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;s called an onthogonal bah~ if x x ='0 x ~ n~m E ~ (0 denotes
n m nm n.

Kronecker's delta). A basis in A of the form {zn : n=O~l~ ... }~·z s A,

ABSTRACT

Let. A be a topological algebra. "A (Schauder) basis {x } in A
n ..

<'

• 1

; s ca 11 ed a c.lJcUc. bah-u. Thi s thes is is concerned with the structure

of topological algebras possesing bases of these types. It is shown

how the existence of such bases determines algebraic and topological

pro.pert; es of A. An interesti n9 cqnnect;un between the dense maxima~l

ideals ?nd the topological dual of cer~ain types of topological algebras

having unconditional orthogonal bases is explored. These result~ are

used to obtain characterizations of some important F-algebras in terms

of the type of bases ~hey possess.
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INTRODUCTION

It has been known for a long time that every ~eparab1e Hilbert

space has a basis (a complete orthonormal set). Schauder [36] first in-

troduced the concept of bases in complete normed spaces, which generalize

Hilbert spaces; and construc~ed bases for many of the complete normed

spaces encountered in analysis. In his treatise [4J on the theory of

linear operators, Banach proved some of the fundamental properties of

bases and posed the problem of whether every separable Banach space has

~ basis. This long standing problem (called the "basis prob1em", and
~ -
finally settled in the negative in 1972 by Enflo [13J) generated consid-

erable interest in the subject. Consequently, today there is a large

I
f

~
l
f
~
I'

~

f

I
I

number of results on the theory of bases. They reveal a very close con-

n~ction between the existence of bases and the structure of topological

vector spaces.

Many of the topological vect~r spaces studied in analysis are in

'fact topological algebras under ~ome natural multiplication. An inve~
, .

igation o( the behavior of the basis with respect to the algebra product

in several'of these examples leads td the observation that the bases
1

behave in a particularly simple way. For example, the a]gebra H(D) of

analytic functions on the op~n unit disc 0 (with pointwise operations

and compact-open topology) has the sequence of functions {zn : n=OJ 1J ••• }

as a basis. Thus in this case the basis is multiplicatively generated

)
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by a single e1ement. As another example, consider the Banach algebras

((N) , : 2 ;' < «) (with pointwise operations). The unit vectors r =
n

{8 }, ~,=1,:;, ... (where 6 denotes Kronecker's delta) form a basis in
~, ~n

n

in which each e is idempotent (i.e., r' "" f' ) and ,'r = (j for
n Y, n '1 Ire

>1 J "1. There are numerous other examples of topological algebras having

bases.

In another'direction the theory of topological algebras itself
,

has undergone considerable development since the appearance of Gelfand's

paper [14J on normed algebras. We are particularly interested in the

theory of locally m-convex algebras (first introduced by Arens [2]) and

in LC-algebras. These algebras afford a more natural setting than Banach

algebras for the study of bases. This is so because, as we will show,

in some cases a topological algebra with a basis cannot be normed. We

shall be especially interested in complet~ metrizeable 10ca13y m-convex

algebras (hereaftei called F-algebras).

Bases in the context of topological algebras were first studied

by Husain and Liang in [22J and [23J. They were interested in the

question of the conttruity of multiplicative linear functionals on F

algebras with bases (where the bases satisfy different multiplicative

conditions). In this th'es;s we in'itiate' a study of the structure of

topological algebras with bases. We will consider bases satisfying the

properties of the bases given in the· ab?ve two examples. Bases which
,

are generated by a single element will be called cyct{C bases. A basis

with the pr9perty that each element is idempotent and the product of

two different elements is iero will be called an oft.tlwgolUtf basis. tr

Naturally, some of our results about algebras with bases wtll generalize
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results known for specific algebras. Our methods will allow us to

extend these results to any algebra with the same type of basis. For,

example we will see (Chapter 'II) thqt certain properties known ab~ut the

closed ideals of the algebra H(D) are in fact shared by all algebras

with orthogonal bases (such as eP or HP, I < P < 00). Thus o~r defini-

tions give us a convenient framework in which to study certain aspects

of all these algebras at once.

In analogy with the theory of bases in topological vector spaces

it is to be expected that the existence of a basis (cyclic or orthogonal)

in a topological ~lgebra would give valuable indications on the structure

of the algebra or of its closed ideals. In fact it will be seen that

propertie~ of the bases determine such aspects of the topological

algebra (F-algebra) as semisimp1icity, the form of the closed ideals,

the uniqueness of F-topologies, or the topological character, of the

maximal ideal space.) I~:e.cases the existence of a basis completely

describes the algeb~In this way we get characterizations of certain

important F-algebras.

Chapter I is mainly devoted to known results which will be needed
\

later. We also ~ntroduce the notions of cyclic and orthogonal bases and

prove some general results concerning topological algebras possessing such

bases.

In Chapter II we study topological algebras with orthogonal bases.

In particular, we describe the.closed ideals of such algebras and use
•

these results to give a characte~ization of complete locally 'm-convex

algebras with orthogonal bases .
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Chapter III deals with maximal ideals in Ie-algebras A with

unconditional orthogonal bases. We define a form of local invertibility

for elements of A we call [-regularity. This enables us to describe

the collection .::Jvt(A) of all maximal ideals of A. We prove that J{(A)
v

with the hull-kernel topology is homeomorphic to BM(A), the Stone-Cech

compactification of M(A) (the maximal ideal space of A), We also use'

[-regularity to determine the ideal which is the intersection of the

den.se maximal ideals of A and we show the relationship of this ldeal

to the dual space A' of A.

Finally, Chapter IV deals with topological algebras having
.. "

cyclic bases, We describe the spec~~um of t~e element generating the

basis and use our results to give a characterization of the F-algebra

H(O) (of holomorphic functions on the simply connected domain D).' We
a

also prove that an F-algebra with a cyclic basis has unique F-algebra

topology.

\
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PRELIMINARIES
_.. ;;. - - ~ r:J·

(
I

In thlS chapter we glve the definitlon~ and some of the fu~ddmen-

tal properties of the structures to be studled lin the folloWlnfJ chapters.
(

The chapter is divided into five sections. The first ~hree deal ~PftC-
~

tively with topological vector spaces, bases rn toplogical vector spaces.

and topologlcal algebras. We state the major theorems of these subJ~cts

in the fonn we will need them later. In general proo.fs are not given

since there are many excellent books (e.g. [27]. [37]. and [30]). where

they can be round. We prove. however. some results concerning bases

which are simple generalizations to the setting of complete metric spaces

of results known for Banach spaces. In Section,4 we define CYCllC bases

and briefly discuss the represeDtation of a complete locally m-convex

'"algebra with a cyclic basis as, the inverse llmit of Banach algebras. In

the last section we deflne the concept of orthogonal bases and show that

in a certaln sense (see Theorem 1.,18 for the exact statement) a topological \

algebra.can have at most one such basis.

1. Topological Vector Spaces

•
A,to)JC'£cg{ca.£ vec-tC'1t ~pace (TVS) is a vector space E over ~ (the

field of real or complex numbers) together with a Hausdorff topology T

such that the operatlon + is continuous from E x E into E and the scalar

prodvct is continuous from D< x E into E. Every TVS has a neighbourhood

..
5
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base for the topoiogy~t 0 consisting of circled and absorbing sets. A

TVS is called (('caUy C(il1\!C'\ ~f it possesses a neighbourhood base for the

topology at 0 consisting of convex sets. The topology of a locally

convex TVS can ah"ays be generated by a fami ly of MlJ71-<-nc','Ull!> (subadditive,

positive homogeneous, symmetric f,vnctions from E into ~+) \'1here the

seminorms are taken to be the gauge functions of a famiTy of convex 0

neighbourhoods whose positive multiples form a subbase at O. The gauge
.

:" o~ a s~t v i~ defined by t" :; in....J'O'>O ::c ( All). A family of semi-
•

normS is dttccted if it. is a directed set under the order p(x) ~ q(x)

fer all ~ (E. A locally convex topology for E can always be generated
"

by a directed family of seminorms.

Every TVS is a uniform space and its topology can be derived,
from a u;liquetranslation invariant uniformity, A'TVS is comptc.te if it

<.

is complete in this uniformity.

phism) completion.

Every TVS has a unique (up to isomor-

•

A TVS is m~tt-<-:cab£e if its topology is metrizeable, A locally

convex TVS is metrizeable if, and only if, its topology can be defined

by an increasing sequence of seminorms {r : n:;l~:;~ ... L 1n this case• r.

a translation invariant metric is given by

, co \ 0 (x- u )
d (.'l: ,-,) :: \' _1 _1_1......,..-'_'-:-

, ~ L 211. 1+D (X-II)
11.=1 " . n .

Acomplete metr.izeable locally convex TV$ is called an F-~pace. A TVS

E is !W'jm:tbf..e if its topology can be generated by a single tlOltm (i .e.
. '

a seminorm.w~ich has the property that p(x)=O iff ;r""O). A complete

norll1ed JVS i $ ca 11 ed a BallCtC':/ 6 r.Yl C'C? •

A .t-<..M.M nwtc.t..wnal .,l' is a linear map I:E -+ D<. Let E, be a
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1~5allY convex TVS whose topology is generated by a directed family of
.~

seminorms {r : a (It}. A 1inear functional f on E is continuous if, and
C1

only if, there exists an ex ( II and c 2. 0 such that If(x) loS. etc/,r) for all

.~. ( E. If .+' is ali near func tiona1 def i ned and cor'l+'H'tfl'O

of E, then f has a continuous linear extension to all

Banach theorem). A collection ¢ of linear maps ro

on a subspace

E (the Hahn-

TVS E into a

TVS F is called eqtUc.~,:unuouA if, for each nei~bourhood V of 0 in F,

nC...-1rVJ: f ( 4>} is a neighbourhood of a in E./A collection of linear

functionals 4> on a locally convex space E (with a directed family of

If for each x ~ E the

and! (¢. Now, let {T } be a sequence
n

a complete metrizeable TVS E into a TVS F.

seminorms {p : ex (; III generating' its topology) is equicontinuous iffa .
- , ,

there exists a E: II and:! >"0 such that I[(x)! < ap (x),for all x E: E- a

of cantinuous linear maps from

sequence {T (x)} is bounded in F and is Cauchy for each x in a dense
n

subset of E, then {T (xn is Cauchy for each x ( E (the Banach-Stein-
1 n

haus theorem),'.-- Also, if {T (x)} converges to T(x) for each x E: E, then, n '

T(x) is linear and continuous.

If E, F are complete metrizeabl~ spaces then a continuous linear

..~

map from E onto F is open (The open mapping theorem). A corollary to
. ~

this result is the closed graph theorem: with E and F as above a linear

map from [ into F with closed graph is continuous.

We now prove a result which follows from the closed graph theorem

and which we will use later. First, recall that a family of maps 4> on

E is called M'.)J(v'1.ct.tU1~l if for 'every .r and !f in E with xl;, there is an

.f (. l' \'/ith the property that /,(,,.1 I fry).
;'
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t'r"',':'; (=9) c1ea r.

(<==) Let {a\:\ c ,~~ be a net in Et :2\ -+'" and suppose that

T(a\~" -+ b. Since each ." E.: ¢ is continuous, it follows that /~T(Q},)} -+

:'(U. Also, since foT is continuous, we have that (.roT) {J).) -> C""oTha)

for all: E ~; i.e., !(T(a
A

)) -+ f(T(aJ) for all: (¢. Since the

limit of a convergent net in K is unique, it follows that frc) = [(T(a))

for all.' £ ~. No". since ~ i s separat~ve tha t b = T(aJ.

Hence, "r has closed .graph and is thus continuous 'by the closed graph

theorem. IIII

We note that the a·bove theorem (and hence other results in this

thesis) is true if E and F are in~ay lass of .topological vector spaces

for which the closed graph theorem ds (see [20) for a discussion of

such spaces). However, we will resti ct ourselves here to considering

complete metr~ab1e TVS's only. _/
",-'

If E and Fare topologicpl vector spaces thep-th{ir product
/

E y F (their algebraic product endowed with the product topology) is a

topologisal vector space. If E and ~ are locally convex, then so is

their product E y F. Also, E ~ F is complete if, and o~1y if, both E ~

and F are co~~lete. We note here also that if E and F are locally

convex then the injections i E and ~F of E and F, respectively, into

the product r v F are isomorphisms (topoloqically and algebraically)



9

onto their respective

logical vector space and if H ;s a closed subspace

of E then the quotient E/H (the algebraic quotient endowed with the

quotient tjP0109y) is a tODo1ogical vector space. If E is also locally

convex, then so ;s E/H. Moreover, if E ;s locally convex and if {I' }
a

is a directed fami1ty of seminorms generating the topology of E, then

the family of seminorms {p } on E/H defined by
a

(where x ~s the image

B (x) = inf {p (v) : u c'x}"Ct • a~ ~

of x und:~he canonical map n:E·~ E/~) is a

ex space, then E1 separates points. ,

in general that.E/H is complete if E is complete. However,

n F-~ace, then so is E/H:

inally, _~e consider the 1'near space [I of all continuous

,
family of se~inorms generating the topology of E/H. It is

unctionals on E. E1 is ca led the topologlcal dual (or simply

if E

of E. Several topologies can b introduced on the dual. We will be

interested in the weak topa 9Y o(E I ,E) which is the topology of

uniform convergence on

The defi niti oJs
found in anyone of [27],

in this section can be,- -
(

2. Bases in Toporogica1 Vector Spaces

Let E be a TVS. A b~~ for E is a sequence {xn} in E with the

property that for every x £ E, there ;s a ~nique sequence {an} in ]( such

that .r = T.:,,"7o.nj~n' where the series converges in the topology of E. The

,I
























































































































































































































