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.- T " "ABSTRACT

‘.$ The experimental stuhy of an inward radial flow

turbine s described .in this report. Préliminary tests

of the ‘turbine/ by United Aircraft of Canada Ltd. indicated

that the -isentXopic efficiency was some 50% Below the

design target of\ 80% efficiency. In an effort to locate,

turbine design, the unit's. response

4

is ‘examined under four different load conditions at speeds

ranging from 10,000 to 75,000 RPM and pressure ratios from

-

1.2 to 2.4. The results Jf these tests arc presented using

a series of -non-dimensional parameters typically employed
in turbine and compressor design, From these .parameters
it is evident that the poor response-of the unit is due to
the high degree of éxit swirl lntroduced into the prxmary

]

diffuser" by the “exducerless" turbine bladcs.
The response dharacte%isties of the-unit are
examined in the light of the experimental results, and

explanations of various phenomena are offered.
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CHAPTER 1 y
INTRODUCTION . '

For many yeats, gas turbines have been the object -

of intense research, both in the industrial and the academic

- 1

worlds. .Efficiencie§ of these machines have been increased

t6 the”point where what was once a non-functioning concept

is now an economically feasible prime-mover. The form of °
this machine has_also éssu%gd many aspects. The once popular
configuration of radial compression matched with a#ial floww .
turbine has been almost tot&lly replaced by tﬁe axial
compressioh, axial turbine desigh. Radial compression, radial
flow gas turbines are‘virtually non-existcnt,_1imitcd to
applications wherc low weight and reduced size overdome the
heat transfer probiéms encountered in such a design Il].

However, radial flow turbines themsclves.are often used as

~so-called "cold-flow" devices; that is a supply of]compressed

IS

gas (s?ch as-air) is used to provide rotational energy to

the turbine blades,. Small high-sbeed milling machines, Air—
craft air-conditioning.units, and sdome cryogenic coolers

are powered in this manner. Generally speakiné though, the
radial flow turbine is iimited_to very- specific apptlications,

and as a developmental unit is not usually made available

 for research at a University considering the. facilities required.

-~

Thus it\Was considered most fortunateé that. the

A}
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author's seniofréupervisor, Dr. J. H. T. Wade, received

an invitation from Pratt & Whitney "Aircraft 6f Canada Ltd.,
(Longueil, Quebec) to test a cold:flow radiéL tu}bine

of relatively new de§ign.l A description of fhe,design -
was offered by Mr. U. Okapuu,

0
Chief of Turbine_Research at PEWACL in his initial letter

o N

»

and purpose of this turbine
to'Dr. Wade [2].
"The turbine in question is shown in the_attachcd
sketch. It was designed to run with its ‘axis
vertical, qxhaustiné upwardé. " Its application

was intended to be the drive of various fatigue y
test specimens in our spin pits, which were to

be ﬁung below the turbine at the end of a lgng

and flexiblq spindle, to éggurc a stable rotation

-~

. Aapout the C.Gv of the specimen and -the absence of
critical épeeds.. Tﬁis manner of spin testing is

‘routine and causes no problems other than the fact

that, For minimum power requircments the séin test
portion of the pit has to be evacuated, causing a
pressure difference between the turbine and the

specimen, neccssitating scaling. ) .
Our spin pits arc mainly used for fatigue testing .
of rotor discs. Tﬁese tests consist of cyclic sbecd
chaqge& of the specimens; nccplerntion to some .
specified'maximum speed fgllowed immediately b& a
deceleration to a specified minimum spced, then e

acceleration again, etc. Since the number of cycles
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required ranges.into tens of thousands, some speci-
mens ‘take months of continuous cycling to complete
the brogram. This is a 1®ng time to wait for data,\

particularly if you are trying to solve a develop-

ment problem. Shorter cycling times dléa(EX/would'

reduce the total lapsed time. The turbines commer-

‘cially available (Barbour-Stockwell practically

dominates the market) come in various sizes, the larger

sizes producing more torque, but having a lower allow-
. . <

able maximum speed, for stress reasons. The resulting

~

1dcus of torque-max. speed pairs offered,sets a limit

to the cycling frequency of any given test specimen.

It was this torque-max, speed'problgm that prompteg us
to attempt the design of the radial spiﬁ pit drive
turbine in which I.am trying to interest you. The
radial blades, and the low diameter solid hub permit

far higher tip speeds than the Peltdn-whéel type, super-

sonic inlet commercial turbine rotors. ' The not incon-

sideréble expertise we had acquired in the dcsign of
?gdi$1 tu¥bincs suggested to us that total-total
efficigncies in the high 70's could be expected for the
givcn design point conditions, compafcd to the 13% to

35% (depending on size) for the equivalent commercial

.

turbines. Thts translates into a saving of compressed

a

air, which also may be significant with many pits in

simultancous operation. The problem of low braking

totque was sqlved by the provision of two stator nozzles,

P -



.

. an unknown."

)

one. for acceleration, the other for braking. The

main disadvantage of the conventional radial turbine

r

rotor, its h&gh manufacturing cost, was circumvented
by the elimination of the '"exducer" portioﬁ of the
roto; blades, resulting in each blade lying entirely

in the plane of the drawing (i.e., the "meridional"
plane,“formed by the turbine axis and one fadial line).
As rotoryspgpd increases, therefore, the absolﬁte

rotor exit flow apgle increases as well, making a
-yt “

rather long annular diffuser desirable.

The present designwthus differs from the standard 90°

IFR turbine,‘with which we have cons}derable experi-
ence, on two counts: the double nozzle and the meri-
dional-bladed rotor. The rotor did not undergo the
customary aerodynamic analysis, due to the limitegd
budget for this pfoject; but our broad design rules
suggested that its performénce-would be adequate. It
did undergo a proper stress analysi's, howeQer, and was
found quite acceptable for its mission. Each side of
the nozzle reccived vanes of the broﬁcr shape, but

tﬁc aerodynamic interhction petween the (alternating)

activer and passjve.chambers was recognized to be
¢ @i, ~
. A

Preliminary tests conducted on this turbine

by Pratt§ Whitney of Canada Ltd. showed a total to total

A

primary stream efficiency of about 30%, a figure Jmuch below

N
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the design target of 80%. The possible explanations con- .

sidered by the designers were:

1)

2)

3)

The experimental configuration is misleading, and

losses external to the turbine itself eXist. This |

- also could imply that the actual measurements may

be in error for 4 number of reasons.,

The novel design features introduce unexpected
losses into the system which are responsible for
$the‘low effidiéﬁcfl The double nozzle, exducer-
iéss rotor, apa the large exit swirl in the diffuser
may all contribute to this 10& efficienéy.

The .existing design rules which have proven valid

» .
on larger IFR turbines are incapable. of being

- 1

extrapolated to the small size of the present designf
Reynolds numbers, ratios of wetted wall area to flow
area, etc. may all affect- the turbine performance

far more strongly than previously anticipated.

.. It was proposed that the turbinc be tested exhaus-

tively to see if any of these threce cxplanations. is valid.

This study, then, comprises two phases. The initial

phase is concerned with the design and construction of the

test facilities, whilc the second phase consists of experi-

mentation and analysis of results in erder to try to identify

problem areas of the turbine design. =~ .

4



CHAPTER 2
LITERATURE SURVEY | L.

In the Proceedingg of the Institution of Mechanical
Engineers [3], Wallace Sutlined the theoretical ﬁerform—
éncg of inward flow radial (IFR)'t;rbinesi ~Using simple
isentropic flow theory, he derived sixteen isentropic
@duations which specified the Totor configuration and tur-
bine performance at the design point. He then 6arried out
a theoretical analysis of flow conditions in the rotor
passage, and developed‘a criterion for blade spacing. Thé
effects of part-load conditions on the IFR turbine were also
examined. Communications to the I;Mech.E. regarding the paper,
and the‘author's replies to the@e letters were also
%isted.

Dédoné and Pandolfi [4] haQe compared the theoretical
evaluation of off-design characteriétics, as prescnted by
Pandoﬁﬁi’[S] in an earlier paper, with experimental results
_ for ar IFR turbine. They tested the turbine at various
expansion"ratios a?d equivalent ;peeds. In all cases -the
experimental results were found to be'in g9oﬁ agreement with
Pandolfi's previous' original analysis ([S5].

Benson [6] reviewed methods for determining loss
N \

4

- .

P ‘ 4
coefficients in IFR turbines. He examined nozzlé losses and



|
rotor losses, including incidence coefficiénts, fluid
friction coefficients, coefficients for friction losses

in rotor passages, clearance coefficients and disc friction.
" He also reviewed.test data and compared thé los$ relations
with experimental values.

Okapuu and Calvert (7, 8] described the design of’

i

a high-temperature, high-work IFR Turbine. This turbine had

’

blades and nozzles which were cooled with air from.the

primhﬁx\§tEFam to reduce thermal stresses :and creep problems.

-

The papers discussed the aerodynamic.and mechanical designs,

{? r
and included results of aerodynamic, structural, and thermatl

¢

analyses. The rotor fabrication, and a casting development

program was also reviewed. The rig used for turbine testing

was described in detail by the authors. )
&~ i
° '
In his discussion of radial turbines, Kovats [9]

pointed out the importance of having symmetrical flow to

the impellers. He also discussed turbine'losses‘inclhding
the frictional loss due to fludd EIOW—throug% ther machine,
lbakage losses which reduced the .flowrate (and hence volu-
metric efficiency), and mechanikhl fosscs due to friction.

“Scheel [10] discussed a study of blade erosion made
by the General Elecctric Company. UHle indicated that cerosion
of blade tips was in part due t6 the condensation of Fhe

-

working fluid (caused by rapid expansion) flowing counter-

currently against the centripetal gas flow and interfering

"with the -blades.
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CHAPTER 3 ~

EXPERIMENTAL APPARATUS

The experimental facilities are composed of equip-

ment supplied.by Pratt & Whitney of Canada Ltd. and equipment

designed and built at McMaster. The former consists

of the actual furbine hardwafé including the oil damper,

'shroud, drive spindle, load isc .and the turbine itself.

Alsé subplied were numerous spare parts such ag bearings,
and various tofgl temperature probes, pressure proges, gtc.
The equipment designed at ﬁcMaster included primary sub-
systems such as air, hydraulic, and vacuum és wvell as

secondary subsystems such as pressure and temperature recad-

‘out:equipment. Figure 1 shows a photograph of the experi-

mental facilitiés, ) *

3.1 Turbine Hardware

The turb&nev(see Figure 2 for labels) ig an inward

radial flow desiFn QLth a 3 1/4 inch diameter blade seitiqn
'

(a) machined from a forged Waspaloy (PWA 1007 or CPW 203)
bar. Thése blades lack the traditional exhaust plane
diffuser (termed "exducer") to rerce manufacturing
costs. Air is supplied to the blades by either of
a twin ring of nozzles (h) one situated above the other.

The lower nozzle is used for acceleration while the upper
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i. HOUSING

_,. i-QuICK

r DISCONNECT
COUPLING

Exploded View of the Turbine
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nozzle prov1des deceleration. The rotor is mounted in the

turbine houslng by two bearings (b, d) sepafated by a spac-ﬂ

1ng-collar (c). Bearing temperaﬁhres are mOpltored through’

" copper/constantan thermocouples which touch-thecouter .ring
. ° N \

of each Beqring. Above the upper“beariph is an aluminum

of bearings. 0il enters the turbine b dy through a quxck

‘dlsconnect coupllng (j) located on tHe under51de of the

hou51ng (i). A locklng collar (f) Ensures the’ vertlcal
locatlon of the blade sectlon while also securlng a magnaplc
pick-up disc (e) for speed monitoring. Figure 3‘shows the
turbine hardware (without body ane»shroud)'as asseabled. .

The‘turbine is composed of three plenunm chambers
formed by weldingvAiSI 1020 plate steel rings in a =

cannister of the same material,. The Iower two chambers seal

with the upper_and lower ngzle ring of the turblne The

aluminum shroud is bolted to the upper plenum r;ng‘of the
turbtne Body This shroud forms the upper face of the blade

passage and the outer port1o% of the annular d1ffuser " The

diffuser centrebody. is machined 1ntegra11y with the body

3

cap. Air is éxhausted from the turbine through the resulting

annular diffuser to the upper plenum chamber. Flgure 4 shows

a sectloned v;eW’of the body and shroud. Air from the

"sealing plate (g) through which oil 4 supplled to both\sets )

upper plenum chamber flows to-the atmosphere through a coni-

cal type dlffuser (Flgure 5).

]

. The drive splndle ‘is a steel shaft fabr1cated from

AMS 64I5. It has .a threaded upper end, a flare with a flat

i

v

¢ v
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e. OIL SCAVENGE
CONNECTOR

a. BLADES

i b. NOZZLE RING

4

/  c. HOUSING

d. LUBRICATING
/ ' OIL SUPPLY
CONNECTOR

g- MAGNETIC PICKUP
SENSOR

‘ ‘ AT
f. OIL DAMPER \ &
CONNECTOR

h. OiL. DAMPER

Figure 3 Turbine Hardware as Assembled
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" 3.2 Spin Pit

J -
i . ls .

upper surface to interface with the oil dgmpér, and a notched

Ny T
I N

lower end to which the load disc is éttached.

T

The load disc is a Pratt § Whitney Aircraft PT6
éas turbine drive rotor with the "fir-tree! blade attach-
ment points removed to redudé stress concentrations. The

14

stress ahalysic of this disc indicates that thé maximum

safe rotational speed \is approximately 80,000 RPM. ngure

6 1llustrates the load nd the drive spindle.

LI

[N

It was decided to utilize one of the existing floor-

4
to-ceiling service accesses to house the spin plt for the

turbine. Accordingly, two mild steel plates were cut to

cover the access, one for below the floor and one for above

'it. The plates were bolted together at the corners, forming

. * 4
a betwenn floors containment some elght 1nches in height.

~ A nine inch diameter hole cut in the upper plate permitted

" the cannister containing the load disc to reside in the "pit'.

Eight 3/8 ‘inch diameter holes, drilkled and\tappéd into the

upper plate permit the 1id of the vacuum containment to be

..segured in place (Flgure 7\

% The turbine and oil .damper assembly bolts on top of

the vacuum containﬁent‘lid{ This provides easy accéss to
the unit for service but leaves the operator relatively

uhpfdtected should/the twrbine shatter. : In tﬁc

1Y

‘interests. of safet?, an auxilliary'shield,was installed which

b

’
‘/ . N
. . '
.

A
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Figure 6 Load Pisc and Drive Spindle
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surrounds the entire turbine assembly. This shiéld was

_ constructed of 1/4 ihch thick mild steel piping, some
fourteen inches in diameter and twenty one inches high. .The’
pipe was+sectioned vqfticaily into twovpieces and drilled toa
accommoda'te the turbine air inlet and outlet lines. . Access
holgé for various sensor leads an& other attacliments were.
machined through the walls of the pipe at various -locations.
The shield was held together by steel s£rapping and capped

with a 1/4 inch plate steel 1id. Figure 8 illustrates the

containment shield.

3.3 Anéilliary Systems

-

Three ancilliary s}stems - aif, 0il, and vacuum -
wvere required for running the turbine experiments., Figure
9 shows a scHemaqic of‘thc air flow system. This system
supplied clean "shop air" at aﬁproximately 100 p.s.i. g. to
the turbine. Fikure 10 showi a schematic of the oil flow

oy

system. This system provided lubricating oil to the rotor

. bearings and oil damper. The vacuum system, shown schematically
‘ ~ ' .
.in Figure 11 allowed a partial vacuum to be supplicd to the

load disc cannister.

3.4 Measurement System

As with most experimental apparatus, thce measurcment

systems for the spin pit testing underwent continual modi-
»

fication as new tests were devised, The following sections

give a brief descriptfon of each system as it evolved,
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3.4.1 Rotational Speed

The rotational speed of the turbine was measured
by a magietic pick-up which regeived six pulses per revolu-
tion of the turbine blades. This pick-up wis located

immediately above the upper scal of the oil damper. The

pick-up signals were fed through a shielded, co-axial cable

“to an electronic pulse shaping unit [11]). The schematic for

this unit is shown in Figure 12.
" From the pulse shaper, the signal was split into

two cables connected in parallel. One cable led to a fre-
quency counter* and the other to the overspeed trip unit#**,
Due to the nature of the pick-up, a display of X Hz on the
frequency éounter was equivalent to 10X RPM. The overspeed
trip unit was a device Qesigned to provide turbine shut-down
capability in any of the four following situations:

1. an qverspeed condition occurs

2. the turbine speed is below 300 RPM

3. the speed signal is disconnected

4. a power failure occurs N
)

* The unit was on loan from Pratt § Whitney Aircraft of Canada

4
Ltd. . ) a

* Hewlett-Packard S300B Measuring System with 5308A 75 Miz
Timer/Counter .

£% PENACL Model 0S-1-X-5467 o =
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3.4.2 ;gg:; Flow . . ~ &

. As mentioned in section 3.3, a rotameter * was

an inftegral part Qf the air supply system. This rotameter

was used to measure\ the mass flow of air to the turbine.

Since the scXvenge pump was noted to draw air as

well as oil from the tuxhine system during preliminary tests,

a rotameter ** was conngCted to the oil breather. on the

sump. This rotameter measured the leakage air mass flow-

-

rate.

-

5.4.3 Bearing Temperature ' .

.

A Cefamo type copper/constantan grounded thermocouple
was positioned against each of the upper and lower bearings.
The.differential EMF bOCwéen the bearing temperature and an
ice junction was displayed on a chart recorder.*** This EMF

was used to calculate the bearing temperatyre.

3.4.4 Air Flow Temperature -
The air temperatures before and after the turbine
were measured with copper/constantan thermocouples encased ~\

in total temperature probes as supplied by Pratt & Whitney of

Canada (Figurec 13(a)). The EMF between .the probes and an

\
’ v

* . Brooks AR-MET Model 12-3623-1118 Magnectic Follower Type
A Brooks Model 1307-12B
KRR Rikadenki Model B-28L

\\
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ice junction was measured using a precision potentiometer*
a I

Py

and the resUltanf reading usea to calculate-the airstream
iemperature. & ’

. The initial Y{.q., upstream of the turbine) air,
temperatures, for all the exper&ments pefformed were measured

-from a single probe located in the reducing section immediately

up§tre§m of the turbine body. All final (i.e., downstream

from the turbine) temperatures were measured by a probe

a

immediatelx downstre%m of the annular diffuser located in
the tﬁybine shroud.

Wheﬁ ﬁhe results of the initiélltests were presented
to Pratt § Whitney of Canada, recommendatidn was made

that all temperature measurements be taken in triplicate. R

.

4 ,
It was further recommended that the final temperature probes

be located in the plenum into which the anﬂular ditfuser
“ ~

exhausts. This ensured 4 more proper mixing of the flow, and

" . , N\
reduced the possibility of swirl affecting the mcasurements.

Prior to }hese recommendations, plans had been made to move
the‘single initial tempecrature probe to the inlct‘plcnum
by driliin& through the centre of a body attachment bolt and
passing the probe through it (Figurelfg(bn .

The three .relocated inlet probés were epoxied into |
body attachment bolts wirich were spated at 120°€intervals

-

around ‘the inlet plenum. The three relocated final temperature

<.
>

LI -

*‘Ruqicon Portable Precision Potentianeter Type 2745

\

< .
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.probes were placed at 120° intervals around the exhaust ’ S
»pleapm and sealed with Swagelok fittings (Flgure 14). Through
a series of kmife switches the EMF s between these probes

“and the ice point were passed to the potentiometer. Experi-
mentatiqn using these probes was intefrupted during the

first test due to failure ‘of the upper Bearing.

3.4.5 Pressure

The air ﬁ;essure immedfa;ely downstream of the rota-
meter wag measured with a temperature compehsated pressure
éage* The gage was connected to the maln a1r lines by a

1/4 inch copper tublng sealed with a Swagelok fitting.

The 1n1t1a1 pressures for the first three experiments
were measured by a 51qg1e probe in the 1 1nch\d1ametqr llqe
immediatglf\upsffeam of the turbine body housing. The probe
was connected to anothgg temperagure compensated gage**

When the resd&ts of the first experiments were presented
to Pratt § Whitney of Canada, it was reéommended'that a series
of‘pressure probes be installed in the annuiar diffuser
immediately "downstream. of the turbine blade section. These

4 * .

probes would permit an examiﬁgffﬁn of the flow as it emerged

from the blades. Accordingly, three préssure probes were

*  Heise Model 40830 - ' .
** Wallace rand Tiernan Model FA145°
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"PRESSURE PROBE \

TEMPERATURE PROBE

Figure 14 Annular Diffuser Centerbody Showing PRelocated
Temnerature and. Pressure Probes
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installed at g distance of 0.1 inch downstream of the turbine
blades. These probes were spaced at 120° intervals in the
annular diffuser, and located radially at 0.1 inch, 0.2
inch and 0.3 inch from the centrebedy sﬁrface (Figure 14).

Experimentation using these probes was also fnterrupted dur-

" ing the first test due 'to failure of the.upperlbearing.

Atmospheric pressure was measured with a mercury
2 .

column barometer®.

3.5 . Turbine Blade Clearance “ o 2 -
The clearance between the turbine.blades and the
backface and shroud was set with feeler gages to 0.006 inch.

This represented a total gap of 12% of the blade width at the
-

tip and 3.4% of the width at the hub.

* Wallace and Tiernan Model FA135.



CHAPTER 4
EXPERIMENTAL PROCEDURE

r

4.1 . Intrdduction

As mentioned in Chapter 1, the initial tests
performed on the tur?ine at Pratt § Whitney of Canaaa, showed
that the isentropic efficiency of the unit was much lower
than the design ‘target of 80%. The isentropic efficiency
was expected 'to be a better meagure of the turbine's per-
formance thah the mechanical efficiency, since the former
was computed from the gas path power using thermodynamic
relations alone, while the latter was found by comparing
the energy available to the turbine thermodynamically with
the power absorbed by the unit mechanically.

éince the only variableé in the isentropic efficiency
equation (A6) wéré temperature and pressure, the sole
factor affecting the uncertainty of this efficiency was the
accuracy 29 which these quantities were measurable. Thene
were two main sources of error in the temperature measure-
ments: conduction error, which cbuld be estimated very
accurately, and the inhe?ent thermocouple manufacturing error,
@hich could be reduced by the use of multiglc probe sx;tems.
The pressure errors could_aiso be reduced by using'multiple
’probes in zones of low pressure fluctuatidn. By comparison,
the mechqnicai éfficicncy (equation (A18)) requiréﬁ pressure

-

- ..: B 30-0 N
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an&‘temperature measurements as well as an estimate of the
frictional drag on the system, and a'precisq measurement of

the mass flowrate. For this reason, the isentropic efficiency!
was the criterion used to judgé the performance of the turbine.
A derivation of both the isenttppic‘and'mechani;al effic-
”iencies.was performed and is shown tiAppendix.D. |

In an effort to locate prohle% areas in the turbine
design, the unit's response was' examined under several load.
conditions. The design of a braking device to provide the
turbine Qith variable loads presented a considerable problem
in itself. Commercially avgilable devices such as electrical
generators or eddy-current dynamometers had to be rejected
because of the ;evere stress levels imposed upon them at(the
.high speeds attained by the turbiné. It was finally decided
to use aerodynamic¢ lcading on a disc which ;ould be spun at
high speeds and still remain within acceptable stress limits. -
Loadqvariétion could then be affected by changing the density
of the drag medium.

Pressures in the load cannister were maintained at
approximately atmospheric for all cases except the first test
in which the drag gas employed was air at about 1/30 atmos-
phe‘e. The other/gases used included\air (m.w. = 28.8),

;ysulfur hexafluoride (m.w. = 146.1) and carbon dioxide
(:vaatw. = 44.0). |

Each experiment was performed in the same m#nher in

‘order to fiéld rgsults that were both'internally-consistent

and reproducable. At the start of every test, the turbine .

B e RE—
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was spun at a relatively low (10,000:;20,000 RPM) speed
to permit temperature stability. The speed was then increased
to the maximum value to be tested by opening the main .control
valve. The bearing temperatures stopped increésing and
remained at a fixed Qalue when steady state was achievgd.‘
At this peint the required temperatures, pressures and mass
flows were measured. The &riving pressure was then fractionally
redu;ed by closing the contral valve, and the procedure repeated.
Careful adjustment of the supply oil pressure using the
feedback loop control valve allowed the bearing temperafures
to be controlled. h |

For the first experiment, the load disc was spun in
a partial vacuum. Test results were téken at speeds ranging
from 184000 to 74,000 RPM. In the second experiment, the
load disc was spun in air at atmoépher%c pressuré. Results
were measured for speeds ranging from 43,009 to 74,000 RPM.
The turbine was then shut down, and the oil allowed to ¢cool
while adjustments were made to the oil damper housing ’
connections. The test was récomhenccqﬁ;and values recorded
in'the'19,000 to 36,000 RPM range. In this way, the
tu}bine'é sénsitivity to bearing\drag could be examined,

since the viscous loads at the bearings werc higher

“for the cooler oil. Sulfur hexafluoride was used in

the third experiment to provide drag om the load dist,

Test results were recorded from speeds of 20,000 RPM to ‘

50,000 RPM at approximately .5,000 RPM increments. The |

final experimehﬁ was performed with the’ load disc rotating

-
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in carbon dioxide at atmospheric pressure. The results were
obtained at 5,000 RPM increments between 5,000 and 60,000
RPM.

4.2 Temperature Measurements

When the turbine achieved a steady sta£e condition,
three to six inlqt and outlet temperature measurements wére
recorded. The left-hand setting of the sirfgle knife-switch
connec&ed the potenéfometéf.to thegair inlet and ice-point
thermocouples. Similarly, the switch's, right-hand setting )
connected to the outlet thermocouple (Figure 15). The
thermoelectric poteﬁtial with reference to the, ice-bath was
then measured by balancing the potentiometer. Conversion of
EMF to temperature was done using the National Bureau of
Standards valués. ' h

The six relocated temperature probes were connected
to the potentiopeter and the ice-point thermocouples by
three knife switcﬁes (Figure 16). The EMF between the ice
bath and the first\two inlet probes was meésured using the
firét switch. With the other switches in the open (knives
* vertical) positiohs, the potentiometer was connected to the
first thermocouple through the left-hand setting of the first
switch. Similarly, the right-hand 5qtting connécts the
potentiometer to the second probe. The second switch controlled
the third inlet and éirst outlét probes (left and right
settings- respectively) and the third switch the remaining

two outlet probes. It was essential that two switches remained

N
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4

C?’ ,inoperativg while any one switch was employed,
‘ The bearing temperatures were recorded on the chart
recorder. ’With the scale Set to 10 millivolts per-inch, the-
EMF resulting betweeﬁ the bearing and ice-bath thermocouples

were read directly from'the chart.

4.3 Pressure Measurements

Measurements of air pressure at various stages of the
turbine and air delivery system were recorded with each set

of inlet and outlet temperatures. Immediately downstream

)

of the supply air rotameter, the air pressure was measured

with g static probe connected to a pressure gage. For the
' first three experiﬁenns, the inlet pressure i@@ediately

upstream of the turbine body housing was measured with a.

static pressure tap connected to a temperature compensated

pressure gage, In the fourth experiment, the inlet plenum
pressure :was also recorded with a static probe connecfed to

another temperature compensated pressure gage.

Since\the-isentropic efficiency of the system
< (Appendix D) was that which occurred between upstream and

. ... b
environmental conditions, theqffhal (downstream) pressures

.

were all’ considered to be atmospheric., The ambient pressure

%

wvas measured with a mercury column barometer.

N The relocated pressure probes which span the annular
diffuser immediately downstream of the turbine were connecte®

with Tygon tubing to water-filled "U" tube manometers from

which the pressure was read directly. -

LY



4.4 Mass Flow Measurements

As mentioned in Chapter 3, the flowrate of supply
air was measured with a rotameter integral to the air )
delivery system. Since this rotameter wéé calibrated at
70°F and 100 p.s.i.g., a correction had to be made: for ghe\
actual conditioﬁs of the gas whose flowrﬁte was re&uired.
According to‘?ennett [12), the rotameter has been calibrated
in terms of the equivalent airquOW'volume, Veq,'at 14.7
p.s.i.a. and 70°F for a specified temperature, pressure,
and specifié gravity (condition 1). If the rotameter was

employed at conditions (2) other than the original specifica-

tions, then a correction factor had to be applied.

. °gy T P,
Correction Factor = gE——TF—$~‘ (1)
2 2

wheree T absolute temperature
p = pregsure, p.s.i.a.

Sg

id specific gravity

1.0 for air
(%?us

where Vé = calibrated flow reading

Veq = Vc'x (correction factor) »

To convert this equivalent air flow to metered gas flow,

the following relationshion [13] has been used:

RT
_ M) 82 T2 1, 2)
ca ~ Sg, Sg T ¥,



38.

rd

r

where M = Mass flowrate}in 1bm/min.

R = Specific”ga§<constant

Thus+ . .

M= ‘Veq ng T.X14.7 ‘ . (3)
(53.3x530, f ngx X
14.7x144 OxSSOxP .
\
for air flow with Sg1 = ng = 1.0 and Pl = 100 p.s.i.g.
@ .
Vv 2
e VI0ORP
M = ) (4)
2,14.7 - ©
. 13.34x60 [ 5~ (557)
where Patm = Atmospheric pressure °
M = Mass flowrate in 1lbm/sec.
This simplified 'to yield
M = 7.502x10° (5)

The leakage ajrflow rate was also measﬁréd)with a

~a
rotameter.



CHAPTER

ANALYSIS AND DISCUSSION . v
OF EXPERIMENTAL RESULTS

\
5.1 General Observations

o

As shown in Figure 17, the values of isentropic

efficiencyﬁat‘given‘sg?edé f9r’th¢ load disc spun in vacuum
are moderately scattered (t 5% n) above~i%,000 RPM, and
increasingly scattered at lower speeds (up to 12% n). This
low speed scatter is genérally cpnsidered the ;ésult of
temperature fluctuations.°

With the load dlSC in atmospherlc pressure air, sl1ght1y
less scatter (- 3.5% n) is observed in the 1sentrop1c efflc—
iency valugs (Figure 18). A d15cont1pu1ty %n the curve occurs
where the turbine was shut down, and cooled. The observed
turbine‘éffipiency f%creases due to the resulting higher
viscous lpads imposed Sn the‘rotdr by the bearings. .

‘ The scatter in isentropic efficiency with the load
disc in SF6, shown in Figure 19, is also lou‘(t 3.5 n). At
speeds of'approximatelya}s,ooo RPM,'thé design)target |
efficiency of 80% is reached: ]

In the final test with the load disc in COZ’ the
greatest amount of~scatter (3-6%‘n) is observed in the
isentroéic efficiency values (Figﬁ;e 20). This mhy in part
be due to varying léads at the upp;r bearing which was near-

ing the end of its servicgable lifetime.

39.°
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‘worked to restore the pressure.

/ = -42.

iIt was noted that the air inlet tempergﬁﬁre increased
with increasing turbine spéed. A plpt‘of this temperature
against mass fIOWr;te (Figure bl)smwmd that the trendl
increased mpnatonicaliy. This indicated that relative
to the tqrbihe Tequireﬁents, the syste@}s air reservoir
was shall,wand the COmpressor was suﬁplying the turﬁine more
or less directly. Support for thiSvargument was given experi-
mentally in terms of supply liné pressures. Uﬁ%tfeam of the

tﬁrbinq, the line pressure'dropﬁed appreciably at high mass

flowrates, and fluctuated moderately as the compressor

! %

“ Both inlet pienum pressﬁre and méss flowrate increased
with iﬁcreasing turbine speed. There were small fluctuations
in plenum pressure at high speeds due to the previously
mentioned compreséor probleé. These fluctuations were
accompanied by asﬁociated changes in RPM. Thére was little
scatter in' the mass flow data'(see Appendix F, Figures Al12-Al5).

‘ Qualitativc}y speéking, scatter. in the experimental
résultg'was obéerved,to increase witﬂ decreasiné turbine'speéd
- >

in all the tests perforhed."This phenomenon was reflected

most strongly in the calculated values of isentropic

efficiency.

.

5.2 Analysis. and Discussion

The presentation of data in this.sdéction is carried

.out using parameters -customarily employed at Pratt § Whighgy

of Canada in turbine and compressor design. 1In this way it

e .".‘
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“inlet plenum pressure to the atmospheric pressure; n is

44,

is felt that.the results of this analysis will be most
easily incorporated into the existing body of knowledge

on the performance of this turbine.‘ The foliowingiterms

are used: P.R, pressure ratio, is the ratio of the turbine
3
the isentropic efficiency measured between the conditions
immediately ubstream of the turbine and atmospheric condi:

tions, calculated from: (see Appendix D)

(Tintet Toutiet)/Tinlet . e
inlet . (A6)
1y 2
L - ()

N//TQ is the ratio of turbine speed to the inlet tempera-

ture (OR), and‘gives values of speed normalized to remove

_ any temperature effects; 'UT/CO"is‘the ratio of turbine
.bladée tip speed to the isentropic spauting velocity, calculated

-from

~

.0143 N i .
ex-lo (6)
vl .

U-/Co’ =

/12,025 To[1- (5

Figure 22 shows a plot.of pressure ratio against
i} e . - ? 3 Lid " ‘
N/To. This graph provides an igdication of turbine response
for given pressure inputs. It'can be seen that for increas-

ing loads, greater pressure ratios are required to achieve.

‘the same ‘speed. -This is théyexpeéted response ‘for an IRF

+
-
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turbine. However, a comparison of the design specifications
(Appendix A) with these experimental resylts indicates_ r
that the pressure,rat16 fglls,far below the specified P.R., =
4.29 at the design point of N//T;'= 3242 (i.e., 75,000 RPM) .
For the sake of clarity, the data shown on the
graphs’in the rest of this chapgér are limited to the mean
of each pertinent.set of observations.
Figure 23 shows lines of constant pressure ratio
on a graph of n ggainst UT/CO'. For IFR turbines in general
an increase in pressure‘ratio ‘shows an increase in efficiency
on this type of plot. ﬁhile|it is ev;dent that this does

in fact occur for higher values of UT/C at low efficiencies,

'
0
the exact opposite trend is seen for low UT/Cé at high
efficiencies. Thus it is clea% that based on present
experimental results the turbine performs better at low
speeds and high loads. _ “ .

An explanation of this phenomenon may be found s
by examining the velocity triangles which represent an
increase in blade tip speed at constant pressure ratio -
(énd hence constant absolute éas speed).. Figure 24a
compares the inlet cqnd;tions athlow tip speed with the
conditipﬁs at a somewhat higher 'tip speed. It can be seen
that the angle of inci&ence between the blade tips and‘thel )
relative gas path is decreased, and thus incidence losses
can be expected to decrease. ‘This would tend to increase
the overall efficiency if the tufbine. ‘Figure 24b shows

the outlet conditionS‘correspdnding to the previous inlet
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(a) Inlet Velocity Triangles |

(b) Outlet Velocity Triangles

”

e

Figure. 24 TInlet and Qutlet Veloéity Triangles for
' Change in Blade Tip Speed at Constant
Pressure Ratio ‘ .



- 49,

conditions. The increase in blade tip speed is accompanied .
by an increase in exit swirl, which would cause a decféase
iﬁ turbine effiéiency. Since the observed result of. such
é tip speed increase is, in fact, a reductiqn in the |,
iseﬁtropic efficiency of the turbine, it is evident that the
exit swirl plays a greater role in efficiency reduction than-
do inlet losses., This suggeéts that the design deficiency
lies in the diffusion process rather than in the turbine per
se., Such a conélusion would exblain the reason that high
efficiencies are reached under conditions of high load and
low speed: in such a case, the exit swirl is #ery low and
the diffﬁser is able to cope with the resultant fiow; ‘
Figure 25 shows lines of constant speed (N//T;) on

an efficiency vg. pressure rdtio graph. For a standard
IFR turbine these lines would be shaped like a series of
inverted parabolae with the maxima occurring at approximately
the same value of efficiency, and as a function of pressure
ratio. Although no max}mé occurred in the N//T; lines
over thé range of pressure ratios examined, the trend of
these lines (i.e., increasing peak efficiencies at lower
speeds) indicates once again that the turbine berforms
better at lower speeds. ,

~ The very steep slopes in the -lowest lines of constant
N//Tgﬂoffer an explanation for the turbine's seﬂsitivify
to fluctuatiﬁg loads (eg., viscous or Bearing.drag varia-
.tion, eté.). Such fluctuations would allow a change in

&
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Us'

(a) I&Let Velocity Triangles

(b} Outlet Velocity Triangles

Figure 26 Inlet and Outlet Velocity Triangles for
Change in Pressure Ratio at Constant Blade
Tip Speed ‘
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pressute ratio to océgg for a cénstan;\Epeed, .Due to the
steep slope, a very small change in pressure ratid yields

-, <
quite an appreciable change in the isentropic efficiency

of the turbine. Thus {significant scatter in the efficiency

B

[

values at low speeds is almost unavoidable.
® At constant N//T_  (and hence constant blade tip

speed}, increasing the pressure ratio. increases the‘absolute
gas speed Va’ which.increases the incid?nce angle at the
inlet to the blades and reduces exit swirl (see Figures 26a
and b). Since the efficienﬁy increases for éuch an opera-
tion, ;he conclusion that exit swirl predominates the

o

turbine efficiency s once again reached.

The constant pressure ratio lines on the graph of

3

n Vs, N//T;- (Figure 27) serve to re-emphasize the pre-

vious points. The steep slopes of the low pressure ratio

lines show that small changes'in speed can yield large

~

variations in efficiency. At constant pressure ratio,

increasing N/JT; reduces incidence losses and increases

exit swirl (the veloéity triangles being identical to those

in Figures 24a and b). Since this process is accompanied

by a decrease in n, the exit swirl must goverﬁ the turbine
efficiency.
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- CHAPTER 6
DISCUSSTON. OF ERRORS IN
EXPERIMENTAL WORK . :

] -

6.1 Temperature Measurement .

The errors aSSOCIated with measurlng the air inlet

-

and outlet temperatures come from three sources.

thermocouples “themselves have an -inherent .érror of approxi-

mately ¥ 19F in 3q0°F. The cold jumction.wasfconsidered'

The

to be‘in-error by\f.zof.. The potentiometgr could be

. . oo . T g o
o Two copper constantan {, - 2."F
- thermocouple 1unct10ns ) N
- . . ﬂ+ B

Qold';unct;on temperature . < 0,29
. - -)i ‘ - -' ) ’ +
Potentiometer error -=10 1°F
1
St o
] . : Total - 2.3°F
- "tl . o l . ":,M I . v . ._ . " .:"

6‘2 Pressure Measurement

i

-

ok

accurately read to ° .002 millivolts, corresponding to

~_ The,lnlét pressures could be read accurately to

L o
-= 0. 01 1nch of mercury.' Pressure fluctuatlons were A

Q

order of.% 0. 05 1nch of mercury per readlng.l The barbmgtrlc

'pressure could be read to wrth1n k3 0 G 5 1nch of metrcur

L S a0
e | R f Do
T4 Inlet pressure measurement RS ‘-uq,Ol-NHg.;.m~
L e L ‘_’_ R RN
A Pressure fluctu&t:dns .+:.0,05 "Hg -
R A roe P '. " T Y o ! Y ' Z“ ‘ ‘?
- '--"~'"Jb R Vf“.‘ g T
IR STV T P USRI A

s, wasa

N

o
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Barometric pressure : 0.00S "Hg-

. Total 7 0.065 "Hg

6.3 Rotameter Measurement

Theisuéply,air rotameter could be read accurately
. to within T2 mﬁ, corresponding to .001 1lbm/sec. 'The
leakage losseé were meésured by'thé ldgs rotameter to be
'approx1mate1y constant at 4 mm. This corresponds to

.0009 lbm/sec. by wh1ch the supply mass flowrate is further

in error:

Rotameter reading - . .001 Ibm/sec,
Leakage loss ~ . .0009 1bm/sec. . - ?f\
L .7 “Total .0019 1bm/sec.

6.4 Speed Measurement

[ -

The'frequency counter c¢an be read accurately to-

. withiﬁ‘t'SOjRPM; Speéd fluctuations were in the order of
¥ 100 RPM per reading.

-

Frequghcy measureménts ¥ 50 RPM
-Speed fluctuations * 100 RPM
Total - 150 RPM

C e .- ‘ '

6.5 Eff1c1engy Calculatlons

SInCe the calculatéd values of the lsentropld
eff1c1encv ShOWed the greatest fluctuations for all the
parameters 1t was necessary to establlsh confidence llmltS

R
'for these values in each of the four experlments.. Since
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>

distr%bution must be.assuﬁed,ﬁormal and the sample ‘size is'
.sma11 (between 3 andr6), such limits are not wholly
accurate. Howevgr, by computiﬁg the mean .of the standard
deviations for each data ‘set, ‘the approximate order of

accuracy to be expected in the efficiency graphs may be

shown.
For the first experiment, the average standard
A}
deviation is 1.69%% for the second 1.45%% for the third
2 2 -

2.03%°, .and 3.49%° for the fourth. Thus it may be stated
with a 90% confidence level (1;6SGf that the values of o
efficienéy 1ie within ° 2.79 unit; of the mean n for the
first experiment, ? 2.39 un}ts for the second, ¥ 3.35 units

" for the third, and > 5.76 -units for the fourth experiment.

«



CHA?TER 7
CONCLUSIONS AND
RECOMMENDATIONS
A review‘of the experimental results presented in
Chapter 5 indicated that several conclusions could be drawn
;;th regard to the performance of the combined tﬁrbing and
. diffuser sygtem.z By varying the pressure ratios acress the
‘system from 1.2 to 2.4, a sérieé of parameters was.invésti-
gated at turbine speeds up to 75,000 RPM. At constant
pressﬁfehratios, the turbine speed waé found to{increase ‘
with»&egreasing load. At constant mass flow parameters, the
pressure rdtio Eended to increase' with decreasing ioad. The ¢
efficiency of the system rehcbedbthe dgsign.farget of’80%
for high léads at low turbine speéds; increasing the speed
caused a decrease in efficiency. The efficigncy was -
also found to be extremely sensitive to minor flﬁctuations
in ﬁfessure ratio for load) at tqrb{ne speeds,bélow 20,000
RPM, ._ i ‘
A study of the velocity tgiaﬁgles.repfesenting the flow .
conditions %t the inlet and outiétagg'the turbine, shoyed';hat
the large exit sWif} into the diffusén iﬁtrodﬁced unexpedtedly

high losses responsible for the poor performance of the

system; This éonfirmed one of the three initial explanations,

T~

57,
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proposed by the design engineers at Pratt § Whifneylof
Canada. It .also iﬁplied that- improvements could be made tg{*ﬁ
overall-design without changing the entire configuration“gf

the systeﬁ. The two major possibilifies which suggested

, -
themselves .were a change in blade design, or a modification

'

of the diffuser section.

- An exducer portion on the blades would‘reduce exit swirl
and héﬁce increase efficiency. This would, however, also
defeat,the:initial purpose of the turbine which was the ability
to be spun under power-equaily well in a clockwise or counter-

°

clockwise direction. This indicates diffuser modification

would be the best solution in line with the initial turbine

design concept. Whether a diffuser could be designed to accept

,such a high degree of exit swirl remains a topic for future

-study.
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APPENDIX A

TURBINE DESIGN PARAMETERS

[14, 15; 17]

oN

Mdss Flow Rate, ) m
Td;al'Tempergturé To
Total Pressure Py
Speed N
Normalized Speed ﬂ ‘N//T;'
Mass Flow Parameter m/fg7ﬁ;
Pressure Ratio P.R.
Power

forque M L

61,

-

0.330 1lbm/sec -

-

535.0°R

* 'Y

75.00 p.s.i.a.

75,000 RPM

3242.53 RPM ORL/20

0.102 1bm °RMZ in 1b£ 1sec™!
4.29 L

e
16.32 Hp ’

1,143 ft 1bf

-



_RADIAL DISTANCE R{in)

62.

Spin Pit Tunbine Aerodynamic

-1. 6. \ : Z(in) HUB-R SHROUD-R
| ‘ (in),  -(in)
n: .9nn.
L1, 5 050 .808
.100 .740
- ) 150 .682  1.422
, | .200 632 1.232
L] 4 . .280 .590 1.102
L350 .553 1.109
s ‘ . .350 .523 .943
L40n . 496 J890
1.3 \ .450 472 . 849 I
: - 500 « .453 .818
s .550 .436 .798
- .A0N 423 782
-1 2 .A50 *,413 L7170
_ N L1000 . 206 762
L g .750 L402 .758
©.8NN L4000 ,755
11 )
X (ﬁ 15' BLADES
; \
\{ } '12 '13 R 14 . j 'Jﬁ' . 'J R l8
IO : AXIAL'DISTANCE Z (1n”)
Fiqure Al

Definition .

.
¥

Rotor

-
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APPENDIX B

PARTS LIST: SUPPLIED
TURBINE HARDWARE [19]

64.



A

EFD 36620 - ASSEMBLY-RADIAL AIR TURBINE

Title

Body & Shroud-Sub Aasy
Housing~Brg-Sub Assy
Shroud-Exhaust
Cap-Containment
Rotor

Nozzle Ring
Plate-~-Sealing
Spacer Bearing
Collar-Sealing
Spool-0il

Ring-RPM Pick Up
Block-Junction  °
Shim~Shroud-Exhaust
0il Sealing Assy
Drive Spindle
Exhaust Adaptor
Damper Housing Mod
Damping Spacer
Damping Ring Assy
Damping Spring
Damping Disc Assy
Damper Housing Gasket
Nut Hex

Screw .
Nut-Lock Rotor

O~Ring

O-Ring

O-Ring

O-Ring

Bearing .
Wave Spring Washer
Fitting

O-Ring

Plain End-Quick Con
Magnetic Pick Up

' Screw Hex Head.

Screw Hex Head
Screw Hex Head
Screw Sbékqt Head
Screw.Socket Head
Screw Socket Head

5

: [
WUWNOGOFFRHFEFUFN H F N N F$& NHERPHRHERPHREPHEDHERR R

-

e S50 W ow

o

65.

Remarks

EFD 36732

EFD 36773

EFD 36721

EFD 36718

EFD 36710

EFD 36715

EFD 36722 >
EFD 36725

EFD 36726

EFD 36724

EFD 36730

EFD 36729

EFD 36728

EFD 36318 (Items 4 thru 10)
EFD 37379

EFD 36800

EFD. 36996

BARBOUR STOCKWELL #2243k
BARBOUR STOCKWELL #2530
BARBOUR STOCKWELL #2443
BARBOUR STOCKWELIL #2526

"BARBOUR STOCKWELL #2h2k

BARBOUR STOCKWELL #2534
BARBOUR STOCKWELL #2449
BARBOUR STOCKWELL #2808 OR
WHITTET .HIGGINS #8MM-0
PRECISION #049-11647.0R
MS9388-0k9

PRECISION #029-17107 OR
MS9388-029

PRECISION #012-8187 OR °
MS9388-012 QR 3014222
PRECISION #010-8187 OR
MS9288-010 OR 3014228

XES Lh6

EFD 37146

SWAGEILCK 200-1-2
MS9388-017 OR EQ )
AEROQUIP MOD No. 5602-8-108

-375-28“1" X o?5 I.G
«250-28NF x .75 1G
+250-28NF x 1.00 LG

~#A0-32NF- x ,5Q 16 . L

&



EFD 36620 - ASSEMBLY RADIAL AIR TURBINE

Title

Washer

Washer-Lock

Washer-Lock

Nut-Hex .
Thermocouple (Shield Types)
Male Connector

Strainer

Insert

Insert

Tool Holder & Socket

0il Glass Sight

Shim

Collar Sealing

EFD 38944 -

Static Probe

Total, Temp. Probe
Total Pressure Probe
Male Connector

Male Connector

Seal Blank

Seal Blank

Total Temp. Probe
Cobra Probe-

Bracket

Venturi (Outlet)
Adapter-Venturi

Bolt Hex Hd4

Nut

Screw~Socket Head Cap
Reducer

Reducer 1" to 3/4¢
Dowel

2

Qty

)
+ o OV

o

-

[

W H MDA 00 DWW MWW

66.

Remarks

«190 Dia Plain MS9320-09
.250 Dia
<375 Dia_
“e 250" 28NF

“EFD 37093
EFD 37094
EFD 37095-1
EFD 37Q95-2
EFD 37645

EFD 36227

XPI 5499
XPI 5489-1
XPI 5501 O

" SWAGELOK #400-1-4

SWAGELOK #200-1-2
EFD 32114-1

EFD 32114-2

XPI 5489-2

XPI 5500

ERD 38963

EFD 38965

EFD 38966.

W'-20 NC x 1 1/8" LG
%-20 NC

#b-b0 NC x ¥" 1G
EFD" 38974

PIPE FITTING

.250 Dia % %' 1G



APPENDIX C °
CALIBRATION CURVES: BROOKS ROTAMETERS'

./.
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APPENDIX¥ D

DERIVATION OF ISENTROPIC AND
MECHANICAL EFFICIENCIES

3 -

A. Isentropic Efficiency

If the éxpansion in the turbine is considered to be

adiabatic, the turbine work is given by

W= cy (Tb1jToz) ’ (A1)

for a perfect gas, wherg Cp is the specific heat at copsfant

pressure and Tol; Toé e respectively the total fempera;
s tures of the initial and final states of the gas. The maxi-

mum amount of work that can be obtalned from the turb1ne would

.

océur 1f the -expansion process were also 1sentrop1c (path "a“

'Flgure A5). The 1sentrop1c eff1c1ency of the: turblne 1s

. -
¢ v
’

T

O v . - s
. . . - . . -
. ‘ - EE . Sn o . =
P e e “ [ v A o
" S . J . . IR ,

_ Flgure AS' Tempexature entrOpy Dlagram Show1ng Psentroplc o
L Expanslon (a)- and Actual Expans:mn (b) from SR
AL States 1 to.2. ST L ,
2T y‘ﬁ -~lf- oo g':fﬁ%ﬁf 'f-'ﬂ’:

“ s
. W :
P T - - .. ke

4t
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~

given by the ratio of .the actual work, w, to the isentropic.

work, w.. Thus

s .
N
= n = w/w (A2)
(T T ) o .
SO n =(T01~T02 . \ " (A3)
“32s . X :
.\< .
(T 4-T ,) . : ' .
.0 S .

ol

for an 1dea1 gas. ' From isentropic flow equations, it can be

shown that

x;l
T

T

P

2.
Qs _ (p

=

ol

02
ol

(AS)

Thus,.hesignatiﬂg the pressure ratio, Pl/PZ”by P.R,~equation
*(A4)_ becomes . ’
(T 4T )/ (T ) . : 1
_ ol 02 ol
A . y-1, . (A6)
1-(1/P.R.) '

Y

B. Mechanical Effieiency . -. - ..
| o Representlng the rate of change of angular velocity

-
‘w1th respect to tlme(anmnar acceleratloQ) by o, the moment

‘of 1nert1§‘abput the centr01d by T, and the moment or tqrque‘

about the centre ‘of r@tati&n by M, it can be shown that
=T a : ‘ o C 4Iﬂl (A7)

.for a r@tatlng r1g1d body An increment of work for th1s

'body is. g1ven by ' ﬂ TR T R



dw = Mds (48)

where w is work, and 6 is the angle through the body
has been rotated by the couple M.
Power may be defined as the rate of change of work

" with respect to time. Thus *

\
\\4

du . (A9

L}

Power "

& Mde T (A10)
dM de ‘ ' f '
It de + M It 1 (All)

»

'
/
\

For any short per}od of time, the angular acceleration of

the turbine may be considered constant. This means that

Power = M 3¢ - ‘ . (A12)

= Mw : ' . (A13)

and hence .
Power = (Ta)w o (A14)

The energy avallable to the turbine can be calculated‘

from the total energy equatlon

~

E=KE+PE+ U (A15)

P
.
- ¢

where E is total energy,”KB 15 kinetic energy, ?E is potential
energy, and U is internél energy. For the tu Hiﬁe(ln quest1on
the potentgal energy portion of the equatlon maysbe neglected

;Klnetlc energy. is computed from the mdss flow and the veloc1ty

&
of the air at the 1nlet to the turblne from

i
»
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KE = 1/2. M V2 |

e

. ' (A16)
The valide of the internal energy may be calculated if -the

flow conditions (temperature, pressure, mass flow rate) are

known at the inlet to the turbine, using

U'=h - Pv ~ T fA1T)

.where h is the specific enthalpy and v the specific volume
of the gas. |

The mechapical efficiency of thg.tﬁfbine is given by
the ¥atio of the power absorbed by the unit to the available

¢

energy. Thus,

N
, M
n o= (A18)
(3 M V+h-Pv)
|
.-'. ' . '." N .P {
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APPENDIX F.
SAMPLE CALCULATIONS

’

A. Temperature

¥

The temperatures were calculated by linear inter-
polation from Natiopal'Bureau of Standards 'values. The
_exampfe cited hefe is frqm the tests of April 7, 1977 with
the load disc operating in a partial vacuun.

N = 73,450- RPM

- EMF inlet = 1.265 mv

from the tables: : T » )

T EME
125°F 1.16 mv
, ‘ | 130%F  1.28 mv
chus 1.265-1.16 _ T-125

1.28 -1.16 - 130-12S
from which T = 129.4°F

$ "

B. 1Inlet Plenum Pressure

The inlet plénum pressure was only recorded for the
tests éf May 2, 1977 with the load Qisc spun in CO,. {s these
values are thé closest tolthe actual turbine iﬁlet COnditions;
it was dedihed to calculate inlet plenum pressures from .the
existing rotamefef pressure and inlet line pressure data. °

Figure A6 shows.a.plot'of inlet plenum pressure ééainst inlet

line-preésu%e for the teé;é of May 2. The résultantwgu;yé

shbws,l;neér v?ria;ion between theése two'pfe§§ures. “Figpre-h?:-

8

79 -



INLET PLENUM PRESSURE (''Hq gage)
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Figure A6 Graph of Inlet Plenum Pressure vs.
Inlet Line Pressure ‘ ‘
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PRESSURE AT ROTAMETER PROBE {'‘Ha gage)
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-
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‘Figure A7 ‘Graph of Rotameter.Pressures 3
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~ " .~

" shows a plot of .rotameter pressure against-inlet: line pressure.

.
B
h . 2
> - 8 . hd
”
.
~ -

o

~ ' he

Thesc\tugigzifsures are also seen to be linearly Trelated.
.o o . NS

Thﬁs; consideézgg\FTgurcs A8 to All, for j : Y ~\“:~;\
N P IS _-.: - \- - o \...._\
- - el ’ - 4 . a
7ﬁk;\Pr-f1 ) . (A19) -
ané 4, = Pl-Pé S . : : o (AZQ)
mo . \\\ - N . i ~
it can be seén~that, for example, T .
Ay COZ‘_ 8, FOZ e '
: A . A - o .. (X21)
[ 1 air 2 air . L .,
* g ) - ' T ) ) d
where Pr = rotameéter pressure T . )
P1 = inlet line pressure . kh”.
P, = 4nléet plenum pressure ol .
N subscripts denote load gés.‘ . X .
(4,C0,) (& . &) : ’ )
- 22 1 air” . . . .
Thus 2, ¢ = (3, CO,)_ (A22)
. N \
and hence ' r@ ) i
P. = p. - [A2 COZ)(él air) ] '\;_
Z I (&, €0,) , (A23)

- w - . .

Figures A8 to All show graphs of inlet line pressuregs

)

vs RPM for various probe lqcatfgns_including the calgulated

values of Pz, the inlet plecnum:pressures.
.i P

»
.

: . ! .
C. Mdss Flow . \.

«®n . ‘ ' : ,
Figures Al2Z to AlS show curves-of rothmeter reading

-

vs RPM and the corresponding “values of calibrated air volumetric

~
~ ~ N
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\l].'
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Figure A9 Inlect Pressures vs RPM for Load Disc ‘
. Spun in Partial Vacuum.
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SCFM at 70 F & 100 psig

ROTAMETER READING (mm)

. )/,l A L . - ' ..
"20 ‘30 40 50 ¢ 60 . 70‘ 80x1000

_.SPEED (RPM)
a) Rpghmeter Reading vs. RPM

<
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Figure Al2 'Graph of Rotameter Reading vs. RPM and. Corres-
. ponding Values of Calibrated Air Flowrate fot -
* Load Disc Spun in Partial Vacuum '
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ROTAMETER READING
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Figure Al3

Graph of Rotameter- Reading vs. RPM and Corrcs-
ponding Values of Calibrated Air Flowrate ﬁpr
Load Disc Spun in \1r . . .



ROTAMETER READING (mm)
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SCEM at 70 f & 100 psig
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Graph of Rotameter Reading vs. RPM and Corre's -
ponding Values of Calibrated Air Flowrate for
Load Disc Spun in Sulfur Hexafluorxde

2



8q}

70

L

-ROTAMETER READING (mm).

P . | S 1 . . A ——
M 200 30 40 50 . 6N,

- , . " SPEED (RPM)

a) Rotameter Reading vs.RPM . N

150‘_f . ) . 2 ; .
N I40 }
}30 .

120 }

110 |
100

SCFM at 79 F & 100 psig "

.90 s

. <. . SPEED (RPM)
L\A N S W 2 A X PUNES | - }
N .20 3 4 50 60

. -‘b)‘ Calfbrated Air Flowrate,}v vs. RPM

x1000

&

Flgure AlS Craph of Rotameter Reading vs. RPM and, Cor}es-
ponding- Values of Calibrated Air.Flowrate for
Load Disc Spun in Carbon Dioxide '
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- " ——. -y R T T W W RIS i i g

— / P, e T 589.38°R
e S S S-S ‘ . .
Thus 'm = (7.502x10°>) S V100+Pe -

for m in lbm/sec, T in °R and P.in p.s.i.a. Convérting

- 91.

$ ! .
flow rate, V_, vs . RPM. Again, using the results from-April .
7, with the load disc spun in a vacuum:

N = 73,450 RPM'  Rotameter reading = 70.0, P

»

, ¥ 69.18 "Hg

P
0

29.58 '"Hg

]

).

I
2 )

pressure to inches of mercury,

- P | -
-3 2
(7.502x10-7) VC 203.6+Po X ' =

m = —
. Y - N
2

P,

(7.502x10°°)(119.0) [69.18

so oo {75318 \

589. 38 .
- ¢ ago.lg ) A
: : !
. = ,202 lbm/sec..
D w/C !
Ur/Cy" .
As shown in Chapfef 5, the equation for the non -
L : .o - S
dimensional velocity Up/C,' 'is given by . -
$ 3
. 0.0143N
Up/Cq’ =/: Y (6)
‘ ” 1 vy '
~ 12,025 To[l-(p.gl) ]
RS - ?

A

abs.. '



9

! ’ . ‘ ‘ ! ‘
This is derived from: : Sjmﬁ\\\\ ' )

_ 2
qT ~_€6 X Nxr . (A24)

where r is the radius of the blade tip-which is 1.625 inches

and \

C,' = /IgH - (A25)

.

where H is the adiabatic head equivalent velocity given by
' st '

. Y )
W=, Ty (1 (e g ) o - (A26)

In .this equation, J is equal to 778 ft. 1b/BTU and o is the ’

ratio of specific heats. For the case in which the load disc
- ' \ o - N
was spun ‘in a partial vacuum, with

/

N = 73,450 RPM, T, = Tijer ° 589.38°R, P.R..= 2.34
gives
1 (0. 0143)(73 450)
Up/C ‘/ s
- (12,025) (589. 38)[1 2,30 1)
= .829 N ]

E. fsenﬁ;ﬁiic Efficiency

The isentropic efficiency has been defined in Appendix

D, equation (A6) as

~



o e
-

g

L I T LM e

4 B e

A g

=

- g Ny e, T

gives

-

‘examples
N =
To = Tinlet
aT = Tinlet

P.R. = 2.34

31.93/589.38

73,450 RPM

= 589, 38R

- T

-

outlet

0.4
(1- (T
= 26.6%
i
7

-~

A

589.38-557.95°R = 31.93%R

93.
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-(See .Figure Al6). High temperature discoloration was efident

APPENDIX G

BEARING FAILURE ANALYSTS
-

c - N .

-

As indigated in Chapter 5, éxperiments;with the turbine

were termlnaféd prematurely due to a fallure of the upper
bedring. . An examlnatioq of the components of the bearing
showed severg wear on the thrust surface of the outer r}ng R
ball/race. “The balls themselves Gere worn in ? band approxj-

-

mately 0.1 inch wide." This band.circled the entire ball

b

in all parts of the bearing except on the band of wear,

the balls. : . N
p -
e )
236 '
\ ~
249 _ : 249 —
‘ . .
- BEFORE ‘ AFTER- "o _ ,
. »
Fi ™ <
F1gurb Al6 Illustratlon of Ball Bearings Before 3

.

and After Failure B




ia

s

“

-

'k»eombqri;on between the balls.taken from an unworn bearing

. “nd those from the féiﬁéd gpecimen showea that the overall

-bal1 d1ameter was, reduced from an average of 0.2494 inch to ..

0.2491 1nchg across the"woz?/ﬁhna the ball dlameter was

reduced- to 0.2361 inch.. ' C. s h - .
$ . . . . :

.A .\ - ) I ) . . ! &,- s

- An exam1nat1qﬂ_6f the above obsérvations indicates

s . bl

. . (. - _\w: ~ ‘ .
.that the bearing failure per se was due to insufficient lubri-

. . ‘_, ,}*»\ . L3 ., .
cation. Factors contributing to this condition wear

(a) hlgggthrust loa&s and
(b) the faalur@ of the» upper bearing thermocouple mon;tor

R 1ead

- <
-

Because of the Door 1ubr1cation a wear process between the °

-~

balls and the thrust surface was 1n1t1atéd This process

u1t1mately ied to high temperatures and fallure-of the bearing.

e >

~/}i is ev1den¢ that the bearing was subJected to unexpectedly
high thrust loads. In all probabtllty these loads were due
’to aerodynam1c 11ft caused by splnnlng the load disc in medla

other than a partial vacuum. Comblned with the hlgh loads -

N .

the 1lack of temperature mogatorlng -lead allowed the wear to

- F
-

go unnotlced until fallure Elnally occurred.
'

+





