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ABSTRACT

/"
Two-quasiparticle states in 166Er have been studied

167 166 167 3 166 165 3 166using the. Er(c),t} Er, Er( He,a) Er, HO( He,d) Er,
'J

165 166 .
and I1o(o:,t} Er reactl.ons. Beams of I,? MeV deuterons,

24 MeV 3.He-++, and 27 MeV 0. particles were produced'Sby ~.he- ,

",McMaster Unl.versity model FN tandem Van de Graaff accelera-

tor. The reaction products were ,analyzed with an Enge
.

split-pole magnetic spectrograph and detected with photogra-

phl.c ~mulsions. Angular distributions were obtained for ~

, 3 '
the (d,t) and ( He,d) reactions at twelve and ten angles,

'respectively. The data were fitted with a peak finding pro-
,

gr~ to yield peak energies'and cro~s ~ectibns up to ~ 2700

keV in ,excitation energy, altpough selected peaks were in-

vestiga~ed at somewhat h~gher energies.

The interpretation of, the data was performed within

the framework of the Unified model, ihdorporating pairing

effects. In the neutron transfer study, tWQ-quasiparti~l~

states formed by removing a ~ar~icle from the predominantly

7/2+[633] 187Er ground state were inves~igated, while the

proton transfer s~udy dealt with two-quasiparticle states

formed by adding a particle to the 7/2-[523] ground state of

165HO . Sever~l previous assignmepts have been ~pported while

many new ones are suggested or proposed. In contrast, several

other assignments proposed,in an eatlier proton transfer study

have been refuted.

iii



-
Earlier observations that several states were popula-

ted in both the neutron transfer and proton transfer reactions

have been confirmed and extended. In addition, the obser-
"

vation in the (d,t) reaction of several states populated by

t=O neutron transfers has been interpreted in terms of a

complex mixing scheme involving the 7/2+[633]±1/2+[400] con-

'~ figurations.
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CHAPTER 1

INTRODUCTION

1
\16fL .

This study of the rare earth deformed nuc eus 'Er 1S

properly categorized as being in the field of low energy

nuclear physics. The field is generally consid~red to have

two basic divisions: the study of the makeup of the nucleus

(nuclear str~cture physics), and the study 9f the processes

through which the nuclear structure is investigated ,(primarily. .

decay mechanisms and reaction mechanisms) . • , -
'..

",
',>

Nuclear structure phys~cs deals with the interac~ions

between the particles which make up the nucleus, the couplings

and configurations of these particles, and the evaluation of

the parameters describfng the nucleus,,'~e.g. spins, pari ties
r

and other qua~tum numbers). These par~ameters are obtained

either by observing the results of natural decay processes

,involving ,the n~cleus, or by observing the interactions of

test particles with the ~ucleus.

These test particle interactions ~re generically

known as nuclear reactions, and the detailetl'investigation

of how nuclear reactions take place combined with their, .
parameterization constitutes the study of reaction mechanisms.

Analogously, the detailed mechanisms whereby the decay

- processes take place are also studied, and these are likewise

parameterized.
f

While the studies of the decay and reaction

1
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mech~nisms are somewhat interdependent with the investi-

gations of the nuclear structure, the two disciplines 'can

in practice be tolerably well separated, particularly if

variations introduced into the study from the bra~ch not

being pursued are minimized. The study of l66Er by di~ect

reactions, ~s discussed in this thesis, is an investigation

of the nudlear structure of l66Er . The direct reaction

mechanisms a~e presumed to be well-enough known so that one

can extract nuclear struct~re information from the data 'with

adequate reliability .

.A standard method of investigating nuclear structure

is to construct a reasonable model of th~ nucleus and to

predict the results of commonly used reactions with this

model. These are compared with the experimentally observed

data and on the basis of this comparison, the validity of the

model is assessed.
,,

In the study of odd mass deformed' rare earth nuc~ei,

it has long. been known tha~ the Unifi~d model generally
~

expl~ins the1ow.lying ~bserved spectra. This model combines

sin~le particle excitations in a deformed potential with

collective excitation modes, resulting primarily in rotational
,~

bands built upon single particle o~ vibrational ·states.

Many examples of this application of the model appear in the

literature, and by now most of the readily accessible odd mass

rare earth nuclei have been fairly well studied. A more

complex level of nuc~ear structu~e is f9und in the even-even



In all of the reactions the residual nucleu~

nuclei, whBre two similar nucleons, each in a Nilsson orbital,

couple together to form the simplest type of state. It is

f . . f h ' ,16'6 h f h ' bcon 19urat10ns 0 , t 1S type 1n Er t at orm t e ma1n su -

ject in the present study. As with'the odd nuclei, the even-

even nuclei exhibit collective vibrational modes of excitation,

and rotatio~al structure is observed"to be built upon both

the two-quasiparticle and vibrational states.

In the present work, the two-quasiparticle states in

166 d' db' I . I . f 'Er are stu 1e y s1ng e part;c e trans er react10ns~

These are "direct" reactions in that the transfer of the

single particle between the incident projectile 'and the

target nucleus is considered to take place ~t the nuclear

surface, directly involving only the Nilsson orbital into

which or from which the translocation takes place. Thus,

apart from gross nuclear rotational effects, the remainder

of the target nucleus is considered to be e~sentially un-

affected, and compound'nuclear effects (whe~eby the ex-

citation energy is shared by many or all the nuclear particles

in a nearly infinite number of excitation modes) are avoided.

Th~ 167Er (d,t)166Er and l67Er(3He,a)l66Er neutro~

pickup reactions were used in the presen~ work to study ,

. 166 .
states in Er formed by removing a neutron from the target

ground state of l67Er , while the l65Ho(~8e,d)166Er and

165H ( ) 166 '" ltd t t. 0 a,t Er proton str1pplng react10ns popu a e s a es

, 166 b d' th' d t f' ,1n .Er y ad 1ng a proton to e groun s ate con 19urat10n

f l65Ho o.
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could, in general, be left in an exc~ed st?te. As the in

ciqcnt particles in the beam'were essentially monoenergetic,

the excitation energies for the various sta~es could be

determined by measuring the energies of the corresponding

reaction products. The orbital angular momentum ~ransferred

,
to a stat~ could be determined by observing the angular

"

distribution (with respect to the incoming beam direction)

of outgoing particles from reactions populating the state

(particularly for the (d,t) and C
3He /d) :z;.eactions). Often I'

the same inf0rmation was ;available from ratios of the cross

sections for the two reactions populating the state

3 3
(da/d~( He,a)e /dcr/dro(d,t)e or do/dQ( He,d)e /do/d~(a/t)e

1 2 3 4
the angles, a, refer to the direction of the outgoing

particles with respect to the inco~ing beam) .

For s~ates suspected (on tbe basis of their energy
~.. ,

4

spacings) of forming a rotational band, the configurations

couid often be determined by noting the relative intensities

with which the levels were populated. The relative inten

sities for the members are predicted to vary from band. to

band, and these characteristic intensity "fingerprints" are

therefore of considerable importance for ~~dentificatioh.

, \

In the experiments of this study, the incoming-beams

of particles were provided by a tandem Van de Graaff accel

erator, and an Enge split-pole magnetic spectrograph was

used to determine the energies, intensities and directions

of the outgoing,particles with~espect to the incoming beam.
































































































































































































































































































































































































