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| ABSTRACT

In thisj thesis, the damped free vibrations of
composites are tré;ted from the viewpoint of macromechanical
analysis. Two daﬁping models are developed, namely: the
Viscoelastic Damping (VED) model and the Specific Damping
Capacity (8DC) model. The important symmetry property of the
damping matrix is retained in both mcdels.

A Modified Modal Strain Energy method is proposed
for the evaluation of modal damping in the VED model using a
real, instead of a complex, eigenvalue problem solution.
Numerical studies of multi degree-of-freedom systems are
conducted to illustrate the better accuracy of the method
compared to the Modal Strain Energy method.

The experimental data reported in the literature for
damped free vibrations, in both polymer-matrix and metal-
matrix composites, were used in the finite element analysis to
test and compare the damping models. The natural frequencies
and modal damping were obtained using both the VED and the SDC
models. It was shown that the results from both models are in
satisfactory agreement with the experimental data. Both models
were found to be reasonably accurate for systems with low

damping. Parametric studies were conducted to study the
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effects on damping of the side-to-thickness ratio, the
principal moduli ratio, the total number of layers, the ply-

angle and boundary conditions.
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CHAPTER 1

GENERAL INTRODUCTION

l.1. Why study damped vibrations of composites?

In recent years composites, especially fibre-
reinforced laminates, have found increasing application in
many engineering structures. This was mainly due to two
desirable features of fibre-reinforced composites: a high
ratio of stiffness and strength to weight, and the anisotropic
material property that can be controlled by varying the fibre
orientation and the stacking sequence of the lamina. The last
feature provides the structural designer with more flexibility
to optimally synthesize the characteristics of the designed
structures.

Consider, for example, the design of robotic
manipulators. Most of industrial robots today are built with
heavy 1links and consequently they can only handle a small
percent of their own weight as a payload. The reason is mainly
due to an inherent design requirement to minimize structural
vibrations by increasing the mechanical stiffness of each
component. This massive structural design makes the robot slow
and leads to high energy consumptions. For the next generation
of high-performance robots, materials with lighter weight and

higher stiffness will be used for their construction. Several
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benefits can be achieved from the use of lightweight arms. One
can attain higher motion speeds, better energy efficiency and
improved mobility. Composites are ideally suited to such
purposes. Furthermore, composite materials generally exhibit
higher damping properties compared to structural metallic
materials. This feature provides composite materials with
another advantage in limiting the resonant or near-resonant
amplitudes of vibration.

In applications of robotics with flexible arms,
material damping can play an important role to obtain highly
controlled performance regarding efficiency, accuracy, and
stability. As one of many sources of energy dissipation,
damping in materials can be a dominant contributor to the
overall damping in aerospace systems. Although damping is
mainly effective in the range of resonance, it is usually only
when resonance occurs that structural vibration becomes a
problem. Excessive amplitudes of vibration can cause failure
of components through fatigue, malfunction of instruments,
radiation of noise, and customer’s discomfort.

Therefore, a knowledge of the damping properties of
composite materials is important. Though many of the analyses
have been devoted to the study of the dynamics of laminated
composite plates, investigations of the damping effect are
rather limited. There is a need for more systematic and in-
depth analytical research to be performed on the damping

aspects of composite plates.



1.2, ‘Methodology of approach

Since a fibre laminated composite contains at least
two layers, its mechanical behaviour is a function of the
lamination arrangement. It is unfeasible to experimentally
determine the wmechanical behaviour of all ©possible
combinations that may be used in structural design. However,
few analytical solutions seem to be available in the
literatiure. They are restricted to cases of simple loading,
boundary conditions and geometries. In this regard, Finite
Element Methods (FEM) are especially useful and versatile
tools in the prediction of mechanical behaviour of laminated
composites.

This thesis makes use of the Finite Element approach
to perform the analysis of damped vibrations of laminated
composite plates. Various finite element models have been
developed to improve the accuracy, simplicity of formulation,
numerical stability, convergence and cost effectiveness of
computation. The c’-type plate element method is applied on
the basis of the First-order Shear Deformation Theory. This
theory uses Hamilton’s principle to derive the governing
equations of the plate. It includes the effects of transverse

shear deformation, rotary, and coupled normal-rotary inertias.



objectives of the thesis

The objectives of this thesis are:

a)

b)

d)

to formulate two macromechanical damping models
corresponding to the First-order Shear

Deformation Theory;

to verify the damping models for polymer-matrix

and metal-matrix composites using the
experimental results available in the
literature;

to identify the differences of the two damping

models;

to conduct parametric studies on the modal
frequencies and damping due to variations of:
i) the side-to-thickness ratio,
ii) the principal moduli ratio,
iii) the total number of layers,
iv) the ply-angle,
The following configurations are considered:
- simply supported or clamped boundary

conditions,
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- symmetrically or antisymmetrically
laminated,

- angle-ply or cross-ply.

e) to investigate the error arising from the use of
the Modal Strain Energy (MS8E) method in

obtaining the modal damping;

) to develop a Modified Modal Strain Energy

approach to improve the accuracy;

g) to compare the results of the MSE and the

Modified MSE methods with the exact solution;

h) to develop the numerical indices to examine the

validity of the approximation methods.

1.4. Thesis organization

This thesis contains six chapters. The first chapter
is the Introduction. It justifies the present study and
highlights its engineering applications.

Chapter 2 reviews the previous work done on laminated
plates and the damped vibrations of composites. Various
solutions are presented with their advantages and

disadvantages.
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The formulations of the two macromechanical damping
ﬂmodels, namely, Viscoelastic Damping (VED) model, and Specific
Damping Capacity (8DC) model, are derived in Chapter 3.

The Modified Modal Strain Energy method is proposed in
Chapter 4 for a better evaluation of modal damping. The
numerical studies show that the numerical indices proposed in
this chapter provide an effective measure to assess the
accuracy of the approximations.

Chapter 5 reports the numerical studies on the free
vibration systems. The verifications of damping models for
both polymer-matrix and metal-matrix composites are conducted
by comparing the analytical findings with the experimental
results in the literature. The parametric studies on the modal
frequencies and damping are also investigated in this chapter.

A summary of the thesis and recommendations for future
work are provided in Chapter 6. Chapters 3, 4 and 5 contain
new contributions to the area of the dynamics of composite

materials.



CHAPTER 2

LITERATURE REVIEWS

2.1. Theories of laminated composite plates

2.1.1. Introduction

Composites can be classified into five types:
particulate, fibre, laminated (or layered), flake, and filled
as shown in Figure 2.1. Among them the laminated composites
are by far most widely used. The present work is concerned
with the fibre-reinforced laminated composite plates.

A fibre-reinforced laminated composite is constructed
of a number of plies of unidirectional fabric composites
stacked at various angles relative to the x axis of the
laminate as shown in Figure 2.2. The basic building block of
layered composites is a single lamina of unidirectional fibre
composite, in which all tliie fibres are set to be parallel and
embedded in a matrix. Fibres which are currently in use are
glass, carbon, and boron. Typical matrices are polymeric
(polymer-matrix), such as epoxy, and light metallic
(metal-matrix), primarily aluminum alloys.

The practical analysis of the mechanical response of
composite bodies involves analytical studies on one of two
levels of abstraction. These areas of studies are known as

micromechanics and macromechanics as reported by Mallick (1988):



Fibee-reinferced Particulnte Lamnar
composite compasite compasile

Flake composite Filled composite

Figure 2.1 Some classes of composites

(After Weeton, et.al., 1987)
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Figure 2.2 Typical fibre-reinforced laminated

composite (After Weeton, et.al., 1987)
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a) Micromechanics is a study of the wmechanical

properties of unidirectional composites in terms
of constituent materials (fibre and matrix). The
heterogeneity and anisotrepy of each ply arc
recognized and accounted for in the analysis.

b) Macromechanins studies the overall mechanical

properties of a fibre-reinforced composite
material, which leads to the development of
laminated plate theory. The material is assumed
to be homogeneous.

We will present a brief review of literature on the
different theories applied to laminated plates in view of
macromechanical analysis. There exists a large number of
publications on the subject. The emphases in this review will
be on the kinematic modelling of the plates and solution
methods. This will serve as a basis for selection of an

appropriate theory in the present work.

2.1.2. Kinematic modelling

Composite laminates contain two or more layers of
different materials that are bonded together to achieve the
best properties of the constituent layers. Because of the
different material properties of the layers, the resulting
laminate is in general anisotropic along the thickness

direction and presents different kinematic modelling
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requirements in comparison with monolithic plates. The need
for more accurate computational models of laminated plates has
led to the development of a variety of theories in this
regard.

In early studies, the Classical Laminated Plate Theory
(CLPT, or CPT), which was based on the Kirchhoff’s hypothesis,
was applied in modelling laminated plates. This theory assumes
that the linear elements perpendicular to the middle surface
of the plate do not change in length and remain straight and
normal to the deflected middle surface after deformation. This
assumption is equivalent to neglecting transverse shearing
deformation 7, and ¥,, and the normal strain g, in the
thickness direction as reported by Whitney (1987). The

displacement components of a plate in this case are given by:

u(x,y,2) =u’(x,y) - aw (x,y) ,
V(X,y,2) = Vv°(X,y) - 2wi(x,y) . (2.1)
w(x,y,2) =w(x,Y) ,

where u, v, and w are the displacement components in the x-,
y-, and z-directions, respectively; u® and v° are the in-plane
(stretching) displacements of the middle plane.

Due to the neglected transverse shear deformations,
this theory will result in big errors when applied to plates
with thick cross sections. In addition, the discrepancy will

increase as the magnitude of the in-plane stiffness increases
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relative to the transverse stiffness of the material. It has
been noted by Whitney and Sun (1973), and Reddy (1950) that
the Classical Laminated Plate Theory underestimates the
deflections and overestimates the natural frequencies and the
buckling loads. Further, because the Classical Plate Theory
accounts for second-order derivatives of the transverse
deflection in the energy expression, it is computationally
inefficient (requirement of ¢' continuous shape functions).
Using a stress formulation, Reissner (1945) was the
first to develop a shear-deformation theory for static
analysis. Mindlin (1951) proposed the First-order Shear
Deformation Theory E(FSDT), which is a displacement-based
theory, for the dynamic analysis of homogeneous isotropic
plates. This was extended to the laminated anisotropic plates
by Yang, Norris and Stavsky (1966). In this theory linear
displacements were assumed across the entire laminate
thickness. The transverse shear deformation, however, was not
neglected. The displacement field of Yang-Norris-Stavsky (¥YNSB,

or FSDT) was taken as follows:

u(x,y,z) =u’(x,y) 'z’lb.;(xr}’):
v(x,¥,2) = v°(x,Y) “z\by(er) ' (2.2)
wix,y,2) =w(x,¥) .

where y, and ¥, are the shear rotations.

In this theory any line which is originally normal to
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the plate median surface is assumed to remain straight during
deformation but not generally normal to the median surface.

This theory works much better than the Classical
Laminated Plate Theory for thick plates. Further, in this
theory only the first derivatives appear in the energy
functional and therefore only the ¢? continuity is required
for the shape functions. Moreover, the shape functions from
plane elasticity elements can be used for the plate bending
and the elements can be mapped isoparametrically.

Since the transverse shear strains are assumed to be
constant through the thickness of the plate, correction
factors have to be used in the First-order Shear Deformation
Theory. The shear correction factors are dimensionless
quantities introduced to account for the discrepancy between
the constant state of shear strains in the First-order theory
and the parabolic distribution of shear strain in the
elasticity theory.

Several approaches by Chow (1971) and Whitney (1973)
were proposed for calculating the shear correction factors for
different laminates. Most of these approaches are based on
matching certain gross response characteristics, as predicted
by the First-order Shear Deformation Theory, with the
corresponding characteristics of the three-dimensional
elasticity theory.

Numerical studies have shown that the First-order

Shear Deformation Theory is adequate in presenting the global
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behaviour of laminated plates. These include deflection and
vibration analyses by Whitney and Pagano (1970), Reddy and
Chao (1981), and the buckling analysis by Noor (1975).
However, such a theory is inadequate for the analysis of the
through-the-thickness stress response in the localized regions
of geometric, load, and material discontinuities. The theory
suffers from the following drawbacks:

a) The in-plane normal strain is distributed
linearly through the thickness, rather than
nonlinearly.

b) The transverse normal strain is neglected.

c) The transverse strains are constant through the
thickness. Consequently the theory does not
satisfy the conditions of zero transverse shear
stresses on the top and bottom surfaces.

In an early Aattempt to overcome these drawbacks, a
three-dimensional elasticity theory was tried for laminated
composite plates by Pagano (1969, 1970) and Srinivas et al.
(1970 a, b). This theory treats each layer as an elastic
continuum with possible distinct material properties from
adjacent layers. The number of governing differential
equations is thus 3N; with N being the number of layers in the
jaminate. Continuity displacements and stresses at the
interface of two layers give rise to additional relationships.

Theoretically, it is possible to account for the

stress field of the structure by considering each layer as a
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three-dimensional solid. However, the eguations become
intractable as the number of layers becomes large. In
practical applications, numerous layers may be present (the
use of 20 layers in aircraft structures is not unusual). In
addition, the element aspect ratio is also restricted to the
application of three-dimensional models in the finite element
analysis.

Alternatively, several two-dimensional refined
theories have been proposed. These include

a) High-order Shear Deformation Theories (HSDT},

b) Layer-wise Shear Angle Theories (LSAT).

Many different High-order Shear Deformation Theories
have been proposed which are based on nonlinear displacement
and/or stress assumptions through the thickness of the plates.

In Whitney and Sun’s model (1973) the displacement

field in parabolic form is assumed to be given by:

2
u(x,y,2) = u’(x,y) +zy(x,y) + -zz—qu(X.y) ,
2
vix,y,z) =vi(x,y) +zf(x,y) + %—q&y(x,y) ' (2-3)
w(x,y,2) =w’(x,Y) "'z‘lb;(foJ .

Lo et al. (1977) pointed out that the inclusion of the
gquadratic terms in the in-plane displacement does not provide
a significant advantage over the First-order Shear Deformation
Theory because they can not represent the parabolic form of

transverse shear strains. They presented a theory using the
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following displacement form:

2
u(x,y,z) =u’(x,y) +2%,(x,y) + Zo.0x,y) + 2%(x,y)
2
v(x,7,2) = vo(x,y) * 2%,(x,y) + 39,0x,¥) + 2%,(x,y) ,
w(x,y,2) =w°(x,y) + zy(x,y) + 2%,(x,y) .,

(2.4)
where ¢,, ¢, and ¢,, £, and §, are the corresponding higher-
order terms in the Taylor’s series expansion and are also
defined at the middle plane. The total number of displacement
parameters is eleven in this theory, which makes the
application of the resulting theory rather expensive.

Reddy (1984) proposed a three-order theory on the
basis of equation (2.4), by neglecting the transverse normal
stress effect and satisfying the zero transverse shear stress
conditions on the plate surface. The displacement field then

took the following form:

a(x,y,z) =ne ezl - 300 D]

: .5
vixy,2) = vzl - 5 (D v (2-9)
w(x,¥,2) =w’(x,¥)} .

Although the in-plane displacements in this model were
assumed to be cubic functions of the thickness coordinate, the
total number of displacement parameters is five which is equal

to that in the First-order Shear Deformation Theory. This
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theory, however, yields a C' continuous finite element
formulation.

Ren and Hinton (1986) slightly modified the degrees of

freedom used in eqguation (2.5) and defined new variables as:

Xe = W, W,
T T (2.6)

_ 0
x}’—llly.'-w-)’ ¢

They studied a four-layer, cross-ply [0°/90°/90°/0%]
square plate subjected to a sinusoidal transverse load and
found that the model gave results better than those of
Reddy’s.

Krishna Murty (1987) found out that the transverse
shear strains in the Reddy’s model vanish at points in the
plate where displacements are constrained to be zero, such as
those on the fixed edge. Obviously this does not represent the
true situation. This limitation has been overcome by the

following displacement model:

4 2
u(x,y,z) =u®-wy, - -37”‘;-2114.(::,:/) ,

0 o _ 427 2.7
V(X,¥,8) =V® - Wy, - '3—;2'1’,.(3{15’) ' ( )

W(xX,y,2) = wy{x,y) +w {(x,¥) ,

where w, and w, are bending and shear partial deflections,
respectively. Note that the transverse deflection contains two
parts. The model also adds one more variable to the Reddy’s

three-order model.
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Senthilnathan et al. (1988) proposed a displacement
field similar to that of the Krishna Murty'’s by assigning

LU

w.t = w.i..l‘ I
(2.8)

¥y hﬁ; .

The resulting model is shown to have one variable less
than that in the Reddy’s, yet it accounts for a parabolic
variation of the transverse shear stresses with zero value at
the free surfaces.

With the increasing interest in the use of composite
materials in high technology areas, it is important for the
composite~structure designer to be able to predict with high
degree of confidence the failure/fracture mode of composites.
One of the most critical failure modes is recognised as the
delamination mode. The initiation and growth of this failure
mode is due to the appearance of interlaminar stresses 7, T,
and o,. Several refined models have been developed to include
higher order terms in the transverse displacement w. The

displacement field in the Kwon and Akin’s model (1987) is

given by:
u(x,y,z) =u’(x,y) +z¥(x,y) .
vix,y,z) =u’(x,y) + z¢,(x,¥) ., (2.9)
w(x,y,2) =w°(x,y) + 2y (x,y) + 2’ (x,y)

Seven variables appear in this model. However, Y, and
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¢, can be eliminated using the assumption of quadratic
distributions of transverse shear strains through the
thickness. Thus the model has properties similar to the
Reddy’s three-order model on the parabolic distribution of the
transverse shear strains with five variables. One of the
significant differences is that the linear transverse norm>l
strain ¢, was introduced in this model, while it is zero in
Reddy’s model.

Unlike +the commonly used algebraic through-the-
thickness terms in most theories, Stein (1986) developed a
displacement field in terms of trigonometric functions in the

following form:

u=u’+ ‘h-}z.] + ¢Jsin”z '
= z . MZ
v =vY+ v + q)ysn.n_h_ ' (2.10)

nZ
W =w?+ ¢gcos .
$.COS

This model gives a three-dimensional description of
the stresses. It was reported that the trigonometric through-
the-thickness terms would give more accurate results in
comparison with the algebraic ones.

One of advantages of applying higher-order shear
deformation theory is that there is no need to use shear
correction coefficients in computing the shear stresses if a
parabolic term in the transverse shear strains through

thickness is included (Reddy, 1984).
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Both of the First-order Shear Deformation Theory and
the High-order Shear Deformation Theory are called sihgle—
layer theories because they are based on a sihgle displacement
expansion through the laminate thickness. Consequently, the
transverse shear angle is continuous in the form of a smooth
curve through the thickness, rather than varying from layer to
layer. Such theories cannot accurately model laminates made of
dissimilar material layers. For example, a sandwich plate with
a soft core usually has zig-zag shaped in-plane displacements
through the thickness. These types of displacements are
difficult to present by a single-layer theory.

The Layer-wise Shear Angle Theories (LSAT) assume
independent displacement/stress approximations for each layer.
For this reason, they are also called multi-layer theories.
These theories can guarantee the continuity of the transverse
shear stresses at the interfaces.

Sun and Whitney (1973) assumed the displacement field

in the mth layer to be of the form:

Em(xl.Yl'z) =u:::(x!Y) 'Em(‘nl’,.)m(xn)") '
V, (X,¥,2) = Vo (X,¥) - Z,(¥,)n(X,¥) , (2.11)
W, (X,¥,2) =w’(x,¥Y) ,

where Z_, is the thickness-coordinate with the origin located

at the midplane of the mth layer; u°, and V', are the

m

displacements 2t the midplane of the mth layer. Distinct
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transverse shear deformations are allowed to exist within each
layer in this theory.

In fact, this theory is an application of the First-
order Shear Deformation Theory with layer-wise definition of
the generalized displacements. It has been noted by Sun and
Whitney (1973) that there are certain constraint conditions at
the interfaces of the layers which have to be satisfied.
Consequently, not all the displacement components and
rotations in the layers are independent kinematically. These
constraint conditions must be taken into account before the
variational principle is employed.

For plates consisting of layers perfectly bonded
together (the layers conjunct concurrently without slippage),
we know from elasticity theory that at the interface (z=a) of
the mth and the (m+1)th layers the following two sets of

continuity conditions must hold :

g,(z=a) = u,,(z=a) ,
Va(2=a) =V, (2=a) , (2.12)
Wa(z=a) =W,,(2=a) ,
and
(T)n(Z=8) = (Te)pu(2z=2)
(Tydm(z=a) = (Ty),a(2=a) , (2.13)
(T.)n(2=a) = (T),.(2=a) .

Mau {1973) introduced the interlaminar shear stresses
as Lagrange multipliers to satisfy the continuity of

displacements at the interfaces of the layers. The governing
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equations were obtained by minimizing the modified potential
energy functional.

On the basis of equation (2.11), Mawenya and Davies
(1974)Iimposed the constraints on the deformations so that the
shear stresses are guaranteed to be continuous at the
interface of the layers. As a result, the independent
variables are uw°, v°, w°, (¢,), and (wﬂm for the mth layer.
Therefore, the total number of parameters is (2N+3) for an N-
layer composite plate.

The theory, based on equation (2.11), is termed the
Layer-wise Constant Shear Angle Theory because the shear
rotations are uniform for any one particular layer but vary
from layer to layer. The high-order shear deformation
assumption with layer-wise definition of the generalized
displacements was proposed by Taledano and Murakami (1987), in
which the parabolic variations of transverse shear strains for
each individual layer are obtained.

Noting the computational expense in the Layer-wise
Shear Angle Theories, Di Sciuva (1986) proposed a simplified
layer-wise model, in which the displacement field was assumed

to be of the form

N-]
u(x,y,2) =u+ z(f, - wi) + Y (8).(z - 2,)H(2-2,) ,
m-]
N-1
vix,¥,2) = vorz{y, - wi) + 3 (9),(2 - z,)H{z-2,) ,
nal
w(x,y,2) =w°(x,y), (2.14)
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where (¢,), and (¢,), are the shear rotations of the mth layer
in the x-z and y-z planes, respectively. H(z-z,} is the
Heaviside unit function. This theory accounts for piecewise
linear distribution across the thickness of the in-plane
displacements and constant transverse displacement. BY
imposing the contact conditions on the transverse shearing
stresses, all terms of (¢,), and (¢,), will vanish.
Consequently, the total number of variables will be reduced
from (2N+3) to 5.

Apparently, the greater accuracy of prediction for
laminated plates is achieved on the expense of the complexity
of formulation and elevated cost of computation.

As a compromise between accuracy and efficiency, Noor
and Burton (1989 a) proposed an elegant method. They applied
a two-phase computational procedure for the accurate
determination of the vibration frequencies, stresses and
deformations in multilayered composite plates. In the first
phase a simple two-dimensional First-order Shear Deformation
Theory is used to predict the global response characteristics
of the plate (vibration frequencies, average through-the-
thickness displacements and rotations), as well as in-plane
stresses and strains. In the second phase, the egquilibrium
equations and constitutive relations of the three dimensional
theory of elasticity are used to calculate the transverse
stresses and strains, to obtain better estimates for the

composite shear correction factors, and to calculate corrected
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values for the frequencies, displacements and in-plane
stresses in the thickness direction.

Numerous theories of laminated plates have been
documented in the literature. Table 2.1 gives a compact review
of the most common theories for laminated structures (Noor and
Burton, 1989 b).

The first important step in developing an adequate
mathematical model for a 1éminated composite material is to
select a proper structural theory (i e., kinematies) for the
problem. Reddy (1989, 1990) suggested the following
guidelines:

a) The First-order Shear Deformation Theory
represents the best compromise between accuracy
and computational efficiency. It yields, with
sufficient accuracy, the global response
characteristics, such as the maximum deflection,
the fundamental frequency and the critical
buckling load.

b) The Higher-order Shear Deformation Theories
vields improved in-plane and interlaminar stress
distributions.

c) The Layer-wise Shear Angle Theories are the best
alternative to three-dimensional theories to
evaluate local effects such as interlaminar
stresses, edge effects, and delamination in

composites.
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2.,1.3. Macromechanical analysis

In the analysis of the response of composite
materials, it is desirable to seek an exact (or closed-form)
solution. An exact solution provides a basis for comparisons
of the various improved theories. Pagano (1969) achieved an
exact solution to the cylindrical bending of a simply
supported laminate under a sinusoidal distributed normal
pressure loading. In 1970, Srinivas et al. applied a three-
dimensional, linear, small deformation theory in the
evaluation of the bending, vibration and buckling of simply
supported rectangular laminates. The vibration of a circular
plate of cylindrically orthotropic material has been studied
by Fan and Ye (1990). There appears to be rather few
analytical solutions available in the literature for the study
of laminated composites of limited types of geometry and
boundary conditions.

Two numerical techniques are basically used in this
research area, namely, Rayleigh-Ritz method (RRM) and Finite
Element method (FEM).

The Rayleigh-Ritz procedure specifies a "guessed at"
form of the displacement solution. In this case the resulting
governing equations are exchanged for a system of algebraic
equations. The "guessed at" displacement solutions are more
formally termed admissible functions. These are defined as

those which at 1least satisfy all geometric boundary
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conditions, displacement constraints aﬁd rotation constraints.
Better yet are those functions which, in addition, satisfy
ﬁért or @#ll of the stress boundary conditions, i e., stress
couples, in-plane and shear resultants.

A number of studies, which used RRM, have appeared in
the literature. The analysis of natural frequencies of lateral
vibration for square laminated plates with clamped edges was
presented by Bert and Mayberry (1969), for rectangular plates
with simply supported or free boundaries by KXamal and
Durvasula (1986), and for circular plates by Sivakvomaran
(1989) . The buckling analysis was reported by Dawe and Craig
(1986) . Rayleigh-Ritz method, similar to analytical solutions,
usually has its limitations regarding loading, boundary
conditions, laminations and geometries.

The Finite Element method is the most attractive
method for dealing with complicated problems of composite
laminated plates. It is possible to incorporate various finite
element models which improve the accuracy of the solution,
simplify the formulation, introduce numerical stability and
guarantee convergence, and cost-effectiveness of computation.

The displacement-based element method is widely used
in the formulation of the C’-type elements. This type uses the
variational principle to derive the governing eguations of the
plate.

Following the procedures of finite element technique,

one usually obtains the element stiffness matrix [K°] in the
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following form:

[K*) = L[B]"[D][B] av

1 (2.15)

= jjj[slT[DJ[BJIJl d{dndf .
1515

The elasticity matrix [D] differs from layer to layer
and is not a continuous function of £{. Panda and Natarajan
(1976, 1979) introduced "the thickness concept" to overcome
this difficulty. The variable ¢ in any mth layer is replaced
by £, which varies from -1 to 1 in the mth layer. The
stiffness matrix can be written as:

Ny L1

(K1 =Y, ”

mel =t

|

[(B)T(D"™][(B)|T| % dydqdt,, . (2.16)
1

Reddy (1980) commented that this concept |is
essentially identical to the First-order Shear Deformation
Theory in which [D] is obtained from the relations between the
resultant forces and the associated strains.

In the three-dimensional finite element formulation,
Barker et al. (1972) applied 24-node isoparametric brick
elements for each layer of the plate. The analysis becomes
intractable when the number of layers is increased. Noting
this difficulty, Jones et al. (1984) and Hoa et al. (1985)
used super-element schemes in which one element may contain

several layers. The thickness concept was used in the
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integration procedure. This scheme can reduce substantially
the computational cost compared with a ply-by-ply element
schenme.

In applications involving the First-order Shear
Deformation Theory, unreasonable results are obtained
regarding the transverse (interlaminar) shear stresses.
However, highly accurate results have been obtained from the
equilibrium equations of the three-dimensiocnal theory of
elasticity. Pryor and Barker (1971), Chaudhuri (1986), and

Lajczok (1986) obtained:

[

T.(.'. = I(ax..r T.ry.y) dz I

_h

2 (2.17)
T = [ (T *+ 0y) d2

h

Furthermore, the variation in transverse normal stress
is determined through the equation by Engblom and Ochoa (1986)

as.

0; = (T,::.,; + Ty:,y) dz . (2-18)

This scheme was even adopted when using the High-order
Shear Deformation Theory by Kant and Pandya (1988) in the
bending analysis of the plates.

In the finite element formulation which includes the

independent variable of transverse shear rotation, a problem
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known as "shear locking" is encountered when the side-to-
thickness ratio is large. In the 1limit, as the thickness
decreases, the shear terms become dominant in the stiffness
matrix and the deflections tend to zero.

There exists a number of techniques to alleviate the
problem. The most simple and effective method is the selective
reduced integration introduced by Zienkiewicz et al. (1971)
and Hughes et al. (1978). In this technique, bending energies
are integrated using the normal rule, while the shear terms
are computed using the reduced integraticn rule.

It is known that the construction of an C' element is
algebraically complicated and computationally inefficient. In
the early studies of composite plates, the hybrid and mixed
element methods were introduced to avoid the continuity
problem.

Two different approaches are utilized when applying
the variational principles. The "hybrid" formulation is used
when one set of unknowns can be eliminated at the element
level. The "generalized mixed" formulation is used when both
sets of unknowns, displacements and stresses, appear in the
global governing equations.

Mau et al. (1972, 1973) first applied the hybrid
stress method and the layer-wise constant shear angle
assumption to the laminated thick plate. This method is based
on an assumed stress field in the element and an assumed

displacement field along the inter-element boundary. The
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chosen element is a guadrilateral plate element with four
corner nodes. The continuity conditions on the interlaminar
stresses are satisfied in this theory. The resulting
formulation reqguires interpolation functions with only c°
continuity.

A mixed shear flexible finite element was developed by
Putcha and Reddy (1986) for the nonlinear analysis of
laminated plates. The displacement field of Reddy’s three-
order theory was used with five displacement components as in
equation (2.5), including six additional components (M,, M,,
M, N,, N,, and N,) as the primary variables. This method leads
to a ¢’ element.

The numerical studies on static and dynamic analyses
as reported by Tsay and Reddy (1978), Spiker and Munir (1980},
Spiker (1984), and Murakami (1986) have shown that both hybrid
and mixed methods can achieve excellent accuracy in predicting
the displacements and the stresses.

For plate structures having regular geometric planes,
a full finite element analysis may be unnecessary. The finite
strip method offers an alternative approach which reduces the
problem size, yet maintains some versatility. Unlike the
standard finite element method which describes the
displacements using polynomial functions, the finite strip
method uses a combination of polynomial and harmonic
functions. The harmonic functions satisfy, a priori, the

boundary conditions at the ends of the strips and have the
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advantage of greatly reducing the number of equations to be
solved. The finite strip methods have been applied to the
flexure problem by Hinton (1977) and to the vibration problem
by Crig and Dawe (1986).

In summary, the finite element techniques proved to be
powerful and versatile tools in engineering application. The
need for finite element analysis is especially high for
composite materials and structures with various configurations

of lamination.
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2.2. Damped vibration analysis of layered

fibre-reinforced composites
2.2.1. Introduction

Material damping, referred to as internal damping, is
the phenomenon within the material in which energy is
dissipated (Bert, 1980). Damping plays an important role in
attenuating the response of systems at resonance.
Understanding material damping is an important step in the
development of the analytical tools that are needed by space
engineering designers. The study of material damping falls
into two categories:

a) mechanism oriented;

b) application oriented.

fhe first approach requires a clear understanding and
gquantification of the physical processes which bring about the
damping, and almost without exception 1leads to nonlinear
computational models. The study in this case is mainly based
on materials science and is fundamental to the second
approach. In some situations, however, this approach is
difficult to use because the need for precise laws to describe
the energy dissipation will make the model expensive.

The second approach employs simple damping models to
represent the system. While the physical origin of the damping

may be obscure, the simplicity of the approach provides
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qualitative, and under certain conditions, even quantitative
merits.

This section presents a comprehensive review of tﬁe
damping in layered fibre-reinforced composites, its
mathematical treatment from an application oriented viewpoint
and the solution methods for viscoelastic materials. The
objective of this review is to define the basic aspects of
damping, in layered composites, which are necessary for the

' development of adequate models to describe their dynamic

response.
2.2.2, Material damping

The dynamic properties of a laminated composite are

characterized by:

a) the constituent materials: fibre and matrix
(polymer/metal}, etc.;

b) the construction of each lamina of
unidirectional fibre composite: fibre volume,
distribution of constituents, the nature of the
bond between fibre and matrix, etc.;

c) the arrangement of the layers: stacking angles,
stacking seguence, total number of layers, etc.;

d) the fabrication defects: voids, delamination,

residual stresses, etc.
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Material damping can be caused by a variety of
combinations of fundamental physical mechanisms, depending
upon the specific material. The damping mechanisms for three
classes of materials, namely, fibre, polymer and metal, are
examined.

The desired features associated with the use of fibre
material, such as carbon, are its high specific strength, high
stiffness and its directional properties. In this case,
material damping may arise due to the inhomogeneous strain in
fibrous materials as reported by Goodman (1988). Generally,
such materials have extremely low damping capacities and their
contribution to the damping of the composites is negligible as
noted by Adams et al. (1969). In some cases, however, fibre
damping has to be considered in the analysis. An effort has
been made by Lesieutre et al. (1991) to improve damping of
composite material using bromine-intercalated graphite fibres.

For metals, the mechanisms of damping were reported
by Bert (1973), Wolfenden and Wolla (1991). The studies
covered the following aspects:

a) the dislocations,

b) the point defects,

c) the grain boundary,

d) the thermoelastic coupling,

e) the eddy-current effects,

f) the stress-induced ordering,

g) the electronic effects.
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It is difficult to establish a comprehensive modei for
the damping of a specific metal in terms of the variables
listed previously. One approach towards quantiffing the
internal damping behaviour is through the use of the
hysteresis loop, presumed to be obtained from experimentalf'
measurements on a material sample. Figure 2.3 {a) illustratég
a type of hysteresis 1loop which 1s believed to be
representative of typical constructional metal alloys and‘é;éﬁ
of some high damping alloys as reported by Nashif et al.
(1985) . The shape of the loop depends on the operative damping
mechanism. Significant nonlinearity characterizes metallic
materials, particularly at high levels of stress. Adams (1972)
showed that damping in metals is hysteretic and not viscous by
nature and that it is strongly dependent on the amplitude of

vibration, except at very low strain levels.

(a) Metallic material (b) Viscoelastic material

Figure 2.3 Hysteresis loop (after Nashif et al., 1985)
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Due to the long-range molecular order associated with

~ their giant molecules, polymers exhibit a rheological

behaviour which is intermediate between that of a crystalline
so0lid and that of a simple liquid as reported by Bert (1973).
ﬁamping arises from relaxation and recovery of the polymer
network after it has been deformed. Damping exhibits a strong
dependence on the frequency of loading and the temperature of
the composite because of the direct relationship between
material temperature and molecular motion as reported by
Nashif et al. (1985).

According to Lazan (1959, 1965), the various damping
phenomena and mechanisms may be classified under one of two
headings:

a) dynamic hysteresis (known as the rate-~dependent

damping),

b) static hysteresis (known as the rate-independent

damping).

Viscoelastic materials, such as polymers, are
associated with dynamic hysteresis which depends on the rate
of cyclic load or displacement. Dynamic hysteresis yields
damping that is frequency-dependent and amplitude-independent.
In contrast with dynamic hysteresis, static hysteresis
involves strain laws which are insensitive to time, strain
rate, stress rate or other derivatives. The two principal
me-hanisms which lead to static hysteresis are magneto

elasticity and plastic strain.
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The hysteresis loop associated with viscoelastic
materials tends to be elliptic in shape (Figure 2.3 b), and
the loop area is dependent on freguency. On the other hand,
metallic materials generally display static hysteresis loop
with sharp corners at both ends and are nearly linear in the
low-stress, the low-strain region as shown in Figure 2.3 a.
The loop area is independent of frequency but is dependent on
the stress level.
The "linearity" of damping is usually checked by the

model relating damping energy AU to stress og:

AU = J ¢" , (2.19)

where J and n are the damping constant and the damping
exponent, respectively. Linear damping is characterized by the
following two aspects:

a) damping exponent n = 2;

b) the hysteretic loop is elliptical in form.

If the hysteresis loop is of non-elliptical shape, the
operative mechanism is non-linear. It is reported by Singh et
al. (1991) that linear damping can occur up to a strain
amplitude of 10° for polymer-matrix, and 10* for metal-matrix
composites.

one of the attractive characteristics of composites is
the possibility of introducing additional sources of damping
by controlling the nature of the fibre and matrix interface.

This interface can provide significant enhancement of material
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damping through the following mechanisms:

a) the energy loss at the interface;

b} the friction at the interface caused by relative

motion between the matrix and the fibre.

Studies reported by McLean and Read (1975), and Gibson
et al. (1982) indicate that the vibration damping properties
of polymer-matrix composites may be significantly improved and
cptimized by using discontinuous fibres rather than continuous
fibres. One possible explanation for this phenomenon, given by
Nelson and Hancock (1979), is the presence of shear stress
concentrations at the numerous fibre ends in a discontinuous
fibre composite and the resulting shear stress transfer to the
viscoelastic matrix. When a short-fibre composite is subjected
to a cyclic strain, the matrix at the fibre interface near the
ends of the fibre undergoes a high cyclic shear strain, which
in turn produces significant viscoelastic energy losses. It
was reported that most of the energy dissipation in polymers
is due to shear strain and very 1little is caused by
dilatational strains.

The shear stress concentration may also induce plastic
effects as well as partially debonding at the fibre-matrix
interface. This will result in slip between the fibre and the
matrix and induce frictional losses. The effect of interfacial
slip on damping was investigated by McLean and Read (1975},
Nelson and Hancock (1979). However, such a fibre-matrix

debonding would adversely affect the strength and stiffness of
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the composite. Therefore it is desirable to have a strong
interfacial bond where slip at the interface can be avoided.

For metal-matrix composites, the application of
whisker and particulate composites could lead to increased
damping via an increased dislocation density near the
interfaces as reported by Wolfenden and Wolla (1991). Another
way to achieve high damping in a metal-matrix composite is to
subject it to sufficiently high loads to cause the matrix to
deform plastically as noted by Bert (1980).

The important parameters which affect damping are
identified as: the stiffness ratio E/E,, the fibre volume
fraction V,, and the fibre aspect ratio 1/d. These were
investigated by Adams (1973, 1988), Sun et al. (1985 a, b,
1987). The fibre orientation, the stacking sequences and the
associated frequencies were studied by Crawley et al. (1983)
and Crawley (1984). The strain levels were studied by
Varschavsky (1972), Weiss (1977) and Deonath and Rohatgi
(1981). The environmental influences, such as temperature and
moisture, were reported by Roylapce (1976}, Maymon et al.
(1977}, Rehfield and Briley (1978), and Creama et al. (1991).
Due to the diversity and complexity of the damping mechanisms
it is difficult to realize a complete characterization of the
damping capacities even for a single composite material.

Very limited data are available today regarding the
dynamic stiffness and damping of the laminated composites.

Moreover, the data are extremely sparse and dependent on the
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method of measurement applied.

2.2.3. The mathematical treatment of damping in

macromechanical analysis

The need for a gquantitative description of material
damping has led to damping expressions in terms of various
experimentally determined parameters. Almost all modes of
damping are based on the concepts of a linear single degree of
freedom system. A brief description of the commonly used
parameters and their relationships were reported by Lazan
(1965), Bert (1980), and Rawal et al. (1985). These are based

on the following aspects:

a) The specific damping energy (AU), and the specific
damping capacity (y).
AU is defined as the unit energy absorbed by a
microscopically uniform material per unit volume per
cycle of loading as shown in Figure 2.4 a, and is given

by:

AU = f ode . (2.20)

Y is the ratio of AU to the maximum strain energy (U)
per unit volume as shown in Figure 2.4 b and is given by:

_ AU
v =27 (2.21)
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The damping ratio (¢), and the quality factor (Q).
£ is defined as the ratio of the natural damping
coefficient to the critical one which can be calculated
using the half-power bandwidth method as shown in Figure

2.5 and is given by:

£ = — , (2.22)

where Af is the band width at half power points of the
resonant peak for the nth mode and f, is its associated

resonant frequency. The quality factor, Q, is defined as

(2.23)

Bl

0= 5

The complex modulus (E’), the loss factor (3), and the
loss angle (¢).
Applying the complex-stiffness approach to the

material stiffness (elastic modulus), one obtains:

E-

E, + iE,

E (1 + in) (2.24)

E (1 + itan ¢)

Here E" is the complex modulus of elasticity. E, is known
as storage modulus, as it is related to ctoring energy in
the volume; and E, is defined as the loss modulus or

dissipation modulus because it is related to the
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dissipation of energy in the volume. 7 is called the loss
factor, and ¢ is the loss angle by which the strain lags
behind the load. The relationship between them is as

given in Figure 2.6 and is described by:

7 =tan¢ = —«~ . (2'25)

d) The logarithmic decrement (§).
Tt describes the decay of free vibration and is
defined as in Figure 2.7. For two successive peaks one

can write:

5§ = ln(__.) . (2.26)
N
For n peaks one obtains:
s =21 1n( 2y . (2.27)
n a,,,

The different ways used for the definition of the
damping are interrelated provided that the damping is low.
Moreover, the simple relationship between damping parameters
is independent of the different mechanisms of energy
dissipation as reported by Rawal et al. (19853) who reported

the following relation:

é
= = = = . 2.28
S e T = F — = tan ¢ ( )
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The constitutive relation for a viscoeleastic material

is generally written in the following form which is reported

by Hashin (1970):

!
ae,
oy(t) = | cputt-n) i 4 (2.29)

where o¢; and ¢&, are the stress and strain tensors,
respectively; C;, is the relaxation moduli tensor. In the case
where the composite is subjected to a sinusoidal strain, one

obtains

oy = Br;k:(w) Ei o (2.30)

where B}H(w), termed the complex aoduli tensor, is generally

complex and frequency dependent. It ¢an be written as:

BU.H = (‘BUM)R + i(BU“}*' . (2.31)

The procedure of replacing the elastic moduli by
complex moduli for a viscoelastic material is called by
Schapery (1974) the "Correspondence Principle".

In the macromechanical analysis of laminated
composites, the success of closely predicting the material
damping is obviously dependent upon the underlying assumptions
used to build the model. Many investigators have adopted the
assumption of viscoelasticity to determine complex moduli of
polymer-matrix composites as reported by Gibson et al. (1982),

Alam and Ashani (1986) and Sun et al. (1987,). The dominant
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mechanism of damping is the viscoelastic energy dissipation in
polymer materials. The complex modulus in equation (2.24) is
a concise form to ‘describe the damping properties of
viscoelastic materials. The mathematical theory of linear
viscoelasticity is reasonably complete. Various aspects, such
as, creep, stress-relaxation, relaxation-time spectrum, the
complex compliance, etc., can be related to each other by
mathematical transformations of varying degrees of complexity.

 sun et al. (1985), using micromechanical analysis,
studied unidirectionally aligned short fibre composites. They
made use of the principle of force-balance, elastic-
viscoelastic correspondence and the energy approach. The
damping 7, along the longitudinal direction, damping 7, along
the transverse direction, shear damping 74,, and the damping
s, Of Poisson’s ratio were all derived in terms of E/E,,
G¢/G,, N Na: fibre volume friction Vv, fibre aspect ratio 1/d,
and the angle ¢ between fibre orientation and forcing
direction. That work is so significant that one could then use
the known damping coefficients as the input data in the
macromechanical analysis of laminated composites.
The following aspects of dampir.y should be taken into
account when studying the dynamic behaviour of structural

systens:

a) There is a growing need to accurately describe the

damping properties through mathematical mod.is which are
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simple, yet representative of the behaviour of the real
material. For metallic materials, however, great difficulty
has been encountered in producing a parametric approach
comparable to that which was developed for polymeric
materials. According to Lazan (1959, 1965), the formulation of
the complex modulus in linear viscoelasticity not only
provides a basic, minimum and mathematically consistent

description, but is also very convenient computationally.

b) The significant features cf polymer-matrix composite
materials are their dependence, both stiffness and damping, on

frequency and temperature, which can be expressed as:

E* = E(w,T) ,
(2.32)

7 =75(e,T),

where w is the angular frequency; and T is the temperature.
The viscoelastic assumption does lead to these effects as

demonstraced by Lazan (1959), and Nashif et al. (1985).

c) Unlike the viscous damping which is restricted to bhe
linearly proportional to velocity, the loss modulus may be a
more generalized and realistic description of material damping

as reported by Lee (1987).

However, some of investigators such as, Adams and

Bacon {1973), Morison (1982), Lin et al. (1984), and Xiao et
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al. (1988) made use of the definition of specific damping
capacity, ¥, to study the damped system of polymer-matrix
composites. Low damping was assumed to facilitate the
evaluation of damping using the mode shapes of the associated
undamped system. According to Adams and Bacon (1973), that
approach has the advantages, over viscoelastic or complex
modulus models, that materials with stress dependent damping
can be accounted for and that the energy dissipation
throughout the laminate can be examined in detail.

In the early analyses by Adams and Bacon (1973) and
Morison (1982), they considered the input parameters of
damping to the analytical models to be given by ¥, ¥r, and ¥
for each lamina. Three components are involved in the total
energy dissipation of the element in the following form:

§(AU) = §(AU)) + §(AU,) + §(AU,) . (2.33)

Liao et al. (1986) used this model to design symmetric
laminated beams with optimal damping and optimal stiffness.
This model, however, is not complete because the energy loss
due to the shear deformation was not included. Lin et al.
(1984), and Xiao et al. (1988) added to it another damping
parameter to account for y,;, and the total energy dissipation
of the element becomes

§(AU) = §(AU,) + §(AU,) + &6 (AU,) + §(AUy) + §(AU;)

(2.34)
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in which
§(auy) = ’%‘lbl.sllall '
§(AUy) = '%¢T5n°n ’
§ (AU,) = %4,,,,..«.23%, (2.35)
§(AUy) = %¢m£n%3t
§(AUy) = %¢m£u°n'

In the numerical studies, they iound that ¢, is not
important because changing its value by 15% gave no
significant difference in the overall theoretical values.
Thus, they assigned Y, = 4y in their prediction of
vibrational damping of free laminated plate.

Hwang and Gilbson (1991) used three-dimensional stress
components to study the damping of laminates under uniaxial
extension. That model accounts for the damping 7, due to the

interlaminar normal stress o This was found to be

.
particularly important for a thick plate.

The majority of the damping studies have been
conducted on the polymer-matrix composites. There exist
limited investigations on material damping for metal-matrix
composites. A significant work in this regard was reported by
Kinra et al. (1991), where they extended the model of Ni and
Adams (1984), to study the flexural and axial damping of

metal-matrix composites. A close agreement between theory and

experiment was reported.



2.2.4. 8olutions of viscoelastically damped systems

U
o (i

N
The linear viscoelastic assumption was wused in
modelling damping for composite materials, particularly for a
polymer-matrix. In this modelling approach, -the discretized

equation of motion using finite element method is usually

written in the Fform:

() {x}+ (k*){x}= {£}, (2.36)
where (M] - mass matrix;
[K'] - complex stiffness matrix;
{x}, {®} - vectors of nodal displacements, and
accelerations, respectively;
{f} - vector of applied node loads.

There exist four distinct technigues to study the
system in the frequency domain. These are:

a) the Direct Frequency Response method,

b) the Complex Eigenvalue method,

c) the Modal Strain Energy (MSE) method,

d) the Perturbation method.

The direct frequency response method assumes the input
in the form of a forced excitation at a given frequency as
reported by Johnson and Kienholz (1982) and Brockman (1984).

The models take the forwu:

([K°(0)] - w?M]) {X()}= {F(a)}, (2.37)
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or

H() ] {X(@)}= {F(w)}, (2.38)

The corresponding displacement shapes are obtained by solving
a system of complex~valued linear equations. The behaviour of
the system over a range of frequencies is .defined by
evaluating the response at several frequencies, and plotting
the resulting amplitude and phase shifts versus the forcing
frequency. Sun et al. (1990} applied this method to evaluate
the loss factor of a sandwich beam.

The two main drawbacks of <this method are‘ quite
substantial. First, the computational effort is greatly
increased since the complex coefficient matrix on the left
must be formed, inverted, and stored for each frequency of
interest in order to obtain a complete solution. This is
generally impractical for any but very small problems as
reported by Johnson and Kienholz (1982). Second, numerical
errors associated with the inversion of ill-conditioned
matrices are also possible in the case of 1lightly damped
systems as noted by Bellos and Inman (1990).

The unforced motion of the system can be derived from

relation (2.36) in the following form:

((K"(w)] - w?[M)){Xx}={o}. (2.39)

This is an algebraic eigenvalue problem with complex

eigenvalues and eigenvectors. The genaral forced response Lor
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any input may then be evaluated as a weighted sum of the free
responses. Using this method, Alam and Ashani (1986)
investigated the flexural damping of a simply supported
rectangular plate.

This method gives an exact solution to the problem.
However, its main drawback is the high computational cost.
Joseph (1974) reported that the complex eigenvalue method is
three times more costly than the corresponding undamped
eigensolution. There exist few general purpose finite element
packages, such as NASTRAN, which has the capability of solving
complex. eigenvalue problens.

With much less cost in computation, the Modal Strain
Energy approach assumes that the damped structure can be
represented in terms of the real normal modes of the
associated undamped system if appropriate damping terms are
inserted into the uncoupled modal equations of motion. This
method was first suggested by Kerwin and Ungar in 1962, and
then developed later by Johnson and Kienholz (1982) and Soni
(1982). It was used to predict damping in sandwich structures,
where the material loss factor was found to be very small
compared with that of the viscoelastic core. In this

situation, the loss factor can be approximated by

a0 =g (2.40)

where 7, is the material loss factor of viscoelastic core and
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U /UM is the ratio of elastic strain energy attributable to
the sandwich core when the structure deforms in the rth mode
shape.

Shen and Stevens (1984) applied the first-order
perturbation method to study the flexural damping of a
viscoelastically coated beam. In that study, they solved a
real eigenvalue problem without considering the coat layer.
They later augmented [K] and (M) by [AK] and [AM] due to the
coat. This led to a new set of eigenpairs for the system in

the following form:

(Xﬁnz = ()2 + (AN!)2,

(B9 = (o + (20}, e

where (A®)? and {¢}" are the eigenpairs of the undamped system

in the ith mode. The first-order corrections are given by:

(AND)? = {¢PMT[AK3ﬁ;_0WU’[AM]]{¢P”,
{o " (M) {0}

) (2.42)
Afg )" = §;QU{¢¥nf
ji
where
0 = {o 1 [1ak) - A2 ram)] {0 (2.43)

(N =N ({o 17 (M) {0}

The last two methods give approximation solutions to
the problem. The greatest advantage of using these two methods

is the saving realized in computational cost by solving a real
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in place of a complex eigenvalue problem. The perturbation
method can account for-i'frequency-dependent material
properties, but suffers the drawback of being incapable of
solving a system with repeated eigenvalues as seen from
equation (2.43). The Modal Strain Energy method is gaining
acceptance and is frequently used by investigators for
tackling the viscoelastic damping problem. However, no
rigorous error analysis is available in the literature
regarding this method.

Nashif et al. (1985) and Jones (1986) found the
noncausality of the form {f(t)} # 0 for t < 0 in a single
degree of freedom system. The problem arises because [K'] is
assumed to be constant, which is an excessively restrictive
idealization of the behaviour of real polymeric materials.

Apart from the frequency-domain methods above, a time-
domain realization method has been used to study vibrations of
viscoelastic structures. Based on linear system theory, this
method enables the analyst to represent a given system by an
equivalent system. For the given equation (2.36), Golla and
Hughes (1985) developed a symmetrical matrix-second-order

realization in viscous damping mechanisms:

(Me{x )+ (c){x}x1{x"}={£}, (2.44)

where [M*], [C*], and [K'] are the augmented mass, damping,
and stiffness matrices, respectively. The superscript *

denotes that the system of coordinates has been augmented by
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the inclusion of an appropriate set of '"dissipation
coordinates". Their method can tackle frequency-dependent
materials but the computational cost is increased because of
the augmentation.

In 1990, Zabaras and Pervez applied an analysis
similar to that of Lin et al. (1984) to predict specific
damping capacity for the first two fundamental modes. Then
they obtained the equivalent viscous damping ratio to form a
Rayleigh damping matrix [C] for the prediction of damping in
laminated plates. The approach can get rid of noncausal
behaviour of the response, but needs further experimental

verification.



3.1.

CHAPTER 3

THEORETICAL FORMULATIONS

Basic assumptions

In studying laminated composites from a viewpoint of

macromechanical analysis, the idealization of the problem is

an important step. The following assumptions are made:

a)

b)

£)

g)

Perfect bonding exists between the fibres and the
matrix. Conseguently one assumes no slip at the
interfaces of the layers.

The bonds are presumed to be infinitesimally thin as
well as non-shear-deformable otherwise they will be
considered as layers.

The composites behave in a manner similar to linear
materials.

Each lamira 1is treated as & homogeneous and
transversely isotropic continuum.

The displacements u, v, and w are small compared to
the plate thickness.

The transverse normal strain g, is negligible;

Only material damping is considered. Damping due to
other sources, i e., air damping and/or joint damping,

is neglected.

56
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Theoretical foundation for undamped vibration analysis

The First-order Shear Deformation Theory is adopted

because it is simple in modelling and it is economic and

reasonably accurate computationally.

The displacement

following form:

u(x,y,e,t)
vix,y,3,t)

wix,¥.,2,t)

u’(x,y,t) - 24,(x,y,t) ,

vix, Y. t) - 2y (x,y,t)

wo(x,y.t) .

field is considernd to be in the

(3.1)

Assuming that the displacements are small, one can write the

strain-displacement relations as follows:

& S & * 2K, ,
E, = & * 2k, ,
g, =0,

Yy =W, t W,
Yaz = ’l’,t W

— "
'Y,;y = Yy + z'ny *

In these expressions, one defines

BX ul X
] - o
€y % V.y .

(3.2a)

(3.2b)
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and
KX "IJX.X
{x} =4 %, ¢ = ¥y, : (3.2c)
Kxy Yy * ¥yox

The quantities ¢g°, &/

S, and v,° represent midsurface strains,

while the &, and «, are bending curvatures and «x, is the
twisting of the plate.

The following notations of stresses and strains are
adopted to facilitate the mathematical derivation in what

follows:

G, = Oy Oy = 0Oy, O3 = 033, Oy = Tay, O5 = Ty34 G5 = Tyys

€ = &y By T Epy &3 = &y &4 T Ynr €5 = Yiar &6 T T2 -
(3.3)
Suffix 1 denotes the fibre direction, while 2 and 3
are the two directions transverse to that of the fibre. The
constitutive relations for any layer in this fibre-aligned

coordinate system are given as

7 B 4 b

il [ewo, 0 0 0] (%

o, 0,9, O 0 O |62

{0,y = |0 0O Q4 O Of {e,3, (3.4)
o 0 0 0 05 O €5

o, | [0 0 0 0 o |, |

where Q; are the plane-stress reduced stiffness components in

the material axes (123) of the lamina with:
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E - E,
- = = 1
Bk | BprEy ,
* bt 1‘(#m)2;%
E, E, (3.5)
= [
1= ahy 1_(u”02;%
Gy = Gyyp o
Gy = Gy »
Gz = Gy

Young’s modulus alona the longitudinal
direction of the fibres;

Young‘s modulus along the transverse
direction of the fibres;

Shear modulus relative to L-T the
plane;

Interlaminar shear modulus relative to
the T-2 plane;

Major Poisson’s ratio as measured from
the transverse contraction under
uniaxial tension parallel to the

fibres.

The global relationship between stresses and strains
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are given by:

— - r “

[ 9x 0, @, 0 0 O Ex
9y 512 522 0 0 525 y
{0, =10 0 04 Qs 0| {Vyzt s (3.6)
O,y 0 0 O Qs O Y xz
| Oy | _aﬁ 5# 0 0 am. | ¥ xy

where
Qu = Qum* + 2(Q; + 204) m?n? + Qunt
Qi = (Qy + Qp - 40x)mPn? + Q(m* + n¥)
0 = Qun* + 2(0Q;; * 20,)m*n? + Qpm* ,
Qi = (01 = Qi = 20’1 + (Q; - O *+ 2Q¢) M0,
G = (Qn - Qn - 20)mn* + (Q — Oy + 2Qg) W0, (3.7)
Qu = Qum? + Qun? ,
Qs = (@55 - Qu)mn
Qss = Qum? + Qun? ,
Qe = (Qn + Opn - 2Q); - 20} M°n? + Qg (m* - n?) ,

and m = cosf, n = sinfl. The angle # is as defined in Figure

3.1.
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Figure 3.1 Laminated plate geometry
and the coordinate system

Introducing the stress and moment resultants per unit

length,

h
2

j(o,‘, o, 1,,) dz ,
h

iy

(N:;l Nyl‘ Nl_(y)

It
7

J(a_‘, o, 1,) zdz , (3.8)
h

(M_g ! M}-I Mt)')

7

h

2
(Qes Q)’) = I(T.tz’ Ty:) dz ,
Sh

2

one can thus write the plate’s constitutive equation in the

following compact form:
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(Al (B] o
{{N}} i {(e}}' (3. 92)
{M} 81T [Db] {x}
and

Qx exz
{ } = [D,] { } . {(3.9b)
Qy €yz

The components A;, B;, Dy (i,j =1, 2, 6) refer to the
in-plane, bending~stretching, and bending stiffness of the

plate, respectively. They are defined by:

-
ms)

N
(Ay, By, D) = E I Qém’(lr z, z%)dz (i,j=1,2,6) ,
mal

(3.10a)
and the components of the shear stiffness D, (i,j = 4, 5) are

defined by:

N an
(D-‘ﬁ) = E Kin J Q{I('m,dz (ifj=415) ' {3.10b)
mw]
where K, are the shear correction coefficients.
The equations of motion can then be derived using
Hamilton’s principle:

,I
I §L dt =0 , (3.11)

i

where L is the first variation of the Lagrangian and is

defined by
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§L = ém - 6K
= IR(GefN, + 8EN, + SN, + EKM, + Sk ,M, + Sk, M,
+ 880, + 880, + swqyd- [ N su,ds
‘ - \4 - L4 _ ‘r - g
J' , Nisuds _[C' Mgds - | vds L_‘ g, 6wds

- va(udﬂ + VEV + wéw) AV ,
(3.12)

where 7 and K are the total potential and kinetic energies. N,
N, M, M, and §, are the normal or tangential resultants on the
boundary segments C,. The following contracted notations were
also used in writing eguation (3.12):

N,

N, Ny=N, Ny=N

ayt

M =M, M=M, M =M,
Q) =0Q: Q= Q)
(3.13)

Q o (4

€cr 8-‘2’ = 8,-.: 82

[y ]
]

Eryr €4 = £,y &5 = &

Xzt

Ky = Koo Ky = Ky Kg = Ky -

Substituting equation (3.2) in eguation (3.12) and
integrating by parts with respect to to time and the spatial

coordinates (xyz), one obtains the equations of motion as:

N, +N,, =Ii+Li,

Ny * Ny, =LV + Iz‘;b'y '

Que* Q=9+ IW, (3.14)
Moo * Myy = Q= Is’rl;x + Iu ,

Q:‘s
F ]

+
=
[}

)
Lo
b4

i

(W
(%)
R

+
NH

<
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Here I,, I,, and I, are the normal, coupled normal-

rotary and rotary inertia coefficients, respectively. One can
thus write:

h

.! N ‘-'-ll

(I, I, I;) = J. (llzlzz) pdz = Z p™ J. (1, z, zz>dz .
h mul
-3 :

(3.15)
The midplane R of the plate is supposed to be
subdivided into a finite number of elements, R, (e=1,2,...).

over each element, R, the generalized displacements

(u,v,w,¥,,¥,) are expressed in the following form:
n n n

u =Y uN, v=Y VN, w=3Y wN,

{=1 sl ful
(3.16)

Y, = Z UNTY ‘fby = Z \b_wNH

iwl ful

where N, represents the interpolation functions associated with
the ith node. The total number of nodes in an element is
denoted by n.

The total Lagrangian in equation (3.12) can be
expressed in terms of the displacements (U, v,w, ¥, ¥, -
Following the conventional finite element procedures, one can

obtain the following relation:

(M) {#}+ [(K){x}= {£}, (3.17)

where K] = the global stiffness matrix;
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[M]

the global mass matrix;

{x}, {®} = vectors of nodal displacements and
accelerations, respectively;
{f} = the vector oi nodal forces.

For the free vibration problem, equation (3.17)

becomes

([K] - w?’[(M)) {o}= {0}, (3.18B)

where w and {¢} are the natural undamped frequency and the

eigenvector of the system, respectively.
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3.3. Modelling of damping for laminated composite plates

3.3.1 Scope of the study

Since there are many physical mechanisms for energy
dissipation, it would be almost impossible to establish a
complete characterization of damping for a composite material.
However, it is necessary, for engineering applications, to
describe the damping properties in the form of a reasonably
accurate mathematical model which should be simple, yet
representative of the behaviour of real materials. For
laminated composite material, two levels of material damping
studies should be realized; the micromechanical and
macromechanical.

Figure 3.2 shows the input and output parameters and
data which are necessary for the two studies. The input data
for the macromechanical analysis are obtained from the results
of the nmicromechanical analysis or from experimental
measurements.

In the present work, the formulations of the two
macromechanical damping models, namely, the Viscoelastic
Damping (VED) model, and the Specific Damping Capacity (8DC)

model, are derived from an application-oriented viewpoint.
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3.3.2 Visceoelastic Damping (VED) model

In this model, linear viscoelasticity will be assumed
to be representative of the dynamic properties of the
composites. According to the Correspondence Principle, the
complex expressions of the engineering constants for
transversely isotrupic materials can be written in the

following form:

E; = E (1 +in) ,

Er = E/(1 + i7,) ,

Gir = Gpp(l + ing,) + (3.19)
Grr = Gpp(1 + i’?n") '

“’L'l‘ = .u';,'r(l + iﬂ,.”) ’

where 7, = damping along the longitudinal direction;
Ny = damping along the transverse direction;
Mg, = Shear damping relative to L-T plane;
Mg, = shear damping relative to T-Z plane;
nw, = damping of Poisson’s ratio;
i =1 .

Equation (3.19) yields complex expressions for ([Q'],
(@31, [(A"), [B], [D,), [D,”1, and {K']. The complex stiffness

[K'] will be written as follows:
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[K") = [K,) + 1 [K] ., (3.20)

where [(Kx] = storage stiffness matrix;

[(X,] = damping stiffness matrix.

If there are no rigid body motion modes in the systen,
the matrix [K;] will be a real symmetric and positive definite
one, but [K;) may be a semi-positive or positive definite real
symmetric matrix.

For the free vibration problem, the discretized

version of partial differential equation becomes:

(M) {x}+ (k") {x}={o}. (3.21)

Equation (3.21) is converted to a complex eigenvalue

problem by assuming a solution of the form

{x}= {¢'P’exp(iu'mt), (3.22)

where (w™)? and {¢'}* are the rth complex eigenvalue and

eigenvector, respectively. They can be written in the form:

W' = "l + in(r) ,

{1 = {op ) + 1 {0},

(3.23)

where o is the complex frequency factor, and 5" is the loss
factor in the rth mode. The complex eigenvalue problem is then
formed from equation (3.21) by substituting equation (3.22) to

obtain:
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{1x*1 - (@"™? (M1} {0} = {0}. (3.24)

Expanding w’ in Taylor series, the complex frequency

factor can be written in the form as:
2 [} 3 5
* o= E_— sn = s wn +‘ ﬂ—_ﬂ_-}- 71’ - e .
@ wl:[1+ 8 128 ] . 2 le 256

providing that 5 is less than one. Note that the superscript

(r) is dropped in equation (3.25) to simplify the notation.
While the real part of « describes the natural
frequency, the imaginary part is related to the modal damping.

We define the generalized damped natural frequency as follows:

R 2 54
w,):real (w") = w 1+_%_— 1;1 + eaa , (3.26)

o0

where w is thz natural frequency. It should be noticed that w
in equation (3.23) is not necessarily equal to the natural
frequency w in equation (3.18) of the undamped system. They
are generally close to each other in practice. Another form of
w, for a single degree of freedom system can be written in the

form:

- 57 ! (3.27)

where & is the logarithmic decrement. It is seen from
equations (3.26) and (3.27) that w, increases with 5 or § for

the viscoelastically damped free vibrations. It decreases with
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the damping ratio ¢{ for the viscously damped free vibrations.

Figure 3.3 shows the curves of { and 5 vis wy/w.

1.2

. \
0.2f - - -

e
a

§.

P e

Figure 3.3

"y - w,/w" and "¢ - u,/w" curves.
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3.3.3 Specific Damping Capacity (8DC) model

In this approach the internal damping behaviour of
materials is quantified through the use of its experimentally
determined hysteresis loop shown in Figure 2.4. In this model,
the specific damping capacity (8DC) is defined as:

SDC=¢=9UE . (3.28)

where AU is the unit energy absorbed by the microscopically
uniform material per unit volume per cycle of loading as
depicted in Figure 2.4 b. U is the maximum strain energy per
unit volume as shown in Figure 2.4 a.

considering the mth lamina of an arbitrary laminate
and assuming that it has unit width and length, one can obtain

an expression for the strain energy in the form:

“mel

u, = %I {e¥ {o} dz = %J' (¥ 101,4e}, dz . (3.29)

Since the strain energy or .issipated energy is
indepenaent of the coordinate system, equation (3.29) is
considered to be associated with the fibre-aligned coordinate
system for convenience.

For a transversely isotropic lamina which exhibits a

linear elastic stress-strain response, the strain energy can
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be expressed in terms of seven components:

Um = Ullm + UIIm + U!lm + U22m + U-l-lm * Uﬁ.ﬁm + Ubﬁ.-n !

(3.30a)
where
_ ] Sl 2
Uim =5 (Qn€1), dz ,
1 s 2
U?Zm = 3 ‘[ (szsz)m dz '
. 1T
Ul?m - U’Zlm E j (Q|28|82)", dz 4
(3.30b)
1 i 2
U-Mm = _2' (Qol‘l’yz.‘)m dz r

[
1

ra

3 —

(th?%) m dz ,

a
@
1

| -

Uﬁﬁm - (Qhﬁ-ﬁz)m dz .

t
X ¥
[R—

From the definition of SDC, it is obviocus that the
total energy dissipated in this lamina is given by the sum of

the following seven components:
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AUy, = 5 J. (‘#110”5?),,, dz ,

AUy, = = J (’J’zzozzci)m dz,

H

AU, = AUy, = 1 _[ (V1oQ12€1E2) m GZ 4

2
’ (3.31)
17 2
AUot-im - "2" J- (‘Il’-l-lQM'YZJ)m dz ’
Auﬁﬁm = '22.' J. (5”55055'}'?3),“ dZ [
_ 1 o 2
AU, = 5 J (VesQessY12t m 92
in which we define
Yo = ¥, Vo = Voo ¥y = ‘/’,.“r
(3.32)

Bl’.u = l/’r;”.r \b.‘iﬁ = wﬁﬁ = "’/Gu )

The total energy dissipation for the mth lamina can be written

in the following form:

av, = 3 I {e)n (Q)nie}, dz , (3.33)

Z
-
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where
VQu ¥l O 0 0 ]

Q2 ¥2Qn O 0 0

[ep} = O 0 ¢YuQy O 0 . (3.34)
0 0 0 ll[’.“SQSS 0
|. 0 0 ¢ 0 "’hﬁom ]

Equatinn (3.34) leads to a damping stiffness matrix
[K,] which is a real symmetric positive (or semi-positive)
definite matrix. It has the same band shape as that of [K].
These properties facilitate the implementation of the model to
some existing commercial finite element pregrams. This result
is different from Lin’s (1984) formulation for [K,] which led
to an unsymmetric matrix. It is known that the value of k; in
[K] represents an internal force on the jth node when a unit
displacement is imposed on the ith node. For a linear
material, [K] should be symmetric, i.e. k; = k;, according to
the Reciprocity Theorem. Consequently, one should expect a
symmetric [K,].

In this model, it 1is assumed that the modal
frequencies and mode shapes are the same as those of the
associated undamped vibration system. Solving the real

eigenvalue problem of equation (3.18), one obtains the

specific damping capacity in the rth mode as given by:
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g = {7 (Kp1 {0}

(3.35)
{37 (K] {0}

where {¢}"” is the rth moda shape of the system.

3.3.4 Comments on modelling methods

While the philosophy behind the VED model is clear,
the underlying principles of the SDC model may be obscure. The
definition of SDC provides a generalized and realistic
description of material damping in cases where the mechanisms
of damping are unknown or too complicated to represent. These
two models are different in the mathematical treatment and
need to be examined for both polymer-based and for metal-based
composites.

Table 3.1 lists the damping coefficients used by other
researchers as well as by the present author. It can be seen
that the coefficients in the present models are more
consistent and complete for implementation in the mathematical
models. To the author’s understanding, there is no substantial
difference between using the damping parameters of ¢ and 7.
The simple relationship between them is given in equation
(2.20).

Five elastic constants have to be used for

transversely isotropic materials and consequently there should
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exist. five damping coefficients to describe the damping
properties. This study can be extended to most general cases
of anelasticity problems according to the Correspondence
Principle, in which all stiffness elements Cy, can be replaced
by complex B.

The most important feature of the present modelling
approaches is that the damping terms are embedded in the
matrices of [K'] and [(K,], and are evaluated by the
conventional finite element techniques. The implementation of
these modelling approaches are straightforward.

However, it should be noted that material damping
depends on the frequency and temperature for polymeric
materials and on the stress level for metallic materials. A
more general form of damping parameters can be assumed in the

form:

Vv = y¥(w,T,0), or 7 =17(w,T,0) ,

where w angular fregquency;

T

temperature;

stress tensor.

o
This assumption yields matrices [K'] and [Kp)} which are

stress-level, frequency, and temperature-dependent.
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CHAPTER 4
THE MODIFIED MODAL STRAIN ENERGY METHOD AND

IT8 APPLICATION TO VISCOELASTICALLY DAMPED BYSTEMSB

4.1. Btatement of problem

The concise notion of complex modulus in viscoelastic
theory provides a basic and mathematically consistent tool,
and hence it is very useful in computations. As a result, the
study of free vibrations based on this assumption involves
solving a complex eigenvalue problem defined by eguation

{(3.24), which is rewritten as:

[K*){e"}= ()2 (M) {0"}, (4.1 a)

or as:

([(Kel +i[K)){o )= (0 )2 (M) {0}, (4.1 b)

Both matrices [K;] and [M] are real symmetric and
positive definite. [K;] is a real symmetric positive or semi-
positive definite matrix. Moreover, both [K;] and [K,] are
frequency-dependent.

Premultiplying both sides of equation (4.1) by the

Hermitian transpose of {¢'}, one obtains Rayleigh’s quotient:

79
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(w')zz {¢'}"[K']{¢'}' (4_2 a)
for¥iM) {0}
which can be rewritten in the form:
(we)2 = {¢.}"[KR] {¢.} - i {¢-}"[KI] {¢.} "'('.4.2 b)

{o- VM1 {e"} {o VM {o°}

It can be shown that for any real symmetric matrix

(A], the following relation holds:

{o°Y'14){¢"} = real value . (4.3)
This is because
{07} = ({en)+ i{e,})" = {&n} - ile,} (4.4)
and
{o Y 1A {0} = {0} (A {0n}. (4.5)

Thus, for the complex symmetric matrix of (K'], the
following relationships can be obtained from equations {3.23)
and (4.2)

ot = 12V IKIlet}t

{o* Y (M1 {o"}

2, o @7 VKI{e"}
{o V' (M1{e"}

(4.6)

Eliminating «® in equation (4.6) gives
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_{et VK e} _ U,

=, (4.7)
{¢* V(K1 {¢"} Us

where U, and U, are the dissipated energy and strain energy,
respectively. Note that the solution of the complex eigenvalue
problem is needed to obtain 7.

The Modal Strain Energy (MS8E) method assumes that the
damped system can be represented in terms of the real normal
modes of the associated undamped system. Thus, the MSE method
yields an approximate -a2valuation of the loss factor, or the
modal damping, which is given by:

. _ {oVix) {¢}

. 15 K] er (4.8)
N Py T RECY:

where {¢} is a real eigenvector which is the solution for:

[Ke) {0} = o [M] {0} . (4.9)

Since the MSE technique allows one to compute modal
damping by a real, instead of a complex, eigenvalue solution,
the following two advantages are gained over an exact
solution:

a) The computational cost is greatly reduced;

b) The method can be easily implemented in existing

commercial finite element programs.

However, it 1is important to assess the errors
resulting from the approximate solution of the MSE method. To

the author’s knowledge, such an evaluation of the error in the
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MSE method does not exist in the open literature. As will be
demonstrated in details later in this chapter, large errors
can be involved in the evaluation of the loss factor by the
MSE method when the natural fregquencies are not well
separated, or when heavy non-proportional damping is
encountered in the vibratory systems.

The errors associated with the approximate solutions
for non-proportional damping were found to be significant,
indicating the importance of conducting an adequate error
analysis. However, this study has wainly been made on
viscously damped systems.

The specific objectives of this chapter are:

a) to develop a Modified MSE method which provides

a better approximation;

b) to propose numerical indices for the evaluation

of the approximate methods;

c) to investigate the nature and magnitude of the

errors inherent in both the MSE and the Modified
MSE methods.

The numerical studies are to be conducted to

illustrate the application of the proposed method and the

proposed indices.
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4.2. The Modified Modal Strain Energy methed

Similar to the MSE technique, the proposed Modified
MSE method also solves a real eigenvalue problem for the
evaluation of modal damping. It is important to choose a real
eigenvalue problem so that a proper real eigenvector can be
used to obtain the approximate n in equation (4.7). In the MSE
approach, n is evaluated using the real eigenvector {¢} which
is independent of the damping stiffness matrix [K;]. This may
give rise to large errors in many cases.

The idea of the Modified MSE method is to define a
real eigenvalue problem which takes the damping matrix (K]
into account. The influence of damping has been considered in
terms of a weighted damping matrix, which actually results in
a perturbation on the associated undamped system. The value of
the weight is approximately related to the average over all
modal damping. Consequently, the loss factor for the Modified

MSE method is taken as:
= _ {o¥(x){e}

" — = (4.10)
{oV [K,] {&}

where {¢} is a real eigenvector which is associated with the

eigenvalue problem:

([Kx) + BIKD) {@}= % (1 + B7)(M] {8}, (4.11)
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Here 8 is a real constant, calculated from:
trace(K,)

B=— (4.12)
trace[K;]

where trace [A] for an (nxn) matrix is given by:

trace [A] = Y A, =Y N\, (4.13)
it il

in which A; and A, are the ith diagonal term and the ith
eigenvalue of [A]), respectively.

By comparing equations (4.9) and (4.11) it can be seen
that the MSE method is a special case of the Modified MSE
method, i e. when B = 0, we have {¢} = {¢}. The extra
computational cost of the Modified MSE method over the MSE
Pmethod is negligible compared to the total cost of the
solution.

When [K,] = a [K;] where a is a constant, the system
exhibits a proportional damping. In this case, all modes will
be identical to the real eigenvectors of the undamped
vibratory system. It will have the same loss factors, i.e., o®
= a (i=1,2,...,n). All motions of a proportionally damped
system are exactly in phase or out of phase at resonance,
resulting in modal displacements that simultaneously reach
their extremes. For such a case, both the MSE and the Modified

MSE methods render the exact solution for the eigenvector, i

e., {¢'} = {¢}.
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In the general case, which is normally a case of
non-proportional damping, the eigenvector {¢'} will be
complex. The system modes must be described with phase angles
as well as magnitudes. Any estimation of 5 using only a real
eigenvector will give rise to an error. It is our objective to
reduce this error by taking into account the effect of the
damping matrix. Equation (4.12) for the calculation of f§ is
basically an ewmpirical formula. A mathematical rigorous
analysis can be made to obtain the optimum value of 8 for the

best estimation of error in 7.

4.3. Proposed indices

4.3.1. Indices for classifying systems

As previously indicated, the Modified MSE method, as
similar to the original MSE method, is an approximate
technique which is developed to simplify the computations and
to improve the accuracy. It is difficult to evaluate the
errors by a strictly mathematical approach. Moreover, the
conditions under which the error of approximation is
acceptable have never been clearly specified. It is our
objective here to identify these conditions and to propose
practical indices to assess the accuracy of the approximate
solutions.

Several indices are suggested. Each index takes into
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account some particular aspect of the viscoel&stically damped

system. These are as follows:

a) Non-Proportionality Index (NPI)

It is defined as follows:

[NP]
NPT = _—-—-" I, ' (4.14)

"[KR]"f

where "[]"rdenotes the Frobenius norm, 1 e.,

112

fe]  ju=i

and [NP] is the non~proportional matrix, defined by

[Kp)] - a[K|] ax0 ,
(NP] = { (4.16)
(0] a=0 ,

The constant o is obtained by using the least square

method for a minimum "[NP]!I:

E E (KR‘IKIU )

o = T . (4.17)

n

YD (K, )

inl jal

Four classes are suggested based on the values of thL
NPI:
i) Proportionally damped or undamped system,

NPI = 0;
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ii) Lightly non-proportionally damped system,
0 < NPT < 0.1;
iii) Moderately non-proportionally damped system,
0.1 < NPI £ 0.5;
iv) Heavily non-proportionally damped system,

NPI > 0.5.

b} Damping Level Index (DLI)
It is defined as follows:
1 = .
DLI = = Yy oae. (4.18)
i=1
Based on the DLI values, we proposed four classes:
i) Undamped system, DLI = 0;
ii) Lightly damped system, 0 < DLI < 0.02;
iii) Moderately damped system, 0.02 < DLI < 0.2;

iv) Heavily damped system, 0.2 < DLI £ 1.0.
c) Frequency Separation Index (FS8I)

It is defined as follows:

. o) e
FSI = min [%} r=1,2,....,n-1. (4.19)
w

Based on the FSI values, the vibratory system may

belong to one of the following four classes:
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i) Repeated frequency system, FSI = 0;

ii) Closely spaced frequency system, 0 < FSI < 0.02;

iii) Moderately spaced frequency system, 0.02 < FSI g
0.1;

iv) Well spaced frequency system, FSI > 0.1.

The ranges of the indices corresponding to individual
classes are selected, for convenience, to characterize the
systems. Each index is normalized to a relative value for the
n_entire system. Sometimes, the first m (m < n) modes are of
interest in an analysis for a large scale system. In this
situation, the indices of the DLI and the FSI will be
evaluated for those modes and considered as representatives of
the entire system.

The computation of any index regqguires only the
information of the known matrices and the results by the
approximate methods, e.g., [K;], [K]1, @ and 3". These indices
are plausible because they provide reasonable identification

of the system, and involve simple algebraic manipulations.

.7
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4.3.2 Overall Error Index

In the assessment of the accuracy of the approximate
methods, the modal parameters are compared with the exact
solutions. The absolute error associated with the rth modal
parameter y”, either damped natural frequency or loss factor,
is defined as:

E® = g0 - y@ (4.20)

where 9® is the estimated parameter obtained by using an
approximate method. For an n degree-of-freedom system, there
will be n terms of EY, It is convenient to describe them in
a vectorial form {E}. Usually, the error EY varies from one
mode to another. In order to evaluate the overall deviations
as compared to the exact solutions, we define the Overall

Error Index (OEI) as:

| {&

OEI(y) = 'ST(}y")l X 100 (%), (4.21)

in which ||{E}|, is the first order norm:

n

I{E, =% &), (4.22)

ral

and

sum(y) =Y, y¥. (4.23)
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In definition of equation (4.21), the OEI is an

overall relative error index, which can also be expressed as:

OEI(y) = ¥ (w9 (y) |RE(©|) (%), (4.24)

rel

where RE(y)" is the relative error associated with the rth

mode parameter and is defined by:

N - r
RE(y)© = %HL“ X 100 (%) . (4.25)

WP (y) is the weight associated with the rth mode and is given

by:

Ww(y) = A (4.26)

Therefore, the OEI is equivalent to the weighted sum of the
RE(y)®. Small values for y® will have less contribution to the
OEI. This is an appropriate treatment in the assessment of the
overall error of modal damping, so that the contribution of
large RE(7)" resulted from insignificant 3® can be reduced (i

e. when ¥ = 0, RE(%)}™ might be enormous).
4.4. Typical examples
A computer simulation was carried out. Both the HMSE

and the Modified MSE methods were applied for the study of the

multi degree-of-freedom systems shown in Figures 4.1 and 4.2.

A
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These systems are chosen because their exact solutions can be
obtained by solving the associated complex eigenvalue problem.
The simulation results will also provide useful insight for
the laminated plate problems.

Six cases were studied as shown in Table 4.1. Cases 32
and 62 have very closely spaced modal natural frequencies, FSI
= 0. Case 61 is associated with a moderately spaced frequency
system. The other cases belong to well spaced freguency
systems. The system configurations in Cases 33 and 63 were
tailored to include more off-diagonal terms of k'j(i»j) in the
complex stiffness matrix [K']. Since the maximum value of loss
factor for viscoelastic materials is approximately equal to 1,
the loss factor for each spring was assigned in the range 0 <
S 1.0,

One of the significant characteristics of viscoelastic
materials is that the stiffness and damping are dependent on
both frequency and temperature. In the examples treated here,
material data were used near a given natural frequency to be
able to obtain the modes in the vicinity of that selected
frequency. In such a case, the matrices were considered
piecewise frequency independent. Under this consideration the
assumption of frequency independence is adequate.

Table 4.2 shows Case 31 of the simulation results. The
@, and @, used to determine the RE(y) were evaluated using the
first two terms in equation (3.26). Usually, the estimation of

modal damping is poorer than that of the modal fregquency.
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Table 4.1 Data of multi degree-of-freedom systems

Case m (10° Ns?/m), w®  (1/s)
Number K; (10® N/m)
m = 3.0, m = 3.0, oV = 27.95,
Case 31 my = 3.0. w? = 51.64,
(Figure 4.1 a) kK, = 4.0, k, = 4.0, W® = 67.47.
kj = 4.0, k4 = 4-0-
m = 3.0, m = 0.3, o) = 16,23,
Case 32 m = 3.0. w® = 36.70,
(Figure 4.1 a) k, = 4.0, k, = .04, o® = 36.74.
k3 = -04, k4 = 4-0-
m = 3.0, m = 4.0, o = 18.31,
Case 33 m = 5.0, w? = 51.11,
(Figure 4.1 b) k, = 6.0, k, = 5.0, w® = 73.28.
k3 = 4-0' k4/2=1 5.
m = 3.0, m = 3.0, o = 16.25,
Case 61 m = 3.0, m = 3.0, w® = 31.69,
(Figure 4.2 a) mg = 3.0, mg = 3.0. w® = 45.53,
kK, = 4.0, k, = 4.0, o® = 57.10,
Ky = 4.0, k, = 4.0, w® = 65.80,
Ks = 4.0, ks = 4.0, o9 = 71.20.
k, = 4.0.
m = 3.0, m, = 3.0, o = 11.40,
Case 62 m = 0.3, my = 0.3, w?® = 19.75,
(Figure 4.2 a) mg = 3.0, mg = 3.0. w® = 22.85,
k, = 4.0, k, = 4.0, w® = 23.00,
k; = .04, k, = .04, w® = 59,12,
ks = .04, ks = 4.0, w® = 59.12,
k‘; = 4.0,
m = 1.0, m, = 2.0, o = 11.35,
Case 63 m = 3.0, m = 4.0, w® = 34.93,
(Figure 4.2 b) mg = 5.0, mg = 6.0. w® = 41.75,
k, = 8.0, X, = 7.0, w® = 61,26,
k, = 6.0, k, = 5.0, o® = 85.72,
ks = 4.0, kg = 3.0, w® = 133.4.
k,/2 = 2.0.




94

Table 4.2 Simulation results of Case 31

UIVIE YR PP PR wp® wp® 7® A
1.0,1.0,1.0,1.0 30.705 56.736 74.129 1.0 1.0 1.0,
( 2.395 2.395 2.395 0.0 0.0 0.0)
[ 2.395 2.395 2.395 0.0 0.0 0.0)]
0.3,0.6,0.3,0.6 28.880 52.872 68.970 0.430 0.450 0.454,
{~-0.781 0.142 0.302 4.651 0.0 ~0.777)
[-0.809 0.142 0.308 -0.050 0.0 =0.009]

0.4,0.6,0.6,0.4 28.608 53.142 69.958 0.425 0.500 0.572
(-0.060 0.210 0.371 1.072 0.0 -0.156)
[-0.0860 0.210 0.374 -0.035 0.0 -0.011]

0.1,0.2,0.3,0.4 28,287 52.269 67.757 0.245 0.245 0.254
(-0.427 -0.432 0.356 1.901 1.975 -1.458)
(~0.428 -0.433  0.357 -0.034 0.061 -0.052)

0.2,0.3,.35,0.2 28.133 52.004 68.192 0.182 0.243 0.301
(=0.240 0.029 0.061 1.406 -0.077 -0.140)
[-0.235 0.029 0.062 -0.113 -.0005 -0.017]

0.6,0.3,.35,.12 28.798 652.262 68.264 0.331 0.346 0,332
(-1.427 0.258 0.184 7.059 -1.039 -0.587)
[~-1.477 0.261 0.185 0.173 ~0.130 ~0.038)

i1.0,>.0,0.0,0.0 29,211 57.326 67.037 0.472 0.120 0.824
(-1.335 =7.104 3.792 5.989 318.0 -39.32)
[-1.381 ~-6.880 4.988 -3.736 59.36 -14.15]

0.0,1.0,1.0,0.0 28.981 53.142 72.370 0.065 0.500 0.878
(-3.309 0.210 1.721 125.2 0.0 =2.770)
[-2.398 0.210 1.915 -23.84 0.0 -0.493]

0.6,0.4,0.2,0.0 28.724 53.118 67.307 0.279 0.275 0.319
{-1.611 -1.690 1.370 7.438 8.902 -6.006)
{-1.617 -1.696 1.383 -0.517 1.040 -0.810]

0.1,0.2,0.1,0.2 28.666 51.784 67.642 0.14% 0.150 0.150
(-0.142 0.002 0.003 0.593 0.0 -0.101)
{-0.142 0.002 0.003 -0.0 0.0 ~0.000)

Notes: Values in parentheses and bracket give the RE(y)" (%)

corresponding to the MSE and the Modified MSE methods,
respectively.
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The values of the OEI for six cases are listed in

Tables 4.3-4.8. The various damping configurations were

.selected_to simulate some coating schemes for viscoelastic

layers on plates. In Table 4.3, for example, the locally

distributed coating is simulated by {%;,, %;, 73, %} = {1.0,

1.0, 0.0, 0.0}. The globally distributed coating is simulated

using {#%,, 73, M3, 74} = {0.3, 0.6, 0.3, 0.6}. The values of the

DLI are close to each other for both examples, but the NPI
value for the former is higher than the latter.

The influence of the configurations of the systems on

the estimated error is demonstrated schematically in Figure

4,3. The following two damping configurations were

investigated:
a) Moderately non-proporticnally damped system,
7,=0.001A, %,=0.002A, #,=0.001A, %,=0.002X,
{NPI=0,164 for Case 31, NPI=0.311 for Case 32);
b) Heavily non-proportionally damped system,

7,=0.001\, 75,=0.001A, %,=0.0, 9,=0.0,

{(NPI=0.655 for Case 31, NPI=0.707 for Case 132);
where A is an incremental factor. While the NPI has the same
value in each case, the DLI is amplified by a factor A.

One can draw the feollowing conclusions from the
numerical studies presented here:
a) If the system is lightly damped, i e., DLI <

0.02, and 1is associated with low non-

proportionality, i e., NPI < 0.1, and with well
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spaced frequencies, i e., FSI > 0.2, then each
of the methods yields an error within an
acceptable bound, < 1.0 %.

For most configurations as shown in Figure 4.3,
the Modified MSE method gives a better
estimation of 75 than the MSE method. When the
error associated with the MSE method is
exceedingly large, the Modified MSE method
improves the accuracy appreciably.

Generally, the OEI will increase with the
increment of the DLI as shown in Figure 4.3 a,
b. Exceptions occur for a closely spaced
frequencies as given by Figure 4.3 ¢, d, for FSI
= 0.

The non-proportionality of the system will have
bad influence on the estimation of the accuracy
as shown in Tables 4.3 to 4.8.

When the modal freguencies are too close, the
accuracy may be reduced appreciably.

A large error occurs when the system is heavily
damped, i e., DLI > 0.2, and is associated with
closely spaced modal frequencies, 1 e., FSI <
0.02, and with a heavy non-proportionality, i

e., NPI > 0.5.

Three indices have been used to characterize the

When a system exhibits high damping and high non-
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proportionality, the approximation solutions tend to deviate
significantly from the exact. This is noticeable when the
imaginary parts of the eigenvector {¢'} become more prominent.
To replace the complex eigenvector by a set of real
eigenvectors, for the estimation of 3, will generally cause
large errors.

It is also noted that when modal freguencies of the
systems are closely spaced, the estimation of the errors may
become poor. The following comparison between Case 31, a well
spaced frequency system, and Case 32, a closely spaced
frequency system, demonstrates our observation.

The same damping configuration of the system is used

for both cases. It is given by:

{7, M3 M3, 4 }= {0.2, 0.2, 0.2, 0.2 }.

The exact solutions for the eigenvalues and eigenvectors are

given by:

i) CASE 31:

783.4(1+0.1491)
(w; )2 = 2667 (1+0.1501)
4555(1+0.1501)

0.714( 2.8°) 0.986(174.4°) 0.714(-177.2°)
1.000( 0.0°) 0.001( 1.3°) 1.000( 0.0°) |.
0.704(-2.8°) 1.000( 0.0°) 0.704( 177.2°)

(o]
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ii) CASE 32:

263.4(1+0.1501)

(wy)? 1348(1+0.1011)

1348(1+0.1991)

0.013( 6.2°) 1.000( 0.0°) 0.013( 84.9°)
1.000( 0.0°) 0.125(-173.0°) 0.122(173.0°) ] .
0.012(-6.2°) 0.013( 102.0°) 1.000( 0.0°)

[¢°]

While Case 31 has distinct eigenvalues, Case 32 has
two closely spaced eigenvalues. The complex mode shapes of
Case 31 have phase angles close to 0° or 180°. However, this is
not true for Case 32, in which the second and third modes have
phase angles far from 0° or 180°. This indicates that closely
spaced modal frequencies may lead to prominent imaginary part
of the eigenvector {¢'}. Consequently, the estimation of 75 by
a real eigenvector will carry a larger error in this case than

in a well spaced frequency system.

4.5, Comments

The MSE methed, as an approximation, has been in use
for viscoelastically damped vibration analysis of the coated
or sandwich structures. An overall error index (OEI) has been
suggested for the first time to express the deviation of the
MSE method from the exact solution.

The Modified MSE method has been developed and

proposed. It was shown that the MSE method is a special case
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of the Modified MSE method. By adding a weighted damping
stiffness matrix (K] in a real eigenvalue problem, the
estimation of the modal damping is improved, especially for
cases where the error inherent in the MSE method is
exceedingly large. The Modified MSE method proposed here
provides a positive approach to improve the approximate method
especially if better £ coefficient is used.

Indices (NPI, DLI, F8I) have been suggested for the
first time to characterize a viscoelastically damped system.
These indices serve to evaluate and compare the approximation
methods relative to the exact solution.

Based on the present numerical studies, empirical
rules have been obtained. If the system is lightly damped, i
e., DLI < 0.02, and 1is associated with low non-
proportionality, i e., NPI < 0.1, and with a well spaced
frequencies, i e., FSI > 0.2, both the MSE the Modified MSE
methods are likely to give a good estimation of the modal
damping, i e., OEI{(n) < 1.0 %. Generally, the OEI will be
increased with the increment of the DLI and the NPI. When the
modal frequencies are too close, the accuracy of the

approximation to the corresponding modes is generally less.
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CHAPTER 5

NUMERICAL BTUDIES

The theoretical principles presented in Chapters 3 and
4 were converted into a finite element program capable of
predicting both undamped and damped free vibrations of
laminated composite plates. All computations were carried out
using FORTRAN-77 in double precision on a Silicon-Graphics
workstation.

The present program makes use of nine~-node plate
elements of the Lagrangian family, and four/eight-node plate
elements of the Serendipity family. The selective integration
scheme has been employed. For example, when a four-node
element is used, the 2x2 Gauss rule is employed for membrane
and flexure; while the 1Xx1 Gauss rule is employed for shear
contributions. When an eight-node or nine-node element is
used, the 3x3 and the 2x2 Gauss rule are applied respectively.

The following relation is used for shear correction factors:

5 .
KK, = r (2,7=1,2) .

In the numerical investigation conducted in this
chapter, a full plate with 4x4 mesh configuration and 9-node
plate elements was used. All plates were subjected to one of
the following boundary conditions as illustrated in Figure

5.1:
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a) BC-Free, a completely free plate;
b) BC-Clamped, a four-edge clamped plate;
c) BC-S1, a simply supported plate free of in-plane
displacements normal to the boundary;
d) BC-S2, a simply supported plate free of in-plane
displacements tangent to the boundary.
5.1. Undamped free vibrations

Two types of materials were chosen for the numerical

studies of undamped free vibrations. They are characterized by

the following dimensionless material properties:

i)

ii)

Isotropic, typical of metallic materials:
E|/E, = 1.0, Gp/E;, = 1/2(1 + pp), &, = 0.30.
Material 1, typical of graphite epoxy for the
orthotropic:

El/E2 = 40, Gﬂ/Ez = 0-6, sz/Ez = 0-5' H’IZ = 0.25.

In order to facilitate comparisons of the results and

make them applicable for a wider class, the dimensionless

fundamental frequency & was used in the analysis. It is given

by:

& =wa? | L . (5.1)
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Figure 5.1 Boundary conditions of plates
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Since w is proportional to v(E;/p), the expression for o is
independent of the values of the elastic modulus E; and the
mass density p. Therefore, E, and p are set to unity in this
study for convenience in the computations.

The results of the free vibrations of a four-layer,
antisymmetric angle-ply, [45°/-45°/45°/-45°] square plate are
given in Table 5.1, together with the results reported by
Reddy (1980), Kant (1989) and the closed form solution by Bert
and Chen (1978). It can be seen from Table 5.1 that the
strategy developed by the present author gives considerably
accurate results.

Figures 5.2 - 5.16 show the mode shapes of the plates
for the Isotropic and Material 1 with various lamination
arrangements and boundary conditions, while the geometry of
the plates is unchanged. The fibres of orthotropic or 0°
layers are aligned along a horizontal direction as shown in
Figure 3.1. The values in brackets are the dimensionless
frequencies. The values in parentheses are the numbers of
transverse vibration waves along the horizontal and the
vertical directions, respectively. In the transverse vibration
modes, the fine solid lines represent the nodal lines. In the
in-plane vibration modes, the dotted lines display vibration
shapes of the corresponding fine solid lines.

The natural modes of the plates are normally
influenced by the material properties, the boundary

conditions, the lamination arrangements and the geometry.
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Table 5.1. Dimensionless fundamental frequencies, &, of a
simply supported square plate; a/h = 10,
Material 1, stacking sequence: [45°/-45°/45°/-
45°], BC-S1, NDFPN = 5.
Reddy (1979) Kant (1989) Present Author Exact
Half Plate Full Plate Full Plate
2 x 2 4 X 4 4 X 4 Bert and
m n 8-Node 9-Node 9-Node Chen{1978)
1 1 18.26(-1.08) 18.45(-0.054) 18.47(0.054) 18.46
In-plane’ 34.57
1 2 35.59(2.065) 34.54(-0.946) 35.02(0.430) 34.87
2 2 - 49.99(-1.049) 50.65(0.257) 50.52
1 3 54.37(0.184) 53.87(-0.737) 55.48(2.230) 54.27
2 3 70.32(4.690) 65.08(~3.112) 67.77(0.893) 67.17
In-Plane 73.01
1 4 79.32(5.367) 75.25(-0.004) 77.26(2.630) 75.28
3 3 99.60(20.23) 81.99(-1.026) 83.01(0.205) 82.84
2 4 - 85.05(-0.258) 84.98(-.340) 85.27
Notes: FOST for all FEM solutions.

NDFPN = Number of degrees of freedom per node, 5,

= (u, v, W, ¥, ¥).

m, n = The number of transverse vibration waves
along horizontal and vertical directions,
respectively.

* = In-plane vibration modes.

Values in parentheses represent percentage errors with

respect to the exact solution.
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The mode shapes of laminated plates differ from those
of isotropic plates in the following aspects:
i) directional preference;
ii) shift of the in-plane vibration mode;
iii) variation of mode shapes.
The directional preference manifests itself when the
plate exhibits more tendency to form vibration modes along a
particular direction than along other directions. This becomes
pronounced in the case of orthotropic plates. As shown in
Figure 5.4, one notices that each of the (1,2) and the (1,3)
modes has frequency lower than the (2,1) mode. In contrast, an
isotropic plate, as shown in Figure 5.2, has the same
frequency for both the (2,1) and the (1,2) modes. The degree
of directional preference is influenced by the lamination of
the plate. A four-layer [0°/90°/90°/0°] plate as shown in Figure
5.6 exhibits less degree of directional preference than an
orthotropic plate, while a four-layer [0°/90°/0°/90°] plate as
shown in Figure 5.8 does not exhibit directional preference.
This can be explained by comparing the structural properties,
the boundary conditions, and the dimensions of the plate in
the x and y directions. If all remain unchanged when x is
exchanged with y, the plate will not show directional
preference as shown in the case of a [0°/90°/0°/90°] plate. This
indicates that it is also possible to obtain mode shapes for
laminated plates without directional preference. In this case,

there may exist two possible mode shapes for the same frequency.
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In addition to the transverse vibration modes, three
in-plane vibration modes for the foui-layer [45°/-45°/45"/=45")]
plate were obtained as shown in Figure 5.10. These in-plane
vibrations are reported here in Table 5.1 for the first time.
While the first in-plane vibration mode is the seventh
fundamental frequency, & = 32.94, for the isotropic plate
shown in Figure 5.2, it shifts to be the fourth, & = 31.45,
for the orthotropic plate shown in Figure 5.4, and to be the
second, @ = 34.57, for the [45°/-45"/45"/-45°] plate shown in
Figure 5.10.

The fundamental frequencies of the in-plane vibration
modes for the above three cases are almost egual. The change
of the order of the in-plane vibration modes relative to the
other modes is mainly due to the remarkable shifts of some
bending modes. For instance, the nondimensional fundamental
frequency corresponding to the (1,2) mode of the isotropic
plate is 13.87 as shown in Figure 5.2, while for the four-
layer (45°/-45°/45°/-45°] plate this frequency shifts to a much
higher value of 35.02 as shown in Figure 5.10. As a result,
the first in-plane vibration becomes a low vibration mode
which is associated with the second natural frequency of the
laminated plate. Since the first in-plane vibration mode of a
laminated plate may often shift to a relative low order, it is
important for the structural designer to evaluate both the in-

plane and the bending vibration modes.
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The mode shapes of a laminated plate are influenced by

the lamination of the plate. This is demonstrated in Figure
5.17, which shows the contours of the first mode of a four-
layer (0/-0/],, free-free rectangular plate. The intersections
between shaded and unshaded areas form the nodal lines. The
mode shape varies with the lamination angle § for this
symmetric angle-ply plate. In this particular case, each mode
shape contains a two fold symmetry; the axis of the symmetry
rotates from the horizontal direction as lamination angle #
increases. This can be a useful property for structure

designers to control the dynamic property of a system.
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5.2 Damped free vibrations

In this section, the available published results are
used to assess, compare and evaluate the modelling methods on
polymer-matrix and metal-matrix composite materials. Finally,
the parametric studies are conducted on modal frequency and

damping for the laminated plates.

5.2.1 Application of damping models to polymer-matrix

composites

The data of polymer-matrix composite plates, which are
used in the present investigation, are listed in Table 5.2.
The data for Plates 761 and 734 are mainly taken from the
paper by Lin, et al. (1984) and Ni and Adams (1984 a). Both
plates were made of glass fibre in epoxy resin matrix. We have
assumed G, = G;/2 in the present simulation, since the value
of G, was not reported by Lin or Ni. It is noted that the
final results are only changed by less than 4% when G; is set
equal to G,,. The fact that the final results are found to be
insensitive to the value of G is due to the condition a/h >
100 for thin plates which is satisfied in the present
simulation. In this case the transverse strain energy
constitutes a very small portion of the total strain energy of

the plates.
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The data for Plates GFRP, glass fiﬁre, and CFRP,
carbon fibre, are based on Alam and Asnani’s paper(1986). They
did not provide the dimensions of the plates.’ Instead, they
gave -the dimensional ratios:
a/b = 4, and a/h = 150.

Altering a, b, and h, while keeping their ratios
unchanged, it was found that the fundamental frequencies were
changed bui. the modal damping remained unchanged. Therefore,
the compafiééh will be confined aglyA£o modal damping.

Both of the VED and the SDC damping models are
employed in the present simulation. The Modified MSE method
proposed in Chapter 4 has been applied to solve the modal
damping in the VED model. Tables 5.3 and 5.4 list the natural
frequencies and damping of an orthotropic [0°], plate and an
eight-layer [0°/90°),, plate, respectively. These results are
compared with both the experimental results and the
predictions from Lin et al. (1984) who used an uvnsymmetric
damping matrix in the SDC model while the symmetric damping
matrix developed in Chapter 3 was usaed in the present
simulation. Despite this difference, both approaches gave
predictions that are in reasonable agreement with the
experimental results. Comparing the results obtained by using
the VED and the SDC models in Tables 5.3 and 5.4, it was found
that the difference between the two models is insignificant.
This indicates that both modelling methods will yield close

results if the system is lightly damped.
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Table 5.2 The data of polymer-based composite plates the

" Plate Plate | Plate Plate Plate
Number 761 734 GFRP CFRP
Stacking [0°]4 (0°/90°),, | (8/-076/-01 | (8/-8/8/-0]
Sequence

Boundary BC-Free BC~Free BC-52 BC-52
Conditions

a (mm) 182,75 227.0 1500 1500

b {(mm) 182.75 270.0 375 375

h (mm) 1.64 2.05 10.0 10.0
E, (GPa) 42.62 34.49 55.0 211.0
E,; (GPa) 12.50 9.40 18.3 5.3
Gyr (GPa) 5.71 4.49 9.10 2.60
Gr(GPa) 2.855 2.245 4.55 1.30
T, 0.30 0.30 0.25 0.25
p (kg/m') 1971.0 1813.9 1993.0 1524.0
YL (%) 0.87 0.87 0.0 0.0
P (%) 5.05 4.75 50.0 50.0
VYo, (%) 6.91 6.13 50.0 50.0
Vo (%) 6.91 6.13 50.0 50.0
Yee (%) 0.0 0.0 9.0 0.0
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Tables 5.5 and 5.6 show the modal damping associated

with the first fundamental frequency of four-layer angle-ply
[(6/-6/0/-0 plates. This investigation is performed because
the material damping of those plates is high as noted in Table
5.2. These values are not based on a true material. They were
selected by Alam and Asnani (1986) to determine the damping
effectiveness of the layer plates for various fibre
orientations. The results of the present simulation are
compared with the solutions of Alam and Asnani. The modal
damping of the layered plates, with respect to the fibre
orientations, was computed using the present finite element
method and was found to be consistent with the results given
by Alam and Asnani. The maximum modal damping is obtained for

¢ = 0°, i e., when the plate is completely orthotropic.

5.2.2. Application of damping models to metal-matrix

composgites

In this section the newly developed damping models are
tested for metal-matrix composites. Kinra et al. (1991, a)
studied experimentally the dynamic behaviour of a cantilever
beam made of P55Gr/6061Al, graphite fibre/aluminum matrix
composite. The mechanical properties of a unidirectional

lamina of the beam were given by:
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E, = 158.4 GPa, ¥, = 0.0040,

Er = 36.5 GPa, Y = 0.0155,

Gr = 16.2 GPa, Yo, = 0.032,

By = 0.33, P =  2.43 kg/m’.

Kinra et al. applied the Classical Laminated Plate
Theory (CLPT), and the SDC damping model to predict the
flexural damping of the beam. In that analytical solution, the
mechanical gquantities Gy and y;, were neglected and hence
their values were not reported by Kinra. In the present
simulation using finite element analysis, we assumed G4 =
Gix/2, Yan = Yo., and gu, = 0.

The geometries of each specimen, i e., the length (1),
width (w) and height (h), in the experiments of Kinra et al.

(1991, a) were given by:

l =13.03 - 15.47 <c¢n,
w = 0.955 - 1.217 cnm,
h =0.203 - 0.211 cm.

However, the geometry of the beam was not specified by Kinra
et al. in their predictions. We assigned the following data
for the present analysis:

1l =14 cm,

w=1.2 cn,

h = 0.21 cm.
As will be shown later, these data are adequate and valid for

the comparison.
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In the present finite element analysis, the 9-node
plate elements and 14x1 mesh configurations were used for the
analysis of the four-layer [0/-0/-6/0) beam. The numerical
studies showed that if we double the thickness of the beam the
modal damping changés only very little, i e., < 2%. This is
mainly because the beam is long, 1/h > 60, and has low
anisotropic ratio, i e., E/E; < 5. The results indicate that
the geometry we used is appropriate for the comparison.
Table 5.7 lists the flexural damping of the first mode
which is associated with various ply-angles for the beam
predicted by the present SDC and VED models, together with the
experimental and theoretical results from Kinra et al. (1991,
a). These results are also shown in Figure 5.18. As can be
seen from the Table and the Figure, there is a good agreement
between the present results and Kinra’s results. Both the SDC
and the VED models applied here give close predictions because
of the small damping present in the structure. The maximum
modal damping is observed at # = 48°, while the minimum
damping is obtained when the fibres in the beam are
unidirectional and along the longitudinal direction of the
beam, i e., 8 = 0°. The natural frequencies of the first mode
were found to vary with the ply-angle ¢ as shown in Figure
5.19. This figure indicates that the natural frequency, or the

stiffness, of the beam decreases as § increases.
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5.2.3. Comments on selection of damping models

Two approaches, the SDC and the VED damping models,
were used in the present study. Both models have been
developed to include additional terms for the construction of
the matrices in more complete forms. The experimental data
available in the literature were used to test the present
models for both polymer-matrix and metal-matrix composites.
The damping data, however, indicate that the structures are
not heavily damped, I e., DLI < 0.1l. For the lightly damped
systems, one can make the following conclusions:

a) There is no significant difference in the values
of the natural frequencies, modal damping, and
mode shapes by using the SDC model or the VED
model.

b} The predictions of both modelling methods are in
reasonable agreement with the experiments,
chowing that both methods are appropriate for
the prediction of modal damping of polymer-
matrix and metal-matrix composites, as long as
the damping is low in the system.

It has been noted from the present numerical
simulations that the differences between the results of two
damping models become appreciable for heavily damped systems.
Experimental data for heavily damped systems are neeued to

test which damping model is more appropriate under these
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conditions.

In fact, light damping has been implied by the SDC
model, because it utilises the mode shapes of the associated
undamped system to evaluate the modal damping. There is no
such restriction in the VED model. Consequently, the VED model
is likely to be more appropriate in comparison with the SDC

model for general applications.
5.2.4. Parametric studies

In this section parametric studies are conducted to
investigate the effects on modal damping of side-to-thickness
ratio, the principal moduli ratio, the total number of layers,
and the angle of fibre orientation of the angle-ply plates. A
square plate made of Material 1 as specified in Section 5.1 is
used for this investigation. In addition to the mechanical
properties intyoduced previously the following damping

properties are assumed:

V=¥, =0.01, Yr=yg =y =0.1.

It

Figure 5.20 and 5.21 present the results of non-
dimensional frequency and damping of the first mode vibration
vs. the side-to-thickness ratio respectively. The non-
dimensional frequency increases as the ratio a/h increases,
but modal damping decreases as the ratio increases. However,

they become less sensitive to a/h as it gets larger. They
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approach constant values for high values of é)h, 1l e., >50,
which corresponds to a typical thin plate; It is known that
the solutions using the CLPT, which can give fgther good ™
predictions for a thin plate or a llong beam, are not
influenced by the variation of a/h. Since the FSDT is used in
the present study, the results will have betisr accuracy of
predictions comparing to the CLPT. The CLPT solutions are
likely to yield higher values for the natural frequencies, and
lower values for the modgl damping as shown in Figures 5.20
and 5.21. The main reason for this deviation is that the CLPT
does not take into consideration the transverse shearing
deformation, whose effects on both the natural freguency and
the modal damping cannot be neglected for thick plates or
short beams.

The ratio a,: = 10 was used in the following
parametric studies as shown in Figures 5.22 to 5.27. Figures
5.22 and 5.23 show the variation of modal freguency and
damping with the degree of material anisotropy. For the four-
layer plates under the present investigation, selection of
materials with high princival moduli ratic can be an efficient
way to increase the damping of the structure.

The natural frequency and modal damping may vary as
the number of layers is changed as shown in Figures 5.24 and
5.25. However, these variations tend to be insignificant as

the number of layers exceeds six.

The non-dimensional frequency and damping of the first
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vibration mode for different ply-angles have also been
studied. The maximum damping is obtained for € = 0° as shown
iﬁ ﬁ@gure 5.27, 1 e., for the orthotropic plates; while the
maximum natural frequency occurs for @ = 45°. The natural
frequency and damping are seen to change substantially for
different boundary conditions. Figure 5.26 shows the
dependence of the nondimensional frequency @ on the ply=-angle
0 for free, clamped and simply supported plates. Figure 5.27
shows the dependence of modal damping on the ply-angle for the

same types of support.
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CHAPTER 6

8UMMARY

6.1 Summary and Conclusions

The available theories of laminated composite plates
have been reviewed. Various kinematic models and solutions
were compared and their advantages and disadvantages were
highlighted for practical applications. The selection of a
proper model is problem-dependent and quite often a compromise
has to be made between solution accuracy and computational
cost.

A literature review has also been presented for damped
vibration analysis of layered fibre-reinforced composites.
Material damping was briefly examined for two groups of
composites; metal-matrix and polymer-matrix. The various
mathematical treatments of damping in macromechanical analysis
were described. One approach assumes viscoelasticity for the
polymer-matrix composites. As a result, a complex eigenvalue
problem is encountered in solving the damped free vibrations.
Several methods for the solution of this problem were
outlined. The shortcomings of each method were pointed out.

For laminated composite materials, material damping
studies were identified in two levels. The input and output

data corresponding to micromechanical and macromechanical
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analyses were;defined. In the present work, the damping study
of composites.i}las approached through macromechanical analysis.
Two damping models, namely, the Viscoelastic Damping (VED) and
the Specific Damping Capacity (8DC) models, were developed.
While these two models are in principle based on the existing
““ideas, further development has been made in the present
derivation. According to the Corresponding Principle (Schaper,
1974), the present formulations tend to provide better
construction of the matrices [K'] and [K,], which describe the
physicai systems more completely. An important feature of the
present &DC model is that the damping is described by a
symmetric matrix [K,], which has the same band shape as that
of the stiffness matrix [K] so that it is easily evaluated by
conventional finite element technigues. In addition, since
symmetry is a property for a linear system, the symmetric
damping matrix [K,) is more physically justifiable than the
unsymmetric one which was used in previous studies.

Because of its economical computational cost, the
Modal Strain Energy (MS8E) method is widely used for the
analysis of viscoelastically damped vibrations of coated and
sandwich structures. The present work is the first attempt to
investigate the validity of applying this approximate method.
Several indices, namely, Non-Proportionality Index (NPI},
Damping Level Index (DLI), and Frequency Separation Index
(F8I), have been proposed in order to characterize a damped

system, and an Overall Error Index {OEI) has also bkeen
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suggested to measure the solution accuracy of the approximate
method. It was shown here in the present work that a large
error, 1 e., OEI > 10%, can affect the analysis when the MSE
method is applied to heavily non-proportional damping systems.

For a better evaluation of modal damping, the Modified
MSE method was developed, in which the MSE method can be
included as a special case. Instead of neglecting the damping
stiffness matrix [K,;] in the determination of the eigenvectors
as was the case for the MSE method, we have considered the
influence of this matrix by adding the weighted [K;] to form
a real eigenvalue problem. With such a modification the
estimation of the modal damping is often improved, especially
when the error resulting from the use of the MSE method is
exceedingly large. Though better values of the coefficient f
may be possible using more sophisticated mathematical
analysis, the Modified MSE method provides a positive approach
to improve the approximation. It is believed that an
identification of the error inherent in the MSE or the
Modified MSE methods is difficult to obtain using strictly
mathematical approaches. The validity and the risk of applying
approximation methods can be quantized by the indices proposed
in the present work.

Based on the numerical studies of multi degree-of-
freedom systems, empirical rules have been obtained for the
application of the Modified MSE method to the viscoelastically

damped vibration analysis. If the system is lightly damped, i
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e., DLI < 0.02, and is associated with 1lightly non-
proportionality, i e., NPI < 0.1, and with well spaced
frequencies, i e., FSI > 0.2, both the MSE and the Modified
MSE methods are likely to give a good estimation of the modal
damping, i e., OEI(n) < 1.0 %.

Numerical studies were conducted on the damped and
undamped free vibrations of laminated plates. For undamped
free vibrations, fairly accurate results of the transverse
vibration modes were obtained by the present routine and in-
plane vibration modes were reported for the first time. Three
significant aspects of the vibration of laminated plates have
been described; the directional preference, the shift of the
in-plane vibration modes and the variation of mode shavpes. It
was pointed out that the first in-plane vibration mode might
shift to a very low order fundamental frequency due to the
lamination of the plates.

Experimental data reported in open literature for
damped free vibrations in both polymer-matrix and metal-matrix
composites were used in the present finite element analysis to
test and compare the damping models. The results from both the
VED and SDC modelling methods are in satisfact .ry agreement
with the experimental results. Both methods were found to be
valid as long as the damping is low in the systems. Under this
condition, no significant differences of natural frequencies,

modal damping and mode shapes are found between the two

models. Since a small damping is implied in the SDC model, the
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VED model is considered fo be more appropriate for more
general applications though this needs to be tested by
experimental data on highly damped systems.

The gparametric studies conducted on the modal
fregquencies and damping have been reported with respect to the
side-to-thickness ratio, the principal moduli ratio, the total

number of layers, and the ply-angle of iaminated plates.
6.2. suggestions for future work

The present modelling methods were verified by
comparing theoretical prediction with the experimental data in
the literature. The selection of a particular damping model
for a particular application still needs further study for
heavily damped composite structures.

In this work, the emphasis was placed on the free
vibration analysis to obtain the modal parameters and the mode
shapes. The mode shapes in the present analysis were all
expressed in real eigenvectors. It will be iateresting to
model the response of the system in terms of these modes. The
question may arise; "Are these mode shapes still valid in
predicting the responses of the laminated plates?".

The Modified Modal Strain Energy method provides a
means to obtain better approximations of modal damping. The
solution accuracy is dependent on the proper choice of a

constant 8 which was obtained mainly on empirical basis. By



157
trying other values for §, it was found that the errors can be
minimized. However, an expression of such an optimum value of

f which can be applied a wide class is yet to be found.
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