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ABSTRACT

This thesis has been directed toward the problem of deriving a computable tight lower
bound on the error of DOA estimation with the array processing. This work is developed

based on the logic implied in Ziv-Zakai’s idea and the work for Cramer-Rao lower houad

(CRLB).

A profound understanding of Ziv-Zakai’s idea is presented. The lower bound on the
variance of DOA estimate with one incoming signal is derived applying the logic of Ziv and
Zakai. Then the modified Ziv-Zakai lower bound (MZLB) on the covariance matrix of the
multiple DOA estimates is developed. The theoretic analysis and the simulation resuits
show that MZLB is a tight lower bound over a wide range of signal-noise ratio. It follows
the SNR-threshold phenomenon oceurring in the performance of the DOA estimation well,

and it is easily computable.

It is proved that, the maximum-likelihood estimation of DOA parameters based on

Data Model(2) discussed in this thesis is asymptotically efficient.
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Chapter 1

Introduction

1.1 INTRODUCTION

Bounds on error is an important aspect of estimation theory. In Section 1.2, we introduce
the general knowledge about the lower bound on estimation error. In Section 1.3, we review
previous works on the performance analysis of DOA (directions of arrival) estimation in
array signal processing, and we also discuss the problems of error measure and error bound
under low signal-noise ratio. In Section 1.4, we briefly introduce Ziv-Zakai's idea to derive
a tight lower bound on mean-square error. In Section 1.5, we describe the scope and the

structure of this thesis.
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1.2 LOWER BOUNDS ON ESTIMATION ERRORS

In estimation theory, three issues are of interest:
1. Estimation procedures.

2. Measure of errors.

3. Bounds on errors.

Designing estimation procedures to extract the information from the received data
which contain signal and noise, is a well developed and still very active research topic in
both theory and application. Because there is noise in the reccived data and the number of
the received data is finite, there must be some errors in the estimation results. This is the

fundamental limitation in nature.

Since there are errors in the estimates, it is necessary to measure them, Perlormance
analysis is very important in estimation theory. An estimate without performance analysis
is incomplete. Performance analysis includes two aspects: the measure of errors and their
error bounds. The most commonly used error measures are the bias and the variance of
an estimate. Their bounds reveal the limitation of the accuracy of estimation. The error
bounds provide an important approach to study the estimator performance. Through the
closeness of the estimate performance to its lower bound, the evaluation of the estimalor

can be obtained.
The main known results on the lower bound problem are:
(1). The Cramer-Rao lower bound (CRLD) [78] [81].
(2). The Barankin lower bound (BLB) [1] [81].

(3). The Ziv-Zakai lower bound (ZZLB) {100].



CHAPTER 1. INTRODUCTION 3

Scidman [71] summarized the available lower bounds and compared them for a
special case, which gave the nature and the effectiveness of all the lower bounds mentioned

in the above,

CRLB is an achievable lower bound under some conditions. Also, it is simple to
understand and easily computable. Thus it is used popularly. For linear estimations,
performance analysis is relatively straightforward and for these estimators, the CRLB is
achievable. However, for nonlinear estimations, in general, it is impossible to calculate pre-
cisely the estimation errors. With a finite number of samples, under high signal-noise ratio
{SNR), CRLD can be approximately achieved by the variance of the nonlinear estimation.
But under low SNR, most of the error measures of the nonlinear estimation are obtained
only by computer simulation results, i.e., by evaluating the errors numerically. Also, CRLB
is not achievable. The performance analysis of nonlinear estimation under low SNR seems

to be a dificult problem,

1.3 REVIEW

Recently, various novel estimators have been developed for the directions of arrival estima-
tion in array signal processing, e.g., MUSIC (multiple-signal-classification}, MLE (maximum-
likelihood estimation) (see, e.g., (6] [69] and [80] ). Much work has been conducted to
evaluate the performances of these estimators. There are two important aspects of perfor-
mance evaluation of these estimators, viz., the error measure, and the lower bound on these

estimation errors,

A series of systematic works on the performance analysis of DOA estimation have
been done by Stoica and Nehorai [73}-[77). In their papers, the performances of MUSIC
and MLE were derived and evaluated under asymptotic conditions, the Cramer-Rao lower

bounds on the covariance matrix of DOA estimates were developed. Many other works
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have been developed on the performances of DOA estimation under different conditions.
For example, Rife and Boorstyn [66](67] derived CRLDB for single-tone and multi-tone pa-
rameter estimation from discrete-time observations and gave the evaluation of ML estimate;
Wong et als. [92] derived the CRLB on the covariance matrix for the DOA estimates in-
corporating random motion of sensors; Porat and Friedlander (61) derived the asymptotic
formulas for the variance of the DOA estimates obtained by the MUSIC algorithm for un-
correlated sources, and compared them with CRLD; Gorman and Hero (23] derived CRLD

for parameter estimation with constraints.

As we will see in Chapter 2, DOA estimation is nonlincar, With the finite samples
and high SNR, or with the large samples and finite SNR, CRLD on DOA estimate error is
achievable. The works mentioned in the above mainly study and compare the performance

of DOA estimation with CKLB under these conditions, i.e. in the asymptotic sense.

However, with finite samples, under low SNR, CRLB on DOA estimate error does
not follow closely to the estimator performance and is a loose bound. it does not follow the

SNR-threshold phenomenon which is common to all nonlinear estimations.

For conciseness, in the following, when we mention SNR without menticuing the

number of samples particularly, it means that the number of samples is finite.

Although, performance analysis of DOA estimation in a wide range of SNR seems
to be a difficult problem, some work has been developed. In 1986, Kaveh and Barabell [36]
derived a formula to find out at which SNR the threshold will occur for two closely spaced
signals with the eigen-type estimation method; in 1990, Lee and Wengrovitz [45] extended

the threshold expression in [36] to a more general class of prohlems.

Also, some lower bounds on the DOA estimate errors which are tight over a wide
range of SNR, have been developed. In 1986, Weiss and Weinstein [86] proposed an error

bound containing two types of free parameters. This W-W lower bound was reported to be
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significantly tighter than the CRLB by ché}}sing the optimal values of the free parameters.
In 1987, Nohara [56] applied this W-W lower bound to derive the error bound on DOA
estimates, Their results have shown that, W-W lower bound is valid in the SNR-threshold
region. [lowever the complexity in calculating these lower bounds far exceeds that of the
CRLB. Actually, W-W lower bound and Barankin lower bound use a similar idea that, both
of them apply Schwarz incquality to derive the lower bound, and obtain a tight lower bound
by choosing an optimal free parameters. Therefore they share the common disadvantage

that the complexity of the computation makes them lose practical significance.

1.4 ZIV-ZAKATS IDEA

In 1969, Ziv and Zakai [100} presented a new lower bound for the time-delay estimation. The
main idea is that, by imagining a binary detection procedure based on an estimate, from
which the error measure in detection is transferred into the error measure in estimation,
and making use of the Chernoff formula which is an error measure approximation of the
binary detection problem under some conditions, a tight lower bound on the mean-square
error (MSE) of the time-delay estimate is obtained. This is a totally new idea to derive
the lower bound without applying Schwarz inequality (CRLB, BLB and W-1V lower bound
are derived with Schwarz inequality). Since the Chernoff formula gives a lower bound on
error probability which is effective no matter the SNR is high or low, the resulting Ziv-Zakai
lower hound (ZZLB) is expected to be a tight lower bound under high SNR as well as low
SNR. It follows the threshold phenomenon occurring in the nonlinear time-delay estimation

(0] [S7]. ZZLB is easily computable.

Since the binary detection is detecting one signal identified by one parameter, nat-

urally, Ziv-Zakai's idea works for the single parameter estimation,

The question that arises is if Ziv-Zakai’s idea can be applied to DOA estimation
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which is a multiple parameter estimation.

1.5 SCOPE AND STRUCTURE OF THE THESIS

This thesis works on applying Ziv-Zukai’s idea to derive the lower bound on the covariance

matriz of DOA estimates which contain multiple signals with mulliple types of unknown

paramelers,

The contributions of this thesis are:

. Establishing the relationship between the performance of DOA estimates based on

Data Model(2) which is a simplified model, and that based on Data Model(1) which

is a practical model.

. Proving that MLE of DOA parameters based on Data Model(2) is asymptotically

efficient.

. Giving a profound interpretation of the logic implied in Ziv-Zakai’s idea. Applying

this logic to derive a lower bound on the variance of DOA estimate based on Data
Model(2) for one incoming signal. This is a basic step to show how Ziv-Zakai’s idea

works for DOA estimation.

. Developing the modified Ziv-Zakai lower bound (MZLB) on the covariance matrix of

DOA estimates in white noise based on Data Model(1). MZLE is a tight lower bound

in a wide range of SNR and easily computable.

. Examining the SNR-threshold and A¢-threshold phenomena of CRLE and MZL1I for

DOA estimation.

. Comparing the performances of the MLE of DOA with MZLB and CRLE by simula-

tions. The simulation results show that MZLDB is much tighter than CRLI under low
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CRLB(1)

MZLB(1)

Chapter 3(T)

Chapter 6(T)

Chapter 3 Chapter 5
CRLB(2) Data Model(2) |grrmn MZLB(2)
Chapter 4 Chapter 5
MLE(2) MLE(2)

Figure 1.1: The main structure of the thesis.

SNR, and it follows the threshold phenomenon well.

Since we are interested in the lower bound on the covariance

mates, some models used in the DOA estimation with array processing are introduced in

Chapter 2.

The relationship among the main parts of this thesis is shown

We start our research work from studying CRLB. In Chapter 3, we introduce
CRLB(1), the CRLB based on Data Model(1), and discuss its properties. It is found that
CRLB(1) shows the threshold phenomenon against the separations of DOA (Ag¢-threshold),

but it cannot follow the threshold phenomenon against SNR (SNR-threshold). We establish

Data Model(2), with which the DOA estimate errors is decoupled with

estimate errors such that the resulting CRLB(2), the CRLB based on Data Model(2), is

independent of A¢. Also, we establish the relationship between CRLB(2) and CRLB(1)

with a transformation T.

matrix of DOA esti-

by Fig.1.1.

the signal amplitude
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In Chapter 4, we prove that, in the asymptotic sense, the maximum-likelihood
estimation of DOA parameters based on Data Model(2) (MLE(2)) is efficient, the errors of
the MLE(2) is independent of each other and is independent of the locations of DOA. The
discussion about the achievablity of CRLB(2) shows that, Data Model(2) is a basic data
model to study the achievablity of a lower bound. Therefore, the work of MZLD is started
with Data Model(2). With the simulations, we show that, the variance of MLE(1), the
maximum-likelihood estimation of DOA based on Data Model(1} is a shift of the variance

of MLE(2) approximately.

In Chapter 5, we give a profound interpretation of Ziv-Zakai’s idea, modify the Ziv-
Zakai's lower bound which is for the random parameter estimation, to the lower bound for
the deterministic parameter estimation and develop the lower bound on variance of DOA
estimate based on Data Model(2) for one incoming signal. An understanding of this case is

fundamental to the understanding of the multiple incoming signal case,

In Chapter 6, first, we derive MZLB(2), the MZLB based on Data Model(2), for
multiple incoming signals; then, we develop MZLB(1), the MZLB based on Data Model(1),
on the covariance matrix of DOA estimates for multiple incoming signals with multiple types
of unknown parameters from MZLB(2) with a transformation T, We discuss its propertics.

MZLB(1) is a tight lower bound over a wide range of SNR and is easily computable.

Chapter 7 gives the simulation results under the different conditions and some dis-

cussions.

Chapter 8 gives the summary, conclusions and the directions of some future research

work.



Chapter 2

Preliminaries

2.1 INTRODUCTION

In this chapter, we briefly introduce the estimation of the directions of arrival in array
processing, and define some models in Section 2.2. The notations used in this thesis are

summarized in Section 2.3.

2.2 DOA ESTIMATION IN ARRAY PROCESSING

if we have signals coming from different directions, it is of interest, in many engineering
arcas, to find out the directions from which the signals arrive. To receive the incoming
signals, we usc sensors. A set of sensing elements placed in a known spatial pattern, in
general, is referred to as an array. The task of array signal processing is to extract the
information of interest from the received data which is the output of the array as shown
in Fig. 2.1 in which a lincar array of M uniformly spaced sensors is depicted. The sensors
are all assumed to be identical isotropic alements. The distance between any two adjacent
sensors is assumed to be dg = A/2, where A is the wavelength., This will be the array pattern

nsedl throwghout this thesis.
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Array signal processing has been applied in different disciplines such as radar, sonar,
seismology, and biomedical engineering ete.. In general, the information to be extracted may

be different in different contexts.

In this research work, we concentrate on the bearing estimation, i.c., the estimation

of the directions of arrival of the signals. For simiplicity, it is commonly referred to as DOA

estimation.

In our study, we assume that K narrow band signals are generated from K distinct
far field sources in space. The signals travel as plane waves from the sources toward the
sensor array through a linear medium whose only eifect, on the signals is that of pure time
delay. The wave front is shown by the lines {; in Fig. 2.1. The signals received from the

other sensors, are merely a delayed version of those received at the reference sensor (the

origin 0).

Let sp(n) denote the k** incoming signal from the direction oy at the n® snapshot
as shown in Fig. 2.1, (where, k = 1,..., K, = 1,..., V). The £* signal arriving at the mth

sensor is,

ak(n)cj(ﬁn(rra—l);h sin(ukl)

$tm(n)

a:_.fn)ﬂ-"('"“”'ﬁ"‘ (2.1)

where, ai(n) is the complex amplitude of the signal, and

_ 2wdgsin(oy.)

bx 3

= wsin{ay) (2.2)

since dg = A/2.

The output of the m** sensor is assumed to be a superposition of the K signals,

Y
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source K

source |1 oy
\& e Iy \/

/

!1 A

@
®

e— - - e —@ linear array
2

output

Figure 2.1: DOA estimation with array processing.
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corrupted by the additive sensor noise,

i
rm(n) = Z 3km("') + em(")v (2'3)

k=1

where, e (n) is the noise of the m** sensor at the nth snapshot,

Using the matrix notation, we have,

r(n) = s(n)+e(n)
= D(Ha(n) + e(n), (240)
where, ) .
ri(n)
r(n) = ri(n) , (2.5)
i ra(n) |
) . .
b= » : (2.6)
| ¢l\' i
D(8) = [di, ..., dx], (2.7)
. 1 .
el
dp=| o2oe |, (2.8)

pI(M=1)dx
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and

al(n) ]

amy= | M1, (2.9)

| ax(n) |

e1(n) ]

e(n) = e’(.“) : (2.10)

| em(n) |

Eq.(2.4) is the model of the observed data used in this thesis. There are three main

problems associated with fitting models of Eq.(2.4) to the data r(n) [77].

1.

(=

Detection of the number of the signals K. Methods for this problem are well docu-
mented in the literature (see, e.g., {84} , [82], and [96]}. In this thesis, we assume that

the number of the signals K is known.

. Estimation of the signal amplitude a(n). Once an estimate of ¢ is available, the

estimation of a(n) reduces to a simple linear estimation. We will not discuss estimating
a(n) explicitly. However, the estimation of a(n) will implicitly appear in the following
analysis. Note that, since it is required to estimate {a(n)}Y_; ( not their “ average
characteristics,” such as their covariance matrix ), we will consider these variables as
being deterministic. This assumption does not exclude that a(n) are samples from
a random process. Thus, the distributional results derived in this thesis should be

interpreted as being conditional on {a(n)},.

Estimation of DOA ¢ from the output data r(n) of array sensors. From Eq.(2.8), we

sce that the signal is a nonlinear function of the DOA parameter ¢p. DOA estimation
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(e.g. MLE in Chapter 7) is nonlinear.

This thesis deals with the performance analysis of DOA estimates.

In addition, we make the following assumptions on the received data:

1. The signals and the noisc are independent of cach other. They are ergodic.

2. The noise from the sensors are Gaussian and white spatially and temporally. They

have equal power (o?).

3. DOA estimate is unbiased. Thus, in this thesis, the mean-square error (MSE} of an

estimate and the variance (VAR) of an estimate are the same.

2.3 NOTATIONAL CONVENTIONS

The following notational conventions will be used in this thesis.
M: the number of the sensors.
N: the number of the snapshots.
K: the number of the signals.
o%.: the power of the &** signal.
a2 the power of noise.
P = 5;-;& signal-noise ratio (SNR) for the k** reccived signal,
bold lower-case character or character under arrow: vector,
bold upper-case character: matrix.

R.: covariance matrix or correlation matrix of x.



CHAPTEN 2. PPHELIMINARIES 15
Ix: K dimensions identity matrix,
R(R): the real part of the complex matrix R.
I(R): the image part of the complex matrix R.
CM=2E, (MxK) dimension space.

t yactor in matrix A.

a;: the ¢
Ali, 7]: the (4,7)*" clement in matrix A.

ji: the derivative of pu.

ji: Lthe second derivative of p.

|z]: the absclute value of z.

det: determinant.

diag: diagonal matrix.

H: conjugate transpose.

#1 conjugate.

Tr: trace.

IZ: expectation.

p(z): probability density of random variable z.

P(x > h): probability of z > h.

A © B : the Hadamard product of A € CM*N and B € CM*K je,,

[A © BI[i, ] = Ali j]Bi, 5], (2.11)
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complement error function:

erfe.{z} = —\/;= ]m e~ 24,
T Jr

Delta function:

16
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Chapter 3

CRLB on the Covariance Matrix
of DOA Estimates with Different
Data Models

3.1 INTRODUCTION

Cramer-Rao lower bound(CRLB) on the covariance matrix of estimates is the most com-
monly used lower bound. For DOA estimation, CRLB has received significant attention
and has been evaluated under different signal models and different environments. (see, e.g.,

(61)[T3] and [92] ete.)

Two data models for DOA estimation are considered in this thesis. These mod-
els introduce some assumptions on the data, which are helpful in studying lower bounds.

Different data models result in different lower bounds.

Ber(l), the CRLB on the covariance matrix of DOA estimates based on Data
Model(1), is derived in [77], in which SNR is coupled with the separations of DOA{A).
This complicates the performance analysis. We establish Data Model(2) in this chapter in

order to decouple SNR with A¢ in CRLB performance. The resulting Bog(2), the CRLB

17
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on the covariance matrix of DOA estimates based on Data Modecl(2), is independent of A¢.
Data Model(2) provides a basic data model to study the achievablity of CRLB. We also

show that, Bor(1) can be obtained from Bgpr(2) with a transformation T which is the

function of A¢ and is independent of SNR.

CRLB and Fisher’s information matrix are introduced in Section 3.2, Data Model(1)
and Bgr(1) are described in Section 3.3. It is indicated that Beg(1) is a function of SNR.
as well as the separations of DOA, and Bgpr(1) shows the Adg-threshold phenomenon. In
Section 3.4, Bor(2) is derived based on Data Model(2). It is indicated that Beopr(2) is
independent of the separations of DOA. This will simplily the analysis of the achievablity
of CRLB in Chapter 4. In Section 3.5, the relationship between Bepr(2) and Bepn(1) is
discussed, and a transformation T between them is established. It is shown that T is
dominated by the separations of DOA, the number of sensors, and is independent of the

signal-noise ratio.

3.2 CRAMER-RAO LOWER BOUND

Cramer-Rao bound is a lower bound on the covariance matrix Ry of estimates. It is quite

well known and easy to apply.

Let  be an unknown parameter vector, &; be the ith clement in &, and @ be the

estimate of 8. The covariance matrix of & is

Ry = E{(6 - 6)(6 - 0)"). (3.1)

CRLB on the covariance matrix Ry is given by {31]

BlLp =71, (3.2)
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where, J is the commonly called Fisher’s information matrix:

I = BT,

in which,

Here, In L is the log-likelihood function of the observation data.

Equivalently, the (,1)*" clement in J can be obtained by

J[i, 1] = = E(=——=In L),

52
98,00,

where, £(z) is the expectation of z.

The following conditions are assumed to be satisfied for Eq.(3.2):

I. § is any unbiased estimate of 0

e

0*p(r(n)/6)
98,08,

and

dp(r(n)/0)
09;

exist and are absolutely integrable.

19

(3.3)

(3.4)

(3.5)

In DOA estimation, the likelihood function of the observed data described in Chap-

ter 2 is miven by

N
L= I1ee(m)/é)
n=1
1 N )
B (det{zR ]IV exp{- ;[r(n) - 5(")]HR, Hr(n) - s(n)]}
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N
W exp{—% Zl[r(n) = s(u))[r(n) ~ s(n)]}, (1.8)

€ p=

since the noise covariance matrix is given by

R. = E{e(n)e!(n)} = o1

Taking logarithms,

N
InL=-NMin(ro?) - ;1- 3 e = s(m))[r(n) — s(n)], (3.9)

€ n=i

where,

s(n) = D($)a(n).

This log-likelihood function involves three types of parameters: the DOA (4), the
signal amplitudes (a), and the power of the noise (7). Since there are K arriving signals,

there are K DOA parameters to be estimated.

Different assumptions may be made on the number of the types ol unknown param-
eters and the number of the incoming signals, which result in the dilferent data models.

The CRLB so derived are different with the different data models.

3.3 CRLB(1)

3.3.1 Data Model(1)

We make the following assumptions on the received data described in Chapter 2:

1. The sequence {a(n)}L, is frozen in all realizations of the random data {r(n)}N_;
{e{n)}_, varies from realization to realization. The received data {r(n)}, which is

conditional on {a(n)}, have a Gaussian distribution:

{r(n)} ~ N(D(d)a(n),o2I). (3.10)
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2. The unknown parameter vector is
§={¢",R[a"(1)), 3(a" (V)] ..., RlaT(N)], ST(V)], 02}, (3.11)

in which, 4 is the DOA parameter vector
(; - [¢1: sny ¢K]T!

R[a(n)] is the real part of the K dimension vector a(n}). S{a(n)] is the image part of
the K dimension vector a{n). o? is the power of the white noise. Therefore §is a

(K+2NK+1)-dimension vector.

Note that, here, the number of the arriving signals is K, and there are three types
of unknown parameters. This is referred to as the multiple incoming signals with

multiple types of unknown parameters (MSMT) in this thesis.

3. The incoming signals are uncorrelated, and for large N,

N Ned I=k
Z ap(n)ay(n) ~ (3.12)
n=] 0 l # k.

The data model with these assumptions is called Data Model(1). This data model
is relerred to as the “conditional model” introduced in {77]. We denote CRLB for DOA

estimation based on Data Model(1) as CRLB(1).

3.3.2 CRLB(1)

The work introduced in this section is developed by Stoica and Nehorai [77).

Since there are K unknown DOA, CRLB(1) on the covariance matrix of DOA esti-
mates based on Data Model(1) is a KxK matrix. It is obtained from the Fisher’s information

matrix J which ts a (K+2NK+1)x(K+2NK+1) matrix.
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Substituting Eq.(3.11) into Eq.(3.4) yields

12;?: dln L

087, Ma?(1)], S{aT(1)], .., RT(N)], SaT(V)], 07}

Then the Fisher’s information matrix can be obtained such that
1= E(yy"),

in which, ( in the following equations, nl and n2 mean snapshots )

N
3;}1'%"-] = -032- Z RIXH(n)DYDX(n)) 2r,

¢ n=1

E|

o din L dlnl _
R[a(n1)] OR[a(n2)]T'

“a:_z_j‘R[D i Dlﬁnl nl é ;}“[I'Ila

2 dln L dInf |
IR[a(n1)] 0F[a(n2)]"”

I

2 ‘
—';‘G[D”Dlaul n2 é -G[I{IT

din L dn L
E [ag[a(m)] as[a(nz)]'r] =

2
F:Jt[n” Dby n2 2 RH],

Olnl Olnl

'_'—_"3‘ THX(n)] & R[G(n
B S am] a,;;T]— ,,3-"?[13 DX(n)] = R(G(n)),

v OInL AL, 2 g A e
Pl ogr) = a2 oD DX(] = 8160
and
MY g = o2
E[t?lnLBlnL s

— | =
do? 0 0 otherwise,

(3.13)

(3.14)

(3.15)

(3.16)

(3.18)

(3.19)

(3.20)

(3.21)
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where,
]-) = [al!’"!a’f\’]‘l (3'22)
7, - 9d(4)
d; = 96 (3.23)
X(n) = diag(a;(n), ..., ag(n)). (3.24)

Therefore, the CRLB on the covariance matrix of the DOA estimates is given by

Ber = [T - f:fﬁ{GH(ﬂ)H-lG(n)}]-l (3.25)
= [% fj R{XT(n)DH[I - D(DYD) ' D¥IDX(n)}] . (3.26)
€ ne=1

Let R, = E(aafl) denote the signal correlation matrix. Under the assumption

Eq.(3.12), o) X(n)X(n) =~ Ndiag(e?, ..., 0%;) = NR,. Thus Eq.(3.26) becomes

Bon = S[R{(DY[1- D(D¥D)DHB) 0 RA)

1 1

= dia - ey : - 3.27
o N aTP.a, ™ S NAEP.d (8.27)

where, © is the Hadamard product which is defined in Chapter 2,

O'?'k
= (3.28)
is the signal-noise ratio (SNR) of the k** received signal, and

P. =1-D(DYD)"'D¥ (3.29)

is the projection matrix on the noise space.
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We call Eq.(3.27) Bgr(1), since it is based on Data Madel(1).

In Eq.(3.27), the term df P.dy is a function of the separations of DOA. Therefore -

Bepr(l) is a function of SNR as well as the separations of DOA.

For M — o0, it has been proved in [77] that, Eq.(3.27) becomes

6 G
Beop =~ diag =y e =) 3.
or = ding(—ms en s pra) (3.30)
For one incoming signal (i.e. K=1}, Eq.(3.27) becomes
Ber o (3.31)

S ONM(ME-1Y

Note that, in Eq.(3.31}, the number of the incoming signal is one, but the types of
the unknown parameters are multiple. This is referred to as the single incoming signal with

multiple types of unknown parameters (SSMT) in this thesis.

3.3.3 CRLB(1) and Threshold Phenomena

In the DOA estimation, the performance against SNR and the performance against the
DOA soparations (A¢) are of interest. There exist two types of Lhreshold phenomenon. In
a graph of the variance against A¢, when the DOA separalions decreases, if there exists a
threshold =, such that when A¢ < v, the variance of DOA estimate snddenly increases very
fast, then we call this the Ad-threshold phenomenon. Similarly, in a graph of the variance
against SNR, i there exists a threshold p, such that when SN I < p, the vagiance of DOA
estimate suddenly increases very fast, then we call this the SNR-threshold phenomenon. A
tizht lower bound on the variance is expected to show these threshold phenomena, In the

following, we examine CRLB(1).

Bia(1), the CRLB(1) on the variance of the first DOA estimate, against Ad and

against SNR are plotted in Fig.3.1 and Fig.3.2, where, the numnber of sensors M=8, the
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nuinber of snapshots N=50, the number of incoming signals K=2.

In Fig.3.1(a), BHp(1) is plotted against Ag with SNR=-10 dB. It is shown that,
when Ag > v =2x/M, Bp(1) is alinost unchanged with the different A¢g; when A¢ £ 7,
BLR(1) increases very fast with decreasing Aé. In Fig.3.1(b), BH'p(1) is plotted against
Ag with SNR=+10 dB. The same observations persist. Therefore, CRLB(1) shows the
Ad-threshold phenomenon. Comparing (2) and (b) in Fig.3.1, we see that, the value of the
threshold 4 is independent of the value of SNR, since it is caused by the term EifP,ak in
£q.(3.27) which is independent of SNR. But CRLB(1) against A¢ with SNR=10 dB is a
parallel shift of that with SNR=-10 dB.

In Fig.3.2(a), BEp(1) is plotted against SNR with A¢ = 0.5 radian. It is shown
that, B5(1) is a lincar function of SNR. In Fig.3.2(b), BLr(1) is plotted against SNR with
A¢ = 2.0 radian. The same observations persist. Obviously, CRLB(1) does not show the
SNR-threshold phenomenon. Comparing (a) and (b) in Fig.3.2, we see that, the CRLB(1)

against SNR with A¢ = 2, radian is a parallel shift of that with A¢ = 0.5 radian.
Thercfore, we have,

Observation 3.1 CRLB(!) shows the Ad-threshold phenomenon. The value of the thresh-

old v is independent of SNR.

Observation 3.2 CRLB(1)} does not show the SNR-threshold phenomenon. It is a linear

Junction of SNR for a particular value of Ag.

Observation 3.3 In CRLB(!), A¢ and SNR are coupled with each other in the way that,
CRLB(1) against A¢ with different SNR are parallel to each other, or, CRLB(!) against

SNR with different A are parallel to each other.
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Figure 3.1: Bllp(1) against Ad.
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Figure 3.2: BlY,(1) against SNR.
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3.4 CRLB(2)

3.4.1 Data Model(2)

We make the following assumptions on the received data
r(n) = D(¢)a(n) + e(n),

[. The sequence {a(n)}¥,, is frozen in all realizations of the random data {r(n)}\,;
{e(n)}, varies from realization to realization. The received data {r(n)}, which is

conditional on {a(n)}, belongs to Gaussian distribution:
{r(n)} ~ N(D(#)a(n), o?1). (3.32)

2. The unknown parameter vector is

§= {4}, (3.33)

where, ¢ = [B14 00 th.]'l‘ is a K-dimensional DOA parameter vector, i.e., only the DOA

of the signals are unknown.

Note that, here, the number of incoming signals is K, and the type of the unknown
parameter is one. This is referred to as the multiple incoming signals with the single

type of unknown parameters (MSST) in this thesis.

d. The incoming signals are uncorrelated, and for large N,

N Noy 1=k
Z ar{n)ai(n) =~ (3.34)
n=1 0 { # k.

The data model with these assumptions is called Data Model(2). Data Model(2) is

different from Data Model(1) on the number of the types of the unknown parameters, i.c.,
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>

apart from the DOA of the signals, the parameters of signal amplitudes and noise power
are assumed to be known. We denote CRLB for DOA estimation based on Data Model(2)

as CRLB(2).

3.4.2 CRLB(2)

Substituting Eq.(3.33) into Eq.(3.4) yields

15'—"' 3ln_L' (3.35)
d¢
The Fisher’s information matrix with Data Model(2)
J = E@T)
OlnLOln L
E[ g -‘T ]
dd 0
= T. (3.36)
The last step in Eq.(3.36)} is from Eq.(3.15), and from that,
9 N L e
T = = S RXHA(n)DYDX(n)] (3.37)
& n=1
N o prpoe
= 2;2 RDYD © Ry (3.38)
: - 2 - * g
= ‘ﬁ I‘J(A’I l)(-iw l)diag(asls "'1‘7;!\') (.},.]9)
o; 6
- dngYRMO - DEY =) HpkMG Y@M =1)) o

3 T 3

where, £q.{(3.34) has been used from Eq.(3.37) to Eq.(3.38), R, = diag(o?, ..., 07) is the

signal correlation matrix, and the (%, k)t clement of DD is

M '
dﬁ&k = Z[J(m_ 1)cj(1n—l]rﬁk]-U(T,l_ l)c_;(m-lj'ﬁk]

m=1
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Mo
- Y m-1y
m=1

M@M = 1)(M = 1)
= .
CRLB on the covariance matrix of the estimated ¢ based on Data Model(2) is the

inverse of the Fisher’s information matrix directly,

3 3 ). (3.41)
N MM - DM —1) " NppM (= DM =1 &

Ben(2) = ! = diag(

We call Eq.(3.41) Bor(2) since it is based on Data Model(2).

Ber(2) is independent of the separations of DOA, Data Model(2) provides a basic

mode] to study the achievablity of CRLB. This will be examined in Chapter 4.

For one incoming signal, Eq.(3.41) becomes

3
NpyM(M =1)(2M -1)

Bep(2) = (3.42)

Note that, here, there is only one incoming signal, and one type of the unknown
parameter, This is referred to as the single incoming signal with single type of unknown

parameter (SSST) in this thesis.

3.4.3 CRLB(2) and Threshold Phenomena
With the same examples as used in Section 3.3.3, BHz(2), the CRLB(2) on the variance of
the first DOA estimate, against A¢ and against SNR are plotted in Fig.3.3 and Fig.3.4.

In Fig.3.3, BYa(2) is plotted against A¢ with SNR=-10 dB. It is shown that, B{{a(2)

does not vary with Ad. This is obvious since Bl5(2) in Eq.(3.41) is independent of Ag.

In Fig.3.4, BER(2) is plotted against SNR with A¢ = 0.5 radian. [t is shown that,
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BYo(2) is a lincar function of SNR. Obviously, CRLB(2) does not show the SNR-threshold

phenomenon,

Therefore, we have,

Observation 3.4 CRLB(2) does not show the Ap-threshold phenomenon.

Observation 3.5 CRLB(2) does not show the SNR-threshold phenomenon. It is a linear

Junction of SNR.

Observation 3.6 CRLB(2) against SNR is independent of Ad.
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3.5 THE RELATIONSHIP BETWEEN B;(2) AND Bgp(1)

The main difference between Tata Model(1) and Data Model{2) is the number of the types

of the unknown parameters.

Ber(1) is based on Data Model(1), the unknown parameter space includes the DOA
as well as the signal amplitudes. Since the error of the noise power estimate is not coupled
with these parameters, see Eq.(3.21), it is ignored here. In Begr(1) (Eq.(3.25}), G and H
are related to the differential of the log-likelihood function with respect to the amplitude
a(n), and I' is from the differential of the log-likelihood function with respect to the DOA
. Bcr(2) is based on data model(2), the unknown parameter space ouly includes the
DOA. In the Fisher’s matrix corresponding to Data Model(2) (Eq.(3.36)), " is obtained
from the differential of the log-likelihood function with respect to the DOA rf;, and does not
involve G and H, i.e., not involving the signal amplitudes a(n) since the signal amplitudes

are assumed to be known.

Because I is independent of the separations of DOA,

Bcr(2) = It (3.43)

is independent of the separations of the DOA. Because G, H are related to the separations

of DOA,

N
Ber(l) = [T =Y R{GH (n)H"'G(n)}] (3.44)

n=!

is a function of the separations of the DOA.

From Eqs.(3.27) and (3.41), we see that, both Beg(l) and Ben(?2) are diagonal
matrices, their diagonal clements are positive. So they are full rank. The transformation

matrix between them is given by

T = Ber(1)BZh(2)
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MM =1)2M =1)  M(M =1)2M = 1)

- dil‘r T T e T O
(AP, T 6alP.arx

). (3.45)

For a given set of signals with the fixed DOA and the fixed number of sensors, the

elements of T are constants independent of SNR and the number of snapshots.

Consequently, Bep(1) can be viewed in another way: it is obtained from Bgg(2)
with the transformation T. The usefulness of this transformation will be more apparent

later on when the Ziv-Zakai lower bound for DOA estimation is derived.

The following graphs show the relationship between Bgpr(1l) and Bgg(2), which

depends on the transformation T.

As examples, with K=2, M=8, and N=50, and the equal signal power, BXx(1),
the lower bound on the variance of the first DOA estimate do; with Data Model(1), and
BUa(2), the lower bound on the variance of do1 with Data Model(2), against SNR under
the different A are plotted in Fig.3.5. The solid lines represent B'z(1), and the dash lines

represent Bt'p(2). From which we sce that:

1. Bia(1) is a parallel shift of Bl'z(2).

This is because of that the transformation T is independent of SNR.

[ 2]

. The distance of this parallel shift depends on Ad. When A¢ > 2z /M, the distance
of the parallel shift are almost the same for the different Ag, as shown in (a) and (b).
When A¢ < 27 /M, the distance of this parallel shift varies with A¢, the smaller the
Ag, the larger the parallel shift, as shown in (c) and (d). This is because of that, the

transformation T is dominated by A¢ and M.

Similar observations persist when BF:(1) and BFq(2), which are the lower bounds
on the variances of the second DOA estimate based on Data Model(2), are examined.

Therelore, we have
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Observation 3.7 As a function of SR, CRLB(1} is u parallel shift of CRLB(2).

With K=2, N=50, SNR=0 dB under different M, BLL(1) and BE;(2) against A
are plotted in Fig.3.6. The solid lines represent CRLB with Data Model(1), and the dash
lines represent CRLB with Data Model(2). Here,

1. When A¢ < 7, BER(1) at point 7 suddenly increases with Aé decreasing, BEn(2)

dose not.

2. The Ag-threshold v in BYg(1) is different with the different M as shown in plots (a),
(b), and (c).

3. When A¢ > 7, BYg(1) is approximately equal to BEp(2) times a constant. The
dash-dotted lines arc obtained from multiplying BH(2) by a constant 7. 7 is given

by the ratio of Bggr(1) and Bgr(2),

Ber(1)
Bcr(2)

6M(M — 1)(2M = 1)
3M{M — 1)(M + 1)

2(2M - 1)
M+1 '

where, Bor(1) and Bgr(2) are from Eqs.(3.31) and Eq.(3.42). The plots show that,
for Agd > 7,

BER(1) = 7 BER(2).
These are because of that, T is dominated by A and M. And we have

Observation 3.8 CRLB(2) does not show the Ad-threshold phenomenon. But CRLE(1),
which may be obtained from CRLB(2) with u transformation T, shows the Ad-threshold

phenomenon.
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With K=2, N=50, M=8 and different SNR, BY};(1) and BL)n(2) against A¢ are

plotted in Fig.3.7, where,

1. The Ag-threshold v in Bp(1) is the same with the different SNR in plots (a), (b)
and (c).

2. Plots (a), (b) and (c) are the same except the coordinate values on the vertical axis.

These are because of that, T is independent of SNR.

Therelore, combining Figs.3.5, 3.6 and 3.7, we have

Observation 3.9 The transformation T is independent of SNR, and is dominated by A¢
and M,
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X
3.6 SUMMARY

In this chapter we have the following results:

1. In CRLB(1), A¢ and SNR arc coupled with each other. CRLB(1) shows the Ad¢-

threshold phenomenon, and does not show the SNR-threshol.l phenomenon.

2. CRLB(2) is independent of A¢d, and does not show the the SNR-threshold phe-

nomenon.

3. CRLB(1) can be obtained from Bgp(2)} with a transformation T. This translormation

is dominated by the separations of DOA and the number of sensors, and is independent

of SNR.
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Chapter 4

The Efﬁmency of the MLE of
DOA Baséd on Data Model(2)

4.1 INTRODUCTION

For DOA estimation, it has been shown in [77) that the maximum-likelihood cstima-
tion(MLE) based on Daia Model(1) is not statisticaily elficient if the number of sensors
M is small, even if the number of snapshots N is large. [n this chapter, we derive the
covariance matrix of MLE(2), the MLE of DOA based on Data Model(2), to indicate that

the MLE of DOA based on Data Model(2) is asymptotically efficient.

In Section 4.2, the equiprobable contours and the forms uf the covariance matrices
are introduced to give the geometric interpretations of the error spread and the covariance
matrix. In Section 4.3, the covariance matrix of the MLE(2) is derived. It is shown that
CRLB(2) is achievabie by the variance of the MLE(2) as a lincarized approximation, ar.d the
MLE(2) is asymptotically efficient. It is also indicated that the errors of the MLE(2) of DOA
are independent of each other and are independent of the locations of DOA asymptotically.
In Section 4.4, the SNR-threshold phenomenon of the MLE(2) is discussed. It is shown that

CRLB(2) fails to follow the SNR-threshold phenomenon. In Section 4.5, the simuiation

o]
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results show that, the variance of MLE(1), the maximum-likelihood estimation of DOA

based on Data Model(1), is a shift of the variance of MLE(2) approximately.

4.2 GE(jMETRIC INTERPRETATION OF COVARIANCE
MATRIX

For conciseness, we give the analysis for K=2 in detail. The results can be readily extended

to K> 2 case.

Suppose there are two incoming signals with the unknown deterministic DOA (¢o1, do2)-

The parameter vector to be estimated is

do1
do2

do =

The unbiased estimate of @ is denoted as ¢. Let the error vector be

= 2 = 1 — gor $e1
Se=b-do=| = (4.1)
P2 ~ Po2 Pea
The covariance matrix of estimate :gS is
Rt,‘: = E[&‘:g]
oy o
- R (4.2)
g1 O3

where, oy = E(¢3,) and o3 = E(¢2,) are the variances of the estimates ¢-'>1 and q-S-;, o127 =

E(p,10.2) is the covariance of these two estimates, o2 = 0ya.

The best way to determine how the covariance matrix provides a measure of error

spread is to consider the special case in which the ¢, are jointly Gaussian [$t]. For algebraic
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simplicity we let E(¢,) = 0. The joint probability density for two Gaussian variables is
(3 P S————. D F 3 (4.3)
(det[27R4])1/? RTETT

A typical density for two variables is shown in Fig. 4.1(a) geometrically.

From Eq.(4.3) we observe that the equiprobable contours are defined by the relation

TR . = C?, (4.4)

which is the equation of an ellipse for K=2. In Fig.4.1(b), we show the equiprobable
contours.

Equiprobable contours can be viewed as the geometric interpretation of the covari-

ance matrix Rg. Ry and the respective equiprobable contours are of three forms:

F-1. In Eq.(4.2),if 0y # 02 and 012 = 02, # 0, i.e, the variances are not equal to
each other and the errors are correlated, then Ry is a symmetric matrix and the

respective equiprobable contours are shown in Fig. 4.2

F-II. In Eq.(4.2),if o1 # o2 but 12 = o1 = 0, i.e., the variances are not equal to

each other and the errors are uncorrelated, then
Ry = diag(o1, 02) (1.5)

is a diagonal matrix and the respective equiprobable contours are shown in Fig.

4.3.

F-III. In Eq.(4.2),if 0y = 02 = ¢ and a12 = @31 = 0, i.c., the variances are equal to

each other and the errors are uncorrelated, then
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Figure 4.1: (a). Probability density function p(¢:). (b). Equiprobable contours
of p(¢c).
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Figure 4.2: Equiprobable contours w.r.t. correlated variables.

bz

‘f)el

!

Figure 4.3: Equiprobable contours w.r.t. uncorrelated variables,
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¢='2 ’

2.
2

Figure 4.4: Equiprobable contours w.r.t. uncorrelated variables and equal vari-
ances.

is an identity matrix times the variance, and the respective equiprobable con-

tours are shown in Fig. 4.4.

The equiprobable contours considered here have the following properties:

B-I. These ellipses increase in both major and minor diameters monotonically with

increasing C.
B-II. These ellipses are concentric with fixed major and minor axes for increasing C.

B-111. The equiprobable contours concentrating around the centre represent the small
errors in error distribution. The equiprobable contours far away from the centre

represent the large errors in error distribution.
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4.3 THE EFFICIENCY OF MLE(2)

According to [81], any estimate that satisfies the CRLDB wititrfiz{n cquality is called an eflicient
estimate. Also il an efficient estimate exists, it is the nlalelllllll-likclillootl estimale. MLE
is used to study the achievablity of CRLB. Let MLE(1) denote the MLE of DOA based on
Data Model(1). The covariance matrix of MLE(1} has been derived in [77]. In that paper,
a rather unusual result is obtained such that, MLE(1) is statistically ineflicient for M < o9,
even though N — co, where M is the numb :r of sensors and N is the number of snapshots.
The reason, as discussed by [77], is that the inconsistency of the estimates of the signal
amplitudes a and the noise power o2 in the case of M < co implies that the errors of the

MLE(1) cannot not achieve the CRLB for large N if M is small.

Data Model(2) introduced in Chapter 3 assumes that the signal amplitudes and the
noise power are known. Since there are no estimations of the signal amplitudes and the

noise power, CRLB(2) is then achievable by the error of MLE(2). We have the following

theorem.

Theorem 4.1 For the uncorrelated signals in the Gaussian white noise, the MLE of DOA

based on Data Model(2) is asymplotically efficient.

proof:

For convenience, we rewrite Eq.(3.41) as:

3 3
- H ene * II'T
Ber(2) = diag( NotM(M = 1)(2M - l)’ "NpgM(M = 1)(2M - 1)J (4.7)

With the log-likelihood function shown in Eq.(3.9), the realization of the MLE of

DOA based on Data Model(2) is given by the minimizer of the following function :

N -
J(8) = S [r{n) - D(@)a(m))[r(r) - D()a(n)], (4.8)
n=l
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where, r(n), a(n) and D(#) are defined in Eqs.(2.5) to (2.10).

Expanding f, the derivative of f(q.ﬁ), in a Taylor series and ignoring the 2nd and the

higher order terms, equating f to be zero for MLE, we have
0= f(#) = {(B)seg, + f(B)l 55, - fo)s (4.9)

where, the k% clement of f() is

aJ(#)

D)~ 5 (-t (22 Pty - D@yl {x(r) - DB 22 B, (.10

n=}

and the (k,!)* clement of the Hessian matrix f(@) is

/() (qb) aD”w) 3D(¢)
(¢) gDH(4) aD(9)
~el(m S e) Ga0q, 2+ ()—p =5 =aln)}, (411)

in which, e(n) = r(n) - D($)a(n) is the noise vector.
Note that

aD(4)

Fara(n) = ()0, jei, ., (M = DM T, (4.12)

Now we consider two cases: ! # k and [ = k. First, under the case ! 5% &, it is
obvious that

*D($)

ddi0¢

=0. (4.13)

Also, because of Eq.(4.12), we have

N H N M ' .
Z all(rl)-a'%-a—ljla(n) = Z ai(n)a;(n) Z (m - I)Zej(ég-—a;k]

n=1 m=1

= 0. (4.14)
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The last step on Eq.(4.14} is due to Eq.(3.34) in Section 3.4.1, i.e,,

N .
> ap(n)ar(n) = ° #h (4.15)

n=1 No¥, 1=k
Therefore, the off-diagonal elements of the Hessian matrix in Eq.(4.11) are zeros.

Secondly, in the case ! = &, let us consider the case that the estimate d is close
enough to the true DOA ¢p. Under this condition, the change of the array manifold with
respect to ¢ within this region can be approximated by a linear function, i.e., the slopes
a—'é—,[g;—’k] (m=1, ..., M) are constants, where D[m, k] is the (m, k)" element in matrix D. The

meaning of this can be seen in Fig.4.5. Here, we show the real part of D{m, k], L.e.,

u(d) & R{D[m, k]} = cos[(m - 1))

By Taylor series expansion around the DOA o, we have

uldy) _

at o

Therefore, under the condition that the estimate ¢ is close enough to the true DOA

¢o, i.e., in the region of small estimate errors,

9*D
—_— =10. 4.16
307 0 (4.16)

Substituting Eqs.(4.13), (4.14) and (4.16) into Eq.(4.11) yiclds

18 _ |0 (#4 (4.17)
3¢18¢k 22:\!:1 a!-](n)%%a(n) =k
By Eq.(4.12),
N H N d
3 o) g gt = X aiman) 3 (1)
_ Nl MM - 1)(2M - 1) (4.18)

6
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Figure 4.5: The behaviour of error variance in the presence of small errors ¢,.
where, Eq.(4.15) is used.

Substituting Eq.(4.18) into Eq.(4.17) results in the Hessian matrix

a ()
Q - a‘;,_,.

NoZ M(M =1)(2M =1} No2eM(M = 1)(2M - 1)

diag( 3 yeeny 3 ). (4.19)

Note that the (k,{)*" element in matrix E{[%{%ﬂ][ga&gl]”} is

3/(8), 0£(4) 0, L#k

Bl 5er o1 ) Oy )]— NodaBM(M=DEM=1) , _ (4.20)
3 = k.

See Appendix A for the proof of Eq.(4.20}. Thus,

E{[d{)(-‘?)][ag(f)]”} diag( NUE,UEM(M:}- DM - 1), . Noi ol M(Ms— 1)(2M - 1)

).
(4.21)

Now, we are ready to obtain the covariance matrix of the MLE(?2) of DOA. From
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Eq.(4.9), we have

d—¢n~ -Q"?-=fé%£)-. (4.22)

Let R4(2) be the covariance matrix of the MLE of DOA based on Data Model(2).
With Eqs.(4.22), (4.19) and (4.21), we have

e

lim Rg(2)

R1(2) ' (1.24)
b=y

= E{(¢- do}d- o) 5z,
1 1 OF (D) DLty 1
Q E{[_B$ Il a(;] 1Q

3 B]

= di - ). (1.2
S N - D =1 Waen o - e =) (2

When N is large, the estimates $ will be close to the true DOA $o enough such that
Eq.(4.24) is the covariance matrix of MLE(2) in the asymptotic sense (i.c., the large N).

The comparison of Eq.(4.24) with Eq.(4.7) shows that

Ryi(2) = Ber(2). (4.25)

So, Bepr(2) can be achieved by the covariance matrix of MLE(2) asymptotically.

Theorem 4.1 follows.

it
£q.(4.24) shows the following properties of the covariance matrix Ry of MLE of

DOA based on Data Model(2) for ¢ — do:

1. The covariance matrix Ry is a diagonal matrix. This means that the errors of the
estimates using MLE(2) are uncorrelated with each other. It can he proved (81] that
the MLE(2) is Gaussian distribnted when N — oo, so the errors dei = i = ok =

1, ..., K) from MLE are independent of each other for large N.
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2, The variances of the MLE(2) of DOA are independent of the locations of DOA. When
the signal power are equal, L.e., g% = ... = 02} = o2, the covariance matrix Ry is a

identity matrix times a constant, i.e., the form F-III discussed in Section 4.2,
Therefore we can conclude that

Lemma 4.1 Under the condition that ¢ — o, with MLE based on Dala Model(2), the
errors of DOA estimales are independent of each other, and the errors of DOA estimates

are independent of the locations of DOA.

The achievablity of CRLB(2) by the variance of MLE(2) can be interpreted geomet-

rically as shown in Fig.4.6 and Fig4.7 (0, = 0%, = o). Here, the dotted lines are the

equiprobable contours by the equation

ER? (2)‘58 = Cz:

and the solid lines are the Cramer-Rao bound ellipses by the equation

EBE}{(Q)&’; =C2

Around the centre of the equiprobable contours, i.e., the small |$¢|, we have Eq.(4.25),
tae,

lim Ry(2) & Ry(2) ~ Ber(2), (4.26)
d—do

so the dotted lines almost lic on the solid lines. For large |@,|, Eq.(4.26) does not hold
due to the fact that the higher order terms in the Taylor expansion of Eq.(«.9) cannot be

ignored. Thns the dotted lines lie outside of the solid lines.

The common saying that CRLB is achievable under high SNR for nonlinear estima-
& g

tion can be explained as the following:
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— FTBGh(2. =C?, .. FTR32)4. = C.
Figure 4.6: Equiprobable contours and CRLB(2) ellipses under high SNR.

Under high SNR, the estimates with small estimation errors statistically dominate
the variance. Most of the relevant equiprobable contours concentrate around the centre as
shown by the dotted lines in Fig.4.6. The errors belonging to the equiprobable contours

away {rom the centre can be ignored, thiz CRLB is achievable.

Under low SNR, a large number of the estimation errors lie away from the centre of
the equiprobable contours. This condition is exemplified in Fig.4.7. Under this condition
the errors which lie away from the centre dominate the variance. As being seen fromn Fig.4.7,
the ellipses for the CRLB and that for the variance of MLE do not agree closely for large

error, thus CRLB is not achievable in this case.
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‘?Szl

— FIBZh()F = C? ... FTR; (2 = C*.
Figure 4.7: Equiprobable contours and CRLB(2) ellipses under low SNR.

4.4 THE SNR-THRESHOLD PHENOMENON

Performance analysis against SNR is of interest in practice. Fig.4.8 shows the comparison
between the variance of MLE and CRLB with an example based on Data Model(2). The
number of sensors is 8, the number of snapshots is 50, and the number of the incoming

signal is one.

The solid line represents the simulation performance of the maximum-likelihood
estimate. The performance is divided into three segments. When SN R > p!, MLE performs
like a linear estimator, we call this area the linear region. When p* < SN¥R < p/, the
cstimation error of MLE abruptly increases. The reason for this phenomenon is that, the
noise level involved in the received data is high enough to make the signal observations
from the received data be subject to ambiguities. The SNR at which the variance rises very
rapidly as SNR decreases is called the threshold region. This SNR-threshold phenomenon

occurs during p* < SNR < p'. When SN R < p2, the signal observations are completely
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dominated by n;':;ise .i!_:\d are essentially useless for DOA estimation. This area 19 called
the a.mbiguir.;}L region, and’ »sually is ignored in the performance analysis. ‘Ihe dash line
is Bcr(2). We see that, under kigh SNR(SN R > p'), CRLB(2) is achievable since mult::}"
this condition the errors arouﬁﬁ zaro dqminatn_the performance. This is the ambiguity-free
region. But when SNR < p!, CRLB(2) becomes very loose. Under low SNR (SNR< p'),
the variance of the estimate is affected by the large error ¢, but CRLB(2) is a Lncarized
approximation only for the small error as discussed in Section 4.3. Therefore CRLB(2) is
ot a close approximation to the performance in the SNR-threshold region. It cannot show

the SNR-threshold phenomenon.

Recalling the analysis in Chapter 3.5, CRLB(1) is obtained from CRLI(2) by the
transformation T, and ‘T is independent of SNR, which results in CRLB(1) against SNR

being a parallel shift of CRLB(2) (Fig.3.5). Therefore, we have,

Observation 4.1 CRLB(!) cannot show the S R-threshold phenomenon due lo the fuct

that CRLB(2) cannot show the SNR-threshol . momenon.

So Data Model(2) is a basic data model to study the performance of DOA estimate

against SNR.

4.5 MLE(1) AND MLE(2)

In the above sections, the performance of the MLIE of DOA based on Data Maodal{2) is
discussed. Since the practical model is Data Model(1), we need to see the viriance of the
MLE(1), the maxirum-likelihosd estimation of DOA based on Data Madel(1), Lo find the

relationship of the performances between MLE(1) and MLE(2).

In Fig.4.9 to Fig.4.12, the variances of MLE(1) and M LE(2), the CRLB(1) and
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Figure 4.8: CRLB(2) and the SNR-threshold phenomenon in MLE(2).

CRLB(2) for different number of sensors, different number of snapshots, and different num-

ber of incoming signals are plotted. These simulations show that, for the ambiguity free

region and the threshold region,

1. The variance of MLE(1} is a shift of the variance of MLE(2) approximately.

2. The amount of the shift of variances of MLE(2) to MLE(1) is the same as the amount

of shift of CRLB(2) to CRLB(1).

These are very useful observations.

4.6 SUMMARY

In this chapter, we have the following results:

. The MLE of DOA based on Data Model(2) is asymptotically efficient.
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92, Lerama 4.1 shows that under the condition ¢ — 50, the errors of the MLE(2) of DOA

are independent of each other, and are independeut of the locations of DOA,
3. Data Model(2) is a basic datz model to study the achievablity of a lower bound.

4. The variance of the MLE(1) is a shift of the variance of the MLIE(2) for the ambiguity

free region and the threshold region, and the amount of this shift is the same as the

shift of CRLB(2) to CRLB(1).
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Chapter 5

Modified Ziv-Zakai Lower Bound
on Variance of DOA Estimate for
One Signal

5.1 INTRODUCTION

In this chapter, using Ziv-Zakai's idea, a lower bound on the variance of the DOA estimate
for one signal in Gaussian white noise is derived. An understanding of this case is funda-
mental to the understanding of the general case which will be discussed in the following
chapters. Section 5.2 presents an exposition of Ziv-Zakai’s idea. Section 5.3 shows how this
idea works for the DOA estimation in array processing, and derives the modified Ziv-Zakai
tower bound (MZLB) on the variance of DOA estimate. In Section 5.4 the evaluation of
this lower bound with Data Model(2) is developed. In Section 5.5, the properties of this

lower bound are discussed, and MZLB with Data Model(1) is obtained.
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52 ZIV-ZAKAYS IDEA

Let ¢g be the true parameter, and ¢ be its unbiased estimate. The variance of this estimate

is defined as

E[(é - ¢0)*] j_ :, 22dP($ - do < )

jo‘” 22dP(|d - ol < ). (5.1)

In Eq.(5.1), we consider the probability density {function of the estimate error (d—eby)

being symmetric about zero.

A lower bound on this variance can be obtained from the lower bound on Lhe error
distribution P(]Iq.ﬁ — #o] £ ), and the lower bound on P(|é - ¢o] £ ) can be developed
from a binary detection procedure. This idea was first presented by Ziv and Zakai in 1069
(100). In order to have a better understanding of Ziv-Zakal's idea, the logic employed needs

to be reviewed.

Ziv-Zakai’s idea is to link the estimation error to the binary detection error. By
imagining a binary detection procedure, the error probability of which is bounded, an
expression can be established between the estimation error in Eq.(5.1) and the detection
error bound. Because this detection error bound takes into account both the high and low

SNR (Appendix B), it is expected that the resulting estimation bound will be & tight one.

Thus, Ziv-Zakai's idea can be applied for the general single parameter estimation
in four steps as shown in Fig. 5.1. Among these four steps, the third one is the critical
step from which the error distribution in Eq.(5.1) is obtained from the error probability in

binary detection procedure,
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imaginary detection procedure
(¢)
I

I
1

error probability P. > Pgar

(%)

I
i
4
ertor probability — error distribution
I (Pc) (Flel(h'))
l
I
U
Var > LB

(Fieg(h)) (Pepm(h))

Figure 5.1: Diagram of the idea for deriving the error bound.

5.3 FROM DETECTION ERROR BOUND TO ESTIMA-
TION ERROR BOUND

5.3.1 Imaginary Detection Procedure Based on Estimate

With the reccived data as described in Chapter 2, we imagine a binary hypotheses. Suppose
the jncoming DOA is of two possible values, ¢g and ¢,. It is desired to determine which

one is true. Then we establish the following hypotheses such that:

fy: ¢ = do,
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Hy b= 1.

Based on some arbitrary estimate ¢ of the incoming DOA, the decision criterion is
Hy

3= ol S 18-l (5.2)
m

Eq.(5.2) is a binary detection procedure based on an estimate é. 1t connects the

-estimate from the real received data to an imaginary detection procedure,

5.3.2 Error Probability and Its Lower Bound

Let us consider, for the time being, ¢; — ¢ > 0. Fiic.; we develop the error measure for

the detection procedure described in Eq.(5.2).

Let p(¢|H;),i = 0,1, be the probability density function (PDF} ol the estimate "
under the hypothesis ;. The situation for the decision procedure is depicted in Fig.5.2,

where,

_ o+ b o
== (5.3)

tI)D

Note that the decision region is a periodic function of ¢. In Fig.h.2, m 4 Pp is

equivalent to -7 + ®p.

We make the following assumptions:

A-L p((,5|¢;) is svmmetric about ¢;, p($|do) and p(fleci;l) are identical except for the
translation of the axis, i.e., the error probability is independent o the location

of the DOA;

A-IL

PIL) = P(lly) = % (5.:4)
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p(3/%ba) p(#/%1)

Figure 5.2: Error probabilities with the decision scheme Eq.(5.2).

A-IIL. The cost of ;ncking erroncous decisions is equal;

Under assumptions A-I to A-III, the error probability of the detection by the decision

rule of Eq.(5.2) is given by (see Fig.5.2)
P = P(Ho)P(> ®p|He)+ P(H)P($ < &p|H:)

= P(¢> ¥p|lo), (5.5)

where, we have ignored the negligible probabilities of P{¢ > (®p + 7)|Ho} and P{¢p <
(bp — T},

If we denote the estimation error by & such that
c=¢—do (5.6)

and let

h = ¢ — do, (5.7)
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then, using Eq.(5.3), Eq.(5.5) can be written as

do + ¢

Pey — - ¢o)}

P{(¢ - do) > (

Pie > h/2)}. (5.8)

Eq.(5.2) is not an optimum decision rule, hence Pyy is not the minimum probability
of error. However, the Bayes criterion with equal crror cost leads to an optimum likelihood
ratio test (LRT) yielding minimum decision error probability Pgas (described in Appendix

B), therefore,

Fer 2 Pem(h). (5.9)

The RHS of Eq.(5.9) is the lower bound on the error probability of the imaginary

detection procedure based on the estimate .

5.3.3 Definition of the Variance of DOA Estimate Based on /£,

If &1 — ¢o < 0, similarly we obtain

P = P($< dp|ll)
= Ple < h/2)
2 Ppu(h). (5.10)

Then, combining Eq.(5.8) and Eq.(5.10) results in

P(le} > |1/2]) = Pt + Pea- (5.11)

The RHS of Eq.(5.11) is the error probability of the imaginary binary detection

procedure under the hypotheses Hy (o) and Iy (41).
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Under the condition that the error measure is independent of the location of DOA,
both sides of £q.(5.11) only depend on the distance ki = | — dg| between two DOA. Thus,
P(le] > |h/2|) becomes the error distribution of the cstimate ¢, since £ = ¢ — do. This Is
the relationship between the error of the imaginary binary detection and the error of the
real estimation problem. Using this relationship, we can develop the lower bound of the

estimate error.

Let

Fi(h/2) & P(le| > [n/2]), (5.12)

where we define

Fe(h) = P(le] > |A]). (5.13)
Note that Fi(/) is a decreasing function of h. In order to define the variance, let

Fq(h) = 1-Fu(h)

P(le| £ {A]), (5.14)

then, Fi, (1) can be interpreted as the cumulative distribution of the estimate error.

iote that [¢| € [0, r]. Thercflore, the consideration of Eq.(5.13) can be concentrated

intherange0 < h < .

From Eq.(5.1), the variance of DOA estimate can therefore be expressed in terms

of Fi.(#t) such that

E[eY] = jo " R Ry (h). (5.15)
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5.3.4 Error Bound on the Variance of the Estimate in Terms of Pgy,
From Eqs.(5.9}, (5.10}, (5.11) and (5.12), we have

1

S Feh/2) 2 Poni(h) (5.16)

Multiplying both sides of Eq.(5.16) by & and integrating from 0 to 27, Eq.(5.16)

becomes
i
f hPgag(h)dh
0
1 % h
< 5 j(; hF(z)dh
= 9 j"hpc(h)dh
0
" P
= KF(h)|E - f REdF.(h). (5.17)
0

Note that || € [0, 7], [rom Eq.(5.13), we have

F(h)|a=x = P(|€] > 7) = 0. (5.18)

Using Eqs.(3.14), (5.15) and (5.18) in Eq.(5.17), we can write

4

E[e* > / " hPgp(h)dh & By (5.19)
Q

Eq.(5.19) interprets the lower bound on the variance of the DOA astimate, The

RHUS of Eq.(5.19) is referred to as the modified Ziv-Zakai lower bound (MZLD).

54 EVALUATION OF THE ERROR BOUND

To evaluate the bound in Eq.(5.19), first, we need *o find an interpretation for Puag(h). We

recall that [81], if the received data 7 is real and satisfies the assnmptions A-I to A1, then
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the optimum LRT yiclds the minimum decision error probability given by (see Appendix

B)
Pow = explular) + hrii(aar)/2lerte {ans i(aar)} /2
+ explu(arr) + (1 = qar)2ilas)/2lerfe. (1~ asr ) Ji(am)} /2, (5.20)
where,
orfc. {n) & \/% jn * iy, (5.21)
u(a) &1n [ (p(rL )T o)l 7aF, (5.22)

with p(7]H;) being the PDF of the received data under hypothesis H;, and gy satisfies the

candition that

ﬂ'(qM') =0, (523)

where, 0 < gqpp < 1.

It is shown in Appendix C that with Data Model(2), for K=1, the minimum error

probability in Eq.(5.20) in our probiem is

M
Pea(h) = erfe{[pN 5 (1 = cos(h(m - 1)))]'/?}

m=1

erfe. {f(h)}, (5.24)

where we define the signal to noise ratio (SNR) as

and

M
F(h) = [pN 3" (1 = cos(h(m ~ 1)) (5.26)

m=1
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Secondly, we need to perform the integration in Eq.(5.19). The limits of the integral
is from 0 to 2, but & is the distance betwaen two distinet possible DOA. The correct decision
cannot be made if the t.wb DUA overlap, Therefore, we should leave a guard separation
between the two possible DOA, and modify the range to & € [0, ], where H = 2z - §, with

‘ng a small but finite angle.

Lat Bz(2) denote the MZLB based on Data Model(2). Now, by substituting Eq.(5.2:1)

into Eq.(5.19), we have
H
Bz(2) = f erfe.{ f(R)}hdh (5.27)
0 -

- f_ 2,-12 Y
= erfc.{f({)} + —= Z\/f h e dhdh

ne

L+ 1. (h.28)

The integral I on the itHS of Eq.(5.28) can ke broken up inlo two parts such that

Bz(2) = i’;errc.{fuf)}+ / h2e= P12 ‘U)u+ j h? -f’/("f)

1
20/2r

= [+ I+ I, (5.29)
where,
ik -
h = Tﬂrfc ASUDY (5.30)
eI EL 4 5.31
2‘/)__/ WPy, (5.41)

- 2,122 f 5.9
[ = Wor j h (H Ydh. (5.32)

Now we evaluate /g and give the values of & and /f.
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From the definition of f(h) in Eq.(5.26} v:e have

M
% = l\/__[Z - 1) sin({m - 1)h)][2mz=:t sin®((m — 1)!:./2)]"%, (5.33)

m=1

Thus, substituting Lq.(5.33) into g in Eq.(5.31), we have

) Y 2 M .
o= ;/jg o 2‘/—["2-1 sin((m - 1)’*/2)]-’[z§t(m ~ 1)sin((m - l)h)]e—! 124n. (5.34)

We choose A such that, for k € [0, A], every part of the integrand in Eq.(5.34) is
positive. Furthermore, A is chosen such that the value of the largest component sin{((M -
1)A/2) in the summations is still on the first rising part of the sine curve, so that the

following approximations are closely satisfied:

L.
M
Y sin*((m = 1)}h/2) = 2 (m—1)2h2/4, (5.35)
m=1 m=1
therefore,
M \ M .
(D sin®((m = 1)R/2)]77 = [ (m—17A*/4]77
m=l m=1

f)
= ____:_‘/_6__.___; (5.36)
h/M(M = 1)(2M - 1)

2. Each of the terms under the summation within the second set of brackets in Eq.(5.34}

can be approximated by a straight line joining the extreme values 0 and A such that

(m — 1)sin((m - 1)A)h

(m—1)sin((m = 1)h) ~ A

(5.37)

Therelore,

A M

Y (m = 1)sin((m = Dh}~ < Z(m — 1}sin({m - 1}A); (5.38)

m—1 m—l
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3. Similar to 2., with the approximation

(m=UHa _h . (m-1)A -
in 5 = sm(——.‘2 )s (5.39)

the exponential term in Eq.(5.34) becomes
M

e‘<p{ 22 .o (m— l)h}

m=l

exp(—f*/2)

pth M
exp{ AT E 2sin®((m — 1)A/2)}

m=1

R

- V 2 M
= exp{- ;—;#— Z I = cos((m — 1)A)}. (5.40)

m=l

The choice of A is arbitrary as long as Eqs.(5.35), (5.37) and (5.39) are closcly

satisfied. We choose

T [
—_ — [ .‘Il
oM (5.41)

With this choice, the sum of the RHS of Eq.(5.38) can be evaluated quite simply as the

following:
M h M
mz=jl(m - sin((m—1h) = < El(m = )sin((m — 1A)

d M
= —Emzzlcos (m-1)A )]—

M
—_ Jlm=1)A
= dA EH e }]

m=1

_cos(MA) — cos((M ~ 1)‘3)}1__
__[rl.l I—COS(A) A

M2 h
A

(P4

3
_ 8. [3 h (5.42)
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The details of Eq.(5.42) are shown in Appendix E. The RHS of Eq.(5.40) can be evaluated

as (Appendix F):

exp(—2/2) = exp(~0.07pN M°h?) = exp(-nih?/2), (5.43)

where,

nt/2 = 0.0TpN M3, (5.44)

Substituting Eqs.(5.36), (5.42) and {5.43) into Eq.(5.34), integrating, simplifying,
and defining

e = pNM(M - 1)(2M - 1)/12, (5.45)

we obtain (see Appendix G)

1 (MM -1)(2M-1)1 MA _2a2 -
~— = —erfc {mA} = D=8/, “
Iy 2176,\/ IM3 [2 erfc.{mA} \/ﬁe ' ] (5.46)

In Eq.(5.46), for a reasonably large number of sensors M, the term under the square
root sign can be approximated to unity. Also, the last two terms in the brackets are

negligible compared with the first term. Therefore, we have

1 3

Iy = —_— = .
T und T pNM(M - 1)(2M - 1)

(5.47)

At high SNR, this value of Iy plays the dominant role on the estimation error bound
as expressed in Eq.(5.29). It is reasonable then, to argue that the guard separation é should
be chosen to be the same value as A, ie., H# = 27 — (x/2M). With this choice of # and
A, it can be seen fy and [ in Eqs.(5.31) and {5.30) are always positive. In general, /; rises
steeply to significanre under low SNR while dropping fast to negligible values under high
SNR. On the other hand, fy is a linear function of SNR. It decreases rather slowly with
the increase in SNR and is the dominant part under high SNR. The behaviour of the two

functions are exemplified in Fig.5.3 for M=8 and N=50. In contrast, [s is always negative.
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This can be easily seen from the fact that I haé exactly the same integrand as that in [y
in Eq.(5.34), where, while the other parts are all positive, the average value of the part in
the second set of brackets is negative for h € (A, /T). The magnitude of the value of f4, in.
general, quickly diminishes to 2 negligible value as the SNR increases and is significant only

under extremely low SNR. An example of this behaviour is shown in Fig.5.4 for M=8 and

N=350.

The bound Bz(2) is a combination of these three components, and can be partitioned
into three separate sections as shown in Fig.5.5. For the SNR to be higher than p/, the
ambiguity in DOA estimation can essentially be resolved and Bz(2) is dominated by the
value of fo. This is a linear region since fp is a linear function. The transition from the
ambiguity-free region to the region dominated by ambiguity occurs when the SNR. falls
below p! until it reaches p®. Here, the value of /[y rises to significance and becomes the
dominant part. This is the SNR-threshold phenomenon in the estimation of DOA, and the
error bound is essentially the combination of the terms fp and [;. When the SNR [alls below
p?, DOA observations are subject to ambiguities. The value of I3 becomes significant too
and the resulting bound is essentially the combination of the terms of fo, i and [y, The
bound Bz(2) shown in Fig.5.5 is for M=8 and N=>50. Fig.5.6 shows the hound 57(2) for
\M=16 and M=32 respcctively. In each of these cases, the three regions can be distinctly

observed,

Since we mainly consider the performance of the lower bound in the ambiguity-free
recion and the threshold region, ignoring the complicated integral [y will not significantly
affect the performance of Bz(2) in these two regions as shown in Fig.5.7, so that we can

write

Bz(2) = o+ 1

i
- —erfe. 5.48
SvarGr— =) T e D) (5.4%)



GHAPTER 8,

MODIFIED ZIV.ZAKAL LOWER DOUND ON VARIANCE OF DOA ESTIMATE FOR ONE SIGNAL
for the ambignity-free region and the threshold region.
our studies on these two regions.

£q.(5.48) is the MZLB(2) for the SSST case.

In the following, we will concentrate
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Figure 5.3: fo and [; for M=8 N=50.
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5.5 PROPERTIES OF MZLB

5.5.1 Bz(2) and Bcr(2)

It is interesting to compare the bound Bz(2) in Eq.(5.48) with the well-known Cramer-Rao

bound. We have derived CRLB based on Data Model(2} in Chapter 3.4 that,

3
— r i
Ber(2) = SR rrGr = D@ =1y (5.49)

Comparing Eqs.{5.48) and (5.49), we note that Bor(2) is the same as fy. Thus, we
can conclude that the MZLB includes the CRLD as a part which dominates when the SNIU

is high, i.e.

By(2) ~ Bea(2) + hi. (5.50)

When SNR. is low, it is the term [; in MZLB that shows the threshold. We call this
term the threshold term. Fig.5.8 shows the variance of the MLL of DOA of a single signal
based on Data Model(2). The estimation was carried out with M=8 sensors and N=50
snapshots. The performance is evaluated over 200 trials. It can be observed that, when
the SNR is high (> —8dB), the MLE performance reaches both the CRLD and the MZL1.
However, for lower SNR, the MZLB follows the threshold region of the MLE performance

very much more closely than the CRLB due to the additional terms of [y in Eq.(5.18).

5.5.2 MZLB with Data Model(1)

In practice, the amplitude of the arriving signal is often unknown, so Data Model(2) is not
a practical model while Data Model(1) is more realistic. In Chapter 4, Fig.4. to Fig.4.12
show that, the variance of the MLE(1) almost is a shilt of the variiunce of the MLE(2). Also,
these plots show that, the relationship between the variance of MLE(2) and MLE(1) for

the ambiguity free region and the threshold regicn is the same as the relationship bhetween
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Figure 5.8: MZLB, CRLB and MLE with Data Model(2).

CRLB{1) and CRLB(2). Since the MZLB for Data Model(1) is not easy to derive due to
the fact that there will be multiple types of parameters involved, these observations make
us conjecture that the MZLB(1), the MZLB based on Data Model(1), is a shift of the
MZLB(2), the MZLB based on Data Model{2), and the relationship between MZLB(1) and
MZLB(2) can be found with the relationship between CRLB(1) and CRLB(2). Since it is

discussed in Chapter 3, CRLB(1) is related with CRLB(2) by a transformation T, we have

Bz(1) = TBz(2), (5.51)

where. (see Eqs.(3.31) and (5.19))

_ Ber(l) _ 2(2M -1)

= = 552
Borl2) ~ M +. (5:52)

In Eq.(5.51). B2{1) is the modified ZZLB for tl.c estimation of the DOA of a signal
when its amplitude is deterministic and unknown. T is the ¢iTerence for the lower bounds
with the different data models. Fiz.5.9 shows the MZLD as interpreted in Eq.(5.51) together

with the performance of the MLE of one DOA based on Data Model(1). The agreement
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Figure 5.9: MZLB, CRLB and MLE with Data Model(1).

of the MLE performance and the Bz(1) is very much similar to that shown in Fig.5.8 in

which the amplitude of the signal is known.

T in Eq.(5.52) is a special case of the transformation T in Eq.(3.15) discussed in

Chapter 3.

It is worthwhile pointing out that the idea we used here Lo solve the complicated
practical problem involving multiple parameters is, firstly, to simplify the problem with
some assumptions (Data Model(2)) in order to obtain the bound #z(2), and then to use

the transformation T on it Lo obtain the more realistic bound Bz(1).

5.6 SUMMARY

In this Chapter, we have the following results:

t. With Ziv-Zakai's idea, MZLB for one incoming signal case s developed,

2. MZLB shows the SNR-threshold phenomenon.



Chapter 6

MZLB on the Covariance Matrix

of DOA Estimates for Multiple
Uncorrelated Signals

6.1 INTRODUCTION

In chapter 5, we have derived the lower bound for the S8§ST case using Ziv-Zakai’s idea.
The practical DOA estimatien involves multiple signals with multiple types of parameters.
So in this chapter, we develop MZLPE for the MSMT case based on the werk in Chapter 4

and Chapter 5.

First, in Section 6.2, MZLB(2) under the MSST case is derived with Assumption 6.1
which is an extension of Lemma 4.1 in Chapter 4.3. The properties of MZLB(2) are discussed
in Section G.3. Then, in Section 6.4, MZLB(1), the modified Ziv-Zakai lower bound on the
covariance matrix based on Data Model(1) (the MSMT case), is developed from MZLB(2)
with a transformation T. The geometric interpretation of this transformation is given in
Section 6.5. We propose Theorem 6.1, the final result, in Section 6.6. The properties of

MZLB(1) are discussed in Section 6.7, it is indicated that, MZLB(1) shows the A¢-threshold
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phenomenon as well as the SNR-threshold phenomenon,

6.2 MZLB(2) FOR MSST CASE

6.2.1 Preliminary

The original Ziv-Zakai’s idea is to derive a lower bound on the variance of an estimate by
comparing a binary detection procedure based on an arbitrary estimate, with the optimal
binary detection procedure for which a tight lower bound is known, We have remarked in
Appendix B that the binary detection procedure is detecting one incoming signal identified

by one parameter. Therefore, ZZLB is developed for one parameter estimation (Lhe SSST

case).

The practical DOA estimation not only involves the estimation of the multiple types
of parameters, but aiso involves the estimatjon of the multiple DOA parancters. Therelore,
in DOA estimation, not only the errors of the different type estimates are conpled with each
other, but also the errors of the same DOA type estimates are coupled with each other. The
performance analysis under this case is more complicated than that for one DOA estimate
developed in Chapter 5. It is very hard to vse Ziv-Zakai's idea to derive the lower bound

on these coupled errors.

Under some reasonable assumptions, the complicated problem can be decomposed
into several sub-problems, such that these sub-problems are independent of each other
and are easier to solve, In Chapter 3 and Chapter 4, this method has been applied to
decouple the DOA estimation errors with the errors from the signal amplitude estimation
and the noise power estimation, i.e., to decouple the estimation errors of the different vype
of parameters, which results in the performance analysis of the DOA estimation against

SNR being independent of that against Ao, In the following, this method will he applied 1)
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decouple the DOA estimation errors, i.¢., the estimation errors of the same type parameters,
such that the performance analysis of K DOA estimates is decomposed into K independent

sub-problems, Then Ziv-Zakai's idea is applied to solve these sub-problews.

Let i
dor |
" doz
Fa=|
3 d’nl\' i

be the DOA parameter vector to be estimated on K-dimension parameter space {1, b2y e bic}

Let the estimate of ¢o be ¢, and the error vector be

[ ‘51 - ¢'Ul .\ [ ¢£1 ]
= — o = » ) boz ) _ ¢.’2 . (6.1)
| dx—doxc | | Per ]

Lemma 4.1 developed in Chapter 4.3 indicates that, under the condition that ¢ — do
(i.e. the small error |#e|), the errors of the MLE of DOA based on Data Model(2) are
independent of each other and are independent of the locations of DOA. Now, we idealize

the behaviour of the MLE(2) of DOA under the large error | Be

, such that Lemma 4.1 holds
also for the large |@,| (without the condition b — o), i.e., Lemma 4.1 holds for all sizes of

errors in the error distribution. Therefore, we have

Assumption 6.1 Wiih the MLE based on Data Model(?), the ervors of DOA estimales are

independent of each other, and the errors are independent of the locations of DOA.

The following simulation results show that, when the separation of DOA is larger

than the beam widiii, p12, the correlation coefficient of the errors of two DOA estimates, is
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is less than 0.1 and thus the correlation between the errors of DOA estimates is ignorable.

Therefore, the Assumption 6.1 is reasonable.

Example (1):  K=2[-5 .5], M=8, N=50

SNR(dD) | pr2
20 |.0828
16 | .0217
12 | .0628

8 | .0496

4 |.0596

0 |.0178

-4 | .0519
-8 |-.0131

—-12 |[.0220

—-16 |.0793

—-20 .0806
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Example (2): K=2[-.5 .5}, M=16, N=50

SNR(dD) | pia

—20 | .0508

~16 | .0487

-12 j=-.0274

-8 |—~.0840

-4 1-.0915
0 | .0203
4 |-.0672
8 | .0200

12 |-.0562

16 | .0168

20 | .0910

Then, with R,(2) being such an idealized covariance matrix of the DOA estimates,

we may write:

R,(2) = E(é.8]) = diag(o, .. 7k), (6.2)

where, the variances of DOA estimates o (k= 1,..., i) are independent, of each other and

are independent of the locations of DOA. From Eq.(4.24), we see that, when the incoming
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signals have equal powers, o are equal to each other.

For conciseness, in the following, all the discussions are developed for K=2, where,
K is the number of the incoming signals. The results can be extended to K > 2 cases

directly,

6.2.2 MZLB(2)

In this section, we derive the lower bound on the covariance matrix Ry(2) with Assumption

6.1.

The received data vector at the n** snapshot from a M-elements array is

r(n) = s(n) + e(n), (6.3)
in which, signal
a(n)
s(n) = [do1, do] = sp1 + So2, (6.4)
az(n)

where, dgi is the k% steering vector, ax(n) is the amplitude of the &** incoming signal, s,y

arrives from the direction @q;, and sga arrives from the direction ¢gga.

Since the errors are independent of each other, we may derive the variance of ff)l
setting o, = $a — ¢g2 = 0, where, &1 is the estimate of ¢g1, and ¢, is the error of the
estimate @a. To find the E(42,), where E denotes the expectation, we imagine a binary
detection procedure. Suppose the incoming DOA vector is of two possibilities: do and ¢y,

as shown in Fig. 6.1,

where,

- ¢Ul
$a2

]
S
]
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p(6/o) P(3/81)

} : .

Figure 6.1: Imaginary binary detection procedure for K=2.

én
2

i

._.
i
-

and

$12 = do2. (6.5)
We establish the following hypotheses such that
Hy: DOA= o,
Hy: DOA= .
Based on some arbitrary estimate ¢ of the incoming DOA, which is
)
&2

S
il
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vie decision rule is
Hy
6-dl 5 16—l (6:6)
H

Note that ¢,2 = 0 and Eq.(6.5) result in #2 = do2 = P12, therefore,

|6 — ol = \/(';51 - do1)? + (2 — do2)? = |1 — dan (6.7)

and

16— il = \/(f;h - ¢n)? + (2 — 612)* = |1 — Suil. (6.8)

Substituting Eqs.(6.7) and (6.8)-into Eq.(6.6), then comparing it with Eq.(5.2), we see that
Eq.(6.6) is the same as Eq.(5.2). Thus following the four steps described in Chapter 5.3,

we have

- 2
E(¢%) = jo RdP(e1 € h)|pam0 2 jo hPean(h)dhlsqmo- (6.9)

Now, the same procedure of setting ¢,; = 0 for the variance of b2 can be applied so

that,

E(4%,) = .[0 " RAP(2 < h)|s, 0 2 fn " hPgaa(R)dba,,o- (6.10)

The RIS of Eqs.(6.9) and (6.10) are the lower bounds on the variances of the

estimates J)l and rﬁg.

6.2.3 Evaluation of MZLB(2)

To evaluate MZLB, first, we need to find Pgari(h) in Eq.(6.9) since the PDF of the received
data {or two incoming signals is different from that for one incoming signal. The Gaussian

conditional PDF of the received data is given by

- l l h
pir/d) = Wﬁ exp[—? Z(r — sy — s2)7 (r — 551 — si2)], (6.11)
1

€ n=
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where, i = 0,1 depends on the hypothesis. With Eq.(6.11), Pgasi(h)|e2=0 in Eq.(6.9) is

derived in Appendix H, which is (see Eqs.(H.10) and (1i.11))

Peani(R)pa=0 = erfe{ fi(R)}, (6.12)
where,
M
HR) = {Nm Z [1 = cos((m — 1)A)]}°. (6.13)
m=1
Let B(2) denote the (i,1)* element in the lower bound matrix Bz(2), Eq.(6.9)
becomes
" 2n
E(#}) 2 ] erfc. { /i ()} hdh
0

e

BJ(2). (6.14)

Similarly, Eq.(€.10) becoines

]

B 2 [ hPeara(k)dhls,mo
aw
= f erfe.{ fa(h)} hdh
)]
£ BR(2), (6.15)
where,
M

f(h)={Np: Z[l — cos((m — 1))},
n=1

Comparing Eqs.(6.14) and (6.15) with Eq.(5.27), we see that the lower hounds
BY(2) and B%F(2) on the variances of d1 and g are as the same as that for one incoming
signal. Thus using the results developed in Chapter 5 (see Eq.(3.48)), we can evaluate Lhe
integrals in Egs.(6.14) and (6.15):

3
mNM(M = 1)(2M - 1)’

11 112 -
BIM(2) = —-erfe. { (M)} + (6.16)



CHAPTEILS.  MZLH ON THE GOVARIANCE MATRIX OF DOA ESTIMATES FOR MULTIPLE UNCORRELATRD SIGNALS 88

3
P NM(M — 1)(2M = 1)’

22 i?
BE(2) = —2—erfc.{f2(fl)} + (6.17)

where, I/ = 27 — w/2M as developed in Chapter 5.4.

Since the estimate crrors are assumed to be uncorrelated, i.e., 12 = g921 = 0, their
lower bounds

B}(2) = B3 (2) = 0. (6.18)

Combing Eqs.(6.16) to (6.18), MZLB(2), the lower bound on the covariance matrix
R,(2)is
Bz(2)

3
VMM - D)(2M = 1)’

12

, AP
dmg(—?—crfc.{fl(fl )} + P

3
p2 NM(M - 1)(2M - 1))

B este (o) +
= diag(%ierfc.{fl(ff)}, H?zerfc.{fg(ﬁ)}) + Ber(2), (6.19)

where, the first term is the threshold term, and Bgg(2) is the CRLB on the covariance
matrix of DOA estimates with Data Model(2) as defined in Eq.(3.41),

3 3

Bep(?) = di:
er(2) = ding( T T YA = 1) pa N MM = (2 = 1)

). (6.20)

6.3 MZLB(2) AND THRESHOLD PHENOMENA

With two examples B5 (2) and BHg(2) against SNR are plotted in Fig.6.2 (a) and (b), The
dash line in Fig.6.2 is the variance of the MLE of ¢p obtained from the simulation based

on Data Model(2), which is denoted as Vi, (2).
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It can be scen that, because of the threshold term in Eq.(6.19), 84 (2) (the solid
line) shows the SNR-threshold phenomenon, and is much tighter than BHa(2) (the dotted
line) when the noise level is high. It is obvious that Eq.(G.19) is independent of A¢, so

MZLB(2) cannot show the A¢-threshold phenomenon.
Therefore, we have,

Observation 6.1 MZLB(2) shows the SNR-threshold phenomenon.
Observation 6.2 MZLB(2) does not show the Ag-threshold phenomenon.
Observation 6.3 MZLB(2) against SNR is independent of A¢g.

The geometric interpretation of MZLB(2) is shown in Fig.6.3 (03, = a%,). Here, the

dotted lines show the equiprobable contours given by
(E’Z’[Ré(2)]_l’gz = 021
the solid lines show the bound ellipses given by

#L[Bz(2)] ' = C*.

Comparing Fig.6.3 and Fig.4.7, the difference between MZLB(2) and CRLB(2)in Lthe
seometric interpretation is that MZLB(2) bound ellipses are much closer to the equiprobable

contours than CRLB(2) bound ellipses are when the errors spread out from the zero,
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(b), M=16 N=50 K=2[-.5.3]

— BY(2) .. BER(2) —--Vii(2)

Figure 6.2: Lower bounds and variance of MLE based on Data Model(2).
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d’:'l

¢'¢l

—¢rBZ'(2)6: = C?, BTRG (2), = C*.

Figure 6.3: Equiprobable contours and MZLB ellipses based on Data Model(2).

6.4 MZLB(1)

In Chapter 4 and Section 6.3, Data Model(2) was used in order to apply the Ziv-Zakai’s
idea to derive the error bound. The resulting MZLB(2) for MSST case is independent of
the DOA separations A¢. Since Data Model(2) is not a practical model as it assumes the
knowledge of the signal amplitudes and the noise power, we need to employ Data Model(1)
and find MZLB based on Data Model(1). Now, we make use of the results for Data Mode«l(2)

so that the bounds for Data Model(1) can be developed.

Let Rg(1) be the covariance matrix of the DOA estimates hased on Data Model(1).
Since R4(2) is a diagonal covariance matrix (see Eq.(6.2)), it is full rank. Thus, we can find
a transformation T such that

Ry(1} = TR4(2). (6.21)
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By the coordinate transformation of the error vector Bes

o = hcosf

and

Bea = hsin 3,

we define the error vector in the polar coordinate

- hcosf
eh = ]

hsinf

where,

h= 82, + 8% = |6 € [0,A(B)}

¢c2

8= a.rctan( ) € [0, 27},

(6.22)

in which, A(8) is the maximum length of h and is thereforc a function of the angle S.

For example, when 8 = 0, A(0) = 7 and A € [0,7]; when 8 = =/4, A(7/4) =

\/‘.-2':.— and

h e [0,v27], as shown in Fig.6.4. Therefore the covariaice matrix of the estimate ¢

baconmos

Ry(f)

T+ T _ -
/n .[0 ¢‘$‘rpl(¢=)d¢=ld¢‘;2

e T -
-[J :[) BenDep P{Pen)dhd,

(6.23)

where, p;(c,;:) is the PDF of the vector &, p;(éﬁ;h) is the PDT of the vector ¢es, { = 1,2

depends on the data model.

We examine this covariance matrix in two regions. The first one is with A < A, A

is a small value, & = |¢,| € [0, A] means that the errors distribute around the zero. The
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-_T -

A MB)

-1

Figure 6.4: h € [C, M8)]

second one is with A < A < Mf), b = || € [A, MF)] means that the errors spread away

from the zero. Then we have, based on Data Model(1),

27 MO e -
R(1) jo jo FenBL pu(Fen)dhdf

I

e

R’M(I) + Rfﬁg(l)’

and, based on Data Model(2},

20 pMB) L -
j j 'ch‘ﬁ;h]’h rp'h)dhdﬁ

N

R,(2)

e

Rosi(2) + Ry(2).

QI A —-r - ar PAD) L
/ ] ¢’¢h¢¢hpl(¢gh)dhdﬂ -+ [ f
1] 1] A A

2 pA - - 2a M)
] / Gon T palBen) dhedd + j f
1] 0 j] Fay

‘pfh(j;el;tpl('f};:h)‘““[fj

el 'L.:;‘ pal fi;gh Yethidf3

(6.25)

Substituting Egs.(6.24) and (6.25) into Eq.(6.21) yields

Roi(1) + Ruy(1) = T{Raui(2) + Ruy(2)). (6.20)
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As proposed in Chapter 5.5.2, now, we conjecture that

Assumption 6.2 T is a linear transformation such that the transformation between Ryg(1)

and Ry,(2) is the same as that between Ry(1) and Rygi(2).

Using Assumption 6.2 in Eq.(6.26), we have
Ru(1) = TR&(2), (6.27)
Rg(1) = TRy (2). (6.28)

To obtain the transformation T', we note that, because CRLB is achievable by the

covariance matrix for || € [0, A) as discussed in Chapter 4, we bave
Bea(2) ~ Ra(2), (6.29)
and
Bea(1) = Ra(1) (6.30)
for large M [77]. Substituting Eqs.(6.29) and (6.30) into Eq.(6.27), we have
Bor(1) =~ TBor(2). (6.31)

Therefore

T ~ Ber(1)BZx(2), (6.32)

where, Beog(2) is a positive definite matrix (see Eq.(3.41), it is a diagonal matrix and all

the elements are positive).

T transforms the covariance matrix based on Data Model(2} to the covariance matrix
based on Data Model(1). Since under high SNR, the covariance matrices reach the lower

bounds, therefore it is reasonable to assume that the same linear transformation T applies
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to the bounds of Data Model(1) and Data Model(2). Thus, the MZLDB based on Data
Model(1} can be obtained from MZLB(2), i.e., (sce Eqs.(6.21), (6.19), and (6.31))

Bz(1) TBz(2)

I

P

i2

T(0.5 H diag(erfe, { 1{ M)}, erfe.{ f2(F)}) + Ber(2)]

0.5H*Tdiag(erfc.{ /i(H)},erfe.{ f2(H)}} + Ber(l). (6.33)
The RHS of Eq.(6.33) is the MZLB on the covariance matrix of the DOA estimates
with two uncorrelated signals in the white noise based on Data Model(1).
Comparing Eq.(6.32) and Eq.(3.45), we sce that, this is the same transformation T,

T

Bcr(1)Bgr(2)

M(M = 1)(2M = 1) M(M -1)(2M — 1)
6dfP.d, ' 6dY P d,

diag( ). (6.31)

6.5 GEOMETRIC INTERPRETATION OF T

For conciseness, here we assume the equal signal powers, i.e., Efaf] = E[e}] = of. Then,
Eq.(6.2) becomes

R;(2) = oI, {6.45)

R.(2) is of the form F-III discussed in Chapter -L.2. The equiprobable contours

given by

FTR;'(2)8 = C? (6.36)

are plotted in Fig.6.3, where, the ellipses 1’ and 2 represent the equiprobable contours for
the smaller errors ]5,], the ellipses 3’ and 4’ represent the cquiprobable contours for the

larger errors [@el-
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Since Bep(l) in Eq.(3.27) is of form F-II in Chapter 4.2, Ry(1) = Benr(1) (see
Eq.(6.30)) is of form F-1I. The equiprobable contours for R(1) are shown by the ellipses
1 and 2 in Fig. 6.6. The equiprobable contours 1 and 2 in Fig. 6.6 can be mapped from 1
and 2“;|n Fig.6.5 with a transformation T. T can be obtained by Eq.(6.32) as discussed in
Section 6.4. Then, with Assumption 6.2, the same transformation T maps the equiprobable
contours 3' and 4’ in Fig.6.5 to the equiprobable contours 3 and 4 in Fig.6.6 which are

corresponding to the large |¢].

Thus the equiprobable contours for Rs(1) given by

STR; (1) = C* (6.37)

shown in Iig.6.6 is of the form F-II.

Geometrically, T maps a family of ellipses (circles) into another family of ellipses.

-
™
[ X

)

-
S

(L)

¥
e P
B

o

i

Figure 6.5: Equiprobable contours of p(¢,) and MZLB ellipses based on Data
Model(2).



CHAPTER 4. MZLD ON THE COVARIANCE MATRIX OF DOA ESTIMATES FOR MULTIPLE UNCORRELATED stanaLs 97

,
P2

‘f’el

()

Figure 6.6: Equiprobable contours of p(#,) based on Data Model(1).

6.6 MZLB ON THE COVARIANCE MATRIX OF DOA
ESTIMATES FOR MULTIPLE UNCORRELATED SIG-
NALS

MZLB(1) derived in Section 6.4 is based on the Assumptions 6.1 and 6.2. These asstinptions
are true for the small estimation errors. Assumptions 6.1 and 6.2 hypothesize thai these
assumptions hold for the larger errors and therefore idealize the behaviour of the covariance
matrix of DOA estimates for the large |¢.|. We call the errors under these considerations

the idealized errors.
Using these assumptions and extending the case for K=2 to the general ease, we

therefore can propose the {ollowing :

Theorem 6.1 The modified Ziv-Zakai lower bound (MZLE) on the covariance malric of

the DOA estimates for multiple uncorrelated signals in the whiie noise is
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By(1) = TBz(2) (6.38)

R

S Tdiag(erfe. { fi(H )}y oo erfea{ f(H)}) 4+ Bor(1) (6.39)

in which,

T = Ber(1)BZh(2)

MM =1 2M =1)  M(M =1)(2M - 1)

= di __AZ, A~ , 6.40
tog{——5377p. 1, T edlPar ) (6.40)
H=2%- -21_‘/1.’ (6.41)

M
Sl ) = [peN 3 (1= cos((m — 1) H))}*, (6.42)

m=1

o0 (]

erfe.{z} = —\/;=_r i e~" 1241, (6.43)
! L. (6.44)

B 1} = dia : PR ] ;
cr(l) g(2p1Nd{IPcdl 2p}{NdﬁPch

Since there is a threshold term in Bz(1), and the computation for this term is

simple, MZLB is of the following advantages:

I. It is tight in a wide range of SNR. It follows the SNR-threshold phenomenon as well

as the A¢-threshold phenomenon occurring in the DOA estimation.

2, It is easily computable.
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6.7

MZLB(1) AND THRESHOLD PHENOMENA

The difference between MZLB and CRLB is the threshold term (the first term in Eq.(6.39)).

First, we discuss the properties of the SNR-threshold phenomenon of MZLB(1) in detail.

Property 6.1 MZLB(1) shows the SNR-threshold phenomenon.

1

S‘a

The larger the number of sensors M, the lower the SNR al which the threshold p' of

MZLB(1) occurs.

The larger the number of snapshots N , the lower the SNR al which the threshold p!

of MZLB(1) occurs.

The SNR at which the threshold p! of MZLB(1) occurs does not vary with the sepa-

rations of DOA (A¢), but the whole lower bound varies with the Ad.

proof: Let B%(1) denote the (i, )" clement in Bz(1).

. From Egs.(6.39), (6.42) and (6.43}, we see that when M increases, fi(11) increases

since the number of the terms, which are positive, in the summation of Eq.{6.42)
increases. This results in that the complement error function erfe.{fi(//)}, therefore
the threshold term, decreases. This decreasing is much faster than the decreasing of
Eq.(6.44) which results from the same increasing of M. Therefore, the threshold p! of
B} (1) shifts toward the left with M increasing as shown in Fig.6.7. Here, the number
of signals K=2, ¢ = —.5 radian, ¢g2 = .5 radian, the number of snapshots N=>50; the
solid line represents the behaviour of B4(1) with the threshold pi! for the number of
sensors M, = 8, the dash line represents the behaviour of BY(1) with the thrashold
p!? for M = 16, the dash-dotted line represents the hehaviour of B4(1) with the
threshold p'? for M3 = 32. It is shown that, p'’ > p'? > p!? for My < My < My

The same property is observed with BF(1).
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2. When N in Eq.(6.42) increases, f¢(f} increases. This results in erfc. { fx(H)} in

the threshold term in Eq.(6.39) decreases. This decreasing is much faster than the
decreasing of Eq.(6.44) which results from the same increasing of N. Therefore, the
threshold p’ shifts toward the left with N increasing as shown in Fig.6.8. Here. K=2,
$o; = —.5 radian, ¢g2 = .5 radian, M=8; the solid line represents the behaviour of
BY}(1) with the threshold p!! for Ny = 50, the dash line represents the behaviour
of BL}(1) with the threshold p'* for N2 = 100, the dash-dotted line represents the
behaviour of BY(1) with the threshold p?* for N3 = 200. It is shown that, pit >

p'® > p' for Ny < N2 < N3. The same property is observed with BZ(1).

. In Eq.(6.38), Bz(2) is a function of SNR and is independent of A¢ (see Eq.(6.19)). T

is a function of A¢ and is independent of SNR (see Eq.(6.40)). So, Bz(1) = TBz(2)
against SNR. with different A¢ are parallel to each other. Therefore, the threshold p’
does not vary with A¢ as shown in Fig.6.9. Here, K=2, M=8, and N=30; the solid
line represents the behaviour of By!(1) with the threshold p!! for Agy = 0.2 radian,
the dash line represents the behaviour of B (1) with the threshold p'* for Agy = 0.5
radian, the dash-dotted line represents the behaviour of BY(1) with the threshold
2! for Ady = 1 radian. It is shown that, p!! = p'* = p? for Agy < Ada < Ada.
The same property is observed with BZ*(1). This may be explained as the following:
With Data Model(2), i.e., the signal amplitude a is assumed to be known, MZLB(2)
is independent of the separations of DOA (A¢). With the Data Model(1), i.e., the
parameters to be estimated include the signal amplitude a, MZLB(1)is a {unction of
Ad. Therefore it can be concluded that the dependence of MZLB(1) on A¢ is due to
the necessity of the estimation of a. The MLE of a is linear (see Chapter 7, Eq.(7.2)).
The resulting influence on the DOA estimation is linear, i.e. MZLB(1) against SNR
with the different A are parallel to each other; therefore, the SNR at which the

SNR-threshold p!' occurs does not vary with Ag.
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Figure 6.7: SNR-threshold of MZLB(1) under different M.
-

Second, we will discuss the A¢-threshold phenomenon of MZLB(1}).
Property 6.2 MZLB(1) shows the A¢-threshold phenomenon.

1. The larger the sensor number M, the smaller the threshold v.

2. The Ad-threshold v of MZLB(!1) is independent of SNR.

Properties 6.5 can be seen with an example as shown in Fig.6.10 and Fig.6.11. in
Fig. 6.10, with SNR=0 dB, N=50, K=2, the dash-dotted line represents the behaviour of
BI}(1) with the threshold vy for M; = 8; the dash line represents the behaviour of 83 (1)
with the threshold 72 for M2 = 16; the solid line represents the behaviour of BY (1) with
the threshold 73 for M3 = 32. It is shown that, 71 > 12 > 713 for My > Mo > My, The

same property is observed with B(1).
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In Fig. 6.11, with SNR=0 dB, N=50, K=2, the dash-dotted line represents the
belaviour of BY(1) with the threshold 7, for ¥ Ry = —10dB; the dash line represents the
behaviour of BY'(1) with the threshold 42 for SN Rz = 0dB; the solid line represents the
behaviour of BY (1) with the threshold 43 for SN B3 = 10dB. It is shown that, 13 = 72 = 73
for SN Ry > SN Ry > SN Ry. The same property is observed with 5%(1).

Finally, we discuss how SNR and A¢ couple with each other in MZLB(1).

Property 6.3 In MZLB(1), A¢ and SNR are coupled with each other in the way thal,
MZLB(1) against A with the different SNR are parallel to each other, or, MZLB(1) against

SNR with the different A¢ are parallel to each other.

Property 6.6 can be seen obviously in Fig.6.9 and Fig.6.11.

6.8 SUMMARY

In this Chapter, we have the following results:

[. With Assumption 6.1, which is based on Lemma 4.1 derived in Chapter 4.3, the
MZLB(2) for the MSST case is developed based on the MZLB(2} for the SSST case

conducted in Chapter 3.

o

. With Assumption 6.2, which idealizes the behaviour of the large estimation errors,

MZLB(1) is developed from MZLB(2) with a transformation T.

3. MZLB(1), the modified Ziv-Zakai lower bound for the MSMT case, shows the Ag-

threshold phenomenon as well as the SNR-threshold phenomenon.

4. MZLB(1) is much tighter than CRLB(1)} under low SNR. It is easily computable.
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Chapter 7

Simulations and Discussions

7.1 INTRODUCTION

In Section 7.2, MZLB(1) and CRLB(1) are compared with the performance of the M L of
DOA parameters with simulation results. It is shown that MZLB(1) is a tight lower bonnd
over a wide range of SNR. In Section 7.3, we discuss the MZLB for correlaled signals, and

give simulation results. In Section 7.4, we discuss the achievablity of MZL1 by the variance

of MLE.

7.2 SIMULATIONS BASED ON DATA MODEL(1)

With the log-likelihood function shown in Eq.(3.9), the realization of the MLE is given by

the minimizer of the following function:
N
£(8) = 3 [x(n) - D(H)a(m)][r(n) - D(H)a(n)]. (7.1)
n=1

Based on Data Model(1), the MLE of a(n) is obtained from Eq. (7.1} by

a(n) = (D''D)~'D r(n). (7.2)
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By substituting £q.(7.2) in Eq.(7.1), the MLE of DOA becomes the following opti-
mization problem,

b= arg rndi:n Te{P.(P)R.}, (73)

where,

R, = - i r(n)c¥(n)
TTN

n=1

is the correlation matrix of the received data, P,(q-ﬁ') is a projector defined in Eq.(3.29).

With various number of snapshots, various number of sensors and various number
of signals, the MLE of DOA parameters (i.e., £q.(7.3)) is implemented on the computer.
The variance of MLE is compared with MZLB(1) and CRLB(1) in Tig. 7.1 to Fig, 7.7,
where, MZLB(1) is given by Eq.(6.39) and is shown by the solid lines, CRLB(1) is given by
[2q.(3.27) and is shown by the dotted lines, and the variance of MLE is given by the dash

lines,

All simulations shown in these figures are for &y which is the estimate of the first
DOA ¢g;. Similar observations persist when ér , which is the estimate of the k** DOA

dor(k = 1,..., i), is examined.

The simulation results show that, CRLB is tight only when SNR is high; MZLB is

a tight lower bound over a wide range of SNR, it follows the SNR-threshold phenomenon.
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7.3 MZLB FOR THE CORRELATED SIGNALS CASE

Let B and B, denote the MZLB and CRLB for the correlated signals case respectively.

For this case, Eq.(3.26) becomes,

Bon = [RXA(mDHPOXM)

ANV . -
- [?%{D”P,DGRE}] !
IV mHe T R H o211 -
= [0,-3 :R{D PED © RGUU;}] * ("4)
e
where,
P, =1-D(DD)-'D, (7.5)

and R, = 0 Ry is the signal correlation matrix with the assumption that all signals have

equal power.
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It

The off-diagonal clements of B, are not zeros because R, is not a diagonal matrix
for correlated signals. Bgp is of the form F-1 as shown in Fig.4.2. Since CRLB is achievable
for small |¢,| as discussed before, with the analogous idea shown in Chapter 6, we think
the covariance matrix for the correlated signals can be obtained from the covariance matrix
based on Data Model(2) with a transformation T.. Then we propose that the MZLDB for

correlated signals may be obtained from MZLB(2) with this transformation T,. Therelore,

BS = T.B2z(2), (7.6)
in which
Te = B&rBgh(2)- (7.7)
From Eq.(3.41),
BZL(2) = NpM(M —31)(2M - 1)1. (7.9)
Substituting Eqgs.(7.4) and (7.8) into Eq.(7.7) ylelds
7, = M7= D@ - Dipeptip, b o RE). (7.9)

6

With the simulations, both the variances and the covariances (absolute values) from
MLE are compared with BS and B . The examples shown in Fig.7.8 to Fig.7.11 are for
K=2 case, in which py2 = pa1 are the correlation coefficient. From these simulation results,

it scems Eq.(7.6) works even though the idea presented here is only a conjecture.
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7.4 THE ACHIEVABLITY OF MZLB

The simulations in the above show that MZLB follows the SNR-threshold of MLE very
well, But whether MZLB is achievable is still an open question [71]. We discuss this under

Assumption 6.1 and Assumption 6.2,

During the derivation of the MZLB, the only inequality we have used is:

P, > Pgar.

Recalling that, in Chapter 5, the variance of DOA estimate E(|¢]?) is derived from F,
and its lower bound Bz is derived from Pgyays, therefore, the following relationship can be

established:

E(jel*) ~ Bz

i.e., il one of the approximates in the boxes holds, the other one holds.

For showing that Bz is achievable, we need to prove that the second tox holds.
Since it has been proved that Bz = Bgp is achievable when SNR is high, i.e., the second
box holds under high SNR, we arc going to prove that it holds under low SNR with the

description in Fig.7.12.

In Fig.7.12 (a) and (b), p(¢/e:) is the probability density function of the estimated

parameter. [t is assumed to be Gaussian if é is obtained from the maximum likelihood
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estimator. The error probability P, is represented by the shaded area (see Chapter 5.3). In
Fig. 7.12 (c) and (d), p(I/ H:) is the probability density function of the suflicient statistic i
in binary detection. It is Gaussian distributed as shown in Appendix D. Pgas is the shaded

area (see Appendix B).

MZLB is achievable by the variance of the maximum likelihood estimation under
high SNR, since it includs CRLB and CRLB is achievable under high SNR. This resulls in
P, =~ Pgas when SNR is high, i.e. the shaded area in (a) approximates that in (c). Since
both p(@) and p(l) are Gaussian, the approximation of the shaded areas in (b) and (d) will

not be changed when SNR is low, Therefore, P, =~ Pgar under low SNR.

The conclusion from this analysis is that, with our considerations, MZLB is achiev-

able by the maximum likelihood estimator under both high SNR as well as low SNR.
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Chapter 8

Summary

Performance analysis for DOA estimation over a wide range of signal-noise ratio is a difficult
problem. Some work has been conducted toward this direction. The work developed in this

thesis addresses part of the problem.

Using a new idea, Ziv and Zakai developed a lower bound on MSLE of the time delay
estiinate, which works for one incoming signal with one unknown parameter. The major
contributions in this thesis are, by modifying the idea from the Ziv-Zakai lower bound
on the error of one random parameter estimation, a lower bound on the variance of one
deterministic DOA estimate has been derived; this has been extended to obtain the lower
bound of the covariance matrix of DOA estimates which contains multiple incoming signals
having multiple types of unknown parameters. The resulting MZLDB is a computable tight

lower bound.

The work developed in this thesis is summarized as the following:

1. Establishing Data Model(2) to study the performance of DOA estimate against SNR
independently. Establishing the relationship between the performance of DOA with

Data Model(2) and the performance of DOA with Data Madel(1).

117
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2. Proving that the MLE of DOA parameters based on Data Model(2) is asymptotically

cllicient.

3. Giving a profound interpretation of Ziv-Zakai’s idea, and applying the logic in Ziv-

Zakal’s idea to derive a lower bound on the variance of one DOA estimate,

4. Developing MZLB(2) on the covariance matrix of multiple DOA estimation. The

modified Ziv-Zakai lower bound is obtained from MZLB(2) with a transformation T.

5. Studying the SNR-threshold phenomenon as well as the A¢-threshold phenomenon
in CRLB and MZLB.

6. Showing the tightness of MZLB by simulations.

The work developed in this thesis addresses the performance analysis of DOA es-
timation. The idea used here may be extended to the general performance analysis for

nonlincar estimation.

The idea presented by Ziv and Zakai in [100] is excellent. Since there is not much
work that applies Ziv-Zakai’s idea to derive lower bounds on estimation errors, the research

work in this area should be interested.



Appendix A

Proof of Eq.(4.20)

e(n) is the white Gaussian noise at the nt* snapshot. It is a M-dimension vector. e, (n) is

the mth element of e(n). The following relationships hold [77]:

E{e(n)e’(n1)} =0 (A1)

for n = nl and n # nl.

Een(m)emy(n1)} = n#nl,orml#m (A.2)

af;" n=nland ml=m

-

since the noise are white spatially and temporally.

Eq.(4.10) results in,

arar

B gon e

N ap!! oD
— K -afltn n) — elf(n)—a(n

N
(3 —all(nl)

nl=l1

aDH
do

—ell{n -02 )"
Ie(n.l) e (11)04)‘4( Dy
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N‘ N

3 EI[E{n"(n) e(n)n ('nl e"(nl)}
n=lnl=

+u”(n) B{e(n)e'r(nl)} a( 1)

T
+E{e”(n)-§%a(n)a7'(n1)aalz‘ e'(nl)}

+L‘{e”(n)a¢ n)eT(nl)—--a (n1)}], (A.3)

where, the sccond term is equal to zero for both | = k and { # k because of Eq.(A.1).

Stmilarly, the third term is equal to zero for both { = & and I # k since

E{e”(n) a(n)a (m) e( 1)} = aT(nl)— 3 E{e (nl)eH(n)} ( ).

Now we consider the first term in Eq.(A.3). For ! # k , recalling Eq.{4.12), we have,

N
> Z E{n”(ﬂ.) (n)aT(nl) e*"(nl)}
n=1 nl=!
N N M
= 3 > ai(ma(nl)E{{3 (m = 1)jexp(i(m = L)ée)en(m)]"
n=lnl=l1 m=1
M
[ 3 (ml = Djexp(j(ml - L)ér)er, (n1)]}
ml=l
= 0, (A)

where, Eq.(4.15) has been applied. Similarly, the fourth term in Eq.(A.3) becomes zero

when [ # k.

For ! = k, using Eq.(A.2), the first term in Eq.(A.3) becomes

l"J‘<

ay u)ak(u)E{L[(m — D)jexp(i(m = Dow)en (w)]"[(m — )i exp(5(m = 1)dx)en.( (n)]}

m=1}

=
1}
—

N M
=Y ap(m)ax()[ Y (m - 1)*E{e;(n)em(n)}]
m=t

n=1l
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N2 oMM = )(2M = 1)
- .

Similarly, the fourth term in Eq.(A.3) equals to the RHS of Eq.(A.5).

Thus Eq.(4.20) follows.



Appendix B

Derivation of Pgj;; in Eq.(5.20)

Let us consider a binary detection problem with sensor array. The DOA of the incoming

signal is of two possible values, ¢g and ¢,. We form the following hypotheses:
flp:  DOA = ¢y,
Iy: DOA=é¢.
The task of detection is using some procedure to decide which hypothesis is true.

Bayes criterion leads a likelihood-ratio test (LRT):

Hy
p(rli) &, $ P(Ho)
p(r|Ho) P(I)
o

In 2. (B.1)

where, p(r]#l;) is the PDF of the received data when H; is true, [ is 2 sufficient statistic,
P(!;) is the probability of If; occuring, and 4 is the test threshold. We assume that the

costs of making erroncous decisions are equal.

When the two hypotheses are equally likely, i.e. P(Ho) = P(H#,) =0.3,v=0and

Eq.(B.1) resulls in a minimum error probability receiver.

The error probability of LRT is shown in Fig.B.1, where, p({/ Ho) is the probability
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p(l/ Hy) (i)

Figure B.1: Error probabilities with LRT.
density function of  under hypothesis Ho, p(l/ 1) is the PDF of { under hypothesis 4.

The probability of false alarm Pr (i.e. we say II) is truc when [y is true) is

Pr = ] = o1/ Ho)dl.

”

The probability of a miss Py (i.e. we say fp is true when My is true) is

Pu= | "o/l

The total error probability is

P. = P(Ho)Pr+ P(I1))Py = (Pr+ Pu)/2. (13.2)

Now, we follow the way introduced in {81] to obtain an approximation of this mini-

mum error probability P..

Under g, the moment-generating function of { is

(q) & E(V| ) (B.3)
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Define a function,

He>

1(q) In(q)

= In E(e" ()| Ho)
= In f  ettp(l/ Ho)dl
—-00

=]
= ln/ e p(r/ Hy)dr

© p(r/H1)

[ e/ Hods

= In

- I ]_:[p(r/H:)]"[p(r)/Hol""dr-

Now, constructing 2 new probability density function

po(2) = e*p(z/Ho) _ e*p(z/Ho)
! I, etp(i/Ho)dl ~ exp(u(q))’

we have,
E(z) = i(q)
since
E(z) = [_: zpg(z)dz
_ 2o, ze¥p(z/ Ho)dz
- exp(u(g)) '

and
o) = gl [ ertuytop]

S, $ep(l/ Ho)dl
2, etlp(lf Ho)dl

124

(B.4)

(B.6)
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[2, tetlp(i/ Ho)dl

xp((0)) .

Var(z) = ji{q) (B.7)
since

Var(z) = E(z*) - [E(z))

f°° 2, zep(z/ Ho)dx

2 ¥ - 2
mmp"(m)d [ exp(p{q)) !

1%, z2ePp(z| Ho)dz
exp(u(q))

[22, ze¥p(z ] o)z
exp((4))

[ I

and

i) 4[5 ledtp(1] Ho)dl
BU= 3 exp(el)

[, et p(i/ Ho)dl) exp(p(a)) = [[22, le™p(/ Ho)d!)[[Z5, le?'p(l/ Ho)dl]
lexp(n(m)}*

[, 2evip(lf Ho)dl] [ let'p(l] Ho)d!
exp(u(e))  +  exp(u(q))

.
We choose g = gy such that

o) =v=0 (13.8)

for the minimum error probability receiver.
Now, using Eqs.(B.5) and (B.8), Pr can be written as

Pr = /mp(llﬂu)dl
'f

20

= ] exp(p(q) — q2)pg(=)delg=qy

In
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. m L
= exp(u(a) = 9id0)) [ explails) = 12)po(=)dzlimry; (B.9)
B

Note that, in our problem, ! is Gaussion distributed (Appendix D), so, p,(z) in

£4q.(B.5) is Gaussian, Let

y & 2= E@) oz Maw)
Var() 2 Vilam) |

then y ~ ¥(0,1), and

1 . had -
Pp = 7 exp(u(gar) - fIM#(QM))jo exp(—gary/ii(am)y — ¥°/2)dy

2
= exp{u(anr) + BLis(ar)Yerfe- {anr/ik(ann)}. (B.10)

In Similar way,

Py = exp{p(aar) + U—_;‘ﬁﬁ(w)}erf‘i-{(l — g )/ it(am)}- (B.11)

Therefore,

P. = (Pp+ Py)/2
= explu(qar) + qarii(qar)/2erfe-{aary/ i{aar)}/2

+explp(qar) + (1 = qar ) fi(gar)/ 2erfe {(1 — qur)y/ () }/2

-

Pear. (B.12)

T'he approximation in the above exists under the following conditions:
(C1). The hypotheses Ho and f; are equally likely,

(C2). The costs of making erroncous decisions are equal,
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-1

Remark
The following points are important to understand the nature of the lower bound.

» Under the condition (C1) and (C2), Pgys is the minimum error probability in binary

detection, no matter the signal-noise ratio is high or low.

¢ In nature, the binary detection procedure is detecting one signal identified by one param-

eter which is of two possibile values.
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Proof of Eq.(5.24)

Eq.(5.22) is valid for the real data as shown in Appendix B. However, the received data in
our problem is complex. To overcome this, we re-formulate the data vector r(n) at the nth

snapshot into a 2M-dimensional vector such that
#(n) = [Re(r1(n)), o, Re(ras(n)), Im(ra(n)), ooy Im(ras(a))IT, (C.1)
and
Sin) = [Re(si(n)), o, Re(sine(m)), Im(sia(m))s ooy I(sina(m))]” (C.2)

= a(n)[l,cos(d;), ..., cos(@;( M — 1)),0,sin{@;), ..., sin{di(M — 7, (C.3)

where, r, (1) is the complex data received by the m*® sensor at the nt? snapshot, sim(n) and
; are the signal and the angle of arrival when H; is true. The quantity a(n) Is, in general,
complex, having a random amplitude and a random phase at each snapshot. However, since
we assume the signal is narrowband such that it does not vary while traversing from sensor
i to sensor M during the same snapshot, we can apply an appropriate phase shift at each

snapshot so that e(n) = |e(n)] in Eq.(C.3) rendering the 2M-dimensional vector §{n) real.
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The PDF of the reccived data can now be re-written as [22]

B 1 1 Y . = .
p(7/Hi) = TR exp(-3 T;(F(") = &(n))TR7H(An) = Si(n))],
where,
A - 1| Re(R.) -Im(R.) _a?
Im(R.) Re(R.) 2
Then Eq.(5.22) can be written as
= 1 e i T
pq) = “LMW e(f?fl(r-'én) (= 5)

+(1 = q)(F = 5)T(F - %))}dF,

where, for convenience, we have omitted the obvious dependences of ¥ and §; on n.

1 0 -
ln——:——j oxpl-— FT7 = aiTs — g8 7+ 51 3
gl pl Z(q GEETE LR

en-

(q)

4717 = 775 ~ ST7 4 850 — qF 7 4 g7 So + 54 7 — 48, Jo)]dF

1
= In W/ [——Z(T‘ F— T‘ .S|—q.511"

c n=t
—(1 = )T 55 = (1 — q)8L 7 + 57 50)}dF

= lnexp[——Z( 25T s q(1 = )57 5 — (1 = §)50 5,

cn—

|

1~ T 5+ 5| ——————
(1= )5 % + 5o 5) [det(27R..)] N/

- n=1
1 & : T e e
= = E(qgéﬂré’l +q(1 = )57 5 + g1 — )55 5 + (1 = 4)7 3y 3 — 5y 5n)

€ n=1

(C.)

(C.6)

Then

0 N -
/ GXP[-% S (7 - (05 + (1 = DENTRNT - a(5 + (1 - )Fa)ldF



APRENDIX C. PROOF OF EQ.(5.24) 130

N M
1 i, DU
= 5 3RY d-1+ 0+ - OET5 + )
¢ n=] m=l

Note that, ¢; — ¢ = h, with Eq.(3.34) in Data Model(2) and Eq.(C.3), we have,

N , N
o = Y 88
n=! n=1
N M
= 3 a¥n) D cos((m — 1)do) cos((m ~ 1)) + sin((m — 1)go) sin((m — 1)b1)
n=l m=l

M
= Na? z cos(h(m - 1)).

m=l

So,

M
wla) = 207228 Y [~q(1- q) +q(1 - q)cos(h(m - 1))]

m=1
M
= =2pNg(1-q) >_[1 - cos(h(m - 1))]. (C.7)
m=l
Eq.(B.8) results in
qr = 1/2, (C.8)
for which Eq.(C.7) becomes
1 M
w(1/2) = —spN Z [l = cos(h{m - 1))], (C.9)
“ m=1
and
M
ji(1/2) = 4pN D [1 = cos(h(m ~ 1))]. (C.10)
m=1

Substituting Eqs.(C.9) and {C.10} into Eq.(5.20). we obtain
Pea(h) = expu(1/2) + fi(1/2)/Slerfe.{/E(1/2)/2}/2

4 explu(1/2) + ji( 1/2)/Slerfe- {\/i(1/2)/2} /2
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erfe.{y/ji(1/2)/2}

M

erfe.{[pN Y (1 = cos(h{m - DN (C.11)

me=1

i



Appendix D

Distribution of the Statistic !

In our problem,

N
p(r| o) = a2y MV exp[-a7? 3 (r(n) = so(n))* (x(n) - so(n))],

n=1

p(rl i) = (wo7) YN exp{-o? Z(r(ﬂ) = 51(n))" (x(n) - s1(n))],

n=1
S0,
G
L= [p(rlﬂo )
N
= Infexpl=s S (e (n)(5:(n) — so(n)) + (s1(w) = so(m))x(n)
£ n=1

=i (m)s1(n) + sbf (n)so(n)]}

= 5 Z Re[rH(n)(s:i(n) - so(n))},

=a cn_

where, we have used Eq. (3 34) in Data \Iodel(2) such that

Z st (n)sy(n) = Z sif(n)so(n) = M N3,

n=1

So, { is a linear combination of Gaussian random data r(z) and is therefore of

Gaussian distribution,
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Proof of Eq.(5.42)

Let

C =1+ cos(z) + cos(2z) + ... + cox{ (M = 1)z),
and

§ =1+ sin(z) +sin(2z) + ... + sin((M — 1)z),
then

C+35 = 14 e 4 &% 4 . 4 M1

| — giM=

1 —ei*

(1- e?M=)(1 ~ £=i%)
(1 = e?=)(1 = e=9%)

1 — c—j.‘t - ejl"!: + CJ(JW—I)I

| — el === 41

1 — e-jz + eJ‘(‘w“l)Z‘ _ cj:\l:r
2(1 — cos{z))

Equating the real part,

M

C = Z(:os((m—l):c)

m=l
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R(C +75)

1 = cos(z) + cos((M ~— L)z) — cos(Mz)
2(1 — cos(x)) )

With z = A = 357, and the approximation (M is reasonable large)

. (M=Dm .7

sin((M - 1)A) = sin o Nsing = 1,

M -1A @M -1)r o7

sin 2 = sin ¥ ~ sin 5 = 1,
S =aM T o

cos(A/2) = cos(r/4M) ~ 1,

we have
dC|z=
dA
_ L cos(MA) - cos((M ~ 1)A)
B EE[ - 1 —cos{A) ]
1 (1= cos(A){ =M sin(MA) + (M = 1)sin{(M - 1)A)}
= 3l (1 — cos(A))?
{cos(MA). — cos((M — 1)A)} sin{A)
- (1 — cos(A))? ]
- _ll(M = 1){=Msin(MA)/ (M - 1)+ 1}
-2 2sin®(A/2)

+2 sin{{2M — 1)A/2)sin(A/2)2sin(A/2) cos(A/'.Z)]
4sin'(A/2)

_l[ -1 + l ]
VAT MY (2 4M)?

i

JA

T’
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Appendix F

Proof of Eq.(5.43)

With Eq.(E.1), and the approximations,
cos A = €O m 2 1,

2M
sin(MA) =1,
cos(MA) =0,
T
! ') ol D —
cos(A/2) = cos s l,
sin(A/2) =sin{a/4M) = 7 faM,

the symmation term in Eq.(3.40) can be written as

M

$° L cos((m= 1)) = M[! - L - cos(A) + eos((M = 1)8) = cos( MA),
m=1

2M({1 = cos(A))

cos( M A) cos(A) 4 sin{ M A) sin(D)
~ M[l- — R |
A sin” 5
2sin & cos §
~ M- M.-_]
AM sin® 5

12

M[L-1/MA]

= M(l-2f7)
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= 363M. | (F.1)

Then Eq.(5.40) becomes

M
xp(-11/2) = cxp{ 2N 5™ (1 - cos((m = 1)A/2))

m=]

~.363M N ph?
= ex(——pxr—)

= eoxp(—.0TpNM3h?), (F.2)

where, A = ©/2M (See Eq.(5.41)).



Appendix G

Proof of Eq.(5.46)

Substituting Eqs.(5.36), (5.42) and (5.43) into Eq.(5.34) yields

o= VPN A p2 26 swh“,(_:._.h..,./.))dh
O = Yk BRI DM 1) & e
VpN 1 2/6 g3 j[
= ! B2 2)ydi
2R 2R MM - )@M - 1) ™  exp(—aih/2)dl
4IM3/pN ]
= I 2152 f2)dl, G.l
7r3\/M(M—1)(21\4—1)][\/2-? i exp(=njh/2)dh} (1)

The term in the second bracket in Eq.(G.1)is

1 a a;2
—_— Rre=mhgp = j hdr’_"lh /2
\/2.-.'./0 ' \/2-r
1 A 242
= - hr’"’lh f21a / pm R 2
\/2:.'7],[ LA |
L AeTiAE LA
= _Tl_f[——‘—'er -'”—I(:é-"” mal)
1 n;Ac"”f"ﬂﬁ I .
- | ——m—™m—— He [ . (..
7 foz 2 + arfe. {m A} (G.2)
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Then, using Eqs.(5.44) and (5.45), the term in the first bracket in Eq.(G.1) times 1/ndis

A/3IM3/pN
m3M{M = 1)2M - 1)n}

AVIM3/pN B
73/ M (M = 1)(2M - 1)0.14p17 M3/0.14pN M3

V31 MM =-T)2M = 1)/
73(0.14)1 5 p N M(M =1)(2M - 1)

1 (MM = 1)(2M - 1)
e 2M3 '

12

(G.3)

So Eq.(5.46).



Appendix H

Proof of Eq.(6.12)

For the binary detection, the minimal error probability is given by [81]

Peas(h)

= exp(ul(qm) + garit(aar)/2lerfe.{aary/ii(anr)} /2

+explp(qn) + (1 — gar)?ii(ans)/2lerfe{(1 — garhyfidlgar)} 2,

in which,

erfc.{z} = et 11,

7=

ata) =1 [ (p(F/HOP (Y Ho)l' 107
—-co
As in Appendix C, from Eq.(6.11), we have

N
. 1 1 o = o T =
]D(T/H',') = (QRGE)MNI"’ exp[—-; ZI(T =3 - 31"2)1 (=5 - -'iiz)],

£ n=
where,

n(d
S = aln) {don)
S(do1)
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(H.1)

(11.2)

(11.3)

(11.4)
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ay(n)(1, cos(dp1), .y cos{(M — 1)do1), 0, sin{do1), «-, sin({ M — l)r;'am)]r,

R(doa)
S(doa)

5'02 = ru(n)[

= az(n)(l, cos(doz), s, cOS({ M — 1)dg2), 0, 5in{boz2), .., sin((M — 1)¢02)]T,

R(d,
fu = ai(n) (i)
S(dn)

= m(n)[l,cos(ri)”),...,cos((ﬂfl - 1)(,’511),O,Sin(¢11),...,5in((l\f[ - 1)¢1])]T,

g
>
|

R(d;2
= aa(n) [ (diz) ‘\
S(di2)

= a'_-(n)[l,cos(rﬁlg),...,cos((M - 1)¢|2),O,Sin(r,ém),...,sin((M - 1)(1')12)]T,

LN
| S(x(n)) |
R(e(n

Hn) = (e(n)) _
L%(e(n))_

where,

§1-~ = 5-0'_- (H.5)
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since ¢y = ¢oz, see Eq.(6.5). As discussed in Appendix C, we may apply an appropriate

phase shift at each snapshot so that a;(n) = |ai(n)| rendering the 2M-dimensional vector &

real,

u(q)

Substituting Eq.(H.4) into Eq.(1.3), we obtain

o0 N 1 .
exp{- Z -a—,‘,_[q(f"—- S = 512)T (F = &y — §a)
o2 n==l €

]n[.zﬂo.E]-—;\«IN(q+l-q)/2j

+(1 = q)(F — o1 — 8o2)T (F = So1 — )|}
=My [T N1, L. T
Inj2mag) ™™ '_/ exp{- Y ?[T — (81 + §2) = (1 — )G + &)
—oo n=1 ¢
[F= q(811 + §12) = (1 = q)(8o1 + So2)]}dF
N 1 .
exp{- ?_;[-Qz(-?n + 512)T (1 + §12) — q(1 = )51t + 512)” (S -+ So2)
n=t ¢
—q{1 = q)(Fo1 + Soz)” (5i1 + §12) — (1 — 0)* (501 + Fo2)T (301 + Foz)
+q(&, 512 + i + ST8u + Tadiz) + (1= 0)(8, 5oz + SaFon + 56,501 + Syafoz)])
N . .
Incxp{- Y, ;‘50(1 - )11 + 512)T (Gur + Fi2) + (Fn + Fo) ! (Boy + )

n=l "¢

—(5u1 + §12)T (o1 + 502) — (5o + So2) V(511 + 502)))

N
-3 %q(l — O[5 = For) + (Brz = 502)] (511 = o) + (Fr2 = Sl
n=] "¢
N 1 )
—a{1-¢) 3 =& - o1)T (511 = S01),s (11.6)
n=] ¢

where §j2 — 552 = 0 because of Eq.(1L.5).



AFPENDIX . PROGF OP EQ.(0.12} 142

We can evaluate the summation part in Eq.(H.6) so that

™M=

1, - -
—(F11 = 3o1) " (@1 - 1)
n= Oe

¥ Jay(n)?
2
ta2] aﬂ

[1,cos(dy1) — cos(for), <., cOs(@11 (M — 1)) — cos(dor(M — 1)),
0,sin(¢b11) — sin(sbor )y .y Sin((M = 1)11) — sin((M — 1)o1)]

(1, cos(#1) — cos{do1), ..., cos{(P1 1 (M — 1)) — cos(dbar (M — 1)),

0,sin(11) — sin{do1), .er Sin((M = 1)p11) — sin((M = Dor)}*

(h4

M
Npy Y [eos((m = 1)y1) — cos((m — 1)éor)]* + [sin{(m — 1)¢11) — sin{(m — 1)do1 )J?

m=1

M

= 28p Y (1= cos[{m — 1)(¢11 ~ do1)])

m=1
M
= 2Np ) (1 - cos[(m — 1)h)), (H.7)

m=1

where, 00 {a)(n)[* = No?, is from Eq.( 3.34), and

is defined as the signal-noise-ratio (SNR) of the first received signal.

As discussed in Appendix B, we choose q = g3 = 0.5 so that 2(q) = 0. Then

M
m(0.3) = -0.25Np, z[l - cos((m — 1)h)), (H.8)
m=1
M
u(0.3) = 28py > [1 - cos({m — 1)h)]. (H.9)

m=1
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From Eq.(lH.1), therefore,

Pean(h) = erfe.{y/fi1(1/2)/2} = erfe. {/i(h)},

where, erfc.{z} is defined in Eq.(H.2), and

M

Ay = {Np Z[l - cos((m - 1R},

m=1

143

(11.10)

(i.11)

i
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