OXYFLUORO COMPOUNDS OF BROMINE **

o'

OXYFLUORO COMPOUNDS OF BROMINE

þγ

PAUL HENRY SPEKKENS (B.Sc.)

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

August 1977

PAUL HENRY SPEKKENS

1978

Ň

DOCTOR OF PHILOSOPHY (1977) Department of Chemistry -

MCMASTER UNIVERSITY Hamilton, Ontario

TITLE: Oxyfluoro Compounds of Bromine AUTHOR: PAUL HENRY SPEKKENS, B.Sc, (University of Ottawa) SUPERVISOR: Professor R. J. Gjilespie

, ,

NUMBER OF PAGES: xiii, 218

ABSTRACT

A number of new oxyfluoro compounds of Br (V) have been prepared . and isolated; their structures and some of their reactions have been investigated by ¹⁹F nmr and Raman spectroscopy. The previously reported oxyfluoride BrO_2F has been characterized for the first time, and the preparation and characterization of the previously unknown $BrOF_3$ is described. Reaction of these oxyfluorides with the Lewis acids BF_3 and AsF_5 has been shown to produce the new cations BrO_2^+ and $BrOF_2^+$. The anions $BrO_2F_2^-$ and $BrOF_4^-$ have also been prepared for the first time by several methods. These new cations and anions have been characterized by Raman and ¹⁹F nmr spectroscopy. Similar results have been simultaneously reported by other groups, working independently.

Two selenium (IV) anions $\text{SeO}_2 F$ and $\text{SeO}_2 F_2^{2-}$, which are isoelectronic with $\text{BrO}_2 F$ and $\text{BrO}_2 F_2^{-}$, respectively, have been investigated. The Raman spectrum of the $\text{SeO}_2 F$ anion has been reassigned and evidence for the formation of the $\text{SeO}_2 F_2^{-}$ anion is presented for the first time.

The ¹⁹F nmr spectrum of the bromine (VII) oxyfluoride BrO_3F has been recorded and interpreted. The Raman spectra of solid and liquid BrO_3F have been obtained and used to support the previously reported assignments of the fundamental bending modes of this molecule. A number of reactions involving the bromine (VII) species BrF_6^+ , BrO_4^- and BrO_3F are described. These reactions were carried out in an unsuccessful attempt to prepare the unknown oxyfluorides BrO_2F_3 and $BrOF_5$.

iii

ACKNOWLEDGEMENTS

The author wishes to thank his research director, Professor R. J. Gillespie, for suggesting an interesting topic and for providing guidance and encouragement of this work.

Thanks are also due to Drs. J. P. Krasznai and G. J. Schrobilgen whose encouragement and experimental assistance were invaluable.

The author wishes to thank the technical staff of McMaster University for their maintenance of the Raman and N.M.R. facilities. Much appreciation is also extended to Mrs. Edith Denham who typed this thesis and to Dr. R. Burns who proof-read the manuscript.

Financial assistance from the Research Council of Canada, which provided a scholarship from 1972-1977 is gratefully acknowledged.

Finally, the author wishes to thank Fran, his wife, for her patience, understanding and support.

iv

TABLE OF CONTENTS-

			Page	
CHAF	PTER I	• • • •		
	INTRODU	JCTION	1	
÷	Α.	General	١	
	Β.	Bromine Fluorides	·]	
	C .	Bromine [:] Oxides	3	
· ·	D.	Halogen Oxyfluorides: Their Existence, Amphoteric Behaviour and Structures	6	•
	E.	• The Unusual Nature of Br (VII) Compounds	_11	Ł
	F.	Purpose of the Present Work	14	• `
•	• ₹	· · ·		

CHAPTER II

EXPERIMENTAL	15	
A. Vacuum Techniques and Sample Handling	15	
B. Instrumentation	171	
() (i) Laser Raman Spectroscopy	, 17	
(ii) Nuclear Magnetic Resonance Spectrocopy	19	٠
C. Preparation and Purification of Starting Materials	20	
(i) Gases	20	
) (a) Fluorine	20	
(b) Inert Atmospheres	20	
(ii) Solvents	21	
(a) HF	21	
(b) SO_2CIF and SO_2F_2	.21	
(c) Acetonitrile	21	

v

⁻Page

L

(iii) Lewis Acids	21
(iv) Other Reagents	22
(a) Metal Fluorides	22
(b) BrF ₅ and IF ₅	22
(c) KBrO3 and KBrO4	22
(d) SeO_2 and SO_2	23
(e) Iodine Oxides and Oxyfluoro Species	23
(f) [·] KrF ₂	23
(g) KBrF ₆	23
(h) CsSO ₂ F	24
(i) KrF ⁺ AsF ₆ ⁻ and BrF ₆ ⁺ AsF ₆ ⁻	24

CHAPTER III

5

.

e

0

PREPARA	TION AND CHARACTERIZATION OF KBrO2F2 AND KBrOF4	25
Α.	Introduction	25
В.	Preparation and Properties of $KBr0_2F_2$ and $KBr0F_4$	25
С.	Characterization of KBrO ₂ F ₂ and KBrOF ₄ by Raman	
	Spectroscopy	28
D.	¹⁹ F N.M.R. Spectrum of KBrOF ₄	41
E.	The Reaction of KBrO3 and BrF5	42
F.	Experimental Section	47
	(i) Preparation of KBrOF _A and KBrO ₂ F ₂ by the	
	Reaction of KBr03 and KBrF6	47
	(ii) Hydrolysis of KBrF ₆	48
	(iii) Reactions of KBrOF ₄ and KBrO ₃ , and KBrF ₆ and	
	KBr0 ₂ F ₂	48
	(iv) Reaction of KBr03 with BrF5	49

, vi

CHAPTER IV THE PREPARATION AND THE CHEMICAL AND SPECTROSCOPIC PROPERTIES OF Brog F AND Brof 50 50 Α. Introduction Preparation and Properties of Br0₂F 51 Β. Characterization of BrO_2F by Raman and ^{19}F N.M.R. с. Spectroscopy 53 53 Raman Spectroscopy (i)¹⁹F N.M.R. Spectroscopy (ii)59 The Reaction of $\mathrm{BrO}_{2}\mathrm{F}$ with KF 60 D. 60 Ε. Preparation and Properties of BrOF, Characterization of $BrOF_3$ by Raman and 19 f N.M.R. F. 63 Spectroscopy б Raman Spectroscopy 63 -__(i) ¹⁹F N.M.R. Spectroscopy 71 (ii)72 Reaction of BrF_5 with H_20 and Iodine Oxyfluoro Species G. 72 Hydrolysis of BrF₅ (i) Reaction of BrF₅ with Iodine Oxides and (ii) **Oxyfluorides** 73. (iii) Reaction of BrF_5 with $I0_2S0_3F$ 76 Reaction of BrO_2F with KrF_2 77 Η. 78 Ι. Experimental Section 78 Preparation of Br0₂F (i)Decomposition of BrO₂F in HF 78 (ii) (iii) Preparation of Br0₂F Samples for Raman and ¹⁹F N.M.R. Spectroscopy 79 (iv) Reaction of Br0₂F with KF 79

1

۲

(v) ·	Preparation	and Properties of BrOF ₃	79
(vi)	Reaction of	BrOF ₃ and KHF ₂	81
(vii)	Preparation	of N.M.R. and Raman Samples of	
	BrOF ₃	-	81
(viii)) Hydrolysis	of BrF ₅	82
(ix)	Reaction of	I(V) Oxides and Oxyfluorides with	
	BrF ₅	·	83`
	(a) IO ₂ F		83
	(b) 1205	•	84
	(c) IOF_3	•	84
(x)	Reaction of	$10_{2}F_{3}$ and BrF_{5} ~	84
(xi)	Reaction of	$10_2 SO_3 F$ and BrF_5	85
(xii)	Reaction of	$BrO_{2}F$ and KrF_{2}	85
		E E	

CHAPTER V

.

۵.

PR	EPARA	TION AND CHARACTERIZATION OF THE CATIONS Bro2 ⁺	•
AN	D Bro	F ₂	86
٠	À.	Introduction	8 6
	Β.	Preparation and Properties of the BrO2 ⁺ Salts.	87
	с.	Characterization of $BrO_2^+BF_4^-$ and $BrO_2^+AsF_6^-$ by Raman	
		and ¹⁹ F N.M.R. Spectroscopy	88.
•		(i) Raman Spectroscopy	88
		(ií) ¹⁹ F N.M.R. Spectroscopy	100
		(iii) Discussion	103
	D.	Preparation and Properties of the $Br0F_2^+$	
		Salts	104
	E.	Characterization of the $BrOF_2^+$ Salts by Raman and	
		¹⁹ F N.M.R. Spectroscopy	107

∿. viii

		•	
	(i)	Raman Spectroscopy	107
	(ti)	¹⁹ F N.M.R. Spectroscopy	124
	Experim	ental Section	128
	(i)	Preparation of Br0 ₂ ⁺ Salts	128
		(a) $BrO_2^+AsF_6^-$	128
		$(b) Bro_2^{+}BF_4^{-}$	129
	(ii)	Preparation of BrOF ₂ ⁺ Salts	130
•		(a) $BrOF_2^+AsF_6^-$. 130
		(b) $BrOF_2^{\dagger}BF_4^{\dagger}$	• 131
		(c) $BrOF_2^+SbF_6^-$	132
		(d) Reaction of $IOF_2^+SbF_6^-$ with BrF_5^-	133
		1 V ./	

CHAPTER VI

ŝ

F

A REIN	VESTIGATION OF THE VIBRATIONAL SPECTRUM OF SeO2F AND	
THE PRE	EPARATION AND RAMAN SPECTRUM OF SeO2F2-	-134
Α.	Introduction	134
Β.	Vibrational Spectrum of the SeO ₂ F ⁻ Ion	135
Ċ.	Purity of the KSeO ₂ F Samples	141
D.	Preparation and Raman Spectrum of $K_2 SeO_2 F_2$	143
E.	Attempted Preparation of the $SO_2F_2^{2-}$ Ion	146
F.	Experimental Section	147
	(i) KSeO ₂ F	147
	(ii) $K_2 \text{SeO}_2 F_2$	148
	(111) Attempted Preparation of $SO_2F_2^{2}$	149

φ.

1-1

CHARAC	TERIZATION OF BrO3F BY ¹⁹ F N.M.R. SPECTROSCOPY, AND SOME	_
ATTEMP	TED PREPARATIONS OF Br (VII) OXYFLUORO SPECIES	150
Α.	Introduction .	150
Β.	Raman and ¹⁹ F N.M.R. Spectra of BrO ₃ F	152 _.
	(i) Raman Spectroscopy	152
	(ii) ¹⁹ F N.M.R. Spectroscopy	157
	(iii) Reaction of BrO_3F with SbF_5 and AsF_5	162
С.	Reactions Involving KBrO ₄	• 164
	(i) Solution in Hydrofluoric Acid	164
	(ii) - Reactions with some Fluorinating Agents	166
•	(a) AsF_c	166 `
	(b) BrF_{c}	168
	(c) KrF_2	170
D.	Reactions Involving BrF, AsF,	174
	(i) Hydrolysis	174
	(ii) KBrO,	176
	(iii) BrO ₃ F	179
Έ.	Miscellaneous Reactions	180
	(i) Attempted Preparation of BrOF,	180
	(ii) Reaction of $Br0_2F$ and KrF^+	181
F.	Discussion	182
G.	Experimental Section	184
	(i) BrO ₂ F	184
	(ii) Reactions of KBrO	185 .
	(a) KBrO _A and AsF ₅ \cdot	185
	(b) KBrO ₄ and BrF ₅ .	186

0

4230

٢

.

x

*- ,	(c) KBrO ₄ and KrF ₂		187
(iii)	Reactions of $BrP_6^{+}AsF_6^{-}$		187
•	(a) Hydrolysts		187
	(b) $BrF_6^{\dagger}AsF_6^{\dagger}$ and $KBrO_4$		188
۰ <i>د</i>	(c) $BrF_6^+AsF_6^-$ and $Br0_3F$		188
'(iv)	Reactions of BrO_3F with KrF_2 and $KrF^+AsF_6^-$		189
(v)	BrF_5 , F_2 and O_2 at High Temperature and		
	Pressure	٠	190
	· · · · ·		

CHAPTER VIII

CONCLU	SIONS	191
Α.	Introduction ,	191
Β.	Comparison of the Oxyfluorides of Bromine with those of Chlorine and Iodine 🔦	191
G.	Future Directions for Research · (i) Br (V) (ii) Br (VII) · ·	195 195 195
D.	The Relation of Reactivity to Geometry in Oxyfluoro Compounds	198
Έ.	Known and Unknown Oxyfluoro Compounds of the Halogens	204

REFERENCES

1.

,

208

Page

xi

LIST OF TABLES

<u>Table</u>		Page
1.1 Ox	syfluoro Species of Cl (V), Br (V) and I (V)	8
1.2 'St	cructures of the Oxyfluoro Compounds of Cl (V)	10
3.1 Ra	man Frequencies of $BrO_2F_2^-$ and Some Related Molecules	30
3.2 Ra	man Frequencies of BrOF ₄ and Some Related Molecules	36
4.1 Ra	man Spectra of BrO ₂ F, C1O ₂ F and SeO ₂ F	56
4.2 Ra	uman Spectra of BrOF ₃	67
5.1 Ra	man Frequencies of Br0 ⁺ Salts and Some Related Molecules	92
5.2 Co	mparison of BrO2 ⁺ Stretching Frequencies to Some Related	
Мо	olecules	97
5.3 Ch	nemical Shifts and Coupling Constants for $Br0_2^+BF_4^-$	
Di	issolved in HF	101
5.4 Vi	ibrational Frequencies for BrOF ₂ ⁺ Salts and Some Related	
Mo	ofecules	ווו
5.5 Vi	ibrational Frequencies of $BrOF_2^+Sb_nF_{5n+1}^-$ and Some Related	
Sb	DnF _{5n+1} , Systems	120
'6.1 Fu	undamental Frequencies of SeO ₂ F ⁻ and Some Related Molecules	137
6.2 Ra	aman Spectrum of $SeO_2F_2^{2-}$ and Some Related Ions	145
7.1 Vi	ibrational Frequencies of BrO ₃ F	156

xii

A. A.

and the second second

und .

LIST OF FIGURES

1

Figure		Page
.3.1	Raman spectrum of solid KBr0 ₂ F ₂ at 25°C	29
3.2	Raman spectrum of solid KBrOF ₄ at 25°C	34
3.3	Raman spectrum of solid KBrOF ₄ at -196°C	35
4.1	Raman spectrum of solid BrO ₂ F at -75°C ;	54
4.2	Raman spectrum of liquid Br0 ₂ F at -9°C	55
4.3	Raman spectrum of solid $BrOF_3$ at -196°C	64
4.4	Raman spectrum of liquid BrOF ₃ at 0°C	65
4.5	Raman spectrum of a solution of $BrOF_3$ in HF at $-78^{\circ}C$	66
5.1	Raman spectrum of solid $BrO_2^+BF_4^-$ at -196°C	. 90
5.2	Raman spectrum of solid Br02 ⁺ AsF ₆ ⁻ at -196°C	91
5.3	Raman spectrum of solid $BrOF_2^+AsF_6^-$ at -196 °C	10'8
5.4	Raman spectrum of solid $BrOF_2^+BF_4^-$ at -196°C	109
5.5	Raman spectrum of a solution of $BrOF_2^+BF_4^-$ in HF at -72°C	110
5.6	Raman spectrum of $BrOF_2^+Sb_nF_{5n+1}^-$ at -95°C	119
6.1	Raman spectrum of KSeO ₂ F	136
7.1	Raman spectrum of liquid Br0 ₃ F at -72°C	154
7.2	Raman spectrum of solid Br0 ₃ F at -196°C	155

xiii

۱

CHAPTER I

INTRODUCTION

A. General

The discovery of the element bromine is credited to Balard in 1826 ¹ and the relation of bromine to the previously discovered halogens chlorine and iodine was recognised from the very first. The rather unpleasant smell of elemental bromine is responsible for its name, which is derived from the Greek word "bromos" meaning stench.

As is the case with all the common halogens, bromine occurs naturally in the -I oxidation state. Although the largest source of bromine is the sea ($\sim 0.0065\%$ bromide), some isolated bodies of water (such as the Dead Sea) and natural brines. from wells and springs are considerably more concentrated (up to 0.6% bromide). Commercially bromine is recovered from these sources by oxidation of Br⁻ to Br₂ using chlorine, followed by removal of the Br₂ from the solution using a current of air or steam.

Although bromine only occurs naturally in the -I oxidation state, it nevertheless has a rather extensive chemistry in a number of positive oxidation states.

B. Bromine Fluorides

The preparation and properties of the halogen fluorides have been described at length in a number of excellent articles 1,2,3,4 and will

not be discussed in detail. For a halogen X, the fluorides XF, XF_3 , XF_5 and XF_7 might be expected. For iodine, all four fluorides have been reported whereas for chlorine and bromine, the highest fluoride XF_7 has not yet been shown to exist.

Bromine monofluoride can be prepared by the reaction of AgF with Br_2 .

$$AgF + Br_2 \rightarrow AgBr + Br-F$$
 (1.1)

The BrF produced cannot be isolated however, since it disproportionates to Br_2 and BrF_3 .²

$$3BrF \rightarrow Br_2 + BrF_3$$
 (1.2)

 BrF_3 can be prepared by the direct reaction of the elements. Liquid BrF_3 is considerably self-ionized,

$$2BrF_3 \stackrel{+}{\leftarrow} BrF_2^+ + BrF_4^-$$
(1.3)

as shown by its high specific conductance.³ Due to its high dielectric constant ($\varepsilon = 106.8$ at 25°C),⁵ it is an excellent ionizing solvent. It is also a powerful fluorinating agent and will convert many oxides or chlorides into the corresponding fluorides.

 BrF_5 is the highest fluoride of bromine which has been definitely shown to exist. It can be prepared by the reaction of BrF_3 with excess fluorine at high temperature. Like BrF_3 , BrF_5 is a powerful fluorinating agent. It is, however, a much poorer ionizing solvent than the trifluoride and consequently has not been as extensively used as a

reaction medium.

Although the preparation of BrF_7 by a high temperature reaction between BrF_5 and F_2 has been reported,⁶ the evidence for the existence of this fluoride is rather tenous. Gillespie and Schrobilgen ' have shown that a displacement reaction between $BrF_6^+AsF_6^-$ and NOF fails to produce BrF_7 even at $-78^{\circ}C_{\bullet}$. In view of the apparent instability of BrF_7 at this low temperature, the reported preparation of this fluoride at temperatures over 250°C must be regarded with some skepticism.

C. Bromine Oxides

Whereas the fluorides of bromine are well defined and have been extensively studied, the oxides of bromine are much more poorly understood. A number of compounds have been reported and they have been on the whole rather poorly characterized. Many of the early reports relied on analysis as the only technique of identification of the products. Most of the oxides of bromine are prepared by the action of ozone on bromine under different conditions, or by the decomposition or disproportionation of another oxide. The literature prior to 1961 has been reviewed by Schmeisser and Brändle ⁸ and more recent work has been summarized by Brisdon.⁹

The lowest oxide Br_2^0 has been the most thoroughly characterized. This oxide is best prepared by allowing the oxide $Br_2^0_4$ (Form A) to decompose under vacuum.¹⁰ Br_2^0 is brown-black in colour and melts at -17.5 \div 0.5°C. Decomposition to Br_2 and O_2 occurs slowly at temperatures above -40°C.⁸ The infrared spectrum of Br_2^0 ¹¹ indicates that it has a bent structure

with oxygen as the central atom.

 ${\rm Br}_2{\rm O}_4$ (Form A) is a yellow solid at low temperature which decomposes into the elements when warmed rapidly to 0°C. It was first prepared by Schwarz and Schmeisser 1° by passing a mixture of bromine and oxygen through a glow discharge. It is more conveniently prepared by the reaction of ${\rm Br}_2$ and ${\rm O}_3$ at -50°C using CFCl₃ as a solvent.⁸ The yellow product of these reactions was generally formulated as "BrO₂" until Pascal and Potier ¹² showed, on the basis of Raman spectroscopy, that the structure was actually ${\rm Br}_2{\rm O}_4$ in which two ${\rm BrO}_2$ units are linked by a Br-Br bond.

As was mentioned above, the controlled decomposition of Br_2O_4 (A) ultimately leads to the formation of Br_2O . Pascal et al ¹³ were able to isolate another relatively stable, gold coloured material from the decomposition of Br_2O_4 (A). This material is formed before Br_2O is produced. Analysis and vibrational spectroscopy led these workers to conclude that the gold material was Br_2O_3 , and that the molecule contained a Br-O-Br bridge. By comparison of the Raman spectrum with that of the B form of Br_2O_4 (see below) they concluded that the structure was probably O=Br-O-Br=O and not $O_2Br-O-Br.^{14}$

The oxidation of $Br_2^{0}_3$ with 0_3 at low temperature produces a second isomer of $Br_2^{0}_4$, designated $Br_2^{0}_4$ (B).¹⁴ This isomer has a bright red colour and is slowly converted to $Br_2^{0}_4$ (A) at low temperature. On the basis of Raman spectroscopy, the structure $0_2Br-0-Br=0$ was assigned to $Br_2^{0}_4$ (B).

Three higher oxides of bromine have also been reported. These

are $(Br_2^{0}{}_{5})_n$, $(Br_3^{0}{}_{8})_n$, and $(Br_3^{0})_n$. They were first produced by the direct reaction of ozone with bromine at room temperature. Lewis and his coworkers 15,16 studied this reaction and found that an oxide of composition $(Br_30_8)_n$ was obtained. Pflugmacher and his coworkers 17 repeated the reaction using a greater excess of ozone and found that a compound of composition $(BrO_3)_n$ was formed. Arvia et al ¹⁸ reinvestigated the reaction and found that the products obtained depended upon the material that the reaction vessels were made of. When Pyrex vessels were used a product of composition $(Br_2O_5)_n$ was formed, whereas using a quartz vessel, $(Br_{3}0_{8})_{n}$ was obtained. These workers found no evidence for an oxide of composition $(BrO_3)_n$. More recently, Pascal et al ¹⁹ have reinvestigated the reaction of ozone with bromine at temperatures between -100°C and +4°C in a Pyrex vessel. They found that in addition to Br_2O_4 , an oxide of composition Br_2O_5 is formed at temperatures between -28°C and +4°C. On the basis of Raman spectroscopy they suggested that this oxide is polymerized in a manner analogous to I_2O_5 . The latter has been shown to consist of O₂IOIO₂ molecules linked in the crystal by rather strong oxygen bridges.²⁰

The bromine oxide radicals Br0, $Br0_2$, and $Br0_3$ have been observed as short-lived species in aqueous solution.⁹ All three are produced by the pulse radiolysis of $Br0_3^-$ in aqueous solution and can be detected by their absorptions in the ultra-violet region. All three decay rapidly in aqueous solution to mixtures of the $Br0^-$, $Br0_2^-$, and $Br0_3^-$ anions. The Br0 radical has also been extensively studied in the gas phase by various spectroscopic techniques. These three short-lived radicals

વર્ષે

should perhaps be considered separately from the chemically isolable, more long-lived oxides described earlier. They have been included in this discussion only for completeness.

Thus the oxides of bromine are rather poorly understood. The existence of several lower oxides has been clearly demonstrated by the recent work of Pascal and his collaborators. However, the chemistry of the lower oxides of bromine has not yet by any means been fully explored and it is possible that other oxides may yet be prepared. The higher oxides are even more poorly characterized in that no detailed structural information is available for them, and the conditions leading to their formation have not been established. Moreover, the oxides of bromine are considerably less stable than their chlorine or iodine analogues. None of the oxides of bromine are stable at room temperature, although $(Br_2^{0}_5)_n$, $(Br_3^{0}_8)_n$, and $(Br0_3)_n$ can be kept at room temperature in the presence of ozone. The reasons for the instability of these compounds are not cleare.

D. <u>Halogen Oxyfluorides: Their Existence</u>, Amphoteric Behaviour and Structures.

The oxyfluorides of the halogens Cl and I have been extensively studied. The oxyfluoro species of Cl have been recently reviewed by Christe and Schack.²¹ Although no recent review articles are available on the oxyfluorides of iodine, work reported prior to 1961 has been summarized by Schmeisser and Brändle.⁸ Many of the known halogen oxyfluorides have been shown to exhibit amphoteric behaviour. Thus an oxyfluoride X0_nF_m can react with a Lewis acid to produce the cation X0_nF_{m-1}⁺

and with a fluoride ion donor to give the anion XO_nF_{m+1} . Listed in Table 1.1 are the possible oxyfluorides of Cl, Br, and I, where the central atom is in the +V or +VII oxidation state along with the related singly charged cations and anions derived from these oxyfluorides. The entries in square brackets have not yet been prepared.

At the outset of this work, all the oxyfluoro species of C1(V) and I(V) listed in Table 1.1 had been characterized. For Br(V),on the other hand, only the preparation of $\text{Br0}_2F^{22,23}$ had been reported. Unsuccessful attempts to prepare Br0F_3^{24} and adducts of Br0_2F with the Lewis acids BF_3 , AsF_5 and SbF_5^{-8} had also been mentioned in the literature. The relative lack of information about the oxyfluorides of Br(V) is rather surprising in view of the existence and stability of BrF_5 and Br0_3^- .

Considerably fewer of the oxyfluoro species of the halogens in the +VII oxidation state listed in Table 1.1 have been characterized. Attempts to prepare several such species $(Clo_3F_2^{-},^{21}Clo_3^{+},^{21}Io_2F_2^{+},^{25},^{26})$ and $IOF_4^{+,2^+},^{28}$ by fairly obvious and straightforward methods have failed. In some other cases however, e.g. $BrOF_5$, BrO_2F_3 , $BrO_2F_2^{+}$, and $BrO_2F_4^{-}$, no extensive systematic attempts at their preparation appear to have been made, although attemptéd preparations of $BrOF_5$ and $BrO_2F_2^{+}$ have been briefly reported (see Chapter VII). There appears to be no obvious reason why such species could not be prepared. A few of the possible species listed in Table 1.1 can, however, be anticipated to be of rather low stability. Thus $ClOF_6^{-}$ and $BrOF_6^{-}$ seem unlikely because of the apparent reluctance of C1 and Br to achieve a coordination number greater than six.

Ta	зb	le	1	.1	

T

Oxyfluoro Species of Cl(V), Br(V), and I(V)

	*		•			
Oxidation State of Central Atom	Cations		Neutral Molecules		Anions	
	C102+	(29,30) ^a	C102F	(31,32,33)	C102F2	(34,35)
	C10F2+	(³⁶ , ³⁷ , ³⁸)	C10F3	(³⁹ , ⁴⁰ , ⁴¹)	C10F4	(42,43) ₂
M	Bro2+	(*, ^{4,4})	Br0 ₂ F	(*,22,23)	Br0 ₂ F ₂	(*,45,46)
V	BrOF2+	(*,47)	BrOF ₃	(*,48)	BrOF ₄	(*,49)
	102+	(50,51)	10 ₂ F	(50,51,52)	10 ₂ F2	(53,54,55)
	10F2+	(51)	IOF 3	(51,52,56)	IOF 4	(51,58)
	[c10 ₃ ⁺]	b	c10 ₃ F	(?1,59,60,) (61,6?)	[C10 ₃ F2	[]
~	C102F2	(63,64)	C102F3	(65,66,67)	[C10 ₂ F ₄	j
	[C10F4]	[C10F ₅] ^c	[C10F6]
WTT f	[Br03 ⁺]		Br0 ₃ F	(6., 68)	[Br03E2]
VII	[Br0 ₂ F ₂	, ⁺]• ^c	[BrO ₂ F	3]	[Br02F4	-]
	[BrOF4	<u>'</u>] ',	[BrOF ₅	;]	[BrOF ₆])
	[10 ₃ +]		10 ₃ F	(69)	[10 ₃ F ₂]	ו
	[10 ₂ F ₂]	`] ·	10 ₂ F3	(70,71,72,) (73)	102F4	(25 x15 x74)
	[IOF4+)	IOF ₅	(75,76,77)	[IOF ₆]	
		1				

- * This work
- a The references given do not constitute a complete survey of the literature, but refer to selected preparations and spectroscopic or structural evidence for the compounds.
- b Compounds in square brackets have not yet been prepared (see Text)

¢

c Reports of the preparations of these compounds are incorrect. For $BrO_2F_2^+$, see Chapter VII; for $ClOF_5$, see Reference 21.

It would, nevertheless, be important to attempt their preparation should it prove possible to prepare the parent molecules ClOF₅ and BrOF₅, which are also unknown at the present time. Some reasons for the apparent nonexistence of some of the species listed in Table 1.1 are discussed further in Chapter VIII.

The shapes of all the known oxyfluorides of the halogens have been successfully rationalized on the basis of the Valence Shell Electron Pair Reputsion Theory ⁷⁸(VSEPR). This theory states that the geometry of a molecule $AX_m E_n$ is determined by the repulsions between the pairs of bonding electrons linking A to the ligands X and the non-bonding electron pairs E'on the valence shell of the central atom A. Multiple bonds between A and X behave (to a first approximation) like a single pair of electrons, and do not change the overall arrangement of the ligands (although they will affect the angles between the ligands). The sum of the number of bonding sets of electrons (m) and non-bonding pairs of electrons (n) is the criterion which determines the structure of the molecule. Thus for $(m + n) = 2, 3, 4, 5, and 6, linear, triangular, <math>\cdot$ tetrahedral, trigonal bipyramidal, and octahedral arrangements of electron pairs, respectively, will be produced. Consideration of the numbers and types of repulsions between the various electron pairs allows one to predict which positions will be occupied by ligands and which will be taken up by non-bonding pairs.

Table 1.2 shows the structures of the Cl(V) oxyfluorides (and the singly charged anions and cations derived from them) and how these conform

5

TABLE 1.2

1

Structure	Number of bonds (m)	Number of lone pairs (n)	m + n	Arrangement of e pairs	Geometry of molecule
	2	ĩ	3	trigonal ,	angular
0 0 F	3	م ا د	4	tetrahedral	trigonal · pyramid
	4	1	5	trigonal bipyŕamid	disphenoid
$0 \xrightarrow{C_1} F$	3	ł	4	tetrahedral 	trigonal pyramid
$\frac{F}{F} = \frac{F}{F}$	4	1	5	trigonal bipyramid	disphenoid
$ \begin{array}{c} F \\ F \\$	5	1	6	octahedral	square pyramid
)	,			

Structures of the pxyfluoro Compounds of Cl (V)

to the predictions of the VSEPR theory.

(E. The Unusual Nature of Br (VII) Compounds

Compounds containing the halogens chlorine and iodine in the +VII oxidation state were synthesized more than a century ago. Perchlorate salts were prepared by von Stadion in 1816 by the oxidation of chlorates with sulphuric acid.⁷⁹ In 1833, Ammermüller and Magnus prepared trisodium paraperiodate $Na_3H_2IO_6$ by the oxidation of sodium iodate with chlorine.⁸⁰ Numerous attempts to prepare perbromate salts failed however, and several theoretical arguments have been proposed to explain the non-existence of this ion. These have been recently reviewed by Appelman.⁸¹ Perbromates were finally successfully prepared in 1968. The first synthesis resulted from a hot-atom process, the 3 decay of radioactive ⁸³Se incorporated into a selenate ⁸² (equation (1.4)). The

$$^{83}\text{SeO}_4^{2-} = ^{83}\text{BrO}_4^{-} + \beta^{-} \qquad (1.4)$$

⁸³Br containing product co-precipitated with $RbClO_4$ and this was taken as evidence that it was present in the form of BrO_4^- . The first macro-scale preparation of perbromates was performed by means of an electrolytic oxidation of a neutral LiBrO₃ solution. The yield of this reaction was rather poor however (~ 1 %).⁸² A much more efficient procedure ⁸² employed an aqueous solution of XeF₂ (which forms a powerfully oxidizing solution, ³E° - 2.64V which has a half life of about 30 minutes at 25°C ⁸³) to oxidize BrO_3^- . The perbromate yield from this reaction (equation (1.5)) was

$$XeF_2 + BrO_3 + H_2O \rightarrow Xe + BrO_4 + 2HF$$
 (1.5)

about 10%. Precipitation of the perbromate as RbBrO₄ led to the first isolation of a perbromate salt. The most convenient preparation of perbromates is by the oxidation of bromate with molecular fluorine in alkaline solution (equation (1.6)). This reaction produces BrO₄⁻ in 20% yield.^{84,85}

$$F_2 + Br0_3 + 20H \rightarrow Br0_4 + 2F + H_20$$
 (1.6)

The numerous unsuccessful attempts to prepare the perbromate ion and its long-time status as a "non-existent" species are thus rather surprising, particularly in view of its considerable stability.⁸⁴ Pure $KBrO_4$ is stable up to about 275°C at which temperature it decomposes smoothly to $KBrO_3$ and oxygen. Aqueous solutions of perbromic acid are stable up to a concentration of 6 M. At higher concentrations, decomposition to Br_2 and O_2 takes place. In dilute solution at room temperature, perbromates are rather sluggish oxidizing agents. Even I⁻ is only very slowly oxidized by perbromate in dilute acid. At higher temperatures and concentrations, however, perbromic acid becomes a vigorous oxidizing agent. The electrode potential for the half-reaction (1.7) has been determined ⁸⁶ to be 1.74V. Thus perbromate is a much more powerful

$$Br0_4^- + 2H^+ + 2e^- \ddagger Br0_3^- + H_2^0$$
 (1.7)

oxidant than perchlorate ($E^\circ = 1.23V$) and more powerful than periodate ($E^\circ = 1.64V$); this trend is similar to the one observed in group VI.⁸¹

Although, in view of the potential of 1.74V, a number of oxidizing agents should be capable of converting BrO_3^{-1} to BrO_4^{-1} no evidence for this oxidation has been obtained.81,87 For instance, ozone (E° = 2.07V 88) and peroxydisulphate ($E^{\circ} = 2.01V^{88}$) do not oxidize BrO_3 to BrO_4 . This apparent discrepancy has been discussed by Appelman.^{81,86} The sluggish oxidizing nature of the perbromate ion implies that there is a considerable activation barrier to the reduction of BrO_A^{-1} to BrO_3^{-1} . Conversely then, the overall barrier to the formation of BrO_4^- from BrO_3^- is the sum of the overall free energy change of the reaction plus the activation barrier to reduction of perbromate. On this basis, only the very strongest oxidizing agents would be capable of producing perbromate by oxidation of bromate. The inability of earlier workers to synthesize perbromates is then a reflection of the kinetic barrier to the reaction rather than the thermodynamic unfavourability of the process. The reasons why electrolytic preparations of perbromates are so unfavourable are not clear, but Appelman has suggested 84 that an extremely unstable Br(VI) intermediate may occur in the reaction and that this causes a prohibitively high activation energy.

Two other Br (VII) species have been reported. BrO_3F can be prepared by fluorination of BrO_4^- with SbF_5^{-68} Although this oxyfluoride is considerably more reactive towards hydrolysis than the analogous ClO_3F , it is nonetheless a rather stable species. Similarly, the BrF_6^+ ion can be prepared by the reaction of BrF_5 with the extremely powerful fluorinating agents KrF^+ or $Kr_2F_3^+$.⁷ Salts of the BrF_6^+ ion

have been shown to be rather stable at room temperature, although they are very powerful oxidizing agents and will convert 0_2 to 0_2^+ and Xe to XeF⁺. The stability of the three Br(VII) species prepared to date suggest that some of the other Br(VII) compounds listed in Table 1.1 should also be stable, isolable species.

F. Purpose of the Present Work.

The almost complete lack of information on the oxyfluoro species .7 of bromine compared with our rather extensive knowledge of the corresponding compounds of chlorine and iodine at the outset of the present work was rather surprising. Although this could be taken to indicate a relatively low stability for the oxyfluoro compounds of bromine, such a conclusion would not be valid as no systematic attempt to synthesize such compounds has yet been reported. The object of the present work was, therefore, to attempt to prepare and characterize new oxyfluoro compounds of bromine, and to study their stabilities relative to those of the analogous chlorine. and iodine compounds. It was also of interest to determine whether the structures of any such species are consistent with the structures of the corresponding chlorine and iodine compounds and with the predictions of the VSEPR theory. Although a complete X-ray structural study would be desirable for such new compounds, it was anticipated that their expected reactivity and physical properties might create considerable difficulties in a crystallographic study. The structures proposed in this thesis are, therefore, based on spectroscopic (Raman and 19 F nmr) evidence.

Ŋ

Ø.

CHAPTER II

EXPERIMENTAL

A. Vacuum Techniques and Sample Handling.

ς.

Because the compounds used and prepared during the course of this work were sensitive to moisture, they were handled in a vacuum system or in the inert atmosphere of a dry-box. The vacuum lines used were constructed of glass or of Monel metal. Due to the corrosive nature of the reagents employed, reactions were carried out in fluoroplastic tubes. Kel-F tubes (2 cm o.d. x 15 cm long with a wall thickness of 1 mm), available from Argonne National Laboratories, were used for large-scale preparations or for storage of solvents. Smaller reaction vessels were made by heat-sealing one end of a short length of fluoroplastic tubing. The other end was then flared for attachment to a Teflon valve through a Kel-F, Teflon or FEP adaptor. Several sizes of fluoroplastic tubing were employed: FEP: 1/4" o.d. x 1/32" wall from the Fluoro-carbon Company, California; 0.154" o.d. x 0.02" wall from Warehoused Plastics Sales, Toronto. Kel-F: 0.132" o.d., x 0.008" wall from Adam Spence Corporation, New Jersey. The 0.154" o.d. FEP, and 0.132" o.d. Kel-F tubes were used to record ¹⁹F nmr spectra. The fluoroplastic valves and adaptors used, as well as the vacuum systems, are described in more detail elsewhere.7,89 A method was developed (with Dr. G. J. Schrobidgen) for fusing together thin walled 1/4" o.d. FEP tubes. A TEE was constructed out of 7 mm i.d.

15

and the second se

glass tubing (approximately 6" overall size). A Run \rightarrow length of.1/4" FEP tubing (~ 2 ft.) was inserted into the run of the TEE, with a hole ($\sim 1/4$ " diameter) cut in the side of the FEP tube at the branch of the TEE. A second 1/4" tube (~ 2 ft.) was inserted in

the branch of the TEE, and 4 mm glass rods were inserted into the 1/4" ,FÉP tubes. The junction of the TEE was then gently heated over a Bunsen burner to melt the FEP, and the plastic tubes were pushed inwards during this heating to fill the junction section of the TEE with molten plastic. The inner glass rods prevented the molten FEP from collapsing. The system was allowed to cool and the glass rods could be removed just after the plastic had solidified but was still slightly warm. The outer glass TEE was then broken away. The FEP TEE produced was reamed out with a 5/32" drill bit silver-soldered to a long 5/32" metal rod. In this way, allplastic double-armed reaction vessels could be made. 0.154".o.d. #EP spaghetti tubing could also be fused end-on to 1/4" o.d. FEP tubing by heating and drawing out the 1/4" FEP tube to approximately the same diameter as the spaghetti tubing. Then using a suitable glass outer jacket (a section of 5 mm thin-walled nmr tubing) and inner rod (2 mm diameter) the spaghetti tubing could be fused to the drawn-out 1/4"FEP tube over a very low flame. In this way, a section of spaghetti tubing (suitable for ¹⁹F nmr spectroscopy) could be fused to the side-arm of a double-armed FEP reaction vessel. These vessels were convenient for transferring solutions at low temperature. The more conventional method of building a multi-armed

16

Branch

reaction vessel using Teflon compression fittings to hold the components together cannot be used to transfer solutions which must remain cold since the compression fittings cannot be cooled to very low temperatures without leaking.

The fluoroplastic reaction vessels used were conditioned with anhydrous HF, BrF_5 and F_2 before being used.

Certain samples could be handled in quartz tubes. 6 mm o.d. quartz tubes were connected to Teflon valves using 6 mm Teflon ferrules.

B. Instrumentation.

(i) Laser Raman Spectroscopy.

.The laser Raman instrumentation used has been extensively described elsewhere.^{90,91}

In the early part of the work, the sample tube was positioned horizontally, at right angles to the laser beam, and the Raman-scattered radiation was observed perpendicular to both these directions. Low temperature spectra (down to $\sim -120^{\circ}$ C) could be recorded using a technique

described elsewhere.⁹⁰ For the major part of the work, however, the set-up shown in the schematic diagram was used. The sample tube (T) was mounted vertically, parallel to the entrance slit (S) of the spectrometer. The laser beam (B) was directed by means of two mirrors (M) to strike the sample at an angle of 45°,

Т

at the same level as the entrance slit on the spectrometer. The scattered radiation (R) was focussed onto the slit by the lens (L). The sample tube, the entrance slit, and the laser beam were all in one plane. This arrangement was found to produce more intense spectra than the previously described set-up, particularly for solid samples. Coloured samples could also be very conveniently rotated to avoid overheating of the sample due to absorption of the laser radiation. Polarization ratios were found not to be affected by this arrangement and were checked using a sample of liquid CCl_A. Low temperature (down to -120° C) spectra could be obtained by passing cold N_2 through an unsilvered Pyrex double-walled Dewar. The cold gas was produced by boiling off liquid mitrogen from a Dewar at a controlled rate by an electric heater. The temperature was monitored with a copper-constantan thermocouple positioned close to the sample. Spectra could be obtained at -196°C by placing the sample against the inside wall of an unsilvered Pyrex Dewar filled with liquid nitrogen. Raman spectra were generally recorded using the green 514.5 nm line of an Argon ion laser using an output power between 50 and 300 mW. For some highly coloured samples (those containing Br_2^+ , see Chapter V), the red 632.8 nm line of an He-Ne laser was used. The Raman shifts quoted are estimated to be accurate to $\pm 2 \text{ cm}^{-1}$. Spectra were often recorded in Kel-F or FEP sample tubes and Raman lines due to the tubes were often observed. Their prominence in the overall spectrum depended on the efficiency of the sample as a Raman scatterer. In those cases where tube lines were observed, these have been subtracted out of the spectra in the

18

У

Tables but not in the Figures. (The only exception is Table 5.1 where the FEP lines have been listed). The characteristic spectra of FEP and Kel-F were recorded at various temperatures between room temperature and -196°C, and the positions and relative intensities of the peaks were found to be relatively constant in these spectra and in a number of spectra of different samples contained in FEP and Kel-F tubes. The tube lines sub-tracted from a sample spectrum at a given temperature were taken from reference spectra recorded at a similar temperature.

The use of fluoroplastic tubes to record Raman spectra also interfered, at times, with the measurement of polarization ratios. With some tubes the polarization ratios varied greatly when the spectra were recorded at different positions on the tube. This problem was more severe for some tubes than for others, and Kel-F tubes generally gave more consistent results than those made of FEP. Before being used for an experiment in which polarization ratios were to be determined, sample tubes were therefore filled with CCl_4 and the effect of the tube on the polarization ratios of CCl_4 was determined. Only tubes which did not have a significant effect were used.

The resolution of spectral curves shown in Figure 6.1 was carried out on a Dupont Model 310 curve resolver and curve plotter.

(ii) Nuclear Magnetic Resonance Spectroscopy.

 19 F nmr spectra were usually recorded using a Varian DA-60 IL spectrometer operating at 56.4 or 58.3 MHz and modified as described elsewhere 89,90,92 Some spectra were recorded using a Varian HA-100 spectro-

meter operating at 94.1 MHz (samples of $BrOF_3$ in SO_2CIF and SO_2F_2 (Chapter IV) and the spectrum of a solution of BrO_3F in HF at room temperature (Chapter VII)), and the ¹⁹F nmr spectrum of $KBrOF_4$ in CH_3CN was obtained using a Bruker WH90 spectrometer. All chemical shifts were measured relative to $CFCI_3$ as an external standard. Resonances to low field of $CFCI_3$ are assigned negative chemical shifts. The chemical shifts are estimated to be accurate to ± 2 ppm. For samples contained in FEP tubes, integration of the peaks in the spectrum was found to be very inaccurate. The fluorine nuclei in the sample tube give rise to a very broad ¹⁹F nmr signal extending several hundred ppm to high and low field of $CFCI_3$. The presence of this broad signal causes the integrator to continually drift. Because of this, the accuracy of the integration is at best \pm 10% and can be much worse if the two peaks being compared have widely differing chemical shifts.

C. Preparation and Purification of Starting Materials.

(i) <u>Gases</u>.

1

(a) Fluorine: F_2 gas (Matheson) was passed through two Matheson model 68-1008 hydrogen fluoride traps connected in series and admitted to a Monel vacuum line,⁸⁹ through 1/4" o.d. copper tubing.

(b) Inert atmospheres: Extra dry nitrogen (Canadian Liquid Air, 99.9%, \cdot 10 ppm H₂O) was used for the dry-box atmosphere and for maintaining a pressure greater than atmospheric over Br(V) containing samples while they were being stored. Argon (Matheson, 99.998%) was used when

Br(VII) containing samples were being stored.

(ii) <u>Solvents</u>.

٩

(a) HF: For the Br(V) work, anhydrous HF (Harshaw Chemical Co.) was distilled directly from the cylinder to a Kel-F storage vessel and was used without further purification. For the Br(VII) work, the unpurified HF was introduced into a 2 litre nickel can fitted with a Monel valve (Autoclave Engineers). F_2 was then admitted to the can (approximately 200-300 psi) and the mixture allowed to stand for several weeks. The non-condensable gases present were then removed at -196°C and the HF distilled into a Kel-F storage vessel.

(b) SO_2CIF and SO_2F_2 : SO_2CIF (Baker and Adamson) was distilled onto SbF_5 and allowed to stand at room temperature for an hour. The SO_2CIF was then distilled onto NaF where it was kept until used. Since the commercial product contained SO_2F_2 impurity, the most volatile fraction of each distillate was discarded. The purity of the SO_2CIF was verified by its ¹⁹F nmr spectrum which showed only one line. SO_2F_2 was obtained from Matheson Gas Products and was used directly.

(c) Acetonitrile: CH_3CN (Fisher Scientific Co.) was purified by distillation from P_2O_5 , followed by distillation from dry K_2CO_3 . The distilled material was stored over molecular sieves until used.

(iii) Lewis Acids.

 BF_3 (Matheson Co.) was purified by bubbling it through 100° sulphuric acid containing $B_2 0_3$.

AsF₅ (Ozark-Mahoning Co.) was used without further purification.

Some of the AsF₅ used was prepared by the direct interaction of powdered As metal (Alpha Inorganics, 99.5%) with excess F_2 at 300°C for several hours in a 1440 ml nickel can fitted with a stainless steel valve (Autoclave Engineers). The AsF₅ produced was used without further purification.

 AsF_5 and BF_3 were transferred into reaction mixtures using a grease-free vacuum line of known volume.

SbF₅ (Ozark Mahoning Co.) was purified by double distillation in an atmosphere of dry nitrogen using an all-glass apparatus, and was stored in glass vessels in a desiccator. The distillation apparatus and procedure are described in detail elsewhere.⁹³

(iv) Other Reagents.

(

(a) Metal Fluorides: KF (BDH, 99%), NaF (Allied Chemical, reagent grade), and CsF (K & K, 99.9%) were dried under vacuum at 250° C for several days in a glass tube and stored under an atmosphere of dry N₂ until used.

(b) BrF_5 and IF_5 : BrF_5 (Ozark Mahoning Co.) was purified by bubbling fluorine through it until the liquid became colourless. It was then distilled onto dry NaF to remove traces of HF. IF_5 was purified in a similar manner.

(c) KBrO₃ and KBrO₄: KBrO₃ (Allied Chemical, 99.8%) was dried under vacuum at 250°C for several days. KBrO₄ was generously provided by Dr. E. H. Appelman (Argonne National Laboratories), and was used without purification. It was, however, dried under vacuum at 120°C for several days.
(d) SeO₂ and SO₂: Anhydrous SeO₂ (J.T.Baker $\frac{1}{2}$ 99%) was used directly. SO₂ (Matheson) was distilled from P₂O₅.

(e) Iodine Oxides and Oxyfluoro Species: 1_2O_5 (Alfied Chemical, .99.5%) was dried under vacuum at 150°C for several days. IOF_3 and IO_2F were prepared by the method of Aynsley at al.⁵? IO_2F_3 was supplied by Dr. J. P. Krasznai and had been prepared by the method of Engelbrecht.⁷⁰ IO_2F_3 ·AsF₅ and IO_2F_3 ·SbF₅ (prepared by direct reaction of IO_2F_3 with the Lewis acid ²⁶) were also supplied by Dr. J. P. Krasznai, as was the sample of IO_2SO_3F . $IOF_2^+SbF_6^-$ was prepared by the direct reaction of IOF_3 with excess SbF₅ using SO₂ClF as a solvent.

(f) KrF_2 : This was prepared with the assistance of Dr. G. J. Schrobilgen using the method reported by Schreiner et al.⁹⁴

(g) $KBrF_6$: 0.906 g (15.71 mmol) of KF and 11.06 g (63.2 mmol) of BrF_5 were stirred at room temperature for a week in a Kel-F tube, the excess BrF_5 was removed under vacuum leaving a white solid which weighed 3.750 g, which corresponds to 98% $KBrF_6$. The Raman spectrum of this solid showed only the three lines reported by Shamir and Yaroslavsky.^{1,1} $KBrF_6$ is stable indefinitely when kept in well passivated Kel-F tubes. The decomposition reported by Shamir and Yaroslavsky for $CsBrF_6$ was, therefore, probably due to their use of storage vessels made of glass. $KBrF_6$ is very soluble in CH_3CN , but was found to decompose slowly in this solvent. A white solid, identified as $KBrF_4$ from its Raman spectrum,¹,¹¹ was deposited. This decomposition proceeded in Kel-F, FEP, glass and guartz sample tubes so the decomposition is not due to attack on the walls of the container. The other products of the decomposition could not be positively identified. A 19 F nmr spectrum of the decomposing solution did not show any peaks attributable to fluorinated solvent species. A gas was produced by the decomposing solution which turned moist starch I paper dark. Although it is perhaps somewhat surprising, the simplest explanation of our observations is that the decomposition proceeds according to equation (2.1). The rate of the decomposition can be mini-

$$KBrF_6 + KBrF_4 + F_2$$
 (2.1)

mized by rigorously drying the CH_3CN , indicating that the above reaction may be catalyzed by traces of moisture.

(h) $CsSO_2F$; $CsSO_2F$ was prepared following the method of Seel and Boudier,⁹⁷ by shaking CsF in liquid SO_2 for two days, followed by \cdot removal of the excess SO_2 under vacuum.

(i) $KrF^{+}AsF_{6}^{-}$ and $BrF_{6}^{+}AsF_{6}^{-}$: $KrF^{+}AsF_{6}^{-}$ was made by the direct interaction of KrF_{2} with excess $AsF_{5}^{-,90} = BrF_{6}^{+}AsF_{6}^{-}$ was prepared by dissolving $KrF^{+}AsF_{6}^{-}$ in BrF_{5}^{-} and allowing the solution to warm up to room temperature.' The purity of both products was monitored by Raman spectroscopy.

\$

CHAPTER III

PREPARATION AND CHARACTERIZATION OF KBroz F2 AND KBroF4

A. Introduction

At the outset of this work, no reliable evidence for the existence of the anionic species $Br0_2F_2^-$ and $Br0F_4^-$ had been reported. The compounds $KBr0_2F_2$, $NaBr0_2F_2$ and $Ba(Br0_2F_2)_2$ had been reported by Mitra,^{9.8} but this claim was withdrawn when the results were found to be irreproducible.⁹⁹ Independently of the present work, Bougon and his co-workers have recently reported the preparation and characterisation of $KBr0F_4^{-49}$ and $KBr0_2F_2^{-45,46}$

In this chapter, the preparation of the compounds $KBrO_2F_2$ and $KBrOF_4$ by several methods is described. Their Raman spectra have been observed and tentatively assigned. The ¹⁹F nmr spectrum of $KBrOF_4$ has also been recorded.

B. Preparation and Properties of KBr0₂F₂ and KBr0F₄

 $\mathrm{KBrO}_{2}\mathrm{F}_{2}$ and KBrOF_{4} can be most conveniently prepared by the reaction of KBrO_{3} and KBrF_{6} in $\mathrm{CH}_{3}\mathrm{CN}$ (equation (3.1)). They can then be

 $KBrO_3 + KBrF_6 + KBrOF_4 + KBrO_2F_2$ (3.1)

separated by extraction of the mixture with CH_3CN . The $KBrO_2F_2$ is insoluble in CH_3CN , whereas the $KBrOF_4$ is slightly soluble. In this way reasonable amounts (0.3-0.5 g) of each product can be conveniently obtained.

Both $KBrO_2F_2$ and $KBrOF_4$ are also produced in the hydrolysis of KBrF₆ in CH₃CN. The hydrolysis is, however, not a smooth reaction and mixtures of products are obtained. When approximately 0.02 mmol of H_20 (dissolved in CH_3CN) is added to a solution of 0.22 mmol of $KBrF_6$ in CH₃CN, and the solvent is removed under vacuum, the resulting solid con- \cdot sists of mostly unreacted KBrF₆ with small amounts of KBrOF₄ and KBrO₂F₂. Thus even when a 10:1 mole ratio of $KBrF_6:H_2O$ is used, both $KBrOF_4$ and $KBrO_{2}F_{2}$ are observed as products. It might have been expected that when $KBrF_6$ reacts with small amounts of H_2^0 , only $KBr0F_4$ would be formed, but this was not observed. When larger quantities of water were added, the amounts of $KBrOF_4$ and $KBrO_2F_2$ increased, but $KBrF_4$ also appeared as a . major product (probably from the decomposition of KBrF₆, which, in Chapter II, is shown to be catalysed by $H_2(0)$. When even more water was added KBr03 became the major product. These observations are consistent with the hydrolysis scheme (3.2). This hydrolysis cannot be used as a

convenient source of KBr0F_4 and $\text{KBr0}_2\text{F}_2$ because of the relatively large amounts of KBrF_4 produced. The reason that both Br0F_4^- and $\text{Br0}_2\text{F}_2^-$ are observed even when small quantities of water are used is probably that the Br0F_4^- ion hydrolyses more rapidly than BrF_6^- . The maximum coordination number of bromine appears to be six, so that attack by water on the BrF_6^- ion would be expected to be slow. On the other hand, Br0F_4^- has a

26

 $\hat{\sigma}$

vacant coordination site and would probably be rapidly attacked by water. A similar result has been reported for the hydrolysis of $CsIF_6$ with an equimolar amount of H_2O using CH_3CN as a solvent,⁵⁸ where the $CsIOF_4$ product is always contaminated with $CsIO_2F_2$. The extent of contamination in this case is smaller than in the bromine system, reflecting the relative ease with which iodine can expand its coordination number to seven or more (e.g., IF_7 and IF_8^{-100} are known) which would increase the relative rate of hydrolysis of the IF_6^{-100} ion.

 $KBrO_2F_2$ and $KBrOF_4$ are also produced in the reaction of $KBrO_3$ with BrF_5 (see Section E), and also by the reaction of the parent oxyfluoride $(BrO_2F$ or $BrOF_3$) with a fluoride ion donor (see Chapter IV). Both $KBrOF_4$ and $KBrO_2F_2$ are white solids that are stable at room temperature and can be stored indefinitely in FEP, Kel-F or glass containers. They are, however, very sensitive to moisture and must be stored in rigorously dried vessels. When exposed to small amounts of moisture, the solids evolved a brown gas, presumably Br_2 .

Some other reactions of the Br(V) anions were also studied. When $KBrOF_4$ was shaken with excess $KBrO_3$ in CH_3CN overnight, the resultant product contained no $KBrOF_4$, but only $KBrO_2F_2$ and $KBrO_3$. This indicates that in CH_3CN , equilibrium (3.3) lies to the right. This may be due in

$$KBrOF_4 + KBrO_3 \stackrel{2}{\rightarrow} 2KBrO_2F_2$$
 (3.3)

part to the extremely small solubility of $KBrO_2F_2$ in CH_3CN . This means that when excess $KBrO_3$ is used in the reaction of $KBrO_3$ with $KBrF_6$, a

reduced amount of KBrOF_4 is obtained since the excess KBrO_3 reacts with some of the KBrOF_4 produced by equation (3.1). In BrF_5 as a solvent, KBrOF_4 and KBrO_3 also reacted to give KBrO_2F_2 , but not all the KBrOF_4 was consumed.

n, 5-

Although $KBrOF_4$ is stable in CH_3CN , and does not decompose to $KBrO_2F_2$ and $KBrF_6$, it nevertheless cannot be prepared by the reaction of these two compounds, i.e. reaction (3.4) was found not to have proceeded to the right to any appreciable extent, even after 28 hours. This is

 $KBrF_6 + KBrO_2F_2 \neq 2KBrOF_4$ (3.4)

again probably due to the extremely low solubility of $KBr0_2F_2$ in CH_3CN .

C. Characterization of KBrO₂F₂ and KBrOF₄ by Raman Spectroscopy_{*}

Figure 3.1 shows the Raman spectrum of solid $KBrO_2F_2$ and Table 3.1 lists the observed lines and their assignments, together with those of some related molecules. The Raman spectrum corresponds well with that reported by Bougon and his coworkers.^{45,46} Because no solvent could be found for $KBrO_2F_2$ (it is insoluble in BrF_5 , CH_3CN and SO_2ClF , and a reaction occurs with HF [see Chapter IV]), no polarization data could be obtained. The assignments (Table 3.1) were made by comparison with the related molecules $IO_2F_2^{-,54,55}$ $CIO_2F_2^{-,35}$ $SeO_2F_2^{2-}$ (Chapter VI) and XeO_2F_2 .¹⁰¹ On the basis of VSEPR theory and the geometries of the related molecules, $BrO_2F_2^{-}$ is expected to have a C_{2v} structure with the lone pair and two oxygen atoms occupying the equatorial positions of a trigonal bipyramid. The nine fundamentals [$r = 4A_1 + A_2 + 2B_1 + 2B_2$] for

مہ

	Ran	man Frequencie	es of BrO ₂ F ₂	- and Some Re	elated Molecu	les (cm ⁻¹)		
BrO ₂ F (a)	xe0 ₂ F ₂ ^(b)	se02F2 ^{-(c)}	c10 ₂ F ₂ ^{-(d)}	10 ₂ F ₂ -(e)	Br0 ₂ F ₂ -(f)	Assignmen	ts	
953(14) ^(g)	902 w ^(h)	833(25) 823(sh)	1221 (8)	.838 w	910(7)	v ₈ (B ₂)	v _{asym} XO ₂ .	
908(100)	845 v.s	` 868(sh) 859(100)	1076(100) 1064 1055	817 v.s 804 w.sh	892(7) sh 884(100)	ر (A) ا	v sym XO2	
Ĺ	578 w	o B	ı	456 v.w	442(sh)	v ₆ (B ₁)	v ^a sym ^{XF} 2	
394(14)	333 m.s	445(10)	559(12)	360 m	424(14)	v ₂ (A ₁) é	5 X02	
I	ı	ı	480(10)	ı	400(2)	v ₅ (A ₂)	Torsion t	
ł	490 s	396(15)	363(100)	479 s	380(sh) 369(35)	v3 (A1)	`symXF2	
۰ ۱	313 m.s ⁽ i)	304(20)	337(80) ⁽ⁱ⁾	323 s	338(8)	v7 (B1) o	⁵ rock	
!	313 m.s	ŀ	337(80)	346 w	307(9) 293(sh)	v ₉ (B ₂) a	swag	
ı	198 w	241(12)	198 (7)	194 v.w .	197(4)	$v_4 (A_1)$	s XF ₂	
3		•		,	118 br	Lattice m	ode	
a Seđ Chap	ter IV. b	Reference 1(ol. ^c See	Chapter VI.	d Referen	ce 35. ^e	- References 54,55	
f KBrO ₂ F ₂	б	Numbers in p	oarentheses	give relative	e intensities	•		
h s, stron	g; v.s, vei	ry'strong; m	, medium; w	, weak; v.w.	, very weak;	sh, shoul	der; br, broad. ⁵	30
i vy and t	g are cóinci	ident in these	e molecules.					

•

•

\$

TABLE 3.1

ţ

such a structure are all expected to be Raman active. The three highest frequency lines can be readily assigned to the BrO_2 symmetric and asymmetric stretching frequencies, with v_{sym} BrO_2 being split (1) by solid state effects. The XO_2 (X = Cl, Br, I) stretching frequencies in the $XO_2F_2^-$ anions decrease in the order Cl>Br>I, which is due to the increasing mass of the central atom X and the decrease in bond strength as the electronegativity of X decreases. The -BrO₂ stretching frequencies are also lower than those in BrO_2F which is consistent with a decreased BrO double bond character due to the negative charge of the anion. Finally the BrO_2 frequencies in $BrO_2F_2^-$ are higher than the SeO₂ frequencies in the isoelectronic SeO₂F₂⁻, reflecting the additional bond weakening by the extra negative charge in the selenium compound.

These three assignments agree with those of Bougon et al.⁴⁶ and our previously published work.¹⁰² The remaining assignments are less definitive. They differ from our previously published interpretation and agree with those of Bougon et al. The strongest remaining line at 369 cm⁻¹ was previously assigned to $\delta_{\rm rock}$ whereas $v_{\rm sym}BrF_2$ was assigned to the line at 424 cm⁻¹. Bougon et al. on the other hand, assigned the strong lines at 369 cm⁻¹ to $v_{\rm sym}BrF_2$. Since $v_{\rm sym}BrF_2$ is an A₁ mode and is a strong line in the spectra of the related molecules, it seems reasonable to assign it to the line at 369 cm⁻¹ (along with a shoulder at 380 cm⁻¹).

The lowest frequency peak at 197 cm⁻¹ is assigned to δ BrF₂ which occurs as the lowest frequency fundamental in all the related molecules.

The remaining assignments are more arbitrary. The 307 cm⁻¹ peak (and the shoulder at 293 cm⁻¹) are assigned to ${}^{5}_{wag}$, and are in the same region as the corresponding motions in $I0_{2}F_{2}^{-1}$ and $C10_{2}F_{2}^{-1}$. Since in all the related molecules, ${}^{\delta}_{rock} < {}^{\vee}_{sym}XF_{2}$, the peak at 338 cm⁻¹ is assigned to ${}^{5}_{rock}$. This also places ${}^{\delta}_{rock}$ and ${}^{\delta}_{wag}$ close together in frequency, which is also observed in $I0_{2}F_{2}^{-1}$, $Xe0_{2}F_{2}$ and $C10_{2}F_{2}^{-1}$ (in the last two, these two modes have the same frequency). ${}^{\vee}_{asym}XF_{2}$, which should be a very weak peak in the Raman, has been assigned to the shoulder at 424 cm⁻¹.

This leaves only two fundamentals, $\delta_{\rm S} {\rm BrO}_2$ and the torsion mode τ , to be assigned. In ${\rm ClO}_2{\rm F_2}^-$ (which is the only molecule where τ has been assigned), $\delta {\rm XO}_2$ is more intense and also at higher frequency than τ . Therefore, the stronger peak-at 424 cm⁻¹ is assigned to $\delta {\rm BrO}_2$ with the weak peak at 400 cm⁻¹ assigned to τ . This assignment for $\delta {\rm BrO}_2$ places it between the values found for ${\rm ClO}_2{\rm F_2}^-$ and ${\rm IO}_2{\rm F_2}^-$ and in the same region as the analogous motion in ${\rm BrO}_2{\rm F}$ [In ${\rm ClO}_2{\rm F_2}^-$ and ${\rm ClO}_2{\rm F}$, ³¹ and in XeO₂F₂ and XeO₂F⁺, ¹⁰³ the $\delta {\rm XO}_2$ motions occur at similar frequencies].

A small peak (<3% relative intensity) appeared on several spectra at about 230 cm⁻¹. However, since the relative intensity of this peak varied from one spectrum to the next and since it was absent on some spectra, it has been assigned to an unidentified impurity. The broad shoulder at 118 cm⁻¹ has been attributed to a lattice mode and the two sharp spikes at 111 cm⁻¹ and 100 cm⁻¹ are associated with the glass sample tube (and have not been listed in Table 3.1).

Other geometries for the $Br0_2F_2$ ion such as (2) and (3) are possible

(if the analogy with the related ions $ClO_2F_2^-$ and $IO_2F_2^-$ and the predictions of VSEPR are ignored). ~Although both structures have C_{2v} symmetry and would be expected to show the same number of Raman lines as a molecule of structure (1), these alternative geometries are not as consistent with .

the observed Raman spectrum as the structure (1) proposed above. In the case of (2), $v_{asym}BrO_2$ would be predicted to be extremely weak in the Raman spectrum, and for both (2) and (3), $v_{asym}BrF_2$ would not be expected to be one of the weakest lines in the spectrum. The vibrational spectrum is, therefore, more consistent with the suggested structure (1) than with the alternative structures (2) and (3).

Figures 3.2 and 3.3 show the Raman spectra of KBrOF_4 at room temperature and liquid nitrogen temperature respectively. The low temperature spectrum is much better resolved and shows a few extra peaks. The room temperature spectrum is very similar to that obtained recently by Bougon et al.⁴⁹ Table 3.2 lists the observed frequencies along with those of some related molecules and ions. Our assignments agree quite well with those reported by Bougon and his coworkers. Although KBrOF_4 is slightly soluble in CH_3CN , the solubility is not large enough to allow a solution spectrum of KBrOF_4 to be obtained. BrF_5 , SO_2CIF and HF also proved unsuitable as solvents so no polarization data is available. The assignments

x •

										٢	- 36	•
		Assignments		۰ _ا م ۲=0	-2 ^A l 'sym ^{XF} 4 in phase	∪7 E ` _{vasym} XF.4	. ^{,48} 1 ^{sym XF} 4 out-of-phase	v8 € \$0XF	`3 ^A l [°] sym ^{XF} 4 out-of-plane	∕6 ⁸ 2 °sym ^{XF} 4 in plane	-9 ^E ^ŝ asym ^{XF} 4 in plane	nued
		رع - (ع) د	-196°C	630(90)	529(100)	506(47) 486(55)sh	(75) (75)	434(80), 421(30) 409(30) 399(30)	314(9)	248(20) 239(sh)	196(5) 184(5)	conti
	ст_]) Ст_])	8r0F) Room temp.	930(100)	523(100)	503(50)	478(70) 454(70)	429(60) 417(sh) 403(35) 392(35)	310(12)	241(25)br	187(10)	
	lecules (d	10) solid ^(f) at 10°K	690 684	589 561	627 599 ,	539` 525	425 417 414	373 366	319 312	248 238 237 232	
•	elated Mol	Brf	liquid ^(b)	682(70)	570(100)	[644]	535(100)	414(10)	365(20)	312(10)	237(0+)	
LE 3.2	and Some R	10F ₄ -(e)		888 v.s ⁽ⁱ⁾	533 v.s	475 m,sh	485 m	365 m.s	273 m	214 w	144 w,br	
TAB	of BrOF ₄	IF ₅ (d)	(gas)	710 (5)	614 v.s	631 sh	602 sh	370 w	318 m	318 m	200 x	
ſ	n Frequencies	C10F ₄ -(c)		1211 (6)	461(100)	599 (1) 557 (4)	350(43) ^(k)	416(14) 395(1)	[350]	285(4)	213(16)	
	Rama	c1F ₅ (b)	(liquid)	709(30)	538(10)	[723]	[480] ^(k)	ı	480(100)	375(10)	296(4)	
		xe0F4 (b)		920(20 ^(h)	567(100)	[608] ^(j)	527(40)	354(20)	285(0+) ⁽ ⁽)	233(10)	161(0+)	
		-(a) 	Raman	ı	530	I	455	ł	1	242	ı	*
		BrF	Infra red	·	ı	570	'n	ı	302	1	1	

¢

.

l

.

,

in Table 3.2 are thus based only on comparison with the related molecules BrF_5 (solid ¹⁰⁴ and liquid ¹⁰⁵), IOF_4^- , ⁵⁸ $ClOF_4^-$, ⁴² $XeOF_4^-$, ¹⁰⁵ and BrF_4^- . ⁹⁶ The assignments were also made so that the differences in frequency between BrF_5 and $BrOF_4^-$ were similar to differences between $ClF_5^{-10^{45}}$ and $ClOF_4^-$, and IF_5^{-106} and IOF_4^- . The $BrOF_4^-$ ion is expected to have a square pyramidal geometry (structure (4)) of C_{4v} symmetry. All the related molecules have this geometry and the ¹⁹F nmr spectrum of $BrOF_4^-$ (see Section D) also supports this. The nine fundamental modes are classified as $3A_1 + 2B_1 + B_2 + 3E$, and all are Raman active. The asymmetric XF_4 (4)

2

be very weak (this mode is inactive in D_{4h} symmetry), and has not been observed in any of the related molecules. This mode is, therefore, assumed not to be observed for $BrOF_4^-$.

bending mode would, however, be expected to

The single line at 930 cm⁻¹ is obviously the BrO stretching motion which, as expected, is intermediate in strength between those of IOF_4^- and $ClOF_4^-$. The fact that this frequency is very close to the mean of the BrO₂ stretching motions in BrO₂F (931 cm⁻¹) indicates that the bond weakening effect of the negative charge is offset by the greater electron withdrawing power of four fluorines in BrO₄ as compared to the single fluorine and one oxygen in BrO₂F.

The strongest Raman band should be the BrF_4 symmetric stretch, -2 and the line at 523 cm⁻¹ in the room temperature spectrum (529 cm⁻¹ at -196°C) is assigned to this motion. This frequency is quite similar to that in BrF_4^- (530 cm⁻¹) and lower than that in BrF_5 (570 cm⁻¹). The next strongest band should be the symmetric out-of-phase stretching mode v_4 . This motion should come in roughly the same region as the similar motion in BrF_4^- (455 cm⁻¹), and the peaks at 478 cm⁻¹ and 454 cm⁻¹ (room temperature) and 481 and 459 cm⁻¹ (-196°C) are both possible. In solid BrF_5 this motion is split into two components (at 525 cm⁻¹ and 539 cm⁻¹). Both 478 cm⁻¹ and 454 cm⁻¹ are, therefore, assigned to v_4 in $BrOF_4^-$. The peak at 503 cm⁻¹ in the room temperature spectrum is assigned to $v_{asym}XF_4$. In the -196°C spectrum a line at 486 cm⁻¹ appears in addition to the line at 506 cm⁻¹, and both lines are assigned to $v_{asym}XF_4$, with the E mode split into its two components by solid state effects.

The five deformations remain to be assigned; $v_8(E)$ should be the highest frequency deformation, since it involves motion of the doubly bonded oxygen atom, and it is assigned to the peaks at 429 cm⁻¹ (along with the shoulder at 417 cm⁻¹), 403 cm⁻¹ and 392 cm⁻¹ in the room temperature spectrum. These lines are well resolved at -196°C and are at 434 cm⁻¹, 421 cm⁻¹, 409 cm⁻¹, and 399 cm⁻¹. These values are close to those in BrF₅ (425,417, and A14 cm⁻¹), IOF_4^- (365 cm⁻¹) and $CIOF_4^-$ (416 cm⁻¹ and 395 cm⁻¹), and it is assumed that the E mode is extensively split by solid state effects. Similarly extensive splittings have been observed for v_8 and v_9 of solid BrF₅ at 10° K.¹⁰⁴ As in all related molecules, v_9 should have the lowest frequency of all and the broad line at 187 cm⁻¹ in the room temperature spectrum is thus assigned to v_9 . At -196°C, this

line is split into two components at 196 cm⁻¹ and 184 cm⁻¹. v_3 can be assigned to the line at 310 cm⁻¹ (314 cm⁻¹ at -196°C) and v_6 to the line at 241 cm⁻¹ (a shoulder at 239 cm⁻¹ appears in the low temperature spectrum). Both these assignments place the frequency found for BrOF₄ between those in IOF₄ and ClOF₄ and similar to the frequency in BrF₄. As was mentioned earlier, it was assumed that v_5 was too weak to be observed.

1

A line was observed at 161 cm^{-1} in the low temperature spectrum which was not observed at room temperature. This line is assigned to a lattice mode as it is too low in frequency to be a fundamental. Several other lattice modes (122, 97, 74, 66, and 46 cm^{-1}) were also observed in the low temperature spectrum.

The main difference between our assignments and those reported by Bougon et al. are as follows. They have assigned the peaks at 506 cm⁻¹ and 478 cm⁻¹ as the two components of $v_{asym}BrF_4(E)$. However, the rather large intensity of the 478 cm⁻¹ peak makes this assignment dubious. Furthermore, in our low temperature spectrum, the 478 cm⁻¹ line splits into two lines at 486 cm⁻¹ and 481 cm⁻¹, which also favours our assignment. Bougon et al. assign the peak at 161 cm⁻¹ as a component of $\delta_{asym}XF_4(E)$, with the broad peak at 187 cm⁻¹ as the second component. However, at low temperature, the 187 cm⁻¹ peak is split into two components which we have attributed to the splitting of the E mode, leaving 161 cm⁻¹ as a lattice vibration. The fact that 161 cm⁻¹ is not observed on our room temperature spectrum also supports this assignment. Finally, Bougon et al. attribute the shoulder at 239 cm⁻¹ to v_5 , the mode which we assumed to be unobserved.

This value is close to what would be expected by comparison with the calculated value for BrF_5 , and may be observable if the $Br0F_4^-$ is distorted in the solid. However, v_5 is not observed in solid BrF_5^{-104} or in solid $RbC10F_4$ and $CsC10F_4^{-42}$ and we have, therefore, assigned the shoulder at 239 cm⁻¹ as a component of $\delta_{sym}XF_4$ in-plane, leaving v_5 unobserved.

D. ¹⁹F N.M.R. Spectrum of KBrOF₄.

The ¹⁹F nmr spectrum of a saturated solution of KBrOF_4 in CH_3CN at room temperature showed a single peak at -104 ppm (width at half height ~ 275 Hz). This peak is in the F on Br(V) region and is slightly upfield from the resonance due to the basal fluorines (-132 ppm ¹⁰⁷) of the isoelectronic molecule BrF₅. It is also slightly upfield of the chemical shift for the parent molecule BrOF₃ which occurs at -160 ppm (see Chapter IV). The observation of a single line for BrOF₄⁻ is in agreement with the equivalence of the four fluorine atoms in the proposed structure (4). Other possible structures such as (5) or (6) (which do not conform to the predictions of VSEPR) would be expected to exhibit more than one F-on-Br(V) resonance.

E. The Reaction of KBrO3 and BrF5.

The reaction of $KBrO_3$ and BrF_5 has been reported by Schmeisser and Pammer ²³ to occur at -50°C according to equation (3.5). Independently of our work, Bougon and Tantot ⁴⁵ have reported that this reaction at room

$$KBrO_3 + BrF_5 \rightarrow KBrF_4 + BrO_2F + \frac{1}{2}O_2^{\dagger}$$
(3.5)

temperature gives different products and proceeds according to equation (3.6) when approximately equimolar amounts of BrF_5 and $KBrO_3$ are used.

$$KBrO_3 + BrF_5 \rightarrow KBrO_2F_2 + BrF_3 + \frac{1}{2}O_2^{\dagger}$$
 (3.6)

When $BrF_5:KBrO_3$ ratios higher than 1:1 were used, they reported that the reaction was slow, whereas when lower ratios were used, $KBrF_4$ was the main product and the reactions were at times violent. Bougon and his coworkers ⁴⁹ also showed that when a 15:1 molar ratio mixture of BrF_5 and $KBrO_3$ was refluxed in the presence of 8.7 atmospheres of fluorine, $KBrOF_4$ is obtained as a solid product after 16 hours. The other products were not identified and no reactions were proposed. Because the reaction of $KBrO_3$ with BrF_5 had been reported ²³ to be the most convenient preparation for BrO_2F , it was studied in the present work. Our results were not compatible with either those of Schmeisser and Pammer or those of Bougon et al. It was found that when pure reagents are used, $KBrO_3$ and BrF_5 do not react appreciably at -50°C when $BrF_5:KBrO_3$ ratios between 1.24:1 and 3.7:1 were used. Even after the mixtures had stood at this temperature for several hours, Raman spectroscopy showed that the white solid remaining after the BrF_5 was removed under vacuum was essentially pure $KBrO_3$.

The Raman spectra generally had a small peak at 884 cm⁻¹ due to $KBrO_2F_2$. When a mixture of BrF_5 and $KBrO_3$ (2.62:1) was allowed to react at room temperature for six hours, a larger (but still relatively minor) amount of $KBrO_2F_2$ was produced, and a very small amount of BrO_2F was obtained.

We have found, however, that when a very small amount of HF is added the reaction is much more rapid and substantial amounts of $Br0_2F$ are obtained, and the solid product of the reaction consists mostly of $KBr0_2F_2$ with variable amounts of $KBr0F_4$ being present (usually between 0% and 20%, as estimated from the Raman spectra). In most cases the $KBr0_3$ is completely consumed. The amount of $KBr0F_4$ produced varied considerably from one reaction mixture to the next. Our results are not consistent with the reaction scheme proposed by Schmeisser and Pammer as $KBrF_4$ is not usually observed as a solid product. Our results are also not consistent with those of Bougon and Tantot as they did not observe $Br0_2F$ as a product. Furthermore, neither of the previously proposed reactions explain the formation of $KBr0F_4$.

Our results can be explained by the following reaction schemes. Two first steps are possible. Which of these steps occurs will depend-on

$$KBrO_3 + BrF_5 \rightarrow KBrO_2F_2 + BrOF_3$$
(3.7)

$$KBr0_3 + BrF_5 \rightarrow KBr0F_4 + Br0_2F$$
 (3.8)

whether $Br0_2F$ or $Br0F_3$ is the stronger fluoride ion acceptor. In the related chlorine system, $Cl0F_3$ is a stronger F^- acceptor than $Cl0_2F.^{43}$ Also, when a mixture of $KBr0F_4$ and $KBr0_2F_2$ is reacted with a deficit of

1

AsF₅ in BrF₅, all the KBrO₂F₂ reacts whereas some KBrOF₄ is left unreacted. These two facts, as well as the facile reaction of BrOF₃ with KHF₂ (see Chapter IV) suggest that BrOF₃ is a stronger F⁻ acceptor than BrO₂F, and that reaction (3.8) is the first step. Since KBrO₂F₂ is the main solid product, reaction (3.8) must be followed by another step. A reasonable reaction would be (3.3) which has earlier been shown to proceed to the right in BrF₅. The fact that reactions (3.3) and (3.8) occur at the same time and that their rates may depend on the exact composition of the reaction mixture could account for the variable ratios of KBrO₂F₂ and KBrOF₄ formed in different reactions.

The role of HF in promoting the reaction is not clear, but it must be involved in the first step rather than in the second step, since this second step (reaction (3.3)) has already been shown to occur in BrF_5 in the absence of HF.

If the relative Lewis acidities of $BrOF_3$, and BrO_2F are ignored in choosing the first step of the reaction, another possible reaction scheme would be equation (3.7), followed by a rapid reaction such as (3.9)

$$BrOF_3 + KBrO_3 \rightarrow BrO_2F + KBrO_2F_2$$
 (3.9)

so that $BrOF_3$ would not be observed as a product. This would be analogous to the situation found in the reaction of BrF_5 with water or IO_2F_4 , where $BrOF_3$ is not observed as a product (see Chapter IV). Reaction (3.10) would have to proceed to a small extent in order to account for the KBrOF₄

$$BrOF_{3} + KBrO_{2}F_{2} + KBrOF_{4} + BrO_{2}F$$
(3.10)

observed in the products. This scheme is made unlikely by the fact that when the reaction of KBrO_3 with BrF_5 was carried out in the presence of KF (mole ratio (1:1.9:1)), a normal (i.e. $\sim 10\%$) amount of KBrOF_4 was observed. If BrOF_3 were present as an intermediate, this would have reacted rapidly with the KF present to produce an unusually large amount of KBrOF_4 .

The first mechanistic scheme given is thus more likely and the proposed reaction scheme is thus (3.8) followed by (3.3).

$$KBrO_3 + BrF_5 \xrightarrow{HF} KBrOF_4 + BrO_2F$$
 (3.8)

$$KBrOF_4 + KBrO_3 + 2KBrO_2F_2$$
 (3.3)

If (3.3) proceeds to completion, then the overall reaction becomes (3.11).

$$2KBrO_3 + BrF_5 \rightarrow 2KBrO_2F_2 + BrO_2F$$
 (3.11)

On the basis of (3.11), one mole of $KBrO_2F_2$ should be produced per mole of $KBrO_3$ used. Comparison of the weights of $KBrO_2F_2$ product and the $KBrO_3$ used showed that this was indeed the case (see Section F). The yield of BrO_2F obtained from this reaction was typically about 50% of theoretical yield calculated for equation (3.11). Also, the reaction mixture usually turned quite dark brown due to evolution of bromine. Thus the low yield of BrO_2F can be attributed to its decomposition in the reaction mixture. The products reported by Bougon and Tantot for the reaction of $KBrO_3$ with BrF_5 (equation (3.6)) may be attributable to the complete decomposition of the BrO_2F in the reaction mixture which would produce Br_2 , BrF_3 and O_2 (however, Bougon and Tantot do not specifically mention the production of Br_2). This decomposition of BrO_2F would be favoured by the rather small amount of BrF_5 solvent present at low BrF_5 :KBrO₃ ratios.

Bougon and his coworkers have also reported that heating a mixture of BrF_5 with $KBrO_3$ (15:1 mole ratio) in the presence of F_2 produces $KBrOF_4$ as the only solid product.⁴⁹ It is likely that the fluorination of $KBrO_2F_2$ to $KBrOF_4$ in this case is due to the F_2 (e.g. equation (3.12)) and not due to a reaction between BrF_5 and $KBrO_2F_2$.

$$KBrO_2F_2 + F_2 \rightarrow KBrOF_4 + \frac{1}{2}O_2 + \qquad (3.12)$$

Bougon et al.report the formation of 0_2 gas and add that under more vigorous conditions, KBrF₆ is obtained. The fluorination of KBrO₄ to KBrF₆ must employ F₂ as the fluorinating agent since BrF₅ is a much weaker fluoride ion acceptor than BrOF₃, so that reaction (3.13) would not proceed to the right. The direct reaction of F₂ with KBrO₂F₂ to give

 $KBrOF_4 + BrF_5 \rightarrow KBrF_6 + BrOF_3$ (3.13)

 $KBrOF_4$ and ultimately $KBrF_6$ is in agreement fith our observation that BrO_2F can be fluorinated to $BrOF_3$ and then BrF_5 by the strong fluorinating agent KrF_2 (see Chapter IV).

F. Experimental Section

4

(i) Preparation of $KBr0F_4$ and $KBr0_2F_2$ by the Reaction of $KBr0_3$ and $\underline{KBrF_6}$.

0.216 g (1.30 mmol) of KBrO₃ and 0.250 g (1.42 mmol) of KBrF₆ were shaken with 1.3 g of CH_3CN for 12 hours in a Kel-F tube. The solvent was removed under vacuum and a white solid resulted which showed only lines attributable to KBrOF₄ and KBrO₂F₂. The separation of KBrOF₄ from KBrO₂F₂ relies on the slight solubility of KBrOF₄ in CH_3CN compared to the insolubility of KBrO₂F₂. 0.315 g of a mixture of KBrO₂F₂ and KBrOF₄ and 2.4 g of CH_3CN were placed in ampoule A of the glass apparatus shown.

The mixture was shaken for 2 hours. The liquid was then filtered over to side B, through the glass frit F, and the CH_3CN distilled back to side A. A small amount of white solid was deposited in B. This operation was then repeated several times. The progress of the extraction can be monitored by Raman spectroscopy. The white material in B was $KBrOF_4$. Calc. for $KBrOF_4$: K, 18.53%; Br, 37.87%; F, 36.02%. Found: K, 18.88%; Br, 37.46%; F, 38.14%. $KBrO_2F_2$ was obtained when a mixture of $KBrO_2F_2$ and $KBrOF_4$ was extracted with CH_3CN , as described above, and all the $KBrOF_4$ removed in this way. Calc. for $KBrO_2F_2$: K, 20.69%; Br, 42.48%; F, 20.10%. Found: K, 20.40%; Br, 42.57%; F, 20.25%. The analyses were performed by Schwarzkopf Microanalytical Laboratories, Woodside, New York.

(ii) <u>Hydrolysis of KBrF₆.</u>

A solution of 10 ml of H_2^0 in 200 ml of dry CH_3^cN was prepared using a 10 ml syringe (Hamilton Co. Inc., Whittier, California). Aliquots of this stock solution were then syringed into a solution of $KBrF_6$ (0.051 g, 0.22 mmol) dissolved in CH_3^cN (0.3 g) in a 6 mm o.d. quartz tube. After each addition the solvent was removed under vacuum, and the Raman spectrum of the solid produced was recorded.

(iii) Reactions of $KBrOF_4$ and $KBrO_3$, and $KBrF_6$ and $KBrO_2F_2$:

(a) KBrOF_4 and an unmeasured excess of KBrO_3 were placed in an FEP nmr tube and $\mathrm{CH}_3\mathrm{CN}$ was distilled in. The mixture was allowed to stand at room temperature overnight. The solvent was then removed under vacuum. The Raman spectrum of the resulting solid showed only lines attributable to KBrO_3 and $\mathrm{KBrO}_2\mathrm{F}_2$. This reaction was also done using BrF_5 as a solvent. KBrOF₄ (0.026 g, 0.12 mmol) and KBrO₃ (0.051 g, 0.31 mmol) were allowed to react for five hours at room temperature in the presence of BrF_5 (0.94 g) as a solvent. The solvent was removed under vacuum. The Raman spectrum of the resultant solid showed that in addition to excess KBrO_3 , approximately equal amounts of $\mathrm{KBrO}_2\mathrm{F}_2$ and KBrOF_4 were present.

(b) Approximately equal amounts of KBrF_6 and $\mathrm{KBrO}_2\mathrm{F}_2$ were placed in a Kel-F tube and CH₃CN was distilled in. The mixture was agitated at room temperature for 28 hours, and the CH₃CN was removed under vacuum, leaving a white solid. Raman spectroscopy indicated that no KBrOF_4 had been produced. There was, however, some ${\rm KBrF}_4$ produced, probably from the decomposition of ${\rm KBrF}_6$.

(iv) <u>Reaction of KBrO₃ with BrF₅.</u>

In a typical reaction 2.756 g (16.5 mmol) of $KBrO_3$, 7.56 g (42.0 mmol) of BrF_5 and 0.0124 g (0.6 mmol) of HF were allowed to mix at room temperature for 3-5 hours in a Kel-F tube. The resulting mixture was brown in colour due to production of Br_2 by partial decomposition. The volatile products were then pumped through a -48°C trap (n-hexyl alcohol slush bath). 0.590 g of white material (BrO_2F) was collected in the -48°C trap, which corresponds to 4.51 mmol of BrO_2F (55% yield based on the proposed reaction scheme). The low yield is presumably due to decomposition of BrO_2F in the reaction mixture. A white solid remained in the reaction vessel which was identified from its Raman spectrum as consisting mostly of $KBrO_2F_2$ (with about 10% $KBrOF_4$). The weight of this solid was 3.11 g which corresponds to 16.4 mmol of $KBrO_2F_2$ (ignoring the presence of the $KBrOF_4$).

CHAPTER IV

THE PREPARATION AND THE CHEMICAL AND SPECTROSCOPIC PROPERTIES OF BrO2F AND BrOF3.

A. Introduction

When the present work began, BrO_2F had been reported in the literature but had never been characterized, and evidence for the existence of BrOF_3 was very tenuous. Ruff and Menzel ²⁴ obtained a deep red liquid from the reaction of BrF_5 with H₂O. They showed, however, that this was not BrOF_3 as might have been expected since all of the oxygen present was evolved as O₂. Irsa and Friedman ¹⁰⁸ examined mass spectra of mixtures of BrF_5 and O₂ and observed bromine oxyfluoride ions including BrO_2^+ , BrO_2F^+ and BrOF_2^+ , from which they concluded that both BrOF_3 and BrO_2F must have been present in these mixtures. Sloth et al.¹⁰⁹ on the other hand examined the hydrolysis of BrF_5 by mass spectrometry and observed a number of bromine oxides and oxyfluorides including BrO_2F , but did not obtain any evidence for BrOF_3 as a product.

 BnO_2F was isolated by Schmeisser and his coworkers who used several preparative methods,⁸ including the fluorination of BrO_2 with F_2 or BrF_5 , the reaction of KBrO_3 with BrF_5 or BrF_3 and the reaction of a mixture of Br_2 and BrF_5 with O_3 . BrO_2F was also obtained as a product in the reactions of BrF_5 with Cl_2O_6 and N_2O_5 , as well as in the reaction of BrO_2NO_3 with NO_2F . BrO_2F was reported to form colourless crystals melting at -9°C. At room temperature, the liquid slowly turned xellow

due to decomposition, while at $+56^{\circ}$ C, vigorous decomposition occured which it was suggested could be described by equation (4.1) ^{2 3}

$$3BrO_2F \rightarrow BrF_3 + Br_2 + 3O_2 \tag{4.1}$$

 BrO_2F attacks glass rapidly and was shown to react explosively with water and organic substances.²² No spectroscopic data was reported however.

In this chapter, Raman and ${}^{19}F$ nmr spectroscopic data is reported for BrO_2F along with some of its reaction chemistry. Also the preparation of $BrOF_3$ is reported for the first time and its characterization by Raman and ${}^{19}F$ nmr spectroscopy is described. Independently from our work, Bougon and Bui Huy have very recently reported the preparation and vibrational spectrum of $BrOF_3$, 48 and their results will be discussed.

Some reactions in which BrO_2F and $BrOF_3$ are the products will be described as well, along with an attempted preparation of BrO_2SO_3F .

B. Preparation and Properties of Bro₅F

The preparation of BrO_2F by the reaction of $KBrO_3$ with BrF_5 has been described in Chapter III. The yield of BrO_2F was typically about 50% based on the amount of $KBrO_3$ used.

A more convenient method of obtaining small quantities of BrO_2F is to dissolve $KBrO_2F_2$ in HF. The reaction occuring is (4.2)

$$KBrO_2F_2 + HF + KHF_2 + BrO_2F \qquad (4.2)$$

After removal of the HF under vacuum at low temperature, the BrO_2F is separated from the KHF_2 by allowing the mixture to warm up to room temperature under dynamic vacuum and collecting the BrO_2F in a -48°C trap. This method is convenient since it avoids the use of BrF_5 and the long time required for the reaction of $KBrO_3$ with BrF_5 . The BrO_2F obtained melted at approximately -10°C and the liquid was found to be stable for short periods of time (\sim 30 min) at room temperature when kept in wellpassivated Kel-F or FEP tubes.

Transferring BrO_2F by static distillation was found to be difficult because small amounts of O_2 are produced by decomposition (see above) which greatly slows down the static distillation which in turns leads to further decomposition. For this reason, BrO_2F is best transferred by dynamic distillation or by pouring a solution containing BrO_2F into the reaction vessel.

 BrO_2F is quite soluble in BrF_5 , and the solutions are stable at room temperature for several hours. During an attempt to prepare a concentrated solution of BrO_2F in BrF_5 , a white solid was deposited in the tube at room temperature. Since BrO_2F melts at about -10°C, the solid produced cannot be BrO_2F . It is presumably an adduct of BrO_2F and BrF_5 . When the excess BrF_5 was removed under vacuum at -48°C, a white solid was produced which was identified as BrO_2F from its Raman spectrum. The adduct must, therefore, be rather labile since it dissociates even at -48°C. The exact nature of this adduct was not investigated further, IF_5 has been shown to form a number of molecular adducts such as $KIO_2F_4 \cdot 2IF_5$,²⁶ CsF · 3IF_5,¹¹⁰ XeF_2 · IF_5,¹¹¹ where the interaction has been presumed to be due to a weak 0 or F bridge to the iodine atom of IF_5 . A similar interaction has also been proposed between KrF_2 and BrF_5 .⁸⁹ The adduct between BrO_2F and BrF_5 may be of a similar nature, with BrO_2F forming a weak bridge to the Br atom of BrF_5 .

 BrO_2F was found to be soluble in SO_2CIF , even at low temperatures (-120°C). BrO_2F is also quite soluble in HF at room temperature, but these solutions decompose with evolution of Br_2 and production of Br_3 . The other product is presumably O_2 and these observations are consistent with the thermal decomposition (4.1) which Schmeisser has suggested.²³ The solubility of BrO_2F in HF is only slight at -78°C, but at this temperature the solutions appear to be stable.

C. Characterization of BrO_2F by Raman and ${}^{19}F$ N.M.R. Spectroscopy.

(i) Raman Spectroscopy

Figures 4.1 and 4.2 show the Raman spectra of solid and molten BrO_2F . Table 4.1 lists the frequencies obtained from these spectra, as well as those obtained from spectra of BrO_2F in various solvents. Also listed in Table 4.1 are the fundamental frequencies of the related species ClO_2F , $\frac{31}{31}$ and SeO_2F^- (see Chapter VI). BrO_2F is expected to have a pyramidal geometry (structure 1) with C_s symmetry. The six fundamentals (1 = 4A' + 2A'') are all Raman active. Six lines are observed in

)

						-		
			TABLE '	4.1		à		
		Raman	Spectra of BrO ₂ F.	, ClO ₂ F and SeO	₂ F ⁻ (cm ⁻¹)	.		
a)	* Se0 ₂ F-(b)	BrO ₂ F in BrF ₅ solution. (e) (Room temp.)	Br0 ₂ F in S0 ₂ ClF solution. (f) (-100°C)	BrO ₂ F in HF solution. (g) (-20°C)	Liquid BrO ₂ F (-10°C)	Soljid BrO ₂ F (-75°C)	Assignment	
(c) ^{db} (d)	888(45)	962 (8)	955(13)	964(15)	953(14) dp	963 (5) 940(20)	^v 5; ^v BrO asym	"Α
d (00	. (001)806	916(100)	(001)116	915(100)	908(100) p	908(100)	ر Bro sym	A'
d ()	450(sh) ₍₂₅₎ 424 408(sh) ^{v.br}		523(20) br	531(25)	506(36) p	524(sh) ₍₂₅₎ 496 487(sh) ^{v.br}	^v 2; ^v Br-F	Α.
, q (324(10)	1	8	395 (¿)	394(14) p	400(sh) ₍₁₀₎ 386	^v 3; ^δ 0Br0 [/]	Α.
(;)q (283(10)		ŧ	310 (;)	305(21) p	305 294(sh) ⁽²⁰⁾	v4; ⁶ 0BrF sym	Ā
(4)	238 (2)	/. I	ı	276 (?)	271(16) dp	267(15)	^v و، ⁶ 0BrF asym	μ"
		9 -		·				
eference 3	il. ^(b) se	e Chapter VI.	(c) Numbers in pa	arentheses give	relative inte	ensities		
p: depolar	'ized; p: pol	arized; sh: sh	oulder; v.br: ver	°y broad.	*			
he BrO ₂ F s	pectrum below:	1 900 cm ⁻¹ is obt	scured by the very	/ strong BrF ₅ 1	ines.			
ending moc	des were obscu	red by FEP tube	lines.					
he relativ	e intensities	of the three bu	ending modes canno	ot be accuratel	y measured due	e to the proxim	ity'of FEP tube lines.	
ntensity 1	coo small to b	e measured.		4			56	
•								

٢

L

•

•

. 、 `

Ι

}

,

.

,

the spectrum of liquid $Br0_2F$ and in the HF solution spectrum. Of the six lines observed for molten $Br0_2F$, four are polarized and two are depolarized. The planar structure (2) with C_{2v} symmetry can, therefore, be ruled out since only three polarized lines ($\Gamma = 3A_1 + B_1 + 2B_2$) would have been expected. The six lines observed can be satisfactorily assigned to a monomeric, pyramidal $Br0_2F$ molecule by analogy with the known spectrum of $Cl0_2F$. The $Br0_2F$ frequencies are lower than those of $Cl0_2F$, which is consistent with the decrease in bond strength as the electronegativity of the central atom decreases and with the larger mass of Br compared to C1. Direct comparison with $I0_2F$ is not possible since the latter is polymeric and gives a complex Raman structure.^{50,51} The $Br0_2F$ frequencies are slightly higher than those of the isoelectronic $Se0_2F$ ⁻ which reflects the bond weakening effect of the negative charge on the anion.

The BrF stretching frequency in BrO_2F is relatively low when compared to other fluorine containing bromine species. The frequency for BrO_2F (506 cm⁻¹) is similar to the mean of the Br-F stretching frequencies in the anions BrF_4^- (531 cm⁻¹),⁹⁶ BrF_6^- (487 cm⁻¹),⁹⁵ and BrOF_4^- (498 cm⁻¹) (Chapter III), and considerably lower than that in the neutral molecules BrF_3 (613 cm⁻¹),¹¹² BrF_5 (615 cm⁻¹),¹⁰⁵ and BrO_3F (605 cm⁻¹).⁶² The mean value for BrOF_3 (see below) is 574 cm⁻¹ if the frequency of the asymmetric F-Br-F stretch reported by Bougon and Bui Huy ⁴⁸ is used. A force constant calculation for $\text{ClO}_2\text{F}^{-31}$ has revealed an unusually low Cl-F stretching force constant, although this has been disputed on the basis of a more recent calculation.¹¹³ A similar

 \supset

unexpected) low stretching frequency has been found for the Se-F bond in SeO₂F (see Chapter VI). The results obtained in the present work indicate that the Br-F bond in BrO_2F is also rather weak, and presumably this may be attributed to a large contribution from the ionic resonance structure (3) in addition to the covalent structure (1).

The mean of the Br0 stretching frequencies in liquid Br0₂F (931 cm⁻¹) is similar to that for Br0₃F (941 cm⁻¹) but higher than those of other related species: Br0₃⁻ (829 cm⁻¹),¹¹⁴ Br₂0₄(A) (893 cm⁻¹),¹² Br0₂F₂⁻ (895 cm⁻¹) and Br0₂⁺ (899 cm⁻¹) (see Chapter V). As the stretching frequency for a Br(VII) compound is expected to be significantly higher than for a similar Br(V) compound, it appears that the Br0 stretching frequencies in Br0₂F are abnormally high. This is also consistent with an important contribution from structure (3) above, which places a positive charge on bromine, thereby increasing the Br0 stretching frequencies. This suggestion is in agreement with the results of a recent force constant calculation for Br0₂F.⁴⁶ The Br-F stretching constant (2.24 mdyn Å⁻¹) was found to be considerably smaller than that of the weaker Br-F bond in BrF₅ (3.19 mdyn Å⁻¹ 10⁵) and BrF₃ (3.01 mdyn Å⁻¹ 11⁵) and similar to that found in BrF₄⁻ (2.38 mdyn Å⁻¹ 11⁶). Moreover, the Br=O stretching constant in Br0₂F (6.78 mdyn Å⁻¹) is
similar to the values reported for $Br0_3F$ (6.88 mdyn Å⁻¹ 117 and 6.92 mdyn Å⁻¹ 118).

The spectra of BrO_2F in the solid and liquid phases and in solution are quite similar (Table 4.1). The molecule thus has the same pyramidal monomeric structure in all these phases. The Br-F stretching frequency is, however, significantly greater in solution than in the solid or in the melt, indicating that there is possibly weak intermolecular fluorine bridging in the solid and in the melt. In ClO_2F , the Cl-F stretching frequency increases by 28 cm⁻¹ on going from the liquid to the gas, indicating that fluorine bridging may be present in the liquid here also.

(ii) ¹⁹F N.M.R. Spectroscopy

The ¹⁹F nmr spectrum of BrO_2F in BrF_5 at -35° C consists of a sharp line at -210 ± 4 ppm. The chemical shift depends slightly on the composition and temperature of the solution. It lies between the chemical shifts of the two resonances of BrF_5 (-132 and -270 ppm ¹⁰⁷) and in the same region as the isoelectronic $BrOF_2^+$ ion (-192 ppm for the BF_4^- salt at -78° C, see Chapter V). In SO_2ClF solution, the chemical shift for BrO_2F was found to be -205 ± 2 ppm at temperatures from -78° C to -123° C, which is in good agreement with the value found for the $BrF_5^$ solution. In HF solution, no separate ¹⁹F nmr signal was observed for BrO_2F at all temperatures down to the freezing point of the solution, indicating that BrO_2F and HF are undergoing rapid fluorine exchange. This exchange may occur via reactions such as (4.3) or (4.4) since $BrO_2F_2^$ and BrO_2^+ are both known species (Chapters III and V).

-14

$$BrO_2F + HF_2 \stackrel{\rightarrow}{\leftarrow} BrO_2F_2 + HF$$
 (4.3)

$$BrO_2F + H_2F^+ \stackrel{?}{\leftarrow} BrO_2^+ + 2HF$$
 (4.4)

D. The Reaction of BrO₂F with KF

The reaction of BrO_2F with KF at room temperature was found to give a mixture of $KBrF_4$ and $KBrO_2F_2$. The $KBrF_4$ is probably produced by decomposition of BrO_2F to BrF_3 (equation(4.1)) followed by reaction with KF. Only 12% of the available KF was consumed by the reactions (4.5) and (4.6). Thus the reaction of KF with BrO_2F proceeds only to a small

$$KF + BrO_{2}F \neq KBrO_{2}F_{2}$$
(4.5)

$$KF + BrF_{3} \rightarrow KBrF_{4}$$
(4.6)

extent (<12%) after twenty-four hours. This is probably due to the reaction being kinetically controlled rather than to any inherent instability of the $KBrO_2F_2$, since the latter can be obtained pure by other methods and is stable indefinitely at room temperature.

E. Preparation and Properties of BrOF₃.

BrOF₃ can, in principle, be prepared from the reaction of KBrOF with a Lewis acid MF_n, according to equation (4.7). However, the

$$KBr0F_4 + MF_n \rightarrow Br0F_3 + KMF_{n+1}$$
 (4.7)

considerable F^- donor ability of BrOF₃ (see Chapter V) according to equation (4.8) makes the use of strong Lewis acids undesirable. A weaker

$$Br0F_3 + MF_n \rightarrow Br0F_2^+MF_{n+1}^-$$
 (4.8)

Lewis acid which is capable of causing reaction (4.7) but not (4.8) would be more useful. This is the basis of the methods used in the present work and by Bougon and Bui Huy 48 for the preparation of BrOF₃.

We have found that $BrOF_3$ is most conveniently prepared by dissolving KBrOF₄ in HF at low temperature. Removal of the HF under vacuum at -78° C leaves a white solid whose Raman spectrum is consistent with $BrOF_3$. Subsequent removal of the $BrOF_3$ (see below) left a white solid whose Raman spectrum contained the lines characteristic of KHF₂. Reaction (4.9), in which HF acts as a Lewis acid, had therefore occurred

$$KBrOF_4 + HF \rightarrow BrOF_3 + KHF_2$$
 (4.9)

when excess HF is present. This reaction is analogous to (4.2) by means of which BrO_2F is prepared from $KBrO_2F_2$. However, unlike the BrO_2F reaction, when the $BrOF_3/KHF_2$ mixture is allowed to warm up to room temperature under dynamic vacuum, a rather small amount of volatile material ($BrOF_3$) is collected in a -78° trap. The Raman spectrum of the solid residue shows it to consist of mostly $KBrOF_4$, indicating that the reverse reaction (4.10) occurs in the absence of a solvent. Removal of the HF under vacuum drives this reaction to the right, and it occurs even

 $-Br0F_3 + KHF_2 + KBr0F_4 + HF$ (4.10)

at -20° C. The fact that (4.10) occurs whereas the analogous reaction with BrO_2F (i.e. the reverse of (4.2)) does not under similar conditions

indicates that $BrOF_3$ is a stronger fluoride ion acceptor than BrO_2F , just as $ClOF_3$ is a stronger fluoride ion acceptor than ClO_2F .⁴³

In order to isolate $BrOF_3$ from KHF_2 , the $BrOF_3$ was dissolved in BrF_5 and the insoluble KHF_2 removed. The BrF_5 could then be removed under vacuum at -48° C leaving $BrOF_3$ as a white solid.

The reaction used by Bougon and Bui Huy 48 to prepare BrOF₃ employs 0_2^+ AsF₆ as the Lewis acid (equation (4.11)). The 0_2 and F₂

$$0_2^+ AsF_6^- + KBrOF_4 \xrightarrow{BrF_5} KAsF_6 + BrOF_{3_1}^+ + 0_2^- + 2F_2^-$$
 (4.11)

are removed under vacuum at low temperature and the $BrOF_3$ can be isolated by distillation of the BrF_5 and $BrOF_3$ (leaving KAsF₆ and excess KBrOF₄ behind) followed by removal of the BrF_5 under vacuum at -30 to -40° C. Although this preparation involves a simpler purification procedure, it nevertheless requires the preparation of $O_2^+AsF_6^{-1,19}$ whereas the method described in the present work requires only the use of HF.

The BrOF₃ prepared according to reaction (4.9) has a melting range of approximately -5° C to 0° C and formed a clear colourless liquid. The liquid slowly decomposed at room temperature even in a well-seasoned FEP tube, turning pale yellow and forming bubbles of gas. Reacting the decomposed liquid with excess KF produced a white solid identified as KBrF_4 from its Raman spectrum. Thus the decomposition of BrOF₃ at room temperature appears to proceed according to equation (4.12)

 $BrOF_3 \rightarrow BrF_3 + \frac{1}{2}O_2 \tag{4.12}$

This is analogous to the thermal decomposition of $ClOF_3$ which has been.

62

shown to proceed as follows 39

 $CloF_3 \xrightarrow{\Delta} ClF_3 + O_2$ (4.13)

Although Bougon and Bui Huy have reported that the vapour pressure of $BrOF_3$ is less than 5 mm Hg of room temperature, it was found in this work that $BrOF_3$ can be readily distilled statically by letting the solid warm up to room temperature. The reason for this apparent discrepancy is not known.

F. Characterization of $BrOF_3$ by Raman and ¹⁹F N.M.R. Spectroscopy.

(i) <u>Raman Spectroscopy</u>

The Raman spectra of solid (Figure 4.3) and liquid (Figure 4.4) BrOF₃ and of a solution of BrOF₃ in HF (Figure 4.5) have been recorded, and the observed peaks are listed in Table 4.2. A monomeric BrOF₃ would be expected to have the structure (4) which has AX_4E geometry and C_5 symmetry. Such a molecule would be expected to have nine fundamental

(4)

modes ($\Gamma = 6A' + 3A''$) which should all be Raman active. The spectrum of solid BrOF₃ contains thirteen lines without including the low frequency peaks which can be assigned to lattice modes. The spectrum of molten

Y is due to an unidentified impurity.

,

ť

TABLE 4.2

Raman Spectra of $BrOF_3$ (cm⁻¹)

HF solution (-78°C)	Liquid (0°C)	Solid (-196°C)	Tentative Assignment
1011(85) p ^(a)	1004(90) p ^(b)	1010(100)	^V 8r0
619(100)p	624(100)p	627(60) 614(70)	[°] BrF _{eq}
557(15)dp ^	-	526(sh) 510(25)	vasymFax ^{BrF} ax
499(25) p	493(100)p	479(70) 460(sh)	v _{sym} F _{ax} BrF _{ax}
435(20) p	v.br -	447(100)	· · ·
393(20)dp	396(20)dp	387(35)	
353(25) p	351(30) p	350(45)	
333(sh)dp	333(sh)dp?	315(17)	
234(1)?	243(4)?	245(2)	• '
200(7)?	199(20) p?	206(15)	
		123(15)	
		74(20)	Lattice modes
		63(25)	

(a) Numbers in parentheses give relative intensities.

(b) p: polarized; dp: depolarized; ?: degree of polarization is uncertain.

 $BrOF_3$ has eight bands and agrees well with the one reported by Bougon and Bui Huy.⁴⁸ However, the bands at 493 cm^{-1} and 624 cm^{-1} are asymmetric and appear to consist of at least two overlapping bands which gives a total of at least ten lines for liquid $BrOF_3$. That these two bands in the liquid state spectrum consist of several overlapping peaks is supported by the fact that both split into several components in the solid state spectrum. The HF solution spectrum contains ten bands. Also, the appearance of the HF spectrum depends on the temperature and concentration of the solution. At room temperature the 499 cm^{-1} and 435 cm^{-1} lines appear as a single, very broad band. At a concentration of 27 mole %, this peak has a frequency of 488 cm^{-1} and an intensity of approximately 65% of that of the 619 cm⁻¹ peak. As the concentration of $BrOF_3$ decreases, the 488 cm⁻¹ peak decreases in relative intensity and broadens towards. the low frequency side. At a concentration of 3.1 mole %, the relative intensity is only 20% of that of the 619 cm⁻¹ peak. That the spectrum of molter $\tilde{B}rOF_3$ and of solutions of $BrOF_3$ in HF exhibit a greater number of lines than expected can only be explained by postulating that $BrOF_3$ is associated in the liquid state and in HF solution (as well as .in the solid). The changes in the Raman spectrum of the HF solution with varying temperature and concentration must reflect changes in the nature or extent of the polymerization of the $Br0F_3$ solute. The complexity of the HF solution spectra cannot be due to reaction of the BrOF₃ with the HF solvent to form either $BrOF_4^-$ or $BrOF_2^+$, since the characteristic Br=0 stretching frequencies (see Chapters III and V) for these ions were not observed.

The conclusion that liquid $BrOF_3$ is associated has also been reached by Bougon and Bui Huy,⁴⁸ and is consistent with the fact that $ClOF_3$ has been shown to be associated in the liquid and solid,⁴¹ and IOF_3 is strongly associated in the solid phase ⁵⁶ (it decomposes without melting and no suitable solvent has been found to allow it to be examined in solution ⁵¹). Association is presumed to be present in liquid IF_5 at room temperature,¹²⁰ since two Raman lines which are observed at this temperature do not appear in the spectra of either the liquid at +130°C or the gas: These lines have been assigned to polymer bands. The spectrum of molten $BrOF_3$ was recorded at +45°C in an attempt to detect the disappearance of any bands. Rather poor spectra were obtained for $BrOF_3$ at +45°C due to bubbling of the liquid (presumably due to decomposition and refluxing). No significant differences could, however, be detected between the spectra run at 0°C, 25°C and 45°C; none of the lines could, therefore, be readily assigned to polymer bands.

Since the nature of the association in $BrOF_3$ is unknown, it is not possible to make a complete assignment of the observed spectra, but some useful conclusions can be drawn. It is clear that the highest frequency band at 1004 cm⁻¹ must be assigned to the BrO stretching mode; this is in the normal Br=O stretching region and indicates that this bond is probably not involved (or at least not strongly involved) in the intermolecular association that is presumed to be present.

The strong band at 624 cm⁻¹ is too high in frequency to be a bending mode and can, therefore, be assigned to a terminal fluorine stretching mode. Likewise, the strong band at 493 cm⁻¹ can be assigned, at least in part, to a Br-F stretching motion, and the lower frequency

of this line suggests that it is associated with the fluorines involved in the bridging between molecules. The fact that it, is this band which is the most markedly affected on going from the solid to the liquid to the HF solution supports this assignment, since the bridging Br-F bands would be expected to be most drastically affected by the changes in the extent of intermolecular interactions which accompany changes in phase. If the association in $BrOF_3$ is similar to that which has been suggested for the related molecules $ClOF_3$,⁴¹ SF₄, BrF₃, and ClF_3 ,¹¹⁵ then the association involves only the axial bonds. In this case the 624 cm^{-1} line can be described as a $Br-F_{eq}$ stretch and one of the components of the 493° cm⁻¹ line can be assigned as a $v_{sym}F_{ax}$ -Br-F_{ax} stretching motion, which would be expected to be lower in frequency than $v_{Br-F_{eq}}$ due to the inherent weakness of the axial bonds and their further weakening by the bridging. The depolarized line at 557 $\rm cm^{-1}$ in the HF solution spectrum may be described as the $v_{asym} F_{ax}$ -Br-F_{ax} stretching mode. It is to be noted however that this frequency is considerably shifted from the value of $\sim 605 \text{ cm}^{-1}$ reported by Bougon and Bui Huy for this mode on the basis of a partial gas-phase infra-red spectrum. Since the exact nature of the association, and hence the nature of the species present, is not known, it is not possible to assign the remaining lines in the spectrum which must correspond to bending modes. Bougon and Bui Huy have completely assigned the liquid phase spectrum on the basis of a monomeric $BrOF_3$ molecule of C_s symmetry, but the assignments attribute the broad line at 493 cm⁻¹ entirely to $v_{sym} F_{ax}$ -Br-F_{ax}. However, the asymmetry of this band and its splitting into two components in HF solution indicate that there are two

or more fundamentals responsible for this line, and cast doubt on the assignments. Indeed the assignment of even a component of this 493 cm⁻¹ line to $v_{sym}F_{ax}$ -Br-F_{ax} (as was proposed above) is not totally satisfactory as it is not clear why the intensity of such a mode should decrease dramatically when BrOF₃ is dissolved in HF. A further investigation of the vibrational spectra of BrOF₃ by other techniques, such as matrix isolation, was beyond the scope of this work.

(ii) ¹⁹F N.M.R. Spectroscopy

c'

Although two signals of intensity ratio 2:1 would be expected for a $BroF_3$ molecule with C_s symmetry, the ¹⁹F nmr spectrum of molten $BroF_3$ at room temperature shows only a single line in the F on Br (V) region at -152 ppm. 'There must be rapid exchange between the nonequivalent fluorines which may be a result of the association present in the liquid. Bougon and Bui Huy have reported similar results. $BroF_3$ is quite soluble in HF even at low temperature, but no ¹⁹F nmr signal attributable to $BroF_3$ could be observed, even down to the freezing point of the solution. It appears, therefore, that $BroF_3$ undergoes rapid fluorine exchange with the solvent, presumably by reactions such as (4.14) and (4.15). In SO_2CIF , solution at $-80^{\circ}C$ to $-100^{\circ}C$ a single broad line

$$BrOF_3 + HF_2^{-} \stackrel{?}{\leftarrow} BrOF_4^{-} + HF \qquad (4.14)$$

$$BrOF_3 + H_2F^+ \stackrel{+}{\leftarrow} BrOF_2^+ + HF$$
 (4.15)

(peak width ~ 600 Hz) was observed at -164 ppm, and at -120°C the peak shifted to -160 ppm, and the line width increased to ~ 1600 Hz. Similarly

₽.

in SO_2F_2 at -136°C, only a single broad line was observed for $BrOF_3$ at -162 ppm. The small difference in chemical shift of $BrOF_3$ in the molten state and in solution in SO_2CIF and SO_2F_2 suggests that $BrOF_3$ is associated in a similar fashion both in the molten state and in solution in these non-polar solvents. That only a single line is observed in these solvents indicates that exchange of non-equivalent fluorines occurs rapidly and probably intermolecularly, even at low temperature, between the units of an associated cluster of $BrOF_3$ molecules.

G. <u>Reaction of BrF₅ with H₂O and Iodine Oxyfluoro Species</u>

(i) <u>Hydrolysis of BrF_.</u>

Equimolar amounts of BrF_5 and H_2O were allowed to react at $-63^{\circ}C$ using HF as a solvent, and the solution was cooled to $-78^{\circ}C$. A white precipitate was formed whose Raman spectrum consisted of lines attributable to BrO_2F and BrF_5 . Although the formation of BrO_2F presumably proceeds via the intermediate formation of $BrOF_3$ (equations (4.16) and (4.17)), no $BrOF_3$ was in fact observed. The solution was pale yellow,

$$BrF_5 + H_20 \Rightarrow Br0F_3 + 2HF$$
 (4.16)

$$BrOF_3 + H_2 0 \rightarrow BrO_2 F + 2HF$$
(4.17)

indicating that some decomposition had occurred, but no Raman lines attributable to decomposition products (such as BrF_3 or Br_2) were observed, which indicates that only a small amount of decomposition had occurred. Removal of HF and BrF_5 under vacuum left a pale yellow solid

identified as BrO_2F . Two very weak Raman lines attributable to BrF_3 were observed and this may account for the yellow colour of the solid. It must be concluded that if BrOF_3 is indeed an intermediate, it must hydrolyse considerably faster than BrF_5 . The BrF_3 observed was produced either by decomposition of BrOF_3 or BrO_2F . These results are in agreement with mass spectral data obtained by Sloth et al.¹⁰⁹ who reported finding no evidence for BrOF_3 in the products of the hydrolysis of BrF_5 in the absence of a solvent.

ii) <u>Reaction of BrF₅ with Iodine Oxides and Oxyfluorides</u>.

 BrF_5 rapidly fluorinates I(V) oxides and oxyfluorides and as in the case of the hydrolysis of BrF_5 , BrO_2F rather than $BrOF_3$ is the product.

 BrF_5 reacted with IO_2F at -48°C. If a large enough excess of BrF_5 was used, a clear solution was obtained (otherwise the adduct between BrO_2F and BrF_5 precipitated out). A ^{19}F nmr spectrum of this solution showed, in addition to the BrF_5 107 solvent peaks, the characteristic peaks due to IF_5 121 and BrO_2F , and integration of these signals showed that IF_5 and BrO_2F were present in equal amounts. Thus the overall reaction can be written as (4.18). On removing the excess BrF_5 at

$$BrF_5 + IO_2F \rightarrow BrO_2F + IF_5$$
(4.18)

-48°C, a solid was produced whose Raman spectrum consisted of a mixture of BrO_2F and IF_5 , ¹⁰⁶ containing no $BrOF_3$. The $BrOF_3$, which is presumably produced as an intermediate according to equation (4.19) must fluorinate

$$BrF_5 + IO_2F \Rightarrow BrOF_3 + IOF_3$$

73

(4.19)

the I (V) species present more rapidly than the BrF_5 solvent, i.e. it is removed by rapid reactions such as (4.20) and (4.21).

$$BroF_3 + IO_2F \rightarrow BrO_2F + IOF_3$$
(4.20)

$$Br0F_3 + I0F_3 \rightarrow Br0_2F + IF_5$$
(4.21)

Similar results were obtained in the reactions of BrF_5 with I_2O_5 and IOF_3 , except that some decomposition of a bromine species was evident from the formation of the characteristic brown colour of Br_2 and some gas evolution. In both cases, ¹⁹F nmr spectra of the resulting solutions showed only BrF_5 , IF_5 and BrO_2F . Because of the decomposition which had occurred, integration of the BrO_2F and IF_5 signals showed amounts of BrO_2F that were less than would be required according to equations (4.22) and (4.23). When the solvent was removed under vacuum

$$5BrF_5 + 2I_2O_5 + 5BrO_2F + 4IF_5$$
 (4.22)

$$BrF_5 + 2IOF_3 \rightarrow BrO_2F + 2IF_5 \qquad (4.23)$$

from the I_2O_5/BrF_5 reaction mixture, a solid was obtained whose Raman spectrum showed lines attributable to only BrO_2F and IF_5 , but not to $BrOF_3$. As in the case of the IO_2F/BrF_5 reaction, the $BrOF_3$ presumably formed as an intermediate must be removed by rapid reaction with the I(V) species present.

When IO_2F_3 and BrF_5 were reacted at room temperature, the $^{19}F_5$ nmr spectrum showed (in addition to the AX₄ pattern of BrF_5) the AB_4 pattern of IOF_5 76 and a very weak AX₄ pattern assigned to IF_5 . Removal

of BrF_5 and IOF_5 under vacuum at -40°C produced a solid which consisted of mostly BrO_2F with some BrOF_3 (approximately 10% according to the Raman spectrum), a small amount of IF_5 , and possibly a very small amount of BrF_3 . The BrF_3 may have been produced by decomposition of either BrO_2F or BrOF_3 , while the IF_5 was probably due to photochemical decomposition of IO_2F_3 to IOF_3 ,⁷⁰ followed by fluorination to IF_5 by the solvent. Thus the reaction of BrF_5 with IO_2F_3 can be written as equations (4.24) and (4.25). The formation of a mixture of BrO_2F and

$$BrF_5 + IO_2F_3 \stackrel{*}{\to} BrOF_3 + IOF_5$$
 (4.24)

$$BrOF_3 + IO_2F_3 \rightarrow BrO_2F + IOF_5$$
 (4.25)

 $BrOF_3$ can be accounted for if reaction (4.25) does not go to completion. That $BrOF_3$ is observed as a product in the fluorination of IO_2F_3 by BrF_5 supports the supposition made earlier that it must be an intermediate in the fluorination of IO_2F , I_2O_5 and IOF_3 by BrF_5 .

The solid mixture of BrO_2F , $BrOF_3$, IF_5 (and possibly BrF_3) was redissolved in BrF_5 to produce a solution more concentrated than the original reaction mixture. The ¹⁹F nmr spectrum of this solution at -60°C showed BrF_5 and IF_5 , and a weak, very broad (~ 200 Hz) peak at a chemical shift of approximately -209 ppm. This signal is presumably due to BrO_2F undergoing exchange at an intermediate rate with $BrOF_3$. BrF_5 and IF_5 cannot be involved in the exchange since the expected ---spin-spin coupling is observed for these molecules. The -209 ppm peak does not represent the limiting fast-exchange average peak for BrO_2F and

 $BrOF_3$, since a chemical shift of approximately -199 ppm would be expected for the average of a 10:1 mixture of $BrO_2F:BrOF_3$ (involvement of BrF_3 would move the peak further upfield). Also, raising the temperature to -40°C (thereby increasing the rate of exchange) caused the peak to broaden (to ~370 Hz) and move upfield (to ~-204 ppm). The resonance due to $BrOF_3$ expected in the -60°C spectrum could not be observed, presumably due to its weakness and/or breadth.

(iii) Reaction of BrF₅ with IO₂SO₃F.

 BrF_5 reacted with IO_2SO_3F at $-48^{\circ}C$ to give a brown solution. A non-condensable gas was produced during the reaction. The ¹⁹F nmr spectrum of the reaction mixture showed (in addition to the BrF_5 solvent lines) the AX₄ pattern of IF_5 and a sharp singlet at a chemical shift of -41 ppm. The chemical shift of $S_2O_6F_2$ has been reported as -40.4 ppm for the pure liquid,¹²² and -39.5 ppm for a solution in BrF_5 .¹²³ The intensity of the singlet at -41 ppm relative to one component of the IF_5 doublet was estimated to be approximately 1:2 on the basis of peak height. These observations are consistent with equation (4.26). Thus

$$2I0_2S0_3F + 2BrF_5 \rightarrow Br_2 + 20_2 + S_20_6F_2 + 2IF_5$$
 (4.26)

if Br0₂S0₃F is produced (4.27), it must decompose rapidly (4.28). Schack

$$IO_2SO_3F + BrF_5 \rightarrow BrO_2SO_3F + IF_5$$
 (4.27)

$$^{\prime} 2Br0_2S0_3F \xrightarrow{*} Br_2 + 20_2 + S_20_6F_2$$
 (4.28)

and Christe $\overset{124}{\checkmark}$ have reported that they failed to obtain $\text{BrO}_2\text{SO}_3\text{F}$ from

the reaction of $Br0SO_3F$ and O_3 (whereas the same reaction with $C10SO_3F$ produces $C1O_2SO_3F$). Carter et al.125 have also proposed BrO_2SO_3F as an unstable intermediate in the reaction of $KBrO_3$ with $S_2O_6F_2$ which produces $K[Br(OSO_2F)_4]$ (whereas the analogous reactions with $KC1O_3$ and KIO_3 produced $C1O_2SO_3F$ and IO_2SO_3F , respectively). That attempts to prepare BrO_2SO_3F by three different methods have failed suggest it is of low stability. It cannot, however, be definitely concluded that BrO_2SO_3F is unstable since its formation and subsequent decomposition has not been established in any of the unsuccessful preparations reported.

H. <u>Reaction of BrO₂F with KrF₂</u>

 BrO_2F can be fluorinated using the strong oxidising agent KrF_2 with HF as a solvent. The ¹⁹F nmr spectrum of a solution of BrO_2F with excess KrF_2 at -45°C showed singlets at -52 ppm and +183 ppm which were assigned to KrF_2^{94} and HF (exchanging with BrO_2F). The Raman spectrum of the solution at -45°C showed only a single peak at 467 cm⁻¹ due to KrF_2 and the BrO stretches of BrO_2F . Gas evolution occurred when the sample was warmed to +2°C. The Raman spectrum of the solution showed BrO_2F and $BrOF_3$ to be present in comparable amounts, along with a small amount of BrF_5 .¹²⁶ After an hour at +2°C, the $BrOF_3$ and BrF_5 lines had increased in intensity relative to those of BrO_2F . After another hour at +2°C, no BrO_2F was observed. After an hour at room temperature, the BrF_5 lines had grown in intensity. A ¹⁹F nmr spectrum showed KrF_2 , HF and BrF_5 to be present. Thus BrO_2F is fluorinated to $BrOF_3$ (equation (4.29)) which is in turn fluorinated to BrF_5 (equation (4.30)).

$$Br0_2F + KrF_2 \rightarrow Br0F_3 + \frac{1}{2}0_2 + Kr_{2}$$
 (4.29)

$$BrOF_3 + KrF_2 \rightarrow BrF_5 + \frac{1}{2}O_2 + Kr$$
 (4.30)

I. Experimental Section

(i) <u>Preparation of BrO₂F</u>.

The preparation of BrO_2F by the reaction of $KBrO_3$ with BrF_5 was described in Chapter III. BrO_2F can also be prepared by dissolving $KBrO_2F_2$ in anhydrous HF. In a typical experiment 0.087 g (0.46 mmole) of $KBrO_2F_2$ was placed in an FEP nmr tube and approximately 0.4 g of HF was distilled in. The mixture was warmed to $-78^{\circ}C$ to melt the HF and then warmed further to dissolve the $KBrO_2F_2$. On cooling the solution to $-78^{\circ}C$, a white precipitate was formed which was identified as BrO_2F from its Raman spectrum. The HF was removed under vacuum at $-78^{\circ}C$, leaving a white solid. This solid was warmed to room temperature under dynamic vacuum and the volatile component was trapped at $-48^{\circ}C$ and identified as KHF_2 from its Raman spectrum.

(ii) <u>Decomposition of BrO_pF in HF</u>.

When a solution of $KBr0_2F_2$ in HF was allowed to stand at room temperature for thirty minutes, it became brown, suggesting Br_2 formation. When the solvent was removed under vacuum at -78°C, and the remaining solid allowed to warm up to room temperature under dynamic vacuum, a white solid remained which was identified as $KBrF_4$ from its Raman spectrum. ^{95,96} Thus when a solution of $Br0_2F$ in HF decomposes it produces Br_2 and BrF_3 , and presumably O_2 .

(iii) Preparation of BrO₂F Samples for Raman and ¹⁹F N.M.R.

Spectroscopy.

 BrO_2F was distilled dynamically into FEP nmr tubes, trapped at -48°C, and the solvent then added by distillation.

(iv) <u>Reaction of BrO₂F with KF</u>.

0.133 g (2.29 mmol) of KF was shaken at room temperature with 0.592 g (4.52 mmol) of BrO_2F for 24 hours in a Kel-F trap. Some decomposition occurred since Br_2 was liberated in the tube. The excess BrO_2F was removed under vacuum, and a Raman spectrum of the white solid which remained showed it to be a mixture of $KBrO_2F_2$ and $KBrF_4$. The weight of the white solid in the tube had increased by 0.037 g (which corresponds to 0.28 mmol of BrO_2F or BrF_3).

(v) Preparation and Properties of BrOF₂.

In a typical preparation, 0.219 g (1.04 mmol) of KBrOF₄ was placed in an FEP nmr tube, and approximately 0.6 g of HF was distilled in. The mixture was warmed to -78° C to melt the HF and then to a slightly higher temperature to dissolve the KBrOF₄. The HF was removed under vacuum at -78° C, leaving a white solid whose Raman spectrum was consistent with BrOF₃. 1.3 g of BrF₅ was distilled in, and the mixture warmed to -48° C. This produced a clear solution with a translucent solid (KHF₂) floating on it (density of BrF₅: 2.47 g cm⁻³, KHF₂: 2.37 g cm⁻³ 1.27). It = was possible to separate the solution from the solid by carefully manipulating the reaction vessel in such a way that the solution slowly flowed to one end of the nmr tube while the solid adhered to the walls at the other end of the tube. The section of tube containing the solid was then sealed off and removed. The BrF_5 was removed under vacuum at -48°C, and a white solid ($BrOF_3$) resulted. For larger scale preparations

the reaction was carried out in a double armed FEP vessel. The $KBrOF_4$ was placed in arm A, and HF was added. The HF was removed under vacuum at low temperature. BrF_5 was distilled

in and a solution of $BrOF_3$ in BrF_5 with KHF_2 floating on it was formed. The apparatus was tipped sideways and the mixture introduced into section Careful opening of the Teflon value V_2 allowed the solution to Β. trickle into tube C. When the solid KHF_2 reached V_2 , the latter was closed and all the solution wetting the solid KHF_2 in B was removed under vacuum through valve V_1 . V_2 could then be safely disconnected from B, and the ${\rm BrF}_5$ solvent present in C removed under vacuum. In this way, $BrOF_3$ could be conveniently isolated. The melting range of $BrOF_3$, which was found to be approximately -5°C to 0°C, was determined by placing a. solid sample of $BrOF_3$ contained in an FEP nmr tube in a glass dewar which was kept cold by a flow of cold nitrogen through the dewar. The temperature was varied by controlling the nitrogen flow and was measured using a copper-constantan thermocouple. In another experiment a sample of solid BrOF₃ in an FEP tube was placed in a salt-water/ice bath at -10°C and the bath was slowly allowed to warm up to 0°C over a period of 2 hours while the temperature was monitored using a mercury thermometer.

80

f

The melting range determined by this method was -4°C to 0°C.

On standing at room temperature, liquid $BrOF_3$ began to bubble and turned yellowish. After two hours at room temperature, the liquid was chilled to -196°C, excess KF was added and the mixture was allowed to warm up to room temperature. A reaction took place which produced a white solid identified as $KBrF_4$ from its Raman spectrum.

(vi) <u>Reaction of BrOF₃ and KHF₂.</u>

58

A mixture of BrOF_3 and KHF_2 (produced by dissolving KBrOF_4 in HF and removing the HF under vacuum) was allowed to warm up under vacuum to approximately -20°C, and then chilled to -196°C. The Raman spectrum showed the resulting solid to consist mostly of KBrOF_4 , with only a small amount of BrOF_3 remaining. In another experiment 0.012 g of KBrOF_4 was dissolved in HF, and the solvent removed under vacuum at -78°C. The resulting $\operatorname{BrOF}_3/\operatorname{KHF}_2$ mixture was allowed to warm up to room temperature under reduced pressure. The remaining white solid weighed 0.010 g and was identified as KBrOF_4 from its Raman spectrum. Using a good dynamic vacuum, some BrOF_3 can be distilled out of a $\operatorname{BrOF}_3/\operatorname{KHF}_2$ mixture, but the residual KBrOF_4 still accounts for most of the BrOF₃ originally present.

(vii) Preparation of N.M.R. and Raman Samples of BrOF₃.

The Raman and ¹⁹F nmr spectra of liquid $BrOF_3$ were obtained from a sample prepared in an FEP nmr tube as described above. An HF solution of $BrOF_3$ for nmr was obtained by dissolving $KBrOF_4$ in HF in an FEP nmr tube. An HF solution of $BrOF_3$ for Raman spectroscopy was prepared by dissolving $KBrOF_4$ in HF in a 6 mm quartz tube. These solutions often attack the quartz tube (the solution rapidly turns brown, and the Raman

spectrum of the solution shows large amounts of $Br0_F$). Raman spectra of $BrOF_3$ in HF weré also recorded in FEP and Kel-F containers, but in these cases the Raman lines associated with the container obscured many of the BrOF₃ lines. For the investigation of the dependence of the Raman spectrum on the concentration of a solution of $BrOF_3$ in HF, 0.075 g (0.50 mmole) of $BrOF_3$ was placed in an FEP nmr tube. Preweighed amounts of HF were then distilled in to give solutions with mole percentages of BrOF_3 of 27.0%, 15.0%, 11.0%, 8.0%, 6.0%, 4.5% and 3.1%. The Raman spectrum of each solution was recorded at room temperature. In addition to the changes in the $BrOF_3$ lines, weak lines due to BrF_3 also appeared due to the slow thermal decomposition of $BrOF_3$. The Raman spectrum of $BrOF_3$ at +45°C was recorded by positioning an FEP nmr tube containing liquid $BrOF_3$ against the inside wall of an unsilvered Pyrex Dewar (the same one used for recording Raman spectra at -196°C). The Dewar was then filled with hot water (+45°C) and the temperature was monitored using a mercury thermometor. ¹⁹Finmr samples of $BrOF_3$ in SO_2CIF and SO_2F_2 were prepared by statically distilling $BrOF_3$ into an FEP nmr tube, and then distilling in the solvent. The mixtures were warmed to -78°C to allow dissolution of the BrOF₃. Saturated solutions were used.

(viii) <u>Hydrolysis of BrF₅</u>.

0.213 g (1.22 mmol) of $BrOF_5$ was distilled into a 1/4" o.d. FEP tube, and 21.9 μ ℓ (1.22 mmol) of H₂O was syringed into the tube (kept at -196°C) and formed a frozen bead above the level of the frozen BrF_5 . Approximately 1.3 g of HF was then distilled in. The mixture was warmed to -78°C to melt the HF, and then to -63°C for ten minutes giving a light

J

`~__82

yellow solution. On cooling the sample to -78° C, a white solid was formed. The Raman spectrum of the solid was recorded at -196° C and showed it to consist of BrO_2F and BrF_5 , with no $BrOF_3$ being present. The sample was left at -63° C for one hour and then at -78° C for two days. The Raman spectrum of the solid in the bottom of the tube was again run and still found to consist only of lines attributable to BrF_5 and BrO_2F . The solvent and excess BrF_5 were removed under vacuum at -72° C and then at -48° C, leaving a yellow solid whose Raman spectrum showed lines attributable to BrO_2F with possibly a very small amount of BrF_3 . No $BrOF_3$ was present.

(ix) Reaction of I(V) Oxides and Oxyfluorides with BrF_5 .

(a) 10_2 F: 0.0571 g (0.32 mmol) of 10_2 F was placed in an FEP nmr tube, and 1.61 g (9.2 mmol) of BrF₅ was distilled in. The mixture was warmed to -48°C to give a clear solution together with a white solid. The mixture was allowed to react at room temperature for fifteen minutes and a solid was still present in the tube (presumably the adduct between Br0₂F and BrF₅). A ¹⁹F nmr spectrum at -45°C showed only BrF₅, IF₅ and Br0₂F. The solvent was removed under vacuum at -48°C and a white solid resulted whose Raman spectrum contained lines attributable to Br0₂F and IF₅, but no Br0F₃. In another experiment a much larger (and unmeasured) excess of BrF₅ was used and complete dissolution occurred at -48°C. The ¹⁹F nmr spectrum of this solution at -40°C showed BrF₅, IF₅, and Br0₂F, and the integration of the spectrum gave the following results:

 $Br0_2F:FIF_4:FIF_4 = 30:32:117 = 1:1:4$

(b) I_2O_5 : 0.114 g (0.342 mmol) of I_2O_5 was placed in an FEP nmr tube, and 1.81 g (10.3 mmol) of BrF₅ was distilled in. The mixture was warmed to -48°C and an orange solution was formed with a white solid still present in the tube. Decomposition seemed to occur since the solution was orange in colour and bubbles of gas were evolved. The solid dissolved when the sample was warmed to room temperature and a ¹⁹F nmr spectrum at this temperature showed signals due to BrF₅, IF₅, and BrO₂F. Integration of the spectrum gave the following results:

 $BrO_2F:FIF_4:FIF_4 = 23:30:125 = 0.75:1:4$

The solvent was removed under vacuum at -48°C, and then at -30°C. The Raman spectrum of the remaining material consisted of lines attributable to BrO_2F and IF_5 , with no $BrOF_3$ being present.

(c) IOF_3 : A large excess of BrF_5 was distilled onto IOF_3 and the mixture became brown on warming to -63°C. Further warming to -35°C caused complete dissolution and a darkening of the brown colour. The nmr "spectrum of the solution showed BrF_5 , IF_5 , and a relatively small amount of BrO_2F (BrO_2F : IF_5 <1:10) to be present.

(x) <u>Reaction of IO₂F₃ and BrF₅</u>.

1.04 g (5.95 mmol) of BrF_5 was distilled onto 0.150 g (0.694 mmol) of IO_2F_3 , and the mixture was warmed to $-18^{\circ}C$ and then to room temperature for forty minutes to get a complete reaction. A Raman spectrum of the solution showed peaks attributable to BrF_5 , IOF_5 , 75 BrO_2F and a small amount of $BrOF_3$. The ^{19}F nmr spectrum of this solution at $-50^{\circ}C$ showed the characteristic multiplets of BrF_5 and IOF_5 , and a small amount of IF_5 .

No peaks other than those due to BrF_5 were observed in the F on Br(V) region. The BrF_5 and IOF_5 were removed under vacuum at -48°C and the Raman spectrum of the remaining solid showed lines attributable to a large amount of BrO_2F , some $BrOF_3$ and very weak lines due to IF_5 and possibly BrF_3 . BrF_5 was distilled into the tube and a more concentrated solution was prepared. The 94.1 MHz ¹⁹F nmr spectra of this solution were recorded at -60°C, -50°C, and -40°C.

(xi) <u>Reaction of IO₂SO₃F and BrF₅.</u>

Excess BrF_5 was distilled onto 0.062 g (0.24 mmol) of 10_2S0_3F in an FEP nmr tube and the mixture was allowed to warm up to -48°C. A brown solution was formed. The mixture was cooled to -196°C. A noncondensable gas was present in the tube. This was detected by opening the tube to the manifold of the vacuum line and observing a change in the reading of the vacuum gauge. The ¹⁹F nmr spectrum of the solution was recorded at -48°C.

(xii) <u>Reaction of BrO₂F and KrF₂.</u>

Approximately 0.1 g of $KBr0_2F_2$ was placed in an FEP nmr tube and excess KrF_2 was distilled in. Approximately 0.5 g of HF was then distilled in and the mixture warmed to -78°C to melt the HF. All the solid in the tube dissolved at -45°C. The tube was then warmed while the reaction was monitored by ¹⁹F nmr and Raman spectroscopy.

<u>CATIONS Bro</u>⁺ AND BroF⁺

CHAPTER V

A. Introduction.

Many fluorides and oxyfluorides react with Lewis acids according to the general equation (5.1). In some cases, the product is best described

$$XO_{\ell}F_{m} + MF_{n} \rightarrow XO_{\ell}F_{m-1} + MF_{n+1}$$
 (5.1)

as an ionic salt with discrete cations and anions. For example, the complex $SF_4 \cdot SbF_5$ appears be be best formulated as $SF_3^+SbF_6^-$.^{128,129,130} In other cases however, strong fluorine bridges link the cation and the "anion" and the product is best described as a covalent adduct. For example, the complex between NbF₅ and SbF₅ has been shown ¹³¹ to contain very strong fluorine bridges between the Nb and Sb atoms; the adduct is therefore best written as NbF₅·SbF₅ with the ionic form NbF₄⁺SbF₆⁻ making only a small (contribution.

It was of interest to examine the reactions between $Br0_2F$ and a number of Lewis acids. Schmeisser and Brändle ⁸ had reported that $Br0_2F$ does not form complexes with BF_3 , AsF_5 or SbF_5 . In this chapter, it will be shown that $Br0_2F$ does in fact react with BF_3 and AsF_5 to produce salts containing the $Br0_2^+$ cation. Independently of our work Jacob ⁴⁴ has reported the preparation of the compounds $Br0_2^+AsF_6^-$ and $Br0_2^+[SbF_6(SbF_5)_{1.24}]^-$.

He has, however, only reported the vibrational frequencies for the cation in the $[SbF_6(SbF_5)_{1.24}]^-$ salt. Although he states that "the characteristic frequencies of $Sb_2F_{11}^-$ and $Sb_3F_{16}^-$ " were observed, this must be regarded with some skepticism since the extremely complex spectra for these anions are not well characterized (see Table 5.5).

It was also of interest to examine the reaction between $BrOF_3$ and various Lewis acids, and these reactions are also described in this chapter. Bougon et al. 3^2 have also studied the $BrOF_3/AsF_5$ system and their results are essentially in agreement with ours.

B. <u>Preparation and Properties of the Br0, Salts</u>.

The reaction of BrO_2F with the Lewis acids BF_3 and AsF_5 at -72°Cusing HF as a solvent produces cream to light-brown coloured solids which in Section C are shown to contain the BrO_2^+ cation. The products are however often coloured orange or reddish as a result of partial decomposition (see Section C). The compound $BrO_2^+BF_4^-$ is quite soluble in HF whereas $BrO_2^+AsF_6^-$ is much less soluble. Both salts can also be made using $BrF_5^$ as a solvent. Interaction of BrO_2F with AsF_5 at -120°C using SO_2ClF as a solvent produces the same cream coloured product. The reaction of BrO_2F with excess SbF_5 in SO_2ClF also produces solid products, but these were generally more highly coloured and Raman spectra could not be obtained. Moreover, the tendency of SbF_5^- to form polymeric anions of the type. $Sb_nF_{5n+1}^-$ meant that the products were probably mixtures since exactly equimolar amounts of reagents were not used.

The BrO_2^+ salts were found to be unstable at room temperature. Rapidly warming a sample of $\text{BrO}_2^+\text{BF}_4^-$ to room temperature under vacuum in an FEP tube caused the solid to melt, turn very deep purple in colour, and bubble vigorously. No solid residue was left after ten minutes. The compound $\text{BrO}_2^+\text{AsF}_6^-$ does not melt at room temperature but the red colour of the solid deepens and the Raman lines associated with the decomposition product increase in intensity. Both materials therefore had to be kept at low temperature. For this reason, no analytical data were obtained for these products. The fact that BrO_2^-F was observed in small amounts or not observed at all in the Raman spectra of the products indicates that the formation of BrO_2^+ was essentially complete.

Solutions of $\text{BrO}_2^+\text{BF}_4^-$ in HF and BrF_5 appear to be stable at low temperatures for extended periods of time. At room temperature however, a solution of $\text{BrO}_2^+\text{BF}_4^-$ in BrF_5 became dark brown in colour after ten minutes, indicating that decomposition had occurred.

Solid $\text{BrO}_2^+\text{AsF}_6^-$ reacts very vigorously with H_2^-O_2^- at room temperature and a cloud of brown gas, presumably Br_2 , is evolved.

C. Characterization of $BrO_2^+BF_4^-$ and $BrO_2^+AsF_6^-$ by Raman and $^{19}FN.M.R$. Spectroscopy.

. (i) Raman Spectroscopy

 $\left(\right)$

Figure 5.1 shows the Raman spectrum of a slightly orange solid obtained from the reaction of BrO_2F with excess BF_3 in HF. The spectrum was run in an FEP tube at -196°C using the green 514.5 nm line of the Ar

ion laser. Figure 5.2 shows the Raman spectrum of an orange solid obtained from the reaction of BrO_2F with AsF_5 in HF. This spectrum was run at -196°C using the red 632.8 nm line of an He-Ne laser. Table 5.1 lists the frequencies obtained from these spectra, along with the fundamental frequencies of the Br0_2^+ cation in $\text{Br0}_2^+[\text{SbF}_6(\text{SbF}_5)_{1,24}]^-$, ⁴⁴ and the related molecules SeO₂ 133 and BrO₂F (see Chapter IV). When the solid used to obtain the spectrum in Figure 5.1 was dissolved in HF, the Raman spectrum of the solution showed only two lines at 876 cm^{-1} and 937 cm^{-1} . The line at 876 cm^{-1} was polarized whereas the line at 937 cm^{-1} had too low an intensity to allow definitive polarization data to be obtained. The other lines expected were too weak to observe or were masked by the very intense lines due to the FEP tube. The solution spectrum could not be recorded in a quartz container since attempts to transfer the solid product to a quartz tube failed due to decomposition of the sample. Similarly, attempts to prepare the sample in a quartz tube led to extensive attack on the walls of the tube and very intense fluorescence was observed. The lines in the Br=O region (884 cm⁻¹ and 947 cm⁻¹ in Figure 5.1 and 862 cm⁻¹ and 931 cm⁻¹ in Figure 5.2) correspond reasonably well with the BrO_2^+ frequencies reported by Jacob (865 cm^{-1} and 932 cm^{-1}) which suggests that the reaction of BrO_2F with BF_3 or AsF_5 produced salts containing the BrO_2^+ cation. In Figure 5.2, the peak at 907 cm^{-1} is assigned to a small amount of unreacted $Br_{0_2}F$, whereas the weak line at 827 cm⁻¹ is of unknown origin and was only observed in one spectrum of $Br0_2^+AsF_6^-$. When the solid product of the reaction between BrO₂F and BF₃ was mixed with excess KF in HF, the

Ŷ

s.,

91

.

0ther	Br0 ₂ F	L	EP %	rep partly FEP FEP	partly FEP Br.	2
Assignments BF ⁻ ^(e) AsF ₆ -(e)	•	(A)	ر (A ₁ g)	· ^{,2} (E _g)	-5(T ₂₉)	
, x0 ₂ ⁺	v ₃ (B ₁) časym XC	راA) د X0 ₂ د X02			۰,(A ₁),	
BrO ₂ [†] BF; ⁻ solid	947(13)	884(100) 771 ⁻ (4)	/49 (4) 731(30) ¢75 (2)	384(sh)	379(11)	293 (8)
BrO ₂ [†] BF ₄ ^{-(d)} soln. in HF	937(25)	876(100) p				۰.
BrO2 [†] AsF ₆ solid	931(20) 907(10)	862(100) 770 (2)	731(20) 731(20) 685(60) g	576(18) 552(28)	382 (6) 368(15) 361(20)	293 (2)
BrO ₂ ⁺ iń (c) [SbF ₆ (SbF ₅) _{1.24} J salt	932 m	865 s			375 m	
se0 ₂ ^(b)	967 m ⁽ 9)	s 776			E 288	
BrO ₂ F ^(a) (liquid)	953 (14) ^(f)	(001)806			394(14)	

TABLE 5.1

884 cm⁻¹ and 947 cm⁻¹ lines in the Raman spectrum disappeared and were replaced by the characteristic BrO_2F lines. This further confirms our supposition that BrO_2^+ is responsible for these Raman lines.

In Figure 5.1, the 771 cm⁻¹ peak has a frequency very close to the value reported for v_1 of the BF₄ ion (769 cm⁻¹) in KBF₄.¹³⁴,¹³⁵ The other fundamentals were too weak to be observed. Despite the fact that excess BF₃ was used in the syntheses, there were no lines attributable to the complex anion $B_2F_7^{-136}$,¹³⁷ in the Raman spectra of the products. The compound formed by BrO₂F and BF₃ is, therefore, formulated as BrO₂⁺BF₄⁻. In Figure 5.2, the strong line at 685 cm⁻¹ has a frequency identical with that of v_1 (A_{1g}) for AsF₆⁻ in CsAsF₆.¹³⁸ The two lines at 576 cm⁻¹ and, 552 cm⁻¹ are assigned to v_2 (E_g) of AsF₆⁻ (576 cm⁻¹ in CsAsF₆) with the E mode split by a solid state effect. Finally, v_5 (T_{2g}) of AsF₆⁻ (372 cm⁻¹ in CsAsF₆) is assigned to the line at 368 cm⁻¹. Once again there was no evidence for the formation of the complex anion As₂F₁₁⁻⁻¹³⁷,¹³³ despite the fact that excess AsF₅ was used in several of the preparations. Thus the compound formed by BrO₂F and AsF₅ is BrO₂⁺AsF₆⁻.

Since both the symmetric and asymmetric BrO_2 stretching frequencies are observed for BrO_2^+ both in the solid BF_4^- , and AsF_6^- salts and in HF solution, the cation must be bent (structure (1)) rather than linear. This is in agreement with the predictions of VSEPR (1) theory and with the assignment of a bent geometry to the related species SeO_2 , ¹⁴⁰ ClO_2^+ , ³⁰ and IO_2^+ . ⁵¹ The OBrO bending mode
in $Br0_{2}^{+}$ was reported to be at 375 cm⁻¹ in the $[SbF_{6}(SbF_{5})_{1.24}]^{-1}$ salt.⁴⁴ In Figures 5.1 and 5.2, the OBrO bending mode coincides with one of the lines due to the FEP container. Evidence for this can be obtained by comparing the relative intensities of the 382 cm⁻¹ and 293 cm⁻¹ lines of FEP. In the reference spectrum of FEP, the 382 cm^{-1} and 293 cm^{-1} lines at -196°C are of equal intensity, and the 382 cm^{-1} band is often split into a doublet with branches of equal intensity at 384 and 376 cm⁻¹ (see inset in Figure 5.1). In Figure 5.1, the peak at 379 cm⁻¹ is stronger than the shoulder at 384 cm^{-1} and the FEP line at 293 cm^{-1} , indicating the presence of a sample line at approximately 379 cm⁻¹. Similarly, in Figure 5.2, the broad band at 382 cm^{-1} is considerably more intense than the broad FER line at 293 cm⁻¹, indicating that again a sample line must coincide with the 382 cm⁻¹ line of FEP. The OBrO bending mode of BrO_2^+ is assigned to this line at approximately 379 $\rm cm^{-1}$ for the BF₄ salt and approximately 382 $\text{tm} = \frac{1}{2}$ for the AsF₆ salt. Further evidence for this was obtained from. a sample of $Br0_2^{+}BF_4^{-}$ prepared in a quartz type. Although the Raman spectrum of this product was complex since extensive decomposition had occurred, a weak Raman line was observed at 378 cm $^{-1}$ which was assigned to $^{8}\,_{0
m Br0}$ of $Br0_2^+$.

The line at 361 cm⁻¹ in Figure 5.2 is assigned to the decomposition product of the BrO_2^{+} salts. This line was found to increase in intensity in samples of $BrO_2^{+}AsF_6^{-}$ that had been warmed to room temperature or stored for extended periods of time. The same line was found to be more intense in more highly coloured samples of both the BF_4^{-} and AsF_6^{-} salts. When

samples of $BrO_2^{+}AsF_6^{-}$ and $BrO_2^{+}BF_4^{-}$ were allowed to decompose extensively, the intensity of the 361 $\rm cm^{-1}$ line increased, and peaks appeared at \sim 720 cm⁻¹ and \sim 1080 cm⁻¹. The intensities decreased in the order 361 cm⁻¹ \sim 720 cm⁻¹ \sim 1080 cW⁻¹. These observations are consistent with the formation of $Br_2^+BF_4^-$ and $Br_2^+AsF_6^-$ as decomposition products. The vibrational frequency of the Br_2^+ cation is 360 cm⁻¹ 141 and it shows an absorption band at 510.0 nm. Therefore, when 514.5 nm radiation is used to record the Raman spectrum of a sample containing Br_2^+ , the resonance Raman spectrum of the Br_2^+ cation is observed which has a strong fundamental at 360 cm⁻¹ and overtones at 720 cm⁻¹ and 1080 cm⁻¹. This was verified by recording \cdot the Raman spectrum of a sample of $BrO_2^+AsF_6^-$ using 632.8 nm exciting radiation. The relative intensity of the 361 cm^{-1} line was 20% of that of the 862 cm^{-1} line (Figure 5.2). When the spectrum was recorded using \sim 514.5 nm exciting radiation, the relative intensity of this peak increased to 60% of that of the 862 $\rm cm^{-1}$ line. The decreased intensity of the 361 cm⁻¹ line when observed using 632.8 nm radiation is consistent with the suggestion that 51415 nm excitation gives a resonance Raman spectrum whereas 632.8 nm radiation gives only a weaker pre-resonance Raman spectrum.

The BrO_2^+ stretching frequencies are unusual in several respects. \cdot . On going from BrO_2F to BrO_2^+ , it would be expected that the BrO stretching frequencies would increase, as a positive charge on the Br atom should cause a decrease in the electronegativity difference between bromine and oxygen, which should result in an increase in the Br=O stretching frequency. However, this is not observed (see Table 5.2) since the mean BrO stretching

				TABLE	5.2	•	
~~.	~		Comparison	of BrO2+	Stretching	Frequencie	۰ ۶
			* to Sc	ome Rélate	d Molecules	(cm ⁻¹).	
	s0 ₂ (a)	c10 ₂ +(b)	c10 ₂ F ^(c)	SeO2(d)	-Br02 ^{+(e)}	Br0 ₂ F ^(f)	×
	1362	1296	1253	967	937	953	[∨] asym ^{X0} 2
	1151	1044	1097	922 o	· 876	908	vsym, ^{XO} 2
	1256	1170	1175	944	907	931	Mean XO stretching frequency
	• Reference • •	ence 114; ence 29;	jøk.				
	d Refer	ence 31; - ence 133; '	,				
	e HF so f _{see C}	lution of E					

•

frequency in Br0_2^+ in solution in HF (907 cm⁻¹) is considerably lower than that of $\text{Br0}_2\text{F}$ (931 cm⁻¹). In the related C1 system, the mean C10 stretching frequencies (C10_2^+ : 1170 cm⁻¹;²⁹ C10₂F: 1175 cm⁻¹ ³¹) and stretching force constants (C10_2^+ : 8.96 mdyn Å⁻¹;²⁹ C10₂F: 9.07 mdyn Å⁻¹ ³¹) are comparable, and this was attributed to the large contribution of the ionic $\text{C10}_2^+\text{F}^-$ form to the overall bonding in C10₂F.²⁶ In Br0₂F, there is also probably a large contribution from the ionic form Br0₂⁺F⁻ but this cannot account for a higher stretching frequency in Br0₂F than in Br0₂⁺.

An unusual trend is also observed when $Br02^+$ is compared to the isoelectronic Se0₂. Again contrary to expectations, the mean BrO stretching frequency in $Br0_2^+$ is lower than the mean SeO stretching frequency in SeO₂ (944 cm⁻¹).¹³³ This is contrary to the observation $\frac{142}{2}$ that within a series of isoelectronic molecules the force constant increases as the magnitude of the positive charge on the central atom increases. Comparison of the mean stretching frequencies in $C10_2^+$ (1170 cm⁻¹) and SO_2 (1256 cm⁻¹)¹¹⁴ shows that these molecules also do not conform with the expected trend. This has been rationalized 29,143 by assuming that in such molecules with a rather electronegative central atom X in a high oxidation state, the bond polarity is in the direction $X \frac{\delta - \delta^+}{\delta} O$ and that introducing a formal positive charge on X therefore weakens the bond by further increasing the bond polarity. This argument however does not seem entirely satisfactory for the less electronegative elements Se and Br, and does not hold in the isoelectronic pair of molecules SeOF₂ and BrOF₂⁺ ($v_{x=0}$ = 1012 cm⁻¹ 144 and 1052 cm⁻¹, respectively) where the expected trend is

observed.

The low Br0 stretching frequencies in the solid Br0_2^+ salts could be explained if extensive fluorine bridging occurs between the anions and the cations. Donation of electron density from the anion to the bromine atom of the cation would result in a weakening of the Br-0 bonds. Comparison of the Br0 frequencies in the $[\text{SbF}_6(\text{SbF}_5)_{1.24}]^-$, AsF_6^- and $\text{BF}_4^$ salts are not in complete agreement with this interpretation however, since these frequencies are significantly higher in the BF_4^- salt than in the other two, whereas BF_4^- is the most basic of these anions and would have been expected to bridge the most strongly to the cation. Furthermore, the vibrational frequencies observed for the BF_4^- and AsF_6^- anions in the Br0_2^+ salts are close to the values found for the K⁺ and Cs⁺ salts of these anions. It would have been expected that very strong anion-cation interaction would have shifted the anion frequencies from their normal values.

~7

Another form of bridging which could occur in the solid BrO_2^+ salts is bridging between cations. In the isoelectronic SeO_2 , the structure of the solid has been shown ¹⁴⁵ to consist of an infinite chain of Se atoms linked by O-bridges, with each Se bearing a terminal oxygen (structure 2)

A similar structure involving weaker bridging (structure 3) between the $Br0_2^+$

cations is possible. The Br-O-Br bridges are certainly not symmetric as is

the case in SeO₂ since such a structure would produce only a single line in the Br=O region of the vibrational spectrum, and peaks in the Br-O-Br stretching region (400 - 600 cm⁻¹)^{13,19} would have been expected. In the case of rather weak bridging such as in structure (3), symmetric and asymmetric BrO₂ stretching frequencies would be expected, and this is consistent with the observed spectrum. However, it is again not obvious why the BrO₂⁺ stretching frequencies should increase when AsF_6^- is replaced with BF_4^- .

(ii) ¹⁹F N.M.R. Spectroscopy.

When $\text{Br0}_2^+\text{BF}_4^-$ is dissolved in HF, the Br0 stretching frequencies decrease by 8 - 10 cm⁻¹ which also is unusual. To investigate the possibility that these solutions contain bridged species such as (4) or (5) rather than simple Br0_2^+ and BF_4^- ions, the ¹⁹F nmr spectrum of the solution was recorded. The nmr parameters obtained from these spectra are recorded in Table 5.3. At -45°C, two broad singlets were observed at +152 ppm

TABLE 5.3

Chemical Shifts (δ , ppm from CFCl₃) and \mathcal{L}_{1} ing Constants J (Hz) for $BrO_2^+BF_4^-$ Dissolved in HF.

Temp. °C	BF	4	н	2		-
	5	width ^(a)	S	ე ^(b)	width ^(a)	
-45°C	+152	410	+194	_ (c)`	514	
-53°C	+152	175	+194	276	· _ (d)	
-68°C	+152	75	+194	476	250	
- 78° C	+152	<50 (e)	+193	525 _. .	103	

^a Linewidth at half-height (Hz). These values are estimated to be. accurate to \pm 10 Hz.

^b Estimated to be accurate to \pm 10 Hz.

^C Single line observed for HF.

^d Extensive overlap of the peaks made the measurement of width at halfheight impossible.

ς.

^e Exact linewidth could not be measured.

and +194 ppm. As the temperature was lowered, the +152 ppm singlet became sharper and the one at +194 ppm split into a doublet with branches of equal intensity. At -78°C, the coupling constant of the doublet at +193 ppm was 525 Hz. The +152 ppm line is assigned to BF_4^- and is in excellent agreement with the value of +153.6 ppm found for BF_4 when KBF_4 is dissolved in HF.¹³⁰ No fluorine to boron coupling was observed and this is probably due to the very small value of this coupling constant. The value of J_{R-F} has been shown to decrease with decreasing concentration and also to vary depending on the nature of the cation involved.¹⁴⁶ For $NH_4^+BF_4^-$ in aqueous solution, J_{B-F} for BF_4^- was found to be 1.15 Hz at infinite dilution and to be relatively independent of concentration. For $Na^+BF_4^$ in aqueous solution, a value of approximately 1.4 Hz was found for solutions with concentrations of less than 1 M, but the splitting increased rapidly at higher concentrations. Since the concentration of $Br0_2^+BF_4^-$ in HF used was approximately 0.6 M, the coupling constant can be expected to be between 1.1 and 1.4 Hz. Such a small coupling would not have been observed under the conditions used to record the nmr spectrum. ¥

. The high field singlet at +194 ppm at -45°C, which split into a doublet when the solution was cooled, is assigned to HF. The splitting at low temperature is due to H-F coupling and the observed coupling constant (J_{HF} = 525 Hz) is in good agreement with the previously reported values of 526 Hz ¹⁴⁷⁷ and 521 Hz.¹⁴⁸ This splitting can only be observed when the total number of ions formed by dissociation of the solvent is at a minimum, ¹⁴⁸ i.ę. when [H₂F⁺] = [HF₂⁻]. The observation of HF coupling indicates that the HF is not involved in any rapid exchange processes with other species in solution. If non-labile complexes such as (4) or (5) were present in solution, extra peaks would have been observed in the F on Br (V) region of the spectrum. If complexes such as (4) or (5) were present in equilibrium with BrO_2^+ and BF_4^- , and the exchange was rapid, only a single F on B resonance would be observed; however, the chemical shift of this resonance would not be expected to coincide with that of free BF_4^- in HF. The nmr spectra thus are most consistent with discrete BF_4^- and presumably BrO_2^+ ions in solution.

(iii) Discussion

The spectroscopic data obtained in the present work suggests that the adducts between BrO_2^{-F} and Lewis acids are essentially ionic salts containing the BrO_2^{-F} cation. The rather low BrO_2 stretching frequencies may be attributable to some secondary bonding to the bromine atom of the cation. Whether this bridging involves only the cations or whether it links the anions and the cations cannot be decided on the basis of the vibiational spectra. Comparison with the related IO_2^{-F} and ClO_2^{-F} ions favours the latter explanation however. In $ClO_2^{-F}Sb_2F_{11}^{-F}$, X-ray crystallography has shown that several fluorine bridges link the ClO_2^{-F} cation to the anions surrounding it.³⁰ In $IO_2^{-F}AsF_6^{-F}$, the suggestion that the cation is polymeric through oxygen bridges has been made,⁵⁰ but later work ⁵¹ has shown this conclusion to be incorrect and has demonstrated that discrete IO_2^{-F} and AsF_6^{-F} ions are present, linked by fluorine bridges. It therefore seems more likely that the bridging in BrO_2^{-F} salts is between the anions and the

ş

cations. The bridging cannot be very strong since the AsF_6^- and $BF_4^$ frequencies are close to the values found in the K⁺ and Cs⁺ salts of these anions. The observed splitting of v_2 of AsF_6^- may be due to this bridging between this anion and the cation. The higher value of the BrO_2^{+} stretching frequencies in the BF_4^- salt than in the AsF_6^- salt may be due to more favourable bridging interactions in the latter case, perhaps caused by packing considerations. This might offset the lower basicity of AsF_6^- when compared to BF_4^- . More definitive conclusions about this will have to await a determination of the crystal structure of some BrO_2^{+} salts. In HF solution, BrO_2^{+} and BF_4^- ions appear to be present. The low BrO_2^{+} frequencies observed in solution may possibly be accounted for by strong solvation of the ion.

D.- Preparation and Properties of the BrOF₂⁺ Salts.

The reaction of BrOF_3 with an excess of AsF_5 using HF as a solvent produces a white solid product. A product with an identical Raman spectrum can also be obtained using BrF_5 as a solvent. The Raman spectrum of this adduct (see Section E) indicates that it is best formulated as $\operatorname{BrOF}_2^+\operatorname{AsF}_6^-$. The reaction is therefore (5.2). Another preparative route used to obtain?

$$BroF_3 + AsF_5 \cdot BroF_2^+ AsF_6^-$$
 (5.2)

this adduct was the reaction of $10_2F_3 \cdot AsF_5^{-2.6}$ with BrF_5 at room temperature, which proceeds according to equation (5.3). In Chapter IV, it was shown

$$IO_2F_3 \cdot AsF_5 + BrF_5 \rightarrow IOF_5 + BrOF_2^{\dagger}AsF_6^{\dagger}$$
 (5.3)

that $BrOF_3$ is an intermediate in the fluorination of 10_2F_3 by BrF_5 (equations (4.24) and (4.25)) and that the $BrOF_3$ is almost completely consumed by reaction with 10_2F_3 (equation (4.25)). When AsF_5 is present however, reaction (5.2) occurs instead of reaction (4.25) and $BrOF_2^+AsF_6^$ is formed as a precipitate. That $BrOF_2^+AsF_6^-$ is only very slightly soluble in BrF_5 is shown by the observation that the Br=0 stretching frequency is very weak in the Raman spectrum of a saturated solution at room temperature. It is also slightly soluble in HF and Bougon and his coworkers 13? have recorded the Raman spectrum of this solution (see Table 5.4). Solid $BrOF_2^+AsF_6^-$ slowly turns pink and is therefore only marginally stable at room temperature (see Section E).

. ት እ

 $BrOF_3$ also reacts with BF_3 at low temperature, using HF as a solvent, to form an adduct which can be formulated as $BrOF_2^+BF_4^-$ according to its Raman and ¹⁹F nmr spectra (see Section E). This adduct is much more soluble in HF than the AsF_6^- salt, and the solid obtained by removal of the HF solvent under vacuum is often coloured yellow or orange by the presence of decomposition products. When the solid is allowed to warm up to room temperature under dynamic vacuum, it darkens in colour. No solid. residue is left after 15 minutes indicating that the decomposition products are volatile.

Because of the difficulty in measuring out stoichiometric quantities of $BrOF_3$ and SbF_5 , the direct reaction between these two was not investigated. Use of excess SbF_5 would have resulted in mixtures of SbF_6^- and $Sb_2F_{11}^$ anions being produced, and would have complicated the Raman spectra. Instead

of a direct reaction of $BrOF_3$ and SbF_5 , the fluorination of IO_2F_3 SbF_5 with BrF_5 was investigated to see if a reaction analogous to (5.3) would occur. A crystalline product was obtained which showed the characteristic Br=0 stretching frequency of $BrOF_2^+$, but the remainder of the spectrum was rather complicated. The decomposition of $BrOF_2^+Sb_1F_{5n+1}^-$ differs from that of the AsF_6^- and BF_4^- salts (Section E) in that BrF_2^+ is the major decomposition product. Another reaction that was tried in order to obtain $BrOF_2^+SbF_6^-$ was that of $IOF_2^+SbF_6^{--51}$ with BrF_5 . In Chapter IV it was shown that IOF_3 is fluorinated to IF_5 by BrF_5 (equation (4.23)), and that the intermediate $BrOF_3$ must react rapidly with the IV oxythuoro species present. Since in the reaction of $IO_2F_3 \cdot MF_5$ (M As, Sb) with BrF_5 , the $BrOF_3$ intermediate is trapped as $BrOF_2^+MF_6^-$, it was thought that the $BrOF_3$ intermediate in the IOF_3/BrF_5 reaction might be trapped by the presence of a Lewis acid, i.e. reaction (5.4) was expected. However, when

$$10F_2^+SbF_6^- + BrF_5 + IF_5 + Br0F_2^+SbF_6^-$$
 (5.4)

 $10F_2^{+}SbF_6^{-}$ was reacted with excess BrF_5 at -37°C, $1F_5$ was indeed observed as a product but no $Br0F_2^{+}SbF_6^{-}$ was obtained. The only solid product observed was $BrF_2^{+}SbF_6^{-}$. It is unlikely that the $BrF_2^{+}SbF_6^{-}$ was produced by the decomposition of $Br0F_2^{+}Sb_nF_{5n+1}^{-}$ since the latter decomposes only slowly at low temperatures. It is more likely that one of the intermediates involved in reaction (5.4) is decomposing to BrF_2^{+} .

E. Characterization of the BrOF₂⁺ Salts by Raman and ¹⁹F N.M.R. Spectroscopy.

(i) Raman Spectroscopy

7

The Raman spectra of solid $BrOF_2^+AsF_6^-$ and solid $BrOF_2^+BF_4^-$ as well as a solution of $BrOF_2^{\dagger}BF_4^{-}$ in HF are shown in Figures 5.3, 5.4 and 5.5, respectively. The vibrational frequencies obtained from these spectra are listed in Table 5.4. Also listed are the results obtained by Bougon and his coworkers for $BrOF_2^{+}AsF_6^{-}$ in the solid phase and in HF solution, ¹ along with the vibrational frequencies of the related species $SeOF_2$, r_1 , SOF_2 , ¹⁴⁹ and $ClOF_2^+$, ²⁷, ¹⁸ The spectra shown in Figures 5.3, 5.4 and 5.5 were recorded in quartz tubes to avoid interference from Raman lines due to FEP or Kel-F sample tubes. However there was some attack on the quartz tube in each case. On Figure 5.5, the lines at 937 cm⁻¹ and 876 cm⁻¹ are due to a $mail a mount of Br0_2^+$ produced by attack of Br0F_2^+ on the quartz vessel (the other lines expected for $Br0_2^+BF_4^-$ would be much too weak to influence the remainder of the spectrum), and the broad band which appears in the baseline between 400 cm⁻¹ and 540 cm⁻¹ is a fluorescence peak often observed in spectra of samples which have attacked quartz or glass containers. The fluorescence band is observed as a very broad, weak peak in the spectrum shown in Figure 5.4. In Figure 5.3 the broad line at 490 cm⁻¹ is also attributed to attack on the quartz tube. None of these features were observed in spectra of samples contained in FEP tubes.

The highest frequency line on all three spectra can readily be assigned to a Br=O stretching motion. The fact that this band is shifted to

Ą

108

È

110

,

,•

continued....

Assignments given for AsF₆ of O_h symmetry, but the actual symmetry in the solid is much Reference 132. Low frequency range limited by the absorption of the AgBr plates. σ Reference 37. lower since the selection rules for 0_{h} are not obeyed. J Reference 149. ۵ Reference 144.

'n

Φ

Numbers in parentheses give relative intensities. σ

_

P, polarized; s, strong; m, medium; w, weak; sh, shoulder; br, broad.

State of polarization of the five low frequency lines could not be determined.

112

TABLE 5.4 (continued)

a considerably higher frequency than the corresponding motion in $BrOF_3$ (1004 cm⁻¹ in the liquid, see Chapter IV), along with the occurrence of bands characteristic of the corresponding anions BF_4^- and AsF_6^- suggest that the adducts should be formulated as $BrOF_2^+BF_4^-$ and $BrOF_2^+AsF_6^-$. As was the case for the BrO_2^+ salts, there was no evidence for the occurrence of the complex anions $As_2F_{11}^-$ or $B_2F_7^-$ in this work despite the fact that excess Lewis acid was used in both cases. (In Raman spectra of HF solutions of $BrOF_2^+AsF_6^-$ containing excess AsF_5 , Bougon and his coworkers 1' have observed lines which they assigned to $As_2F_{11}^-$).

The Raman spectrum of solid $\text{BrOF}_2^+\text{AsF}_6^-$ observed in this work corresponds well with the spectrum reported by Bougon and his collaborators, (see Table 5.4). The major difference is that in the present work only a single, broadened line was seen at 360 cm⁻¹, whereas Bougon and his coworkers have observed two peaks (360 cm⁻¹ and 366 cm⁻¹) in the same region. The reason for this is probably the presence of a small amount of the decomposition product Br_2^+ which would produce a peak at 360 cm⁻¹ and might obscure the resolution of the two distinct peaks at 360 cm⁻¹ and 366 cm⁻¹ due to $\text{BrOF}_2^+\text{AsF}_6^-$.

The $BrOF_2^+$ cation is expected to have the pyramidal structure (6) of C_s symmetry. The six fundamental vibrational modes expected [r = 4A' + 2A"] are all Raman active. Definitive polarization data could only be obtained for the three highest frequency lines in the spectrum of $BrOF_2^+BF_4^-$ in HF solution.

The three stretching modes of the $Br0F_2^+$ cation can be identified by comparison of the spectra of the AsF_6^- and BF_4^- salts, and can be readily assigned. As expected, the frequencies are similar to those in SeqF₂, and lower than those in $C10F_2^+$. The bending modes cannot be assigned with equal certainty since polarization measurements for these lines were inconclusive. For all the related molecules, v_3 is the highest frequency bending mode. The line at 369 cm⁻¹ in the HF solution of $BrOF_2^+BF_4^ (373 \text{ cm}^{-1} \text{ in solid BrOF}_2^+\text{BF}_4^-; \text{ one component of the broad 360 cm}^{-1} \text{ line in}$ solid $Br0F_2^+AsF_6^-$) is therefore assigned to v_3 . Two bending modes (v_6 and $\frac{1}{4}$) remain to be assigned. Since a motion involving the doubly bonded Br=O would be expected to occur at higher frequency than one involving only the single Br-F bonds, v_6 would be expected to occur at higher frequency than v_4 . This has been found for SeOF₂ and SOF₂, and is in agreement with the force constant calculation for $ClOF_2^+$. The assignments of v_6 and v_4 in Table 5.4 were made on this basis. However, they could possibly be reversed since Bougon et al.³⁸ have concluded on the basis of a statistical analysis of polarization ratios for $ClOF_2^+$ that the 402 cm⁻¹ peak shows a significantly lower polarization ratio than the 383 cm⁻¹ peak, and that therefore the assignments of v_6 and v_4 for ClOF₂⁺ should be the reverse of those given in Table 5.4. The assignment of these two modes in $Br0F_2^+$ is therefore tentative.

The anion lines in the Raman spectra of $BrOF_2^+BF_4^-$ can be readily assigned and are very similar to the BF_4^- lines in $ClOF_2^+BF_4^-$. ' The BF_4^- ion is expected to have tetrahedral symmetry and the four fundamentals

 $(1 = A_1 + E + 2T_2)$ are all Raman active. In the spectrum of solid BrOF₂⁺BF₄⁻, six lines are observed which can be assigned to BF₄⁻ if it is assumed that there is some splitting of the degenerate modes v_2 and v_3 . The 360 cm⁻¹ line is assigned to v_2 of the anion and not to the Br₂⁺ decomposition product because the solid was only slightly coloured, and because no line was observed at 720 cm⁻¹. In solution, only v_1 of BF₄⁻ can be unambiguously assigned. The shoulder at 360 cm⁻¹ has been assigned to v_2 of BF₄⁻. This assignment is uncertain however since some Br₂⁺ is probably present (a weak, broad peak is present at 716 cm⁻¹) and this may be responsible for the shoulder at 360 cm⁻¹. The two fundamentals v_3 and v_4 of BF₄⁻ are too weak to be observed in the solution spectrum.

The anion lines for $\text{BrOF}_2^+\text{AsF}_6^-$ are more difficult to assign. An octahedral AsF_6^- anion has six normal modes of vibration ($=A_{1g} + i_q + 2T_{1u} + T_{2g} + T_{2u}$). Of these the A_{1g} , E_g , and T_{2g} modes are only Raman active, the two T_{1u} modes are only infra-red active while the T_{2u} mode is inactive. The anion lines for $\text{BrOF}_2^+\text{AsF}_6^-$ have been assigned on the basis of O_h symmetry in Table 5.4, but the actual symmetry in the solid must be lower since the selection rules are not obeyed and several of the degenerate modes are split. All six fundamentals of AsF_6^- were observed in the Raman spectrum (if v_1 of AsF_6^- is assumed to coincide with v_2 of BrOF_2^+ , see below) and Bougon and his coworkers have observed three "forbidden" modes (A_{1g} , E_g and T_{2g}) in the infra-red data reported by Bougon and his coworkers are used to support the assignments of the Raman data obtained in the

0

present work. The Raman line at 720 cm⁻¹ and the weak peak at 688 cm⁻¹ are assigned to the Raman "forbidden" mode v_3 (T_{1u}). This mode is observed in the infra-red as a strong band at 688 cm⁻¹ with a shoulder at 730 cm⁻¹ The Raman line at 531 cm⁻¹ (and the shoulder at 558 cm⁻¹) are attributed $_{\rm 2}$ (E $_{\rm q}), which is observed as a medium intensity line in the infra-red$ spectrum. The Raman "forbidden" fundamental v_4 (T₁₀) is assigned to the lines at 387 cm⁻¹ and 398 cm⁻¹, which is observed as a relatively intense line at 385 cm^{-1} (with a shoulder at 405 cm⁻¹) in the infra-red spectrum. The Raman "allowed" vibration v_5 (T $_{2g}$) is attributed to a component of the broad 360 cm⁻¹ band (Bougon et al. observed it as a separate line at 360 cm⁻¹) and is present in the infra-red spectrum as a shoulder at 355 cm^{-1} . Despite the fact that the decomposition product Br_2^+ shows Raman lines at 360 cm^{-1} and 720 cm^{-1} , the lines observed at these frequencies in the spectrum of solid $BrOF_2^+AsF_6^-$ were not assigned to Br_2^+ for several reasons. First, the sample used to record the Raman spectrum was only slightly coloured suggesting that only a relatively small amount of Br_2^+ was present. Second, the relative intensity of the 720 cm^{-1} line is too large compared to the 360 cm^{-1} for the former to be entirely due to Br_2^{+1} . Also, no band was observed at 1080 cm⁻¹ again suggesting that no large amounts of Br_2^{++} were present. Finally, lines at 730 cm⁻¹ and 355 cm⁻¹ are also observed in the infra-red spectrum indicating that these lines must be due to $BrOF_2^+AsF_6^-$ since the Br_2^+ vibration is inactive in the infra-red. The possibility that some ${\rm Br_2}^+$ is present in the sample cannot be eliminated on the basis of the vibrational spectra however. Moreover, the fact that

only a single broad line at 360 cm⁻¹ was observed in the present work (rather than the two lines in this region observed by Bougon and his co-workers) is attributed to the presence of a small amount of Br_2^+ .

1

The very weak line at 239 cm⁻¹ is assigned to v_6 (T_{2u}) which is formally forbidden in both the Raman and infra-red spectra. This leaves only (A_{1q}) unaccounted for, and this is assumed to be coincident with the strong peak due to $\frac{1}{2}$ of the BrOF₂⁺ cation. A weak line at 660 cm⁻¹ is observed in the infra-red spectrum and has been assigned to ., of AsF_6 , - and this supports the supposition that v_1 of AsF₆ and v_2 of BrOF₂ are superimposed in the Raman spectrum. This would correspond to a considerable decrease in frequency for v_1 of AsF₆ between solid BrOF₂ AsF₆ and the "tree ion" value of 683 cm⁻¹ for $BrOF_2^+AsF_6^-$ in HF (see Table 5.4). The fact that all the fundamentals of AsF_6^- are observed in the Raman spectrum indicates a considerable lowering of the symmetry of the anion in the solid. A similar effect has been found in a number of $CloF_2^+MF_6^-$ salts. $?^+$ Also, the crystal structure of $SeF_3^+NbF_6^-$, ¹⁵⁰ where the cation is isoelectronic with $BrOF_2^+$, has shown that there is bridging between the anion and the cation which results in very distorted NbF_6^- octahedra. A similar situation may exist in $BrOF_2^+AsF_6^-$. However, since the cation frequencies are very similar in the solid AsF_6^{-} and BF_4^{-} salts and in HF solution, discrete ions must be present in both solid adducts.

The reaction of IO_2F_3 SbF₅ with BrF₅, has also been studied. By analogy with equation (5.3), this should proceed according to (5.5). The

$$IO_2F_3 \cdot SbF_5 + BrF_5 + IOF_5 + BrOF_2^+ SbF_6^-$$
 (5.5)

¹⁹F nmr spectrum of the solution indicates that $10F_5$ is indeed produced and that all the 10_2F_3 SbF₅ is consumed. A solid product is formed in the reaction, and Figure 5.6 shows the Raman' spectrum of this solid product recorded in a Kel-F sample tube. The Raman lines due to the Kel-F tube are indicated with an X in Figure 5.6. The reaction was repeated in an FEP tube to ensure that the Kel-F tube lines did not conceal any Raman lines due to the sample. The vibrational frequencies obtained from findure 5.6 are listed in Table 5.5. The characteristic Br-O stretch of the BrOF₂⁺ cation is observed at 1061 cm⁻¹. The remainder of the spectrum must therefore be due to the remaining BrOF₂⁺ lines and the lines due to the anion. This anion should be SbF₆⁻ from equation (5.5). However, the 10_2F_3 Sbf₅ used contained a slight excess of SbF₅. In view of the tendency of SbF₆⁻ to form polymeric anions Sb_nF_{5n+1}⁻, mixtures of SbF₆⁻ and Sb₂F₁₁⁻ anions may be present in this sample.

Table 5.5, therefore, lists the Raman frequencies attributed to the BrOF₂⁺ cation in the AsF₆⁻ salt (see Table 5.4). Also listed in Table 5.5 are the vibrational frequencies for the SbF₆⁻ anion in KSbF₀. Clearly, the anion lines in BrOF₂⁺Sb_nF_{5n+1}⁻ cannot be assigned on the basis of a tree octahedral SbF₆⁻ anion. It is known that formation of a fluorine bridge between the anion and the cation can lower the symmetry of the SbF₀⁻ from 0_h to C_{4v}, and this distortion has been successfully used to assign the Raman spectra of a number of SbF₆⁻ salts.⁴ Several sets of frequencies which have been assigned to C_{4v} symmetry SbF₆⁻ units have been included in Table 5.5. Finally, a number of Raman spectra for the Sb₂F₁₁⁻

11:2- -

				~ •		,	. 1	,	•									-			, 	• •
			٥														* •			12	:0	
, -	ર્		•		. G-X .	۰. ج	· · · · · · · · · · · · · · · · · · ·	538 X62	TI TI		20 20 20	• • • •			دمت ر€ د	C. F. C.	كلك سودف	ر ، الار ۱۰ کار	Sto. F		continued	•
•		(دمی ¹)	Brofgîser <mark>f_{5n+1}°</mark> sci.d	Raman	(99/1951	(12 565 5 n	678(50;)	(25)	636 51	624,1531		5€0 sh	639(23)		367(23)	336(10)	312(21)	278,22)	266(23) 225(16)	224(5)	J	Ņ
		5n+1 Systems	8r0f2 ^{+(L)}		1059(50)			649(109)	634 sn	,	1	• •			-(18) (18) (19)		(31)11E	289(6)			, ,	
	5.5	some related Sb _n F	rsef (b) solid	Raran - Infra- red		•	661 v.s	655 v.S	•		-	575 s					^ (20) r 273 m		,		•
	TABLE	F2 [*] Sb _n F _{5n+1} [*] and	distorted Sbf 6 basis of (a) try.	(f) _{j-Xef 3} (f) Salt) 683(9)	659(52)		. 629(68) .	624(100)		•	514(38)		360(17)	ر	287(37	271{8}	152HU). J	· ·
		uencies of BrO	an Spectra of a assigned on f C ₄ v symme	F ₃ +(f) _{2-XeF3} +(t Salt		(100) 683(100)	sn 664(15)	(18) 649(33) \$h \$h			(SL)	(8) 557(1) (60) 557(1)	(1)	449(66)	(1)296 (62)		sh 299 sh (6) 289 sh 284(15)	(6) 270(30) sh	(\$)262	127201 111		
		bradional' Freq	a of (a) Ram	Cs* (e) xe0 Salt Sal		692(93) 696 685 ⁽⁹³⁾ 635	667	654 (]00) 660 546 640			603 (1) 603	563 . 547	521(1) 523 505	,	366	332(4)	300 29 1(39) 283	ی 280 ب	(H); 232		46	x
· · · · · · · · · · · · · · · · · · ·		LA .	Raman Spectr Sb2F11 anio	d) _{Xef} ⁺ (e) Salt	~~	688(100)	678(16) 669(18)	651(80) 0)			4		528(32)	-			* 293(Ì6)			226(24) 212(10)	•	- -
· ·				BrF 4	738(27 705(13	688(5)	.)	659(5) 646(10				550(27)	542(27			•	293(9)	278(4) 260(12)	236(10)	227{6)		•
		-						۲ ׳			•							,				,
•			•				٠								•		,					,
			<i>.</i>		•			`				•										

TABLE 5.5 (continued)

Vibrational Frequencies of $erOF_2^+Sh_F_{5n+1}^-$ and Some related $Sh_F_{5n+1}^-$ Systems (cm⁻¹)

- Only anion fines are shown, and the intensities shown in parentheses have been normalized with respect to the strongest anion line.
- m, medium; s, strong; v.s, very strong; sh, shoulder. Referençe 151;
- f Reference 103. e Reference 152. d Reference 7. Solid AsF₆⁻salt. σ Q

¹ Approximate position since two or more lines are coincident.

Relative intensity not reported.

ے

٥

ion have been reported 7,90,152,153,154 and some of these have been included in Table 5.5. The Raman frequencies and relative intensities reported for the C_{4v} SbF₆ ions and Sb₂F₁₁ ions vary drastically when the cation is varied. For this reason and since mixtures of anions may be present, it is not possible to identify the anion lines in the spectrum of $BrOF_2^+Sb_nF_{5n+1}^-$. It seems that the best fit is obtained with the $SbF_6^$ lines observed for the β -XeF₃⁺ salt ¹⁵² and that the amount of Sb₂F₁₁⁻ present must be small since no intense peaks are seen at \sim 690 cm⁻¹ (as in $XeF^{\dagger}Sb_{2}F_{11}^{\dagger}$ and $Cs^{\dagger}Sb_{2}F_{11}^{\dagger}$ and no peaks are observed at about 740 cm⁻¹ (as in $BrF_4^+Sb_2F_{11}^-$ '). Identification of the cation lines in the spectrum of $Br0F_2^+Sb_nF_{5n+1}^-$ is not entirely satisfactory either. Although v X=0, xF_2 , sym OXF, s_{asym} OXF, and s_{sym} XF₂ can be readily identified (if it is assumed that sym XF2 coincides with an anion line to account for the high relative intensity of the 278 cm⁻¹ line), the assignment of $v_{sym}XF_2$ is less certain. On the basis of intensity the 624 cm⁻¹ peak appears to be due to v_{sym} XF₂. However, this assignment would imply an $\sqrt{25}$ cm⁻¹ shift to higher frequency from $v_{sym} XF_2$ in the SbF₆ salt to that in the BF₄ and AsF₆ salts. Also, assigning the 624 cm⁻¹ peak to $v_{sym} XF_2$ would mean that $asym XF_2$ $sym XF_2$ whereas the reverse is true in the other BrOF₂ salts. The alternative assignment indicated in Table 5.5 attributes the 656 cm⁻¹ peak to x_{sym} XF₂. The cation frequencies are then quite similar in all the $BrOF_2^+$ salts. However, the intensity of the 656 cm⁻¹ line relative to the ' 1061 cm⁻¹ band is rather low compared to the relative intensity of $sym BrF_2$ to v Br=D in the other salts. This assignment therefore has to be regarded

,a 122

as tentative. No attempt was made to assign the anion lines. It is clear, however, that the SbF₆ anion is distorted from O_h symmetry and that this distortion reduces the symmetry to C_{4y} or quite possibly to an even lower symmetry if there is more than one fluorine bridge between the anion and cation. The lines assigned to the bending modes of BrOF_2^+ are probably coincident with anion lines but this has not been indicated in Table 5.5. The decomposition product $(\text{BrF}_2^+\text{SbF}_6^-)$ is not present in the sample used to record the spectrum shown in Figure 5.6 since the characteristic strong sine at 704 cm⁻¹ due to $\text{BrF}_2^+\text{SbF}_6^-$ is not observed.

Both $BrOF_2^+AsF_6^-$ and $BrOF_2^+BF_4^-$ decompose at room temperature. $BrOF_2^+AsF_6^-$ becomes pink when allowed to stand at room temperature for a few hours. The decomposition product exhibits a strong Raman line at 360 cm⁻¹ with weaker lines at 720 cm⁻¹ (coincident with v_3 of AsF_6^-) and 1080 cm⁻¹. $BrOF_2^+BF_4^-$ rapidly turns a very dark brownish colour when allowed to warm up to room temperature, and all the decomposition products are volatile. Even samples prepared at low temperature were often coloured and Raman lines at 360 cm⁻¹ and \sim 720 cm⁻¹ were observed. The decomposition products for the two salts can be identified as $Br_2^+BF_4^-$ and $Br_2^+AsF_6^-$ on the basis of these Raman lines (see Section C).

BrOF₂⁺SbF₆⁻ appears to decompose to a different product however. After a sample had been kept at room temperature for four hours, its Raman spectrum contained a number of lines which could be readily assigned to $BrF_2^{-+}SbF_6^{--.96}$ However, the decomposition of the SbF₆⁻⁻ salt is slower than that of the AsF₆⁻⁻ and BF₄⁻⁻ salts since even after the sample was left for

several days at room temperature, the characteristic Br=O stretching frequency of BrOF_2^+ was still observable in the Raman spectrum of the decomposing material. After approximately 10 days at room temperature, the solid consisted entirely of $\text{BrF}_2^+\text{SbF}_6^-$ according to its Raman spectrum. This solid was however pinkish in colour, presumably indicating that some Br_2^+ was formed, although it could not be observed in the Raman spectrum. This Br_2^+ does not necessarily come from the decomposition of BrOF_2^+ however, since $\text{BrF}_2^+\text{SbF}_6^-$ has also been reported to turn pink on prolonged storage.¹⁵⁵

(ii) ¹⁹F N.M.R. Spectroscopy

 $Br0F_2^+BF_4^-$ is quite soluble in HF, and the ¹⁹F nmr spectrum of the $Br0F_2^+$ cation was observed. Excess BF_3^- was introduced into the solution to prevent exchange between the cation and the HF solvent, ^{130,156} which ° probably occurs by a reaction such as (5.6). Addition of excess BF_3^- slows

$$BrOF_2^+ + HF_2^- \neq BrOF_3^+ HF$$
 (5.6)

down this exchange reaction because the HF_2^- is removed from solution by reaction (5.7). Bougon and his collaborators ¹³² have reported that the

$$BF_3 + HF_2 \rightarrow BF_4 + HF$$
 (5.7)

¹⁹F*nmr spectrum of a solution of $BrOF_2^+AsF_6^-$ in HF did not show a separate signal in the F on Br (V) region at +10°C. When excess AsF₅ was added, they observed a sharp singlet at -202 ppm which was attributed to $BrOF_2^+$. This singlet was found to shift to high field as the temperature was lowered

•

(-199 ppm at -60°C). In the present work, the ¹⁹F nmr spectrum of a solution of $Br0F_2^+BF_4^-$ and BF_3 in HF (mole ratio $\approx 1:1.2:70$) was recorded at -79°C. A sharp singlet was observed at -192 ppm (linewidth $\sim 20 \pm 3$ Hz) which can be assigned to $Br0F_2^+$, and a strong singlet was observed at +190 ppm which was assigned to the HF solvent. No separate signal was observed in the F on B region, and the BF_3 and BF_4^- were therefore exchanging rapidly with the HF solvent. When the sample was warmed to -69°C and then to -59°C, the chemical shift of the $Br0F_2^+$ singlet did not change significantly, but the peak broadened considerably (70 + 5 Hz at -69°C and 180 ± 15 Hz at -59°C). This line broadening is probably due to exchange between the $Br0F_2^+$ and the HF solvent.

The singlet observed for $BrOF_2^+$ is in agreement with the equivalence of the fluorine atoms in the proposed structure (6) and its chemical shift is in the same region as that found for the isoelectronic BrO_2F (-210 ppm).

The ¹⁹F nmr resonances of the related molecules $BrOF_4$ (s = -104 ppm, Chapter III), $BrOF_3$ (s = -162 ppm, Chapter IV), and $BrOF_2^+$ (s = -192 ppm) shift to lower field on going from the anion to the parent molecule to the cation. A similar trend is observed in the series BrF_6^- (s = -96 ppm for $KBrF_6$ dissolved in CH_3CN at room temperature), BrF_5^- (s = -160 ppm, the weighted mean of $\delta_{FBrF_4}^-$ = -270 and $\delta_{FBrF_4}^-$ = -132 ¹⁰⁷) and BrF_4^+ (s = -180.4 ppm ⁷). The same trend is observed for the Xe(IV) and Xe(VI) cations ¹⁵⁷, ¹⁵⁸ and for $ClOF_2^+$, ¹⁵⁶ where the ¹⁹F resonances occur to low field of the parent molecule. However a large number of cases have been

reported in which the opposite trend is observed and cation formation causes the resonance to shift to high field ($IF_{.6}^{+}$ and $IF_{.7}^{-,1.59}$ KrF⁺ and KrF_2 , 90 XeF⁺ and XeF₂, 90 ClF₂⁺ and ClF₃, 156 ClF₄⁺ and ClF₅, 156 SOF₃⁺ and SOF_4 ,¹⁴⁷ SeF₃⁺ ¹³⁰ and SeF₄ ¹²¹). The reasons for the differing trends in these groups of molecules are not clear. The dominant contribution to the shielding of the fludrine nucleus, and therefore to the chemical shift, is the paramagnetic term $\sigma_{FF}^{par. 160}$ This term arises as a consequence of mixing of the ground and excited electronic states. It can be expressed 161 in terms of ground-state molecular orbitals and is inversely proportional to the mean excitation energy (ΔE). In a very general manner, the σ_{FF} term can be described as a measure of the asymmetry in the electron distribution about the fluorine nucleus. In the case of a spherically symmetrical F ion, the $\sigma_{\rm FF}^{\rm par}$ term is zero, whereas in the case of molecular $\rm F_2$, the electronic distribution is very asymmetric and $\sigma_{\rm FF}^{\rm par}$ assumes a very large negative value. This causes the chemical shift for the F_2 molecule to be 630 ppm to low field of that for the F^- nucleus in liquid HF. The magnitude of the paramagnetic term is dependent on the degree of ionic character in the bond between fluorine and the atom to which it is bound (M). A large contribution from the ionic M^+F^- form results in a small σ_{FF}^{par} term and (since σ_{FF}^{par} is negative) a relatively high chemical shift for the fluorine. Since the degree of ionic character in the bond depends mainly on the electronegativity (χ_M) of the atom M, the chemical shift of the fluorine in an M-F system should depend on $x_{\rm M}$ as well. This has indeed been found for a number of binary fluorides (such

as MF_3 : M = N, P, As, Sb; MF_4 : M = S, Se, Te; MF_5 : M^4 = P, As, Sb) where the chemical shift of the fluorine ligands decreases as \boldsymbol{x}_{M} increases. On this basis, one might expect the chemical shifts in a series MF_{n-1}^{+} , MF_{n} and MF_{n-1} to increase on going from the cation to the neutral molecule to the anion since the ionic nature of the MF bond increases along the series (as is reflected for example by a lowering of the M-F stretching frequency). This is indeed observed in the $BrOF_2^+$, $BrOF_3$, $BrOF_4^-$ series examined in this work, but does not seem to be generally the case. The reason for this is that other factors also affect the paramagnetic shielding The variation in the chemical shift of the fluorine atoms in comterm. pounds containing the same central atom in different oxidation states has been attributed to changes in the hybridization of the central atom. The trends are not clear however. Thus, the chemical shifts of AsF_3 and SbF_3 are greater than those of AsF5 and SbF5, respectively, and this is attributed to the involvement of higher energy \underline{d} orbitals in the hybridization of the As and Sb atoms in the higher oxidation state. 160 The same does not apply to the halogen fluorides however, since here the chemical shifts increase with increasing oxidation state. Since cation or anion formation involves a change in the hybridization of the central atom, this should have some effect on the chemical shift of the fluorine ligands, but whether the change will be to high or low field cannot be predicted a priori. Other factors such as the occurrence of π bonding between the central atom and the fluorine ligand or the occurrence of low energy excited states capable of mixing with the ground state will vary also when anions or prions are

formed from a neutral molecule, and the effects on the chemical shifts of - the resultant species are not obvious. It appears that the factors which govern 19 F - chemical shifts are not understood well enough to rationalize the trends which have been observed in the present work and which have been reported in the literature.

F. Experimental Section.

(i) <u>Preparation of BrO₂⁺ Salts</u>.

(a) $Br0_2^+AsF_6^-$: Approximately 0.135 g (1.03 mmol) of $Br0_2F$ was dynamically distilled into a U-tube constructed of 1/4" o.d. thin-walled FEP tubing and fitted with an FEP nmr tube as a side-arm. Enough HF was added to dissolve the $Br0_2F$ at room temperature and the solution was washed into the side-arm. The HF was removed under vacuum at -72°C and solid $Br0_2F$ was obtained. Approximately 0.4 g of HF and 1.1 mmol of AsF_5 were condensed into the side-arm. The mixture was allowed to react at -78°C for an nour, giving a yellowish solution with an orange solid in the bottom of the tube. The solvent was removed under vacuum, and an orange powder was obtained. This powder was used to record the Raman spectrum shown in Figure 5.2. The colour of the samples prepared by this method varied from cream coloured to rather deep reddish-orange. In other preparations, larger excesses of AsF_5 were used but products with identical Raman spectra were obtained.

In another experiment, 0.155 g (1.18 mmol) of BrO_2F was dissolved in 2.7 g of BrF_5 , and approximately 2.2 mmol of AsF_5 was slowly admitted

to the tube kept at -62°C. A brown solution standing over a brownish solid was produced. The solvent and excess AsF_5 were removed under vacuum at -62°C, and a brown powder was left behind. The Raman spectrum of this powder showed the lines characteristic of $BrO_2^+AsF_6^-$ along with the 360 cm⁻¹ line due to Br_2^+ which is the decomposition product. The sample was briefly warmed to room temperature, and the Raman spectrum was again recorded. The 360 cm⁻¹ line was now the dominant line in the spectrum, and weaker lines at -720 cm⁻¹ and 1080 cm⁻¹ were also present.

(b) $BrO_2^{+}BF_4^{-}$: Approximately 0.704 mmol of BrO_2F (estimated from the amount of $KBrO_2F_2$ used) was dynamically distilled into a 1/4" o.d. FEP U-tube fitted with an FEP nmr tube side-arm. Approximately 0.6 g of HF and 1.1 mmol of BF_3 were distilled in. The mixture was allowed to react at -72°C and an orange solution was formed after 30 minutes. The solution was concentrated by removal of some of the HF and the excess BF_3 under vacuum. A portion of this solution was decanted into the side-arm and (after subsequent dilution with HF) was used to record the ¹⁹F.nmr spectrum. The concentration of the sample used to record the nmr spectrum was calculated from the integration of the peaks due to BF_4^- and HF. The remainder of the solution in the U-tube was pumped to dryness at -72°C, and an orange powder was formed. This sample was used to record the Raman spectrum shown in Figure 5.1.

A very similar procedure was used for the reaction of BrO_2F and BF_3 using BrF_5 as a solvent, except that the side-arm on the U-tube consisted of a 6 mm o.d. quartz tube. Most of the solution of $BrO_2^{+}BF_4^{-}$ in BrF_5 was

decanted into the side-arm. The solution which remained in the U-tube was allowed to stand at room temperature for 10 minutes and turned dark brown in colour. The volatile components of the solution in the side-arm were removed under vacuum at -48°C, and an orange solid resulted. The Raman spectrum of this solution contained the lines characteristic of $\text{BrO}_2^+\text{BF}_4^-$, but showed a number of additional lines as well, indicating that decomposition (probably as a result of attack on the quartz) had occurred. This impure sample of $\text{BrO}_2^+\text{BF}_4^-$ was dissolved in HF and a large excess of KF added. The mixture was rapidly warmed to dissolve all the solid present, and then cooled to -78°C. A large mass of white precipitate was formed. The Raman spectrum of this white solid showed the lines characteristic of BrO_2^-F .

(ii) <u>Preparation of BrOF</u>, Salts.

(a) $Br0F_2^+AsF_6^-$: In a typical preparation, approximately 0.77 mmol of $Br0F_3$ was placed in a 10 mm o.d. quartz ampoule. Approximately 0.5 g of HF and 1.4 mmol of AsF_5 were distilled in at -196°C.The mixture was warmed to -72°C to give a cream coloured solid under a brownish solution. Removal of the solvent under vacuum produced a cream coloured solid. This solid was used to record the Raman spectrum shown in Figure 5.3. When this solid was allowed to stand at room temperature for an hour, it turned pink in colour and the Raman lines at 360 cm⁻¹ and 720 cm⁻¹ increased in relative intensity. After four hours at room temperature, the solid was even more darkly coloured and the Raman lines at 360 cm⁻¹, 720 cm⁻¹ and 1080 cm⁻¹ then dominated the spectrum.

9)
BrF₅ was also used as a solvent for the preparation of $BrOF_2^+AsF_6$. 0.076 g (0.50 mmol) of $BrOF_3$ was dissolved in 1.3 g of BrF_5 in a 1/4" o.d. FEP tube, and 0.6 mmol of AsF_5 was distilled in. The mixture was warmed to -62°C, and then briefly to room temperature to get complete reaction. A light brown solution and a white solid were present in the tube. The Raman spectrum of the solution showed a weak line at 1053 cm⁻¹ indicating that $BrOF_2^+AsF_6^-$ is slightly soluble in BrF_5 . Removal of the BrF_5 under vacuum produced a white solid whose Raman spectrum was identical with that of $BrOF_2^+AsF_6^-$ produced using HF as a solvent.

 $IO_2F_3 \cdot AsF_5$ was dissolved in an excess of BrF_5 (mole ratio 1:20) in an FEP nmr tube, and warmed to room temperature. After ten minutes, a white crystalline solid was deposited in the tube. The ¹⁹F nmr spectrum of the supernatant solution showed signals due to BrF_5 , IOF_5 , and a small amount of IF_5 . No signals due to $IO_2F_3 \cdot AsF_5$ were observed. The IF_5 is probably produced by thermal or photochemical decomposition of the $IO_2F_3 \cdot AsF_5$ adduct to $IOF_2^+AsF_6^-$,²⁶ followed by fluorination to IF_5 by the BrF_5 solvent. The volatile components of the mixture were removed under vacuum and a white solid was produced whose Raman spectrum showed it to be $BrOF_2^+AsF_6^-$.

(b) $\operatorname{Br0F_2^+BF_4^-}$: In a typical preparation, 0.28 mmol of $\operatorname{Br0F_3}$ was dissolved in 0.4 g of HF in an FEP nmr tube; and 0.63 mmol of BF₃ was distilled in at -196°C. The mixture was warmed to -72°C, and a clear, yellowish solution was formed. This solution was used to record the ¹⁹F nmr spectrum. The HF and excess BF₃ were then removed under vacuum at

-72°C, and a yellowish solid resulted whose Raman spectrum was consistent with $BrOF_2^+BF_4^-$. Samples were prepared in a similar manner in Kel-F and quartz vessels.

 $Br0F_2^+BF_4^-$ was also prepared by the direct reaction of KBr0F_4 (0.058 g, 0.27 mmol) with excess BF_3 (0.70 mmol) at -72°C using HF (0.8 g) as a solvent. The reaction was done in a 10 mm o.d. quartz ampoule fitted with a 6 mm o.d. quartz tube as a side-arm. The reaction produced a mixture of KBF_4 and $Br0F_2^+BF_4^-$. Potassium tetrafluoroborate is much less soluble in HF than $Br0F_2^+BF_4^-$, and the latter can be isolated by pouring the solution into the side-arm and removing the HF under vacuum.

(c) $BrOF_2^+SbF_6^-$: 0.203 g (0.47 mmol) of $IO_2F_3 \cdot SbF_5$ was dissolved in 1.75 g of BrF_5 , and the mixture was warmed to room temperature. A white microcrystalline solid was produced after ten minutes. The ¹⁹F nmr spectrum of the solution showed lines due to BrF_5 , IOF_5 , and a small amount of IF_5 (see section F (ii) (a)). The volatile components of the mixture were removed under vacuum, and a white solid was produced. Raman spectroscopy showed this solid to contain the $BrOF_2^+$ cation. $BrOF_2^+Sb_nF_{5n+1}^-$ is slightly soluble in BrF_5 since a weak peak at 1051 cm^{-1} appeared in the Raman spectrum of the BrF_5 standing over solid $BrOF_2^+Sb_nF_{5n+1}^-$.

When a sample of $\text{Br0F}_2^+\text{Sb}_n\text{F}_{5n+1}^-$ was allowed to stand at room temperature for four hours, extra lines appeared in the Raman spectrum and these could be assigned to $\text{BrF}_2^+\text{SbF}_6^-$. After several days, extensive decomposition had occurred. After the sample had stood for ten days, the Raman spectrum could be entirely attributed to $\text{BrF}_2^+\text{SbF}_6^-$.

(d) Reaction of $IOF_2^+SbF_6^-$ with BrF_5 : 0.026 g (0.062 mmol) of $IOF_2^+SbF_6^-$ was allowed to react with excess BrF_5 (0.79 g, 4.5 mmol) in an FEP nmr tube at -48°C and then at -37°C. There was a white solid present in the tube, and the solution was coloured slightly brown. The ¹⁹F nmr spectrum of the solution showed that IF_5 had been produced in the reaction. A weak, broad line at +113 ppm was also present in the nmr spectrum, and this is presumably due to SbF_6^- . The cation associated with this SbF_6^- anion $(BrF_2^+, see below)$ could not be observed as a separate resonance however. The volatile species present were removed under vacuum at -37°C and then briefly at room temperature. A slightly yellowish solid was produced. Its Raman spectrum could be attributed to $BrF_2^+SbF_6^-$.

CHAPTER VI

A REINVESTIGATION OF THE VIBRATIONAL SPECTRUM OF SeO_2F_2 , AND THE PREPARATION AND RAMAN SPECTRUM OF $SeO_2F_2^{2-}$.

A. & Introduction.

During the course of our work on $Br0_2F$ (see Chapter IV), it was of interest to compare its vibrational spectrum to that of the isoelectronic species $Se0_2F$. Paetzold and Aurich ¹⁶² have reported the synthesis of KSe0₂F by the direct reaction of KF and Se0₂ at a temperature of 250°C (reaction (6.1)) and have recorded its infra-red and Raman

$$KF + SeO_2 \xrightarrow{1} KSeO_2F$$
 (6.1)

spéctra. However, their assignments were unusual in several respects and did not seem consistent with our findings for BrO_2F . We have repeated this preparation of SeO_2F and in this chapter the Raman spectrum will be described and reassigned. Milne and Moffett 10.3,100 have shown that $MSeO_2F$ (M = K and Cs) can be prepared by other methods such as the reaction of the appropriate metal fluoride with SeO_2 in DMSO or 48 HF as solvent.

It was also of interest to attempt the preparation of the dioxodifluoroselenate (IV) ion, $\text{SeO}_2\text{F}_2^{-2-}$, since the reaction of TeO_2 with CsF or RbF gives only the $\text{TeO}_2\text{F}_2^{-2-}$ ion, ¹⁶⁵ with no evidence for the $\text{TeO}_2\text{F}_1^{-2-}$ ion. Also, the $\text{SeO}_2\text{F}_2^{-2-}$ ion is isoelectronic with the $\text{BrO}_2\text{F}_2^{-2-}$ ion prepared

in the present work and a comparison between the two would be of interest. Finally, the reaction between SO_2F^- and excess CsF was studied in an attempt to find evidence for the corresponding $SO_2F_2^{-2-}$ anion.

B. Vibrational Spectrum of the SeO₂F⁻ Ion.

The Raman spectrum of the product of the reaction of equimolar quantities of SeO $_2$ and KF at approximately 280°C is shown in Figure 6.1. The Raman bands are listed in Table 6.1. Also listed are the Raman and infra-red bands for SeO_2F^- reported by Paetzold and Aurich, along with the fundamental frequencies for the isoelectronic species ${\rm Br0}_2{\rm F}$ (see Chapter IV) and SeO₂(OH), 166 and the related ion SO₂F. 113 An isolated SeO_2F ion is expected to have a pyramidal geometry which corresponds to C_s symmetry. The six fundamentals (i = 4A' + 2A'') should all be Raman and infra-red active. This agrees well with the number of lines observed if the peak at 424 cm⁻¹ and the shoulders at 450 cm⁻¹ and 408 cm⁻¹, observed in the Raman spectrum are all assigned to the same normal mode. In the infra-red spectrum, the two lines at 440 cm^{-1} and 403 cm^{-1} are assigned to this mode. The assignments proposed in the present work are based on comparison with the assignments of the related molecules $SeO_2(OH)^-$, BrO_2F , and SO_2F^- . As expected the frequencies for SeO_2F^- are considerably lower than those for SO_2F . The SO_2F frequencies are also slightly lower than those of BrO₂F, which is consistent with a slight weakening of the bonds due to the negative charge on the anion. Several of the assignments proposed in the present work differ from those of

•		(p).*						•	•.		4. .	` 1	, «
· ·	x	<pre>jnments * Paetzold 8 Aurich </pre>	× X0,	ν sym ^{XO} 2	۰XF ۶X0	. с ŝFX0 ₂	δ F X02	I				137	, ,
`	、	Present Presults	رx0, A"	asym ^{XO} 2 ^{A'}	vX-FA.	5 X02 A'	sym ^{OXF A'}	asym ^{UAF A}	•	shoulder.	₹ ,	•	
-	d Moleçules.) This work(i)	903(100)	888(45) br	450sh 424 (25)vbr 408sh	324(10)	283(10) 5 220 (2)	238 (2) S	ference 162.	br, broad; sh, ⁄	i Kse0 ₂ F.	I	
.	Some Related)2 ^F Milne (h. et al.	912 vs	884 vs	440 s • 403 vs	320 ms	280sh	ca.200	d Ref	ery broad;	ând 164.	• •	,
 3le 6.1	SeO ₂ F ⁻ and 3	Set & Aurich ^(d)	903(100)	887(80)	415(25)	348(25)	282(25) 237(0)3 ^{(g})	?	Chapter IV.	ik; vbr, ve	erences -163	\$	·
TA	uencies of ;	Paetzold 8	sv 606	. 882 v.s/	440's,vbr - 415	t	I	I	c See	um; w, wea	incensicies , ^h Refe	•	
	undamental Frequ	Bro ₂ F ^(c)	908(100) ^(f)	963 (25) 940 (25)	524sh 496 (25)vbr 487sh	400sh (10) 386:	305 294sh (20) 267/15)		Reference 166.	strong; m, medi	s give relative D'be measured.	, .	•
•	ţ.c.	seo ₂ (он) ^{-(b)}	855 s	M 062	615 m .	410 w	345 w 320 u	r 	b ,	strong; s,	too small to	¢	
		so ₂ F ^{-(a)} , s	1102 vs (ē)	1180 vs	593 s	498 s	350 m 265 m	Ξ, , ,	a Reference	f vs, very	g Intensity	•	٩
			, 1	·	,	, ,					.	د 	,

Paetzold and Aurich.

The broad and asymmetric high frequency peak can be resolved into two peaks (see Figure 6.1). It is found to consist of a sharp intense line at 903 cm⁻¹ which is assigned to $v_{sym}SeO_2$ and a broad band centred at 888 cm⁻¹ which is assigned to $v_{asym}SeO_2$. Although $v_{sym}XO_2$ is generally lower in frequency than $v_{asym}XO_2$, the reverse is true in a number of related selenium compounds such as $SeO_2(OH)^-$ (see Table 6.1), SeO_3^{2-114} ($v_1 = 807$ cm⁻¹, $v_3 = 737$ cm⁻¹) and $SeO_2^{-0.5EO_2^{2-166}}$ ($v_{sym}SeO_2 = v_{855}$ cm⁻¹, $v_{asym}SeO_2 = v_{800}$ cm⁻¹), and this tends to support the presentassignment.

The second main difference between our results and those of Paetzold and Aurich is the assignment of the Se-F stretching mode. They have assigned the 440 cm⁻¹ line in their infra-red spectrum to the Se-F stretch, and report that this mode is not observed in the Raman. This is not satisfactory as the Se-F stretch is an A' mode and should certainly be visible in the Raman spectrum. Also, this leaves four Raman peaks whereas only three bending modes remain to be assigned. They, therefore, leave the weak line at 238 cm⁻¹ unassigned. In the present work, the broad asymmetric peak centred at 424 cm⁻¹ in the Raman spectrum is assigned to the Se-F stretching motion, with the shoulder being attributed to solid state splittings. A very similar asymmetric peak appears in the Raman spectrum of solid BrO₂F (Figure 4.1) and was assigned to the Br-F stretch. In the melt, this peak was found to lose its asymmetry which supports the suggestion that the shoulders on the peak in the

spectrum of the solid are due to solid state effects. Assignment of the Se-F stretch in Se0₂F⁻ to the complex peak at 424 cm⁻¹ leaves three lines in the Raman spectrum which can be assigned to the three bending motions, with the very weak line at 238 cm⁻¹ being assigned to the A" mode $\frac{1}{3}$ asym⁰SeF.

A number of solvents were tried in an attempt to obtain polarization data for SeO₂F⁻. KSeO₂F was found to be insoluble in SO₂ClF and CH₃CN and only very slightly soluble in dimethyl sulfoxide. Trifluoro-acetic acid, formamide, and IF₅ dissolved substantial quantities of KSeO₂F but produced solutions with rather complicated Raman spectra, indicating that in each case the solvent reacted with some of the SeO₂F⁻. Raman spectra of molten KSeO₂F were recorded at 260°-280°C. The melt obtained at these temperatures was very viscous and also appeared to be inhomogeneous since a small amount of white solid was still present in the tube. Higher temperatures (to obtain a more homogeneous mixture) could not be attained. The SeO₂F⁻ peaks which appeared in the melt spectra were rather broad and no polarization data could be obtained.

The Se-F stretching frequency in SeO₂F⁻ (424 cm⁻¹) is rather low compared to the mean of the Se-F frequencies of SeOF₃⁻ (527 cm⁻¹)^{16.7} and SeF₅⁻ (520 cm⁻¹)^{16.8}; in the analogous sulphur system, the S-F stretching frequencies are comparable in SO₂F⁻ (593 cm⁻¹) and SF₅⁻ (587 cm⁻¹)^{16.8} indicating that an Se-F frequency of about 520 cm⁻¹ could have been expected for SeO₂F⁻. Paetzold and Aurich ^{16.2} reached a similar conclusion

by examining the variation in the $vSe-0CH_3$ frequency in a series of molecules $CH_3O-SeO-X$ as X varies from F to OCH_3 to O^- , and assuming that a similar change in the USe-F frequency will occur in the series F-SeO-X as X is similarly varied. In this way Paetzold and Aurich estimated an · Se-F frequency of approximately 500 cm⁻¹. The observed value of 424 cm⁻¹ is thus considerably lower than would be expected. Similarly weak X-F bonds have been found for Br0₂F (see Chapter IV) and C10₂F ³¹ and have been attributed to large ionic contributions to the X-F bond, and this is consistent with the relatively high XO_2 stretching frequencies found in these molecules. The mean XO_2 stretching frequency in SeO₂F⁻ (895 cm⁻¹) is relatively high when compared to that in SeO₂ (944 cm⁻¹).¹³³ In the analogous sulphur system the difference between SO_2F^- (1140 cm⁻¹)¹¹³ and SO_2 (1256 cm⁻¹) ¹¹⁴ is considerably larger. The value found in SeO_2F^- (895 cm⁻¹) is also relatively high compared to SeOF₅ (921 cm⁻¹)¹⁶⁹ since . the latter is an Se(VI)oxyfluoroanion whereas Se0₂F⁻ contains Se(IV). ; \cdot There is a much larger change in the SeO frequencies on going from the Se(IV) species Se0₂ (944 cm⁻¹) to the Se(VI) species Se0₂F₂ (1015 cm⁻¹).¹⁷⁰,¹⁷¹ The relatively high SeO₂ stretching frequencies and the relatively low Se-F stretching frequency found in $\text{SeO}_{2}\text{F}^{-}$ are both consistent with a large contribution from structure (3) in addition to structures (1) and (2)

140

こうちょうないないないないないできたがある

Paetzold and Aurich have suggested that the low value of the Se-F stretching frequency may be due in part to bridging between the anions in the crystal. The crystal structure of 8-hydroxyquinolinium trichloroselenate,¹⁷² which contains the SeOCl₃ anion, has revealed chlorine bridging between the anions, with the immediate environment of the Se consisting of an oxygen at 1.59Å, two <u>cis</u> chlorines at 2.2Å and two bridging chlorines at about 3.0Å. The ionic form (4) thus makes a large contribution to the overall structure and can account for the small

difference in the Se=0 stretching frequencies of SeOCl₃⁻ (924 cm⁻¹)¹C² and the parent molecule SeOCl₂ (949 cm⁻¹).¹⁷³ Weak fluorine bridging between the SeO₂F⁻ anions may exist in KSeO₂F, but the bridges are certainly not symmetric as in SeOCl₃⁻ as this would not be consistent with our observed vibrational data. Also, the Se-F vibrational frequency in molten SeO₂F⁻ (approximately 411 cm⁻¹) is not very different from that in solid KSeO₂F whereas a much larger change would have been expected for a very heavily fluorine bridged structure in the solid.

C. Purity of the KSeO_F Samples.

Paetzold and Aurich have reported that their KF/SeO₂ melts were

often coloured pink due to the facile reduction of SeO2 to elemental Se. This was not found to be a problem in the present work. However, when the KF and SeO₂ were not used in exactly equimolar amounts, impurity lines appeared in the Raman spectra of the products. When KF was present in excess,or when SeO2, sublimed out of a 1:1 = KF:SeO2 reaction mixture, Raman lines assigned to $K_2SeO_2F_2$ appeared (see Section D). When excess SeO₂ was present, a number of very broad bands appeared in the spectra "of the products at approximately 880 cm⁻¹, 655 cm⁻¹, 530 cm⁻¹, 460 cm⁻¹, and 250 cm⁻¹. These lines cannot be assigned to solid SeO₂ however, since the latter has a characteristic strong line at 595 cm^{-1} .¹⁶⁶ Also, no SeO₂ could be extracted from the mixture using benzene as a solvent, in which SeO₂ is soluble.¹²⁷ The lines characteristic of excess SeO₂ could, however, be eliminated by melting the sample with a small amount of KF. These observations suggest that the excess selenium dioxide is not present as free SeO_2 in the solid, and yet is still capable of reacting with KF. Walrafen ¹⁶⁶ has reported that in Raman spectra of molten H_2SeO_3 , a number of broad lines (855, 800, 535, 410, 365, 330, 250 cm⁻¹) appear which he has assigned to the Se $_{2}0_{5}^{2-}$ ion. It is therefore possible that excess Se $_{2}$ reacts with SeO_2F according to (6.2) and that the complex anion Se_2O_4F is

$$SeO_2 + SeO_2F \rightarrow O_2SeOSeOF$$
 (6.2)

responsible for the impurity lines in the spectra of $KSeO_2F$ containing excess SeO₂. Addition of excess KF results in reaction (6.3) and

$$F^{-} + 0_2 \text{SeOSeOF}^{-} \rightarrow 2\text{SeO}_2 F^{-}$$
, (6.3)

elimination of the additional lines.

\cdot D. <u>Preparation and Raman Spectrum of K₂SeO₂F₂</u>,

When a slight excess of KF was used in an attempted preparation of KSeO₂F, extra lines appeared weakly in the Se=O stretching region (see for example Figure 6.1). As the KF:KSeO₂F ratio was increased, the additional peaks grew in intensity. The intensity of the additional lines could be decreased if the mixture was heated with SeO₂. These observations are consistent with the following equilibria involving the SeO₂F₂²⁻ ion((6.4) and (6.5)). The same peaks were also observed when a

5

$$KF + KSeO_2F \neq K_2SeO_2F_2$$
(6.4)

$$K_2 SeO_2 F_2 + SeO_2 \rightarrow 2KSeO_2 F$$
 (6.5)

sample of $KSeO_2F$ was heated to $180^{\circ}C$ under vacuum for several days. A white solid sublimed out, and this solid was identified as SeO_2 by its Raman spectrum. It would appear that the other product of the decomposition is $K_2SeO_2F_2$ formed according to the disproportionation

$$2KSeO_2F \rightarrow K_2SeO_2F_2 + SeO_2f \qquad (6.6)$$

Unfortunately, it was not possible to prepare a pure sample of $K_2SeO_2F_2$. Even when a KF:SeO₂ ratio as high as 20:1 was used, the product always contained KSeO₂F as well as $K_2SeO_2F_2$. At high KF:SeO₂ ratios however, the mixture did not melt at 300°C, and this may be partly responsible for the mixture of products obtained. Heating KSeO₂F under

vacuum at temperatures above 200°C also always gave a product containing both $KSeO_2F$ and $K_2SeO_2F_2$. In addition the mixture developed a red colour at these high temperatures indicating that some decomposition, possibly to elemental selenium, had taken place.

The Raman lines associated with $\text{SeO}_2\text{F}_2^{2-}$ are listed in Table 6.2. These lines were obtained from the spectra of a number of different samples, some containing considerable amounts of SeO_2F^- and others containing unknown quantities of decomposition products. The four high frequency lines were always easily distinguishable in these spectra. The lower frequency $\text{SeO}_2\text{F}_2^{2-}$ fundamentals were much more difficult to identify because of the presence of the SeO_2F_-^2 . The four frequencies listed in Table 6.2 were distinguishable in the spectra of all the samples containing large quantities of $\text{SeO}_2\text{F}_2^{2-}$. The possibility that some of these lines may be due to impurity cannot be eliminated however. For this reason, the attribution of these lines to $\text{SeO}_2\text{F}_2^{2-}$ is somewhat uncertain, and the assignments given for these lines are therefore tentative.

The assignments given in Table 6.2 were made on the basis of the C_{2v} structure (5) with the lone pair and the c_{2v} structure (5) with the lone pair and the c_{2v} structure (5) with the lone pair and the c_{2v} structure (5) with the lone pair and the c_{2v} structure has occupying the equatorial c_{2v} signal bipyramid. A similar c_{1} signal bipyramid. A similar c_{1} structure has been suggested for the related c_{1} structure has been suggested for the related c_{2v} (5) c_{1} structure has been suggested for the related c_{2v} (5) c_{2} (X = Cl, I, Br)(see Chapter III) and $TeO_{2}F_{2}^{-2}$. The nine fundamentals (r = 4A₁ + A₂ + 2B₁ + 2B₂) for such a structure are all expected to be Raman active.

1

Reference 165 to be consistent with the assignments for ${
m Cl0}_2{
m F}_2^-$ and ${
m I0}_2{
m F}_2^-$ Assignments and approx. description (۲_۹) (B₂) (A) $\binom{\mathsf{B}_2}{\mathsf{Z}}$ (B_) E (A₂) ຜ່ The assignments of b_4 and b_9 have been reversed from those given in W vasym X02. v6 ^vasym^{XF}2 ^v7 ⁶rock v₄ 5XF2 v_ε Torsion `1 `sym^{XO}2 v3 vsym^{XF}2 s, strong; vs, yery strong; m, medium; w, weak; sh, shoulder; br, broad; ν₂ ⁵ X0₂ ∿9 ^ŝwag Raman Spectrum of Se $0_2F_2^2^-$ and Some Related Ions (cm⁻¹) Numbers in parentheses give relative intensities. References 54 and 55. Se0₂F2-(e) 445(10)br 868 sh 859(100) 833(25) 823 sh 396(15) 241(12) 304(20) 102F2-.(c) Te02F2.(d) 150^(h) 796 vs 781 404 mw 385 sh 353 mw 279 mw 315 sh 197 vw 758 m 326 w See Chapter III. Calculated from 5 + 7 combination. 817 vs 804 456 vw 194 vw 323 s 838 w 360 m 346 w 2 9/ 2 Br02F2^{-(b)} 892(7)sh^(g) 884(100) 910 (7) 424(14) 380 sh 369(35) 307 (9) 293 sh 338 (8) 197 (4) 400 (2) 442 sh Reference 165: Reference 35. 1076(100)^(f) 1064 1055 $K_{2}SeO_{2}F_{2}$. c10₂F2^{-(a)} 363(100) 480(10)br 559(12) 337(80) 337(80) 1221 (8) 198 (7)

145

TABLE 6.2

ų

The four high frequency lines which are always observed have been assigned to the SeO₂ symmetric and asymmetric stretching modes split by solid state effects. The assignment of the high frequency lines to v_{sym} SeO₂ was made on the basis of the intensity of the lines in this region and is analogous to the assignments for TeO₂F₂²⁻. The four other bands which could be attributed to SeO₂F₂²⁻ have been assigned by comparison with the related molecules. Several of the fundamentals could not be observed, either due to interference from the Raman lines associated with the SeO₂F⁻ present in the sample or due to their weakness.

E. Attempted Preparation of the $SO_{2}F_{2}^{2}$ ion.

 $M^+SO_2F^-$ salts can be readily prepared from the appropriate metal fluoride and liquid $SO_2^{.97,113,174}$ These salts dissociate into MF and SO_2 however when heated (100-150°C for KSO_2F^{-174}), and high temperature reactions can, therefore, not be used to investigate the formation of $SO_2F_2^{-2-}$. The reaction between $M^+SO_2F^-$ and excess MF (M = Cs⁺, N(CH_3)_4⁺) has been examined using CH₃CN as a solvent.¹⁷⁵ However, no definitive evidence for $M_2SO_2F_2$ was obtained since hydrolysis of the products occurred while infra-red spectra were being recorded. In the present work, the reaction between CsSO₂F and excess CsF in CH₃CN has been monitored by Raman spectroscopy, and no peaks attributable to $SO_2F_2^{-2-}$ were observed.

The behaviour of selenium appears to be intermediate between that of sulphur and of tellurium. SO_2F is a stable species that appears to show no tendency to form the $SO_2F_2^{-2}$ ion. SeO_2F is also a stable

species but it will give $\text{SeO}_2\text{F}_2^{2-}$ in the presence of excess fluoride, and it is also slightly disproportionated at high temperature to give SeO_2 and $\text{SeO}_2\text{F}_2^{2-}$. In the case of tellurium, on the other hand, there is no evidence for TeO_2F^- as a stable species but $\text{TeO}_2\text{F}_2^{2-}$ is readily prepared. When equimolar mixtures of TeO_2 and F^- are heated, the product is a mixture of TeO_2 and $\text{TeO}_2\text{F}_2^{2-.165}$ Thus if TeO_2F^- is formed it is completely disproportionated to TeO_2 and $\text{TeO}_2\text{F}_2^{2-.165}$.

F. Experimental Section.

(i) <u>KSeO_F</u>:

KSeO₂F was prepared following the method described by Paetzold and Aurich ¹⁶² by mixing SeO₂ and KF in a platinum crucible, which was then placed inside a glass tube under a slow stream of dry nitrogen and heated until a melt was formed. In a typical experiment, 1.59 g (14.3 mmol) of SeO₂ and 0.825 g (14.2 mmol) of KF were used. The white crystalline product which resulted when the melt was allowed to cool was crushed in a mortar in the dry-box and transferred to 1/4" o.d. glass or 6 mm o.d. quartz tubes, and Raman spectra were recorded.

The solubility of $KSeO_2F$ in various solvents was tested by introducing a solvent onto some solid $KSeO_2F$ in a 1/4" o.d.glass tube $(SO_2ClF, CH_3CN \text{ and } IF_5 \text{ were distilled in; DMSO, HCONH}_2 \text{ and } (CF_3CO)_2O \text{ were poured} in}$. The Raman spectrum of the solution was then recorded and compared with that of the pure solvent. The Raman spectrum of molten KSeO₂F was recorded in a 1/4" o.d. glass tube. The sample was placed in a glass Dewar and a stream of nitrogen, heated by a Nichrome resistance wire, was passed through the Dewar. The temperature was monitored using a copper-constantan thermocouple placed near the sample. The maximum temperature which could be attained was 280°C.

A sample of KSe0₂F, which had been prepared using excess Se0₂, was placed in a glass double-ampoule (see Chapter III, section F(i)) and benzene was introduced onto the solid. The mixture was shaken overnight, and the solvent was filtered into the empty side of the double-ampoule. The benzene was then distilled back onto the KSe0₂F/Se0₂ mixture. No residue was left behind indicating that no Se0₂ had been extracted out of the mixture.

(ii) K_Se0_F_.

Mixtures containing KF and SeO_2 in mole ratios as high as 20:1 were heated to 300°C in a platinum crucible under a stream of dry nitrogen. After being allowed to eo, the products were crushed in a mortar and introduced into 1/4" o.d. glass tubes to record the Raman spectrum. A sample of KSeO₂F in a glass tube was heated under dynamic vacuum to 180°C overnight, and a white material appeared in a cool section of the tube. The Raman spectra of the sublimed material and of the white involatile residue were both recorded. Another similar experiment was carried out, but a temperature of 230°C was maintained for three days. The involatile residue remaining was coloured red and its Raman spectrum was recorded.

(iii) Attempted Preparation of $SO_2F_2^{2-}$.

0.423 g (1.95 mmol) of $CsSO_2F$ and 0.487 g (3.18 mmol) of CsFwere placed in a 10 mm o.d. ampoule and 1 g of CH_3CN was distilled in. The ampoule was sealed off and the mixture was shaken at room temperature. After three weeks, the Raman spectrum of the solid present in the bottom of the ampoule was recorded and found to be identical to that of $CsSO_2F$ starting material. The Raman spectrum of the CH_3CN solution did not show any peaks other than thos due to CH_3CN solvent.

CHAPTER VII

CHARACTERIZATION OF Brog F BY ¹⁹F N.M.R. SPECTROSCOPY, AND SOME ATTEMPTED PREPARATIONS OF Br(VII) OXYFLUORO SPECIES.

A. Introduction.

Only three species of bromine in the +7 oxidation state have been prepared and characterized. These are the $Br0_4^-$ ion (in several salts, 32, 84,176,17 · HBrO₄ · 84,178 and in isopropyl perbromate 179), the BrF₆ + ion 7 (in the Sb_2F_{11} and AsF_6 salts) and perbromyl fluoride $BrO_3F_2^{(s_1^2+t_2^2)}$ BrO₂F₃ has been detected by mass spectrometry as a product of the hydrolysis of BrF_5 , ¹⁰⁹ but has not been isolated or characterized (and was not detected in the hydrolysis of BrF_5 described in Chapter IV). The reaction of BrO_2F with the strong oxidant PtF_6 was originally thought to produce $Br0_2F_2^{+}PtF_6^{-180}$ The reaction was proposed to be analogous to that by which $C10_2F_2^+$ PtF₆⁻ was prepared from $C10_2F$ and PtF₆.⁶⁶ However, the vibrational spectrum of the product of the reaction of BrO_2F and PtF_6 indicates that it contains the BrOF_2^+ cation rather than, the $\text{BrO}_2F_2^+$ cation. Fogle and Rewick ' have claimed the preparation of BrF7 by the reaction of BrF5 with F_2 at 110°-340°C using a CsF catalyst, but subsequent work \sim showed that a displacement reaction between $BrF_6^+AsF_6^-$ and NOF at low temperature failed to produce BrF_7 , and proceeded according to equation (7.1). In view

$$BrF_6^+ + AsF_6^- + 2NOF \xrightarrow{-78^{\circ}C} + NO^+AsF_6^- + NO^+BrF_6^- + F_2^- (7.1)$$

of the apparent instability of BrF_7 at -78°C, Fogle and Rewick's claim to have prepared it by a high temperature reaction is rather dubious. Pilipovich and his coworkers ¹⁸¹ were unable to obtain BrF_7 from mixtures of BrF_5 and F_2 which they exposed to u.v. radiation for several hours at -40°C to -60°C. They were also unable to prepare $BrOF_5$ by a similar procedure using mixtures of BrF_5 and O_2 . In both cases, only the unchanged starting materials were recovered.

Alkali metal salts of BrO_4^- are most conveniently prepared by bubbling fluorine gas through an aqueous BrO_3^- solution.⁸⁴ The BrF_6^+ ion is prepared by reaction of BrF_5 with a KrF^+ salt at room temperature.⁷ These preparative methods are oxidations of a Br(V) compound to a Br(VII)compound. On the other hand; BrO_3F is prepared by the fluorination of KBrO₄ with SbF₅ in HF⁶⁸ (equation(7.2)). The other products of the

 $KBr0_4 + SbF_5 \xrightarrow{HF} Br0_3F + ?$ (7.2)

reaction were not identified. This reaction is not a redox process but a ligand exchange reaction involving a compound which already contains bromine in the +VII state.

In the present work, both of these types of reactions..were employed in attempting to prepare new oxyfluoro compounds of Br(VII), although the ligand exchange method was more extensively used. The unsuccessful attempt to use KrF_2 to oxidize BrO_2F and $BrOF_3$ to BrO_2F_3 and $BrOF_5$, respectively, has been described in Chapter IV. In this chapter some other reactions (all of which proved incapable of producing new oxyfluorides of Br(VII)) will be described. Also the ¹⁹F nmr spectrum of

 BrO_3F has been recorded for the first time, and the Raman spectra of solid and liquid BrO_3F and of a solution of BrO_3F in HF have been obtained.

B. Raman and ¹⁹F N.M.R. Spectra of BrO₃F.

(i) Raman Spectroscopy.

The vibrational spectrum of gaseous BrO_3F has been studied by Appelman and Claassen.⁶² A pseudo-tetrahedral structure (1) of C_{3v} symmetry is predicted by the VSEPR theory and has been confirmed by electron diffraction studies.¹¹⁸ The six fundamental modes ($i' = 3A_1 + 3E$) are all infra-red and Raman active. Although Appelman and Claassen could readily identify and assign the three stretching (1)vibrations in the infra-red and Raman spectra of gaseous BrO₂F, the frequencies of the bending modes were not unequivocally determined. In the Raman spectrum, the presence of HF and Br₂ impurities largely obscured the low frequency region of the spectrum. In the infrared spectrum, the bending modes could be observed but this region was complicated by the appearance of rotational fine structure. The lines which were attributed to the bending modes were assigned on the basis of rather poor polarization data and by comparison with the vibrational spectra of $C10_3F$ and $Br0_4$. Since the identification of the fundamental bending modes and their assignments were not unequivocal, the Raman spectrum of BrO₃F was reinvestigated. Spectra of liquid BrO₃F (Figure 7.1),

solid BrO_3F (Figure 7.2) and of a solution of BrO_3F in HF were recorded

- and the frequencies obtained from these spectra are listed in Table 7.1. The Raman spectra of the liquid and the HF solution clearly show the expected six lines. The frequencies and relative intensities of the peaks in the spectra of liquid BrO3F and of the solution in HF are very similar. They are also similar to those of gaseous BrO_3F with the exception of v_2 . (vBr-F) which appears as a sharp line at 605 cm⁻¹ in the gas phase spectrum and as a broad line at 596 $\rm cm^{-1}$ in the spectrum of the liquid (594 $\rm cm^{-1}$ in HF solution). A similar broadening has been reported for ν_2 of ClO₂F on going from the gas phase spectrum ⁶² to the liquid spectrum.¹⁸² Polarization data obtained from spectra of liquid BrO₃F and solutions of BrO₃F in HF clearly showed the lines at 868 cm⁻¹ and 596 cm⁻¹ (in the liquid spectrum) to be polarized, whereas the line at 971 $\rm cm^{-1}$ is depolarized. These three lines are the three stretching vibrations. The three remaining lines at 378 cm^{-1} , 355 cm^{-1} and 289 cm^{-1} (in the spectrum of the liquid) are, therefore, the three bending modes which have symmetry designations $A_1 + 2E$. The 355 cm⁻¹ line was found to have a significantly lower polarization ratio than the other two, suggesting that this line is due to v_3 (A₁). Further evidence for this is obtained from the Raman spectrum of solid BrO₃F (Figure 7.2). In the low frequency region, doublets are observed at 381 cm⁻¹ and 373 cm⁻¹, and at 297 cm⁻¹ and 293 cm⁻¹, and this suggests that these pairs of lines are due to E modes where the degeneracy of the two components has been removed in the crystal lattice. The E mode at 971 cm⁻¹ in the liquid is also split into a doublet at 979 cm⁻¹, and 964 cm⁻¹. The 351 cm⁻¹ line is not split however, and this is consistent with its assignment to a fundamental of A_1

. 153

3			TABLE 7.1	۰ ۱	`	
	• •	Vibrational F	requencies o	f BrO ₃ F (cm ⁻	,	
Gas ⁽	(e	Liquid Sol	ution in HF	Solid .	Assignments (a)	
i.r.	Raman	Raman	Raman	Raman	and approximate descriptions.	
976.5 v.s ^(b)	974 [°] w	971(5) ^(c) dp	976(7)	979 (6) 964 (7)	v_4 (E) Br 0_3 asym. stretch	•
975.5 v.s	875,2 v.s	868(100) p	871(100).	868(10 [°] 0)	ν ₁ (A ₁) BrO ₃ sym. stretch	
606 v.S	605 v.s	596(13) br p	594(14)	602(11) 581 (8) sh	[*] v ₂ (A ₁) BrF stretch	
382.0 s	376 ? ^(d) w	.378(9) dp	380(12) ^(e)	405 (2) 381-(7) 373 (7)	Impurity v ₅ (E) BrO ₃ asym. deformatic	uo
359 . 8 m	354 ? ^(d) w	355(6) p	361(10)	351 (9)	v ₃ (A ₁) [.] BrO ₃ sym. deformatior	c,
286 [.] w	296 ^{?(d)} .w	289(13) dp	291(14) ^(e)	297(23) 293(20)	v ₆ (E) Rocking mode	
a Reference b v s verv	62. strong. s		,	ייייייייייייייייייייייייייייייייייייי		

SII, SIIUUIUC V.W, VCI Y WCAN, w, weak; Numbers in parentheses give relative intensities. m, meatum; s, surviy; (in the service)

υ

? = the frequencies of these fundamentals were regarded as uncertain due to the presence of impurities. These peaks coincide with FEP lines. The intensities shown have been corrected. a ò

symmetry. $v_1(A_1)$ appears as a sharp line at 868 cm⁻¹, and $v_2(A_1)$ consists of a broad line at 602 cm⁻¹ with a second broad component at 581 cm⁻¹. The profiles of the Raman bands in solid BrO₃F are very similar to those found in the spectrum of solid ClO₃F,¹⁸³ and this further confirms the assignments for BrO₃F. The very weak line at 405 cm⁻¹ in Figure 7.2 was absent in other spectra of solid BrO₃F and is therefore assigned to a small amount of an unidentified impurity. The assignments of the bending modes proposed in the present work confirm Appelman and Claassen's assignments.

(ii) ¹⁹_F N.M.R. Spectroscopy</sub>.

The ¹⁹F nmr spectrum of liquid $Br0_3F$ was recorded at -80°C and a single broad line at -274 ppm was observed. The linewidth was approximately 70 +5 Hz.. There was no evidence for any fine structure. A saturated solution of $Br0_3F$ in HF at -80°C was prepared. The solubility of $Br0_3F$ was calculated to be less than 0.8 mole/1000 g of HF from the weight of $KBr0_4$ used in the preparation and the amount of HF required to just dissolve the $Br0_3F$ obtained. The accuracy of this solubility determination depends on the efficiency of the conversion of $KBr0_4$ into $Br0_3F$ and the transfer of $Br0_3F$ into the nmr tube, and on the accuracy of the estimate of the amount of HF added. Reaction (7.2) has been reported to give a 97% yield of $Br0_3F$.⁶⁸ Also, only a very small peak due to v_1 of $Br0_3F$ was visible in the Raman spectrum of the $KBr0_4/SbF_5/HF$ reaction mixture after the $Br0_3F$ used for this ¹⁹F nmr work had been distilled out. Both of these facts suggest that the solubility of $Br0_3F$ in HF at -78°C is close to the upper limit (0.8 mole/1000 g of HF) which was calculated.

The ¹⁹F nmr spectrum of the solution of BrO_3F in HF at -80°C showed in addition to the solvent peak (at +194 ppm) a weak, broad line at -269 ppm which had a linewidth (at half-height) of 194 ±10 Hz. Warming the solution to -66°C caused the singlet to broaden slightly to 217 ±10 Hz. The 94.1 MHz ¹⁹F nmr spectrum of a saturated solution of BrO_3F in HF was recorded at ±37°C and the BrO_3F resonance was again observed as a single broad line (linewidth = 710 ±50 Hz). The brown colour of the sample at this temperature indicated that some decomposition had occurred. No fine structure could be observed.

The difference in chemical shift of liquid BrO_3F and BrO_3F dissolved in HF is substantial. Evans ¹⁸⁴ has reported a rather large ¹⁹F nmr solvent shift (up to 10 ppm) for a number of fluoro-carbons dissolved in a variety of solvents. In these cases, the solvent shift was too large to be attributed to a change in the bulk diamagnetic susceptibility (for which Evans corrected), and he has suggested that the solvent can influence the magnitude of the paramagnetic contribution to the ¹⁹F shift, probably by altering the average energy ΔE between the ground state and the excited states which contribute to the paramagnetic term. Such a change could be brought about by the differences in van der Waals forces or dipolar forces between the fluorine compound and the different solvents. In the case of BrO_3F , the 6 ppm difference in chemical shift between the liquid and the HF solution may be rationalized on a similar basis.

The broadness of the 19 F resonance of BrO₃F is attributed to partial

coupling between the fluorine and the central atom bromine. The two naturally occurring isotopes of bromine 79 Br (50.57%) and 81 Br (49.43%) both have $I_{i}^{i} = 3/2$ and rather large quadrupole moments (Q = 0.33 and 0.28 in units of $e \times 10^{-24} \text{ cm}^2$).¹⁶⁰ The rate of relaxation of a nucleus depends directly on the electric field gradient present at the nucleus and upon the magnitude of the quadrupole moment. If this relaxation is very rapid, coupling is not observed between this nucleus and adjacent nuclei. When an atom with a large quadrupole moment (such as Br) is situated in a molecule in which the ligands do not have an arrangement of cubic symmetry there will, in general, be a large field gradient and hence a very rapid quadrupolar relaxation of the Br nucleus and no coupling will be observed between the Br and the ligands. Examples are $BrO_{2}F$, $BrOF_{2}^{+}$ and BrF_5 where sharp $^{1.9}F$ nmr lines are observed with no evidence for any . coupling between the 19^{19} F and Br nuclei. On the other hand, if the bromine is placed in a completely symmetrical environment, the electric field gradient at the central atom will be zero and quadrupolar relaxation will not occur; coupling between the bromine and the ligands may then be observed. The ion BrF_6^+ is an example in which the central atom is octahedrally surrounded by fluorine atoms. Coupling between the bromine and fluorines produces a quartet 7 (all lines equal intensity) in the ¹⁹F nmr spectrum (Two overlapping quartets are actually observed because the two coupling constants J_{79}_{Br-F} and J_{81}_{Br-F} are slightly different). Some similar cases which have been reported are IF_6^+ , 159 $C1F_6^+$, 156 and BF_4^- . 146 In these ions, the electric field gradient at the central atom is zero by

15

symmetry in the free ion, and coupling is observed. In some cases, well resolved coupling can be observed even if the central atom is not completely symmetrically surrounded. In ${}^{11}BF_3OH$, coupling between the ¹¹B and ¹⁹F is observed ¹⁴⁶ despite the fact that the ¹¹B atom is strictly speaking not in a tetrahedral environment. Presumably the similarity between an F and an OH ligand (which means the electric field gradient at B will be small) and the rather small value of the quadrupole for ^{11}B $(0.0355 \text{ in multiples of e x } 10^{-24} \text{ cm}^2)$ produce a slow rate of relaxation for the ¹¹B nucleus which allows the ¹¹B-¹⁹F coupling to be observed. In other cases however, coupling is not observed even when the central nucleus is in a seemingly symmetric environment. In octahedral $10_2F_4^-$ (which is isoelectronic with IF_6^+), no ${}^{127}I^{-19}F$ coupling is observed.²⁶ Presumably the slight difference in the electronegativities of the oxygen and fluorine ligands produces a small electric field gradient at iodine and this combined with the large quadrupole moment (-0.75 in units of e x 10^{-24} cm²) of ¹²⁷I produces a rapid rate of relaxation for this nucleus.

Intermediate rates of quadrupole relaxation of the central atom (A) will affect the ¹⁹F spectrum of the ligands. If the rate of relaxation is relatively slow, then the multiplets caused by the A-¹⁹F coupling will broaden. As the rate of quadrupolar relaxation increases, these multiplets coalesce into broad lines. For very rapid relaxation, the ¹⁹F nmr spectrum will show only sharp lines. It is believed that the broad line found for BrO_3F is the result of intermediate rate quadrupolar relaxation of the central atom. The Br in BrO_3F is tetrahedrally surrounded by three

oxygen atoms and one fluorine atom. The small resultant electric field gradient causes the 79 Br and 81 Br nuclei to undergo relaxation so that the two sets of overlapping quartets expected for Br03F are coalesced into a single broad line. The rate of relaxation is not sufficient however to completely eliminate the Br-¹⁹F coupling since in that case a sharp line would have been observed. Intermolecular exchange of the F ligands could also account for the broadness of the 19 F resonance, but this is unlikely in view of the relative inertness of BrO₂F (see below). The broadening of the 19 F nmr resonance of BrO₃F in HF when the temperature was raised from, -80°C to -66°C and then to +37°C can be explained in terms of a slower rate of quadrupole relaxation at the higher temperatures which causes the Br-F coupling to be less collapsed. A similar temperature dependence has been observed in the nmr spectrum of ClO_3F , and this has been discussed in detail by Bacon et al.¹⁸⁵ In general terms, the rate of quadrupolar relaxation for an atom in a rapidly tumbling molecule varies' directly with the rotational correlation time τ_c , which can be thought of as the length of time required (on the average) for a molecule to rotate through an angle of a radian. 160,186 As the temperature is raised, the molecule tumbles more rapidly. The rate of quadrupole relaxation therefore decreases (since τ_{c} decreases) and a better resolved spectrum is observed. The difference in the linewidths of the BrO₃F resonance at -80°C for the pure liquid and for the HF solution is presumably also attributable to the difference in the value of τ_{c} since this will depend on the viscosity \int of the medium.160

The singlet observed for BrO_3F in HF at $+37^{\circ}C$ was rather similar in shape to the ¹⁹F nmr resonance observed for ClO_3F at $-l31^{\circ}C.^{1-6}$. This indicates that the rate of quadrupole relaxation in BrO_3F is much more rapid than that in ClO_3F at any given temperature. This can be attributed at least in part to the considerably larger quadrupole moments of both of the bromine isotopes than of the chlorine isotopes (Q = 0.080 for ³⁵Cl and 0.062 for ³⁷Cl in units of e x 10^{-24} cm²). There may also be differences in the electric field gradients at the central atoms chlorine and bromine, but the magnitude of these electric field gradients cannot be estimated easily. Comparison with IO_3F is not possible since the latter has been only poorly characterized,⁶⁹ and no ¹⁹F nmr data has been reported.

The similarity between the ¹⁹F nmr resonances of BrO_3F at +37°C and ClO_3F at -131°C suggests that a considerable increase in temperature would be required in order to resolve the coupling in BrO_3F . In ClO_3F , the broad singlet at -131°C was found to split into a doublet at -79°C and the expected four lines could only be observed at room temperature.^{185,187} Thus it can be anticipated that an HF solution of BrO_3F would have to be heated above 100°C in order to observe the expected splittings due to Br-F coupling. However, in view of the decomposition which began to occur at +37°C, it is unlikely that a solution of BrO_3F would be of sufficient thermal stability to survive at such a high temperature.

(iii) <u>Reaction of BrO₃F with SbF₅ and AsF₅.</u>

No evidence was found for any interaction between ${\rm BrO}_3{\rm F}$ and the

strong Lewis acids SbF_5 and AsF_5 . The Raman spectrum of a solution of BrO_3F in HF containing excess SbF_5 was recorded at $-78^{\circ}C$, and the three stretching frequencies of BrO_3F were observed. These three frequencies were not significantly different from those found for a sample of BrO_3F dissolved in HF in the absence of a Lewis acid. Adduct formation via either (7.3) or (7.4) would have resulted in a shift in the stretching

$$BrO_{3}F + SbF_{5} + BrO_{3}^{+} + SbF_{6}^{-}$$
(7.3)

$$BrO_{6}F + SbF + O_{6}Br-O_{5}SbF^{-}$$
(7.4)

٩

 $Br0_3F + SbF_5 : 0_2Br-0-SbF_5$ (7.4)

frequencies of the $Br0_3F$. Equation (7.3) would produce a $Br0_3^+$ cation with higher Br=0 stretching frequencies than $Br0_3F$ and no Br-F stretching mode would be seen. Formation of an adduct through oxygen would also have changed the Br0 region of the spectrum in that two high frequency Raman bands would have been expected for the terminal Br0 bonds, whereas one lower frequency peak due to the bridging Br0 would have been seen. It can, therefore, be concluded that $Br0_3F$ does not form an adduct with SbF_5 at low temperature in HF solvent. Similarly, the ¹⁹F nmr spectrum of an HF solution of $Br0_3F$ containing excess AsF_5 was recorded at $-80^{\circ}C$. The peak attributable to $Br0_3F$ was at the same chemical shift as that in a sample of $Br0_3F$ in HF in the absence of AsF_5 . No separate signal in the F on As(V) region was observed and the AsF_5 was therefore undergoing rapid F^- exchange with the HF solvent. Thus no evidence for any interaction · between $Br0_3F$ and AsF_5 was obtained. The inertness of $Br0_3F$ towards Lewis acids is analogous to the lack of complex formation between ClO_3F and the Lewis acids BF₃, PF₅, AsF₅, SbF₅ and SO_3 .²¹

C. <u>Reactions Involving KBrO₄.</u>

(i) Solution in Hydrofluoric Acid.

When $KBrO_4$ is dissolved in HF, the Raman spectrum of the solution shows only a single broad peak at 800 cm⁻¹, which is close to the value of v_1 for BrO_4^- found in the spectrum of the solid (798 cm⁻¹).⁸⁴ The other Raman lines are presumably too weak to be observed. The ¹⁹F nmr spectrum of the solution shows only the single strong line due to the HF solvent. These results indicate that KBrO₄ does not react with HF. In this behaviour, BrO_4^- resembles ClO_4^- which is also inert towards HF, but differs from IO_4^- which has been shown to react with HF according to $(7.5)^{1/3}$

 $KIO_4 + 8HF + KIO_2F_4 + 2H_3O^+ + 2HF_2^-$ (7.5)

This reaction is attributable to the ease with which iodine can expand its valence shell to achieve octahedral coordination. Bromine does not appear to be capable of doing this readily. In aqueous solution, it has been shown that perbromate is not hydrated ⁸⁴ whereas IO_4^- readily forms hydrated ⁵ species such as $H_4IO_6^-$.¹⁸⁸ That the Raman frequency observed for a solution of KBrO₄ in HF should be very similar to that of v_1 of the BrO₄⁻ ion suggests that this ion is not protonated to give perbromic acid HOBrO₃. The possibility that the 800 cm⁻¹ peak is actually v_1 of HOBrO₃ is made unlikely by the fact that the formal BrO bond order in HOBrO₃ is higher.

than that in $Br0_4^-$ and that v_1 of HOBr0_3 should be at a higher frequency than v_1 of BrO₄. This is shown by comparison of the XO symmetric stretching frequency in the related pairs of molecules $HOSeO_3^{-1}$ (862 cm⁻¹)¹⁸⁹ and $\operatorname{SeO}_{4}^{2-}$ (833 cm⁻¹), ¹¹⁴ HOC10₃ (1031 cm⁻¹)¹⁹⁰ and C10₄⁻ (928 cm⁻¹).¹¹⁴ Also, in the Raman spectrum of HC104 the C1-OH stretching frequency is more intense than the $v_{symmetric}$ C10₃, stretching mode. In the Raman spectrum of KBrO₄ dissolved in HF, no peak was observed which could be attributed to vBr-OH of $HBrO_4$. The results obtained are therefore most consistent with the $Br0_{\Lambda}^{-}$ ion being mostly unprotonated in anhydrous HF. This is a rather surprising result since the value of the Hammett acidity function H_0^{-} for HF containing 0.05% H_2^{-} 0 has been recently determined to be -10.8 ¹⁹¹ (although previously determined values of -10.2 ¹⁹² and -10.4 ¹⁹³ indicate a slightly lower acidity) and has been estimated to be -15.1 for HF in the absence of any water impurity.^{19 1} Thus anhydrous $\frac{1}{2}$ HF is, strictly speaking, a stronger acid than 100% H₂SO₄ (H₀ =-11.93)¹⁹⁴ but since the last traces of H_20 are virtually impossible to remove from the HF, the acidity of experimentally available HF is slightly lower than that of H_2SO_4 . It has been shown ^{19,5} that ClO_4 is extensively (or perhaps even completely) protonated to $HC10_4$ in 100% H_2S0_4 . It would, therefore, have been expected that BrO_4 , which might be expected to be a stronger base than $C10_4^-$, would be protonated to HOBrO₃ in HF. However, the acidity of the HF used in this work may have been considerably lower than that of the extensively purified HF used in the H_{α} value determinations due to the presence of H_2O . This may in part be responsible for the rather surprising result found in the present work,

(ii) <u>Reactions with some Fluorinating Agents</u>.

The reactions of various fluorinating agents with KBrO₄ were investigated:

(a) AsF_5 : Appelman and Studier have shown that $KBr0_4$ can be fluorinated by SbF_5 to give $Br0_3F$ (equation(7.2)). In the present work, it was found that AsF_5 will also fluorinate $KBr0_4$ using HF as a solvent. The $Br0_3F$ produced was identified by its ¹⁹F nmr spectrum. The Raman spectrum of the white solid which remained after the HF, $Br0_3F$ and excess AsF_5 were removed under vacuum from the reaction vessel showed only lines attributable to the AsF_6^- anion. The reaction is therefore not simply '(7.6) since the Raman spectrum of KAsOF₄ has been reported ¹⁹⁶ and was

$$KBr0_4 + AsF_5 \xrightarrow{HF} Br0_3F + KAs0F_4$$
 (7.6)

not observed in our work. AsOF₃ was not a product of the reaction either since its Raman spectrum ¹⁹⁷ was not observed. An alternative explanation may be put forward if a mechanism analogous to the one proposed for the formation of Clo_3F from Clo_4^- in superacid media ²¹ is assumed. This mechanism involves the participation of the protonated acid H₂OXO₃⁺ (X = Cl, Br) produced by reaction (7.8) where MF₅. As Lewis acid such as AsF₅ or SbF₅. This is followed by reaction of this cation with HF (7.9).

 $2HF + 2MF_5 + XO_4 \rightarrow H_2OXO_3^+ + 2MF_6^-$ (7.8)

 H_2^{0X03} + $HF \rightarrow H_3^{0}^{+}$ + $X0_3^{F}$

The overall reaction is therefore (7.10). Invoking the involvement of

166

(7,9)
167

$$XO_4^- + 3HF + 2MF_5 \rightarrow XO_3F + H_3O^+ + 2MF_6^-$$
 (7.10)

protonated $HBrO_A$ in this reaction scheme is not inconsistent with the fact that BrO_{4-}^{-} does not appear to be protonated in pure HF since MF_5/HF mixtures have been shown to be very much more acidic than pure HF. (H₀ =</sub> -21.1 for a 0.6 mole % solution of \S{bF}_5 in HF ¹⁹¹). Reaction (7.9) would most likely be a nucleophilic displacement of H_20 by HF rather than cleavage of the $H_2^{0}XO_3^+$ ion into H_2^0 and XO_3^+ , followed by reaction of XO_3^+ with HF. Involvement of CIO_3^+ in the reaction of CIO_4^- has been rejected as being unlikely because of the lack of complex formation between $C10_3F_{and}$ various Lewis acids,²¹ and the same argument can be applied to BrO_3F (see above). In the case of the reaction of BrO_4^- with AsF₅, removal \ge of the volatile components Br0₃F, HF and excess AsF₅ would leave a 1:1 mixture of $KAsF_6$ and $H_30^+AsF_6^{-198}$ (which has been shown to be stable at room temperature). Both of these products would display only Raman lines characteristic of the AsF_6^- anion as observed. (The H_30^+ lines cannot be observed in the Raman spectrum of solid $H_30^+AsF_6^-$ because of their broadness and low intensity ^{19.8}). If the $H_30^+AsF_6^-$ decomposed for some reason during the reaction or as the HF solvent was being removed, the decomposition products ($H_2O + HF + AsF_5$) would also be volatile and would not affect the Raman spectrum of the solid residue. Thus, although the exact equation for the reaction cannot be written (since the presence of $H_30^+AsF_6^-$ is uncertain), the data obtained can be rationalized. The fact that no Raman lines due to KBrO4 were observed in the Raman spectrum

of the residue suggests that the reaction goes to completion (which was also observed when SbF_5 was used as a fluorinating agent 68).

(b) BrF_5 : The reaction between $KBrO_4$ and BrF_5 -has also been examined. $KBrO_4$ and excess BrF_5 were mixed at room temperature and the solid $KBrO_A$ did not dissolve to any significant extent. After the reaction mixture had stood for 30 minutes at room temperature, ¹⁹F nmr and Raman spectra of the liquid BrF_{r} layer failed to show the presence of any Thus the direct reaction oxygen-containing Br(VII) species in solution. between KBrO₄ and BrF_5 is at least rather slow (and may not occur at all). A small amount of HF was introduced into the mixture, since in the KBr0₃/BrF₅ system, this was found to be a catalyst for this reaction (see Chapter III). After 1.1/2 hours at room temperature, still no reaction could be detected based on the Raman and 19 F.nmr spectra of the BrF_r solvent. Removal of the volatile materials under vacuum left a white solid whose Raman spectrum was identical with that of ${\sf KBrO}_{f 4}.^{84}$ That apparently no reaction occurs between $KBr0_4$ and BrF_5 is surprising in view of the fact that BrF₅ is a fairly powerful fluorinating agent. The lack of reaction is probably due to the insolubility of $KBrO_4$ in BrF_5 (and in BrF_5 containing some HF). Indeed, KBrO₄ and BrF_5 react readily in the presence of HF as a solvent (in which both $KBrO_{4}$ and BrF_{5} are soluble). When $KBrO_4$ and excess BrF_5 were combined with a large excess of HF, all the solid present dissolved at -48°C. The Raman spectrum of the solution showed lines attributable to BrF_5 , ¹²⁶ and BrO_3F and a line at 916 cm⁻¹ which could be attributed to $BrO_{2}F$ (see Chapter IV). The other Raman lines

expected for BrO_2F were too weak to be observed. No BrOF_3 was present in the sample since its characteristic Br=0 stretching frequency was not observed. The ¹⁹F nmr spectrum of the solution showed the AX₄ pattern of BrF_5 in addition to the HF solvent line. Careful examination of the quintet of BrF_5 (δ = -270 ppm) showed that the quintet was skewed and suggested that a weak broad line (assigned to BrO_3F) was present at roughly the same chemical shift as the quintet of BrF_5 . No separate signal could be observed for BrO_2F since this has been shown, in Chapter IV, to undergo rapid fluórine exchange with HF at low temperature. The reaction can therefore be written as (7.11). As was the case in the reaction of

$$2KBrO_4 + BrF_5 + 2HF \rightarrow 2BrO_3F + BrO_2F + 2KHF_2$$
(7.11)

 BrF_5 with the iodine (V) oxides and oxyfluorides, any $Br0F_3$ produced as an intermediate in (7.11) must be removed by rapid reaction with $KBr0_4$ to account for the production of $Br0_2F$ and the absence of $Br0F_3$ as a product. When the volatile components of the reaction mixture were removed under vacuum, a white solid was obtained which was identified as KHF_2 from its Raman spectrum. Since no Tines attributable to $KBr0_4$ were observed in the Raman spectra of the HF solution reaction mixture or in the solid residue obtained, (7.11) must go to completion at $-48^{\circ}C$. In another $KBr0_4/BrF_5/HF$ experiment, the mixture of $Br0_3F$, BrF_5 and $Br0_2F$ was allowed to warm up to room temperature and the Raman spectrum of the solution was used to detect changes in the sample. After 1.1/2 hours, the $Br0_3F$: BrF_5 ratio had not changed, but the $Br0_2F$ signal had become weaker (probably due to

1

thermal decomposition, see Chapter IV). Thus BrO_3F is apparently not fluorinated by BrF_5 at room temperature.

(c) KrF_2 : The reaction of $KBrO_4$ with KrF_2 was investigated. In Chapter IV it was shown that KrF_2 fluorinates BrO_2F to $BrOF_3$ and $BrOF_3$ to BrF_5 . It was therefore thought that reaction (7.12) might occur. The

 $KBr0_4 + KrF_2 + 2HF \rightarrow Br0_3F + Kr + \frac{1}{2}0_2 + KHF_{\gamma}$ (7.12)

results obtained were ambiguous however, but show that (7.12) does not occur. A mixture of KrF₂ and KBrO₄ (mole ratio 1.40:1) in HF was allowed to react)at a temperature slightly higher than -78°C for a few minutes. The Raman spectrum of the solution showed large peaks attributable to KrF2 and $Br0_4^-$, along with a rather weak peak at 916 cm⁻¹ which could be assigned to BrO_2F . The sample was allowed to warm up slowly to room temperature to dissolve all the solid present. Bubbles of gas were formed as the sample warmed up, indicating that a reaction was taking place. After ten minutes at room temperature, all the solid in the tube had dissolved.' The Raman spectrum of the solution showed that the sample consisted mainly of BrO_2F . A weak peak due to unreacted $KBrO_4$ was also present, along with three very weak lines which could be assigned to ${\tt BrF}_5$ (presumably formed by reaction of BrO_2F with KrF_2 [see Chapter IV]). There was no KrF_2 or BrO_3F present in the product. That BrO_2F is the major product is rather surprising since this represents a reduction of Br (VII) to Br (V) in the presence of the strong oxidant KrF_2 . The only reasonable explanation for this is that the BrO_4^- was fluorinated to an unstable oXy^{-1} fluoro compound of Br (VII) by KrF_2 , and that this unstable species

decomposes to $Br0_2F$, (equation (7.13)). It is possible that the unstable $KBr0_4 \xrightarrow{KrF_2} [?] \longrightarrow Br0_2F$ (7.13)

species is $Br0_2F_3$ (equation (7.14)) which could conceivably lose F_2

 $KBr0_{4} + KrF_{2} + HF \rightarrow KHF_{2} + Kr + \frac{1}{2}O_{2} + BrO_{3}F \xrightarrow{Krt_{2}} [Br0_{2}F_{3}] + Kr + \frac{1}{2}O_{2}$ $Br0_{2}F + F_{2} \qquad (7.14)$

to produce BrO₂F. This reaction would explain the presence of the unreacted $KBrO_4$ (since less than a 2:1 ratio of KrF_2 to $KBrO_4$ was used). The reaction was repeated and this time the mixture was allowed to remain at low temperature for an extended period of time to see if any BrO3F or the unstable species responsible for the appearance of BrOgF could be detected. A mixture of $KBr0_4$ and KrF_2 (mole ratio 1.21:1) in HF was allowed to stand at -78°C for two hours. A large amount of solid was present in the bottom of the tube, and no effort was made to dissolve this solid by warming the sample. The Raman spectra of the solid and of the solution consisted only of lines attributable to KBrO4 and KrF2. No BrO2F was observed. Since both BrO_4^- and KrF_2 were present in solution but no products were formed, the reaction must be slow at low temperature, (i.e. the slowness of the reaction was not due to the insolubility of one of reagents). The reaction mixture was warmed to -72°C for twelve hours. Raman spectra indicated that the major components of the mixture were still KBrO₄ and KrF₂, but very weak lines attributable to BrO_2F were observed. After a fupther 24 hours at $-72^{\circ}C$, the amount of BrO₂F present

had increased but was still rather small. Warming the sample to -63°C caused bubbling to occur and after 2.1/2 hours the amount of BrO_2F had again increased. Leaving the sample at -63°C for 18 hours and then warming it to -48°C for 4 hours each caused an increase in the amount of Br0₂F present. In order to attempt to observe the product distribution at the end of the reaction, the tube was warmed quickly to room temperature to allow the reaction to go to completion. As the mixture was warming up however, it detonated violently and ruptured the tube. The reason for the explosion is not clear in view of the fact that the previous time this reaction was done, "the mixture warmed smoothly up to room temperature. The more rapid rate of warming in the second case may have been a factor in promoting the explosion. Since the product mixture present after completion of the reaction could not be observed, no further information could be obtained about the stoichiometry of the reaction. It was, however, established that $KBrO_4$ and KrF_2 react rather slowly at low temperature, and that the only observable product of the reaction is BrO2F. No Ramań lines due to BrO3F or any other oxygen containing bromine species were observed. This would mean that if (7.14) represents the process that is occurring, the reaction of $Br0_3F$ with KrF_2 and the decomposition of $Br0_2F_3$ would have to be very rapid even at -72°C in order to account for the $Br_0^{-}F$ produced at this temperature. The reaction of $Br_0^{-}F$ with Kr_2^{-} was therefore examined. Approximately equimolar amounts of BrO_3F and KrF_2 were allowed to react (using HF'as a solvent) for 20 hours at -78° C, and then for 20 hours at -72°C. Raman spectra of the solution present showed the

presence of BrO_3F and KrF_2 in solution, but there was no sign of BrO_2F or any other changes in the Raman spectra that would suggest that a reaction had occurred. The mixture was warmed to -63° C for 4 hours, then -48° C for 8 hours and then -22°C for 4 hours. The Raman spectra recorded during this procedure again showed mainly KrF2 and BrO3F, and rather weak lines due to ${\rm BrF}_5$ became visible. The sample was allowed to stand at room temperature for 45 minutes and then cooled back down to -78°C. The Raman spectra of the mixture again indicated that no significant change had taken place in the sample, with the exception of a slight increase in the amount of BrF_5 present. The ^{19}F nmr spectrum of the solution at -20°C (the lowest temperature at which no precipitate was present) showed single peaks at +197 ppm due to HF, -52 ppm due to KrF₂, a doublet at -133 ppm 'due to BrF_5 and a broad line at -270 ppm representing BrO_3F and the quintet resonance due to BrF₅. Integration of the signals showed the molar ratios to be KrF_2 : BrO₃F: BrF₅ = 13:11:1. This is in agreement with the approximately equimolar amounts of BrO_3F and KrF_2 used. The BrF_5 produced probably arises from the partial thermal decomposition of BrO_3F to Br_2^{-62} followed by fluorination to BrF_5 by KrF_2 . The apparent inertness of BrO_3F towards KrF_2 is consistent with its inertness towards BrF_5 , AsF_5 and SbF_5 and eliminates equation (7.14) as a possible explanation of the $KBrO_4/KrF_2$ reaction, since the rapid reaction between BrO_3F and KrF_2 which is required by (7.14) does not occur. The $KBrO_4/KrF_2$ reaction was not investigated further since even at the lowest temperatures used, no evidence could be found as to the identity of the unstable intermediate which is presumed to

be decomposing to $Br0_2F$. A low temperature matrix isolation experiment may be useful to trap unstable intermediates in the reaction but this was beyond the scope of the present work.

D. <u>Reactions Involving BrF6 AsF6</u>.

 $BrF_6^+AsF_6^-$ can be conveniently synthesized from the reaction of $BrF_5^+AsF_6^-$.⁷ $BrF_5^+Sb_2F_{11}^-$ was not used in this work since this is always formed with $BrF_4^+Sb_2F_{11}^-$ as an impurity, and the presence of BrF_4^+ would substantially complicate the reactions and product mixtures formed.

(i) <u>Hydrolysis</u>.

1. manante 1

The hydrolysis of BrF_6^+ was examined as a possible method of preparing $BrOF_5$ (equation (7.15)). A though in theory $BrOF_4^+AsF_6^-$ could be

 $BrF_6^+AsF_6^- + H_20 + Br0F_5 + H_2P^+ + AsF_6^-$ (7.15)

formed, the fact that IOF_5 has been shown to form oxygen bridged adducts with the Lewis acids rather than ionic salts containing the IOF_4^+ cation suggests that $BrOF_4^+$ is unlikely to be stable and would abstract a fluoride ion from the sglvent to form $BrOF_5^-$.

When $BrF_6^+AsF_6^-$ and an equimolar amount of H₂O were allowed to react at -72°C using HF as a solvent, bubbles of gas were formed. After 2 hours at -72°C, all the solid $BrF_6^+AsF_6^-$ had dissolved and the bubbling had ceased. The Raman spectrum of the solution was recorded. The strongest lines in the spectrum could be unequivocally assigned to BrF_5 , and nothing appeared in the BrO stretching region. A weak peak appeared which could

be assigned to a small amount of KrF₂ (this was the starting material for the preparation of KrF⁺AsF₆, and may not have completely reacted). The region from 1770 cm⁻¹ to 1900 cm⁻¹ was examined but no peak appeared which could be attributed to 0_2^+ (1858 cm⁻¹ in solid 0_2^+ AsF $_6^{-199}$). The ¹⁹F nmr spectrum of the solution recorded at the freezing point of the solution (approximately -80°C) showed, in addition to a strong singlet at +194 ppm due to HF, a doublet at -131 ppm (J = 77 \pm 5 Hz) and a broad Hine at -268 ppm which were assigned to BrF_5 (δ = -132 and -270 ppm ¹⁰⁷ and $J_{FF} = 76 \text{ Hz}^{-0.0}$). The intensity of the broad line at -268 ppm was too small to allow the expected quintet splitting pattern to be observed. In addition, a broad, weak line at \sim +68 ppm was observed and this was assigned to the F on As of AsF₆ ($\delta = 58.4 \text{ ppm}$)¹²¹ and/or AsF₅ ($\delta = 65.2 \text{ ppm}$)¹²¹ undergoing slow F exchange with the HF solvent to account for the slightly higher than expected chemical shift. No other peaks which could be attributed to $BrOF_5$ were observed."

The spectroscopic data suggests that the hydrolysis of $BrF_6^+AsF_6^$ does not proceed according to (7.15) but that BrF_5 is the major product. The bubbling of the solution during the reaction and the failure to observe the characteristic \tilde{O}_2^+ line in the Raman spectrum of the solution suggest that O_2 and not O_2^+ is a product. This is further supported by the fact that removal of the volatile components under vacuum did not produce any solid residue, whereas had O_2^+ been present the white salt $O_2^+AsF_6^-$ would have been left behind. Thus, although BrF_6^+ will oxidize O_2 to O_2^+ at room temperature, ⁷ this process apparently does not take place at low temperature in HF solution. The exact nature of the fluoroarsenic species present could not be determined by ¹⁹_.F nmr or Raman spectroscopy. The single line observed at $\delta = +68$ ppm in the ¹⁹_.F nmr spectrum was interpreted in terms of fluoride exchange between the fluoro-arsenic species and the HF solvent. In the Raman spectra, v_1 of AsF₆⁻ (685 cm⁻¹)¹ ··· would have been coincident with the broad line assigned to v_1 of BrF₅ (680 cm⁻¹) whereas v_1 of AsF₅ (733 cm⁻¹)²⁰¹ would have been coincident -with the very strong line due to the FEP tube (733 cm⁻¹). The equation for the reaction can be written as (7.16). Although Dean et al.¹³⁹ have

$$BrF_6^+AsF_6^- + H_2^0 + BrF_5 + \frac{1}{2}O_2 + 2HF + AsF_5$$
 (7.16)

shown that dilute solutions of AsF_5 in HF are largely ionized to As_2F_{11} and H_2F^{\dagger} , no Raman lines due to $As_2F_{11}^{-132}, 1^{37}, 1^{33}$ were observed in this work. It is possible that at the higher concentrations used in this work, the extent of ionization of the AsF_5 is rather small and the main fluoroarsenic species present is AsF_5 (which would not be directly observable due to interference from the FEP tube). The amount of $As_2F_{11}^{-1}$ present would then be too small to be detectable in the Raman spectrum.

(ii) KBrO

NR à

The reaction of $BrF_6^{\dagger}AsF_6^{-}$ with $KBrO_4$ was investigated as a possible means of making $BrOF_5$ according to equation (7.17). $BrF_6^{\dagger}AsF_6^{-}$ and

$$BrF_6^{+}AsF_6^{-} + KBrO_4 + BrO_3F + BrOF_5 + KAsF_6$$
 (7.17)

an approximately equimolar amount of $KBrO_4$ were placed in an FEP nmr tube

and HF distilled in as a solvent. The tube was warmed to -72° C for 40 minutes and bubbles of gas were formed in the mixture. The sample consisted of a clear solution with a white solid lying under it. Raman spectra were recorded for both the solution and the solid. The species present in solution were identified as BrO_3F and BrF_5 with a small amount of BrO_2F . The solid on the other hand consisted of mainly KASF₆ and BrO_2F . The characteristic stretching frequency of the O_2^+ cation was not observed. These observations suggest that the reaction does not proceed according to (7.17) but rather that (7.18) is the primary reaction. The formation

$$BrF_{6}^{+}AsF_{6}^{-} + KBrO_{4}^{-} + BrF_{5}^{-} + \frac{1}{2}O_{2}^{+} + BrO_{3}F^{-} + KAsF_{6}^{-} (7.18)$$

of gas bubbles in the reaction mixture is due to the O_2 being evolved. The presence of BrO_2F as a product can be rationalized by a secondary reaction of BrF_5 with KBrO₄ (equation (7.11)). The KHF₂ produced by this reaction

$$2 \text{LBrO}_4 + \text{BrF}_5 + 2 \text{HF} + 2 \text{BrO}_3 \text{F} + \text{BrO}_2 \text{F} + 2 \text{KHF}_2$$
 (7.11)

vould also react with BrF_6^+ according to (7.19). Thus some of the gas

$$BrF_6^{+}AsF_6^{-} + KHF_2^{+} BrF_5^{+} + F_2^{+} + KAsF_6^{-} + HF_6^{-} (7.19)$$

evolved may have been F_2 rather than O_2 . As was mentioned, no O_2^+ was observed and, as in the case of the hydrolysis of BrF_6^+ , it must be con--luded that BrF_6^+ is incapable of oxidizing O_2 at low temperature in HF solution. The ¹⁹F nmr spectrum of the reaction mixture was recorded at -79°C. In addition to the strong HF solvent line at +193 ppm, two other

177

ţ

, signals were observed; a doublet at -132 ppm and a broad line at -269 ppm. The doublet is assigned to the X_A portion of the AX_A pattern of BrF_5 , whereas the broad peak at -269 ppm is assigned to a superposition of the broad BrO_3F signal and the quintet of BrF_5 . Integration of the -132 and -269 ppm signals showed their relative intensities to be approximately 2:1. From this, the relative mole ratios of BrF_5 and BrO_3F can be calculated to be approximately equal, which is in agreement with equation (7.18): If reactions (7.11) followed by (7.19) occur, this would increase the relative amount of BrO_3F since two moles of BrO_3F are produced for every mole of BrF_5 generated. It must be assumed that these reactions do not proceed to a sufficient extent to noticeably alter the, 1:1 $BrO_3F:BrF_5$ ratio expected on the basis of equation (7.18). In view of the rather poor accuracy of the integration of the spectrum (at best $\pm 10^{\circ}$, see, Chapter II), substantial contributions from equations(7.11) and (7.19) could go undetected. Any Br02F or AsF5 present in solution must be undergoing rapid fluoride exchange with the HF solvent as no separate signals are seen for these species. The sample was warmed briefly to room temperature and then cooled to -40°C. Raman spectra of the solid and solution present were identical to those recorded after the mixture had been warmed only to -72°C. The reaction was, therefore, complete after 40 minutes at -72°C. "The volatile components of the mixture were removed under vacuum and a white solid remained. The Raman spectrum of this white solid consisted of lines attributable to $KAsF_6$. No lines due to $KBrO_4$ or $BrF_6^+AsF_6^-$ were observed, indicating that both were completely consumed in the reaction.

Since the $BrF_6^+AsF_6^-$ was apparently present in slight excess some bf_1 it must have been consumed by reactions other than (7.18) and (7.19). A possible reaction is (7.20) between BrF_6^+ and BrO_2F . This would be in

 $2BrF_6^+AsF_6^- + BrO_2F + 3BrF_5 + 2AsF_5 +$

170

(7.20)

agreement with the behaviour of BrO_2F towards KrF_2 . Alternatively, warming the sample to room temperature may have caused some decomposition of BrO_3F or BrO_2F (or both) to Br_2 which would be rapidly fluorinated by BrF_6^+ , and this could also account for the lack of $\text{BrF}_6^+\text{AsF}_6^-$ in the residue. However, the presence of an excess of $\text{BrF}_6^+\text{AsF}_6^-$ is not definitive due to the uncertainties in the weighings, and these suggestions about possible side reactions must be regarded as rather speculative. If in fact $\text{KBrO}_4^$ was the reagent present in slight excess, then the failure to observe KBrO_4 in the solid residue of the reaction is readily explained since the excess will be entirely consumed by reaction (7.11).

(iii) BrO₂F.

The reactivity of BrO_3F towards BrF_6^+ has been tested. $BrF_6^+AsF_6^$ and BrO_3^-F were allowed to interact in the presence of HF as a solvent (and some BrF_5 impurity was present also). The reaction was monitored by Raman spectroscopy on the solution and on the solid present at low temperature. After 45 minutes at -72°C and 20 minutes at -62°C, no reaction had occurred and the solution contained BrO_3^-F and BrF_5 whereas the solid consisted of $BrF_6^+AsF_6^-$. The tube was allowed to warm up to room temperature for 15 minutes. All the solid dissolved to give a clear, colourless solution. Cooling the sample back down to -80°C caused a large amount of precipitate -to be formed. The solid was identified as $BrF_6^+AsF_6^-$ whereas the solution was still found to contain only BrO_3F and BrF_5^- . Only Raman lines attributable to these three species were observed. However, the Raman spectrum of the sample did exhibit fluorescence which indicates that at -room temperature a reaction occurs which produces a small amount of a fluorescent product. The exact nature of this material was not investigated further. It can be concluded that BrO_3F does not react rapidly with BrF_6^+ even at room temperature.

180

E. Miscellaneous Reactions.

(i) Attempted Preparation of BrOF_r.

An attempt was made to prepare $BrOF_5$ by a high pressure reaction. A mixture of BrF_5 and a stoichiometric amount of O_2 required for equation (7.21) were placed in a Monel bomb along with a large excess of F_2 gas to give a total pressure of approximately 1400 psi at room temperature. The

$$\Re F_5$$
 + $0_2 \xrightarrow{F_2} 2BrOF_5$ (7.21)

mixture was heated to 175°C for several days. After removal of the noncondensable gases at -196°C, the contents of the bomb were distilled into a Kel-F trap, and some of the material was transferred to an FEP nmr tube. The ¹⁹F nmr spectrum of this material showed only lines attributable to BrF_5 , indicating that reaction (7.21) had not occurred.

(ii) <u>Reaction of Brog F and KrF</u>.

The reaction of BrO_3F with the very powerful fluorinating agent KrF⁺ was also briefly studied using HF as a solvent. To an approximately equimolar mixture of BrO_3F and KrF_2 was added an excess of AsF_5 . The mixture was kept at -72°C for approximately 72 bours. A large amount of . white solid was present in the bottom of the tube and Raman spectroscopy showed this solid to be mostly $KrF^+AsF_6^-$ with some unreacted KrF_2 in it. The v_1 stretching mode of BrO₃F was also visible due to the presence of some of the HF solution intermingled with the solid. No extra lines were observed in the BrO stretching region and it was concluded that no reaction had occurred. When the sample was allowed to warm up to room temperature, vigorous gas evolution began to take place and the solution rapidly turned brown. The reaction was immediately quenched by cooling the sample to -196°C. The frozen sample was then warmed to -72°C. This produced a brown solution standing over a solid. The Raman spectrum of the solid indicated that some ${\rm KrF}^+{\rm AsF}_6^-$ was still present but the main lines could now be attributed to $0^+_2 AsF_6^-$. The spectrum of the solution showed that BrO_3F was also still present but that BrF_5 had been produced. $Ur0_3F$ therefore does react with KrF^+ at room temperature, but decomposition occurs. The BrF_{r} produced probably arises as a result of fluorination of the Br_2 produced by the decomposition (since the solution was brown). A number of other weak Raman lines were observed which are presumably due to decomposition products which were not identified. No lines were observed in the Br=0 region of the spectrum however. This indicates that if

181

Σ.

 $BrO_2F_2^{\dagger}$ or BrO_2F_3 were produced in the reaction, these species were at least in part responsible for the decomposition which was seen to occur.

F. <u>Discussion</u>.

The perbromate ion has been found to be readily fluorinated to BrO_3F by a number of fluorinating agents such as AsF_5 , BrF_5 , BrF_6^+ and presumably $BrOF_3$. BrO_3F is stable with respect to these fluorinating agents and KrF₂ also, and this relative inertness is analogous to the remarkable stability and inertness of ClO_3F . For ClO_3F , this has been attributed to the favourable pseudotetrahedral geometry of the molecule and its strong covalent Cl-F bond.²¹ These arguments presumably apply to BrO_3F as well. BrO_3F is attacked by the extremely strong fluorinating agent KrF^+ however, but only the decomposition products 0_2^+ , BrF_5 and Br_2 could be detected. No evidence could be found for the production of BrO_2F_3 for $BrO_2F_2^+$ which might have been expected as products. Similarly, the reaction of $KBrO_4$ with KrF_2 is apparently anomalous since although the reaction proceeds smoothly at low temperature, only BrO₂F can be observed as a product. The most reasonable explanation involves the production of an unstable intermediate which is decomposing to BrO₂F. No information as to the nature of this intermediate could be obtained.

The reaction of the BrF_6^+ ion with potential oxygen donors such as H_2^0 and BrO_4^- failed to give $BrOF_5$ as a product. Instead BrF_5 was formed. This may be due largely to the inability of Br(VII) to accommodate seven ligands around it. Evidence for this comes from the apparent instability of BrF_7 . Thus in the case of the hydrolysis, reaction according to scheme (7.22) cannot occur due to the inability to form the seven coordinate intermediate. Instead, the H₂O molecule may attack at a fluorine

$$BrF_6^+ + H_2^0 \longrightarrow F_F \xrightarrow{F}_F \xrightarrow{F}_F$$

atom. The reaction may be an SN_2 displacement on fluorine of Class 4 as catalogued by Liebman and Jarvis²⁰² (equation (7.23)). Applying

$$X - F^{+} + :Z \rightarrow X + F - Z^{+}$$
 (7.23)

this to $X = BrF_5$ and $Z = H_20$, one gets (7.24) where BrF_5 and protonated

$$F \xrightarrow{F}_{F} \xrightarrow{F}_{F} F + 0 \xrightarrow{H}_{H} \rightarrow BrF_{5} + F \xrightarrow{\phi}_{H} \xrightarrow{h}_{H}$$
(7.24)

$$F = 0 \left(\frac{H}{H} + HF + FOH + H_2F^{+} \right)$$
(7.25)

hypofluorous acid^{81,203} are produced. Loss of a proton to the solvent (7.25) would produce HOF. This would then decompose to HF and O₂ (to account for the bubbles of gas which were observed). The factors which affect the rate of this decomposition are poorly understood. Such a reaction scheme would account for all the products observed. It also suggests that attempts to prepare BrOF₅ by reaction of BrF₆⁺ with oxygen donors are

unlikely to succeed since the BrF_6^+ ion will be attacked at a fluorine ligand rather than at the central Br atom.

Attempts to produce the Br (VII) oxyfluorides $BrOF_5$ and BrO_2F_3 by oxidation of the Br (V) species $BrOF_3$ and BrO_2F with KrF_2 or by the high pressure reaction of BrF_5 with oxygen were unsuccessful. This lack of success does not, however, imply that these two Br (VII) species are inherently unstable. A very high activation barrier could equally well be responsible for the failure of the reactions attempted. A similar situation exists in the case of the preparation of the BrO_4 ion (see Chapter 1).

G. Experimental Section.

(i) $Br0_{3}F$.

 $BrO_{3}F$ was prepared by the method of Appelman and Studier.¹⁴ In a typical preparation, 0.359 g (1.65 mmol) of SbF₅ was dissolved in 0.27 g of HF in an FEP nmr tube and the mixture cooled to -196°C. 0.079 g (0.43 mmol) of KBrO₄ was added in a dry box. The mixture was warmed to -72°C for several hours and then to room temperature for a few minutes. When the sample was cooled to -30°C, a white slurry was produced. The Raman spectrum of this mixture showed $BrO_{3}F$ to be present (in solution) and a strong line at 660 cm⁻¹ was assigned to SbF_{6}^{-} (see Table 5.5). A number of additional weak lines appéared which could possibly be due to $Sb_{2}F_{11}^{-1}$ or other $Sb_{n}F_{5n+1}^{-1}$ ions. No BrO_{4}^{-1} was observed in the Raman spectrum. The tube (A) was cooled to -63°C and a static distillation into another

....

FEP nmr tube (B) at -196°C was set up ., Some white material (presumably the rather volatile-BrO₃F) distilled over very rapidly, whereas other "white material (presumably HF) came over more slowly. Only a small part of the liquid in the original reaction tube (A) was distilled into tube The Raman spectrum of the material remaining in tube (A) showed (B). that only a small amount of BrO₃F remained. When the second tube (B) was warmed to -78°C, the white solid melted and two immiscible layers were formed. The Raman and ¹⁹F nmr spectra of both layers were recorded, with much stronger signals being obtained from the lower layer. Also, when more HF was added, the upper layer in the tube increased in volume while the lower layer decreased. Both these facts suggest that the upper layer was a saturated solution of BrO₃F in HF, whereas the lower layer was liquid BrO₂F (with some HF dissolved in it). Enough HF was added to form a saturated solution at -78°C, and the amount of HF required to achieve complete dissolution was estimated on the basis of the volume of the solution formed.

(ii) Reactions of KBrO₄.

(a) KBrO₄ and AsF₅: 0.026 g (0.14 mmol) of KBrO₄ was dissolved \bullet in 0.2 g of HF in an FEP nmr tube, and 0.78 mmol of AsF₅ was distilled in. The mixture was warmed to -78°C to give a clear solution and a white solid. The volatile components of this mixture were distilled into a second FEP nmr tube, and the ¹⁹F nmr spectrum of the solution was recorded at -77°C. A singlet at +150 ppm was assigned to HF undergoing rapid exchange with AsF₅, and a broad, weak line at -270 ppm was assigned to BrO₃F. The \bullet

final traces of HF were removed under vacuum from the white solid which remained in the original reaction tube, and the Raman spectrum of the solid was recorded. Three lines at 693 cm⁻¹, 582 cm⁻¹, and 378 cm⁻¹ were observed which indicated the presence of $AsF_6^{-1.151}$

186;

(b) KBrO_4 and BrF_5 : 0.088 g (0.48 mmol) of KBrO_4 was placed in an FEP nmr tube, and 1.14 g (6.55 mmol) of BrF_5 was distilled in. The sample was allowed to warm up to room temperature for 30 minutes, and then cooled to -60°C. A solid was present in the bottom of the tube at low temperature and at room temperature. ¹⁹F nmr and Raman spectra recorded on the liquid showed only peaks due to BrF_5 .

Approximately 0.003 g of HF (estimated on the basis of volume of gaseous HF) was distilled into the sample, and the mixture was allowed to warm up to room temperature for one hour. The sample was cooled to -48° C and 19 F mmr and Raman spectroscopy indicated that no detectable amount of reaction had occurred. The volatile components of the mixture were removed under vacuum and a white solid was formed. This solid was identified as KBrO₄ on the basis of its Raman spectrum.

In another experiment, 0.]07 g (0.582 mmol) of KBrO₄ was dissolved in 0.62/g of HF in an FEP mmr tube, and 0.459 g (2.63 mmol) of BrF₅ was distilled in. The tube was warmed to -48°C to dissolve all the solid present and then cooled back down to -65°C. The Raman spectrum of the solution was recorded at this temperature, and the ¹⁹F mmr spectrum was recorded at -70°C. The sample was pumped to dryness under vacuum at room temperature and the white solid which was formed was identified as KHF₂, by its Raman spectrum.

(c) $KBrO_4$ and KrF_2 : In one experiment, 0.050 g (0.27 mmol) of $KBrO_4$ was mixed with 0.13 g of HF in an FEP nmr tube, and 0.047 g (0.38 mmol) of KrF_2 was distilled in. The sample was warmed to $-78^{\circ}C$ and a large amount of solid was present in the tube. The sample was removed from the cold bath, rapidly warmed for a few seconds and then cooled back to $-78^{\circ}C$. After several of these heating and cooling cycles, the Raman spectrum of the solution was recorded (there was still solid present). When the sample was allowed to warm up to room temperature, gas bubbles were evolved. A clear, colourless solution was obtained after ten minutes and its Raman spectrum was recorded.

In a different experiment, 0.075 g (0.41 mmol) of KBrO₄ was mixed with 0.12 g of HF and 0.041 g (0.34 mmol) of KrF₂ was distilled in. The sample was warmed to -78° C for 2 hours, -72° C for 36 hours, -63° C for 8 hours and -48° C for 4 hours. The Raman spectra of the solution and of the solid present in the bottom were periodically monitored. The ¹⁹F mmr spectrum of the solution was also recorded after the tube had stood at -63° C, and only signal's due to HF (exchanging with any B_{102}). that was present) and KrF₂ were observed. The sample was then warmed rapidly towards room temperature. Vigorous bubbling occurred and before the sample reached room temperature it detonated with a bright red flash.

(iii) <u>Reactions of BrF6 AsF6</u>.

(a) Hydrolysis: 0.0435 g (0.113 mmol) of $BrF_6^{\dagger}AsF_6^{-}$ was prepared ..., in a 1/4" o.d. FEP tube fitted with an FEP nmr tube side-arm. A layer of

HF (0.4 g) was placed over the $BrF_6^+AsF_6^-$ to avoid reaction of the latter with the small amount of O_2 present in the dry box atmosphere. The mixture was cooled to -196°C and 2.0 ul (0.11 mmol) of H₂0 was symmed into the tube (in a dry box) and, formed a frozen bead. The N₂ in the tube was removed under vacuum and the frozen bead of H₂0 was knocked down onto the layer of frozen HF. The mixture was warmed to -12°C and bubbles of gas were formed. After 2 hours at -72°C, all the solid in the tube had dissolved and a clear solution was present. A portion of the solution was decanted into the nmr tube side-arm, and Raman and $\frac{19}{10}F$ nmr spectra were recorded. The volatile components of the solution were removed under vacuum at -72°C and then at room temperature. No solid residue was left behind.

(b) $BrF_6^+AsF_6^-$ and $KBrO_4$: 0.061 g (0.16 mmol) of $BrF_6^+AsF_6^-$ was prepared in an FEP nmr tube, and a layer of HF (~ 0.1 g) was distilled in. 0.026 g (0.14 mmol) of $KBrO_4$ was then introduced into the tube kent at -196 C. The mixture was warmed to -72°C to give a clear solution and a white solid. Bubbles of gas were also formed. Raman spectra of the solid and of the solution were recorded, and the ¹⁹F nmr spectrum of the solution was recorded as well. The sample was warmed briefly to room temperature, cooled to -40°C, and Raman spectra recorded on both the solid and solution.

(c) $BrF_6^+AsF_6^-$ and BrO_3F : 0.050 g (0.13 mmol) of $BrF_6^+AsF_6^-$ was prepared in an FEP nmr tube. The solution resulting from the reaction of $BrF_6^+AsF_6^-$ with $KBrO_4$ (section (b)) was used as a source of BrO_3F . This

solution was cooled to -62° C and the components which were volatile at this temperature (HF, BrO₃F and BrF₅) were distilled onto the freshly made BrF₆⁺AsF₆⁻. This mixture was allowed to warm up to -72° C, and a clear colourless solution standing over a white solid was obtained. Raman spectroscopy showed BrO₃F and BrF₅ to be present in solution, whereas the solid consisted of BrF₆⁺AsF₆⁻. The tube was kept at -72° C for 45 minutes, -62 C for 20 minutes and then room temperature for 15 minutes. Raman spectroscopy was used to attempt to detect any reaction which might have occurred. No significant changes were observed in the spectra, other that the fact that fluorescence was observed in the Raman spectrum after the sample had been warmed to room temperature.

(iv) <u>Reactions of BrO₃F with KrF₂ and KrF⁺AsF₆.</u>

Approximately 0.43 mmol of BrO_3F (estimated on the basis of the amount of $KBrO_4$ used in its preparation) was dissolved in 0.5 g of HF in an FEP ner tube and 0.054 g (0.44 mmol) of KrF_2 was distilled in. The mixture was warmed to $-78^{\circ}C$ (for 20 hours), $-72^{\circ}C$ (for 20 hours), $-63^{\circ}C$ (for 4 hours), $-48^{\circ}C$ (for 8 hours) and $-22^{\circ}C$ (for 4 hours). Raman spectra of the solution and of the solid present were recorded. The sample was allowed to warm to room temperature for 45 minutes, then cooled to $-70^{\circ}C$ and the Raman spectra of solution and solid again recorded. The $19^{\circ}F$ mmm spectrum of the sample was obtained at $-20^{\circ}C$.

Since no reaction had apparently taken place, 1.1 mmol of AsF, was distilled into the tube. The sample tube was sealed off (to prevent the possibility of air leaking in and reacting with the KrF^+) and warmed to

-189

-72°C for several days. A large amount of solid was obtained and this was shown to be mainly $\text{KrF}^+\text{AsF}_6^-$ from its Raman spectrum. Some unreacted KrF_2 was also present, as was BrO_3F . Vigorous gas evolution occurred as soon as the tube was allowed to warm up to room temperature. The sample also turned brown in colour. The tube was immediately cooled to -196°C, and then rewarmed to -72° C. A brown solution with a solid in it was formed. The Raman spectrum of the solid was recorded.

(v) BrF₅, F₂ and O₂ at High Temperature and Pressure.

A Monel bomb (volume 44 cm³) fitted with a Monel valve was conditioned with 1500 psi of F_2 at room temperature and was then evaluated overnight. 2.56 g (14.6 mmol) of BrF_5 was distilled in. 7.85 mmol of and 168 mmol of F_2 were condensed in to give an overall pressure of approximately 1400 psi at room temperature and the bomb was heated to 125 C for several days. The non-condensable gases were removed at -196 C and the contents of the bomb were distilled into a Kel-F trap. A white solid was trapped out at -196°C. This material was still a solid at -28°C. Warming the tube to -48°C however caused the solid to melt (m.p. of BrF_5 -61.3 C ⁻¹). Some of this liquid was distilled into an FEP nmr tube and the ¹⁹F nmr spectrum recorded at room temperature showed lines attributable to BrF_6 .

CHAPTER VIII

CONCLUSIONS

A. Introduction.

This thesis describes the first detailed study of the oxyfluorides of bromine. Prior to this work, BrO_2F was the only oxyfluoro species of Br (V) which had been reported, and it had not been spectroscopically characterized. The preparation of $BrOF_3$ and of the ions BrO_2^+ , $BrOF_2^+$, $BrOF_4^-$ and $BrO_2F_2^-$ has been accomplished in this work, and these (along with BrO_2F) have been characterized by Raman and ^{19}F nmr spectroscopy. During the course of this project, other workers have also reported evidence for these molecules and ions. Where there is overlap, our results agree well with those of these other workers but in some cases our interpretations of the data differ.

A number of reactions involving Br (VII) oxyfluoro species are described, but none led to the formation of any new molecules. These reactions nevertheless increase our knowledge of Br (VII) chemistry and provide a basis for future work in this rather poorly explored field of halogen chemistry.

B. Comparison of the Oxyfluorides Bromine with those of Chlorine and Iodine.

A direct comparison of the oxyfluoro species of chlorine, bromine and iodine is most readily made for the halogens in the +(V) oxidation state since all the neutral molecules `and the corresponding singly charged anions and cations are now known. The bromine compounds appear to resemble the chiorine compounds more closely than those of iodine ip many respects. Whereas $Br0_2F$ and $C10_2F$ are both monomeric in the solid and liquid phases, IO₂F is a highly associated solid which decomposes without melting. This presumably reflects the tendency of iodine to achieve high coordination numbers through secondary bonding in the solid. Similarly ClOF, "I and $BrOF_3$ both form associated liquids at room temperature, whereas IOF_3 is a polymeric solid. 56 In this case however, $BrOF_3$ can be considered as intermediate between ClOF₃ and IOF₃. Although it is probably not as heavily bridged as IOF₃; the bridging in liquid BrOF₃ is extensive enough to cause more Raman lines than would be expected for the monomer. This association apparently persists in HF solution (from the Raman spectra) and at low temperature in SO_2CIF and SO_2F_2 (from the ¹⁹F nmr spectra). For $CIOF_3$, on the other hand, the Raman spectrum of the liquid can be satisfactorily assigned on the basis of a monomer.⁴¹ The decomposition of the oxidetrifluorides of the halogens show a discontinuity between bromine and iodine. Whereas $ClOF_3 \xrightarrow{33}$ and $BrOF_3$ decompose thermally according to equation (8.1)

 $XOF_3 \longrightarrow XF_3 + t_2O_2 \qquad X = C1, Br$ (8.1)

 IOF_3 disproportionates according to (8.2).⁵² Finally, the behaviour of the

(8.2)

192

compounds XO_2F and XOF_3 (X = C1, Br,) in HF solution provides another

 $210F_3 \xrightarrow{i} 10_2F + 1_5$

example of the difference between iodine and the other two halogens. Whereas IO_2F and IOF_3 both react with anhydrous HF (reactions (8.3) and (8.4))⁵¹, CIO_2F , $CIOF_3$, BrO_2F and $BrOF_3$ are inert towards fluorination by HF.

$$10_2F + 4HF + 1F_5 + 2H_20$$
 (8.3)

$$10F_3 + 2HF - 1F_5 + H_20$$
 (8.4)

F K F

The cations and anions derived from the oxyfluorides XO_2F and XOF_3 (X = Cl, Br and I) seem to have many common features. In all three cases, the structures of the anions XO_2F_2 and XOF_4 appear to be based on trigonal bipyroidal and octahedral arrangements of electron pairs about the central atom. This is in accord with the predictions of the VSEPR theory.

The structures of the two iodine compounds were established by crystallography, 45^{7} whereas for the bromine and chlorine 10^{19} mar spectroscopy were used. These idealized geometries appear to be somewhat distorted in the solid state, however, since more lines are observed in the Raman spectra than would be expected. The three XOF_2^{-1} cations have been studied (X = Cl, 37, 46 I, 51 Br (Chapter V)) and a pyramidal geometry has been suggested. In all three cases, there appear to be significant anion-cation F_1 F_1 O_1 F_1 O_2 F_1 O_1 F_2 O_2 F_1 O_2 F_2 O_2 F_1 O_2 F_1 O_2 F_2 O_2 F_1 O_2 F_2 O_2 F_1 O_2 F_2 O_2 F_1 O_2 F_2 O_2 O_2 F_2 O_2 O_2

]93

 XO_2^+ cations are all bent. I cules. Anion-cation bridging has been established crystallographically for $(1O_2^+Sb_2F_{11}^-)^2$ and spectroscopically for $IO_2^+AsF_6^-$.⁵¹ Similar bridging is presumably responsible for the anomalously low Br=0 stretching frequencies in the AsF₆⁻, BF₄⁻ and $[SbF_6(SbF_5)_{1.24}]^-$ salts of the BrO₂⁺ cation. In the XO_2^+ and XOF_2^+ salts, discrete cations appear to be present (in contrast to the polymeric oxygen bridged cation which was suggested for $IO_2^+AsF_6^{--5.0}$ but disproved in later work (1).

In certain respects, the bromine system differs from both the analogous chlorine and iodine systems, particularly in the stabilities of the products. For instance, BrO_2^+ and $BrOF_2^+$ satts decompose at room temperature.whereas the corresponding C1 and I cations have been shown to be stable at this temperature. The stabilities of the oxidetrifluorides appear to follow a similar pattern, with $BrOF_3$ slowly liberating oxygen at room temperature whereas $10F_3$ and $ClOF_3$ are considerably more stable. Ą final example is the failure (both in this work and in previous work to prepare $Br0_2S0_3F$. This can be contrasted with the ready preparation of $\text{C10}_2\text{S0}_3\text{F}^{-14}$ and $\text{I0}_2\text{S0}_3\text{F}^{-4}$ and suggests that bromyl fluorosulphate may be much less stable than its chloryl or fodyl analogues. A similar situation . exists in the oxides of the halogens. Although chlorine and rodine form stable, well characterized oxides, those of bromine are poorly understood and tend to be much less stable. That most of the oxyfluoro species of Br (V) had not been reported or characterized at the outset of this work may therefore be due to the somewhat lower stability of many of these species when compared to their Cl and I analogues and also to the fact that the oxides of Br were not well known, while the oxides of Cl and I have been used as convenient starting materials for the synthesis of the oxyfluorides of these elements.

C. Future Directions for Research.

(i) $Br_{e}(V)$.

Although all the possible Br (V) oxyfluoro species have been shown to exist and have been characterized, a number of questions remain unanswered. A determination of the crystal structures of $KBr0_2\Gamma_2$ and $KBr0\Gamma_3$ would provide information on the more subtle features of the structures of these two anions and would be useful for verifying the assignments of the Raman frequencies. Comparisons could be made with the crystal structures of the analogous iodine compounds. It was found in this work that the KBr0F₄ prepared was crystalline in nature (whereas $KBr0_2\Gamma_2$ was generally produced as a powder). Although no crystals suitable for a complete structure determination could be found, it appears likely that careful crystallization of KBr0F₄ from CH₃CN will eventually yield good crystals.

Similarly, X-ray crystallographic studies would be very useful to resolve some of the ambiguities associated with the Raman spectra of the $Br0F_2^+$ and $Br0_2^+$ salts. Specifically, both the large shift of $\frac{1}{1}$ of Asr_6^- in $Br0F_2^+AsF_6^-$ and the low value of the $Br0_2^+$ stretching frequencies have been attributed to fluorine bridging between the anion and the cation which can only be detected with certainty by X-ray crystallography. The

19.

difficulty in this case is the decomposition of these salts at room temperature, which requires that the structure determination and the manipulations of the crystals be performed at low temperature. A thorough investigation of the $BrOF_3/SbF_5$ system would also be useful in order to shed light on the apparent discrepancies in the Raman spectrum of " $BrOF_2^{+}SbF_6^{-}$ ", Finally, work on the reactions of BrO_2^{-F} and $BrOF_3$ with other Lewis acids (such as BiF_5 , NbF_5 or TaF_5) would also help in understanding these systems. Bougon and his coworkers 205 have found that adducts of $BrOF_3$ with PF_5 and BiF_5 are not stable at room temperature, but a low temperature investigation might yield useful results.

Perhaps the most intriguing structural problem relating to the Br (V) oxyfluorides is the nature of the association in $BrOF_3$. In Chapter IV, it was suggested that the association may be similar to that found in SF_4 and $ClOF_3$. A careful study of the temperature and concentration dependence of the Raman spectra of $BrOF_3$ dissolved in HF (and in other solvents as well) might show which bands are the most affected by changes in the extent of association. Similarly, gas phase spectra or matrix solution spectra might yield the fundamental frequencies of a monomeric $BrOF_3$ molecule, and comparison of these with the lines due to associated $BrOF_3$ would certainly be helpful. These experiments are complicated however by the apparently low volatility of $BrOF_3$ and its instability at room temperature.

Finally, the nature of the adduct between $Br0_2F$ and BrF_5 encountered in this work was not pursued in detail, and this system should be investigated further.

(ii) <u>Br (VII)</u>.

Although several new oxyfluorides of Br (V) were prepared, no new oxyfluorides of Br (VII) were obtained in this work. A number of possible preparative reactions were investigated however. It was found, not unexpectedly, that the fluorinating agents AsF_5 , BrF_5 and BrF_6^+ will convert BrO_{a}^{-} to $BrO_{3}F$, and that $BrO_{3}F$ is stable towards further fluorination. Similarly, attempts to prepare $BrOF_5$ from BrF_6^+ were unsuccessful and this has been attributed to the inability of the reaction to proceed through a seven-coordinate intermediate. Two of the reactions attempted should be reinvestigated. The reaction of KBr04 with KrF2 produced Br02F and this unexpected result led to the suggestion that an unstable intermediate is involved in the reaction. By working at lower temperatures in a different solvent (or perhaps in a matrix) it might be possible to obtain evidence as to the nature of this intermediate. Also, BrO3F was found to react with the strong fluorinating agent KrF⁺AsF₆⁻, but only decomposition products could be observed. Again, a further investigation of this reaction might lead to new oxyfluorides of Br (VHI), possibly $BrO_2F_2^{\dagger}$.

Another approach which should be pursued is the reaction of Br (V) oxyfluorides or oxides with powerful fluorinating agents. It was shown in this work that KrF_2 is incapable of oxidizing BrO_2F or $BrOF_3$ to the Br (VII) species BrO_2F_3 and $BrOF_5$. Adelhelm and Jacob ¹⁸⁰ have attempted the reaction of BrO_2F with PtF_6 and their results are consistent with $BrOF_2^+$ as a product (rather than $BrO_2F_2^+$). The fluorinating agents KrF^+ and $Kr_2F_3^+$ have been shown to oxidize BrF_5 to BrF_6^+ however, and may be capable of

producing $\text{Br0}_2\text{F}_2^+$ and Br0F_4^+ (or Br0F_5) from $\text{Br0}_2\text{F}$ and Br0F_3 . Experimental difficulties arise here however, since any decomposition of $\text{Br0}_2\text{F}$ (or Br0F_3) to 0_2 or Br_2^- may lead to formation of 0_2^+ or Br_2^+ salts which could complicate the Raman spectra of the products. Despite these difficulties, these reactions are perhaps the most likely to succeed in overcoming the apparently high kinetic barrier to formation of the Br (VII.) oxyfluorides.

D. The Relation of Reactivity to Geometry in Oxyfluoro Compounds.

The structures suggested in this thesis are consistent with the theory that the geometry of a molecule is determined by the number of electron pairs on the valence shell of the central atom of the molecule (the Valence Shell Electron Pair Repulsion theory).

Christe et al.⁴³ have suggested that the arrangement of the electron pairs about the central atom also influences the reactivity of the molecule towards Lewis acids and bases. They have noted that among the fluorides and oxyfluorides of chlorine, those molecules which are derived from a trigonal bipyramidal arrangement of ligands and lone pairs about the central atom react readily with Lewis acids and bases (to form cations and anions containing tetrahedral and octahedral arrangements, respectively). On the other hand, parent molecules which are based on octahedral or tetrahedral arrangements are much less reactive towards Lewis acids and bases. The explanation for these observations was suggested to be that octahedral and tetrahedral geometries are energetically favourable, whereas a trigonal bipyramidal geometry is energetically unfavourable. The reasons for this

were, however, not explained. Regardless of the theoretical basis, the notion that the highly symmetric octahedral and tetrahedral arrangements are somehow more favourable than the much less symmetric trigonal bipyramid can be used to rationalize a considerable number of acid-base reactions involving fluorides and oxyfluorides. For example, ClOF_3 (trigonal bipyramid) is both a better fluoride acceptor and donor than $\text{ClO}_2\Gamma$ (tetrahedral) or ClF_5 (octahedral). These observations are consistent with the

favourability of the highly symmetric arrangements of ligands and non-bonding electron pairs, and are difficult to rationalize on any other basis. The

190

· . . ·)

fact that ClF_6 has not yet been prepared $^{\circ c}$ can however be attributed to the steric difficulties involved with positioning six ligands around a Cl (V) central atom (to give an overall seven-coordinate structure if the lone pair is stereochemically active).

A considerable number of other acid-base reactions of various oxyfluorides can be rationalized on the basis of the structures of the parent molecule and the ion formed. Thus IOF_5 (octahedral) is inert towards reaction with F⁻ donors and forms oxygen bridged adducts with lewis acids. The lack of reaction with F⁻ donors here cannot be attributed to steric factors since IF_7 (seven-coordinate) and IF_8^- (eight-coordinate)¹ are both known. Similarly, SOF_2 (tetrahedral) and SO_2FC1 (tetrahedral) form oxygen bridged adducts with Lewis acids ¹⁰⁷ and preserve the tetrahedral arrangement, whereas SOF_4 (trigonal bipyramidal) forms the SOF_3^+ ion sternahedral) when reacted with a Lewis acid.¹⁴⁷

The work reported in this thesis for the most part agrees with the suggestion of Christe et al. However, reliable estimates of the relative Lewis acidities or basicities of various molecules are sometimes not easily obtainable. For instance, it was shown in Chapter IV that the reaction of BrO_2F and KF proceeds to an extent of less than 12% in twenty-four hours at root temperature. One might therefore conclude that BrO_2F is a relatively poor F^- acceptor. However, it was shown in Chapter III that $KBrO_2F_2$ can be prepared as a pure compound and is stable indefinitely at room temperature, suggesting that BrO_2F is a reasonably good F^- acceptor. Such ambiguous results occur because many of the reactions investigated in this thesis $\frac{1}{2}$

are probably kinetically controlled. The product mixtures observed do not necessarily represent the most thermodynamically favoured ones, since the reaction may not have reached equilibrium if the reaction is made particularly slow by a high activation energy or by the insolubility of one of the reagents. Despite these difficulties, the evidence presented in this thesis suggests that $BrOF_3$ is a better fluoride ion acceptor than BrO_2F . Under rather similar conditions, $BrOF_3$ rapidly abstracts a fluoride ion from KHF_2 whereas BrO_2F does not. Also, the reaction of a mixture of $KBrO_2F_2$ and $KBrOF_4$ with a molar deficit of AsF_5 leaves a residue containing only $KBrOF_4$. Thus $BrOF_3$ appears to be a stronger Lewis acid than BrO_1^{-1} (and this conclusion was used when a reaction scheme for $kBrO_3/BrF_3$, was proposed in Chapter 111).

Direct comparison of the Lewis basicity of $\text{BrO}_2 f$ and BrOF_3 is more difficult to make. Ideally, one should allow a mixture of the two to compete for a Lewis acid. This was however not done, so the comparison must be made on a more qualitative basis. All the reactions of BrOF_3 with oracles's Lewis acid produced mixtures which contained no BrOF_3 . With browyl fluction on the other hand, small amounts of $\text{BrO}_2 F$ were sometimes observed in the product even when excess Lewis acid was used. Also, the BrOF_3^+ salts - one-rally seemed to be more stable than the BrO_2^+ salts. Although this evidence is by no means conclusive, it does suggest that BrOF_3^- is a petter lewis acid than $\text{BrO}_2 F$. Thus the ease of the reactions of $\text{BrO}_2 F$ and $\frac{1}{2} \text{BrOF}_3^-$ with Lewis acids and F^- donors support the suggestion of Christe et al. If the association present in liquid BrOF_3^- is the same as that which has

been suggested to be present in SF_4 , BrF_3 , $C1F_3$ ¹¹ and $C10F_3$, ¹¹ then this also suggests that octahedral coordination is a more favourable arrangement than a trigonal bipyramidal one. Similar cases where octahedral coordination is achieved through the formation of bridges have been reported and include molecules such as

SeOF₄. TeOF₄ $\stackrel{\text{def}}{=}$ and IO₂F₃, $\stackrel{\text{de}}{=}$ and in these cases the monomers would be "unfavourable" five-coordinate structures.

Other work presented in this thesis however, shows that the symmetry argument is not always reliable and that other factors must be important. The facile reaction of SeO₂ with KF to produce KSeO₂F cannot be attended to the change in the symmetry about Se since in both the SeO₂ polace starting material and in the SeO₂F⁻ anion, the Se is tetrahedrally surrounded by three ligands and one lone pair. Furthermore, SeO₂F⁻ shows a significant tendency to accept a fluoride ion to give SeO₂F₂²⁻. This is somewhat surprising since in this reaction both the decrease in the symmetry of the electron pair arrangement and the electrostatic repulsion between the seO₂F⁻ and the incoming F⁻ ion must be overcome. Even more surprising there is the related tellurium system where the TeO₂F⁻ ion (which should have a stable electron pair arrangement) is not known whereas the "less favourable' TeO₂F₂²⁻ ion is readily formed.¹⁰⁵ This points out one of the limitations of this approach to reactivity. Trends in acid-base behaviour for a number of analogous molecules within a group of the periodic table (e.g. ClO1).
BrOF₃ and IQF₃) cannot be predicted by this method since the molecules will all have the same electron pair arrangement in their primary coordination spheres.

It was concluded in Chapter IV that $BrOF_3$ fluorinates a number of iodine oxides and oxyfluorides more rapidly than BrF_5 , and that $BrOF_3$ must also hydrolyse considerably faster than BrF_5 . Although it would be tempting to assign this difference in the reaction rates to the less favourable electron pair arrangement around BrOF₃ (trigonal bipyramidal) compared to BrF_5 (octahedral), a steric argument can be successfully applied as well. The rate at which a group (for example, H_20) adds to a Brf₅ molecule can be predicted to be considerably slower than the rate of addition to a BrOF3 molecule. The five-coordinate BrOF3 can readily become six-coordinate (if the lone pair is counted as occupying a position) whereas the sixcoordinate ${\rm BrF}_5$ would have to become either seven-coordinate or sixcoordinate with a stereochemically inactive lone pair, both of which are infavourable processes. For example, the reaction of BrF5 with KF to give kBrF_6 proceeds rather slowly (more than one week to obtain complete reaction at room temperature in the presence of excess BrF_5) and vibrational and X-ray powder diffraction data suggest that the product is octahedral with the lone pair being stepeochemically inactive 200 (although this is not necessarily conclusive since the distortion from O_h symmetry could be very small). On the basis of the rate of addition of an incoming group, one can therefore rationalize the more rapid rate of reaction of BrOF, compared to BrF_5 . Furthermore, a similar argument can be used to explain why $BrOF_5$

hydrolyses more rapidly than BrF_6^- (Chapter III). Addition of H_20 to $BrOF_4^-$ followed by loss of F^- is possible, but addition of H_20 to BrF_6^- is clearly unfavourable since an eight-coordinate (or seven-coordinate if the lone pair is inactive) is involved. Hence steric arguments can be applied to rationalize this reaction as well. Consideration of the symmetry about the central atom would lead us to predict that BrF_6^- should be less favourable than $BrOF_4^-$ (or at best, equally favourable if the lone pair is inactive).

In summary therefore, the suggestion that a molecule's reactivity is dependent upon the symmetry of the arrangement of the ligands and the pairs about the central atom does seem to rationalize a great deal of reaction chemistry and some of the results obtained in the present work dowever, several exceptions to these trends do occur and there are clearly a number of factors involved, some of which evidently dominate over the symmetry considerations in certain cases.

. Fnown and Unknown Okyfluoro Compounds of the Halogens.

In Table 1.1 all the oxyfluorides of the halogens in the $+\sqrt{3}$ and $-(\sqrt{11})$ oxidation states along with the singly charged ions derived true them are listed. The square brackets show which ones have not yet been prepared.

A:1 of the expected oxyfluoro compounds of Cl(V), Br(V) and L(V)have now been reported. Although the properties and structures of the bromine (V) compounds do not differ radically from those that might be

. .

be anticipated based on a comparison with the chlorine and iodine analogues, they are nevertheless in many cases less stable than the related oxyfluoro species of the other halogens.

Considerably fewer oxyfluoro compounds containing halogens in the +(VII) oxidation state have been reported. However, for several of these unknown compounds, apparently straightforward preparative routes have failed and some rationalization for this lack of success can be given. For instance, ClO₃F has been shown to be inert towards reaction with a variety of Lewis acids and fluoride ion donors. 1 The failure to obtain Clo_3^+ and $C10_3F_2$ has been attributed to the strength of the C1-F bond and the lack of a molecular dipole moment which is a result of the pseudo-tetrahedral arrangement about the central atom. On the same basis, it might be antice pated that BrO₃F would be similarly inert towards Lewis acids and truorade ion donors. The work presented in this thesis supports this but since a these reactions have not yet been investigated in detail, definitive conclusions as to the possible existence of BrO_3^+ and $BrO_3F_5^-$ cannot be rade. The reaction of $10F_5$ and 10_2F_3 with the strong Lewis acids $80F_5$ and As F_5 have failed to produce the cations IOF_4^+ · ', · and $IO_2F_2^+$. , · · · In the former case, an oxygen bridged $F_5M-0-IF_5$ adduct is formed: whereas in the latter case oxygen bridged $(MF_4 \cdot IO_2F_4)_n$ polymers are produced (M - Sb, As). ... These results may be in large measure attributable to the tendency of iodine to favour a high coordination number, which is also reflected in the polymeric nature of the oxyfluorides 10_2F_3 , 10_2F_3 and $10F_3$ and by the facile hydration of IO_4 to H_4IO_6 is in aqueous

solution. The fact that straightforward reactions have failed to produce species such as $C10_3^+$, $C10_3F_2^-$, $I0F_4^+$ and $I0_2F_2^+$ make it unlikely that these will be observed as isolable entities, although they may eventually be shown to have marginal stability under extreme conditions (for example at low temperature in a matrix).

Although no efforts to prepare the anions $ClOF_6$ and $BrOF_6$ have been reported (since the parent oxyfluorides are not known), these may be expected to be of low stability for steric reasons. The failure to prepare the fluorides XF_7 (X = C1, 10 Br 7) by means of a reaction between the VF_1 cation and a fluoride ion donor at low temperature suggests that the central atom is incapable of accommodating seven groups in its primary coordination sphere. Moreover, the anomalously high chemical shift of the ¹⁹F nmr resonance for CIF_6^+ has been attributed to considerable crowding in the valence shell of the chlorine, which also suggests that a seventh electron "pair could not be accommodated. Finally, the "non-existence" of CIF and the apparent lack of stereochemical activity of the lone pair in Buf, indicate that seven electron pairs cannot be disposed about a Br (V) or Cl (V) central atom and it can be anticipated that the crowding would b_{i+1} even'more-severe about a Br (VII) or Cl (VII) central atom. In view of s this, it would be rather surprising if the anions ClOF_6^- and BrOF_6^- were found to be stable.

Although the apparent "non-existence" of a number of the entries in square brackets in Table 1.1 can be rationalized, no convincing reasons can be found why some of the other unknown halogen (VII) oxyfluorides should not be stable. This is particularly true of the Br (VII) species BrOF and $Br0_2F_3$, and the ions derived from the latter, $Br0_2F_2^{\dagger}$ and $Br0_2F_4^{-1}$. Steric reasons cannot be the dominating factor here since bromine surrounded by six ligands is found in the stable ions BrF_6^{-1} and BrF_6^{+1} . Similarly, the fact that $CloF_5$ and Clo_2F_4 have not yet been prepared is somewhat surprising in view of the stability of the isoelectronic (1F $_{\rm 6}$ cation. 10^{-10} In this case it could be argued that the extra repulsions in the valence shell of the central atom introduced by replacing a fluorine ligand in ClF_6^+ by a doubly bonded oxygen might destabilize the molecule. In the case of the I (VII) oxyfluoro compounds, IO_3F has not been well. characterized. Although a preparative route has been published, " explicit experimental details were not provided and an attempt to repeat the preparation has failed.⁵¹ Attempts to prepare IO₃F by different methods have also been unsuccessful.^{51,68} Consequently, no. information is available on the structure of IO_3F , or on the possibility of forming the ions IO_3 or 10_3F_2 .

That there are several reasonable oxyfluoro compounds of the halogens which are as yet unknown demonstrates that there is still a considerable amount of work to be done on these systems.

REFERENCES

- A. J. Downs and C. J. Adams, in "Comprehensive Inorganic Chemistry",
 J. C. Bailar, H. J. Emeléus, R. Nyholm and A. F. Trotman-Dickenson,
 Ed., Pergamon Press (1973), Vol. 2, p. 1107, and references therein.
- L. Stein, in "Halogen Chemistry", V. Gutman, Ed., Academic Press (1967).
 Vol. 1, p. 133.
- 3. A. I. Popov, in "M.T.P. International Review of Science: Inorganic Chemistry Series One", V. Gutman, Ed., Butterworths and University. Park Press, (1972), Vol. 3, p. 53.
- 4. T. A. O'Donnell, in "Comprehensive Inorganic Chemistry", J. C. Ballar, O
 H. J. Emeleus, R. Nyholm and A. F. Trotman-Dickenson, Ed., Perdamor
 Press (1973), Vol. 2, p. 1009.
- 5. D. Martin and G. Tantot, J. Fluorine Chem., <u>6</u>, 477 (1975).
- o. C. E. Fogle and R. T. Rewick, U.S. Patent 3,615,206 (1971).
- 7. R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 13, 1230 (1974).
 - 8. M. Schmeisser and K. Brandle, Adv. Inorg. Chem. Radiochem., 5, 41 (1963)
 - B. J. Brisdon, in "M.T.P. International Review of Science: Inorganic Chemistry Series One", V. Gutman, Ed., Butterworths and University Park Pres's (1972), Vol. 3, p. 215.
 - 10. R. Schwartz and M. Schmeisser, Ber., 70, 1163. (1967).
 - 11. C. Campbell, J. P. M. Jones and J. J. Turner, Chem. Comm., 888 (1968).
 - 12. J-L. Pascal and J. Potier, ibid., 446 (1973).
 - J-L. Pascal, A.C. Pavia, J. Potier and A. Potier, C. R. Acad. Sc., C,279, 43 (1974).

14. J-L. Pascal, A.C. Pavia, J. Potier and A. Potier, ibid., 280, 661 (1975).

3	415.	
9	15.	
٩	415.	
¢		B. Lewis and W. Feitknecht, J. Amer. Chem. Soc., 53, 2910 (1931) 👆
	16.	B. Lewis and H. J. Schumacher, Z. Anorg. Allg. Chem., <u>182</u> ,182 (1929).
	17.	A. Pflugmacher, H J. Rabben and H. Dahmen, ibid., 279, 313 (1955).
د	18.	A. J. Arvia, P. J. Aymonino and H. J. Schumacher, ibid., 298, 1 (1953).
	19.	J.L. Pascal, A.C. Pavia, J. Potier and A. Potier, C.R. Aćad. Sc., C,
~		282, 53 (1976).
	20.	K. Selte and A. Kjekshus, Acta Chem. Scand., <u>24</u> , 1912 (1970).
	21.	K. O. Christe and C. J. Schack, Adv. Inorg. Chem. Radiochem., 18, 319 (1997).
	22.	M. Schmeisser and E. Pammer, Angew. Chem., <u>67</u> , 156 (1955).
ς.	23.	M. Schmeisser and E. Pammer, <u>ibid.</u> , <u>69</u> , 781 (1957).
ĩ	24.	0. Ruff and W. Menzel, Z. Anorg. Allg. Chem., 202, 49 (1931).
	(25)	A. Engelbrecht, Mayr, G. Ziller and E. Schandara, Monatsh. Chev.,
~~~	\$	. 105, 796 (1974).
•	. ^{تر} .	R. J. Gillespie and J. P. Krasznai, Inorg. Chem., 16, 1384 (1977)
	27.	M. Brownstein, R. J. Gillespie and J. P. Krasznai, Can. J. Chem.,
		submitted for publication.
	.8.	N. Bartlett and F. O. Sladky, J. Amer. Chem. Soc., <u>90</u> , 5316 (1968).
	29.	K. O. Christe, C. J. Schack, D. Pilipovich and W. Sawodny, Inorg. Chem.,
•	•	8, 2439 (1969).
	30.	A. J. Edwards and R. J. C. Sills, J. C.S. Dalton, 1726 (1974).
	31.	D. F. Smith, G. M. Begun and W. H. Fletcher, Spectrochim. Acta, 20,
	`	1763 (1964).
	32.	A. J. Arvia and P. J. Aymonino, ibid., 19, 1449 (1963).
	33.	C. R. Parent and M. C. L. Gerry, J. Mol. Spectrosc., <u>49</u> , 343 (1974).
, ,	34.	D. K. Huggins and W. B. Fox, Inorg. Nucl. Chem. Lett., <u>6</u> , 337 (1970).
1		· · · · ·
1		

- 35. K. O. Christe and E. C. Curtis, Inorg. Chem., 11, 35 (1972).
- 36. R. Bougon, P. Plurien and J. Isabey, C. R. Acad. Sci., C, 273, 415 (1971.

ሳ ነ ስ

- 37. K. O. Christe, E. C. Curtis and C. J. Schack, Inorg. Chem., <u>11</u>, 2212 (1972).
  - R. Bougon, T. Bui Huy, A. Cadet, P. Charpin and R. Rousson, ibid.,
     13, 690 (1974).
  - 39. R. Bougon, J. Isabey and P. Plurien, C. R. Acad. Sci., C, 271; 1366 (1977)
- 40. D. Pilipovich, C. B. Lindahl, C. J. Schack, R. D. Wilson and K. O. Chraste Inorg. Chem., 11, 2189 (1972).
- 41. K. O. Christe and E. C. Curtis, ibid., 11, 2196 (1972).
- 42. K. O. Christe and E. C. Curtis, ibid., 11, 2209 (1972).
- 43. K. O. Christe, C. J. Schack and D. Pilipovich, ibid., 11, 2205 (197).
- 44. E. Jacob, Angew. Chem. Int. Ed., 15, 158 (1976).
- 45. G. Tantot and R. Bougon, C. R. Acad. Sci., 0, 281, 271 (1975).
- 46. R. Bougon, P. Joubert and G. Tantot, J. Chem. Phys., 66, 1562 (1977).
- 47. R. Moujon, T. Bui Huy, P. Charpin, R. J. Gillespie and P. Spekkens, Inorg. Chem., submitted for publication
- 40. R. Bougon and T. Bui Huy, C. R. Acad. Sc., C., 283, 461 (1976).
- 49. R. Pougon, T. Bui Huy, P. Charpin and G. Tantot, ibid., 283, 71 (1976).
- 50. H. A. Carter and F. Aubke, Inorg. Chem., 10, 2296 (1971).
- 51. J. P. Krasznai, Ph.D. Thesis, McMaster University, Hamilton, Canada (1975).
- 52. E. E. Aynsley, R. Nichols and P. L. Robinson, J. Chem. Soc., 623 (1953).
- 53. L. Helmholtz and M. T. Rodgers, J. Amer. Chem. Soc., <u>62</u>, 1537 (1940).
- 54. A. Finch, P. N. Gates and M. A. Jenkinson, J. Fluorine Chem., 2, 111 (1972/73).

· ,	
,	
•	e e e e e e e e e e e e e e e e e e e
	•
	•
. 55.	J. B. Milne and D. Moffett, Inorg. Chem., <u>14</u> , 1077 (1975).
56.	A. J. Edwards and P. Taylor, J. Fluorine Chem., <u>4</u> , 173 (1974).
57.	R. R. Ryan and L. B. Asprey, Acta. Cryst., <u>B28</u> , 979 (1972).
. 58. `	J. B. Milne and D. Moffett, Inorg. Chem., <u>15</u> , 2165 (1976).
59.	A Engelbrecht and H. Atzwanger, Monatsh. Chem., <u>83</u> , 1087 (1952).
60.	A. H. Clark, B. Beagley and D. W. J. Cruickshank, Chem. Comm., 14 (1960)
61.	D. R. Lide and D. E. Mann, J. Chem. Phys., 25, 1138 (1956).
62.	H. H. Claassen and E. H. Appelman Minorg. Chem., 9, 622 (1970).
. 63.	K.Q. Christe, Inorg. Nucl. Chem. Lett., 8, 453 (1972).
. 64.	K. O. Christe, R. D. Wilson and E. C. Curtis, Inorg. Chem., 12, 1999 (199
. 65.	K. O. Christe, Inorg. Nucl. Chem. Lett., 8, 457 (1972).
<b>~</b> 66.	K. O. Christe and R. D. Wilson, Inorg. Chem., <u>12</u> , 1356 (1973).
. 67.	K. O. Christe and E. C. Curtis, <u>ibid.</u> , <u>12</u> , 2245 (1973).
- 6 <u>3</u> .	E. H. Appelman and M. H. Studier, J. Amer. Chem. Soc., 91, 4561 (1969).
⁶⁹ .	M. Schmeisser and K. Lang, Angew. Chem., <u>67</u> , 156 (1955).
	A. Engelbrecht and P. Peterfy, Angew. Chem. Int. Ed., 8, 768 (1969).
/1.	I. R. Beattie and G. J. Van Schalkwyk, Inorg. Nucl. Chem. Lett., 10.
•	343 (1974).
· ////////////////////////////////////	R. J. Gillespie and J. P. Krasznai, Inorg. Chem., 15, 1251 (1976).
73.	I. R. Beattie, R. Crocombe, A. German, P. Jones, C. Marsden,
	G. Van Schalkwyk and A. Bukovsky, J. C. S. Dalton, <u>14</u> , 1380 (1976).
74.	4. A. Carter, J. N. Ruddick, J. R. Sams and F. Aubke, Inorg. Nucl.
• •	Chem. Lett., 11, 29 (1975).
, 7 <b>5</b> .	D. F. Smith and G. M. Begun, J. Chem. Phys., <u>42</u> , 2236 (1965).
· .	
· · · · · ·	

76. R. J. Gillespie and J. W. Quail, Proc. Chem. Soc., 278 (1963).

J. H. Holloway, H. Selig and H. H. Claassen, J. Chem. Phys., 54,
 4305 (1971).

78. R. J. Gillespie, "Molecular Geometry", Van Nostrand Reinhold, London (1972).

212

79. F. von Stadion, Gilbert's Ann., <u>52</u>, 197, 339 (1816).

80. F. Ammermüller and G. Magnus, Pogg. Ann., 28, 514 (1833).

81. E. H. Appelman, Accts. of Chem. Res., <u>6</u>, 113 (1973).

82. E. H. Appelman, J. Amer. Chem. Soc., <u>90</u>, 1900 (1968).

83. J. G. Malm and E. H. Appelman, At. Energy Rev., 7, 21 (1969).

84. ~ E. H. Appelman, Inorg. Chem., 8, 223 (1969).

85. E. H. Appelman, Inorg, Syn., <u>13</u>, 1 (1972).

- 86. G. K. Johnson, P. N. Smith, E. H. Appelman and W. N. Hubbard, Inorg. Chem., 9, 119 (1970).
- 87. W. F. De Coursey, Ph.D. Thesis, Iowa State College, Ames, Iowa (1953).
- 88. W. M. Latimer, "Oxidation Potentials", Prentice Hall, Inc., Englewood Cliffs, N.J. (1952).
- 89. G. J. Schrobilgen, Ph.D. Thesis, McMaster University, Hamilton, Canada (1973).
- 90. R. J. Gillespie and G. J. Schrobilgen, Inorg. Chem., 15, 22 (1976).
- 91. R. J. Gillespie, P. Spekkens, J. B. Milne and D. Moffett, J. Fluorine Chem., 7, 43 (1976).
- 92. P. A. W. Dean and R. J. Gillespie, J. Amer. Chem. Soc., <u>91</u>, 7264 (1969).
- 93. R. C. Thompson, Ph.D. Thesis, McMaster University, Hamilton, Canada (1962).
- 94. F. Schreiner, J. G. Malm and J. C. Hindman, J. Amer. Chem. Soc., 87, _______ 25 (1965).

95. J. Shamir and I. Yaroslavsky, Israel J. Chem., <u>7</u>, 495 (1969).

- 96. T. Surles, H. H. Hyman, L. A. Quarterman and A. I. Popov, Inorg. chem., 9, 2726 (1970).
- 97. F. Seel and J. Boudier, Z. Anorg. Allg. Chem., <u>342</u>, 173 (1966).

98. G. Mitra, ibid., 340, 110 (1965).

99. G. Mitra, ibid., 368, 336 (1969).

2

- 100. C. J. Adams, Inorg. Nucl. Chem. Lett., 10, 831 (1974).
- 101. H. H. Claassen, E. L. Gasner, H. Kim and J. L. Huston, J. Chem. Phys., 49, 253 (1968).
- 102. R. J. Gillespie and P. Spekkens, J. C. S. Dalton, 2391 (1976).
- 103. R. J. Gillespie, B. Landa and G. J. Schrobilgen, Inorg. Chem., 10, 1256 (1976).
- 104. R. Rousson and M. Drifford, J. Chem. Phys., 62, 1806 (1975)..
- 105. G. M. Begun, W. H. Fletcher and D. F. Smith, ibid., 42, 2236 (1)65).
- 106. L. E. Alexander and I. R. Beattie, J. Chem. Soc., A, 3091 (1971).
- 107. H. S. Gutowsky and C. J. Hoffman, J. Chem. Phys., 19, 1259 (1951).
- 108. A. P. Irsa and L. Friedman, J. Inorg. Nucl. Chem., 6, 77 (1958).
- 109. E. N. Sloth, L. Stein and C. W. Williams, J. Phys. Chem., 73, 276 (1969)

110. K. O. Christe, Inorg. Chem., <u>11</u>, 1215 (1972).

- 111. G. R. Jones, R. D. Burbank and N. Bartlett, ibid., 9, 2264 (1970).
- 112. H. Selig, H. H. Claassen and J. H. Holloway, J. Chem. Phys., <u>52</u>, 3517 (1970).
- 113. E. A. Robinson, D. S. Lavery and S. Weller, Spectrochim.Acta, 25A, 151 (1969).
- 114. K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds". Wiley, New York (1970).

115. R. A. Frey, R. L. Redington and A. L. K. Aljibury, J. Chem. Phys., 54, 344 (1971).

- 116. K. O. Christe and C. J. Schack, Inorg. Chem., 9, 1852 (1970).
- 117. E. J. Baran and P. J. Aymonino, Z. Naturforsch., 27B, 1568 (1972).
- 118. E. H. Appelman, B. Beagley, D. W. J. Cruickshank, A. Foord, S. Rustaa and V. Ulbrecht, J. Mol. Struc., 35,139 (1976).
- 119. J. Shamir and J. Binenboym, Inorg. Chim. Acta, 2, 37 (1968).
- 120. H. Selig and H. Holzman, Israel J. Chem., 7, 417 (1969).
- 121. E. L. Muetterties and W. D. Phillips, J. Amer. Chem. Soc., 81, 1084 (1997).
- 122. G. Franz and F. Neumayr, Inorg. Chem., 3, 921 (1964).
- 123. G. J. Schrobilgen, Private Communication.
- 124. C. J. Schack and K. O. Christe, Inorg. Chem., 13, 2378 (1974).
- 125. H. A. Carter, S. P. L. Jones and F. Aubke, ibid., 9, 2485 (1971).
- (1973'74).
  - 127. Handbook of Chemistry and Physics, 50th Ed., The Chemical Rubber Co., Cleveland, Ohio. (1969).
- 128. N. Bartlett and P. L. Robinson, J. Chem. Soc., 3417 (1961).
- 129. J. A. Evans and D. A. Long, D. Chem. Soc. A, 1688 (1968).
- 130. M. Azeem, M. Brownstein and R. J. Gillespie, Can. J. Chem., 47, 4159 (1404
- 131. A. J. Edwards, J. C. S. Dalton, 2325 (1972).
- 132. R. Bougon, T. Bui Huy and P. Charpin, Private Communication, see Reference 47.
- 133. S. Nunziante Cesaro, M. Spoliti, A. J.Hinchcliffe and J. S. Ogden, J. Chem. Phys., 55, 5834 (1971).

134. J. Goubeau and W. Bues, Z. Anorg. Allg. Chem., 268, 221 (1952).

215

- 135. N. N. Greenwood, J. Chem. Soc., 3811 (1959).
- 136. J. J. Harris, Inorg. Chem., 5, 1627 (1966).
- 137. K. O. Christe and W. Maya, Ibid, 8, 1253 (1969).
- 138. G M. Begun and A. C. Rutenberg, ibid, 6, 2212 (1967).
- 139. P. A. W. Dean, R. J. Gillespie, R. Hulme and D. A. Humphreys, J. Chem. Soc. A, 341 (1971).
- 140. H. Takeo, E. Hirota and Y. Morino, J. Mol. Spec., 34, 370 (1970).

141. R. J. Gillespie and M. J. Morton, Chem. Comm., 1565 (1968).

142. L. A. Woodward, Trans. Farad. Soc., 54, 1271 (1958).

- 143. K. O. Christe, J. Guertin, A. Pavlath and W. Sawodny, Inorg. Chem. 7, 533 (1967).
- 144. J. A. Rolfe and L. A. Woodward, Trans. Farad. Soc., 51, 778 (1955).

145. J. D. McCullough, J. Amer. Chem. Soc., 59, 789 (1937).

146. K. Kuhlmann and D. M. Grant, J. Phys. Chem., 68, 3208 (1964).

147. M. Brownstein, P. A. W. Dean and R. J. Gillespie, Chem. Comm., 9 (1970)

148. C. MacLean and E. L. Mackor, Prox. XI, Colloque Ampere, Eindhoven,

North Holland Publishing Co., Amsterdam, (1962), p. 571.

149. E. L. Pace and H. V. Samuelson, J. Chem. Phys., 44, 3682 (1960).

160. A. J. Edwards and G. R. Jones, J. Chem. Soc. A, 1891 (1970).

151. A. M. Qureshi and F. Aubke, Can. J. Chem., 48, 3117 (1970).

152. R. J. Gillespie and B. Landa, Inorg. Chem., 12, 1383 (1973).

153. T. Surles, A. Perkins, L. A. Quarterman, H. H. Hyman, and A. I. Popov, J. Inorg. Nucl. Chem., <u>34</u>, 3561 (1972).

154. K. O. Christe and W. Sawodny, Inorg. Chem., 12, 2879 (1973).

155. K. O. Christe and C. J. Schack, Inorg. Chem., 9, 2296 (1970).

156. K. O. Christe, J. Hon and D. Pilipovich, ibid, <u>12</u>, 84 (1973).

157. R. J. Gillespie and G. J. Schrobilgen, ibid, 13, 23/0 (1974).

158. R. J. Gillespie and G. J. Schrobilgen, ibid, 13, 765 (1974).

159. M. Brownstein and H. Selig, ibid, 11, 656 (1972).

160. J. W. Emsley, J. Feeney and L. H. Sutcliffe, "High Resolution Nuclear Magnetic Resonance Spectroscopy", Pergamon Press, (1965), Vol. 1 and 2, 161. J. A. Pople, Mol. Phys., 7, 301 (1963).

216

162. R. Paetzold and K. Aurich, Z. Anorg. Allg. Chem., 335, 281 (1965).

163. J. B. Milne and D. Moffett, Private Communication, see Reference 91 and 164.

164. D. Moffett, Ph.D. Thesis, University of Ottawa, Ottawa, Canada 1974).

165. J. B. Milne and D. Moffett, Inorg. Chem., <u>12</u>, 2240 (1973).

166. G. E. Walrafen, J. Chem. Phys., <u>37</u>, 1468 (1962).

167. R. Paetzold and K. Aurich, Z. Anorg. Allg. Chem., 348, 94 (1900).

168. K. D. Unriste, E. C. Curtis, C. J. Schack and D. Pilipovich, Inorg. Chem., 11, 1679 (1972).

169. K. Seppelt, Chem. Ber., 105, 2431 (1972).

1/0. T. Birchall and R. J. Gillespie, Spectrochim. Acta, 22, 681 (1966).

171. R. Paetzold and K. H. Ziegenbald, Z. Chem., 4, 461 (1964).

1/2. A. W. Cordes, Anorg. Chem., 6, 1204 (1967).

173. R. Paetzold, Z. Chem. 4, 272 (1964).

174. F. Seel and D. Golitz, Z. Anorg. Allg. Chem., 327, 28 (1964).

175. P. Spekkens, B.Sc. Thesis, University of Ottawa, Ottawa, Canada (1972).

- 176. L. Brown, G. M. Begun and G. E. Boyd, J. Amer. Chem. Soc., 91. 2250 (1969).
  - 177. J. N. Keith and I. J. Solomon, Inorg. Chem., 9, 1560 (1970).
  - 178. M. H. Studier, J. Amer. Chem. Soc., 90, 1901 (1968).

2

- 179. K. Baum, C. D. Beard and V. Grakaustas, J. Amer. Chem. Soc., 97. 267 (1975).
- 180. W. Adelhelm and E. Jacob, 6th European Symposium on Eluprine Chemistry, Dortmund, Germany, March 1977.
- 181. D. Pilipovich, H. H. Rogers and R. D. Wilson, Inorg. Chem., 11, 2000 Sec
- 182. F. Powell and E. R. Lippincott, J. Chem. Phys., 32, 1883 (1960).
- 183. S. Sunder and R. E. D. McClung, Can. J. Phys., 52, 2299 (1974).
- 184. D. F. Evans, J. Chem. Soc., 877 (1960).
- 185. J. Bacon, R. J. Gillespie and J. W. Quail, Can. J. Chem., 41, 306 (1977)
- 186. E. D. Becker, "High Resolution N.M.R.", Academic Press, (1969), pressented
- 187. 5. Brownstein, Can. J. Chem., 38, 1597 (1960).
- 188. C. E. Crouthamel, A. M. Hayes and D. S. Martin, J. Amer. Chem. 500. . 73, 82 (1951).
- 189. G. E. Walrafen, J. Chem. Phys., 39, 1479 (1963),
- 190. A. Simon and M. Weist, Z. Anorg. Allg. Chem., 268, 301 (1952).
- 191. J. Liang, Ph.D. Thesis, McMaster University, Hamilton, Canada (1976)
- 192. H. H. Hyman, M. Kilpatrick and J. J. Katz, J. Amer. Chem. Soc., <u>79</u>, 3668 (1957).
- 193. G. Dallinga, J. Gaaf and E. L. Mackor, Rec. Tr. Chim., 89, 1068 (1975).
- 194. R. J. Gillespie, T. E. Peel and E. A. Robinson, J. Amer. Chem. Soc.,

93, 5083 (1971⁴).

- 195. R. J. Gillespie, J. Chem. Soc., 2537 (1950).
- 196. L. Kolditz and U. Preiss, Ž. Anorg. Allg. Chem., <u>325</u>, 263 (1963).
- 197. K. Dehnicke and J. Weidlein, 161d, <u>342</u>, 225 (1966).
- 198. K. O. Christe, C. J. Schack and R. D. Wilson, Inorg. Chem., 14, 2224 (2017)
- 199. J. Shamir, J. Binenboym and H. H. Claassen, J. Amer. Chem. Soc., 90, 6223 (1968).
- 200. H. S. Gutowsky, D. W. McCall and C. P. Slichter, J. Chem. Phys., <u>21</u>, 279 (1953).
- 201. L. C. Hoskins and R. C. Lord, ibid, <u>46</u>, 2402 (1967).
- 202. J. F. Liebman and B. B. Jarvis, J. Fluorine-Chem., 5, 41 (1975).
- 203. M. H. Studier and E. H. Appelman, J. Amer. Chem. Soc., <u>93</u>, 2349 (1971).
- 204. H. A. Carter, A. M. Qureshi and F. Aubke, Chem. Comm., 1461 (1968).
- 205. R. Bougon, Private Communication.
- 206. K. O. Christe and D. Pilipovich, Inorg. Chem., <u>8</u>, 391 (1969).
- 207. P. A. W. Dean and R. J. Gillespie, J. Amer. Chem. Soc., 91, 7260 (1969).
- 208..K. Seppelt, Angew.Chem. Int. Ed., <u>13</u>, 92 (1974).
- 209. R. Bougon, P. Charpin and J. Soriano, C. R. Acad. Sc., C, <u>272</u>, 565 (1971).
  210. K. O. Christe, Inorg. Chem., <u>12</u>, 1580 (1973).