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o The problem considered is that of obtaining an
optimum solution to-large nonlinear englneeriﬁg system by
coordlnateJroptlmum solutions of smaller sub-systems. The
technlque produces a way of dlspleylng graphlcally and
numerically the trade-offs between each sub-system design
objective and the sub-system joint design specifications.
.A nohiinear multi-variable fitting model is developed to

rEpresent the trade-off hypersurface. Shape, potential

and advantages of the trade-off surfaces also are illustrated.
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CHAPTER 1 . HE

" INTRODUCTION : . .

[ad

In recent years, much has been buBlished cob—

-cerning the optimum design érqbiem in engineering [1,2]*, ..

t

Fundamentally, t problem is Bne of oétimizing a design
with respect #0 one or more optimizatfgg criteria [7]) . -
However, in complex design systems, there are ofﬁen~seve-
ral sub-systems that can be considered as a’separate dés}gn

problem governed by some- specifications and usually they

all will have the same objective (minimum cost and/or maxi-~

mum profit). It is to this topic that this research is

directed.

| An objective of this thgsis will be to explo;e
the use ofigbft specifﬁcaticns in optimization by relaxing
the hard ones aqd generating a set of trade-off ¢urves [3].
Moreover, it is evident that the problems of large systems

optimization, which involvs large numbers of design variable$

and constraints, is still a subject under consideration

[4, 5]. Therefore, this investigation'aftempts to study the

use of trade-off curves, after represehting them in a con-

venient empirical®formula, in a decomposed system.

’

-

* Numbers in brackets refer to similarly fumbered references
at the end of the paper-. ’
. \“\ - ®

”

-



This thesis in particular examines the following’

guestions: How aﬁd why does the designer generate and re-
f

L present t:ade-off curves, and how mlght he determlne the
s "optimum” design of a large complex system‘by decomposing

A ’ -

it? ﬁ
-

' . i Chapter 2 descrlbes a. way of generatlng and ﬁe
&fesentlng trade-off curves Ylth‘a brlef discussion of
<ﬂthe;r &Se‘applled to two design examples. Chapter 3 is
R . devoted ‘to describing thé use of the trade off technlque
in comblnlng a decomposed large deSLgn system w1th the aidof- f
an example. Conc¢lusions and fgrther‘research suggestldhs -
. _ are éiven_in Chapter 4. Apéendices A through ﬁ are devot-""
. ed. to illustrating related indisbensable tépics. Cost as
Aan objectlve is dlscussed in Appendlx A. Ducted ax1al flow
fan de51gn is presented in Appendix B. Appendix C -and D
describe a recuperator design and the needed physical prop-
. ereies: A\nop-Iipear fieting madel is demonstrated, with
a brief statistical comparison, in Appendix E. Flnally, a

user's manual and program listing is attached 1n Appendlx F..

a

- T




CHAPTER 2

¢

TRADE -~ OFF CURVES

2.1 Dpefinition

. A txade-off curve (intéraction curve) ‘can be
defined as thé locus of all of the optimum design points

for a given configuration. It may represent the relation
between thé configuration optimization criteria and a - .relax-
ed design specification [3] or a competing design objective

[7] . The generalization to more than one specification

introduces trade-off surfaces (hypersurfaces).

2.2 Generation

-

"In formulating the opﬁimum design problem, the .

»

designerxr ﬁust consiéer the application gnd'the.desired‘\\
objective or objectives of the design. .Then, he must identi-
fy the design variables, objective functions, and c;nstraints.
In such dégignﬂproglems, solutions by trial and error or emp-
irica% approaches may not be éopd enough, and efficient num-
erical Eeéhniques are needed to do the complex énalysis and,

s Y3
N v

‘optimization. -

-

"OPTISEP" is an optimization subroutines package



. [27 1 , which wds efficiently used through this piece of
work. In general, in an optimization problem, a solution %

is sought that minimizes (Mximizes) some numerical objec-

.

tive function U, of one or more qe&ién variaq;es, subject
to‘;:set of equality and/or inequality design conétraints

¥ and ¢ .~ In the mathematical optimization programming e;p-
loyed by OPTISEP, the techniques are generally iterative,
The design variables are al%éred at each iteration in ac-~ S‘
cordapcg with some strategy until the objective function
canno longer be igproved without violating the q&Fétraints.

. Moreover, there is a poinﬁ agout application of.
OPTISEP to solve problems like (2.3.1) and (2.3.2)

— that requires further comment. First of all, in generatinq '
the trade~off cuxve (TQC) mew estlmates for the design varl;‘
les are required eaéh time the optimization problem lS

~ Sclved. The new design estlmates were obtained in two ways..
First, the optimum found from one 1teratlon was used as a
starting p01nt for the next iteration. This method worked
best when the relaxed design specification changes were rel-
atively- small. Secondly, a linear curve fit based on pre-
v1ously obtalned optipa was used to estlmate the new start-

lng p01nt Thus, in, these two ways, new estlmates can be

made accurately to aid convergence and increase overall L

efficiency.

. Furthermore, a special problem of local minima




can arise in optimizatfzn. If the'designlcbjective is a non-
convex one or if a design space is a non—f&nvex region, theh
there 1is ; possibility.o; loeal minima. ' In any comélex design,
it is difficult to show that a éesign objectivq.is a convex
function over the feasible region, or that the feasible région
is cohvex. Consequentlx, the designer must be aware of the pos-
sibility of local minima. The existance of local’ minima has

an interesting effect on éhe (TOC), as will be illustrated

later in this chapter.

>

#AThe treatment of local minima is a serious problem

£

in optimization, There is usually no-way'to tell if a minimum

. . o .. . .. .
is, in fact, the absolute globhal minimum or just a local minima.v

Hence, the designer must try different starting points in an
attempt to find other possible minima and to determine what the

Bbjective function surface is like.
, -It is worthwhile to examine‘the effect of integer and
discrete variables in generating a trade-off curve, surface, or
hypefsufface. Integer variables occur when the quantity of
seme identical components is a variable, such as the number of

rotor and straightener blades in a fan (N and NS). On the

Rl
other hand, discrete variables usually arise from discrete standard size
such as an electric motor horsepower and revolutions per minute,
(HP and RPM). This will be described in the following section

* through the presentation of two design examples. The most prac-

tical approach for Optimizing}an integer and/or discrete design

™~ /
Ay
hd .
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problem is to treat the variables as continuoqg, and after
the optimum values are found, round them off to the nearest
£Lteger or discrete values with‘atten£§on ;o the constraints
feasibility. Furthermore, it is good practice tg check all
‘integer values adjacent to the unrounded solution to ensure
that\the optimum haé not occurged nearbyf However, whilé
generating a trade-off curve, or\furface,it is not advisable
to round the integﬁz;g;/ais;rete design variables because an
irregular step wise curve will be formed having the same
contipunous trend. Curve irregularity depends upon the dis-
cgete steps and haw far they affect the objective function
value. It is worth noting that another deviation from the
actual optimum '‘may occur due to the optimization stogﬁing
criteria, which may be a relative change in the objective
-function or in the desig‘ yariablés step size.

However, it is worthwhile to discuss and examine
addiFional'prope}ties of the TOC, which will be of great help
in understanding the béhabiour and trend of the ehsuing curves.
The trade~off curve divides objective function space into two
different regions. The region above the TOC represents all
feasiblé designﬁ. The reg@on‘below the TOC represents designs
that are not possible because they violate the go;érning physi-
cal relationships. In this sense, the TOC represents a bound-
ary of the,fe;sible'regian, where all the points on the Toé

are optimum designs. 'Consider now Figure 2.1l. Objective

T
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function contours were prttéd versus its two design

variables xl and x
§

to have‘theﬁform

2 Inequality constraint, ¢1, is assumed

6.1 = x - x,. > 0.0 2.1
RS W 1 -

1 ﬂe the upper limit of the design variab%e X .
Max \“ . ‘
Relaxing the ?onstraint by varying Xy value betwee

- N Max -
Xq and x& , a trade-off curve shown in Flgure 2.1

MaxA - \LMaxC ‘\

1
can be generated. The portion of the TOC between.A and B

where,x

represents theemallest VeIﬁa that the function p(xl, V can

‘attain withoutgviolating the constraint (2 l). The p 1kts

1
between B and C on the curve, where the constralnt is ndt

active, are similar to an unconstralned problem . For a\d@sign
not on the curve, the objective function can be 1mprode by

©

moving towards the TOC. ' \
In this sense, the shape'of TOC, shown in Fidqure

2.1 is affected by the objective function profile and tthe cons-

traint equation. However, throughout the procedure -off gene-

rating the TOC, the objectlve functlon shape does not dhdange,

only the position of the constraint with respeqgt to the ¢bject-
ive function does change. 1In this stage, we will call this

N

type of TOC's "Type-A! Moxeover, a Type-A trade-off surface

may also be generated to give more inééght into the design.
Figure 2.2 represents a two-dimensional objective function

U(xl’ xz), which is sgbjeéted to the following two constraints

s




Figure 2.2.

" Type A Trade-off Surface,



10 -

¢l = %Xy 7Txy ’Z 0 (24 2)

4 = K - (x; +x,) 2 0 ?2.-.3)

: p <
where, x ) and K are input specifications for thé lower

Min -
limit of X, and the upper limit of the sum of xl and X5
resPGCEively.‘ By relaxing ilMin and K‘valueé, the tradé—
off surface shown in Figure 2.2 will 'be created. It is
obvious from Figure 2.2 that an infeasible trade—-off curve is
forbéd if‘xl'. is greater than K specified for this partic-

Min
glar curve.

On the other hand, we can dgfine:a "Type-B" trade-
off curve as the one which is accompanied by a change in Fﬁe
.- objective function shape during ;he course of its generation.
Thus, this applies to any system in which the objective func-
tion is a function of specifications being changed. For ii—
lustration, let us assume the following tyo—dimensional objec~-

tive function, U, which is subjécted to a set of inequality

constraints, Figure 2.3

‘ Minimum, U(xl, x2) = axi + \xg T (2.4)
subjectea to ¢l = X o+ X1 > B8 ? (2.5)
b, = % % 0.0 (2.6)

b3.= Xy 2 0.0 ' (2.7)

[ ey IR TRL]

T 1 e
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Figure 2.4, Type B Trade-off Surface, Section 1.
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in which,a and B8 are input specifications which by relaxing
their values a trade-off surface can be generated, shown in
Figures 2.4 and 2.5. The minimum feasible ‘objective function

*
value, U , can simply be calculated from

* a 2

U = —_— 8 (2.8)

l + a
A _ , . * *
where the optimum design variables Xy and X,y computed by

* :

xl = B/ {(l+a) (2.9) -
* L

X, = aB/ (1+a) (2.10)

An observation can be made from Figure 2.3. Along
the”TOC, the gradients of the objective function and the ’
active constraint are in opposite direction since the contours
are tangent at these points. However, this is not the case,
fo} the stable region of the TOC type-A where the constraints

are not active, as shown in Figure 2.1 between points B and

C, and also from Figure 2.2 between x and x for K..
lO lB I

Finally, the effect of a local minima on the shape
of the TOC is coﬁsidergd. Figure. 2,6 sho&s an assumed two-
dimensional objective function, U,with gigbal and loc{l mini-
mums A and B, respectively. It is subjec;ed to a direéf‘
constraint, ¢ = x; - lein"Z 0. Type-A trade off curves
‘are then generated by relaxing lein'value. Depending upon

1

13
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the starting estimates of the design variables a minimum
feasible may be found. 1In this sense, two TOCs ﬁight be
plotted as'shown‘in‘Figure 2.6. Once the TOCs (surfaces) 'are
found, it becomes clear which portion of the curve (surface)
produces the more acceptable designs; portion with.lower func-
tion values is more satisfactory. With kqgwledge of the &ypes
of designs that produce the lower branches, the designer can
select an estimate near the proper optimum when finalizing a
design. '

In this brief illustration and categorizaiipn of
trade-off curves, objective functions with a maximum of two ,
design variables were used. However, with an increasing number
of design variables, the design space becomes difficult to

visualize. In the same sense, with an increasing number of in-

put design specifications, a trade-off hyper-surfaces could be

formed.
1]
2.3 Examgles v

In the following section two-design problems are
presented to illustrate the applicq@ion, shape and use of the

o
previously described trade-off curves. N

2.3.1 Shrink Fitted Cylinders

2.3.1. a Definition'of Problem

Cylinders subjected to extremely high pressurps

. : ¢

.

PUPere

~

| W e o
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~

should be prestressed in order to fulfill strength requirements
which cannot be met with increasing- the thickness. One of
the methods usedlis to build.up a cylinder of two cylinders

Jor more shrunk together’, shown in Figure 2.7, [4,87].

. * .
The following-hard specifications are set for the design:

~

-~

Applied operating pressure‘........((P,.}) = 13000 psi

0
Material yield strength .....n.....(Syr = 40000 psi
Modulus of elasticity .......0.....(E) =3 x 107 péi

Factor Of Safety .se.eeeeeoseeeeees. (FS) = 2

Nominal inner radius .............(RO) = 5.0 in.

i Maximum outer radius...............(Ry ) = 25 in.
Minimum- cylinder thickness.........(TH) = 0.25 in.
Maximum interference between g

chinders............J..........(éMaY) = 0.0018 in.

_ 2.3.1 b Formulation for Optimization )
The design variables are:
R1 = intermediate radius, in. )
R2 = outer raaius, in.
' Pf = shrink-fit presshreﬁ psi

The optimization criterion is to minimize the overall assembly

+ * Hard specifications are '‘those permitting no deviation from

4

their specif%ed qﬁiues._ In actual design pra«tice, however,
some change is uskally acceptable, [7]. ’

I3

R L L
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~—-=~=- Stress due to 1"C
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Stress due to D 3

with prestressing.

-
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Figure 2.7. Shrink Fitted Cylinders Subjected to Internal i
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volume.

—~

. U = Rg = minimum (2.11)
System constraints can be divided into two sections, design
variables constraints and state variables* constraints, As.
for the first section, all the design variables have to be
positive guantities. To ensure availabilty of machining and
handling of each c¥linders, its thickness. has to be greater
than a certain specific value® (TH). Also, the maxXximum outer

radius of the whole assembly may be constrained to a limited

raximum value, which depends on the avéilability of space, //:

The above constraints can be exp;essed mathematically as, .o
follows: \
67 = Ry > 0 12.12)
65 = R, 2.0 ) (2.13)
¢35 = Pg 2 0 (2.14)
= 1" RO) - TH 2 0 (2.19%)
= (R, - Ry) -~ TH Z O (2.16)
= Ry~ Ry, 20 ‘ (2.17)

Taking the \Iresca Criteria" £8]1D as a measure of the limit
of elasticity under the applied internal and shrink pressures,

we can state the following state variables constraints

~

s

* State variables describe the state of the system in many
ways, and cannot be adjusted directly by the designer.
They are functions of the system design variables.

O e w1

——r
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-

v

¢, = (SY/FS) - 2TR0 0 g (2.18)
2 = -_—
¢8 = (Sy/FS) ZTRl 2 0 (2.19)
Where, TR and Tr are the applied shear 'stress at RO and
0 1 -
R, respectively, and they are equal to,[ 82
2 2 \
T _ R _ h
R, = P, 2 P, 'Rl _ (2.20)
2 2 22 2
R2 - RO‘ Rl - RO
T R® RZ | r2 s
) R, = P, 0 2 - Pg| 2 ( (2.21)
2.2 2 .2 2 2
BBy = Rp Ry Ry - RN
J \ J

vy

In the unassembled condition, that is, before the shrinking
operation takes place, the radial interference for machining

is as follows:

~
3 2 2
5 - PRy P Ry = Ry (2.2
He E (R2 - Rz)(Rz - RZL
2 1Ry =Ry

The radial interference has to be greafer than zero and less
than a certain specified maximum interference (DMaK)' which,

in turn depends on the kind of material used (cocfficient of
o

expansion and maximum temperature difference for heating and/or

cooling processes needed for the shrinking process). This leads

.<

rJ

B R dan

I P S P s 3



to the following state cdﬁ%traints

*g =
9 Dye 2 O (2.23)

- ¢ . >

10 = DMax - DMC - 0 (2.24)

2.3.2 Axial Flow Fan

2.3.2 a Definition of Problem

The axial flow fan can be placed in three main
S ) ,
categories: free fan, diaphragm mounted fan and ducted fan.

The various components of the axial flow duct fan ,with which
we will be concerned,are indicated in Figure 2.8. The rotor
blades are a series of air foils which, owing to their relative
motion with the air, add total head to the air stream; A

straightener is located downstiream of the roton to remove. the

swirl, (9]

The following hard specifications are set for the

design: }
" Alr volume flow rate ........(Q) = 7575 ft%/min.
Unit total head rise ........ (all) = 5 in. of water

Blades material vyicld

strength ...........c0....{S ) = 50,000 psi
. Yy
Hub and shaft material
yield strength ..........(8 ) = 50,000 psi
, Ysh
Design factor of safetv...... (F8) = 2

Minimum and maximum unit
radius......svceeeeeevecs-s (R ,R )y = 7.5, 36 in,

e

.
b o e W e et SO i b
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Maximum boss to duct
radius ratio ......v000..(8 ) = 0.8
max
Minimum number of
rotor or straightener

blades .iiveiveevnenveesa (™M ) "= 3
. . min
Minimum feasible horse- )
POWEY .vveseersocavesseas (HP ) = 0.25
min
Upper and lower limits
of motors revolutions
per minute ....000004000.. (RPM RPM )
max min

-

other specifications will also be included during

of presenting the design example.

2.3.2b Formulation for Optimization

¢

P aiianl
The design variables are:

L

¢
R\v@f duct ( = rotor tip) radius

r, = boss radius, in.
RPM = motor * revolutions per minute
. NR = numbek of rotor blades
NS = number of straightener blades }
ru = radial position at WQSCh axial velocity u(r) equals
R

ras = same as er but for étrgightener blades, in.
tR‘ = maximum.rijpr blade \thickness at the boss radius, in.
t = maximum straightener blade thickness at the Loss

radius, in.

The optimization criterion is to minimize the unit present

value cost average [Appendix:. AJ

» AN

mean axial velocity U .for the rotor blades, in.

22

hp

= 30,000
&400 rpm
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U= P.V.,A.C. = minimum . (2.25)
The following input specifications have to ‘be
stated: \
Fan estimated life, g = 10 years ,
Fan estimated tax life,y = 12 years
Estimated interest rate,i = 9,25 %
Estimated interest rate
with risk, im . =-12 %
Estimated tax rate, t = 50 %
Initial fixed costq IF’ is the sum of: \
(a) Blades manufagturing cost for both rotor and
straightener, I_ .
VFa u - :
(b) Main shaft, bearings, nose and tail fairing
and the complete assembly cost, Ip .
. 2 Py
(c) Driving electric motor cost, IF .
3
Therefore, IF = Kl' (rotor blades volume + s&raightenﬁ£~blades
1 ‘
volume) (dollars) - (2.26)
IF = K,. (fan unit léngth x maximum cross section)
2 ..
(dollars) . (2.27)
IF = f{motor horsepower, HP)
R e |
i |— (dollars) (2.28)
k..
11} 4
where, Kl' K2 ' ki' kii and kiii a¥e cost constants to be esti-

mated based on historical correlated data collected ?ﬂom the

previous experience of material, machining, assembly and

-y At E ¥

P W Rk
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installation of the unit in'question {15, 16]. The following

constant values are assumed for the particular case in hand.

Kl = 20'dollars/in.3
K2 = 0,5 dollars/in?
Range of horsepower 2 - 30 30 - 100 100 -
. ki(doliarsi 140 , 368 2460
kii(HP) 10 30 100
kiii 0.88 1.58 2.17

On the other hand, the running cost or the annual gross
*
expenses, ~-P , is the maintenance and the electric motor power

cost. It is assumed that the maintenance cost is a percentage

of the electric power cost.
Therefore, éP* = Total unit working ;ours per year
X Unit kilowatts hours x Estimated
cost rate (0.0l dollars/KW is as-

;/)? sumed) x Percentage increase due

to maintenance (1.3 is assumedq)

-

- (2.29)

)

Employing thé previous specifications- and equations (2.26, ;

2.27, 2.28 and 2.29) in the present value average cost [Ap-

pendix A equation A.5], the optimization criterion could be

computed,
A

System constraints can be divided into two sections,
configuration constraints and aerodynamic constraints. As
for the first section, duct radius must be kept within upper

4
and lower limits according to the design canfiguration

PO - =~

“vﬂ‘.' PRPR e
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R-R. 2 0.0 - (2.30)

= R__- R 0.0 (2.31)

Boss radius must also be kept within upper limit proportion

with tip radius (Bb = rb/R)
¢, = B -8, 2 0.0 (2.32)

Motor revolutions per minute has to be bounded by upper and

lower limits,

— >
RPM RPMmi 2 0.0 (2.34)

¢5 n

]

Rpmm' - RPM > 0.0 (2.35)

¢6 ax

Numbgr of rotor and straightener blades have to be positive

and greater than a minimum limit

- - >
o5 = Np Nein - 0-0 (2.36)
= - > , -
vg Ng Noin = 00 (2.37)
Boss radius has to be greater than shaft radius. However,

‘the shaft radius has to be big enough to withstand the torque

and thrust subjected to it. That is to say that shaft material
allowable stress has to be greater than abplied shaft principal

stress ( g

). Therefore, assuming that shaft radius equals
sh

boss radius the following constraintwill bound the lower limit of
boss radius, [ Appendix B,

by = Sysﬁ /FS - Gg 2 O\Q\ (2.33) .

Maximum thickness of a rotor blade at its root has to be big

5

W

LR T SRR
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enough to withstand centrifugal, lift and drag forces. 1In
other words, material allowable stress has to be greater than
R ), [Appendix BJ. \

i\/’

applied maximum stress ( o

9o =S/ F.8 ~- a_ 2 0.0 (2.38)

L 4

Also, maximum straightener blade thickness at its root has
to be big enough to withstand lifting force. Same material

is assumed to be used for both rotor and straighﬁener blades.

- - - - >
¢10 = SyB/ F.S oy = 0.0 (2.39)

The sum of blades thickness at its root for both the rotor

Por Mg it =

and straightener has to be less than root circumference,

- _ >
¢ll = Zﬁrb tR.NR Z 0.0 (2.40)

- - y > N o)
@lz 2Hrb ts.hs Z 0.0 (2.41)

Electric motor horsepower has to be positive and greater than

~
a minimum value.

B3

=HP - HpP . = 0.0 (2,42)

®13 in

The overall unit efficiency has to be less than unity.

*
N N

10 = 1 - ¢ > 0.0 (2.43)

¥
The following 1s devoted to aerodynamic constraints. We are
Q .
using the arbkitrary vortex flow method, which lecads to a small

boss tip ratio with a very high efficiency and large mean total

-~
> whAva sy



27

head rise compared with the frece vortex methad of de¥ign. It
AV

is suggested, based on experimental evidence [97], that the
design difference in total head between root and tip should

2
not exceed 1.5 times 0.50u . This can be expressed in a non-

dimensional form by

<
it

- - 8
1.5 _3 Leg(l)
A

I - >
b (82 2 0.0 (2.44)

i

v
[
(]

Ry

—_ . . LA
where , sb,.\ and ¢ (8 ) are dimensionless boss position, mean

1.5 - 2 EeS(l) - Bb ES(Sb)] (2.45)
:%T‘ :

flow coefficient and swirl coefficient respectively as ex-
plained in Appendix B, eguations B,3, B.4, B,12 and B.13,
The flow coefficient A (8) fof both the rotor and the straighten-
er must have a lower limit of 0.2 fixed by efficierncy considera-

tions and an upper limit of 1.5 due to design difficultarcs,

{fquations B.10 and B.11 . '
] = A 3 - ~ *
17 R ( b) 6.2 > 0.0 (2.40)
>
- - > b}
ng AS { ﬁb) 0.2 > 0.0 (2.47)
- -~ ~» R
¢19 = 1.5 An(l) ~ 0.0 (2.48)
b = - A > ) - .
0 1.5 g I 0.0 (2.49)

Swirl coefficient €( 2) must have an upper limit of 1.5 fixed
N -

’
PY IR~ SR PR
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by blade stalling. On the other hand, it has to be positive,
and from a practical point of view greater than 0.4, [ Iquations

3.12 and B.13 .

®51 = epfl) - 0.4 2 0.0 (2.50)
/‘
thp = fgfl) - 0.4 2 0.0 (2.51)
¢ = - € (B >
23 1.5 R(8,) 2 0.0 (2.52)
¢ay = 1.5 - eg(3) 2 0.0 (2.53)
-3

*
The aspect ratio for both rotor and straightener blades

must be 1n the vicinity of 6.

bag = 6.0 = (1= 3) N /273 (1) 1 0.0 (2.54)
956 = 6.0 - (1= 8) Ng/2mo (1) X 0.0 (2.55)

Rotor and straightener solidity is limited between 0.15 and’

2.0.
"¥,y = 9. (1) - 0.15 1 0.0 (2.56)

2y = 08(1) - 0.15 - 0.0 o (2.57)

Sag =, 2.0 =ao_ (&) 0.0 (2.58)

* Aspect ratio is the rataio, span/me&( chord, of'nn arr foirl
blade. ) '



¢30 = 2.0 - GR(Bb) ~ 0.0

29 |

o

(2.30)

Rotor and straightener lift coefficients have to be greater

than 0.7.

31 L

5 -
32 L

L4

¥
0.0 (2.60)
0.0 (2.61)

Maximum axial velocity at.both rotor and straightener tips

have to be less

©
I

11l6.0 - u2(1) 2

=
I

The total volume flow rate through
sectins,downstream of a rotor row of
of a straightener row of blading, has

fore, the following integrations have

s

reasonable accuracy.

l -
0 = 27 uy (8).3 ds
2 ;'
l-bb
ﬁb
1
Tl Ul (8)
. ‘\otl
2 3
1-g
b
! Sb

\

3
1116.0 - u3(1) > 0.0

than so@nd velotity to prevent flow separation.

(2.62)

(2.63)

the fan‘for the different ~

blading and downstream
to be constant. ;There-

to be satisfied with a

—

3 (2.64)

v

It is well known that equality constraints usually obstruct
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nonlinear optimization techniques from finding optimum
feasible solutions. Therefore, a permissible deviation per-
centage is used,§ , to be decreased at the final optimization

steps, [5(0.1 z 0.5) 1.

. 1
~. _ _\ - 2 - ) > .
by = O lU g% (e). 8. as| 2 0.0
’ 1 -8 ‘
N b 8 - ~
, b (2.65)
Fo N
; - - T2 v 2 u
b3 = O I'U [ (8 ).8 . d8| > 0.0
. 1- B
i b 8
B . b . (2.66)

- Having briefly explained the problem, its design

varlables, constralnts and objectlve function, it is necessary

—

tq dlscuss the problem of integer and discrete design varlables.

The number of rotor andl straightener blades, Npo X

to be integer. Also motor horsepower, HP, is assumed .-£o be

and N Have

available in a discrete form with a0.25 Ip step size. The
number of -revolution per minute, RPM, is also assumed to be

discrete with a step size of ten revolutions per minute.

\ ~
Y

2.4 Results .

e

In this section, a series of‘trade—off curves

v

(surfaces) are displayed for both the shrink fitted cylinders



v

design problem and éhat of the ducted axial floWw fan. A three

dimensional trade-off surface is used in the following

-

‘representation. It is plotted in the form of contours. A

bicubic spline two-dimensional interpolator subroutine

\IBCIEU _28 “is used to perform a two-dimensional inter-

polation to a given matrix of a set of optimum points, A
general plottindg subroutine is then employed to draw the gene-

rated surface in a convenient way. See Appendix F for illust-

e

ration.
G ‘ .

2.4.1 8hrink Fitted Cylinders TOC's ‘

ESN

Even though the problem of two cylinders fitted

together and subjected to an internal pressure is mathematically

N

well defined, it is represented here to help in explaining
the'advantaqes a designer might gain by using trade-off
technique.

It is. clear that,a minimum weight design will have
maximum sheax stresses in béth the inner and outer parts. In
addition, this shear strgss should be the.shear stress at
the clastic limit, if full advantage of the material is to
be realized. With this condition as the criterion, maximum

shear stress for both the inner and outer shells are equated

in order to solve for‘the'optimum design condition; it can

be found that ) o

>

(Rl)optihs\ RORZ . (2.71)

R Sen T v —

R L

)

awhe
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(a) optimum ~ P0(Rl)opt:‘unum/E (2.72)
(Pf)optimum = Py (R,=R)I/2(R,+R,) (2.72)
(30)max1mum - Syr Ra7Rg (2.74)

FS R

L. 2

For a cylinder that is not prestressed
Sy 2 2., 2
(Py) . - {(RS - R/ Ry } (2.75)
maximum 4TS

It is worthwhile to examine the feasibility of the
hard specifications stated in section (2.2.1.a) in conjunction
with the previ&us optimum design equations. It is obvious
from equation (2.75) that a single cylinder can not with-
stand the applied internal pressure of 13,000 psi, since the
maximum feasible internal pressure has to be less than 3000
psi to avoid an infinite outer .radius. ©On the other hand, for
the specified material and factor of gafety and by using the
maximum specified outer radius, (RO = 5 in.), the maximum ap-
plied internal pressure that two shrink fitted cylinders
could carry is 16,000 psi, equation (2.74). However, f;r the
specified internal pressu}e, an outer radius of 14.3 inch will
be required. In thi; case, the intermediate radius will be

8.45 inch with 0.00366 inch interference. However, an inter-

mediafe interference of 0.0018 inch is sgecified as a maximum
possible limit, Therefore, for this hypothetical assume pro-

blem an over-constrained infeasible design has been attempted.

R N e
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Two two-dimensional trade-off surfaces, shown in Figures 2.9

N

and 2.10, give a clear picture for the bounds of feasibility

1
~

for different values of the maximum intermediate inter-

ference, D The graphs also show the variation in the

Max'
cylinders' cross sectional area, which is proportional to
1ts weight, for different specified internal préssure. By
increasing Prax to .002 inch a feasible optimum design could
be found with a total cross sectional area of 891.7 square
inch. and an outer radiu; of 17.57 inch Point "A" Figures 2.9
and 2,10. However, it is also worth observing that a decrease
of 7.7% in the specified internal pressure to 12000 psi will
lead to a dramatic decrease in thé cvlinders cross sectional
area of 449 to 497.7 square inch, point "“B" Figures 2.9 and
2.i0.

Thus,” a trade-off curve (surface) is a way of dis-
playing to the designer a set of deqiggs that are optimum iﬂ
some sense. In order to select the optimum design, a
"criterion" is needed that ranks the possibleaaiternative
combinations from the trade-off curve. But even without a
criterion, the designer can certainly improve any design
thatﬂdoes not fall on the trade-off curve. For example,
if PO equals 11,000 psi, with & maximum interference of

.002 ipch and the designer chooses the inner and outer radii

to be 5 and 13.5 inch, respectively with an area of 4.94

ety A




34

\/\\ | o

'\,

sq;éﬁ? dNich, point "C" Figure 2.9 and 2.10. A better optimum
desigégzgqld be located using Figure 2.9, or 2.10 with an
overall ;ross sectional area of 331.7 square inch, point "D".

A more complex optimization function could utilize
value or utility concepts and permit the incorporation of
additional design characteristics., No attempt will be made
here to review the complete literature on value and utility
theory. Siddall [11) has fully discussed the use of value
curves in engineering decision-making, and the creation of
value curves relating to design outcomes. Value curves
are a way to measure the degree of fulfilment of needs, goals
and objectives. An optimum design represents the highest
level of yalue‘(satisfacfion) obtainable from all of the designs
defined Ly the trade~off curve (surface, hypersurface), and
hence would be the "best" design. For an illustration, con-
sider trade-off curve gumber three, Figure 2.10, where the
specified internal pressure equals 12000 psi. We assume
that a value curve has been established for weight, in which
the value decreqses as the weight increases. We assume,
in addition, a value curve for interference, in wﬁzzh\XSiue
is also ;nversely proportioned to interference because of
higher temperatﬂres required, greater agsembly forces, and
. possible metallurgical problems. . The trade-off decision can be

m;de by combining the value curves with the trade-off curve,

as shown in Figure 2.11, where the optimum design is at point B,
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Value curves are particularly useful for optimal decision-
making when there are more than two design characteristics.
The trade-off surface shown in Figures 2.9 and
2.10 have the samé typical shape when the subjected internal
pressure is maximized for a set of specifications for mini-
mum cross sectional area and maximum interference. The
identicajl )surface was also generated by minimizing the inter-
med%ate interference for a specified cross sectional area
and internal pressure.

Additionaltsurfaces are showé through Figures 2.12
to 2.20. A similar anélysis as that previoﬁsly discussed
could have been carried out leading to a better insight
into the design and the relative importance of its tnput speci-
fications and performance.

The maximum specified interference, DMax’ leads to .
éenerate type A trade-off curves, as shown in Figures 2.10
and 2.12. In addition, the minimum cylinder thickness, TH,

generates tQpe A trpde-off curves as shown in Figure 2.16. On

the other hand, material yield strength, Sy’ or design factor

of safety, FS, give type B trade-off curves shown in Figure

2.20. Specified assembly inner radius, R,, affects the shape
e

of the objective function: and so generato;\?ype B trade-off

curves, shown in Figures 2.13 and 2.15. Finally, applied

internal pressure, PO, produces also!type B trade-off{ curves

as indicated in Figures 2.9, 2.}4, 2.18 and 2.,19.
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2.4,2 Axial Flow Fan TOC's

The optimum configuration of a rotor with a straight-
ener fan unit, Section 2.32 and Appendix B, will be considgred
here based on the previously listed specifications., The design‘
details of the optimum rotor and straightener blades are
listed in Table 2.1. Figures 2.2l to 2.32 show trade-off sur-
faces generated by relaxing the hard specificqtions of the
axial klow fan design problem. 1Insight into the design could ,
have been gained by carrying out a similar analysis, as pre-
viocusly discussed. Figures 2.21 to 2.26 arg Type-B trade-dff

surfaces while the rest are type-A.

2.5 Conclusions

. Trade-off Eurves (surfaces) are shown to be a very
useful tool in analytical decision-making, and give particular'
insight into the problem of specifications, [ ll:L‘ In short,
the usefulness of the trade-off curves becomgs a matter of
the designer's ingenuitx and ability to recognize what parti-
cular characteristics of the trade-off curve he is looking for
and how to use them to solve his'problem. The trade-off curve
displays to the deéigner almost all of the possible compromises
that need to be considered if he gives up hardkspébificqtions
for soft ones. The approach of using trade-off curves to
obtain the "best"'éesign ever is interactive and recquires

that the designer has a good understanding or "feel" for the

&
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’ v
problem, which he might codify-using value curves. The
number and complexity of the regions bounded by these trade-~

off curves 9rows rapidly as the number of the design input

specifications increases. ",

Trade-off curves have been proposed as a tool for
making the trade-off decision. They do give considerable
discernment into the design problem on hand, and the importance
of specificatiops with their relative effect on the objective
criterion. Trade-off curves may be used also to provide a
feasible start and revelation of an over constrained formulation.
The smooth trend of thé trade-off curves gives confidence tha?
convergence has been achieved to at least a local optimum. ° )
More than that, they miqﬁt be of use to detect a glebal optimum
over local ones, as shown in Figure 2.6. Last but not the least,
trade-off curves (surfaces) can be used in decomposition to/

optimize large compound systems, as the next chapter éxplains.

-
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Table 2.1 Axial Flow Fan Optimum Design

-

W

R = 8.59 in., r .= 5.89 in.,

b
to = 0.06 in., . ts = 0,07 in.,
Ny = 29 ' Ng = 31 '
RPM = 2030 rpm, HP = 10.75 hp ,
n 2~ 77% . AH '= 5.8 in.water,
P.V.A.C. = 325 dollars a 116.0 ft/sec,

"6.97

r in. 5.89 6.43 7.51 8.05 8.59
u, ft/sec 139.3 140.6 142.3 144.2  146.3 148.7
u, fe/sec 116.0 123.7 130.8 137.6  144.1 150.3
¢Ro, 66.2 63.1 60.2 57.6 55,2 52.9

72.3 71.8 71.2 - 70.7 70.1 69.5
1.13 1.38 1.51 1.63 1.72 1.80
R

1.11 1.14 1.18 1.21 1.24 1.26
1.26 1.18 1.11 1.05 1.00 0.96
1.04 0.99 0.94 0.89 c.84 0.79
1.61 1.64 1.68 1.71 1,74 1.79
- e

§~



cg in. 1.80

R t " 61.5

) o 59.0
‘?“

. 7.3

s 14.5

Frg = Ll

1.61

58.3

56.9

13.4

13.6

t See Figures B.4 and B.5

A

55.0

16.0

12.8

1.09

50.8

51.2

22,9

11.2

47.9

50.1

-24.8

10.4

51

T

I



52

00+30
8

T0-33
4

*T¢'¢ @anb1g

17 T0-3T* 486 T0-3€"+8 TO-3+v°TL
L g 5
*8s TO0-34° 5% T0-36"2¢ T0-30°0¢2 (HY31BA °NI-) 3STY Ou3H
€ 2 T ) "7 HIENNN 3ANND
(W42) 31BY A0Td 3WNTIOA
| [3s) © ~ (24 (&) - - w n o
o ] o o o o o o o o o
o o o o o o "o o o o )
m m m m m m m rt m m
+ + + + ¥ + + + + +
o S o o o o [ o L= o
s w w w w w W w w w
! I 1 1 L ! I T AT IMal.\..(thd4\N!l\r ==Y
\ —
.
A -
1 1] 1 H 1 1 H ! 1

"0
¢0+30°¢tL
£0+33° 4T
g€0+36°12
£g+32°62
€0+34° 3¢
£0+d8° ¥
€0+37*7S
€0+34 78S
E0+34° 63

€0+30°EL

IgI\UI‘AId

{ SahIca )



53

*zz7 'z 3anbt4

\¢o+mc.0ﬂ £0+34°98 , €0+36%24 E0+3E"BS
8 JA 3 g
£0+3L° S} £0+3T"2¢E €0+33"8T1 20+30" 08 (W43 ) 315y ADd 3WNTI0A
14 € 2 T e HAEYINN 3AYND
(Y3LYUA °NI") 3SIY Ob3aH
= 7.3 @® ~ o 13, - w n -
Y w © ~ fep) 3, - w n pa o
o o S " o o =t = o b, ®
m m m m m m m m m m
4 i | | | |. | i 1 }
o o o o o o o o o o
o - (e - - b e b - -
0@ ————— e e
@r ~ |
ﬁl.v -
; . ,
ﬂv 1 | 1 ! i 1 1 t !

"0
20+30"EL
£0+33°¢7
£0+35°72
€0+32%62
€0+35° 3¢
£0+38%EY
€0+3T°T8
€0+3¢"8S

E0+34° 68

£0+30% €2

b o

*I"U A%

(848717100)



54

( DOLLARS )

PeVeR«Cs

30.0E+02

27 .0E+02

24.0E+02

21.0E402

18.0E+02

15 ,0E+02
12.0E+02
30.0E+01
§0.0E+01
wo.cm+cm

G

e ——— T S ————

ST N o

6o

Figure 2.23.

10.0E+00

1 1 1 | { 1 1 1 1

ot — i ) ~ -~ -~ ] —

3 T 3 T T T 5 1

w d ul w w ut 73} i Ll

< .= = =T = = S 3 7
[ (=) o o Lo ] o o o Q <

i o [yl - w i (2] [ [} N

UNIT ESTIMET LIFE ( YERRS)

CURVE NUMBER« s s “ 1 2
VOLUME FLOW RATE (CFM) 25.0E+03 30.,0E£+03



55

T0-30° &2
g "pgtz @anbrd
T0-30702,  T0-30°5§T
b £
T0-30"0T 20~30" 0§ (NI"NJ/%) 3WNI0A S30OB18 H3d JiHY 1S03 O3XI4,
2 T T TR rYIANNN JANND

(NI*N3/%$)AHWNTIOA L4BHS NB4 ¥3d 318¥ 1S03 G3XI4

rn r n - o - b [T w ~ o
o w [N w ~ 2, w o o = o
= o P o > > o o o o -
m m m m m m m m m m m
+ + + + + + + + ! 1 I
(e [ o o o o o o o (=] [}
= o = o =) o ) o P - s
T T T T T T T { “t To+36% L)
TO+3€726
T0+393" 88
To+36" 093
Ho+mm.mA\\\//
T0+33%63
v
TO+36'€L %
. D
T0+32°8/ 4
T0+36%28 g
&)
2
T0+367°98 .
: 0
“
T0+32°7T6 -~




56

00+30° 02
14
00+30"° 0T
P

(NI*N2/$) JWNT0A S30818 ¥3ad 318y 1S0J 03XI3

T0-3Q*s2

00+30°62
g .

00+30B"S8T
3

T0-30°90S§
T

‘Gtz 2anbrty

(NI*N3/%)3WNT0A L4YHS NP4 ¥3d 3188 1S03 03XId
®rrH38WNN 3AMN3

ONOJCNCRY,

o v = - B = P 0. ~

w = w, ~ (3] w P o o

- [ " - - - - - [} -
o o o o o o o o o o

th ik i i i i i i i T

o (=] (o ] (e} o [em] o o o

pa L. - fa pa - - ro r

T T T T I i ] T

.\\\\\\J

0s

20

T0+36° LY
T0+3£"28
T0+33"38§
To+55%08
T0+3¢2°S9
T0+33*69
TC+36% €L
T0+32°84
T0+36"¢28
T0+36° 398

T0+32"T6

OOUH.A:

“

( Syy110a)



57

*32°¢ vanbtyg

20+30°69  20+30°09  20+30°SS  20+30°06 (H42) 3154 A0T4 3WATI0A

>y p 5 I 2 43EWAN 3AHND
(NI) SNIOEY 1ona zJuMZHz :
- o T pe a -, © o ~ » @
(4, e w n) - C O o o o (=] o
o o o . o © PN o o ° o p
m m m m m m m m m m m
+ + + + + + 1 1 I [ I
o [om ] oo o L] o o o [an [ o
o (=4 o o o o - [ - - -

: | 1 t i 1

g

-

oO+Mo.Wh
00+30° 06
T0+25°01
T0+30%21
T0+38°€T
10+30°ST
T0+36°9T

T0+30° 8T

T0+35° 6T

TO+30%T2

T0+36% 22

f

LA LR u

UO.U.AId

{ S¥Y11700-)



-

5¢e

£0+30"82

b

»

€0+30°0€
3

€0+30°£2  E0+30"92
€ 2

OIlbYd 133d4SH d010YH WNWIXUW

*SE

 T0-30°0§

T0-30

"0t

€0+30°6¢2
S

£0+30°Ge
1

‘L7 @anbry

(W42) 3LBY A0S IWNI0A
"2 NIEHNN 3ANND

&1

10-30*

T0-30"07

20—~30"06

-+ T0-30"%&¢

-

» - T0-30"0%

-1 T0-30

4 ¥70-30"6&2

-

-

}

*a

3

T0+30" 0§
T0+30°€§
T0+30°95
T0+30* 6§
Ta+30°29
T0+30°G3
T0+30° 89
ﬁmywo.au
To+30" ¥ 2
T0+30° 2}

16+30°08

(S¥HTI0Q) "2°HTATS



MEEE A L TR Y
At

, o s
- . NN

is.;ll.! ro—— R
a -
A . L}
"o . . 8¢'z ‘2andra
. . To-30" 08
. . 3
T0-30"2+ T10-30"v¢ T0-30"32 T0-30°87 T0-30"0T OIlBY 1334sH 4oLoy
G 14 € e T "TTHIEWNN 3AHND -
(W43) 318y ACQ14 3WNTI0A
W n [\ n ny n ( mr n n Oy rn
o w0 w e [e0] ~3 ~N [o2] o a (53 .
= o o o o o = o o o o
m om m m m m m m m m m
+ + + + + + + + ~+ + +
o o o o o o o o o o o o~
w o w w w w w w w w w W
T T T T T T T T I T0+30" 04
- . 1 T0+30%¢€§
TO+30" 38
_ T0+30% 85
T0+30*%29
TO+30"69
. . R
. T0+30°83 =
D
T0+30"T¢, o
T0+30%%L * 5
O
r
T0+30" 42 O
P
0

_ L L : _ T0+30° 08



AT TR TN 0 MO i - <o

60

v o TN

YA

*2anb14

T0-30"03
3
T0-30"08 T0~-30" 0+ T0-30%0¢E T0-30"907¢ T0-30"07T 0OIlbY 133d4SH HOLOY
g ¥ £ e T "TTHIBKNN 3AEND
OILBY 133dSH Y3INILH3IUYLS WNHIXUW
o w - T v ow . w n - - o
(=] >~ (e n o (=] N © o o o
o o o o o o o o o o .
/R (AN (N N (N (N
o o o o . (= =) =) o o o
= b~ - - - Ll - - - o
T T I | I I ] I I
3
() g
@

T0+3p" 26
T0+38" €5
T0+32° 56
T0+38" 8§
TO+3+" 8
T0+30° 08
T0+33"73

TO+32°£8

TO+38" ¢33 .

TO+3¥" 93

' T0+30”89

U*A"d

[ Xl ]

( S¥E™100a)



61

s0€°z 2and14

T0-30°03
g
T0-30° 08 T0-30"0¢ To~30" 0L T0~30" 02 OIlod 1233dSH M3NILH3IBHLS
14 € 2 T e MIAGWNN 3AY0
OIibY 1J33dSH ¥0L0Y WNWIXUW
» o - -~ R W n - " o
o >~ © n (g} (=} -~ © o o =]
o o N o o N o o o o - .
m m m m m m m m m m
& & & & & EN & & & &
- - - - - -~ - - - o )
T T T ) 7 T I 1 1 T0+30" 26
AU e
@@1 4 T0+39" €6
ﬂvl 4 T0o+32"&§
ﬁvl 1 T0+38*3§
R <4 T0+3+" 86§
I~ 4 T0+30°093
o 4 T0+39°T3
= 4 TO+32" €9
- { To+38*+9
- 4 TO+3$5*33
- ) ]

T0+30"83

ForfgTANd

( SYET100)



62

*1gz eanbtg

T0-30°0T 20-30°08

20-30703 20-30" 0% 20-30"°02 IN3IJI44303 HIAS YINILHITHYLS WNAWINIW

"t THIAWNN 3A8ND
IN3IJT 44303 TTHIAS H0L0d WNWINIW

*9¢€
30 2T
984
0.0

’

20-30°0%
20-30
20~-30"82
20~30" 42
20-30° 9T
£0-30"08
£0~30"

20—

-4 20-30"z2¢

4 20-30% 02

P

I

-4

TO0+38% 68

T0+35°09
T0+34"T9
To+34* 29
TO+3E €9
TO+3E7 43
T0+32763
T0+32"99
TO+3T* 29
T0+3T*89

T0+30"63

*J'g=Atd

(S¥Y1104)



63

e ST N
- "Zetz 2anbtyg
20-30" 0¥ 20-3070¢€
: g 14 .
20-30° 02 20~-30° 0T T AIN3IJT44303 THIMS H0L0H WNWINIW
£ 2 T " CH3GWNN 3AYND

ANZITTH4303 THIAS AHINILIHITUHYLS WNWINIW

[ w .. ~ ep) o Y w rn [N

o o o o o o o o o o o

- » " ] L] - n a [ ) ] a/
o o o o =3 o o = o 1=
S N AN A SN (N (N
o = o o (=} o o o o o
[y o n o V) Jo n ™ n n
T T T T T T T T ¥

.

® 1
ﬁU 1 | 1 } { i )] 1 1

T0+3G* 65
T0+34° 03
To+34* T3
T0+3£°29
T0+3£° €3
T0+32%49
T0+32° 63
T0+32° 93
T0+3T7* 43
TOo+3T" 88

T0+30"83

*a*UTACd

( S¥YT100)



64

CHAPTER 3

DECOMPOSITION

3.1 General

This chapter addresses, the application of the
decomposition of'a large engineerin% system to the design
xprocess by using trade-off curves. As an area of research,
the design optimization and solution_prdcedures for nonlinear
programming problems can perhaps be described as an area of
copsiderable current investigatibn. This chapter relates the
; potential applications'of the previously defined trade-off
' appyoach or concept to engineég}hq)g;sign.‘ The scope of compﬁt—
ational testing is defiﬂed along with the application of the
derived algorithm to an engineering design éroblem. The use
of interaction or trade-off curves in decomposition was recently
described by Siddallf 3 ] as a way to establish implicitly the
best system design specifications based on the concept that
specifications are really junctions with other parts of the
system of which the sub-system i: a part.
Many decomposition algorithms presently exist in the
literature. TLasdon [ 29 ] has mgde excellent surveys of exist-

ing algorithms. Most of these algorithms, however, apply to

large linear programming a}though some have been extended to

1
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handle certain noq;EEEEENSEi}pteger programming problems.

The fundamental isgue remains that in almost all engineering
design situations, nonlinear constraints are essential to the‘
problem for@qlation.‘ Several new approaches toward the solu-
tion of nonlinear progr%mming problems have recently been
developed and investigated. Among these are the Sequéntial‘
Unconstrained Minimization Technique and the Flexible Tolerance
Method [ 4 1. Still, however, when the number of constraints
and/or\the number QENhgsign variables become large, ‘the solu-
tion proceés is often difficult if possiblg at all. In this
sense, Sié;Lll suggested an algorithm in which a decomposition
procédure would decompose sucg large nonlinear system into

a collection of smaller sub-systems, in anticipation that this
m%ght lead to a simpler and more efficient solution.technique

where each sub-system 1is designed separately.
‘ .

»

3.2 ppproach - -

A decomposition algorithm can basically be described
as a proceédure which breaks’down a large mafhematical program-
ing problem into a collection of smaller subproblemé whose
solution in a prescribed manner will generate the solution to
the original mathematical programming prgblems, [29}. ToO
facilitate the application of the proposed decomposition proced-
ure, the original large system design problem should possess

what is known as a "block angular structure". Fhis structure

=

N0

ar

P



66

~

is defined by assuming initially that the original vector of

N design variables X, fan be partitioned into a set of design

variables ik’ k=1, 2, ..... ., K. This partitioning is effect-
ed so that all the system constraints can be expressed as func-

tions of only members of one set.

¢j (Xk) > 0.0 j=l,...Jk {(3.1)
wl (Xk) = 0.0 1=1,...Lk ;3.2)
where, Xk = (xl, Xor eeesey xnk) (3.3)
and g:
“n = N (3.4)
k21 K

However, no coupling constraints among the partitioned sys-
tem components of the different ?% are assumed. An optimizat-
ion criterion is applied of the form

U { Xy Xz........XK) + Minimum (3.5)

The requirement that a block angular structure must

exist before a decomposition procedure can be applied may ap-

pear to be rather stringent. Due to the nature of many engineer-

ing design problems, however,, a large portion of these problems

do possess or nearly possess such a structure. Once block

.angular structure has been demonstrated for a particular

b
design optimization problem, than a decomposition procedure can
¢ S X i I

"

-
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be applied. The resulting structure of the decomposition
is displayed in Figure 3.1. As shown, the decomposition
model consists of two basic types of subsystems, one master
sub-system and (K-1) minor subsystems. Each of the minor
subsystems is governed by a set of input specifications,
yi,k,(i=l'2""'1k)’ where, Ik' is the number of input specifi-
cations for the partigular subsystem, (k). These specifications
are quantities common to adjacent sub-systems. If the sub- |
systems are independently optimized,aé is often done in practiee,
the specifications must be hard, i.e., rigidly established by
engineering judgment. Decomposition permits the connecting )
specifications to automatically adjust to optimum values for
the wholéggystem. These specifications can, in this ev{it, be
considered “soft". A typical design opti@ization procedure
can then be applied to each of the minor sub~systems, which

o :

has the following optimization criterion,

Uk(fk)-—+ Minimum (3.6)

subjécted to éguality and inequazziy constraints shown in
equétions:(3;l) and {(3.2), ana governed by-a set of soft input
specificatigns{ Yi,k' By performing a éé ies of optimizations
for a range of values of the specificatig¢gns, it is possible

to define a "Type-B" trade-off hvpersurface of order I A

K-
linear or a non-linear equation could tthen be generated des-
cribing the best fitted trade—-off hypersurface, where the

optfmization c¢criterion is a dependent variable and the input

echfications are independent variables, see Appendix E. The
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fitted eguation, Uk(yi,k)' must be obtained for all the minor
subsystems., That is to say, (K-1l) equations are now available
to describe the relation between the master and the minor sub-
syaFems. It is obvious that,all the minor subsystems and also
the master subsystem have optimization criteria that can be
combined since all are a part of one overall system.

The role of the master subsystem is to coordinate
the decisions of each of the (K-1) minor subsystems toward the
solution of the original system. All the input soft specifica-
tions for all the minor subsystems have to bé considered now
as a part of the master subsystem design variables, ?k. The

master subsystem optimization function must now include the

minor subsystem value contributions, and can be written as

follows: K-1 ‘
Og (X)) + § : U ¥y k7 Y2, %.+0s Y1 ) ~ Minimum
e k
k=1
, k=1, 2,...K-1 = (3.7)
subjected to
¢j'k (xl,xz......xk) > 0, j o= l,Jk (3.8)
‘pl’k (xl'xzonioooxk) = 0 [} 1 = l,L- (3o9)

Having obtained the overall gQbjective function value, Equation
(3.7), and the master designh variables vectort.(fk), the final

optimum soft specifications for each of the minor sub-systems,

which in turn are contained in (?k), can be determined. A set of ,

b g
design optimization runs might be necessary to determine the

final optimum exact design variables for each of the minor

e
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sub-systems subjected to the pre-determined best system design
specifications. :

The generalized model propéscd in this section should
be viewed as a vehicle for extensive computational testing
to prove its convergency and feasibility., It should be noted,
however, that the trade~off hyper;surfaces should be reprgsent—
ed by an eméirical egquation with a moderate vériance from the
actual global feasible dé;ign states describing all the prac-
tical *feasible specifications ranges for each of the minor sub-
system, The optimum status finally obtained from optimizing
the master sub-system might logically represent the overall

#

system feasible optimum design., Even though the convergence

*

to an optimum solution for the original mathematical system
representation will be extremely difficult, if not impossible

to analytically ascertain.

3.3 Example - Heat exchanger and fan system

3.3.1 Definition of Problem

>

In the steel industry,steel ingots must be.heated
to an even temperature in the soaking pits ﬁefore being rolléd
flat. This process takes about 8 to 10 hours. When completed,
the ingots are conveyed to the roughing mili,,where they are
reduced in thickness in preparation for hg€ rolling. In this
sense, a soaking pit is a furnace which rzi;ats steel ingots

. i
up to about 24000F prior to rolling them into slabs. It is

usually fired by a mixture of by-product gases; coke oven gas

(

.

e
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(COG),end blast furnace gas (BFG). 'Tge_heat in the exhaust

gases can be recovered hy preheating the intake air in order

-
/

unit.running cost. A ceramic recuperator has been proposed
i N

to reduceﬂgpek consumptien, and consequentially decredse the

-

for. this, - '
The system, which is to be optimally designed,

.consists of a counter flow two pass ceramic recupgrator, an

ré

axial flow fan, and duct work.. The soaking pit(énd the stack

v

are assumed to be already designed and operate wiﬁza?redetermin-

ed Spegrféeations, although they could also be treated as minor
) .

subsystems. The axial f1l fan will be considered as a minor
sub-system,’ ahile the recupelator and the duct work will be

treated as the master sub-sysfem. The ‘connecting specifications
N ‘

'between master and minor subsystems will be prehéated air vol-

ume flow rate, Q, (cfm), ang the total fan head rise, H,

(in. of water). ,/”’//,

-

Ig waste heat recuperators the hot gases flow inside
a tube bank. The cold intake air flows around the ‘outside of
the tubes, heatlng the air and cooling the ewhaust gases. The
recuperators. malnly depend on heat transfer by convection. The

flow of the hot gases$ relative to the cool air is chosen to be
»

counter flow, thCh optimifes the log mean temperature differ-

ence and the heat transfer areé,‘ S@e Appendix C
' The desibn of the minor sub-system was demonstrated’

° . } - v \ .
" in Chapter 2. The type-B trade-off surface generated by the

[]
‘.

r
S
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¥
two minor sub-system governed specifications is shown in

I \
Figures 2.24 and 2.25, while 4¢he surface fitted expression

for Ul(Q"H) is déveloped in Appendix E.
The following hard 'specifications are set for the

system design, and in particular the master sub-system design.

I
.

"-
Stack hel l"0.0‘QO.‘.'.‘..Ol...(H ) =l35 fto a
sta
. Stack mean inside diameter..:......(Dsta) = 31.5 in. ,
. Roughness h‘ight of the duct -5
?“ work tuRes ..................g..€D =15 x 10 ft.
"R Roughness height of_the ~ . -3
. recuperator tubes. dieesicnsoraon R = 5 x 10 ft.
Ambiant average temperature...... o tomb 680F.,
Ambiant average Pressure........... P;mb = 14.7 psi
buct work lengths........¢e0000v2.. L.,L_ ,&EL.= 50,41 & 53
1772 3
. < ft.
Percentage volumetric gases .
leakageillll.lll‘!.l'lll...llc‘l l=lo%
\ -
Recuperator tubes thermal . . .
conductivity....covivvetieinnn, kw = Appendix D
. 4
L Maximum adiabatic flame a
temperatuUre ......seceer0e00s0.. AFT , = 3500°F
max -
Maximum recuperator width...%...... W = 7.75 £t.
Maximum recuperator side . *
length;b.ﬁ...0.‘.0..00.""0'.0. B =7‘75 ft.
' ‘ . max
. Maximum recuperator height - S
l length.........s....'.......-....‘L 36.67 ft. \
h o . max
v, Minimum recuperator tube , -
. : relative thickness......cvi0veee t . = 5%
, - * min
. Minimum recuperator number \v
. of tubes per’ row or. column...... len T 3



Minimum recuperator tube.
spacing ratlo"""'ﬂ"""”"'Amin = 1,1

Specified average hot gases’
temperature....................tGas

-

2350°F
o * 5
Minimum heat flux per pit.........p = 6.5 x 10
sp Btu/min

3.3.2 Formulation for Optimization of Master Sub-System

VA Al n K I € T I 4

The configuration of the heat exchanger is 1il-
lustrated in Figure 3.3. The design variables of the master

sub-sy§fga\a£e:

Vair = Prehéﬁted air volume flow rate,.cubic ft. per min.
H = Fan total hé;d rise, inch water - ‘ (‘
W =, Recuperator width, ft,
B ~ = Recuperator side length, ft. ' -
LI = First pass recuperator height, ft,
LII .= Second pass recuperator height, ft. -
do = Recuperator tube outside diameter, ft. _ - '
dl = Récuperator tubg’inside diameter, ft.
A = Recuperator tube spacing ratio f
dD = %ean duct work inside aiameter, ft.
Xfuels= Volumetriec Coke Oven Gas ratio to total fuel '
* gas mixture - ’
The optimization criterion is to minimize the sy;tem present

value average cost, Appendix A, It is the sum of the master
sub-system, recuperator and.duct work, present value average -

. cast, and the minor subjéystem, axial flow fan, present value - /
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average cost, Uy (H,Q).

U=rpP.v.a.C. | . +P.v.a.C. | +  Minimum (3.10)

Master Minor

The following .input specifications must be stated
-4

first before determining P.V.A.C.| for the recuperator

Master
and the duct work.

! Recuperator estimated life Ig = 3 years
Ducts estimated life . 9y = 10 yearé {
Unit estimated tax life y = 12 years
Estlmated interést rate i = 9,25%
Estimated interest rate
'with risk im = 12%. .
Estimated tax rate : t = 50% . ~

The initial recuperator fixed cost,-IF , can be considered as

R ~
a function of total tube surface, {16 & 327,

Total tube surface = Np /2.(dj+dg). (Lp + Lig)  (3.11)
wheré, Np is the total number of tubes as given in equatibn
(C-8). Then, ’
, Ip . = 57,000 (Total tube surface/1076)0'7l (3.12)

Equation (3.12) is based on the information that the cost ratio

»

of Aluminum tubes to clay or Ceramic tubes is 2.75: 16.34 dole

lar}s/ft.2 On the other hand, initial fixed cost of the duct

work, IF ,can be estimated as a function of the mean duct
D

»
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diameter , d per unit length as follows

D'I

0.807 X
I, = 4.0 (L, + Lo + L) . (d,/42) (3.13)

FD 5 6

. ) *
The running cost or the annual gross expense, P ,

is the unit maintenance and fuel cost. It is assumed that the

maintenance cost is a direct proportion of the fuel running

cost. Therefore

-" = T.E. (Voog - Ceost * Vares Capg) (LKW (?.14)' ’
in, which : . -

T = Total operating working minutes .= 365x60x min/year

E = Average unit efficiency = 50% "

M = g:rcentage running cost\lncr;ase due to malntenance

v

COoG, vBFG = Coke oven gas and blast furnace gas volume

flow rate (cfm), respectively. They are

Ay
~

functions of x. ., and V_. as shown in

EquationsaD—49'and p-50. E
CéOG_ Rate of coke oven gas estimated cost per gas
volume = 0.586 X 10‘3 dollars/ft3

CBFG = Rate of blast furnace gas "estimated cost per’
gas volume ., = 0,109 x 10“3 dollars/ft3

Employlng the previous spec1f1catlons and eguations (3-11

through 3.14) in the present value average cost expressxon

t CCOG and CBFG are based on the edtimated natural gas cost of

"0.004 $/kw hr. lence, the ratio -of COG and BFG calorific values

to that of the natural gas are 500:1000 and 93:1000(BTU/cf),
respectively., Therefore, -COG and BFG costs wpould have the
same relative ratios.

mp ra et
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<

described in Appendix A, the present value average cost for
both the recuperator and thg¢ duct work could be evaluated to
form the master sub-system optimization criterion. Add=s
ing to that the empirical equation, which represenfs éhe fan
present value average cost, the whole "system optimization
criterion will be formed as indicated in Equatién (3.10).
The fan 9resént value average cos@y is a function of the join-
ing spac%f}cations, H, and Q, as shown in the trade-off sur-
f&ce Figure 2.2i.

The master sub-system set of constraints can be divided
into two sections, direct constraints on desiqn variables

”~

and state variables constraints. The recuperator width, side,

s

and height length areslimited by the maximum available space.

L)

¢, = W .~ W 2 0.0 (3.15)
— - >
by = B =B 2 0.0 ~ (3.16) ‘
. _ N*‘\‘ A 7

Width and side lengths have also to be constrained by a mini-

mum limit values which,depénding on thé minimum practical‘num—

°

BeT of tubes ,N_. . ' ,

‘min .
¢4 .= W=-dAN . 2 070 (3.18)

= - > ‘ ) )
L B | dpA N .. 2 0.0 (3.19)

Recuperator tube thickness must be. positive and greater than

- < . .
a mipimum practical relative thickness to tube diameter, tnin

N

| M el v



¢6 (dO - di)‘/ tmi 2 0.? (3.20) .

13

The recuperator tube spacing tio. has to be positive and
p P 5?

-— P
s

greater than a minimum limit, A _, . '
N min .
e’
¢ = - . .
7 A A min (3.21)

The volumetric Coke Oven Gas ratio to total fuel gas mixture
must he less than one. \ ¥

¢8 = 1.0 - Xevel : (3.22)

A ‘? ~
By using the preceding specifications and design
variables as an input vector for the design procedures of

the two-pass overall-counterflow reclperator described in

Appendix C, the preheated air outlet temperature, t and

air’

the hot gases outlet .temperature to the Etagk, t can be

st’
determined. Total pressure drop across the system APthal

’
‘can be evaluated as fol%ows:

|

(3.23)
APporal = Apreg * Pquct t Pnoz T APgt
where, AP is the total pressure drop inside the ceramic
rec -
recuperator as described in detail in Appendix C., 4P
' . ’ duct

-

is the sum of the pressure drops in the duct connecting the
fan with the recuperator,APﬁ in the duct connecting the
: . 1 ' ' . ‘
recuperator with the soaking pit,APD in the preheated
. . , . . 2

- . .
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air line, and AP

5 in the duct between the rfecuperator and
3 ~

the stack. They can be evaluated as following:
AP \ ’ “.2 2
8 D = f Li (4Vi/"dD). P

il
dy  2¢32.22)

(i=1,2,3) (3.24)

where,ft is the ducts friction factor. It is given in Ap-

pendix D, Section 4, Vl' V2, and V3 are the,fén, preheated

air and stack volume flow rates. - Fan and stack volume fieww

rates are .computed in Appendix D, Section 9.301 andp2 are

the air 5ensity at the- ambient and preheated” air temperatures,

respectively. 'While- p,, is the hot product of combustion

gas density at inlet stack temperature. The head loss in the

soaking pit preheated air nozzle, AP

, could be evaluated
noz o

as follows

!

. | :
AP = Knoz (4 Vair/ndD ) ) (3.25)
¥y nes 2(32.22) -

where,Knoz is the nozzle head loss coeﬁiicient: taken as l/2land

P 1s the preheated air density. 4P is the natural draft of

C~ . . st

the stack as described in Appendix D, Section 10.

The following constraintsare related to state vari-

ables. The preheated air temperature, tair’ has to be great-

er than the inlet air ambient temperature, tomb®

]
r'.

>
¢g air tamb - 0.0 (3.26)

o T

.t -

ha EaEr D f

e eI
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The hot gas dutlet temperature, t must®be less than the

st’
hot‘gas inlet- temperature, tgas' and greater than a minimum
specified limit, tmin' to prevent condensation,
’ ' o
®lo = ‘tgas = ter 2 0-0 ‘ (3.27)
> 11 = %s¢ " tmin 2 00 S

\<?.28)

\

The hot gas temperature drop must exceed the air teﬁberature

rise. ' '

by =1 - (5 = tamp (tqas - toy) (3.29)

The axidl flow fan head rise, H must be greater than the

total pressure drop across the system, 2p .
: total

913 = 5,204 E- AP 2 0.0 (3.30)
total *

L4

The total heat flux into the soaking pit, Q_ , generated from

Sp
the heating value of the mixed fuel, COG and BFG and from the

recuperated air must exceed the minimum specified heat flux,
*

QL. ) S ~—_—
sp
*
o > .
b = Q, - 9, 2 0.0 (3.31)

[\‘_, 14 WD

thre Qsp total heat into soaking pit

il

heating value of mixed fuel + heat from prehecated

air, .

&

K

SR




= V5oat®eogd * VapglCVppgd ) + (Faiy = Tamp) ©

. BFG amb P
® .
0 Vair (3.32)
=
YCOG and VBFG are the coke oven gas and blast furnace gas
volume flow rates as computed in Equation D-49 and D-50.
CVCOG and CVBFG are the calorific values for both COG @gnd BFG

(500 and 93 (BTU/scf)]. C is the air specific heat, equ-

Pa'ir

ation D-13,.
Finally the adiabatic flame temperature AFT cannot

exceed a specified maximum temperature, AFT| , Otherwise
max

the radiant heat transfer would increase beyond the limit

’

imposed by the steel ingot surface temperature gradient,

A

and the ingots would melt.

$.. = AFT| - AFT 2 0.0 (3.33)
15 max

= -
where, AFT toms * Qsp/ L(cpp Voo * (cpo V)Rrg (3.3§)

The design procedure for dete;mlning the pressure
drop and the outlet temperatures of the working gaseé.is
an iterative process and requi;es long computation time.
Therefore, during the search, for optimum the recuperator
design prqQcedure will not be carried out if on® or more of

the direct design variable constraints (4 ¢é, -+13g) are

™
¢

violated.

82
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3.4 Results

For the previously described decomposed systemn,

and by using 'OPTISEP' optimization subroutines package [ 27 ,

the ensuing optimum system design was found,

15 = Recuperator width

B = Recuperétor side length

LI = Recuperator first pass height

LII = Recuperator second pass height

dO = Recuperator tube outside dia-
meter

di = Recuperator tube inside dia-
meter

A = Recuperator tube spacing ra

dD = Mean ducts irside diameter

Vir = Q= Prehecated air volume flow

raté

VFan = PFan air volume floﬁ rate .

vCOG = Coke Oven Gas'volume flow rate

VBFG = Blast Furnace Gas volume flow
rate

VSt = Hot gases passing through the

> stack volume flow rate

]

I

I

]

)

7.60 ft
7.37 £t
2.97 ft

2.98 £t

0.3966 ft

»

" 0.3401 ft

1:213

0.844 f¢t

4773 cfm

7275 cfm

345 cfm-

3764 cfm

9412 cfm

83
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-
Vooe = Product of combustion wolume flow '
rate _ A = 8168 cfm
t;ir L Preheated air tempe@gture = 1328 .
tst = Hot gases outlet temperature = 8280F
N, = Takal number of the recuperator “
tubes = 421 tubes
; — . . (15 x 15)
H = Fan total head rise = 5.8 in. water
(P.V.A.C)T = Total system present value average
cost = 10.5x10% -
S dollars..
AFR-' = Adiabatic flame temécrature = 32WOOF
Lﬁ? = Recuperator logarithmie mean
‘
Q

temperature . = 884.5°F

After determining the master‘subsystem optimum design
variables, the optimum ducted axial flow fan dedign can be

precisely determined. A design-point for the fan corresponding

to the final solution for the master sub-syfitem will not- exist
at this stage, any discrete variables qre a)so p;operly dis-
cretized. khe fan optimum design for 5.8 in., water head rise
and 4773 cfm air volume flow rate is given in Chapter 2. It

should be emphasized here that ngse specification values,
H

being the two sub-systems together, are optimum choices

.
- A

”y Z
‘ : P ' - 0
+ First pass hot,gases “outlet temperature = 1Q27°F
First pass air inlet tepperature | = 65%0F

i

R TAR T
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for the specifications, ahy deQiation from these will yield

Ag more expensive combiﬁéd system, ‘
The "example of this thesis could be extended to

obtain trade-aff curves and surfaces for the whole system by “

‘relaxing its Mard specifications, (mi%imum soaking’pit's heat

iﬁput, hot ga§es' stack s%ecifications, duct work lengths,'

fuel'properties, and so on). The relative effect of thé sys-

" tem specifications on tﬁ%\objeqtive criterion could then be

detected and examined to gain more insight and understanding

of the larger system design. g ' ~

3.5 Conclusions p

The following conclusions may be drawn concerning

»

the'prOposed new .decomposition algorithm. -
1. The generalized model proposed through the implementation
1Y
of the described algorithm is believed ta be a‘simple,

powerful, fast and efficient way of handling many of the

large system problems that the design® engineer must face,
'l ‘ -
which either were impossible to solve or needed tedious,

long, and complicated mathematical computation. .

2. ' The overall large system, which is to be optimally design-

ed, must be in a form that can be decomposed into a master

l« L] y : 3 1]
sub-gystem and a'set of minor sub-systems as described in
& y ! _

.

Figure 3.1, -~

——

S et
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3.

4.

5.

v

On;\g;\ﬁﬁre of- the mlnor sub- systems -could he selec%ed

— 3 )
from a catalog of commerc1al equlpment; In this event

- ) > . .

it may be possible to dévelop trade-off-curves from inform-

. a o -

[

» ~ ~

power for an electric motor, Consequently, the overall

system optimum design could stlll be'found by follow1nc

the 3rescrlbed\decomp051twon algorltnm.

The decomposed overall large sYstem migﬁt be'governeﬁ or

= S~

" constrained-} y ‘already ewlstlng components (the soaklng

. . S 1
pit furnace, the stack). They can be treated as agplled

L ~ -

igput. specifications (hard or soft). - . L

_ation provided by _the manufacturers-=-such as cost versus’.

A.tradeﬂoff curve is the-loeue of all the optimum design

c . . . ;¢ Lo
spoints for a given configuration, i.e.- each point on a

trade-off curve, surface, or hypersurface is an optimum
p ' Y - T

paint. If we "assume that the fitted empirical eguation
" ' y 3 ' N . .

represents the trade-ff surface with a reasonable vari-

ance (within the\sub-syetem accuracy‘range),-then the

optimization of the master sub-system, in which-all the

empiricaiftrade;off expressions are conbined with the
master sub-system_oppénization criteria, will ebnve;gc‘
into a limiting optimum:solution. It should be noted
howener, that this. llmltlng solution cannot be guarantc—i

ed to be the optimal global solutlon to the original sys-
tem. This - 1np11es that convergence to a true optlmum

-,

solutlon for the orlglnal system before decom9051on, will

A"

be extremely dlfflcult, if not impossible to analytlca{ly
4 .

L

kol

ey



e~ * T . °
- . . . . 87
! ‘_ v ) ’ - \. - 2
N . . . 3
N . . \ » .
. f . N > - «
[ \
zascerta&n. ‘ oL _ . e o
- \ . . » . *

6. The non-linear empirical ‘equation, ghich fits the trade- .-
. .. . Cee . N :a .. :
off surface, must cover all of the feasible ranges of .-

s 2 Y

the specifications being varied. However, it might happen

—_ » »

uring the optimization prccess of the mastor'subfsy tem .

o]

that cone of the”joﬁnt specificatibns,‘kmaster sub-dvstem
" T~design variables), is assigned values outside the range '
. Pl - / .

of the .empirical trade-off equations. Therefore it may

be desirable to include a large positive number as a-final
Ay * N Ay

¥ point at the end of the range of the trade-off curve.

l

This is equivalent to an additional set of direct;cons-

« o
~

‘traints on the joint specifications: L. S
. . . P
7. Tlo toupling censtrainte aneong the partitioned system
. eomponents (sub-gystems) are assumed. Thus, the two-

’
. s

. -pass counterflow recuperator could not be partitioned ain-
to two sub-systeme of one pass ecach, since due to. the

S~

e naturce of ‘the problem, there will _be, constraints governing.

1
.

hotlk sub-svstems and alsa their Jjoint specifications -~

N “ . > . ~
2 . >

(intermediate temveratures, design configuration, flow
: onfig

s

- ~ .
\
v

. rates).’ .

6. Although it was mentioned carlier that all the minor sub-

systoms and the mamter sub-svstem nust have the same opti-

»

.

mization criterion, this presents no particular
A . i . " -

¥ R Wt
i

proi:lem when maxirum overall system. "valusd" is used -as an



S w

e

o

optim

.
. ‘e “ “

9, The block angular str

i
‘not

te .decompose a system into

.;zation,critqripp 17,

.
<

7

an extreme case we might

: W £
several block-angular st

governed by a major master sub-system.

v e

o .
P
. .
ol
,
N
-
h
[ Y 1
k
;
.
¥
. i
. .
+
v -
v
; -
. B
. .
.
) N
i
P BN
~a
} ’ *
.
. :

tcture described in Bigure 3.1° 1
h - . - @
engraved in stone. In

v
,
?
R "
A -
e v
-
.
. -
a .
B
»
.
- .
Al ~
’
: A
.
5
.
~t
G
¥ s
.
)
.
LAY »
’
.
%
. .
.
. . ,
- ¢
.
.
.
- L3
.
N
N
. .
.
v
.



P

2

t

CHAPTER 4 ’

DISCUSSION and RECOMMENDATION

4.1 _Evaluations and Cgonclusions

This thesis provides a technique fér analyzing and

\decomposihg the optimum desigﬁ problem of large systems. The

term decomposing, is used heré to mean an algorithm which

v

partitions the design variables of a problem into two or more

.sub—sets. The partitioning to be used is, for the %nobléms

considered here, determined in ar obvious way by thé_problem
structure. Some definite structure is almost alway;\fagié

in truly large problems, sinéé they commonly arise from a -
linking of iﬁgépendént minor sub-systems, in eitﬁer time or
space,. by a set of design specificdtions, with a master sub-
system which governé all the joint speéificatibns. By
déveléping specialized .solution aigoéithm to take advantage of
this structure, significant gains in computatiqnal efficiency
and reductions in computer memory requirements may bg achieved.

The technique produces a ‘way of displaying graphically and

- H

_numericilly the trade offs between each minor sub-system design

objective and the sub-system joint design specifications. The

-

resulting trade-off curves, surface or hypersurface of each

of the system minojy sub-systems must be combined with the sys-

tem master sub-sy optimum design which in turn leads to
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the whole system optimum- design. . "

- N -

v \ - - ]
L .Phis thesis also demonstrates the relative ease

with which the trade-off curves can be determined and their

F2 '

values as a design tool in ways other than their use in a

decomposed system. A new contribution has been achieved by
_the author in developing a nonlinear multi-variable fitting

model to repreSent a trade-off hypersurface, discussed in,

~

Appendix E. Trade-off curves have been categorized into two
types, Type A and Typé B, based on the effect of relaxing the
design's specification over the design's objedtive. One of

the major advantages . of trade-off curves is the insight that

they provide to the designer; insight into the overall aesign

problem, insight inta improvements which can be gained by
relaxing a hard specifications, and insight into the feasible

bounds of the problem. -

>

To illustrate the shape, potential and advanta&%s

~
-

of the trade—qﬁf surfaces, two design problems were investigat—_
éd, a\high pressure vessel with multiple walls and an axial
ducted flow fan. In both caseé, further insight into the
selection of an optimum design was gained. Application of
t&ade-off cu?ves to decomposition is illustrated by a numerical
\”fﬁesiggﬂexample of two pass counterflow cer;mic°recuperat9r.
. In. order tg optimize the combined sub*systéms their

bptimizatjon criteria must be the same. In the event that
R d :

Ehe&‘have different objectives, or multiple objectives, value
/

.
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theory could be uséd to set up a single combined and common

optimization criterion. }

R

® N -

{
Lows: ~
4,2 PFdture Research . ’ :

. Thete are ;éveral possibilities for future researfﬁ.
The overall effectiveness of the deccrposition method déscribea'
above, using a traQe—off'technique, lies in_being able to gene-
rate set§'8f optimum points for different combinations of-
the reigxed specifications,and in creating an empirical formula
‘to represent the trade-off hypersurface-q&ipkly, simply and
with reasonaP}e accuracy. Therefore, t@gre is a need to
.develop a package which is capa%lé of handling multi- ‘

. dimensional trade-off ;urfaces. Ig the area of. applications,
worﬁ is needed to invest;gate,ways of using the decomposed
angular!bldck system for problemé wiEh many minor sub-systems -
with different objectives. Work is also needed in ;hq develop—
ment of procedures thch will détérmine quantiéatively with the

. ~ ¥
help of computer, graphical value curves associated with each

\ .
of the objectives'. *

u
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APPENDIX "A"

* COST OR PROFIT AS AN

OPTIMIZATION CRITERION

. Optimization criteria are, strictly speaking,

p§se8 on design characteristics which contribute to the
philosophical value (as-opposed to monetary value) of the 3
device or system. In some situationé, the criterion may

be a rather compléx combination of purely monetar§ values,

or design characteristics that may pe all measured in dollars
or o£her monetary units. A typical example is when we wish
té minimize capital cost, and also minimize running cost,

o~

where each occurs at different times, [ 6,10 s 1Y J.

A,1 Time Value of Assets: Deggeciation ' :

Fixed assets can increase or%decrease in value
. as time, progresses. Tour different methods are commonly
used to represent the rate of depreciation. These are
straight line declining’ balance, sinking fund and. sum of
the year's digits as shown in Figurg A.,l, However, é;cording

. to the tax regulations ¢oncerning depreciatioh in Canada the

double declining balance method must be used "¢ !.

-

We must begin by defifing the following quantities.
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SUM OF THE YEAR'S DIGITS
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i SINKING FUND
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Figure A.1l:

TIME , YEARS

Changes in Arrest Value With

Time for Differont Methods of

»

Depreciation,
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Dj = annual amount of depreciation in the jEE year,
; dollars. o . . ’ -
. N ‘e T .
I, = dinitial fixdd capital investment in the asset,
o .
dollars.,
. 4 e .th ~
ej = bocok rate depreciation »n the,j— year
Vg =" fscrap value, dollars., .
g = economic, .design or book life of the asset, years
i+ = interest rate per period with no risk. )

)

We can now write.

3
D = e, I (A.1)
J '} F
. 1
2 2,7 . * :
. = = (1 - < ' =1, 2, ...., -1
ey 5 ( g) J (3 ) (AL2)
where ,
x I *
3 ~% (29 + cos(ng) + 7)/4 : (A.3)
*
and , . 2‘3 -1 " . X .
ey = (1 - g) /g =¥ + 1)y =3 ,0=0,..9(A. 4)
This approach 1s applicable when VS = 0. To force the scrap

h

value to zecro at the end of- the gt year, straight line dep-

reciation (cequation A.4) is used in the lattér years with the

. . . ]
cconomic life starting from J year, whilesthe double declining
%

Falance method (equat‘pn A.2) is used during the first yéars
* .
until (J -1). : -

4
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A.2 -Present Value Average Cost )

In reélity, the annual sales and running costs .
aré,noé coqsfant,iand the ;ariations can be répfese&ted on -«
‘a’cash pogitiéﬁ"&iaéram (Figure A.2). Th?ﬁﬁrinciple~is that
gach element of the diégram is replaced :by its present value

so that the complete diagram is the net sum of the present

values of the elements , [6]. . ‘ ' /
(3’( Wé must define the following guantities first:
dJI? = annual depreciation for taxation purpose
th

based on rate d-in the j yé@rJ,dollars,

~ t .= annutal tax rate to be applied to the .
& =T annual gross profits with the allowable
J\\ . annual depreciatiog,odeFL : . ‘
e P = annual net profit after éaxyplus book
. depregiationeeIF, ddllars.
P* = annual‘graés profif before tax plus book
deprec1atlon eIF, dollars. ‘ ‘
¥ - ie = ;ﬁ%erést rate with risk. ’
9 * = tax life, years. (usuélly.greater than g)

(TN
« 4

The present. value cost can be expressed as follows N
P.V. =  net return - capital expenditure + teraiﬁr;

nal recovery. °

T

. . k=g * o ‘ -k =y d . -
: - .5 .l’__‘_%_%_.q, 3Tk Tet I, +(P.W.F)-
- \ i k=1 (L+i) ", k=1 (1+1)
L Umi)Ip 4+ (RLS.El-e)vg o (A.5)
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Where, P.W.F. is the present worth factor ° X
= ((1+1)9 - 1)/ i(ih\l' R

- ’ - \’\‘ ..
and P.S.F is the single payment of P.W.F., > ™ g

7
—

' =1/ (1+i)g\ (A.7)
Therefore, Present Value Average vost ' ) ‘
= P.V.A.C..= P,V. / g ' (A.8)

.2

An instantaneous cash flow“diagram for_ a single
project shows the net passage of dollars into or out of a c

system as a result of operation§) Figufe (A.3),
\

i

By this way we can combine different monetary
- i “ *
values,which occur at different times(IF and'P ) for dif-

ferent systems by combining their P.V.A.C. This miqﬁt be
3 R ’ N
considered as an optimization criterid for a maximum profit

. ¢
or minimum cost objective design problems.

_—

.

.
r



APPENDIX "B"

e

DESIGN PROCEDURES

FOR AN . N

AXIAL FLOW DUCT FAN

-

There are two principle methods of designing for

ducted acial flowy. fans, "free Vortex *flow" and "arbitrary
»

vortex flow" [ 9J. The following design steps will use the

arbitrary vortex flow approach, where simplifying assumptions
based on experimental evidence are employed. Figure (B.l)
shows the components of the ducted *an unit -in question.

The following procedures predict a given fan

performance when the following quantities are input.

Q, air volume flow rate, ft3/min.
, H, unit total head rise, in, of water.
R & rb, duct and bogs'radii,respective}y, in.,
RPM, motor revolutions per minute

Nﬁ & NS’ number of rotor and straightcnef blad?s r?s«

,’ pectively. | | ;
rGR P ras, radia% posiéion at which axial velocity u(r)

equals mean axial velocity u for the, rotor

and straightener blades,respectively, 'in.

’tR'& ter maximum rétér and straightener blades thick;‘

ness at the boss radius,respectively, in.

-

102
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'\ Fgﬁ?le)G ROTER STRAIGHTENER
\ \ / L TAIL FAIRING
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Figure B.l. Components of Ducted Fan Unit..
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Empléying the previous specifications and date with the
following design procedures ghe chord, span, radius of curva-
ture and camber angle for both the rotor and straightner blades
can be computed, leading to.a full definition 6f the blades
gection at any radial position. It is also possible to
determine the lift, drag and centrifugal forces at ,any radial
section to estimate the combined stresses. The total uni;
efficiency and therefore the specified motor horsepower are
finally computed.

1

Design Procedure and Assumptions:

. < . .
(1) We éésume that the total head rise and the

»

axial velocity component (u) remain constant along the bLlade

length*
: . - : \Q 2 2 °
Mean axial velocity, u = 144 x Q/{60x 1 (R ~ry )i ft/sec
v ) (3.1y °
Rotor rotational speed,f = 2aRPM/G0 rad/sec (B.2)
Let, Dimensionless radial position, N
B =.r/R, r s<r <R (B.3)
Bbs 6.- 1
Meah [Mlow coefficient,ﬁ = 12 x u/0R (B.4)
(2) The overall unit efficiency (ny) must have an

assumed value between (0.65 - 0.95) in order to be readjusted
by fixed point iteration (127, when the actual efficiency (n;J

1s found at step number (13) below.

<

s
.
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. The non dimensional mean total head rise is given
by ' ‘
Kep = 5204 x AH{(O.S oﬁznT) , (B.5)

(3) Radial equilibrium is assumed to be established
very quickly downstream of each blade row. The velocity heads
associated with the small radial flows have been ignored as
beihg‘of second order magnitude. Bernoulli's equation is ap-
plied before and after the fan rotor, where the axial vel&city
component is a variéble in both the radial and axial directions.

Since the flow parameters at station ra are known ip detail,
” R

L% -

-this radial position is chosen as an intéqration limit., Defin-

ing first the .following non-dfmensional quantities

*

>

Mean total swirl coefficient for the rotor

———

¢ _ “fg o _ Fen? ‘ (B.6)

»

u 28_
B u

Preliminary flow coefficient

Y3y = v (B.7)
B . )
where BG = rG/R ’ 8 = r/R

. However, the swirl coefficient and the flow coefficient are

both assumed to be linear function of r. As a preliminary

design step it is'more convenient to use u since the distribut-

. & . ' . .. .
ions of the axial velocity at the different sectiong are
. 4
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initially unknown. A bar is then placed over the coefficients
to denote that the mean velocity_hés been used. Therefore,
the axial Qelécity'component ét any radial section in the fan
annulus at section 2 and 3, as shown in Figure B.l., can be

"determined approximately by

2 uz(e) = G‘Jl + 2 ¢ 23 1 - _f - 1ln 8 + 1n BE%
-l vme TNy ‘
(8.8)
‘[ _2
ug(B) = uV1 + 2¢ ;'1 - 1 (B.9)
) Xg) o T(sg)

. (4)" The rotor and sﬁraightener blades are divided
into m radial strips. For each, the radial velocities
._uz(B) and u3(8) are assumed to be constant along the bladé's -
. » M
span.
(5) Flow and swirl coefficients can be approximated

by better values, after knowing the velocity distribution in

both rotor and straightener, as follows:

) 20 s T (3.10)
24 -8
2 (B) —_—_(u2(6) + U3(,'§)) T (B.11)
S T -
2 "B .
£Rl3) = 28 T/ (u,(8) + D) (B.12)

b2
= ————rn

T LR TR
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eg(8) = 2u e/ (4, (8) + ugy(8)) © ~ (B.13)

. (6) The angle which relative veloCity (w_ ) makes with

blane of rotation for the rotor blade at different radii, as

shown -in figure (B.2), can be easily calculated from: %

bp(8) = tant[ig(8) / (1 - .5¢p(8) Ag(8))] (3.14)

[ 4

For the straightener blade B

4 .(8) = tan'[ 2./¢5(8)7 ‘ (B.15)

{(7) The optimum lift coefficient can be obtained from
use of the Howell relationship [14] as follows for rotor

blades

2 1.375

C; (8) 2ft 1 4 [1TeR(BIAR(8) s b1 1
R ' R 2
. AR(b) AR(R)

]

L)

(B.16)

’

The optimum lift coefficient based on experimental data [ 9]
can be written approximately for straightener blades as fol-

lows:

¢l ()
- 8
LS

1.43 ¢4(8) for eg(8) £ 0.5

~

Id

2,18 - 1.43 CS(S) for €

i

(2)< 0.5 - (B.l?Z.

S

Al
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Figure B.2, Velocity Vectors for Rotor and Straightener

BRlade Element.
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(8) The solidity o¢(8) at any radial station
can be derived from momentum considerations. Ignoring the
drag term, (c(B)CD cot ¢ (8)) which is usually small, we

can write/;;ton‘and straightener solidity terms as follows

» * .
B) = EZER(B). sin ¢R(e)] /cLR(e) (B.18)

oR(

I/og ()= [2e4(8). sin 5(8)]/ czs(s), for e (8)> .5

(B.19) "’

= 1.5 ., for e (B) < .5

it

(9{_ Heﬁée, solidity is the chprdf length Ey the

. kx .
span length at any radial section. .
« - Therefore, the chord lengths of the rotor and

. ¢
',

straightener are:

21 R8

B = ).
CR( ) OR(B) . . - (B.20)
R
o (R) = o _{(8) 2T RB (B.21)
S s N
{ B S s
{10) From the force vector diagram, Figure B.3,
the lift LR’ for rotor blade element. may be expressed at any

radiai section as followsr:

tChord: is the length of the straight line which joins the
extrene 'leading and trailing edges af the airofoil in a
streanwise direction.

a

e length of the airofoil in a direction perpeandicular
to the chord 1line.
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. 2
Lo(s) = c£ (8) o Ch(3) (*‘2(8’ ) d,. (Lb)
R~ . :
, 2 \ s;n¢R(8) 144

(B.22)
where, dr, is the strip thickness and,o , is the air density.

The straightener 1lift force is given by

* s (8) 2
Lg(8) = Cf (8) _p_ Cg(8) ( 3 ) dr_ (Lb)  (B.23)
S 2 sineg (8)/ 144

(11) Consideration can now be given to the blade ele-

ment, H9wever, it is apparent that no single design method

can cover the entire range of ducted axial ‘flow fans. Multi-
plane interferenqé prevents the use of the "isolated aerofoil _
design method", for solidities much above unity,. while the
."ca5cade design method" cannot be used for solidities mu;h

1e;s than 2/3. The problem which arises, therefore, is the
fixing of a nominal boundary between the two methods. Detai}—
ed experiments [14] on a fan designed by the isolated airfoil
~method showed sppreciable discrepancies for boss ratio greater
than 0.5. The. cascade method is preferable for values of .
greater than 0.8, otherwisF ér may excch 400‘and loss of lift
may result. The above recgmmendations apply to a specific
blade element. WWhen the rotor as aavhole is considered, modi-

fications may be necessary. A combination of the above two

methods, especially with a moderate boss ratio of 0.5, is also
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pogsible. Rotors designed eﬁtire]y by the cascade method
tend to be high'pressure rise fans with large Qoss ratios.
The main variables involved in determining the blade shape
’aré given in Qigure B.4. After developing the circulax.
arc type camber line, it is subsequently clothed with a -
symmetrical aerofoil section whose chord line is bent around .
the camﬁer line { 9. Figure B.5 gives the impoftant details
of the main parameters involved in designing a circular arc
camber straightener airfoil using the cascade method Whicﬁ
is preferable for the stfaightener design when the value of
€g exceeds 0.4. Léstly, the detailed design of both rot6kl
and straightener blades can be considered as a ﬁina* step in
the whole design procedure where the specific optimum sppci~
fications were determined.

(12) Steps (4) to (1})~hav¢ to he evaluated for

’

each radial position aleng blade'£$ngth, i.e. (m+;f tinca,

4

(13) Overall fan unit cfficiency can now be

[N

calculated as follows

e

(B.24)

¥
th th th

where,

K., . .
R £ mean combined. rotor loss coefficient.

th



htd

¥

PLANE OF
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_FLOW AXIS
tan _165
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S
1 - 0.2641/ US
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2

Figure B.5. Geometric Details of étraighteﬁer Blade

FElement, Cascaae Method. s
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th

mean combined straightener, loss coefficient.

diffusion loss coefficient,

profile '+ secondary + annulus drag loss co-

efficiencies

B ji: (m+1) Rz

'0.016 XR(S)

izl . (m+l) C. (8) sin’
\ Ly

m+l 0.018 CL (8) AR(G)

o1 sin ¢R(8)

Ag(8) [0.025 c?

. R

(3)

-LS(B) -+ 0.0223

N S
2 2
(2 - Bb) (L - nD)
Kt;h
- where nD =

L2 ‘ *
(m+1) "sin ¢S(B) CL (B)

(B.25)

115

(B.30)

(B.31)

assumed 9.8,

'di%fuser efficiency
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(14) ‘onsumed horsepower = '5.204 Q aH (HP)
. 33000 7,
(B.32)
Motor power - = 1,343 HP
, & l; "a b (B.33)
1 .

where, " and.nb are the motor and bearing éfficienoy, and
are assumed to have a value of 0.9.
(15) The rotating shaft cyoss sectional area has

to withstand torgue and thrust subjected to'it, The shaft

applied principal streéss o is calculated as follows assum-

sh’
'ing that the shaft radius equals the unit boss radius,

[

5. = 9% 4 ox )2 + 12 psi (B.34)
sh 5 - Xy

where, oy is neglected.

2

o - : ' : ) A
x .= thrust / mry | ps1 (B.35)
Txy = 12 r, X torque/polar moment of inertia psi (B.36)
IO = polar moment of inertia = O.Snrg in? (B.37)
- 1 .
Thrust = T_ e u’ g’ 1b. (B.38)
2 144
Cricient ~ k. (1 n a2y 2K nca
TC— thrust coefficient = Kth” R( - 'b) + tg n(bb),
y

"(B.39)
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* ke . - r
from, (B:253) ng = rotor efflglency = (1‘— hR/Kth) (B,40)
‘ -2 -3 ,
Torque = Q P u” = R_ (1b. ft) (B.41)
€3 12
. e — 2
-Q = torque coefficient = K0 (L - x",) (B.42)

Substitutions from (B-35, 36....,42) to (B-34) yields the
principal stress. |

¢ (16) The maximum rétor'blades thickness at iﬁs
root must be'big enough to withstand centrifugal, lift and
drag forges.‘ Tensile stress due to the cent;ifugal-effect cons-
titutes the major stress component in rotor blades. Bending
moments due to aerodynamic load increase the tensile stresses by
a small but significant amount. lowever, shear stresses and tor-

sional moments are negligible. Blades are assumed to have a
»

triangle cross section with a uniform height for all the radial

positions, as shown in Figure (B.6). The tensile stress due to-
centrifugal force, 51 can be calculated as follows:
. ] R _
_ 2 2 Ph
a = R Py R % ‘
' e \ BCp(¥) dE (PSI) (B.43)
4
. g
(12) Ig CR( )b .
. . 3
where, f is the blade's material density, Ib/ft
m

9 is the acéeleration of gravity, ft/sec2

W O

FH REAET 2,80l et A8
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I=¢ t9’33

y=t/3 rﬁﬁg
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c() .
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Figure B.6. Assumed Blades Cross fection for

<

Stresses Calculations,
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Bending stress due to the lifting force, 02 , can be cdﬂ%GEed as
’ R

follows
.t + A \
o =4 My = 12 R L_(B). (8 - B )/C_(8) psi
2 T —3 Z R a,b R
R tr a=t ‘
b (B.44)
— = - - B=l
s My 24 R L_(8).(8 - 8,)/C_(8) psi
20 " o2 =5 R b’/ >R
R b
(B.45)

Hence, the drag force is neglected; the liffing force is conc-

entrated at C/4; and ‘the torsional effect is neglected. There-
fore, applied design stress, ER' is the maximum between (»Fl +

— + - R

o] lo]
2.) and ( - ).
R lR 2R

(17) The straightener blades, following the previous

assumptions, have bending stress due to lifting force as the

-

only active stress, {compression)

=1
2 Lgle) (B - 8,)/Cg (8)  (PSI) (B.46)

o'—‘r‘o'b

- 24 R F
o =

t

[ 9200 O

To summarize, ducted axial flow'fag degign using the
arbitrary vortex flow approach with the isolated airfoil method
for blades design was employed to determine ?he unit efficiency
and the required operating power. Furthermore, detailed blades
cross sections, at different radial positions were also clearly

specified for the input configurations. Finally, the stresses
N\
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were determined to ensure the feasibiiity and safety of an

assumed material.



APPENDIX C

DESIGN PROCFDURES

OF A

MULTIPASS COUNTERFLOW RECUPERATOR

~

A recuperator is a gas flow heat exchanger, using
"a shell and tube configuration. When both gases flow past
the heating surfece in opposite direction and paralled to

each other, the configuraticn is called "cbunterflow“,

(Figure C.1. ] -

The design of a new apparatus 1is aimed at determin-

1

ing the operating condiéions, pressure drop, and outlet
temperatures of the working"gasps, where the heating surface
is known., For illustration, the two- pass overall-counter-
flow. exchanger is~§;SLn in Figprc (c.2) wizi be considered.

The following input specifications are assumed to be known. -

First pass height iength ' LI ft
Second pass height length , L{I ft
Unit width | X , W ft
Unit side length . . B ft
Tube outside diameter ’ do - ft
Tube in%ide didmeter ' di ft
ﬁot gases inlet temperature, t; Op

4
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AL
o
“

TEMPERATURE °F

TUBE LENGTH

. Figure C.l. Variation in Gases Temperature in

Counterflow Recuperator. R
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* Cold air inlet temperature t OF

. ’ OII hd
Tube spacing ratio o, A
Mean duct work inside dia-
meter ' , a, £t
Preheated air volume flow
rate ¢ Vair _cfm
lict gas volume flow rate

’ v ) cfm

€.l Calculating the Outlet Temperature of Working Gases:

Details of the derivation of the final equations
are omitted when literature references are providgh. Major

empha51é is placed on the principles and the conceptual ideas

employed.

llere and below the subscript (i) indlgates the values
pertain to the hot gas passing inside the recuperator tubes,
and the subscript (0) to the colqd gas. The superscript (%)

indicates the inlet temperature and the superscript (%) the

-

outlet temperature of the worklng‘gases. The top pass heat

exchanger will be described by the\subscript (I) where the

-
bottom one by (II).

The heat transfer equation which combines the con-
vective and conductive mechanisms can be repregsented as follows,

)

L17, 8, 19, 20, 22, 23, 26.. <. '

N

s

.
" i F o A

TR TN B on? WK S e o
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\- 1 do;di 1
Heat flux = q = LMT/ + + **'[BTU/hr]
hiAi ZKM Am hoAO
where LMT is known as-the logarithmic mean temperature dif-
ference, It has the following expression for a counter flow
arrangement, Figure C.1.
(6, -~ €.) = (t,= &)
LMT = —= 0o 0 (C~2)
1n ti ” tO
ti - t0 i
A, = rLdiNT i (C-3)
AO = rrLd‘ONT (C-4)
AL T (Ag = A)/In(Aa/AL) : (C-5)

-

in which NT is the total numher of tubes.. Knowing the over-

all recuperator dimension (B, W & L), Nt could be counted for

\symmctrical staggered tube banks as follows, [Figure C.3_.

Ny = number of tube rows in flow direction
‘ = {-(B - do) /{ad Yyl o+ 1 (C=-6)
Q
Ny = number of tube columns i;f}low direction
= Lw=a/aa)] + 1 ' (&-7)
. — - ] - - T -
Np = Lo N T+ DG - D) (- D7 (C=8)

The quantities hi and hO are the inside and outside tubes

surface coefficients of heat transfer, ;ﬁr tubes having a

125

(C-1)

sharp-~cdged-entrance with a Reynolds number, based on diameter,

ettt

}
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greater than 104, McAdams (Reference[ 207, bage 420)‘rec6mmends_(

the use of the following equation
1/3 0.8

0.14 0.7
0‘0?3 NPra xa NR Ma 1 +/4;
hy o v (= (2
a. »* Mo A1
. 1 A
. . 2n )
ETU/hr £t F (C-<)

whefe, subscript (a) stands for the avefage bulk mean temperature,
* \
B (tiﬁ

wall temperature, t, = gtb + t

I

+ €;)/2., and the subscriét (w) stands for the average
‘ 5 )/2. on the other hand, the
ouééide tuﬁé surface céef%icié;t of heat Lgansfer, ho,can he
approximately evéluated,using Grimisonts formula, (Reference

[207 , page 432), as. follows
/3 2 -
. - * &
ho ‘ 1.13 Cl Npr ?Rf kf C3/d0 ++e. BTU/hr ft F

£ {C-10)

where C, and C, are constants for v;rious tube quciné\fatio,
A. They are listed in Table C.l. For baﬁks less than éen
rows deep a‘corgection factor, §3,has to be in%roduced. \it
presented in Table C.2 Subscfipt (f), stands for aVeraéerilm‘
temperaturg, tg = (t+ tw;/z. h ' \

Other Qariables are defined as follows.

A8

viscosity coefficient Ibm/hf ft

u =
- . . i \/‘ ,
Np,. = Prandtl pumber (ucp/k) . (C-11)
k = gas thermal conductivity.BTU/hr ft °F
Cp = specific heat at constant pressure BfU/IbhOF

P
-
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TABLLD C.1. COMUSTANTS C AND C FOR USE IIf E‘iUATlON
‘ ‘ (C-38) FCa TUBE BLANKS

EE e TSSRESCSSRISERISSSSCANESSSSITSSSTISSmSISSSas
SPACING, A c_1 -,
N
1.09 ¢ A< 1.23 " 0.518 2.556
1.25 ¢ A < 1.59, 0.469 T 9.562
1.50 ¢ A < 2.00 ©0.4872 0.536
2.09 ¢ A< 3.00 0.421 0.574

R A R L R L A T

4 A S SN E-A-NE R SRR E R SEEE I P AT T R TR AR T
HUIRR & 5 6 7 .8 Y <10
0¥ ROWS , .
€y 0.3 0.92 Q.04 0.97. 0.93 0.99 1.0
- > N - -
. 1,

128
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It

Reynolds number (diG/u)

(0]
I

flow stream mass velocity (4.0 VgO/GO*di)

. "1 /nr Fr2 o~ , (C-12)

' L
Values of u, Cp and NPr as a function of temperature for both

cold air and hot exhaust gases are given. in detail in Appendix

D, Sections 1,2 and 3. k could be estimated from the value

of NPr using equation (C-11).

The quantity Kmioccur;ing in equation (C-1) is the

N -
recuperator tube thermal conductivity in TBTU / hr ft OF, '

and it also is a function of mean tube surface temperature.

The value of K, for a semi-silicon carbide tube is given at

1
‘Appendix D, Section 4.

?wo additional expréssions may -be written for the

heat transfer rate, g, based on energy-balance considerations:
3

@ = v, cpi p,(t] = £,)/60  BTU/hr ©(C-13)
q = v . C o} [N ~
air po O(tO to)/GO . BTU/hr o (C—ld)‘

where, pi andD0 arélhot gases and air densities in (Ibm/ft3),
\,‘ . 7./1
respectively. They are functions of the gas temperature, and

pressure (p = p/RT).

L)
-~
- y

For the two-pass overall-counterflow recuperator
shown in Figure®C-2, all the design parameters and hot gases
and air input temperatures'(t; ' ta } are assumed known:

I II ////// N

.
. ‘ -

S
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To find the outlet temperature of the working gases and also

. N
the heat flux, using equations (C-1, C-13, and C-14}), a fixed

point iteration technigue will be used {12 . It is an iterative

technigue in the form of tj+1 = g(tj). If tj is assumed tj+1

N L
could be evaluated from the fund¢tion g, until the difference
between two successive iterations will be less than a pre-

determined accuracy. The following procedure is suggested.

1. Assume t, ]
'3
2rdhnnnmrﬂﬁr” ; use (C-13) and (C-14) to obtain T
[N , \ \\I j N\ . . v
and ti . Using ti ' t0 and ti in equation (C-1) gives

I I I I
fb l . The fixed point iteration technique (FPI) is
11541

then applied until no improvement is possible within our accu-

racy limit. " Therefore, t,

NG -
o, and t} are now known based on the

I I
N .
assumed t [.
o .
1%
3. Now €I equals £, and Eb
I 1 11

RS Y

0

is known. Using

-]
and Ez can be estimated.
I II

4. Returning to state I, £, ﬁ; and Eb , are

’ ‘1 I I
> can be calculated. Repeating the

the same §rocedure as in ((2), t

known. Therefore,
Ifj4n o

same procedlre starting from (1), setting tg W

= t
115 Oy

continuing until the difference between the estimated (j) and

, and
j+1

the calculated {(j+1) is permissible.

In short, we have the three equations (C-1), C-13)

1
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and (C-14). If they are applied twice for pass I and II, six

unknowns t) = t. , t, =t, , t. ., t\fh g. and g
Or %11 g frp iyp O 1 11

may be cdetermined. In a similar way, for the case of three-
pass overall-counterflow recuperator, we will have nine unknowns
for the three passes.

L4

'C.2 Flow Friction and Pressurec Drop Across the System.

The evaluation of, flow friction with sufficient
accuracy is essential for the setting of the optimal' operating
ronditions for a given apparatus.

,

First we will consider the minor losses which occured
in a flow due to bends, elbows, sudden expansion or contractién,
etc. Sudden expénsion in & pipeline to a reservoir causes a

pressure drop equal to,:Figure C.4

2

Ap, A\ - X 2,2 .
N R 1 045 (4VFan/1dD) ol (C-15)
29 29

'

That is, the coTplete kinetic energy in the flow is converted in-
to thermal energy, in which vl is the air velocity at entrance,
Py is the air denﬁity at tBII temperature. We shall assume that
the pressure drop due to the flow changing direction frqm‘one

Ll

pass to another to be equivalent to a flow through two standard

elbows.

1o

s APy e e (C-16) ‘

e
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Figure C.4. Pressure Drop in.Two-Pass Exchanger
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AP 4 4K . (C=17)

where, K is standard elbow head loss coefficient. It is aésumed
equal to 0.9, in accordance with experiment results of Gibson
"Reference fiﬁlﬁ, page 306 . Vi and v, are the air velocities

leaving pass II and entering pass I. The head loss at the ent-

ranceto a.pipeline from a reservoir 1is usually taken as (21 ,

v

- 2
Pe = Ve 6 . 0.5
2g . (C-18)
where, the opening is assumed to be sguare-edged. vé is.the air
velocity in the pipe. .Both ‘P, and JiP_ pressure losses, due to

2 5
the air flowing through the tube bundles normal to their axis

for pass II and 1 respectively, can be evaluated using Appindix -

D. Section 6, -

-

The hot gas with pressure drops as it flows through

"
ghe recuperator tubes to the stack are determined as follows.

-

Abrupt contraction and expansion pressure-losses, P, and

7 “Pyoo
are explained in detail at Appendix D, Section 7. The drop in.
pressure through the recuperator tuhes due to friction can be

determined as follows

: 2
AP = L v
8 o}
- 2 "9 (C=19)
di 2gc ‘ |
P f V2
ol =
O 9 t II 100 .
10 C-20)
a. 29, 1 ‘
. h
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where, ft is the tube friction factor. It is given in Appendix

.

D Section 4, and p are the hot gases densities at dif-
L3 .

®9 10
ferent mean temperatures for-passes I and II.
Having determined the total pressure drop across

the recuperator and knowing the rate of flow, it is easy to

determine the power required to maintain the flow of the gases

R

E d

through the apparatus.

1
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- APPENDIX D

SOME PHYSICAL PROPERTIES //>

- (

This appendix contains reference gases and materials

thermodynamic properties.

e

D.1 Viscosity of a Multicomponent Gas Mixtures as a Function

of Temperatures:

The semiempirical formula of Wilke, (1%, page 24),

is 'quite adequate to evaluate the viscosity of a mixture of

gases,

mix’ S follgws:
mix = Y i Ud (D.1)
=1 % age..
j=1 ] 1]
. in which > ‘
-y 5 K
oy = L (L+ SARD +(“i ) (fi) (D.2)
\ pe . \’8 Mj "y M,
\

©

Here n is the number of chemical species in the mixture; «y
and ay are the mole fractions of species i and j; Ky and .
are the viscositiecs of species i1 and j at the system temp-

erature and pressure; and Mi and Mj are the corresponding

1

molecular weights, The viscosity coefficient of gases as N

s n makeah e s

A

| OON R i S o Sl
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a function of temperaturec is determined by Sutherland's
/

formula, ([18], page 349}, as follows

g \

W= 559.(kg) 1+ (c/273) [T/273j”x10"8 Ib _/ft.sec
1 +{(C/T)
(D.3)
in which

9.0
t is the gas average temperature O

The values of "9 and C are given in Table D-1 for the gases
of interest. In engineering calculations, the deperdence of

gas viscosity on pressure up to 10 atmo;bheric may he neglect-

ed.

D.2 Specific Heat as.a Function of Temperature

To accurately evaluate the amourt of heat carried by
the gases under varying temperatures, the specific heats ?f
t

these gases, which vary with temperature, must be known. For
tgé particular case at hand, we are interested in knowing the
specific heat for the products of combustion of Blast Furnace
(BFG) and Coke Oven Gas (COG), and also for air. They are all
mixtures of simple gases, for which the behaviour of their
specific heats is well known (. 22, page 638 ).

’ ~The specific heats far the constituents in BTU/ImeF

are: -

(
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’ N lls ' —1.5 -2
Cp = (8.9465 + .0048044a - 42.67% +56.615a Y/32.¢C
o
2 ‘ T ' (D-5)
~1.5 -2 -3
Cp = (9.3355 - 122,56a +256.38a "-196.08a 7)/28.016
N .
: | (D-6)
Cp = (-0.8929+ 7.2967&'5—0.9807a + 0~005783502)/ 44.014
“*Co C
: \ (D=7)
‘Cp . = (34.19 - 43.868a" 2>+ l9.778u'5-0.88407a)/18.016
- YH,0 '
2 (D-8) ‘
in which
a = (temperature in degrees Rankine)/180

Knowing the average volumetric proportion of the constituents

N
for (BFG), and (COG) and air, and alsc the combustion cguat~

lons for both (BFG) and (COG), the specific heat values of
them can be deterﬁined as foilows:
The Combustion equaéion for BFG at 15% excess air
ig;. 24l
0.2542 CO + 0.6346 N2+ 0.,1872 C02+ 1.148 N2+ 0,.1661 O2
0.4417 C021 0.0346 22

The combustion equation for COG at- 15% excess air is:

+ 0.02166 O, (9-9}

&~

O+ 1,148 N,

0.0626 CO +0.569 1, + 0.2622 CH, + 0.0198 C,ll, + 0.0055 C,f,

+ 0.019 CO, +,4.0306 N, + 1.0567 O,

2

+ 0.3944 CO, + 1.1495 “20 + 0.1378 02-+ 4.0306 N, (D-19)

st elbmun e ORI G A 38

4 G PR A T v
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— 1

Using equations D-5, D-6, D-7; D-8, D-9 and D-10, the specific
heats for BFG, CQG product of combustion, (PC), and air are CJ

as follows: \\

c

p = [0.621021(18.016) C + 0.268354(44.014)C

- P b
BFG,PC H20 CQz

* \
+0.1316(32) C + 0.697465(28.016)C_ ] /32.15
o Py

2, 2
(D-11)
C = [0.20123(18.016)C ¥ 0.06905(44.014>cp
Pcoa|pc Py_o co,
4 0.02412(32) C_ + 0.7056(28.016)C_ 1/27.196
* po ' p"l
2 i)
(D-12)
C = 0.21(32) C + N0,79(28.016)C 1/28.17
p Po Py
air . p. 2

(D~13)

D.3 Prandtl Number

Tabulated data for the values of Prandtl number
at different temperatures,|18) , feor both dry aiy and
flue gases (13% COZ’ 119 HEO and 76% Nz) ﬁt atmospheric
pressure, were fitted into a fifth order linear polynomial
Qithia maximum residual of (0.001) from the experimental

tahulated values.’ @

Mo [Adrd = 0.707-0.212x10738 4 .2957x107642 +

r
r - -15 5
0 124,00, 34825107155

(b-14)

-Q
0.4353x10 °3°-0.853x10
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s

Mg [Hot Gases] = 0.72-0.3495x10 >8+0.5604x10 %382
X.
i i
- - a4
~0.5645x10 8> + 0.2487x10 12@'—0.3524
x10—1685 . " (D-15)
in which
s =) - 492.0) 5./9

The above two equations are\valiQ}for the range [32—23000FJ.
3

D.4_Friction Factor

An empirical transition function for commercial pipes
for the region between smooth pipes and the complete turbulence
zone has been developed by Colebrook [Reference ( 21] , page,

" 283 ), which is the basis for the Moody diagram in Figure D.1l.

v 1
1 _ e/4, 2.51 )
\[‘Tf_—- = 0.86 1n i+ (D.16)
} 3.7 NRQ,E
in which . , @
£ = friction factor

3 = rougﬁness height, ft
d, = pipe inner diameter ft

N = Reynolds number

A fixed point iteration technique,[ 12 ], could be used to
evaluate the value of £, using equation (D-16) to obtain a
* given s}ecisiqn. However, a starting value for f is essential

« e _ s
to guarantee convergen An ixjical explicit form,
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TABEL D.1., CONSTANTS C AND FOR USE IN
EQUATION (D-) FOR VISCOSITY

Zrz¥r:mSeczsEzSoozSsSsesraSSSSssrsnozsc
CAS [ %
1. AIR 122 1.7955
2. NITROGEN 10?7 1.708
3. OXYGFH ' 138 1.962
4. CAHRBON DIOXIDE | 230 1.402
5. VATER VAPOUR 673 0.&? .
===:======.—.‘====-_~:.===:.=======-.-:—.:: -----

TABEL D.2. FIRECLAY BRICK TIEERMAL CONDUCTIVITY,

(28y, ¢t

TEMPERATURE OF) 302 1112 1832 2552

THERMAL CONDUCTIVITY  0.53 ©.85 0,95 1.0%
( BEU- £t hrOr)

140
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TABEL D.3. COC AND BFG COMPOSITION ALID THEIN PRODUCTS OF COMBUSTION

.
-

. ¥

(COC) PRODUCTS BLAST FURNACE

(BFG) PRODUGTS

TYPICAL COMPOSITION OF COMBUSTION A3 (BFG) OF €oMBUSTION_ °-
COVS= VOLU-  C€ON= VOLU- CON  VOLU=  CON- VOLU- CON-  VOLU~
STIT= METRIC  STIT— METRIC  STIT- METRIC STIT> METRIC  STI'T- METRIC
VENT 5 UENT “ YENT P UENT % UENT %
5 55 2. 5,42 .
L, 56.90 CZHG i 0.55 0, a1 co 23 02 1.316
Qs A0 N D¢ .4
cy, 26.22 co, 1.9 n,0 20.12 m, 3.46 rfzo ) 2.102
co * 6.2 0, 0.45 cOo, 6.01 o, 18.75 . co, 26.831
CoH, 1.98 Ny 5.74 Ny 70.3% iy 52.87 l,  69.751
> ¢
-2 - - AV a2 AN i i--N N R-F R4 AR ARl AE R R RS RS S ERLSEE T
MOLUCER WEIGHT 10.393 27.2 30,1 82.15
- [ IbsNole] P .
¢ ~. -
DENISTY ° 0.02%74 0.0719 0.0338 0.0847
[Ib ft3 at 60°F1 . .
CALCRIFIC VALUE 500. — 3. —
[BIUsgef)

)

A
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J . . A
developed by Wood {25 7, can be used. .

. Lo 0.13-
) 0.225 ‘ 0.44 -[1.62(v4,)
£ = 0.094(¢/d.) + 0.53(r/d.) + 88.(¢/d.) N +
it ) o i R,
, (D-17)
< ~

. Equations D-16 and D-17 are valid only for Reynolds number

greater than 10°. However, Blasius formula ( {21}, page 295)

can be used for a Reynolds numher upto 105.
0.25 .
f = 0.316/N ‘ . (D~18)
o R
N . .

D.5 ,Semi-Silicon Carbide Thermal Conductivity

i No experimental data was available for semi-silicon

carbide thermal conductivity. Therefore, the available Fire-

.

clay brick (Missouri) thermal conductivity values, Table D.2,

were used as an equivalent‘substitute. A third order poly-
' R

nomial is used for fitting.

s

. Ll 2 B
K = 0.4132+0.48120 ~0.09654 BTU/hr ft °F (D-19)

~

in which o« = /1000, whexe.t is in degrees Farhcnheit.

D.¢ Sﬁaggered Tube Banks, Drag Coefficient:

The pressure loss, \ p, for afluidflowing through a
tube bupdle normal to its axis, is gonventionally expressed

by

Tz : (D-20)



where N = number of tube rows in flow direction

it

density of fluid

A

8] = average velocity through area between tubes

f = drag coefficient, or friction factor

.+ depends on the geometric arrangement

of the tubes. Experimental results are mainly available for

The friction factor, £

two arrangements, i.e, tubes either aligned or staggered in
the flow direction, ' However, we are intergsted only here, in

a symmetrical staggered arrangement. The friction factor,fg,

Ll

was plotted by Zhukauskas ( [26), page 411 versus Reynolds

nunber, NR for different tube spacing ratios, A, as shown in
N )

Figure D.2. Four nonlinear eguations were fitted for four
- different values of, A, as a function of the flow Reynold

number, NR . Nonlinear curve fitting is discussed in Appendix
N

E in detail.

T 2 e 2.763 :
£, (A=1.25) =[Ixp 8:380-2.827 +0.3497 X'~0.0275 3 (D-21)
£, (A=1.5) =[Ixp 6.868—2.501,\+0.316'2A2~O.02289)\2'80‘4](0—22)
2u
£, (a=2.0) =[Exp 5.123-2.030A+0.27812%-0,0263)° 722 7(D-23)
x .2 2.837.
£, (A=2.5) =[Exp 6.434~2.6651+0.352917-0.02379) 7 (D-24)

where x. = In(N_ )
- RN .
A linear interpolqtion or extrapolation can be used for dif-

ferent values of A,

144
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D.7 Abrupt Contraction and Expansion Pressure-Loss Coefficients

!

Heat exchanger usually involves a flow contraction

, at 1its core entrance and a flow expansion at its core exit,

This problem has been discussed by Kays (23 ..

. .The entrance pressure drop is made up of two‘parts.
The first is the pressure drop which would occur due to flow-
aréa,cﬁange alone, without frictiop. The second is the pre-
ssure ioss dué to the irreversible free expansion that always

follows an abrupt contraction. The entrance pressure drop,

&p_ ., can then be expressed as

en ,
. 2 ' 2. ‘
BPan = ¥ (142 ) 4+ g BV (D-25)
e c 2
2
>

whexre, V is the velocity in the tubes inside the heat exchang-

er core, -and SR is the core free-flow by frontal area ratio.
‘ \

The irreversible component of the pressure drop is contained
in the abrupt qpntraction coefficlent, Koo The exit pressure

rise, Ap__, is similarly broken into two parts and can be

ex

)

expressed as follows

. 2
ooy, = 2V - e -k pY (D-26)
2 2 ‘

abYupt expansion coefficient.

where Ke is the

Ke are functions of the Reynolds number in

tre tubes apd of the contraction and expansion geometry, as

-
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presented in Figure D-3. They are  expressed in a linear

147

form as a function of ¢ for different values of Reynold's

number with turbulent flow as follows

N

2

3

K_(Np = 3000) = 1,0-2,058¢ + 0.84440° 40.09230 (D=27)
N
K.(N_ = 3000) = 0.52-0.38¢ (D-28)
crg
K_(N, = 5000) = 1.0-2.115¢ + 1.059 6%=0.0521q° (D-29)
N :
Ko (N = 5000) = 0.51-0.390 (D-30)
RN N . -t
Ke(NRb= 10,000) = 1.0-2,091c + 1,0296%-0.035460° (D-31)
Y|
K_(N. = 10,000} = 0.5  0.40 (D-32)
cMr i ‘
K (N = = = 1.0-1.94lc + 0.880702+0.063670>  (D-33)
&\1 .
= o = - ~33
KC(NR7 0.4 o (D~-31)
N .
Linear interpolation could be applied for the values of 3
: N

in between.

-

e

D.3 Combustion of Blast Furnace Gas and Coke Oven

P2

. . #
Volumetric analyses of typical samples of Blast Furnace

Gas (BFG) and Coke Oven Gas (CCG) were assumed to have the

typical volumetric composition shown in Table D.3, Combust-

ion equations for both (BFG) and (COG) at 15% excess air .

will have the following forms:

For (BFG), 0.2542 CO +-0.0346 H2 + 0.1875 C02+ 1,148 ¥,

e

L4

+ 0.1661 0-—0.4417 CO, + 0.0346 ”2) + 1.148N, + 0.0216602
L & . < )

For (CGCQG) ’

/}

0.0626 CO + 0.569 H
3

4

+ o.zszz;cu4

(D.35)

+ 0.0198 C,H,
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+ 6.0055 C2H6 + 0.019 CO2 + 4,C306 N2 + 1.0567 O2 >

7.3944 CO, + 1.1495 1,0 + 0.1378 0, + 4.0306 N, (D.36)
Therefore, one mole of (BFG) uses 0,791 moleg of air to
produce 1.646 moles of products of combustion; and one mole

of (COG) uses 5.02 moles air to produce §.i12 moles of

products of combustion.

D.9 Cerami¢ Recuperator Air and 'Hot Gases Volume Flow Rates

Leakage occcurs evenly throughout the ceramic recuon-
erators because of the porous walls and weak joints of the
tubes. For a two—passuovera;l counterflow recuperator, for
example, the leakage dystem can e simplified and consilder-
ed as a constant mean perCentage of(the higher pressore gas
leaks to the lower pressure side. The preheated air

volume flow rate,~ air’ and the percentage volumetric gases

leakage, 1% are assumed to be known or specified. The hot

gasSes will be treated as a mixture’ of blast furnace dgas,

-
.

(BFG) and coke oven gas, (COG)POC' products of combustion

poc’

“ >
at 15% excess alr. We assume that the volumetric coke oven

<

gas ratio to the total -fuel gas mixture,

X is known.
fuel’ ‘S oW

.Therefore, using COG and RFG combustion equations (D.jﬁ and

D.35), the hot gases (products of combustion) volume flow

rate, Vpo.; can be evaluated as follows

~



|
Vooe = Vaip[5-712x + 1.646(1- x)] / . i
[5.02x + 0.791(1-x)]

= v_, ' (4.066x + 1.646)/(4.41x + 0.791) (D-38)

e

Referring to Figures.D-4 and D-5, the leaking air volume flow

rates (yl, Yor Yaqu and y4), could be‘QValuated as following

/

Yy = 1V, /(171 (D-39) .
Y, = 1.V, /(-1 ) = y,/(1-18) . (D-40)

Yy = 1.V, /(11 ) = v,/ (1-1,) (D-41)

Yg = 14V i/ (1-1, ) = ¥4/ (1-14) (D-42)

Therefor.e, the average pass (I) air volume rate, VO, is
‘I .

v .
= N y 2 -
04 Voie ¥ ¥ ¥ )2/_ (D=-43)

The average pass (I) hot gases volume flow rate, Vi : 1is )

I !
ViI = Vpoc * y2/2 . (D—4§)
| : » .
The average pass (II) air volume flow rate, V_' , is , !
II .0
VOII = VoI+‘y2/2 + y3/2 | . (D-45) ‘

The average pass (II) hot gases volume flow rate, Vi ris

_ I
\' = V, + y,/2 + v./2 (D~46) :
lry i 2 3T . :
The axial flow fan air volume flow rate, VFan’ is '
14 = = ’ 2 l -
\Fan Q Vg * YB/ + Yy (D-46)

II
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and, the stack hot gases volume flow rate, V

A is
stack’

. Vo, =V, +y./2 , (N-48)
staL} irg 3

Finally, it is worthwhile here to mention that the coke oven

gas volume flow rate, VCOC' equals
= Q -49Q
VCOG X vair/(4.4lx + 0.7¢91) (D-49)
while the blast furnace gas volume flow rate, VBFG' equals,
VBFG = {(l-x) vair/(4.4lx + 0.791) {D-50)

D.10 &tack Draft and Pressure [LossS

Due¢ to the temperature difference between the hot
gases travelling through the stack and the ambient temperature,
a draft will be created, -vhich can be calculated from‘the
following formula, £ a2

. i = 2 24
stack draft . k.71~} Hoo P amb{ —— R

where,
. 1 = stack height, ft
st
P = ambient pressura 51
amb am 2 + B
: . 0
T = ambient temperature, R
amb
‘ 0
' th = average stach temparature, R

To ohtain the actual draft for a stack, however, the losses

thatoccur with flow must ke deducted from the theoretical

draft, equation (D-51). These losses are both frictioril
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type and exit velocity 5é§naZ§Fe. They may be\ evaluated bv

the following equation t%Z?. i
R

£

- Stack flow loss = 0.4902 :St ?0?23;][1 * £§Eg§£{] PSI (D-52)
st st
wher.e ' ’ , ‘ _ ' ’
dst =. sta?k diameter, ft'
vst = hot gases volume flow rate, c¢fn
o = hot gases den;ity, Ib/ftf3
fst = friction factor, see Figure ﬁjs

TOo apply Figure D-6, the Reynolds numrbher can be calculated

by the equation

>
1,656,000%p V
g F st (D-53 )
c . T d
st st

The overall draft can be obtained by subtracting
the fraiction losses, eguation D-52, from the theoretical

draft, equation (D~51). This quantity is known as the natural

*
draft orf the stack since it is produced without meghanical

means.,

LSRN T Dk
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APPENDIX E

NONLINEAR CURVE FITTING

E.1 General

The best way to summarize a mass of multifactor
data is by a simple equation instead of doing in%erpolation
or extrapolation between the available mass of data. This.
Appendix is a sumﬁary, mainly by examples, of our efforts to
fit a set of optimization function values, U(§), witﬂ one,
two, or more independent variables, §, to a non-linear cquation,
As the number of variables increases, the problems become more
complex. The curve, surface or hypersurface which needs to be
fitted 1s a trade-off cu;ve.Txpe B defined and described in
Chapter 2 in this piecce of work., The trade;off curve independent
variable, ¥, is the relaxed hard specification which affected
the desigr and was considered to be a junction between the m;;Lr
sub-system under analysis and the master sub-Fystom, as explain- .
ed EEUChapter 3.
¥ A single equation 1s required to relate the optimi-

zation function values, uj, to the relaxed junction specific-

ations, yji' The subscript ;\§esignates the independent vari-
able or specification , while subscript j defipes the optimum
' th \

specification. If the number of
:ﬁ-x‘ h
data points _exceeds the numbir of the fitted equation constraints

point corresponding to i



A

which have to be estimated, the least-~squares method can be
used to minimize the sum of the squared deviations of the data

. $ . - . ‘
values, uj, from those predicted by the eguation, U{(y). How-

ever, some assumptions or requirements have to be stated first,

3

] s
L5 3. 2 AN, }

. - -~

E.2 Assumptions— .

(a) The data is typical. That is to say, it is a
representative sample from.the whole feasible range of situat-
ions about which we are intereste&. For one‘independent vari-

dable!'yl, a Véctpr'of degendent variables, U(yl), has to be
available for the entire feasible, practical range‘of Yye
while for two independent yariables, Yy and y2,‘a matrix of
dependqu variables, U(yl, &2), not necesséry squgfe, has to
be accessible. 1In the limit, for (I) independent variables,
(yl, y2,...yI) a éenégr of order {Lof the’dependent variable?,
U(yl, yé....yI) has to exist,. . S | '

(b} The correct form of the fitted equation is as-

2

sumed to be chosen, otherwise convergence of residuals will

not.be achieved. Therefore, mofe than one’ fitting model should’

-

'be tested and identified. .
< (¢} ‘'Preliminary estimates cf all tbe nonlinear fit-
tfng model parameters, { , must be ayéilagle.

A .
The term nonlinear, as applied to models in this

part of the thesjs is nonlinear in the parameters (coefficients)

]
- : -
-
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to be restimated (and more than likely is also nonlinear ‘in

the' independent variables, y). For example, -

-~ ¥ 82 63 * ’ "
= 9 ,
U(ylr Yz) 1 yl yZ (E.1)

‘
'

is a nonlinear fitting model. If the estimates of, &, are not
. A
close "enough", the computed-éstimates'will not converge on

-~

the best values.

E.3 Models,. ~ LT o :
In general, mére than one%fittingﬁgodel is possible.
':or proposed, It is preferable to ée}ect the "best" -model, basag
ﬂnon‘one or a combinatiop of the following cr;teria. |
' 1. It is*desirabie 0 have a mi;imum number of ’ '

coefficients consistent with reawonable error,

¢

2. The simplest possible form is desirable consistent

with reasonable error.
3. The model should be rational, based on physical

A\ : _ f

grounds,
4. The variance, Sz§, shguld be ‘a minimum,
For ;llustration,.pnly two independent variables,
(yl, yéo, afe used. The following polynomial type model is one
of the. easiest empirical equations to fit. Two models will be
demonstrated here in a pblynomigl form; the firé% being linear

while the second is nhonlinear; both are developed by the author.

“
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Model 1
U* ; 86, + 6 -4 6. y2 + + 0 1 E-2
1 - Yo 11 T Ta¥y T P ¥y _ » (E-2)
where 6., = B, 8. 6. .y2 B ny
v Yy i0 "i1¥2 o+ Fia¥o 4, 4Py
1n2 2
- , i=0,n; ‘E-3)
Model II . 1 o
« nl—l nl+l
Ups = % * 83¥y F ""+9nl-1 Yoot enlyl © (E-4)
en2-l 8n2+l
where, ei = Bio + Bily2+....+8n2_l Yo + 8n2¥2
] - , 1 = O,nl (E-5)

At this stage, nl and né are assumed to bé predetermined
integer powers of Y, and Yoo Model I is a simple linearizat-
ion of an ny degree polynomial as a function of the. first
independent variable, Yqi mul‘tiplied by a second n, ‘d%grce
polynomial which. is fu&ction of the second independent vari-
ahle, yz. Oon the cher hand, Model II is the same as Modél I
except for the last nonlinear term. The number of the linear
iodel I ﬁarameters, Sij' quals [(nl+l)(n2+l)] ; while the

number of the nonlincar Model II'parametegﬁ, including the

2. , als [ | 1.
ij's and 6"1“ equals L(ny+1) (ny+2) + 1



E.4 Method
A well established linear least-squares technique
was used to determine the linear model parameters, B 's, The

same technigque was used to determine the preliminary estimates

nl+l

a nonlinear least-squares technique was used to determine the

of the nonlinear model. parameters, Bij and 6 However,

opgimum parameters values in the Model II. An iterativg tech-
nique can be used; where the estimates at each iteration are
obtaihed by a method due to Marquardt (l963),[5fwhich combines
the Gauss (Taylor series) method and the method of steepest
descent, Gradient nonlinear search mefhods, however, can

be implemented to refihe final parameters values, @ith mini-~

mum sguare residuals as an objective. Final function values

using the predicted models; regiduals and its sum, approximate

-
confidence limits for each "function values, and individual

confidence limitg for each parameter based on linear hypothesis

and 95 per cent confidence limits wereicalculated.

Es5 Choice of Model

We now turn to methods of discrimination among models
that apply equally well t3 linear or nonlinear models. - Many
different comparison tests can be executed depending upon the

specific hypothesis selected. To select among two estimated

*

) *
regression equations, U, and UII' one can use the symmetric

I

.
B
/ 4
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test of Williams and Kloot, ( page 216,[ 302) ., The null
hypothesis is that the to _ regression equations are of equal
ability in predicting the values of U. The test carried out to

find the slope A of the equation which passes through the origin:

- - * * * * (EG- *
z 20 - 0.5(U; +U;q) = X(QI - Upg) -6)

T .

where U represents the empirical data, Ui,'and Z is the test

: * *
dependent variable, A plot of [U - %(UI + UII)] versus

*

*
(UI ~ UII) should have a slope of approximately (-%) if the

hypothesis about Model II being correct is true. We can infer

’ . *
that a significant negative indicates that UII is a better

*
. I )
than Model I. A similar analysis with thé supposition that

estimated regression equation that U hehce Model II is better

* : -
UI is the correct equation leads to the conclusion that,

( »= %). That is to say, a significant positive slope should’
he fcund. If ? is not significantly different from zero, no-

. . * * . .
choice can be made between UI and UII' Another test parameter

has to'be defined; which gives a measure of the deviation

4

about the regression line. The residual root mean sauarc RRMS,

*
wvhere, o, = UI - U

-
i

1 - ' L—FA
N -OﬂS(UI + UIIi), . ‘ (E-£C)

3
L}

total number of data points

4 . . g T AEAAER o & AMGAAS T
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can be stated as follows

s

RRMS =‘[Residual sum of squares/degrees of freedom
/3 ‘)2
NLZ, (U -u)e (E~7)
i=1
where; d £ = number of data polnts {n) - nunber of para-

meters

E.6 Example

Consider the set of optimum data points, shown in

Table E-1 generated by optimizing a ducted axial flow fan for
diﬁferent operating conditions of head loss, H(in.water), and,
air volume flow rate,  (cfs), where the dependent variable,

P.V.A.C., will be the unit present value average cost as

described in Chapter 2.

It is advisable to normalize the input data sets,
to avaid the problem of computer over flow and/or loss of

accuracy due to trencation and rounding off errors. There-

fore, H,Q and (P.V.A.C.) values,’which are used to generate
the trade~off surface as shown in figure 2,20, will be
considered .as input data for creating a trade-off surface,
and will be divided by 5., 50,000, and 2000, respectiQély,

The resulting semi-normalized values are shown in Table E-1,

H, Q, and (P.V.A.C) where it is simple to refer back to the

origina¥ values. The total number of data poihts available

- ambenx

T e e

TSNS S PRIV - St
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Table E.1 Input Data L{sed in Linear and Nonlinear

Regression Example

N ) : .
P.V.A.C. [Present Value Average Cost (2,000.dollars)]

\\H‘

"\ 0.4 1.0 1.6 2.2

0.1 f 0.04036 0,08865 0.13361 0.179825
0.2 § 0.09710 0.183145 0.27528 0.361410
0.5 ? 0.23704 0.48987 0.752875 1,027895
10 0.525945 0.989755 2.166525 3.021475
1.5 , 0.867405 2.182775 6.508995 11.25693
2.0 L 1.30768 3.291650 11,396070 36.48236
2.5 ; 1,88377 7.59322 21.35380 106.4097

vy

Vi

16l
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is 28, however{ cubic spline interpolation can be used to
increase the number of data pbints, An interpolated set of
(7Q) points, which is shown in Table E-2, is also used in
the following analisisland discussion,

¢ Consider now thekfollowing three linear models:

Model 1

* = P I _ ~ N AR ~_
UI ln [(P.\{.A.C.)_‘ = BO + BlQ + 8211 + 8311 Q (E~8) c
Model 2
Ul = 1n C(p.v A cC.)l=8_+8 o+ 8. ¢ 2+’€”mj + 8 ﬁd\z
2 TR o 1 2 4 57
) o 2 3o 24 20
A + 06}1 S+ o7H o + .38;{ Q (E-9)
Model 3
U* = 1In{ (P .V.A.C ?‘ = o 4+o, 0 + f Q‘2+5 63+” H+ 8 _HO
3 L el 0 1~ 2 39 77407
. N \ 2 a sy 3 n v 2 = .2~ 2 N
v boonat g b It “ M 2
. C.lO + 7HQ + 8” + 911 Q.+ lOH Q
B n2.83 8 v3.8 A3..,8 ~3.72
ll[' Q k 121! + 13H Q + 141{ Q
2 3.3
o 2 Y N -
+ M0 (E-10)

> <

Before going any further, let us examine the effect
of increasing the number of data points, Tables FE-1.and F-Z,
on the modél root residual mean square, RRMS, equation (5—7)
as a measure.of deviation of the assumed models from the in-
put £itted data. Since, the input trade-off surface has a
smooth trend,:-the spline method.is a good way of interpolatiﬁg.
Also, the percentage diffgrence in RéMS*fo: different linear

4
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mpdels, due to t&e use of GOEHEorc data points in about 4%
which can ke neglected,. Thérefore, an iﬁterpolated data
points set can be used without sacrificing accuracy ma‘inag it
possible to. try using higher order polynomials with more para-
meters in order to achieve the best fitting model,

One nonlinear -model only will be considered here;
which has the shape of (Model II) described by equétion (E-4)
and (E-5). '

Model 4

- 8 3 8 87
Uz = 1ln C(P.V.A.C? o= B+ SlQ‘4+ 82H‘5+ 83H‘6 E?

(F-11)

E.7 Results
The preceding fcur models parameters, :¢'s, are

listed here wvith their 95% confidence intervals, The resi-

dual root mean square, RRMS is also computed for each model

as a primary criterion for sclection.

Confidence Intervals on the “"Model 1" /'s,
P = —2.669 +/- 0.3550
1 = 1.132 +/- 0,2540
. E, = 0.5854 +/-0,2502
%, = 0.6092 +/- 0,1782 .

Cegree of Freedom (£) = 66 : N

L}
L. S )



Sum of Residuals ‘Squares (SRS) = 8.8307

Residual Root Mean Square (RRMS) = 0.3658

'

Confidence Intervals on the "Model 2" B's

-3.449+/-0.651

G.
1

0

8, = 2.145 +/-1.38
By, = -0.2472+/-0.5353
S4 0 = 1.193 +/-2.377

g .

5 = -0.5359+/-0.022
%6 = -0.2411+/-0.4231
"7 = =0.2790+/-0.897
&

8 = 0.228 +/— 0,348
Degrees, of Freedom (f) = 61

Sum of Residuals Squpares (SRS) = 33,3181

Residual Root Mean Sduayc (RRMS) = 0.2332

-

Confidence Intervals on the "Model 3" &'s.

g = —-4,2672+4/-1.354

0

31 = 5.2190 +/-5.701.

5 = ~1.967+/-5.3609

;3 = 0.1989 +/—l-457

S, L 2.3097 +/73:ges . L.

165

YW T e RN T D

P D T DA . R



0.2923 +/-16.458

ft

g
8¢ = =3.8652+/-15.465

57 o= '1.6088 +/-3.916

8 . ~0.9695 +/-3.292

‘9 = =0.5704 +/-13.,870

510 = 4-1977 +/-13.032

€19 = -1.6745 +/-3.30I

8y, = 0.1806 +/-0.8374

813 = 0.1102 +/-3.529

51, = -1.0534 +/=3.316

515 = 0.4385+/~ 0.84d0

Degrees of Freedom (f) = 54

Sum of Residuals Squareg [BRE) = 1.45
Residual Root Mean Square (RRMS) 0,1643
Confidence Intervals on the "Model 4" uv's:

£q = -13.6784+/-31.99

zy = 7.0880 +/- 2.922 '
8, = 6.5962 +/-20.274

8y = 0.1442 +/- 0.088

e, = 0.1790 +/-0.088

o5 = 0.1221 +/-0.378 °
bg = L1.9750 +/- 0.477

s7 = 1.5468 +/- 0.310
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’ ' . \
Degrees of Freedom (f) = 62 N
Sum pf‘Residuéls Squares (SRS) = 1.2496
Residual Root’Mean Sgquare* (RRMS) = 0.142

.-
Table E~4 lists the sum of the squares of the
residuals fo; each model and the respective root mean sgquares.
There appears tdlbe no significant differences in the fits of
the models. By arbitrarily éifminating'the first linear ﬁodel
with the largest variance, the choice of models is reduced to
a choice between Modgl 2 and Model 4 and between Model 3 and
Model 4, We shall use the test of Williams and Kloot to
ascertéin which of the three models is the best.
Table E-5 lists thé data and calculations needed
for -Equation E-6. The Slopes @f the best fitting lines

through the original, computed from equatidns (E-6a, E-G6b and
B o ?

E-6c)/ are -0.5383 and ~0.2394 for Models 2-4 and Models 3-4,

resp étiqely. Therefore, we might conclude that Model 4 re-

pr¢sents -the data best. However,‘a non-linear model with

0.

her order will lead to a better regression with a less

*

variande.

Table Er6:lists the input data points, the estimated

points using Model 4 equaﬁion, and their deviation from the
. . -t )

ingpt points. 3On the other hand, Tab&@,E—G also shows the

original data before taking the. natural logarithm of the

P.V.A.C. values, compared with those computed gyom Model 4,

¢

.
A



Effect of increasing the sample size on the deviation

) from linear regression.

Number of Data

Paints 20 72
Linear Model 1 2 3 1 2 3
Degree of freeg«

domV’*‘\\ 24 19 12 66 61 54
sum of Residual™

Squares {SRS) 3.4879 1.1152 0.4843 8.8307 3.3181 1.457
(RRMS) 0.3812"0.2423 0.2009 0.3658 0.2332 0.1643

Table E-4. Identification of the Best Model; Based on (RRMS)

Y

»

Model Degrees of Sum of Residuals Residual Root

" Freedcm Squares (SRS) Mean Squares
(£) (RRMS)
1 66 8.8307 0.3658
2 “ 61 3.3181 0.2332
, 3 54 . 1.457 0.1643
4 62 v 1+2496 0.1420




TALLE -5

CALCULATIONS FOR THZ WILLIAMNS AND

KLGOT TEST

i In(P,

i =0.210

2 -2,420

1< -0.010
15 0.7

16 1.106

I 0,781
°1‘) 1.07%

21 0.558

T2 L1010 1.450 ¢ -0, 106
U 2048080 UG 204 2,398 -9.934  0.024%  0.143 0,001
S4LLE0T 0 B.600 0 L.BuL 38.698 -D.036  0.025  0.00) —0.eTS
LY 06U 00D 0LLTO V66D DL D —oL1GY 0. 138 0.203
25 00T LLTEDG Loty LU EA 9,030 9,090 =0 11D 0,149
2 0.eHl 3030 Lol B9 =)0 0.0 -0 (05 0. 128
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L)L m0UUY S0 00T =000
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24 U <y
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84 e w w

0.
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692 -

Datl’

LOT3

097
T

<70

=2.9v0

~2.259

1.258

-0. 121

~1.989 -0.157 -0.087 0.255
~1.793 -9.110 -0.094 0.195
-2.485 0.143 0.17% -0.021
-1.737 ©.101 0.190 ~0.033
~1.849 0.087 " 0.106 -0.057
~1.043 0.093 0.081 -0.131
~1.511 ©0.217 0.072 -0.209
-0.772 0.193 0.049 -0.259
~0.807 0.125 - 0.05% -0.206
0.079 0.097 0.0:9 ~0n208
9.669 ©0.108 -0.088 -0.163
0.139 -0.049 -0.,180 -0,002
0.759 0.010 -D.07D 0.003

1,837 ~9.197 -D.199 -0.103
~0.113 =D.D2B -0.023  ©0.040
0.510 -0.578 0.020 0.098
1012 0174, 0,173 0. 171
‘0.818 -0.123 0.01t 0.157

1.364 -0.029 ~0).079 1.101

X L I T VA o '\t' )L
i i WA

0.099
0.117
0.12%
9.026
-0.034
-0.083
-0.09%
=-0.103
-0.002
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-0.2901
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3
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TABLE "E-~G

PERCENTAGE DEVIATION

—— e

(G;=-U, )} %2 DEV-~ (PVAD)

IATION (RNYACGy
om

(PYALY
Exp( U,)

Z%DEV—
lnylon‘

o - " = = = = A e = i it 4= e e e Tt B o= e T . = A A A . A ——— i - o —————

»
i ln?ﬁw % n, *
D

1 -38.210 -3.086 -0.124
2 -2.408 -2.383 -0.039
5 -2.013 —1.989 -0.02
4 -1.716 -1.703 -0.013
3 -2.032 -2.465 0.133
.6 -1.698 -1.737 0,059
7T -1.200 -1.349  0.059
8 -1.018 -1.045 0.028
~1.440 -1.511  ©.072
10 -0.714 =-0.772  0.038
11 -0.084 -0.207  0.02¢
12 ©0.0°8 o.é}q -0.032
15 -0.6<3 '—0.669  0.026
12 =0.010  0.158 -0.10*
15 0.7¢3  0.769  0.013
16 [.196  1.857 -0.231
1T -9.142 -0.114 -0.028
18 0.789 0,309 -0.029
19 1.672  1.612  0.261
20 2,421 2.487  -0.086
21 0.268  0.318 -9.043
1.864 -0.172

S22 1.101

HEH 3. “l':;:‘
pa 3.507
20 0,500
o nLony
ov S.Ht
20 uoOY

- —————— A am -

2,090
3,091

0.06459

0,056
~0.011
-D0.0473

0,163
-1

-0, 092

3.86  0.040
1.59  0.089
1.19  0.134
0.75 €.189
5.69 0.997
3.48 0.183
4.56  6.275
2.71  0.361
4.97  G.237
8.18  0.499
8.17  0.TU3
- - 1.627
4.05  0.526
‘= e= 0.990
1.68  2.167

16.73  1.008
14,43 © 3.202

1,47 J31.396

.97 106, ¥t

3,833
0.592
2,247
5.013
12,023
1.368
3.910
19,907
36,8009
1,052
Ry

28, 0T

[to.nha

0.060
0.618
0,399
0.407
O,.060
| U O
LY B
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where the actual percentage deviations are g%ven.

4 &

E-8 Conclusion .

.

The following sequencéfaf“procedures is suggested
/
by the autkor for successful execution of a multi-variable

nonlingar fitting with reasonable accuracy.

-

.1, Knowing in advance .the shape.of the input data

curve, surface of hypersurface, (depending upon the number

- ot I

of independent variables), a natural logarithm or exponential

’

. of the%dependent variable is likely to be successful.

2
-

2. For better computation accuracy, it is advisable

@ ‘

*o normalize both the dependent and independent variables.

3. Spline interpolation could be used to increase - : ]

the normalized input dga set. . . , -

. .. . y R . ;\
4. - A preliminary estimate of the nonlinear model - R

: I
parameters, B , are computed using an equivalent linear model,

-

Model I, by least square technigue. For example, the pre- L

™ liminary estimates of Model 4 parameters are (30 = -2.669, . %
_ gy = 1.132, B,= 0.5854, f, = 0.6092, and B,=e =R =.= 1.0}, :
which were obtained from Model 1. - J
N~ . 5. A noﬁlineag technique finhlly has to be applied

until a conversion is achieved to an optimum minimum square

residuals sum.

s

6. Statistical analysis of the model parameters

1

o

~

Y
)

and estimated function values have to be caxried out. If the %
g
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. o
suggestedvmodel varignce is more than a permissible limit !
a higher order nonlinpear modél might be tried.

Finally, wg can conclude that Model II is a good
multi-Qariable nonliniﬁf fittiﬁg equation fo;qz For-example,
for a case of three indebendent variables, yl; y2, an Y3
and for a first order mode;, (nl.= n, = n, = 1, Equations
5—4 and E-5}, Model II can be written aé follows:

* B: g .8 g Bq 81 812 ) 614 Bl.;;

‘ ~
Yy Y3 B, Yy V5

_ . } () 8
UII - Bo +8, Y; ¢ Ba Y, * Bs y; + 8, Y, Y, +B1o

B 817 818 619
e Y,y Y3
\}J\ (E_lZ)

An important aspect for further research in the
area of nenlinear curve fitting applied to Type B trade-of f
hypersurfaces is the establishment of the model order, in

improving the programing convergence, and in searching for

A

' a convenient feasible wéy 954?0591 discrimination.® Such

éharacteristics can only be studied through difficult and .

-

'tedidus statistical and optimization analysis. We have how-

ever, obtalned reasonable success in the present work, and

our suggested nonllnear model give qu1te reasonable dev1at10ns

-

from the original data set.

»

e etaam o=
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APPENDIX F

. USER'S MANUAL TO GENERATE AND
/ N

PLOT A TRADE-OFF SURFACL

™,

.

SUBROUTINE TRAD2 (N, RMAX, RMIN,XSTRT, NCONS,
NEQUS, IPRINI, IDATA, IGEN, NY1,
NY2, NSPl, NHYl, NHY2, NHU, SCALE,

_UT,. Y1, Y2, HYl, HY2, HU, UTP,.W)

Purpose ‘ =
To plot a trade-off surface U(yl, y2) versus two input
L 3 .
design specifications designated vy

and Yo The trade-off sur-

1
face, which can be deveioped explicitly or introduced by the
user, is a locus of all optimum design generated by

‘ U(xl, Xor veveey xn)-w+ Minimgm
subject to
Kopeooor X ) > 07 k=1,p
’k.(xl, Xproosss xn) =0 j=l,m
where, yl'and‘y2 occur in one or more of the constraint funct-
ions, and/or the optimization function. Cubic spline technique’
is used to interpolate between the gencrated optimum design

léoints. ’

~

«
T A, e, My Hort o
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Input Variables

¥Y1(I)

Y2 (1)

NY1 \

NY2

LT(I,J)

NSP1

NHY1
NHY2
NHU

SCALE

HYL(1)

HYZ{I)

array of.discrete values for first input specifications,
dimensioned with the value of NYl. The values must be

equally spaced in ascending order.

array of discrete values for second input specifications, .

dimensioned with the value of NY2. ' The values must be

-in ascending order.

number of first specification values.

number of second specification values.

Sptimum function values corresponding to Y1(I) and
Y2(J), dimensionéd with the wvalue of NY1l, NY2, It
is an input matrix for IGEN=0,‘and a working array
otherwise.

number of points used in smoothing each of the NY2

curves., A value betwéen (SO—iOO) is aflequate.

. .- ~
number of characters to be plotted Y1l label.
number of charactérs to be plotted Y2 label.
nuﬁber of characters to be plotted UT label.
\_____/

scale factor for plot size, (equals-one for 7 x 4

in. frame). -

' Hollerith Yl. label,.dimensioned with the value of

IFIX (1. + FLOND (NHY1)/10).

Hollerith Y2 label, dimensioned with the value of

<

IFIX (1. + FLOAT (NHY2)/10.).
%

-




HU (1) Hollerith UT label, dimensioned with the value of

IFIX (1. + FLOAT(NHU)/10.).

IGEN 0,

s 2,

The foregoing

optimum trade-off surface points are introduced
by the user.

SEEK]l optimization subroutine is used to generate

the trade-off surface.

SEEK3 optimization subroutine is used to generate

the trade-off surface.

ADRANS optimization subroutine is usgd‘to gehe-
rate the trade-off surface,

input variables must be specified in every case.

However, the following input variables need only to be speci-

r

-fied if IGEN is unegual to zero.

N number

of design or independent variables.

MCONS the number of inequality constraints.

NEQUS the number of equality constraints,

IPRINT prints

results every‘IPRINT minimizations, set=0 for

no intermediate output.

IDATA

1, all input data is printed out.

= 0, input data is not printed out.

RMAX (I} estimated upper bounds on X(I), dimensioned with

the Qalue of N. .

) RMI&(I) estimated lower bounds'on X(I), dimensioned with

the value of N,

’

XSTRT (I) starting value for X(I) used only with Y1(1l) and

¥Y2(l), dimensioned with the value of N.

13

NP IO SRRy ULl

R 7 2%

3 oo P
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Output Variable

uTP(I,J) interpolated UT values, dimensioned with the
values of (NSPl, NY2).

Working Array 4

w1y , dimﬁtfigneq.with K
| wherey K = N + NCOK\_IS + NEQUS + 2+NY2 + 6xNSPl +
MAX (3xNYL + 4xNY2)
for, IGEN = 0, the values of N, NCONS, and

NEQUS are also set at zero.

Programming Information

If IGEN is not zero, the fdllowing commoh statement

Y

must be attached to the UREAL, CONST, and EQUAL subroutines,
COMMON /3/ SY1, SY2 .

where, SY1l and SY2 are the two input design speciﬁications in

guestion, and may occur in any of the funcxions.
The output fully 1abellgd plot can pe obtained either
by the Benson-Lehner or Versatec using suitalfle control cards.
NY2 solid curves will be plotted for the feasible ¢
range of Yl, while an extrapolated dashed line will be plotted
for the infeasible regions:
UT(i,l) must be feasible,
Subroutines called are ﬁEERl, SELCK3, ADRANS,

ANSWER, UREAL, EQUAL, MAP2, T2, IBCIEU, PLOT, UNITTC , DDASHM,

7 4
PLTMPL : ' /
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C

(&)

PO

[

%Ul‘hOUTlNE 'I]L\-D (I RHAX, RIFTN, XSTTRT, N(.DNS Nl'QUb lllllNl.lDAlA I GEN
tNY1, i‘uYZ!.N“‘Pl Hiyt, NIIY:E.NHU.UF.YI.Y':...]lYl.:lY.—.llU uTep, W)

!)l’!‘ HETON TMAXC D), JUITHGD) , SSTHTO), ll’)"l( By, HY2(1), NYUC1), UT(NY

11,00, ULPCHSPL, 1), WO, YIC1Y, Y2 1)

1021

IF (H.EO.0) GO TO | .

1\=h+ 10

¢O 1o 2 .
CONTINUE

14 10+1

IF (BCONS.KQ.0) CO TO 8
1= 1A+ HHCORS

cO TO ¢

IB=14k1

IF (GiELUsS. FQ.0) GO TO 5
1C= 1B SQUS

¢CO 10 o

1CT 1G+1

11= IC+HESPL

DA

FER ESER BRI N

M ~~
N ML TAN L |

1= 10+115P1

15= F+ HSPY

162 13+HSPIH

l?" JO+HYR -

182 17+NHY2 '

HEN=RHOUOH3RNY L, 4xHY2)

1¢= J 8+ 10N ‘

CAML T2 CHOTUIAX, RN, XSTTRT, HCONS, NEQUS, IPRINT, IDATA, ICEN.NY1, 0Y2, N
PP RV L, HHY S HHUL O, Y, Y2 BY L Y2 MU, UTP L, WOL0) JWCTLD L WOIB) O WOIC) ,
SLET D VOI2)Y VEEB) WO B JWOIS) L HOTG) , WD) ,We 1))
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TRY
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SUBROUTINE T2 (N,RMAX,RMIN, XSTRT, HCONS, NEQUS, [PRINT, IDATA. IGEN,NY1 T

CONTINUi(

L)

mEESE=ZTsToSZgE=SzI=cnIaz ::::3:3::::::::::-.:'::::f:::::::’:,‘::::::=:==.‘.::
1 m'z.nev ,NHY1, NHYZ, NHU, UT, Y1, Y2, HY1,0Y2, IV, UTP, X, PHI.PS1, Wi, W2, W3 T2
W4, V5, «,m w6, Wi, \rn B bel¢
"DINENSION YEC(D), (1), MMAX(1), RMINCtY, XSTRT(1), X(1), PHIctl), T2
CIPSIC D, WiC1), w:z(n. W31, W), We(1), SP1(1), UT(HY1, 1 T2(
2), UTP(NSP1:1), W2C1), WD) » . 7
COMMON /A7 SY1,8Y2 TO
COMMON ~OPTI~ KO, NNDEX T2
1INz} T2
SCALE=1. . T
I¥ (I1CEN.FQ.0) GO TO 1 T
LF (NSP1.GT#N) CO TO | T
WRITE (6.20) T2
RETURN N T
CONT[NUE 20
DO 2 [=1.HY2 T
WH( 1) =FLOAT(NSP{) - T2¢
CONTINUE . T2
1F (ICEN,EQ.O) CO TO 13 . , TR(
Klz1.J3=1 T
CONTINUE TR
DO 13 J=IKJ,NY2 ~ T
DO 11 [=KI,NY1 T
SYt=YI(I) s T/
SY2=Y2(.J) T2¢
GO IO (4.5,6), IGEN g po
CALL. SEEK! (H,RMAX, RHIN.NCONS, NEQUS, .01, .0}, XNSTRT, 9, 100,300, IPRINT “153¢
1. IDATA K, U, PHELPST, WL, V2, W3, W4) T
CO TO 7 LT
CALL $EFK3 (N, RMAX, RMIN, NCONS, NEQUS, XSTRT,.01,.01,1.,.05,300,1, IPR T
LINT, IDATA, U, X, PHI,PST, NV, WL, 52, W3, Wd) ™
co TO 7 T
CALL. ADRANS (N, RIIAX, RMII, NCOHS, NEQUS, 100, ¥3, 50, XSTRT, IPRINT, IDATA, T2
LN, UL PHLL PSTL RV, WE, W20, W) T2 (
*1F CIPRINT.HNE.0) CALL ANSWER (U, X, mu PSI,H, NCONS, NEQUS) T
UT(t, D= o - T2 (
bo & I1t=t,N T
NSTRTCIA)» =X LD T
CONTIHYE ¢
1IF C(LeCT. 1) GO TO 1O To
no 11=1,N o
WSe1p =R T
CONTLNUE ‘ ¢
1F (KO.EQ.1) IEXIT= IEXIT+] . T
IF (1.FEQ.1.AND.J.EQ. 1) GO TO 14 T
IF (L.EQUHYD)Y €0 TO 21 L T(
IF CIEXIT.CGE.2Y CO TO 21 T
CONTINUK, T
PO 18 Il=1.H & T
KSTRECID) =W5C 1) ¢ T
CONTIUE T
CONTINUE . 1o
VRITE (6,831) .- 124
SP1ey=yecty > T2 (
DSPE=CYICNY D) =Y 1)) Z/FLOANT(HSPL=1) To¢
DO 16 =2, NSIF] . o6
SP1CDESP1CI= 1) +NSPY T
COUTIHUE oy
CALL IBRCIEU (UT,NYL, Y1, HYL, Y2, NYS, SPELNSPL, YO, NYZ, UTP NSPL, W2, TE)Y 12
W2y =N = Ul [K) 21
WVIC1)=¥1¢ 1) T
VIC) =YL YD T
PO 1T I=1, 48P} T
PO 1T J=i,NY2 T
IF (UTPETL,J) L LT. V(1)) W2 1) =UTPcl, ) s To(
FE (UTPCL D L CT, W2(2)) W2(2) =UTP L, J) T2 (
WO (J) = UTPENSP, AT . T
CALL MAPZ (W1, W2, 2, HYL, HY2, QU, NIY 1, NITY2,NIY, W6, Y2, NY2,6CALL) gl
DO 20 J=t,Hy2 - T(
MMM TFINCWMCL)) . : T
DO 18 121, K81 ™(
VIO =UTPCL, ) T
T Vil
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170
189
190
200
210
220
230
240
250
260
27TH

289

200-
300

310
120
330
U) ‘ 0
do()
d60
R
380
J00
400
410
400
430
o)
@#50
SO0
170
480
¢O00
500
u 10
f"\()

530
540
330
560
n7To
580
590
60
[{ARY)
6220
630
640
600
600
[OrRid
(2314
690
TOO
T1O
720
730
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- . - : ) . - 183
CALL PLTMPL (SP1,¥1,MHMM) . R - T2( 740
IF (QMM.CE.NSP1) GO TO 20 DR . . © L. Tat 750
1s=0 . ° A . T2( 760
: DO 19 I=MMM,NSP1 S T2( 770
T 15715+ ™ ) . T2( 780
CALL UNITTO (SP1(1), w1(1) W2 1S, NBCISH) : >~ « T2( 790
19 - CONTINWE-—- - . - - v =~ . ) *T2( 890
IDA=NSP 1-1DPRH+ 1 . . Q ' 3¢ 810
C€ALI, DDASHM (W2,¥3,NDA,.1,.1,0,.03,1.,1E,W4,W3) + . .« T2 520
20 CONTINUE . “ T2C¢ 830
- CALL PLOT €12.,0.0,-3) . . y ) T2 840
CALL PLOT (0.0,0.0,999) - T Tt e T2( 850
RETURN. o . . T2( 860 -
21 I¥ "(IEXIT.EQ.1) €O TO 28 . N T2( 870.
¥ (1. L'I‘ 4).C0 TO 25 ) s T T2(C 880
N L1=1 . - ; T2¢ 890
DiF= U'l((l 2, D-UTCC -, D - . T2C 900
. IF (1.£Q.4) GO TO 23 , : T2( 910
RAT=DIF~(UT( ( F~3), J)—:m(l -4), J)) T T2c 920
PO 22 1U=11,NY1 , T2¢ 930
UT(IU D =UT((1U-1)., J)+D!I‘+I‘U\’I‘ T2( 9490,
VT=RAT2, A T2 950
22 cou'rmur‘ : R T2( 960 .
GO TO 29 . - . . N T2( 970 °
23 DO 24 1U=1L,}Y1 . < ‘ ; T2( 980
. UTCIU, DD U C1U-1) , J)+DIF ‘ s T2¢ 990
24 CONTINUE N T T2¢1000
GQqQ TO 29 ’ N N T2(1010
25 IF (J.EQ. 1) GO TO 273 . T2(1020
RO 26 1U=I1,NYL - T2( 1030
UTC 10,00 =UTCC1U=- 1, JY+UTE LY, (J=1)) - ur(uu-;) (J=-1) T2( 1040
26 CONTINUE & Lo T2(1050
GO 10 29 - ) 4 , 31060
a7 WRITE (6,82) ‘UTC1, 1K), Y1( 1), Y2 1) L . T2(1070° .
RETURM § T2C01089 ,
28 UTCT, ) =UTCCI-1), J)+(U1((l—1) JI=UTCCI-23 IR p%2. = (UTC(1=2) , J)~UT(( T2 1000 N
11-3) .J)» : ™ TR 1100
29 IF (J.EQ.NY2) GO TO 15 - . TLC1L10
KJ=J+1 T2 120 ‘
Vil J) = ( FLOAT(( [- IEXIT) %NS Pn/nomm‘n—n)n. TLC1130
CO 10 3 ) . T2C1140
¢ ~ .. TRC1150 .
¢ . T21160 .
0 FORNAT (oX, 3)‘2“ NSP1) HAS TO BE GREATER THAN (1)) T2 1170 .
31 FOWIAT (smn'rmc POINT UAS TO RE FEASIBLEY TRC1100
82 FORIAT <f'x SHDECREASE THE [NDEPENDENT VARIABLES STEP SIZE,/,5X,35 T2(1190
TUWIHEN TIE PRGGRATL mmc UP THE QONLY FEASIBLE POINT WAS Us,Et2.5,7,5 T2C1200
24¥, 61AT Yi1=,E12.5,7HAND Y2=,L12.0) TRO1210
END ; ) TR 1220
. )
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SUBROUTINE MAP2 (¥,Y,M,HX,HY,JiO, NHX, NHY, NTIO, WY, WV, rm: SCALE) MAP 10
DIMENSION X(1), Y(1), HX(1), HY(1), HOCD), Wr(1l), wvu). Wi(2) MAP 20
IF (SCALE.LE.1.) SCC=1. . . NN MAP 30
IF (SCALE.GT. 1.} SCC=SCALE . MAP 40
T ICE . MAP. S50
NX=10 . v “ MAP 60
HY=10 , MAP 7O
" YYH=. 05%SCC C. ) ) MAP 0O
= . 07#SCC | - MAP 90
Oll= . 1%SCALE .. ' Y ‘ MAP 100 .
ON= . Bu8CALE MAP 110
YHI=. 15xSCALEN, ° . MAP 120
DVE=. 4¢xSCALE - MAP 180
YHO= . OxSCALE MAP 140
X1=2. 0xSCALE — * ’ , MAP 150
ZHY=2.3%SCALE . . : v MAP 160
ZW1=2,52SCALE . MAP 170
XHO=2, TxSCALE * MAP 189
Z¥{D=2,9=8CALE ~ . MAP 190
YM=4, 0xSCALE : , HAP 209
YL=8.0%3CALDL : NAP 219
XL=9.0%xSCALE s MAP 220
DNE=1.2*SEALE MAP 230
YE2=2., 3*SCALE ~ MAP 240
YE1=2, 5SCALE . R MAP 250
EXI1T=1.0 ’ MAP 260
YO 1=0,90 * MAP 270
NI=Hi+1 MAP 280
Y1sHY+ 1 MAP 200
MUL=NIIY~/ 10 MAP 300
IF (IUL.FQ.0) MUL= MAP 310
HCOH=6-TMUL . MAP 820
XE1=FLOAT( IUL) %*DXE+3 ., 04%SCALE MAP 830
NMEQ=FLOAT(HUL) =DXE+2, 542SCALL MAP 340
DATA VWI/1O0HCURVE NUINB,GHER... / MADP 350
NX= XL-FLOAT( HHY) #0. 1:SCALE  MAP 260
773 YL-FLOAT(NHO) ::0. 1::SCALE MAP 370
CALL DATE (DD) HAP 880
CALYL LETTIR (10.0.2.90 0..3.3., mn«mm—ovm) . HAP 290
CALL LETTER (10,0.1,90.0,0.6,3.5,D1) HAPR 200
CALL PLOT (1.,0.0, .}) MAL 410
A MAP 420
NRI'FE (UT) LABLE . MAPR ¢330
: HAP 440
CALLs LETTER (NII0,011,90.,0X,72,110) MAP 4350
" CALL FACTOR (M, X, Y, XL, YL, XIT, YID MAP 460
. MAP 470
PLOTTING GRAPHS FRAM MAP 480
; ’ ¢ CMAP 490
CALL PLOT (MM, YN, D) i MAP T00
CALL PLOT (XL,YIH,2) MAP 510
CALL PLOT (ML,YL, 1) , MAP K20
GALL PLOYT (¥, YL, 1) .. . MApP 530°
. CALL PLOT Q2MLYM, D MAP 540
Rtz CXL=Y0 ZFLOATCHY) AP 550
YR=(YL-YM) ZFLOAT(NY) MAP §560
Kil=X1t . Mmpe 570
Y= YN i o5ao
MHAP 590
DIVIDING THE VERTLCAL AXIS , MAP 600
g - HAP 610
Lo 1 I1=1,HYt MAP 620
CALL PLOT (¥H,YH,3) MAP 630
CALL PLOT CMII+XXI, YH,2) MAT 640
. : . MNAD 650
WRITTIRG THE (UT) NUMERICAL VALUES MAP d00
, . MAP 670
CALL INCHTO (MM, YH,XP, YD) MAP 660
EMCODE (10,12.YD) YR . MAP 690
CALL LETTER ¢ 10,0H,0., YHO, YII-YYII, YD) MAP 700
Yii= Y +YS MAP 710
IF(YHLGT.YL) YHeYL | -, N MAP T2
CONTINUE MAP 730
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DO 2 .I=1,AX1 . b MAP 740
CALL, PLOT X1, YL~XXH,3) ) * MAP 750
CALL PLOT (XH,YL.2) i MAP 760
Xll= NI+ X3 ‘. i >~ MNAP 770
CONT [HUE . MAP 780
Yi=YL : im’ 790
DO 3 I{=1,NY1 . AP 800
CALL PLOT (XL,YH,3) - , . MAP 810
CALL PLOT (){L—*{}ax ‘m 2) s, MAP 320
YHYH-YS + 4 o MAP 830
CONTINUE - ” : MAP 840
g . MAP £30

WRITE (Y1) LABEL - . . MAP 260
. MAP £320
CALL LETTER (NIX,0#,0.0,X¥, X110, IiX) . MAP £80
1f=1 - MAP 890
. . £ MAP 900

NUMBURING THE (NY1) CURVES . MAP 910
MAP 020

DO 6 1I=1,NYC . . » MAP 930
XK= XL+ . 2%0H / MEP 940
RC=, 2::0H MAP 950
RY- . 15xQCALE i : ! MAP: 060
«CALL UNITTO (XL,WY(ID),XT, YHELP) MAP 070
I ( YHELP.LE. ( YEH1+YIlLD) . AND. YRELP.CT. ( YCHI~YIIH) .AND. IF.EQ. 1) CO TO MAP 980
) . % MAP 900

1¥=1 MAP 1000
GO TO § J 5 ) MAP1CG10
3Oz XL+, 45%SCALE _ MAP 1020
1F=2 ) MAP103D .
CONTINUR ‘ MAP 1040
IF (F.CE.10) RY=RY-YYH MAP 1050
ENCODE (10,13.€D 1 ‘ MAP 1060
CALL SYMBOL (¥XX.(YHELP-RY),0H,CI, 90.,10) MAP10OT'0
IF (1.GE.10) PC=RC+YYU . , MAP 1080
CALL CIWF (XX<-YYH, YHELP, RC, ancm) MAP 1OV O
Y11= YRELP MAP1100
CONTINUE MAPI110
Xi{= YL ; ' : : oo MAPT 29
) MAP1120

mn‘rn«. THE (Y1) NUME m('AL VALUS . N ) MAP11-0
. . o MAPI130

no 7 I=(,NX1 ) . . MAPL160O
CALL PLOT (VI YT XKH, 3) . . MAP1LTO
‘CALL PLOT CHH, 7M. 2) : MAPEIE0
CALL IHCHTO ¢XH, YM, XW, YW - MAPL 190
ENCODE €10, 13, XD) XV - © O OMAP IR0
CALL LETTER (10,01, 90..x1g+wu 2.9,XD) -« R MAP1210
1= X- XS : MAP 1220
IF (L LE. XD XHz XM ; MAP L1230
WONTIHUE . ‘ MAP1240
1¥ A FLOAT(HYC) /FLOATC 6-PUL) . LE. EXI'T) (,0 0 9 . MAP 1250
KPATI=0 . " . HAP 1260
€O TO 10 Y . g COMAPI2TD
KPATII= 1 \ . MAPI200
HCOM=HYG ' . ‘ MAP 1209
e . . ' HAP LS00
VRITE (Y2) LAJEL ) “ MAP 210
\ . : AV 1220

CALIL LETTER, (NKY, OIIN\O. 0, XM, ZHY, HY) . HAP 1200
CALL LETIER (16)\0H, ON0, XM, ZW, WD) . rlw 'ma
\ . M 50

WRETTING THE (Y2) nuerran VALUS ' N\'l:mo
\ ) ' MARISTO .

DO 11 F=16¢, NCON ' , ‘ MAP LGS
EHCODE 10, 13,80 1 : MAP L3OO
GALL SYNUOL (XE1, YR, OILDI1,0.0,10) MAP 1400
LICOVE (10, 12, BW) \N(I) ' ) HAP 14 {0
CALL SVMRNL « ,\1:::. Y12, 0L, BY, 0.0, 10) MAP 1420
»\P.I"‘\FH‘D\L M : LEAR Letiied
Vo= XE2 + B IE ; ‘ {!\1’1-:--";0
(30{\"!’!{(”1’: .8 R T . e 411530
(Y C(IPATD.ER. 1) RETURN . = HAP 1460

. 4 -

IF CEXIT.GE.6.(0) RETURN \ . ' ! MAP 1470

¢ ) !
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XE1=FLOAT(MUL) *DXE+3 . 04%SCALE
NE2=FLOAT(TIUL) *DXE+2.54%SCALE
YEI=YEI~DYE
YE2=YE2-DYE

SEYIT=EXIT+1,

]CEHCON+ | .
HCON= (6-HUL) % IF IX(EXIT) -
c0 TO 8

FORIAT (2PE10.2)

FORIAT ¢ 1ID)

LiD

)

MAP 1480
MAP 1490
MxP1500
MAP1510
MAP 1520
MAP1530
MAP1GLO

~HAP 1550

MAPT360
MAPIGTRS
HAP13LD

MAP1590

r
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SUBROUTINE

DIMENSION F¢ IFD,NY),
BPAR(4)

REAL BPAR, T,
PATA ZEROSO.
KURz 0

IJ:R=0

IF CIFD.LT.NX} GO TO 6
IF C(I1FLD.LT.NXL) €O m 7.
"MER=0

HXMI=H-1 .
NYMI=NY-1{ ..

D1 I=1,4

-

" BPAR( I) =ZERO . .

CONT IUE
Do 2-.1y=1,NY

i

“Y(NY), XLCHXL), '?L(rnm)

-

v

CALL ILolLU {‘{ F(1,1Y),NX,BPAR, h‘K(l) HXM1,JER)

IF (JER.NE.0) GO TO 8

IBCIEU (F, tFD, X,NX,Y,NY, XL, NXL, YL,NYL,FL, l'l"LD WK, 1EID

P N T T
SEETR=ZSS=ESERIFSTEISIIS==zZ=S

X(NX),
0}‘ VK, X, XL, Y, YL ZERO

aczsw2czoanIm=ss=s

FLCIFLD, 1),

-~ GALL ICSEVU (X,FC1, 1Y) ,NX,WKC 1), BXML, XL, FLCL, TY),NXL, JER)

IF (JERNE.0) KER=37
CONTINUE

KYL=NYM1=3

KYLP 1=KYL+1

DO 5 IXL=1{,NXL

DO 3 1Y=1,NY

WK( KYL+1Y) FL( I\L IY)
CONTINUE

CALL

T (JER.NE.OQ) GO 'IO 9
PO & IYL=1.NYL

CALL

IF (JER.NE.0) LER=98
CONTINUE

CONTINUFE. .
€O TO 10

ITER= (29

CO TO 10 -
FCR= 130 '

€O TO 10

« lER= 131 )

IE (JER.EQ. 181) NER=133
CH TO 10

ILR= 132

IF (JEN FQ. 131) MER= 134
11.= HAXO CTIER, KER, LER)
NETURN

END

ICSEVU (Y, VK(IYLP1),NY, WKC 1), IiY2(1, YLCIYL)

~

-

ICSICYU (Y, WK( KYyLrn ,ny, BPAR WKC1) ,NYM1,JER) )

-

+» FLC IXL, IYL)

» 1, JER)

$

IBC

W IBRC
IRC
1BC
IBC
IBC
186G
IBC
IBc
IBC

‘IBG
IBC
IBG
I
IR C
I[EC
Ina
IBC
1BC
IBC
Inc
IBC
18C
IBc
IBC

IRC-

IBC
IBC
InC
Ipc
|§31%
IBC
Inc
Inc
InG
nc
1Ba
1n¢
Ipc
Inc
IBC.
e
c
ma
1BC
I
1B

.

10

20
30
40
50
60
rdY
80
o0
100
110
129
130
1<0
150
160
170
180
190
200
210
220
230
220
250
260
T
28
200
300
310
320
2390
U0
\.-)’)
2360

-
LPY

U

390
<400
410
‘x,._.()
<30
440
130

M 1V

70
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Lot IR~ S & |

for}

<t

. DIMENSION X(1), Y(1), CClIC

PATA 1/1/,2ZER0-0.0/
JER=KER=0O

IF (M.LE.©0) GO TO 9
NXPIL=NX~1

D 8 K=1,11

DU -X( 1) -

1 <» 1,5,8

IF (I.EQ. 1) GO TO 6
Is1-1

D=UCK)-X( 1)

IF h» 1,5,4

I[=1+1 .
D=DD

IF¥ (I.GE.NX) GO TO 7
DO=UCKI =X I+1)

IF (BD.C¥.ZLRO) GO TO 2
It (D.EQ.ZERD) GO TO 5
SCRY=CCCCT, 3 D+C( 1,
GO 10 8

S(Ky=yYC(D)

GO TO 8

JER=33

GO TO 4

IF (DP.CT.ZLROY KER=34
D=UCK)-XK(NXMID)

1=HNMH

GO TO <

CONTINUER

1ER=HANOCTER, KER)
CONTINUE

END

dzzscsszssszzszas=sa=

2,3,

2))rxD+Ce L, ) D+YCD)

10

20
30
<0
50
60
T0
(3344
%0
100
110
120
130
140
15
160
170
160
120
2¢o

S 210
3 220

230

S 240

2590

S 200
R 270
> 269
3240
s 300
S 810
S 520
5 QU
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