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ABSTRACT _

Let. A be a topological g]gebra. A (Schaader) basis {xn} in A
is called an onzhoqonal basis if zzx =8 x,nmeN (& denotes ( ]
Kronecker's delta). A basis in A of the form (2" :n=0,1,...},.z € A,
is called a cyclic basis. This thesis is concernéd with the structure
of topo1o§ica1 algebras possesing bases of these types. It is shown
how the existence of suéh bases determines algebraic and topological
properties of A.‘ An interesting connectidn between the dense maxima’l
ideals @nd.the topological du;l of certain types of topological a1ge5ras'
hgving unconditional orthogonal bases is explored. These results are

_used to obtain characterizations of some impoftant F-algebras in terms

of the type of bases they possess. _ . -

79

L7
.



1‘\’/%

ACKNOVILEDGEMENTS

[ wish to express my heartfelt thanks to my supervisor, Professor
Taqdir Husain, to whom I owe my interest in functional analysis and whose
research 'in the subject inspired the topic of this thesis. 1 thank him
also for his most important advice and direction in its prenaratioﬁ.

My thanks go to Dr. James Stewart and Dr. H. Heinig for their
stimulating courses which were an invaluable addition to my understanding

of analysis.
Ql
I also extend my appreciation to McMaster Universit} for the
ﬁ ¥
generous financial support offered throughout my course of study there.

4

Fﬁna]]y, I would 1like to thank my father for his ‘excellent work
in writing those parts of this final report which had to be written by

hand. Above all I thank my father and mother and family for their support

/‘

and encouragement tqat made th1§‘work possible, especially my mother who -
/‘\
rwas, my first teach57~9£, themat1cs,

iv



INTRODUCTION

Chapter 1

TABLE OF CONTENTS

PRELIMINARIES_

1. fopologica] Vector Spaces

Chapter 11

Chapter 111

Chapter IV

REFERENCES

2. BaseS in Topological Vector Spaces
3. Topological Algebras

4. Cyclic Bases

5. Orthogonal Bases =

ORTHOGONAL BASES

1. Examples*and Perménence Properties
2.-Closed Ideals .

3. Locally M-Convex Algebras
UNCONDITIONAL ORTHOGONAL BASES

1. E-RegUlarity

2. The Space JM(A)

3. Maxima] Ideais and the Dual Space

CYCLIC BASES

1. The Spectrum of the Generator 4

2. The F-Algebra H(®)
3. Unconditional Cyclic Bases

4. Uniqueness of F-Algebra Topology

-

17
21
24
33

34 -
S a4

50
60

68
76
86
86
a3

102

106
112



AT BRTIRCTET T ae g et

o

iNTRODUCTION

It has been known for a long time thaf every separable Hilbert
space has a basis (a complete orthonormal set). Schauder [36] first in-
troduced the concept of bases in complete normed spaces, which generalize
Hilbert spaces, and constructed bases for many of the co&p]ete normed
spaces encountéred iﬁ analysis. In his treatise [4] on the theory of
linear operators, Banach proved some of the fundamental properties of
bases and posed Fhe prob]eﬁ of whether every separable Banach space has
a basis. This long standing prqblem (called the "basis problem", and
?ina]]y settled in the negative in 1972—by Enflo [13]) generated consid-
érabie ipterest in the subject. Consequently, today there is a large
number of results on the theory of bases. They reveal a very close con-
nection between-the existence of bases and the structure of topological

vector spaces.

Many of the topological vector spaces studied in analysis are in

-fact topological algebras under some natural multiplication. An invest:

ﬁgation of the behavior of the basis with respect to the algebra product
in severaljof these.examples Teads td the observation that the,base§
behave in é.part%cularly simple way. For example, the algebra H(D) of
analytic functions on the open unit disc D (with poinéwise operations
and compact-open topology) has the sequeéce of functions {z7:n=0,1,...}

as a basis. Thus in this case the basis is multiplicatively generated
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by a single element. As another example, consider the Banach algebras

e, o< { < © (with pointwise operations). The unit vectors o=
{6 1, n=1,2,... (where 5,,, denotes Kronecker's delta) form a basis in

3

¢ Lg) in which each ¢ 1is idempotent (i.e., »' = ¢ ) and » o = 4 for
n ¥, n nom

w4 m. There are numerous other examples of topological algebras having

bases.

In another'direction the theory of topological algebras itself
has undergone considerable development since lhe appearance of Gelfand's
paper [14] on normed algebras. MWe are particularly interested in the
theory of locally m-convex algebras (first introduced by Arens [2]) and
in LC-algebras. These algebras afford a more natural setting than Banach
algebras for the study of bases. This is so because, as we will show,
in some cases a topological algebra with a basis cannot be normed. We
shall be especially interested in complete metrizeable locally m-convex
algebras (hereafter called F-algebras).

Bases in the context of topofogica] a]gebra§ were first studied
by Husain and Liang in [22] and [23]. They were interested in the
question of the contipuity of multiplicative linear functionals on F-
algebra§ with bases (where the bases satisfy different multiplicative
;onditions). In this thesis we initiate a ;tudy of the structure of
topological algebras with bases. We will consider.bases satisfying the
properties of the bases given in the above two examples. Bases which
are generated by a sing]é element will be called cyclic bases. A basis
with the property that each element is idempotent and the product of
two different élements is zero will be called an cnthogonal basis. “

Naturally, some of our results about algebras with bases will generalize
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results known for specific algebras. Our methods will allow us to
extend these results to any algebra with the same type of pasisn For
'example we will see (Chapter TI) that certain properties known about the
closed ideals of the algebra H(D) are in fact shared by all algebras
with orthogdnal bases (such as Foor WP, 1< p < ). Thus oyr defini-
tions give us a convenient framework in which to study certain aspects
of all these algebras at once. o

. - In analogy with the theory of bases in topological vector spaces

it is to be expected that the existence of a basis (cyclic or orthogonal)

in a topological algebra would give valuable indications on the structure

-

N

of the algebra or of ifs closed ideals. In fact it will be seen that

properties of the bases determine such aspects of the topological
7,

algebra (F-algebra) as semisimplicity, the form of the closed ideals,

the uniqueness of F-topo]ogjes, or the topological character.of the

- —

maximal ideal space. ome cases the existence of a basis completely

describes the algebna. /In this way we get characterizations of certain
important F-algebras.

' Chapter I is mainly devoted to known results which will be needed
1atef: We also introduce the notions of cyclic and orthogonal baées and
prove some general results concerning topological algebras posseésing such
bases.

In Chapter II we study topological algebras with orthogonal bases.
In particular, we deséribe thé.closed ideals of such algebras and use

these results to give a characterization of complete locally m-convex

algebras with orthogonal bases.



Chapter 11 de§]s with maximal ideals in ‘LC-algebras A with
unconditional orthogonal bases. We define a form of Jocal invertibility
for elements of A we call E-regularity. This enables us to describe
the collection M (A) of all maximal ideals of A. We prove that M (A)
with the hull-kernel topology is homeomorphic to 8M(A), the Stone-fech
compactification of M(A) (the maximal ideal space of A). We also use
E-régu]arity to determine the ideal which is the intersection of the
dense maximal ideals of A and we show the relationship of this 1deal
to the dual space A' of A.

Finally, Chapter 1V deals w%th‘topo]ogical algebras having
cyclic bases. We describe the spectrum of Ehe element gené}ating the
basis and use our results to give a characterization of the F-algebra

H(2} (of holomorphic functions on the simply connecteqadomain Q). We

“also prove that an F-algebra with a cyclic basis has unique F-algebra

topology.



Chapter |

PRELIMINARIES
f
In this chapter we give the definitlonﬁ and some of the fundamen-

tal proQQrties of the structures to be stud1ed}in the following éﬁapters.
The chapter is divided into five sections. The first Fhree deal{igipgc-
;ively with topological vector spaces, bases ?n toplogical vector spaces,
and top§]og1ca1 algebras. We sta£e the major theorems of these subjects
in the form we will need them later. In general proofs are not given
since there are many excellent books (e.g. [27], [37], and [30]) where
they can be found. We prove, however, some results concerning bases
wHich are'simple gene}aliéations to the setting of complete metric spaces
of results known for Banach spaces. In Sectioq.d we define cyclic bases
and briefly discuss the representation of a complete Tocally m-convex
a]gara with a cyclic basis as, the inverse lwmmnit of Banach algebras. In
the last section we define the concept of orthogonal bases and show that

in a certain sense (see Theorem 1.18 for the exact statement) a topological

algebra can have at most one such basis.

1. Topological Vector Spaces
o ,

A topelegeeal vecton space (TVS) is a vector space E over K(the
field of real or complex numbers) together with a Hausdorff topology T
such that the operation + is continuous from E = E into E and the scalar

prodyct is continuous from X xE into E. Every TVS has a neighbourhood
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base for the topoiogy“‘} 0 consisting of circ1§d_and absorbing sets. A
TVS is called {ecally conven if it possesses a neighbourhood base for the
topology at O consisting of convex sets. The topology of a locally
convex TVS can always be generated by a family of semdncams (subadditive,
positive homogeneous, symmetric fynctions from E into ﬁ;') where the
seminorms are taken to be the gauge functions of a famiTy of convex O-
neighbourhoods whose positive muitiples form a subbase at 0. The gauge
:. qf a set v is defined by Iy = in®{D>0 1z ¢ AV}. A family of semi-
norms is deected if it is a directed set under the order p(x) < g(x)
fer all = ¢ E. A locally convex topology for E can always be generated
by a dgrected family of seminorms.

Every TVS is a uniform space and its topology can be derived
grom aunique transiation invariant uniformity. A TVS is complete if it
is complete in this uniformity. EVery TVS has a unique (up to isomor-
phism) complet{on. : o

A TVS is metnizeable if its topology is metrizeable. A locally
convex TVS is metrizeap]e if, and only if, its topology can be defined
by an increasing sequence of seminorms {pn: n=1,2,...1. In this case

a translation invariant metric is given by
f

Dy, (x-y)

s 0

’ 1
dor) = U F Ty

n=j7 .« wn .

A complete metrizeable locally convex VS is called an F-space. A TVS
E is nogmab@c if its topology can be generéted by a single nonm (i.e.
a seﬁinorm,whfch has the property that p(z)=¢ iff x=0). A complete
normed IVé is ca]?ed a Banacn dpace. - |

;

A Laneart functional © is a linear map f:E -~ K. Let E be a



}§;a]1y convex TVS whose topology is generated by a directed family of
seminorms {pal a € A}. A Tinear functional f on E is continuous if, and
only if, there exists an o ¢ A and o > 0 such that [f(x)| < ep (x) for all
¢ E. If £ is a linear functional defined and conmtinuqQus on a subspace
of E, then f has a continuous linear extension to all of{E (the Hahn-
Banach theorem). A collection ¢ of linear maps fro TVS E into a
TVS F is called equicontinuous if for each neighbourhood Vv of O in F,
m{f‘-](V): Fe ¢} 1s a neighbourhood of 0 in E%\)A collection of linear
functionals ¢ on a locally convex space E (with a directed family of
seminorms {pu fa e_A} generating' its topology) is equicontinuous iff
there exists « ¢ A and 2 > 0 such that |f(x)] §_cpa(x),for all z¢E
and 7 ¢ 9. Now,‘1et {Tn} be a sequence of continuous linear maps from
a complete metrizeable TVS E into a TVS F. If for each x ¢ E the
sequence {Tn(x)] is bounded in F and is Cauchy for each x in a dense
subset of E; thf“ {Tn(xJ} is Cauchy for each-x e E (the Banach-Stein-
haus theorgm}:/ Also, if {Tn(x)} converges to T(xz) for each z ¢ E, then
T(x) is linéar and continuous.

If E, F are complete metrizeablé spaces then a continuous linear
map from E onto F is open (The open mapping theorem). A corollary to
this result is the closed grabh theorem: with £ and F as above a ]i;ear
map from [ into F with closed graph is continuous.

We now prove a result which follows from the closed graph theorem
and thch we will use later. First, recalil that a family of maps ¢ on

E is called separatwng if for every x and y in E with 2% there is an

7 ¢ @ with the property that M # Flu).
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a wear omwe TiF o FoUs concinucus (F, and only T, Fell i somtds -
- .

woue oy coern T ¢
. .

oo { =) clear.

(€= ) Let {ak:\ ¢ A be a net in E, 7y >, and sdppose that
T{ay% ~ b Since each 7 ¢ ¢ is continuous, it follows that f(T(aA)) -
i), Also, since 7T is continuous, we have that (foT)(aA) » (FoT)ia)
for all F ¢ &; i.e., f(T(aA)) ~ f(T(a)) for all < ¢ ¢&. Since the

limit of a convergent net in K 1is unique, it follows that f(&) = £(T(a))
for all £ e &. Now, since ¢ is separating, we\have that b = T(a).
Hence, T has closed .graph and is thus continuous by the closed graph

v

theorem. /111

We note that the above theorem (and hence other results in this
thesis) is true if £ and F are in any glass of .topological vector spaces
for which the closed graph theorem ds (see [20] for a discussion of
such spaces). However, we will restrict ourselves here to considering

complete metr{?@ab%e TVS's ontly. .7

e

If E anq F are topological vector spaces t?gn_thégr product
E ~» F (their algebraic product endowed with the B}oduct topology) is a
topological vectof space. If E Snd F are locally convex, then so ié
their product £ » F. Also, E < F is complete if, and only if, both E *
and F are complete. We note here also that if E and F are locally
convex then the injections iE and ;F of £ and F, }espectively, into

-

the product £ » F are isomorphisms {topologicaily and algebraically)



onto their respective Amages.

If £ is a topglogical Qector space and if H is a closed subspace
of E then the quotient E/H (the'algebraic quotient endowed with the
quotient tgpo]ogy) is a topological vector space. If E is also locally
convex, then so is E/H. Moreovér, if £ is locally convex and if {pa}
is a directed familty of seminorms generating the topology of E, then
the family of seminorms {5a} on E/H defined by

ﬁa(i) = inf {pa(y) Sy e F)

-

(where 7 is the image of x unde:\the canonical map n:E-» E/H) is a
directed family of seminorms generating the topology of E/H. It is

not trug in general that E/H is complete if E is complete. However,

if £ is\an F-space, then so is E/H.

o

ina]]y,_we‘consider the 1jnear space £' of all continuous

linear functionals on E. E' is called the topoLogical dual (or simply

of E. If E is a locally copvex space, then E' separates points

of E. Several topologies can bf introduced on the dual. We will be
interested in the weak topoldgy o(E',E) which is the topology of !
uniform convergence on finite subsets of E.

The definitioﬁé nd results mentioned in this section can be

found in any one of [27], Y35], or [40].

2. Bases in Topolvgical Vector Spaces

Let E be a TVS. A basis for E is a sequence {x,} in E with the
property that for every x ¢ E, there is a unique sequence &ln} in K such

that » = Ejz]anxn, where the series converges in the topology of E. The
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ceeggecent gunctenatls associated to the basis {.» } arc the function-

als > defined by r;(x) =a . A basis for which all the coefficient

4

functionals are continuous is called a Schaudct bascs. Two fundamental
results in this direction are: a basis in a complete metrizeable TVS
(with a translation invariant metric) is a Schauder basis, and a weak
Schauden bas{s (i.e. a Schauder basis in the weak topolgy) in a com-
plete metrizeable TVS is a Schauder basis for that space.

A series ET x, ina TVS E is ‘called uncond{teonally cenvergent

if for every permutation w of the natural numbers the series L: X (n)
=4
also converges in E. In a complete locally convex TVS the series

o

v _.z. is unconditionally convergent iff for every sequence {Bn} of

.
M=

scalars with |3n| < 1, n=1,2,... the series zj_]ann also converges.

This is also the case if, and only if, every subseries of Z:_an con-

. [vel
verges. A series zn_ >

% in a locally convex space is called absolutely

-

» : . [o2] ’
convengent if for each continuous seminorm p on E, L, . (x,) converge
=1

in R. A basis {xn} in a TVS is calied an unconditionac basiy if every

.

convergent series of the formJE:__a”rr converges unconditionally. A
- ‘_" * -

[3

basis {xn} in a locally convex TVS is called an absclute basdis ifevery

(2]

convergent series of the form Zn=1anxn converges absolutely.

Let {xn} be a basis in a TVS E. .Thé sequence {xn,x;} of ba§is
elements and their associated coefficient functionals has thg-property
that oxlx )= by nml, g, A sequence {:‘_’:‘,fn}, (rn'} < E, {f‘n} = E',
with this latter property is called biotthogcnal: We will peed the
following result on when the elements {xn] of a biorthogonal sequence

form a basis in E. It is a simple extension of a result for Banach

spaces [37].
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First, for a given biorthogonal system {$r’f}} we define the
- 0 — n. v
' pattial sum operatons Sn , n=1,2,... by Sn(x) = Ek=1fk(x) Ly e A]é%,
for F < E we will write [F] for the linear span of F-and F for the

closure of F, v !

THEOREM 1.2 Let F be a TVS and let {x,,f,} be a biorthogonal

. sequence in E. The beZowzng are equivalent:
; b
(a) {xn} is a basis in E
(b) For every x € E, ltm S (x) = x.
n+e “n

If E is also complete and metrizeable then (a) and (b) are

equivalent to:

(c) [{xn}] = F and {Sn(x)} is bounded for each z € E.

Proof: 1If {x } is a basis for E, then clearly lim S (x) = x for
n . ne T
each »cE. If (b) holds then each x ¢ E has thé\reggésentation x =

5 f (x) . This representation is unique because if Z f (x)x =0

n=I1" =1l"n
~ . £ o —~ - - 1 ~) =
then for each f, we have f, (2 _.f (x)z ) = f,(x) = 0; i.e., filz) =0,
7 k=1,2,... This shows (a) <> (b).
Now, for every finite linear combination of the form
n
= ' *
-de X

_and for'm > n we have
-m n m
S (q) = z A a.xi)x. =}

. l‘ -
Yence for eachxof the form (*), {S (xz)} is Cauchy. Sjnce the elements
n
of this form are dense in E by (c), {S (x)} is Cauchy by thejBanach-Stein-

j
haus theorem, and S(x) = va S (x) fs continuous. But S(x) = x on a

* | ] }



dense’set.  Consequently, S(x) = » for each x ¢ E;-i.e. /iI» S (x' =

wrraoa M

for each » « E. Thus each x ¢ E has the representation
: o ,

r =
»

(- ).\
s, 1
]

N
L

I~ 8

'

and it 13 clear that this representation is unique. This completes

the proof (since {a) => (c¢) is trivial). .

In the next theorem we consider the existence oF bases in the

product of topological vector spaces with bases.

"THEOREM 1.3 Let E, F be TVS's with bases {xnj, {yn}, resp. /
Then the sequence {z,} in E x F defined by g ,/
z?n—2-= (2,005 55 = (0yu,), n=1,2,... L,/

v

. 48 a basis for E x F.
Moreover, if E, F are comvlete locally convex (resp.,
. cocally convex), and if the tises {z,], {yn} are wnconditional

(resp., absolute), them the rasis {z,} is an.unconditianal

vesy ., abscolute) tasis for 7 ¥ F.

o] [ ]

Proof: Suppose (x,y) € E x F and x = Loos0¢%5s ¥ = 2. _.Bius.

«v- MNow, i E x Fy
&-xi,O) + (x,0)

O

N
i
“a

=] o0
(my2) = (2,0) (0,00 = T aslxg,0) + ) Be(0,1:).

7=1
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Therefore,

a

o«

(x,u) = Z aJ

J=1I

w

It 2
1 J ﬂf

bl

To show uniqueness of these expansions, suppose that

say. Then

Hence, if

b
(v o]
d

i=173%7

ZY»,.

-

(x,ul,

_.]l

o

13

o ¢ «®
= (0)0) then zj;zygj_]xj = ¢ and Ej=JY3jyj = 0.

But since {z,} and {y,} are bases in E and F respectively, it follows
\]

from the uniqueness of the representation there that Qj =

This comp]efes the proof 6F the first assertion.

0, j=1,2,.

Now, suppose that the bases {x,} and {y,} are unconditional

and suppose that &

-;¥;3; converges in £ x F.

Then the same as

above we have that in this case E. —{Y2j-1%5 and Z =1Y2543

in E and F respectively.
the property that [8.} < 1, i=1,2,

uncond1t10na], it follows that 5.

J=1 “J JﬂZJ 7%

; and Z

=172

both converge .

Now, let {Bi] be a sequence of scalars with

..Since the bases in £ and F are

Y2 y both

T STTersrt

converge in E and F respectively. .Therefore the series

zJBJYJ J .

converges in E x F, ?ﬁnce this is true for every sequence {BiI bounded
by 1, and since £ x F is a complete locally convex TVS, it follows

that Fﬁé?basis {zn} is.unconditional. N

-
, &
-

//}



Suppose now that the bases {rnl and {yr} are absolute and let

: be a continuous seminorm on £ ~ F. Since the injection {E: E-~FE «

is an isomorphism onto SE(E), it follows that jofc is a continuous

seminorm on E. We also have that p°iEfxn) =olz, ), n=1,2,...low

on-1
suppose that the seriesﬁsﬁ_,y.n; converges in £ x F. Then, the same

[ o

as before, we have

where the two series on the right converge. Applying » to this equa-

tion we have

) -

Il e~ 8

[e0] [e o]
F( g Y:?') < "D('Z ng_]zzj_]) * D(

-~
M
Y[?/,"

I 3

. 27

7 y)

IY ; -1I.P(zr)' ) +
:I)J"¢ LJ‘] j:z

oa

Yo ly o dpedaty )
=7 o F?)J

. not L)
JIYEJ-flﬂO E(xJ fi

[ (%,

~ where iF is the injection of F into E x F. Now since the series

o0 - .
Lo 4. and I._Lv,. . converge (see above), and since roty and

- e~y o

= -
4 - ¢

~eiF are continuous seminorms on E and F respecfive]y, and since the

bases {x } and {y } are absolute, it follows that the last two series
02 . [ .

above converge. Thus Z;zjlYalp(zj) converges and this shows that the

basis {z } is absolute. ” /117

<

Next we prove a theorem on bases in the quotient of a topolog-
ical vector space by the closéd linear span of some of its basis
elements. It is a generalization of a similar theorem known for

Banach spaces[37].

[

14

F
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THEOREM 1.4 Let E be g TVS with a Schauder basis (re§§<, ungeon-

ditional Schauder basis) {xn}.' Let {in} be an increasiyg sequence

‘of natural nﬁmﬁ?ﬁé.ﬁhd &at.ijn) be its complementary sequence. Let
= [{xﬂn}].' If n: &~ E/F is the canonical map and if we s;t

5n = n(xj'), n=1,2,..., then {&n} 1s a Schauder basis (resp., un-
n . 0

conditional Schauder basis) for E/F.
Moréover, if E is locally convex and if the basis {xn} is an
absolute Schauder basts for 'E, then the basis {En} is an absolute

Sehauder basis for E/F.
_— - ? é
Proof: First note that if « ¢ F,.then xg (x) =0 . &% all
: n . ,
»w e N. This is so because for each z ¢ F we have % =,Z§m y, where

{yx} S;[{xi 1. “Hence, since the basis {k } is a Schauder basis (i.e.,
n < ’
each z* is continuous) we have xj (x) = Ugm =% (y ) =0 forall neN.
L )
-Now, ‘define ¢m:E/F - K, m=1,2,... by ¢m(n(x)) = xg (x)

m
Then ¢ is well defined: For if m(x) = n(y)' then x-y ¢ F and it

follows (from the above) that x; (x- y) 0, whence ¢ (nfx)) =

m o
¢ (nty)). Now, clear]y each ¢ is a 11near funct1ona] of E/F. We show
~ that each 9, is continuous. To this end fix m ¢ El,-and cons1der the

following commutative diagram: - ) J;

e LS

"1.e., xj' =¢.0n Let U be an open subset of K and sef W = x}’Z(U)
m ’ . N . - m *
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- - _‘ -‘_ . ] ’ .
=n t(e T(u)). Since % 1s continuous, it follows that W is open

© Yy
— — 7 . - 0
in E. 1.e., n J(¢$igUJ) is open. But n' being an open map, we have

e ) = n(q"(@%‘(U}) is open. Hence, 6 Is continuous. Note also
that we have ¢ (% ) = ¢ (pir.)) =xd (e, ) =8, mr=li,....

m " m J R R nm
Therefore ({¥ ,¢ } is a‘biorthogonal sequence in E/F.

Now, let nix)

(&)

“E£/F. Then, since

o~ N
Zim S (x) = lim ) x}(x)x,
roo N Yoo L T K =

. K=

B
0]

we have (from the’&ontinuﬁty of n)

)\

nfx)

i

Lim n(S_(z))
¥i-+00 n

23 a ’
’

n
= lim -Z.x}:(x)n(x )

Y k=1 x

It

3

n
,%im kzzgk(n fx))n z’.rJ. )

k

n
tm Zﬂ(bzﬁ(n{.jc))i‘n

~d

Hence, for each .n(z) ¢ E/F we have that n(x)'s lim S (n(x)) whereS,
. . mart n "
is the partial sum operator associated with the biorthogonal system
{Z_,0 }. It follows from this by Theorem 1.2 that {% } is a basis
< ’ i ‘ . ¢
for /). Y- K . , - '
If the basis {x } is unconditional, ;heﬁ'for every series of

]

the.form" E:;Zx;(x)x? .(z ¢ E) and for every permutation w of the

natural numbers, we have that the series Z:;]x;(n)(x)xﬂ(n) converges.

Ed

G
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It is clear from this and from the‘above reasoning that in tﬁis case
every series of the form z:=]¢"(n)in(n) is convergent in E/F. This |
~ shows that the basis (% } is unconditional.
Suppose E is locally convex and ihe basis {xn} is absolute. Let
{pq} be a directed fqmi]¥ of seminorms generating the topology of E. The
family {5 ) defined by j (2) = inf {p (x):z € é} (x e E/F) is a directed

family of seminorms giving the topology of E/F. For xeE we have

G
[

o eed

¢ (n(x))}|p (&) < -) jx* (z)]p (x. )
nZJI n ]ra no= n§1' me ]a In

.where the series on ;he right convergsi/ggcavse the basTs {xn}1s an
absolute basis. It follows that the series on the Teft converges and

* this shows that the basis {Z } is an absolute basis for E/F. " 111

The standard reference for the subject of bases in Banach spaces
is the book by that title of Singer [37]. The results in this section
are generalizations of theorems known.for Banach spaces. We include them

'here because‘we will need them later in this more.general setting.
AN )
,-—~\3} Topological Algebras

A topological algebra is an algebra A (always assumed to ‘be com-

mutative here) over. K Fogether wifh a Hausdorff t6p01ogy'T such that
(A,1) is a topblpgica] vector sﬁace and such that the a]geb}a product

is a continuous function from AxA into‘A. A topéiogica] a{gebré which
is a]sq a locally convex.space is ca]ied an LC-afgebwa. A convex sub§et

uof Ais called m-convex if u? Su. A topo]ogicaf algebra with a

'
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e s i i e

neighbourhood base for the topology at 0 consisting of m-convex sets
is called a Clecally m—cunu0¥ algebra.

If A and B are topological algebras (resp., LC-algebras, ]ocp]]y ///
m-coqvex algebras) then A x B (the algebraic product with the product
topo]ogy) is a topological-algebra (resp., LC-algebra, lpcai]y m-convex
algebra). If A is a topological algebra and if M is a closed ideal of
A, then A/M (the algebraic quotient with the quotientttopo1ogy) is also
a topological algebra. Moreover, if A is an [(-algebra (1ocai1y m-Cconvex
algebra) then so is A/M.

Let A be a 1oca11& m-convex algebra. The topology of A is given
by a directed family {pa:aE:A) Ofléubmuﬂtipﬂicativc (i.e.,’;(xy) <
rix)cly), 2y € A)_seminormsl For acA let KOl = {x¢ Atpa(x)=0} be the
kernel of Ty K, is an ideal of|A, and so Aa= A/Ka is a normed algebra
with the norm [lna(x) I = pa(x) whefe WQ:A - Aa'i§ the natural homo-
morphism. We let Ru be the‘completion of Aa relative to this norm.
fp <

fa

" . 2 1
P then the map “aB‘AB - Aa defined by ﬂas(ﬁ

induces_a norm decreasing homomorphism L from A

(A, )

(z)) =7 (x) °
a

B
g 10 Aa. The family
of algebras and homomorphisms is an inverse limit

o "ala,p e A '
system and :im"(Au,waB) is algebraically and topologically isomorphic
to the completion of A. .This representation of a complete locally o’

w-convex algebra as an invergé 1imit of complete normed algebras is
discussed in [30].

. fpé’max4maﬁ ideat space of A is'the space M(A) of all non-zero ..
continuous complex valued homomorphisms of A ﬁith the relative of(A',A)-
tépoldgy (the Geegand topologyl. There is a bijective correspondence

between M(A) and the closed maximal ideals of codimension one of A

)



given by -f + M_ = ker(f). For each x £ A, the Gelfand transform of

f
x is the continuous function ingA) +~ € defined by 2(f) = f(z). The
Gelffand map is the map G:A » C(M(A)) which takes x to £. The image
of this map in C(M(A)) is denoted by ﬁ. If A is locally m-convex,
then the Gelfand map is one-one if, and only if A is semisimple in
‘the sense that {YM(A) = {0}. We also define M#(A) to be }he set of g
all complex-valued homgmorphisms of A (continuous or not) and M(A)
to be the set of all max%ma] ideals of A. HWe will call A At&éngﬂg
semisimple if for every x in A, = # 0, there exists an f e M(A) with
flx) # b. If A is locally m-convex then the notions of semisimplicity
and strong semisimplicity coincide[31].

If x ¢ A, the spectrum of x is ofx) =riAEE:x-Ae is singular}t
If A is a goﬁb1ete locally m-convex algebra then GF;) = 2(M(A)) =
ﬁ(M#(A)). The spectral radius of x is p(x) = sup {|X|:X € o(x)}.

The same as for topological vector spaces, we call a comp1ete’
metrizeable locally m-conVex algebra an F-afgebra and a complete
normed algebra (with a submultiplicative ﬁorm) is called a Banach
algebra. If A {§3qn F-algebra then the Gelfand map is a continuous

" function from A into C(M(A)) [;1]. Also for an F—;lgebra A, M(A) is .
hemicomphgt (i.e., there exists a sequence of'éompact subsets of M(A)

. whose uhion is M(A) and such that every compact subset bfaﬂ(A) is

contained in some member of this sequence) and each compact subset of

M(A) is eguicontinu6u§. If e is a Banach algebra with ?dentity then .

M(A}+is compact and o(x) is ﬁbmpéct for each x ¢ A. If A is a com-

mutative Banach algebra with fdentity‘then plx) is a borm on A

+e is the identity of the algebra.
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called the 4pectn5£ norm. If the spectral norm of a comnuta?ivé Banach
algebra is equivalent to the original norm then the a]gebfq is ca11eg\\’
‘A function algebra. .

| A topologjca] algebfa A (with identity g) ié said to. be genen-
ated by F g;h if the smallest closed suba]gebra containing F (and e) is
all of A. If A is a complete 10ca1]yrq~convex'a1gebra generated by the
single element z, then the map £ f(z) 0% M{A) onto.o(z) is continuous.
“If Aﬁis a Banach algebra then thi§ map is a homeomorphism. However,
this map need not be a homeomorphismbfor F-algebras (see-[9]).
| - A topological a]gébra A is called functionally continuous if
M(A) =~ﬁ#(A); i.e., if every multiplicative linear functional. on A is
cont%nuoﬁs. "It is known tth every Banaéﬂ a]geﬁra is fﬁnctiona]Iy -
continuous. However, it is a long étanding problem (see [3§]) whethér
the saﬁe‘is true for F-algebras. Arén§ [3] has éroved that a finitely
generatéd F-a]éebra is functiona]]& continuous. Husain and Ng ([24]
and [é5]2 have shown that certain classes of F-algebras are functionally
continuous.. Husain and Liang ([22] ana'[23]) have,shown thaf.M(A) -
M#(A) for certain classes of F-a[gebrés w}th(basés. We mention:in.
this connection Michae]'s result [30] tﬁat a functiopally éqntinuoué
"semi§imp1e F-algebra has.unique'F—algeSra.topo1ogy: ‘

Finally, we state some resu1ts‘about the functional calculus in

]oca]]y m-convex algebras: 1gt A be a.comple%e locally m-convex algebra
‘with identity énd Tet a;e:A. If u iﬁ an 'open- set in € containing o(x),-
and if-w is a comp]éx;va]ued function definéd_énd‘gnhlytic_on u , then

i s

-there éxigts an eTement y € A with the property that fry) = w(f(z))
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4. Cyclic Bases

Ty o .21
e ;
for all f ¢ M(A). Furthermore, if A is commutative and semisimple
ehen y is 'unique. We note that in part1cu1ar if o(x) is open then
any function analytic on o(x) has the above property
The results in this sect1on that are not spec1f1ca11y
referenced are standard resuits of topological algebras and can be

found in any of -[6], [17], [30], or [44].

<

Let A be a topological algebra with a basis {in}‘ We connect
the algebra structure of A and the basis by making the- following
definition: '

. P | .
DEFINITION 1.5 A basis {xn} in A is called a cyclic basis if there
exists z ¢ A such that 3" =, n=£LI,.:. where 2% = e, the identity

-of A.

i3

As mighf be'expected, e]gepras with cyclic bases have a close
connection to algebras pf analytic functione. In faet, we will show
1et§r (Theorem 4.312) thal under certain conditions anm F-algebra with
a ci%lic basis 1is. 1somorphic to fhe algebra of analytic functions on
an open subset of - the complex pTaneJ

N Ge]fand called a topo]og1ca] algebra an analytic algebna if
for each = ¢ A, if e vanishes on an open subset of M(A) then'® vanishes
identically. on M(A); see L&g,p.]Gﬁ]: Now, sdppose that A is an F-
algebra with & cy¢lic basis {z"}. Suppese further that M(A) is

nafura11y‘homeomorbhic to o(z{. Then we will show that A is'an'



— e gm—

- ————

a~

22

!

anaiytic algebra in the above sense. First, we have noted in section

~

3 that the Gelfand map » = % is continuous. Hence

atx)5(f)"

NgE
Lx(F) 0

N § i~ §

X
<
£

31

;(x)f(z)”

3
3

: - ¢ ’
Now, if 2 vanishes -on an open subset of M(A) it follows from the fact
& - \

n .
* t" vanishe
n=0xn(x) ) shes

that f » f(z) is a homeomorphism that the series I

foriall t in an open subset ‘of the p]ane.? It follows by the identity
theoremn for power series that all éhe éoefficients are zero; i.e. |
xtiz) Z 0, n=1,2,.:. Whence z(f) = 0 for all f & M(A). ThQs A is an
ana1ytié_a1§ebra. The condition that M(A) be homeomorphic to o(z)
occurs for a large c1ass'of'algebras with cyc]ié‘baSes (e.g. if the
baéis i; &nconditiona] as in.theoremscﬁ.7 and 3.15).

Another prioperty of algebras o%\ana]yti; functioqs shared by
algebras with cyclic bases is the fact that the seminorms defining

the topo]ogy are in fact aﬁ] norms. To show this we need a Temma.

LEMMA 1.6 If 4 is an F-glgebra with a cyclic basis {zn} and

with p(z) > 0, then M(A) contains an infinite cémpact set.
. : o

Proof': Supposé to fhe contrary that each compact subset of
M(A) is fipite. Then, because M(A) i§ hEmiéompaét (see Section é), it
must bé-at'mos% countable. This, howevgr, is 1mpéssible since.there
is a.bneJOne map between M(A) and o7z) and the latter is upcb@ntab]e

by Lgmﬁa 4.8. ( Lemma 4.8 is proved ihdependent1y.of the material in

§

_this, section). ' | o . I
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THEOREM 1.7 Let A be an F-algebra with a cuelic basis {(z"} and
let {pn} be an increasing family of seminorms defining the topology
of A. If p(z) > 0, then there exists k > 0 such that pnis a norm

; -
Ffor.all n > I,

fal

?yoof: Let H be,an infinite compact subset of M{A); such &xists

by the above lemma. Since A is an F-algebra and H is coﬁpact, it

-follows that H is equicontinuous. This means.that there exists k ¢ N

and ¢ > ¢, such that -

|f(z)| g:cgkﬁx) . =zed,fef (%) -

~ We will show that 2y is a norm. So, suppose pk(x) = 0 for some z € A.

Then from (*) we get
l£i)| = 1F( T wp(e)d™) | = | [ aplz)f ()"} < opy (x) ?
) n=0 n=0 .

for all f ¢.H. Since pk(x7 = 0, we have

| T aptz)f(2)™ = o0, L fEH (*¥)
n:O ' . .

- Since H is compact and infinite, and since f + f(z) is one-one and:

continuous, it follows that the. set {f(z):f ¢ H} 1s an infinite campact

-subset of L. Therefore, from (**) and the ideniity theorem for power

series Wwe have‘that-x;(x) ='0, n=0,1,2,... Since {z""} is a basis, the

" coefficients x;[x) are uniquely determined, and hence x = 0. Therefore

pk'is a norm,
) . r N - 3 . » .
Now, since the sequence {pn} of seminorms is increasing, it

follows that p is a'norm for all » > k. /117
(% . . '

A
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CorROLLARY 1.8 Under the hyrothesis of the thecrem, the topologu

of A is given by an incrdasing sequence of norms. /117

The condition that n(z) > 0 s equivalent to A being semisimple
. : as we will show later (Lemma 4;61.

L

Now, consider the representétﬁoh of a complete 1oca11y'm—conVex

. et = -

algebra as the inverse 1imit of Banach algebras (see Section 3}. They .

above corollary says that for an F—algébra A with a c}glic basis

~

A= 1imA

N .t ¢ - n

gﬁere each ﬂn is the completion of ‘A in the norﬁ B, Since {zé} {s a
. basis for A, the bo]ynomials.in 2 are dense in,A,' hence also in ‘each
/y o En. It fo119ws that each Rn is thé.completion of the algebra P of
L epolynomjafs ih the norm pn: Thus A is the'inversé Timit of such
,g]gebras. Algebras which are comp]etions'of normed algebras of poly-
nomials are. discussed jin [15]. ' |

'y

9

A ' 5. Orthogonal Bases

v e . g . .

Let A be_a topological algebra and let {xn} be a basis for A.
Again we connect the.algebra strycture of A and the basis by the
following definition: + - S B
DeprnITION 1.9 The basis {xn} iﬁ_A is called’an onthogonal basis

) .
}5 : ' . if each element of the basis is idempotent (i.e., 22 = xh,'n=1,2,..)

SN

“and 2« = 0 forn #m. In other words, x & =6 2x, nm=1,2,...
nm : nm_ mmn X

A few remarks about our definition of orthogonal bases are in

~
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order, F-aigesras with orthogonal bases were first studied_by Husain.
and Liang [21] in Zonnection'with £hé continuity of multip]icative
1inear functionals. The def1n1t1on there differs from ours but we will
show that they are equ1valent Jo this end consider the fo]Low1ng

cond1t10ns on a topo1og1ca1 algebra A:

(a) A has a basis Txn} with zx =0 for n #‘m;
(b) A has a basis {z) %jth oz =0 for n ¥ m and x: #0;

(c) A has a basis {z} with %\ Ty = 0 for n #mand z @ =ez, o #;
(d) A has a basis {xn} with z gz = dnmxn;

. where in each case ﬁ,m=1,2,...

If A is a topological algebra satisfying (aj and if 2 and y are
elements of A, x = Enzlaixi’ y = Zn=18ixi; Fhen gy the continuity of the
multiplication in A we have . | ‘f

€ ‘w, ® ‘w. ~2‘
zy ==(] 8 ),Z =18 (Xax)m= oz

i=1 * 421t —1‘7‘77"1’“’“L

We will méke use of this fact without further mention.
B LR }‘ ‘ \‘ ) .
THEOREM 1.10 If A ig a topologieal adebra,~then (b), (c), and (d)

above are all eqaivglent for A.

o

Proof: (b) ==>(c} Since {xn} is a basis and since xﬁ # 0y

it follows that xi = Zzgzaixi: for some sequence of scalars {ai}’

Thusy for m # n, we have
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But x2 # 0. Therefore, a = 0 for all'm # n. Thus, x2 =qax , and
m . . m n. nn

since xs # 0, a #0. This is (c).

o (c) =>{(d) Suppose {x } is a basis sat1sfy1ng (c) Let

ynf& xn/cn, n=1,%,... Clear]y {y } is a bas1s for A Furthermore,

forne N, : Py
\ x: ez X
" ’ 2 = = 3 = —— = 1
! Y = 5% T T2 e In
) n n n

A1so,;tor n#m, Y = (x /b )(x /b }=o. Therefore Y Y 5nmmn
n,m=1,2,... This shows that (d) holds. - ‘ . ,
(d) => (b) obvious. | Co S

THEOREM 1.1 If A is a topological algebra with an identity e,

" then (a), (b), (c), and (d) arve all equivalent for A.

Proof: < In view of the preceeding theorem it is sufficient to

show that (a) is equivalent to (b). So, suppose that e ¢ A. Then.

e z=1a1x Now,if-xg £ {xn}
- b4
v, =ze = < ( X w,) = azi.
i 7 S T
Slnce x # 0 it fol1ows that m # 0. Since xJ was any'basis element,
we have that xi #0, i=1,2,... Th1s shows that (b) holds. It is c]eer

that (b) implies (a) always. So this comp1etes the proof. 1717

.Now,'sqppose that A has a basis satisfying (a). We will show

that there is a quotient algebra of A’ (modulo a closed ideal) satisfyingﬂk:

*(b), and hence all of (a)-(d). Ne-tirst’show_the.following theorem:

)
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THEGREM 1.12 Let 4 be a topoZog*LcaZ algebra with a Schauder
bastis {xn} satisfying = z T =0 forn #my, n,m=1,2,... - The
foZZowing are eqmlvalent:
/z) x # 0, n=1,2, . ‘
(i1) A< ngZy semzstmple
Q
Proof: (<) holds then A has ap.orthogqqal basis by Theorem

1.10.. Now, it i easy to see that the'coefficient fune%iona1s x; associ-

- ated with this basis are mu1tiplicat1ve'(see p.25). Since by hypothesis
the basis is a Schauder basis, itho1lowe that each coeffjci:nt func-‘
tional x; be1onge to M(A), Now, if = # 0 then ey.the“uniqueness of
the basis eepresentation there ie an n ¢ N with x;(x) £ 0. This shows’

- that A'is.strongly semisimple.

. Conversely, suppose that xg =.0 for some basis element xn. ‘if

_ f € M(A) then f(xn)2 = f(xi)-= 0. Therefore flz, ) = o?for every -

' \ \? e M(A). " It fq110we that A is not s;rong]y sem1s1mp1e. Y 1111

| . For the next theorem let N = { xiwe“fxn} : xf =0}; i.e., Nis

the set of ai} basis. elements whose square is zero. 1t is c1ear that

——

[N] is an ideal in A. Thus = [N is d closed ideal of A.

‘w
»

THEOREM 1 13 If A is a topologzcal algebra wzth a Schauder
bastis {x } satisfying x T =0 for n # m, n,m~1,23... then A/T

. (where I 8 the tdeal defined abbve) has an orthogbnal basis. -

Proof: Let {x } be the sequence of bas1s elements in N and

let {mJ } be 1ts comp]ementary sequence in the basis {x }. A]so et
n

n:A - A/1 be the,canon1ca1 map . By Theorem,L». the sequence {x =

- . . "
1
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n(xi ) i on= 1,55 } is a bas1$ for A/I. Ve have for m #n, mn=1,2., "
v N .

n(r 'n(x ) =nlr. x. )'= 0 ana'n(xj )n(xi ) = n(* ) £ 0

7
‘7 “m ‘771 . n “n n

(‘4 [\

where n(x ) # 0 because xg =cx,, ¢ # 0, and x. does not belong to I
Jm, In ~"n ‘7n -

- {see proof of (b) == (c) of Theorem 1,10). Thus the basis {EP} of A/l

satisfies (b). It follows by,Theqrem 1.10 that A/I has an orthogonal

N

basis. - o o /111

¢

Recall that the Aadical of A, kad(A),.is the intérsection of all
modula; maxiﬁa] ideals of A (see [30]).. We will show that the ideal
= fﬁi defined above %s.in'facf the radjéa1 of A whenewver this radical
is ¢losed. -First, Tet A bé topological algebra satisfying (é).'/Then,

just-as in the proof of Theorem 1.10 we have that for each basis element

oz , @ither 2% =0 or x2 =cx . Let {y } be the sequence in A defined
. n - N n nn n. - . k . y
by -
x /e N if:c2=c:c
non . / n nn
Yy, = : ]
en 2
x if . = 0.
n ”n

‘Clearly {yn} is a basis for Asatisfyingthe condition in (a). Moreover,

o«
&
[

e 2 2 e 2 _ - '
y, f o, A0andy =0 if « = 0. Thus we have that N {yi e {y

yi 0}: Now, it is clear that if z e A, and if y.is of the form

2: @iy where o, = 0 whenever y. # N, then « el= [N] This is so
because x is the 11m1t ‘of the part1a1 sums S (x) = Z Jaty1 and S fx) ¢
[N] for each n. Now, suppose that « . Fpen there exists k ¢ N ‘for
which Yy Z N and such that xi(x) # 0. Mow it is c]ear'from the properties

of mu1£ip1ication:in A (see remarks before Theorem 1.10). that xi is a
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multiplicative linear functional on A. Since xflx) # 0, it follows that

-x ¢ Rad(A). So, we have shown:

If Ais a topo.Zog:iéaZ‘adebra with a basis {xn} sag'?lsf_zn"ng
&L= 0 for n #m, n,m=1,2,....Then Rad(A) < I.
Now, it is clear that eve%y element i% [N] haS»the(ﬁ?Bpérty that
its square is zero. Tﬁis;shows [N] =Rad{A). Hence, if Rad(A) is closed

(e.g., if A is locally m-convex and éomp]ete [30]) then it follows that

fﬁj-= I —Rad(A). Alternatively, suppose that the basis {xn} is a

——

' Schau%e# basis. Then each element-x ¢ [N] is of the form = = E:=Ia{xi

where a, =0 whenever‘xi £ N, i=1,2,.,.. [[ For, suppose that x £ N and

o #0. Since « ¢ fﬁi} there is a. net {xx} < [N] such that z, - .

A

Now; éince xg 1s.c0ntinuous, we have that xz(x ) > xtlxc). But if(xx) =0

‘for all x. This contqa@icts xilz}) = a, # 0.0 It fol]ows.that each ‘
g =0 (see_remarks before fheorem 1.10).

The%efore,'fﬁj = 1 g;Rad(A)‘in‘tﬁis case also.

‘We have proved the fof]owing thgorem:

I

3

THEéRE:Mj .14 Let A be a tovological algebra with a basis {xn}
having the property that xnxr'n =0 for n #m, n,m=1,2,.v. Then,
if Rad(;i) is closed ar if the bastis {xn} 18 a Schayder bastis,

. then Rad(A) = I (the ideal defined. above). : /117

We havé - already noted that if A s a complete locally m-convex -

algebra Rad(A) is g]oséd. Also we recall that a basis in a complete

metrizeable topological vector space with a_translation invariant metric
: . \ "
Té automatically a Schauder basis. From this we have the following

coro11ar&:

e
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COROLLARY 1.15 TIf 4 is a complete locally m-contvexr algera satis _:'yz'ny)

“fa) or 1F A 1s a complete metrizeable algebra (with a translation

’

invaviant metric) satisfuing (a), then Rad(4) = In(the ideal defined

© aghove). . /)

The concepts of semisimplicity and strong semisimplicity are

equivalent for complete locally m-convex algebras as we have mentioned

before. The same is true for topological algebras with bases satisfying

the condition in (a) as the fo]Toujng corollary { to Theorem 7u12-)

¢
shqws{/ : , v

CororLARY 1.16 If A is a topological algebra with ¢ Schauder Basis v
{xn} satisfying z @ = 0 for n #m, nym=1,2,..., then A is semisimple

if,cand‘ only if, A is strongly semisimple. ’ ///_/

In particular, Rad(A) is closed for algebras with Schauder bases -

satisfying the condition in (a). We have the following restateément of

Theorem 1.13:

THEOREM 1.17 If A is a topological algebra with a Schauder basis’
_{rn}_éatisfying zx =0 for n #m, n,m=1,8,... then A/Rad(A) has

an orthogomal basis. : L : /1

©

In view of the abqve theorem and corollaries we will consider

- only topological algebras’ with orthogonal bases from now on. Moreover,

all the natural examples ( see Section 1 of Chapter II 7} of tbpo1ogicai
algebras satisfyiné.(a) in- fact have orthogoné] bases.

An orthogonal basis in a topological algebra is unique in tﬁe
g .
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sense that any two orthogonal bases for A are the same set. More precisely

we have the following theorem:

THEOREM 1:18 If {x.} and {y.} are orthogonal base$ in the topo-

logical algebra A, then {r } = fu }. ‘

Proaf: Let z, € {xi}. Then, since {yi} is a basis for A, there

is a sequence {ai} of scalars such that ‘

" o

J‘I,’L

8
|
I} t~1

1

Now, there exists a v, g'{yi} such that zy, # 0 (for otherwise z = 0

()

which is impossible since no basis can contain 0). It follows that

o

2y = (] oy ) A ’ (*)

1=0
Multiplying both sides,of this equation by z o We get oy =Ly

This implies that o = 1. Therefore from (*) we get

xY =y . : (**X

" By a similar argument, if we, have Y = f:=13ix¢‘, then

/,Mu1t1p]y1ng both sides of this equation by y, We get x y : annym.
Th1s 1mp11es that B, =71 Therefore from (***) we get

,’r/
— . * Kk k
Ty =T . ()

a

From (**) and (****) we have that = =y . This shows that
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{r.} = {v.}. Because of the symmetry of -the situation we-have the other

inclusion also. Thus {z.} = {u.}. 11

Recall that the bases {xf}and {.} of the TVS E are said to be
cquevatent if for a sequence {u.} in K the convergence of Z?:wafx{

implies the convergence of Z: asy; and conversely. The bases {x{} and

=1
{i:.} are called peunutatively equivalent if there is a permutation n of

N such that {xn(i)}1s a basis for E and such that the bases {xn(i)} and

{u.} are ‘equivalent. With these definitions we have the following

corollary to Theorem 1.18: N ‘

_— -

Cororrary 1.19 Ii;f/ff/g/éoﬁ/ioéical algebra then any two orthogonal
bases of A are perfutatively equivalent. 111/



Chapter II

ORTHOGONAL BASES

Q

Let A be a topological algebra and suppose that A ha; an orthog-
onal basis. - We have shown in Chapter I (Theorem 1.18) that an orthogonal
(basis for a topological algebra is &nfdue (up ‘to a éermutation), so, it
“is”to be expected that the existence of such a basis to a large extént
determines .the structure of the a1gebra. In this chapter we study how
the orthogonal basis describes the closed ideals of A. In facf, we sth
that a closed ideal in A is completely determined by the basis elements
it contains. In particular, closed maximal ideals are determined in this
way and.we prove that_every closed ideal of A is the intersection of
closed maximal ideals. We also show that the maximal ideal space of A
is homeomorphic to 5 countable discrete space. o

If; in addition, A is locally m-convex and has an identity, then
ﬁsing the above characterization of the”c]osgd idéals of A we show that

A is necessarily metrizeable: Moreover, if A is complete, then A is

algebraically and topologically isomorphic to the F-algebra S of sequences.

Finally, we mention that some theorems in Section. 2 generalize

results in [33] about jdedls in certain algebras of analytic fgggtions.
Section 3 extends results in [22] concerning the re1afionship between the
existence of an identity and the seminorms defining the topology in F-

a]gebra§ with orthogonal bases.

33
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conditional orthogonal basis for P(N).
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- 1. Examples and Permanence Properties

In this section we give several examples of tepo]ogica1 algebras -
having orthogonel bases. Also, we give a gene%al method of constructing
a Banach algebra with an orthogonal baéis from a given Banach space with
an unconditiena] basis. If A and B are topo]ogica] a]gebra§ (resp., Banach

algebras) w1th orthogonal bases, then we prove that AxB (resp., AXB.

el

with, the projective tensor norm) is a;top01091ca1 algebra (resp?, Banach

algebra) with an ofthogona] hasis.

Exampre 2.1 The Banach space £ (N) is a Badaqh algebra under pointwise

mu]t1p11cat1on [40] The sequence {e = (6 )“’ n=1,2;...} is_a basis

th=1

for ﬂ (N). C]ear]y_ e e, = Gnmen and thus-this sequence is an orthog-

onal basis for the Banach algebra E’(IU. This basis is an absolute basis.

' ExaMpLE 2.2 For 1 < p < =, the spaces £P(N) are Banach algebras under

pointwise mu1t1p1ication [40]: The sequence {en} defined above is an un-

0 of sequences converging to 0 has

Exampre 2.3 The Banach algebra ¢
{en} as an unconditional basis [37]. This _is-clearly an orthogona1.basis

in our sense.

A11 the bases in the above examples are uncond1l/ena1. In general

we show be]ow that any Banach space w1th an un¢ond1t1ona] basis is a Banach

a]gebra under “po1ntn1se mult1p11cat1on" accord1ng to the fo110w1ng defi-

v .
nition?- . . ) s -

“»
-
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DErINITTON 2.4 Let E be a Banach space with an unconditional basis

4
. v

.{xi}. If x and y are elements of E, x = Z:;gaixi sy Y = Z:=1Bixi , then

define a product &« in E by

zy = ] aBax, .
\\ 7:_
This definition makes sepse because, w1thout loss of genera11ty,

assume that the bas1s {z.} is non%aZLZQd i.e., ”xi“‘z’ i=1,2,... Then,

the convergence of £ oLy 1mp1\es ltm oy = 0 [37]. Thus the sequence
1300 .

1
{ai} is bounded. Therefore, since 2.=13ixi converges unconditionally, it
follows that. E:;jdiﬁixi converges iﬁ\f. This shows that x4y is a well-

defined element of £E. More is true:

v

THEOREM 2”5 If E is a Banach space with an unconditional basis, then
E is a Banach adebra with * multzplzaatzon Moreover, the basis in E

- is an orthogonal basts in the Banach alékbra E.

Proof: Without loss of generality aégyme that the basis is norm-

alized and consider the following norm on EQ \\

\

. P *
e, sup. _.Ixn(x)I-

We will §how that this norm is weaker @han the orig'nai norm on E. To

this end, consider the map
g:E > m,

whe}e m is the Banach space of bounded éequences (with thg\fupremum norm

I|..1l,) and where o is defined by o(x) = (r*(x)) neg - Let (k be the k¥
A -

\
\

\

"\
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coordinate functiondl onm. Then we have

(71000 (z) = fto(z)) = fllzi@) 1 = aftx). (*)
<3

"Since E is a Banach space, the functionals z#(x), k=1,%,... are contin-

k
uous. Hence fkoo is continuous for each k ¢ N. Now, since the fam11y

fk} is a separat1ng family of functionais on m, 1t follows by Theorem

1.1 that.o is continuous; i.e., there exists @1 > (¢ such that

Mot |l < c =l z ¢ E.
-Since ﬂx”o = |lofx)]| , we have that -
”-"0”0 <0 =1l » | x € E.

Now, consider the following norm on E,
Nl lll = sup { Z lx*(w)llf(x N:fet', lIfll <1}
n=0 . s
It can be shown [37, p.463] that ||| .. ]|l is @ norm on E equivalent to the

original norm of E. .Hence, there is a constant Cy>0 such that

v

lzll < c M=l | ecE

We have .
Meay I} = ). lx*(x) x*(y)[lf(x )]
: '!fll<1 feE' =0
< Jl=|| sup le*(y)llf(x)l-

o o llf|l<1 feE! n=

< cqll=ll Hlym < Colli=lll My -
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This shows that E is a Banach algebra with x multiplication in the norm
-1l (see [41]) and hence is a Bamach algebrd in any equ1va]ent norm.
It is c]ear that the basis {x } has the property @ ke, = S

m nm”n’
for n,m=1,2,.... : ‘ /117

.Notg'here that if, in addit{on, E' 4s separable, then {x;}.is'ah
unconditiopai basis for E' [28]. Applying the above theorem to E' we get
thé; in this_;aseiE' is also a Baﬁhqh algebra with an“orthogonal basis
in the multjp1jcation * (where is.suitably dgfined).

. To iTlustrate this theorep, consider the Banach spéces Lp[0,2n]

for 1 < p < =, These spaces have the Haar functions as unconditional

_bases [37]. . It follows that with the above product %, these spaces are

o

Banach algebras having orthogona] bases.

.The" product % also trans]ates into a meaningful product in many

~ examples of Banach spaces with uncond1t1ona1 bases:

BxamprE 2.6 For 1 < p < o, Tet LP(T) be ;hé_uspa1 (P space on the

circle group'F; It is known that the séquence of trigbnometﬁc'po1ynom~
ia]s>{en :h:o,iz,tz,...}, where en(t) =t for t € T, form an uncondition-

al basis for LP(T) [28]. A]so, by a theorem of‘Zelazko'[dl], tP@r) is a

Banach algebra with convolution mu]tiplication. It is easy to see that '

il s . . 6
with this multiplication the basis {en} has the property ee =6 ¢e.

Thus LP(T) is a Banach algebra with an orthogonal basis. Moreover, note

-

thét;convo]ution multiplication in Lp(T) corresponds to the *'produdt of
Pad . N

Theorem 2.5.

X .

“'The following closed subalgebras of LP(T).also have unconditional

o

orthogonal bases:
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ExampLe 2.7 For 1 < ﬁ < w, let HP(Dj be the Hardy space on the open

unit disc D. The sequence of functions {en: n=0,1,...},'where e, (x) = "
for x¢ D, js an unconditional b§§is for 4P . Also, 1t is easy to Show
[33, p.88] ‘that 4° is a Banach a]éebra with the convo]ut10n product
Faglz) = (2ni)? [ Flz)glza iz las (1)
e jz]|=r
where £ and g are in#” and |z| < » < 1 . Now, since f and g are analytic

on D, we have f(z) = i:=0anxn and g(x) ==z:=0bnmﬁ. A sifiple computation

shows (see [33]) that with the convolution product (1),

Frglz) = gabx.. - oa
n-O

" This is in agreement with the product % of Theorem 2.5.

Finally, we give two examples which play a special role in what

Sfollows.

EXAMPLE 2. 8 Let H(D) ‘be the F- space of all funct1ons _holomorphic on

the opent9n1t disc D with the compact-open topology. H(D) is a topo1og—

~.

| ¥
f*g(x) (oni)” [ f(c)g(c“lx).g'ld;
'Y.

where ) ¢ D and y is a-suitable closed curve in D enc1osing 0 and .
The sequénce'of functions {z n—o, sveeds Where =z (c) cn for ¢ ¢ D, .

is a basis fot Hﬂﬂ)- If f, geH(DY, flg) = Znnoanc . g(t) = . L obn; S
R G -~ . .
(i.e., .f = L and g = I _ bys, where these series converge in

P’

-



topology of H(D)), then

FRg\) = (eni)”? [ (faz")( Z bt A"‘]c Jdc
, } n=_0 n n=0 .
Y
= (omi)? of | [Ea 'kbkg"‘gk"zxk‘]dc
n=0 k=p ™"
. Y ’ ’
= E a b J\ ' . !

n=p "

This shows that {zn} is an orthogonal basis for H(d).
" " We note that H(D) is not Tocally m-convex with this product. Also

note that the function e(g) = (1—:)—1 (z ¢ b) is an identity for H(D).

EXAMPLE 2.9 Thé algebra S of all sequences of complex numbers is- an
F-algebra in the. topology’ of s1mp1e convergence in the coeff1c1ents The

sequence {en}.of Example 2.1 is an absolute orthogonal basis for S.

Other a]gebras w1th‘orthogona1 bases can be constructed-from*the

- o - .

f0110w1ng ‘two theorems.

THEOREM 2. 10 If A and‘B are topological adebras'with érihogonal
bages {x } and {y ), respectwely, then the basis {z } (def‘med n
‘Theorem' 1. 3) 18 an orthogonal baszs for, AXxB. ,
Moreoven, if 4 and B are LC-algebras (resp., ‘comp'Zeté Lé-algel;rae)
* and if the bases, {':rn} and‘{yn} are absolute (resp,, uncénditional{,

then the basis {zn} ts an absolute (resp., unconditional) prthoéonal

‘basis for A xB,

[
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T
Eroof ry- It is clear that the basis {z } defined in Theorem 1.3
has the propergy hat zi =z, n=1,2,... A]so one-can easﬂy check

(by considering the four cases depending of whether m and n are eyen or

odd) that. z z =0 for m # n. Thus the basis {zn} is an orthogonal /

 basis in AxB. The remainder’ of the theorem follows directly from- //

Theorem 1.3.& P /I///h

For the case of Banach algebras we have the following result.

v

" THEOREM 2.11 Let A and B be Banach algebras with orthogo'nal bases.
* Then, A(@p B , \the projective tensor product of A and B, is a

‘Bamach. algebra with an.orthogonal basis.

. Piﬂ'o%f:, Let {xn} and {y-n},be the bases in A and B, respectively.
It is known-(see [1 5]') that the system of all products o

4

{xn®ym:n,m e N} .

arranged in e_;"‘cer\ta]’n way (which is not imporfant' for -our pf*eseht purposes)
is a basis‘for thé‘ Béhach space A®"B l‘iow, A@ B is alsg.a Banach
algebra [6]. The Qroduct in A@B has the property that - (a®b) (c®d)
ac@bd hence, (:c ®y )(:c ®y J==x @ym =z, ®y Also, wé have -

ﬁ(xn®.ym)(xj®?i? =1 a;-.®ymy. .. Thus, if n;-ﬁ; or 1f- m;éz L then‘ this

last product i’ 0. This' shows that thTS basis is an orthogonal basis’ for'

" the Banach.'alggbra- _A@Dp B. R ' .o " ////

" Theorem 2.10'shows that the class of topological algebras with:

orthogona1"ba'§es is closed ‘under the formation of finite products./ The
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! 0
above theorem shows that. the class of Banaph algebras having orthogonal
bases is also closed under the formation of projective tensor pro&ucts. v/__//
We' will show ih the next section that £he plass of topo]ogi&a] algebras ‘
with orthogonal Schauder bases s closed with respéct to the formation
'of quotients Sy closed ideals. We will first need to study the sfructure

of these ideals.

2. Closed Ideals

In thjs-seétion we study the closed iﬁea]s of 'a topological
:'algeﬁra A with an oéthdgonal Schauder,basis. It turns out that every -
_ closed ideal :in A is the intersection of closed maximal ideals. Also,
e will show that a closed ideal in A is prec1se1y the closure of the '
11near span of the bas1s elements it conta1ns We use th]S fact to
show that the quot1ent algebra of A by any of its closed ideals is a
‘ tqpo]og1ca] a]gebra with an orthogonal basis. These results w111 be
used'in the next section to prove a metrizeability result for locally:
: m-convex algebras with o?thogonaﬁ bases. - We will also show in this
| section ‘that the max1ma1 ideal space.M(A) of A is homebmorph1c to'a :\
'countab]e discrete space.
E Unless gtherwigé‘éféted; we assume A to be a topological h]gebﬁa'
‘w{th an othogdna] Schaudervsasis {xn}.‘ We begin by pwoving twb.funda-

mental ]emmaé.’ ) B o

LEMMA'2.12 Let 4 be a topological algebra-with an orthogonal basis .

. ’ =S ) o © ’
| {z)}. If z,yed, :x = Lye1On®n 5 Y = L,_1BnTn 'then zy = L _10nBnn-

JIn particular, A is commutative. o /

* .
t
> N -
o . ' «
.
v ' .
. . . '
. . . . . .
Y N .
. N -
. -
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+2)

and 0.8 =1 (i.e.,p =a

42
Proof: Using the ¢éontinuity of the mu]tip]ication.in A we have
zy == ] Bmg) = | By
\ “1= 1=1 .
©0 [+ ) oo . . .
=1 (laxr. =T Bz, .
i=1 Y=g 997t gz R
) /117

LEMMA 2.13 Let A be a'top'ological algebra with an orthogonal basis

{xn}.' If A has an ide’ntity' e, then
¢ & -

(a) e = Zn=1xi

A

(b) an element =x = 2:=1anxn of A is invertible if, and only if,

a, # 0 for all n e N and anian-lxn . converges in A.- In this

-1 _ ® -1 .
case & = L. 0 T,
Proof: (a) Since {x} is-a basis for A then e = D
Let = be any basis element, then : —
- ‘ . - : .2 v v .
x'—*a;;le:.xn(Zax):am =0, T .

n ' mom nn . nn -
. TT_?"—'“1 . .

This implies that a, = 1. Since z Was any'bésis element, it follows
that o =1, n=1,2,....

(b)' If q"{: z:;fenxn, then from Lemma 2,12 and part (a)

&
-1 .
i enx:z:’=2a8.‘z:=}:x.
L ‘ , pog PR IT
Since the coefficients are-uniquely determined, it f 1lows that a #0
N,

)

ConverSely,'iﬁx -i:;19n71“n converges in A, thén’51gar]y (from
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N Lemma 2.12)'we have

T . “ " _ /117
We now describe the maximal ideal space of the algebra A.

THEOREM 2.14 [Let A be a topological algebra with an orthogonal bagsts
_{xn}. If feg M(A), then f = :1:* for some ne W, If {x } is a .

Schauder. basis, then M(A) = {a:* ne N} and M(A) is homeomorphw

-

-

28

to a countable discrete space.’

. Proof- Let fs:M(A) Since f # 0, there exists an x e {xi]

such that flg,) # 0. Now, if =z e {z} and z # z , then '0 = flz x )

= f(xm)f(acn‘). Bu,t f(o:n) # 0. Therefore f(:cm) = 0. Thus, f(xm) =

for all m #n. So, let z e A, then

]

f(x) f(nzzm;; (qc)xn) =n£1:c;; (z)f(x )

-

J .

.v

x;(m)f(xn) = x;;(x).

3 ® - Lo )
¥ . ' The last equality being true by virtue of the fact that f(xn) = 1[I since

ﬁ%LQﬂﬁ)=ﬁxﬁ mdf@)fo]. . _ 3
g From Lerma 2.12, it is clear that for each n & N, zi(my) =
*(x)x*(y) for all x,y € A. If the basis 1s ‘a Schauder basis, then each
' zt is continuous. _Therefore, -in this case .x; e M(A). Th1s comb1neko{
3 with the-first statement of the tlieorm gives.tﬁqt' MIA) {x*-11e N}. ™
- Finally, to.show that M(A) is countable and discrete, coﬁsider‘

Lol
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4 . .
the subbasic neighbourhood V of %

-

V= V(1/2e,00) = {of eM(A) ¢ Jofla )-ad@ )| < 1/2} = {z}).

This completes the proof. ‘ /117

T
We note that this theorem implies that an (infinite dimensional)
Banach algebra~(or, more generally a Q-algebra) with identity cannot
have an orthogonal Schauder basis because the maximal ideal space of

such algebras is compact.

' s
. Cororrary 2.15 A topological algebra with an orthogonal Schauder

basig is semisimple. , ) 11

“

Husain and Liang [22] have shown that an. F-algebra with an uncon-

‘ditional orthogonal basis is functionally continuous. According to a

-

theorem of- Michael- {30] a commutative semisimple functionally continuous

F-algebra has unique F-algebra topoTogy. Combining these results with

. Corollary 2.15 and Lemma 2.12 (i.e., A is semisimp]ezand Eomnutative) we .

have: an F-algebra with an unconditional orthogonal basis has unique F-

algebra topology.

DerrnrTron 2.16 If A is a topological algebra with an orthogonal
Schauder basis, then we set M, = {zxcA :wikx) = 0}..

/

. ~ )
Clearly "M, 1is a maximal jdeal since Mk = ker(zf). Also M is

closed singe xi is continuous. The converse.is also true (recall here
that in this section A denotes a tppologiéa] hléebra with an orthogonal

Schauder basis {z }):

4n

‘
S

AN
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THEOREM 2.17 M is a closed maximal ideal of A if, and only if,

M ="Mk for some ke IN.

_Proof: Suppose that M is a c]ésed maxima] ideal of A and M # Mk
k=1,2,...5Then, for each k € N, there is an z e M with ii(x) £0.
Now, xi(x)-]xéx =z, and so 2 % M. Since this is true f&r each k ¢ N,
it follows that {xn} < M. Since the polynomials in {xn} are dense in‘A
and since M is cloged, it follows that M = A. This contradicts the
assumption that M is a’maxima1 idéal.

Conveﬁse]y, each Mk is-a closed_maximal ideal since it is the

‘kernel of the continuous multiplicative Tinear functional 3. /117

‘THEOREM 2.18 If I is a closed ideal of A, then I =M for some

ke M.

Proof: Suppose that I & Mk for k=1,2,... Then, just as in the

above proof, I contains each basis element z, and hence, being an ideal,

k
contains the linear span of {xn}. Thus, I is den;e in A, contradicting

the assumption that I is a closed ideal. ° 11117

) C'OROLLARAY 2.19 The closure of an ideal of A is an ideal in A if,

and only if, it is cont&ineéz’ in some My (ke . ” - 111/

. Q .
We recall that an ideal I is called paime if either x or y belong

to I whenever zy belongs to I. ¥ a
.3 . - ) X \\_) o‘ Xy
THEO}Q@M 2.20 A closed prime ideal of A ‘ 8 a maximal idea%./

Proof:" Sinte T is closed, it follows by Theorem 2.18 that I M,

PR
t

Y
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for some ke N. Let v be any element of M, . Then .x. =~ and thus
K

yx, € Mk. Now, since 1 E;M}, x, g 1. Since 1 is prime, it follows
that y ¢ [. This shows that M < l. Thus, I =M . The result now
follows from Theorem 2.17. /117

A closed ideal in A is completely determined by the basis ele- -

ments it contains as the following theorem shows:

THEOREM 2.2Y Let I be 'a olosed “deal in A. If we set

D= {xks {xn}: T, € I}

then I = [D] (i.2., I is the closure ofsthe Iincar span of the

basis elements 1t contains).

Proof: Since 1 is an ideal, any fipite linear combination of

elements of D belongs to I. Hence [D] < I. Singe I is closed, it

——ra——

follows from this that [D] < 1.
Now, suppose that x e I. Then, zx = 2:=5“nxn where gy = 2
whengver x ¢ D {I For, if a, # 0 and z, ¢ D, then, since clearly

z, = {an'lxn)x and since I is an ideal, it follows that x e 1. But

this is a contradiction since z, ¢ 0J). ~Also, for each %X e N, Sk(x)

k . %
=, _on%n e 1 Decause Sk(x) = x(zn=0xn). It follows that for every

zel, S,(x)elD] (for ke N). MNow, since z=1lin$

ko - K

{x), we have

that « e [DI, and this shows that I < [D]. 117

. Note that -if D is any subset of {xn} then =z = Zn=0anxn belongs

to fﬁj if, and only if, &, = 0 whenever 'z £ D [[ For, suppose that
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for some n e N, o #£ 0 and x g D. Then, since =z ¢ [D],'if follows

that there is a net {x, : e A} < [D] such that x, > x. This, however,

X
Conversely, if x has this propgrty, then c¢learly S

js impossible since x;(x ) =0 for all X e A and x;(x{ =a # 0.

k(x) e [D] for all

ke N. It follows from the fact that x = Lin S, (z) that z ¢ ] 7.

It is clear from this and from the definition of M, that in this case

m :m‘{Mk Pz € D}

So, from theorem 2.21 we have that for a closed ideal 1 of A, I =(’\1Mk,
z, ¢
ke

Thus we have the following corollary: ‘

COROLLARY 2.22 Every closed ideal of A is the intersection of the

closed maximal ideals containi;'zg it, /117

In Section 1 we considered when products and tensor products of

L

topological algebras with orthogonal bases have orthogonal bases. We now

" use the above characterization (Theorem 2.21) of the closed ideals of A

to show that the quotient algebra of A by any of its closed ideals is a

topological algebra with an orthogonal basis.

THEOREM 2.23 If A i.;3 a topological algebra with an (uneonditional)
orthogonal Schauder bas*r,s {a: } and if I is a closed ideal in A, then
A/T has an ( uncondzt'z,onal) orthogonal Schauder basts.

Moreover, if A ig an LC-algebra and ?f the basis (xn} is absolute,
then A/I has an absolute orthogonal Sch'\_c‘zuder basis. !

Proof: Let n:A + A/1 be.the canonical map. Since I is a closed
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ideal we have by Theorem 2.21 that I = [{xi }1 where {z. } is the
: n. n

sequence of basis elements contained in I. Let {z, } be the sequence
In .-
of basis elements complementary to {xi }. Then, by'Iheorem 1.4, the
! n

sequence {En = n(mj J:neN}is a basis for A/I.
. n

Now, for each #n ¢ ii, we have (with the yotatqgh of Theorem 1.4)

’ _ P 3 IR .
o n(xjn{n(xin) = n(xjn) = n(xjn) =Z Also, for = # m, we have

Em n(xﬁn)n(xjm) = nrxjnxjm) = 0. This shows that the basis {z.}

is an orthogonal basijs.

8
14
il

82
8t
I

The rest of the theorem now follows direct1yo%}om Theorem 1.4.

) /171

o

To complete this discussion of ideals in A, we consider the
principal ideals. Recall that a principal ideal is an ideal which is ’

generated by. a singTe ‘element. We will denote the principal ideal gene-

rated by the element x by <x>.

- Lewma 2.24 Let we A and let D= {z, e {x,} r=z}j(x) # 0}.

Then, <z> = [D]. .‘

F i \ H -

[% ’

Proof: Q]eaf1y the ideal <x> contains only those basis elements

which are in D. It follows that <x> also contains those same basis ele-

LS

ments only? For, suppose that T £ D and Ty E-<x>, then there\is'
- ' . - %o - %o . '
a net {y,}.c <x> with y -+x . ‘But this is impossible since then'
> . N, - :
4 = 4 =
xj{* (yl) + xf (a:k ) =1 and @z (yy) = 0 for all A.

7 Lo "o : 0 v
Thus, <z> i$ a closed, ideal containing only the basis elements

in D. Therefore, the result follows by theorem 2.21.: : /117
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THEOREM 2.25 Let z € A. Then, 'y € <x> if, and only if, x}‘;(y) =

aMwawrwa 0 nmelv).

- Proof: ( =>) Suppese that y e <z>, then by the above lemma,
y € EBT where D = {xks:{xn} EEIN 0}. Thus, xf(y) = 0 whenever
xi(z) = 0 (see remarks following Theorem 2.21).
(<&== ) Converse]y, suppose that mi(y) 0 whenever zf(x) =
let C=f{z efe }:aflx) #0} and Tet D= {zr e {z}:xfly) # 0.
It follows that D EC, hence —[—D-]_g_[a But ¥ ¢ m and [C] <>
(Theorem 2.21). Therefore, y € <x>. . . /117

COROLLARY 2.26 If.x € A, then <> a{'\{Mk tap(z) = 0}.

¢

Proof: This fo]]oq; 1mmed1ate1y from the above theorem 51nce it
is clear from the definition .of M that y € n{M7< at(zx) = 0} if, and only
" if, *(y) 0 whenever xi(x) 0 (ke N): One can also see this from
the fact that <> = [D] where - = {xks:{xnl:xi(m) # 0} (Lemma 2.24i‘°
and from the fact that fﬁj = {Mk: zf(z) = 0} (see\remerks following
Theorem 2.21) : , - 7S

Finally; we consider principal idea15'in LC-algebras with identity
hav1ng uncond1t1ona1 orthogona] bases. A]gebras with these properties

W111 be - the subJect matter of Chapter. III _Now we w111 show the fol]ow1ng:

TH&OhEM 2.27 TLet A be a complete LC—adebra with identity e, and

suppose that A has an unconditional orthogonal Schauder, basis. Then,
ca : : .
every closed ideal of A i a principal ideal.

- Y



50

' Proof: By Corollﬁry 2.26, every closed ideal of A is the intey-
section of closed maximal ideals. Since each closed maximal ideal of'A

is Mk for some ¥ ¢ N (Theorem 2.17), it is-sufficient to show that

every ideal of A which is the intersection of ideals of the form Mk (2 e N)

is a principal ideal. To this end let K be any subset of Nand let
I =19 {Mk: keK}. Let K& = N-K be the coﬁp]ement of K in N. Now,
‘define y by
Q b

y = Z XKc(n)x ~ : v

n=

where Xye is the character1st1c function on K°. Since e = Z:;an

belongs to A (Lemma 2 15) and since the basis is unconditional (hence

-

e sy

every series of the* form Z:;zunxn which is §onvergent is subsereis

convergent because A is a complete loca}1y copvéx space) it follows that
y € A. Now, ‘clearly y e M, for all. ke K, and so y ¢ I. Afso,.
gupposé.lw eI, then x*(w) 0 for al] k € K. Hence w = yw and

- therefore y denerates the ideal I; i.e., I = <y>. 1117

-

. In Chapter IIl we will give a necessary and s@fficient condition
for a principal ideal (in a topological algebra A satisfying the conditions
. , o .

in the hypothesis of fheérem 2.27) to be closed in terms of the concept

\‘ . ’ [+ 4
of E-regularity to be defined there. .
" 3. Locally M-Convex Algebras S ‘ oo
\ . .
x\ In this- sect1on we consider complete locally m-convex algebras
\

w1th\orthogona1 bases. It turns out that any two such algebras with
1dent1ty are 1somorph1c . We also show that the topology of ‘a 1oca11y

S




f
m-convex algebra with jdentity having an.orﬁhogonal basis must neces-
sarily be metrizeable.‘ Hence, if such an algebra is Qomb]ete, it is
an F-algebra, and, in'fact, is isomorphic to the F-a}gebra S of se-
quences (§ee Theorem 2.34). + In proving(this theorem we will consider
some relationships (?qr a locally m-convex tgpologicaﬂ a1gébra A

having an orthogonal basis) between the existence of an identity for

A, the space of coefficients associated to the orthogonal basis of A,

‘and the sem1norms def1n1ng the topology of A. Fina]]y, we note that

the results of th1s section extend certain results of Husain and Liang
in [22].

We'begin by proving a theorem on théyéontinuity of the coeffi-
cient functional associated to the orthogonal basis of A. We recall
here thatfthe:coefficient functiomals associatéd with a basis in a
compleie metrizeéble TVS are all continuous (see Chapter I and see

Husain [26] for other classes of TVS's héviné this property). : We will

. now show that orthogonal bases in locally m-convex algebras have this

property: ‘ -

THEOREM 2.28 If A is a locally m-convex algebra, then any orthog-

onal basts for A is a Schauder basis.

Proof Let. {x Y be an orthogonal basis in A and let P = {p }
be a fam11y of submultiplicative seminorms generat1ng the topology of
we need to show that the coeff1c1ent func§1ona1s assocxated with the
basis {z } are continuous. To this end let z e A. Then, for each
ne N, ax =.-a:;;(a‘c):x:i = x;(x)xn, It follows from this that for any

.

51

A



— -

.
[ S,

>

PP
PR S

52
submultiplicative seminorm p, € P, and for each »n ¢ N,

.]x;(x)lpa(xn) < p,(x)p, (z,) (%)

- Now, since A is Hausdorff, there exists pg € P such;thaf' pB(xn) # 0.

With this Pg» e get.ffom (*),
letz)| < pg(x)

for all x € A. This shows that x;(x) is continuous for each n € N.

117/

Note that if f is any multiplicative linear functional on A with
f(xn) # 0 for some n € N, then by the argument in the proof of Theorem

2.14 we?get that f= x;. Hence, by the above theorem f is continuous.;

This shows: If fle M#(A) and if f(xn) # 0 for gome ne N, Then

fe M(A). ‘

We now consider some relationships between the exi%tence of an-
identiiy in A: the space of coefficients.assoéiated with the orﬁhogona]
basis of A, and the sgminorms defining the topology of A. For this, we

make the following definition:

-
-

DEFTNITION 2.29 Let E be a topological vector space with a basis {xn},

and let S be the algebra of all sequences of cémplex numbers. Define,

0:f ——> 8

x AN (A ()

- d.e., olw) = (z@)). . o is the coefficient map associated with {z )
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Lemma 2.30 Let E be a locdlly convex space with a baszs {acn},.and
letp be a fwnzly of seminorms generating the topeclogy of E.

(a) If g is onto S, then for every seminorm p e P there exists
an N > 0 such that p(x )\ 0 for n> N

(b) If E is also complete,, then the converse of (a) is)also true.

Proof: (a) Suppose to the contrary that there exists p e P

. such that there exists arb1trar11y 1arge n € N for which p(ac J #0.

Define a seque%ce {3 } - by

~7 - co
p(a:n) if p(xn) #0
0 if p(xn')-=, 0

[

n'=-1’,2~,..... Since ¢ is ontos by assumption, it follows that 2:
.V'\

converges in EXo0 x, say; i.e., ,Sn'(x) + gf-"i'n E. This means that for

JBn n

EVEY‘Y q¢ Py qiQ (x)-x) » 0 as n 0. In particular, the sequence
{S (x)} is Cauchy in the topology generated on E by p. So, for every -

€>0s there exists K > 0 such that »n,m > K implies
p(Sn(x)—Sm(x)) <e

In particular, for n > K, we have
p(Sn(x)-Sn+1(x)) <€

Equivalently, p(B x ) < £ for aH n > K. But there exists arbitrarﬂ'y
large m ¢ N for which ,p_(xm) # 0. So, choose such an m> K. Now,

' ey ' _ -1 _ '
from the definition of B, Wwe have that. p(Bmxm) =plz,) "plx ) =

This, however, contradicts p(Bmxr;r) < e‘(sinc'e € was ar;b*itrary).
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(b) Suppose that E is complete and that each p € P has the
property that p(xn) = b for all sufficiently large natural numbers x.

Let {ah}_be any sequence of cémplex numbers and set

Let p P Then, for a given e > 0, and for m,n sufficiently large,”
: . ) _
(n > m), we have - ) r
& . .

\., h
4 .
.

p( % akék)

pTym "yn) %

A

m
[ laglplay) =0 <e
k=n .

This shows that the seqqénce {ym} is Cauchy, in E. Since E is complete, b

it foTlows that {y_} converges in'E to an elemént y, y = Z:=1anxn.

" Clearly o(y) = (an)zéﬁvr This shows that o is onto S. SN

. THEOREM 2.31 Let A be a complete locally m-convex aigebra with
an orthogonal basis {z,}. Thén, A hae an identity if, and only if,

o is-ohto S.

v Proof:-( = ) ”If A has an identity e then by Lemma 2.13 we have

L

that e = I _ ., Hence, for every p & P, p(S,(e)-e) » 0 .as n»e
and corisequently the sequenbe {Sn(e)} isytauchy with reépect to the semi-
normip; i.e., for every € > 0 there is a K > 0 such that for mn > K,

m
p(S, (2)-S (e)) =‘p(kz @) <€
=n

In particular, for » §ufficiént1y'1arge, we have

- 3

—

-

o
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plx ) <1 or © p.(xn)—l < 0. ' ' (*)

On the other hand we have p(z') = plz’) < p(x )®. Hence, p(z )% -p(z )

> 0. It follows that

v
S

L _p(xn)(pkxn)—l)'; (**)

We conclude from (*) and (**) that plx ) <0 for all sufficiently large
natural numbers ». Of course, we always have p(xn),3 0. Therefore, we .

conclude fhat p(xn) =0 forn éufficienfly 1ayge. Since pwas érﬁtrary,

it follows that for every p e P, there, exists Kp > 0 such that p(xn)=0

for all = > Kp. Now, by Lemma 2.30(b) we conclude that o.is onto’S. '
(&= ) Conversely, suppose that o is onto S. Then, for every
sequence {an} of complex numbers, Z:=1an¢n cdnverées in A. Hencé, in -
particular, ;n=1
~Lemma 2.13(a). ) ~ ‘ /117

x, belongs to A, and this is ap identity for A by

Nofe.that the proof of this theorem 1mp]ies‘that‘a normed QMebra
with identity cannot héve an_orthogona1 basis.’ For, suppose that A is
- a normed algebra with identity e and suppo;e.that {xﬁ} is an orthogonal
basis for A. Then, just as in the aboye proof, we have'that ”xn” <1
for » sufficientiy large. Now,,ngll; Hxﬁil_ﬁ Hank(ks;}U. Thus, for n
jsufficient1y large we hadve .”xnu < iiz“&n”k = 0. -This, howeﬁer,.{s ¢
-impossible since z f 0. _ _
Now, let A be a topological algebra with-an orthogonal basis.

It is clear that g is an algebraic (algebra) homomorphism of A into the

a]gebra's (with pointwise operations). Also, because of the uniqueness

P
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of the qoefficients in the basis expah§ion, o is one-io-one. Hence, if
A is éHso completé locally m-convex and has an 1den£ity, then it follows
from Theorem 2.31 that ¢ is an algebraic isomorphism.of A onto S. Réca]}
lhat the algebra S is an F-algebra in its usual topology (the topology
of simple convergence in the coefficients). It is natural to ask if o
is a continuous thctiqh from A into S. Now, if A is complete metrizeable
(and hence the coefficient functionals qssociated to the basis are contin- .
uous), then a similar application of the c]osed,graph theorem (via Theorem
i.]) as that used in the prooé of Theorem 2.5‘shows that o is continuous.
This same argument %s valid for showing that ¢ is continuous in the case |
that A is a complete locally m-convex algeébra with identity since.such an
algebra is necéssari]y metrizeable.as the following theorem shows:
THEOREM 2.32 Let A be a Zocaily m-convex algebra with an o;ﬂthogona 4
basts. If A has an identifiy, then A is metrizegble:. |
froofg Let {x } be aﬁ orthogonal basis for A and let P bé a
family of submultiplicative seminorms generaiing the topo]ogy‘of A. We
will show that a countap]e s@bfami]y_of P generates the topoiogy of A.

. . . )
To this end let p € P and consider

Phl(()) = {meA:p(x) = 0}. .‘ -
This is a closed ideaﬁ in A. Now, for pe P let

Ntp) =‘{xk€ {zﬁ} tplxy) = 0}.

It follows by Theorem 2.21 that p Z(0) = [N(p)]. ;Now, since A has an

-
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identiy, it follows by the same proof as that of Theorem 2.31 ( = )

‘that for p e P we have that p(z ) = 0 for all but finitely many

natural numbers n. It follows that each N(p) contdins all but finitely

many of the basis elements {xn}. Clearly then there can be only count-

ably many different sets of the form N(p) (i.e., {N(p):peP} is count-

-Nl, N2, ng e . ‘ . \
. e

where N. # Nj for Z#7 (¢,7e N). Now, set K = [Nn] (n=1,2,...)

aB]e), call them K

By the above discussion each K, 1s the kernet of:sdme seminorm p ¢ P

and the kernel of each seminorm p e P s some Kn" So, let
-1,
Q, ={peP:p (o) = K} (n=1,2,...).

Now; suppose that p,qs:Qn,'then p and ¢ are equivalent seminorms. For,
1Ft—nn:A + A/Kh be the cananical map. Theﬁ, A/Kn is 'a normed algebra
with respect to the norm ““h(x)”p = plx) _; Similarly, A/Kn is a"
normed algebra with respect to the norm ”ﬂn(x)”q‘? q(x). Now, clearly

A/kn is finite dimensional, and so, all norms on it are equivalent. It

. d
”p an

| - ”q are eqﬁiva]ent norms on A/K and thus

and g are equivalent seminorms on A (see [40]); i.e., p and ¢ define
p and q ¢ ; -€., pand g
thé same topology on A.

Now,'choose a seminorm q, from each of the sets'Qn, so that

q, € Qn (n=1,2,...).

Since, by the above, all the seminonﬁ§ in each Qn are equivalent, it is
; . :
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)
clear that the collection {qn} of seminorms generates the topology of A.

Since {qn} is countable, it follows that A is metrizeable. 111/

COROLLARY 2.33 If A is a complete locally m-convex algebra with

identity, and if A has an orthogonal bastis, then A is an F-algebra.
N~ ' ‘ /117

This leads to the following characterization of complete locally

m-convex a}gebrés(with identity posessin§ orthogonal bases:" TN

~

THEOREM 2.34 Let A be & complete Locally m-convex algebra with
identity. If A has an orthogonal basis, then A is algebraically

and topologtically. iaomorphic to the F-algebra S.

Proof: We will show that the map o (see Definition 2.29) is the
desired isdmorphism. We have a]feady noted in the remarks following
Theorem 231 that in this.case o is an algebraic 1somorphism.of‘A onto
S. So, it remains to show that ¢ is a topological isomorphism.

~Consider the coefficient functionals {f;} on S. These form a
separating family of continuous 1ineqr functionals on S. Clearly the
functionals £,,°0 are continuous on A because they correspond to the
coefficient functionals ass@giated to the orthogonal basis in A and the
latter are continuogs by virtdé of Theorem 2,28. Hence, by Theorém ].1,
o is continuous. Now, by Foro11a;;:2.33, A is an F-algebra. Thus, o 1is
a continuous linear map from the F-algebra A anto the F-algebra S. Tﬁe
open mapping théorgm now ;hows that o is open; Thus o is bicontinuous

and this comp?etes:the proof. ' | ' ) /17
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We summarize the results of this section in the following theorem

which generalizes a theorem In [22]:

\\\_? oREM 2.35 Let A be a complete locally m-2gnvex algebra with an

orthogonal basis {xn} and let P be a family of submultiplicarive
seminorms defining the topology of A. The jollowing are equivalent:
(a) A has an tdently.

fb) o is onto S.

(e) For every peP, plx,) =0 for all suffZeiencly large n.

(d) 4 is algebraically and topologirally isomorphic to S.

Proof: (a) and (b) are equivalent by Theorem 2.31. (b) and (c)
are equivalent by Lemma 2.30. (c) implies (d) by Theorem 2.34 in view

of the equivalence of (a) ahd (e) above. (d) implies (a) is obvious.

1117

LY



unconditional orthogonal bases,*

Chapter III

UNCONDITIONAL ORTHOGONAL BASES

3

We have already seen in the previous chapter how the existence

"of an orthogonal basis in a topological algebra determines certain

structural properties of the topological algebra. In this chapter we
will consider'the situation where the orthogona] basis is unconditional.
Specifically, we will study comp}ete LC-algebras A with identity havjng_
A

In Chapter II we proved that the maximal ideal space of A is
homeomorphic to a countable discrete sbacé. We will show here that in
this case .J4(A) with the hull-kernel topology is homeomorphic to 8M(A),

the Stone-Cech compactification of M(A). This is done by associating

_an ultrafilter on N to éach maximal ideal of A using a concept of local

invertibility for elements of A we call E-regularity. This also enables
us to describe the ideal which is the intersection of the dense.maximal
ideals of A. This ideal is of special jnterest since we will show that

-]

under certain conditions it is (linear space) *isomorphic to the dual

& .
<r

space A' of A. * .~ l
" Throughout thLA chapten we make the blanket aAéumption that A is

a complete LT-abgebra WLth identity e and that {x,, } 44 an uncond&Ixunaz
orthogonal Schauder basis dn.A.



-

1. E-Regularity

t—

In the next section we will prove that ;Tt(h) equipped with
the:bu11-kerne] topology is homeomorphic to 8M(A). Here, we will
lay the ground-work for ‘this result by defining a form of local invert-
abi]%ty for elements of A we call E-regularity and developing some of
its fun&aﬁenta] properties; wé use this concept to associate to each
ideal of A a fi]fgr on N (= M(A)): This correspondence is useful for
several purposes which will be dealt with in the following sections.

We begin by proving some fundamental facts about complete LC-

algebras with identity having unconditional orthogonal bases.

LEmMa 3.1 Let A be as above. Then,

? C(a) If {an} 18 a bounded- sequence of complex numbers then Z:___lanxn
converges in A. "
(b) If =z = Z:=1aﬂ;h' e A and if fan} 15 a sequence of complex
! o numbers which is bounded away from 0 (i.e., inf{lan[ :me N} > 0),
t Q < '
| k. ; then z 18 invertible in A. -
! 11\ - ¢ . -

“ Proof: (a), Since A has an identity e, it follows by Lemma 2.13(a)

<«

that e = I Since the basis {xn} is unconditional and since A is

- IR
n=1n

o0

i . a lacally convex space it follows that E,-0nTy COnverges in A for
&)

any bounded sequence {an} of complex numbers.

(b) If {an}'is Bounded away from 0, then {an'l} is a bounded

sequence. Hence, by part (a), ;:;Ja;lxn g A and this is the inverse of

* z by Lemma 2.13(b). N
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LEMMA 3.2 Let A be as above. If =z = Zr-l___zqn:br, € 4, then I _auzy,

ard Z:=1(an|xn both converge in A.

-

Proof: let B, = sgn a, (n=1,2,...). .Clearly {8 } is a bounded
.. sequence. So, since the basis {xn} is unconditional (or by the previous
'1_en“ma) we have . p

0
nglena"x" ='-_n,)-:_-zI.Olnlxn e A.

"To show the other part, note that for a complex number o)g = la|sgn o

. - . ) . % :
Now,~§1nge {3gn_qn} is a bounded sequence and since.- En:llanjxn e A

(by the above), if follows tﬁat

©

-
zzlanl (sgn a )z =n£1anxn € A.

A = f
L ' /111
This Temma allows us-to make theé fo]lowing definition:
" perInITION 3.3 Let A be as above. For- xeAs;xz =L Oy, . ; we will
) ) . . n=1 n .
M o — B T . M
write |z| =z _ |oylz, and = =_En=10nxn- -
The following 1gmmd shows thét each ideal in A is "absolutely
~ . 2,
convex" and "self<adjoint" ) ) - 4&‘
Y ‘ ' /‘ By . , ‘. . . .
:A . 'LEmMMa 3.4 Lét A be as above. If I is an ideal.in A and if x ¢ I,.
, 2R : e s ‘ '
T then lx| €I and z e I.
» ) " Proof: '§§nce jﬁn}hi§ a basis.‘for A, we have x = z:=3anxn for

some sequence of cqmb]ex numbers {an}._yaust as in the proof of Lemma‘;.?

\ &>
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let Bn = sgn 5% n=1,2,...). .Since,{Bn} is bounded, it follows by

‘:\“ oo ’ . - .
(Lemma 3.1 that y = Zn=18nxn e A. Since I is an ideal, we have that

zy E‘Il But
| Lo len) o
=nzlan8nxn =ﬁzzla”|xn = |z, )
Thé other pérf is pro;ed simitarly. : i

To study ideals more closely.we make the following definitions:

DEFINITION 3.2 Let A be as above and let z € A, = = 5 0, . If E
. n=1 n

is any subset of IN, theh we define‘xE by

Tg = z XE(n)an‘xn
¢ n=1

- where xé~is the characteristic function on E.

Note that since the basis (xn} in A is unconditional and since

A is a complete rc-algebra (i.e., A is a locally convex space), then
every convergent series of the form z:;lunxnf %s subseries conveﬁéent.

Thus z; is an element of A fo;}ea&h xz ¢ A and for each subset E of N.

DEFINITION 3.6 Let x ¢ A and let E be a.non-empty subset of N. '
We will_say that x.is E-xegular if there exists a Yy € AL such that

e‘w11l call

yap = ep (réca]] that ¢ is the identity element <in A),

x E~4ingu£ai if it 1s not E-regular. By x ¢-regular ( where ¢ denotes

‘the empty set) we,wf]] mean that = jsvnon-invertible.

."
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Note that if x .is invertible ing5 then z .is E-regular for
ever§ nonempty suéset Eof N. Ifx is not E-regular for any subset
E#¢ of N, then z = 0. , for if é;(x) # 0 for some n ¢ N then clearly
x 15 {n}-regular. " ~

Also, we qote that a similar proof as that of Lemma 3.1(b)
that if z = z:=1qnxn and'if‘the sequenée {a, : neE} is bounded away
from 0, then x is E-regular (E ¢ N).

We will usecthis definition to associate a filter on N to each
ideal of A, Buftfirst we give a characterizdtion of E-regularity in terms

of principal ideals (see Chapter II, section 2). -Recall that we have

shown'(Iheorem 2.27) that every closed ideal 1in A-is a principal” ideal.

THEOREM 3.7 Let A be as above, let x ¢ 4 and let E be a nonempty
“subset of . Then, x is E-regular if, and only if, the ideal

generated by x5 i8 closed in A.
froqf: (=>) If x is E regular, then
=] “nxn a
~net

where « # 0 for every n e E. Also, there exists y € A such that

e and thus ep € <xp>» the principal ideal generated by Tp- Now,
if 2 é A, then zep = zE‘e <> So,,<xE> contains all elements é e A

for which x;(z) =0 for ‘n'e E° (E® denotes the complement of E in N).

It follows that

ﬂ{M keE%)

(see Definition 2.16). Therefore <z > is closed being the intersection

j¥)
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of the closed maximal ideals M, (see Theorem 2.17).
( &= ) Conversely, suppose that the {dea] <£E> is closed.

Then, by Corollary 2.26, we have
<zg> = [ 1(M,: k£E}

Since e ¢ A, and since the‘basig is unconditional, it fo]]ows that
ep € Af Clearly eg L

e M wherever k ¢ E. Therefore ep €' <xp>.
Thus, there exists y € A such that yxp = eps This shows that x is

E-regular. . : ‘ _ - 1111

In the next two lemmas we prove some fundamental properties of

E-regularity. We will write |z| < |y|. if |xi(z){<|aXy)], n=1,2,...

LEMMA 3.8 Let A be as .above, let x,y € 4, and let E and F be
gubsets of IN. Then
| (a) I.f z 18 '_E—regular and if F< E, then x is also F-regular.
(b) ‘If x is E’-reg.uZar and F-regular, then x is EUF-regular.
(¢c) If x is E-regular, then |z| is also E-regular. |

(d) If |z| < lyl. and if = 18 E-regular, ‘then y is E-regular.

Proof: (Mar.
(b) There.exjsts Y,z € A such that yop = ep and arg = eg.

Consider thé.folléwing sets:
' ¢

6, =ENF, 6,=EENF; G, = F-ENF

(where.E-X denotes the complement of X in E). We have, Giﬂ Gj = ¢ for
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1 # g (z,g=1{2, 3). Lgt w = yG1+ ng+ ng where yGZ’ yGZ, 363 alt. |
belong to A because the basis is unconditional (see the remark following

Definition 3.5). Now, wx = + + e e a . s
' & PTG T Ve, T %65 T %6 T %6, 6
®6,UG5 UGz  CEUF Therefore, x is EUF-regular.

Parts (c) and (d) are clear. /1111

LEMMa 3.9 Let A be as above. Let x,ycA, and let E and F be
subgets of N. Then,

(a) If x is E-regular and y is F-regular,' then xy is E( F-reguldr.

- (b) If x is.E-reguZar and y is F-regular, then |z|+|y| i& EUF-

regular.

a

Proof: (a) There exists W,z € A such that wr = ep  and

ZYp = ep. So, clearly WEE o F =_eEﬂ F and ZYenF = CEnF Therefore

. . 2 .
we have zy (Wa)e g g =(0xp o p) (2yp g ) = (eenF” = eeqr .It follows
that xy -is EN F-regular.

(b) Clearly |z|+ly| > J=|. But |z} is E-regular by Lemma 3.8(c).

Theréfore, by Lemma 3.8(d), |z| + |y] is E-reguiar. Now,since
lz|+#|y| > ly| theri by a similar argument we have that [xz|+|y] is also

F-regular.. It follows by Lemma 3.8{b) that Jz|+ly is EUF-regular.

i

e ?

DEFINITION 3.10 Let A be as -above. For « e A, set

[z} = {ES N cx is E°-regular},

where E° is the complement of E 4n N. .
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LeEMMA 3.11 Let A be as above and let z,y € A. Then,
(@) Ilzy] < 2[=1N2[y]

() I[|x|*|¥]|] 22[<I VU Z[y]

(e) If x| < |yl|, then Z[z] = Z[y].

Proéf:.(a) If 2y is Ec-rggulér;.then from the definition of E-
regularity it is clear that both x and y are also E€-regular

(b) 1fz is E°-regular then by Lemmau3.8(a) and Lemma 3.9(b);
:le+|y| Tsgals0 Ec-rggd]qr. Since the situation.is symmetrié with
respect to x and y, the result follows.

(c) This follows directly from Lemma 3.8(d). S

>

Recall that a g<fter on a set X is a collection & of subsets of
. : . %
X satisfying the following properties: (i) IfF , G ¢ & , then FN 6
e SF. (i) IfF ceF, and G OF, then 6 e &7 (iii) ¢ £ .

" THEOREM 3.12 Let A be as above and let x ¢ A. If x is non-

invertible ‘then I[z] is a filter on N, and conversely.

Proof: If x i§ noninvertible then clearly ¢ g I[z]. If E,F ¢
Z[x], then x is g?-¥egu1af and'Fc-regular,’hence, by Lemﬁa'3.8(b), x 18
EcﬂJFc;regu]qr. ‘But ECUF® =-(ENF)°. Thérefore x is (ENF)%regular
and this shows that Ef]? e Z[z]. - '

Suppose that E ¢ Z[z], then z is Ec-regu{ar. If F oE, then |
F° < £, and 50, by Lemma 3.8(a), & is Fo-regular; i.e., F ¢ Z[z]. This’
comp]etes the proéf that Z[x] is a f%]ter.\ ’

Conversely, suppose that x is invertible. in A. Then clearly

S
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5

¢ € Z[x) (i.e., = is N-regular) and therefore Z[x] is not a filter

on N. ' _ : /111

DErINITION 3.13 Let A be as above. If I is a subset of A, then

we define Z[I] by’

2013 = U (2le] sz} -

THEOREM 3.14 Let A be as above. If I-is an ideal in A, then
"2[1] is a filter on W.

. . . \ - . . .
Proof: Since I is an ideal it consists of noninvertable elements

only. It follows by Tﬁeorem 3.12 thét ¢ £ 2[x] for each x ¢ I: There-
fore, ¢ ¢ ;[I], ‘ . .

’ . Suppose that E,F e Z[1]. 'Then, there exists x,yel such that

z s Ec—réguIAr and ; is F°-regular. Since I is an ideal, it follows
by Lemma 3.4 that w = le|+[y| e 1. By'Lemma 3.9(b), w is EyF°- regu]ar
d.el, w is (El1F)c-regu1ar This shows that Ele e Z2[1].

: F1na]1y, if E ¢ I[1], then E ¢ "2[z] for some xel. Thus, if

¥ F DE, then by Lemma 3.12, F e 2[z]. Therefore F ¢ . i

o
A

Note that the funct1on Z preserves” inclusion; 1. €., If 1,J are

ideals 1n A and if 1 <J, then Z[1] C:Z[J] We will use this fact in

the next sect1on: .

2. The Space MAA)

In this section we use the concepts developed in Section 1 to

show that the map M -+ Z[M] gives a one-to-one correspondence between



the set of maximal ideals of A (JW(A)} and the collection of ultra-

AP g Ty

filters on N. Also, it will be shown that if JMU(A) is equipped
with the hull-kernel topo]ogy,kthén it is a compact space in which M(A)
. - " {=N) is densé]y.embedded; Moreovef, in this case the above map is

| a homeomorphism between the space JU{A) and 8N, the Stone-Eech
bompactifiéation'bf N. (Note that the collection of ultrafilters on
N can.be topo]oéized so as to be 8N, [iﬁ]).

Recall that an ultrafilter on a set X is a filter on XV;AE;:—_——_Tf-\\\

that phere'is‘no filter on X which proper]j contains it.' A filter ;
g‘f/on X is an ultrafilter if, and only if, G ec?f’/,wh;enever GNF # ¢

'for every -F e5%, [7]. Recall also that here A denotes a complete
LC-algebra with 1den£ity e and {z } is an uncondi tional orthogonal

Schauder basis in A. | -

&

{ ' _ - THEOREM 3.15 Let A bé as above. If M is a maximal ideal in A,

then I[M] is an ultrafilter on N.

'Proof: Let G be any ‘subset of N and suppose that GNF £ o

for every F e Z[M}. We will show that in this case 6 ¢ Z[M] and
FhiQ Shows #hat.Z[M] is an bltréfilter. "To this end let .H = G°
and consider B : a ‘ .
\ H nzle(ijz)x . a -
‘Now, suppése that eH'z M. Then, M being a max1ma] rdea} has the
._property that eeM+ <eH ; f.e., there ex1sts yeM and z ¢ A ‘ ‘

such Eﬁat e =y + zeH Hence y = e-zey, 50 that yeg = ¢eg-zeyeg

[}
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o

= eq: It follows from thié that eg € M. Now, 6 =He Z[eG]. Hence

M ¢.Z[M], contradicting'the fact that GNF # ¢ for'every F'e Z[M].

This contrgdiction shows that eHs:M; and thus G e Z[M]. /111

We now consider the inverse function (considered as a function
. L] . . e‘

A

on sets) of the function Z.

DEFINITION.3.16- Let A be as abové, and let ég; be a filter on N.
Define Z[5] by _ . -

K

Z[F] = {zeh: 2] = F)

We aim to show that Z [S#] is a maxima) ideal.of A whenever

G#is an ultrafilter on N. First, we need two lemmas:

LsMMA 3.17 Let A be as above, let z € A, and let E be a subset

of W. If ENF#0 for-every Fec Llxl, then  is B-singulav.

Proof: Suppose that x is E-regular.- Then, z is (E%)°-regular

and hence E¢ ¢ Z[z]. Since. ENE® = &, this contradicts the hypothesis

!

- of the Temma. - -7 o o /117

" We récall here that we have shown in Section 2 of Chapter II
that M(A),.the ﬁax%ma] ihea] space of A, is homeomokphfc to a countable
discrete space. In fact, M(A) = {z#:ne N} Thus, we can ‘identify

M(A)'with N via the map =z} + »n. In this section we will consider the -

_ Gelfand transform £.of an element z ¢ A to be the function on N given

by 2Mm) = zj(x).
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We also recall that if <7 is an ultrafilter on a set X and if

«/ N .

‘£ is a mapping of X into a set Y, then F(5%) is an ultrafilter base on
t

the set Y [7].

LEMMA 3.18 Let 4 be as above, x,2 € A, and let cf?‘b;be an ultrarilter
“on N, If Zimg(xz)“ =0 for"'ever'y 2z € A, then x s E-singular

for every E e k.

Proof: Suppose that z is E-regular for some E e¢§?. Tﬁen, there
exists z ¢ A sucﬁ that wap = ep and ‘hence 1 is a cfuster péint of
(xz)" (&) (because, since ENF # ¢ for each F £, it follows that
1 é(xz)“ﬂﬁ‘for each F Eé??). But 0 is also a cluster point of (iz)“(éﬁﬂ

by hypothesis. This contradicts the fact that (xz)‘&ﬁiﬁ is an ultra-
filter base.. . | 1171

* ~ a °
¢
- E]

Tuporem 3.19 Let A be as above. Ifc";‘;is an ultrafilter on W,

then T[] is'a maximal ideal of A.

Proof:. Let M= I'[&]. If z e M, then Z[z] < and so, by

Theorem 3.12, x is noninvertible. Thus, M cons1sts of noninvertible.

e &

e]e@ents only. '
Let’ z ¢ M and y € A. Then, bx:Lemmé 3.11(a), Z[xy]<§f2[£]:
Théreforea xy e-M “ | o _
If oy € M{ then Z[x]ca?and Z[y]C,jf Hence, by Lemma 3.17

x and y are £- s1ngular for every E s¢¢f It fol1ows from this that 1f

3 1s any eJement of A then %z and yz are also E~ s1ngu1ar for every E ¢

-

4. Therefore, by Lemma 3.1(b ) (modified to apply to E-regular1ty), =

LY
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.we have that inf{(xz)"(n) :neck} =0 for every E €<%, and thus 0 is
a cluster point of the filter base (22) (). Similarly, 0 is a cluster-
point of the filter base (yz)A(pS«Jr). Now, sJince S‘?is an ultrafilter,.it
follows that (xz)"~(F#) and (yz)"(Z%) are ultrafilter bases on L, Ther;-
fore, (zz)~ (&) and (yz)~(S%) both converge to O for every z e A; i.e.,
Zun&(xz) = Ztmc%(yz) = ¢ for ever)" z € A. ‘Now, because of the
continuity of addition in €, we have that limgy((xa)™+(yz)") = limg (zxz)"

o
+ Z'ﬁn&(yz)" (see [7,p.375]). It follows from this that

Zimg((xw)z)" =0 (z € A)

» . .
(since ((xty)2)" = (zz+ys)” = (x3)"+(y2)"). From this and Lemma 3.18

we cohc]ude that x+y is E-'singular for every E 55? iTheArefo're.,
U zty] = &%, and consequently xz#y € M. This shows that M is ar'\‘ideal
in A. | ' ' V '
- Now, suppose that N is an-ideal in A containing M. Then, Z[N]
>, and s'inceq?f is an ultrafilter, we have that. ZIN] =%, So, if

z € N-M, then Z[z]cS% But then x e M by definition. Therefore

. M=N. This shows that M is a maximal ideal. /111

We have already noted that Z preserves inclusion, of ideals and
it ‘is clear from the definition of-Zf that it preserve's. incl'usjon of

filters. From these facts we get the following theorem:

" THEOREM 3.20 For  F mn ultrafilter on }zv, and for M a maximal

ideal in A, the following relations hold:

ULWHN =F aa T2 = M

N
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roof: Let N = Z°[&]. N is a maximal ideal by Theorem 3.19.
From the definit}ons of Z and Z° we see that Z[N] is a filter containing
S7. But since <% is an ultrafilter, the result f0110w§.

The second part is proved similarly. e

¢
This shows that the mapping M - Z[M] gives a one-to-one cor-

respondence between the set of all maximai ideals of A and the set of
ultrafilters on N.

Now, let FA N) be the collection of.all ultrafilters on N,
and consider the collection of subsets of &#(IN) consisting of sets of

the form

*

E = [FeFHN): EES"‘}’

for E< N. It is well known (see [16])} that the collection
*

B ={E : Ex N}

is a base fon the closed sets (i.e., the closed sets are the inter-
sections of members 0f43) for a topology on &#(IN) and in this topology
S#(N) is the Stone-Tech compactification of N.

- . Also, there is a natural topology on the set M (R) of maximal
ideals of any ring R wi th:hnid'entity’. _This ishthe llm-!ee'ulél’. topology.
A base for the closed sets in this topology is given by the co11ect16n

of sets of the form
Hex) = {MeJM(R) : 2 e M}

for = ¢ A (see [16]). However, for our algebras A a very much

-
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y smaller collection forms a base for the closed sets in the hull-kernel

-———

topology on M(A). &

LemMa 3.21 Let A be as above. The collection of subsets of TV(A),
& = {Htep) : Ec N}

is a base for the closed sets in the hull-kernel topology on the

set M(a) of maximal ideals of A.

?

Proof: 1t is sufficient to show that for every x ¢ A, there
exists Ec< N such that for every maximal ideal M of A, xecM implies

ep € M. To show this, let M be a maximal ideal of A, xe¢M, and

consider

E={neN:|zt(x)]> 1]

Clearly éE is E-regular by (a modification of) Lemma 3.1(b). So, there
is an element 2z e A such that zzo = ep. Now, since « e M, it follows

that ep € M. This is what we wanted to show. /117

He now prove the result mentioned in the introduction to this

section; i.e., that the map M - Z[M] is topological.

THEOREM 3.22 Let A be as above. The map M~ I[M} 1is a homeo-
r;'wo‘rphism from M(4) with the hull-kermel’ topology onto BRIV, the

Stone~Cech compactifieation of .

Proof: We have already shown that this map, call it ¥, is one-
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to-one and onto. We will now show that the map ¢ takes a base for the

L A

closed sets inJM{A) onto a base for the closed sets in 2N. This will

show that y is a homeomorphism. To this ehd, let E< N and consider

L]

Hieg) = (M e MA) e M

TIf Me H(eE), then E° ¢ Z[M]. Conversely, if €% ¢ Z[M], then there

exists z ¢ M such that x is E-regular and therefore (as in the progf
of Lemma 3.31) e ¢ M; i.e., fbtakes H(eE)to (Ec)*. It follows that
Y takes a member of the base for the closed sets (defined above) for
the topology 6f JM{A) to a member of the base for the closed set for

the topology of RN (see above). Now, each member of the base for the

-closed sets in BN is of the form E* (ESN), and bj the above we

have that v takes Hlec,) to E". It follows that v maps the base €
= {Hreg) : E =N} (see Lemma 3.21) onto the -base B = {E*: E =N} of
BN. This completes the proof. i

We have already shown (Chapter I1, Theorem 2.14) that M(A) is
homeomorphic to IN. From this and the above theorem we concliude that

M(A) with the hull-kernel topology is homeomorphic to gM(A), the

Stone-Cech compactification of M(A). Also, it is clear that/ under the

map ¥ (see the proof of Thedrem'3.22), the closed maximal ideals of A

(these. are ideals of the form Mk by Theorem 2.17) correspond to the

points of N (i.e., the gixed ultragiliens on N — that is,ultrafilters

FFsatisfying( }:S+# ¢) and the dense maximal ideals of A correspond

to the points of " BIN-IN (i.e., the §ree ultragiltens on N. These are
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. ultrafilters %% satisfying () GF=9). a

In Section 2 of Chapter If we cHaracterized the maximal idéa]s
of A qorresponding (under.tﬁe map ¥) to the points of ﬁL In the next
section we will ‘consider the maximal ideal corresponding to the points

- of pIN-N. . ~ 7 ‘
3. Maximal Ideals and thé Dual Space

o i ‘. .
? !
I ,

We continue the study of the maximal ideals of A by describing

the intersectidn of t?é dense maximal ideals of A. It turns out that
th1s 1ntersect1on is % dense 1dea1 of A we will call J(A) We also
def1ne an 1dea1 we g%]] K(A) wh1ch, if A is also metrizeable, is iso-
mo¥phic (as a 11n%pr space) to the topo]og1ca1 dual A' of A. It turns
out that under certain conditions (see Theorem 3.31) the 1dqals.J(A)

and K(A) are eqpa] There%ore, in this case the dual space A' is i§9~
morph1c to’ the 1ntersect1on of the dense maximal ideals of A. Moreovér,

the a]gebrif‘H(D) and 'S of Examples 2.8 and- 2.9, respectively, satisfy

th1$ cond}t1on~ o _ Q\\:
b we recall that A denotes a complete LC -algebra w1th identity e
a d“qlth an unqond1t1ona1 orthogonal Schauder basis {qn}. We begin by

defining the ideal J(A).
« « ‘ . 4" . .
Derrnrrron 3.23 Let A be as above. Define the. subset J(A) of the

algebra A by
RIOE {xeA Lim af(zy)'= 0 for all yeAl

Note that since " e ¢ A, then each « € J(A). has the property

* N v, _‘ ' . ) /\
o (o
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‘.\So; let r = lim Ix;(xy)L r# 0. ,Thus, there is a subsequence {n;} of

% q

7

that Zim x;(x)==0. Note also that in the algebras of Examples 2.8
Y1300 .

and 2.9, J(A) # A
LemMa 3.24 If A is as above, then J(A) is a dense ideal in A.

Proof: Suppose that z,y e J(A), and let z be any element of A.
Then,_sz zt((zty)z) = 72&7 x*(:z:z) + Lim z2(yz) = = 0. Thus, z+y e J(A).

Clearly if =z e J(A) then ix ¢ J(A) for A ¢ €. Now, if x e J(A) and

_y e A, then rll_g at(zyz) = 72&2 z}(x(yz)) = 0, hence, xy ¢ J(A). This

shows that J(A) is an ideal in A:
" Clearly any f1n1te linear combination of-elements from {x }
belongs to J(A). S1nce {m } is a basis in A, it follows that J(A)

dense in A. : . ' /117

MHe aim to show that‘J(A) is prec1se1y the intersection of the
dense maximal ideals of A. We need the f0110w1ng characterization of

the elements of J(A).

LEMMA 3.25 et A be as above. Then, x ¢ J(4) if, and only if,

for every infinite gubset E of N, x ié not E-regular.
Proof: ( => ) Suppose that- there exists anin?initesubset E of
N for which = is E-regular. Then,- there ‘exists y ¢ A sueh ‘that myE
= er- "But then Zim x*(myE) is clear]y not 0. Therefore x ¢ J(A).
( &= ) Conversely, suppose that ' 2 g J(A). Then, there exists

y € A such that Zim c(zy) is not O (possibly. ghis Tinit does not exist)?
. 300 * v

J
’ }
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N such that izm x*k(xy) = pr. ‘Without Toss of genera]ity, we -can
choose {n ] in such a way that x*k(xy) £ 0 for all k¢ N [[ because
this can happen only f1n1te1y often, so, drop these terms from the
sequence {”k} T. It follows by Lemma 3.1( ) (applied only on the
sequence.{nk}) that zy is {nk}—fegu1ak. ‘Hence, x is also {n, }-regular;
i.e., z is E-regular for an infinite set E (={nk}). 1111
. ~‘j ,
- To prove the next theorem we use the correspondence between the

dense maximal ideals of A and the free ultrafilters on N established in

Section 2.
THEOREM 3.26 Let A be as above. Then, we have that - . .
J(A) ;m{M: MeMra)-M(A)}

i.e., the ideal J(A) is the intersection of the dense maximal

ideals of A. .

2

Proof: "< " 1t'will suffice for this to show that for each
dense makimal ideal M, the ideal J(A)+M is proper. To this end let
M gj”L(A)-M(A), and let W= J(A)+M. Suppose that W is not'propen; i.e.,

suppose that e e W. Then, there exists z ¢ M, y € J(A), such that

T+ Yy

xr’:(y)

e. Since y ¢ J(A), we have that Zim mg(y) = 0, and so,
n -

1 at most finitely often, say,

A I

1}

:cr’,‘q(y.) = :f:’;;g(y) == S x,’,"k(y) =

.
[

%xm‘.« Since M is a dense ideal, {xn}'g M'by Theorem . ‘
=1 i T .

4
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2.17, and hence » ¢ M. For the same reason, w ¢ J(A). -It follows
that if we set y’ = y-w and =z’ = z~, then z' ¢ M and y' e J(A).

Also, we have that ziy') # 1 (n=1,2,...). Now,. z'+y'e W and we

A
have that
z'ty’ = prwty-w
‘. ‘ Lo =xty = e.
This implies fhat © e ~
x! = e-y’ ] . (*)

However, by the way y' was chosen, we have that x;;(e-y') #£0 (nelN)

Also, we haye

Lim zt(e-y') = lim z*(e) - 1im o*(y’) = 1
nao 7 N M. o N

! _ .
(because y', being an element of J{A). has the property that ,%7-’»@ x;i(y’)

0). Therefore, by Lemma 3.1(b), e-y' is invertible. But from (*) we
have that z' = e~y'. It follows that z'-is invertiblé. This, however,

contradicts the fact that x’¢ M. This contradiction stems from the

.assumption that the e ¢ W. Therefore, ¢ ¢ W, and hence W = M+J(A) is

a proper ideal of A. ) Since M 'i's a maximal ideal, it follows that J(A)
s corgta%ned in M. , | '

" E:' Suppose fhat zE€ m{M: Meﬂii(A)-M(A)},. L?t E be-an
infinite s_uB'set of N and et e a free u]t.ra‘fﬂt’er' with EeSF.

[[ This is always possible. For example, 1et£= {F< E:F has fimite

L}
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complement in E}. Thgn fg'is a filter base and is thereknre contafned
in an ultrafilter & on N. Clearly (~\:§?= ¢. "Therefore (ﬁ\ = b
~a1so Th1s§£h§ws that FFis a free ultraf11ter on N and clearly E ¢
ﬁgkﬂ. Nodyrguppose that x is E-regular. Then £ ¢ Z[z]. Since E ¢
S#, it follows that 2[z] ¢ . Hence =z ¢ I°[H]. But since Fis
a free ultrafilter, I'[#] is a dense maxiﬁa] ideal of A (see Theorem.
3.19 and the remarks at the end of Section é): It follows that =z £
(—\{M :h!ejﬁt(A)-M(A)}. contradicting our hypofhésjs. Therefore the
assumption that x is E-regular for Some infinite set E léads to a
contfhdiction. It follows that x 1S not E-regular for any infinite

subset E of N, So, from Lemma 3. 25 we conclude that z ¢ J(A).
/111

To study A', the topological dual of<A, we make the following

definition:

¢}

DEFINITION 3.28 Let A be as above, We define a subset K(A) of
the algebra A by .

K(A) = {zeA: Zx*hy)cmwmgesfm*an y e A}
n=1 .

£3 . .
Note that if z ¢ K(A), the Z x;(x) converges since we

have 2 *(x) = z x*(xe) Now, since the basis {x } 15 uncon-
d1t1ona] we*have by Lemma 3. l(a) that z ~Brfn =Y € A for any
bounded sequence {B }. of camplex numbers. Therefore, if z¢K(A), w We
have that z 1Bnm*(m) nzlmﬁ(my)- conYefges in A. Since ?hif‘is,

A
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true for any bounded sequence {Bn}'of complex numbers, it follows that

for each = ¢ K(A), .Zzzlxg(x) converges absolutely.

Lewma 3.29 If A is as above, then K(A) is a dense ideal in A.

Proof: 1f a,y ¢ K(A), then clearly x+y e K(A). Suppose that
ye A and =z ¢ K(A), and let z be any eiement of A. Then, E:=1xg(xyzi
converges (becauée z € K(A)). Since this is true for all 'z ¢ A, it

follows that -xy e K(A).

.

Clearly all finite linear combinations of elements from {;n}
belong to K(A). Since [{xn}] = A, it follows that K{A) = A; i.e.,
K(A) is dense in A. . . A

Tn view of. this Jemma and the remarks preceeding it, we have the

&

following alternative description of K(A):

K(A) = {zeA : ] |aitay)| <= for all yeA}.
n=1 -

[l ————

Note also’that K(R) = J(A) = A so that K(A) = J{A) = A. .
For the next theorem we need the additional assumptioh that A is
metrizeable; i.e., A is a comp]ete'metrizeab1e LC-algebra. Algebras of

this type are called Bo—aﬁgebiaA [43].
5. ‘ L
Treoren 3.30 Let A be a B,*algebra with identity and suppose that

~

. A has an’ undonditional orthogonal basis fxn}. Then, A' is (linear
‘space) tsomorphic to the.ideal K(A). .

d

B L 0T :‘\ - . / ,
Proof: “Consider the map T:K(A) + A' defined by y - fé

! (\\\ " . ' . s s “
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:fxmn),. n=1,3f...$1nee e e A (e = En:Zx" by Lemma 2.13(a)) it follows '

N n s el

3 T e
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where fy e A' is defined by

~fy(:r:) = nzzlx;;(xy) (xe A).
Note that the series on the right above is convergent because x e K(A).
It is clear that’féis linear anelhomogeneous for each y ¢ K(A). To

show that fé is continuous, consider " -~

x

o o B
fgn(y)Yx) = ] xf(x)2f(S (y))

» k=1 3 n
: C (%)
n i‘

S ACIEACL ' ‘ b
Lk _i | L .

for z¢ A (recall that Sn is the partial sum operator Sn(x)'= )

n ' . s . . . ;
Zk=1xg(x)mk). Clearly Pfgn(y) is a continuous linear functional for
each y ¢ K(A) since ‘it is a finité linear combination of the contin-
uous functionals xf ( these are gontinuous because A is an F-space).

Now, ]eta y € K(A), then from (*) we have that, for each z ¢ A
fs()(x)+f(x) Z xay) as noaw

'Siqce A ie a complete metrizeable space, it follows.by the Banach-
Steinhaus theorem that j;.Es a continuous 1inear functional for each
y le(A), and thus defines an element of A'.
" Now, suppose that Yy € K(A), Yy # gg. Then, there exists
ne N such that x*(yl) # xﬁ(yz) But f (x ) = x*(yl ) and f Z(ffi;7;{/’_\\\
x;(y ). Hence f # f and th1s shows that T is one-to-one. S
| To show- that T is onto R, suppose that fe A', and Tet @ =

b
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thqt‘(since f is continuous)-
fle) = § flz ) = Z‘an
O n=1 n=]1
and this series converges. . Therefore {an} is a bounded sequence and
thus Z:;}anxn converges in A (by Lemma 3.1(a)).. So, Tlet
0 w |
""" Sw= ) 0.
. n=1‘
. Now, if =z e A, theh since £ is continuous we have
‘ \‘-w ‘ m
flx) = } z}(z)f(x ) = ¥ :c*(a:)oz —
n=1 . 7 n=1" .
. ' © &
= ) zrz)xiw) = § x*(aw).
n=1 n n n=1 i

f

' _ Since-this last series .converges for every =z ¢ A, it follows that u:\fs
. an element of K(A). Clear]xxwé have that f = fy and this shows that

)

T is onto A'. This completes the proof. : o 1111

In Examples 2.8 and 2.9 (Chapter II; it is easy to sho; that

K(A) = J(A), so that in these cases A’ is isomorphic (by the isqﬁorphisn
T abové) to the intersection of the dense maximal ideals of A ( -J(A) by
Theorem 3.26). In Examp]e 2. 8 J(A) is the algebra of analytic functions
with radius of conyergence,greater than 1 (see [27]). In Example 2.2
J(A) is fhé aiéebra of %1niﬁe sequences (see [39D). However, we do not
know whether it is true in general (for the algebras we are considering
here) that K(A) J(A T ‘ ' '

" It was seen 1n Lenma 3. 1(a) -that ifw{é;} is a bounded sequence

[
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of complex numbers, then E:=13nx coqvergés in A. The converse of

n

- this stapement, however, is always false fer the type of algebras we

are considering'here (i.e., complete metrizeabﬁe LC-algebras A with -
havihg unconditional orihogona] basés)ﬂ' Tﬁis is so because if every
convergent series of,the'form Z:=1anmn in A has the property that
{an} is b0unéed, then a similar application of the closed graph

theorem {via fheorem 1.1) as thag‘giggdjn’iggiproof of theorem 2.34

shows that the map o (see-Defiﬁition 2.29) is an algehraic and

. topological “isomorphism of A onto m, the Banach algebra’ of bounded

sequences. This, however, is impossiblé since m. is not separable
but A is separable (since it has a basis).. Therefore, for topological
algebras of this type there always exists z e A, =z ='Z:=1

OpZy,, With
fan} unbounded. Me require a sTightly stronger condition to show that

" the jdeals K(A) and J(A) are equé].

THEOREM 3.31 Let A be a topological'algebéd with an é@éntity
and let {xn} be an orthoéonal basis in A. If there exists an
invertibleyelement z ¢ A such that I _|ad(x)| <=, then

J
JM)=K¢L

Proof: We ﬁave a]rea&y noted that the inclusion K(A) g;.J(A)__
always holds. So, we show the other inclusion. Let ze A be invert-

ible with Zzzllxgﬂr)l convergent and let y ¢ J(A). Theén, for every

. 3 € A, we have that’ %fﬁ xg(yzx'z) = 0. Singq xfz = ﬁ:zlxg(x)'lxn

(py Lemma 2.13(b)), it follows from this that _%Qg~mg(yz)¢;(m)'1f= 0.
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i - Therefore we also have

x*(yz)
Z'zim —;};——-—
n>e | x> ()

=0 tzeh).

ﬂ
Hence, for n sufficiently large

x}’;(yz)

L Ve g,
* —_— 3
,xn(x)

i.e., |ziya)| <|<i(z)| (zeh). Since I lep@)] < =, it follows -
that the series

) zt(yz)

n=1 "

converges, for all z e A. This shows that y ¢ K(A). ‘ i

e e B
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Chapter IV

CYCLIC BASES

this chapter we study F-algebras with cyclic bases. Special
attention will be paid to the form of the spectrum of the element gener-
ating the basis. It turns out that the properties of this spectrum are
intimately connected with certain properties of the algebra. For example
we will show that the algebra is semisimple if, and only if, the spec-
trum of the element generating the basis has ﬂonempty interior. In
fact, if this spectrum is open (as a subset of L) then the algebra is
(algebraically and topologically) the F-algebra of holomorphic functions

on the spectrum. This fact can be co?sidered a characterization of the

.

algebra of holomorphic functions on a simply connected domain in terms
of the Taylor series expansion. We also show that an F-algebra with a
cyclic basis has unique F-algebra topology. Finally, we will briefly

consider topological algebras with unconditional cyclic bases.

1. The Spectrum of the Generator

We begin by giving some examples of topological algebras with
cyctic bases, and developing some of the fundamental properties of
these algebras. Also in this section we will describe the spectrum

of the element generating the basis. The results of this. section are

essential to what follows.

86
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ExaMpLE 4.1 The Banach algebra El(N) (with convolution product) has
a cyclic basis {z":n=0,1,...} where z = (0,1,0,0,...). This basis is an

absolute basis.

ExampLE 4.2 The algebra H(D) of functions holomorphic on the open
unit disc D with pointwise operations is an F-algebra in the compact-
open topology [39]. It is an easy consequence of the Taylor series
expansion that the function z2(¢)=t, t ¢ D, generates a cyclic basis
for H(D).

More generally, let O be any simply connected open (proper)
subset of € and let w=y(z) be a conformal map from Q onto the unit disc
D. The set {(W(z))":n=0,1,...} forms a cyclic basis for H(Q) because
if f is ho]omorphic'in Q then

o

flz) = rap-lw)) = cf o u = of o (p(z)"
n=0 n=0
where the series converges in the topology of H(Q). . The uniquéness is
a consequence of the Taylor series. ’
. - In this connection we mention that the algebra H(D) of functions
héaomorphic in {a neighbourhood of) the closed unit disc D is a topolog-
jcal algebra with the usual inductive limit topology Cl?]. Moreover, it
is easy to see [32] that the sequence {z":n=0,1,...} is a basis in H(D).

This is clearly a cyclic basis in our sense.

Exampre 4.3 The algebra C[[ X ] of formal power series in the indeter-
minate X is an F-algebra in the topology of simple convergence in the

coefficients [39]. The indeterminate X generates a cyclic basis for
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the algebra CI X J).

ExampLE 4.4 The spaces Fp(PU , 0< p <1, are complete metrizeable
topological algebras with the convolution multiplication [42]. These

algebras have cyclic bases generated by the element = = (0,.,2,7,...).
£

Other examples of topological algebras with cyclic bases can be
constructed as we will see in the sequel. Now, however, we will prove
some of the fundamental properties” of such algebras. Throughout this
section A will denote a complete Locally m-convex algebra with a cyclic

Schauder basis {z":n=0,1,...}

LEMMA 4.5 Let A be as above and let x,u be elements of A. If

o0
z = Zn=0 2" and y = Z ~0Bn 2", then

O o

xy ngo(k§ - kek)

Proof: We will show that for every k € N, the coefficient

functionals xi have the property that

x

xi(xy) =]a

120 k- Z A

and this will prove the result since we have that xy = Zm Or;(xu)z .

To this end note that

( We have used the continuity of multiplication). Now, set v =

") so that zy = I _w,. Since z* is a continuous func-

B,(2; n=gn" k

1=0%t?
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. B 0
tional for each x ¢ N, it follows that z#/xy) = L ¥t (wy).  However,
=
1.
for n > k, W contains no z~ terms and so cifw ) =0 for m o> koIt

follows that

~
~

S
.’
j

This complefes the proof. ’ /117

Th1s\?e"rgsentatlon of the product of two elements in A allows
us to more eas11y dec1de when an eIement 15 invertible, and so more

easily describe the spectrum of 2. This we do in the next few lemmas.
LEmMa 4.6 2z 18 noninvertible.

Proof: Suppose that z. is invertible. It follows thdt there is

a sequence {a } of scalars such that

We have

5 2
= 2 = 2 F S foes
. Zan _ %9 %

- This, however, is impossjble«sinceke(the identity of -A) is itself a
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} member of the basis and thus has the unique representation ¢ = 7.2 +

bl

02 + O-zL o /00
This lemma shows that 7 ¢ ofz).

LEMMA 4.7 IF X € T then z-he is twertible {7, mion’y iF,
% n . .
Zn_o(z/k) converges tn A. In this case

o "

(ze)™ = L] (3 ).

\

=0
Proof: ( = ) Suppose that z-)e is invertible. If =5, then

by Lemma 4.6 z is not invertible. Hence, assume that X#0. Now, since

{z"} is a basis for A, there is a sequence {a } of scalars such that

(z-e)™! = 170,z It follows that

. o]
e = (z-xe) § a 2"
- n
n=0
{
© o4} Yoe
=} anzn+1 - ) A "
f n=0 n=0
©o= dae - 2+ - e
£ Aaoe f (aO Xa]) (az Xas)z +
. , R S Y AL
n  n+l

Because of the uniqueness of the basis representation we have that -AaO:J

and aO—XaZ = az-xag = ... = an—kun+1 = ... = 0. This implies that , =
-(1/)\) and a ;= an/k, n=0,1,... By induction on n we can easily

_ ntl Y B Plg
conclude that a, = -(1/X)"" ", n=0,1,... Therefore, (z-Xe) ' = Zn=0[1217 .

(<= ) Conversely, suppose z:=0(z/xg" converges in A. Then

clearly -Z:_sz"/xn+q) also converges in A. Now, this last series is

e . w——an e A = w

W
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the inversg of z-)le because
( ozo zn] of zn+1’ czo zn
- (z-ke) = - + — =ce
n=0 An+1 ne0 An+1 =0 An
/117
LEMMA 4.8 If X\ ¢ o(z) then |X| > p(z).
Proof: Since XA ¢ o(z), z-)e is invertible and therefore, by
Lemma 4.7,
-1 1 P Zn *
(el = - LT (&) G
n=0

Now, let f ¢ M(A) be a continuous multiplicative linear function® . Then

4

from (*) we have
flane)™) = - L]

Since this last series converges we must have that |f(z)/A| < 1. Hence
[f(z)| < |x] for all f e M(A). It follows that sup {|f(z)|:feM(A}} < lx].
Since p(z) = sup{|f(z)]:feM(A)}, the result follows. /117

Let D = {tel: |t|<r} and 5; = {tel :|t]<r} be the open and
closed discs of radius r about 0, respectively. Since it is clear that

if |xl > p(z) then X ¢ o(z), it follows from the above lTemma that the

spectrum of 5 is contained in D and contains Do(z); i.e., Dp(z)fE alz)

. p(z)
s Doa)
In the following lemma we give a different description of o(z)
which we will need later. For this purbose, for each x ¢ A, = = Z:=0anzn,

= ¢ w n
set S_ {Aecr: L e converges}.
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.
LEMMA 4.9 With the above %ftation, o(z) =(ﬁj{5x:xelﬂh

Proof: Suppose A € a(z). Then there exists f ¢ M(A) such that

f(z) =x. Let x ¢ Awithzx = Z:=0anzn. Then \
o o /
flz) =7 a frz)" = ] a \
n . n
n=0 n=0 e

~

and this series converges. Thus X ¢ S_. But x was arbitrary. Therefore
XE(\{%;xEA}. ’

Conversely, suppose that X e(A\{Sx:xe:A}. Then f(z) = ) defines
a multiplicative linear functional on A; i.e., for every x € A, ézz:zoanz",
we define f(x) = §:=0anf(z)n = Z:=Oanxn (this sekigs converges by the

definition of Sx). So, f ¢ M#(A). But o(z) = 2(M#(A)). Therefore Aeo(z).

/111

For x= = Z:_Oanzn an element of A, S is the domain of convergence
of the power serfies Z:_Oantn. So, if we let r be the radius of conver-
gence of this power series, then D =« S < D . Now, since o(z)=(-\ S,
r— x— r x€d =z

it follows that there exists sel such thit D < ofz) g D_. Also, if
plz) = = thsn each Sx must contain cbmp]ei numbers of qrbitrari]y large
moduli. But each Sx is the domain of convergence of a power series.
Hence S =t for‘equAx e A. It follows that in this case o(z) = € (by tﬁe
above lemma).

In Lemma 4.6 we showed fhat 0 always belongs to of;). We now show

that if o(z) contains points other than 0 then A is necessarily semisimple.

o

THEOREM 4.10 A is semisimple if, and only <f, p(z) > 0.

Proof: (&= ) First, recall that Rad(A)=( Mker(f):feM(A)} since



)

93

A is a complete locally m-convex algebra. Now, suppose that x e Rad(A).
We will show that = = 0. To this end suppose that x = Z:=0anz". As

before, for f e M(A), we have

FU€) =7( ; anzn) = ; anf(z)n:
n=0 n=0
This last series is a complex power series in'the complex numbers f(z).
Now, since x € Rad(A), f(x) = 0 for all f ¢ M(A); i.e., the power series
(*) converges to 0 for each f & M(A). Bu£ since o(z) = {f(z):feM(A)},
it follows that the series z:=0ant” converges to zero for every t € o(z).
By Lemma 4.8 (and the reﬁgrks following it) the epen disc D

i on-
p(z) ? ¢

tained in o(z) (because p(z) > 0). Hence the power series ZZanntn is
zero on Db(z)’ p(z) > 0. So, by the identity theorem for power series,
the coefficients are all zero; i.e., a = 0, n=0,1,... Thereforg, ﬁy the
uniqueness of the basis representation, x = 0.

»

( = ) Conversely, suppose that pfz) = 0. Then o(z) = {0}, -

and so, if f e M(A), frz) = 0. Now, since z generates A, each continuous

multiplicative linear functional is completely determined by its value at

z. So, there is only one such functional, ﬁame]y flx) = xg(x). I't

%

follows that in this case Rad(A) # {0}. Thus A is not semisimp]e.& i

/
2. The F-Algebra H()

Let @ be an open subset of the complex plane I, and let

H(Q) = {f:0~»C : f is analytic on Q}; -

i.e., H(Q) is the algebra (with pointwise operations) of holomorphic
1 ‘

B P N PR

[P
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functions on Q. If this algebra is equipped with the topology of uniform
convergence on compact subsets of Q (the compact-open topology) it then
becomes an F-algebra [39]. In particular, if @ is‘an open disc with
center at to, then the‘funcﬁon zft)=t-t0,
for H(Q) (see Example 4.2). We aim to show that these two properties

t € Q, generates a cyclic basis

characterize H(Q) among F-algebras (the exact statement is Theorem 4.12).
This will lead us to consider the possibility of A posessing different
cyclic bases, and we will show how any two such bases are related.

For the next theorem we need to show that ofz) is homeomorphic
to M(A). This is true in general for Banach algebras (i}e., if the
algebra is generated by a single element)[44]. However, this is not
true in general for F-algebras [8]. For algebras with cyclic bases we

" have the following result: | . . <

-

LEMMA 8.11 Let A be a complete locally m-convex algebra with a
eyelic basis {z'}. If o(z) is open, then M(A) is homeomorphic

to ofz).

i

Proof: Consider .the map ¢:M(A) ~ o(z) defined by ¢(f) = f(z).
Sip@ﬁfz generates A, it is well known and easy to show [8], that ¢ is
continuous qnd onto. Also ¢ is one-to-dne since clearly f(z) = g(z)
imp]jés f =g. It remains to show that ¢ is open. .

Let V be a subbasic neighbourhood of 5 in the topo]oéy of M(A).

|}

Then,

V= Vie,x,f) = {feMA) : |flz)-fx)] < €} (e >0)."

Now, = = Z:_Oanz” for some sequence of scalars {an}. Therefore, we can

4
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rewrite V as follows
Ve {feMA) : | Jafra)s [ afi" <el. v

n=0 n=0

Let a(t) be the function defined on o(z) by a(t) = Z:=0antn and set ¢, =
fb(Z)' It is clear that a(t) converges for evéry t € o(z) and since o(z)
is open, a(t) is analytic on arz). It follows that a(t) defines a con-

tinuous function on o(z). Now,

(V) = {f(z) : fev}
={fz) : | Jaf(x)"-Taf)]<ec)
n=0 " n=0 o
= {t e alz) : |alt)-at) <¢)
o= {t: |a(t)—a(t0)| < e Y olz)
o =a 0 i) Morz)

This last set is open being the intersection of two open sets. It follows

that ¢ is open. \ = 1117/

We now prove the theorem mentjoned i the introduction.to this

section.
/

THEOREM 8.12 Let A be an F-algebra with a cyelic basis {z". If
alz) is‘open,‘then A is algebraically and togologically igomorphic

to H(o(2)), the ﬁ-algebra of holomorphic functions om o(z).
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b

Proof: Let ¢:A » A be the Gelfand map. Also, I&ﬁ/eaékgr ¢ A, define
the function  on o(z) by ¥(#) = 2(”7(t)) for & € o(z), where ¢ is the
homeomorphism between M(A) and o(z) defined in Lemmé 4.11. For the sgke
of si‘mp]icity, we set ftz qf’](t) so that Q(Z) = t. Now, if x = Z:;O%z”

then for ¢ ¢ a(@v we have

2t) = 206" () = 8(5,) = f,(x)

(o]

: =5 (1 oz =] a s’
n=0 n=0

n .
"n=0 i

Siﬂceléhis last' series converges for every t € o(z}, it follows that each’

"z is a ﬁo]omorphic function on o(z). Now, let A’'be the algebra consisting

~

of all the fgﬁctions Z equipped with the topology of uniform convergence

on compact subsets of o(z). It follows that Ais a subdlgebra of H(ofz)).

- Now, since M(A) is homeomorphic to o(z), it is clear from-the definition

of A that the map A:ﬁ + A by £+ 2z is an algebraic and topological

isomorphism onto A. - '( . ‘ - . ' .
Let A =AoT, S0 A maps A onto Ac H(o(z)). e will show that A
is one-to-one and onto H(o(z)): |
-First, since alz) is open, we must have that p(z) > 0. So, by
lemma 4:10, A 1s,semisimp1e3 It follows that the Gé]fand map I is one-
to-one. But A is one-to-one. Therefore“A is one-to-one;,

Now, suppose that g is a function which. is holomorphic on o(z);

H " ’ . 1
i.e., g € H{orz)). By the functional calculus for locally m-convex algebras
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there exists y ¢ A witq the property that
0(F) = g(2(f)) £ e M(A).

This is quiva]ent to o
g(t) = 906~ ct)) : _ t e olz)

It foT]qws from the definition of y that g = . Thérefors A is onto
H(o(z)). . |

It }emajns to show that A4 is.bicontinuous. Té\show this we
observe that since.A is a locglly convex space its toﬁo]ogy is the
';opqlogy of uniform convergence on.equicontinuous subsets of its dual
A' [35]. But, since A is an F-space, eéch Eompact subset of M(A) is
equicontinuous. It fo]]aug that the topology of A is finer than the
tdpo]ogy of & if we identify A and i Via.the.a1gebraic isomorphism T.
This i; the same as saying that.T is continuous. It follows that 4 is
continuouszeing'a‘compésition of contiguous maps. 'Thus A is a con-
tinuous Tinear map from the F-space A onto the F-space A. From the

open mapping theorem we conclude that A is open. Therefore A is a

topological isomorphism. This comp]eteé,the proof. ; /177

-y

The algebra of ho]omofphic functions on an open subset of € has
.been characterized in several ways. Fﬁr example, Arens [3] charactérized >
H(Q) in terms of the exigtence of derivations satisfying a condition '
similar to the Cauchy estimate; Rudin [34] characterized H{n) in"terms
of the "ﬁéxjmum modulus principle"; Meyers [29] used the Montel theorem -

L4 p - ‘
to fdescribe the algebra H(n); and Birtel [5] characterizes the algebra of
) N N S s
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entire functions in terms of Liouville's theorem. In this spir?t the
above theorem can be considered a characterization of H(Q) (for simply
connected Q) in terms of the Taylor series expansion for analytic func-
tioﬁs.

Recall (see the remarks after Lemma 4.9) that if p{z) = =, then

o(z) = . We have the following special case of Theorem 4.12:

COROLLARY 4.13 [Let A be an F-algebra with a eyelic basis (",
"If p(z) = © then A i8 algebraically and topologically isomorphic

to the F—algebraé;6 of entire functions, /117
e In connection with this we have the fol]owing:

CoroLLARY 84.14 Let A be an F-algebra with a basis {z"}.. If there

o

s an o # 0 such that z-ce also generatgs a cyclic basis for A, -

then A 1s algebraically and topologically isomorphic toé,.
Proof: By the definition of o(z), we have

{f(z-0e) : feM(A))}

o(z-0e)

<

{f(z)-a : FeM(A)}
}

o(z)—a'

Now, by the remarks following Lemma 4.8,~Bbth o(z) and o(z-ae) are discs
in the plane centered about 0. Since o # 0, it is clear that the only way
o(z-ae) can equal o(z)-a is for d(z) = €. The resu]p now follows from

Corollary 4.13. .o /177

.
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!
In the algebra(ﬁiof entire functions the function z(t) = ¢, t ¢ C,
generates a cyclic basis. Since every entire function has a Taylor series
expansion aboutq?ny point in the plane, it follows that the function

La(t) = t-§7”a1so generates a cyclic basis foré;. Thus, a topological

algebra A can have many different cyclic bases. We will now consider all

the possible different cyclic bases of A and their relationship to a

»
v

given cyclic basis {z").

THEOREM 4.15 Let A be a complete locally m-comvex algebra with a
eyelic basis {2")} with 0 < p(z) < . If W'} is another cyclic

basts for 4, then
W = )\(z—-ae)(rge—&z)_I

- where a £ €, la|<r=p(z), and |X| = plwlp(z).

> 2 2 2

‘ Proof: First note that rge—az = 5%e—z)= -c-z(z—%e) and ’%lm(z)-
Hence rfe-az is invertible and thus w is well defined.

Now, since {z"} is a basis, we must have that w = I __8,2" for

" n=0
some sequence of scalars {sn}. Consider the map y:o(z) + o(w) defined by

w(tf.)= flw) : where tf

multiplicative linear functional f; i.e.,

is the point of o(z) corresponding to the continuous

%?= f(z):. We note the
following about y:

(i) ¢ is one-to-one: For, sppose w(tﬂ;w(tg) , then f(w) = g(w) and
this implies that j7= g becgdse a continuous multiplicative Tinear func-

~ .

_tional is completely determined by it3 value at w (because w generates A).

(i) ¢ is onto: This is clear from the fact that o(w)={f(w):f;:M(A)}

-~

-
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(i11) ¢ is analytic on a(3)° (° denotes interior): We have

. o n
wc?) = f(w) = j‘(nzofinz )

t. .
n Oan

It~ 8
X

="} 8 f(2)" =
n=0

But o(z) is a disc and the series is convergent on o(z)° and thus defines
an analytic function there.
(iv) w"1\¥s also analytic on o(w)®: This is show exactly as in (iii)

because of the symmetry of the situation in z and w; i.e., since {w"} 1s.
a basis we have z = Z:;Oynwn, etc.... |

Now, from the Riemann open mapping theorem Qf complex analysis we
have"thaf p(orz)°) is open. By this same theorem w'l(o(w)°) is open. It
follows that w(o(2)°) = o(w)® [ begause, if W(orz)°) is properly contained
in c(w)®, then, since Yy is onp-tofone, w—z(c(§)°) properly contains o(w/ ;

i.e., we would have o(z)°® 7 7

0(wl°) < o(z). Thus w”](o(w)°) cannot

be open contradicting the fact that w"l is analytic J. ’
From Lemma 4.8 o(2)° and o(w)® are open discs centered about 0 of

radii p(z) andp(w), respectively. By a well known corollary to Schwarz's

Lemha [10,p;128] a one-to-one“analytic map of the unit disc onto itself is

of the form £(t) = ¢ 3%2% , where |e| = 1 and Ja] < 1. It is not hard

to deduce from this that any one-to-one analytic map of a dis¢ of radius
N <

r onto a disc of radius s (both centered at 0) is of the form E(t)=X\ g_?t
where |af < r and |A] =re. . In our case |a| <r=p(z) and |A] = T
p(w) p(w), and \
Iff—a
: ¢(%f) = Akggj;———— R %. € Okx)
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This implies that

¥

f(z) - a

w(%J = - af(z) ?’ f € M(A)
. s 1
= X f(z-az2) f((r°e-az)" ") £ e M(A)
2 _ -1
= f( X\ (z~ae) (r"e-gz) ) £ e M(A).

t

Now, by defimition, w(%J = “(w),

the above equation that frw) = f( A (z-ae)(rge-az)'l). Now, since plz) >0,

Hence for every f ¢ M(A) we have from

A is semisimple by Lemma 4.10. It follows that w = ) (z-ae)le-az)~ !

This completes the proof. " /117

Returning to the case where p(z) = ®,,We can prove & stronger
§ .

)

result.

Y

THEOREM 4.16 Let A be an F-algebra with a cyelic basis {2} and
with p{z) == If {wn} 18 any other cyclic basis “for A, then there
18 A £ 0, a € I with w = Az-ae. Conversely, if w is of this form ™

then (0"} is-a eyclic basis for A. v

©

Proof: ( == ) This is proved exactly as.ih Theorem 4.15 after
we note that any one-to-one entire function of € pnto € is of the form
E(t) = At-a, A,a s‘Q,A # q. Th{E is 50 because by Picard's theorem any
entire function which is not a polynomial assumes eachhcomp1ex number as
value (with‘the possible exception of one) infinitely many times hence
cannot be one-to-one. A pofynomia] of degree n assumes each complex

number (with the possible exception of n numbers) as value n times.

~7
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Hence a one-to-one entire function must be a linear polynomial; i.e.,

.

-

E(t) = At-a.
(<= ) The fact that any such w generates a cyclic basis for A

follows from Corollary 4.13. /117

3. Unconditional Cyclic.Bases

4

In this section we briefly consider the situation wh&e the basis
is unconditional. It will be seen that in this case ofz) is always either
open or compact and that M(A) is always homeomorphic with orz). We will

also show that a function algebra with an unconditional cyclic basis is

isomorphic to the Banach algebra EI(N).

~

THEOREM 4.17 Let A be a complete locally m-convex algebra with an
uncondi tional cyclic bﬁsis (2"}, If o(z) has a boundary réint then

it 18 compact.

Proof: Suppose x € A, x = Z:=aanz"- Since‘tﬁis seriesvconverges
unconditionally, it follows that for every f e M{A), f(z) = Z:=0anf(z)n
converges absolutely (pecause unconditional and absolyte convergence are
equivalent for seFies of complex numbers). Now, it is clear that if a
power series converges absolutely at a point b, then it converges
absolutely on the circle with radius |b|*: Suppose thgn that b € o(z)
and that p is a boundary point of o(z). From Lemma 4.9 we have that
o(z)=(\{S_izeA}, and so b e S for all = ¢ A. Hehge for each x € A,

x = Z:=0anz"; £:=09nbn converges absolutely. So, for every 4 with
[d] = |b], Zzzaéndn converges absolutely; i.e., {¢: |¢t| = |b]} < S,

for every z ¢ A. Since b is a boundary point of .orz) it follows by
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\

Lemma 4.8 that |b]

]

p(z). So, by the remarks following Lemma 4.8 we have

that o(z) = Dp(z) Therefore 6(z) is compact. i

CorROLLARY #.18 With A as in the theorem, 0(z) is either open or
compact. 117/
. As was stated earlier, it is not a]ways'the case that the spectrum
of the generator of a complete locally m-convex algebra is homeomorphic

to its maximal ideeT space., We show, however, that this is always true

for such algebras with unconditional cyclic bases.

THEOREM 4.19 If A is a complete locally m-convex algebra with an

unconditional cyclic basis {znf, then M(A) is homeomprphic to o(z).

N
Proof: By the above Corollary, o(z) is either open or compact.

If o(z) is open then this is exactly Lemma 4.11.

Suppose that ofz) is compact and consider the map ¢:M(A) + o(z)
given by f -+ f(z).' This map is one-to-one onto and continuous and thus
identifies these two spaces as. the sane set. So, we can consider each
2 eefined also on o(z) via ¢.  Now, note that since each Z(f) = Z anf(zf1
is an absolutely convergent power series an o(z), it defines a continuous
“function on o(z{ [19].- Now, the topology of M(A) is the weak topology
generated by the Gelfand transforms - .. So, the topo]qu of o(z) is
stronger than the §0po1ogy of M(A) (i.e., since a11 the &'s are also
cpnt1nu2%§ on o(z)). But since ¢ 1s cont1nuous, the topo1ogy of 0(z)1S
weaker than tne tbpo]qu of M(A). Hence M(A) is hpmeomqrph1c to o(z).

- /111
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wé now consider absolute cyclic bases. It is well known that a
Banach space with an absolute-basis i isomorphic to the Banach space
6’(@) {12]." Ve prove a similar theorem for Banach algebras with absolute
cyclic bases. First, we recall that a function algebra is a Banach

a]gSng,in which the spectral norm is equivalent to the original norm.

THEOREM 4.20 If A is a function algebra with an absolute cyclic

7’ basis, then A is igomorphic to the Banach algebra KILW).

H

-~
ld

Proof: Let ||..]| and H..lls denote the original norm of A and the

spectral norm of A, respectively. We will show (equivalently) that -

‘ ﬁA,H..[[S) is isomorphic to EI(N)f First we note that since the basis
i% absolute and H..l{s”i [I..]l, it follows that for x =~E:=0anz" e A,
7
Tl < 1 la ] 270
j=0n s n=0 n 5
.J co . . ‘,‘"I
/ n
< Tla) =t <

n=0
and thus the sequence (anHans):;o belongs to\g’(N). Let T:A » Z’(N) .

be the map defined by T(x) = (anllzﬂlls):___o for x = I _ama". T is clearly

one-to-one. A1so; T is.onto because if (ai):;o £ K’(N)u then z =
O n . o
Lo/l Ils) 2" converges in A and T(x) = (i) ;g

T is linear and homogeneous. 7o show that T is multipnlicative,

let = = 1 0,z and y = 3l 8,3 be elements of A. Then

n=0 n=0

Teay) = T(( Zoanz") ( Zo'gnz”)) .

Thus, by Lemma 4.1 we have

v
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0 n
Ttzy) = T( 5 ( Lo ,8,) ")
n=0 k=0 n-keX
n
= ((kz " kBk) ”3 HS) =0
- (Lo, a8 07 7
-k
=(za T e P Lo
= (e 100, + (8 1),
= T(x) T(y)
. R {
where we have used the fact that Ilz"HS = IIzH: and * is the multiplication

in Z’(N). Thus, T is an algebraic isomorphism from the Banach algebra
A onto the semisimple Banach algebra £’(N) and is therefore also a topo-

logical isomorphism [44]. ' ‘ /171

Finally, we show that an uficonditional cyTNc basis in a function

—

algebra is always an abso1ug§gbasis. ;
-« THEOREM 4.2 If A is a function algebra. with aneunconditionaz/dgéiic

basis {z"'}, then {2} is an absolute basis.

r

Proof: Siﬁce o(z) is compact, it follows by Lemmﬁ 4.8 (and the
remarks following it) that o(z) = {teC: |¢| <.p(z)}. Thus p(z) € o(z).
So, there is an f ¢ M(A) with f(z) o(z). letxeA, z= Z oa'z”: Then
fi(z) = ? anf(z) Since the basis is unconditional, every permutation

e

24
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of this series converges and therefore the series converges abso]g}e]y;
- l

. oo n )
i.e., Zn=0[an|f(z) < w, But

n < "
= Ian|p(z ).
n=0

y 'a fz)"? =
) L,nl

n=0

Thus every series of the fo Zn=0anzn converges absolutely with respect
to the spectral norm. Sinfe this norm is equivalent to the original norm,
it follows that the seriés converges absolutely. This shows that the

basis {z7}is an absolute basis. o , /117
This result allows us to improvédxﬂ Theorem 4.20. . “

CoroLLARY 4.22 If A is a function algebra with an unconditional—

cyelic basis, then A is isomorphic to the Banach aZéZbr& KILW).
s

/117

4. Uniqueness of F-Algebra Topology

Let. A be a commutative semiéimp1 F-algebra. Michael [30] has

shown that if A is fﬁhctiona11y confinuous then it has unique F-algebra
topology. 'By a theorem of ArenssT3] a finitely generated F-algebra ié
funct%onal]y continuous. It folhows that a finitely generated semisimple ]
F-algebra has unique F-algebra top loé&. Now, if A is an %-aTgebra with

a cyclic basis {57} then A is fini e1y~geng;ated. Ift moreover, p{z)}fO'
thenbyfheoran4.10 A is sem?simpfe. So, it fb]ﬂpws that in this case A
has unique F-a1g¢bra topology. }f p(z) = 0, then A is not semisimple

(see Theorem 4.10). However, we will show that Under certain conditions

A has unique F-algebra topology in this case also. Our result gene¥a1izes

the fact that the F-algebra CIXI of formal power series has unique

4
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F-algebra fopoiogy.
Now, let A be a coﬁp]ete ]oca]ly'm-convex algebra having a cyclic

basis {27} with ()

0. 1In this case ofz) = {0} and since o(z) = 2(M(A))

it follows that f(z) = 0 for every f ¢ M(A): (recall that M(A) # ¢, [43]).
Mow, since A is generated by z, every continuous multiplicative linear
functional om A %s completely determined by Tts value at z. Hence, A has

~a unique continuous mu]tip]icative}]inear functicnal, namely, f(z) =

In fact, “this functional is x*, for if x ¢ A; then we have .

0!

fla) = £ ] x(z)d") = Z x*(x)f(z) = @(z).
n=_0 n=0

It follows from this also that ker(xg) = {(x A : *(x) 0} is a closed b
maximal ideal of A.

Consider now the ideal Az = {xz : x ¢ A}. Clearly Az g ker(z}).

- Moreover, Az is dense in ker(xz) since all the polynomials in z are in Az.
In the sequel we will make the assumption that Az is c]oiggﬂin'A. This
will allow us to factor from series of the form L .72 .. To show this,
suppose that Az is closed then by the above it follows that Az = ker(xg).

Hence, if x ¢ A, z = zn oanzn, and a, = 0 (i.e., x ¢ ker(x*)), then = = zy

for some y e¢ A. From the uniqueness of the basis representation it is
clear that y = z Jc%z _? and this is what we were to show. We notg

also here that the assumption that Az is closed in A implies that

: Az = e A xi(x) =0, k=0,1,....n-1)
Q / ' ) .

\‘ < »

[ It is clear that Az is contained in this set. Conversely, if* has the .

property that 2%(x)=0, k=0,1,...,n-1, then by the above we have x=zny, y eAl

k
" We will use these facts without further mention.
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Throughout this section, unfess othewise stated, A wilf denote
a complete Kbcaﬁéy m-convex algebra with a cyclic basis {2} with o(z)=0

and Az cfosed. We begin by considering the closed ideals of A.

¢ '
n

LEmMA 4.23 Let A be as above and let z € A, x = ;2:=0anz . Then

z is invertible if, and only if, a, # 0.

Proof: If x is invertible then 0 g o(x). Now, p(z) = 0 means

that the}e is only one f € M(A); i.e., f = xZ. So, o(x) = Txg(x)} = {ao}.

Therefore @, # 0.

Converse1y5 {f ag # 0 then o(z) = {ao}; i.e., 0 £ o(z), and so =

is inveftib?g. : ‘ . i

For the next lemma we define the oader of an element x = Z:; Z°

0%n

of A to be the smallest n for which\a; # 0.
LEMMA 4.28 Every ideal in A is of the form Az™ for some n € W .

Proof: Let I be an ideal in A. Then there isanxz ¢ I, z =

Z:;Oanzn, which is of minimal order. Let n be the order of x. Thus we

can write (see remarks at the begining of this section)

© , R .
n “1-n
, CfTe (izﬁdiz b % * 0

i-n

But =7 a;2*™" is invertible by Lemma 4.23. Therefore 2™ ¢ I. :It follows

that T = Az? R , 1111

’

We now give a necessary and sufficient condition for every 1pea1 .

of A to be closed.

~
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THEOREM 4.25 Every tdeal of A is closed if, gnd only if, the basts

(2"} is a Sehauder basis.
Proof: ( == ) Suppose that every ideal of A is closed. It foliows

by Lemma 4.23 that Az is closed for each ne N. ~It is clear that AznH

R i%!ﬁa%) (reca]i that x; is the coefficient functional associated with

the basis {z”}). Therefore we can factor x; as follows:

where T, is the quotient map and v, is a linear functional on the finite-

N1

dimensional space A/Az It follows that wn is continuous. Mow x* =

4

wn o . Thus x; is continuous being a composition of continuous maps.

This-shows that the basis  {z"} is a Schauder basis. .

. N=
) ( &= ) It is clear that Az" = g:i ker(x$), n > 1. Thus s i
~ closed being the intersection of closed sets.» - ' ) /117

y

To show uniqueness of F-topology we consider how the ideals of A

o

behave under any F-topology.

' e - Lcuma 8.26° Let v be aly F-algebra torology on 4. Then, ~ither
(a) all the ideals of A are 1-closed ., or

(b) allthe fdeals’ of 4 are t-dense in 1.

« Proo7: By Lemma 4.24 all the idea}s of A-are of the form A=" for

I .
some »n . N. Suppose that for some”k ¢ N, A is closed. Then clearly

C AZ" is closed for 7 < m < k.=Tn particular, Az is a closed maximal ideal.
}. ’ How Az = >ep(e}). It follows that ! is a continuous linear functional.
Consider now_the map T:A ~ Az defined by T¢z) = -5, T is continuous,
- » \
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linear, ohe-to-one, and onto Az. Since Az is closed in A, it is an F-

space. Hence by the open mabping theorem T'1 is continuous. Now,
- -Z v
* = pA _xt
xk(:z:) xk-Z(T (x :co(x)e))

> e '
>.1. 1t follows by induction on k, that x is conttnuous for all

¥ € N. By the same argument as that in the proof of Theorem 4.25 we have

for &

that each ideal Az" is closed. So, this shows that if any one ideal of

A is c¢hdsed then they all are. ’
b ‘ ’
Now, suppose that no' ideal of A is closed and let I be an ideal

of A. Since either T = A or 1 is a closed ideal of A, it follows that

-

in this case each ideal of A is dense in A. . /1117

¢ | . " ‘
Wenow improve on this lemma by ruling out the second alternative;
i.e., it is impossible for all ideals of A to be dense in"A. We will use

methods of Allan [1]. The proof is added here for the sake of completeness.

~

“ THEOREM 4.27 Let T be awy F-alyebra topology on A. Then each 1 leal
- N, - ) 4 :

-

of A 1s T~closed.

Proof: By/Lemma.4.26, either all the ideal of A are closed or they

they are all de sé in A. By Lemma 4.24, each iﬁeal of A is of ‘the form

Az" for-some n ¢ So, we will show that A" = A, »=1,%,... dis im-

possible. Yo this end sudposb that K;n': A, n=1,2,... and consider the

maps fn . :A + A defined for n < m, n,m e N, by fn m(x) = xzw—ﬂ; i.e.,
3 3 .
]

-
x hnannnes ‘L-;;"I !

Clearly each = . is continuous and A is the identity function on A.

P 3

9
4
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It s also easy to check that for n <m < ¥, f o f = fn X Thus

(A,fn v) is an inverse limit system.

> s 1
Now, for n < m, £ (A) = Az ', and for all.k > w, = _(A) = Az~
' n,m - T, K .
We have that Azk-n = Azm—n, and Az'{-yz = Az = A, So, for all & > o,

.(A) is dense in fn'm(A)f 'By this and the fact that A is metrizeable,

-Zn: ~ ERALNY
it follows from a theorem of Arens [3, Theorem 2.4] on inverse limits of

complete metric spaces that if X = Zim(A,fﬁ W) and if L is the i

\

projection from X into A, then v”(x) is dense in £ m(A) for all = > n;

i.e., ﬂn(X) < 7 (A). But fn,m(A) = A and s0 nn(X)\= @:l_Hence for

37

‘n,m
each n ¢ N, wn(x) is dense in A.

Now, suppose that 2 ='(z 2 ,%,...) ¢ X.  Then from the defini-
tion of inverse limit &, = f (x ), n=0,1,... ; i.e,x, =z 5" for.all
. , o,n " n J n
. . ”n C g q s
ne N. It follows that T, € ’IIIO Az". Therafore, wO(X) c nO-(f Az .

Sin;e we have already shown that "D(X) is dense in A, it follows that
ﬂib Az" is also dense in A. But this is impossible since Jlo Az = {0}

( and A, is Hausdorff). ) /111

'

e now combine the abovéfthgorems with the closed graph theorem to

prove that A has unique F-algebra topology.

[

. s " s
THEOREM.4.28 [ot A De an F-algebra with o wyciic tasis {a 'L aatising
~ < '

plz) =0, If Az 28 elosed in A, then ) has iq e Ferlaebra zopelogu.

Ppooy: ,Let t be.any F-algebra topology jon A and let i:(A,r) ~ A,
Se’the identity mdp. Now, the family {f&: n=0,.,...} forms a separating
fam?]y of continuous linear functionals on A (they are continuoys because

every basis in an F-space is a Schauder basis). By Theorem &.27, each.

<
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ideal of (A,r) is t-closed. Therefore, just as-in the proof of Theorem
4.25, the functionals x; o 1 are continuous for n=0,1,... It follows by
Theorem 1.1 that Z is continuous. The open mappjng theorem now yields

that < is a homeomorphism. - 1117

We have already remarket at the begining of this section that if
of(z) > 0, then A has unique F-aigebra topology. Combining this with the

above theorem we see that this theo em is true with no restrictions on o
. N A 14
- o

p(z),
0 In Example 4.3 it was shown that\the a]gebra'i§= CIXx] of formal

power series in the indeterminate X has axkic1ic basis. The ideal X is

a (in fact the) closed maximal idea) of A. It follows by the aboveygheorem

that © has unique F-algebra topology. This\Qs a well known fact.
' \

-
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