenburg & Goldstein (1990) a
joint usage and loading problem is developed. The usage problem is extended
to multi-level problems in Miltenburg (1986), Miltenburg & Sinnamon (1989),
and Goldstein & Miltenburg (1988) where the assumption that each product
requires the same number and mix of parts is no longer made. All of the usage
praoblems have been treated as single processor scheduling problems and
require the determination of the final assembly sequence. The papers present

several heuristics to solve the various usage problems. The final assembly

23

sequence generated by the multi-level heuristic proceaures determines the
production schedules énd therefore the fluctuations in the part variability at the
lower process levels (i.e. the sub-assembly, component and raw matarial levels
which faed the final assembly level). As with the final assembly sequencing
problem of Groeflin et al, the mixed-modei, multi-level problem formulations
also appear to be complex combinatorial problems.

Heuristics, however, are only as valuable as the solutions that they
produce. Pearl (1984, p73) notes that while "...heuristics greatly reduce the
search effort...[they] occasionally fail to find...even a near-optimai solution." In
order to test how 'well' a heuristic performs one must determine either worst
case bounds on the solution values or compare the resuits to optimal solutions.
Thus far, no research has been performed to determine bounds on the heuristic
pracedures used for the mixed-model, JIT scheduling problems. Miltenburg,
Steiner & Yeomans (1990) developed an enumerative dynamic programming
procedure for the optimization of the single leve! usage problem and performed
a limited experimental study which measured the performance of some of the
heuristics. Kubiak & Sethi (1989, 1991) subsequently proved that the single
level usage problem could be reduced to an assignment prablem and, hence,
solveable to optimum in polynomial time. Inman & Bulfin (1991) recently solved
a different version of the single level usage problem in which the objective '
function to be minimized was the total earliness and tardiness of the schedule.
They used due dates which corresponded to the ideal, but infeasible (being
non-integer), location in the final assembly sequence. No research has been
published for optimally solving the mixed-mode!, multi-level, JIT scheduling

problems.

R

24

[.7 Goal of the Study

For the study to be undertaken, the optimization of the usage problem
for the scheduling of mixed-model, JIT assembly processes will be examined
using a certain minimax objective function. This minimax objective has not
been considered previously in the literature for use with mixed-modet JIT
assembly faciiities. The aim is to determine optimal procedures for this new
formulation and to examine the performance characteristics of these
procedures. Certain processes developed within ti.e study of this minimax
problem might be applicable to the ‘sum of deviation' cbjectives encountered
previously in the scheduling of mixed-model, JIT assembly systems. However,
the operating characteristics for the optimization of this new objective could
reasanably be expected to significantly differ from these prior efforts. Before
introducing the problem with the new cbjective, the existing literature on mixed-

made!, JIT systems will be reviewed in more detail.

CHAPTER 2 REVIEW OF MIXED-MODEL, JIT SCHEDULING

It.1 Introduction

The problem of scheduling mixed-model assembly facilities operating
in a JIT environment has come under study only in the past decade. The
seminal work in the area is due to Monden (1983) who described the
scheduling algorithm employed by Toyota to control their mixed-maodei
assembly line. Miltenburg (1989) presented an integer programming
formulation for a particular version of this probiem. A number of alternative
formulations and approaches to that appearing in Miltenburg have been made
and it is these models which will be reviewed in this chapter.

Mixed-madel assembly facilities, which are capable of diversified
small-lot production, must necessarily have negligible switchover costs from
one product to another. JIT production methads, which require praducing only
the necessary products in the necessary quantities at the necessary time, make
it possible for these types of facilities to satisfy customer demands for a variety
of products without holding large inventories or incurring large shortages. JIT
production systems, which have been described extensively in the literature (for
example see, Hall 1883; Ohno 1988; Monden 1983; Fukuda1983), operate
under a pull process. If the products, subassemblies, components and raw
materials are thought of as inputs or outputs of separate production levels then,
under this pull process, production is initiated only by one level's requirement

for another level's output.

25

26

A production level which receives as input another level's output is
deemed to be a higher production level than the one that "feeds" it. Hence, in a
JIT assembly facility, the highest production level is the product level, where
final assembly takes place. In all of the models of this assembly process, itis
assumed that once production of a final product is started that it will be worked
upon untii completion. Thus, a JIT assembly facility can be thought of as a
multi-level production process where, ance the sequence of production at the
product level is fixed, the production schedules at all other levels are inherently
also fixed. As a result, the final assembly level necessarily becomes the focus
of control for the entire production facility.

Monden (1983, p181) and Miltenburg & Sinnamon (198¢) state that
the paramount goal for scheduling in a JIT system is to maintain a constant rate
of usage for every part used by the system. Therefore, the scheduling problem
for a mixed-model, JIT assembly facility is to find a sequence of production for
the final products (the highest level) such that the quantity of each part (over all
levels) used within this multi-levet production system is kept as constant as
possible per unit time. Hall (1983) refers to this as levelling or balancing the
schedule, but it has also been referred to as the "usage probiem"” in the

literature.

1.2 Mathematical Model

Before proceeding to descriptions of the various models which have
been studied, certain notation and concepts, common to all of these models, will
be defined. First assume that there are L different levels of production. A
particular level under consideration will be denoted as level j, where j=1,...,L.

The highest production level (i.e. the praduct level) is level 1. The number of

27

different outputs at level j will be denoted as n and dli represents the demand
for output i at level |, where i=1 ,2,....nj.
if tiii represents the number of units of output i at level j required to

n
1
produce one unit of product |, I=1,2,....n, , then du:z tijhdm (where t, =1 ifi=h
h=1

n
|

and O otherwise). Let Di=2 ciij be the tota! demand for level j's output. Then
i=1
n

d. i
the demand ratio for output i at leve! j will be r; = o [Note that 2 r=1, for
j 1=

each j=1,..., .

One of the assumptions of the modet is that production of the final
products (i.e. output at level j=1) cannot be preempted. That is, once production
on a unit of a level 1 product has commenced, it must be completed before the
production of another unit can start. This introduces the concept of a stage or
cycle. One is said to be at stage k (or in cycle k) if k units of product have been
produced at level 1. There will be k complete units of the various outputs i at

level 1 produced during these first k stages and the time horizon wil consist of
D, stages in total. Let Xiik represent the number of units of output i at level |

n.
|
produced during stages 1 thirough k and et)(Tik = 2 Xk be the total number of

units produced by level j during stages 1 through k. Therefore the cumulative
production at level 1 through the first k stages is XT, =k. Then by the pull nature
of JIT systems and from the fact that lower level parts (from levels 2,3,...,L) are
drawn as needed by the final assembly process, the particular combination of

the highest level products produced during these k stages determines the

28

cumulative production at every other level. Hence, for levels j=2, the required
n
1

cumulative production through k stages for output i wil be xiik=l§_‘f bk

If GijaO is a weighting factor for the i part at level j then the general

mixed-model, JIT scheduling problem is to select the x,., i=1,...,N,, k=1,....0,,

which satisfy;
D

pa |

1 L i
: 2
Min 2 Gii (xiik - XTikrii)
=1 =1 1=1
st
n
Xk = 2 tiipxmk i=1,...,n,, =1....L k=1,...D,
p=1
M
XTy= 3 X = K k=1,....D,
1=1
%
XTy= 3 % i=2,...L, k=1,....D,
1=
Xigk 2 X1(k-1) i=1,...,0,, k=1,...,0,
an1 =di; X9 =0

Because of the no-preemption assumption for production at the
highest level, the xiik's necessarily must hold integer value. Hence, this
generalized mixed-model, JIT scheduling problem is a quadratic integer
programming problem. The objective function in the model inherently
recognizes the sequence dependent nature of the lower level parts (i.e. the

subassembly, the component and the raw material levels). The xiik's are

calculated directly from the assembly sequence of the (level 1) products and the
desired level of production of part i at level j is calculated as the proportion (rii)

29

of the total cumulative production at level | (XTl.k). Level schedules are created

by keeping the production of all parts and products as close to this desired level

as possible.
Other objective functions have also been proposed for the mixed-

model scheduling problem (Miltenburg 1986, Miltenburg 1989). Any of the
following objectives could be used for madelling the problem subject to the

constraints of the general model;

D n.
) 1 L i xi'k o
Min ;1 ; _21 G, (—I—XTik-r.,i)
1L 0 X.
. ijk .
Min 21 121 TSE\'% Gii —J—XTjk Tij
- D1 L ni
Min ?__‘% 1 21 Gi]. |><ijk - XTikrii|.
= |= I=

These functions minimize either the squared or absolute deviation of the actual
praduction from the desired production for all levels in the system. The

X,
functions involving the 3(-—'.%1‘— terms, try to keep the actual proportions of the
ik
X,
production mix (the Yl]rk_) as close as possible to the desired proportions (the rij)
ik

over all stages k. The other functions try to keep the actual number of units
produced (the xiik) as close as possible to the desired number of units produced

(XTjkrIj) over all stages. Any of these functions are reasonable and none is more

tractable, mathematically, than the others. It is shown in Miltanburg (1989) that
all of these functions produce similar schedules and, hence, functions as

described in the general, mathematical model above are investigated.

30

1.3 Review of Mixed-Mode! JIT Problem Formulations

The various models which have appeared in the literature will now be
reviewed and it wiil be shown how these models relate to the the general model
presented above. Solution methods for these models will also be reviewed.
The primary goal for scheduling a JIT system is to maintain a constant rate of
usage for all parts used within the system. JIT systems can only function
effectively when this constant rate of part usage exists. Wide fluctuations in part
requirements would necessitate either the holding of large part inventories or
the incursion of large part shortages; neither of which can occur if the JIT system
is to function appropriately. Recognizing that part usage is determined by the
sequencing of the products on the final assembly process, variation of each part

is minimized by sequencing the products in very small lots (often of size 1).

11.3.1 Single Level Usage Problem

In Miltenburg (1988) it is assumed that each product requires
approximately the same number and mix of lower level parts. A constant rate of
part usage is achieved by considering only the demand rates for the products
and implicitly ignoring the resulting part demand rates as variability will only
occur at the product level. The goal is to find an assembly sequence which

maintains a constant rate of production for each product.
{ 1 fj=11i=1..mn

Letting G 0 else

then the objective function for this model may be written as;
o n
1 1
2
?_‘,1 21 (xnk i XT1kri1) :

As this model focuses entirely upon the highest level of production, the problem

is referred to as the single level usage problem.

31

11.3.2 Multi-Level Usage Problem

If each product does not require the same number and mix of parts
then one can no longer focus solely upon the highest level to control the parnt
usage at the lower levels. An accounting for how the level 1 product assembly
sequence affects the lower levels must be made. This problem is modeiled in
Miltenburg (1986) where the objective function measures the variation of a
part's actual production from its relative, cumulative amount of production for all
levels in the system. If Gii = Wp, i=1,...,n, with j=p, where Wp is the weighting
factor for the p'™ level, then the objective function for the muiti-level usage model
may be written as
1 LN
21 |E1 2 Wi (i XT)’

This paper introduces the concept of weighting factors for the various
production levels. In practice, weighting factors are used to prevent a relatively
less important lower level part from dominating more important higher level
parts in the calculation of the objective function. However, the implementation
of weighting factors requires that some arbitrary (although, perhaps, well
thought out and well intentioned) decision be made as to what values are to be
assigned to the weights. The type of solution to these problems is biased by
and depends very heavily upon the weighting values chosen. An open
question is to determine what weighting factors are appropriate for the various
JIT models. In a sense, "unbiased"” usage problems require that Wi=1' j=1.....L
(or Wj=0 for some levels not of interest). Hence, for this study, two types of
usage problems will be defined:

(i) (Unweighted) Usage problems where Wi=0 or 1, j=1,..L,and

(i) Weighted usage problems where weighting factors other than those in {i)

32

apply.
The weighting factors used within the various problems considered in the
fiterature have all corresponded to a particular level's weight, whereas, in the
general madel, a potentially different weight is given for each part and product
in order to completely generalize the problem. The distinction between the
weighted and unweighted cases will always be made clear and, thus, according
to these definitions, the objective function above refers to a multi-level, weighted

usage case.

1.3.3 Weighted Multi-Level Usage Problem with Pegging

In Goldstein & Miltenburg (1988) a method is proposed which
considerably simplifies the amount of computation required to determine the
sequencing of products in a multi-level system. Under what is referred to as the
'pegging’ assumption, a distinction is made between tin and tii[, hl, for each
output i at level j. Parts of output i at level j are dedicated or "pegged" to the
level 1 product into which they will be assembled. This pegging scheme
separates parts into distinct groups for each product. Whereas the objective
functions shown above indicate that the desired relative, cumulative level of
production for each part at level j=2 depends upon the sequence of product
assembly, pegging allows the calculation of specific targets for the amount of
each part's production at each stage which is independent of the final assembly

sequence. The objective function for this problem is;
D1 n D ' ny ni

1L
2 z Wi (Xiak - "rn)z"'kZ:1 2 ﬁ;‘ ; W, (xh1ktijh'kti]hrh1)2‘

=1 =1 1

Recalling that XT,,=k and that t, =1 if i=h and 0 otherwise, then this objective

may be rewritten as;

33

D1 L ny n| , ,
k>;1 TS:; ?:_,‘1 _?::1 W, () (xmk“XTwrm)
LN ”
By changing the order of summation and settin G = W , then
y changing 9]2 }_jI ()
the objective function for the weighted, muitilevel, pegged formulation becomes;
C n
1 1

;::1 ﬁ; Gm(ik XTmm)'

which is equivalent to the formulation of a weighted, single level usage

problem.

11.3.4 Loading Formulation

The above models have all dealt solely with the usage-type problems.
in Miltenburg & Goldstein (1990) a loading factor term is added on to the
weighted, multi-level usage problem in what is referred to as the joint problem.
This loading factor term adds an assembly line balancing-type problem to the
original formulation. The goal of this inclusion is to smooth the work load on the
final assembly process (now considered to be an assembly line) to reduce the
chance of production delays and stoppages. The loading goal attempts 1o
prevent the consecutive sequencing of products with relatively longer
production times by placing products with shorter processing times on either

side of them in the fina! schedule.

If T's is the production time required by product i at station s and
n
- 1
T=73 T‘S d,/D, isthe average production time required at station i, then the

objective function for this joint problem |s

1 L0 2
2, 2 2 Wi (K XTid) “&2 [) X Ts - Tf-]

34

where W_ is the weighting factor for station s and o ;and a_are the weights

applied to the usage and loading goals respectively.

1.4 Heuristic Solution Techniques

Thus far, only the various mathematical models for the usage (&
loading) problems of mixed-model, JIT assembly processes have been shown
and no indication has been given as to how solutions to these problems have
been determined. These types of sequencing problems are usually difficult to
salve as combinatorial a; proaches must generally be undertaken. Even "mid-

sized" instances of the problems have hundreds of thousands of variables and

D,!

the number of potential feasible solutions wilt be . Hence, the
: d, ! dyl..dy 1!
1

number of potential solutions to a problem is factorial in nature and any solution
method must somehow contend with the large number of feasible solutions in
order to obtain a 'good’ solution. As no general solution techniques exist for
solving large integer programming problems, procedures must be specifically
developed.

The methods that have been used for solving the various models will
now be addressed. The approach taken in Miltenburg (1989), Miltenburg
(1986) and Goldstein & Miltenburg (1988) [and in Miitenburg & Goldstein
(1990)] has been to use two related, 'greedy’ heuristics for scheduling the

usage problems. The cne stage or H1 heuristic is to schedule at each stage k,
L0

_ . P . 2

k=1,...,D,, the product p, pe{1,...,n1} which minimizes ; 2 W, (xiik XTjkrii) :

1=1
This is a one stage heuristic as it considers only the variation for one stage (i.e

stage k) in order to make a decision. No consideration is paid to the effect that

35

the decision made at this stage will have on the variation at future stages. The
two stage or H2 heuristic presents a similar, albeit a slightly more complex,

approach than this H1 heuristic. The H2 heuristic schedules the product p,
pe{1,n1}, at stage k, k=1,...,.0,, which, if scheduled in conjunction with some

product p', p' 1,...,n,), at stage k+1, would minimize the total variation of all
4 g

parts and products for stages k and k+1. H2 is a two stage heuristic as it
considers only the variation for two consecutive stages in the decision making
process. Once again, no consideration is made for the effect of the decision at
this stage on the variation at future stages. Both of these heuristics are easily
understandable, easy to implement and require minimal processing time.
Ancther heuristic approach presented in Miltenburg (1989) and
Miltenburg & Sinnamon (1989) involves determining the nearest integer points
to the desired level of production for each product at each stage k. The desired,
feasible iavel of production for product | at stage k is the integer nearest to kr;,
(but is subject to the constraint that the nearest integer points for all products at
a given stage must sum to k). 1t was proved in these papers that finding these
nearest integer points for all products at all stages might (and quite probabiy
would) produce infeasible schedules and, thus, one could not derive &
production sequence simply by determining the nearest integer points for all
products at all stages. [Note that if a feasible schedule is produced for the
single level prablem where the production of each product at each stage is
identical to its nearest integer point, then this scheduile is also optimal].
Methods were presented for regaining feasibility for those instances where an
infeasible production sequence was generated. Feasibility was obtained by

progressing from the last integer point preceding the first case of infeasibility of

36

ihe schedule by using one of H1, H2 or total enumeration until the next feasible
integer point for all products on the schedule was found. Further cases of
infeasibility in the schedule would be corrected in the same fashion. All of these
nearest integer point heuristics have the potential for being very
computationally intensive procedures (see Inman & Buifin 1991).

A heuristic procedure has recently appeared which solves a slightly
different problem formulation. Inman & Bulfin (1991) show that if Zi;% (j - 12-)
{

j=1,....d, i=1,..,n,, is treated as the due date for the | copy of product i and if y,

denotes the location in the production sequence of the i copy of product i, the

objective functions
n, d n,

; 2 (Yij' Zii)a and ; EI |yii-z“|

i =1
may be optimized by sequencing the copies of product using an earliest due
date (EDD) rule. These objective functions are somewhat akin to the single
ievel usage problem. {It should further be noted that the due date used is not, in
general, a feasible due date as the position that a copy of a product occupies in
the production sequence must necessarily hold integer value. The integer
ceiling of the above due date is used in the optimization procedure of Kubiak &
Sethi (1989, 1991)]. While the EDD sequence is optimal for the above objective

functions, it produces good results for the single level usage problem (and for

D1 n,
> [Xiy, - Kri |) as well.
k=1 =1

Inman & Bulfin compare the results from their heuristic to those of the
nearest integer point heuristic which appeared in Miltenburg (1989). One
hundred problems with 10 products each were tested and, it is reported, that on

average their EDD approach slightly outperformed the nearest integer point

37

heuristic. However, (as could be expected) this EDD heuristic was far more
computationally efficient. Although results and comparisons are made between
these heuristics, it is not known how well either heuristic approach performs
when compared to the optimal solutions and, thus, the value of these heuristics
has not been determined.

This section has shown that a number of heuristic approaches exist
for solving the mixed model, JIT problems. However, their use and the lack of
information on their worst case performance underscores the distinct necessity
for the optimization of these problems. The approaches to optimization will be

discussed in the subsequent section.

1.5 Optimization

As noted, it is possible for even ‘reasonably' sized instances of the
mixed-model, JIT scheduling problem to have hundreds of thousands of
feasible solutions and a sustantially higher number of decision variables. As
standard solution techniques do not exist for solving quadratic, integer
programming problems of this size, the use of heuristics appears to be a
practical approach for finding solutions. However, the value of a heuristic is
only as good as the solution that it produces. indeed, '...some heuristics greatly
reduce search effort but occasionally faii to find...even a near-optimal solution’
(Pearl 1984, p73).

Hence, there is a need to find either bounds on the solution vaiue
obtained by a heuristic or to develop a method which finds the optimal solution
in reasonable time. If a bound has not been theoretically proved for a heuristic

approach then it is necessary to be able to calculate the optimal value for a

38

given problem instance against which the heuristic value can be compared.

Two such optimization approaches exist for the single level problems.

I1.5.1 Single Level Optimization

In Miltenburg, Steiner & Yeomans (1990) an implicit enumeration
procedure using dynamic programming (DP) was presented for determining
optimal production schedules for the {(weighted) single leve! problem.
Compared to previously available optimization methods, this DP substantially

reduced the computation and storage requirements. It was shown that the state
space grew at an exponential rate in n,, but that its growth rate was polynomial

in D,; indicating that the DP would be effective for small n, even with large D.,.
A limited experimental study (n, <6, D, =80) demonstrated that the H1 and H2
heuristics gave good solutions for the problems examined. However, difficulties
arose in using this approach for larger problems (n,=8, D,=80) as the "curse of
dimensionality" hampered the DP's effectiveness. Thus, the problem of whether
the heuristics (both H1 and H2) are capable of determining good schedules for
very large problems remains open.

The single-leve! usage prablem, described above, can be rewritten
as,
D
'(21 : (i - kri)2

if the subscript '1' is dropped and it is realized that XT, =k. Kubiak & Sethi

g

(1989, 1991) have reformulated this into an assignment problem; thereby
providing a means for efficiently finding optimal level schedules to the single
level problem. A summary of their approach is; to separate each product into its

individual copies, to calculate an ideal location for each copy in the final

39

sequence, to calculate the penalty cost of assigning a copy to a position in the
final sequence other than its ideal position, and to finally formulate an

appropriate assignment problem. A synopsis of this method will be outlined.
Define Zii'== [%—1—] (where (x] is the nearest integer not less than x
i

i.e. the ceiling of) to be the ideal location in the final production sequence for
the ' copy of product i, i=1,....n, j=1....,d. This location is ideal because if copy j

is sequenced at any other location then the resultant deviations "attributable” to
this scheduling decision are larger than if the copy is scheduled at le'. Let Ciik
be the cost attributable to placing the { copy of product i in the k™ position of

the final production sequence. Let (i.j) refer to the i™ copy of product i. If (i,j} is
sequenced in its ideal location (i.e. k=2i!.') then C,, =0. If (i,)) Is placed too soon

in the production sequence (i.e. k<2ii') then "inventory" costs 1, are incurred in
the pasitions from =k to I=Zii'-1. If, however, (i,|) is produced too late (i.e. k>2ii')

then "shortage" costs Yy are incurred from I=Zii' to I=k-1. If these inventory and

éhortage costs are calculated as,
= | G-Ir? - G112 | i=1,....n, j=1....d, =1,...D
then the penalties for each copy (i,j) to be assigned to a location ka{1,....D} in

the production sequence are,

r zii'-1
Zwiil k<2”
=K
Cijk='ﬁ 0 - k=g,
k-1
2_% I>Z;
g l=Zij

40

Defining an indicator variable as
, 1 if (i,j) is sequenced in location k
|
Xik‘:
else

then their assignment problem is
d.

0 n i :
. I
Min R-EJI I§=:1 TZI Ci]k Xik
n dl i
st 2 z Xjk =1 k=1,...,D

; Xijk = i=1.....n, =1 “"'di
=1 .

In Kubiak & Sethi (1989) it is proved that an optimal sequence for the
single level problem can be constructed from any optimal solution to the above
assignment problem. By induction, it is shown that the implied ordering for the
copies of each product will not be violated in an optimal production sequence
(i.e. the (j+1) copy of product i will not appear before the | copy in an optimal
sequence).

It is also shown in Kubiak & Sethi (1989) that objective functions of

the form
D n ,
2; ?:‘1 F (xik - kri)

may aiso be reduced to this assignment problem formulation provided that Fit+)
is @ non-negative convex, symmetric function satisfying F(0)=0, Fi(y)>0 for y=0,
i=1,...,n . This is significant as it means that the weighted, singie level problem
(and thus the pegged multi-level cé"'g";e) can aiso be solved to optimum using this
assignment problem reduction. Her\{\ce, Kubiak & Sethi have shown that a

process exists for finding optimal solutions to the single level cases which is

41

polynomial in the total demand, D. Unfortunately, the extension of this

approach to the general, multi-level case cannot be made.

11.5.2 Multi-Level Optimization

No optimization approaches have appeared in the literature for
solving any version of the multi-level problem formulation to optimum. Thus,
there has been no means available with which to compare the effectiveness of
any of the existing heuristics to optimal vaiues for any problems other than
those problems small enough to be evaluated 'by hand'. A distinct need exists

to develop a technique for multi-level optimization.

11.6 Summary

In this chapter, the literature concerned with the scheduling of mixed-
modei assembly facilities has been reviewed. The usage problem, also known
as the level scheduling problem, has been identified as the problem of
paramount importance within this environment.

A general mathematical model of the usage problem was given and
the various types of usage formulations were presented. These usage models
can be broken down by category; single-level , multi-level, weighted, and
unweighted. A multi-level usage problem with the 'pegging’ assumption was
reviewed and was shown to be reducible to a single-level, weighted usage
case. A joint formulation where an assembly-line balancing-type problem to be
solved simultaneously with a multi-level usage problem was also mentioned. .

Two myopic heuristic methads, H1 and H2, common to all of the
models that appear in the literature were described. Two other heuristics, the

EDD approach for single level problems and the nearest integer point heuristic,

42

were also outlined. Optimization of the weighted and unweighted single-level
problems could be achieved using either an implicit enumeration, DP
procedure or by a reduction to an assignment problem formulation. No effective
optimization procedure exists in the literature for solving any of the multi-level

problems.

CHAPTER 3 MINIMAX FORMULATION OF MIXED-MODEL, JIT
SCHEDULING PROBLEMS

1.1 Introduction

In the previous chapter, various formulations of mixed-model, JIT
scheduling problems were reviewed. All of the objective functions introduced
dealt with the summation of actual production from the desired level of
production over ail parts and products at all levels for an entire production run.
Due to the nature of these objective functions, these models will henceforth be
referred to collectively as the "sum function" models (or simply as the "sum
functions"). Heuristic methods have been proposed for the solution of these
sum function models and optimization procedures have been developed for
only the single level formulations. In this chapter a family of different, yet
intuitively similar, scheduling problems, which have not appeared in the

literature, will be developed.

1.2 General Minimax Model

This new family of mixed-model, JIT scheduling formulations will ali
have minimax objective functions. Specifically, following the definitions for the
variables previously introduced, the general minimax, mixed-rnodel, JIT

scheduling praoblem is to select the x

” i=1,...,0,, k=1,....D,, which satisfy;

43

44

Minimize MEX Gij Ixijk - XTjkrii]

st

n
1
xiik = E tljpxpn(l=1,...,n1,]=1,...,di, k='|.....D1
p=1

XT, = z X =K k=1,...,D,
=1
nl
XTik= 2 Xik 2.4, k=1,...0;
=1
Xitk 2 Xiq(k1) i=1,...,n,, k=1....0,
xi101 =0y X490 =0

An additional technical assumption that the weighting factors, Gii, are elements

of the set of raticnal numbers is also made.

Optimization of various usage problem formulations of this minimax
maodel will be examined in detail in the remainder of this study, as the usage
goal has been identified as the most important problem to be solved for
scheduling in the JIT environment (Monden 1983; Hall 1983; Miltenburg 1989).
Where applicable, efficient optimization procedures will be developed for
solving the formulations considered.

~ The same reasoning that applied to the use of weighting factors for
the sum functions, also applies to their use for minimax probiems (see section
11.3.2). When weighting factors other than 1 (or 0) are used, an implied arbitrary
decision has been made as to the vaiue of the weights used. The solution to
these weighted problems qepends very heavily upon the weighting factors

chosen. For this study, 'true’ (in an unbiased sense) usage problems will

45

always assign a weight of 1 (or 0) to each part and product level and these

problems will be referred to as 'unweighted' problems. [In the unweighted case,
for the production levels under consideration, Gii is set to the value 1" and for

those levels not to be considered by the problem, Gii is setto '0'). Inthese

unweighted problem instances, the objective function value depends only upon
the 'true’ usage of each part and product. Henceforth, when a usage problem is
-referred to it will generally apply to an unweighted prablem instance, but the
distinction between the weighted and unweighted cases will always be made
clear.

The minimax objective function minimizes the absolute deviation of
the actual production over all parts and products at all levels for the entire
schedule from some desired amount of production (i.e. a part or product's
relative, cumulative level of production). Analogously to the case of the general
sum function model of section 1.2, alternative minimax formulations of the
objective function could be considered. However, the objective function above

has been selected for a variety of reasons. The points listed below apply to the
unweighted version of the usage problem (i.e. Gii=0 or 1 for all i=1,....n,,

j=1,...,d), however, analogous extensions to the weighted versions could be
made.

Firstly, the value of the objective function has a 'real life’
interpretation. In the unweighted case, this value has one of two meanings;

(i) If the maximum deviation occurs at the product level (level 1), then
the value corresponds to the product with the maximum overproduction/

underproduction in the entire schedute. This value corresponds to either the

46

maximum number of units of this product to be held in inventory or the maximum
number of units of shortage that would occur for this schedule.

(ii) If the maximum deviation occurs at a lower [evel (level 2 or lower),
then this value corresponds to the part with the largest deviation between its
actual production and its desired, relative level of production. This relative
amount of production corresponds to the proportion of the cumulative
production at the particular level which should be of this part. As production at
the lower levels depends necessarily and implicitly upon the sequence of
assembly at the product level (because of the pull nature of the JIT process), the
products should be sequenced in such a fashion as to keep the number of each
type of part produced at each level as close to its relative level of production as
possible; thereby ensuring a constant rate of part usage. Then the value of the
objective corresponds to the maximum number of units of overproduction/
underproduction of a part from its desired level of production created by the
particular sequence of product assembly.

Note that in both cases, the objective value corresponds to the
maximum number of units of overproduction or underproduction for a given
schedule. As this measurement is made in units of product or parts, the
objective has an applicable, physical interpretation.

Secondly, the value of the objective function places a bound on the
problem. This bound states that at no time does the overproduction/
underproduction of the assembly process exceed this amount and, thus, the
overproduction/ underproduction for all parts and products will always be no
greater than this value for the entire planning horizon. This bound could be

used to estimate either the maximum requirement of storage space to hold

47

excess inventory or as the maximum backorder demand for any part or product.
This objective value has some inherent, applicable interpretation.

Thirdly, the goal of the minimax is to keep the deviation of actual
production from desired production at a minimum for all parts and products at all
stages. It achieves this by minimizing the maximum deviation value that occurs
over the entire schedule. The ievei schedule is created by ensuring that the
production of all parts and products never deviates from their desired level by
more than this bound. This type of schedule is robust, in the sense that
production of all parts and products is close to the desired level and no part or
product can fall cutside of the minimax value. In contrast, the sum functions
create their level schedules by minimizing the sum of the squared deviations of
actual production from desired production. The idea behind the use of the sum
function is that deviations about the desired levels of production for all the
products collectively is low. However, there is no guarantee that all of the
products will always be close to their desired levels. Because the aim is to
minimize the sum, a case may be encountered in which the deviation for one
part or product is large (i.e. larger than the bound of the minimax objective) and
all of the other parts and products are very close to their desired levels. This
highlights the essential difference between how these two types of functions
create their respective level schedules.

~ Fourthly, this type of JIT scheduling model has not been studied
before and is of interest for its own merits. The minimax problem has
mathematical properties inherent in it which are far different from those of the
sum functions considered previously. As any means of improving the efficiency

of production has merit (see section 1.1), this type of problem warrants

48

investigation as it provides insight into the workings of JIT scheduling problems.
Some of the open questions within the mixed-model, JIT assembly environment
may be answered through the interpretation of the minimax function and these
guestions can perhaps be answered with applicable, meaningful answers
which have a direct, physical interpretation. Furthermore, by studying the JIT
scheduling problem from a new perspective, new types of questions arise and,
perhaps, questions associated with the inherent difficuities encountered by the

sum function approach may be answered.

1.3 Minimax Problem Formulations
Similarly to the cases discussed in the previous chapter, various
formulations of the general minimax problem are of direct interest. These

special problem formulations will be described in this section.

lil.3.1 Single Level Problems
As has been indicated, the primary goal for scheduling in a JIT system

is to maintain a constant rate of usage for all parts used within the system.
Recalling that part usage is determined by the sequ:ncing of the products on
the final assembly process, if the assumﬁtion is made that each product
requires the same number and mix of lower level parts, then a constant rate of
part usage is achieved by constructing a sequence which maintains a constant
rate of production for each product. The minimax objective function for this
problem is;

Minimize I:JEm Gy 1%k = XT kil i=1,..0,, k=100,

If G,,=1. i=1,...,n,, then thié problem is the (unweighted) single-level usage

49

problem. If G =1, for at least one i, then this becomes the weighted single-level

usage problem.

i1i.3.2 Multi-Level Problems
When each product does not require the same number and mix of

parts then the effect that the product assembly sequence at the highest level
has on the part usage at the lower levels must be determined. A product
sequence must be constructed that maintains a constant rate of usage for all
parts and products. In this instance, the objective function used is the one from
the general medel. That is to;

Minimize li\.?ix Gii Ixiik - XTIkrii|
Thus, one tries ta minimize over the entire production schedule the maximum
deviation of all parts and products. If Gii=1, for alli=1,...,n,, j=1.....d, then this

i=1,....n,, k=1,...,D;. =1,...L.

problem is the (unweighted) multi-level usage problem. If Gijﬂ, for at least one

i,j, then this becomes the weighted multi-level usage problem.

.3.3 Multi-Level Problems with the "Pegging" Assumption
An analogous, pegging scheme to that of Goldstein & Miltenburg
(1988) could be considered for a minimax objective function which can

considerably simplify the computation requirements for the sequencing of
products in a muiti-level system. Once again, a distinction is made between t,

and tiil, hel, for each output i at level j. Parts of output i at level j are dedicated to

the level 1 product into which they will be assembled, thereby separating parts
into distinct groups for each product. Thus although a particular part may be
common to more than one product, pegging effectively partitions such a part

into distinct groups of this part. The effect is that each group can be considered

50

sepurateiy as analogous to a part in a problem in which each part is assembied
into only one product. The objective function for the weighted, muiti-level
problem with pegging is;
Minimize hl}gka { Wl XK WilRnaidin Kbt | }
h=1,...,n1, i=1,...,n1, k=1,...,D1, j=2.....L,
where Wj, j=1,...,L, is the weighting factor for level j. Recalling that XT1k=k, that

t.,=1 if i=h and 0 otherwise, and recognizing that tlihao, then this objective may

be rewritten as;

Min h[tli!fikx {W;) IXnaec- XT sl F

Letting G, ,= f\lﬂiax { Wi (tijh) } then this objective becomes
Min Max { Gy [Xng- XTofmal

Hence, with the appropriate representation of weighting factors, the minimax
weighted, multi-level usage problem under the pegging assumption can be

reduced to a weighted, single-level usagé problem.

lll.4 Nearest Integer Points
The ideal production for product i in level 1 at any stage k is kr,,. if
one could always produce at this ideal production level for gach product then

the value of the objective function for a single level problem (both weighted and
unweighted) would be zero. As the kri1 values are generally noninteger and the

X, are restricted to holding integer value, and if one could produce in such a

fashion that each x,,, was the integer value ciosest to the value kr., for each

product i at each stage k, then an optimal production schedule could easily be

derived. The subsequent theorem and its corollary show that finding such
nearest integer points to the kr,, values does not guaf;'antee the feasibility of a

51

production schedule and that producing at the levels implied by these nearest

integer points need not be feasible.
111.4.1 Nearest Integer Point Theorem

Firstly the maximum norm of a vector will be defined. Namely, if A= 2
an

is a vector with n rows, then [1All= max {lall} is defined to be maximum norm
1sisn

of A. Let M and Y be points in which \(:(y1 ,yz....,yn)eFi" and

l'#l:(m1 ,m2,...,mn)sZ" , where R is the set of real numbers and Z is the set of non-

n n
negative integers, such that k=2 y, and k=2 m,. if PeZ" is any integer point,
= I=

then M is defined to be the nearest integer point t0 Y if
Il M-yl = max{lm!-yil} <l p-vll

1si=n

for all P.

Lemma Ili.A
For the nearest integer point M, there exists a 8¢[0,1] such that
Im_-y I3 for alli, where YzR" and MeZ".

Proof

By definition it is known that
n n
k=2 Y, =§: m. (3.1)
i= =1

Then the following steps may be applied.
(i) Suppose that there exists an i such that m-y>1. Then, due to (3.1), there

must also exist a j such that m;y;<0.

52

(i) Letm, =m-1and mj' =m.+1. This implies that m, -y, = m-1-y>0 and
m,’ -y, = m#1-y<t.

(iii) Now let m=m,’, and if m-y>1 return to step (i).

(iv) Repeat the process in steps (i), (i) and (iii) for alt k where m, -y, >1 until
m-y,<1 for alli. Once this has been achieved, move to step (v).

(v} Now suppose that there exists an i such that m-y<-1. Then, due to (3.1)
there must also exist a j such that mj~y]>0.

(vi) Letm’ =m+1and m].* =m-1.
Now, m.-y.< -1 which implies that m;+1-y;< 0 and, thus, m, -y<0.
Also, mi-yl>0 which implies that mj-1-y]>-'l and, thus, mi* -y]>-1.

(vii) Now letm=m," and if m-y,< -1 return to (v).

(viii) Repeat the process of (v), {vi) and (vii) for all k where m, -y, < -1, until

m-y>1for alli. Once this is achieved, then terminate the process.

The above procedure ensures that an integer point exists such that;
-1= m-y, <1, implying that
oslmy Ist . forali. (3.2)
Setting 5= max {lml-yll} then by definition 8=|! M-Yll and from (3.2)

1=i=n

h‘e[O,‘l]. g

Hence, without loss of generality, it can be assumed that there exists

an optimal M satistying || M-Ylls1.

Theorem i1
For points Y=(y1,y2,...,yn)sF1“ and M=(m1,m2,...,mn)sZ“, the following

statements are equivalent.

() M is the nearest integer pointto Y.

53

() Foralliandj, (m. -y,)- (m, - y])s1.

() There exists an as{0,1] such that for all i we have a-1sm, - ysa.

Proof

The proof will be structured as (1)—(I1)—(lil)—(l).

(I) states that M is the nearest integer point. Then for any other
integer point P, {| M-Yl| = max {|mi-yi|}s Il p-Yll = max {|pi—yl|}.

1si=n 1sisn
It is required to show that in M, forany i and j,
(mi - y,) - (mj - y!)s1 . (3.3)

Assume that u and v are such thatm - y = max mk—yk} and that
1=k<n

m,- ¥~ 1T:<i£n {mk-yk}. Now m, -y =0andm, -y <0 because of (3.1).

Let P be the integer point such that p =m +1, p,=m -1and p,=m, for
k#u,v. [Note: if there were tied values in the determination of bothuand vin M,
then set M=P and redetermine P as in the preceding step. Repeat this process
until there are no longer ties for both u and v in M.}
Suppose that (3.3)-.'oes not hold and instead,
(m,-y,) - (m,-y,)>1
implying that (M, - y,) > (m, - y)+ (3.4)
Now by the lemma ill.1, m_ - y = -1and combining this with the
assumption for v above, 0=m,_ -y, =-1 and thus, 12(m,, - yv)+1aO. Therefore,
combining this result with (3.4),
(m,-y,)>(m, -y)+120

thus, (m,~y,)>p,-y,20. - @5)

54

Also from the definition of M, m - y, <1, and combining this witix the
assumption for u above yields 12m -y, =0 and thus, O=(m, - yu)-‘la -1.
Therefore, combining this result with (3.4),

0=z(m, -y >(m, - v,)
and 0z(p,- y,) > (m, - Y,) (3.6)

Now, from (3.5) and (3.6), Il M-Yil >l} P-¥ll which is a contradiction
because M is the nearest integer paint. That is, (3.4) cannot hold if M is the
nearest integer point. Hence, it must be the case that (m - yu) -(m, - yv)s1.
Now (3.3) holds for this choice of u and v, and by the definition of u and v,

(m, -y - (m-yy=s(m,-y)-(m,-y,)

for any other k and I. Thus (3.3) must hold for any choice of i and j.

IN-—(ll
Given that (m, - yi) - (mj - y])s1 for any i and j it must be shown that

there exists an a£[0.1] such that a-1=m, - ysa for alll. As above, choose u

suchthatm -y,= E}zﬁ {mk-yk} and set a=m, -y . Now (ll} implies that

(m,-vy,) - (m, - yi)s1 for ail j. Hence,
a-1s u-[(mu -y,) - (m, - yi)] =m-y,sa for all j
by the choice of u.

n n n
Noting that $' (m,-y) =S m, - Yy = k-k=0, then
Y ; PR

1l'l
-t = min fm~yls-— m, - = 0,
o i} n;(- %)

implying ast.

Furthermore,

55

1 -n
a = max {ml-y]} =S h—z (m,-y) =0,

1=lsn

thus Osasi.

i)—=(1

Suppose that M satisfies (fli) and that P is the nearest integer point.
Then there is some i such that
p2m+1 (3.7)
and there is some j such that
pismi-1 . (3.8)
By (lIi) there must be an as[0,1] such that for all i a-1sm; - y=a. Because
as[O,‘l], oslal<t and la-1l=1-¢, where Os1-as<1. Set 6=max{|a|,|ce.—l|}
where 65[0,1]. Then, given (lil), e-1sm, - y,, which when combined with (3.7)
implies,
a-1+1=sm, -y+1 <p-y,
thus a s Py, (3.9)
Also from (111}, m, - y=o which when combined with (2.8) implies that,
pry;sm;- yi-1s a-1
thus Py, < a-1. (3.10)

Now, from (lil), it must be that,

Il M-¥ii = max {Imi-yil}s max{lel le-11} =6,

1sisn

And from (3.9) and (3.10),
I P-¥il = max {lpi-yi|,|pi-yi|}zmax{|a|.|u—l|}=ﬁ.

Therefore, || M-Yll < &< [P-Yll, which implies that if P is a nearest integer

point, then M must also be a nearest integer point. 0

56

Corollary Ill.1
Letr =(r11,r21,...,rn 1) be the vector of demand ratios for level 1. Let
1

Y, =kr and let Y, =(k+1)r, where k21 is an integer. Lety, =kr, and
Vi, =(k+1)r, be the " element in Y, and Y, . respectively. Let M be the
nearest integer point to Y, and let N be the nearest intéger pointto Y, ,. Then

for each product i, | me-n, <1,

Proof

The results of theorem lil.1 can be applied directly to the proof of
Miltenburg (1989, Appendix 1, p205). This proof, which is by contradiction, is
restated below:

Suppose that | m-n, |<1does not hoid for some producti. Then, for some i,

n n
gither (i) m-n =2 or (i) myn =<-2. Note that; m, =k and ; n; =k+1.

(i) Setisuchthatm, -n 22. Then,

n n n
-1 =2 m, - Z n; = Z (m-n) = 2 (men) +m; -0,z 2 (m-n) + 2
= = = = =
hence, 32 2 (m; - n).

1=

For some j=i, mi-ni<0. and thus m].-nis-1 because m, and n are integer. For this j,
3=(m-n)- (mi - nj)
=[(m, - kr) - (mi - kri) 1+((ni - (k+1)r1) -(n - (k) 1+ -

= (mi - yik) - (mi - yik) 1+ (ni N yj{lu-‘l)) - (ni - yi(k+1)) 1+ Ti -T

S1+1+0-1, by theorem ill.1
<t+1+1-0 because O< ri. r<i
=3

which is a contradiction.

57

(i) Setisuchthatn -m, =22 Then,

=

n n
1= n- ; m, = ; (n-m) = 2 (n-m) +n,-m = Y (apm) +2

| =l }=l

o

hence, 1z E (n, - m,).

£

For some =i, ni-mi-:c, and thus ni'm151 because m, and n are integer. For this j,
3=(n,-m)-(n-m)
=[(n - (k+1)r) - (n] - (k+1)rj) 1-1 (mj - kri) -(m, -k}] - F+ T
Ss1+1-1+47 < 1+1-0+1=3, which is a contradiction.
As neither case (i) m-n, 2 2 norcase (i) m-n, < -2 ¢can hold, it must be the case

that | m-n, ls1. o

Remark 111.1

Together theorem lil.1 and corollary 111.1 prove that | m-n, |1 but they

do not preclude the existence of the case in which n=m.1. As an assembly

process wauld not destroy products, it is not possible to always produce a
schedule that is always at the ideal production leve! suggested by using the

nearest integer points. An example taken from Miltenburg (1988) is equally

applicable to the minimax objective. If r=(% . 16—3 . 1—13- , then the nearest

- integer point for stage k=5 (i.e. the nearest integer point to 5r) is M= (2,2,1).
However, the nearest integer point for stage k=6 (i.e. to 6r) is N=(3,3,0). In
moving from stage 5 to stage 6, the assembly process must create one unit of
product 1 and one unit of product 2 while simultaneously destroying one unit of
product 3. As only one unit can be assembled in each stage and the assembly
process does not destroy products, creating a feasible production schedule

using nearest integer points is clearly not feasible for this example. Hence,

58

scheduling the minimax problem using nearest integer points would prove as

computationally intensive as using the approach for the sum functions. O

ll1.5 Cyclical Solutions

In Miltenburg (1989) and Miltenburg & Sinnamon (1990) a cyclical
property is shown to exist for the single- and muiti-level sum functions which
can be used to reduce the computational effort for constructing production
schedules. The underlying concept behind this property is that in & schedule a
relatively short production sequence may exist which repeats again and again.
This type of recurrent production sequence is also implicitly assumed to exist in
the types of scheduling problems considered by Groeflin et al (1989). It can be

shown that an analogous cyclical property exists for the minimax functions.
Let xiik(o) be the number of units of output i at level j produced during

stages 1,2,...,k under sequence o, ‘where lol=u and ksu. Let XTjk(c) be the total

number of units produced at level j during stages 1,2,....k under sequence o.
n

i
Note that XT; (o) =]2 X (0). Let V(o) = Gy | %o - XT(o)r, | be the

ik
deviation of the I part at level | in stage k under sequence . Define

Vilo) = [V11k(o)"“'Vn11k(o)‘v12k(°)""'VnLLk(c)]

to be a vector of the deviations of each part i at level j in cycle k under sequence
o. If o and =, Itl=v, are sequences of products over u and v stages, respectively,

define o + t as concatenation of the two sequences, in the usual way.

59

Lemma 111.2
For any sequences g, lol=u, anc t ,it=v,
xii(u*'-k)(c'”) uu(o) + x||k(T)

and XT i 0+7) = XTy(0) + XTy (@) where ke{1.2....v}.

Proof
leto= (p1,p2,...,pu) andt= (q1,q2,...,qv). Then g+t =

(p1 Paos-- pu'pu+1'pu+2' 'pu+v) where Pu = qk' =(1.2....).

Xiuet (O = 2 tip, ke{1.2....v}
u+k

= S‘ tuph * E ttiph

tiiph * Z Yia,

= xuu(o) + X“k(t)

Y

XTI(u+k)(0+t) = ;xii(mk)((}”) k8{1.2,...,v}
N

z{ {xllu(o)+x“k(r)}

= Zx“u(o) + Z ilk(t)

XT (0)+XT1K(1:) 0

]
M:

|

Lemma [IL.3
If V (o) =0, thenV,, (o+) = V, (¥, k{1 2,...v}, for any sequence .

Proof
Since G, 20 and V(o) = 0, then for each L, Gy |, (0) - XTy o)y |0,

which implies that,

60

X,(0) - XT (0)r;=0. (3.11)
Now, for each i,j in the vector V (o+1),
Vi©*9 = Gy ESERCIURD S C 1S |

= G |[xiiu(o)-XTiu(o)rij] + [xiik(t)-XTik(r)rijll

by lemma lIi.2

= G Ixm - xTon] by @)

= Vil
and thus, V . lott) =V (). O

Remark 1.2

The implications of lemmas 111.2 and i11.3 are that cyclical solutions
may be encountered within a schedule created using the minimax objective.
Suppose that an algorithm produces a schedule for which V| (o) = 0.
According to lemma 1i1.3, all subsequent deviations in the schedule are
independent of ¢ providing deviations as if the products scheduled previously in
the sequence o had never been scheduled. Therefore, if an algorithm
constructs a sequence in an iterative process such that the choice of which
product to sequence depends upon the deviation (current) alone, then it will
compose a schedule after o in the same fashion as it did in the beginning.
Hence, a sequence o, constructed in this iterative fashion, may be repeated
again and again. That is, the criterion that sequences product i at stage k will

also sequence product i in stage o+k, kslol. O

However, while a complete schedule could consist of repetitions of
some sequence, the length of this particular sequence can only be determined

a posteriori. For any objective function possessing the cyclical property, the

61

length of the repeated sequence that minimizes the objective can not be
determined until the solution algorithm is actually running. Furthermore, in
order to use the cyclical property, an algorithm must be working iteratively either
forwards or backwards through the schedule, so that the exact sequence which
will be repeated can be determined. Hence, optimal solution techniques, which
wish to exploit the cyclical property, must use full, unfactored demand values,
d;,» until the first cecurrence of V(o) = 0; after which the number of repetitions of
this sequence can be determined because of the cyclicai nature of the
schedules shown above. Thus, the amount of reduction in the computational
effort cannot be determined a priori.

Significantly, though, if such an algorithm is employed and it arrives
at a stage where the deviation vector equals the zero vector, then the aigorithm
ma'y be stopped and the final production sequence that the algorithm would
construct could be fully determined. Unfortunately, this reduction in
computation can only be found while operating with the algorithm on the full,

unfactored problem.

1.6 Single Level Assignment Approach

For optimization of the single-level minimax problem, there was hope
that the assignment method of Kubiak & Sethi (1989, 1991), described in
section I1.5.1, might be appropriate for the minimax prablems. If a minimax
problem could be reformulated into a bottleneck assignment problem, then it
could be solved using the algorithm of Gross (1959). However, Kubiak & Sethi

require that objective functions be of the form

D, 1,

2:1 121 F‘(xik~ kris)

62

where Fi(+) is a non-negative convex, symmetric function satisfying F'(0)=0,
F*(y)>0 for y=0, i=1,...,n, in order for their assignment approach to be applicable.
Minimax functions are necessarily of the form Min l\:lilx F (xik - krn). Because
there is no summation of the functions, Fi(-), in the minimax problems, Kubiak &
Sethi's method is not readily transferable.

Potentially, a similar assignment reduction might exist for the minimax
problem. It will be shown below that because no summation takes place in the
minimax objective, any assignment reduction must account for the sequence
dependence which is inherent in the minimax problem. By contrast, the
summation occurring in the functions considered by Kubiak & Sethi effectively
eliminates this sequence dependence. An attempt at a bottleneck assignment
formulation will be presented.

Recall that (i,j) refers to the i copy of producti. Let Cy, be cost of

placing the ' copy of product i in the k™ position of the final production

sequence. Define the indicator variable, y;k, as
1 if (i,j) is sequenced in location k

y;k =
0 else

Then, if the Ci;k's could be calculated, the bottleneck assignment problem for

solving the single-level, unweighted problem would be;

63

Min !\dax Ciiky}k i=1,...,n1,j=1,,__,di, |<=1,___,|;)1
n;l' d,
i
st Y 2 Yk =1 k=1....D,
kZ Yy =1 =1, =100
=1

The obvious choice for the cost function of (i,j) would be Gy, =}j-kr |,

as it is the maximum deviation of some copy j from its desired level of
production which is of interest. Unfortunately, this cost function can be shown to

produce incarrect objective vaiues.
Consider an example in which D =17 and focus on a product i with

d;,;=3. Construct a production schedule in which the first copy of product i is

sequenced in position 2, the second copy is sequenced in position 15 and the
third copy is sequenced in position 16. If the cost function above is used, then

the deviations attributabie to this schedu!e for this particular product would be;
3
Ca= ! 1- 2(7) |= 647, gl 2 15(7) 1=847. Gyl 116 (77) =176 .

Under this cost function, the maximum deviation for product i would be .647.
However, this is not the true maximum deviation attributable to this product

because at position k=14,
b x, kri1|-|114(7) | =1.471.

This demonstrates the key problem for the minimax case using the

above cost function; the penalty is sequence dependent. This penaity depends

upon two factors: Firstly on the location (the k) in which the (i,j) is scheduled
and, secondly, on the scheduled location of the previous copy (i,j-1). Both of
these factors affect the penalty cost and both factors must be considered

simultaneously.

64

This sequence dependence is eliminated from the calculation of the
penalty costs for the sum functions. The penalty applied to each (i,j) depends
only upon the location (k) in which it is sequenced for production. One can
caiculate the costs attributable to (i,j) by knowing its position in the sequence
and the optimal location for this copy, Zij'. The penaity attributable to (i.j) does
not depend upon the (explicit) sequencing of any other copy of product (i),
j'#j. The reduction to the assignment problem for the sum function works

because the costs are exoressed in terms of differences between consecutive

copy deviation functions and that the summation of all of these costs for all of

the copies of each product will_be the same value as the original sum function

objective (when the infimum, which is & constant corresponding to the lower
bound of the sum objective, is added back to this value). The key is the
summing of all of the non-negative, symmetric, convex cost functions for each

copy of each product. The sequence dependent nature, inherent in the

minimax objective, is thereby eliminated by the summation in the sum functions.

Unfortunately the summation reduction for calculating penalty costs,
which eliminates sequence dependence, is not transferable to the minimax
case since no summation of the penalties occurs. Hence, a reduction to a
bottleneck assignment formulation is not readily forthcoming for even the
simplest minimax problem. Eliminating the sequence dependent nature of the
minimax problems must be overcome if a bottleneck assignment method is to
be implemented. u[f one is to optimize the minimax problems, then other
approaches must be developed. These approaches will be described in the

subsequent chapters.

CHAPTER 4 SINGLE LEVEL OPTIMIZATION

V.1 introduction

It was previously discussed that Miltenburg (1889) had introduced a
quadratic integer programming formulauon for levelling the schedule of the
mixed-model, JIT assembly process with the assumption that the products
required approximately the same number and mix of parts. This assumption
permits the problem to be treated as a single-level problem, because levelling
the schedule of final assembly simultanecusly achieves an even rate of part
usage in all of the other production levels. It is mentioned in Miltenburg (1389)
and Miltenburg and Sinnamon (1989) that Toyota's Goal-Chasing Method is
also based upon balancing the schedule of a single production level. This
chapter focuses specifically on balancing the schedule for the special case of

the minimax model; the unweighted, single-level problem.

Iv.2 Mathematical Model .

As only the product level (level 1) is of interest in this restricted model,
the subscript indicating the production level is unnecessary in the mathematical
formulation. Because of this, the notation of the general model may be restated
for dealing solely with the product level. Thus, assume that there are n different
products to be produced within the planning nhorizon with respective demands

d,.d,.....d, , providing a total demand of D = 2 d units. An implied time horizon
=

65

66

of D time units can be inferred, where one copy of product i, i=1,2,..,n must be
produced in each time period. If rj=%' then the level scheduling objective is to
keep the total production per time period as close to r, as possible. ldeally
(recalling that k=XT,) kr, units of product i should be produced in the first k time
periods (k=1,2,...D).

IF %, i=1,2,..,n, k=1,2,...D, represents the total production of product i

in time periods 1 through k, then the model can be written as:

Minimize M%x % - Kri i=1,2..,n, k=12,..,0
st
n
2 X, =K k=1,2,...D
& ik
[P1] X S X i=1,2,...n, k=1,2,..,D
%,=0 i=1,2,..,n
Xo=d; i=1,2,..,n
Xy 2 0 and integer i=1,2,..,n, k=1,2,....D

The previously used "sum of deviations" objective functions aimed to
produce "smooth" schedules on the average. This did not preclude, however,
the possibility of relatively large deviations occurring in certain time periods. In
contrast, this minimax objective looks for a "smooth” schedule in gvery time
period. This objective may also possess a more applicable, physical
interpretation than that of the sum function. Here, the objective function value
provides the maximum overproduction/underproduction (the maximum
inventory or shortage) from the desired leve! of production that occurs at any

time during the schedule.

67

IV.3 Reduction to Release Date/ Due Date Decisiorn Problem
Let (ij) be defined as the | copy of product i, i=1,2,..,n, j=1....d. If (ij)

is praduced in period k then x, =} and the penalty associated with (i,j) in pericd k
is

gk ={j- kr, | i=1.2..0,}=0,..d, k=1,2,...D. (4.1)
(Note, here that j=0 has been introduced to account for the periods k in which
x,=0.) Itis possible to plot the individual penaity functions, g;(k) . far each copy
of a given product over all k (where Kk is shown as continuous time for ease of
exposition), as has been done in fig. IV.1 for d=7 and D=20.

Letting kj be the compietion time for (i,j), then the penaities

"attributable” to product i for a particular schedule are given by

i
fi(k) - gi(k) k15k<kl+1
: 0 else (4.2).
{_etting f‘(k):oaggé () , then f(k) is the "envelope” of the (k) functions and
I

possesses a saw-tooth shape, as shown in fig. 1V.2. 1tis clear that this envelope

. . . . i
is non-convex for each i. In effect, the deviations are first measured on the g,

curve and the deviations on this curve are measured until the first copy is
produced. There is then a shift onto the gi1 curve and the deviations
"attributable" to the first copy are measured until the second copy is produced.
This pattern of "jumping" from one copy's deviation curve to the subsequent
copy's curve proceeds until all of the product's copies have been scheduled.
Note that minimizing the objective function in P1 is equivalent to minimizing fik).

That is;
Z = Minimize I\lne&x [x., - kr;| = Minimize l\.idakx fi(k). (4.3)

68

Henceforth, when references to minimizing the objective function are made,
specifically, those functions created by (4.2) will be under examination.

Denote a target value for the objective function by the variable T.
Hence, if a sequence could be created in which each (i,j} has a completion time
l-ci such that f}(k)sT for ks[k] ,(k]+1 -1)}], then Min t\{lakx ix, - kr,| = T. Necessarily
for optimization, the smallest T possible for which such a feasible sequence
exists must be determined.

If a copy starts production at time t-1 and completes production at time
t, assuming that this is copy (i,j), then the deviation for this copy will be
g;(t)=| j - tr; |. For a sequence to be feasible, some copy must start at time t=0
and each remaining copy will start at some time t, t=1,....D-1, such that the D™
unit will complete production at time t=D and no two copies share the same
starting time. Any fixed target value T allows the calculatio: 2f a release .date
and a due date for a specific copy of a product. The release date and due date
for this copy can be thought of as the lower and upper limits, resSpectively, of the
range of locations in the production sequence where the copy must be
produced if the desired target value is not to be exceeded. For target value T,
(1)) can start at k=1 if, .
flcet)= (ke s T
and cannot start before k if,

gi(K)=i-kr, >T.
Letting E(i,j) be the earliest starting time for (i,j) then it must satisfy:
j- E(Lpr>T . (4.4)
and j- (E(Ljp+1)r <T. . (4.5)

)y

A

69

Thus, the earliest starting time is the unique integer satisfying;

e . .. Thp .
(F)[j - T]-1sE(|,])< (.:-][1 - T] (4.6)
t Ij
Note that (i,j) may start at time k=0 if,
j-(k+1)r, <T
implying ST+, (4.7)

Letting L(i,j) be the latest starting time for (i,j} then the latest time,
L(i,j)<D-2, at which (i,j) can start and still satisfy the target value must satisfy the
following two inegualities:

LG -GN sT (4.8)
and (L) - (-1 > T. (4.9)

Thus, the latest starting time is the unique integer satisfying
1 . . 1 .
(F)[(j-)+T]-1<Lli]s (;—)[(j- 1)+7T] (4.10)
t

i
Note that copy (i,j} may complete processing at time k=D and therefore may start
at time k-1=D-1 if;
(k-1)r; - (-1)=T,
d
implying d-rj+1sT because f; = (4.11)

For a given T, early and late starting dates can be calculated for each

copy of each product in a one pass procedure and, herce, could be constructed
in O(D) time. This process can be visualized from fig. IV.1 by moving aiong the

target line from left-to-right and finding where this line intersects the g;(k) lines.

The applicable early and late start times and the intervals [E(i,]),L(i,j)] are

shown at the bottom of the figure. Thus, the decision pr(gjlem "s Z<sT?" may be

viewed as the problem of determining whether there is a feasible schedule of D

70

unit time jobs on a single machine with release dates and due dates for each

job.

el

FIGURE IV.1: Level Curves for the Deviation of Ideal Production from
Each Capy over all Time Periods

Feasible Start Times for the individual copies of product i =1 with
a Target Value of T=0.65

Copy
)
7 b PRODUCT 1(i=1)d, = 7.1, » 720 Sk =p - k)
6 . O R BNy
s =A gl:(k)‘l:" le|
4 N — k=P

XKL

a(k)=]6-kr|

raw) A Target

1 H l I : = } : Line

NS BN R ji i LN L -
Q 2 4 6 8 10 12 14 16 18 Time
| i — — ®

E(1,1) L(1,1} E(1,3) L(1,3) E(1.5) L{(1.5) EA.7) L(L.7)
— — i
E(1.2) L(1,2) E(1.4) L(1,9) E(1,6) L(1.B)

Early and Late Starting Times for Each Copy

FIGURE 1V.2Deviations "Attributable” to Each Copy of a Product

Given a schedule for product 1, where: k, = 2 ka=4.ky = 10k, = 11k, = 13 k4 = 16k, = 19

the graphs show the deviation for the individual copies. The "spikes™ show that the deviation is measured
only al integral times.

r:J(K COPY j=0
1
L.
k) COPY j=1
L
Fa(k) COPY {=2
Ley, 14
(k) COPY =3
1
ri(k) COPY j=4
N 1
I (k) COPY =5
[P 1
(k) COPY j=6
ST 1
Fa(k) COPY j=7
k) LS F{K} is the deviation for the prodin
i=l. 1tis made up from the
deviauons of the individual copies
and has a “sawieoth” shape. ’

0 2 4 6 8 i 12 14 16 18

COMPLETION TIME (k)

73

IV.4 Graph Theoretic Representation and Due Date Algorithm

The release date/ due date decision problem may be represented as
a matching problem in a bipartite graph G=(V,,V,,E). Let V1={0.1 ,...,D-1}

represent the starting times and let V,, correspond to the copies of each product.
Construct an edge between keV, and (i.j)eV,, if (i,j) may start at time k (see fig.
IV.3). A bipartite graph is defined to be V,-convex if together (i,j)=E and (k,j)¢E
with i,keV, and i<k implies that (1j)eE for islsk (Derigs et al 1984). Since gach
(i,j)sV2 is incident exactly to the points in [E(i,j),L(i,j)]k_-V1 , the bipartite graph

constructed above is V1-convex.

A matching in a graph is a subset M of edges such that no two edges
in M are incident to the same node (Berge 1985). A matching incident to every
vertex is a perfect matching. Many sufficiency conditions can be stated for the
existence of a perfect matching within a graph (Berge; Chartrand & Lesniak
1986). Since the necessary and sufficient conditions for the existence of a
perfect matching in a bi,-:a_rﬁite graph were first presented in Hall (1935), proving
that such a matching exists is often referred to as proving Hall's Theorem
(Bondy & Murty 19786, p72). However, determining whether these conditions
actually apply to a particular instance of a graph can prove to be a nontrivial
process (Chartrand 1977). Finding a feasible sequence in the release date/
due date decision problem is analogous to finding a perfeéf matching in the
bipartite graph G, with the additional property that lower numbered copies of a
product are always matched to earlier starting times than higher numbered

copies. Define such a matching to be an order preserving matching.

74

FIGURE IV.3: BIPARTITE GRAPH OF FEASIBLE STARTING TIMES FOR 5
PRODUCTS INDUCED BY A TARGET VALUE OF T=0.65

Product i

1 2 3 4 3

Starting
Times

!

—
[%
tas
oL
wn

NN

] 2 3 4 5 6 7

Y

The demand for each product is; d1 =7,d_=6,d_= 4.d4= 2, d5=1
- 2

Each copy of a product is labeled by the copy it represents. An edge joins a
copy vertex to a time vertex if that copy may feasibly start at that time.

75

An algorithm will be presented which determines not only whether a
perfect matching exists within a graph (i.e. that satisfies Hall's Theorem) but
also determines a matching which is order preserving. If ve(V.UV,), then
denote by N(v) the set of vertices which are adjacent to v. Also, if ecE is an
edge in the graph then let E-e be the edge set obtained by deleting e from E.

The algorithm to determine whether a perfect matching exists is as follows;

Algorithm IV.1 (EDD Algorithm)
1. Forall (i,j)eV, define bl(j) = max {t:(t.(.))eE}.
2. Sett=0, M=o, and E_,:E.
3. Select (,(i)))eE; | with b'(j) minimal. 1f nc such edge exists then stop;

no perfect matci.ng exists. Else go to step 4.
4. Set M=MU(,(i)) and E=E, - [{(tk):KeN) Ju{ (k. (.)):keN(.)) }] -
5. Update t<t+1. If t=D then stop, a perfect matching, M, has been
found. Else, go to step 3.

Various algorithms do exist for determining the maximum matching in
a convex, biparti' graph (Lipski & Preparata 1981; Derigs et al 1884, Gallo
1984) and there also exist the analogous earliest due date aigorithms
(Hodgson & Moore 1968; Simons 1978; Garey et al 1981; Frederickson 1983)

used for scheduling unit time jobs with release dates and due dates on a single
machine. Algorithm IV.1, which is a modified version of Glover's (1967) O(I€l)

algorithm for finding a maximum matching in a V. -convex bipartite graph
G=(V1,V2,E), is used because it facilitates the calculation of bounds for the

problem. This algorithm can be summarized as follows: For each starting time
keV, (in ascending order) find the previously unmatched products (i.j)?{‘lith

=~

76

(k,(i,j))eE (i.e. those copies of products which can feasibly start at time k) and
match to k the (i j) with the smallest L(i,j). If no such (i,j) exists, Glover's
algorithm would move to vertex k+1, whereas the modified version given above
stops, since no perfect matching can possibly exist in G for this case. This

modified algorithm will be referred to as the EDD algorithm.
The EDD algorithm could stop at a k<D-1 for one of two reasons,

discussed below as two separate cases. Define N(i k.k") to be the number of

copies of product i which can be matched to some time tefk,k'].

Deficiency Case 1 Too few products for the available time
The first reason for stopping is shown in fig. IV.4. This corresponds to
the case of having less than p copies available to schedule, in total, in the first p
n
times (i.e Y'N(i,0,p-1) < p).
I=
Deficiency Case 2 Too many products for the availabie time

n
in this case, although Y N(i,0,p-1) = p is satisfied for 1sp=D, the

=

algorithm stops at a k<D-1, because it cannot find a matching product for k (i.e.

n
Y N(i,k,D-1) < D-k). This would be caused by more than k products having to

start at te[0,k-1], as shown in fig. IV.5.

It can be proven that for T=1 neither of these deficiency cases occurs
and hence the conditions required to prove Hail's Theorem are satisfied. But
first it will be shown that for T values between 1-r__ = 1- Max {ri} and1 a
' I
perfect matching constructed by the EDD algorithm is necessarily an order

preserving matching.

77

FIGURE IV.4: Too Few Copies for Too Many Start Times

V, - Copies of ¢
Product

V. - StartingTimes ‘

In this case, not enough copies are available to startin the first three starting times

FIGURE IV.5: Too Many Copies Required to Start for the Available Time

V, - Copies of 9
Product

V, - StartingTimes - ¢

In this case, three copies must start in the{_first fwo stariing times

78

Lemma [IV.1:
Only the first copy of a product may st~ at time t=0 if 1-r_ <T<t.

Proof:
From (4.7), (1,j) may start at time t=0 if jsT+ r. This implies that

js1+ 1, and, because O<r, <1, j=1 is the only copy that could start at t=0. 0

Lemma 1V.2:

The early start times for consecutive copies of each product form a
strictly monotonically increasing sequence if 1-r_, <T<1. Thatis, E(i,j)<E(,j+1)

for 1<j<d-1 and every product i.

Proof:
From (4.6), _
E(i,j)<(-:i—)[j-T] and E(ij+1)= (;l-)[j+1-T] -t= (Jr—') + (;T) - (}r—l) 1.
From this, E(i,j)< (Jrj\»(:—t)(:—i) - 1< E(ij+1) because O<r<1. @

Lemma IV.3:
Only the last copy of a praduct may start at time t=D-1, with 1-r__ <T=1.

Proof:
From (4.11), (1j) may start at time t=D-1 if d-r-j+1<T. This impfies that

d-j<T-(1-r)sr<1 and so j=d, because jsd; by definition. O

Lemma IV.4:

The late start times for consecutive copies of each product form a
strictly monotonically increasing sequence if 1-r_ <T<1. That is,L(i,j)<L(i,j+1)

for 1<j=d-1 and every product i.

Proot:

From (4.10), L(i,j)s(:—_) [(i- 1)+T] and LGij+1)> (:—J[j+ T]-

From this, L(ij)< (:—) + (;—r) - 1 <L(i,j+1) because 1< (:—) a
i j i

! 4

Theorem 1V.1:

For a target value T with 1-r__ <Ts1, if the EDD algorithm finds a
perfect matching then it is an order preserving matching.
Proof:

By lemmas IV.1 and V.2, eartier copies of a product become
available for scheduling before later copies and the algorithm chooses products
in the order of their due dates, which by lemmas V.3 and IV.4 implies that the

order is preserved between different copies of a product. o

IV.5 Bounds on the Target Value |
fn t1.'s section, it will be shown that the target value, T, {ar the due date

decision problem is bounded from above and below.

IV.5.1 Lower Bound

If the first copy of product i is scheduled to be compieted at k=1 then
fi(1)=1 -r. Therefore, a target value T can be feasibie only if
Tz Miin f(1)= Miin {1-ri}= 1- Miax [= 1T oy

80

Schedules have been found where this bound is achieved (see subsequent

example), hence, this lower bound is tight.

IV.5.2 Upper Bound
In this section it will be shown that an upper bound for the target value

is T=1. This means, quite suprisingly, that for any number, n, of products and
any set of demand values, d1,d2,.‘.,dn, there always exists a schedule in which

at any time k (k=1,2,...D) no product is ahead or behind the idea! cumulative
production (kr, for product i) by more than T=1. In order to show this, it will be

proved that the EDD algorithm cannot stop at a k<D-1 if T=1.
Lemma IV.5:
With a target value of T=1 the intervals [E(i.j),L(.})]

and [E(i,j+1),L(ij+1)] have a non-empty overlap for j=1,2,....d-1and i=1,2....n.

Proof:
Applying (4.10) with T=1,
(%)<L(i,)+1 s(%)-ﬂ . (4.12)
From (4.6),
(jr—i)-1sE(i,j+1)<(%) . (4.13)

Combining (4.12) and (4.13) proves E(i,j+1)<L(ij)}+1 and
[EGL)-LAD]N[EG+1).LGJ+1)]e o follows from lemma IV.2. D

Corollary VA1
The implication of E(i,j+1)<L{i,j)+1 from lemma IV.5 is that, with T=1,

consecutive copies of any product will always share at least one starling time

81

and, when combined with the resuits of lemmas V.2 and V.4, will therefore

have at least two feasible starting times.

Lemma IV.6
If E(i,j)21 and the target value T>0 is an integer then E(i,j)r, cannot be
an integer value.

Proof:

Assume the contrary to the statement of the lemma. According to
(4.4),]- E(i,j)ri>T, but because all values are assumed to be integers, it must be

true that, j - E(i,j)rzT+1. Therefore, using O<r<1, it follows that
j - (E(ij)+1)raT+1-r>T. But this contradicts (4.5). @

Theorem V.2
An upper bound for the release date/due date decision problem and

for the objective function value of the JIT problem is the target value of T=1.

Proof:

n
(1) First it will be proved that2 N(i,0,k)=k+1 for k=0,1,...,D-1.
=

From (4.4) for E(ij)21, | - E(i.j)r>1, implying

j2 [E(jr] +1 “ (4.14)
by lemma 1V.6 and because j is integer. Here the notation [x] refers to the
smallest integer not less than x. From (4.5), -(E(Lj)+1)rs1, which by lemma IV.6
implies, js [E(i,j)r)]+r+1, and so

js[EGDr)+1. (4.15)
Combining (4.14) and (4.15),

I=[EGHR)+1, i E@])21. (4.16)

Note that by lemma V.1, /4.16) holds also for E(i j)=0.

[N
i

82

From (4.8), L(ij)r-(-1)=1, implying

[L(i,j)ri]sj. (4.17)
From (4.9), (L(i,j}+1)r-(-1)>1, implying [L(ij)r;}+r>}, and so

fLir) =), (4.18)
By combining (4.17} and (4.18),

j=[L(L)r,) if L j)sD-2. (4.19)

The observation that j=(L(i,j)r,}also holds for L(ij)=D-1 can be made because,
in this case, j=d, by lemma IV.3.

Now let ks[E(i,j),L(I,j)] be any feasible starting time for (i,j). From (4.19),
i=[L(@.j)r;]=[kr,). By the overlapped nature of the starting times stated in lemma

IV.5, any starting time k will always be an element of a time interval for some
copy of product i. If j is the largest integer number for which ks[E(i,j),L(i,j)] then,

in total, j copies of product i have been available to be scheduled in {0,k] and
N(i,0,K)=j=[L(i.j)r;], using (4.19). Summing over all products i,

n d d n n
N(i,0,k) =2 LGDE) =), (EGLi+1)5] 2 EL+1)5>Tkr =k,

where the first inequality follows by lemma V.5, the second one from the
definition of [x] and the last one from k<E(i,j+1), which is true by the definition of
j. Thus,

%{N(i.o,k) =k+1, for all k. (4.20)

=

n
(i) Next it will be shown that Y'N(i,k,D-1) 2D-k.
=
In order to do this, define a new variable p(i) to be the ph last copy of product i.

That is, if p(i) is the same as (i,j) from the front then ,
p=d-j+1 p=12...d. (4.21)

Let X, 21 be the first time in the algorithm at which there are only p copies of

product i remaining unscheduled. If p and j are related as in (4.21) then
K,:L‘i,j-1)+1 and if K,=L(i,j}, then for each starting time ks[KT,Kz] there are

exactl_f p copies of product i not yet scheduled. For any such k,
\ N(i,k,D-1) =p. (4.22)
Applying (4.10) to L(i,j-1) with T=1,
(:T) [i1] <K=LGi1+1 s (:-.) [i-1] +1.
Substituting (4.21) into this, d-ps|K,r, Jsd-p+r;, where {x] is the largest integer
not greater than x. Since d, and p are both integers and O<r<1, this implies that,
p=d-|K,r. | =d,- [{LGJ-1)+1)7 |- (4.23)

Substituting (4.23) into {4.22) and summing over all products i;
n n n n
N@i,k,D-1) = d-J(LGj-1)+Dr 12y d.- Y kr,=D-k.
2 ;[N] >4 2 K

Fact (i) implies that deficiency case 1 can never occur in the
application of the EDD algorithm for T=1; and (ii) implies that deficiency case 2
cannot occur either. Thus, the algorithm will not stop before k=D-1and will,

therefare, determine a perfect matching. o

Hence the JIT problem always possesses an order preserving, feasible
schedule in which, at any given time, the actual production deviates from the

ideal level by at most 1 unit for every one of the n products.

Example: Consider a 5 product problem where the respective
demands are d,=7, d,=6, d,;=4, d =2, d.=1. The total demand is D=20,
hence, the preduct ratios are r1=2—70. r2=§%, r3=§6. r4=2%~, r5=21—0. Figure IV.3

shows the early and late starting times and the bipartite graph induced by the

84

target value, T =.65 =1—r1%6=1 ~Tax fOF Product 1. The EDD algorithm

genérates the order preserving product sequence, 1-2-3-1-2-4-1-2-3-1-5-2-1-3-
2-1-4-2-3-1; implying that a copy of product 1 is produced, then a copy of
product 2, then a copy of product 3 and so on. As this sequence is feasible and

the target value is set at the problem'’s lower bound, this solution is also optimal.

IV.6 Optimal Solutions
An easy implementation of the EDD algorithm gives an O(nD) time

solution for the decision problem : "Is there a feasible schedule with Z<T?".

Using the approach of Frederickson (1983), the algorithm's complexity can be
reduced to O(D) time. It was shown above that for T=1, the answer to the

decision problem is always "yes" and for any feasible schedule, Z=1-r .. By

performing a bisection search on the interval [(1-r) ,1], these bounds can be

max

tightened to an interval [LB,UB]C[1-r 1] for which LB<Z sUB and

max '
UB-LBse, where Z is the optimal objective function value for the problem and

£>0 is an arbitrary fixed tolerance. To tighten the bounds to LB and UB will
require soiving O(Iog(—l—)) decision problems, which means that the overall

complexity of the procedure is O(D log(l—)). This solution, however, will only be
£-Optimal.

It can be shown that the bisection search algorithm determines the
optimal solution in time which is polynomial in D. Instead of requiring the
bisection search to proceed until the difference between UB and LB is the
tolerance value &, the procedure can be maodified to stop when the convex,
bipartite graphs corresponding to the release date-due date decision problems

created by the values of UB and LB contain exactly the same edge sets. When

85

this situation occurs, only one target value could possibly be contained in the
interval [U B, LB] and, as in this instance LB and UB must both be feasible, the
optimal target value T is LB. Hence, the bisection search algorithm with this

modified stopping rule would determine the optimal solution.

Theorem V.3

The bisection search algorithm with the modified stopping rule runs in
O(D logD) time.

Proof
At a time k, for some copy j of product i it must be the case that,
T=lj-kel
But then,
DT = Dl j-kr,1=10j-kq |
and thus DT~ is an integer. It has been shown that 1-r__ <T's1, so DT must
be some integer in the interval [D-d ay: O] A bisection search of the integers

in this interval can be performed. Finding the optimal value in this range would

require solving O(logdmax) decision problems, which means that the overall
complexity of the procedure is O(Dlogdmax)sO(DIogD). Hence, optimization
using this algorithm would require O(D IogD) time. o

Clearly, not an excessively large number of iterations of the
procedure will be performed and # can be seen that for practical purposes, the

entire procedure is computationally efficient.

V.7 Chapter Summary
The JIT scheduling of mixed-model assembly pracesses involves

minimizing the deviation of productior from demand. There are certain

86

penalties involved with the holding of inventories and the occurrences of
shortages. This chapter has shown that it is possible to calculate, within

O(D log D) time, an optimal solution to this problem. It has also been shown
that a schedule always exists for the JIT problem such that at no time does the
actual production deviate from the ideal level of production for any product by
more than 1 unit.

As a corollary to the wark of this chapter, a parallel has been
observed to exist between scheduling unit time tasks on a single processor with
release times and due dates and determing the maximum cardinality matching
in convex, bipartite graphs. The most computationally efficient algorithm for the
convex bipartite graph matching problem appearing in the literature is the
"almost linear time" O(D+D+A(D)) algorithm of Lipski & Preparata (1981);
where A(D) is a very slowly growing function related to a functional inverse of
the Ackerman funtion {for a description of the Ackerman function see Tarjan
(1983, p24-29)]. Using the same data structures employed by Frederickson
(1983) for the scheduling problem (see Appendix 1), the efficiency of the

maximum matching problem in convex, bipartite graphs can be improved to O(D)

(see Appendix 2).

CHAPTER 5 COMPUTATIONAL EFFICIENCIES FOR SINGLE LEVEL
PROBLEMS

V.1 Introduction

The previous chapter provided an optimal, O(D log D) time algorithm
for solving the unweighted, single level probleh'l formulation. In this chapter,
ways to significantly reduce the computational effort required of this algorithm
will be examined and it willi be shown how the algorithm can be maodified to

solve instances of the weighted, single level problem.

V.2 Relationships Between Copies of a Product

Certain inherent relationships exist within the problem framework
which allow for considerable reductions in the amount of computational effort.
intervals (4.6) and (4.10) have been used to calculate the early and late start
times, E(i,j)=1 and L(i,j)sD-1, for any target value, T. The special cases, (4.7)
and (4.11), were introduced to determine which copies of a product could start
at times 0 and D-1 respectively, as in a feasible sequence, no copy could start
before time 0 or after time D-1. These special cases were necessary in the
proof of the bounds and to show the feasibility of the EDD algorithm. However,
(4.6) and (4.10) can be used to derive all of the early and late starting times if it
is implicitly recognized that a value of E(i,j)<0 implies that the earliest feasible
start time corresponding to the copy (i,j) is time 0 and that a value of L(i,j)>D-1
implies that the latest feasible start time corresponding to this (i,j} is time D-1. in

this chapter, (4.6) and {4.10) will be used to determine E(i,j) and L(i,j), for all

87

88

i=1,...,n and j=1.....d, as the actual values of both E(i,j) and L(i,j) found within

these intervals is of considerable importance in the relationships between the

various copies.

V.2.1 Relationships Involving Early and Late Starting Times
A comespondence can be shown to exist between the early start time
of one copy and the late start time of some other, related copy. If (i.j) is the "

lowest numbered copy of product i, then the corresponding | highest
numbered copy for this product is (i,d-j+1).

Lemma V.1
The sum of E(i,j) and L(i,d-j+1} is the constant D-1 for every i and .

Proof:

Restating (4.6) as (5.1), the earliest starting time for (i,j) is the unigue -

integer in the interval,

(%)[j - T]-1sEQ) < (:—i)[j -T1]. (5.1)
and, from (4.10), the late starting time for the (d-+1)"" copy is the unique integer
in the interval,

(%-)[(di+1) - 14T |- 1 <Lligi+h) (—::-)[(dpi1) - 14T],
This implies that,

D-Gi—)[j - T]-1<UWidi+N) s D-(:—i)[j - T]
and thus,

(:T)[l - T]>0-Lidi+1)-1= (:—i)[j - T] (5.2)

Recognizing that E(i,j), D and L{i,dj+1) are all integers and comparing (5.1)

89

with (5.2), while recognizing that the intervals contain a single integer, implies

that,
E(ij) =D - L{i.d-j+1} -1
or E(,j) + L(i,dl-j+1) =D-1. 1 (5.3)

Equation (5.3) demonstrates that if the value of T changes causing

E(i,j) to start earlierflater, then this change in T will simultaneously result in
causing L(i,d-j+1) to start later/earlier.

Remark V.1

By lemma V.1, it is therefore only necessary to calculate, for each
product, either the early start times for all of its copies or the late start times for
all of its copies (but not both). Hence, the number of starting time calculations
for an instance of the release date-due date decision problem described in

chapter 4 can be halved. o

An example of (5.3) can be demonstrated for the special cases of
early and late starting times mentioned above. Lemma IV.1 stated that only the
first copy of a product could start at time O if 0<T=1. From (4.7), the first copy of a
product could start at time 0 only if 1-r<T. Itcan be seen that for 1-rsT<d,

E(i, 1)=0 will fall into the interval (5.1), but if T=1, then (5.1) implies that E(i, 1}=-1,
for all i=1,...,n.

Restating (4.10) as (5.4), the late starting time for any copy j df' praduct
iis, :

(})[(- 1)+T]-1<Lids (:_.)[(G- 1)+T] (5.4)

Lemma IV.3 stated that only the last copy of a product could start at time D-1 if

S0

0sTs1. Using this lemma and setting j=d; in (4.11), the last copy of a product
can start at time D-1 only if 1-r<T. Using (5.4), if 1-rsT<1, L(i,d)=D-1 falls into

the interval, but if T=1, then L(j,d)=D, for alli=1,...,n. Hence, using (5.1) and
(5.4) with O=Ts1, E(i,1)+L(,d)=D-1 for all i=1,...,n, which is the relationship of
(5.3).

When T=1 (for which feasible schedules always exist), the cases
E(i,1)=-1 and L{,d)=D are encountered for each i. These starting times couid
never occur in a feasible schedule. The EDD algorithm requires that copies can
only start from time O onwards and thus E(i,1)=-1 would simply imply that the
copy would be available to start at time 0. Likewise, L(i,d)=D would never be
the late starting time for any copy in a feasible sequence but would imply that
the copy for which this value held would be the last copy considered for
scheduling by the algorithm. However, the values of E(j,1)=-1 and L(i,d)=D are
of interest, because if one value is known, then (5.3) allows for the calculation of
the other value without having to determine what integer falls into either the

interval (5.1) or (5.4). By similar calculations, (5.3) can be shown to ho[d for all
other copies (i,j), i=1,...,n, j=2,...,di-1.

V.2.2 Cyclical Relationships Between Copies of a Product
Two integers o, and B; always exist such that a.p.=d; (i.e. ¢; and B, are

factors of d). ltis therefore possible, using these integers, to label the copies of

product i as;

{1,2,3.....0.1.al+1.o.l+2,...,20.|.2cz|+1.....301.....[(&-1)a.l+c:.l-1].[(ﬁi-1)al+a1] }

Let each copy of a product be numbered as,
(c-1)eH

where c=1 2y and j=1,2,...,a, . Then for each fixed value of ¢ (say c=a+1),

91

there will be a group of o, copies of product in the range [ac+1 aatal]. This

range will be referred to as the (a+1) tier of copies for product i. There will be
B, such tiers (or ranges) for each product since there are B, values to which ¢

cauld be set.

Lemma V.2
If B, is also a factor of D, then the early start time for the | copy in any

tier is the sum of the early start time of the j"‘ copy in the first tier plus an integer

constant which is calculable a priori .

Proof:
Applying (5.1) for copy (q-1)a;#j of product i, where qa{1,2.....ﬁl} and

i&{1 .2.....01} provides the early starting time for this copy as,
! - : Lo _
(r)[(a1t - T -1 s EGaNa) < (F‘)[(@i - T]
i ‘ ;

implying (:—i)[j - T]-15E(i,(q-1)ai+j)-(:—i)[(q-‘l)ai] < (%—)[j -T].
Now deag. 1 augl_D_ D
ow d=aB, r=p and I_;':'d—i=;;5—i S0,

(:_:)[(q-ﬂai] =a?_ﬁi[(q'“°i] %[(q'ﬂ]'

Hence,

(:T)[i - T] 1 5Bt o [@)] < (%)[] - T]. 65

oo D
- Butif B is also a factor of D, then l_?’— [(q-'l)] will be an integer and its value will be
i

calculable, a priori, for each q. If this is the case, then by (5.5) and (5.1),
. D
E(i) = El.(@-Nap) - [(a-1)]
i

or Bt = EGD + @) 56)
: i

92

for 1sjsc. and 1sgsf,. Hence if B, is a factor of D and E(ij} {the early start time of

the j"‘ copy in the first tier] is known, then E(i,(q-1)«+)) may be calculated as the

sum of E(i,j) and a predetermined constant. o

An analogous relationship exists for the late starting times of related

copies in different tiers.

Lemma V.3

If B, is also a factor of D, then the late start time for the i‘“ copy in any
tier is the sum of the late start time of the | copy in the first tier plus an integer
constant which is calculable a priori.

Proof:

ja{1 .2,....0.} provides the late starting time for this copy as,

(:—i)[((q-'i Yot 1)+T] -1 < L(i(g-1oH) s (;i-)[((q-1)a.l+j-1 y+T]
implying (—:i—)[(j-'l)ﬂ] -1 < Lia e - (:—i)[(q-‘l)cxi] < (:—i)[(j-nn'] ,
or (:—i)[a-nw] -1 < L{i(g-TaH) - qu[(q-n] s (:—J [(-1+T]. (57)

if B, is a factor of D, then BQ[(q-U] is an integer canstant which is calculable a
i

priori and by (5.4) and (5.7),

L) = L (q-Tet) - =

if
or LGi.(a-1)ay+) = LD + %[(q-1)] | (5.8)

[(a-1]

for 1sjsa, and 1sgsB,. Hence if B, is a factor of D and L(i,j} [the late start time of

83

the jth copy in the first tier] is known, then L(i.(q-1)ai+j) may be calculated as the

sum of L(i,j) and a predetermined constant. O

Remark V.2
Together, lemmas V.2 and V.3 imply that if D is a muitiple of B, then

only the early and late starting times for copies j=1,2,...,; in the first tier need be

calculated as the start times for all copies in the remaining tiers are a linear
function of those in the first tier. This is becauseg[(q-1)] will be integer, hence
i

the vaiues inside the inequalities (5.5) and (5.7) must be integer, and the

inequalities contain a unique integer. [n order to minimize the number of
required starting time calculations, B, should be the largest factor of D possible

(although it is possible that p;=1 could be the largest such factor and that the

computational reductions resuliting from lemma V.1 are maximal). 0

V.2.2 Relationships Between Starts Within Each Tier

In lemma V.1 a relationship between the early starting time of the "
lowest numbered copy and the late starting time of the | highest numbered
copy was shown to exist. It can be shown that a similar such relationship exists

between similarly related copies within each tier.

Lemma V.4

Within a tier, the sum of the early start time for the it copy and the late
start time of the (a-j+1)$t copy is an integer constant which is calculable a priori.

Proof:
Integers ., and §, always exist such that d=a . Of these integers, let

B, be the largest such factor of D (i.e. a factor §21 always exists). Hence, an
d

D af; i D
integer, H, can be found such that H=—. Thus, r, =—=——implies that == ——=
A6 _H
aby o

The early starting time for the i copy, j=1.2.....,, within the c'" tier,

c=1,2,...,B, is, from (5.1),

()[(c aH- T] -1 < E(i{c-TjoH) < ()r(c Vet T] (5.9)
From (5.4), the late starting time for the («-j+1)* copy in the ¢ tier is,
(%)[(0-1 JeHerps1)-14T] A < L e-NaHai+1) < (%)[(m Jerpt{ee+1)-1+T).
This implies that, |

Hic-1]+ H - ()[;-T] 1< L{i.(c-1)o+{oj+1)) s H[c-1]+H- {)[‘T]

or that,
()[I‘T] > He - 1- L{i,(c-1)ar+{aj+1)) ()[] T] .

Recognizing that()[(c- e] = H[c-1], then
I

()[(c 1)a+j-T] > H[2e-1] - 1 - Li.(e-DayH{a+1)) = ()[(c N+ T] -1. (5.10)
But because H, ¢, L(i,(c-1)aHc,-[+1)) and E(i,(c-1)oy+) are all integers.

expressions (5.9) and (5.10) imply that,
E(i,(c-1)a+) = H{2e-1] - 1 - (i, (c-Na+Huj+1))
or (i, (c-1)eH) + L(0, (- Va+(apf+1)) = Hf2c-1} - 1. (5.11)

Now H and ¢ are integers and will be known prior to the calculation of the

895

starting times. Hence, the value H[2c-1]-1 must be an integer constant and can

be determined for each value of ¢. 0O

Remark V.3
The implication of lemma V.4 is that within a given tier, for each
product, only the calculations for either all of its copies early starts or all of its

copies late starts need to be performed. Expression (5.11) indicates that if the
early starting time of copy (c-1)c.+] changes, then so does the late starting time

of copy (c-1)e+{a-j+1). Hence, the sum of the early and late starting times of

the "copy and the (a+1)* copy within any tier ¢ is aiways constant.

Combining this result with that of remark V.2, implies that once all of one tier's
early (or all of its late) starting times have been calculated, then the early and
late starting times for all copies in all tiers can be calculated directly from these
values, resulting in a considerable reduction in the amount of computation

required for an instance of the release date-due date problem. o

V.2.3 Factoring Properties of the Model

By lemma V.2, lemma V.4 and theorem V.2 feasible schedules
created by the EDD algorithm with T<1 are necessarily order preserving. In this
section, these properties will be exploited to show that certain factoring _

properties exist for the single level problem.

Let § be the greatest common divisor of each d, and set B,= for all i.

Let D be the product requirements vector for the products, thus

n
Letting A = @, be the total number of copies of all products from any given
i=

tier, then D =2d —2 ap —gs‘u _gAandr_:E.:FE_A

Lemma V.5

If Bo=B for all products p, p=1....,n, then, with T=1, the starting times for
the last copy of any product in the ¢ tier, c=1,2,..., B,y li-e. copy (c-1)e+a] are

such that:
E(p,(c-1)ap+ap) <Alc}-1 and L(p,(c-1)ap+ap) = Alc].
Proof:
From (5.4}, with T=1,

(:—p)[(c-‘l)apmp] -1<Lpletiogta) s (%)-)[(c-1)ap+up].

Now, Ak [(c-1)a +et] = A a_[c] = Alc], and both A and ¢ are integer,
A PP a,) P

hence, it must be the case that,
L(p,(c-1)ap+ap) = A[c]. (5.12)

From (5.1), the early start time for this copy is,
(:—)[(c-1)ap+ap-1] -1 s EpleNera) < ()[(M)a +a 1]
P

But,

(j—p)[(c-napwpq] = (;;)[(c-napmp] (3;) - A[c]-(:—p) < Alc

because (FL) > 1. Thus,

p
E(p,(c-'l)czp-!-ap) <A[cl-1. 0O (5.13)

97

Lemma V.6

If B p=ﬁ for all products p, p=1,....n, then, with T<1, the late starting time
for the last copy of any praoduct in the P tier, c=1 ,2,...,ﬁp, [i.e. copy (c-1)ap+ap] is
such that:

L(p,(c-1)ap+a p) = Alc]-1.

Proof:

By (5.4), the late starting time must satisfy,

1 1
(g)[(m Jerg et +T] -1 <Upfe-oyre) s (rp)[(°‘1)ap+ap-1+T].

From the proof of lemma V.5, (;—)[(c-1)ap+ap] =A[c], which is integer and by
p

definition :—>1 and 6=T-1<0, thus =3 :— <0. Hence,
p p
L{p.(c-1)ap+ap) < Afc]+e < Afc]
Now because L{p,(c-1)ap-i-ap) is integer, it must be the case that,

L(p.(c-1)ajra) < AlcH1. O (5.14)

Lemma V.7

If ﬁq=B for all products g, g=1,...,n, then, with T=1, the starting times for
the first copy of any product in the e'l tier, where e=c+1, c=1,2,..., q-1, [i.e. copy

(e-1)a q+1] are such that:
E(q,((e-1)aq;t-1) = Afg]-1 and L(q.((e-1)aq+1) > Alc].

Proof:

From (5.4) with T=1, the iate starting time must satisfy,
1 1
Ale-1a +1] - 1 < L. ({e- N +1) s (—) (e-1)er +1].
(rq)[1] V= () ENeg]
1

Now (r—)[(e-1)aq] = (i) a_ [c+1-1] = Alc] and by definition y = (:—)-bo, hence,
q aq a q

98

Alc] < Alc]+y < L{a.((e- 1) +1). (5.15)

From (5.1), the early start time must satisfy,

(:—q)[(e—ﬂaq] -1 s E(g(e-1)ag+) < (%)[(m o

and thus, E(q,((e-1)aq+1) =A[c]-1. 0O {5.16)

Lemma V.8

If 5q=ﬁ for all products q, g=1,...,n, then, with T<t, the early starting
time for the first copy of any product in the ™" tier, where e=c+1, c=1,2,....B q-‘l,

fi.e. copy (e-1)aq+1] is such that:
E(q,((e—1)aq+1) = Alcl.
Proof:
From (5.1), for a target value T<1, the early start time must satisfy,
1 1
Al e-h)e +1-T] -1 s E(q.((e-1)a +1) < (—) (e-1)o +1-T
(g Le e 1] 1)< ([oer 7]
1
-

but because ?1->1, 1-T>0 and Q:(—)[1~T] >0, then
q

q
AlcH1 < Alch+Q-1 = E(q,{(e-T)a+1)
and thus, Alcl s E(g((e-lag+1). O (5.17)

Theorem V.1
If T<1 and =B, i=1,...,n, is the greatest common divisor of each d,

then an optimal schedule exists which consists of B repetitions of the optimal
sequence to the subproblem where D=[a1.cz2.....an].
Proof:

Theorem IV.2 demonstrated that for T=1 a feasible schedule always

exists. If feasible schedules exist, then the EDD algorithm may be used to find

8

one such feasible schedule and, hence, by lemmas V.2 and V.4, an order
preserving sequence may always be determined for a feasible T<1.
If T=1, then by lemmas V.5 and V.7, for consecutive tiers ¢ and e=c+1,

c=1,2,....p-1, (5.13) and (5.16) show that

E{p, (c-1)ap+ap) < Alc}-1= E(q,((e-1)aq+1)
and (5.12) and (5.15) show that

L(p.(c-1)ap+ap) = Alc] < L{q,((e-1)aq+1)
for p=1,...,n and g=1,...,n. Thus, if the EDD algorithm is employed, a copy of any
product in one tier will never be sequenced ahead of a copy of any product in a
preceding tier. For tier 1, one copy must be scheduled to start at time 0 and, as
all A copies of all products within tier 1 are scheduled before any copies in tier
2, using the assumptions of the EDD algorithm and the fact that the sequence is
feasible, the last copy in the first tier to be sequenced must begin processing at
time A-1 (completing at time A). Furthermore, the first tier 2 copy must start at
time A and ail other tier 2 copies must be sequenced before those in tier 3. As
there are A tier 2 copies, the last copy of this tier must begin processing at time
2A-1 (completing at time 2A). Proceeding inductively, ail copies in one tier (tier
c) must be sequenced ahead of those copies in the subsequent tier (tier e) by
the EDD algorithm, and the last copy in each tier ¢ will start processing at time
cA-1 (completing at time cA).

From lemmas V.6 and V.8, if T<1, (5.14) and (5.17) show that

L{p{c-Nay+ay) < Alc]-1 < Alc] = E(q,((e-1 Yo +1)
s0 that for any feasible schedule created in any manner whatever (i.e. not
necessarily using the EDD algorithm) all copies in one tier must be sequenced

ahead of any copies in the subsequent tier.

100

in lemmas V.2 and V.3, it was shown that for any product i, the early
and late starting times for the " copy. (=1.2.....a;), in any tier are related by the

equations
E(.ig-NoyH) = EG) + -E—_[(q-n]

and LG.(g-1eg+) = L) + %[(q-n] =1.2,...B,

A
But if g, =B, i=1,...n, then %—:—ﬁ= A, and therefore the early and late starting
i

times for the i copy of product i in one tier are simply the early and late starting
times of the preceding tier plus the constant A: which is the total number of
copies within each tier. Coupling this fact with the knowledge that all copies in
one tier are sequenced prior to the copies of the subsequent ier, it can be noted
that the copies of each product become available for scheduling in exactly the
same order that they became available for scheduling in the preceding tier.
Therefore, with Ts1, the EDD aigorithm will repeat exactly the same sequence
of production within each tier.

Thus, for any T=1, if a feasible sequence has been determined for the
first tier, then a feasible sequence for the entire problem will consist of B
repetitions of this sequence. Eurthermore, if an optimal sequence has been
determined for the first tier, then an optimal sequence has also been

determined for the entire problem. 0

Remark V.4

As a result of theorem V.1, if the di's posSess a common divisor f3, only

the sub-problem where this f has been factored out of the d's need be

d
considered (that is, consider the new problem where demands are given by -I;'-

i=1,...,n\. This is a far stronger assertion than that of the "cyclical solutions"”

101

described in section [11.5 as it means that, a priori, a substantial portion of the
computation that may have been required to determine the optimal solution
need never be undertaken. For example, if the demand vector for a problem is

given as D = [3000,2000,1000], then the optimal solution will consist of 1000

repetitions of the optimal solution to the significantly smaller problem with
demand vector D =[3,2,1]. o

Henceforth, the assumption can be made that any problem
examined has had the common divisor, B, factored out. It should be noted that
even after this factoring has occurred, the computational reductions described

by remark V.3 still ho!d for the newly created, reduced problem.

V.3 Determining the Target Values which create new Release Date
Due Date Decision Problems
In section IV.5 an optimization algorithm was presented for the single
level problem. It was shown that by searching within the upper and lower
bounds only a finite number of convex, bipartite graphs corresponding to
different values of the target would be created. In this section, it will be shown
that the values of the target at which these new graphs are created can be pre-

determined.

Lemma V.9
An increase in the target value from T to T'=T+, will cause the early

and late starting times of all of the cd{:iies of product i to change.

102

Proof:
Consider copy usd, of product i and assume that for T, u is such that
E(i,u) has just become its early starting time. That is, in (5.1), E(i,u) achieves
equality with the left endpoint of the interval. Hence,
E(i,u) = (:—l)[u-T]-1 (5.18)

If T increases, then E(i,u) will remain as the early starting time for (i,u) until it
achieves equality with the right endpoint of the intervai (5.1), at which time the
early starting time will shift. This occurs at a certain T' for which

E(i,u) = (:—)[u-T'} (5.19)

i
Subtracting (5.18) from (5.19) results in, -
0= 1+(-:i-)[T' - T]
implying that T=T+,.
By the choice of u, this must be the copy which requires the largest
increase in the target value in order for its early start time to change. As, by
(5.1), the early starting times for all other copies would shift for smaller

increases to T, this increase to T' would cause the early start times of all other

copies to change also. By (5.3), as ali of the early start times change, all of the
late starting times must also change. Hence, increasing the target value by r,

would add at least 2d, edges to the convex, bipartite graph of the release date-

due date decision problem. o

103

Lemma V.10

The values of T which change the early and late starting times for
every copy of each product may be determined prior to the commencement of
the optimization algorithm.
Proof:

By remark V.3, in order to determine all of a product's early and late

starting times, only the late starting times for the copies j=(1,2,...,) within the

first tier need to be calculated. For a product i, the total number of calculations
is minimized if B, is the largest factor of D. Hence, fixiand set §, to be the
largest such factor.

Setting T=0 then, by (5.4), L(i,1)=0 and L{i,1) is such that it is at the
equality extreme of the range given by (5.4). From lemma V.9, the next time that

L(i,1) will change occurs when T=r. Late starting times can also be derived

from (5.4) for all of the other copies j. [Note that for T=0 the starting times will not
be feasible as L(i.j)<E(i.j), j=1.....d. However, feasibility is not the issue
examined here; the concern is merely with determining the values of T which
cause the starting times to shift].

Calculate for each j, _ g
and order the 61'5 in increasing order. The next change in starting times for
each j will occur at T:f:iri and, by lemma V.9, at T==6iri+mri (m=1,2,...) in the future.
By definition of 6i andr, 61 <1, j=1,...,d; and thus, 6j r<r. Henceif Tis set initially
to 0 and is then increaé.ed, all copies within the first tier will shift starting times

before copies that have already shifted once must shift again. Therefore, the
target value which causes the initial shift for each j can be set at 31; and at

104

increments of r, for ever after. This can be done for the first tier of each product.

Hence, the values of T which change the early and late start times for every

copy of each product could be determined before the algorithm starts. 0

By lemma V.10, the target values which add edges to the convex
bipartite graph, thereby creating new release date-due date decision problems,
can be predetermined. It would be possible to optimize the single level problem
by starting initially at T=0 and incrementing T to the next (predetermined) larger
value that would create a new release date-due date problem in such a fashion
until the first feasible schedule was found. By the way in which T was initially
set, this first feasible solution would also be optimal. However, it is far more
efficient to perform a bisection search within the calculated bounds and to stop

when only one feasible target value remains within these bounds.

V.4 Extensions to Weighted Single-Level Problems
In chapter 3, the minimax objective function for the single-level

problem was presented in the form,

Minimize Max Gy [X;q - XTyyfi] i=1,....n,, k=1,...0

where G, is the weighting factor for product i. if G;;=1, for at least one i, then

1

this objective represents that of a weighted single-level usage problem.

Dropping the superfluous subscript 1 and substituting XT, =k, level curves can
be constructed for each copy j of every product i in an analogous fashion to the
unweighted case {see fig. V.1). The effect of the weighting factors is to shift the

slopes of these level curves. Once again, a target value for the value of the

105

FIGURE V.1Calculation of Early and Late Starting Times of & Product
for an Instance of the Weighted, Usage Problem

For this product the parameters are:

G,=2d,=3D=8r=¥8T=15 G,,lj - k|
Weighted 6 % k(38
Copies 568
Gxj
A -k(8)
2h -k(¥8)
T=1.50
13-k (¥8]

Starting 0 1 2 3 4 5 6 7 8
Time k

E(i,1) L(i,1) E(i,3) L(i,4)
| il !l 1
E(i,2) L(i,3) |

Early and Late Starts for
each Copy

106

FIGURE V.2: Early and Late Starts for a Weighted Problem Calculated
from an Unweighted Figure with Product Specific Target Line

i = M ‘j-krli

|0 - kBB

|1 - ko/9)|

2 - k(38
| 6/8)|

d 3 Ky

E(i1) Li1) Ei2) LE2) E6S) | L(i.3)

The Early and Late Starting for Unweighted Problem with Product Specific Target Line
are |dentical o the Starting Times for the Weighted Problem.

107

objective function can be hypothesized, but now, a sequence must be
determined such that,

G i - kr}sT, i=1,....0, j=1,....0,
in order for T to be a feasible target.

For a given T, increasing the slope of one product's level curves
relative to the slopes of the remaining products reduces the ranges of feasible
starting locations in the final production sequence for each copy of that product.
Hence, weighting a product more heavily restricts where copies of that product
can be scheduled and also increases the separation of consecutive copies of

that product within the assembly sequence.
Define T; = % to be the target line for the i product induced by T.
i

Thus, an instance of the weighted problem could also be thought of as an
instance of the unweighted problem in which each product i has its own target
line T,. Replacing T by T, in (5.1) and (5.4) implies that early and lat= starts can

be calculated for every copy of each praduct for a fixed T (see fig. V.2).

Corollary VA
An upper bound for the objective value of the weighted, single level

problemis G ...

Proof:

FT=G = Nilax {Gi} , then T21 for ail i. This would be equivalent
to an unweighted problem instance in which Tz1, and, by theorem V.2, a
feasible sequence could be determined using the EDD algorithm. Therefore, T

= G5« IS @n upper bound for the target value of the weighted problem. O

Analogousiy to the unweighted problem, product i cannot start at time
0 unless T2G,(1-r), thus a lower bound for the probiem is LBW = Min {Gi(1-ri)}
1

108

If a bisection search for the feasibility of the target values is performed in the
interval [LBW, G] . then an implementation of the EDD algorithm

max
described in section 1V.5 could determine an s-optimal solution for the weighted

problem. For the decision problem resuiting fromeach T, T, = —GT— is calculated
i

for every product and the starting times induced by the target vaiue tor each
copy are determined. As T, is a function of G, the proof of the factoring thecrem

V.1 is not applicable to the weighted problem. However, using T, lemmas V.2,
V.3 and V.4 still hold and remark V.3 can be used for each i, as it can be easily
checked that their proofs carry through even for different T, values. Hence,
calculation of all of the early (or all of the late} starting times for only one tier
need be performed in order to determine all of the copy's starting times. For
each product (starting from T=0 and increasing), the values of T (and therefore

of T,) for which additional early and late starting times occur can be determined.

G
These shifts could occur upto T, = —g—a"— - implying that there will be more shifts
i

aceurring than in the unweighted problem. The important fact is that only a
finite number of these shifts can occur. If the bisection search stops when the
edge set of the bipartite, convex graphs induced by LB and UB does not
change, then T =LB will be the optimal solution and could be determined ina

finite number of steps.

Theorem V.2

The bisection search algorithm finds the optimal solution for the
weighted, single-level usage problem in O(D logchGmax) time, where & is a

positive integer constant which can be easily computed from the problem data.

109

Proof
Applying lemma V.10 with T,, at a time k, for some copy j of product p it

must be the case that,
T =Gp| i kry !
for at least one product p. Under the assumption that the G/'s are elements of
the set of rational numbers, then an integer & must exist such that @G, holds
integer value for all products i. But then,
DT = DaG | j- ki, |=oG | 0j- ka, I
and D&T™ must be integer. From aboveT sG__, s0 DT must be an integer

in the interval [DoLBW , DG, .] A bisection search of this interval could be

performed to determine the optimal target value and, hence, optimization using
the algorithm would require O(D logD®G max) time. o

Theorem V.2 indicates that the weighted, single-level usage problem
could be solved to optimum in time which is polynomial in D and in the size of
the weighting factors, if these weighting factors are restricted to being rational

numbers.
V.5 Summary

This chapter has demonstrated that weighted instances of the single
level problems may be solved to optimum using an algorithm that is polynomial
in the total demand. This also implies that the extension to the multileve!
problem under the assumption of Goldstein & Miltenburg (1988), shown to be
equivalent to the weighted single-level problem in section 111.3.3, can also be
solved to optimum in polynomial time. A strong, a priori factoring property that

aillows for a significant reduction in the amount of computation, often assumed

110

to exist as a cyclical property of JIT problems, has been proved to exist for
optimal solutions to the unweighted, single-level problem. Other relationships

which allow for computational reductions have also been shown to exist.

CHAPTER 6 MULTI-LEVEL OPTIMIZATION

VI.1 Introduction

in this chapter, the general minimax problem will be transformed into
a more convenient matrix notation. Using this representation, a dynamic
programming (DP) procedure will be developed for its optimization. This DP
procedure can be modified to soive cases of the general sum function problem
too: hence, an optimization process can also be constructed for solving
problems with muiti-level sum functions. The time and space requirements of
the minimax DP will be derived and certain methods for impraving its

performance will be discussed.

V1.2 Matrix Representation

Because of the many subscripts and variables of the multi-level
problem, a more compact notation is desirable. It is possible to present the
gener;.}_l minimax probiem in a more corcise matrix representation. By

definition, at a stage k, the deviation of the i part at level j would be

Gijlxuk XT]krul It has been shown (Miltenburg & Sinnamon 1989) that,

Y

- KTl = Xk - 1'1?_,
i

ny

th]l 11k

’l\d-ﬂ

]}

1 (O
? tj = Ty =1thil} X1k

n;

= z Oirrie where d;=t,- I, ﬁ; byt -

111

112

Then because Giizo, xﬁkao and ril>0, it is possible to write the deviations for the

minimax problem as,
Gii |x

1

- XT.r]

iik iKTi |Gj(x

n

1
IGH(; 6ijlxl1k)l

ik~ KTl |

n
1
I(E‘f Yiii"‘m)l' where ‘f’ijFGiPm X

The inherent pull nature of the JIT process is very much apparent
within this notation. At any particular stage, the deviation of any part at any level
depends explicitly on the production sequence of the product level. Note that in

the last step of the calculation above, the deviation for any parti at any level j is

dependent solely upon calculable, and hence known, constants (the Yii('s)

multiplied by the cumulative production at level 1 (the x., 's). These *{m's are a

Mk
measure of the weighted deviations in usage of part i in level j from the

proportional usage per unit of product |.

The yijl's can be placed into a matrix I" (the "gamma matrix"} of

L

dimension nx n,, where n =§: n, is the total number of different parts and
=

products (see Miltenburg & Sinnamion for the gamma matrix of the sum
functions). Each row of I" corresponds to one of the parts or products at each of

the various production levels. The rows of I start with product 1 of level 1in row

1 and continue with product 2 of level 1 in row 2,..., product n, of level 1 in row

L

n,, part 1 of level 2in row n,+1...., part n_of level L in row 2 n. The value Ty
=
i th
will be the element appearing in the (Enm + i) row and the I column of
m=1

113

the matrix I For example Vi 324 will be the entry appearing in row n,+3,

column 4 of T".

if A=[a1,az,...,an] is a vector with n rows, then define ||AI|1= max {Iail}
1si=n
n
to be the maximum norm of A. Define |IAll = z(ai)2 to be the Euclidean
1=1
norm of A. Define)(k = (x”k.xm,...,xnﬂk) to be the cumulative, level 1

production vector through the first k stages. Let w(X,) denote the maximum

deviation at cycle k over all parts and products (i.e. over all i and j). Then,

o(X,) = rr:a}x {G; i = XT il =X,

Hence, the objective function in the general minimax problem could be
reformulated as,
Minimize rriliix {G i |xiik - XTikrii|}= min mEx w(X,) =min mix nrx, .

V1.3 Optimization using Dynamic Programming

Using this matrix representation, a dynamic programming (DP)
procedure can be constructed which optimizes the general, minimax problem.
Employing the gamma matrix notation, this procedure builds upon the single-
fevel sum function algorithm of Miltenburg, Steiner & Yeomans (1990),
providing an optimization methoed for solving any of the minimax problem

formulations.

V1.3.1 DP Algorithm for the General Minimax Problem
Letd=(d,,.dyy00) = (d,.d,.....d,) be the level 1, product
1 1

requirements vector. For simplicity, redefine subsets in a schedule by X =
(X, %50 X,), Where x; is & non-negative integer representing the production of
1

exactly x, units of product i, xsd,. Lete be the usual i unit vector (i.e. with n,

114

entries, all of which are zero except for a single 1 in the ith row). A subset X

could be scheduled within the first k stages only if,

nl
k:}; X -
{=

Define &(X) to be the minimum value of the maximum deviation for all parts and
products over ali k stages for any schedule where the products in X are
produced during these first k stages. That is, ¢(X) is the best path of production,
in the minimax sense, from time 0 to iime k when the products in X are

produced. Then, by definition, Il TX I, is the maximum deviation of actual

production from desired production for ali parts and products when X is the

amount of product produced. The following DP recursion holds for §(X):

(0) = (X : X=0) = 0

o) = 4K, Xy X,) =N { max{q)(x-e,), EX U Y 212,000, %120}

It can be seen that ¢(X)=0, for any set X, and it foliows from the definition of the
rii's that,

Nrdli, = o(X: X=d)=0

where d is the product requirements vector. The DP proceeds in the ‘forward
direction' by examining sets in increasing order of their cardinality (i.e. by
moving from a set X of a given cardinality to the higher cardinality successors
(or children) of this set). The steps involved in the solution of the DP are
presented below in algorithm V1.1. Some of these steps are elaborated upon in

greater detail in the subsequent sections of this chapter.

115

Algorithm VI1.1: DP Algorithm

1.

Read the product demand vector, d, and sort the elements within this
vector into non-decreasing order of their magnitude. Read the part
requirements for each product.

Calculate, for each product i, the units u(i) for the encoding (or
addressing) scheme and place these units into the vector U. This

scheme must allow for the calculation of a unigue encoding (or address)

for each subset X. Check that Ud (the inner product of U and d) does
not exceed the largest available integer allowed by the programming
language. If it does, then the encoding will have to be broken up into
several segments (dimensions) [see section V1.5.3]. [Note: It is assumed
that only one address dimension is required in this description of the DP
algorithm. Additional dimensions could be easily accomodated. An
addressing scheme is necessary as a set X could be generated in
several ways (i.e. from more than one predecessor set) and only the best
solution needs to be stored. The addressing system allows sets 1o be
efficiently stored and quickly referenced to determine if they have been
generated previously by some other predecessor set.]

Construct the matrix T'.

Calculate a screening value, SCREEN, for the DP (see section V1.5.2).
SCREEN corresponds to an upper bound on the objective value. Any
sets, X, examined which have a maximum deviation greater than
SCREEN wilt be fathomed.

Initialize the first stage so that X«0. Initialize the matrices OLD<«-0 and
NEW<«0. OLD and NEW each contain 3 columns.

116

Generate all of the feasible sets X" = X + e, (where feasibility implies that
X, + 1= d.) which could be successors to X. If I rx+ 11,.< SCREEN then

encode the set X*' as UX* and place UX", i, and Il TX* li_ into the matrix

OLD which is sorted in the following way;

If UX* is the q largest address vaiue of the sets to be stored at a
stage then,

OLD(q.1)=UX", OLD(q.2)=i, OLD(g.3)=1ITX"l,.
That is, OLD is sorted by increasing value of the set address OLD(_ ,1).
OLD(_ ,2) corresponds to the last product produced on the best
schedule for producing the set X™. And OLD(_ .3) is the minimum value
of the maximum deviation which would be encountered by any schedule
used for producing the products in the set X*. Let PREV be the number
of sets stored in OLD at this stage.
Initialize k<1 and COUNTER+-0.
Decode OLD(k,1) to determine the set X.

For each i, i=1.2.....n1. determine if X" = X + e is a feasible successor set

to X. If no feasible successor sets exist then go to step 11. For each
feasibie X™, if Il IX* Il,.< SCREEN then calculate UX* and perform a
binary search of the address values in NEW(p,1), p=1,2,....COUNTER, to
determine if X*' has been generated previously.

If X*! has not been previously generated, then COUNTER«—
COUNTER-+1 and the information for the set X* is added to NEW in such
a way that the matrix remains sorted in increasing order of the values in
NEW(_,1). Thatis, if UX* becomes the p'" largest set address in NEW,
p= COUNTER, then,

10.

11.

117

NEW(p,1)=UX*", NEW(p,2)=i, NEW(p.S):max{OLD(k,B), I rx* 111}.

As with OLD, NEW is sorted by increasing value of the set address
NEW(_ ,1) and NEW(_ ,2) corresponds to the last product produced on
the best schedule for producing the set X*'. NEW(_ ,3) is the minimum
value of the maximum deviation which would be encountered by any
schedule used for producing the products in the set X" This deviation is
the maximum of either the deviation corresponding to the set X" or the
deviation corresponding to the best schedule to produce the products in
the predecessor set X.

If X* has been previously generated, then it must be the case that
UX* = NEW(m,1) for some msCOUNTER. If

max{ll TX* L, OLD(k,S)}a NEW(m.3)

then leave NEW unchanged. if, however,

max{ll X+, 0LD(k.3)}< NEW(m,3)
then a better schedule to the set X*' has been found. Hence, update
NEW so that,

NEW(m.2)=i and NEW(m,3)= max{ll rx+,, OLD(R,S)}.
tncrement k<k+1. If ks PREV then return to step 8. Otherwise, write
OLD to a file in secondary storage. This file will possess two columns;
one column will be for the values of the address and the other column
will be for the last product to be produced on the best path to the set
corresponding to this address. Rename NEW to OLD. Set PREV«
COUNTER, NEW+«0 and return to step 7.

The optimal minimax value for the problem is OLD(1,3).

118

12. The production sequence correspending to this optimal minimax value
may be constructed by examining the information contained in the file on

secondary storage (see section V1.5.4).

Thus, a DP algorithm exists for optimally solving the general, minimax
problem formulation, but would be used only for solving the multi-level problem

instances for which no specific, polynomial time procedures have been found.

VI1.3.2 Optimization of Muiti-Level Sum Functions

It was noted in chapter 2 that no method had been presented in the
literature for optimally solving multi-level sum functions. !t is possible to
construct a DP approach for solving the sum functions, similar to the method
used for the minimax formulation. Recall that the objective function for the

general multi-level sum function was,
D
1L

n,
|
2 S > Gy (i XTymy)® -
=1 A =

1

Letting Ty = (G i)5 (bm), where &., is defined as above, and I being the matrix of

it
the i then for the given part i at level j in stage k,
1 N

(G il)2 (% = XTi) ='Z Tk -
Miltenburg & Sinnamon (1989) demonstrated that the variability at stage k for a

set X with | X | = k could be written as,
LM R 2
Er 21 Gy (X - XTyty)? = (II rx ll?_) ,
]: =

119

and that, therefore,

D1 n.

D
in 33 Gy (xye - XTyy)? = Mn 3 (1 rx L)
= == =1

Define ¢(X) to be the minimum total deviation for ail parts and
products over all k stages for any schedule in which the products in X are
produced during these first k stages. Let,

B(X) = (ll rx 1|2)2

be the squared sum of the deviations of actual production from desire
production for all parts and products when X is the amount of product produced.

The following DP recursion can be used for determining the value of ¢(X):

(@) = ¢(X : X=0) =0
@(X) =Min { ¢(X-g)+6(X) * i=1,2,...,n, , X120}

where it is the case that ¢(X)=20, for any set X, and 8(X : X=D) = 0. Hence, a
DP algorithm can also be constructed for optimally solving any formulation of
the sum function problem, but more specifically for use in the optimization of

multi-level problems.

V1.4 Time and Space Requirements of the DP

In this section, the time and space requirements of the DF will be
shown for the minimax case (however, the results are extendable to the sum
function DP).

In a given stage k for the set X, the value of Il IX |, provides the
maximum deviation of the cumulative production of each part/product from the
relative amount of the total production at the level which should be of this

part/product. The minimization in the recursion is performed over all possible

120

choices of the level 1 product which could be in the last position (i.e. the last
product to be produced in X). As x, could hold any of the values 0,1 gy the

total number of sets or states in the DP recursion is,

1“_11 (d;+1) .

The address of X, value ¢(X) and the product i, where the minimum occurs in
the recursion, must be stored for each set X, so that the optimal schedule can

be constructed at the conclusion of the algorithm. Therefore, the space

requirements are
n

offj)

For any set X, there could be at most n, values ¢(X-e)); each of which would

have to be compared to il TX Il,. The computation time for Il TX 11, is O(n n).
1 P 1 3

Therefore, the computation time for the entire problem is,
n‘l
O(nmL[(di+1)).

For any problem instance, the number of feasible schedules is,
D.l
{!
d,! d2!...dn11
which is considerably larger than the number of states in the DP recursion

since,
Nl
d,+d+...4+d +nq 1

M D.+n,"
H(d.,n) < [. : | = [—-——‘,11 ‘]' .

where the inequality follows since the product of n, numbers is not greater than

the mean of those numbers multiplied by itself n, times.

121

For example, if d=[9,10,10,11,12,13] then the number of feasible

sequences would be 1.4497 x 10*€ which is significantly larger than the

2 642 640 states which would be created in the DP algorithm. Hence, the
implicit enumeration process of the DP substantially reduces the computational
effort which would be required by any procedure employing explicit

enumeration.
It can be cbserved that the number of sets grows exponentially with n,,

but that this growth rate is polynomiai in D,. This implies that the DP would be
effective for those cases in which n, is small, even when the total product

demand, D,, is large .

VL5 Implementation of the DP

While the DP is an efficient implicit enumeration algorthm, it is still an
exponential time procedure. The state space grows exponentially with n, and
thus the computational burden for even moderately sized problem instances
may be excessive. There are a number of features of the DP which can be

exploited to substantially improve its efficiency.

VI.5.1 In-Core Space Requirements

The DP procedure advances from feasible sets at one stage to the
feasible sets that could be generated at the subsequent stage. It is possible to
exploit this stepwise process to significantly reduce the current storage
requirements for data under consideration. The in-core space requirements.
can be substantially reduced by generating the sets in increasing order of tﬁeir
cardinality. Namely, all sets X with Ix)=k are generated before proceeding to

sets X with Ixl=k+1. Using' this set generation procedure, only those sets

122

belonging to two consecutive stages need to be stored in-core at any one time.
All other states would be stored on some secondary storage medium, for later
use in the construction of the optimal sequence. This stepwise progression
through sets of increasing cardinality can be seen in algorithm VI1.1. The in-core
information regarding sets is stored in the matrices OLD and NEW and the sets

stored in NEW could only be generated from those stored in OLD.

VI.5.2 Filtering Methods and Heuristic Solutions
While the DP process examines far fewer sets than the number of
feasible solutions, the totai number of these feasible sets still grows at a rate

exponential in n,. The growth rate in the number of states is the primary

complicating factor for these types of algorithms. For example, if
d=[10,49,68,70,590,2,22,50,68,71] then the total number of feasible sets to be
generated by the DP is 27,839,309,794,520,400. Assuming that the computer
could perform ail the necessary computations at a rate of 10° sets/second (a
very fast computer), then the optimat solution for the problem would be
determined by the DP in approximately 887 years; clearly not a feasible rate if
the demand vector corresponded to the production requirements of one 8-hour
shift. If technology progressed rapidly enough to produce a computer 1000
times faster than the one used above (i.e. a rate of 10° sets/second), then the
optimal solution could be found in 324 days. Although this new machine would
allow an optimal sequence to be determined within the scheduler's expected
lifespan, in all likelihood, it would still not be timely enough for scheduling the
aforementioned 8-hour production shift.

Hence, while the implicit enumeration algorithm is more efficient than

explicit enumeration, if the DP must examine all of the possible sets in the state

123

space, an excessive amount of time could potentially still be required.
Furthermare, even by generating the sets in increasing order of their cardinality,
the number of feasible sets generated at any particular stage (i.e. all of those
sets with equivalent cardinality) could conceivably be larger than the space
available on the storage medium. This suggests the need for some form of
filtering process in order to reduce the size of the algorithm's statm space.
These filtering methods could be used to eliminate the generation and storage
of any intermediate states which couid provably never lead to the optimal
solution in the given problem instance.

One approach is to generate a schedule using some fast heuristic
and to use this result as a filter to eliminate any sets from the DP's state space
that would lead to a worse solution. As the optimal solution must be at least as
good as that of the heuristic, continuing the search from any set that has a
deviation larger than that of the heuristic value on the best "pﬁl_th" leading to it,
must clearly produce a suboptimal solution. Depending upoﬁ the accuracy of
the heuristic, this filter could potentially eliminate a considerable partion of the
state space. Greedy procedures, similar to those created for the sum functions,
can be developed for the minimax cases and these can be usad for this fiitering
process. Two such heuristics for the general minimax problem will be outlined

below.

VI.5.2.1 One Stage Heuristic

For this heuristic, a myopic decision rule is used at each stage k,

(k=1,2,...,D,). If Xis the cumulative production vector through the first k stages

"

(2 X1« = K\ then the one stage decision rule is to schedule the product p in
1=

124

stage k+1 which best continues this schedule. Thus, the product p which
minimizes

N(Xp) = X +e)ll,
would be scheduled at stage k+1. This simple, one pass heuristic is very easy
to implement. However, it provides no consideration for the effect that this

decision will have on the deviations which accur in any future stage.

VI1.5.2.2 Two Stage Heuristic
If X is the cumulative production through the first k stages, then the
two stage heuristic proceeds as follows:

1. For each product p which can be scheduled at stage k+1, tentatively
scheduie product p for stage k+1 and calculate n(X,p) = il (X + ep) I, . Let

Xp = x+ep.

2. Tentatively schedule the product g for stage k+2 which minimizes
(X, Q) = IT(X, +e) ;.

3. Let p(p) = max{n(X,p). n(X,q) }-

4. Choose the product p' which minimizes B{p) and schedule this product for
stage k+1.

The two stage heuristic examines the deviations at consecutive
stages in its decision making process. The reason for using this heuristic is its
ease of use and the assumption that, by considering an additional stage, it will
provide better solutions than the one stage heuristic. As with the one stage
heuristic, no consideration is made for the effect of the decision at this stage on

the deviations at future stages.

125

VI1.5.2.3 Implementation of the Heuristics

Together, the one- and two-stage heuristics are very easy to
understand and implement. It is possible to exploit the structure of these
heuristics in such a way that their running time is very fast. One such approach
for the one stage heuristic will be outiined briefly in this section.

Define I, i=1.2,..,n,, to be the it" column of the gamma matrix, and X
to be the cumulative level 1 production vector through k stages. Let g(X) and

c(X) be two vectors of dimension nx1. Then proceed as follows:

1. Initialize k=0, X=0, g(X)=c(X)=0. Construct the I' matrix.
2. Then for stage k+1, k=0,1 ,..,D1-1, if xp1k+1sdm, p=1.2,..,n,, calcuiate

c()(a-ep):g()()ﬂ‘D and cp=ll c(X+ep) I,

3. Schedule the product p' with the minimum c, value for production at stage

k+1.
4. Update, k<k+1, g(X+ep.)=g(X)+l"p., X=X+ €y -

5. If k=D, then stop, otherwise return to step 2.

This procedure iflustrates that if the product i was scheduled at stage
k+1 then I'(X+e) = TX+[,.

In the procedure, g(X) is the vector of deviations from the cumulative
production for the first k stages [g(X)='X] and ¢(X+ ep) is the temporary vector of

deviations which would be obtained if product p was to be scheduled in stage
k+1, [c(X+ e)=T'(X+ e)]. The heuristic passes through each stage k only once
and passes through each eligible product p only once for determining which
product to schedule at any particular stage. It is possible to eliminate much

unnecessary arithmetic by performing calculations in this vector format. The

126

value T'(X+ e) need not be calculated in full for each i; each column T, is simply

added individually to I'X to determine which product provides the best
continuation of the schedule. Once the product p, which provides this best
continuation, has been determined the matrix I'X is updated to FX+ . A
similar (though only slightly more complex) vector method is required to run the.
two stage heuristic. Using this approach, both heuristics can be designed to run
very quickly and will be used as filters in the testing of the DF algorithm. Each
heuristic can be run prior to the DP and the best heuristic value (SCREEN in -

algorithm VI1.1) can be used as the filter.

V1.5.3 Addressing of Sets

If the filtering device employed by the DP works effectively, then a
considerable portion of sets at each stage will be eliminated. At any particular
stage, it can not be known, a priori , which of these sets or even how many of
the sets may actually be fathomed. Ways must be devised which allow for the
efficient storing and addressing of the remaining sets. This is important for the
DF, as a set at one stage could have been generated from several sets of the
previous stage and only the product providing the best continuance of the
schedule need be stored. Hence, there must be a way of determining if a set
has been previously generated and, if so, being able to locate this set in order
that a comparison of maximum deviation values along the best path to it can be
performed. Simply storing sets in the order of their creation and searching
through this list would be inefficient.

One approach is to address {or encode) each set in such a way that a
one-to-one correspondence between each address and each set exists and to

store the information for the sets created at each stage in increasing order of

127

this address index. If this ordering system is maintained, then the sets for the
stage can be stored in a sorted array and a binary search along the address
index within this array would quickly determine if the set had been generated
previously. Furthermore, if the maximum and minimum values of the addresses
generated-to-date are maintained, then, when a new set is generated, it could
be immediately determined if its address fell within the range of addresses
previously generated; thus, it would be known whether to simply update the list
of sets or to search the addresses to determine whether the set had been
generated previously.

Suppose that the total number of possible states, X, in a problem is N.
Define an addressing scheme to be compact if the maximum address is the
number N-1 and each state within the problem is addressed by a unique integer

in the range [0,N-1]. One such compact addressing scheme will be described.

Assume, without loss of generality, that the level 1 products are
numbered such that dsd_,, 1sisn,-1. Let d,=0 and define the address units of
product i to be,
i-3
u(i) = 1:0[(di+‘l).
}

et U=[u(1),u(2).....u(n1)] be the vector of these address units. The address for

each set X will be the inner product,

This addressing scheme provides a unique address for each possible set X and
also has the property of being compact. Hence for demand vector d, the total
number of sets X which could possibly be generated is Ud+1,; the maximum

address plus the set corresponding to 0.

128

For example, consider the product demand vector d=[1 ,2,3,4]. Using

the above procedure, the address units will be,

u(1)=1, u(=(2)(1)=2, u@)=(3)(2)(1)=6, and u(4)=(4)(3)(2)(1)=24,
hence, U=[1 .2,6.24]. The maximum possible number of sets, X, which could be
generated by this demand vector is Ud+1 = (1){(1)+(2)(2)+(3)(6)+(4)(24)+1 =
120.

Unfortunately, this maximum address index grows exponentially with
the number of products. Moreover, the number of significant figures (i.e. the
largest available integer) within any computer language is limited. Hence, the
address for the sets may necessarily have to be broken up into several
segments (dimensions) if the problem has a large number of different products
and the total demand is large. The address within each dimension will
correspond to a certain fixed group of products (i.e. products 1 to 5 could be
used for the address value in dimension 1, products 6 to 10 could be used for
the address value of dimension 2, etc.) where products within a group are
ordered in increasing order of their demand and each index has an addressing
scheme as defined above.

Consider the exampie presented above and assume that a very
restrictive computer language must be employed which does not permit integer
values to exceed 12. If the encoding system above is used, then 107 sets
would have addresses which exceed this maximum and some alternative
scheme must be developed. Partition d in the following way;

d=[d'1d2] =[1,4123].
Then use the above encoding scheme on each of d' and d? separately. If
U =[u" | U2]is the partitioned address vector, then u'(1)=1, u'(2)=(1)(2)=2,

129

ud(1)=1, u¥(2)=(1)(3)=3 and hence U'=[1,2 | 1,3]. The maximum integer
corresponding to this partitioning will be the maximum of the inner products of
either U'd" = (1)(1)+(2)(4) = 9 or U?d? = (1)(2)+(3)(3) = 11. Since neither of
these values exceeds the maximum allowable integer, 12, this two-dimensional
partitioning can be employed to address the sets. Hence, in the DP algorithm,
two matrix elements would be needed to address each set. [Note that if no
partitioning of the demand vector into two groups allows for a feasible
addressing scheme, then partitions into three or more groups wouid be

necessary).
The sets generated at a particular stage would then be ordered in

increasing value of the addresses within each dimension and by increasing
magnitude of their address index {sorted first along index 1, then along index 2
etc.). If a search must be performed to determine if a set has been generated
previously, binary searches can be performed within each dimension index by
increasing magnitude of the dimension. The array that stores the relevant
information for each set must contain; the address in each dimension, the
minimum value of the objective encountered along the best path to the set ,and

the last product produced along this best path.

V1.5.4 Optimal Sequence

The optimal production sequence is constructed only after the
determination of the objective value (step 12 in algorithm VI.1). The process for
finding this sequence is to work back through the stages in decreasing order of
the cardinaiity of their set sizes to determine which product is scheduled at each

stage. This requires examining the generated sets placed onto secondary

130

storage by the DP. The sequence construction and set examination process is
greatly facilitated by the addressing scheme.

At stage D, only one set would have been generated; the set which
led to the optimal objective. As the DP stores the last product to be produced
along the best path to a set, this product will also be the last product produced
in the optimal sequence. Furthermore, as the set at the final stage must
necessarily be the set X=d, the address of this set will be UX=Ud (where U
may have been partitioned to produce an address consisting of more than one
dimension) and only one such set will exist. At this address, the last product on
the best path leading to it will also have been stored. Assuming that this last

product is product i, then i will be the last praduct to be scheduled and will
therefore be the product sequenced in stage D,. In order to determine which

product is sequenced at stage D,-1, the last product produced along the best
path to the set d-g, must be found. This is equivalent to finding the information

for the set with the address U(d-e;) amongst those sets in secondary storage.

Once this address has been found, the product to be sequenced at this stage
will be the last product produced along the best path to this set; which is, once
again, stored with the set's address. This sequencing process will continue
until a product has been sequenced at each of the stages from 1 to D,.

Note how each set has been uniquely encoded and identified by its
address. Hence, the sets need not be stored explicitly; the address of the set
complately specifies which products and the quantity of each product that
corresponds to this address in a compact representation of the set's makeup.
The DP sorted the sets at each stage in increasing magnitude of their

addresses and it is therefare possible to write these addresses as a block to

131

secondary storage preserving this ordering. It is easy to record the number of
sets generated at each stage and thus to find a specific address during the
sequence construction phase requires the determination of where the sets
corresponding to a particular stage begin (which also implies, by the way in
which the sets were written to secondary storage, that the end of the range of
sets of equal cardinality can also be determined). Then a binary search of the
addresses corresponding to the stage will quickly locate the address of the set
which is being sought. Hence, the optimal sequence can be constructed in time

proportional to the number of sets generated by the DP.

VI.6 Summary

This chapter has shown that the minimax problems can be formuiated
in convenient matrix notation. A DP procedure for the optimization of the
minimax problems was presented. This specifically implies that an efficient,
implicit enumeration approach exists for determining optimal solutions to muiti-
level problems. The minimax DP procedure was maodified to provide a DP
algorithm for determining solutions to multi-level sum functions. The time and
space requirements of the DP were developed and from these it could be seen
that this implicit enumeration algorithm provides a significant improvement over
explicit enumeration procedures.

implicit enumeration is, however, an exponential time process.
Therefore, filtering methods should be employed to screen out any solutions
which would clearly be suboptimal. Two fast heuristics were developed for use
by the DP to fathom these inferior solutions from the state space. As a set at
some stage could potentially be generated from any one of several sets at the

preceding stage, efficient ways of accessing and storing the data become

132

increasingly important. This involved the creation of addressing methods for
each set, which become even more important when the sets from the state
space are reduced by a filter. The arrays storing the data at each stage would
consist of only as many rows as the number of sets generated at that stage and
the sets would be stored within the arrays in increasing order ot their address.
This would allow for a set to be found (or it couid be determined that the set had
not been generated previously) by performing a bisection search along the
address values. !f the size of the problem data required that more than one
address index would be needed to store each set, then the bisection search
would be performed within each dimension of the address index. It was noted
that by generating the sets in increasing order of their cardinality, only two
consecutive stages would ever need to be stored in-core at any time. The other
stages would be held in secondary storage for later use in the construction of
the optimal sequence.

In the minimax DP, the maximum deviation along the best path to a
given set could occur very early in the state space. Hence, the fathoming
process could be expected to start very early in the minimax problems and that
a filtering method could prove to be substantially beneficial in the pruning of the
state space. The implementation and testing of this DP will be examined in the

next chapter.

CHAPTER 7 EXPERIMENTATION USING THE DP ALGORITHM

VII.1 Introduction

Chapter V! introduced the DP algorithm for optimally solving general
multi-level problems which, although growing exponentially with n,, is far more
efficient than any explicit enumeration pracedure. While this growth rate is
exponential, computational tests of the algorithm are necessary to determine its
perfarmance capabilities, characteristics and limitations.

The most important test criterion must be the time required to
determine optimal solutions to problems of a predetermined size. If tests reveal
that problems of all practical interest can be optimally soived in time sufficient for
realistic applications, then the DP could be used for any such implementations.
If, however, reasonable time constrains the size of the problems which can be
solved, then it is necessary to know what sized problems are so constrained.
The results obtained from the experimentation (on whatever sized problems are
optimized in the testing) could then serve as benchmarks to evaluate the
accuracy of heuristics which would be subsequently developed for these
problems.

"Reasonable time" is a rather arbitrary term which depends upon the
assumptions made and the appropriate time horizon of the scheduling
application. Since Monden's (1983) applications for scheduling mixed-model, JIT
processes were initially for automobile assembly, the types of problems to be

tested in this chapter can be thought of as those that would correspond to similar *

133

134

such production systems. A typical automaobile assembly process generally
consists of a number of preduction shifts in a day (i.e. two at Toyota, three at
General Motors). Therefore, for testing purposes, the time horizon is assumed to
be one 8-hour production shift. If, in this shift, finished products are produced at
the rate of one per minute, then the total production over the entire shift would be
480 units. Therefore, practical applications will be assumed to require the
praduction of approximately 500 units of finished (or level 1) product. The
concept of time reasonableness must also be addressed in some manner, as
problems can always be generated for which so much descriptive data is required
as to prove computationally prohibitive for use with the DP. Hence, if the solution
time required by the DP could be considered timely enough to act as input for the
scheduling of these 500 praducts in one such 8-hour production shift, then it
would be deemed "reasonable”.

A second major test criterion is to ascertain whether the storage
capacity constrairis the size of the problems which can be optimized in this
reasonable solution time; assuming that a fiitering scheme is employed
concurrently. The rate of growth for the generation of feasible sets was identified
in the previous chapter as one of the main concerns with using this type of DP
algorithm; this is the so-called 'curse of dimensionality'. Without the use of a
filtering mechanism, the state space of virtually any problem of a practical size
would require prohibitive amounts of storage; both in-core and on secondary
storage. There is a direct link between the effectiveness of the filter and the
storage space required. Thus, as disk storage space is not of infinite capacity, it

is necessary to know whether storage space (and therefore the effectiveness of

135

the filter) constrains the size of the problem upon which the DP can be
implemented.

The experimentation process could also reveal characteristics inherent
to the solution of muiti-level problems and may uncover important relationships
not readily apparent from the problem formulation. Hence, testing must be
performed on a significant variety of problem instances. These computational

experiments are the focus of this chapter.

VH.2 Testing Preliminaries and Assumptions

As a polynomial time algorithm exists for single-level problems, all
experimentation is to be performed on muiti-level problems. In order to test the
DP, requisite limiting assumptions, in addition to those mentioned above, are

necessary. These assumptions will be outlined below.

Vil.2.1 Filters

The problems to be tested must be large enough to be of sufficient
interest. To evaluate problems of even maderate size using the DP would
require the generation of a significantly large number of intermediate sets. If all
of these sets have to be generated, then the storage requirements and the
computational time would very quickly become excessive (see section VI.5.2).
This necessitates the introduction of some screening mechanism to eliminate
those sets which could clearly be shown to produce suboptimal results. The filter
to be used is the best objective value of the one- and two-stage heuristics
described in the previous chapter.

It would seem that the two-stage heuristic should produce solutions

that are at least as good as those produced by the one-stage heuristic.

136

Preliminary testing of the heuristics revealed only one instance (out of several
hundred trials) where this was not so. This one case occurred as a result of how
the heuristics were programmed to treat tied solutions in the intermediate stages.
When the decision rule for ties was changed, the result of this one instance was
reversed (i.e. the two-stage heuristic provided the better solution). However,
since the running time of both heuristics is negligible, as a precaution both
heuristics were run and the filter value chosen was the best heuristic solution
calculated.

The screening mechanism works in the following way. If a setis
generated such that the best objective value along any path through this node
exceeds the heuristic value, then no further branching from this node to the
remainder of the state space need occur. The reduction in the search effort
depends heavily upon the pruning potential, and hence the accuracy, of these
myopic heuristics. In using the heuristics, it rmust be determined whether or not
their accuracy is independent of the size and assumed parameters of the test
problems. !f accuracy is influenced by the parameters, then alternative filters

may have to be considered.

VI.2.2 Generation of Product Requirements
For a particular problem instance, n, will be set at a certain value and it

will be ensured that the product requirements sum to a fixed value of D,. In order
to do this, n,-1 product demand values will be generated in some range
(approximately D1In1) and the demand for the n1'h product will be the remaining

quantity required to fix the production total at D,. The time and space

requirements have both been shown to be functions of the number of different

137

products. Thus, it is also necessary that the product requirements are generated
subject to the constraint that d =1, i=1,....n,.

VIL.2.3 Generation of the Number of Parts and the Part Requirements

Recall that tijl is the number of units of output i at level j required for the
production of each unit of product i. The vaiue of tmwill be randomiy generated
for all i), j=2,..L, i=1,..n,,
uniformly distributed in the interval [O,Fi j]; where R jrepresents the range of the

I=1,..n,, insuch a way that tmis an integer

units of production for level j. The number of difierent parts, n i at level j will be

set as a randomly generated integer in the respective intervals;

n,g[15,25], n,£[26,50], n,e[51,75].
The number of distinct parts at any leve! is set at one of the arbitrary amounts in
these intervals and the values selected are used to approximate relative

differences in the numbers of different parts at the various levels.

Vil.2.4 Generation of Problem Instances

In order to generate a probiem instance, the above parameters will be
fixed in some manner and these values will serve as inputs to the DP. The time
required for the algorithm will be recorded along with information regarding the
num'-.)_er of sets generated, the accuracy of the heuristics and how efiective the
filterir\g method performs. For experimental purposes, several replicates must be
generated at the fixed values of the parameters in order for any types of

conclusions to be drawn.
Fixing the parameters entails setting a value for D, and n,, fixing the

number of production levels L, and setting a value for the range, Rl of the p%';rt

requirements at each level. For programming simplicity, oniy a two-dimensic‘ilnai
1

1

138

addressing scheme will be employed, which will limit the number of different
products whicn could be examined. However, if this two-dimensional scheme
appears to be unnecessarily restrictive, then additional dimensions can be added.
The DP was coded in FORTRAN 77 and run on a VAX 8530. The use of the
VAX implies that the running times of the DP are dependent upon the speed of
this machine; a different computer would provide different solution times. Hence,
any time resuits apply explicitly to the VAX itself. However, relative differences in

the solution times of different problems will be provided by this testing.

ViL.3 Two Level Experiment

The first test of the DP's capabilities was periormed on problems with
=2 production levels, where the total demand for the level 1 output was set at

D,=1000. With these parameters fixed, problem instances were generated in
which the number of different products was set at the values n, =8 and n,=10 and
in which the range values at level 2 were set at R,=20 and R,=100. The factor
involving the levels of n, wili be referred to as the "size" of the problem and the

factor involving the levels of R, will be referred to as the "range” of the problem.

The problem parameters are fixed at these values for a number of
reasons. Since two production levels is the minimum number for a muiti-level
system, if the DP is incapable of solving problems with L=2, then it would be futile
to extend the testing to problems with more levels. Hence, initially testing two
level problems is appropriate. Setting the total production at one thousand is
twice the amount considered appropriate for one production shift (see section
VII.1) and could be considered as an attempt to potentially extend the DP to the
limit of its capabilities. In a mixed-model manufacturing process, it coufd

realistically be expected that eight to ten different types of product would be

139

produced. Although the range of each product's part requirements cannot be
“too variable" in a JIT system (otherwise the JIT system could not function
effectively), the range values of twenty and one hundred allow for the testing to
be performed over a sufficiently broad interval. These range values could also be
considered as set at extreme levels in an attempt to push the testing of the DP to
its limits. Depending upon how the DP solves problems with these parameter
values, subsequent adjustments could be made, either up or down, in any
supplementary testing.

The first test examined each possible treatment combination and thus
provided a 2x2 factorial experiment. Fifteen replicates were randomiy generated
at each of these treatment combinations and the results are summarized in tables
VIi.1-4. For ease of interpretation, the replicates within each table have been
ordered by the increasing amount of the solution time required by the DP; hence,
the first replicate in each table required the minimum amount of time, the last
replicate required the maximum amount of ime, and the time taken by the eighth

replicate is the median time for that particular treatment combination.

Y,

140

~ Table VIL1
n,=10, R,=100, D,=1000, L=2

Optimal | Heuristic | Heuristic | Total Sets | Setls % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | sog23 | gs.965 | 1.078 8.10x10'® | 54539 | 672x10" | 16.15
> | 88732 | 95526 | 1.076 4,13 x10™ 61316 | 1.48x10° | 18.47
3 | 74768 | sa088 | 1.124 259x10' | a7839 | 3.38x10'°| 20.40
4 | 84955 | 96123 | 1.131 2.93x10'® 83386 | 2.84x10"°| 23.45
5 | 91173 | o966 | 1.083 4.24x10'® | es0s7 | 200x10"°] 2353
6 | sagss | 96123 | 1.131 203x10' | e3gse | 284x10"°] 24.18
7 | 75281 | 85554 | 1.136 3.78 x10'8 98,832 | 2.61x10 °| 24.22
g | 80911 | c0s0a | 1123 2.32 x10'8 89060 | 3.83x10 "} 24.85
9 | 110978 | 118196 | 1.065 1.01x10'® | 113972 | 112x10” | 28.60
10] 82645 | 96433 | 1.166 503x10' | 147963 | 284x10"] 3865
11 | 102.686 | 114.585 | 1.115 168x10'8 | 163.943 | 9.72x10"°| 46.26
12| e6.314 | 78.254 | 1.180 278x10'® | 231480 | 831x10"°] 51.32
13 | 105672 | 120871 | 1.143 247x10'5 | 308765 | 1.25x10° | 79.02
14| 95607 | 112236 | 1.173 753x10"® | 309150 | 4.10x10"| 91.82
15 | 89877 | 113383 | 1.261 6.22x10' | e7076a | 1.07x10% |191.12

141

“Table VIl.2
n1=10, Flz=20, D1=1000. L=2

Optimal | Heuristic{ Heuristic | Total Sets | Sets % of Sets | Time

Vaiue Value Optimal | Possible Examined | Examined | (min.)
1 | 18027 | 19.201 | 1.065 7.30 x10* 30106 | 411x10 | 877
2 | 17202 | 18730 | 1.087 8.12x10"® s0497 | 732x10™°| 17.20
3 | 15159 | 17.053 | 1.124 1.90 x10'6 126,037 | 6.63x107°| 28.23
4 | 16058 | 18210 | 1.134 9.31 x10'° 132312 | 142x10° | 33.20
5 | 18843 | 20310 | 1.077 2.38 x10'° 105141 | 4.40x10"" | 34.02
6 | 16724 | 18851 | 1.127 6.43 x10'6 119,188 | 1.85x10"°| 34.78
7 | 19525 | 21743 | 1113 2.11x10'6 128510 | 6.06x10 " | 37.68
g | 21120 | 22981 | 1.088 1.08 x10'° 131869 | 1.21x16° | 39.13
9 { 15613 | 17.835 | 1.142 5.54 x10'6 148878 | 268x10"°| 40.13
10§ 16154 | 18502 | 1.145 1.74 x10'5 179731 | 1.08x10 0| 42.42
11| 19.490 | 22226 | 1.140 263x10'® | 220330 | 8a7x107%| 6158
12| 18209 | 20808 | 1.148 1.08x10® | 277622 | 268x10° | sa.83
13| 18.763 | 19.888 | 1.059 161x10'6 | 255821 | 159x10° | 71.65
14| 18138 | 21377 | 1.178 174x10'5 | 820777 | 1.84x10° | 81.32
15| 18733 | 20227 | 1.079 3.23 x10' 410202 | 1.26x10 0| 109.20

142

Table VIl.3
n,= 8, F{2=100, D1=‘I 000, L=2

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value | Value Ontimal | Possible Examined | Examined | (min.)
1 | 77275 | 79.004 | 1.034 1.85 x10'° 15219 | 819x10'°| 168
2 | 81250 | o13ss | 1124 | 290x10" 33393 | 11axi0” | 207
3 | 81227 | 89877 | 1106 5.36 x10'4 16348 | 3.04x10° | 252
4 | 77671 | 85004 | 1.095 1.10x10'¢ 17717 | 161x10° | 33s
5 | 71414 | 76892 | 1.073 3.58 x10'* 19733 | 551x10° | 3a7
6 | 76884 | 83086 | 1.080 1.41 10" 27405 | 194x10% | ases
7 | 76450 | 83981 | 1.098 1.31 x10'3 31531 | 238x10° | 448
8 | 70697 | 81899 | 1.158 7.08 x10'3 29208 | 4.12x10° | 450
9 | 87610 | 98.185 | 1.120 2.03 x10" 33507 | 1.64x10° | 6.13
10| 69366 | 79493 | 1.145 1.24 x10'° 42258 | 33sx0” | 650
11| 89393 | 99.085 | 1.112 5.64 x10*4 41905 | 7.43x10° | 7es
12| 85751 | g4.088 | 1.007 2.91 x10'3 45395 | 159x10° | 8.03
13 | 80338 | 91.005 | t.182 1.92 x10"* 60926 | 316x10° | 823
14 | 82384 | 97.016 | 1.177 6.54 x10'4 61,760 | 9.43x10° | 10.25
15 | 102117 [115793 | 1.133 1.07 x1013 135820 | 1.26x10° | 20,08

143

Table Vil.4
n1=8, 92=20. D1=1 000, L=2
Optimal { Heuristic| Heuristic | Total Sets | Sets % of Sets | Time
Vaiue Value Optimal | Possible Examined | Examined | (min.)
15 -10

1 | 13671 | 13991 1.023 1.37 x10 11619 | 8.44x10 175
2 | 14937 | 16257 | 1.088 5.34 x10'° 20325 | 3sox10° | 280
3 | 13495 | 14938 | 1.106 1.12x10™ 19773 | 1.76x10° | 310
4 | 15510 | 17259 | 1127 1.03 x10™ o919 | 241x10° | 378
5 | 16461 | 17634 | 1.071 9.06 x10'2 23714 | 281x107 | ase2
6 | 16914 | 1857 | 1114 | a7ax10'® 25638 | 540x107°C) 472
7 | 17.802 | 18971 1.065 5.39 x10' 33477 | 621x10° | 538
8 | 18976 | 21085 | 11t 8.70 x10'2 46280 | 531x10° | 7.65
g | 18519 | 20384 | 1.101 2.46 x10'3 45884 | 1.85x10° | 7.98
10| 17499 | 19838 | 1.133 1.75 x10'° 73216 | 416x10° | 10.22
11 | 20382 | 23703 | 1.162 9.01 x10'2 68472 | 7.58x10° | 11.05
12| 18624 | 21208 | 1.138 1.29 x10™ 90677 | 7.02x10° | 1250
13| 13261 | 16664 | 1.258 4.95 x10'* 82830 | 167x10° | 15.08
14 | 20940 | 22603 1.083 4.91 x10"4 107508 | 218x10" | 1565
15| 19895 | 21766 | 1.094 9.97 x10'2 91815 | 9.20x10" | 16.48

144

VIL.3 .1 Analysis

Because of the 2x2 factorial design, ANOVA's of the output can be
constructed for analyzing both the time taken to determine optimal solutions and
for evaluating the accuracy of the heuristics used as filters. The ANOVA for

evaluating the solution time is;

Source 3S df. MS P
Range 16.110 1 16.110 022
Size 23,653.65% 1 23,653.659 33.444
Interaction 12.050 1 12.050 017
Error 39,605.993 56 707.249
Total 63,287.812 59

F1.4.55=7-08 F 5156139

The results of this ANOVA indicate that the solution time of the DP
significantly depends upon the the size of the problem, but does not depend upon
the range of each products' part requirements. Thus, problems in which there
are more product types require significantly more solution time than problems
with fewer product types. This conciusion is consistent with the bounds for the
time requirements developed for the DP in the previous chapter. An unforeseen
result is that the time required for solving problems in which the part requirement
ranges differ is not significant at all. This indicates, quite surprisingly, that the
algorithm's solution time is essentially independent of the part requirements
make-up of the individual products. No significant interaction between the

different levels of the size and range treatments is apparent.

145

One of the assumptions for using an ANOVA is that the variances of
the time for each treatment combination are equal. By examining the
distributions of the times shown in tables V11.1-4, this assumption might be called
into question. A nonparametric, Mann-Whitney test was subsequently employed
to counteract this potential bias and to further substantiate the conclusions drawn
regarding solution times. Mann-Whitney tests are used to compare two random
samples from independent populations and require no assumptions regarding the
normality of the data or of the equality of their variances. Descriptions of this test
can be found in any nonparametric statistics text; for example, see
Conover(1980), Mosteller & Rourke(1973), Kendall(1962). The test is based
upon a pooling of the two populations and an ardering of this combined sample
by increasing magnitude of the variable of interest. A test statistic, W, is obtained
by calculating the sum of the ranks of one of the populations and a comparison of
this statistic to tabulated values is then made. The restriction imposed by this
test is that all of the treatment combinations of the 2x2 experiment cannot be
considered simuitaneously. This requires that several two-way comparisons

must be made. These comparisons can be summarized below.
1. Fixing the range at R,=20 and testing to see if the times differ at this

range depending on the value of n, produces W=126. Ata level of
significance less than 0.01%, the conclusion can be drawn that the
times taken for n,=8 and n,=10 at this value of R, are different.

2. Fixing the range at R,=100 and testing to see if the times differ at this
range depending on the value of n, produces W=122. Ata level of

significance less than 0.01%, the conclusion can be drawn that the
times taken for n,=8 and n,=10 at this value of Fia are different.

146

3. Combining the data for each value of size over the two range levels
and testing to see if the times differ regardless of range but depending
on the value of n, produces W=477. At a level of significance less than
0.01%, the conclusion can once again be drawn that the times taken
for n,=8 and n,=10 are different regardless of the value of the range.

4. Fixing the size at n,=8 and testing to see if the times differ at this size
depending on the value of R, produces W=257. This W is significant
only at the 31.95% level and the conclusion can be drawn that the
times required at R,=20 and R,=100 do not significantly differ at this
vaiue of n,.

5. Fixing the size at n,=10 and testing to see if the times differ at this size
depending on the value of R, produces W=258. This W is significant
only at the 29.98% level and the conclusion can be drawn that the
times required at R,=20 and R,=100 do not significantly differ at this

value of n,.

6. Combining the data for each value of range over the two size levels
and testing to see if the times differ regardless of size but depending
onthe value of R, produces W=863. This is only significant at the

48.25% level, hence, the conclusion can be drawn that the times taken
for R,=20 and R,=100 do not significantly differ regardiess of the value

of the size.

Examining the resuits of this series of nonparametric tests substantially
strengthens, and further confirms, the conclusions drawn from the ANOVA;
namely, that the time reqguired to solve a probiem using the DP depends

significantly upon the number of different products in the problem. The time

147

required does not significantly depend upon the range of the part requirements.
This is a significant result as it implies that in order to evaluate the effectiveness
of the DP with a set number of distinct parts in terms of time requires that only
variations in the value of n, need be considered.

These results are very interesting, but the actual soiution times have
not been addressed as yet. Thatis, the actual vaiues of the times themselves
are of considerable interest because it is necessary to know whether the DP can
be realistically implemented for problems of anything other than a trivial size.
Below is a table for the 2x2 experiment indicating the average solution time

required for each treatment combination and for each factor.

| R,=20 R,=100
n =8 8.1 min 6.1 min 7.16 min
n, =10 46.9 min 46.8 min 46.8 min
. 27.5 min 26.;4 min | 27.0 m_in _

This tabie clearly demonstrates where the time differences occur. A

significant increase in the solution time occurs when moving from problems in
which the size is n1=8 to those in which the size is n1=10; while no such increase

is apparent when moving from range values of R,=20 to range values of R,=100.
Furthermore, these average times indicate that, with D,=1000, two level problems
in which n,=8 can be optimaily solved in a realistic amount of time. The problems

in which n =10 could perhaps be considered solveable in a realistic period of time

(for an 8-hour production shift) if the information for the production shift was
made available sufficiently in advance of production. However, if a faster

computer was employed and a professional programméf could code the DP more

148

efficiently, then even the problems in which n,=10 could be optimally solved in an
amount of time requisite for realistic applications,

The second criterion for evaluating the effectiveness of the DP is the
storage requirement. As the storage issue is directly related to the success of the
filtering system, and hence the accuracy of the heuristics, this entails examining
the effectiveness of the heuristics. In evaluating the heuristics' accuracy, the
scaling effect of the range vaiues prevents direct comparisons based strictly upon
deviations of the absolute magnitude between the heuristic and optimal values.
Contrasting the percentage errors provides a better comparative measure. The

ANOVA for the percent overestimation of the optimal solution by the heuristic is;

Source SS d.f. MS Mo
Range 15.100 1 15.100 .780
Size 19.837 i 19.837 1.025
Interaction 12.789 1 12.789 .661
Error 1083.095 56 19.340
Total 1130.821 59

Fo1.1.56=7-08 F 25.156=1-3%

This ANOVA table indicates that the heuristic performed equally
accurately over all levels of both the size and the range of the problems.
Furthermare, no interaction between the factors could be detected. This resultis
important as it demonstrates that the simple one- and two-stage heuristics can be
used with a confidence that their aécuracy depends upon neither the size nor the

range of the problem. As the heuristics are essential for the screening of the

149

suboptimal sets, the solutions produced must be equally accurate for problems of
any size or range. As this accuracy is reflected in the results of the ANOVA, it
can be concluded that the screening potential of the heuristics is independent of
the size and the range of the problem data.

More remarkable than this accuracy outcome is the screening
capability of these simple-minded heuristics. In the worst instance, the maximum
percentage of the total possible number of feasible sets generated in any of the
replicates over all levels of the factors was 1.26 x 10"°. Phrased another way, this
implies that the percentage of screened sets in any problem instance was at least
89.9987%. Thus, the use of very non-technical heuristics ensures that the
potentially vast state space is significantly reduced to more manageable levels.

In no problem inst: nce did storage capacity become a constraining factor. The
in-core storage is a function of the number of sets generated by two consecutive
stages. At no time did the number of sets in consecutive stages ever exceed
2000 and thus in-core storage never constrained the size of the problem to be
solved. Hence the screening method employed effectively eliminates the
potential storage space constraint.

However, the sheer magnitude of the set space size belies the actual
number of sets which must be examined in any given problem. The sets retained
by the DP correspond to those sets through which feasible paths to the optimal
solution could potentiaily pass. From each of these feasible sets, all extensions
to sets of cardinality in the subsequent stage must be examined before their

feasibility can be assessed. In the experiment, the average number of feasible
sets for each problem was 110,258 and thus, on average, 110,259 x n, sets had

130

to be generated in each problem. This accounts for the time required by the DP

to determine optimal solutions.

The results of this 2x2 experiment have demonstrated two points.
Firstly, that the solution time for the DP depends upon the size of the problem but

does not significantly depend upon the range of the part requirements. And
secondly, that two-level problems of size n,=8 can be optimally solved in

reasonable time and that perhaps problems of size n,=10 can also be solved in a

reasonable period of time. However, the average solution time taken by the
larger sized problems is considerably longer. Knowing the time required to solve
problems of size n,=10 is of considerable importance. It would be desireable to
have more data on a larger number of test problems of this size. This suggests

that further investigation of the two level problems is desirable .

VIl.3.2 Suppiementary Testing of Two Level Problems
As the value of the range had no significant affect on the solution time,

there was no further necessity to consider this as a factor for the two level
prablems. Thirty additional replicates were generated for problems with n,=10

and the range set arbitrarily at R,=100. The results of these problems are shown

in table VIL.5.

The average solution time for these additional problems is 57.94
minutes. This average time is 11 minutes more than the average time for those
replicates generated in the factorial experiment. However, the largest time is 342
minutes which is considerably longer than the times generated by the initiai
experiment. This instance would appear to be an outlier as the average time for

the remaining 29 problems is 48.12 minutes; which is comparable to the average

151

time for the replicates generated in the factorial experiment. This outlier
demaonstrates that not alt of the instances of this size can necessarily be soived in
reasonable time. However, the conclusion to be drawn is that problems of size
n,=10 can generally be solved to optimum in approximately 47 minutes although
the actual time may vary about this value. Furthermore, this average solution
time is quite consistent although there is a potential for certain rare instances to
require an excessive amount of time.

In no instance did the storage capacity ever become a constraining
factor; indicating that the heuristics used for filters work very effectively. In
general, there does not appear to be a relationship between the accuracy of the
heuristic and the solution time. The heuristic overestimates the optimal solution
in the range of 5.5% to 22.3% (excluding the outlier) with a mean accuragcy of
11.8%. Only for the outlier, where the heuristic value exceeds the optimal
solution by 30%, does a link appear between the accuracy and the time. The
problem data for this outlier problem do not significantly differ from the data of the
other problems. No apparent cause appears for the heuristic's inaccuracy in the

case of the outlier; the heuristic simply seems to have provided a poor solution.

152

“Table VII.5
n,=10, R,=100,D,=1000, L=2

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.) |
1 | 84244 | 88893 | 1.055 218 x10'® 34423 | 157x10™°| 097
2 | 74479 | sesst | 1.112 7.62 x10'8 40724 | 534x10°"' | 11.22
3 | 78806 | s4800 | 1.078 8.48 x10'° 47936 | 564x10° | 1148
4 | 85806 | 94187 | 1.085 3.07 x10'° 61.047 | 1.98x10 °(13.78
5 | ososs | 108262 | 1.003 2.85 x10'° 155709 | 5.45x10° | 14.25
6 | sra02 | se9s1 | 1113 | 1.74x10™ 57843 | 3.32x10 0] 16.73
7 | s4551 | 74148 [1.148 6.20 x10'° 84002 | 135x10° | 1865
8 | 72429 | 82663 | 1.141 2.76 x10'° 90482 | 327x10° | 19.57
o | 78411 | 88152 | 1124 | 1.22x10'7 67878 | 556x10" ' | 2015
10| 85166 | 92391 | 1.084 1.83 x10'7 82729 | 1.07x10 " | 22.70
11 | 100.252 | 108.032 | 1.077 1.29 x10'° 80270 | 6.88x10° | 22.75
12 | 87658 | 95742 | 1.092 5.49 x10'° 111,540 | 202x10° | 25.38
13 | 85151 | 93595 | 1.089 4.17 x10'8 104075 | 2.49x10"°| 26.50
14| 78736 | 87885 | 1.116 1.09x10"7 101,805 | 9.28x10" | 27.15
15 | ©3.758 | 102.906 | 1.097 1.20 x10'2 91758 | 761x10° | 2772

153

Table VIL5 (cont.)

n,=10,R,=100,D,=1000, [=2

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
16 | 86008 | 98.821 | 1.147 1.62 x10"7 101,987 | 629x10"" | 29.40
17 | 80777 | 93262 | 1.154 6.19 x10'° 143933 | 232x10° | 35.45
18 | 87.073 | 93321 | 1.071 3.71 x10'8 178,176 | 4.79x10 0| 39.80
19| 66314 | 78254 | 1.180 278x10'® | 231489 | 831x10"°| 50.82
20 | 94.231 | 107.009 { 1.135 281x10'® | 229395 | 1.07x107°] s5.30
21| 88.189 | 107.940 | 1.223 180x10'® | 205538 | 1.13x10° | 55.75
22| 87.753 | 101.088 | 1.151 162x10" | 214571 | 131x10° | 62,04
23| 98.039 | 105317 | 1.074 456x10'® | 207264 | 488x10"°| 63.32
24 | 90.765 | 103.953 | 1.145 657x10'5 | 280018 | a25x10” | 71.70
25| 91754 | 98398 | 1.072 1.05x10'® | 205352 | 1.93x10° | sa.28
26 | 70346 | oages | 1.182 115x10'7 | 470135 | 4.16x107°] 114.13
27 | 90.282 | 107.384 | 1.189 650x10'® | 452734 | 655x107°| 116,23
28 | 95445 | 107.505 | 1.123 166x10'® | soB.6g2 | 3.65x10 0] 156.05
29 | 101.512 | 113.748 | 1.120 232x10'8 | 20071 | 271x10° |163.28
30| 85543 | 111845 | 1305 1.05x10'7 | 1378070 | 130x16° | 34285

154

From this experimentation, it appears that the mean solution time for

problems of a given size remains reasonably consistent. The mean time was
observed to increase substantially when the problem size was increased from

n,=8 to n,=10. Therefore, it would be interesting to observe the magnitude of
time increase if the size were to be increased from n,=10 to some larger size.

Table V1.6 shows the data for problems of size n =12,

Table VIL.6
n=12, R,=100, D,=1000, L=2
Optimal | Heuristic| Heuristic | Total Sets | Sets % of Sets | 1ime
Optimal | Possible Examined | Ex *mined | (min.)
02633 | 108110 | 1113 | 3.10x17"® | oeso0e | su2x10”’| 72.02
97493 | 114246 | 1171 | 1.03x10"" | sse3s1 | 633x10"°] 195.90
95361 | 111.141 | 1.165 8.13x10'° | osogse | 1.18x10° |265.88
115.977 | 135.032 | 1.164 1.40x10'® | o3g4ss | 667x10° |322.72
111.533 | 129.280 | 1.159 3.44x10'5 | 1234534 | 3s8x10® |av0e8

The time increase for these problems is self evident. Necessarily, only
five replicates could be generated for instances of this size. The average solution
time for these problems was 251 minutes which is significantly longer than the
time required for problems of size size n,=10. The time ranges from 72 minutes
to 399 minutes indicating that there is subsiantial variability. However, it appears
that these problems cannot be considered solveable in reasonable time. Once
again, the screening method performed admirably. Only a minimal portion of the
potential set space was examined; although the number of sets examined can be

seen to be larger than that required for the smaller problems. The heuristic

155

overestimated the optimal solution by an average of 15% with very little variability

from this amount.

The conclusions to be drawn from all of the two level testing with

D,=1000 is that problems of size n,=8 and size n,=10 can be solved to optimum

in a reasonable length of time, while the time required to solve problems larger
than this is excessive. The simple heuristics used as filters perform admirably
and problems would be impossible to solve without their use. The salutions
produced by the heuristics are surprisingly accurate given their simplicity. The
major results of the two level testing are that the solution time depends upon the
number of different products but does not significantly depend upon the range of
the part requirements. In the next section, testing will be performed on four level
problems with a wider variety of range levels to see if these conclusions can be

extended to more general, multi-level prcblems.

VIl.4 Four Level Experiment

The secand major experiment involves fixing D,=500 and setting the
number of production levels at L=4. The value of 500 for the total production at
level 1 is consistent with one shifts' production as described in section VIil. 1.
Extending the DP to four level problems allows for the testing of problems which
more closely resemble realistic types of applications. With these parameters

fixed, the levels of the size factor are set at n1=8, n1=10 and n1=12. The levels of

the range factor are set at each of the five levels:
(20,20,20), (20,40,60), (20,100,400), (20,400,1000) and (20,1000,5000)

where each triple represents the range values for the respective production levels
(R2RyR 4). These range values are selected ta reflect a broad spectrum of a

156

product's part requirements and to also test how well the DP handles diverse
problems. The last triple may not be indicative of a realistic application as the
ranges considered could be too variable for a JIT system. The reason for its
inclusion is to provide a case which could push the DP to the limits of its
capabilities. Fifteen replicates are generated for each treatment combination,
thus the experiment is a complete 3x5 factorial .:xperiment. The data are

presented in tables VII.7-21.

157

Table VIL.7
n, =8, R2=2O,F{3=20, R 4=2O, D1=500, L=4

Optimal | Heuristic [Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | {(min.)
1 | 17854 | 18026 | 1.009 1.21 x10'2 1800 | 150x10° | 1.75
2 | 17183 | 17553 | 1.022 6.92x10'2 3088 | 44ax10° | 222
3 | 19454 | 19536 | 1.004 8.60 x10*2 3140 | ags0’ | 242
4 | 18041 | 18404 | 1.020 1.68 x10'2 3132 | 313x107 | 245
5 | 19180 | 19514 | 1.017 1.81 x10"" 2912 | 160x10° | 262
6 | 18204 | 18602 | 1.021 8.39 x10'2 2012 | 283x0” | 268
7 | 17658 | 17879 | 1.012 5.08 x10'3 3219 | 64ax10” | 298
8 { 17502 | 17920 | 1.024 1.27 x10'3 3.668 | 288x10° | 3.02
9 | 15952 | 17516 | 1.098 8.40x10"3 3.429 | 408x10° | 3.10
10| 17881 | 19.250 | 1.076 2.04 x10'3 4318 | 215x10° | 3.2
11| 20027 | 20607 | 1.028 7.42 x10'0 4467 | 603x0° | ass
12| 19371 | 20038 | 1.034 3.80 x10'2 4899 | 128x10° | 3.43
13| 19216 | 20770 | 1.080 2.38 x1012 5048 | 262x10° | 438
14| 19279 | 20266 | 1.051 514 x10! 5245 | 1.02x10° | 438
15| 21174 | 23301 | 1.100 1,29 x10'2 11381 | 1.13x0° | 877

158

Table VIL.8
n1=10,F12=20,H3=20, R 4=20. D1=500. L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 18986 | 19.152 | 1.009 1,51 x10'® 4012 | 267x10"| 417
2 | 19378 | 19535 | 1008 | 933x10'® 4102 | 441x10"'| s32
3 | 20es6 | 21135 | 1023 [s82x10™ 6539 | 7.41x10'°| 708
4 | 19884 | 21088 | 1057 | 27710 8189 | 409x10"°] 7.30
5 | 19613 | 20992 | 1070 | 851x10'5 7542 | 9.42x10"'] 848
6 | 19784 | 20774 | 1.050 1.08 x10'° 7884 | 7.38x10"°| 863
7 | 21416 | 22386 | 1.045 2.11 x10'8 7958 | a78xi0° | 875
8 | 19873 | 21708 | 1.092 1.36 x10'* 7872 | 578x10° | 9.08
o | 19881 | 21305 | 1087 | 1.08x10'® | o0s2 | so9xi0''| so7
10| 19778 | 20782 | 1.051 251 x10'3 6832 | 34100 987
11| 19826 | 21499 [1.084 7.77 x10™ 5004 | 1.15x10° | 10.38
12| 20435 | 22306 | 1.001 5.99 x10" 10,965 | 1.83x10° | 10.72
13| 21070 | 21995 | 1.043 1.68 x10'* 10172 | 605x10° | 11.92
141 21070 | 21995 | 1.043 1.68 x10'* 10172 | 6.05x10° | 12.23
15 | 204395 | 22555 | 1.105 1.02 x10'° 12682 | 1.26x10° | 12.85

158

“Table VILg__
n,=12,R,=20,R,=20, R,=20, D;=500, L=4
Optimal | Heuristic| Heuristic | Total Sets | Sets % of Sets | Time
p Fleuristc .) : r
Value Vaiue Optimal | Possible Examined | Examined | (min.)
p
1 | 20679 | 21345 | 1.032 3.41 x10"/ 9844 | 288x10%) 1283
2 | 20260 | 20761 | 1028 | sosx10'7 9123 | 1.79x10 2| 1512
-1
3 | 20721 | 21624 | 1.043 1.56 x10"/ 11.307 | 7.30x10'2| 18.00
4 | 20226 | 21591 1,067 474 x10%7 12716 | 268x10 2| 18.30
5 | 20809 | 22510 | 1.081 | 436x10" 14851 | 3.40x10°2{ 20.28
6 { 21872 | 2285 | 1.044 7.12 x1018 13.025 | 1.83x10" | 20.55
7 | 20071 | 23455 | 1.082 2.75 x10'9 17.067 | s32x10"'| 22.05
8 | 21414 | 22692 | 1.059 1.83 x10'7 15277 | 834x10'%] 23.53
9 | 20979 | 22305 | 1.063 1.70 x10'8 15811 | 1.58x10 2| 23.73
10} 21827 | 23.005 | 1.058 6.98 x10' 17179 | 2.46x10 2| 27.12
11| 21696 | 23262 | 1072 | 215x10'7 23.053 | 1.07x10 | 29.93
12| 21472 | 22637 | 1.054 238 x1017 16911 | 655x10 2| 31.75
13| 22196 | 24172 | 1.089 3.22 x10'7 23744 | 7.87x10"°| 35.82
14 | 21980 | 24.071 1.095 4.81 x10"/ 20479 | 4.67x10 2| 38.08
15| 202083 | 25488 | 1.143 1.33 x10'7 52343 | 3.93x10""| 85.80

'

160

__Table VIL10
n,=8,R,=20,R,=40, R,=60, D, =500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value | Value Optimal | Possible Examined | Examined | (min.)
1 | 45868 | 46.33 1.010 1.63 x10'2 1683 | 1.05x107 | 123
2 | 47918 | 48488 | 1.011 3.30 x10'2 2347 | 710x10° | 180
3 | 49206 | s0.708 | 1.028 1.85 x10'2 2083 | 1.15x10° | 188
4 | 49983 | soss2 | 1018 | 1.20x10" 2363 | 1.96x10° | 190
5 | s2718 | 54025 | 1024 | 5.04x10'2 2366 | 473x10° | 203
6 | 4498 | 45447 [1.010 1.63 x10'2 1782 | 1.05x10" | 203
7 | 51638 | 54318 | 1.051 5.07 x10" ! 3781 | 7.85x10° | 247
8 | 55866 | s6.522 | 1017 | 462x10"! 3995 | 864x10’ | 265
9 | 52263 | 55979 | t.0m 7.25 x10"! 3597 | 496x10° | 295
10 | 52696 | s5.885 | 1.060 3.63 x10'2 3795 | 105x107 | aay
11| 53652 | 58842 | 1.092 | 9.81x10"! 5208 | 530x10° | 3.2
12| 56532 | 61.332 | 1.084 5.82 x10'! 5006 | 875x10° | 4.20
13| 58.901 | B2.965 | 1.069 2.37 x10'° 8265 | 359x10°> | 522
14 | 53780 | 64510 | 1.199 g.10 x10' 7612 | asgxio’ | sa8s
15| 56814 | 60450 | 1.084 9.70 x10*4 7165 | 7.38x10 %} 10,32

161

Table VIl. 11

n,=10,R,=20,R,=40, R,=60, D,=500, L=4

Optimal | Heuristic{ Heuristic { Total Sets | Sets % of Sets | Time

Value Value Optimal { Possible Examined | Examined | (min.)
1 | 52231 | 55946 | 1071 | 1.51x10'8 5713 | 3.80x10 | 533
2 | 57729 | s9.972 | 1.038 8.82 x10'* 6468 | 7.33x10™°| 7.12
3 | 53645 | 57.413 | 1.070 1.08 x10'° 7732 | 7.73x10"°| 965
4 | 57991 | 60523 { 1.043 2.77 x10'* 11,094 | 400x10° | 998
5 | saees | 57085 | 1063 | 1.02x10' 9628 | 8.62x10 °] 10.07
6 | 54642 | 58256 | 1.066 7.77 x16™4 8.017 | 1.16x10° | 1035
7 | 5t944 | 57601 | 1.108 3.40 x10'3 10910 | 3.20x10™°| 11.08
8 | 56881 | 61315 | 1.078 6.11 x10'> 10550 | 1.72x10 0] 12.18
9 | 58126 | 63565 | 1.093 9.50 x10'3 10805 | 1.13x10° | 1240
10 | 57849 | 63313 | 1.094 1.36 x101% 11,142 | sigxt0” | 1245
11| 54660 | 60670 | 1.110 1.08 x10'° 13132 | 1.31x10"°] 1265
12| se6.226 | s0.967 | 1.084 1.10 x10"* 14583 | 132x10° | 13.97
13} 57123 | 63308 | 1.108 1,16 x10*° 15562 | 1.41x10° | 1525
14 | 59422 | e4834 | 1001 | 1.68x10™ 13933 | 8.20x10° | 1580
15| 50886 | 70391 | 1.175 251 x10'5 s5579 | 1.02x10° | 32.60

162

Table VIL.12

n1=1 2, R2=20,F{3=40. R 4=60. D1=500. 1 =4

Optimal | Heuristic| Heuristic | Total Sets | Sets % of Sets | Time

Value Value |Optimal |Possible Examined | Examined | {min.)
1 | ss983 | see81 | 1.047 | 698 x10" 10478 | 150x10'%| 1655
2 | s7e3s | s1737 | 1071 | 1.83x10"7 12150 | 6.63x10 2| 19.00
3 | sos72 | 64314 | 1061 | 2.93x10% 16,257 | 5.60x10 "' | 23.85
4 | 58605 | e2820 | 1071 | a70x10" 14,895 | 3.16x10 2| 24.77
5 | 60201 | 63.070 | 1.047 2.58 10"’ 15300 | 5.93x10 2| 2537
6 | ssses | e2568 | 1.067 | 1.33x10" 14986 | 1.12x10"'| 25.52
7 | 65875 | 69374 | 1.053 | 275x10'® 19913 | 7.37x10""| 25.90
8 | 57118 | 62695 | 1007 | 3.24x10!7 27718 | 8.55x10"%| 26.23
5 | eo7es | es282 | 1000 | 3.22x10"7 20416 | 6ax10"° | 30.93
10| 59.004 | esaser | 1073 | 239x10'® 25121 | 1.05x107°| ag.13
11| earen | 69363 | 1087 | 8.86x10' 33815 | 381x10" | 41.33
12| sogse | esser | 1112 | 202x10" 31341 | 1.55x10"'| 46.72
13| 61963 | 68.831 | 1.110 8.21 x10'° 37,005 | 4.52x10 | 50.07
14| 62917 | &ssgs | 1.085 | 1.00x10'® 44930 | 4.49x10 | 53.15
15| s7.307 | 63141 | 1.101 | 8.03x10'8 32461 | 4.04x10""'| 53.90

163

Table VII.13

n,=8, R,=20,R,=100, R,=400, D,=300, L=4

Optimal | Reuristic| Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 340595 | 342.363 | 1.005 3.46 x10"! 0844 | 821x107 | 193
2 | 358.204 | 365.062 | 1.019 1.90 x10'2 3189 | 167x10° | 233
3 | 354944 | 358.271 | 1.011 8.73 x10'° 3321 | as1x10® | 242
4 | 342831 | 365337 | 1.067 1.15 x10'3 3835 | 348x10° | 298
5 | 339.342 | 363341 | 1.070 1.68 x10'3 as41 | 270x10° | 300
6 | 352147 | 366484 | 1039 | 3.64x10"° 3815 | 1.05x0° | 328
7 | 332901 [354557 | 1.066 6.55 x10'2 4048 | 822x10°% | 332
8 | 369.760 | 382.526 | 1.085 1.43 x10'2 4236 | 302x107 | 347
9 | 352157 | 391.969 | 1.110 1.63 x10'° 5004 | 362xi0° | asa
10 | 382.405 | 402.637 | 1.052 1.36 x10' 8590 | 632x10° | 435
11 | 342.202 | 368.522 | 1.076 508 x10'2 5005 | 1.00x107 | 442
12 | 382.405 | 410943 | 1.073 1.36 x10"! 8500 | 632x10° | 485
13 { 334.264 | 367.708 | 1.098 6.69 x10'3 6209 | 941x10° | 495
14 | 337.672 | 387.682 | 1.148 | 256 x10' 7.836 | 306x10° | 526
15 | 366.619 | 419.156 | 1.144 2.79 x1012 11763 | a35x107 | 773

164

Table VIL.14
n,=10, R,=20,R3,=100, R,=400, D, =500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 345918 | 348623 | 1008 | 2.19x10"® 4549 | 216x10"°| s32
2 | 3s1650 | 375714 | 10e8 | 7.73x10" 5846 | 7.59x10 | 6.15
3 | 343806 |361.780 | 1052 | 1.00x10'O 5705 | 570x10 ' | 635
4 | 3s0717 |ao7720 | 1043 | 22x10™ 6258 | 945x10'°| 7.13
5 | 356968 | 391466 | 1008 | 1.24x10' 7071 | ssaxi0''l 815
6 |371.525 | 394763 | 1.061 2.77 x10'3 o.757 | 3.61x10"°} 870
7 | 349.240 | 379.053 | 1.085 1.02 103 9512 | 951x10 0| 968
8 | 363.952 | 3s0.531 | 1.074 | 7.30x10" 9.328 | 1.27x10 °| 10.08
9 |364718 | 387191 | 1.063 7.77 x10'? 9014 | 116x10° | 1030
10 | 363.241 [393710 [1.082 3,18 x10" 11430 | 3saxio® | 1097
11 | 350339 | 3s3.892 | 1.084 | 272x10'0 10394 | 3.84x10'°| 12.17
12 | 401.693 | 428.906 | 1.067 1.36 x10'* 12308 | 811x0” [14.02
13 | 397.404 | 430.304 | 1.083 1.68 x10'4 13385 | 7.96x10° | 15.80
14 | 370.005 | 416.947 | 1.124 6.76 x10'° 15841 | 236 x10'°| 16.42
15 | 408.560 | 453.215 | 1.110 2.97 x10'4 22898 | 770x10° | 24.62

165

Table VII.15
n,=12 A,=20,R,=100, R,=400, D,=500, L=4
Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets { Time
Vaiue Value Optimal | Possible Examined | Examined | (min.)
380.479 | 385.081 | 1.013 5.86 x10'8 5414 | 933x107?| 838
361404 | 371.476 | 1027 | 1.48x10"7 5958 | 4.02x10"2| 973
388.622 | 413708 | 1.064 233 x10"7 15742 | 675x10 | 1972
372866 | 411.075 | 1.104 | 3.51x10" 16388 | 4.66x10 2| 23.45
366.272 | 387.706 | 1.057 | 1.07x10"7 145618 | 1.36x10" | 23.75
398.550 | 422747 | 1.080 4.50 x10'° 18714 | 4.15x10"°| 27.30
377.894 | 410272 | 1.087 1.25 x10"7 20535 | 1.64x10" | 28.08
382.176 | 403.249 | 1.054 2.39 x10*7 16438 | 6.87x10 2| 2812
426555 | 449.254 | 1.053 3.00 x10'8 19624 | 6.54x10" | 28.90
391.421 | 435253 | 1.112 1.04 x10'8 23501 | 2.35x10"2| 34.08
416.790 | 449.764 | 1.079 1.06 x10'” 38920 | 3.67x10" | 49.93
433.114 | 471.686 | 1.089 9.67 x10'° 36815 | 3.83x10 | 57.43
424,071 | 464.153 | 1.0%4 1.01 x10'® 41932 | 419x10"%] 6158
424.573 | 456.780 | 1.075 4.36 x10'7 36,620 | B.39x10 2] 63.08
435721 | 486798 | 1.117 4.48 x10'6 70287 | 1.59x10"%| 110.97

."/
-
\
)

166

Table VII.16
n1=8, R2=20,RS=400, R 4=1000. D1=500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets: % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 757517 | 813.454 | 1.073 5.08 x10'3 3.265 | 642x10” | 208
2 894238 | 912604 [1.020 1.90 x10'2 3210 | 1.68x10° | 233
3 | 869.138 | 927021 | 1086 | 4.18x10'2 4104 | 981x10° | 273
4 | 881313 | 900576 | 1.021 6.45 x10'2 3392 | 525x10° | 280
5 |799.355_| 860.278 | 1.076 7.92 x10'2 3614 | 456x10° | 3.08
6 | 853.445 | 932493 | 1.092 3.92 x10'2 5146 | 131x10” | 328
7 | 880558 | 938465 | 1.055 8.61 x10'° 4806 | 558x10° | 335
8 | 847.867 | 900555 | 1.062 1.99 x10'3 4785 | 240x10% | ae2
9 | 894169 | 944824 | 1.055 2.23 x10'? 5352 | 240x10” | 3.5
10 | 916.880 | 975.076 | 1.064 8.22 x10° 6.826 | 830x10° | 445
11 | esg.548 | 996951 | 1122 | 3.82x10%2 5742 | 1.72x107 | 460
12 | 880.476 | 988.274 | 1.122 3.32 x10'3 5636 | 169x10° | 4.72
13 | 851.167 | 948.202 | 1.080 1.87 x1013 6912 | 369x10° | 478
14 | 943.215 | 1029675 | 1.091 7.1 x10"! 7.966 | 1.12x10° | 617
15 | 941.269 | 1047.905 | 1.112 3.16 x10" 9705 | a07x10° | 628

167

Table VIl.17

n,=10, R,=20,R,=400, R,=1000, D,=500, [=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets [Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 896.946 | s08.079 | 1.013 6.35 x10'* a740 | 7.46x10"°| 473
2 | 822530 | 854.813 | 1.038 6.41 x10'° 4473 | 697x10""| 475
a | sosase | soos07 | 1.002 | 278x10™ 439 | 157x10"%| 513
4 | 945921 | 949617 | 1.004 247 x10'° 4165 | 1.68x10 °| 532
5 | 936.463 | 946.596 | 1.010 7.19x10'° 6164 | 8s7x107'| 7.12
6 |931.178 | 979.825 | 1.051 9.58 x10'° 6413 | 669x10 | 7.47
7 | 903.180 | 926.745 | 1.025 3.92 x10'° 7500 | 1.91x10"°| 7.97
8 | 913791 | 963508 | 1.054 590 x10'4 6602 | t11x10° | 800
9 | 8s379s | 945120 | 1.070 2.29 x10'8 7503 | 3.27x10 | 9.22
10 | 943.640 | 1014383 | 1.075 1.53 x10'° 5796 | 6.40x10"°| 10.75
11 | 961.057 | 1087.344 | 1.079 1.13 x10'S 10202 | 8.10x10"°] 11.97
12 | 896.946 | 908.079 | 1.013 6.35x10"° a740 | 7.46x10% | 11.80
13 | 956.857 | 1047.080 [1.085 1.83 x10'6 13900 | 7.64x10"" | 14.78
14 | 956.191 | 1040.282 | 1.087 7.75 x10'? 17838 | 230x10° | 17.22
15 | 966.123 | 1106.170 | 1.144 1.16 X103 s0me0 | 180x10° | 2067

168

Table VII.18

n,=12, R,=20,R,=400, R,=1000, D,=500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 | 977.466 | o93ses | 1016 | 3.82x16" 7342 | 192x10"3] 11.13
2 {1039.030 | 1089.175 | 1.048 | 2.98x10'® 13695 | 459x10" | 19.43
3 |1005.106 | 1043.019 | 1.037 233 x10™ 18331 | 1.96x10° | 20.50
4 | 945463 | 9e33s5 | 1050 | 6.08x10'7 15657 | 257x10 | 23.77
5 | 984285 |i0a3.850 | 1071 | s5.68x10"7 17113 | 3.01x10 ‘2| 2530
6 | os0.974 |1043384 | 1084 | 470x10"7 14881 | 3.18x10 2] 25.45
7 | 1033540 | 1063345 | 1029 | 2.03x10" 17507 | s.e6x10 2| 28.08
8 |1020.890 |1077.762 | 1.055 1.26 x10'8 16848 | 1.33x10 2] 28.26
9 |1049.007 | 1132317 | 1079 | 3.11x10"° 21105 | 6.78x10 °| 28.28
10 | 970487 |1053.520 | 1.085 | 4.12x10'7 19753 | 479x10 2| 81.15
11 | 982.088 |1073.760 | 1.082 1.72x10'8 23086 | 1.35x10 2| 36.28
12 | 979.981 |1070.135 | 1.002 1.72 x10'° 20268 | 1.29%10"7] 37.23
13 | o53.358 | 1070431 | 1122 | 5.21x10% 30395 | 583x10" | 42.03
14 | 1054642 [1164.558 | 1.104 | 6.32x108 31219 | 493x10" | 47.58
15 | 1003.196 | 1135.211 | 1.131 2.31 x10"7 41398 | 179x10""] 61.25

169

Table VII.19
n,=8, R,=100, A,;=1000, R,=5000, D,=500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value |[Value |Optimal |Possible Examined | Examined | (min.)
1 | a089.980 |4107.329 | 1.004 1.17 x10"2 2083 | 254x10° | 205
2 |4144.802 | 4167.649 | 1.005 1.66 x10'3 2718 | 163x16° | 226
3 |4592.304 | 4697.308 | 1.022 2.33 x10"’ 4463 | 191x10° | 275
4 l4p23465 |4441.673 | 1.051 3.33x10"3 3237 | avexio® | 278
5 |4158.100 |4353.860 | 1.046 | 208x10'2 3517 | 189x10° | 295
6 |4120.209 |4226.340 | 1.023 1.69x10'2 3808 | 225x10° | 297
7 14319537 | 4504.637 | 1.042 8.47 x10'2 3920 | 462x16° | 3.2
8 |4472.685 {4709.047 | 1.052 7.43 x10" 4405 | 592x10° | 328
o |3942.954 | 4392819 | 1.114 5.50 x10'2 5076 | 9.08x10° | as7
10 | 4376.819 |4702.708 | 1.074 1.03 x10'2 5316 | 516x10° | 3.83
11 | 4560.929 |5021.258 | 1.101 1.42 x10'3 5777 | 408x10° | 4.26
12 { 4566.122 | 5005.534 | 1.006 | 273 x10'? 6231 | 228x10° | 503
13 | 4504.717 | 5092.636 | 1.108 1.06 102 6858 | 646x10° | 5.12
14 | 5107.819 |5450.300 | 1.067 1.85 x10'" 8843 | a78x10° | 572
15 | 4870914 | 5151.141 | 1057 | 7.11 x10™ 7981 | 112x10° | 638

4

if

170

Table VIL.20
n,=10, R,=100, R,=1000, R,=5000, D,=500, L=4

Optimal | Heuristic | Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 {4129.074 |4331.716 | 1.048 4.12 x10"° 4704 | 114510 a4z
2 |4424.114 |4657.449 | 1052 | 4.57x10'® 7432 | 162x10"°] 7.40
3 |4638519 |4794.124 | 1033 | 4.20x10™ 7652 | 182x10° | 742
4 |4442643 | 4728468 | 1.064 | 1.31x10' 7879 | 6.01x10'°] 788
5 |4779.744 {4930.490 | 1.031 1.91 x10'° 8770 | 459x10"°| 9.2
6 |4758.377 [5066.601 | 1.064 2.08x10'° 9912 | a76x10"°| 10.22
7 14839.948 |5336.490 { 1.102 1.36 x10'* 10798 | 7.93xt0° | 11.08
8 |4766.963 |4981.337 | 1.045 3.98 x104 12334 | a0ax10° | 11.57
o l4e21.322 5261987 | 1.138 1.50 x10'3 1021 | 9.28x10"°| 13.60
10 | 4778.297 |5081.502 | 1.063 1.07 x10' 14,947 1.39x10~_8' 15.08
11 | 4799.155 | 5423.897 | 1.130 4.02 x10"4 15,973 3.9?:@;9_’ 15.35
12 | 4745.410 |5308.691 | 1.118 3.07 x10"4 16,293 5.30)(10'9‘;- 15.40
13 | 4932.025 | 5482516 | 1.111 7.07 x10'# 20208 | 287x10° | 20.97
14 | 4915.247 | 5590.467 | 1.137 1.85 x10" 21277 | 128x10% | 23.48
15 | 4998.003 | 5537.492 | 1.107 6.54 x10'° 32,050 | 4.90x10° | 32.60

~.

4

171

“Table VIi.21
n1=12, Fl2=1 00, Fia=1000, H4=5000, D1=500, L=4

Optimal | Heuristic| Heuristic | Total Sets | Sets % of Sets | Time

Value Value Optimal | Possible Examined | Examined | (min.)
1 |5432.369 |5516.605 | 1.015 274 x10'* 11738 | 428x10° | 14.92
2 {4764732 | 4852381 | 1.018 1.09x10"7 10678 | 979x10 2] 15.25
3 | 4984.662 | 5342729 | 1.071 5.54 x10'® 17300 | 3.13x10”" | 23,83
4 |4981.770 |5301.261 | 1.064 1.56 x10'7 19665 | 1.26x10" '] 25.13
s |so67.501 5320808 | 1.051 | 7.10x10'8 16704 | 235x10" | 25.25
6 | 4970303 |s279.220 | 1.062 242 x10"7 17572 | 7.26x10"2| 26.67
7 |5108.539 {5390.946 | 1.056 1.26 x10'8 17001 | 1.35x10 2| 28.45
8 |5095.692 |5378.182 | 1.055 | 3.33x10'6 19724 | 5.92x10"" | 30.08
o |5119.308 |5483.806 | 1.071 5.60 x10'8 18711 | 33ax10™"!| 3167
10 | 4949.840 | 5375.874 | 1.086 8.58 x10'° 20397 | 3.42x10"°) 3717
11 | 5337.508 | 5806.580 | 1.087 2.66 x101° 29963 | 1.12x107°| 39.77
12 | 4940052 | 5374705 | 1.087 4.72 x10'9 35078 | 7.49x10" | 4852
13 | 4861.573 | 5374.531 | 1.105 3.67 x10'7 41524 | 1.13x10 | 58.43
14 | 5227.400 | 5823.801 | 1.114 1.57 x10'® a7250 | 3.00x107°) 61.08
15 | 5368.574 |6193.022 | 1.153 | 2.00x10"7 so981 | 3.45x10" | 120.60

172

ViL.4 .1 Analysis

Because of the 3x5 factorial design, ANOVA's of the output can, once
again, be constructed for analyzing both the time taken to determine optimal
solutions and for evaluating the accuracy of the heuristics used for the filters.

The ANOVA for the lime taken is;

Source SS d.f. MS R
Range 929.85 4 232.46 1.70
Size 36,766.68 2 18,383.34 134.58
Interaction 854.11 8 106.76 781
Error 28,684.85 210 136.59
Total 67,235 224
Fi04216=1-94 F 0122167532 F 2582101-28

This ANOVA indicates that the time taken to determine optimal
solutions does not significantly depend upon the range of the part requirements.
However, the solution time significantly depends upon the size df the problem.
No significant interaction effect can be detected between the two factors.

§ Thus, the outcome detected in the two level experiment recurs in this
four. lével experiment. As this second experiment is significantly larger than the.
first (considering both more size and range levels and examining 225 replicates
as opposed to 60), this conclusion not only validates the conclusion of the first
experiment, but considerably strengthens the initial result. The range of the part
requirements plays no significant role in the solution time performance of the DP.

Solution time depends significantly upon the number of different products.

=

173

To eliminate any concern as to the validity of these conclusions, it is
once again imperative to analyze the res-ilts using a test which makes no
assumptions regarding the underlying distributions of any of the data. It might be
that the requisite time variance equality assumption is violated. Therefare, a
nonparametric test, not susceptible to any variance bias, could serve as a better
indicator. A Kruskal-Wallis test can be used for this purpose. Kruskal-Wallis
tests are used to compare differences between severai random samples from
independent populations and require no assumptions regarding the normality of
the data or of the equality of their variances (for a description of this test, see
Conover (1980)). These tests are similar in operation to the previously
introduced Mann-Whitney test, except the calculated test statistic is denoted by
H. In order to use this test, several comparisons must be made. Each
comparative test involves fixing a level for one factor and comparing the data
from alt of the levels of the second factor; thus requiring that eight such
comparisons be made.' Comparative tests can also be performed on pooled
levels of the factors. The results of each of these comparisons are summarized
below.

1. Fixing the range at (20,20,20) and testing tc see if the times diifer at
this range level depending upon the value of n, produces H=37.45. At

a level of significance less than 0.01%, the conclusion can be drawn
that the times taken for n =8, n1=10 and n1=12 at this level of the range

values are different.
2. Fixing the range at (20.40,60) and testing to see if the times differ at

this range level depending upon the value of n, produces H=36.57. At

a level of significance less than 0.01%, the conclusion can be drawn

174

that the times taken for n,=8, n,=10 and n =12 at this level of the range

vaiues are different.
Fixing the range at (20,1 00,400) and testing to see if the times differ at
this range level depending upon the value of n, produces H=35.07. At

a level of significance less than 0.01%, the conclusion can be drawn
that the times taken for n,=8, n,=10 and n,=12 at this level of the range

values are different.
Fixing the range at (20,400,1000) and testing to see if the times differ
at this range level depending upon the value of n, produces H=36.23.

At a level of significance less than 0.01%, the conclusion can be drawn
that the times taken for n.=8, n,=10 and n,=12 at this level of the range

values are different.
Fixing the range at (20,1000,5000) and testing to see if the times differ
at this range level depending upon the value of n, produces H=35.51.

At a level of significance less than 0.01%, the conclusion can be drawn
that the times taken for n,=8, n,=10 and n,=12 at this level of the range

values are different.
Paoling all of the times from each range for each level of n, and testing
to see if the times ditfer depending upen the vaiue of n, produces

H=182.12. At a level of significancé less than 0.01%, the conclusion
can be drawn that the times taken for n =8, n =10 and n,=12 over ail

levels of the combined range values are different.
Fixing the size levei at n,=8 and testing to see if the times differ at this

level depending upon the level of the range producer A=5.36. This H

is significant only at the 25.4% level and the conclusion can be drawn

175

that the solution times required at each range level do not differ
significantly for this value of n,.

8. Fixing the size level at n,=10 and testing to see if the times differ at this

level depending upon the level of the range produces H=7.79. This H
is significant only at the 10.1% level and the conclusion can be drawn

that the solution times requirad at each range level do not differ
significantly for this value of n,.

9. Fixing the size level at n,=12 and testing to see if the times differ at this

level depending upon the level of the range produces H=4.18. This H

is significant only at the 38.3% level and the conclusion can be drawn -
that the solution times required at each range leve! do not differ |
significantly for this value of n,.

10. Pooling all of the times from each size level for each level of the range
and testing to see if the times differ depending upon the level of the
range produces H=1.56. This is significant only at the 81.6% level,
therefore the conclusion can be drawn that the solution times of all the

range levels do not significantly differ for the pouled levels of the size.

The conclusions from this series of Kruskal-Wallis tests can be
summarized in the following manner. At no fixed level of the size, n,, do the
solution times differ significantly between any of the range levels. For each fixed
level of the range, the solution times between the size levels differed significantly.
Pooling the data over the various factor levels corroborates these resuits for the
each of the two factors. Therefore, the conclusions can be made that the solution
time does not significantly depend upon the range of the part requirements, but

that the solution times significantly depend upon the number of different products.

176

This conclusion substantiates completely the conclusions obtained from the two
level experiment. Once again, it has been demonstrated that solution time is not

significantly affected by the range levels of the part requirements.

The average solution times for each treatment combination are
presented below. It can be easily seen that the times differ substantially between
the size levels, but that a comparison of the times between the range levels does

not indicate distinct differences.

n1=8 n1=10 n‘=12
(20,20,20) 3.3 min 9.0 min 26.9 min 13.1 min
(20.40,60) 3.4 min 12.7 min 33.4 min 16.5 min
(20,100,400) 3.8 min 11.0 min 38.2 min 17.7 min
(20,400,1000) |3.8 min 9.8 min 31.0 min 14.9 min
(20.1000,5000) |3.7 min 137min |39.1 min 18.8 min
_ 3.6 min 1_1__._2 min 33.7 min= 16.2 min

It is also apparent from the experimental data that these solution times
are not of an unmanageable length for practical implementation. The increase in
solution time between the size levels appears to indicate that the .growth rateis -’
nonlinear in the size level and ihat if the times increased in this same manner for

problems of a size larger than those considered here, then the solution times

177

could become too large for practical implementation. This would suggest a need

for further testing with regard to the size factor.

The second evaluation criterion is, again, the DP's storage
requirement. Limitations to the storage capability are directly correlated to the
success of the heuristic in its screening capacity. For the heuristic to be useful,
the accuracy of the solutions produced by it must not be dependent upon the
different levels of each factor. Thus, a test as to this variability is necessary. An
ANOVA for the percentage overestimation of the optimal solution by the heuristic

solution appears below.

Source S8 A MS P]
Range 107.00 4 26.75 2.20
Size 72.40 2 36.20 2.97
Interaction 151.88 8 18.98 1.56
Error 2551.77 210 1215 ¢
Total 2883.05 224
F 10.4.210%1-94 F 10.2.21052-30 F 58210128

This ANOVA table indicates that the heuristic performed equally
accurately over all levels of both the size and the range of the problems. No
significant differences between the overestimation of the optimal solution by the
heuristic could be uncovered for any level of either factor. Furthermore, no
interaction between the factors could be detected. The result confirms that the
heuristics can be used with a confidence that their accuracy depends upon

neither the size nor the range of the problem. As the heuristics are necessary for

178

screening suboptimal sets, this confidence with respect to their accuracy,
regardless of the size or the range of the problems for which they are used, is
essential.

In the worst instance, the maximum percentage of the total possible
number of feasible sets generated in any of the replicates over all levels of both
factors was 8.30 x 107, This implies that the minimum percentage of screened
sets eliminated for any problem was 99.9917%. In the worst case, the maximum
number of sets which had to be stored in-core for any of the problems never
exceeded 600. Therefore, in no case did storage space constrain the functioning
of the DP. The screening provided by the heuristics can be considered an
essential and integral part of the DP's operation. This filtering rnechanism
pacifies prior concerns associated with the growth rate of the state space, which
had previousty been identified as a potential handicap encountered by these
types of algorithms, for all of the problems generated. The concurrent
implementation of the heuristics with the DP effectively eliminates the storage

concerns for problems which can be optimally solved by the DP in reasonable

time,

VI.4.2 Supplementary Testing of Four Level Problems

The results from the 3x5 factorial experiment, since they were collected
from a wide variety of problems, provide a very good indication of how the DF
performs on four level problems. Some supplementary testing would be of
interest to judge how the soiution time changes with the problem size and what
sort of limitation the size has on a problem's solvability. The preceding analysis
demonstrated that range is not an important consideration in determining the

solution time for problems of any size. Hence, fixing the range settings arbitrarily

at the levels of R,=20, R,=40 and R,=60 should not significantly affect the

179

measurement of the solution time of additional problems. Table VII.22 provides
an indication as to how solution time increases if the size factor is set at n1=16.

Table _III.22
n,=16R,=20,R,=40, R =60, D,=400, L=4

Optimal | Heuristic| Heuristic | Total Sets | Sets % of Sets | Time

Valie Value Optimal | Possible Examined | Examined | (min.)
1 69.584 73.344 1.05 8.94 x10'8 59298 | 6.63 x10 | 13839
2 66.252 §9.699 1.04 3.35 x10'7 69.615 | 2.07 10" '] 169.43
3 69.878 74,311 1.07 7.14 x10'> §9,936 125x10° | 197.63
4 | 73388 | 78001 | 105 148x10'® | 108235 | 7.17x10"%| 22160
5 73.931 78.816 1.06 251 x10%° 123,180 | 4.90 x10° | 243,85
6 76.136 79.857 1.03 3.13 x10'° 146.534 | 4.68 x10’1° 342.38

The data clearly indicate that for n, =16 the solution times have become

sufficiently large as to prohibit the use of the DP for practicaly scheduling

problems with this number of different products. The average solution time of

218 minutes must be considered too long for realistically scheduling an 8-hour

production shift. Due to the length of time required to solve these problems, only

six replicates were generated. The heuristics work with a remarkable degree of

accuracy on these problems, indicating an average overestimation of only 4.8%.

Their filtering capabilities are again self-evident, as the storage capacity

constraint is never restrictive.

180

VIL.5 Discussion of Experimental Results

After examining more than 325 randomly generated probiems, several
conclusions can he drawn with respect to the performance of the DP algorithm.
Primarily, that the solution time is dependent upon the number of different
products, but does not depend significantly upon the range of the par
requirements that make up each of these products. The conclusion dealing with
the size of the prablem is not unexpected. However, the conclusion regarding
the range of the part requirements was not foreseen.

The ramifications of the part requirements finding are substantial;
particularly with respect to the potential introduction of weighting factors to the
minimax problem. Recall that the gamma matrix used by the DP has rows which
correspond to each individual part and that each matrix element, yijl,within each
row represents a measure of the weighted deviations ir usage of part i in level
from the proportional usage per unit of product . The introduction of weighting
factors has the effect of altering the weightings of the individual matrix elements,
thereby creating a similar effect to that of altering the range of the part
requirements. But if the solution time is essentially independent of this range,
then the addition of these weighting factors wouid provide no time benefit (or time
changes) over the solution time of an instance of the unweighted case. Infact,
based upon the range conclusion, weighting the various levels would have no
significant effect on the soiution time. Hence, the time resuits found by
experimentation on the unweighted problems could just as easily be applied to
those times that would be obtained from testing weighted problems. The only
change caused by weighting would be to produce a different sequence of final

assembly. Therefore, experimentation on the DP for the time and space

181

constraints for problems involving weighting factors need not be considered
imperative.
Experimentation on the DP was aiso performed to determine what

sized problems could be optimally soived in a reasonable period of time (on the
VAX). Results of this testing on two-level problems demonstrated that, for

D,=1000, optimal solutions could be determined in reasonable time for those
problems of size n,=8 and n,=10. However, when n =12, the problems no longer
can be solved in an amount of time which could be useful for practical purposes.
Extensive additional testing on prablems with n,=10 demonstrated that, while the
solution times remained similar to those encountered in the initial experiment and
that most of the problems of this size could be solved in reasonable time, the
possibility arose that a few problems could potentially require an excessive
amount of time. This was indicated by one outlier problem which took more than

5 hours to solve. Other than this outlier, the vast majority of these problems

required less than one hour of computational time.
Testing on a wide variety of four-level prablems with D =500 revealed

that problems of size n,=8, n,=10 and n,=12 could all be solved to optimum in
reasonable time. When the problem size was increased to n, =16, the solution
time could no longer be considered practical. Examining how the solution times
increased in reponse to an increase in n, demonstrated that the time appeared to

increase at a nonlinear rate with n,.

One conclusion from the testing of the DP is that the algorithm is
constrained by the amount of solution time. That is, not all problems of practical
interest can be solved in a reasonable length of time. A faster computer would

increase the size of the problem which could be optimally solved. However, due

182

to the nature of the rate of increase in computation time, those problems which
could be solved on a faster machine would also become constrained for some
value of n,.

The issue of whether the storage capacity constraint could be
considered binding was addressed by the concurrent implementation of two
simple heuristics with the DP. These heuristics significantly reduced the state
space of the DP by eliminating more than 99.99% of the potential sets. Due to '
the magnitude of the state space, even this reduction in the search efiort could
not ensure a solution in reasonable period of time. However, no solutions could
possibly have been determined without the use of the heuristic filter. The
heuristics demonstrated that even very simple dominance schemes can be used
as highly effective screening devices. The simple heuristics performed with
surprising accuracy, with the largest overestimation of the optimal solution value
being only 30%. Testing also revealed that the heuristics were equally accurate
over all levels of the size and range of the problems examined. The net effect of
the heuristics' use is that the space requirements of the DP never became a

constraining factor.

VI.6 Summary

This chapter has presented the findings of the experimentation of the
DP algorithm. The aim of this testing was to hopefully uncover useful information
regarding its performance capabilities, characteristics and limitations. The
concept of time reasonableness was introduced as a requirement for the DP's
success. Reasonableness of time, for purposes considered here, implied that a
solution could be found by the DP in an amount of time sufficient to allow for the

output to be used in the scheduling of 500 products in one 8-hour production

183

shift. The conclusions from this testing can be summarized in the following way.
Solution time was a tight constraining factor for the size of the DP- certain
problems could be solved in reasonable time while others could not. The simple
heuristic screening method, employed concurrently with the DP, worked highly
efficiently and permitted the conclusion to be drawn that, for those problems
solvable in reasonable time, storage capacity never constrained the size of the
problem.

Experiments with two-level problems indicated that those problems
with D1=1000 and n|=10 could be solved to optimum in reasonable time, while

those problems with D,=1000 and n,=12 could not. The experiments with four-
level problems indicated that problems with D =500 and n,=12 could be optimally

solved in reasonable time, while those with D1=500 and n1=16 could not. The

rate of production for the two-level problems is 125 products/hour, while the rate
for the four-level problems is 62.5 products/hour. The total amount of production
and the indicated rates of this production could be considered as sufficiently large
enough for implementation in certain realistic applications.

Two conclusions may be drawn from both the two-level and the four-
level experiments. Firstly, the solution time depends significantly on the number
of different products. This result can not be considered as a surprise. The
second conclusion, which was not foreseen, states that the solution time does not
significantly depend upon the range of the part requirements. This result has
repercussions with respect tc the use of weighting factors with the DP; namely,
solution times for the weighted DP wili behave in exactly the same fashion as

those of an unweighted DP of the same size. Hence, extensive testing to

184

determine the solution times and size limitations of the weighted DP is not

necessary.

CHAPTER 8 SUMMARY

Vill.1 Thesis Summary

This thesis has examined the usage problem w;mich occurs in the
scheduling of mixed-model assembly processes operating under JIT methods.
A minimax objective function has been introduced to control this process. This
minimax model has not been considered previously in the literature for use with
mixed-model, JIT systems. A general, integer programming model of the
prablem was developed and the unweighted versions of this problem were of
primary interest. The goal of the thesis was to determine optimal sequencing
methods for various formulations of this model. Certain analogous properties of
the minimax problem to previously existing 'sum of deviations' models were
shown.

The single-fevel, unweighted version of the general mode! was
considered in some detail. It was shown that optimizing this special case could
be achieved by solving a series of decision problems;, where each decision
in\{olved a test to determine if a feasible sequence could be constructed for a
hypothesized target value of the objective. This target restricted where, ina
sequence, each copy of a product could appear if the target was to remain
feasible. The decision problem is equivalent to a single-machine, unit time
scheduling problem in which each job has a release time and due date. The

scheduling problem can be modelied as a bipartite, convex graph in which the .

185

186

feasibility of the scheduling probleim is equivalent to being able to determine a
perfect matching in this graph. The feasibility of this matching could be
determined in time whici: is linear in the number of vertices and, hence, in the
total product demand.

Using the graph theoretic representation allowed for the calculation of
bounds on the target value. Both upper and lower bounds were shown for the
problem. Of particular significance is the upper bound, which demonstrates that
a feasiblé schedule always exists for each copy of every product in which the
actual Ie{}'el of production never deviates from the ideal level by more than 1
unit.

Symmetries within the problem were shown to exist which could be
exploi*ed so as to substantiaily reduce the computational effort. Of particular
significance was the proof that if a common factor. B, existed for the demand for
each product, then optimal solutions constructed by the EDD aigorithm would
always consist of B repetitions of the optimal sequence for the reduced problem
in which the problem demands consisted of the initial demands with the
common divisor factored out. This factoring property alone permits substantial
reductions in the computational effort.

It was demonstrated that the stopping criterion for the EDD algorithm
couid be modified so that the optimal solution could be found in time polynomial
in D. This was achieved by proving that only a finite number of calls to the
perfect matching routine would be required in order to determine the optimal
‘objective value. Extensions of the unweighted algorithm to the weighted
version of the problem were made. Thus, weighted, single-level problems and‘

"pegged" multi-level problems could also be solved to optimum using the EDD

187

algorithm. Many of the computational efficiencies developed for the unweighted
problems could also be applied to the weighted versions of the problems.

A DP algorithm was presented for optimizing the general minimax
maodel and therefore for solving multi-level problem formulations. The time and
space requirements of this DP were demonstrated. The computational
requirements of the DP are considerably lower than those that would be
experienced in any explicit enumeration procedure. The DP could also be
modified to solve instances of the multi-level, sum functions. This is important to
demonstrate since no previous solution procedures have appeared in the
literature for optimally solving these problems.

Tests of the DP's performance capabilities, characteristics and
limitations were performed. As problems could always be constructed which
would require excessive periods of solution time, the arbitrary concept of time
"reasonableness’ needed to be considered. Of interest was the nature of the
problems which could be solved in this reasonable amount of time. [f problems
of all practical interest could be optimally solved in time sufficient for realistic
applications, then the DP could be used for any such implementations. If,
nowever, reasonable time constrained the size of the problem which could be
solved, then it was necessary to know what sized problems were s0
constrained. Also, it was necessary to ascertain whether storage capacity
constrained the size of the problems which could be optimized in this
reasonable solution time. As the growth of the DP's state space could severely
restrict the problem size if all the states were generated, a necessary screening
. methad, employing simple heuristics, was required. The results of the testing

indicated that the size of the problems which could be optimally solved was,

188

indeed, constrained by reasonable solution time. Conversely, the size of the
problems generated never became constrained by the storage requirements. In
fact, the simple heuristics acted as a highly efficient screening mechanism.
The experimentation performed on the DP uncovered certain,
inherent solution characteristics. Not surprisingly, the size or number of
different prodects in the problems significantly affects the amount of solution
time required. Problems with more preduct types require significantly more
solution time, than problems with fewer product types. The expefimental
results indicated that the range of the products' part requirements had no
significant effect on the solution time. This result implies that weighting the parts
at the various production levels will not alter the solution time required by an
unweighted problem of the same size, as weighting would create a similar effect
to that of altering the range of the part requirements in an unweighted problem.
The use of weighting factors introduces an element of arbitrariness and a
certain degree of bias to the problems. As weighting factors would only have the
effect of altering the product assembly sequence and not the solution time for muiti-
level problems, a case could be presented whereby if weighting factors are
necessary, then they should be used with the weighted, single-level algorithm.
There are two main reasons for the implementation of weighting factors; either to
place more emphasis on the scheduling of particular products, or to make the
deviations at each level comparable in magnitude. The usage of ali parts and
products has been shown to depend explicitly on the sequence of the final
assembly of the products. Because of the pull nature of JIT manufacturing, the
facus of contral is necessarily the highest production level. Smoothing part usage

involves separating the products with the highest part requirements in the

189

assembly sequence. An algorithm for smoothing part usage would try to avoid the
consecutive sequencing of two praducts with high part requirements.

If a weighted abjective is to be used, then some method must exist for the
calcutation of the weights for all parts and products. Calculating weights for
products at the highest level can invoive no more arbitrariness than would be
involved in the calculation of the weights for the parts at the lower levels. If weights
could be calculated for the parts, they could just as easily be determined for the
products in such a way as to reflect the impact of a particular product sequence on
the iower levels (i.e. the usage). As each product's part requirements are known,
product weighting factors for minimizing usage could therefore be developed to
reflect their part requirements. These weights could then be used in an
implemerftation of the weighted, single level aigorithm, which wouild run far faster
than the DP. The separation of products with high part requirements would be
achieved by the magnitudes of the weights assigned to them and would ensure
that the products with the highest part requirements are kept as far apart in the
assembly sequence as possible. This addresses the first reason for using
weighting factors.

The second reason for using weighting factors is the concern that some
lower level part [perhaps some such raw material as nuts and boits which would be
measured in units of 1000] could dominate the sequencing decision of a far more
important product at the final assembly level. If this is of concern, then it would be
more beneficial to assign weights to the individual products indicative of their lower
level part requirements and use the single-level aigorithm than to use a weighted
version of the DP. The justification, used above, to satisfy the first reason, can

apply equally well for this second reason.

190

In summary, this research has investigated the optimization of the
scheduling of a mixed-model, JIT assembly process. An objective function for
this model was introduced which has not been previously studied. A number of
versions of this model have been considered. Various algorithms have been
proposed for optimally solving these versions of the problem. Where
appropriate, testing of these procedures has teen performed. The outcome of
these investigations formed the basis of this study.

Subsequent to the preparation of this thesis, Kubiak (1992) has
provided a reduction for the two-level minimax model (and also for the quadratic
version of the two-level sum function) demanstrating that it is an NP-hard
problem. This result significantly validates the use of a DP procedure for the
optimization of the multi-level problems and further underlines the need for

experimental testing such as that performed in this thesis.

VIl.2 Extensions to this Research

There are a number of avenues for future research arising from this
study. Some of these possible extensions will be outlined subsequentiy.

Clearly, there is a distinct need for research to be performed on the
calculation of appropriate weighting factors. Nothing has buen published on
the methods to determine weights which achieve the goals required of them.
For the single ievel minimax case, methods must be developed for determining
weights which would achieve the goal of separating specified high demand
products in the assembly sequence.

Studies are also required to find product weights which reflect the part
usage inherently created by the order of final product assembly. The simplest

example of this type of work is the pegged, multi-level case where each

191

product's weight was shown to explicitly correspond to the resulting lower level
part usage. Further research must determine if similar weighting schemes exist
which approximate usage in a like manrer for the general multi-level case.
These weights couid then be used in the single-level weighted, usage problem:.
If weights are needed by the DP for the multi-level case, then approaches tor
determining values which allow for the magnitudes at each level to be
compared are requisite. If weights of this nature are determinable, then they
would also have an impact on solutions to multi-level sum functions.

The upper bound for the single-level problem was shown to be 1.
This allows for the determination of an upper bound for the single-level sum
function. As the maximum deviation for each copy of each product is less than
or equal to this bound, an upper bound for the optimal solution of the sum
function must necessarily be n,D. No previous bound has been proved for the
sum function. Use of the minimax bound might also allow for a reduction to a
bottieneck assignment problem, as described in section 1.6, if it could be used
in conjunction with some form of interchange argument whereby the sequence
dependent nature of the problem is eliminated.

Furthermore, this bound also suggests the possibility of developing a
 bicriterion procedure using both the minimax and the sum functions
concurrently. Kubiak & Sethi (1989,1391) presented an assignment aigorithm
for the sum function which required the calculation of the penalty of assigning
each copy of every product to every feasible time period. For problems of even
a moderate size, this could require the calculation of an oppressively large
number of such penaities. If, however, each copy's penalties were calculated

only until their deviations equalled 1, then a vast number of the penalty

192

calculations could be eliminated. The optimal assignment using the algorithm
of Kubiak & Sethi for the sum function of this reduced problem couid then be
determined. The sequence generated would ensure that a good solution to the
sum function had been found such that no individual copy's deviation exceeded
the upper bound of the minimax problem.

Variants of this problem would be to restrict the calculation of sum
function penaities only to the edges of the bipartite, convex graph
corresponding to some feasible (perhaps optimal) target value. If the optimal
minimax value was used, then the sequence generated by using the
assignment algorithm would be optimal with respect to the minimax criterion
and the best sum function solution of all possible optimal minimax sequences
(i.e. Pareto optimal). Conversely, the best minimax solution could be
determined to the problem where the feasibie edges would correspond to the
reduced edge set of some optimal sum function assignment. These types of
bicriterion problems have been studied by Berman et al. (1990}, where it is
shown that the addition of a bottleneck-type measure changes the complexity of
the sum problem by a factor which is at most linear in the number of edges.
Research of bicriterion measures could, therefore, be performed on problems in
which a minimax objective as considered in this thesis, not a bottleneck
measure, is used.

As finding optimal solutions to muiti-level problems of a fixed size
were constrained by the solution time, if practical applications of large problems
using the minimax criterion are necessary, then heuristic algorithms for their
solution are required. Therefore, research must be performed which produces

various heuristics for the general minimax model. Fortunately, as a result of this

193

thesis, a substantial body of optimally solved, multi-level problems now exists
against which the solutions produced by these newly develop heuristics could
be compared. Further improvement of heuristic accuracy may ailow for better
screening methods to be implemented in the DP; thereby ailowing for even

larger problems than those considered in this thesis to be optimally solveable.

These and other questions can be addressed in subsequent

research.

REFERENCES

Aho, A., J. Hopcroft and J. Uliman, The Design and Analysis of Computer

Algorithms , Addison-Wesley, Reading, MA, 1874

Aliaby, 1., 1986, 'Allen-Bradley: New JIT Methods', information Technology, May,
1986

Bailey, D. and T. Hubert {eds.), Productivity Measurement, Gower, Londan,

1880

Baker, K., Introduction to Sequencing and Scheduling, John Wiley, New York,
1974

Baker, K. and G. Scudder, 1990, 'Sequencing with Earliness and Tardiness

Penalties', Operations Research, 38,1, 22-36

Belt, B., 1987, 'MRP and Kanban-A Possible Synergy?, Production and
Inventory Management, 28, 1, 71-80

Berge, C, 1985, Graphs 2" ed., North-Hoiland Mathematical Library, Elsevier

Science Publishers B.V., Amsterdam, Netherlands

Berman, Q., D. Einav and G. Handler, 1990, ‘The Constrained Bottleneck

Problem in Networks', Operations Research, 38,1, 178-81

Bevis, G., 1976, 'A Management Viewpoint on the Implementation of an MRP

System', Production and Inventory Management, 17, 1

194

195

Billesbach, T., and M. Schneiderjans, 1289, 'Applicability of Just-in-Time
Techniques in Administration’, Production and Inventory

Management, 30, 3, 40-45

Bitran, G. and L. Chang, 1987, 'A Mathematical Programming Approach to a

Deterministic Kanban System', Management Science, 33, 4, 427-441

Bondy, J. and U. Murty, Graph Theory with Apolications. North Holland, New
York, NY, 1976

Bridgett, R., 1976, '"MRP-Philosophy or Technique', Production and

inventory Management, 17, 2

Burton, T., 1988, 'JiT/Repetitive Scurcing Strategies: "Tying the Knot" with your

Suppliers', Production and Inventory Management, 25, 4, 38-42

Buzacott, J., 1989, 'Queueing Models of Kanban and MRP Controlled
Production Systems', Engineering Costs & Production

Economics, 17, 1, 3-20

Cadley, J., H. Heintz and L. Allocco ,1989, 'Insights from Simulating JIT
Manufacturing', Interfaces, 19, 2, 88-97

Carison, J., 1989, 'JIT Applications to Warehousing Operations', Engineering
Costs & Production Economics, 17, 2, 315-322

Caves, D., L. Christensen anc¢ J. Swanson, 1980, 'Productivity in U.S. Railroads

1951-74', Bell J. of Economics, 11

196

Chartrand, G., 1977, Introductory Graph Theory , Dover Publications, inc., New

York, NY

Chartrand, G., and L. Lesniak, 1986, Graphs and Digraphs , Wadsworth &

Brooks/ Cole Advanced Books & Software, Monterey, California

Cheng, T., 1988, 'The JIT Production: A Survey of its Development and
Perception in the Hong Kong Electronics industry’, OMEGA, 16, 1, 25-32

Chyr, F., T. Lin and F-Y. Ho, 1990, 'Comparison Eetween Just-In-Time and EOQ
Systems', Engineering Costs & Production Economics, 18, 3,

233-240

Connel!, G., 1984, 'Quality at the Source: The First Step in Just-In-Time

Production', Quality Progress, 11

Conover, W., Practical Nonparametrice Statistics oM ed., John Wiley & Sons,
New York, NY, 1980 |

Conway, R., W. Maxwell and L. Milter, Theory of Scheduling, Addison-Wesley,

Reading, Mass., 1967

Cosmetatos, G., 1983, 'Increasing Productivity in Exponential Queues by Server

Sharing’, OMEGA, 11, 2

Crawford, M. and J. Cox, 1990, 'Designing Performance Measurement Systems
for JIT Operations', International J. of Production Research, 28,

11, 2025-2036

197

Crawford, K. and J. Blackstone, 1988, 'A Study of JIT Implementation and
Operating Problems’, International J. of Production Fesearch, 26,

g, 1561-1568

Crosby, L., 1984, "The Just-In-Time Manufacturing Process: Control of Quality

and Quantity', Production and Inventory Management, 4,

Derigs, U., O. Goecke and R. Schrader, 1984, 'Bisimplicial Edges, Gaussian

Eiimination and Matchings in Bipartite Graphs', in Graoh Theoretic

Concepts in Computer Science Proceedings West Germany ‘84, U. Pape

(ed.), Linz: Trauner Verlag, p79-87

DeToni, A., M. Caputo and A. Vinelli, 1988, 'Production Management
Techniques: Push-Puli Classification and Application Conditions’,
International J. of Operations and Production Management, 8,

2, 35-51

Ditworth, J., Production and Operations Management3' ed., Random House

inc., New York, 1986

Discenza, R., and F. McFadden, 1988, 'The Integration of MRP I and JIT
through Software Unification’, Production and Inventory

Management, 29, 4, 48-53

Ebrahimpour, M., 1985, 'An Examination of Quality Management in Japan:
Implications for Management in the United States', J. of Operations

Management, 5, 4, 419-431

198

Ebrahimpour, M. and R. Fathi, 1985, 'Dynamic Simulation of a Kanban

Production Inventory System’, International J. of Operations and

Production Management, 5, 5

Egbelu, P., and H. Wang, 1989, 'Scheduling for Just-In-Time Manufacturing),

Engineering Costs & Production Economics, 16, 2, 117-124

Eilon, S., Elements of Production Planning and Control, MacMillan, New York,

1962

Eilon, S., B. Gold and J.Soeson, Applied Productivity Analysis for industry,
Pergamon Press, Oxford, 1976

Esparago, R.,1988, 'Kanban', Production and Inventory Management, 29,

1, 6-10

Fallon, D. and J. Brown, 1988, 'Simulating Just-In-Time Systems/,
Internationat J. of Operations and Production Management, 8,

6, 30-45

Fieten, R., 1989, 'Integrating Key Suppliers-Essential Part of a Just-In-Time
Concept', Engineering Costs & Production Economics, 18, 7, 185-

189

Finch, B., 1886, 'Japanese Management Techniques in Smalil Manufacturing
Companies: A Strategy for Implementation’, Production and

Inventory Management, 29, 3, 30-38

189

Finch, B. and J. Cox, 1986, 'An Examination of JIT Management for the Small
Manufacturer: with an lMustration', International J. of Production

Research, 24, 63-67

Flapper, S., J. Miltenburg and J. Wijngaard, 191, 'Embedding JIT into MRP',
International J. of Production Research, 29, 2, 329-341

Forbes. R., D. Jones and S. Marty, 1989, 'Managerial Accounting and Vendor
Relations for JIT; A Case Study', Production and Inventory

Management, 30, 1, 76-81

French, S., Sequencing and Scheduling, Ellis-Horwood Ltd., Chichester, West

Sussex, England, 1982

Frederickson, G., 1983, 'Scheduling Unit-Time Tasks with Integer Release
Times and Deadlines', Information Processing Letters, 16, p171-
173

Fukuda, R., Managerial Enaineering, Productivity Inc., Stamford, Connecticut,
1983

Gaither, N., Production and Operations Management3'@ ed., Dryden Press, New

York, 1987

Gallo, G., 1884, 'An O(niogn) Algorithm for the Convex Bipartite Matching
Problem', Operations Research Letters, 16, p31-34

Garey, M. and D. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979

200

Garey, M., D. Johnson, B. Simons and R. Tarjan, 1981, '‘Scheduling Unit Time
Tasks with Arbitrary Release Times', SIAM J. on Computing, 10, 2

Garey, M., R. Tarjan and G. Wiifong, 1988, 'One Processor Scheduling with
Symmetric Earliness and Tardiness Penaities', Mathematics of

Operations Research, 13, 2, 330-348

Glover, F., 1967, 'Maximum Matchings in a Convex Bipartite Graph', Naval

Research Logistics Quarterly, 4, 3

Goldstein, T. and J. Miltenourg, 1988, 'The Effects of Pegging in the Scheduling
of Just-In-Time Production Systems', Working Paper 294, McMaster

University

Gilbert, J., 1990, 'The State of JIT Implementation and Development in the
U.S.A., International J. of Production Research, 28, 6, 1098-110¢

Gravel, M. and W. Price, 1988, 'Using Kanban in a Job-shop Environment’,

International J. of Production Research, 26, 6

Graves, S., 1981, 'A Review of Production Scheduling', Operations
Research, 29, 2

Groeflin, H., H. Luss, M. Rosenwein and E. Wahls, 1289, 'Final Assambly
Sequencing for Just-In-Time Manufacturing', International J. of

Production Research, 27 2, 199-213

Groenevelt, H., and U. Karmarkar, 1988, 'A Dynamic Kanban System Case

Study', Production and Inventory Management, 29, 2, 46-50

201

Gross, O., 1959, 'The Bottleneck Assignment Problem’, The RAND Corporation,
Paper P-1630

Grout, J., and M. Seastrand, 1987, "Multiple Operation Lot-Sizing in a Just-In-
Time environment!, Production and Inventory Management, 28, 1,

23-27

Gupta, Y. and M. Gupta, 1989, 'A System Dynamics Model of a JIT-Kanban
System', Engineering Costs & Production Economics, 18, 2, 117-
130

Gupta, K. and J. Kyparisis, 1987, 'Single Machine Scheduling Reasearch’,
OMEGA, 15, 2

Hall, N., 1983, Zero Inventories, Dow-Jones-irwin, Homewood, il

Hall, N., W. Kubiak and S. Sethi, 1991, 'Earliness-Tardiness Scheduling
Problems, II; Deviation of Completion Times about a Restrictive Common

Due Date', Operations Research, 39, 5, 847-856

Hall, N. and M. Posner, 1991, 'Earliness-Tardiness Scheduling Problems, 1:
Weighted Deviation of Completion Times about a Common Due Date’,

Operations Research, 39, 5, 836-846

Hall, P., 1935, 'On Representatives of Subsets', Journal of the London
Mathematical Society, 10, 26-30

Hannah, K., 1987, 'Just-In-Time: Meeting the Competitive Challenge',

Production and Inventory Management, 28, 3,1-3

202

Heiko, L., 1989, 'A Simple Framework for Understanding JIT, Production and

Inventory Management, 30, 4, 61-63

Hendrick, T., 1687, "The pre-JIT/TQC Audit. First Step of the Journey',
Production and Inventory Management, 28, 2, 132-143

Hendrick, T., 1988, 'The Fake Pull in a Kanban Environment: Acceptance
Tradeoff or Violation of Principle?, Production and Inventory

Management, 29, 2, 6-9

Hil, A., and T. Volimann, 1986, 'Reducing Vendor Delivery Uncertainties in a
JIT Environment', J. of Operations Management, 6, 4, 381-392

Huang, P., L. Rees and B. Taylor, 1984, The Japanese Just-in-Time Technique
for a Multiline, Multistage Production System', Decision Sciences, 14,

326-344

Im, J., 1989, 'How does Kanban Wark in American Companies?', Producticn

and Inventory Management, 30, 4, 22-24

Im, J. and S. Lee, 1989, 'Implementation of Just-In-Time Systems in U.S.
Manufacturing Firms', International J. of Production Research, 9,

1, 5-14

Im, J. and R. Schonberger, 1288, 'The Pull of Kanban', Production and

Inventory Management, 29, 4, 54-38

Inman, R. and R. Bulfin, 1991, 'Sequencing JIT Mixed-Model Assembly Lines',
Management Science, 37, 7, 901-804

203

Inman, R. and S. Mehra, 1988, 'Potential Union Conflict in JIT Implementation’,

Production and Inventory Management, 30, 4, 19-21

Inman, R. and S. Mehra, 1990, 'The Transferability of JIT Concepts to American

Small Business', Interfaces, 20, 2, 30-37

Ishikawa, K., What is Total Quality Control? The Japanese Way, Prentice-Hall,

Inc., Englewood Cliffs, N.J. 1985

Johnston, S., 1989, 'JIT: Maximizing its Success Potential', Production and

Inventory Management, 30, 1, 82-86

Justis, R., 1981, 'America Feasts on Japanese Management Delicacies-Quality

Circles, JIT and Kanban', Data Management, 19, 10

Kendall, M., Rank Correlation Methods, Hafner Publishing Co., inc., New York,
NY, 1962

Kimura, T and K. Terada, 1981, 'Design and Analysis of a Pull System: A
Method of Multi-Stage Controi', International J. of Production

Research, 19

Kochar, S., R. Morris and W. Wong, 1987, 'The Lacal Search Approach to

Flexible Flow Line Scheduling', Proc. of the Second International

Conference on Production Systems, p175-86

Koten, J., 1982, 'Auto Makers have trouble with Kanban', The Wall Street

Journal, April 7,

Kubiak, W., Private Communication

204

Kubiak, W. and S. Sethi, 1989, 'Optimal Level Schedules for Flexible Assembly
Lines in JIT Production Systems', Working Paper, Faculty of

Management, University of Toronto

Kubiak, W. and S. Sethi, 1891, 'A Note on "Level Schedules for Mixed-Model
Assembly Lines in Just-In-Time Production Systems" ', Management

Science, 37, 1, 121-123

Lambrecht, M. and L. Decaluwe, 1988, JIT and Constraint Theory: The |ssue of
Bottleneck Management, Production and Inventory Management,

29, 3, 61-66

Laver, R., 1991, 'Scrapping the Assembly Line', Maclean's Magazine, August

12, 28-28

Lawier, E., J. Lenstra and A. Rinnooy Kan, 'Recent Developments in

Sequencing and Scheduling: A Survey', In Deterministic and Stochastic

Scheduling, ed. (M. Dempster et al) Dordrecht, Holland: Reidel, 1982

Lee, L. ,1987, 'Parametric Appraisal of the JIT System', International J. of
Production Research, 25, 10, 1415-1429

Lee, S., and M. Ebrahimpour, 1984, 'Just-In-Time Production System's: Some
Requirements for Implementation’, International J. of Operations

and Production Management, 4, 3

Li, A. and H. Co, 1991, 'A Dynamic Programming Model for the Kanban
Assignment Problem in a Muitistage Multi-Period Production System,

International J. of Production Research, 29, 1, 1-16.

205

Lieberman, M., L. Lau and M. Williams, 1990, 'Firm-Level Productivity and
Management Influence: A Comparison of U.S. and Japanese Automabiie

Producers', Management Science, 36, 10, 1193-1215

Lipski, W., and F. Preparata, 1981, 'Efficient Algorithms for Finding Maximum
Matchings in Convex Bipartite Graphs and Related Problems', Acta
Informatica, 15, p329-346

Luss, H., 1989, 'Synchronized Manufacturing at final Assembly and Feeder

Shops', Internationa! J. of Production Research, 27

Luss, H., and M. Rosenwein, 1990, 'A Lot-Sizing Model for Just-In-Time
Manufacturing', J of the Operational Research Society, 41, 3, 201-
209

Maher, H., 1986, 'MRP 1l wont Schedule the Factory of the Future', CIM

Review, 3, 1

Malley, J. and R. Ray, 1988, 'Information and Organizational impacts of
Implementing a JIT System', Production and Inventory

Management, 29, 2, 656-70

Marshall, B., 1977, 'Japanese Business Ideology and Labour Palicy',

Columbia J. of World Business, 12,1

McCarmick, S., M. Pinedo, S, Shenker and B. Woif, 1889, 'Sequencing in an
Assembly Line with Blocking to Minimize Cycle Time', Cperations

Research, 37, 6, 925-935

206

Mellor, P., 1966, 'A Review of Job-Shop Scheduling’, Operational Research
Quarterly, 17

Miltenburg, J., 1986, 'Scheduling Mixed-Model Muiti-Level Just-In-Time
Production Systems', Working Paper 256, Faculty of Business, McMaster

University

Miltenburg, J., 1989, 'Level Schedules for Mixed-Model Assembly Lines in Just-

In-Time Production Systems', Management Science, 32, 2, 192-207

Miltenburg, J. and T. Goldstein, 1990, 'Developing Production Schedules which
Balance Part Usage and Smooth Production Loads in Just-In-Time
Production Systems', Working Paper 321, Faculty of Business, McMaster

University

Miltenburg, . and G. Sinnamon, 1989, '‘Scheduling Mixed-Model, Multi-Level
Assembly Lines in Just-In-Time Production Systems', International J.

of Production Research, 27, 9, 1487-1509

Miltenburg, J., G. Steiner and S. Yeomans, 1990, 'A Dynamic Programming
Algorithm for Scheduling Mixed-Model, Just-In-Time Production
Systems', Mathematical and Computer Modelling, 13, 3, 57-66

Miltenburg, J. and J. Wijngaard, 1991, 'Designing and Planning in Just-In-Time
Production Systems, International J. of Production Research, 28,

1, 115131

207

Miyazaki, S., H. Ohta and N. Nishiyama, 1988, 'The Optimal Operation Planning
of Kanban to Minimize the Total Operation Cost', International J. of

Production Research, 25, 10, 1605-1611

Monden, Y., Toyota Production System, Industrial Engineering and
Management Press, Cambridge, MA, 1883

Monden, Y., 1981[a], 'What Makes the Toyota Production System Really Tick',

Industrial Engineering, 13, 1

Monden, Y., 1981[b], 'Adaptable Kanban System Helps Toyota Maintain JIT

Production', Industrial Engineering, 13, 5

Monden, Y., 1981[c], 'Smoothed Praduction Lets Toyota Adapt to Demand

Changes and Reduce Inventory', Industrial Engineering, 13, 8

Monden, Y., 1981[d], 'How Toyota Shortened Supply Lot Production Time,

Waiting Time and Conveyor Time', Industrial Engineering, 13, 9

Moore, J., 1968, 'An n-job, One Machine Seguencing Algorithm for Minimizing

the Number of Late Jobs', Management Science, 15

Mosteller, F. and R. Rourke, Sturdy Statistics, Addison-Wesley Publishing Co.,
Reading, Mass., 1973

Nelson, R., 1981, 'Research on Productivity Growth and Productivity
Differences: Dead Ends and New. Departures', J. of Economic

Litterature, 19

208

Newman, R., 1988, 'The Buyer-Supplier Relationship under Just-in-Time',

Production and Inventory Management, 28, 3, 45-50

Ohno, T., Toyota Praoduction System: Beyond Large Scale Production,

Productivity Press, Cambridge, MA, 1988

Okamura, K., and H. Yamashita, 1979, 'A Heuristic Algorithm for the Assembly
Line Model-Mix Sequencing Problem to Minimize the Risk of Stapping
the Conveyor', International J. of Production Research, 17, 3, 233-

247

Olhager, J., and B. Ostlund, 1990, 'An Integrated Push-Pull Manufacturing
Strategy', European J. of Operational Research, 45, 2, 135-142

Oliver, N., 1990, 'Human Factors in {iie Implementation of Just-In-Time
Production’, international J. of Operations and Production

Management, 10, 4, 32-40

QOrlicky, J., Material Requirements Planning, McGraw-Hill, New York, 1975

Pan, A. and C. Liao, 1889, 'An Inventory Model under .Jusf—ln-Time Purchasing

Agreements', Production and inventory Management, 30, 1, 49-52

Parnaby, J., 1988, 'A Systems Approach to the Implementation of JIT
Methodologies in Lucas Industries', International J. of Production

Research, 26, 3, 483-492

Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley Publishing Co, Inc., Reading, Mass, 1984

209

Philipaom, P., L. Rees, B. Taylor and P. Huang, 1987, 'An Investigation of the
Factors Influencing the Number of Kanbans Required in the
Implementation of the JIT Technique with Kanbans', International J. of

Production Research, 25, 3

Plenent, G., and T. Best, 1886, 'MRP, JIT and OPT: What's "Best"? ', Production
and Inventory Management, 27, 2, 22-29

Pyke, D., and M. Cohen,1990, 'Push and Pull in Manufacturing and Distribution
Systems', J. of Operations Management, 9, 1, 24-43

Rao, A., 1885(a), 'Manufacturing Systems-Changing to Support JIT',

Production and Inventory Management, 30, 2, 18-21

Rao, A., 1989(b), 'A Survey of MRPIl Software Suppliers trends in Support of

Just-In-Time', Production and Inventory Management, 30, 3, 14-17

Rao, A., and D. Scherage, 1988, 'Moving from Manufacturing Resource
Planning to Just-In-Time Manufacturing', Production and Inventory

Management, 29, 1, 44-49

Rege, K., 1988, 'Approximate Analysis of Serial Marufacturing Lines with Buffer

Control', Information & Decision Technologies, 14, 1

Rinnooy Kan, A. Machine Scheduling Problems: Classification, Complexity and

Computations, Martinus Nijhoff, The Hague, Holland, 1976

210

Sarker, B. and R. Harris, 1988, 'The Effect of Imbalance in a Just-In-Time
System: A Simulaton Study', International J. of Production

Research, 26, 1, 1-18

Schonberger, R., Japanese Manutacturing Technigues, The Free Press, New

York, 1982

Seidman, A., 1988, 'Regenerative Pull (Kanban) Production Control Policies’,

European J. of Operational Research, 35, 3, 401-413

Sewell, G., 1990, 'Management Information Systems for JIT Productior,

OMEGA, 18, 5, 491-503

Simons, B., 1978, 'A Fast Algorithm for Single Processor Scheduling', [EEE jgth

Annual Symposium on Foundations of Computer Science (formerly

Annual Symposium on Switching & Automata Theory, Long Beach

Sipper, D., and R. Shapira, 1989, 'UIT vs WIP-A Trade-off Analysis',

International J. of Production Research, 27, 6, 803-814

Smith, H., K. Mangelsdorf, J. Luna and R. Reid, 1989, 'Supplying Ecuador's
Health Workers just in Time', Interfaces, 19, 3, 1-12

So, K. and S.Pinault, 1988, 'Allocating Buffer Storages in a Pull System’,
International J. of Production Research, 26, 12, 1858-1880

South, J., 1986, 'A Minimum Production Lot-Size Formula for Stockless

Production, Production and Inventory Management, 27, 2

211

Spence, A., and E. Porteus, 1987, 'Set-up Reduction and Increased Effective

Capacity', Management Science, 33

Stevenson, W., Production/Operations Management 3 ed., Richard D. lrwin

Inc., Homewood, i, 1890

Sugimori, Y., K. Kusunoki, F. Cho and S. Uchikawa, 1977, 'Toyota Production .
System and Kanban System- Materialization of Just-in-Time Respect-for

Human Systems', International J. of Production Research, i5

Suri, R. and S. DeTreville, 1986, 'Getting from "Just-In-Case" to Just-In-Time', J.
of Operations Management, 6, 3, 295-304

Tarjan, R., Data Structures and Network Algaorithms, Society for Industrial and
Applied Mathematics, Philadelphia, Penn., 1983

Toomey, J., 1989, 'Establishing Inventory Contiraot Options for Just-In-Time

Applications', Production and inventory Management, 30, 4, 13-15

Wang, H., 1990, 'Determining the Number of Kanbans: A Step Toward Non-
stock Production', International J. of Production Research, 28, 11,

2101-2115

Waestbrook, R., 1988, 'Time to Forget Just-In-Time? Observations on a Visit to
Japan', international J. of Operations and Production

Management, 8, 4, 5-21

Wildemann, H., 1988, 'Just-In-Time Production in West Germany',

International J. of Production Research, 26, 3, 521-538

212

Willis, T., and C. Huston, 1890, 'Vendor Requirements and Evaluation in a Just-
In-Time Environment', International J. of Operations and

Production Management, 10, 4, 41-50

Willis, T., and W. Suter, 1989, 'The Five M's of manufacturing: A JiT Conversion
Life Cycle', Production and Inventory Management, 30, 1, 53-57

Wilson, G., 1985, 'Kanban Scheduling: Boon or Bane?', Production and

Inventory Management, 26, 3

Wittrock, R., 1985, 'Scheduling Algorithms for Flexible Fiow Lines', IBM J. of

Research & Development, 29

Wittrock, R., 1988, 'An Adaptable Scheduling Algorithm for Flexible Flow Lines',

Operations Research, 36

Wortman, J. and W. Monhemius, 1984, 'Kanban-lts Use as a Final Assembly
Scheduling Tool Within MRP', Operational Research '84, ed. J. Brans,

Elsevier Science Publishers

APPENDIX 1

1. Introduction

Frederickson (1983) considers the problem of scheduling n, unit-time
tasks, T,,T,.....T, on m identical processors, where each task has an integer

release time r.and an integer deadiine d, such that no task starts prior to its

release time or completes beyond its deadline. The problem can be solved by
scheduling according to the earliest deadline rule (Garey et al, 1981) and
Frederickson demonstrates how this solution technique can be implemented to
runin O(n) time. Frederickson, however, does not account for a possible
infeasibility condition, described as deficiency case 2 in chapter 4, and
consequently the algorithm could potentially construct a schedule which is not
feasible. Deficiency case 2 corresponds to the condition of having to schedule
too many tasks into the available starting times. However, a test for this case of
deficiency can be incorporated into the algorithm to allow either the determination
of the best feasible schedule or the conclusion that no feasible schedule exists.
This modification requires the addition of only constant time, thereby preserving

the linearity of the algorithm.

2. Scheduling Algorithm

Frederickson's algorithm involves three phases; a sorting phase using
a table structure; a partitioning phase where the tasks are separated into subsets,
each of which can be scheduled independently; and a final phase in which each
subset is translated into an off-line minimum problem on integers not exceeding

the size of the subset.

213

214

In the first phase, tasks are placed into an uninitialized table which
contains M locations, where M is the size of the largest deadline. An auxiliary
stack of maximum size n is maintained to indicate which table locations possess
meaningful information. Meaningful information at table location r' is indicated by
having the contents point to location x in the stack, which in turn points back to
location r' in the table. Associated with each meaningful location r' in the table
will be a list of tasks with release time r'. The lengths of these lists are
maintained as the tasks are entered into the table.

The second phase partitions the schedule into compact sections
where each section starts at some release time, r', and extends untit the number
of tasks released during the section is less than or equal to the number of time
units available within the section. This paritioning makes use of the table and
stack structure employed in phase 1 and can be considered as analogous to
ensuring that deficiency case 1 is satisfied within each compact section.

In the third phase, each compact section is treated as an individual
scheduling problem and the release times and deadlines of the tasks within each
section are transformed and reindexed so that the first release date occurs at
time 0 and the transformed deadlines,t'lt are such that aﬁﬁiimplies that i<j. A
sequence of instructions is then constructed and executed for an off-line
minimum problem and the schedule is extracted. An off-line minimum problem is
defined as follows: There is initially an empty set S and a sequence of two types
of instructions, INSERT(i) and EXTRACT-MIN. The instructions are executed in
turn and eitner insert an integer isn into S or find and delete the minimum

element of S.

215

A sequence of EXTRACT-MIN instructions is constructed whereby the
number of these instructions equais the number of tasks within the compact
section. INSERT instructions are placed in front of the appropriate EXTRACT-
MIN instructions to correspond to when the various tasks are released. This
sequence of EXTRACT-MIN and INSERT instructions can then be executed as
an off-line minimum problem.

If index i is removed by the ' EXTRACT-MIN instruction then task T,
will be scheduted in time step r'-1+[j/m)on processor 1+(} - 1) mod m. Itis
possible, however, that even though the number of release times within a
compact section is greater than or equal to the number of tasks, that the
deadlines of a subset of the jobs in the compact section would be such that the
cardinality of this subset exceeds the number of starting times available and that
no feasible schedule is possible. This corresponds to deficiency case 2 and can
best be demonstrated by a simple example.

Example: Assume that there are five tasks to be scheduled on a single
processor, where each task,, is denoted by the triple
(ir,d;)- These tasks are: (1.1.2), 2.1.3), (3.1.3). (4.25) and (5.4,6). Using the
method of Frederickson, phase 1 and phase 2 will place all of these tasks into the
same compact section. The instruction sequence for the applicable off-line
minimum problem is; INSERT(1), INSERT(2), INSERT(3), EXTRACT-MIN,
INSERT(4), EXTRACT-MIN, EXTRACT-MIN, INSERT(S), EXTRACT-MIN,
EXTRACT-MIN which will construct the schedule 1-2-3-4-5. This schedule is not
feasible because task 3, which has a deadiine of 3, will complete at time 4. The

infeasibility occurs because tasks 1, 2and 3 all have release time 1 and must all

216

be completed by time 3, thereby requiring that three tasks be scheduled into two

starting times.

3. Conclusion

Frederickson's algorithm can be modified in one of two ways. Firstly, if
the above infeasibility condition is encountered then the: algorithm could stop,
declaring that no feasible schedule exists for the set of tasks. Alternatively, if the
deficiency case is encountered, the algorithm could be madified to construct a
sequence for the maximum number of jobs which can be feasibly scheduled.
These modifications can be achieved in the following way.

Define an EXTRACT-MIN instruction to be feasible if the task selected
by it can be scheduled within its release date and deadline. Modification 1 would
stop if an infeasible EXTRACT-MIN were encountered. That is, if -1 feasible

EXTRACT-MIN instructions have been encountered thus far by the algorithm,
and the index i selected by the current EXTRACT-MIN is such that d<[j/m] then

task T,cannot be feasibly scheduled. Modification 2 would state that if index i is
removed by the [feasible EXTRACT-MIN, then, letting k=max{ [ifm) r} task T,

will be scheduled in time r'-1+k. Either of these modifications could be performed
in constant time, thereby preserving the linear time nature of Frederickson's

original algorithm.

APPENDIX 2
A Linear Time Algorithm for Maximum

Matchings in Convex Bipartite Graphs
1. Introduction

Let G=(V,,V,,E) represent an undirected, bipartite graph. V. and V, is

a partition of the vertices and E is the edge set in which each edge (ij) is such
that ieV, and jeV,. A matching is a subset, M, of these edges such that no two
edges in M are incident to the same vertex (Berge 1985). M is of maximum
cardinality (or simply maximum) if it contains the maximum number of edges.
Glover (1967) describes a special instance of a bipartite matching

problem which he refers to as that of determining the maximum matching in a
convex, bipartite graph. The graph G is V-convex if (i.)€E and (i k)eE with

jkeV, and j<k implies that (i,))eE for jslsk (Derigs et al 1984). For a convex
graph, the required ordering on V, is explicity provided by the values of some
parameter associated with each jeV,,. It can therefore be assumed that a convex
graph is given by specifying the ordering on V,, and by specifying, for every ieV,,
two values a and b; the smallest and largest elements respectively of the interval
of the vertices of V, connected toi.

Glover provided an O(El) algorithm for the maximum matching
problem in convex, bipartite graphs. Let IV,!=nand |V, |=m. Lipski and

Preparata (1981} presented an almost linear time O(m+nA(n)) algorithm; where

A(n) is a very slowly growing function related to the functional inverse of

217

218

Ackerman's function [for a description of the Ackerman function see Tarjan
(1983, p24-29)]. In this appendix, an O(n) aigorithm is given for the maximum
matching problem using data structures applied by Frederickson (1983) to a
machine scheduling problem. This aigorithm also addresses the issue of
matching deficiency case 2, described in chapter 4, for ensuring the feasibility of
a matching which is not accounted for by the algorithm of Frederickson (see

Appendix 1).

2. Matching Algorithm

The matching algorithm requires the execution of three specific stages.
The first stage invoives bucketing the vertices of V, into an uninitialized table with
T=mzi1x{bi} locations. An auxiliary stack, of maximum size n, is maintained to

indicate which table locations possess meaningful information. This type of table
and stack structure is discussed in Aho et al (1974, p71). Meaningful information

at table location v is indicated by having the contents point to location x in the
stack, which in turn points back to location v in the table. For each vertex ieV,,

an entry is made into table location &, Associated with each meaningful table

location v will be a list, L(v), of those vertices having a=v. The actual length of

each of these lists is updated as each vertex is entered into the table. From the
description above, each pointer in the stack must carrespond to & vertex a,, ieV,.

Hence, when this first stage completes, the n pointers in the stack will consist of
the entire set of the n vertices a,, ieV,, arranged in the: stack by the order in which

each vertex i was placed into the tabie.

219

Stage two partitions G into distinct components of V,, by combining
some of the lists of vertices created in stage 1. Each component starts ata veV,
and extends until the number of vertices igV, connected to the component is less

than or equal to the number of vertices of V,, in the component. This stage is

anologous to a check for the matching deficiency case 1.
The process of creating these components is to examine the vertices of

V, to which vertices frem V, can potentially be matched. For each vertex ve{ai}

in the stack, if v has not been previously examined then the following procedure
is performed:
AV, component is constructed by scanning through the table starting from

location v. When this scan terminates, a list, L(v), of vertices iV, along with
the number of vertices in the list, will be associated with v. During the scan,
each potential value of an a, say the vertex v\ is checked by using the
pointer into the stack to determine if it is a meaningful table entry (i.e a valid
a). If v'is a valid a,and has not been examined previously, then the list of V,
vertices, i, in which a,=v' {l.e. L(V)) is appended onto the current component's

list, L(v), and its count is updated. If v'is a valid a that has already been

examined, then the component starting at V' (i.e. L(v') is incorporated into the
current component by adding the number of vertices contained in it and
appending them onto the list, L{v), of the current component. In this case, the
scan continues after bypassing the values of aincluded in the component
that started at V'. Hence, previously encountered components can be
incorporated into the current component in constant time.

No more than n table entries will be examined in the second stage and

no entry can be examined more than twice. Upon the conclusion of this stage,

220

there is a list of /,,-components of the graph and a list of V.-vertices available for
matching into each of these components.

The third stage requires that each component be processed
separately. The following transformation is performed on each component. Letz

be the number of vertices in the component and let v be the value of the smaliest
V, vertex in the component. Define the modified a,and b, to be,

a=(a-v+1) and b,= min {bi-v+1, z}

Reindex the vertices so that b.< b, implies that i<k. Bucketsort the pairs (&) into

lexicographicaily increasing order.

Now construct and execute a sequence of instructions for an off-line
minimum problem (Aho et al 1974) and extract the matching. An off-line
minimum problem is such that there is initially an empty set S and a sequence
consisting of the instructions, INSERT(i) and EXTRACT-MIN. The instructions
are executed sequentially and wil either insert an integer i no greater than ninto
the set S or find and delete the minimum element of S. The problem is off-line as
the whole sequence of instructions must be supplied before any instruction can
be executed. Construct a sequence of z EXTRACT-MIN instructions. Before the
k" EXTRACT-MIN instruction, k=1,2,...., place INSERT(j) instructions for all i

with &=k in order of the previously determined lexicographic order. When an

EXTRACT-MIN instruction is executed then define it to be the jt” feasible
EXTRACT-MIN, jsz, if either the index i selected by it is such that 5laj or if S=0.

Otherwise the EXTRACT-MIN instruction is infeasible. The matching is

determined as follows: If index i is removed by the " feasible EXTRACT-MIN
instruction, then, letting k=max {} &}, i is matched to the (v-1+k)" vertex of V. An

infeasible EXTRACT-MIN would correspond to encountering the matching

221

deficiency case 2. Here the algorithm does not stop since a maximum matching,

as opposed to a perfect matching, is sought.

Theorem
The maximum matching problem in the V,-convex bipartite graph

G=(V,,V,,,E) with IV, I=n can be solved in O(f(n)) time, where f(n} is the time to
solve the off-line minimum problem.
Proof

The preceding approach can be used to determine the maximum
matching in the graph as it would construct the same matching as the algorithm
of Glover (1967). In stage 1, inserting vertices into the table requires constant
(i.e. O(n)) time. Similarly, in stage 2, at most n entries will be examined in the
table and no entry will be examined more than twice. A constant time is
expended per table entry examined; thus this stage requires O(n) time. In stage
3, the translation phase requires O(n) time. The solution of a sequence of
INSERT and EXTRACT-MIN instructions requires O(f(2)) time, where z is the
number of V, vertices in a component. Hence, matchings in all components will

require a total of O(f(n)) time. o

Coroliary

The maximum matching problem in convex bipartite graphs can be
solved in O(n) time, since Tarjan (1983) has shown the off-line minimum problem

tobe linear. 0O

APPENDIX 3

SAMPLE MULTI-LEVEL PROBLEM

This appendix provides the information for an L=4 ievel problem with
n,=8 products and a total demand of D,=500. The number of parts at each level
are as follows; at ievel 2 there are n2=24 parts, at level 3 there are n3=46 parts,
and at level 4 there are n =58 parts. The level 1 product requirements vector is:

D =20, 59, 86, 114, 12, 48, 63, 98].
The range of part requirements for each product at every level is R,=20, R;=20

and R,=20. The pan requirements for each product are shown; for level 2 in

table A.1, for level 3 in table A.2, and for level 4 in table A.3. The rows of each of
these tables corresponds to a particular part in that level and the entry under
each product in a particular row corresponds to the number of parts of the type in

that row which are required in the production of one unit of that product. For
example in table A.1 for part 1, product 1 requires t,,,=19 of these parts, product

2 requires t,,,=11 of these parts, product 3 requires t,,=2 of these pans and so

on.

The DP was run using this data with the following results. The optimal,
minimum value of the maximum deviation for a production schedule was 17.658.
The screening value, corresponding to the best heuristic solution, was 17.879.
Using this screening value as a fiiter, the DP generated only 3,219 sets out of the
50,879,430,201,600 potential number of feasible sets in determining the optimal |
solution in 2 minutes 59 seconds. The optimal sequence is shown in table A.4,

which shows which level 1 product is to be produced in each stage.

222

223

Table A.1: LEVEL 2 PART REQUIREMENTS

Product
Part 1 2 3 4 5 & 7 8
1 19 11 2 2 12 5 3 16
2 17 3 12 17 2 1 0 7
3 19 19 6 10 6 2 18 14
4 7 18 12 8 5 17 7 6
5 6 0 7 14 18 4 8 1
8 1 12 13 15 5 12 1 7
7 15 14 13 3 12 3 13 18
8 6 16 6 12 10 4 18 19
9 4 3 2 8 16 13 7 12
10 4 S 15 14 12 5 4 5
11 0 10 13 3 2 18 11 10
12 15 19 9 13 6 9 5 16
13 13 8 12 11 2 11 17 13
14 9 9 11 10 9 11 13 Q
15 16 1 4 4 9 0 1 9
16 11 19 4 11 14 14 17 2
17 3 9 0 14 16 13 8 6
18 16 9 2 15 16 12 12 15
19 11 9 4 5 12 1 3 10
20 10 1 19 17 6 11 6 13
21 15 4 5 1Q 5 19 1 13
22 7 3 16 13 10 19 11 6
23 7 2 5 5 15 15 10 10
24 8 9 11 18 10 3 8 13

TABLE A.2: LEVEL 3 PART REQUIREMENTS

Product

Part 2 3 4 5 6 7 8
1 0 5 19 19 9 9 12 2
2 7 8 0 0 17 0 15 11
3 12 17 10 4 18 7 1 1
4 1 4 12 9 4 19 12 9
5 7 13 1 13 2 0 2 2
6 13 0 7 13 0 13 12 4
7 18 9 8 13 5 11 16 3
8 11 8 12 0 18 17 11 0
9 3 0 0 6 0 10 17 <]
10 8 1 19 6 13 3 18 13
11 7 5 9 19 13 11 3 11
12 10 2 4 15 4 18 8
13 10 17 5 4 6 11 12 15
14 15 9 14 16 12 9 0 18
15 8 8 Q 2 0 9 13 17
16 3 9 7 2 1 4 11 2
17 17 7 8 16 2 4 1 8
18 14 5 2 10 5 18 13 6
19 19 17 6 11 4 18 12 17
20 14 4 15 1 15 0 15 Q
21 1 13 15 12 5 14 4
22 0 3 14 g 4 4 15
23 3 8 2 16 5 3 5 4
24 0 4 12 9 11 2 3 8
25 0 17 8 0 2 0 2 2
26 3 19 11 4 15 19 4 14

225

27 8 14 1 12 4 4 17 12
28 16 18 0 16 g 18 19 6
29 3 15) 14 18 9 12 0
30 12 19 1 15 1 0 16 18
31 10 8 12 1 2 8 10 16
32 11 18 11 8 19 1 13 19
33 2 2 2 S 7 3 11 17
34 8 15 3 14 19 14 10 15
35 9 156 8 8 1 2 5 6
36 12 6 12 5 4 4 4 4
37 16 8 4 6 16 4 4 10
38 12 8 16 4 11 12 3 1
39 12 4 3 3 6 17 1 17
40 1 10 3 3 14 5 0 9
41 10 4 5 14 15 10 16 18
42 18 3 11 2 9 7 3 3
43 12 14 16 0 19 1 16 1
44 14 6 18 10 14 2 16 8
45 13 14 19 11 12 7 6 16
45 16 16 15 0 17 12 16

226

TABLE A.3: LEVEL 4 PART REQUIREMENTS

Product
Part 1 2 3 4 5 6 7 8
1 6 10 19 7 12 6 10 7
2 16 2 11 17 15 18 8 3
3 3 7 3 0 16 17 3 13
4 8 4 5 10 4 14 7 0
5 17 11 4 16 2 5 15 8
B 10 18 5 10 8 19 3 2
7 10 11 3 9 9 7 15 13
8 3 11 17 14 4 0 10 5
9 1 7 3 12 15 7 8 4
10 5 17 5 7 5 19 1 19
11 14 16 6 13 10 13 9 14
12 3 3 13 5 11 4 10 15
13 8 11 10 4 4 4 1 18
14 5 8 0 17 14 8 14 7
15 8 12 12 4 16 10 19 10
16 7 17 3 10 g 17 3 14
17 8 0 3 1 19 4 4 2
18 2 12 13 16 4 6 8 8
19 5 11 8 17 15 14 3 12
20 7 6 14 9 5 14 12 11
21 5 12 5 12 19 17 8 15
22 14 1 1 14 7 18 17 6
23 14 10 3 7 9 16 15 8
24 18 17 4 10 4 3 12 18
25 3 11 3 9 18 9 2 4
26 7 5 18 11 17 19 4 18

227

27 || 1 g 13 12 11 7 10 15
28 || 6 7 8 14 19 | 17 6 17
29 || 1 3 g 4 15 | 5 17 15
30 | 14 | 3 g 18 S 14 4 13
a1 i 10 10 16| 8 6 17 3 17
32 | 3 10 17 11 19] 19 8 13
33 || 16 18 1 8 11 10 3 10
34 ||l 14 | 1 17 15 2 15 19 4
35 | 1 0 17 13 12| 15 9 6
36 | 6 12 14 | 5 1 Q 1 18
37 || 3 9 19 16 14 | 4 9 5
38 || 17 16 17 17 17_ | 1 3 17
38 | 12 |9 4 6 17 | 5 2 13
40 | 1 13 17 |9 0 1 18 11
41 || 13 12 10 | 3 4 10 3 13
42 | 15 19 3 6 16 | 1 19 | 8
43 |l 19 10 12 | 8 5 13 16 4
4 || 3 5 1 6 16 |9 1 15
4 15 |9 5 4 14| 4 15 | 5
46 || 10 15 18 17 4 14 18 | 0
47 || 13 1 19 |0 g 2 4 0
48 || 10 16 14 11 8 1 2 19
49 | 14 | 2 19 15 9 7 13 4
s0 | 12 | 12 4 16 7 5 2 0
51 || 4 1 6 3 16 14 19 0
52 || 11 4 17 10 0 2 3 1
53 1 14 18 13 14 7 11 4 .12
54 | 17 13 15 19 15 | 7 4 1
55 || 18 14 | 3 0 4 g 14 18
56 || 1 3 10 1 18 | 5 17 1
57 | 15 | 8 12 19 18| 14 17 |5
58 11 2 13 0 4 5 4

228

TABLE A.4: OPTIMAL PRODUCTION SEQUENCE

Product

4

76

78
79

80
81

82

84

85

86

87

88
8%

g0
81

92
93

94
95
86
g7

89

100

Product || Stage

8

51

52

54

17
ul

56

57
58
59

60
61

62

64
65

67
68
69
70

71

72
73

74
75

Product | Stage

26

27

28
29
30
31

32
33
34
35
36
37
38
39

41

42

47

49
50

Product | Stage

Stage

10

11

12
13
14
15
16
17
18
19
20

21

23
24
25

229

TABLE A.4 (cont.). OPTIMAL PRODUCTION SEQUENGE

Stage | Product || Stage | Product ||Stage [Product |{Stage | Product
101 8 126 3 151 8 176 3
102 3 127 8 152 4 177 8
103 4 128 6 153 6 178 4
104 5 129 4 154 3 179 7
105 8 130 7 155 8 180 8
106 2 131 8 156 4 181 5
107 4 132 3 157 7 182 4
108 7 133 2 158 2 183 2
109 3 134 4 159 6 184 8
110 8 135 1 160 4 185 3
111 6 136 8 161 3 186 8
112 4 137 3 162 8 187 4
113 2 138 7 163 7 188 7
114 3 139 4 164 4 189 3
115 7 140 8 165 2 190 2
116 8 141 6 166 1 191 4
117 4 142 3 167 3 192 8
118 1 143 2 168 8 193 1
119 3 144 4 169 4 194 6
120 8 145 8 170 7 195 7
121 6 146 7 171 8 196 3
122 4 147 5 172 3 197 4
123 2 148 4 173 6 198 8
124 7 149 3 174 2 199 2
125 4 150 2 175 4 200 4

230

TABLE A.4 (cont.): OPTIMAL PRODUCTION SEQUENCE

Stage | Produci |Stage |Product {Stage | Product || Stage [Product
201 3 226 7 251 2 276 6
202 8 227 4 252 4 277 2
203 7 228 8 253 3 278 3
204 4 229 5 254 8 278 8
205 S 230 4 255 6 280 4
206 8 231 3 256 4 281 7
207 3 232 8 257 7 282 3
208 2 233 2 258 8 283 8
209 4 234 4 258 3 284 4
210 7 235 6 260 2 285 2
211 8 236 7 261 4 286 B
212 3 237 3 262 1 287 4
213 4 238 8 263 8 288 1
214 1 239 1 264 3 289 3
215 3] 240 4 265 7 290 8
216 2 241 7 266 6 291 7
217 3 242 8 267 4 292 4
218 8 243 3 268 8 293 2
219 4 244 2 269 5 294 3
220 7 245 4 270 2 295 8
221 4 246 8 271 4 296 B
222 8 247 8 272 3 297 4
223 3 248 3 273 8 298 7
224 2 249 4 274 4 299 8
225 6 250 7 275 7 300 3

231

TABLE A.4 (cont.): OPTIMAL PRODUCTION SEQUENCE

Stage Product | Stage | Product |[Stage | Product || Stage | Product
301 4 326 4 351 5 376 8
302 2 327 2 352 2 377 7
303 8 328 6 353 4 378 2
304 7 329 3 354 3 379 8
305 4 330 8 355 7 380 4
306 3 331 7 356 8 381 8
307 6 332 4 357 4 382 3
308 2 333 2 358 2 383 4
309 4 334 3 359 3 384 2
310 8 335 1 360 B8 385 7
311 3 336 8 361 8 386 8
312 5 337 4 362 4 337 3
313 8 338 7 363 7 388 1
314 4 339 6 364 1 389 4
315 7 340 3 365 3 380 8
316 5 341 8 368 8 391 6
317 1 342 4 367 4 392 3
318 2 343 7 368 7 393 7
319 4 344 2 369 8 394 4
320 3 345 4 370 8 395 2
321 8 346 8 371 3 386 8
322 7 347 3 372 2 397 5
323 4 348 6 373 4 398 4
324 8 349 8 374 8 398 -3
325 2 350 4 375 3 400 8

232

TABLE A.4 (cont.): OPTIMAL PRODUCTION SEQUENCE

Stage | Product f|Stage |Product | Stage | Product | Stage | Product
401 4 426 8 451 8 476 3
402 7 427 3 452 3 477 4
403 6 428 2 453 6 478 8
404 2 429 4 454 2 479 2
405 3 430 8 455 4 480 4
406 8 431 7 456 3 481 3
407 4 432 6 457 8 482 7
408 7 433 4 458 7 483 8
409 4 434 3 458 4 484 4
410 8 435 2 460 8 485 6
411 3 436 5 461 1 486 2
412 2 437 8 462 3 487 3
413 6 438 4 463 2 488 8
414 1 439 1 464 4 489 4
415 4 440 3 465 6 490 7
416 8 441 4 468 7 491 1
417 3 442 8 467 4 492 3
418 7 443 7 468 8 493 8
419 4 444 8 469 3 494 4
420 2 445 2 470 2 495 2
421 3 446 3 471 7 496 8
422 6 447 4 472 4 497 7
423 8 448 8 473 5 498 3
424 4 449 7 474 8 499 8
425 7 450 4 475 6 500 4

