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ABSTRACT

The object of this work is to explore in depth a variety of polymer
forming processes and to examine the behavior of polymers during processing by
developing large deformation finite element models and computer tools for the
numerical simulations of the processes.

Thermoforming, one of the major forming processes dealt with in this
thesis, is the fabrication of numerous plastic products oy use of heat,
pressure and mold. Thermoforming is penetrating existing and new product
categories due to ease of production, low costs, and the high performance of
final products.

Axisymmetrical finite element models have been developed that include
large deformation, large strain, moving boundaries, contact of polymer with
rigid mold, deformation-dependent loading, free surface evolution, and
material nonlinearities. The thermoplastics in the forming processes are
considered as incompressible, hyperelastic materials, since there is little time for
viscous dissipation. The incompressibility condition is accurately incorporated
by employing the penalty method. No restriction of sheet thickness is made
in the models for thermoforming so that thermoforming of single layer or
multilayer composite sheets of finite thickness can be dealt with, as well as
plug-assist forming of thick sheet. A simple, efficient method for passing the
limit point is established in the finite element formulations, and for the first
time the limit point in thermoforming is successfully simulated using this

method. Numerical simulations compare well with analytical solutions for

it



simple geometries and experiments for thermoforming, plug-assist forming,
combined plug-assist pre-stretching and vacuum forming, and compression
forming. The important parameters in the processes which influence
processing and products are studied, including the effects of material constants,
boundary conditions, and processing sequence. For these processes, information
of deformation and stress can be obtained by the developed computer models,
such as deformed profile, thickness variation, the relationship between applied
loading and deformation, and stress and strain variations at critical areas,
which are important in process optimization and damage analysis.

The computer modeling and analysis provide a comprehensive
understanding of these forming processes and could be valuable for industrial
designers in the process of reducing trial-and-error procedures, optimizing their
designs, minimizing material and cost, and maximizing  produc:

performance.
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CHAPTER 1
INTRODUCTION

1.1 Polymer Forming Processes

As new materials, polyimners have entered everyday life of human being.
High performance thermoplastics have penetrated markets traditionally
dominated by conventional engineering materials such as metals. Thermoforming
is the fabrication of numerous plastic products by use of heat, pressure and
mold. Engineering applications of thermoforming are increasing due to ease of
production, low costs, and the high performance of final products.

In the process of thermoforming, a thermoplastic sheet, usually
extruded from a sheet die, is heated close to the melting temperature of the
polymer and formed into a mold cavity by use of pressure (or vacuum). One of
the most important problems in this process is the determination and
optimization of sheet thickness distribution which is a function of processing
conditions and rheological properties of the softened plastic sheet.

Plug-assist forming is the process of swetching a  heated
thermoplastic sheet into a cavity by use of a plug. This pre-stretching
process is used w promote uniformity of wall thickness distribution, allowing the
formed part to have better structural properties such as high flexural strength
and stiffness. Usually, after the plug completes its stroke, the cavity is sealed,

and pressure (or vacuum) is applied until the sheet fills the cavity.
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Generally, during forming processes, polymers behave viscoelastically
and their deformation processes involve large deformation, large strain, large strain
rate, coniact with mold, and free surface evolution. However, in
thermoforming and plug-assist forming, the processing is rapid and there is no
time for viscous dissipation. Polymers undergo large elastic deformation,

Current challenges for polymer processing industry are to better
understand the rheological behavior of polymers during forming and the flow,
or deformation characteristics of processing, and to develop better process
design (mold design, processing control design, etc.) so that higher
performance products can be fabricated with less material waste and cost.

Advances in computer technology and numerical methods make it possible
to solve and simulate compiex problems, such as polymer forming processes,
which, otherwise, could prove too expensive by trial and error experiments, or
almost impossible to solve by other means. The finite element method has been
proven to be one of the most powerful numerical methods to solve engineering
problems. This thesis adopts the finite element method to simulate
thermoforming, plug-assist forming and compression forming.

Due to the inherent material and deformation characteristics of polymer
forming processes, nonlinear constitutive models, and nonlinear large deformation

analysis are employed in the numerical simulation.

1.2 Aims and Thesis Outlines
The object of this work is to explore in depth a variety of polymer
forming processes and to examine the behavior of polymers during processing by

developing nonlinear finite element models and computer tools for the



numerical simulations of the processes.

The nonlinearities arising in the polymer forming operations are
incorporated into our finite element models, including large deformation, large
strain, moving boundaries, deformation-dependent loading, contact of polymer
with solid mold, free surface evolution, and wmaterial nonlinearities. The
thermoplastics in the forming processes are considered as incompressible,
hyperelastic materials, since there is little time for viscous dissipation. The
incompressibility condition is accurately incorporated by empleying the penalty
method. No restriction of sheet thickness is made in the models for
thermoforming so that thermoforming of single layer or multilayer composite
sheets of finite thickness can be dealt with, as well as plug-assist forming of
thick sheet. A simple, efficient method for passing the limit point is
established in the finite element formulations, and for the first time the limit
point in thermoforming is successfully simulated using this method (Song et al.
1991 (a)). Detailed and comprehensive numerical simulations are compared
with analytical solutions for siuijpie geometries and  experiments  for
thermoforming, plug-assist forming, combined plug-assist pre-stretching and
vacuum forming, and compression forming. The important parameters wn:ic
influence processing and products are studied, such as the effects of material
constants, mold shape and processing sequence. For any of these processes.
information of deformation and stress can be obtained by the developed
computer models, including deformed profile, thickness variation, the
relationship between applied loading and deformation, and stress and strain
variations at critical areas, which are important in process optimization and

damage analysis.
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The computer modeling and analysis provide a comprehensive
understanding of these forming processes and have the potential to be helpful for
industrial designers in the process of optimizing their designs and reducing
trial and error procedures.

Numerical simulation of polymer forming processes requires knowledge
of the material behavior of polymers. In Chapter 2, typical deformation
behavior of polymer solids and fluids are briefly described first. Then, the
fundamentals of large deformation analysis are discussed, and three
description methods of motios: and their advantages in numerical analysis are
compared. Tensor fcrmulations of large deformation are given, as well as
various stress measures and frame-independent stress rates. Nonlinear
hyperelastic and viscoelastic constitutive equations for polymer solid and fluid
are also presented.

Finite element analysis of large deformation based on the Lagrangian
description is addressed in Chapter 3. Formulation of incremental loading and
Newtion-Raphson iteration for nonlinear problems is established, which takes
into account bending, shearing, and membrane stretching. Deformation-dependent
loading and its contribution to stiffness matrix are studied. The penalty method
is used to approximate the incompressibility condition. Solution techniques
and convergence criteria are described and simple numerical examples are
given.

From Chapter 4 to Chapter 7, a varety of forming operations are
analyzed, i.e., thermoforming, plug-assist forming, and compression forming.
Polymers in these forming processes are considered as hyperelastic materials.

Thermoforming of single layer and multi-layer sheets are simulated in
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Chapter 4. A historic review of numerical simulation of thermoforming is
presented first. Specific material models (i.e., Mooney model and Ogden model)
are described. Comparison of current simulation with analytical solutions for a
simple large inflation problem confirms the validity of the finite element
modeling. An efficient algorithm to pass the limit point is incorporated into the
computer program and predictions are compared with experiments, including the
benchmark tests of rubber sheets by Treloar (1944 b), which have not been
numerically simulated before. The assumption of hyperelasticity was confirmed
previously by experiments and is checked here by numerical study. Effects of
material parameters on the formed product are discussed, as well as the
determination of these parameters. The capability to simulate thermoforming of
multilayer composite sheet is one of the unique advantages of current work.

Chapter 5 is devoted to contact problem. Contact without friction and with
infinite friction are considered first, followed by discussion of contact with finite
friction. Numerical schemes of various contact boundary problems are
established and applied to the simulations of forming of circular cup and large
rectangular part.

In Chapter 6, a brief review of the analysis of plug-assist forming is
presented. A displacement-driven incremental algorithm is established to
simulate plug-assist forming problems. Comprehensive comparisons of numerical
simulations with the test results of Williams (1970) and Throne (i989) are
conducted. A better understanding of plug-assist forming is achieved, such as the
relationship of loading and deflection, the effects of material parameter and
boundary condition on the formed part, and the strain states at different locations

of the sheet. Combined vacuum forming and plug-assist pre-stretching is simulated
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to study how the processing itself affects final thickness distribution. The
computer model can provide detailed deformation and stress information,
including thickness variation, extension ratios, and strain and stress contours,
which could be useful to optimize forming design. Stress concentration at
critical regions are also studied.

Chapter 7 is concerned with compression forming. A brief review of the
state-of-art of compression forming problems is presented. Comparisons between
simulations of compression without friction and with stick condidon and
analytical results are conducted. With Lagrangian description, material motion is
easily traced. Fountain-like deformation patterns is predicted in the simulation
and compared with experimental observations. Interfacial stress distribution is
calculated. Compression forming of laminated composite can also be simulated
with the current finite element model.

A summary of this thesis work is presented in Chapter 8. Conclusions
about the numerical simulations of polymer forming processes are drawn and

recommendations are provided.



CHAPTER 2
MATHEMATICAL MODELING OF
FORMING PROCESSES

2.1 Deformation Characteristics of Polymer Solid and Fluid

Deformation characteristics of polymer solid and fluid are briefly
discussed before attempts are made to construct constitutive models 1o
describe the relationship between stress and deformation, and to model forming
processes mathematically.

In Figures 2.1 and 2.2, flow curves of semicrystalline and tough,
ductile amorphous thermoplastics (polymer solids) in the form of true strain
vs. true stress are shown under constant strain rate and room temperature
conditions. All materials shown in the figures are commercially available and
are often used in solid-phase forming operations at temperatures below melting
temperatures. Typical flow curves of metals are also shown in Figure 2.1 (f).
Figure 2.1 is duplicated from Halldin and Lo (1985), while Figure 2.2 is
sketched according to Ward (1983). Figures 2.1 and 2.2 show that polymer
solids can underge very large deformation before fracture even at room
temperature, in contrast to metals. This is a unique feare of polymer
solids. The thermoplastics shown experience rapid work hardening after initial
nonlinear elastic deformation, while for the tough, ductile polymers (PC and
PVC) and rubber-modified styrene (HIPS), there are strain softening regions

following elastic deformation. The point where stress response transits from
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strain-hardening to strain softening is called upper yield point. Yielding is a
characteristic of carbon steels and serves to introduce the concept of yield surface.
For the thermoplastics shown in Figure 2.1, stress responses to strain
gradually transit from nonlinear elastic to nonlinear inelastic responses.
Again this phenomenon distinguishes polymer solids from metals. Figure 2.2
also demonstrates that the stress-strain behavior of polymers is strain rate
dependent, as well as temperature dependent. When strain rate becomes very
large, or, deformation process is very rapid, the flow curves appear to fall into
an envelope, that is, there is an upper limit curve (Song, 1993).

Figure 2.3 shows the typical rheological behavior of polymer melts,
which distinguish viscoelastic melts from Newtonian fluids, such as water. Of
course, there is other behavior different from water. The figures reveal that
viscosity of a polymer melt is a function of the rate of deformation, and that stress
in a melt persists after deformation has ceased (stress relaxation). Fluid-phase
polymer forming is a process where temperature is above the melting

temperature of the polymer and polymer is molten.

2.2 Large Deformation Analysis
2.2.1 Description Methods of Motion

Polymer forming involves motion of polymeric material, or flow.
Depending on flow characteristics, different description methods of motion can be
utilized (Argyris et al. 1979). For modeling of most fluid-phase forming
operations, such as extrusion and injection molding (Tucker, 1989,
Vlachopoulos et al. 1992), Eulerian description is widely adopted. In

thermoforming and blow molding, Lagrangian description is more suitable
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(Song et al. 1991 (a), and deLorenzi and Taylor, 1991,). A mixed Eulerian and
Lagrangian description has been used successfully to simulate compression
forming (Mavridis, 1988) and injection molding (Mavridis et al. 1992).

In Lagrangian description, the motion of every material point of a
body is traced from the beginning of process. The motion of a material point P
is measured with respect to its position X in an arbitrarily chosen reference
configuration, denoted as Co’ in Figure 2.4. Independent variables are
position X (or °X) and time ¢ It should be noted that choice of reference is
arbitrary, and such a choice should not z2ffect the results of the analysis. If
the reference configuration is taken as the configuration of the body at time
t = 0, this description is called total Lagrangian (Argyris et al. 1979). If
the reference is allowed to change with the motion and taken as the current
configuration of the body at the current time 7z, it is known as updated
Lagrangian description. Then the independent variables are the cusrent
position 'x and time T (at configuration C.), which is relative to the present
time ¢.

In Eulerian description, material motion through a fixed region in
space is determined as a function of time instead of determining deformation
of every material element by following its motion in space. That is, attention
is focused on what is happening in a fixed region in space as time progresses.
Independent variables are the current position 'x and time r. For the material
motion, 'X itself becomes dependent on time ¢, which, in fact, complicates
material time derivatives.

In a mixed Eulerian and Lagrangian description, or arbitrary
Lagrangian-Eulerian description, reference is allowed to move differently from

material motion and the reference motion is controllable. This method is used
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in fluid mechanics with a finite difference method (Hirt et al. 1974), and
with a finite element method (Argyris et al. 1985) to solve Navier-Stokes
equations, and also used in finite element analysis of fluid-solid interaction
problems (Kennedy and Belytschko, 1981, Liu et al. 1986).

In finite element applications to nonlinear problems in continuum
mechanics, especially large deformation problems, it is important to choose a
description method which is suitable to describe the problem, and describes
the problems in the most effective and simplest way. The Lagrangian approach
requires less complex governing equations, compared to the pure Eulerian
approach. This is due to the absence of convection terms, and simple updating
techniques for path- and history-dependent materials in Lagrangian
description. This is particularly suvitable for thermoforming simulation and
blow molding of potymer where a thin sheet undergoes large deformation.
However, this approach is significantly limited when material deformation
becomes very large such as steady fluid flow. Lack of control over finite
element mesh movement results in distorted meshes with large changes in
element dimensions, which adversely affects the accuracy of solution. But
restoring to a pure Eulerian approach in which mesh remains stationary
introduces other difficulties such as appropriate representation of free
boundary. Eulerian mesh is less suited for domains whose boundaries, or
interfaces, move substantially. Arbitrary Lagrangian-Eulerian description
reserves the advantages of both approaches and is ideally suited for a variety

of complex problems, such as squeezing flow, fluid-structure interaction, efc.
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22.2 Kinematics of Motion

Large deformation analysis must be undertaken since in polymer
forming operations, some extension ratios can be as large as 8, or 10. Total
Lagrangian description of motion is used in this project. Each material point
is traced throughout the whole process, and deformed body motion is measured
with respect to its initial state. Detailed descriptions of large deformation
analysis are presented by Hibbit et al. (1970), and Oden (1972).

We use °X, the initial position vector of a material point in the

initial configuration Co’ as convected (material) coordinate system 1o

describe motion, i.e.

1
X
L
X

. . )] 2 R . B
as shown in Figure 2.4, where X and "X are the new locations at time ¢ in

O% +'u®K, o

(2.2.1)

% +ulX, o

configuration Cl and at time r+Atr in configuration Cz, respectively. u is
displacement vector, and the left superscript represents the configuration
where quantity is measured.
The deformation gradient from reference configuration C , o current
configuration C is defined by,
1? _ le

- (2.2.2)
0 a%x

where 'X is, by assumption, the first vector of vector dyadic :)F= and the left
subscript indicates the reference configuration. Both the left superscript and

subscript are sometimes omitted for simplicity.

The left and right Cauchy-Green deformation tensors are

1= 1=T
= F-F

=T = : (2.2.3)
='F - 'F

l

g

al =l
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When moving from C, o C 1, deformation of an infinitesimal arc is

d'x -d'x -d’x . d%%

d's’ - d% = d'x_
2 :)E: d°X 4% =2 Ys cl"Xi d"xj (2.2.4)
1

=2'F:d'xd'x =2 “—:ijdlxi dlxj

T 1 ) (A
+ |ZEER L @2s)
8 X [8X
f is identity tensor, and the Euler strain tensor is

T
OBy =L, |l al“Tal“ 1 226
2 alx a'x a'x] |a'x

Eq.s (2.2.4) - (2.2.6) indicates that the same deformation can be measured by

where the Lagrange strain tensor is

a'u

a%%x

alu

a"X

F-Llc-1)=L2ul,
2 2

ol
]

:-1_(
2

different strain tensors with respect to the initial configuration, or the
current state, which corresponse to different description methods (Figure
2.4). In small deformation case, the third term of eq.(2.2.5) and eq.(2.2.6)
is negligible, and 'x = °X. Then both strain measures are the same.

The three invariants of Cauchy-Green deformation tensor C are

II=? : ?: lf+ ).2 +?\.§
12=—57?§3 T—x-lf;_+x§(xf+x§) 22.7)
L=—hCXc:C=R RN

where ?Ll, ?Lz, K3 are three principal stretch ratios. Symbols " : " and " >): "

represent double dot (scalar) product and double cross product of tensors,

respectively (Bird et al. 19§7). The incompressibility condition is
I.= 1 (2.2.8)

The above symbolic operations are easy to understand. To implement
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calculation, however, certain coordinate systems have to be used. Generally,

curvilinear coordinate system is established. The covariant and contravariant

base vectors of configuration C‘0 are

- a’x oiz a%x’
i aoxi' e

mO
>

The identity iensor

=i |

s iy ]
=g 8= 88 =488 = &'8g,
is the metric tensor of configuration Co‘ g,= 8 8

and contravariant base vectors are

1 . 0 i
G=2X% G =X 2123
boa%! alx
then
lF - Gi gl
16 - GJJ gl g_]
lE = gij G G

o _ i j_ 1 i i
E=y gg=7Grglee

while the inverse of 'F is

=] Q i
g =8X =g G
alx 1
and
=.1 =-Tl=-l . .
g =!'F .'F =gUG‘GJ

= _ P ) sy
8_8--GG_T(Gaj g]j)GG

ij
In cartesian coordinate system,

ax. au.
F =-—1=38 +—
' an Y an

(2.2.10)

In Cl, the covariant

(2.2.11)
(22.12)
(2.2.13)
(2.2.14)
(2.2.15)

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)
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du, Jdu, 0Ou  du,

1
7,.=——[—-‘+—f+—‘-——’] (2.2.20)
H 2 an aXi an aXi

When simple deformation is considered, such as uniaxial, or
equibiaxial extension, simple relaiions between different strains and
extension ratios can be obtained. In these cases, or in the principal
directions of deformation, Lagrange and Euler strains are

¥, = —-0%1), €= —~(1- 2) (=123, no summation) 2.2.212)

i i i 22

i

and true strain (Hencky strain) is

1
e= j dljl = In(h) (2.2.21b)
)3 0 1

For axisymmetric problems, we label the location of an arbitrary

material particle P in a fixed Cartesian reference system (el, e,, es) by

cylindrical coordinates

X = (R, 20 )" =Rcos®e+Rsin@e+Ze
! . 2 3 (2.2.22)
lx=[r,z,9}TzrcoseaE:l+rsm9e’+ze3 il
and
r=r RZLO)=R + ur(R,Z)
=z RZ)=2Z + uz(R,Z) (2.2.23)

8=0

where ¥ , u_are the displacement components along r and z directions.
r FA

The covariant and contravariant forms of the metric tensor 1 are,

1 0 07
=g g=|0 1 0 (2.2.24)
L0 0 R
1 0 07
g=g-gd=] 0 1 0 (2.2.25)
L 0 0 VR



19
The covariant components of Lagrange strain are given by

1
YOLB = { uU-B + HB-Ot+ u}».Ot“l.B)
0 o, B. A=1,2 (2.2.26)

TR

i}

YC‘.B
YS 3

where ua,B= alua/ aOXB, wo=7r - R, and u, =z - Z. Here covariant base
vectors g, and g, are identical to contravariant base vectors g' and g”, and
both are unit vectors. Whereas g, and g3 are not unit vectors. We prefer to
have strain components expressed in unit base vectors. We let

g i

a = ' and a' = —2_ ( no summation 2227
Tl T ) 2.227)
_ oo _ _ 1 3 3 :
then a,=g,=a =g, o=1,2. a,=-—p— g, and @ = R g°. Furthermore,
a=a-a=95_ and a'= a- a'= '
ij i ] i
This coordinate system is adopted, in which covariant components of

Lagrange strain are given by

= 5 )
Y&B = HC(‘B +££B'a+ H?\"aﬂl'ﬁ
0 . B A=l,2 (2.2.28)
5= (r*/ R*- 1)

YCX.S
YS 3

|l

The three principal stretch ratios, in radial, meridional, and

circumferential directions, are obtained by solving d's* = a? d%

l‘i = Oy 0, ) F I Yz_)z -0 1"

by = CLay vy, ) - I Yzz)z -61" (2:2.29)
ANo=1+27v. = -%
3 33 PE

and the three invariants of C are,
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Il =3+2 ( Yll+ Y22+ Y33)
12 =2 (1+2 733) (1+ Yt 722) + W (2.2.30)

L=(1+27)v

where
0 =4 (Y, Y YY)
{ 2 120 (2.2.31)
y=1+2(y,+7,)+0
C= G, 8¢ =G, 1¢llglad=a ad 2232)
=-1 . . .
C =G'geg=G"|gllglaa=4A"2aa (2.2.33)
1+2y11 2712 0
A= 2y, 142y, 0 (2.2.34)
0 0 1+2733
1 I+2y, -2*/15 0
§o_ - -
A = -2721 1+27“ 0 (2.2.35)
0 0 w/(1+2y )
3
23 Stress Tensors

If £ is the force per unit area acting on any surface point 'X in the
current configuration C'1 with normal vector n, then f is given by dot-product

== . 1
between surface normal n and stress lensor G, evaluated at the point X

f=n-0C (2.3.1)
This is called the Cauchy stress tensor principle and G is called Cauchy
stress tensor. According to this principle the stress tensor G specifies
completely the state of stress at any place 'X in the continuum, ie. it
determines completely all stress vectors as linear functions of G.

The balance of linear momentum principle states at the current state



C‘1 there is
Gl lovav=] rda+[ ‘bav (232)
'y ‘A 'y
where v, 'b are velocity and bedy force vectors, 'V and 'A are the volume and

surface area of the continuum.

Utilizing eq.(2.3.1) and through simple calculation, we have that

eq.(2.3.2) is satisfied for any volume 'V if and only if

all

=20 'y (2.3.3)

s

The balance of angular momentum principle for isotropic materials

results in

al
- X
—
i
=
Q

et
Q

Il
all
a
1

=}

(2.3.4)

O can be written as

alk
I

Q
— 1
+
ll

y (2.3.5)

7. . . 1 = . % I
= 1= represenis mean
where GMI is an isotropic tensor, G = —— G I = — o repres

stress, and 7T is called the extra-stress tensor, or deviatoric stress tensor,
T=0-0L
M
If the balance eq.(2.3.2) is written with respect lo relerence
configuration Co’ the pertinent quantities appearing in this equation (body
force, stress vector, etc.) have to be referred to the reference state.

The Cauchy stress is transferred to the first Piola-Kirchhofl stress

tensor T (unsymmetrical), or the second Piola-Kirchhoff siress tensor S
(symmetrical):

[

p

1
0 0
P

=
=]
all

(2.3.6)



22

(2.3.7)

w
11
o —_
oo
=y |
all
.y |l

1= =

0T and 0S are measured in C 1, but referred to Co‘ The physical significance of
these stress tensosrs are illustrated by a simple example,

Considering a uniaxial extension test of a bar, as shown in Figure
2.5. f is external force. Ao’ A, LO and L are original {undeformed) cross-
section area, deformed area, original length, and the deformed Ilength,
respectively. A = klz L/L0 represents extension ratio. The non-zero components

of deformation gradient E are F“= A F = F33= IVA. Incompressibility is

assumed for the material, 1.e., 0p Ao L0= 'p AL Op =1p. Therefore,

Gll: —{\— = _%f A, (2.3.8)
0
0
l_ P -l _ f
T = G F” G = _KE’ and (2.3.9)
si=TL Rl = L (2.3.10)
1]

that is the Cauchy stress o, is true stress, while the 1st Piola-Kirchhoff
stress T'' represents engineering stress, the 2nd Piola- Kirchhoff stress sh,

the engineering stress divided by extension ratio.

24 Material Rates of Stress Tensors under Large Deformation
When viscoelastic behaviors of polymeric material are examined,
changes of deformation and stresses with time must be considered.

Time-rate of deformation gradient F(DX, 1) is

F_T 3
37 = L F 24.1)
where velocity gradient i: is
L=Y-D+WwW (2.4.2)

a
b
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and

1
D=

=T

+L) (2.43)

ol

—_— 1 a= =T
W = —~ (L-L) (2.4.4)

denote the rate of deformation tensor, and spin (vorticity) tensor.

The material ratcs of Lagrange strain and Euler sirain tensors are

& FDF-L [TCscL] 245
a; - FDE=—o | b ' (2.4.3)
and

€_p-@LE+FL) (2.4.6)

Any mechanical event, which consists of a pair (x, ), can be observed
from two different frames of reference (O*, x*) and (O, x) with different
timing devices t* and r. The objectivity of physical laws, or the principle of
material frame-indifference, states that any physical laws should be the same
no matter where the event is observed. If (O*, x*, [*) — (0, x, 1) denotes a

mapping between the two frames, then

{ xi(r*) = ¢(f) + xz(t) (2.4.7)

t =t +a

where ¢(f), Q(9), and a represent a time-dependent translation, time-dependent

orthogonal transformation and a time shift. Q(f) - Q() = L

Quantities that are invariant to different observers in different

frames of reference are called frame-indifferent, or frame-independent. If

tensor H is such a quantity, then
B3

H=Q H-Q 2.48)

The Cauchy siress tensor 6 and the 2nd Piola-Kirchhoff stress tensor S

are frame-indifferent. Their usual rates g% and %—S,r are, however, frame-
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dependent. In a differential type of viscoelaslic constitutive model of
polymer, frame-independent material rate of stress tensor must be involved
according to the objectivity of physical laws. Various frame-independent
material rates of stress can be constructed. In Lagrangian description, g
need not be written as g—?, as done in fluid mechanics with Eulerian
description.

The corotational, or Jaumann material rate refers to a frame which

moves and rotates with the material, but does not deform with the material. It

is a material rate and ¢iven by
0 = ==
G = + Wo - oW (2.4.9)

If material rate is taken in a frame which moves, rotates and deforms with the
material, it is called convected materiali rate. The contravariant convected

rate (upper-convected rate, or Oldroyd rate) is

V & == T

G =37 -.L ‘0 - oL (2.4.10)
while the covariant convected rate (lower-convected rate) is

A == £ =

= _do =, =

G—-aT+LG+0'L (2.4.11)

Superposition of two frame-independent quantities is another frame-

independent quantity, such as Gordon-Schowalter material rate, which is

alm
2|

-9 w

all

.5

aff

- a(D'S + 3D) (2.4.12)

where a =1, a =0, and a = -1 give the rates in (2.4.9)-(2.4.11}), respectively.
There are other frame-independent material rates available (Larson, 1988).
It is now ready to construct nonlinear constitutive equations of

polymers in large deformation.
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2.5 Constitutive Material Equations of Polymer Solid and Fluid

Conslitutive equations are often derived from constitutive models. A
constitutive model is a set of assumptions and idealizations about molecular
or structural forces and motions that produce stress. Different constitutive
models might mathematically yield the same equation.

Any constitutive equation of continuum medium is an expression
containing stress history o(X, f), (e < ¢ < 1), strain history &(X, f),
and temperature history T(X, ), as well as some maierial constants, or even
a material constant tensor. { is previous time, and ¢, the current time.

There are various constitutive equations available for polymers (Bird
et al. 1987, and Larson, 1988). A proper choice of constitutive equation for
numerical simulation depends on what state of material to be described (in
molten, or concentrated, or dilute solution, or solid states), on what kind of
deformation (flow) to be described (shear, extension, steady, or transient
flows), and on the numerical scheme. Only those related to the problems in

this project are briefly discussed.

2.5.1 Hyperelastic Constitutive Equations of Polymer Solid

During processing, polymers usually behave viscoelastically. However,
in thermoforming it has been found that hyperelastic models without involving
natural time explicitly give reasonable approximations as pointed out by
Treloar (1976), Schmidt and Carley (1975), and Song et al. (1991 (a)). The
success of these models is due to the fact that the process is very rapid so
that there is little time allowed for viscous dissipation.

In hyperelastic model, there exists a strain energy function W('{ij)
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with respect to unit volume of the undeformed body.

For an isotropic, compressible maierial,
W = W("{ij) =W(i.1, 13) (2.5.0)

The Cauchy stress tensor is given by

all
i

l Qo
I‘OH
=

2 aW L 2 8w 8W
‘VI _TB-W (113 -11)+WI é—TI

where 0p and 'p are densities of the body at configuration ¢, and C.

In total Lagrangian description, the 2nd Piola-Kirchhofl stress S is

used, instead of Cauchy stress.

1=
g = ﬂ;
0,E 2.5.3)
sW T aw .. 7 & =
=2 I1+2 IT-C)Y+hC
57, a1,
where
_ aw
h=21 5T, (2.5.4)
The component form of S is
o o ol 1 [aW 3%

For an incompressible material, !3 =1, W(Yij) = W(Il, 1)

o1

Qll
I

T (2.5.6)
where the extra-stress tensor T is
- L 8w LaWwg!
I-2a_TB-2a—TB (2.5.1

and p is hydrostatic-pressure.
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ULC)
(2.5.8)

w |
i
fn)

1@ 4%
—{ ]

QJ

aE
iLe., S, or 5, is determined by strain energy, or deformation, only up to an

=1

additive isotropic term p C

The contravariant components of S are
Si=od+vH -p Gl (2.5.9)

where
aw

»=22 _T Y = 2——1-
{ (2.5.10)
Hi = Ilgij_ girgstrs
With the unit vector bases a and a', eq.s (2.5.9), (2.5.9) and
(2.5.10) still hold except that g, gij, and Gij should be replaced by a, a’
and Aij. These unit vector bases are adopted in this project.
In simple deformation cases, or in principal directions of

deformation, the different stress measures are

A aw P, gil 1

G=A a—x—i - — O., and T = o, 2.5.11)

A
A,

1
The forms of these siresses in specific simple deformation can be derived

easily.

2.5.2 Viscoelastic Constitutive Equations of Polymer Fluid

In thermoforming and blow molding, polymer deformation is extension-
dominated. Processes are rapid (iransient), and the major viscoelastic effect
maybe concerned is stress relaxation. In compression forming, polymer is in a

molten state. The process is not so rapid, and steady-sitate flow can be
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reached. Viscoelastic behavior is inherent 1o the process. Both shear and
extension are presented, and permanent deformation might exist.

Viscoelastic constitutive equations for polymer melts (fluid state
polymer) are discussed in this chapter. Equations for polymer solids are
addressed in a separate report (Song, 1992).

A fluid is called viscoelastic if capable of storing elastic energy,
or siresses contained persist after deformation has ceased (stress
relaxation). The elastic recovery of viscoelastic fluid 1is, however,
imperfect, i.e. the material “remembers” more about its most recently previous
shape than those at remote past, This is called "fading memory" (Coleman and
Noll, 1961).

For example, Rivlin and Sawyers’ equation
¢ = =-1
T= J { 4)1(11, I, t-f) B - ¢2(Il‘ L, ¢y B ]dr (2.5.13)

is a general integral type constitutive equation to within an isotropic term.

Here 4)1 and ¢, are functions of Il and I, the invariants of B, and time ¢f'.

q;l and ¢, represent the time effect (memory effect) and strain history effect.

= =1

The left Cauchy-Green tensor B here is written as C in Larson’s book (1988).

If one requires an elastic limit at high strain rate, then il can be

shown that

6=2% and o =21 (2.5.14)

1 2

where U is a potential function. Taking eq.(2.5.14) into eq.(2.5.13), we have
t = =]
= _ al aU /
T—J-O[O2ETI—1B-2§T:B]dz (2.5.15)
which is the K-BKZ equation. The free energy for the viscoelastic fluid is

t
W= j UL, 1, o) df (2.5.16)

5
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K-BKZ equation is derived from rubber elasticity (hyperelasticity)
theory (comparing €q.(2.5.15) to eq.(2.3.7)), and is generally useful to study
different kinds of flows of polymer fluids, because it permits a great
variety of behavior depending on the choice of the kemel U(L, 1, 7).

If ¢2 is set to zero and (bl = h(Il, 12) m(t-f), eq.£{2.5.13) is the

Wagner I equation
t

?:j_

where h is a damping function, m(s-'), 2 memory function, which might consist

h(L, 1) m(:-r) B dr 2.5.17)

of a spectrum of relaxation processes. Wagner equation is widely accepted.
The following example shows how viscoelastic behavior and its two
extreme cases (elastic and viscous behavior ) are captured by these
constitutive equations.
With Wagner equation, if h(Ix’ Iz) = 1, the eq.(2.5.17) becomes Lodge

equation

t =
T = j m(t-r) B, ¢) df (2.5.18)

-0

Considering simple shear deformation, 'x = %X + Y OX1 €, and
- [ v O
B=| v 1 0 (2.5.19)
0O 0 1
where B[') = ¥(t, ¢') is the accumulated shear strain between times r and 7,
'

¥ 0= [ ) ds (2.520)
!

Only a single relaxation process with A as the relaxation time is considered.
m(s-t’) is taken as G —i— e(”)’7L to take into account fading memory. If the
deformation process is very rapid, all strain is imposed just before the

present time ¢, then Y(s, [) = Y(?). Take this ¥(s, r) and eq.(2.5.19) into
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€q.(2.5.18), we obtain the elastic limit, with T, Gy. If deformation is
very slow and steady state is reached, the accumulated strain is Y-(-1).
Substitute it into eq.(2.5.18), we have Newtonian viscous f{luid limit, Le.
T, GA Y. When a deformation process is not as fast and not as slow, the
shear stress will depend on the present shear strain y and the shear rate y.
Deformation is viscoelastic.

Integral type constitutive equation has a drawback in the
implementation of numerical analysis, that is, at each time step, all
contributions to stress from previous time steps have to be accumulated, which
is a time-consuming process. Two alternative ways to overcome this problem
are firstly, utilizing differential, or rate type constitutive equations. Only
strain and stress at each time step and their material rates are incorporated
in simulation. But implementation of material rate in a finite element program
can also be time-consuming. Another alternative is 10 apply a correspondence
principle to take into account viscoelastic effect. In thermoforming, blow
molding, and compression forming, application of the correspondence principle
seems to be a simple way of obtaining a solution if stress relaxation is the
only viscoelastic effect of concern. Correspondence principles are discussed
in deteil in Morman (1988).

In most commercially available numerical programs, simple
differential, or rate type constitutive equations, are ofien used to simulate
complex polymer flows. The simplest equation is generalized Newtonian fluid

equation

T = 2 (1L D (2.5.21)

which can be used in the momentum balance equation 1o compute pressure drop

and viscous dissipation. IL; is the second invariant of D. Popular forms for
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(1l d) are power-law model,

Nl = m II d("'”’z (2.5.22)
and Carreau model
L P 2 (-1
S [1+A IId] (2.5.23)
0 oo

Both models can predict shear viscosity well, but not extensional viscosity.
A phenomenological viscosity model is proposed (Song, 1993 (a) and (b)), which
depends on both the second and third invariants. It can not only predict shear
viscosity well, but also extensional viscosity, and is sv~ceszfully used in
numerical analysis to predict vortex enhancement in entry flow of polymer
melts.

A more complicated constitutive equation for numerical simulation is

the Upper-Convected Maxwell equation,

A =21 ; (2.5.24)

<l

+

Al 1<

where A is relaxation time, is the upper-convected rate of T (2.4.10). If
both A and 1 are functions of 1I q it is known as White-Metzner equation. This
constitutive equation can explain some viscoelastic behavior of polymer melts

and solids as well.
Numerical modeling of complex flows with popular viscoelastic
constitutive equations can predict the behavior of real fluids, depending on the

value of the Weissenberg number, a measure of viscoelasticity (Debbaut et al.

1988).



CHAPTER 3
FINITE ELEMENT ANALYSIS OF
POLYMER FORMING PROCESSES

3.1 Nonlinear Finite Element Formulation

In current configuration C1’ equilibrium equation and boundary

conditions are

Y = 2 5+ iy G.1.1)
at a'x

= v =4 g= u: gi un Au (3.1.2)

Sn=T =T"g=T g onAg (3.1.3)

where 'b, u, and T  are body force, specified displacement and surface
traction, respectively.
The principle of virtual work is
1 =
['p dV5lv d'v + ['&FDav=['T"8vda+ | bovav @14
1y 1y 14 ly
o}
where 8'v (=8'u) is virtual velocity satisfying the prescribed geometrical
boundary conditions (3.1.2), virtual rate of deformation 815 is
| glv . fa'v}"
8D =S 8[ ¥+ [;_] ] (3.1.5)
2 aly I,
When inertia and body force terms are ignored, the virtual work principle
states
['EeDav=] 'T8V da (3.1.6)
1

1
Vv Ac

33
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With the total Lagrangian description, the integration domain of the left-hand
side of eq.(3.1.6) is converted from 'V to 0V, and the equation becomes
j 1S:8 Ed°v= 'T"8'vd'A (3.1.7)
0 1
1% A -

where continuity condition c’p a% = 1p d'V is used, and

= ¥ &y, (3.1.8)
S'J are the contravariant components of the 2nd order Piola-Kirchhoff stress
tensor and *'{ij are Lagrange strain rates. Eq.(3.1.6) can be used to establish

Eulerian type finite element formulation, while eq.(3.1.7) is used for

Lagrangian type finite element formulation.

The rate of total virtual strain energy is
sU=[ swav=[ & W_ &y d% = [ s"syav (3.1.9)
Y. i ij
OV 0 ij OV

Here, hyperelastic model is assumed, W is strain energy density, and

i_ 8 W
S = E (3.1.10)
ij
Rate of virtual work of external forces is
s _ 1 *. . 1
5W = J'l T &a 4'A (3.1.11)
Acr

so another form of eq.(3.1.7) is 8 U = § Wm. Physical interpretation of the
principle of virtual work is that the rate of virtual work done by internal
forces is equal to virtual work done by external forces in arbitrary virtual
velocity satisfying the prescribed geometrical boundary conditions. Further
discussions on virtual work principles are found in Washizu (1982).

In finite element analysis, the set of partial differential

eq.(3.1.1), together with the boundary conditions (3.1.2) and (3.1.3) for a
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continuum, is approximated by a discrete model. The body is represented as a
collection of a finite number of elements connected together at prescribed
nodes. Through virtual work principle, or Galerkin's method (Oden, 1972),
eq.(3.1.1) is approximately satisfied in an averaging sense over each element.
The unknowns are displacements (strains) and/or stresses at elemental nodes.
Inside each element, displacement (strain) and/or stress are approximated by
linear, quadratic, or other simple low-order functions, which are called shape
functions. The contintum with infinite degrees of freedom is thus represented
by a discrete model which has finite degrees of freedom. The partial
differential equations are converted into a system of algebraic, or ordinary
differential equations, which are generally nonlinear and can be solved
numerically. If certain completeness conditions are satisfied, then as the
number of finite elements is increased and their dimensions are decreased,
behavior of the discrete system converges to that of the continuous system.
The finite element method is applicable to analysis of finite deformation of
materially nonlinear, anisotropic, nonhomogeneous body with arbitrary
geometrical shape.

The deformed body is discretized into finite elements first. In this
project, six-node isoparametric triangular elements are used. That is, for a
single element, both coordinates and displacements of any point in the
element are expressed in terms of the same shape functions,

{Xv =¥y Xom

y =¥y oy

M=1,2,..N v=1,2) (3.1.12)

where ‘PMS are the corresponding element shape functions, N is the node number
of each element, Uy is nodal displacement component, and u (ur) and uz(uz)

represent the displacement components in r and z directions. Problems dealt
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with in this project are axisymmetric.
Based on eq.(3.1.7), equilibrium equations in finite element form

can be written as

ay. .
N ij ij 40 vV _ — _
= j $1 21 d'V-pi =0 M=12..N v=12 (113
0 VM
v
where
v 1 * !
py = f T, W d'A (3.1.14)
IAG

is nodal loading vector, which is a function of unknown displacement vector,
since 'A . and 'T" may change with displacement field.

In matrix form, eq.(3.1.13) changes into

(f} = [KW)]- {u} - {p(uw)} = {0} (3.1.15)

where [K] is the stiffness matrix given by,

g7

K, u = jo sk - u‘:' v (3.1.16)
|4

Integration is taken over the initial volume °V. The nonlinear equation

(3.1.15) can not be solved directly. Instead, an incremental form is used to

obtain an increment of the displacement field, then Newton-Raphson iteration

method is employed to achieve equilibrium.

3.2 Incremental Loading Method with Newton-Raphson Iteration
Suppose the motion (displacement field and loading) at time ¢ in
configuration C1 is known, then at time #+Ar, configuration Cz, the body moves
from Clto Cz, eq.s (3.1.13) and (3.1.14) hold, but superscript 1 is replaced
by 2. If there is a loading parameter, ¢, such as the external uniform

pressure loading in a thermoforming process, then
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u="u+Au, and g= g+ Ayg (3.2.1D)

Expanding eq.(3.1.15) of C, as a power series of A'u and A'g, and keeping

linear terms, we obtain a linearized incremental form of the equilibrium

equations:
\Y \Y
v 8fM an
Af = e Aun + — Ag =10 (3.2.2)
M AN
auxN aq

where it is assumed that all the derivatives are taken at C;’ i.e. they are
functions of known 'u and lq. Therefore, the increments A'u can be solved

for a given Ag from the linear eq.(3.2.2) and thus an approximation of state

C ) is obtained.

In matrix form, we have

(K o) {aul = (Ap) (3.2.3)
g Kik g p,
(KINC)ij = Kij 13 u s 5‘5; (3.2.4)
and
ap::
Ap = Ag — (3.2.5)
1 aq

where [KINC] is the incremental stiffness.
After each incremental loading step, Newton-Raphson iterations may be

performed to correct predicted displacement vector until some lolerance

criterion is satisfied
Eu(i+l) = ?.u(i) + Azu(i'fl) i' = 1, 2,“- (3.2.6)

where the first guess of 2u is given by eq.(3.2.3).

For the (i+1) th iteration, we have
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afy
X Auy = £ (3.2.7)
aulN
or
[K, ] {Au) = -{f] (32.8)

where the f: or {f} is the residvual vector given by (3.1.15), and all the

derivatives and residuals are taken at the (i) th iteration at Cz.

33 Deformation-dependent Loading Vector and

"Load-Correction" Stiffness

In thermoforming, it is the applied pressure that drives the polymer
sheet to deform. This uniformly distributed pressure loading is normal 1o the
sheet, that is, the direction of pressure on any point of the sheet changes
with deformation.

Suppose there is no other loading except the pressure. Then, we have
M= . g 'n (3.3.1)

where ¢ is the magnitude of uniformly distributed pressure, and 'n is the
outer normal direction of element surface which is subjeéted to pressure, as
shown in Figure 3.1,

In the current deformed state, an infinitesimal area of a ring

element of axisymmetric problem is
d'A = 2m(R +1ur) g (3.32)

where R is the convected material coordinate of point B, u is its radial
displacement, and § is an embedded coordinate along the meridional direction.
The positive direction of & is where the deformed body is always on its

left-hand side.

Ccmporents of loading vector p are
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—— 1 ——
py = LA-q n, W d'A = -2n J.&q R+ u)n, ¥ d (3.3.3)
(9

The second integration in eq. (3.3.3) is a material integration.

From Figure 3.1, we have

1 _[eosal _ [ -dz/dE
-n= { sin o } - { dr/dg } (3.3.4)
Since elements used are isoparametric, there are

{R = ‘PM(&,)RM { u_= ‘PMurM, g { r= ‘PM(RM+ )

) (3.3.5)
z=¥ ©2z, ‘w =7, 2= ¥ (2 +u,)
Substitute eq.s (3.3.4) and (3.3.5) into (3.3.3), we have
1
1 —
Py = 21 IO(R tu) U ¥ () O
. (3.3.6)
2 _
pl = 2nq jO(R +u) ¥ ¥ R u ) dE

which indicates this loading vector is displacement-dependent. Therefore, in
the incremental loading process, we have
1

1
Pau = 2ng IOIPM P, (2w, ) A

1
p;w= -2nqj(R o) W, ¥ e &
) o ‘l’ (3.3.7)
p;'ur: 2ng jo ¥, ¥, ¥ g (R u )+ R+ u)¥, ¥ 4] &
P2 =
L M'uZN

Eq.(3.3.7) gives stiffness matrix contributed from loading, which is the third
term on the right-hand side of eq.3.2.4) and called "load-correction”
stiffness matrix. It is unsymmetrical and gives rise to additional numerical
difficulty. But including the load stiffness can greatly reduce the mumber of

iterations required for convergence (Argyris, 1981). Inclusion of the load
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stiffness is sometimes essential in obtaining the solution to a problem.
Since six-node isoparametric elements are used in the finite element
program, shape functions on the edge of an element are
W=1-38 + 28
W=dE- 487 E 0o (3.3.8)
¥ =28 &
With these shape functions, parabolically distributed pressure loading over

the element can be exactly modeled.

3.4 The Penalty Method and Selective Reduced Integration

In our finite element analysis, we confine our atienion 10 the
isothermal process of homogeneous, incompressible, hyperelastic materials. The
incompressibility equation (2.2.8) could be either satisfied approximately by
introducing a very large penalty number 1/¢, (0 < ¢ « 1) (Zienkiewicz, 1974),
or relaxed by a Lagrange multiplier & (Oden, 1972). Lagrange multiplier
results in a mixed u-v-p formulation with more unknowns, even though it is
equivalent to the penalty raethod (Zienkiewicz and Taylor, 1989). Both Lagrange
multiplier and penalty methods are used in our analysis. Their equivalence has
been confirmed numerically. Therefore, only the formulations with penalty

method are given here.

A modified strain energy function is used in the penalty method,
W=wW (1, 1)+ _é- (1-1) 3.4.1)
S still has the form of (2.5.3), but 4 in (2.5.4) should be replaced by

4 1
5 st _ 7 s
h—Zlaﬂ-Ba—E—(I3-l) (3.4.2)

If we denote stresses contributed from W{(/ o [2) as SV, then
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si=2 W 428 ud- PG (3.4.3)
1 2

Stresses contributed from the penalty term in eq.(3.4.1) are

S= g (1+27))(1+27)
*gﬁ: x (1+2y)C1+27) (3.4.4)
SP =2 (1 +27v)7,
(P =2V
where
X =—2(L-1) (3.4.5)
Therefore,
i = gi 4 & (3.4.6)

The specific form of gij depends on the specific hyperelastic model chosen,
which is discursed in Chapter 4. The s given in (3.4.6) should be used in
(3.1.13) and (3.2.4) to evaluate stiffness matrices.

The incremental equilibrium equation (3.2.3), or the iteration
equation (3.2.8) have to be evaluated numerically before they can be solved,
since the integrals involved in (3.1.13), (3.2.4), (3.3.6) and (3.3.7) can not
be integrated analytically.

Following a suggestion by Engelman et al. (1982) to achieve numerical
convergence, a selective reduced numerical integration technique is used in
the finite element program, that is, the stiffness matrix contributed from the
penalty term and that from general strain energy are integrated by using
different quadrature. The penalty parameter € used ranges from 0.02 to 107,

Components of the incremental stiffness matrix excluded the load
correction contribution are

\V Y
an an

~V
a
+ Y (3.4.7)

duy o Fan Mo
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where
Y 2
8 ey, = 9.
M as’’ i i i
— =2n 1 R ( —3 e 8Y 2 ) dR dZ (3.4.8)
duy fe Buyn By U P N
N
and
8FY ijay.. . 8.
ﬁ_ﬁzzan(g_ﬁ___au’ws”ﬁ)dez (3.4.9)
auxN e AN TTVM VM AN

In this project, the integrals of (3.4.8) are evaluated through the
use of seven-point Gaussian quadrature. If the same quadrature rule is applied
to (3.4.9), then the discretized problem would be "over constrained" or
"locked". Locking is avoided if the penalty integrals are under-integrated
through the use of four-point Gaussian quadrature (Carey and Oden, 1983).
Surface integrals of (3.3.6) and (3.3.7) are evalvated by a three-point
Gaussian quadrature. Location of integration points and their associated
weights is found in Zienkiewicz and Taylor (1989).

After displacement field is obtained, stress distributions can be

calculated by a proper siress calculation algorithm (Stein and Ahmad, 1977,

and Babuska, 1984).

3.5 Solution Techniques and Convergence Criteria

In the incremental equilibrium equation (3.2.3) and iteration equation
(3.2.8), stiffness matrix [KINC] and [KN_R] are unsymmetrical, a symmelrical
Gaussian elimination solver, or a symmeltrical frontal solver can not be used.
We use an unsymmetrical frontal solver to solve these algebraic equatjons,
which has advantages of requiring less computing time and computer RAM memory.
This solution technique especially appeals to application of nonlinear finite
element analysis on a personal computer.

To optimize a solving process, line search, conjugate gradient, or
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other kinds of acceleration methods can be used (Oden, 1972, Wolfe, 1978, and
Wong and Hafez, 1982). To pass the limit point, or bifurcation path, some
special methods are used, such as the "current stiffness parameter” method
(Bergan et al. 1978), arc-length method, or Riks’ method (Riks, 1979, and
Ramm, 1981), and the technique used by Crisfield (1981). In this project, a
modified Riks’ method is used, since limit point is met in the simulation of
thermoforming., Numerical implementation of the modified Riks’ method with
unsymmetrical frontal solver is briefly discussed in the following chapte..
Various convergence criteria are used in the current nite elemeat
analysis. One of the mostly used criteria is relative error criteria:
Wl-ut g (35.1)
)
w1 and u''? are the calculated unknown vectors at the (i-1) th and (i) th

iterations, || represents certain norm of vector, and R, a prescribed

1/2

tolerance. Here, Euclidean norm {x|, = (xx)" "7, and |x|_, = max (|xj |}, are

used, and R is taken as 107, or 10%. If the above criterion is satisfied,
convergence is assumed to be reached and the next incremental step of the

solving process is carried out. Another criterion used is

G, () (1)
f-(u w ) ¢ R (3.5.2)

ref

where f'') is the current residual force given by (3.1.15), AR (R R
represents residual work done by the unbalanced displacement vector, and Wrc ¢
is a reference work, such as work done in the previous step. Usually, criteria
(3.5.1) is stricter than (3.5.2).

Through numerical analysis, it is known that Newtonian-Raphson
iteration should be of quadratic convergence if the initial guess used is

sufficiently close to the real solution. Here it is found that for forming
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problems without limit point and contact, two to five iterations are enough to
make eq.s (3.5.1) or (3.5.2) satisfied with R = 108, and quadratic
convergence is preserved, as shown in Figure 3.2. In order to have successful
Newton-Raphson iteration the Jacobian stiffness matrices in eq.s (3.2.4) and
(3.4.7) must be evaluated correctly. In this thesis, both the analytical
formulation of Jacobian matrix and its nunerical evaluation by finite
difference method are obtained to guarantee correct evaluation of the matrix.
The difference between analytical and numerical Jacobian is found to be within
machine tolerance, i.e. 10°7¢. Yet, the method to evaluate Jacobian stiffness
matrix by finite difference can make a finite element program more flexible so
that a user can incorporate his preferable constitutive material equation into

the program without detailed knowledge about the whole finite element program.

3.6 Numerical Example

A simple problem involving the free inflation of a thick cylinder
subjected to internal pressure loading is solved. Figure 3.3 shows geometry,
elements used and displacement response to loading. Material parameters used
are C01= 60 psi (0.4137 MPa), and C10= 10 psi (0.06895 MPa). Only 15 loading
steps are used to reach an internal displacement of 50 ¢m, where internal
pressure is about 1.26 MPa. Agreement with the analytical solution (Green,
1968) is excellent. Hydrostatic-pressure introduced from relaxation of
incompressibility condition is also calculated according to (3.4.2) at loading
of 1.26 MPa (Figure 3.4). It is noted that there is a difference between the
prediction from six elements and the analytical solution, while the prediction

from 12 elements compares well with the analytical solution.
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Figure 3.3 A comparison of finite element results with exact solution for
inflation of a thick cylinder.
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CHAPTER 4
SIMULATION OF PRACTICAL
POLYMER THERMOFORMING

4.1 Introduction

In the process of thermoforming, a thermoplastic sheet, usually
extruded from a sheet die, is heated until soft and formed by use of pressure
(or vacuurn) for the fabrication of numerous products, as described by Throne
(1987), Florian (1987) and Whiteside {1990). Products range from smali
household containers, to large technical mouldings (boats, freezer liners, car
bumpers, aircraft window reveals, garage doors, and honeycomb composites).
Thermoplastics most widely used in thermoforming are acrylonitrile-butadiene-
styrene (ABS), polymethyl methacrylate (PMMA), high impact polystyrene (HIPS),
polyvinyl chloride (PVC), polystyrene (PS), polycarbonate (PC), polyproplene
(PP), low density polyethylene (LDPE) and high density polyethylene (HDPE),
composite materials, co-extruded sheets and multi-color laminated materials.
Examples are listed in Table 4.1. Thermoforming takes on more cngineering
applications.

In its simplest (idealized) form, thermoforming involves inflation of
a polymeric sheet originaily of uniform (known) thickness. One of the most
important problems in this process is the determination and optimization of
sheet thickness variation, which is a function of processing conditions and
rheological properties of the softened plastic sheet.

In vacuum forming, a common thermoforming technique (Figure 4.1), a

49
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Table 4.1 Polymeric materials used in thermoforming

Material Application Commerts

ABS/S-HIP Refrigerator Ease of Forming,
oil/fat resistance

Matt ABS/high heat ABS Motor trade Non-reflective,

PP/filled PP

PP UV siable/
PP copolymer

Dashboard area

Motor trade parcel
Shelves

Outdoor applications-
garage forecourts

Good heat distortion
Cost effective,

rigid

UV stabilizing,
expensive-top

layer only
Three layer, with Various Cost effective
scrap in centre
PC. PEI, ABS, HIPS Construction High strength,
SURLYN Composites UV stabilizing
Crystallisable Oven tray High temperature-
PET resistance

sheet is shaped by reducing air pressure between it and a mold. Only air
pressure is used to do the shaping, and strong molds are not required. Vacuum
forming using a female mold gives better thickness at rims, but thinner
corners and base. A male mold can produce the same basic shape with better
thickness distribution. In pressure forming, another thermoforming technique,
pressure is applied rather than vacuum. The advantage of this technique is
that higher pressures can be used, especially for the forming of large area
article. Plug-assist pre-stretching process can be used to promote uniformity
of thickness distribution.

Recently, finite element modeling of thermoforming has been reviewed
by DeLorenzi and Nied (1991) and Song et al. (1991 (a)). Investigations which
are briefly summarized below are of considerable importance tc the present
method and objectives.

The pioneering work of Treloar (1944, 1976) involved the inflation of
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Figure 4.1. Vacuum forming process.
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thick rubber sheets. Schmidt and Carley (1975 (a) and (b)) investigated the
inflation of various thick thermoplastic sheets, as well as Lai and Holt
(1975). Treloar and Schmidt and Carley offered convincing evidence that the
thermoforming process can be well described by using a hyperelastic
constitutive equation. However, Lai and Holt used a simple viscoelastic
equation for stress relaxation and strain hardening to analyze their results
for PMMA and HIPS.

Many analytical and numerical investigations of thermoforming,
published thus far, involve thin membrane approximation, which may neither
give good simulation of thicker gauge product and multi-layer composites, nor
provide information of stress concentration at some critical locations as
noted by Song et al. (1991 (a)). Membrane approximation is used by Allard et
al. (1986), Delorenzi and Nied (1987, 1991), Warby and Whiteman (1988), Menges
and Weinand (1988), Kueppers and Michaeli (1990} and Kouba et al. {1992). Oden
(1971, 1972), however, developed a finite element model to describe the
inflation process for a sheet of finite thickness. Song et al. (1991 (a) and
(b)) also developed general finite element models with a penalty method to
simulate practical thermoforming of plactics. Igl and Osswald (1992) used an
one-dimensional shell finite element model to study the thermoformability of
woodfiber filled polyolefin composites.

In the membrane approximation, all physical variables are assumed
constant across thickness. Determination of thickness in  different sections
of thermoformed product is achieved by assuming incompressibility. If two
extension ratios in membrane are known, the extension ratio in thickness
direction can be obtained immediately from constant volume condition. Without

membrane assumption, strains and stresses are allowed to vary aleng thickness
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direction, as in the cases of thermoforming of thick sheet, or of composite
sheet. Incompressibility must be considered from the start of analysis,

instead of as a post-process condition, which increases accuracy dramatically,

as well as difficulty.

4.2 Finite Element Simulation of Thermoforming
4.2.1 Hyperelastic Models used

A widely used hyperelastic model is the Mooney model, in which
W=C (I - 3 )+ Co1( I-3) (4.1)

In an axisymmetric case, the stresses contributed from W are

([ _S_11 = g—"_;%l- =2 [ C10+ 2 Co:( 1+ Tt 733)]
2 = glj{/; =2 [C+2C (1+7+7)] .
L~S—33 _ 3‘533 =2 [C #2C (1+7y+7,)]

2l _ ol2 _
and 8% = S =-4C v,

Even though Y= Ty from the balance of angular momentum, in the
derivation of (4.2), independence of all strain components ¥ must be
retained. Otherwise, the derived '512 will be two times the real one.
Consequently, the corresponding Jacobian stiffness matrix (3.4.8) can not be
correctly evaluated and the  numerical simulation will be unsuccessful,
especially when shear deformation is not negligible, such as in compression
forming. Other hyperelastic medels have a similar problem.

Another popular model is Ogden model (Ogden, 1972, 1984), in which the
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strain energy is written as an expansion in principal stretch ratios, ll, lz,
and A_:
7t3

Hy

o o 04
k k k
[AI N -3] 4.3)

W=X—
kK Tk

where o and p are experimentally determined parameters. Usually, three
terms, i.e. k = 3, with six constants are sufficient for an excellent
description of various thermoplastic materials. This model has one restraint
that W in eq.(4.3) must be a positive strain energy function, Mooney model
could be regarded as a special case of Ogden model when k = 2, o = 2, and
o= -2. The axisymmetric components of the 2nd Poila-Kirchhoff stress
corresponding to (4.3) are:

m o -2 o -2
“=§ _21[11“ (1+6)+2" (1-¢2)}

-

|

-2

!

- i o o -2
2 _ k X X
S %T[ll (1-¢)+2, (1+¢2)]
1 - it -2 -2 - 4.4)
12 _ X K % _ a2l
s -3 [xl -, ].2721.,
- o -2

_S33=z ulk

where
0,= (¥, - 1,00,
0= [(Y,+ v, - 017 (4.5)
0= 40y, -V,
0 has been previously given in eq. (2.2.31).
Eq.(4.4) is also used in the finite element formulation of this

project.
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4.2.2 General Process Simulation without Limit Point

The total Lagrangian description of motion (Argyris et al. 1979) and
isothermal hyperelastic constitutive equations are used in the finite element
formulation. Incompressibility assumption is satisfied approximately by using
a penalty method. A standard incremental loading method and Newton-Raphson
iteration are emrloyed for the regular loading procedure. Since the pressure
loading changes its direction with deformation, the contribution of this
loading to the stiffness matrix can not be neglected as Delorenzi and Nied
did in their membrane analysis. All contributions to stiffness are included in
the present formulation, i.e. small deflection stiffness, tangential
stiffness, initial  displacement, and load (or initial stress) stiffness. Due
to the unsymmetrical property of the load stiffness contribution an
unsymmetrical frontal solver is used.

While the analysis presented in this project is important in
thermoforming it is also significant to mention that membrane stretching is
used in rheological instruments (Denson and Hylton, 1980 and Rhi-Sausi and
Dealy, 1981). Possibly, some end effects encountered with these instruments
may be due to thickness variations observed in this work.

Subsequent numerical examples have geometrical characteristics shown
in Figure 4.2 with simplified boundary conditions, i.e., either clamped ends
where the plate can not freely rotate, or simple supported ones where free
rotation is allowed. The bottom surface of the sheet is subjected to uniformly
distributed pressure loading g. Due to symmetry, only half of the problem
domain is discretized.

Figure 4.3 (a) shows both an undeformed finite element grid of twenty

elements and a deformed one, at which the loading is about 40.1 psi. It can be
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Figure 4.2. Geometry and boundary conditions for inflation of a thick plate.
(a) Initial profile, (b) Simple supported ends, and (c) Clamped ends.
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Figure 4.3 Inflation of a thick plate.

(a) Finite element grids, and (b) A comparison of theoretical solutions with
finite element simulation.
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seen that large deformation and large strain occur. The relation between
displacement of the centre and applied pressure loading is shown in Figure 4.3
(b). Finite element results are compared with those of linear elastic theory
and an approximately nonlinear analytical solution (Timoshenko et al. 1968).
The nonlinear analytical solution is derived from an energy method with
assumptions that the deformed profile is of spherical shape and without shear

deformation. Timoshenko’s simple formula, for clamped edge, is

qrg 1
U= 15 64 + 28.2528"2 uz (4.6)
(1-v)h
0
E hg
where u_ is displacement of centre, D = ———————, bending modulus, v,
0 12(1-v%

poisson’s ratio. In the curmrent study, materials are assumed to be
incompressible, i.e., poisson’s ratio v = 0.5. Young’s modulus E has a
relationship with the material parameters in Mooney hyperelastic model, from a

theoretical analysis of small deformation (Alexander, 1968)
E=6 (C01+ CIO) (4.7)

The dashed line in Figure 4.3 (b) corresponds to the prediction of
linear elastic theory, while the dotted line, that of Timoshenko’s solution.
We see nonlinear solutions apart from the Iinear one at very small
displacement, and both nonlinear solutions match until x 0= 2 cm. After that,
the solution of Timoshenko becomes much stiffer than the finite element

solution. The involved parameters are the same as those of case 6 given in

Table 4.2.
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4.3 Simulation of Thermoforming with Limit Point
431 Modified Riks’ Method to pass the Limit Point

In his experiments of rubber sheet inflation Treloar (1944) observed
that the applied inflation pressure started to decrease after reaching a
aximum, while deformation keeps increasing, Accurate pressure measurements
have confirmed that such a pressure drop also occurs during thermoforming of
plastics (deLorenzi and Nied, 1991). The maximum pressure point is a typical
limit point, where the loading parameter ¢ will change from increasing with
time to decreasing with time, or vice versa, as shown at points D and E in
Figure 4.4. In finite element simulation, the stiffness matrix in a standard
incremental loading/Newton-Raphson iteration algorithm becomes singular at
limit points and the solution process requires modification. A general finite
element program should be capable to lo_ate and continue beyond limit points.
It should be pointed out that the limit point met in thermoforming is not a
physical unstable point. The importance of passing the limit point for the
numerical simulation of thermoforming has been realized by previous
researchers (Allard et al. 1986, and deLorenzi and Nied, 1991). However, none
of the previous finite element analyses solved this numerical instability
problem. Riks’ method is modified and used in this thesis (Ramm, 1981) to pass
the limit point. The numerical algorithm is rather simple.

Suppose equilibrium equations in the finite element form are
_ in ex A _
Fa(u, q) = Wa u) - g Woc m=00c=1,2,.,n (4.8)

where u is the unknown displacement vector of length n and g is a loading
parameter. In Riks’ method, arc-length s along equilibrium curve is chosen as

the incremental parameter so that

* Riks’ method is a special case of continuation method (Mittelmann, H.D., "A pseudo arc length
continuation method for nonlinear eigenvalue problems”, SIAM J. Numerical Analysis, 23, 1007-1016
1986.)
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u=us), g=g(s (4.9)

Generally, the arc-length is defined by

(ds)* = (dg)* + du-du (4.10)

The incremental procedure is to find the increments of u and g for a given
value of s and As. Ag becomes an extra unknown besides Au vector. Since As
always increases as the loading process proceeds, it can be proven that t:e
solution of arc-length method always exists if small steps are taken (Riks,
1979). It is convenient to define a new solution vector X = X(s) where

xa(s) = ua(s); o=1, 2, ., n

4.11)
n+ 1

f

x,(9) = as) @

Then, in addition to the equations of equilibrium (4.8), a constraint equation

must be satisfied

NENCL
or
l=x-% (4.13)

where x = g% .

* Lk
Suppose that a solution vector x and its tangent vector x  are known
* .ot . - -
at some point s on the equilibrium curve, as shown in Figure 4.5. Let As
represent an approximation to an increment in arc length. Then an estimate of

the solution vector for the next step is

0 Ed 3
X =X + Asx 4.14)

- 3 '* .
Now, define a plane in n + 1 space which has x as its normal and passes

through the point x°. This plane is approximated by

Fo(x)=x-(x-x)-(s—s)=0 (4.15)
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Together with eq.(4.3), there are

R * ES
F(x(x)=x - {x-x) - (s-5)=0;0=0
{ (4.16)

F (x) = W&“(x) ~q( W =0 o=1,2, .,n

The introduction of plane F0= 0 produces a system of n + 1 equations

with n + 1 variables (u plus g). The solution of eq.(4.16) is the intersection

of plane F0= 0 and the equilibrium curve, and is located by using Newton
iteration technique, shown in I'‘gure 4.5.

Let x(j)represent the approximation to eq.(4.16) after the jth

iteration, then the n+l equations can be expanded in a series about xV
G4) 0 B RN G4) (3 {j+i)_
F (x7+ AR = Fo (") + F gx77) axg?*= 0 @.17)

where only the linear term in the series is retained, and

. aF _ (x)
Fo, g7 = g‘xB | ey 4.18)

As long as matrix FaB is non-singular, eq.(4.17) can be solved

for the correction Ax%*!’and a new estimate of the solution is obtained

X0 U3 AxGD (4.19)

The iteration procedure is repeated wuntil AxYVis sufficiently small. In

this investigation, the iteration is terminated if

% <R and|égJ_ <R (4.20)

where R is a pre-determined tolerance.

In this work, the size of step As is automatically changed by

A = Bt ok (4.21)

where MIT is the maximum number of iterations and KIT is the actual number of

iteration required for the convergence of step k. The original Riks’ method



leads to modification of stiffness :iatrix, which greatly increases computing
efforts. The modified Riks' method outlined below keeps all the merits of
Riks’ method without changing stiffness matrix and the extra computing effort
is very small.

The numerical implementation of the modified Riks’ methods with
unsymmetrical frontal solver is summarized as follows:
1. Choose the =zero solution vector corresponding to the undeformed
configuration of body (°q = 0) as the initial solution, select a basic load
increment as reference load Ag, and solve the standard incremental
loading/Newton-Raphson iteration procedure to obtain equilibrium, thus the As

in the first step is determined
1 _ 0 1. _0 2 _ 2
g= g+ Ag, u="u+ Au, and (As)" = (Ag)” + Au-Au 4.22)

2. In any step

a) for Ag'= 1, solve the incremental equilibrium equations to obtain Au’;

b) Adjust the step size As = %% Ask, or As! = v/ %g% As*. The latter is

introduced to avoid oscillating.

c) Suppose the unknown loading increment is Ag, then
(As*™ly = (89 + (Ag AW)-(Ag Au) (4.23)
Check for unloading. Thereiore,
1 12
Ag = A& [ 1+ Au™ AW’ ] 424)

Apply negative sign when unloading. Usually, diagonal terms in the
triangularized stiffness matrix during Gaussian elimination should be
monitored. If some of the diagcnal terms show sign changing, then loading
should change to unloading, or unloading should change to loading. Through

numerical experiments, we find that if the sign of Ag is kept unchanged near a
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limit point, the calculated loading (after iterations) will oscillate about
the loading at that point. If the sign of Ag is changed when oscilialing
starts, then the limit point can be successfully passed.

3. Update the solution
Au = Ag AW, u*'= 1F + Au, M= 45 + Agq, &= & 4 A (4.25)
4 a) determine the out-of-balance forces

k+1 _ xyring k+l ktlygrex, k+l
Fa = Wa uw-g W(x w ) (4.26)
b) Iterations

in the jth iteration, simultaneously solve

I — roFEx
{FQ,B Aug = &g’ W | ag'=1

(4.27)
FO‘»B AHuB = - Foc .
Auéj)= AHuB + Aluﬁ- AgY (4.28)
is the solution of the original iteration equation
. . aF ,
FJ)=FJ" + Fo p Aug + é—qﬁ AqY = 0. (4.29)

k ks T
The iteration path follows a plane normal to the tangent {%—l;, %-% } , that is

k . k .

5. Use the above constraint equation to determine the load increment Aqm,

. kAl
Aq(’) — Au Avu

(4.31;
Aqk + Au®- Alu ’
6. Update the load level and the displacement field;

7. Repeat steps 4-5 unti the desired tolerance is achieved for both load and

displacement;
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8. Reformulate the stiffness matrix and start 2 new step by returning to 2.

4.3.2 Simulation of Large Inflation of Rubber Sheet

The problem involves large free inflation of a thick flat sheet of 8%
sulphur rubber, investigated by Treloar (1944). Equibiaxial extension is
achieved at the pole of the inflated sheet. Treloar’s measurements of this
equibiaxial extension are widely used as benchmark data to check performance
of different constitutive relations (Alexander, 1968) and there is no
numerical simulation compared with the measurements.

In this work, the same geometrical and material parameters as those of
Trelcar are used. Initial radius I, is equal to 1.25 cm, initial thickness
h o 0.082 cm, and a neo-Hookean constitutive model with C 0 being 2.0 kg/cmz,
C o Z€T0, are used. A good simulation is obtained with a rough finite
element grid of only 20 elements. Little change in the results is noted by
doubling the number of elements. It is worth to mention that the aspect ratio
1'0/h0 =15.24 is not very large, ie. the sheet is not very thin. None of
finite element analyses based on membrane approximation have shown any
comparisons with Treloar’s data for the whole inflation process.

Figure 4.6 shows that simulation is successfully carried over a limit
point and matches Treloar’s (1944) experimental data very well. At the pole,
the membrane stresses increase with increasing extension ratio ?»2, although
the applied pressure experiences decrease during the inflation. At the pole,
the sheet undergoes equibiaxial extension. If the thin membrane theory is
applied, there is 2kT=q, or T=q/2k at the pole. k is the curvature, T (=T1=T2)
is the stress resultant along the thickness direction. In this case, the

curvature k decreases at a faster speed than pressure loading ¢ does
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(Figure 4.7). Thercfore, T keeps increasing.

Figure 4.6 indicates that the forms of boundary conditions have little
effect on the loading vs. extension ratio curve until the limit point. Then,
the curve corresponding to simple supported boundary conditions seems closer
to Treloar’s data, while that corresponding to fixed boundary conditions is
stiffer. Departure of finite element calculations from experimental data may
have resulted from an initial distension performed by Treloar before
inflating, which is ignored in our simulation, or from limitations of
neo-Hookean constitutive model. Qualitatively, we know that pre-stretching
softens the sheet. Therefore, the use of simple supported boundary conditions,
i.e. softer boundary conditions than the clamped ones, gives better results.
Mooney model with C o 1.95, and C01 = 0.05 kg/cm® has also been tried
without much improvement,

Figure 4.7 shows calculated profiles for simple supported boundary
conditions, corresponding to loading levels of (q) 0.0, 0.126, 0.440, 0.493,
0.436, and 0.349 kg/cmz. 0.493 kg/cm2 is the maximum pressure. For the
largest inflated profile shown, the sheet is  spherical in shape, up to
approximately r/'r0= 0.7. At low loading levels, the sheet undergoes almost
uniform thinning, strains are small, but rotations are large. As loading
increases, non-uniform thinning becomes dominant, Calculation for simple
supported boundary conditions can be continued until the pole extension ratio
(?\.2= ls) reaches a value as large as 8.5, with pressure about 0.349 kg/em’.
Thickness at the pole is about 0.0012cm, 1.4 % of original thickness, and it
is about 50 % near the end. Thickness variations in Figure 4.8 show that the

thickness gradient is much higher near the ends.
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4.4 Effects of Material Parameters on Thermoformed Product

The second set of simulations focuses on effects of material
parameters and aspect ratio. Geometrical and material parameters used are
presented in Table 4.2. Case 2 corresponds 1o experimental measurements
performed by Lai and Holt (1975) for comparison.

We use only the simple supported boundary condition for the following
calculations, since the clamped boundary condition requires considerable
refinement of end elements at high pressure loading, and both boundary
conditions result in similar finite element results before the limit point.

Figure 4.9 shows the effect of material parameter C o O pole
thickness variation with pole height. C10 values are given in Table 4.2. For
cases 4 and 6 (not shown) the curves are between those of cases 1 and 5. It
appears that the greatest sensitivity is due to Co;'

Figure 4,10 gives dimensionless loading as a function of dimensionless

Table 4.2 . Geometrical and material parameters in the case study of
thermoforming

Case
1 2° 3 4 5 6
Initial
radius r 3.5 3.5 7.5
( in)
Initial
thickness
ho (in ) 0.25 0.125 0.5
Aspect 14.0 28.0 15.0
ratio
ro/h0
C18p51) 56.0 40.0 40.0 $0.0 80.0 80.0
Cogpsi) 20.0 0.0 36.0 20.0 20.0 20.0

® 1Lai and Holt.
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pole height. For the parameters studied when aspect ratio r0/h0= 14.0, curves
are grouped together for a large portion of pole height range. The sheet with
aspect ratio rol'h 0= 28 has a larger pole height for the same dimensionless
loading, which implies more non-uniform thinning. Therefore, with the same
loading and radius, the thinner the initial plate, the more the non-uniform
thinning.

In Lai and Holt’s experiments (1975), a viscoelastic constitutive
relation is used. o =K tm,e", where O, € and ¢ are true stress, true strain,
and time,respectively. For PMMA at 163 c’C, the stress relaxation index m’ is
equal to -0.05, and the strain hardening index n is 1.0. In this analysis
stress relaxation is ignored and material is considered as nonlinear elastic
(neo-Hookean model). The material constamt K [ K= 6 (C‘10 + Cm)] is estimated
from Lai and Holt’s experimental data. X is about 240.0 psi, CIO is taken as
40.0 psi, and C o ZerO. A comparison of our simulation with Lai and Holt’s
data shows good agreement (Figure 4.11). This also suggests that use of
neo-Hookean model can yield good results even for a viscoelastic material,
like PMMA. However, this is not surprising, because thermoforming is a very
rapid process with little time allowed for viscous dissipation. Actual forming
operation averaged 6 seconds in Lai and Holt’s (1975) experiments.

In determination of material parameters, it should be noted that tests
of small, or medium deformation are not sufficient. The following example
indicates that materials with the same value of K, but different C o1 and Cm’
could differ in large deformation with similar linear responses.

Free inflation of two thick thermoplastic sheets are simulated. Simple
supported boundary is assumed. The values of K, original radius, and thickness

for both sheets are 600 psi, 7.5 in, and 0.5 in, respectively. C o= 100 psi,
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and Cm= 0.0 for sheet A, while Cof= 80, and Cm:: 20.0 for sheet B. When
external loading is less than 15 psi, deformation responses are almost the
same, see Figure 4.12. However, the responses quickly depart from each other.
For example, at a pressure loading of 26 psi, the central displacement for
plate B of Mooney material is about 6 in, but that of plate A reaches 9 in, as
illustrated in Figure 4.13. Therefore, the determination of material
parameters should include the consideration of large deformation and nonlinear

properties of polymer must be taken into account in processing design.

4.5 Thermoforming of Multilayer Composite

Thermoforming of a two-layer sheet with different materials is the
last problem studied. Both a "stiffer” composite and a "softer” one are
studied. If a sheet is made up of a reference material with a stiffer one,
then its overall load-bearing capacity is greater than that of the reference
material. The composite is called "stiffer". If a less-stiff material is
incorporated into the composite, the overall stiffness of the composite is
less than that of the reference material, and the composite is called
“softer". Table 4.3 gives various combinations of the twc¢ .ayer sheet. Two
layers of finite elements are used to represent the two material layers.

Calculated profiles are shown in Figure 4.14. It is assumed that there is no

Table 4.3. Three material models and ithe corresponding material parameters

Case
1 2 3 Material
reference  softer stiffer 1 2 3

Top layer mater. 1 mater. 2 mater. 3 Cm(MPa) 0.552 0.414 0.759
Bottom  mater. | mater. 1 mater. 1 Cm(MPa) 0.138 0.0 0.276

Each layer’s initial radius and thickness are r= 19.1 cm, ho= 0.635 6.‘1'_}
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Figure 4.12 Different deformation responses of two plates with the same
geometry and linear Young’s modulus. (For plate A, Cm=100 psi, Cm=0.{}; for
B, C01= 80 psi, Cw=20.0)
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Figure 4.13 Different deformed profiles of the two plates at the same loading
level of 26 psi.
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sliding between the two layers. Thickness variations for various cases studied
are compared in Figures 4.15 and 4.16. It shows that for loading of 0.142 MPa
the smaliest thickness variation appears in the stiffer sheet.

The capability of the current finite element program to simulate

thermoforming of multilayer composite is a unique advantage over thin membrane

analysis.

4.6 Concluding Remarks

The finite element program developed can successfully simulate free
inflation of an axisymmetric sheet of single layer, or multilayer-composite
material. A hyperelastic constitutive model with properly determined material
constants can be used to approximate inflation of polymer sheets which are
known to be viscoelastic, primarily because thermoforming occurs in such a
short time that the material behaves as an elastic solid. A comparison of
present finite element calculations for inflation of thick, rubber, or PMMA,
sheets with experimental data of Treloar and Lai and Holt provides good
agreement. Material parameters, which influence the loading and thickness
distribution of final formed product, should be determined from large
deformation tests to have an accurate prediction. A modified Riks’ methed to
deal with the limit point is introduced for the first lime in the literature

to simulate thermoforming.
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CHAPTER 5
SIMULATION OF FORMING WITH CONTACT

5.1 Introduction

An important characteristic in most forming processes is the existence
of contact with friction. This problem has been dealt with numerically for
more than two hundred years (e.g., by de Coulomb in 1779; by Hertz in 1881).
But until the 1970s, contact problems which could be solved were limited to
simple geometries and loading, such as pressing two ellipsoidal bodies
together without friction, and indenting an elastic sphere onto a half space.
Kalker reviewed theories of contact mechanics prior to 1974. Wilson and
Parsons (1970}, Chan and Tuba (1971), and Francavilla and Zienkiewicz (1975)
used finite element methods to solve elastic contact problems. Kikuchi and
Oden (1981), Yamada et al. (1979), Endo et al. (1984), Cheng and Kikuchi
(1985), Rothert et al. (1985), Zhong (1989), and others applied the finite
element method to solve finite deformation contact problems with
elastic-plastic material laws and friction. A concise survey including both
mathematical development and practical considerations was given in a treatise
by Kikuchi and Oden (1988).

Contact condition, in the simplest way, can be expressed as no-
penetration condition. As a result, displacement in the normal direction of
contact surface is constrained by inequalities, as well as displacement and
tractions in the tangential direction. Either the Lagrange multiplier method,

or penalty method can be used in resolving constrained boundary conditions.

83
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Fimite element formulations for contact problems are usually based on
variational inequalities. In calculation, violated boundary conditions are
restored by constraining displacements in an iterative manner. At the end of each
iteration, inegualities are checked and constraint equations are  update’
accordingty.

Friction between two sliding surfaces is a complicated phenomenon.
Despite considerable work on this subject no sufficient answer on the physical
nature of friction has been yet found (Suh and Sin, 1981). Oden and Martins
(1985) provide an excellent survey of the theoretical and experimental study. The
friction law presented by Coulomb in 1781 to solve engineering problems is
still the major mathematical model used.

In thermoforming, blow molding, and compression forming, deformed
polymer materials always contact with molds, from the beginning, or during the
deformation process. In plug-assist forming, the plug makes contact with the
material and is in motion through external force. Experimental observations
reveal that in thermoforming and blow molding, polymer material usually sticks
to mold upon contact, no slip occurs. Molds, which are usually made of metals,
undergo no significant deformation as compared to deformed polymer
materials. Therefore, it is reasonable to assume that the molds are rigid bodies.

Due to the above characteristics of polymer forming, only contact
between a deformed body and a rigid body is considered, as shown in Figure
5.1. For simplicity, isothermal condition is also assumed.

Simple numerical algorithms designed to deal with frictional contact
problem in polymer forming, as well as numerical examples, are presented in

the following sections.
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5.2 Numerical Implementation of Contact Boundary
5.2.1 Contact with Infinite Friction, or without Friction

These kinds of contact are idealized problems and can be treated
easily as kinematic constraints in finite element formulation.

Suppose that the mold shape is described by a function,

“%,= T(X ,°X,) (5.1)
and the mold is above the deformed polymer sheet. Contact conditicn is that
the sheet can not penetrate the mold. The non-contact incremental finite
element process should be continued on until an incremental step where some
finite element nodes are detected over the mold I'. If the overshoot of nodes
is within a prescribed tolerance, for example, 10'4, these overshot nodes are
forcefully pulled back and will remain on the mold in the subsequent
incremental steps. On the other hand, if the overshoot is too large, the step
size is reduced and the process is repeated until the overshoot is within the
tolerance. Otherwise, the subsequent steps may not converge to the equilibrium
path due to a large change in stiffness properties of the system.

Suppose the equilibrium equation in finite element form is
f(x, p) =0

where X is the unknown displacement vector. Assume some nodes have contacted
with the mold at an instant, displacements of these nodes are x, oul of x and
are equal to the coordinates of the mold at the contacted points minus the
coordinates of these nodes in the reference state, 1i.e. X,=4, a is a known
vector upon contact. Therefore, x = {xl, xE]T, only X, is unknown in the

following steps. In both incremental loading and Newton-Raphson iteration

processes, Ax = 0, the nodal displacements corresponding to X, are, therefore,
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excluded from calculation, which reduces computing time.
In the case where frictionless slip is allowed, tangential
displacements of contacted nodes are not held at all, only normal

displacements are kept unchanged.

5.2.2 Contact with Finite Friction

In compression forming, finite slip is observed, as well as in
squeezing flow, which is used to study the rheological behavior of polymers.
Coulomb’s law is used in the finite element formulation as there is no better
physical model available to explain the friction phenomenon between material
interfaces.

In Figure 5.1, the contact area is denoted by AC in the current

configuration, and is defined by a particle which has
% = o’ °x) (5.2)
3 1’ T2
where @ is assumed to be a smooth function. The mold is defined by eq.(5.1).
Then, if (X °X,°X) is a particle on A , its displacement must satisfy
w(CX X %) = 2 (COX X 00K X)) 0K, =L, 2, 3 (5.3)
and the non-penetration condition is
(X %) + u (% X, CX °X ) < TCx °X), (5.4)
or

Fu) = CX %) + X X, @ °X ) - TX X)) <0 (5.5)

We refer to the inequality (5.5) as the kinematical contact condition for
finite displacements of a body constrained by a fixed rigid mold.

Upon contact, the body will be subjected to compressive stress RS 0.
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Another form of contact condition is

F(u) o, = 0 on Ac (5.6)

when no contact occurs, F(u} < 0 and O, = 0, while contacting, F(u) = 0, and
G, < 0. Assume that normal and tangential directions of the mold at point
(0X1,0X2,1") are n and t, then the distance of a material point (OX h"xz, ) of
the bedy to the mold is approximately equal to F N F(u) n, when the point is
very close to the mold. When the mold is horizontal, n= I, FNz F.

The rigid mold can be approximated by continuously distributed normal
compressive springs. Stiffness of these springs is very large and given by
1/e, for sufficiently small ¢ >0. If € - 0, the elastic mold becomes rigid.

The normal stress G, can thus be approximated by

_ 1 +
O - & [FN] (5.7
where [F_]" is
+ —
[FN] = max {F, 0) (5.8}
This approximation is the penalty method.

According to Coulomb’s law, friction stress along the tangential

direction t is proportional to normal stress, ie.

S -Ho (5.9)
where | is the coefficient of friction and the negative sign indicates that
friction is opposite to the relative tangential motion, or motion trend. With
different U, both sticking and slipping can be taken into account.

Decompose a virtual velocity vector dv of the body into normal and

tangential components with respect to the mold, we have

®v = dv-n and dv = Sv-t (5.10)
N T
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Then, the virtual work done by the contact forces are
W = IAC(GNSVN + 0 8v) da (5.11)
Substitute (5.7) and (5.9) into (5.11), we obtain
BW = IA —é— (IF "8v + WIF I*6v) dA (5.12)
C
By adding this contact contribution to the virtual work balance eq.(3.1.7), we
construct a finite element formulation with contact and friction.

Yet, the stiffness matrix contributed from contact can not be
evaloated from (5.12) directly with [FN]+ defined in (5.8), since function
[F N]+ is not differentiable at F, = 0.

To overcome this difficulty, we replace [FN]+ by a regularized
constraint function FS that can be made arbitrarily close to [FN]+ by choosing

the real parameter 0 > 0 sufficiently small. The F S chosen here is

{(F 1* for |[F | 20
FO=4 7 N (5.13)
Lreze e v 9 frp <o
winT TNt or | Nl <
Then an additional loading due to contact forces,
"=_1_I FO¥ (nvpe)aa (5.14)
Pom™ 7€ P " ity '

¢
should be added to the right-hand side of eq.(3.1.13). A new stiffness matrix
should also be added into the incremental stiffness matrix (3.1.20),

ap .
C _ Ci
™ 7w, (5.15)



90

5.3 Numerical Examples
5.3.1 Forming of Circular Part

Pressure forming a sheet into a shallow mold is studied first, as
shown in Figure 5.2. No slip between mold and sheet is assumed. Figure 5.3
shows the gradual change of thickness variation during the forming. We can see
that before contact, thickness at the pole becomes smallest. The pole contacis
the mold first, and its thickness does not change afterwards. As contact
develops from pole to comner, the thinner comer gradually forms. Figure 5.4
shows a three-dimensional shape of a formed part. In the case of a deep mold,
the gradually changing profiles are shown in Figure 5.5. Thinner bottom and
corner are also formed, even though the development of contact is different
from that of shallow mold, see Figure 5.6. Mooney model is used there with
C01=50 psi and (3‘10: 15 psi.

A convergence study is performed for the contact problem, see Figure
5.7. Before contact, three different relative errors reduce quadratically
duning Newton-Raphson iterations, When a node establishes contact, the
boundary conditions of the whole system change. Relative errors increase in
the first two iterations after contact. As iterations continue near
quadratical convergence is achieved again. After four more iterations, the

relative errors of |Ax| /fx|, are within the prescribed tolerance 107.

5.3.2 Other Applications

With little modification, the finite element program can simulate
forming of large rectangular parts in plane strain deformation state. We know
that if one dimension of a sheet is much larger than the other two dimensions

and pressure loading is mainly in a plane which is perpendicular to this
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Figure 5.3 Thickness variations during forming (contact starts at centre).
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dimension, then there is no strain along this dimension, and the deformation
is called plane strain. Figure 5.8 shows the original dimensions of a sheet
and the corresponding formed part, where L » W, and L » h. Along z direction,
away from boundaries (z = 0, and z = L) the deformation is approximately plane
strain. In the finite element program, it is only needed to assume that r = oo,
and 7\.33= 1+ —;—5 = 1, then the program can be used to describe plane strain
deformation. Figure 5.9 gives both a two-dimensional profile and a
three-dimensional shape of a formed rectangular part. All the other
calculations are similar to those of axisymmetrical sheet.

The current program can simulate blow molding as well, which is
mathematically the same problem as thermoforming, even though the practical
processing operations are different. Blow molding is to blow a parison into a
mold by using internal pressure. This prccessing is used to fabricate soft
drink bottles, and containers, such as automobile gas tanks. Mathematically,
the differences between thermoforming and blow molding are geometrical ones.
The initial part of the latter is a bottle-like parison, while the former is a
flat sheet. The mold used in the latter case is also bottle-like, and the mold
of thermoforming can be of any shape. Numerical siumlations of blow molding
have been conducted with elastic-viscoplastic modeling (Chung, 1989),
nonlinear elastic modeling (deLorenzi and Nied, 1991, and Kouba et al. 1993),
and with Newtonian fluid modeling (Schmidt et al. 1992).

Above simulation are conducted with isothermal process assumplion.
Recently, effects of temperature on finished product have drawn considerable
attension (deLorenzi and Nied, 1991, Poiler and Michaeli, 1992, and Menezes
and Watt, 1992). The current finite element program is extended to take into

account non-isothermal effects (Song and Meguid, 1993).
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(b) 3-D view.

Figure 5.9 The formed rectangular part.

(Note: The wrinkling at boundary, or drawing-in from clamped end, is due to the three dimensional

graphics software. The simulation is camied out with clamped end.)
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5.4 Concluding Remarks

Finite element formulations of contact with finite friction are
established. Then, simulations of polymer forming with contact are
successfully carried out. The thickness variation characteristics in practical
forming sitation are captured numerically. Small incremental steps are used
upon contact to avoid a large change in stiffness matrices and divergence. The
convergence of the contact formulation remains quadratic. More numerical

simulations are given in later chapters.



CHAPTER 6
FINITE ELEMENT SIMULATION
OF PLUG-ASSIST FORMING

6.1 Introduction

Plug-assist forming is the process of stretching a heatec
thermoplasti~  sheet into a cavity by use of a plug. This pre-streiching
process is used to promote  uniformity of wall thickness distribution,
allowing the formed part to have better structural properties, such as larger
flexural strength. Straight vacuum, or pressure forming may produce
undesirable thinner comners (Frados, 1976). Usually, plug-assist forming
proceeds until a sheet is stretched up to about 80% of cavity depth with a
plug that is up to 80% of the cavity diameter. When the plug completes its
stroke, the cavity is sealed, and either vacuum is drawn, or air pressure is
applied until the sheet fills the cavity (Throne, 1989).

Since sheet thickness variation, which is a function of processing
conditions and rheological properties of a sofiened plastic sheet, can not be
controlled during processing, several parameters, such as plug size, distance
travelled by plug, bubble size, and temperature, are determined by
trial-and-error.  Although industrial thermoforming of plastics has been
established for several decades, few theoretical and numerical investigations
have been implemented. From a point of view of practical forming, accurate
prediction of wall thickness distribution, the relation between applied force

on a plug and sheet deflection, and locations of maximum strain and stress are

101
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significant factors in process optimization.

Williams (1970) and Throne (1989, 1990) developed analytical models of
plug-assist forming with use of the thin membrane approximation and
incompressibility. Williams also conducted tests with sheets of PMMA at
forming temperature of 160 CC. Throne experimenied with natural rubber at room
temperature.

Williams’ analysis, called large strain theory by Throne, assumes
that the problem is biaxial stretching of a membrane, where the material
behaves as neo-Hookean, and higher order terms of extension ratio A% are
negligible. Simple formulas were obtained for plug-assist forming by flat and
by spherical plugs (1964, 1970), as well as formulas for vacuum forming and
shaping of a plastic sheet into a cone. These formulas are in good agreement
with Williams’ experiments with respect to deformed profiles, and moderate
agreement with respect to thickness distributions. Large deviations appear
between predicted and measured force-deflection curves. With corrections and
semi-empirical modifications, agreement is improved.

Throne (1989, 1990Q) carried out his simulations with a two-constant
Mooney model and with higher order terms of A°2. Based on experimental
observations, he assumed that plug-assist forming always resulted in plane
strain deformation. He conducted experiments with two kinds of sheets, one was
0.01 in thick, the other, 0.03 in. His numerical results of force-deflection
curves compare well with experimental data for the 0.01 in thick rubber sheet.
Generally, Throne’s analysis presents better predictions than Williams® large
strain solution.

Other simulations of plug-assist forming as reported by Menges and

Weinand (1988), and Esteghamatian et al. (1989) used the Ogden model.
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Predictions, however, are not much improved over previous results and suggest
that a reexamination of the whole modeling approach is necessary. Literature
reviews on the inflation process in thermoforming and blow molding are found
elsewhere (deLorenzi and Nied, 1991, Song et al. 1991 (a)) and the most recent
results in conference proceedings (Terada and Yamabe, 1991, and Garcia-Rejon
et al. 1991). Finite element simulation of deep-drawing of thin metal sheet, a
similar process to plug-assist forming of plastics, can be found in
Wennerstorm et al. (1984) and Massoni and Chenot (1992).

The non-linear finite eiement model for analysis of thermoforming of
plastics has been revised to describe the plug-assist forming process.
Numerical simulations agree well with experimental data for the plug-assist
forming of PMMA and of natural rubber (Song et al. 1991 (b), 1992). The
processing characteristics, such as the deformed profile, and thickness
variation, are obtained with high accuracy. A complete stress analysis is
also performed. Thus, strain and stress distributions near comers and plug
edges are determined. These are important for damage analysis and forming of
composites.

In this investigation, the plug-assist forming is simulated first,
then combined plug-assist pre-stretching and vacuum forming is studied
numerically. However, if a purely clastic model is used, the final formed part
may contract back t0 a new equilibrium configuration upon removing the
loading. The real situation is that after removing the loading, the formed
part will keep its shape, i.e. permanent deformation takss place, although
slight springback displacement may occur. This suggests that an
elastic-viscoplastic constitutive model should be used to take these effects

into account, as is the common practice in metal forming (Ghosh, 1989).
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Unfortunately, no such model is available for general polymer forming, which
incorporates  nonlinear elastic and  viscoplastic responses. Recently,
methodology for metal forming has been directly applied for polymers by using

constitutive equations and finite element program for metals (Lee et al.

1991).

6.2 Modeling of Process

Suitable for vacuum and pressure forming processes, the incremental
finite element technique to simulate thermoforming can be called "load
driving” solving process, ie., knowing external loading distribution, to find
displacement field as described in Chapter 3 and 4. In plug-assist forming
with only total force on plug known and loading distribution unknown, a
"displacement driving" procedure is needed.

Suppose the sheet is subjected to a moving kinematic constraint,
instead of distributed loading. A moving plug, within time Af, travels Aw
upward in vertical direction, then the incremental equilibrium equation
(3.1.15) is:

[Kn] [Kl2]
(K, 1 [K,,]

-0 e

22

and the kinematic constraint is

(Auw, ) =awl, L={1,1,.., 1) (6.2)

where [A u2] is the incremental vector of vertical displacements of those

nodes in contact with the plug. Then equation (6.1) can be changed into

iK(l)lj E?j] {iil} - [ EK}ZH‘AW I, (6.3)
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without constraint, where [I] is an identity matrix.
After each incremental loading step, Newton-Raphson iterations are
performed to correct the predicted displacement vector until a predetermined
tolerance is satisfied. In Newton-Raphson iteration, A u= 0, we have,

EK;; E?”{izi}={§f6;} (6.4

where U“l) is the residual vector defined in eq.(3.1.15).
After the displacement field is obtained, stress distributions can be
calculated by a proper stress calculation algorithm, as well as total force on

the plug.

6.3 Comparison of Numerical Results with Williams’ Experiments

In the finite element program, six-node isoparametric triangular
elements are used. Only one layer of finite elements is used through the sheet
thickness, since similar results have been obtained with two or more layers of
elements (Song et al. 1991 (a), 1992).

A comparative study is made between our simulation and Williams’
(1970) experiments for PMMA. The initial radius is r= 8.89 ¢m, initial
thickness is . o= 0.6985 cm and plug radius is r.= 1.905 cm. Mooney parameters
measured by Williams are C1 0=65 .0 psi (0.448 MPa) and C o= 0.0. Forty elements
are used in the simulation. Figure 6.1 shows the deformed profiles, with outer
perimeter assumed clamped. In Figure 6.1 (a), the sheet is allowed to slip
from the plug during forming, while the sheet sticks in the example shown in
Figure 6.1 (b). Plug force vs. deflection is illustrated in Figure 6.2. At
large deflection, the experimental data seem to approach the curve with

perfect slip, which suggests that inclusion of finite friction slip may
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Figure 6.1 Calculated deformed profiles of plug-assist forming.
(a) Perfect (frictionless) slip (b) No slip



167

00l

‘VININ JO Eep [eiudwindxs  swenppy qim uosriedwod vy g'9 aundig
wo ‘uonoajie(d

o_.m o_.m o_.h o_.w O_.m o_.,v o_.n O_.N o_. _‘

difs jnoyjs uone[nuls — — -
diis yjm uorje[nuiIig
sjuswirodxa ,SWeI[[I)y =

— 00§

- 0001

- 0061

— 000¢

- 00G¢

920I0] INnig

N



108

improve the overall agreement between the present simulation and Williams’
results. However, no inforriation is available on how fast the polymer slips on
surface and only two extremes are examined, i.e. no slip or perfect slip.

One advantage of our simulation is that thickness variation over the
plug can be obtained directly. Figure 6.3 shows simulations of thickness
distributions with, and without slip, which are in good agreement with
Williams’ data. Williams reported in his measurements that a reduction in
thickness on the flat top has a value of r/t0= 0.51. In our simulation with
slip, the values of t/ro on the flat top range from 0.3 to 0.7 (Figure 6.3).
It is impossible to obtain thickness distribution over the plug top with the
analyses of Williams and Throne. In the present study, thinning due to shear
near the plug edge is considered. Strain state transits from equibiaxial
extension at the pole (when there is slip) to plane strain state away from the
plug as shown in Figure 6.4 by the curves of three principal extension ratios
on the top face of the sheet. Corresponding Lagrange strains are shown in
Figure 6.5. These two figures reveal that in the immediate vicinity of the
pole, there is equibiaxial stretching, since ll(=lr) = ?L3= 1.25. Near the
edge, this is no longer true, ?\.i increases sharply, ?\.3 decreases and there
exists shear strain, which can be understood easily by looking at the deformed
elements in Figure 6.1. Away from the plug, circumferential extension ratio }“3
= ke (= r/R) is approximately equal to 1.0 (Figure 6.4), and the sheet 1s
subjected to plane strain. Material points are deflected upward from their
original positions and average deviation of 7&3 is about 6.2 % away from 1.0

outside the plug.
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6.4 Comparison of Numerical Simulations with Throne’s Test Results

Throne’s test results (1989) are also studied. For 0.01 inch (0.0254
cm) thick sheet and 0.03 inch (0.076 cm) thick sheet, plugs with radii 1.05 em
and 2.30 cm are chosen, respectively. Imtial radius is i~ 7.62 cm, and
materizl parameters obtained by Throne are used. For 0= 0.01 in sheet,
C = 17.587 psi (0.1213 MPa) and Cm= 4.825 psi (0.3327 10°' MPa); for i~
0.03 in sheet, sz 25.11 psi (0.1731 MPa) and C01= 0.581 psi (0.4006 10°*
MPa). Gradually changing sheet profiles for 0.01 in thick sheet are shown in
Figure 6.6. Views of three-dimensional formed part are shown in Figure 6.7.
For 0.03 in thick sheet, our results seem better than those of Throne (Figure
6.8). While for 0.01 in thick sheet, Throne’s C 0 and C01 are smaller than
those measured by Treloar for natural rubber (1975). Numerical simulations,
together with Throne’s show much softer force curves than experimental ones.
If Treloar’s material parameters are used, that is, C10= 20.78 psi (0.143 MPa)
and C0|= 4.825 psi (0.03327 MPa) [6(C10+ Cm) = 153.6 psi], again, numerical
simulations compare well with Throne’s test (Figure 6.9). From Figure 6.4 for
Williams® problem, it is known that the deformation is only approximately in
plane strain state in the region away from the plug and the clamped end. This
is why the present general finite element simulation is better than Throne’s
analytical solution where plane strain was assumed.

The effect of end boundary condition on the deformed profile is shown
in Figure 6.10 for Williams’ test. One boundary condition is a simple
supported end, i.e., the end is allowed to rotate. Another is a clamped end,
and no rotation is possible. Differences for various boundary conditions are
significant for the deformed profiles. But small differences are observed in

the plug force curves (Figure 6.8). It must be noted that if the thin membrane
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approximation is used, we are unable to incorporate the real clamped end
condition, ie. the rotation restriction, as no bending effect is considered
in membrane approximation.

Unlike the thin membrane approximation, where the incompressibility
condition in finite element formulation may not require consideration
(deLorenzi and Nied, 1991), thick sheet approximation must include this
condition and therefore, the computational difficulty increases. In
implementing the penalty finite element model, numerical stability can be
achieved if penalty terms in finite element matrices are evaluated by reduced
integration and the so-called Babuska-Brazzi condition is satisfied (Engelman,
et al. 1982). Otherwise, spurious oscillations may be encountered in the
solution. In the present study, for example, computation will fail to converge
at a very early stage of the stretching if no reduced integration is made.
For the problems investigated, numerical experiments show that convergence of
the approximation is improved with a seven-point Gaussian quadrature for the
regular stiffness matrix and a three-point quadrature for stiffness

contributed from the penalty terms.

6.5 Strain and Stress Analyses

Strain and stress analyses are made for Williams® problem for both
slip and no slip simulations. Stresses at a nodal point are evaluated by
averaging stresses over elements meeting at that node. One of the basic
methods for detailed modeling of stresses near “sharp” comers, which may
create large gradient and discontinuous stress patterns, is to use a refined
mesh so that peak stresses at corners can be computed (Segerlind, 1975). With

slightly refined meshes shown in Figure 6.1, simulations of Williams’ problem
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without slip have been successfully carried out 1o a plug distance of about
20 cm, and could continue without divergence, even if a "sharp” corner exists
and stresses near the corner vary dramatically. However, for Williams’ problem
with slip, simulations can not go that far before divergence occurs. Slip is
realized by releasing the restriction on the horizontal displacement of
the nodes in contact when these nodes are puiled out of the plug.

In the slip case, directions of principal Euler strains near the
pole, and away from the plug are along meridional (81)’ thickness, (ez), and
circumferential (83) directions, respectively, as shown in Figure 6.11. The
principal directions of G, G, and G, are the same as €, €, and £,
Calculated maximum stresses g, 0, and g, are at a point with an original
radius 1.905 cm (plug edge point). After deformation, this point slips out of
the piug edge. Surprisingly, maximum strain € and €, happen at a point in the
middle of the sheet, instead of at a surface point. Figure 6.11 shows maximum
strain and stress points at which the sheet may eventually fracture, or be
prone to stress cracking.

In the no slip case, strain state is very complex over the plug top
and near the plug edge. All maximum principal strains occurred at the top face
of the sheet. Maximum € and g, are at the point with the original radius‘
about 2.1 cm., which is slightly away from the plug edge. Maximum g, is at the
pole. Strain contours are plotted out in Figure 6.12. Strains and stresses are
normalized according to the rule: E= [ [e-e) .V ) - () 1 I
The 2nd principal strain 81('—*8[) is always negative, which means thinning
across the thickness direction happens everywhere on the sheet. Away from the

plug and clamped end, equal £ lines are approximately perpendicular to the

sheet faces (Figure 12 (b) ), i.e., there is little change of € 1in the
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e

thickness direction. The sheet in this range behaves as a thin membrane. This
is the reason why thin membrane simulation can yield reasonable thickness
approximation even for a relatively thick sheet (Williams, 1970).

All three maximum Cauchy stresses locate at tne same point on the top
face with an original radius 1.905 cm (edge point ) as shown in Figure 6.13.
In the deformed configuration, the distance between locations of maximum
stress(cl, 02) and maximum strain (€, &,) is less than 10% of the plug
radius. In Figure 6.13 stress contours are plotted in which stress
concentration at the plug edge is clearly shown. Principal stresses on the
bottein face of the sheet also achieve their local maximum at the edge. Figure
6.14 illustrates stress distributions on top and bottom surfaces. Fracture of
final products is likely to occur at regions of maximum stress concentration,
or at regions of maximum strain. In fact, fracture phenomena were observed in
deep drawing experiments of a cross-ply laminated oriented polypropylene by Di
Pede and Woodhams (1989), who found that the outer ply of laminated wall had a
greater strain after forming than the inner wall and the transverse direction
side wall of the outer ply tended to fail before the inner wall. In their
experiments, n6 slip between the punch and deformed sheet is mentioned.

Figure 6.15 shows the circurnferential principal strain €, in both slip
and no slip cases. Maximum strain occurs at both the center and the edge,
where strain cracking is prone to happen. Further experiments are needed for a
better understanding of stress distribution. However, the present simulation

shows clearly the regions where the sheet is likely prone to fracture.
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6.6 Combination of Plug-assist Pre-stretching and Vacuum Forming
Plug-assist pre-stretching is used to improve thickness distribution
of a formed part. In this section, for thermoforming of an industrial part,
simulation of plug-assist pre-stretching is performed first. When plug travels
to about 60 % of the mold depth, the process is switched to vacuum forming
until the sheet fills the mold, as shown in the gradually changing sheet
profiles in Figure 6.16. The same geometrical and material parameters as those
in the example of straight vacuum forming (Figures 5.5 and 5.6) are used so
that a comparison of thickness variation can be made, see Figure 6.17. It is
clear that combination of plug-assist pre-siretching and vacuum forming
changes thickness distribuiion dramatically. In this case, the plug-assist
pre-stretching thermoforming yields much thicker bottom. By choosing plug size
and plug distance, thickness distribution can be controlled to achieve
optimization. Non-isothermal heating can also be used as a control means to

change thickness distribution, which is detailed in Song and Meguid (1993).

6.7 Concluding Remarks

Thick sheet finite element analysis can simulate the plug-assist
forming of thermoplastic and rubber sheets and accurately predict thickness
variations. Sheet thickness variations and plug force versus deflection show
good agreement with experimental data available in the literature. Combination
of plug-assist pre-stretching and vacuum forming changes thickness
distribution and can be used to optimize process design. The present analysis
can also provide complete stress and strain distributions and locate critical

regions where fracture phenomena are likely to be initiated.
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CHAPTER 7
SIMULATION OF COMPRESSION FORMING

7.1 Introduction

Compression forming involves compression of materials. The behavior of
material during the process is of concern. The material can be metal, polymer
solid or meit. The usual compression ratioc of deformed thickness to the
original is about 1% to 40 %. Polymer compression forming is a special polymer
processing operation, in which a polymer block, either in glassy-state or melt
state, is squeezed into some final product. The compression ratio can be as
high as 99%. Compression of polymer melts is also called squeezing flow.
Product fabricated in compression forming has good molecular orientation and
strength properties. Compression forming is used for thermosetting compounds
such as urea, phenolic, epoxy, metamines, and rubber, for sheet molding
compounds, bulk molding compounds, thermoplastic sheet stamping, and
compounding reinforcements (Whiteside, 1990).

Three different analysis methods are used to handle compression and
compression forming of polymeric materials.
1. Analytical methods

In studying compression of bonded rubber cylinder, Lindley (1970)
obtained a closed-form relation between compressive force and deflection,
which was used in design and fabrication of elastomeric products. The solution

is purely nonlinear elastic. Thornton and Dillard (1988) used a linear elastic
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model to study the frictional force for elastomeric disk in compression and
produced an implicitly closed-form solution.

In analysis of squeezing flow, closed-form solutions of applied force,
pressure distribution, and velocities can be obtained if lubrication
approximation is used with Newtonian flow, or power-law viscometric flow, or
simple viscoelastic flow models (Leider and Bird, 1974, and Leider, 1974). It
is assumed that only shear deformation is considered and instantaneously the
flow can be described as steady-state flow between two parallel plates. These
analytical solutions help to understand the individual effect encountered in
this flow, such as shearing, stretching, elasticity, stress overshooting, and
inertial effects. They also serve as basis of various rheometers to measure
flow-properties of polymers. Yet, Isayev and Azari (1986) obtained closed-form
solutions, or analytical solutions with simple numerical technique, by using
shear-free squeezing flow. Closed-form solutions are preferred by design and
processing engineers for their simplicity. Of course, the closed-form
solutions are not applicable when complex, irregularly-shaped components are
designed, or more complicated viscoelastic models are incorporated. Therefore,
the analysis is carried out by employing the finite element method more
frequently at the present time.

Rogers established a simple continuum model to describe the viscous
squeezing flow of highly anisotropic material such as fibre-reinforced resins
(1989). Simple relationship between the compressive force and deflection
obtained for fibre-reinforced Newtonian fluid are similar to Scott’s equation
(1931, 1932), also see Leider and Bird (1974). Recently, Vancso et al. (1990),
and Bruce et al. (1992) carried out experiments io investigate the development

of molecular orientation (anisotropic structure) during compression of
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cylindrical polypropylene (PP) disks, There has been much less work done on
compression forming of reinforced polymers.
2. Application of metal forming finite element analysis

Many nonlinear finite element analysis commercial packages are
available on the market, such as ADINA (ADINA, 1988), ABAQUS (ABAQUS, 1984),
which can be used in metal compression forming (upsetting) simulation with
Prandtl-Reuss plasticity theory (or von-Mises yield with its associated flow
rule) and some hardening rules (Shih and Yang, 1991). Simulations are quite
successful with a compression ratio which is not high. Anisotropy is also
considered in numerical analysis (Bay and Chenot, 1990). This methodology can
be applied to analyze polymer compression forming (Lee et al. 1991) by
introducing pseudo viscoplastic, or elastic-viscoplastic models of polymer,
which are similar to that of metal. However, the deformation mechanisms of
metal and polymer are quite different. In polymer forming, elastic response
may not be linear and it may be difficult 1o identify where the yielding
begins. For polymers, yield phenomenon is usually a gradual transition from an
elastic to an inelastic behavior (see Figure 2.1).
3. Viscoelasticity based finite element analysis

Morman and Pan (1987) analyzed compression of elastomers by following
the methodology of polymer rheology with ABAQUS program. They developed a
correspondence principle for a class of incompressible isotropic, nonlinear
viscoelastic rubber-like materials that exhibit time and strain separability
effects under stress relaxation. For a given boundary-value problem, a
nonlinear elastic response was obtained first by the finite element
simulation. Time-dependent viscoelastic effects were introduced a posteriori

by performing a temporal integral transformation. Viscoelastic effect can be
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predicted in a much easier way than by direct use of K-BKZ model, which is
time-consuming. In Morman and Pan’s analysis, a bonded cylinder of rubber is
compressed to a ratio of 0.35. The force vs. compression ratio curve was
obtained by finite element analysis and compared with a closed-form solution.
The normal siress distribution at the bonding interfaces was predicted along
with its relaxation. In compression forming of thermoplastics, however, a much
larger compression ratio, such as 0.01, is expected and some area of
cylindrical surface will establish contact with the end punch.

Compression with large compression ratio was studied using finite
element analysis by Mavridis et al. (1992). A simple power-law viscometric
model was used in their simulations, which focused on deformation pattern. The
predicted material particle trace was found to be similar to that of fountain
flow in injection molding (Mavridis, 1988). No stress analysis results were
reported.

General theoretical and numerical analysis on compression forming of
polymers with large compression ratios and a more realistic constitutive
equations are still needed.

As shown in Figure 7.1, deformation in compression is nonhomogeneous.
Both shear and extension exist and kinematics are not known a priori. The
prediction of the deformation pattern in compression forming is the major
concern in this work. Comparisons of numerical simulations with analytical

solutions and experiments are carried out.

7.2 Modeling of Process
A "displacement drive" solving process similar to plug-assist forming

is employed in finite element simulations of a cylindrical block compression.
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Due 1o symmetry, only a quarter of the problem domain (the shadowed area in
Figure 7.1) is discretized. When the upper plate moves down, the outer surface
of the cylinder swings up and gradually establishes contact with the plate. A
contact check routine is used to guarantee satisfaction of changing boundary
conditions, which was outlined in Chapter 5.

Finite element simulations are carried out based on general large
deformation analysis and hyperelasticity for fast compression process, where
there is little time for viscous dissipation. The finiie element results are
compared to analytical solutions for compression without friction at the end
interfaces and for stick interfaces with excellent agreements. Practical
compression forming is then anal*:ed. Compression force characteristics,

deformaticn pattern, stress distribution at the end interface are obtained.

7.3 Numerical Results
7.3.1 Comparison of Finite Element Results with Analytical

Solution (Compression without Friction)

An ideal compression without friction between mold and deformed
circular cylinder is considered first. The material is assumed to be Mooney
hyperelastic. This deformation is a homogeneous process and is equivalent to
equibiaxial extension. The geometry is shown in Figure 7.1.

Let us assume that

_ I _ rl .z _ h
e R A ol (7.1)
then
g g
Ag= 5%{3 =} (7.2)

. . .. n ) ;
From the incompressible condition L= Ai lé lz 1, we obtain
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A= 1= 2}"r + —» and Iz" 2 * }“r (7.3)
z A }u
r T
and
2 1
Oyr~ Cpg = 2 Coxlr -2 CIO 32 - P
] _ ! r (7.4)
O~ = Col;"z toE CIO? P

where Cm and C 1o e Moocney constanis, p, hydrostatic-pressure as described
in Chapter 2.

Since deformation is homogeneous and no traction is applied at the
surface of r = r, then pressure p can be determined from the boundary
condition C = 0atr= ro

_ 2, 1
P = 2 CDIKI' -2 CIO_? (75)
T

and the total compressive force F is given by

%) (7.6)

— 1y _ 1 a4 1
F—-Jcrzsz-2nRO(?ur——)—2)(Cm+C]GI

]

r
Using the expressions above the 2nd Piola-Kirchhoff stress $° can be obtained
as

7z _ 2 6 2
§% = GZJ ?Lz =-2 (7&1_ -1 )(C01+ Cm}“r) 7.7

which, 1n twm, can be used to check the correctness of stress calculation
from finite element simulations.

The finite element simulation is carried out with eight elements. The
related parameters are shown in Table 7.1 A comparison of finite element
results and the analytical solution in Eq.(7.6) shows excellent agreement, as
shown in Figure 7.2. A simple check of incompressibility is also made. When &

= (0.3288 cm. r= 2.569 cm, the relative error of volume conservation is
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V -V nR*H - mrh
0 W] 1

V =

_ = 3.6 x10°.
0 nR H

[t indicates that volume is well preserved as constant.
It should be noted that by ignoring p, the correct stresses may not be
obtained [see, eq.s (7.4) and (7.5)). For Cauchy stresses, O O, eliminates

pressure p, while for the Poila-Kirchhoff stresses,

ST. 5% =2 cw(xi ; ;k;‘) +p (?Q_ - xj) (7.8)

stress difference depends on the hydrostatic-pressure p, In the thin membrane
simulation, the incompressibility condition should be included in the finite
element formulation, by either Lagrange multiplier or penalty method, then the
value of p corresponding to a specific boundary-value problem could be

evaluated, and therefore, complete information on stresses could be obtained.

7.3.2 Comparison of Finite Element Results with Closed-form

Solution (Compression with Stick Condition)

Lindley (1970) developed a closed-form equation for no slip allowed
between the interface of mold and cylinder. In terms of current nomenclature,
Lindley’s equation is

) kR 1
F=6mRYC,+ C (1 + SHZM ; ?f)(z .

r

1

) (1.9)

where & is a numerical factor depending on material hardness, (R 0/21-1). Here &
is simply chosen to be 1.0. sz 1.0 MPa, and C‘10 = 0.1 MPa. Ro and H are
listed in Table 7.1.

Sixty four elements and forty five incremental steps are used to
simulate this problem. The cylinder is compressed to a total deflection

6 = 2(H-h) = 1.3 before contact occurs. A comparison with Lindley’s analytical
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Table 7.1 Material and geometric parameters used in compression simulation

Cm(MPa) ClO(MPa) Ro(cm) H (cm) h (cm) rl(cm)
0.10 0.00 1.32 1.25 03288 2.569

results is shown in Figure 7.3. Both closed-form solution and finite element
results are in good agreement up to & = 0.4. Thereafier, the two results
diverge rapidly with increasing deflection. This observation is similar 1o
Morman and Pan’s (1987) result. Lindley’s results were based on neo-Hookean
material model (C'm: 0) and higher order terms of strain hardening were
neglected, which is the reason the current simulziion with Mooney model
becomes stiffer than Lindley’s at large deflection. The different
force-deflection responses for neo-Hookean and Mooney materials were also
observed in Figure 4.12 for large inflation of plastic sheet. In Figure 7.3,
the force curve of finite element simulation without friction is also given,
which is lower than that with friction. From an energy point of view, when
friction is present, extra external energy is consumed to overcome shear
resistance at the interface.

Another interesting comparison is made between current finite element
results and Tanner’s analytical solution of squeezing flow for viscoelastic
fluid. Tanner (1965, also see Leider and Bird, 1974) used an upper convected
Maxwell (UCM) viscoelastic model (see Chapter 2) with a power-law shear
viscosity to determine the effect of elasticity of polymer fluid. From
Tanner’s results we obtain a relationship when h = H/2

. TR*m un » R <i+i/n
e (TR o
n Fln h

where . is the hali-time at which A = H/2, %, the relaxation time in UCM,
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1<0

o . . . - J11
n, m, the power-law index of viscosity N = m }} , and a constant, and

c - plelin_ o+ 1 1 n
n- n n+ 1 n+ 3

When rw/n?n is very small, the calculated compressive force F is related to

initial elastic response. If a constant viscosity is assumed, ie. n = |, 11 =

m, then the Young's modulus £ = n/A = 6(C0i + Cm). From (7.10) (and the

condition rm = 0), we have

= —%3 rtR; E (RO/H)2 (7.11)

This is the force at £ = H/2. Since linear elastic response is assumed in UCM,
it follows that a linear relation of initial elastic response is also valid
for other compression ratios. This result is also plotted in Figure 7.3.
Compared with Lindley’s solution and finite element results, we observe that
the latter two are much stiffer than Tanner’s. This is because nonlinear

elastic response is involved in the latter two cases.

7.3.3 Compression Forming with Contact

A finite element grid with sixty-four elements is used in simulation
of compression forming with contact and is shown in Figure 7.4. Material and
geometric constants are those used for the example in Section 7.3.2 and
presented in Table 7.1. The plot of compressive force vs. exiension ratio
appears in Figure 7.5. Since the total Lagrangian description is adopted in
current finite element simulation, finite element grid lines represent
material lines. Figure 7.6 shows gradual compression processing. It also shows
that on the vertical lines, material points near the cenire move much further
than those near the upper plate, while the horizontal lines swing up. A

fountain-like pattern of material lines is clearly observed. If the nodes on
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Figure 7.6 Deformed grids during forming process.
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vertical and horizontal lines (Figure 7.4) are marked and their motions
followed, then the deformation pattems of compression can be clearly
observed, as shown in Figures 7.7 and 7.8. Deformation patterns are similar to
flow patterns observed and predicted by Mavridis et al. {1992) with power-law
viscous fluid simulation, as shown in Figures 7.7 and 7.8. Quter surface
development, or the contact line is obtained naturally with Lagrangian
description and is shown in Figure 7.9. In Eulerian formulation (Mavridis et
al.), part of the contact line is a free surface, which has to be considered
as an extra unknown. Special care is needed.

Similar to the stress analysis in Chapter 6, stresses can be obtained.
For each element contacting with the mold, the average of siresses at the
Gaussian quadrature points is obtained as averaged stress for the element.
This method of calculation is more accurate than the conventional one used in
Chapter 6. In compression, the normal compressive stress distributions on the
interface with the upper plate are shown in Figure 7.10 at different
compression ratios, which are important to understand the compression process.

Current predictions are similar to those made with ABAQUS by Morman and Pan

(1987).

7.3.4 Compression Forming without Contact

In laboratory study, the compression forming is sometimes performed
without contact so that the outer surface of the cylinder can freely inflate,
as performed in our laboratory (Zhang, 1992). This process is also used 10
measure extensional viscosity, as did Chatraei et al. (1981). Figure 7.11 (a)
illustrates a photo of a deformed part obtained by Chatraei et al. A finite

element simulation of the present study is shown in Figure 7.11 (b). Due to
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lack of experimental data, only a qualitalive comparison of deformarion

pattern is made. The comparison shown in Figure 7.11 indicates good agreement.

7.4 Compression Forming of Reinforced Composite

The finite element program can deal with compression forming of a
sandwich composite without difficulty, which Iis illustrated through the
example shown in Figures 7.12 (a) and 7.12 (b), where a strip of much stiffer
material (Cm:l0-0 MPa, Cl 0=1‘0) 1s sandwiched between a softer material
(Cm:l.O MPa, C =0.1). No slip is allowed between the different material
layers. Figure 7.12 shows that deformation of the stiffer strip is basically
exlension. It is smaller than the remaining part and a waist is formed. In
Figure 7.13, force curves are given for a homogeneous material with, and
without contact, and for the sandwich composite. Clearly, the compression
process for composite is much stiffer than the homogeneous material. For the
homogeneous material, the force characteristics with, and without contact

(with the mold) approach the same curve at large d2flection.

7.6 Concluding Remarks

Simulations of compression compare well with available analytical
solutions. Deformation characteristics of compression forming can be predicted
qualitatively well, compared to exparimental observations and predictions by
others. The current general finite element program can also predict stress
distributions at interfaces between the deformed body and mold, and it can be

useful to designers in optimizing their designs of forming processes.
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Figure 7.12 Compression of a sandwich composite block.
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CHAPTER 38
CONCLUSIONS AND RECOMMENDATIONS

8.1  Conclusions
Finite element simulations of polymer processing operations have shown

great potential to help the indusiry to achieve processing and product design
optimization, teduction of the cycle from design to manufacture, and
fabrication of high performance products with less material waste, although such
simulations emerged only in the middle of 1980’s. This thesis reports on a
comprehensive investigation on a variety of polymer forming processes using
large deformation finite element analysis. The following main areas are
covered:

Theoretical study of the mechanical behavior of polymer solids under the
situation of large deformation;

Establishment of large deformation finite element formulation and
corresponding solution techniques;

Comprehensive numerical simulations of thermoforming and comparisons with
experiments;

Development of algorithms for the simulation of practical forming processes
with contact boundary;

Detailed analysis of practical plug-assist forming employing a different finite

element algerithm;

153
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Simulations of compression forming.

Polymer forming processes involve nonlinear material behavior of
polymers under large deformations. It is found that for thermoplastics in
thermoforming there exists a strain energy function, which determines the
relationship between strain and stress. Such material is called hyperelastic.
Assuming hyperelasticity for thermoplastics in thermoforming is reasonable
even for some thermoplastics known as viscoelastic naterials, because the
forming process is rapid and there is no time for viscous dissipation.

When a material undergoes large deformation, a proper description of
motion must be chosen. In this thesis, the total Lagrangian description method is
selected due to the ease of tracing material motion. Large deformation
characteristics of forming are provided, such as different strain and stress
measures. .

Simple, efficient large deformation formulations are established. The
nonlinearities involved in the forming processes are incorporated, such as large
deformation, large strain, moving boundary, contact and material
nonlinearities. The incompressibility condition is accurately incorporated by
employing the penalty method. The deformation-dependent loading and stiffness
are detailed, which requires an unsymmetrical solution technique, which is
chosen as unsymmetrical frontal solver in this work.

A modified Riks’ method to deal with the limit point is introduced for the
first time in the literature to simulate thermoforming. Limit point in
thermoforming is a2 numerical instable point in regular incremental loading plus
Newton-Raphson iteration processes, rather than a physical unstable point.

The implementation of the algorithm yields good results compared to the
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benchmark tests of Treloar (1944). Such comparison has not been reported
before.

The nonlinear finite element models developed are capable of dealing with
thermoforming of single layer or multilayer composite sheets of finite thickness.
A comparison of finite element simulations for inflation of thick, rubber, or
PMMA, sheets with experimental data of Treloar, and Lai and Holt (1975)
provides good agreement. The application of the hyperelastic constitutive
model with proper choice of material constants provides good simulation of
practical forming process. Inflation of multilayer composite is also successfully
calculated, as is one of the umique features of current modeling. Effects of
material parameters on the formed product are discussed, which reveals that
nonlinear material properties of polymer must be taken into account in processing
design.

Finite element formulatons of various contact problems, including
frictional contact, are presented. Forming of circular cup and rectangular part
are calculated. Small incremental steps are selected to guarantee convergence
upon contact.

A slightly different finite element analysis is established for
plug-assist forming. Comprehensive comparisons with experimental data of
various plug-assist forming processes show again good agreement. Major
concerns related to plug-assist forming are studied, such as loading wvs.
deflection curve, thickness variation, and the effects of material parameter and
boundary conditions on the formed part. Detailed strain and stress
distributions near the edge and comer of a formed part are obtained which are

useful to evaluate the structural properties of the formed product. Comparison of
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different processing operations shows that thinner base is predicted in straight
vacuum forming, while combined vacuum and plug-assist forming affects
thickness distribution dramatically and provides a thicker base. By choosing
plug size and plug travelling distance, thickness distribution can be
optimized.

The finite element modeling is extended to the simulations of
compression forming. Comparison with analytical solutions are conducted.
Fountain-like deformation patterns are predicted, which compare qualitatively
well with experimental observations and predictions by others. The motion of
the free surface is obtained without extra effort in Lagrangian modeling, in
contrast to Eulerian fluid mechanics modeling. Stress distribution at interface
between deformed body and mold are also obtained.

In this thesis, better understanding of the studied polymer forming
processes has been achieved through numerical simulations of the processes.
Nonlinear finite element programs are successfully developed and used to
predict the practical forming operations. Comparative studies of numerical
simulations with experimental results indicate that current analyses capture the
funidamental mechanical behavior of polymers in forming and processing

characteristics in corresponding forming processes.

8.2 Recommendations

In this thesis, several practical polymer forming problems are
successfully simulated with the large deformation finite eclement analyses
developed. To further research in simulation of polymer forming by current

methodology, the following recommendations are made:
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1. To incorporate more realistic constitutive models in finite element
formulation. Viscoelastic model, or elastic-viscoplastic model, can handle
broader problems in industrial forming operations. For example, wrinkling may
happen after removing formed part from mold. While in compression forming, the
deformed body retains its deformed shape and sprinz-back deformation is
observed. Elastic-viscoplastic model with yielding should be used to study
permanent deformation. When stress relaxation phenomena are studied,
viscoelastic model is a better choice. With these material models, similar metal
forming operations can be simulated with the finite element analysis.

Material behavior in polymer forming needs to be investigated
experimentally, especially in thermoforming, and compression forming, so that
better constitutive models and simulations can be obtained. So far, few
material data, or good models are available.

Fibre-reinforced plastic composites have drawn more and more
engineering applications for their high strength and stiffness. Their
deformation behavior in forming should be studied and corresponding material
models should be incorporated in finite element analysis.

2. A mixed Lagrangian-Eulerian method is recommended for simulation of
compression forming with large compression ratio, as well as an adaptive
meshing technique.

3. Non-isothermal condition is common in practical polymer forming.
Sometimes, non-uniform heating is intentionally placed in thermoforming to
control polymer deformation. At first, the thermal effects concerned can be
temperature-dependent material parameters (Song and Meguid, 1993). Then heat

transfer, even solidification processes after forming can be considered.
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4, Buckling (forming of irregular shaped parts) are often encountered in
industrial thermoforming, blow molding, and compression forming. Prediction
and elimination of such behavior can have beneficial impact on the industry. The
Riks” method is proved to be capable of handiing bifurcation (Ramm, 1981).

Theoretically, nonlinear hyperelastic  rubber material  exhibits
path-dependent behavior, and possesses multiple solutions in the range of
nonlinear elasticity (Ogden, 1934). It is an open question that whether the
non-uniqueness of solution for the rubber-like plastics plays any role in

thermoforming if either loading, or process parameters experience small

perturbation.
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