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ABSTRACT

This thesis represents research in the combined areas of
inventory and maintenance. It analyzes two independent inventory and
maintenance problems under dynamic systems: (i) a production and
maintenance problem and (ii) a repairable-item inventory problem. For
each problem, the thesis develops a new control model and proposes a
simultanecus determination of optimal inventery and maintenance.
policies.

The first part of the thesis examines a production process where
the process performance deteriorates over time in the absence of
preventive maintenance. First, it develops a new finite-time control
model for optimal production and maintenance decisions by combining a
dynamic maintenance model with a production control model. Second, it
derives the necessary conditions for optimal production and maintenance
controls using the maximum principle. Finally, it proposes two
optimization algorithms for numerically solving the necessary conditions
already derived.

The second part of the thesis considers the repairable-item
inventory problem, which may be faced at each period by the inventory
manager responsible for determining the optimum quantities to purchase
new serviceable units, to repair and to junk returned repajrable units
in order to satisfy random demand for serviceable units. First, it

proposes an inventory model for repairables, incorporating several
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important features. The model includes a periodic review policy, random
demand, lost sales for unsatisfied demand, set-up costs for ordering and
repair, and a dynamic return process. Second, it employs a quite
different solution methodology from what the previous research has used,
The approach employed here is a ‘Markov decision process (MDP)'. With
this approach, the inventory problem is remodelled as a discrete-time
Markov decision problem with two-dimensional state and three-dimensional
decision spaces and then solved for finite-time planning horizon using
the backward induction algorithm and for infinite-time planning horizon
using the method of successive approximations. Finally, it introduces
and utilizes two acceleration techniques, the error bounds approach and
State Decomposition by Dimension (SDD), for speeding up the convergence

of the computational methods described above.
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CHAPTER 0 INTRODUCTION

0.1 Overview

Inventory and maintenance may be the two most important areas in
business. Keeping an inventory (stock of goods) by either production or
purchasing for future sale is very common in today's world. Inventory
policy of a firm may include when and how much it should produce or
replenish. On the other hand, maintaining stability (reliability) of a
system (or facility) by preventive maintenance or by controlling the
performance of the system is as important as inventory theory since
systems in today’s dynamic environment become more complicated aﬁd
require new technologies. Maintenance policy may include such decisions
as time and level of preventive maintenance on the system, time and size
of repair of returned units to the system, ete. This thesis represents
research in the combined areas of inventory and maintenance, It
analyzes two independent inventory and maintenance problems in dynamic
systems: (i) a production and maintenance problem and (ii) a repairable-
item inventory problem. For each problem, the thesis develops a new
dynamic control model and proposes a simultaneous determination of
optimal inventory and maintenance policies.

Part I of the thesis examines a production process where the
process performance deteriorates over time in tpe absence of preventive
maintenance. First, it develops a new finite continuous time control

model for optimal production and maintenance decisions by combining a



dynamic maintenance model with a production control model. Second, it
derives the necessary conditions for production and maintesance controls
to be optimal using Pontryagin’s maximum principle (Pontryagin et al.
[1962]). Finally, it proposes two optimization algorithms for
numerically solving the necessary conditions already derived.

Part II of the thesis considers the repairable-item inventory
problem, which may be faced at each period by the inventory manager
responsible for determining the optimum quantities to purchase new
serviceable units, to repair, and to junk returned repairable units in
order to satisfy random demand for serviceable units. First, it
proposes an inventory model for repairables by incorporating several
important features. The model includes a periodic review policy, random
demand process, ‘lost sales’' for unsatisfied demand, and set-up ;osts
for purchasing and repair. In addition, the return process 1s assumed
to be characterized by the current and previous demand processes and
Bernoulli random variables representing the return status of serviceable
units currently and previously demanded. Second, it employs a quite
different solution approach to the inventory model from what the
previous research has used, namely, a Markev decision process (MDP).
With this approach, the repairable item inventory model is converted to
a discrete-time Markov decision model with two-dimensional state and
three-dimensional decision spaces and then solved for finite-time
planning horizons using the backward induction algorithm. An infinite-
time planning horizon problem is also considered and it is solved using
the method of successive approximations. Finally, this thesis

introduces and utilizes two acceleration techniques, the error bounds



approach and State Decomposition by Dimension (SDD), for speeding up the

convergence of the computational methods described above.

0.2 Mathematical Techniques

The production and maintenance problem, remodelled as a finite-
time dynamic control problem with two constrained state and two control
variables, is solved for optimal production and maintenance decisions
using optimal control theory. First, the necessary conditions for
production and maintenance controls to be optimal are obtained using the
maximum principle in terms of the current-value functions (Sethi and
Thompson [1981]). Second, optimal production and maintenance controls
are determined under a specific production cost function. One of two
difficulties in determining the optimal controls is that the con;rol
problem contains a pure state inequality constraint, which makes the
problem more complicated. A technique called ‘the indirect adjoining
approach with continuous adjecint function’ (Hestenes [1966], Russak
[1970), Hartl et al, [1987]) is used to deal with this complication.
The other difficulty arises since maintenance control contains singular
arcs. This requires a somewhat complicated analysis of the model
regarding a determination of optimal singular controls. Finally, two
optimization techniques, centralized and decentralized approaches, are
used for solving the necessary conditions numerically because an
analytic solution to the control problem is quite difficult to obtain.
The centralized approach is based on the idea of a centralized decision
making system where the production and maintenance decisions are planned

by some central authority in a company. It treats the control problem
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as a whole and attempts to find the optimal trajectories to the overall
problem simultaneously. A modified version of ‘the initial value
shooting method’ (Roberts and Shipman [1972]) is used to solve the
necessary conditions. The decentralized approach, which is based on the
‘Interaction Prediction Principle’ (Singh [1980]), takes advantage of
the serial structure of the system. It adopts the idea of a distributed
authority system where each of the production and maintenance decisions
is planned by the corresponding department of the company. With this
approach, the original problem is divided into two subproblems and then
the solution to the overall problem is obtained by solving the
subproblems iteratively.

The repairable-item inventory problem is converted to a
discrete-time Markov decision model with two-dimensional state and
three-dimensional decision spaces. First, the return process is defined
from the relationship with the demand process and the transition
probabilities for each and every decision are obtained using tools from
probability theory. Second, the decision space is reduced by the system
and decision rules defined throughout the analysis of the system so that
unnecessary decisions are eliminated before being considered. A large
number of states means an even larger number of decisions (i.e., the
number of decisions depends upon the number of states). The decision
space reduction procedure is very important (especially for a system
with a large number of states) because it avoids unnecessary computation
time and effort. Third, the Markov decision model is solved for both
finite and infinite horizons using the successive approximation method

(or the backward induction algorithm). Finally, two acceleration



techniques are Introduced for speeding up the convergence of the
successive approximation method: the error bounds approach (Bertsekas
[1976][1987], Heyman and Sobel [1982]) for infinite-horizon problems,
and State Decomposition by Dimension (SDD) for both finite and infinite
horizon problems. The error bounds approach determines an optimal
stationary pollcy and the corresponding optimal cost iﬁ a much less
number of iterations, whereas the SDD accelerates the computation by
reducing the number of states so the amount of work required per

iteration is also reduced.

0.3 Production and Maintenance Problem

Part I is devoted to the study of optimal production and
maintenance decisions. Chapter 1 presents a brief survey on production
control and maintenance control models for dynamic systems and outlines
contributions of this thesis to the theory of optimal control for the
areas of inventory and maintenance. Chapter 2 formulates a production
and maintenance model for a production system experiencing age-dependent
deterioration, and then analyzes the model for optimal production and
maintenance controls using optimal control theory. Chapter 3 introduces
two optimization techniques and their algorithms, that solve numerically
the necessary conditions developed in Chapter 2. It also considers
several numerical examples to demonstrate validity of the algorithms.
Chapter 4 concludes Part I with discussions and findings resulting from
the analysis of the model and with possible modification to the model

for future research.



0.4 Repairable-Item Inventory Problem

Part II applies a Markov decision process (MDP) to analyze
inventory systems for repairables. Chapter 5 begins with a general
description of repairable-item inventory systems with returns followed
by an extensive literature survey of the field. It also briefly
outlines contributions of this thesis to the theory of inventory control
for repairables. Chapter 6 defines the proposed repalrable-item
inventory problem and formulates a model for the preblem. Chapter 7 is
concerned with the Markov decision process approach to the proposed
inventory model. A brief description of a Markov decision process is
followed by the analysis of the Markov decision model. The analysis
includes the following: description of the system spaces (i.e., stage,
state and decision), development of system and decision rules, reduction
in decision space, and derivation of transition probabi}ities.
Description of computational methods and algorithms used for finite and
infinite horizon Markov decision problems and several numerical examples
are also included. Chapter 8 introduces two acceleration techniques for
speeding up the convergence of the computational methods described in
the previous chapter and discusses efficiency and effectiveness of these
techniques. Finally, Chapter 9 concludes Part II with discussions and
findings resulting from the analysis of the proposed model and with
possible modification to the model for future research. It also
compares the proposed model with similar models studied in the

literature,
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PART 1
OPTIMAL PRODUCTION AND MAINTENANCE DECISIONS

CHAPTER 1 INTRODUCTION

1.1 Literature Search

Many existing dynamic control models are concerned with optimal
production decisions whereas others consider machine (or process)
maintenance problems. Production control models for dynamic systems
were discussed by Holt et al. [1960], Sprzeuzkouski {1967), Bengoussan
at al. [1974], Baker and Peterson [1979], and Sethi and Thompson [1981]
under various production and holding cost functions. The problem of
concern in these models is to determine an optimal production rate which
minimizes the total production and inventory holding costs over a finite
planning time horizon. 1In the case of maintenance problems for dynamic
systems, the objective is to determine the optimal rate of preventive
maintenance over the lifetime of an asset. The dynamic maintenance
problems were considered by Naslund [1966]), Thompson [1968), Arora and
Lele [1970], Sarma and Alam [1975], Gaimon and Thompson [1984)([1989],
and Tapiero [1986]. For a brief description of each of these models,
the reader is referred to the survey papers by Pierskalla and Voelker
[1976] and Cho and Parlar [1989][1991].

The control models discussed above consider production decisions

separately from maintenance decisions. In other words, the two types of



decisions are assumed to be independent of each other. However, we are
often faced with real world situations where production and maintenance
decisions may be interdependent on each other. In Part I, we consider a
production process whose performance deteriorates over time in the
absence of preventive maintenance., If the output of the production
process is proportional to its performance, it is necessary to keep the
process performance at certain levels by applying proper maintenance
over the finite planning horizon to avoid unnecessary waste

(e.g. defectives). Here, our interest lies in the study of possible
tradeoffs between the cost (level) of preventive maintenance applied to

the process and the output of the process.

1.2 Contributions
This thesis extends the theory or optimal control for the areas
of inventory and maintenance to the "macro" aspects of the production
process, It incorporates a dynamic maintenance problem into a
production control model and proposes a simultaneous determination of
optimal production and maintenance policies. In particular, the thesis
(1) develops a new dynamic control model by combining a maintenance
problem with a production control model.
(2) wutilizes the maximum principle to derive the necessary conditions
tor oprimal singular/nonsingular controls for the combined model.
(3) proposes two optimization techniques which can be used to solve the

necessary conditions derived in (2) numerically.l



CHAPTER 2 FPRODUCTION AND MAINTENANCE MODEL FOR A SYSTEM
EXPERTENCING AGE-DEPENDENT DETERIORATION

2.1 Statement of Problem

Consider a production process whose performance declines over
time without any maintenance. The precess performance can be measured
in terms of the proportion of ‘good’ (non-defective) units of end items
produced at a certain time. Preventive maintenance may be applied to
the process to slow down the rate of decline of (or improve) the process
performance. Assuming that the maintenance activity is permitted to
occur as a continuous stream, we can formulate the problem as an optimal
control theory model with an infinite number of states between two
extreme states 0 and 1. Here state-l indicates that the process yields
only "good" units while state-0 refers to the Process resulting in 100%
defective units. Figure I-1 shows a graphical representation of the

proposed production and maintenance model.

No Defective All Defective
obsolescence
B e e e e T S
maintenance

Figure I-1: A Graphical Representation of the Proposed
Production and Maintenance Model
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2.2

1l

Notation and Assumptions

We define the following notation. Note that the decision

variables are referred to as control variables.

x(t):

uft):

p(t):

al(t):

m{t):

s{t):

Inventory level at time t; (state variable).

Scheduled production rate at time t; (control variable).
Proportion of 'good’ units of the end items produced at time ¢
representing the process performance (0=p(t)<l); (state variable).
Obsolescence rate (function) of the process performance in the
absence of maintenance, where a is non-decreasing in time.
Preventive maintenance rate applied at time t to reduce the
proportion of defective units produced; (control variable).

Demand rate at time t.

: Constant continuous discount rate.

: The planning horizoen.

We make the following assumptions.

(1)
(2)
(3)
(4)
(32
(6)

(7
(8)

The planning horizon is finite.

There is a non-negative initial inventory (i.e., x(O)-xOEO).

The process yields all ‘good’ units at time zero (i.e., p(0)=l).
All demand must be satisfied (i.e., x(t)=0 for O<t<T).

Negative production (i.e., disposals) is not allowed,

The maintenance level is bounded by a lower limit of zeroc and

an upper limit of M (i.e., O=sm(t)=sM ).

Defective units have no monetary values.

There is a salvage value for inventory unsold and a salvage value

of the production process (e.g. facility) at time T.
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Assumptions (1), (5) and (8) are self-explanatory. Assumptions

(2) and (4) indicate that the system does not permit ‘lost sales’ due to

insufficient inventory or ‘backorders’ of units for unsatisfied demand.

It must produce in advance and keep enough inventory to meet the demand.

Assumption (3) implies ‘error-free’ operation of the process at the

beginning of the planning horizon. The upper bound of maintenance level

in Assumption (6) can be explained by a budget constraint a firm faces.

Assumption (7) implies that the process must keep its performance at a

reasonable level to avoid unnecessary waste of production costs.

We consider the following cost and revenue functions.

(1)

(2)

(3)

(4)

The production cost fumction ¢[u(t)] is quadratic and increasing
in u(t). This situation occurs when some changeover costs kdue to
changes in work force, training, etc.) exist., The quadratic
production cost may also approximate linear production cost with
steeper slopes for higher levels of production.

The inventory holding costs, which represent the costs associated
with the storage of the inventory until it is depleted by the
arrival of demand, are linear (i.e., hi{x(t)]=hx(t), where h is
charged per unit of x(t)).

The maintenance costs are linear in m(t) (i.e., c[m(t))~ecm(t),
where c¢ is charged on the level of preventive maintenance applied
to the process at time t).

Revenue generated at t is proportional to demand at t (1.e.,

w[s{t)]=ws(t), where w is the revenue generated per unit sold).
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(5) Salvage value of inventory unsold at T is earned (i.e., a[x(T)]
=ax(T), where a is the salvage value per unit item)}.

(6) The salvage value of the production facility is proportional to
the process performance at T {i.e., L[p(T)]=bp(T), where b is
the maximum wvalue). The linear salvage function may not be a good
assumption, especially when the process performance is very low at
T, because a facility with p(T)=0.25 is usually not worth b/4,
However, the model implicitly avoids such a case by keeping the

process performance at quite reascnable levels to minimize waste,

Those who analyzed dynamic production control problems under
quadratic production cost and linear holding cost functions include
Sprzeuzkouskl [1967], Bensoussan at al, [1974], and Sethi and Tﬁ;mpson
[1981]. The preventive maintenance rate with lower and upper limits and

linear maintenance costs were also discussed in Thompson [1968].

2.3 Model Formulation
To obtain state equations which serve to define the change in

the system over time, we calculate the following.

The number of good units produced in (t,t+At) = p(tlu(t)at.

The inventory level at t+At can be stated as:
x(t+At) = inventory at t + good units produced in (t,t+At)
- demand for the item in (t,t+At)

-~ x(t) + p{tu{t)At - s(t)at.
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From the above equation, we get

[x(t+at) -x(t)]/at = p(tlult) - s(t).

By taking the limit as At-0, we obtain the state equation depicting the

change in the level of inventory over time as

X(t) = p(E)u(t) - s(t). (2-1)

The proportion of good units produced at t+At is:
p(t+At) = proportion of good units produced at t - decrease in
proportion of good units produced in (t,t+At) due to
obsclescence of the process + increase in propertion
of good units produced in (t,t+At) due to maintenance
applied at t to reduce the proportion of defective units
produced

= p(t) - a(e)p(t)at + (1 - p(t)] m(t) At.

From the above equation, we get

[p(t+at)-p(t)]/at = « a(t)p(t) + m(t) - m(e)p(t).

By taking the limit as At-+0, we obtain the second state equation

depicting the change in the proportion of good units over time as

p(t) = - [a(t) + m(t)] p(t) + m(t). (2-2)

Equation (2-2) represents the relationship between the firm’s budget for
preventive maintenance on its production process and process performance

as measured by the percentage of units of the end items that are
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acceptable. It is assumed that in the absence of preventive maintenance

the performance of the production process deteriorates over time,

Our objective is to find optimal values of control variables
which maximize the total discounted profit over the finite planning
horizon. Thus an appropriate form of the objective functional for the

problem is:

J = total discounted profit (i.e., revenue from sales - costs of
production, holding and maintenance) + the discounfed salvage

value of inventory + the discounted salvage value of the facility

- 3 wiste) - BIx(®)] - slu©)] - eln®)]) e
+ afx(D] T + blp(D)] 7. (2-3)
With the assumptions made above, the production/maintenance
problem can be modelled as a dynamic control problem with two
constrained state and two constrained control variables which can be

stated as follows:

max J = Ig {ws(t) - hx(t) - ¢fu(e)] - em(t)) e'Ptdt
u,m

T

+ ax(T) e ?T + bp(T) &”? (2-4a)

subject to
i(t) = p{t)u(t) - s(t), x(0)=x=0 (2-4b)

p(t) = - la(t) + m(t)] p(r) + m(r), p(O)=1 (2-4c)
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u(t) = 0, 0<tsT (2-44d)
0 < m(t) < M, 0O0=st=sT (2-4e)
() =2 0, 0=<st=<T (2-45)

2.4 Analysis of Optimal Controls
2.4.1 Solution Approach

We will use Pontryagin’s maximum principle in terms of the
current-value functions (Sethi and Thompson [1981])) to solve the above
production and maintenance (PM) control problem. The maximum principle
gives necessary conditions for controls to be optimal. What the maximum
principle does is that it decouples the dynamic maximization problem
into a series of static maximization problems at each instant time. The
PM control problem mentioned above has two difficulties to be overcome.
One difficulty is that as one may notice the problem contains a pure
state inequality constraint (2-4f). Although optimal control problems
with pure state inequality constraints often appear in the areas of
management science and economics, these constraints would make the
problems more complicated. Several techniques used to deal with such a
situation have been suggested by Pontryagin et al. [1962}, Hestenes
f1966), Russak [1970], Bensoussan et al. [1974], and Hartl et al,
(1987]. To deal with the difficulty in the PM control problem, we will
use 'the indirect adjoining approach with continuous adjoint function’
(Hestenes [1966), Russak [1970], Hartl et al. [1987]). With this
technique, adjoint functions will still be continuous but the
complementary slackness condition will not hold for the corresponding

multiplier whi’e it holds for its derivative. The other difficulty
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arises in the PM control problem because the maintenance control m is
partially singular (i.e., m is of the ‘bang-bang’ type with singular}.
This is an added complication, which requires a determination of

singular arcs as well as of non-singular arcs.

2.4.2 Derivation of Necessary Conditions
The current-value Hamiltonlan is
H=ws - hx - ¢[u(t)] - em + Al(pu-s) + Az[m-(a+m)p] + n(pu-s)
=ws - hx - ¢[u{t)] - em + (A1+q)(pu-s) + Az[m-(a+m)p], (2-5)
where A and A, are the current-value adjoint variables for the

constraints (2-4b) and (2-4¢), respectively, and 5 is the current-value

multiplier associated with i so that x does not become negative.” Note
that n is a constant when x>0 and is a non-increasing function in time,
otherwise (Hartl et. al [1987]). The first four terms in H represent

the direct contribution to J at time instant t whereas the rest of the

terms in H are considered as the indirect contribution to J.

The Hamiltonian maximizing condition (Sethi and Thompson [1981]) for the
optimal production rate u is:
H[x,p,u,m,t] = H[x,p,u,m,t] (2-6)

for all admissible controls u such that u = 0 for te[0,T].

The Hamiltonian maximizing condition for the optimal maintenance level
m is:
H[st-“sm-t] = H[X:P»U-E"tl (2'7)

for all admissible controls m such that 0 s m = M for te[0,T].
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To obtain adjoint equations and the multipliers associated with the
constraints, we form the current-value Lagrangian:
L=H+ pgu + ﬂlm + ﬁZ(H-m)
=ws - hx - ¢[u(t)] - em + Al(pu-s) + Az[m-(a+m)p]
+ n(pu-s) + pu + ﬁlm + ﬂz(H-m) (2-8)
where u is the current-value multiplier for the constraint uz0, and ﬂl
and ﬂ2 are the current-value multipliers for the constraints m>0 and

m<M, respectively.

The multipliers must also satisfy the complementary slackness conditions

p=0, pu=20 (2-9a)
B120, fym =0 (2-9b)
5220, ﬂz(M-m) =0 (2-9¢)
n20, 15<0, gx = 0. : (2-9d)

Note that the complementary slackness condition does not hold for n but

it holds for 6 (i.e., nx=0 rather than px=0).

Furthermore, the optimal trajectories must satisfy
Lu = JdL/0u = - ¢u + Alp +p+np = 0 (2-10a)
and

L - dL/am

-c + 12 - Azp + ﬁl - ﬂz

- Az(l-p) - c+ ﬁl - ﬁz - 0. (2-10b)

From the Lagrangian, we can get the current-value adjoint equations.

The current-value adjoint equation for A, is:

1



19

Al - pll- Lx - pAl - [-h] = pAl +h, and AI(T) = a,
or

A[(8) = - b/p + (a + bypy f¢ED), (2-11)

Note that Al(t) is the marginal benefit (or contribution to J) resulting

from a small positive change in inventory level, x(t), at time t,

Also, we may get the marginal benefit resulting from a small change in

p(t), the process performance at time t by solving

Az - pAz - Lp - (p+a+m)A2 - (A1+n)u, and AZ(T)-b. {2-12)

However, thls ordinary linear differential equation cannot be explicitly
solved for Az since Az, u, and p are dependent on one another.
Furthermore, the optimal trajectory of m requires the knowledge of Ay
trajectory, which alsc depends on the trajectory of m. Thus an analytic
(or closed-form) solution to this problem is difficult to obtain. We
will later introduce computational methods that enable us to solve the
problem numerically.

We now summarize the set of the Hamiltonian maximizing
conditions and differential and algebraic equalities and inequalities
previously obtained as the necessary conditions for u and m to be

optimal controls,

X = pu - s, x(O)-x0 (2-13a)

P=- (atm) p + m, p(0) = 1 (2-13b)

H[xl P- u, m, t] = H[x' P ‘_“'I m, t] (2'136)



20

H[x, p, u, m, t] =2 H[x, p, u, m, t] (2-134)
420, pu =0 (2-13e)
£,20, Bm =0 (2-13£)
B,20, B,(H-m) = 0 (2-13g)
720, <0, nx =0 (2-13h)
A; = - B/p + (a + hypy P(ED) (2-131)
Ay = (pratm)r, - (Ap+ndu, A, (T)=b (2-13)
L, = - ¢, + Qptn)p + p = 0 (2-13k)
Ly= A(1-P) - c+ 8 - f, =0 (2-132)

2.4.3 Determination of Optimal Controls
In Section 2.2, the production cost function ¢[u(t)] was assumed
to be quadratic and increasing in u (i.e., 3¢4/8u>0 and 82¢/8u2>0). For

further analysis of the problem, we now define specific production cost

functions that are commonly used.

(1) dlu(e)] = ruz, where r>0. This function approximates linear
production cost functions with steeper slopes at high levels of
production.

(2) ¢lu(e)] = ru2+qu+d, where r,q>0., This function is more general
than the one in (1). One may choose a desirable shape of the curve
by selecting proper values of the parameters.

(3) $lu(t)] = quir(u-u)® = rul+(g-2ru)utru’, vhere q,r>0. Here, in

addition te the linear production cost, a desirable level of
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~ ~

production u is imposed so that any deviation from u creates

penalty costs.

One may use any of the above production cost functions. As far
as optimization is concerned, there is little differences among them in
the degree of complexity. We will use the second type of quadratic
production cost function (i.e., ¢[u(t)]-ru2+qu+d }. We recall the
current-value Hamiltonian:

H=ws - hx - (ru2+qu+d) - cm + (Al+q)(pu-s) + Az[m-(a+m)p].

*
To determine the optimal production rate u ,

max H; Hu = dH/8u = - 2ru - q + (A1+n)p - 0. {2-14)
u -
" 0 if u' <0 .
Thus, u = whenever x>0, (2-15)
u’ if uw =0

where u'=~ [(A1+n)p-q]/2r. If x=0, we must impose the constraint ;20
(i.e., pu-s20 or uzs/p20) so that x does not become negative. In such
a case, u is constrained by a lower bound of s/p so that all demand can
be satisfied. If u'z s/p, then u*m u’ from Hu- {; otherwise, we must

produce s/p units to meet the demand.

* s/p if u' <s/p
Thus, u = whenever x=0, (2-16)
u' if u' = s/p

vhere ua'= [(A1+n)p-q]/2r.
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*
To determine the optimal maintenance level m , we note that

m:x H: Hm = JH/0m = - ¢ + Az - A2p - Az(l-p) - e, (2-17)

Since the Hamiltonian is linear in m, the maintenance policy is of the

‘bang-bang’ type with singular control,

0 1f 2,(l-p) <c
m = bang [0, M; Ap(1-p)-c] = { singular if A,(1-p) = c. (2-18)
M if A2(1-p) >ec

2.5 Analysis of Singular Controls
2.5.1 Existence of Singular Arcs

Singular extremals exist when the Hamiltonian H is linear in a
control variable. Such arcs satisfying the derivative of H with respect
to the control equals zero are called ‘singular arcs’. Johnson and
Gibson [1963] argue, however, that singular control will not necessarily
constitute part of the optimal control. In the PM control problem, H is
linear in the maintenance level m. Thus, singular arcs satisfying Hm-
Az(lop)-c = 0 occur on which Hmm is singular (i.e., Hmm- 0). We can see
in the problem that in the beginning of the planning horizon the optimal
control is non-singular (i.e., m(0)=0) because Hm#O {i.e., Az(l-p) <c,
since p(0)=1 ) at t~0. The control function is partially singular
because Hm-O holds for some time intervals whose total length is less
than the planning horizon. Hm70 implies that coefficient of the linear

term vanishes along a singular arc, and thus the control is not
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determined by the state and/or adjoint variables. The control is rather
determined by the requirement that the coefficient of the linear term
remains zero on the singular arc (and thus the time derivatives of Hm
must be zero). Therefore, along the singular arcs the following
conditions must be satisfied.

G DI ¢ ) N ¢ ) I -
Hm Hm Hm Hm ves 0, (2-19)
where H;k)is the kth time derivative of Hm.
2.5.2 Determination of Singular Controls

In this section, we will characterize the optimal values of

singular controls, which satisfy (2-19).

On singular arcs,

H = H(l) - H(z) - ... = 0,
m m m

Recall from (2-13b) and (2-13j},

ﬁ - - (atm)p +m = (l-p)m - ap

and

iz - (p+a+m)l2 - (A1+q)u.
We have

H =2, (1-p) - ¢ (2-20)
and

Hél).. A (1-p) - AP = [atp(1-p) 1A, = (Ap+m)u(l-p). (2-21)
Let % = (Aj+nu. (2-22)
Then, H{M= (atp(1-p)]2, - ¥(1-p). (2-23)

Since Hm- Hél)- 0 on the singular arc, we have from (2-20) and (2-23)
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—c __ »-py
22 7 TP T ate(lopy (2-24)

After solving (2-24) for p, we obtain

p~=1- E% { pc + J p2c2+4ac¢ ) where ¥>0, (2-25)

By differentiating Hél) with respec - to time once more, we get

(2 = (@-pp)dy + [atp(Lop)]hy - B(L-p) + ¥p (2-26)

= [ (1P Im + [araltiapts?(1-p) 1A, - a(ltp) - (1-p) (hHad).

On singular arcs, Hiz)- 0. After simplifying the above equation and

solving it for m, we get

B, - ST N la¢(1+p)+(1~p)($+p¢)-[c;+a2+2ap+p2(1-p>n ), (2-27)
s aA2+¢(1 P) 2

where ¥ may contain m. Note that ¥ is defined as follows.

0 if u=0
= Opindu = O [(Gp+ndp-al/2r 1F u = [(A+n)p-q))/2r.
(Al+q)s/p 1f u=s5/p

Thus, the singular trajectories are characterized by Equations (2-24),
(2-25), and (2-27). Ve now determine singular controls for each of the
three different values of u. Note that for all three cases the
generalized Legendre Clebsch condition (Kelley et al, [1967]), i.e., the
necessary condition for singular subarcs,

-1 &l <o,

is satisfied, where n=l is the order of the singular problem.



25

=~ 0.

R €

[ @+ e + 2pa + p2(1-p) 1. (2-28)
In this case, m, is always negative since a, p and 1-p are nonnegative
and a is non-decreasing in time. Thus, -:— 0 because the control m is

restricted by a lower bound of zero,.

SCage 2>: u = [(A+mp-ql/2r.
7=0 (thus n is constant),
¥ = (A+m) [(A+n)p-q)/2r,
¥ = 3 Opmi-pm + 5E 20pmie - A - eyl
Thus, m- (2.5s3)/9 (2-29)
where

S1 = [2a+p(L-p) 12y - 55 Gptmd(1ep)?
$2 - il(l-p)[2(Al+n)p-q1+(A1+n){(A1+n)P[p(1~p)+Zap]-q[p(l-p)+a(1+p)]}

$3 = [&+a2+2pa+p2(1-p)]xz.

<Case 3>; u = s5/p.

P

2;524.952
¥ - 3 .

P
¥ = L5 [(4rs+qp)s+2alaspr3rsD)] - & (1-p)(gsp+3rsim.
P P



Thus, m - (2~ _.53) /84
vhere

S3 = defined above

S4 = ady + =7 (1-p) [qsp(2-p)+2rs>(3-2p)]
P

S5 = a[qsp(3-p)+4rs2(2-p)] + p(1-p) (2rsZ+qsp) + (1-p)(brs+qp)s.

26

(2-30)



CHAPTER. 3 OPTIMIZATION TECHNIQUES

In the previous chapter, we have obtained necessary conditions
for controls u and m to be optimal. Because an analytic solution to the
proposed control problem is difficult to obtain, we illustrate two types
of optimization techniques, the centralized and decentralized
approaches, which can be used to solve the necessary conditions
numerically. The centralized approach is based on the idea of a
centralized decision making system where production and maintenance
decisions are planmed by some central authority in a company. These
decisions are made simultaneously and each of the production and
maintenance department has no control over the decisions. On the other
hand, the decentralized approach adopts the idea of a distributed
authority system where the production and maintenance decisions are
planned in 2 decentralized mode. With this approach, each of the two
departments makes its own decision regardless of the decision by the
other department. These decisions are later modified gradually in order

to cope with the best interest of the company.

3.1 Centralized Approach and Its Algorithm

The centralized approach considers the dynamic maximizing
problem as a whole and attempts to find the optimal production and
maintenance trajectories simultaneously., This situation occurs in a

real life where production and maintenance decisions are planned by some

27
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central authority in a company. Table I-1 shows the necessary
conditions for optimal singular and non-singular controls which were

cbtained previously.

One should notice that 5 is constant whenever x>0 (i.e, nx = 0),

In such a case, the value of n (denoted by g ) must be determined

cunst
from the global characteristics of the problem. A modified version of

the initial value shooting method (Roberts and Shipman [1972]) is used
to solve the necessary conditions for the two-point boundary-value
problem and then to obtain the optimal trajectories, With this
iterative method, x(O)-xo, p(0)=1, a guessed value for Teonst’ and a
guessed value for the unknown adjoint variable AZ(O) are used as inicial

conditions to solve the two state differential equations and the adjoint

differential equation iz forward in time, determining the controls u and
m, and n from the other necessary conditions. If the computed terminal
value for the unknown adjoint variable is close to the given terminal
value and the guessed value for Neonst yields the maximum J, the problem
has been solved; otherwise, the guessed value for the adjoint variable
must be revised (in such a way that the difference between the known and

unknown terminal values is minimized) and/or Meonst MUSt be updated.

st
The following iterative steps are used in the centralized approach.

Algorithm I-1: Centralized Approach

{(a) Guess Meonst”

(b) Guess A2(0).

{c) Let x(O)-xO, p(0)=1, n £ and A2(0) be initial conditions.

cons
(d) Check the singularity of m (i.e., Hm - Az(l-p)-c =0,
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=Singula res Sinpular Ares
X=mpu-s X=pu-s
: ~ pc + } o%estacy
P=m - (atm)p p~1- 2%

[ 0 if u’<0 & 0

u' If w20 & 0
u = 4 vwhere u’'={(A;+7)p-q]/2r SAME
s/p If u'<s/p & x=0

u' if u'zs/p & x=0
[ 0 if Ap(l-p) < e

1 . -
m={ m, 1f2,(1-p) -c, VRETE Mg = T y(iopy (e¥(RIH(L-P) ($ey)

L M if A (1-p) > ¢ - [é+a2+2pa+p2(1-p)112}
g0, pu =0
ﬂl =0, ﬂlm -0
By = 0, By (M-m) = 0 SAME
neo0, n<0, nx =0
A; = - B/p + (ath/p)e? (5T
Lu = - 2ru + (A1+q)p -q+p=0 SAME
L = -

n c+A2(1-p)+ﬂ1-ﬁ2—0

c ¥(l-p)
Ag = (pratm}ry, - (A+mlu, A (T) = b Ay = 1-p ~ a+p(l-p)

Table I-1: Necessary Conditions for Optimal Singular & Nonsingular Arcs



30

{e) Determine the controls u and m using (2-15) & (2-16), and (2-18),
(2-28), (2-29) & (2-30), respectively. Note that P> A, and m on
singular arcs are different than those on non-singular arcs.

(f) Determine the multiplier 5. If x(t)>0, n =9 Otherwise,

const”’
n is obtained from (2-13k).

(g) Solve the two state equations and i2 forward in time using (2-13a),
(2-13b), and (2-13j). If twT, let t=t+At and go to (d).

(h) If AZ(T)-b at the final time T, go to (i). Otherwise, modify the
initial guesses for Az(O) using a simple search technique and go to
Step (c).

(1) Ifn & yields the maximum J, we have solved the problem.

cons

Otherwise, update p using a search technique and go to (b).

const

3.2 Decentralized Approach and Its Algorithm

In the decentralized approach, the original problem is divided
into two independent subproblems (i.e., maintenance and production
subproblems) via another control variable, and then solution for the
overall problem is obtained by solving the subproblems iteratively., The
new control varlable decouples the connection between the two
subproblems so that each subproblem can be solved separately with some
measure of independence. This approach can be used in a real life
situation where production and maintenance decisions are planned in a
decentralized mode (i.e., a serial system where each decision is made by

the corresponding department of a company).
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The production and maintenance system being studied is a serial

system, where the process performance (maintenance decision) is an input

to the level of scheduled production (production decision).

Since the

interdependencles between the production and maintenence subproblems are

enmbodied in the term pu in the state equation x = pu - s, we introduce

another control variable z,

let p = 2. Then, the state equation becomes x = z2u - s,

The new current-value Hamiltonian is then
2

H=ws - hx - (ru™+qutd) - cm + (A1+n)(zu-s) + Az[m-(a+m)p] - fz + fp

- { ws - hx - (zulequtd) - 0z + (Ay+n) (zu-s) )

+ { 6p - em + A2[(1°P)m‘3P] ).

Also, the new current-value Lagrangian is
L=ws - hx - (ru2+qu+d) - cm + (A1+q)(zu-s)
+ Az[m-(a+m)p] + pu + ﬂlm + ﬁz(H-m) + 8(p-z),

where ¢ is the Lagrangian multiplier associated with p=z,

Then, we have the following additional necessary conditions.
dL/dz = Alu + 0 - f = (11+q)u -8=0
dL/3u = - 2ru - q + (A1+q)z +p =0

and aL/88 = p - z =~ 0,

From the above equations, we have
u = [(Aytn)z-q]/2r = [(Xy4n)p-q)/2¢
and § = (Aptndu = (A +n) [(A +n)2z-q)/2rx.

(3-1)

(3-2)

(3-3a)
(3-3b)
(3-3¢)

(3-4)
(3-3)
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We introduce the two subproblems.

The maintenance (MAIN) subproblem is:

max J1 - IE (fp - cm) et ar + bp(T)e'pT (3-6a)
m
s.t.
p= (1-p)m - ap, p(0)=-1 (3-6b)
O=sm=<M (3-6¢)

The Hamiltonian for the (MAIN) subproblem is

Hl = fp - cm + Az[m-(a+m)p]. {3-7)

m;x Hl : Hlm - aul/am - Az(l-p) -ec =20,

0 1f A(l-p) <c
m = bang [0, M; Apl-p)el = { m, 1f A(Ll-p) = c (3-8)

M 4if A,Q-p) >c

56 = aA2+8(1-p)
where m =~ (57-58)/86, 87 = a8(1+p)+p(1-p)(é+p9),

S8 - [é+a2+2pa+p2(1-p)],\2

-1 - 25 + p2c2+kac8
Pg 28 '
and \S . =S 2(1-p)

2 1-p ~ atp(l-p)°
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The production (PROD) subproblem is:
-pT

max J2 - Ig [ws - hx - (ru2+qu+d) - fz] e Ptac + ax(Te (3-9a)
u,z
s.t.
X = zu - s, %(0)=x,20 (3-9b)
uz 0 (3-9c)
x 2 0. (3-94d)
The Hamiltonian for the (PROD) subproblem is
Hy = ws - hx - (rulequid) - 0z + (A+n)(zu-s). (3-10)
mﬁx Hz : qu - 8H2/6u = - 2ru - q + (A1+q)z = 0.
After solving for u, we get
0 1If u"<0 & x0
* u" if u"=20 & x>0
u = (3-11)
s/z if u"<s/z & x=0
u" 1If u"zs/z & x=0
vhers u" = [(A1+q)z-q]/2r. (3-12)

We now present a decentralized algorithm, which is similar to
the approach proposed by Abad [1982, 1985]. The algorithm is based upon
‘Interaction Prediction Principle’ (Singh [1980)) and it exploits the
serial structure of the system. WLith this algorithm, each subproblem is

solved independently while information are exchanged between the two
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subproblems. Note that ‘the initial value shooting method’ is used to
solve the necessary conditions for the (MAIN)-subproblem and that eonst
must also be determined from the global characteristics of the (PROD)-

subproblem. The following iterative steps describe the algorithm.

Alporithm I1-2: Decentralized Approach

(a) Assume trajectories .1-80 for i=0.

(b) Solve (MAIN) subproblem to obtain P;-

{(¢) Pass p; to (PROD) subproblem by letting Z 1" Py
and solve (PROD) subproblem.

(d) Check the convergence of ¢ by e = Ig |9i - #} de.
If e<¢, where ¢ is a very small number, we have solved
the problem.
Otherwise, update § by 01+1 - (1-1)0i + yf - Bi + 1(8-81),
where 0<y<l and § =~ (A1+q)u.

(e) Repeat Steps (b), (c) and (d).

3.3 Numerical Examples

Computer programmes (Appendices I-A and I-B) have been written
in QuickBasic to demonstrate the two algorithms discussed in the
previous section. These programmes were run on a microcomputer and then
optimal trajectories were plotted using Lotus 123,

As the first example, let us consider a case with T=l, a=0,
b=10, h=1, r=2, gq=0, d=0, w=8, c=2.5, a=l, s(t)=4, M=5, p=. 1, x(0)=13,
and p(0)=1, This problem was solved by using the centralized approach

as well as the decentralized approach. As we had expected, both
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approaches gave us similar results. With the centralized approach, J*-
30.80 which includes 23.72 (profit from operation) and 7.08 (salvage
value of the facilitj). With the decentralized approach, J*-30.63 which
includes 6.2 (profit from (MAIN)-operation), 17.49 (profit from (PROD)-
operation), and 6.94 (salvage value of the facility). Figures I-2 to
I-4 show the optimal trajectories for x, u, p, m, Al and Az. We can see
that the inventory level remains positive until the final time. Note
that production starts even at t=0 (although there is enough inventory
to satisfy the demand) and then continues until the final time. The
major reason is that by producing a small quantity continuously over the
entire planning horizon high production costs could be avoided. The
similar solution structure always exists for cases with a quadratic
production cost function and a positive initial inventory. No
maintenance (i.e., m*-O) is applied to the process until t=.71 and the
maximum maintenance (i.e., m*-M) is applied after t=.83 until the final
time. Note that singular controls exist in the middle of the planning
horizon (il.e., te(.71,.83]), where Az(l-p)-c. As seen in Figure I-5,
"-”const-g'o for the entire planning horizon since x>0 for te(0,T)
(i.e., &x—O). Other optimal trajectories are also shown in Figures I-6
to I-7,

The second example uses the same data as the first one does,
except for M and %(0). We consider two cases: (i) M=2 and x{0)=3, and
(ii) M=2 and x(0)=0. The optimal solution structure {(as shown in
Figures I-8 to I-11} for case (i) is veryv similar to that for the first
example. Production begins in the beginning and continues until the

final time T with x>0 and qconst-B.SI for te(0,T), and singular controls



36

exist in the middle of the planning horizon (i.e., te[.60,.61]). For
case (ii), because %(0)=0 production must start in the beginning of the
planning horizon to satisfy the demand. The optimal trajectories (as
shown in Figures I-12 to I-15) show that more units (than just enough to
meet the demand) must be produced in the beginning so that inventory
builds up and is kept for the future demand. This implies that x>0 and
q-qconst-27.2 for te(0,T). Note that inventory is increasing for
te[0,.37] and is then decreasing, thereafter. One interesting result
may be the fact that no singuiar arcs exist as a part of optimal
maintenance control. Thus, the optimal maintenance policy is of the
‘bang-bang' type, where m*-O for te[0,.05]) and m*-H for te(.05,T],

The above examples restrict their attention to the constant
demand function, that is, s(t)=4., The third example uses the same data
as those in the first case of the second example; however, it considers
the following time-dependent demand functions: (1) s{t)=8-8t for
te{0,T], decressing in time: (11) s(t)=8t for te¢[0,T], increasing in
time; and (iii) s(t)=1l6t for te[0,T/2] and s(t)=16-16t for te[T/2,T),
increasing and then decreasing in time. Note that Igs(t)dt = 4 for all
cases. For case (i), the highest demand occurs at t=0 which requires
high production rate in the beginning; however, production rate
decreases at steeper rates in the end (see Figures I-16 to I-19). Note
that u is discontinuous at t=,87 where inventory reaches to zero, and is
then decreasing at steeper rates to zero. x is positive and concave for

te[0,.87] and x=0 thereafter, implying that gp=g =9.45 for te[0,.87]

const
and is decreasing to zero thereafter. The optimal solution structure

for case (ii) (shown in Figures I-20 to I-23) is similar to the case
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with the constant demand (i.e., s(t)=4). More units (than just enough
to satisfy the demand) are produced in the beginning and the excessive
units are kept for the future demand. Note that x is positive for

te[0,T) (thus n=gn =8.54), and it is strictly concave because of the

const
low demand in the beginning of the planning horizon. For case (iii),
the optimal solution structure (shown in Figures 1-24 to I-27) consists
of those features of both case (i) and case (1i1). u is discontinuous at
t=.94 where inventory reaches to zero, and is decreasing at steeper

rates to zero. X 1is positive and concave for te[0,.94], resulting in

"-"const_g'ga' and x=0 thereafter, implying that 5 is decreasing to zero
for te{.94,T].

The procedure used in Algorithms I-1 and I-2 for determining the
Junction points between nonsingular and singular subarcs was not tested
for validity (i.e., it may result in a sub-optimal solution), and thus
further study may be required. To find out how effective the algorithms
are, however, the results obtained by them have been compared with those
by GINO (General INteractive Optimization) after discretizing the
problem. The comparison shows that both approaches yield the same
optimal solution structures, and that the corresponding objective
functional values are very close to each other (see Table I-2).
Algorithms for calculating the exact junction points between nonsingular
and singular subarcs of an optimal trajectory for boundary-value
problems, given that the structure of the optimal path is known, are
discussed in Maurer [1976}. A study for synthesizing the optimal

maintenance control for the {PM) control problem in a decentralized mode

is Iin progress (Cho et al. [1992}]).
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Figure I-2: Optimal x, Al and u trajectories for Example 1,
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Figure I-3: Optimal p and m trajectories for Example 1.
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Figure I-4: Optimal Az, ¢ and Az(l-p) trajectories for Example 1.
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Figure 1-5: Optimal n and g trajectories for Example 1.
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Figure I-6: Optimal ﬁl and ﬁz trajectories for Example 1.
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Figure I-7: Optimal J and H trajectories for Example 1.
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Figure I-8: Optimal x, A, and u trajectories for Example 2(i).
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Figure I1-9: Optimal p and m trajectories for Example 2(1).
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Figure I-10: Optimal Ay, ¢ and Az(l-p) trajectories for Example 2(i).

] ¥ 1 T 1 1 + ¥

time

= )+ () |

................................................................... YN ENEERE NSNS VTR NN E U NN

Figure I-11: Optimal n and p trajectories for Example 2(1).
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Optimal x, Al and u trajectories for Example 2({ii},
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Optimal p and m trajectories for Example 2(ii).
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Figure I-14: Optimal AZ’ c and Az(l-p) trajectories for Example 2(1i1).
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Figure I-15: Optimal 5 and p trajectories for Example 2(11i).
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Figure I-16: Optimal x, '\1 and u trajectories for Example 3(1).
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Figure I-17: Optimal p and m trajectories for Example 3(i).
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Optimal 5 and » trajectories for Example 3(1).
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Figure I-20: Optimal x, )‘1 and u trajectorles for Example 3({ii)}.
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Figure I-21: Optimal p and m trajectories for Example 3(ii).
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Figure I-22: Optimal '\2’ ¢ and .\2(1-p) trajectories for Example 3(ii).
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Figure I-23: Optimal  and s trajectories for Example 3(i1i).
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Figure I-24: Optimal x, Al and u trajectories for Example 3(iii).
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Figure I-25: Optimal p and m trajectories for Example 3(iii).
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Figure 1-26: Optimal Az, c and Az(l-p) trajectories for Example 3(iii),
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Figure I-27: Optimal n and p trajectories for Example 3(iii).



31

Demand Rate Functions: (a) s{t)=4 (b) s(t) = 8-8t

le6t for Ost<T

(e) s(e)-8t  (d) s(t) =1 16.16t for T/zster

0.C.T. Demand Rate Functions
Examples vs.,
GINO (a) (b) (c) (d)
w(0)=3, M=5 C.C.T. 30.80 31.02 30.40 30,51
GINO 31.07 31.33 30.12 30.92
x(0)w=3, M=2 0.C.T 30.81 31.07 30.48 30.49
GINO 30.66 31.07 29.84 30.58
X(0)=0, M=2 0.C.T. (19.73)* (27.786) (19.27) (22.57)
GINO (18.92) (29.75) (23.42) (23.40)

*
0.F. values in parentheses indicate negative profits.

Table I-2: Comparison of Objective Functional Values
( Optimal Control Theory (0.C.T.) vs. GINO )



CHAPTER 4 CONCLUSIONS

4.1 Discussions

In Part I, we incorporated a mainterance problem into &
production control model and developed a combined decision model for a
simultaneous determination of optimal production and maintenance
policies. We utilized Pontryagin’s maximum principle to obtain the
necessary conditions for the controls to be optimal. We also introduced
two types of optimization techniques, the centralized and decentralized
approaches, for solving the necessary conditions numerically. With the
centralized approach, all necessary conditions are simultanecusly solved
and optimal controls are obtained after several iterations. With the
decentralized approach, on the other hand, exchanges of Iinformation
between the two subproblems continue until a convergence of ¢ occcurs.
The decentralized approach may require a larger number of computations;
however, it provides not only the global characteristics of the main
problem (e.g. net profit, net salvage value, etc.), but also additional
information regarding local characteristics of each subproblem (e.g.
profit and salvage value of individual departments, transfer prices).

We now summarize other findings which result from our study.
(1) For the case where there is no initial inventory, it is always
optimal to produce more units (than just enough to satisfy the current
demand) in the beginning of the planning horizon and keep the excess for

the future demand unless the demand function is decreasing in time. 1In
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this way, high production costs (resulting from high production rates
required later) can be avolded although some holding costs due to the
excessive inventory may be incurred. For & decreasing demand function,
it is optimal to produce units exactly equal to the current demand.

(2) The salvage value of the production facility plays an important
role in determining an optimal leve]-of maintenance. For a case where
there 1s no salvage value for the facility, we have found that the
optimal policies usually include zero level of maintenance. However,
the zero maintenance policy may not always be optimal, especially for a
process with a very high obsolescence rate.

(3) Singular ares, i1f exist, seem to occur.in the middle of the
planning horizon. It is difficult to prove this due to the complekity
of our model; however, we have shown in the previous section thgé no
singular arcs exist at the start of the planning hgrizon. Sethi [1973]
and Abad [1982) discussed an existence of singular ares in the entire
middle portion of a long-term planmning horizon.

(4) For a linear production cost function, it is always optimal not to
produce units until on-hand inventory is completely depleted. This
statement is justified by the following obvious reason. With a linear
production cost function, a fixed unit production cost is incurred no
matter how many units are produced. Thus, by producing units when they

are needed one can avoid unnecessary inventory holding costs.

4.2 Modification to Model
For future research, we may consider the following modification.

(1) Sometimes, the process performance deteriorates on the basis of the
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number of units produced rather than of its age. Here, the process
performance is assumed to decline as the total number of units that have
been produced by the process increases. In such a case, the state
equation for the process performance may be written as

p(t+at) = p(t) - a(£)p(t) At + (1 - p(t)) m(t) At,
vhere o(£) is the obsolescence function of the process, which is a non-
decreasing function of the total number of units produced by the process
up to t (i.e., $(t)-Igu(r)dr ). DNote that the proposed state equation
now contains u(t), implying that a higher degree of dependency between
the two state equations (for x(t) and p(t)) exists. A similar analysis
may be used to deal with this problem; however, the decentralized
approach seems to be Inappropriate because of the high degree of
dependency between the two subproblems. |
(2) The linear salvage value of the‘facility (i.e., bp(T)) can be
replaced by a quadratic salvage function (i.e., bpz(T)). The quadratic
salvage function may be a more realistic assumption since it puts
different weights based on the process performance at the final time
{i.e., more weights on the process with higher quality than on that with
lower quality). With the quadratic salvage function, the problem would
become more complicated because we would have the ending adjoint value
Az(T)-2bp(T), which is unknown.
(3) Models of preventive maintenance decisions often include the
possibility of system (machine) breakdown. In other words, preventive
maintenance is applied to the system to change the probability of system
{machine) failure. Such a consideration requires an Introduction of

randomness in the model., However, it will change the model entirely.
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APPENDIX I-A: COMPUTER PROGRAM - CENTRALIZED APFROACH

REM ** THIS PROGRAM SOLVES THE CONTINUOUS-TIME PRODUCTION/MAINTENANCE *+*
REM *% PROBLEM USING THE INITIAL-VALUE SHOOTING METHOD *%k
REM ** ( The Centralized Approach ) %ok

* Program TS83-1 23/3/89 Revised 24/6/89 4/8/89 27/9/89 2/10/89
REM ** MAIN PROGRAM *%
‘* Open & file to write trajectories so that LOTUS-123 can use them

! to draw graphs

OPEN "a:ts3-1-3,prn" FOR QUTPUT AS #1

' Input data

tf = 1 'planning time horizon

del = .01 *delta

a=20 'salvage value for each unit unsold

b =10 ‘salvage value of the facility

h=1 ‘holding cost

r -2 'coefficient of quadratic production cost term
q=-20 ‘coefficient of linear production cost term
d=20 ‘constant production cost term

w=8 ‘revenue form selling a unit item

c=2.5 ‘maintenarnce cost

alpha = 1 ‘obsolescence rate of process performance

s =4 *demand rate

mbar = 2 'maximum level of maintenance

xzero = 3 'initial inventory level

pzero = 1 *initial process performance

rho = .1 ‘constant continuous discount rate

etaconst - 9

! Calculate initial value of lambdal

IF rho = 0 THEN

lamlzero = a + h * (-tf)

ELSE

lamlzero = -h / rho + (& + h / rho) * EXP(rho * (-tf))

END IF
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' Guess initial value of lambda2

lam2zero = 0

' Print input data on screen

PRINT "tf="; tf, "final time"

PRINT "del="; del, "delta"

PRINT "a="; a, "salvage value for each unit unsold®
PRINT "b="; b, "salvage value of the facility"

)
PRINT "h="; h, "inventory holding cost"
PRINT "r="; r, "coefficient of quadradic production cest term"
PRINT "q=": q, "coefficient of linear production cost term"

PRINT "d="; d, "constant production cost term"

PRINT "w="; w, "revenue from selling a unit item"

PRINT "c=": ¢, "malintenance cost"

PRINT "alpha="; alpha, "obsolescence rate of process performance”
PRINT "s(t)="; s, "demand rate"

PRINT "MBAR=": mbar, "maximum level of maintenance®

PRINT "xzero="; xzero, "initial inventory level”

PRINT "pzero="; pzero, "initial process performance"

PRINT "rho="; rho, "constant continuous discount rate"

PRINT "laml{0)="; lamlzero, "initial (known) value of lambdal®
PRINT "lam2(0)="; lam2zero, "initial (guessed) value of lambda2"
PRINT "etaconst="; etaconst

PRINT n n

PRINT " n

' Initialization

lamlold = lamlzero: lam20ld = lam2zero

lam2low = 0: lam?high = 50 'low and high values of lam2zero
¥old = xzero: pold = pzero

inc = 0: profit = 0

count = 0

flag = O

DO WHILE flag <=~ 1

IF count > 0 THEN
IF flag - 1 THEN
lam2zero = lam2zero
ELSE
IF lam2tf > b THEN
lam2high = lam?zero
ELSE
lam2low = lam2zero
END IF



lam2zero =
END IF
ELSE
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(lamZhigh + lam2low) / 2

lam2zero = lam2zero

END IF

lamlold = lamlzero
lam?0ld = lamZzero

xold = xzero
pold = pzero
inc -« 0
profit = 0

IF flag > 0 THEN
PRINT " "
PRINT SPC(5);

SPC(3);
SPC(5);

ELSE
PRINT " "

END IF

"t"; SPC(5): "x"; SPC(5); "p": SPC(S); "laml";
"lam2"; SPC(5); "u"; SPC(6); "m"; SPC(53); "eta";
"mu": SPC(3):; "betal"; SPC(2); "beta2"

' Determination of optimal production controls

FOR t = 0 TO tf STEP del

s = 4
sdot = ©

IF rho = 0 THEN
lamleold = a - h * (tf - t)

ELSE

valuel = EXP(rho * (t - tf))
lamlold = -h / rho + (a + h / rho) * valuel

END IF

SELECT CASE ABS(xold)

CASE 1S >

.01

etaold = etaconst
utest = ((lamlold + etaold) * pcld - q) / (2 * r)
IF utest > 0 THEN

uold = utest

muold = 0

ELSE

uold = 0
muold = q - (lamlold + etaold) * pold

END IF
CASE ELSE

muold - 0
etaold = etaconst
utest = ((lamlold + etaold) * pold - q) / (2 * 1)
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IF utest > s / pold THEN

uold = utest
ELSE

uold = s / pold

etaold = (2 * r * uwold + q) / pold - lamlold
END IF

END SELECT

' Obtain non-singular and singular optimal maintenance controls

lamldot = (a * rho + h) * valuel
sinarc = lam2old * (1 - pold) - c
sintest = ABS(sinarc)

SELECT CASE sintest

CASE 15 > .02
IF sinarc < 0 THEN
mold = O
ELSE
mold = mbar
END IF

CASE ELSE

IF uold = O THEN
mold = -(alpha * 2 + 2 * rho * alpha + rho * 2
* (1 - pold)) / alpha
ELSEIF uold = utest THEN
mainvall = (2 * alpha + rho * (1 - pold)) * lam2old -
((lamlold + etaold) * (1 - pold)) " 2 / (2%r)
subvall = lamldot * (1 - pold) * (2 * (lamlold + etaold)
* pold - q)
subval?2 = (lamlold + etaold) * pold * (rho * (1 - pold)
+ 2 * alpha * pold)
subval3 = q * (rho * (1 - pold) + alpha * (1 + pold)}
mainval? = subvall + {lamlold + etaocld) * (subval2
- subval3)
mainval3 = (alpha " 2 + 2 * rho * alpha + rho * 2 *
(1 - pold)) * lam2old
mold = (mainval2 / (2 * r) - mainval3) / mainvall
ELSE
mainval4 = alpha * lam2old + (1 - pold) * (q * s * pold
* (2 -pold) + 2% r*s " 2% (3 - 2% pold))
/ pold © & _
subval4d = alpha * {(q * s * pold * (3 - pold) + 4 * ¢
* g 2% (2 - pold))
subval5 = rho * (1 - pold) * (2 *r *s " 2 + q *
% pold) + (1 - pold) * (4 * r * s + q *
* sdot

-
pold)
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mainval5 = subval4 + subvalb :
mainvalé = (alpha " 2 + 2 * rho * alpha + rho " 2
* (1 - pold)) * lam2old
mold = (mainval5S / pold " 3 - mainval6) / mainvalé
END IF

IF mold < 0 THEN
mold = 0

ELSEIF mold > mbar THEN
mold = mbar

ELSE
mold = mold

END IF

END SELECT

pnew = pold + del * {mold - (alpha + mold) * pold)
lam?new = lam2o0ld + del * {(rho + alpha + mold) % lam2old
- {lamlold + etaold) * uold)

* Otain other trajectories
betlbet2 = -sinarc

IF sintest < .02 THEN
betalold = O
betaZold - O
ELSEIF betlbet2 > 0 THEN
betalold = betlbet2
beta2old = O
ELSE
betalold = 0
betaZold = -betlbet2
END IF

profit = proficv + del * (w * s - h * xold - (r * uold * 2
+ q * uold + d) - ¢ * mold)

hamilt = w * s - h * xold - (r * uwold " 2 + q * uold + d)
- ¢ * mold + (lamlold + etaold} * (pold * uold - s)
+ lam20ld * (mold - (alpha + mold) * pold)

Xnew = xold + del * (pold * uold - s)

IF xnew < 0 THEN
xnew = 0
ELSE
Xnew = xnew
END IF



value2 = ABS(t - ine)
IF value2 > .0005 OR flag < 1 THEN

xold = Xnew

pold = pnew
lam2final = lam2o0ld
lam20ld = lam2new

ELSE

inc = inc + del

lam2def = lam2o0ld * (1 - pold)

PRINT USING "s#&t.###"; t, xold; pold; lamlold; lam2o0ld; uold;

mold; etaold; muold; betalold; beta2old

PRINT #1, USING "### .####": t, xold; pold; lamlold: lam2o0ld;
uold; mold; etaocld; muold; betalold; beta2old:
lam2gdef; ¢; profit: hamile

xold = xnew

peld = pnew

lam2final = lam20ld

lam20ld = lam2new

END IF

NEXT t

IF flag = 1 THEN
EXIT DO

ELSE
lam2tf = lam2final

PRINT "lambda2(0)="; lam2zero
PRINT "lambda2({tf)="; lam2tf
test = ABS(lam2tf - b)

IF test < ,1 THEN

LOoCP

flag = flag + 1

ELSE

flag = flag

END IF
END IF
count = count + 1

salvage = a * xold + b * pold

PRINT

n

PRINT "Number of iterations required before convergence ="; count + 1
"Profit (from operation) ="; profit

"Salvage value (of inventory/facility) ="; salvage

"TOTAL PROFIT ="; profit + salvage

PRINT
PRINT
PRINT
PRINT
CLOSE

#1

60
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APPENDIX I-B: COMPUTER PROGRAM - DECENTRALIZED APPROACH

REM %% THIS PROGRAM SOLVES THE CONTINUOUS-TIME PRODUCTION/MAINTENANCE #*
REM ** PROBLEM USING THE GOAL-CORDINATION APPROACH *%
REM %% ( The Decentralized Approach ) *%
* Program TS3D-1 Developed on 1%/6/89 Revised on 23/6/89

REM ** MAIN PROGRAM #%

' Dimension arrays as STATIC

DIM x(200), p(200), u(200), m(200), laml{200), lam2(200), z(200)

DIM theta(200), mu(200), betal(200), beta2(200), eta(200), lam2def(200)
DIM profitsubl(200), profitsub2(200), hamiltsubl(200), hamiltsub2(200),
DIM record(2), valuetheta(200)

' Open a file to write trajectories so that LOTUS-123 can use them
' to draw graphs

OPEN "a:ts3d-1.prn" FOR OUTPUT AS #l

* Input date

tf =1 ‘planning time horizon

del - .01 ‘deita

a=20 'salvage value for each unit unsold

b =10 'salvage value of the facility

h=1 ‘holding cost

T =2 'coefficient of quadratic production cost term
q=20 'coefficient of linear production cost term
d=20 'constant production cost term

w=28 ‘revenue form selling a unit item

c=2.,5 'maintenance cost

alpha = 1 'obsolescence rate of process performance

s =4 ‘demand rate

mbar =~ 2 'maximum level of maintenance

x{0) = 3 'initial inventory level

p(0) = 1 *initial process performance

rho = .1 'constant continuous discount rate

thetaint =« 5

lam2(0) -~ O

' Print input data on screen

PRINT " " _

PRINT "tf="; tf, "final time"

PRINT "del="; del, "delta"

PRINT "a="; a, "salvage value for each unit unsold"
PRINT "b="; b, "salvage value of the facility"
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"h="; h, "inventory holding cost"

"r="; r, "coefficient of quadradic production cost term"
"gq="; q, "coefficient of linear production cost term"
"d=": d, "constant production cost term"

"w="; w, "revenue from selling a unit item"

Mecm": ¢, "maintenance cost"

"alpha="; alpha, "obsolescence rate of process performance”
"gm®: g5, "demand rate"

"MBAR="; mbar, "maximum level of maintenance"

"x(0)="; x(0), "initial inventory level™

"p(0)="; p(0), "initial process performance"

“rhow"; rho, "constant continuous discount rate®
"theta="; thetaint

! Initialization

kE = £f / del

ISR k = 0 TO kf STEP 1
theta(k) = thetaint
NEXT k

' Loop for the main problem

DO
‘* Solve (MAIN) Subproblem
lam2low = -10: lam2high = 20 ‘low and high values of lam2zero
flagmain = 0

DO WHILE flagmain < 1

* Obtain non-singular and singular maintenance controls

FOR k = 0 TO kf STEP 1
sinarc = lam2(k) * (1 - p(k)) - ¢
sintest = ABS(sinarc)

SELECT CASE sintest
CASE IS > .01
IF sinarc < 0 THEN
m(k) = 0
ELSE
m(k) = mbar
END IF
CASE ELSE
mainvall = alpha * lam2(k) + theta(k) * (1 - p(k))
mainval2 «~ theta(k) * (alpha * (1 + p{(k)) + rho
* (1 - p(k)))



mainval3 = (alpha “ 2 + 2 * rho * alpha + rho " 2
* (1 - p(k))) * lam2(k)
m{k) = (mainval2 - mainval3) / mainvall

IF m{(k) < 0 THEN
m{k) = 0

ELSEIF m{(k) > mbar THEN
m(k) = mbar

ELSE
m{k) = m(k)

END IF

END SELECT
* Obtain other maintenance trajectories

lam2def(k) = lam2(k) * (1 - p(k))
betlbet2 = c - lam2def(k)

IF betlbet2 > 0 THEN

betal(k) = betlbet2
beta2{k) = 0
ELSE
betal{k) = 0
beta2{k) = -hetlbet2
END IF

IF k = 0 THEN
profitsubl(k) = 0
ELSE
profitsubl(k) = profitsubl(k - 1) + del * (theta(k) * p(k)
- ¢ * a(k))
END IF
hamiltsubl(k) « theta(k) * p(k) - ¢ * m(k) + lam2(k) * (m(k)
- (alpha + m(k)) * p(k))
p(k + 1) = p(k) + del * (m(k) - (alpha + m(k)) * p(k))
lam2(k + 1) = lam2{k) + del * ({rho + alpha + m(k)) * lam2(k)
- theta(k))

NEXT k

PRINT " "
PRINT "lambda2(0)="; lam2{0)
PRINT "lambda2(tf)="; lam2(kf)

test = ABS(lam2(kf) - b)
IF test < .1 THEN
flagmain = flagmain + 1
ELSE
IF lam2(kf) > b THEN
lam?high = lam2(0)
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ELSE
lam2low = lam2{0)
END IF
lam2(0) =~ (lam2high + lam2low) / 2

ERD IF
LooP

salvagemain = b * p(kf)
profitmain = profitsubl(kf) + salvagemain

PRINT " "

PRINT "! (MAIN)-subproblem has been solved."

PRINT " p(0),p(.5),p{cf):"; p(0), p(50), p(kf)
PRINT * n

! Transfer (MAIN)-solution to (PROD)-Subproblem by z(t)=p(t) and then
' solve (PROD)-Subproblem

etamin = 0: etamax = 20
flagprod = 0

DO WHILE flagprod < 1
cycle = 0

etalow = etamin + (etamax - etamin) / &
etamiddle = etamin + (etamax - etamin) / 2
etaupper « etamin + 3 * (etamax - etamin) / 4

DO WHILE cycle < 3
FOR k = 0 TO kf STEP 1

z(k) = p(k)
laml(k) = -h / rho + (a + h / rho) * EXP(rho * (k * del
- tf))

SELECT CASE x(k)
CASE IS > 0O

IF cycle = O THEN
eta(k) = etalow

ELSEIF cycle = 1 THEN
eta(k) = etamiddle

ELSE
eta(k) = etaupper

ERD IF

utest = ((laml(k) + eta(k)) * z(k) - q) / (2 * r)
IF utest > 0 THEN

u{k) = utest

mu(k) = O
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ELSE
ulk) = 0
mu(k) = q - (laml(k) + eta(k)) * z(k)
END IF
CASE ELSE
mu(k) = 0
IF utest < s / z(k) THEN
ulk) = s / z(k)
ELSE
ulk) = utest
END IF
etalk) = (2 * v * u(k) + q) / z(k) - laml(k)

END SELECT

IF k = 0 THEN
profitsub2(k}) = 0
ELSE
profitsub2(k) = profitsub2(k - 1) + del * (w * s
-h*x(k) - (x *uk) *“ 2+ q * uk)
+ d) - theta(k) * z(k))
END IF .
hamiltsub2(k) = w * s - h * x(k) - (r * u(k) * 2 + q * u(k)
+ d) - theta(k) * z(k) + (laml(k) + eta(k))
* (z(k) * u(k) - s)
®x(k + 1) = x(k) + del * (z(k) * u(k) - s)

NEXT k

salvageprod = a * x(kf)

profitprod = profitsub2(kf) + salvageprod
record{cycle} = profitprod

cycle = cycle + 1

LooP

PRINT " n
PRINT "rec(L),rec(M),rec(U):"; record(0), record(l),record(2)
PRINT "etalow, etamiddle, etaupper: ": etalow, etamiddle, etaupper

diffl = ABS(record(0) - record(l))
diff2 = ABS(record(l) - record(2))
diff3 = ABS(record(0) - record(2))
totdiff = Aiffl + diff2 + 4iff3

IF totdiff < .5 THEN
flagprod = flagprod + 1
EXIT DO

ELSE
flagprod = flagprod

END IF
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IF record(l) >= record(0) THEN
IF record(l) >= record(2) THEN
etamin = etalow
etamax = etaupper
ELSE
etamin = etamiddle
etamax = etamax
END IF
ELSE
etamin = etamin
ctamax = etamiddle

END IF
LogP
PRINT " "
PRINT "! (PROD) has been solved."
PRINT * "

' Check convergence of theta

epsilon = .2
deviation = 0
FOR k = 0 TO kf STEP 1
valuetheta(k) = (laml(k) + eta(k)) * ulk)
deviation = deviation + ABS(theta(k) - valuetheta(k))
NEXT k

avedeviation = deviation * del

PRINT "Check convergency of theta:"

PRINT "theta(0),theta(.5),theta(tf):"; theta(0), theta(50), theta(kf)
PRINT "avedeviation, epsilon: ", avedeviation, epsilon

' Update theta if necessary

IF avedeviation > epsilon THEN
FOR k = 0 TO kf STEP 1
theta(k) = theta(k) + .5 * (valuetheta(k) - theta(k))
NEXT k
ELSE
EXIT DO
END IF

LOOP

! Print out optimal solution on screen and on disk

PRINT " "

PRINT " "

PRINT "! Congratulationt "

PRINT "! The whole problem has been solved."
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PRINT "{ Printing begins now."

PRINT " "

PRINT " "

PRINT SPC(5); "t"; SPC{5); "x"; SPC(5); "p"; SPC(5); "laml"; SPC(3);
"lam2®; SPC(5); "u"; SPC(6); "m"; SPC(5); "eta"; SPC(5); "mu";

SPC(3); "betal"; SPC(2); "beta2"

PRINT "

inc =1

FOR k = 0 TO kf STEP inc
t = k * del

profit = profitsubl(k) + profitsub2(k)

hamiltonian = hamiltsubli(k) + hamiltsub2(k)

PRINT USING "a##.###"; t; x(k); p(k); laml(k); lam2(k); u(k); m(k);
eta(k); mu(k); betal(k); beta2(k)

PRINT #1, USING "t ###u™; t; x(k); p(k); laml(k); lam2(k); u(k);
m{k); eta(k); mu(k); betal(k); beta2(k); theta(k); lam2def(k);
c; profit; hamiltonian

NEXT k

profitoperate = profitsubl(kf) <+ profitsub2(kf)
salvagetotal = salvagemain + salvageprod

PRINT " "

PRINT "Profit (from operation) =": profitoperate
PRINT "Salvage value ="; salvagetotal

PRINT "Profit from (MAIN)-subproblem ="; profitmain
PRINT "Profit from (PROD)-subproblem ="; profitprod
PRINT "TOTAL PROFIT ="; profitoperate + salvagetotal
PRINT " "

CLOIE #1
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PART 11

INVENTORY SYSTEMS FOR REPATRABLES
CHAPTER 5 INTRODUCTION

5.1 Description of Systems

Importance of the study in the field of inventory theory for
repairables has been rapidly realized by many researchers in the recent
years. In many supply systems involving spare parts, repairing failed
items (if possible) certainly has cost advantages over purchasing new
ones. Especially in the military, repajirable items usually accoﬁnt for
more than the half of the inventory investment (Schrady [1967],
Sherbrooke [1968], and Muckstadt [1973]).

In repairable-item inventory systems with returns, two types of
inventories (the serviceable inventory and the repairable inventory) are
carried. The serviceable inventory is depleted by demand for
serviceable units kept in the storage facility and it is replenished by
repairing repairable units available in the repair facility and/or
purchasing new serviceable units from outside. The repailrable
inventory, on the other hand, is depleted by repairing and/or junking
repairable units and is replenished by returns of previously demanded
units by customers to the repair facility. The decision maker must
determine the optimum quantities of purchasing, repairing, and junking

based on such information availshle to him as the serviceable and
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repairable inventory levels, the size of demand, and the size of
returns, Figure II-l1 shows a schematic representation of the typical
repairable-item inventory system wich returns,

The inventory theory for repairables has the potential for
greater complexity and challenge than the inventory theory for
consumables because the former has a higher degree of dimensions. These
added dimensions, however, require more complex analysis of the system

and restrict use of alternative solution methods.

Outside Procurements
{
i
1
+
Repaired
Returns Inventory for Units Inventory for Demand
TS Repairable B o =73 Serviceable bttt
Units Units
Repair Facility Storage Facility

Figure II-1: A Schematic Representation of A Repairable-Item
Inventory System with Returns.

5.2 Literature Search
The field of repairable-item inventory systems with returas has

been gradually recognized by a number of researchers and practitioners.
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Based on assumptions made and objectives of systems considered, the
literature related to repairable-item inventory systems with returns can
be classified into many possible ways. Various ways of classifying the
literature in that field and the categorization of each of the surveyed
articles are shown in Appendix II-A.

Phelps [1962] and Veinott [1966] considered the situation in
which the demand process for serviceable units and the return process of
repairable units are perfectly correlated. This means that irr any given
period a known proportion of the demand for serviceables are returned to
the repair facility for repair. 'They both utilized a periodic review
policy where the inventory levels are reviewed periodically. Their
models are characterized by two state variables, the levels of
serviceables and repairables, at each period. In Phelps' model, four
decisions (purchase serviceables, repair repairables, junk serviceables,
and junk repairables) are made at the beginning of each period.

Allowing for the case of lost sales, Phelps has examined the steady-
state solution to the two-dimensional problem and shown that the optimal
policy is described by seven regions in the state plane. Although a
determination of the region boundaries is quite complex, Phelps' model
provides some useful and interesting properties of an optimal solution,
Veinott [1966] modified Phelps' model by considering the case of
backorders for unsatisfied demands and by deleting the junking
decisions. He has shown the structure of an optimal policy, which is
specified by three regions in the state plane, without determining the

boundaries of the regions.
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Schrady [1967] considered a deterministic inventory system in
which the demand and return rates are fired constants., Treating the
serviceable and repairable inventories as “wo independent parts, he
developed closed-form formulae (i.e., modified EOQs) for optimal
procurcement and repalr batch quantities,

Allen and D'Esopo [1968] and Simpseon [1970] treated the
repairable returns as additional random uncontrocllable replenishments to
the serviceable inventory so that inventory theory for consumables can
be used to calculate the optimum procurement quantity. In the model of
Allen and D'Esopo, a unit demanded is returned for repair with
prebability of p while it is non-repairzhle (so is discarded) with
probability of 1-p. The model assumes a fixed iepair time, a fixed
replenishment lead time, and a possibility of backorders. A continuous
ordering policy of the (r,Q) type (i.e., reorder point - order
quantity) is foliowed for the analysis of the model. Simpson [1970], on
the other hand, used a fixed periodic review in which the net inventory
is brought up to a maximum level whenever an order for new stock is
placed (i.e., order up to level). He allowed stochastic demand, repair
output and lead time, but restricted his analysis to the situation where
the mean demand rate Is greater than the mean repair rate. The optimum
order quantity was determined by successive approximations which was
then verified by simulation methods.

Brown et al. [1971] considered a discrete time inventory system
with a positive delivery lag in which demands in successive periods are
dependent on one another, They formulated the problem as a single state

inventory model and showed a way to calculate the optimal order-up-to
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level. An important contribution of their paper is a possible
application of the model to a special case of repairable-item inventory
models, especially, to the one mentioned in Allen and D'Esope [1968), in
which a portion of demands generated are returned for repairs.

Simpson [1972])[1978] examined a repairable-item inventory
problem similar to the one in Phelps [1962] and in Veinott [1966]. He
formulated a two-dimensional dynamic programming model under a periodic
review policy. Simpson assumed, as Veinott did, backlogging of the
unsatisfied demand for serviceable units, instantaneous delivery of
purchased units, and instantaneous repair df repairable units. However,
Simpson’s model differs in the following sense: first, the complete
dependency between demand and returns was removed, but a joinc
probability density function between demand and return processes, which
is known for each period, was allowed; second, a more definitive
solution structure was developed and then proved to be optimal. Simpson
used a backward dynamic programming technique with the Kuhn-Tucker
saddle point theorems to describe the n-period solution, which is
completely determined by three time-dependent constants: the repair-up-
to-level, the purchase-up-to-level, and the scrap-down-to-level. The
solution structure consists of seven regions describing the optimal
number of units to purchase, repair and scrap. The methodology employed
by Simpson is not applicable to the 'lost sales’ case.

A similar repairable-item inventory problem has been considered
by Heyman [1977). In his model, returned units can either be repaired
or be disposed of at a certain net receipt per unit. In additioﬁ, a

maximum level (N) of the serviceable inventory is chosen, and returns
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that would raise the servicezble inventory level above N are disposed
of. The objective here is to determine the optimum N* vwhich minimizes
the total of repair, disposal, purchasing and holding costs. The model
also assumes a continuous review policy, negligible repair and
procurement lead times, and independent demand and return processes.
Heyman showed that the above problem is exactly the same as the problem
of a single-server queue with a maximum system capacity of N, and then
reformulated it as a queueing design model with a finite system
capacity. He has obtained an exact solution for the Markovian demand
and return processes (i.e., H/M/1/N) while he has used diffusion methods
to obtain an approximate solution for more general cases of demand and
return processes (i.e., G/G/1/N).

As an extension of the typical repairable-item inventory.models
with returns, Heyman [1978) considered an inventory system with both
positive and negative demands. Here, because of the positive and
negative stock fluctuations, items can not only be purchased from a
central warehouse but also be sent back at an additicnal fixed cost to
the central warehouse when inventory levels for serviceable units become
large. Assuming a fixed holding cost per item per unit time,
instantaneous shipments and returns, and Poisson demand and return
processes, Heyman showed that an oﬁtimal two-critical -number {a b)
policy which minimizes the asymptotic cost rate of the system exists,
where b is the "trigger level" for sending a quantity of b-a units back
to the central warehouse (0<a<bh),

As Heyman {1977][1978) did, Isaac [1979] and Muckstadt and Isaac

[1981] assumed independent Polsson processes between demand for
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serviceables and returns of repairables. A s'gnificant distinction of
their models from the others, however, is that they allowed for a
constant procurement lead time and stochastic repair times. They first
considered a single location repairable inventory model in which the
stationary return rate is less than the stationary demand rate. It was
further assumed in the models that unsatisfied demands are backordered
and that the ordering rule follows a continuous review (r,Q) procurement
policy, in which an order of Q units is placed when the inventory
position for serviceable units drops to r. The models develop a normal
approximation to the stationary distribution of net inventory which is
then used, under the optimality criterion of total expected cost of
procurements, holding and backorders, to determine optimal values of r
and Q. Later, they studied a two-echelon system in which a cent;al
warehouse having both repair and storage facilities supports a number of
retailers only having storage faciliries. Assuming that the retailers
follow (s-1,s) continuous review ordering policies while the central
warehouse maintains the (r,Q) procurement policy, they proposed an
algorithm for determining the policy parameter values at each retailer
and the central warehouse. Finally, Isaac [1979] considered a case
where the stationary return rate is greater than the stationary demand
rate. In this situation, outside procurement of new units is no longer
necessary since in the long-run repair of returned units alone is
sufficient to meet demand for serviceable units. This Iimplies that the
repairable inventory system now becomes a single-server repalr system
with exponential service times (i.e., no procurement dacision), which

can be easily analyzed by queueing theory.
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Recently, Albright and Soni [1988] considered a somewhat
complicated repairable-item inventory model with returns. In their
model, the system consists of a storage facility and a repair facility
with a finite number of identical repairmen having exponential repair
times. Demand for serviceable units occurs whenever any item being
leased fails or new customers are generated. An item is returned when a
customer brings a failed item for repair or a lease expires. Any of
the above events is assumed to occur independently according to Poisson
processes with different mean rates. The system is assumed to have as
many as M items while the tetal number of customers in the system is
linited to of size N. A fixed proportion of failed items is assumed to
be I{rreparable, and thus new items must be brought from an ocutside
source, In such a case, a continuous ordering policy of the (s,S) type
is followed. They formulated the problem as a continuous-time Markov
precess with multidimensional states and presented an approximate
procedure for calculating the stationary distribution of the process.
The approximation method was shown to be simple, non-iterative, easy to
understand, and reascnably accurate. Appendix Ii-B provides a brief
description of each of the four models from the literature, directly
related to the proposed research, and a comparison among them in various

categories.

5.3 Contributions
Part I1 of the thesis contributes to the theory of inventory
control for repairaﬁles the following:

(1) The proposed model incorporates several important features
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mentioned in the previous literature. These include a periodic review
policy, a two-dimensional discrete state space, stochastic demand and
return processes, ‘lost sales’ for unsatisfied demand, negligible
procurement and repair times, both finite-time and infinite-time
planning horizons, and three types of decisions (purchase, repalr and/or
junk) at each period. 1In =d2ition, it has the following distinct
features. First, the return process is dynamic in terms of the demands
in the current and previous periods. This means that random proportions
of the serviceable units demanded in the current and previous periods
are returned to the system during the current period. Second, a more
realistic cost function, i.e., set-up costs for procurement and repair,
is included. The set-up costs Include a fixed cost to place a
purchasing order for serviceable units, and a fixed cost to set ﬁp the
repalr facility to repair repairable units,

(2) A completely different solution approach is employed for the
analysis of the proposed problem. The methodology employed in this
paper is use of stochastic dynamic programming in Markov Chains,
sometimes referred as a Markov Declsion Process (MDP), with a decision
space reduction procedure developed throughout the analysis of the
problem to eliminate unnecessary decisions.

(3) While the method of successive approximations is used'for solving
the problem, two acceleration techniques, the error bounds approach and
SDD (State Decomposition by Dimension), are introduced for speeding up
the convergence of successive approximations. The decomposition
technique approximates the optimal solution to repairable-item fnventory

problems even with a large number of states.



CHAPTER. 6 REPAIRABLE-ITEM INVENTORY MODEL WITH RANDCM RETURNS

6.1 Statement of Problem

Consider an inventory system with a single type of repairable
item. As seen in Figure 1I-2, the system consists of a storage facility
for serviceables and a repair facility for repairables. Random demand
for serviceable uaits occurs independently while a return occurs when a
customer brings a unit previously demanded to the repair facility (e.g.
customer service) for a refund. Random proporticns of serviceable units
demanded in the current and previous periods are assumed to be returned
during the current period. Note that units demanded a long time- ago may
be returned now, and that the return of a unit to the system does not
necessarily generate a demand for a serviceable unit. Thus the return
process in the current period is dependent upon the demand processes in
the current and previous periods. We call such a relation a ‘dynamic’
(period-to-period) correlation between the demand and return processes.
Qutside replenishments (i.e., purchase) of serviceable units are
necessary from time to time because the number of returned units may be
less than that of serviceable units demanded. No other assumptions are
made about the return process. At the beginning of each period, the
serviceable and repairable inventories are reviewed (i.e., periodic
review) and then proper decisions (purchase, repair and/oxr j.ak) are
made. Only returned units waiting for repair in the repair facility can

be junked. Junking is necessary in the situation where holding and
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Figure II-2: A Discrete-Time Repairable-Item Inventory System
with Dynamic Returns.

repairing a returned unit is more costly than junking it and purchasing
a new one. Returned units will stay in the repair facility until they
are to be either junked or repaired to become additional replenishments
to the serviceable inventory, The situation illustrated above can be
seen in real life. For an example, we may consider a distributing store
having its own storage and repair facilities. Demand for an item may
occur at any time (e.g. any day) within a period (e.g. a week) when a
customer enters into the store. If the item which the customer wants to
buy is not available in the store, he or she usually goes to another
store, indicating a situation of lost sales. Upon the sale of a unit

item to the customer, the store provides a warranty so that the customer
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can return the purchased item (if he is not sctisfied with the item or
he has found it defectlve) to the store within a certain time interval
(e.g. 2 weeks) for a full refund of money. The customer may or may not
purchase a new unit, implying that the return of a unit does not
necessarily generate a demand for a serviceable unit. The returned item
is sent to the repair facility for repair. At each periodic review
point (e.g. the beginning of each week), the store manager must make
appropriate decislions to purchase, to repair, and to junk so that the
total of purchase, repalr, storage and rhortage {(or penalty) costs is

minimized,

6.2 Assumptions and Notation

We make the following assumptions.

(1) Time is treated as a discrete variable (n = 0,1,2,...).

(2) A periodic review policy is followed such that the system is
reviewed at each and every period.

(3) PDemands for serviceables are independent, identically distributed
(1.i.d.) nonnegative random variables.

(4) All demand not immediately satisfied is lost (i.e.,, lost sales).

(5) 1In each period, random fractions of serviceable units (currently
and previously demanded) are returned.

(6) The return of a repairable unit may not necessarily generate a
demand for a serviceable unit.

(7) The return status of each serviceable unit demanded is represented
by Bernoulli random variable.

(8) Purchase or< repalr times are negligible.
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(9) Each of the storage and repair facilities has a limited storage
capacity, implying that there is an upper limit on the number of

units that can be handled by each facility,

Assumptions (1) to (6) have already been discussed, Assumption
(7) will be discussed later in detail. Assumption (8) may not be
realistic in general; however, it can be justified by some real life
sitvations. If distributing stores having their own storage and repair
facilities are controlled by a regional headquarter with a central
warehouse (e.g. Consumers Distributing), order deliveries from the
central warehouse to the stores can be made as quickly as possible
(which results in short replenishment times). Also, a distributing
store usually performs only minor repairs (which take very shore times)
such as reorganizing contents of a box and sealing the box. If returned
items require major repairs, then they are usually sent to the ce-tral
warehouse. Assumption (92) can be easily justified without any questions
because it explains a real life resource constralnt. But, what would
happen if the storage facility or the repair facility reached its
maximum storage capacity? If the storage facility for serviceables
reached its maximum capacity, then neither purchasing nor repairing
could be done until the serviceable inventory is depleted by some
demand. If the repair facility reached its maximum capacity, however,
then units that are returned to the facility cannot be entered and are

sent to another store,
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We define the following notation.

X
n

g

3]

: Serviceable inventory at the beginning of period n.

: Repairable inventory at the beginning of period n.

: Maximum capacity of the storage facility.

: Maximum capacity of the repair facility.

: Number of serviceables purchased at the beginning of period n.
: Number of repairables repaired at the beginning of period n.

! Number of repairables junked at the beginning of period n.

: Demand for serviceable units in period n, where wn-E(w“).

! Repairable units returned in period n.

! Bernoulli random variables with parameters 6i representing

the return status of each serviceable unit demanded i periods
ago, where Si-E(Bi) (056151; i=0,1,2,...).

i.e., P{No recurn)=P(f;=0}=1-6; and P(Return)=P(6 ,-1)=5,.

: Discount factor (0O=ac<l).

We consider the following cost factors.

(1L

(2)

The costs of purchasing serviceable units are linear in the number

of units purchased (i.e., a constant cost of ¢(>0) per unit).

Also, a fixed ordering charge C(20) per replenishment is assumed.

Thus, the total cost of purchasing u units of serviceables is: C+cu

for w0 and 0 for u=0,

The costs of repairing repairables are linear in the number of

units repaired (i.e., a constant cost of r(>0) per unit). However,

there is a fixed cost R(20) to set up the repair facility. Thus,

the total cost of repairing v units is: R+rv for v>0 and 0 for v=0.



(3)

(4)

(5)

(6)

6.3
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A cost (or revenue) of p per unit from junking repairables is
incurred. If p>0, a cost occurs. If p<0, a salvage value occurs.
The storage (or holding) cost is linear in the number of units
either In the serviceable inventory or in the repair facility
waiting for repair. Constant charges of £ and h per unit per
period for repairable units in the repair facility and for
serviceable units in the storage facility, respectively, are
incurred, where f=h.

A fixed shortage (or penalty) cost of b for each unit of demand
unsatisfied is incurred (i.e., the case of lost sales).

The cost of repairing a repairable unit is assumed to be less than
the net cost of junking the unit and purchasing a new serviceable

unit (i.e., r<c+p). Otherwise, repairing is never optimal.

Model Formulation

The proposed model contains twe state variables and three

control (decision) variables.

State variables : Serviceable inventory, X,
Repairable inventory, Ya

Control variables: HNumber of serviceable units purchased, u
Number of repairable units repaired, vy

Number of repairable units junked, jn
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The proposed repairable-item inventory problem consists of two
state equations, an equation representing the return process and a

system constraint as described below.

Number of serviceable units at beginning of period n+l
= max [ 0, # of serviceables at n + # of serviceables
purchased in n + # of units repaired in n - demand in n ]
or
X 49— max [ 0, X + uy + Voot W 1- (6-1)
Number of repairable units at beginning of period n+l
= # of repairables at n - # of units repaired in n

- # of units junked in n + # of units returned in n

or

Ynel ™ Yn "V "I t 20 (6-2)

Note that Equacion (6-2) does not satisfy the requirement that the
repairable inventory be always nonnegative (i.e., ynao for n=0,1,2,...).

However, this requirement will be met by the system constraint (6-6).

The current return process is characterized by Bernoulli random
variables 81 {with parameters 61) representing the return status of each
sexviceable unit demanded i periods ago and the demands in the current

and previous periocds (which are known with certainty).
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Number of units returned in period n
= # of serviceables demanded in period n and returned in peried n
+ # of serviceables demanded in period n-1 and returned in periocd n

+ # of serviceables demanded in period n-2 and returned in period n

+ # of serviceables demanded in period n-i and returned in period n

Let ¢i a be the number of serviceables demanded in period n-i

(or 1 periods ago)} and returned in period n. Thus it can be written as

¢i - Z ai' : (6-3)

where 91 are random variables each having value 0 with probability of
1-6'i or 1 with probability of §;, and w__, is the demand for serviceable
units in period n-i. Note that ¢1,n ¢.ce Independent binomial random
variables with parameters (wn_i,ai) since 81 are Bernoulll random
variables with parameters §

i

Using the notation defined above, we may write

zZ = ¢0,n + ¢1'n + ¢2.n + e - Z ¢i o (6-4)

Realistically, however, there is a limited refund period (M) in
which the customer can bring his or her unit to the repair facility for

a refund. In other words, the customer can return the unit only within
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M periods from the time of purchasing that unit. Thus, the number of
repairable units returned in period n is the sum of M+l terms, each of

which represents the number of serviceables demanded i periods ago and

returned in period n.

M
¥,

zZ,"¥% ot LT Yot o by Zoln

(6-5)
Different types of return behaviour of returnable units and the

corresponding forecasting methods, including one similar to (6-5), are

discussed in Kelle and Silver [1989].

Finally, the system constraint implies that the total of units
repaired in period n and units junked in period n must not exceed the
number of repairable units in the repair facility at the beginning of

period n.

Vot in s ¥ (6-6)



CHAFTER 7 MARKOV DECISION FROCESS (MDP) APPROACH

7.1 Description of MDP

Consider a process that is observed at discrete time points
n=0,1,2,...,N (N+= for the infinite-horizon problem) and that is
classified into one of a number of possible states. The set of possible
states is assumed to be countable and thus can be labeled by positive
integers (1,2,...). After each observation, an action from a set of all
possible alternatives (actions) labeled 1,2,...,K {(which is assumed to
be finite) is chosen. If action a is chosen when the process is in
state i at time n, the following two things will happen. First,- an
immediate expected cost C(i,a) will be incurred. Second, the state of
the system at the next observed time will be determined according to the
transition probabilities P?j(a). i.e., the probabilities that the system
will be in state j at time n+l given that action a is chosen in state i
at time n. Such a stochastic sequential decision process (with a
sequence of observed states and sequence of decisions made) is called a
Markov decision process (MDP). The objective is to choose a policy
which optimizes the performance of the system over the planning horizon.

A Markov decision process and the corresponding policy are said
to be non-stationary if the transition probabilities depend upon time
(i.e., P?j(a)#P?;l(a) for some i,j,n). A Markov decision process is
stationary if the transition probabilities are independent of the time

in which the decision is made (i.e., P?j(a)-ngl(a)-PiJ(a)), and the

88
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corresponding policy for an infinite-horizon problem is said to be
stationary since it uses an identical decision rule in each period. For
finite-horizon problems, the transition probabilities can te either
stationary or non-stationary for existence of optimality. For infinite-
horizon problems, however, the transition probabilities must be
stationary for stationary policies to be optimal (Puterman [1990]).

MDP theory including existence of optimality, characterization,
and computational results is based mainly on Bellman’s equation referred
as the principle of optimality (Bellman [1957]). 1In other words, many
of the concepts in dynamic programming (DP) have very similar
interpretations with those in MDPs. Thus some computational methods
used in MDP are analogous to the DP algorithm. An analysis of Markov
decision models usually does not result in an analytic (or closeﬁ-form)
solution; however, it provides the following: (a) an optimality equation
which characterizes the performance of the objective function, (b)
efficient computational algorithms for determining optimal or near-
optimal policies, and (c¢) the form of an optimal policy if it exists.

Importance and potential applicability of Markov decision
processes have been realized by a number of authors. They include
Bellman [1957), Bellman and Dreyfus [1962], Howard [1960), Manne [1960},
Derman [1962], Bertsekas [1976](1987][1989], Puterman and Shin [1979],

Porteus [1980], Heyman and Sobel [1982]), Puterman [1990].

7.2 Mathematical Statement
In this section, we formulate the dynamic control problem

defined in Chapter 6 as a Markov decisjon problem. We recall the
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control problem as follows., A system with two types of inventories, the
serviceables and the repairables, faces random demand for serviceables
whereas random proportions of the serviceables demanded in the current
and previous perleds are returned in the current period. At the
beginning of each discrete time period, the serviceable and repairable
inventorlies are reviewed and then proper decisions to purchase, to
repalr, and/or to junk are made. Here, we are interested in analyzing
two issues simultaneously: (a) a tradeoff between the costs associated
with having serviceables on hand to meet random demand and penalty costs
associated with ‘lost sales’ due to inability to satisfy the demand, and
(b) a tradeoff between the costs associated with having repairables on
hand (that are waiting for repair) and the costs associated with Junking

repairables and then purchasing new serviceables later from outside.

7.2.1 Description of the System Spaces
Time is treated as a discrete variable.

Stage (or decision epochs): n n=0,1,...,N-1, where Nsw,

The serviceable and repairable inventories (x,y), referred as “discrete
state space"” have upper capacity limits of X and Y, respectively.

State (XY x=0,1,2,...,%X; y-0,1,2,...,%.

At each period, proper decisions on the number of units to purchase (u),
to repair (v), and to junk (j) are made.

Decision : (u,v,j) u=0,1,2,...; v=0,1,2,...; j=0,1,2,...
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The state (xn,yn) is an element of a state space S, the control

(“h'vn‘jn) is an element of a control space U, and the random demand v

is an element of a disturbance space D. If decision (u,v,j) is made

when the system is in state (x,y), the following cost per stage will be

incurred,
State Decisjon Purchase Repair Junk
C+cu 1f w0 Rtrv 1f v>0
(x,y) (u,v,J) 0 if u=0 { 0 1f v=0 P

Hold (gerviceables) Hold (xepajrables) Lost saleg

max (0, h(x+utv-w)} max{0,f(y-v-j)) max{0,b({w-x-u-v))

Thus the expected cost incurred during the next transition if the system

is in state (x,y) and decision (u,v,3}) is made will be denoted by:

¢(x'y)(u,v.j) - ¢(x,y,u,v,3,w)
= 0o,6 +cu+ oR + v + pj + £ max(0,y-v-1}

+ h max{E[0,x+ut+v-w]} + b max{E[0,w-Xx-u-v]}, {(7-1)

where o w 1l if w0 and o = 1 if w0
u 0 if uw0 v 0 1if v=0.

Given an initial state (xo,yo), we want to determine a policy

w-{po.pl....,pN_l} where pn:S*U, for all (xn,yn)es, which minimizes the

expected total discounted cost

N-1 a
[+ 'ﬁ(xn-y b,V sjnrwn) l (7'2)

N
J«(“o'yo) = E {a ¢N(xN'yN) + n'"'n''n

n

=
n=0
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subject to the constraints

Xoey ~  TAX [0, X, + u + v, " wn] (7-3a)

Yn#l = Yn " Vn " Ip t (7-3b)
M

z, - 1§0 ¢i,n (7-3¢)

v, + jn sy, (7-34)

Note that ¢:SxUxD~R is a real-valued function which is given and
¢N(xN.yN) is a terminal cost incurred at the end of the process. The
discount factor (0sa<l) can be interpreted as equal to 1/(1+i), where i
is the interest rate. With a discount factor «, the present wvalue of
one unit of cost n periods in the future is equal to o Initial values
of the state variables, Xq and Yo+ are not included in (7-3a) and (7-3b)
because the MDP yields an optimal decision for each and every possible
state (i.,e., each pair of Xq and Yo values)., Also, Yoel in (7-3b)

always takes a nonnegative value as long as (7-3d) is satisfied.

7.2.2 System Rules and Decision Rules
The system is invalid (i.e., decisions not permitted) if one or
more of the following conditions hold.

(@) vatip>yy:  (B) xgrugtvdX, (o) xR, () a73Y, (7-4)
where &x ~u +v_ and By =v. +j_. Ve call these ‘system rules’. Note that
(a) results from the system constraint, that is, the sum of the repaired
and junked units must not exceed the repairables. The remaining
inequalities indicate possible situations of an invalid system due to
the limited capacity of either the serviceable facility (i.e., (b) and

(e)) or the repair facility (i.e., (d)). Inequalities (c¢) and (d) are



93

more relaxed than (b) and (&), respectively. The former will be used to
reduce the number of decisions to be considered in the MDP while the
later will be used to eliminate some decisions at certain states of the
system.

Also, the following two types of decisions will never be
optimal: (1) (u>0,v>0,3>0) and (2) (u>0,v=0,j>0), that is the case when
both positive purchasing and positive junking actions occur. The proof
is given in Lemma 7.2. We call these ‘decision rules’, which will be

used to reduce the total number of decisions considered in the MDP.

7.2.3 BReduction in Decision Space

The Markov decision process (MDP) enables us to determine an
optimal policy in a dynamic decision environment. In the proposéd
model, however, we deal with multi-dimensional state and decision
spaces, which usually results in a large number of states and actions.
Thus any reduction in the number of states and/or the number of
decisions to be considered in the MDP will relieve a burden of excessive
work on computation. The decision and system rules described in Section
7.2.2 do not reduce the number of states, but they may reduce the number
of decisions. In this section, we will determine the actual number of
decisions (after elimination) to be considered in the MDP and find out

how much reduction in the decision space is to be achieved.

Proposition 7.1: For the two-dimensional state MDF with upper bounds X
and Y for the serviceable and repairable inventories, respectively, the

total number of possible states is (X+1)(¥+1).
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Proof: The state variables x and y of state (x,y) may take any one of
the following integer:, (0,1,...,X) and (0,1,...,¥), respectively. Since
x may take any one of (X+l) different integers and y may take any one of

(Y+1) different integers, the total number of states is (X+1)(¥+1).

Proposition 7.2: For the two-dimensional state, three-dimensional
decision MDP with upper bounds X and Y for the state variables x and y,
respectively, the upper bounds of the decision variables u, v, and j can

be set to be X, min(X,Y), and ¥, respectively.

Proof: From the system rules (c) and (d) in Section 7.2.2, u may take
any one of nonnegative integers (0,1,2,...,X), v may take any one of the
following nonnegative integers (0,1,2,...,K), and j may take any one of

the following nonnegative integers (0,1,2,...,¥), where K-min(X,¥).

Thus, U=X, V=pin(X,Y), and J=Y,

Proposition 7.3: For the two-dimensional state, three-dimensional
decision MDP with upper bounds X and Y for the state variables x and y,
respectively, and with upper bounds U, V and J for the decision
variables u, v and j, respectively, the total number of decisions
remaining after some decisions have been eliminated by the decision and
system rules is (K+1)(L+l), where Kemin(X,¥) and L-max(X,Y), which is
indeed the same as the total number of states (X+1)(¥+l1).

Proposition 7.3 is proved by proving the following Lemmas. The proofs
of the Lemmas are given in Appendix II-C.

Lemma 7,1: The total number of decisions before some decisions are

eliminated by the decision and system rules is (K+1)(X+1)(¥+1).
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Lemma 7.2: Two types of decisions, (u>0,v>0,3>0) and (u>0,v=0,3§>0),
would never be optimal.

Lemma 7.3: The number of decisions eliminated by the decision rules,
(uw>0,v>0,3j>0) or (uw>0,v=0,j>0), is (K+1)XY.

Lemma 7.4: The number of decisions eliminated by the system rules,
(wv>R) or (v+i>¥), s} K(K+1)(3L+K4S).

Lemma 7.5: The number of decisions eliminated by both the decision
rules, (w0,v>0,3>0) or (uw0,v=0,j>0), and the system rules,

(utvdR) or (vei>Y), is é K(K+1) (3L+K-1).

Corollary 7.3: For the two-dimensional state, three-dimensional
decision MDP with upper bounds X and ¥ for the state variables x and vy,
respectively, and with upper bounds U, V and J for the decision‘
variables u, v and J, respectively, the proportion (of the total number
of decisions) eliminated by the decision and system rules is Eﬁi .
Proof: By Proposition 7.3,

Total number of decisions before elimination = (K+1)(X+1)(¥+1).

Number decisions remaining after elimination = (K+1)(L+l).
Thus,

Proportion (of the total number of decisions) eliminated

=1 - ( number of decisions remaining / total number of decisions )

PR 25§ Y4 75 D METe 15 5 Yo 2 ) M W &

(K+1) (X+1) (¥+1) (K+1) (R+1) (¥+1) K+1 K+l -

Corollary 7.3 shows how much reduction in the decision space is

achieved by the decision and system rules. It implies that most of
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potential decisions are eliminated and then tremendous computation time
savings will follow. For example, an inventory system with X=5 and Y=5
has 36 states (by Proposition 7.1). The decision space of the system
without the decision and system rules consists of 216 decisions (by
Lemma 7.1). This means that we must consider for each and every one of
the 216 decisions and must have a transient probability matrix for each
and every decision. If we exercise the decision and system rules,
however, the decision space will be reduced by 83% (by Corollary 7.3)
and the number of decisions remaining after elimination will be 36 (by
Proposition 7.3). Table II-1 and Figures II-3 and I1I-4 represent the
number of decisions remaining before/after being eliminated by the
decision and system rules and the percentage reduction in decision space

for cach pair of X and Y.

oo # of Decisions # of Decisions % Reduction
(X,Y) Before Elimination | After Elimination | in Decision Space
(1,1) 8 4 50.0

N e | PR 5.0
T | 26| | 83.3
Taon VT s | e | 87.5
Taeiny | B | T 9.9
Tasas | woe | 256 | 93.8
@0y | o261 | wi | 95.2
G030y | 20751 | 61 | 9%.8

Table II-1: Percentage Reduction in Decision Space
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7.2.4 Derivation of Transition Probabilities
As discussed in Chapter 6, the return process is characterized

by the sum of M+l independent binomial random variables, that is,

M
n = wO,n + ¢1,n + ¢2,n oot ¢H,n - ifo‘bi,n (7-3)

for i=n where i-0,1,...,M and n=0,1,...,N-1, The following propositions
and corollaries are used as the basis for deriving the transition

probabilities of the system.

Proposition 7.4: 1If demands in successive periods w 'wl""’wN-l are
independent, identically distributed (i.i.d.) nonnegative random
variables and the return process z, is characterized by (7-5), then the

Joint probability mass function of L and z. Is defined acs follows.

M
P{wn-r and zn-7} - P{i§0¢i,n-7lwn-r} P{wn-r},

w

n-1

= Bi for i=n (i=0,1,...,M; n=0,1,...,N-1) are independent
k=1

binomial random variables with parameters (wh_i,ﬁi) and ﬂi are Bernoulli

where ¢1 o

random variables with parameters 51' where 61-E(01).

Proof: P{wn-f and zn-y)

M
- Plzn-vlwn-r} P(wn—rl - P[i§0¢i,n-7|wn"’ P{wn-r}.

M
Corollary 7.4a: P(wn-f and zngy} - P{i§0¢i'n21|wn-r] P[wn-r}.

Proof: P{wn-r and zn27}

M .
- P{znaylwn-r} lenf'} - P{ifo¢i'na1|wn-r] P[wn-f}.
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© M
Corollary 7.4b: lenar and znfv} - kfr[ P{ifowi'n-7|wn-k] P(wn-k] |

Proof: Plznf1|wn;r}

- Plznfy and wn;r} / P{wnzr)
-}

- 2 P{zn-ﬂwn-k] P{wn-k) 1/ P[wnar)

Ker
o M
- kfr[ Plifolb.,_’n-*rlwn-k} Plw =k) ] / P{w 2r).

Thus, P{wh;f and zn-1}

© M
- P[zanIWnEf‘ lenzr] - kE [ P{ Z ¢i,n-7|wn-k] P{wn-kl ].
- 1«0
© M

Corollary 7.4c: P{wh;T and zngvi - X

[ PL ¢, =2y|w~k) P(w =Kk} ).
ker img LM T n

Proof: P{wnzr and zn27}

«© M
- P[zngylwnzr} P[wngr} - kff[ P{ifowi'n;7|wn-k] P[wn-k} ].

Proposition 7.5: Let ¢i n(iSn, i{-0,1,..,4; n=0,1,..,N-1) be independent

binomial random variables with parameters (wn-i'si)' If 61-63-8 for all
M M
i,j{=n), ifowi'n is binomial with parameters (ﬂn,ﬁ), where Qn-ifown_i.

Proof; Since ¢i o are binomial with parameters (wn_i.E).

L W 47
POgy v ) = (0h 67 sy ML

The moment generating function of ¢1 o’ ¢¢ (t), is given by
' i,n
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“n-1 w w -k
- % etk ( E-i) 6k (1-5) n-i

k=0

W

n-i w w_ .-k
- B0 0D et a-n

w
- (st +1 -5 M1

M
Let ' = T ¢i n The moment generating function of T, ¢r(t), is given by
i=-0 ~*
M
tr
¢P(t) = E[e™] n ¢.¢ (t)
i=0 "i,n
M W
- n (et +1. 1
i=0
e ﬂn M

- (fe +1 -8 7, where ﬂn - ifown_i.

Thus,
M 0 Q_-v
L - Y - ] n 1 - n

P{[=v} P{i§0¢i'n 7} ( 1) 6" (1-6)
Corollary 7.5: Let ¢i n(iSn, i-0,1,...,M; n=0,1,...,N-1) be independent
binomial random variables with parameters (wh-i'ai)' If 61#5:l for some

M
inj(=n), = ¢1 a has the following probability mass function.
i=0 ™

M
P{Tey) = P{ Z %, =y )

j—0 o1

M-2 T M-1 w k

vy w_ .-k
- i -
=z (m oz e (phst eyt
k1-0 i=0 ki+l-0 i=0 i
T M-2

w W -
¢ s a-s ™8 where T =7 - X k,.

i=0 -
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Proof; Corollary 7.5 is proved as follows.
M

Yn-i ¥ Yh-177
Given P{l=y} = P{i§0¢i'n-1 } and Pl¢i.nr1} - ( » ) 61 (1-81) .
vy w w -k w w_ a-{7-k)
- —) = ny, k. . n n-1ly .y-k o . \n-1
For Mwl: P{F=v) kfo( k) 80 (1 80) ( T'k) 61 (1 61)
v vk, w k w -k, w k w_ .-k
For M-2: P{T=y) = E B - (™) 655 (1-6)" T ¢ nly 5,2 st 2
kl-O k2-0 1 2
¢ nez g TRy ek tky)
-k -k, 02 2

Proceeding sequentially, we get P{I'=y) for M as shown in Corollary 7.5.

From now on, we assume that Si-SJ-B for all 1,j(sn). Proposition
7.6 restates (using Proposition 7.5) the joint probability mass function

of v and z, defined in Proposition 7.4.

Proposition 7.6: If Gi-ﬁj-ﬁ for all i,j(sn), then the joint probability

mass function of wn and z, is stated as follows,

S +7r S +r -y
Plwr and z =y} = [ ( D ) §7(1-5) BN ) Plu_-r),

where SM " is the total demand in the M previous periods observed at the
H

it

beginning of period n (i.e., SM n

Proof: Let 0& be the sum of the total demand in the M previous

+r.

periods plus the demand in period n, given that LA Then, nﬁ-SH o
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Thus, P(w =t and zn-v} .
M ﬂ; " Qé-1
- P{ifowi.n-1|wh-r) P{w =1} = [ (¢ 1) 5§'(1-8) ] Plw =r}.

Corollary 7.6a:
S, _+r
M.,n S, _+r S, _+r-2
Pluo-r andz2y) =[ £ (0 ) 686 0" ] plw=r).
n n f=ry n

Corsilary 7.6b:

@ S +k S +k-y
Pwer and z =y} = 2 [ [ ¢( 0 ) §%1-6) ™ ] plw=k) .
n n k=1 n

Corollary 7.6c:
o Syntk s 4k S, +k-2

Pluzrandzayl = 2 [ [ 2 (™3 sfa- ™™ ) pu-k) ).
n n ke=r Loy

P(“'Su.n)
(x,y)(x',y
probabilities that the system will be in state (x',y') at period n+l

Transition probabilities, ,)(u,v,j), i.e., the

given that it is in state (x,y) at period n and the total demand in the

last M periods observed at period n is § , and action (u,v,j) is

M,n
chosen, are functions of the current state and the subsequent action.
Thus, they can also be written as functions of the demand and return
behaviors (i.e., in terms of the joint probabilities of the demand and
returns). Let r=x+u+v-x' and ¥y=y’'-{y-v-j). Then, the transition

probabilities associated with decision (u,v,j) for a given § at

M,n
period n are defined as follows:
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0 if r<0 or 4<0
P(wn;f and zngvl if %'=0 & y'=Y
(n,Sy ) _
P(x.y)zx"yt)(utv’j) -1 P{wh;r and zn-q} if x'=0 & y'<Y (7-6)

P{w =r and z >y} if x'>0 & y'=¥

{ Plw =r and z =y) if x'>0 & y'<¥,

where the joint probabilities, P[wn and zn]. are defined in Proposition
7.6 and Corollaries 7.6a to 7.6c,

A brief explanation of the derivation of the above transition
probabilities follows. If the serviceable inventory on hand at the
beginning of period n is x and decision (u,v,j) is made, the serviceable
inventory available to satisfy the demand in period n must be greater
than or equal to the ending serviceable inventory for period n (or the
beginning inventory for period n+l) (i.e., x+us+v = x’' or r=0). By the
same token, the ending repairable inventory for period n (or the
beginning inventory for period n+l) must be greater then or equal to the
beginning repairable inventory for period n less the number of
repairables repaired plus junked in period n (i.e., y’'=Zy-v-j or 4=0).
Otherwise (i.e., 7<0 or y<0), the transition probability becomes zero.

Considering the cases when both r20 and v20, we first look at
the serviceable inventory. For the ending serviceable inventory for
period n to be zero (i.e., x'=0), the demand in period n must have been
greater than or equal to the serviceable inventory available prior to
the demand (i.e., wh;r(-x+u+v) ). On the other hand, for the ending
serviceable inventory for period n to be greater than zero the demand in

period n must have been equal to the serviceable inventory available
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prior to the demand less the ending serviceable inventory (i.e.,
wn-r(-x+u+v-x') ). Let's examine the repairable inventory. For the
ending repairable inventory for period n to be the maximum storage
capacity of the repair facility (i.e., y’~Y), the number of repairable
units returned in period n must have been greater than or equal to the
storage space available at perfod n (i.e., zna1(-?-(y-v-j)) ). On the
other hand, for the ending repairable inventory for periocd n to be less
than the maximum capacity (i.e., y'<?) the number of returus in period n
must have been equal to the difference between the beginning repairable
inventory (less the number of units repaired plus junked) and the ending
repairable inventory (i.e., znfv(-y'-(y-v-j)) ). Note that the
transition probabilities are the joint probabilities between the demand
and returns resulting from the following (x',y’) pairs: (x'-O.y'-?).

(x'=0,y'<¥), (x'>0,y'=¥), and (x'>0,y'<¥).

7.3 Finite-horizon Markov Decision Problems

This section presents a computational method for the two-
dimensional state, three-dimensional decision finite-horizon Markov
decision provlem with the initial state (xo.yo). The method referred as

‘the backward induction (or Dynamic Programming) algorithm’ finds an

optimal policy n-lpo,pl,...,pN_ll where pn:S*U, for all (xn,yn)es, which
minimizes the expected total discounted cost
N N-1
nlig¥g) = B LoT dylagyy) + B e ey ug v dpm) ) 04D

n

subject to the state equations and constraints (7-3a) to (7-3d). The

computational method rests mainly on the principle of optimalicy.
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Theorem 7.1, Principle of Optimality: (Bellman [1957))

* *
Let '*-(”;'"1"'°’pﬂ-1] be an optimal control law for the basic N-period

problem with the initial state x(O)-x0 which minimizes

N N1l .
JI.(XG> =E{«a én(xN) + & a ¢(Xn-#n-€n) H, (7'8)
3 n=0
n
where Xn is the state of the system at time n and sn is the disturbance

in time n. Then the truncated control law ["I'”I+1""’";-1' 1s optimal

for the (N-i)-period subproblem with the initial state x(i)-x1 which
N N-1 n
minimizes I (xq) = g (e’ d0x) + nfi a ¢(xn.#n.€n) ). (7-9)
n

Proofs of the principle of optimality appear in Heyman and Sobel [1984],
Derman [1970], and Hinderer [1970].

7.3.1 Backward Induction Algorithm

‘ The backward induction algorithm for the proposed inventory
problem determines the optimal (or a near-optimal) policy for the N-
period problem by finding the optimal (or a near-optimal) policy for a
given period model and then moving backward period by period using the

following recursive relationship.

J(x,y)' - ¢N(x.y), for (x,y)esS, (7-10a)
and

(“'Su,n)
J(x,y) (uTi?}){ ¢(x.y)(u,v,j) (7-10b)

X ¥ (n,s
+ a IZ b
X'=0 y’=0

o o) (n+1,.)
Paxy)(xt,y )@V d) Jegr gy !

for x=0,1,..,%X; y=0,1,..,%; s -0.1...,9H; n=0,1,..,N-1,

M,n
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S

{(n+l,.) M (n+1.SM n+1) (n,SH n)
where J - [ z J ' 1. J ! is a near-
x'.y') 3 -0 (x'.y") (x,¥)
S+l SM'n_'_1 0

optimal (i.e., close-to-minimum expected total discounted) cost for the
(N-n)-stage Markov Decision problem starting at state (x,y) at time n
and ending at time N, and §H is the upper bound of sH,n‘ We use the
term "near-optimal” in the analysis of the finite-horizon problem
because we do not consider the full transition probabilities for the
system at a certain state at present being at the same or another state
at the next observed time. Denote by (x.y,su'n)4(x',y'.8ﬁ’n). the full
transition of the system over the next time period. Then, the recursive

relationship (7-10b) implies a partial transition of the system over the

next time period, that is, (X,¥,8 n)*(x',y').

Algorithm 7.1: Backward Induction

Step 1: Define a state space S and a decision spacu U.
(1.e., Identify all possible states (xn,yn)cs and all possible
decisions (un,vn,jn)eU. ) (Proposition 7.3)

Step 2: Compute the probability mass function (p.m.f.) and the
cumulative distribution function (c.d.f.) of L where w  are
i.i.d. nonnegative random variables,

Step 3: For each possible value of § , compute the conditional p.m.f.

M,n
and the conditional c.d.f. of z, using expressions in

Proposition 7-6, where z, are nonnegative random variables

characterized by (7.5).
.Sy )
(x,y)

where ¢N(x.y) is a terminal cost associated with the ending

Step 4: Set nwN and J - ¢N(x,y) for (x,y)eS and for each SH o’
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inventories.
Step 5: Set n~n-1. Compute transition probabilities using (7-6) for

each and every decision, given (x,y)eS and SH n° These

probabilities are non-stationary.

Step 6: Using the cost function (7-1) and expression (7-10b), compute
(n,Sy ) *
J(x,y)' for each (x,y)e¢S and for each sM,n' and denote by B
the set of all optimal decisions for (x,y)eS and §
(n'SM,n)
(x.y)
Step 7: If n=0, stop. Otherwise, return to Step 5.

M,n’'

satisfying p: - arg J

7.3.2 Numerical Example

A computer program (Appendix II-F) was written in QuickBasic to
demonstrate the backward induction algorithm discussed in the previous
section. The program runs on a microcomputer with 286 microprocessor.
Although systems with more than 900 states (i.e., (X,Y)=(30,30)) are
very time consuming, the advanced computer technology (i.e., main
frames, 486 microprocessors, etc.) can take care of such a problem. Let
us consider a finite-horizon problem with N=10, a=,9, C=4, c=6, R=4,
r=4, f=1, h=2, p=0, b=15, X=3, ¥=2, M=2, and §=.2. We assume that the
demand for serviceables in each period can be one of the following
values, 0, 1, 2 and 3, and that each demand level has an equal
probability. The algorithm starts with the last period of the planning
horizon and moves backward period by period-each time finding the
optimal (or a near-optimal) policy for that period-until it finds the

optimal (or a near-optimal) policy for the whole problem. For each
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state of each period, the algorithm finds the optimal (or a near-
optimal) decision and the corresponding cost for each possible value of
sH,n' We chose (X,¥)=(3,2) because it is large enough to characterize
the solution to the finite-horizon Markov decision problem while it is
small enough so that the complete solution tables can be included in
this thesis.

A near-optimal policy to the 10-period Markov decision problem,
alo-lu;,....p;), where p: (n=0,...,9) is the set of near-optimal
decisions taken in period n, is shown in Tables II-2{i) to II-2{(x). In
each table, n representing decision epochs {periods) is shown in Column
{a) followed by state of the system shown in Column (b). Possible
values that sH.n can take are listed in Column (c¢). The set of near-
optimal decisions taken at period n determined by the backward induction
algorithm and the corresponding expected total discounted cost
(E.T.D.C.) for the (10-n)-period problem are represented by Columns (d)
and (e), respectively.

A brief explanation regarding use of the solution tables
follows. At the beginning of each period starting n=0, the inventory
manager looks at the serviceable and repairable inventories (i.e., the
system state) and then observes the total demand (SM,n) occurred during
the last M periods. Based on these two observations, he makes his
decision to purchase, to repair, and to junk. In reality, Sz,o-w_2+w_l
=0 since w'z-w_l-o. Also SZ,l-WO since w_l-O. However, the inventory
manager can also consider other possible situations at n=0,1 since

Tables II-2(i) and II1-2(ii) show his best decision for each of all

possible values of sﬂ.n
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TIME STATE SM n DECISION E.T. TIME STATE SH n DECISION E.T.
n (x,¥) ! (u,v,j) D.C. n (x,¥) ' {u,v,3) D.C.
(a) (b) (c) (d) -(e) (8) (b) (c) (d) (e)

9 (0 0) 0 {2 0 0) 21.25 9 {2 Q) 0 (000 5.25

1 {200y 21.25 1 (0 00) 5.25

2 (2 0 0) 21.25 2 (000 5.25

3 (2 0 0) 21.25 3 (0 00) 5.25

4 (200 21,25 4 {0 00) 5.25

5 (200) 21.25 5 (0 0 0) 5.25

6 (2 00) 21.25 6 (000 5.25

9 (0 O (010) 19.75 9 (21 0 (001 5.25

1 (010 19,75 1 (00 1) 5.25

2 (010 19.75 2 (00 1) 5.25

3 (010 19.75 3 (0 0 1) 5.25

4 (010 19,75 4 {0 0 1) 5.25

5 (01 0) 19.75 5 (00 1) 5.25

6 (010 19.75 6 {00 1) 5.25

9 (0 2) 0 (0 2 0) 17.25 9 (2 2) 0 {0 02) 5.25

1 (020 17.25 1 {0 0 2) 5,25

2 (0 20y 17.25 2 (0 0 2) 5.25

3 (0 2 0) 17.25 3 (0 0 2) 5.25

4 (02 0) 17.25 4 (00 2) 5.25

5 0 2 0) 17.25 5 (00 2) 5.25

6 (0 2 0) 17.25 6 (00 2) 5.25

9 (L0 O (0 0 0) 11.75 9 (3 0) 0 (000 3.00

) 1 (0 0 0) 11.75 1 (00 0O) 3.00

2 (0 0 0) 11.75 2 (00O 3.00

3 (0 0 0) 11.75 3 (00 0) 3.00

&4 (000 11.75 4 (00 0) 3.00

5 (000 11.75 5 {0 00) 3,00

6 (0 0 0) 11.75 6 (00 0) 3.00

9 (1 1) 0 (001 11.75 9 3 1) 0 (00 1) 3.00

1 (001 11.75 1 {0 0 1) 3.00

2 {00 L) 11.75 2 (0 0 1) 3.00

3 (0oL 11.75 3 (0 0 1) 3.00

4 (0o 11.75 4 (00 1) 3.00

5 (00 L) 11.75 5 (00 1) 3.00

6 (00 1) 11.75 6 (00 1) 3.00

9 (1 2) 0 (00 2) 11.75 9 (3 2) 0 (0 02) 3.00

1 002 11.75 1 (0 0 2) 3.00

2 {0 0 2) 11.75 2 (0 0 2) 3,00

3 (00 2) 11.75 3 (00 2) 3.00

4 {002 11.75 4 (0 0 2) 3.00

S (00 2) 11.75 5 (00 2) 3.00

6 {00 2) 11.75 6 (00 2) 3,00

Table II-2(i): Solution to 10-Period Finite Horizon Problem

( n=9; Last period of the planning horizon )
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TIME STATE Sy | DECISION E.T. TIME STATE S, | DECISION E.T.
n (x,y) ' (u,v,3) D.cC. n (x,y) ! (u,v,3) D.C.
(a) _(b) () (d) (e) (a) () () (d) (e)

8 (00 o0 (300) 34.06 8 (200 o0 (000) 18.27

1 (300) 33.98 1 (0 00) 18.11

2 (300) 33.91 2 (000) 17.96

3 (2 0 0) 33.82 3 (000) 17.82

4 (200) 33.69 4 (000 17.69

5 (2 00) 33.57 S (0 00) 17.57

6 (2 00) 33.47 6 (0 00) 17.47

8 (01) 0 (200) 34.49 8 (21 O (001) 18.27

1 (200) 34.36 1 (0 01) 18.11

2 (200) 34.25 2 (001) 17.96

3 (200 34.17 3 (001) 17.82

4 (2 00) 34.10 4 (001) 17.69

5 (2 00) 34.05 5 (001 17.57

3 (200 34,01 6 (001) 17.47

8 (02 o0 (0 20) 30.27 8 (22) 0 (0 02) 18.27

1 (020 30.11 1 (002) 18.11

2 (020 29.96 2 (002) 17.96

3 (020) 29.82 3 (00 2) 17.82

4 (0 20) 29.69 4 (00 2) 17.69

5 {020 29.57 5 (00 2) 17.57

6 (0200 29.47 6 (00 2) 17.47

8 (L0) O (2 00) 28.06 8 (30) o (000) 12.06

1 (2 00) 27.98 1 (00 0) 11.98

2 (000) 27.84 2 (000) 11.91

3 (000) 27.62 3 (000) 11.84

4 (000) 27.42 4 (00 0) 11.78

5 (000) 27.23 5 (000 11.72

6 (0 00) 27.06 6 (000 1l.867

8 (11 o (010) 26.27 8 (31 0 (001) 12.06

1 (010) 26.11 1 (00 1) 11.98

2 (010) 25.96 2 (001 11.91

3 (010) 25.82 3 (001) 11.84

4 (010) 25.69 4 (001) 11.78

5 (010) 25.57 5 (001) 11.72

6 (010) 25.47 6 (001) 11.67

8 (12 o0 (020) 24.06 8 (32 0 (002 12.06

1 (0 2 0) 23.98 1 (0 02) 11.98

2 (0 20) 23.91 2 (002) 11.91

3 (020) 23.8 3 (00 2) 11.84

4 (0 20) 23.78 4 (002) 11.78

5 (020) 23.72 5 (002 11.72

6 (020 23.67 6 (002 11.67

Table II-2(ii): Solution to 10-Period Finite Horizon Problem {n=8)
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TIME STATE S, _| DECISION  E.T. TIME STATE S, | DECISION E.T.
n (x,y) ’ {u,v,1) D.C. n  (x,y) ! (u,v,3) D.C.
(a) (b) (c) (d) (e) (a) (b) () (d) (e)

7 {0 0) 0 (300 45,28 7 (2 0) 0 (00 0) 30.54

1 {300) 45.13 1 (o0 30.34

2 (300 44 .98 2 {00 Q) 30.12

3 (300) 44 .84 3 {0 0 0) 29.90

4 (300) 44.71 4 (000) 29.68

5 (300) 44.58 5 (0 00) 29.48

6 (300) 44 .47 6 {0 0 0) 29,29

7 (0O L) 0 (300) 45,55 7 (2 1) 0 (0 0 L) 30.54

1 (3 00) 45.39 1 (0 0 0) 30.25

2 (30 0) 45,27 2 (0 0 0) 30.01

3 (3 00) 45,17 3 (0 0 0) 29.82

4 (3 0 0) 45,08 4 (0 0 Q) 29.67

5 (3 0 0) 45,02 5 (00 L) 29.48

6 (300) 44.97 6 (001) 29.29

7 (0 2) 0 (0 2 0) 42,54 7 (2 2 0 (0 0 0) 30.06

1 (0 20) 42.34 1 (0 00) 30.06

2 020 42.12 2 (00 L 30.01

3 (020) 41,90 3 (0 01) 29.82

4 (0 20) 41.68 4 (0 01) 29.67

5 (0 2 0) 41 .48 5 (00 2) 29.48

6 (020) 41.29 6 (002 29,29

7 (10) o (2 00) 39.28 7 (30) 0 (0 00) 23.28

1 (2 00) 39.13 1 (0 0 0) 23.13

2 (2 0 0) 38.98 2 (0 0 0) 22.98

3 (200) 38.84 3 (0 0 0) 22.84

4 (200 38.71 4 (000 22.71

5 (200 38.58 5 (0 0 O) 22.58

6 (2 00) 38.47 6 (0 00) 22.47

7 (1 1) 0 (01 0) 38.54 7 3L 0 (00 1) 23,28

1 (10 38.34 1 (00D 23,13

2 (010 38.12 2 (00 L) 22.98

3 (010 37.90 3 (00D 22.84

4 (010 37.68 4 (00D 22.71

5 (01 0) 37.48 5 (0 0 1) 22.58

6 (010 37.29 6 (001 22.47

7 (1 2) 0 (0 2 0) 35.28 7 (3 2) 0 (0 0 2) 23,28

1 (0 2 0) 35.13 1 (L02) 23.13

2 (0 2 0) 34 .98 2 (00 2) 22 .98

3 {0 2 0) 34,84 3 (0 0 2) 22.84

4 (02 0) 34.71 4 (00 2) 22,71

5 (0 20) 34,58 5 (0 02) 22.58

6 0 20) 34 .47 6 (00 2) 22.47

Table II-2(iii): Solution to 10-Period Finite Horizon Problem (n=7)
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TIME STATE SM a DECISION E.T. TIME STATE SM n DECISION E.T.
n (x,v) ' (u,v,§) D.C. n (x,¥) ' (u,v,j) r.c.
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
6 (0 0) 0 (300 55.56 6 2 0) 0 (00O 40.82
1 (300) 55.44 1 {00 0) 40.67
2 (300 55.31 2 (00O 40.50
3 (300) 55.18 3 {0 00) 40.31
4 (300 55.05 4 (000 40,12
5 (300 54,93 5 (000 39.95
6 (300 54.82 6 (000 39.78
6 (0 1) 0 (300) 55.95 6 (2 1) 0 (001 40.82
1 300) 55.78 1 (0L 40.67
2 (300 55.65 2 (0 0 1) 40.50
3 (300) 55.54 3 (00 1) 40.31
4 (300 55.46 4 (001 40.12
5 (3 00) 55.39 5 (00 L) 39.95
6 (300) 55.33 6 (00 1) 39.78
6 (0 2) 0 (0 2 0) 52.82 6 (2 2) 0 (0 0 0) 40.82
i (0 2 0) 52.67 1 (00 0) 40,67
2 {0 2 0) 52.50 2 (00 2) 40,50
3 {020 52.31 3 (00 2) 40,31
4 20 52.12 4 (00 2) 40.12
S (0 20) 51.95 5 {0 0 2) 39.95
6 (0 2 0) 51.78 6 (0 0 2) 39.78
6 (1 0) 0 (2 00 49.56 6 (3 0) 0 (00 Q) 33.56
1 (2 0 0) 49 .44 1 (000 33.44
2 {(200) 49.31 2 (00 0) 33.31
3 (200 49.18 3 (0 00) 33.18
4 (200 49,05 4 (000 33,05
5 (200) 48.93 5 (000 32.93
6 (2 00) 48.82 6 (00O 32.82
[ (11 0 (0 10) 48,82 6 3L 0 {00 1) 33.56
1 010 48.67 1 {0 01) 33.44
2 (01 0) 48,50 2 (00 1) 33.31
3 (01 0) 48.31 3 (00 1) 33.18
4 {010 48.12 4 (00 1) 33.05
5 (01 0) 47 .95 5 (00 1) 32.93
6 (010 47.78 6 (0 01) 32.82
6 (12 0 (0 2 0) 45.56 6 (3 2) 0 (00 2) 33,56
1 (0 2 0) 45,44 1 (00 2) 33.44
2 (020 45,31 2 (00 2) 33.31
3 (020 45.18 3 (00 2) 33.18
4 (0 2 0) 45,05 4 (00 2) 33.05
5 (02 0) 44 .93 5 (0 0 2) 32.93
6 {02 0) 44 .82 6 (0 0 2) 32.82

Table II-2(iv): Solution to 10-Period Finite Horizon Problem {n=6)
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TIME STATE SH n DECISION E.T. TIME STATE SH a DECISION E.T.
n  (x,y) 4 (u,v, ) b.C. n (x,y) ' {u,v,3) D.C.
(a) (b) <(c) (d) (e} a) (d) (c) (d) (e}

5 (00) O (300) 64.89 5 (20 0 (0 0 0) 50.15

1 (300) 64.77 1 (000) 50.01

2 {(300) 64.64 2 (0 00) 49.84

3 {(300) 64.51 3 (000) 49.65

4 (300) 64.39 4 (0 00) 49,47

5 (300) 64.27 5 (000) 49,30

6 (300) &4.17 6 (000) 49,13

5 {01y 0O (300 65.30 5 (21 0 (001) 50.15

1 (300) 65.13 1 (001 50,01

2 (300) 65.00 2 (0 01) 49,84

3 (300) 64.89 3 (0 01y 49.65

4 {(300) 64.81 4 (0 01y 49,47

5 (300) 64.74 5 {001y 49,30

6 {(300) &4.68 6 {001y 49,13

5 {(02) 0 (020) 62.15 5 (22 0 (000 50.15

1 (020 62,01 1 (002 50,01

2 (0 20y 6l.84 2 (002 49.84

3 (C20) 61.65 3 (002) 49,65

4 (0 20) 61.47 4 (0 02) 49.47

5 {(020) 61.30 5 (00 2) 49,30

6 (0200 61.13 6 (002 49.13

S (10 o0 (2 00) 58.89 5 (30) © (0 00) 42,89

’ 1 (200 58.77 1 (0 00) 42,77

2 (2 0 0 58.64 2 {0 00) 42.64

3 (200) 58.51 3 (000 42.51

4 (200) 58,39 4 (0 00) 42,39

5 (200) s58.27 5 (000) 42, 27

6 (2 00) 58.17 6 (0 00) 42,17

5 (11 0 (0 10) 58.15 5 (3 0 (001 42.89

1 (010 58.01 1 (001) 42,77

2 (010) 57.84 2 (0 01) 42,84

3 (010 57.65 3 (001 42,51

4 (01 0y 57.47 4 (001) 42,39

5 (010 57.30 5 (0 01) 42,27

6 (0 10) 57.13 6 (001) 42,17

5 (1 2) 0 (0 20) 54.89 5 (32 0 (00 2) 42.89

1 (0 2 0) 54.77 1 (002 42.77

2 (020) 54.64 2 (00 2) 42.64

3 (02 0) 54.51 3 (002) 42,51

4 (0 20) 54.39 4 (00 2) 42,39

5 (0 20) 54.27 5 (0 02) 42,27

6 (02 0) 54,17 6 (002 42,17

Table II-2(v): Solution to 10-Period Finite Horizon Problem (n=5)
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TIME STATE SH n DECISION E.T. TIME STATE SH n DECISION E.T.
n (x.,y) ' {u,v.]) D.C. n {x,y) ! (u,v,j) D.C.
(a) (b). (c) (d) (e) (a) {b) (c) {d) (e)

4 (0 0) 0 (300 73.29 4 (2 0 0 (0 0 0) 58.56

1 (3 00) 73.17 1 (0 00) 58.41

2 (300) 73.05 2 (0 0 0) 58.24

3 (300 72.92 3 (0 0 O) 58.06

4 (300) 72.79 4 (0 0 0) 57.88

5 (300 72.68 S (0 0 O) 57.71

6 (300) 72.57 6 (0 0 0) 57.54

4 (0 1) 0 (30 0) 73.70 4 (2 1 0 (0 0 1) 58.56

1 (30 0) 73.54 1 (0 0 1) 58.41

2 (300) 73.40 2 (00D 58.24

k| {(300) 73.30 3 (00 L) 58.06

4 (300 73.21 4 (0oL 57.88

5 {(300) 73.14 5 (001 57.71

6 (300 73.09 6 (0 01) 57.54

4 {0 2) 0 020 70.56 4 (2 2) 0 {0 0 0) 58.43

1 {0 2 0) 70.41 1 (0 0 2) 58.41

2 (0 20) 70.24 2 (0 0 2) 58.24

3 (020 70.06 3 (0 0 2) 58.06

4 (020 69.88 4 (0 0 2) 57.88

5 (20 69.71 5 (0 0 2) 57.71

6 020 69.54 6 (00 2) 57.54

4 {1 9 0 (2 0 0) 67.29 4 (3 0) 0 (000 51.29

) 1 (20 0) 67.17 1 (00O 51.17

2 (2 0 0) 67.05 2 (0 0 0) 51.05

3 {2 00) 66,92 3 (00O 50.92

4 {2 00) 66.79 4 (0 0 0) 50.79

5 (200n) 66,68 5 (C 0 0) 50.68

6 (200 66.57 [ (0 0 0) 50.57

4 (1L 1 0 (01 0) 66,56 4 (3 0 (0 0 1) 51.29

1 (01 0) 66.41 1 (00 1) 51.17

2 (010 66.24 2 (0 0 L) 51,05

3 (01 0) 66.06 3 (00 1) 50.92

4 (01 0) 65.88 4 (00 1) 50.79

5 (01 0) 65.71 5 (0 0 1) 50.68

6 (01 0) 65.54 6 (0 01) 50.57

4 (1 2) 0 (020 63.29 4 (3 2 0 (00 2) 51.29

1 (020 63.17 1 (00 2) 51.17

2 (020 63.05 2 (00 2) 51.05

3 (0 2 0) 62.92 3 {00 2) 50.92

4 2o 62.79 4 {00 2) 50.79

5 (020) 62.68 5 {0 0 2) 50.68

6 (020) 62.57 6 {0 0 2) 50.57

Table II-2(vi): Solution to 10-Period Finite Horizon Problem {(n=4)
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TIME STATE SH n DECISION E.T. TIME STATE SM a DECISION E.T.
n (x,y) ’ (u,v, i) b.C, n  (x,y) ' {u,v,3) D.C.
(a) (b) (e) (d) (e) (a) (b)Y (c) (4) (e)
3 00y o0 (300) 80.86 3 20 o (00 0) 66,12
1 (300) 80.74 1 (0 00) 65.98
2 (300) 80.61 2 {(000) 65,81
3 (300) 80.48 3 (000 65.63
4 (300) 80.36 4 (0 0 0) 65.45
5 (300) 80.24 5 (0 00) 65.27
6 (300) 80,14 ) 6 (0 00) 65.11
3 (0l o (300) 81.27 3 (21 o (001) 66.12
1 (300) 81.10 1 (001) 65.98
2 (300 80.97 2 (0oL 65.81
3 (300) 80.86 3 (oL 65.63
4 (300) 80.78 4 (0 01) 65.45
5 (300 80.71 5 (0 01) 65.27
6 (300 80.66 6 (0 01) 65.11
3 (02 0 (020 78.12 3 22y 0 (0 00) 65.99
1 020y 77.98 1 (0 02) 65.98
2 (020 77.8 2 (0 0 2) 65,81
3 (0 20) 77.63 3 (0 02) 65.63
4 (0 20y 77.45 4 (00 2) 65.45
5 (0 20) 77.27 5 (0 0 2) 65.2
6 (20 77.11 6 (0 02) 65.11
3 (1 0) 0 (2 00) 74.86 3 (3 0) 0 (000 58.86
’ 1 (200) 74,74 1 (000) 58.74
2 (200) 74.61 2 (0 00) 58.61
3 (200) 74.48 3 (000 58.48
4 (200) 74.36 4 (000) 58.36
5 (200) 74,24 S (000) 58.24
6 {(200) 74.14 6 (0 00) 58.14
3 (11 0 {010 74.12 3 (3 1) 0 (0 0 1) 58.86
1 {(010) 73,98 1 (00 1) 58.74
2 {(010) 73,81 2 (001) 58.61
3 (0 10) 73.63 3 (0 01l) 58,48
4 (0 10) 73.45 4 (0 01) 58.36
5 (010 73.27 5 (001) 58.24
6 (010 73.11 6 (001) 58.14
3 (12 o (020) 70.86 3 (32 o0 (00 2) 58.86
1 (020 70.74 1 (0 02) 58.74
2 (0 2 0) 70.61 2 (0 0 2) 58.61
3 (0 2 0) 70.48 3 (0 0 2) 58.48
4 (0 20) 70,36 4 (0 02) 58.36
5 (02 0) 70.24 5 (0 0 2) 58.24
6 (020 70.14 6 (002 58.14

Table I1I-2(vii): Solution to 10-Period Finite Horizon Problem ({n=3)
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TIME STATE SH n DECISION E.T. TIME STATE SM n DECISION E.T.
n (x,y) ' (u,v,3) D.C. n (x,y) 4 (u,v,3) D.C.
(a) (b) (<) (d) (e) (a) (b) (<) (d) (e)

2 (0 0) 0 (300 87.67 2 (2 0) 0 {0 0 0) 72.93

1 (300 87.55 1 (0 0 0) 72.79

2 (30 0) 87.42 2 (000 72.62

3 (300 87.29 3 (0 0 0) 72.44

4 (300 87.17 4 (0 0 0) 72.26

S (300 87.05 5 (0 00) 72.08

6 (300) 86.95 6 (000 71.92

2 (0 1) 0 (300 88.08 2 (2 1) 0 0oL 72.93

1 (300) 87.91 1 (001 72.79

2 (300) 87.78 2 (00 1) 72.62

3 (300 87.67 3 (0 0 1) 72.44

4 (300) 87.59 4 0oL 72.26

5 (300) 87.52 5 {001 72.08

6 (300 87.47 6 (0 0 1) 71.92

2 02 0 (020 84.93 2 (2 2) 0 (0 00) 72.80

1 (020) 84.79 1 (0 0 2) 72.79

2 {02 0) 84 .62 2 {00 2) 72.62

3 (020 84.44 3 (00 2) 72.44

4 {02 0) 84.26 4 (00 2) 72.26

5 (02 0) 84.08 5 (00 2) 72.08

6 (02 0 83.92 6 (00 2) 71.92

2 {1 0) 0 (2 0 0) 81.67 2 (3 0) 0 (000 65.67

' 1 (200 81.55 1 (G 00 65.55

2 (200) 81.42 2 (000 65.42

3 200 81.29 3 (0 0 0) 65.29

4 (200 81.17 4 (0 0 0) 65.17

5 {200 81.05 5 {0 0 0) 65.05

6 (2 00) 80.95 6 (00 0) 64.95

2 (1 1) 0 (01 0) 80.93 2 (3 1) 0 (001 65.67

1 (01 0) 80.79 1 (00 65.55

2 (01 0) 80.62 2 (00 1) 65.42

3 (01 0) 80.44 3 (00 1) 65.29

4 (010) 80.26 4 (001 65.17

5 (010 80.08 5 (001 65.05

6 (01 0) 79.92 6 (0oL 64.95

2 (1 2) 0 (020 77.67 2 3 2 0 (00 2) 65.67

1 (02 0) 77.55 1 (002 65,55

2 (020 77.42 2 (00 2) 65.42

3 {0 20) 77.29 3 (00 2) 65.29

4 {0 2 0) 77.17 4 {00 2) 65.17

5 (0 2 0) 77.05 5 {00 2) 65.05

6 (02 0) 76.95 6 (0 0 2) 64 .95

Table II-2(viii)}: Solution to

10-Period Finite Horizon Problem (n=2)
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TIME STATE SH a DECISION E.T. TIME STATE SH n DECISION E.T.
n (x,y) ! (u,v,3) D.C. n (x,y ! (u,v.) D.C.
(a) () (c) (d) (e) (a) () (e (d) (e)

1 (00 O (300) 93.8C 1 (20) o (00 0) 79.06

1 (300 93.68 1 {0 0 0) 78.92

2 {(300) 93.55 2 {0 0 0) 78.75

3 (300 93.42 3 (0 0 0) 78.57

4 (300 93.30 4 (000 78.38

5 {(300) 53.18 5 (000 78.21

6 (300 93.08 6 (0 00) 78.05

1 {0 1) 0 {(300) 84,21 1 (2 1) 0 (001 79.06

1 {(300) 94,04 1 (0o 78,92

2 {(300) 93.91 2 (001 78.75

3 (300) 93.80 3 (00 1) 78.57

4 (300 83.72 4 (00 1) 78,38

5 (300 93.65 5 (00 1) 78.21

6 (300 93.59 6 (001) 78.05

1 (0 2) 0 (020 91.06 1 (22 o0 (0 0 0) 78.93

1 020 90.92 1 (00 2) 78.92

2 (020 50.75 2 (00 2) 78.75

3 {0 20) 90.57 3 (0 0 2) 78.57

4 (020 90.38 4 (00 2) -78.38

5 {0 20) 90.21 5 (00 2) 78.21

6 (020 90.05 6 {0 0 2) 78.05

1 (1 0) 0 (200) 87.80 1 (3 0) 0 {0 0 0) 71.80

) 1 (200 B87.68 1 (0 0 0) 71.68

2 (200 87.55 2 (0 0 0) 71.55

3 (200 87.42 3 {0 0 0) 71.42

4 {(200) 87.30 4 {0 0 0) 71.30

3 (200 87.18 5 (0 0 0) 71.18

6 (200 87.08 6 {0 0 0) 71.08

1 (1 0 (10 87.06 1 (3L 0 (001 71.80

1 {(010) 86.92 1 (00 1) 71.68

2 (010 86.75 2 (0 01) 71.55

3 01 86 57 3 (00 1) 71.42

4 010 86.38 4 {0 01) 71.30

5 (010 86.21 5 (00 1) 71.18

6 (010 86.05 6 (00 1) 71.08

1 (1 2) 0 (02 Q) 83.80 1 (3 2) 0 (0 0 2) 71.80

1 (02 0) 83.68 1 (00 2) 71,68

2 (0 2 0) 83.55 2 (0 0 2) 71.55

3 (02 0) 83.42 3 (0 0 2) 71.42

4 (020 83.30 4 (00 2) 71.30

5 (020 83.18 5 (0 0 2) 71.18

6 (02 0) 83.08 6 (G 0 2) 71.08

Table II-2(ix): Solution to 10-Period Finite Horizon Problem (n=1)
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TIME STATE SH n DECISION E.T. TIME STATE SH n DECISION E.T.
n (x,y) ! {u,v,j) D.C. n (x,y) 4 (u,v,3) D.C.
(a) (by (c) (d) (e) (a) (b) (c) (d) (e)

0 (00 0 (3 00) 99,31 0 (2 0 0 (0 0 0) 84.58

1 (300) 99.19 1 (0 0 0) 84.43

2 (3 00) 99,07 2 (0 0 0) 84.26

3 (3 00) 98.94 3 (0 0 0) 84.08

4 (3 0 0) 98.81 4 (0 0 0) 83.90

5 (300 98.70 5 (0 0 0) 83.73

6 (300) 98.59 6 (00 0) 83.56

0 (0 1) 0 (300 99,72 0 (2 1) 0 (00 1) 84.58

1l (3 00) 99.56 1 (00 1) 84.43

2 (300 99.42 2 (00 1) 84.26

3 (300) 99,32 3 (0 0 1) 84.08

4 (300) 99.23 4 (00 1) 83.90

5 (300) 99.16 5 (00 1) 83.73

6 (300 99.11 6 (00 1) 83.56

0 (0 2) 0 (020 96.58 0 (2 2) 0 (0 0 0) 84.45

1 (0 20) 96.43 1 (0 0 2) 84.43

2 (0 2 0) 96.26 2 (0 0 2) 84.26

3 (0 20) 96.08 3 (0 0 2) 84.08

4 (0 20) 95,90 4 (0 0 2) 83.90

5 (0 20) 95,73 5 (0 0 2) 83.73

6 020 95.56 6 (0 0 2) 83.56

0 (1 0) 0 (2 00) 93.31 0 (3 0) 0 (0 0 0) 77.31

' 1 (200 93.19 1 (0 0 0) 77.19

2 (200) 93.07 2 (00 0) 77.07

3 (2 00 92.94 3 (0 0 0) 76.94

4 (200 92.81 4 (00 0) 76.81

5 (2 00) 92.70 5 (0 0 0) 76.70

6 (200 92.59 6 (0 0 0) 76.59

0 (1 1) 0 (01 0) 92.58 0 (3 1 0 (00 1) 77.31

1 (010) 92.43 1 (001 77.19

2 (010) 92.258 2 (00 L) 77.07

3 (0 10) 92.08 3 (0 0 1) 76,94

4 (010 91.90 4 (00 L) 76.81

5 (0 10) 91.73 5 (00 1) 76.70

6 (0 10) 91.56 6 (0 01) 76.59

0 (12) 0 (0 2 0) 89.31 0 (3 2) 0 (00 2) 77.31

1 (02 0) 89.19 1 (0 0 2) 77.19

2 (0 2 0) 89.07 2 (0 0 2) 77.07

3 (0 2 0) 88.94 3 (00 2) 76.94

4 (0 2 0) 88.81 4 (00 2) 76.81

5 (0 2 0) 8#.70 5 (00 2) 76.70

6 (0 2 Q) 88.59 6 (00 2) 76.59

Table II1-2(x): Solution to 10-Period Finite Horizon Problem

( n=0; Beginning of the planning horizon )
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7.4 Infinite-horizon Problems

Consider an infinite-horizon Markov decision problem with the
initial state (xo.yb). The objective 1s to find a steady-state policy
r=(p,p,...,p) for all (xn,yn)es, n=0,1,2,..., which minimizes the

expected long-run total discounted cost

N-1

Tl
Jn'(xO'yO) - D]i-io: ‘En[ nfo a Mxn’yn'un'vn""n'wn] )

{7-11)
subject to the system equation constraints (7-3a) to (7-3d).

For the infinite-horizon problem, an optimal stationary policy
will not be obtained if the transition probabilities are not stationary.
In other words, we must have stationary transition probabilities for a
stationary policy to be optimal. This requires additional assumptions
on the return process (7-5). For the infinite-horizon Markov decision
problem, we assume that the total (ﬂn) of the demands in the current
peéiod and the last M warranty periods is approximated by the number of
warranty periods times the mean of the demand distribution (i.e.,
ﬂn-(M+1)E[wn_i}-(M+1)m ). Then, the distribution of the return process
is binomial with parameters (Q,8), where ﬂ-ﬂn, and the transition
probabilities become independent of time (stationary). Let r=x+utv-x’
and y=y’-(y-v-j). The transition probabilities for decision {u,v, )

chosen at period n are defined as follows:

( 0 if r<0 or <0
P{wnaf and znz7} if x'=0 & y'e¥
P(x'y)(x.’y.)(u,V.J) -1 P{wnar and zn-y} if x'=0 & y'<¥ (7-12)

Plw =r and z 2y) 1if x'>0 & y'=¥¢

( P(w =r and z =} 1f x'>0 & y'<¥,
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where P(w -r and z =y] = [ (2) §7(1-6)% Plw_=r), (7-13a)
a
2w ~r and z 2y} = [ £ (D) §%(1-6)% 4] Plw_mr), (7-13b)
n n 2y £ n
Plv2r and z =y} = T [ §71-6)% | Plw_=k) ] (7-13¢)
n a ! k=g ¥ n '
w Q
Pluzr and z2y) = 5 [ [ 2 (D 62-6)4 pw -iy 1. (7-130)
n n ker 2=y n

Alternative approaches for solving the infinite-horizon Markov
decision problem include linear programming (LP), poelicy iteration, and
the method of successive approximations. Appendix II-D compares these
three computational methods. Linear programming and policy iteration
terminate in a finite number of iterations and yield an optimal policy,
but in both approaches each iteration takes a long time because it
requires solution of a linear system of simultaneous equations. On the
other hand, the method of successive approximation (or stochastic DP
algorithm) yields in the limit the optimal cost function and an optimal
stationary policy after a finite number of itarations. We will use the
successive approximation method to solve the two-dimensional state,

three-dimensional decision infinite-horizon Markov decision problem.

7.4.1 Method of Successive Approximation
The following two propositions are necessary for the method to

ensure that costs are discounted so that a convergence is achieved.

Proposition 7.7: In the two-dimensional state, three-dimensional

decision i{nfinite-time Markov decision problem, the cost per stage
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function ¢ in the objective cost functional (7-11) satisfies 0 =< ¢(x.y,

u,v,j,w) s A for all (x,y,u,v,j,Ww)eSxUxD, where A is some scalar.

Proof: Recall the cost per stage function in (7-1)
$(x,y,u,v,j, W) = g6+ cut o R+ TV + p} + £ max(0,y-v-3}

+ h max{E[0,x+ut+v-w]} + b max(E[0,w-x-u-v]},

1 if w0 1 if v>0
where ¢, = { 0 ifud 3 9%~ 1o0 if v-0.

The state variables x and y of state (X,y) are nonnegative, and have
upper bounds X and ¥, respectively. Also, the decision variables u, v
and j are nonnegative, and have upper bounds U, V and J, respectively.
Furthermore, C, ¢, R, r, p, £, h and b are constants and w is an element
of the disturbance space D, which is a countable set. Since each term

of ¢ is bounded by some scalar, ¢ is bounded by some scalar A.

Proposition 7.8: Let II be the set of all admissible policies x, that
is, «-{po,pl,...}. Then the real-valued optimal cost function J* of the
two-dimensional state and three-dimensional decision infinite-horizon

Markov decision problem with a discount factor a, J*(x,y) = min Jx(x,y)
rell

for (%,y)eS, is bounded by some scalar.

roof: Recall the cost functional of the Markov decision problem as

N-1

n
Jw(x,y) - ;iﬂ En{ nfo o ¢(xn,yn,un,vn,jn,wn) ), n=0,1,...,N-1.
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Since ¢ is bounded by 0 and A (by Propesition 7.7), for every ¢ bounded

by A at each time period n=0,1,,...,N-1

N-1 ©

im E { Ta™(x ,y,u,v,j ,w)}) s T oA = a/(l-a).
N+ wn n=0 n yn n n-"n n n=0

0 s 3% (x,y) s J_(x,5) s &/(1-a).

The successive approximation method is somewhat similar to the
backward induction algorithm described for the finite-horizon problem in
Section 7.3. The notation J?x,y) (for a fixed value of SM,n) in (7-10b)
involves moving backward period by period (i.e., the stage is measured
by the system being in period n). To treat the infinite-horizon
problem, a certain change of the stage definition is required, For the
infinite-horizon problem, the stage is measured by the system evolving
foé t time periods and the notation J?x,y) is now being used for the
expected total discounted cost of the system starting in state (x,y) and
evolving for t periods. Assume that the terminal cost is zeroc for the

infinite-horizon problem, i.e., J?x y)-¢N(x,y)-0 (x,y)eS for N+o, After

n
(x,y)
expressions for the terminal cost and the recursive relationship of

transforming J into J?x ) (see Appendix II-E), we obtain the

successive approximation method.

0

J(x.y)- 0, for (x,y)es, (7-14a)
and
X Y
t+l t
J(x.y) (ul?\irt.‘j)[ ¢(x,y)(“'V'J) + ax?-o y?_oP(x,y)(x.'y.)(u,v.J) J(x'.y’)}

for (x,y)eS, t=0,1,...,N-1, {7-14b)
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where fo'y)is the expected total discounted cost of the system starting
in state (x,y) and evolving for t time periods. As t-o, J%x.y) will
converge to J*(x,y). where J*(x,y) is the minimum expected (long-run)
total discounted cost of the system starting at state (x,y) and evolving
indefinitely. Proofs of the convergence are given in Heyman and Sobel

(1984] and Bertsekas [1987].

Algorithm 7.2: Successive Approximation

Step 1: Define a state space $ and a decision space U (Proposition 7.3).

Step 2: Compute the p.m.f. and ¢.d.f. of L and compute the p.m.f. and
c.d. £f. of z, using expressions in (7-13a) to (7-13d).

. - t -
Step 3: Set t=0 and J(x,y) 0 for all (x,y)eS.

Step 4: For each (x,y)eS, compute J?:ly) using the cost functioen (7-1),
the stationary transition probabilities (7-12), and expression
(7-14b).

t+l €

Step 5: If IJ(x )" J(x y)| < ¢ for all (x,y)eS, where ¢ is the stopping
constant, go to step 6. Otherwise, increment t by 1 and return

to Step 4.

t+l

Step 6: For each (x,y)e¢S, set y*- arg J(x )

and stop.

Some literature (Puterman [1990]) use a stopping constant 8
(instead of ¢) and call the optimal policy determined by the stopping
criterion in Step 5 "B-optimal®, where e-légﬁ. It states that the
algorithm will terminate with a stationary policy having expected total

discounted cost within 8 of optimal.
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7.4.2 Rumerical Example

A computer program (Appendix II-G) was written to demonstrate
the successive approximation method for the infinite-horizon Markov
decision problem. Let us consider the following data: N-w, a=.,9, C=0,
c=6, R=0, r=4, ful, h=2, p=0, b=15, X=5, ¥=5, M=2, and §=.2. We will
later consider the case of non-zero C and R. We assume that the demand
for serviceables follows a Polsson distribution with mean rate of 3
(i.e., w=3). Thus, 0=3(2+1)=9, Note that the transition probabilities
for the infinite-horizon problem are stationary.

Letting N+, the program starts with t=1 and runs indefinitely
until a convergence of the expected total discounted cost for each state
is achlieved. The speed of the convergence seems to be quite slow
especially when a+l. We use the stopping constant ¢=.001 (or S=.018),
meaning that the algorithm will terminate with a stationary policy
having expected long-run total discounted cost within .018 of optimal.

The successive approximation method yields an optimal solution
in a finite number of iterations. The solution to the infinite-horizon
Markov decision problem is characterized by Table II-3. In the table,
period t is shown in Column (a) followed by state of the system shown in
Column (b). A set of optimal decisions taken in period t and the
corresponding expected total discounted cost over the past t periods
determined by the successive approximation method are represented by
Columns (¢) and (d), respectively.

The problem had taken 113 iterations (i.e., t=ll3) before a
convergence occurred (i.e., no changes in expected total discounted cost

more than .00l after t=113). Table II-3 indeed represents the optimal
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stationary policy, w:-[p*.....p*], which minimizes the expected long-run
total discounted cost. Note that the optimal stationary policy had been
achieved after two iterations (t=2) although the convergence of the
total expected discounted cost was not achieved until t=113.

From the optimal solution obtained numerically, we conjacture
that the optimal policy structure for this problem is similar to the one
in Simpson [1972]. When the system is in state (xn,yn) at period n, an
action (un,vn,jn) is chosen based on the following three time-dependent
parameters: repair-up-to serviceable inventory point (ﬁn), purchase-up-
to serviceable inventory point (n,), and junk-down-to repairable
inventory point (;n). A brief explanation follows. At period n, the
inventory manager looks at the serviceable inventory X . If the
serviceable Inventory is less than ﬁn, he repairs (ﬁn-xn) units of
repairables if they arc available so that the number of serviceables
after the repair decision is equal to ﬂn. If there are not enough
repairables to raise the serviceable inventory to ﬁn' he repairs all
available repairables and then purchases some serviceables so that the
number of serviceables after the repair and purchase decisions is equal

to g After the repair and purchase decisions, the manager looks at

"
the total of serviceables and repairables (including those to be
replenished). If it is greater than (g he junks repairables down to Ca
so that the total is either equal to or close to g To clarify the
policy structure described above, we may characterize policy in terms of
decisions W Vo and jn as functions of ﬁn' n, and o The following

formulae have been derived,

vy = max [0,minly ,B -x )], w, = max (0, -(x +y )],
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and jn = min [max(O.xn+yn-ﬂn}, max[O,max(xn+yn,qn)-§n)].

Denote the set of solution parameters for period n by @n-(ﬂn,qn,
{n), where qngﬁnsgn. We can determine the set of solution parameters
for the infinite-horizon problem, & _=(B_.n_,{_ ), by examining the
state/decision pairs (Columns (b) and (¢) of Table II-3). Whenever the
serviceable inventory is less than 5 units, it is required to repair up
to 5-xn units 1f repairables are available for repair (i.e., B~3). If
repairables are not available or they are not enough to satisfy the
requirement, the serviceable inventory is replenished first by repairing
all repairables and then by purchasing additional serviceables so that
the number of serviceables is equal to 4 (i.e., nm-h). Finally, if the
sum of the servic;able and repairable inventories (after the repairland
purchase decisions) is greater than 5 some or all of the remaining
repairables are scrapped so that the total is either equal tec or close
to 5 (i.e., ;Q-S). Thus we have obtained ém-(pm,nw,gm)-(S,A,S). Based
on the set of solution parameters just obtained, we can determine the
optimal dzcision (un,vn,jn) using the formulae derived above. For an
example, if the system is in state (2,5) at period n, un-max[0.4-7]-0,
vn-max[O,min{S,S-Z}]-3. and jn-min[max(0,7-5},max{O,max(?,&)-S}]-Z, that
is, (u:,v:,j:)u(O,B,Z).

To analyze the infinite-horizon problem with non-zero C and R,
we consider the case of C=R=4. The algorithm terminated with an optimal
stationary policy after 115 iterations (i.e., t=115) using a stopping
constant e=.001; however, no fixed policy structures (i.e., a set of

solution parameters) was found.
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PERIOD  STATE DECISION EXPECTED TOTAL

t {x,y) (u,v,j) DISCOUNTED COST
(a) (b) (c) (d)*

113 (0 0) (4 0 0) 214.90
113 (0 1) (310 212.90
113 (0 2) (220) 210.90
113 (0 3) (130) 208.90
113 (0 &) (04 0) 206.90
113 (0 5) (G0 5 0) 205.89
113 (10) (300) 208.90
113 (11) (210) 206.90
113 (1 2) (120 204.90
113 (1 3) (0 3 0) 202.90
113 (1 4) (0 4 0) 201.89
113 (L 5) (0 4 1) 201.89
113 (2 0) (2 00) 202.90
113 (2 1) (1L10) 200.90
113 (2 2) (0 20) 198.90
113 (2 3) (03 0) 197.89
113 {2 4) (03 1) 197.89
113 (2 5) {0 3 2) 197.89
113 (3 0) (1 00) 196.90
113 (3 1) (010) 194,90
113 (3 2) (C 2 0) 193.89
113 (3 3) (0 21) 193.89
113 (3 4) (G 2 2) 193.89
113 (3 95) (0 2 3) 193.89
113 (4 0) (C 0 0) 190.90
113 (4 1) (010) 189.89
113 (4 2) (011 189.89
113 (4 3) (¢ 12) 189.89
113 (4 &) (013) 189.89
113 (4 5) (01 4) 189.89
113 (50 (0 00) 185.89
113 (5 1) (G 01) 185.89
113 (5 2) (¢ 0 2) 185.89
113 (5 3) (0 0 3) 185.89
113 (5 4) (0 0 4) 185.89
113 (5 5) (0 0 5) 185.89

* Minimum expected long-run total discounted cost

Table II-3: Solution to Infinite-horizon Problem
{(for t=11l3; N=m),



CHAPTER 8 ACCELERATION OF COMPUTATIONS

8.1 Error Bounds Approach for Infinite-horizon MDPs

Although the successive approximation algorithm for an infinite-
horizon Markov decision problem presented in Section 7.3.2 yields in the
limit the optimal cost function and an optimal stationary policy for
0<a<l, its convergence is quite slow when a approaches one and it often
requires a large number of iterations., In this section, we present an
improved successive approximation algorithm which utilizes error bounds.
With the error bounds approach, an optimal stationary policy and the
corresponding optimal cost are found in a much less number of

iterations,

8.1.1 Description of Error Bounds Approach

With this improved successive approximation approach, the lower
and upper bounds for the optimal cost J* determine whether an optimal
stationary policy and the corresponding optimal cost have been reached.
In other words, the optimal stationary policy and the corresponding
optimal cost are achieved when the lower and upper Lounds converge to
each other for all elements of the state space. References on the topie

include Bertsekas [1976]([1987] and Puterman [1990]. Let J:S+R. We have

t

lim T
s (XVY

NONE I¥(x,y)  for all (x,y)eS, (8-1)

where J*(x.y) is the cost function corresponding to a stationary poliecy

and TEx y)(J) is the expected total discounted cost over t time periods
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computed by the successive approximation method. Note that T y)(J) is

obtained by computing J

(x,
t using (7-12b).

(x,y)
Proposition 8.1: Denote n%ify) - szfy)(J) ; T:x'y)(J). (8-2)
For all {(x.y)eS and t=0,1,2,...,
T?:}y)(J) *e S T%:?y)(J) te.,
< th.y) < T::?y)(J) ‘el S Tti}y)(J) *els, (8-3)
where €yl ™ T%; min Bt+1 and e£+1 - i%; max Bt+l (B-4)

(x,y)es XY (x,y)es *¥)

Proof: Refer to Bertsekas [1976].

Algorithm 8.1: Successive Approximation with Error Bounds

Stép 1: Define a state space S and a decision space U (Proposition 7.3).

Step 2: Compute the p.m.f. and ec¢.d.£, of W and compute the p.m.f. and
c.d.f. of z, using expressions in (7-13a) to (7-13d).

Step 3: Set t=0 and T?x,y)(J) = (O for all (x,y)eS.

Step 4: For each (x,y)eS, compute TE;Ty)(J) using expression (7-14b),
the cost function (7-1), the statlionary transition probabllitiles
(7-12), and compute el and eé+1 using (B-2) and (8-4).

Step 5: Let G?;?y) - TE;%y)(J) +e.; and c'f;}y) - TE;?y)(J) rel.
If G%:Ty) - G’?Z%y) for all (x,y)eS, go to step 6. Otherwise,
increment ¢ by 1 and return to Step 4.

Step 6: For each (x%,y)eS, set p*— arg TH'1 (J) and J*(x,y) - Gt+1

(x-)’) (x'y)-

Stop.
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8.1.2 Rumerical Examples

The computer program previously written to demonstrate the
Quccassive approximation method was extended to include the error bounds
approach discussed in Section 8.1.1 (listed in Appendix II-G). The
program runs indefinitely and generates lower and upper bounds for each
and every state of the system and compare them for a convergence. When
the lower and upper bounds converge to each other in a given period, the
algorithm terminates with an optimal stationary policy, «:-{p*,....p*},
which minimizes the expected long-run total discounted cost.

Let us consider the same data used in Section 7.4.2. Table II-4
shows how an optimal stationary policy and the corresponding optimal
cost are obtained using the error bounds approach. The algorithm
terminated after seven iterations (i.e., t=7) whea the upper and lower
boqnds have exactly the same value for each and every state (see Columns
(e) and (£)). Note that the cost in Column (d) is not optimal (i.e.,
without the error bounds approach, the optimal cost is not achieved
until t=113 as demonstrated in Section 7.4.2). The convergence of the
upper and lower bounds for each and every state, however, indicates that
not only the optimal stationary policy but the optimal cost per each
state have been obtained after seven iterations. Column (c) represents
the optimal stationary policy, w:-(p.....p*), and Columns (e) and (f)
indicate the minimum expected long-run total discounted costs. For an
exanple, when the system is in state (1,2) at in a given period it is
optimal to purchase one serviceable and to repair all repairables (i.e.,
(u*,v*,j*) =(1,2,0}). From the optimal stationary policy, the set of

solution parameters was also found as Qw-(ﬁm, Ngi$)™ (5,4,5), which is
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PERIOD  STATE DECISION EXPECTED TOTAL  LOWER UPPER
t (x,¥) (u,v,j) DISCOUNTED COST BOUND BOUND
(a) (b) (c) (d) (e)* (£)=
7 (0 0) (4 0 0) 116.96 214.90  214.90
7 (0 1) (310) 114.96 212.90  212.90
7 (0 2) (2 2 0) 112.96 210.90  210.90
7 (0 3) (1 30 110.96 233.90  208.90
7 0 &) {0 & 0) 108.96 206.90  206.90
7 (0 5) (0 5 0) 107.94 205.89  205.89
7 (1 0) (3 0 0) 110.96 208.90  208.90
7 (1 1) (2 1 0) 108.96 206.90  206.90
7 (1 2) (1 2 0) 106.96 204,90  204.90
7 (1 3) (0 3 0) 104.96 202.90  202.90
7 (1 4) (0 & 0) 103.94 201.89  201.89
7 (1 5) (0 4 1) 103.94 201.89  201.89
7 (2 0) (2 0 0) 104.96 202.90  202.90
7 (2 1) (1 10) 102.96 200.90 200,90
7 (2 2) (0 2 0) 100.96 198.90  198.90
7 (2 3) (0 3 0) 99,94 197.89  197.89
7 (2 4) (0 3 1) 99,94 197.89  197.89
7 (2 5) (0 3 2) 99.94 197.89  197.89
7 (3 0) (1 0 0) 98.96 196.90  196.90
7 (3 1) (0 1 0) 96.96 194.90 194,90
7 (3 2) (0 2 0) 95.94 193.89  193.89
7 (3 3) (0 2 1) 95.94 193.89  193.89
7 (3 &) (0 2 2) 95.94 193.89  193.89
7 (3 5) (0 2 3) 95.94 193.89  193.89
7 (4 0) (0 0 0) 92.96 190.90  190.90
7 (4 1) (0 10) 91.94 189.89  189.89
7 (4 2) (01 1) 91.94 189.89  189.89
7 (4 3) (0 1 2) 91.94 189.89  189.89
7 (4 &) (0 1 3) 91.94 189.89  189.89
7 (4 5) (0 1 4) 91.94 189.89  189.89
7 (5 0) (0 0 0) 87.94 185.89  185.89
7 (5 1) (0 0 1) 87.94 185.89  185.89
7 (5 2) (0 0 2} 87.94 185.89  185.89
7 (5 3) (0 0 3) 87.94 185.89  185.89
7 (5 &) (0 0 &) 87.94 185.89  185.89
7 (5 5) (0 0 5) 87.94 185.89  185.89

* LOWER BOUND = UPPER BOUND

Table II-4: Solution to Infinite-horizon Problem

(Error bounds approach; for t=7)
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identical to the one obtained in Section 7.4.2.
For the case of C=R=4, the algorithm terminated with an optimal
stationary policy and the corresponding expected total discounted cost

after eleven iterations ({.e., t=1l).

8.2 State Decomposition by Dimension (SDD)

In Section 8.1, we were concerned with an acceleration technique
utilizing error bounds for speeding up the convergence of the successive
approximation method for infinite-horizon problems so that the total
number of iterations required before a convergence is reduced. In this
sect.on, we introduce another acceleration technique called ‘'State
Decomposition by Dimension (SDD)’, which speeds up the convergence of
the DP algorithms via reduction in state space. The technique can be
used to approximate the optimal solution to both finite and infinite

horizon repairable-item inventory problems.

8.2.1 Description of The SDD

The SDD decomposes a multi-dimensional state Markov decision
process into several lower-dimensional state MDPs so that the total
number of states considered in the system is reduced. With the SDD, a
two-dimensional state problem is divided into two one-dimensional stote
subproblems. The SDD is based upon the following unique features of the
repairable-item inventory model., First, as shown in Figure II-5 the
main problem is divided into two subproblems (i.e., repair/junk and
purchase/repair subproblems) which can be treated somewhat independently

as the repair decision v, 1s the only link between the two subproblems.
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In other words, the SDD decouples the connection between the two
subproblems so that each subproblem can be solved separately with some
measure of Independence, Second, the transient probability matrix for
each decision in the main problem can also be decomposed into two lower-
dimensional transient probability matrices. In this way, the demand and
return processes are also treated somewhat independently as SM,n is the
only link between the two transient probability matrices. An additional
cost due to the loss of interdependency between the two subproblems will
be incurred and will be included in the expected total discounted cost,
The SDD may be applied to infinite-horizon problems as well as
finite-horizon problems. For each of the two subproblems, the reduced
state and decision spices, the cost per stage function, the transition
probabilities, and the recursive relationships for finite and infinite

planning horizons can be stated as follows.

; 0
)
4
z v N w
n n n !
n n
4
4
s
< Repair/junk Subproblem > < Purchase/repair 3Subproblem >

Figure II-5: The Decoupled Subproblems.
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Repair/junk Subproblem:
The state yn is an element of a state space Sy' and the control

(vn.jn) is an element of a control space Ul'

The cost per stage function is

¢y(v,j) = p] + £ max{0,y-v-3}. (8-5)

Note that the repair cost ternms avR + rv are not included in (8-5)
because they are cost factors associated with replenishment (i.e., the

number of units repaired) to the serviceable inventory.

The transition probabilities that the system will be in state y' at
period n given that it is in state y at period n and the total demand in

the last M periods observed at the beginning of period n is S , and

M,n
action (v,j) is chosen are

0 if <0
{n,S
P
yyl

)
H.n (v.3) =1 Plz 2y} if y'=¥ vhere y=y'-(y-v-1), (8-6)

P{zn-y} if y'<Y

where z  are mixed binomial random variables since nn contains random

varlables LA (l.e., ﬂn-S +wn). The return distribution is defined as:

M.n

M W S, +k S, _tk-v
M,n ¥ M,n
P{z =y} = P{ E m-y) - - ! -
lzn 7} {i-0¢1'“ T) Eo[ ( N ) §7°(1-8) P{w =k} 1,

where ¥ is the upper bound of L determined by the distribution of LA
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For the finite-horizon repair/junk subproblem,

(N,S, )

3, e gy yes, (8-7a)
and
(n,S,, ) Y (nS,.)
g, Mgy =d vy +a £ B, W0y gy gl0¥l, ) (8-7b)
y y gm0 ¥ y
for yesy; SM.n—o'l' 'SH; n=0,1,..,N-1,
gM {n+l,5 )
(n#l,.) 1 'Sy nel
where Jy' - [ z J., ]
SH+1 SM,n+1'°

and SH is the upper bound of SH,n'

For the infinite-horizon repair/junk subproblem,
0

S s 8-
y ye y {8-8a)
and
Il i) = 6.(v,9) + a ; P_,(v,§) JF (8-8b)
y ’ y ’ y'-o yyi 1 yf
where ycSy and t=1,...,N.

Purchase/Repair Subproblem:

The state X is an element of a state space Sx and the control

(u_,v_) is an element of a control space U,.
n'n 2



136

The cost per stage function is
¢x(u,v) - auC + cu + avR + v

+ h max(E[0,x+ut+v-w]) + b max(E[0,w-x-u-v]]}, (8-9)

1 if wo 1 if v>0
where o, =19 ifu.0 29 9, =10 if veo

The transition probabilities that the system will be in state x’ at the
next observed time period given that it is in state x at present and

action (u,v) is chosen are

0 if r<0

p(n)

xx,(u,v) - P[wnaf} if x'=0 where rextutv-x’, (8-10)

P(w =1} if x'>0,
n

For the finite-horizon purchase/repair subproblem,

Jz ~ 8y (%) XeS_ (8-1la)
and
n X (n) o+l
Jx(u,v) - ¢x(u.v) +a I onx,(u,v) Jx' (8-11b)
XK'=

where xeSx and n=0,1,...,N-1.

For the infinite-horizon purchase/repair subproblem,

0
Jx - 0 chx (8-12a)
and
t+l X t
Jx (u,v) = ¢x(u.v) + a x? OP ,(u,v) Jx' (8-12b)

where xeSx and t=1,,...,N.
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After solving the two subproblems separately for each xeSx and

yesy, we optimize the expected total discounted cost as follows.

or t ite-ho [+) oblem:

For each (x,y)¢S and each SH a’

(n,Sy ) GV - (0,8 )
Tay) Ty ey @) and e are T )t
(n,S, ) (n,5, )
where j(x,y?'n (u,v,j) = J:(u,v) + Jy M,n (v,]), (i.e., the expected

total discounted cost obtained using the decomposed cost functions ).

For the infinite-horizon problem;

For each (x,y)eS,
t+l =t+l
3(x'y) (u?i?j) I (x,y) (B 3D

=t+l
where J(x,y)

discounted cost obtained using the decomposed cost functions ).

@,v,1) = 35 (u,v) + J;+1(v,j), (i.e., the expected total

8.2.2 Algoxithms
We present SDD algorithms for both finite and infinite horizon
problems. These algorithms utilize the backward induction algorithm (or

the successive approximation method) with the SDD approach.

Algorithm 8.2: The SDD for Finite-horizon
Step 1: Define a state space S and a decision space U (Proposition 7.3).

Step 2: Compute the p.m.f. and c¢.d. £, of Vi,



Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:
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For each possible value of § , compute the conditional p.m.£f.

M,n
and the conditional c.d.f. of z, using expressions in
Proposition 7-6. Also, for each possible value of SM n' Compute
the conditional p.m.f. and the conditional c.d.f. of z. given

vt These conditional functions will be used in Step 7.

(N,S

)
Set n=N. Also, set Jy M, N

_¢N(y) for yeSy and SM,N'

N
and Jx-¢N(x) for xeSx, where éN(y) and ¢N(x) are terminal
costs associated with the ending repairable and serviceable
inventories, respectively.

Set n=n-1, Compute transition probabilities (8-6) for each

{n,S

)
decision. For each ycsy and each SM,n. compute Jy M,n

(v.1)
using the cost function (8-5) and expression (8-7b). Similarly,
compute transition probabilities (8-10) for each decision. '
For each xeSx, compute J:(u,v) using the cost function (8-9) and

expression (8-11b).

(n,S,, ) (n,S, )
tee I, 3™ (vd) = vy 3, e,
LSy )
where J(x y)' (u,v,j) is the expected total discounted cost

obtained using the decomposed cost functions,

For each (x,y)eS,

_{n, 8, ) _(n,8. ) (n,S, )
H.n Hyn (u,v,j) and ﬂn- arg J ¥.n

i
) T ) (x,¥)
LSy )
Compute J(x y)' (pn) using the original cost function (7-1)

and the original transition probabilities (7-6) given in
Chapter 7.

If n=0, stop. Otherwise, return to step 5.
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Algorithm 8,3: The SDD for Infinite-horizon ‘
Step 1: Define a state space S and a decision space U (Proposition 7.3).

. Step 2: Compute the p.m.f. and c.d.f. of LA and compute the p.m.f. and
c.d.£. of z, using expressions in (7-13a) to (7-13d).

Step 3: Set t=0. Also, set J; = 0 for all yesy and Ji - 0 for all xeS, .

Step 4: For each yesy, compute J;+1(v,j) using expression (8-8b) and the
cost function (8-5), and the stationary transition probabilities
of (8-6). For each xeSx, compute J;+1(u,v) using expression
(8-12b), the cost function (8-9), and the stationary transition
probabilities of (8-10).

~t+1

. t+l t+ t+
Step 5: Set J(x’y)(u,v,j) Jx (u,v) +J

; sy (V23

the expected total discounted cost obtained using the decomposed

1(v,j), where J

cost functions.

~t+l ~t+l

For each (x,y)e¢S, set J = min J (u,v,j).
XY (uv,gy B0

Step 6@ Compute szly) using the original cost function (7-1) and the

stationary transition probabilicies of (7-12).

t+l gt
(x,y) “(x,y

constant, go to Step 8. Otherwise, increment t by 1 and return

Step 7: If |J )| < ¢ for all (x,y)eS, where ¢ is a stopping

to Step 4.

L - t+l
Step 8: pu_ = arg J(x,y)

and stop.
8.2.3 The SDD with Error Bounds Approach

The error bounds approach discussed in Section 8.1 accelerates
the convergence of the successive approximation method for infinite-
horizon Markov decision problems. Although the approach usually yields

an optimal stationary policy and the corresponding cost in a much less
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number of iterations it does not reduce the amount of work required per
iteration. The SDD reduces the amount of work required per iteration
because it reduces the number of states (as well as the number of
decisions) by converting a two-dimensional state problem into two one-
dimensional subproblems. Thus, the SDD utilizing the error bounds
approach will accelerate the convergence of the successive approximation

method even faster for infinjite-horizon problems.

8.2.4 Performance of The SDD

The SDD approximates the optimal solution to the repairable-item
inventory problem: thus, it may not yield an optimal policy and/or the
correspond%ng optimal cost. Performance of the SDD can be measured by
the following factors: efficiency and effectiveness. Efficiency
measures how much time savings the SDD achieves whereas effectiveness
refers to the deviation from the optimal cost resulting from use of the

SDD. Efficiency of the SDD rests on the following proposition.

Proposition 8.2: Consider the following two MDPs: (a) a two-dimengicnal
state MDP with upper bounds X and ¥, and (b) two single-dimensional
MDPs, each with upper bound X and ¥, respectively. Assume that the
number of decisions to be considered is the same (K) in both problems.
Using the computational algorithm 7.1 or 7.2, problem (b) requires less
computational time and effort than problem (a) when X>2 and 2.

Proof: We compare efficiencies of the two problems based on the

number of states and the size of the transition probability matrices

required for computation.
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# of states in problem (a) = (X+1)(¥+1) = XV+X+¥+1.
# of states in problem (b) = (X+1)+(¥+l) = X+¥+2,

Thus, # of states in {(a) > # of states in (b) for 1 and 1.

Transition probabilities must be calculated for each and every decision
and at each and every stage. Each transition probability matrix in
problem (a) has (i&l)z(?+l)2 elements, while each matrix in problem (b)
has (}'(.-l-i'+2)2 elements. Thus, for the N-period MDP,

# of elements in (a) > # of elements in (b)

NG+ )2 > NEs+2)?  for for %1 and 1.

Table II-5 measures performance of the SDD for a 5-period
finite-horizon Markov decision problem (with different upper limits for
the serviceable and repairable inventories). It shows the computation
time required to find a solution based on a fixed sequence of demand
over time, the average total expected discounted cost incurred per state
with/without the SDD, the percentage savings in computation time
(efficiency), and the percentage increase in average total expected
discounted cost per state (effectiveness) due to use of the SDD. As
seen in the table, the SDD results in tremendous savings in computation
time (especially for the serviceable and repairable inventories with
high upper limits) with little increase in cost. For a Markov decision
problem with (X,Y)=(20,20), the SDD reduces the computation time by
approximately 86% while it increases total cost by only 0.86%. Figures

II-6 to 1I-8 are graphical representations of its performance.



TIME TOTAL COST/STATE % CHANGE
# of

(X,¥) |STATES{ WITHOUT WITH WITHOUT WITH $ |8 t

SDD SDD SDD SDD TIME | COST

(2,2) 9 6.70 s 6.20 s 62.93 62.93 7.5 0

(3,3 16 20,30 s | 17.40 s 55.66 56.34 | 14.3 | 1.22

(4,4) 25 58.30 s | 42.80 s 78.63 78.63 | 26.6 0

(5,5) 36 2.36m 1,45 m 75.17 75.25 | 38.6 { 0.11

(6,6) 49 5.20m 2,77 m 95.65 95.65 | 46.3 0

(7,7 64 10.36 m 4,72 m 93,21 93.21 | 54.5 ]

(8,8) 81 19.43 m 7.85 m 113.10 | 113.24 | 59.6 | £.12

(9,9) 100 346.17 m | 12.06 m 110.80 | 110.94 | 64.7 | 0.13

(10,10) | 121 57.73 m | 18.37 m 130.93 | 131.40 | 68.2 | 0.36
(15,15) | 256 7.84 h 1.59 h 206.60 | 208.42 | 79.7 | 0.88
{20,20) | 441 38.62 h 5.42 h 300.71 | 303.29 | 86.0 | 0.86

Table II-5: Efficiency and Effectiveness of the SDD
for a 5-period Finite-horizon MDP,

—=— (Without SDD) —< (With SDD)
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Figure I1-6: Computation Time Required (without/with the SDD)
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Figure II-7: Percentage of Computation Time Required with the SDD
(vs. without the SDD)
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Figure II-8: Percentage Changes in Time and Cost by the SDD
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The SDD also accelerates the convergence of the successive
approximation method (SAM) for'infinite-horizon Markov decision
problems. Table II-6 measures the efficiencies of the two acceleration
techniques, the error bounds approach and tha SDD approach, for the
infinite-horizon Markov decision problem using the example considered in
Section 7.4.2., The error bounds approach and the SDD reduce the total
computation time required prior to a convergence by approximately 93%
and 39%, respectively. In fact, the SAM utilizing both acceleration

techniques may reduce the computation time by almost 96%.

WITHOUT WITH
ERROR BOUNDS ERROR BOUNDS TIME SAVINGS
ﬁITHOUT SDD 49,121 nin. 3.313 min. 93.26 %
WITR SDD 30.098 min. 2.022 min. 93.28 %
TIME SAVINGS 38.73 ¢ 38.97 95.88 s

Table II-6: Efficiency of the SDD and of the Error Bounds Approach
for Infinite-horizon MDP with (X,¥)=(5,5).

8.2.5 Numerical Examples
Two additional computer programs (Appendices II-H and II-I) were
written to demonstrate the backward induction algorithm utilizing the

SDD approach for finite-horizon problems and the method of successive
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approximations utilizing the SDD approach for infinite-horizon problems.
They terminate in a finite number of iterations with a near-optimal
policy and the corresponding expected discounted cost. These programs
require less storage and memory space than those introduced in Chapter 7
because the two-dimensional state space has been reduced to two one-
dimensional state spaces. The program for infinite-horizon problems may
also utilize the error bounds approach discussed in the previocus
section.

Let us recall the data previously used in Section 7.3.2, that
is, N=10, a=.9, C=4, c=6, R=4, r=4, f=1, h=2, p=0, b=15, %=3, ¥=2, M=2,
and §=.2. Tables II-7(i) to II-7(x) represent a near-optimal policy to
the 10-period finite-horizon problem, ;10-[;0'51""';9" determined by
the backward induction algorithm utilizing the SDD approach, where ;n is
the set of actions taken at the beginning of period n. As seen in the
tables (and also in Tables II-2(i) to II-2(x)), the costs obtained by
using the SDD approach are very close to the optimal costs although
ﬁn-p: sor n=9 and ;nﬂp: for n=0,1,..,8,

In Section 7.4.2, we have demonstrated that the successive
approximation method (SAM) yields an optimal stationary poliecy, i.e.,
x:-{p*....,p*}, for the infinite-horizon problem after 113 iterations.
Table II-8 shows that the SaM utilizing the SDD technique also yields a
stationary policy, §m-{ﬂ,...,§}, in the same number of iterations. We
can see that this policy is indeed the optimal stationary policy, that
is, ;m'“:' where E—y*, which minimizes the expected long-run total

disco::nted cost. From the stationary policy, the set of solution

parameters can also be determined as °u'(ﬁm'"m'§m)'(5'4'5)' Although
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both the SAM utilizing the SDD technique and the SAM without the SDD
techinique yield the optimal stationary policy in the same number of
iterations, the former finds the policy much faster than the latter
because it requires less computation time per iteration (as discussed in
Section 8.2.3). Numerical examples show that the SAM utilizing the SDD
technique reduces the computation time by approximately 39% (see Table
II-6).

In Section 8.2.3, we also discussed a synergy of accelerating
the convergence of the successive approximation method for infinite-
horizon Markov decision problems which results from combining the SDD
technique with the error bounds approach. Table II1-9 shows how an
optimal stationary policy and the corresponding optimal cost have been
obtained using both the SDD technique and the error bounds approach.

Thq SAM utilizing both the SDD technique and the error bounds approach
yilelds tha optimal stationary policy after eight iterations (i.e., t=8)..
Column (c) represents the optimal stationary policy, ﬂ:-{p*,....#*}, and
Columns (e) and (f) indicate the values of the lower and upper b~unds
representing the minimum expected long-run total discounted costs. The
set of solution parameters is determined as ¢w—(ﬂm,qm,§m)-(5,&,5), which
is Iidentical to the one obtained in Section 8.1.2. Although the SaM
utilizing both the SDD technique and the error bounds approach requires
one more iteration than the SAM utilizing only the error bounds approach
before the convergence of the upper and lower bounds, the former finds
the optimal policy much faster than the latter because it requires less
computation time per iteration (as discussed in Section 8.2.4),

Numerical examples show that the SAM utilizing both the SDD technique
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and the error bounds approach reduces the total computation time by

almost 94% (see Table II-6),
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TIME STATE SH n DECISION E.T. TIME STATE SH n DECISION E.T.
n (x,y) ! (u,v, ) D.C. n (x,y) ! (u,v,J) D.C.
(a) (b)Y () (d) (e) (a)  (b) (<) (d) (e)

9 (00) O (2 0 0) 21.25 9 {2 0) 0 (0 00) 5.25

1 (200) 21.25 1 {0 00) 5.25

2 200 21.25 2 {0 0 0) 5.25

3 (200) 21.25 3 (0 0 0) 5.25

4 (200 21.25 4 (0 0 0) 5.25

5 (200 21.25 5 {0 0 0) 5.25

6 (2 00) 21.25 6 (0 0 0) 5.25

9 (1) O (01 0) 19.75 9 2 1 0 (001 5.25

1 (010 19.75 1 (0 0 1) 5.25

2 (01 0) 19.75 2 (0 0 1) 5.25

3 {0 10) 19.75 3 (001 5.25

4 (010 19.75 4 {001 5.25

5 (010) 19.75 5 (00 1L 5.25

6 (010) 19.75 6 (0 0 1) 5.25

9 (02 0 (02 0) 17.25 9 (2 2) 0 (0 0 2) 5.25

1 (020 17.25 1 (0 0 2) 5.25

2 (0 2 0) 17.25 2 (0 0 2) 5.25

3 {0 2 0) 17.25 3 (00 2) 5.25

4 (0 2 0) 17.25 4 (00 2) 5.25

5 (02 0) 17.25 5 (00 2) 5.25

6 (0 20) 17.25 6 {00 2) 5.25

9 (1 0) 0 (00 0) 11.75 9 {30) 0 {0 0 0) 3.00

' 1 (000 11.75 1 (0 00) 3.00

2 (00 0) 11.75 2 (0 0 0) 3.00

3 (000 11.75 3 (0 0 0) 3.00

4 {00 Q) 11.75 4 (0 0 0) 3.00

5 (00 0) 11.75 5 (C 0 0) 3.00

6 (0 0 0) 11.75 6 (00 0) 3.00

9 (11) 0 (00 1) 11.75 9 (3 L 0 (001 3.00

1 (00D 11.75 1 {00 1) 3.00

2 (001 11.75 2 (0 0 1) 3.00

3 (001 11.75 3 (0 0 1) 3.00

4 (00D 11.75 4 (00 1) 3.00

5 {00 1) 11.75 5 (00 L) 3.00

6 (00 1) 11.75 6 (001 3.00

9 (1 2) 0 (00 2) 11.75 9 (3 2) 0 (0 0 2) 3.00

1 (00 2) 11.75 1 (00 2) 3.00

2 (00 2) 11.75 2 (00 2) 3.00

3 (00 2) 11.75 3 (00 2) 3.00

4 (0 2) 11.75 4 {0 0 2) 3.00

5 (00 2) 11.75 5 (0 02) 3.00

6 (0 0 2) 11.75 6 (0 0 2) 3.00

Table II-7(i): Solution to 10-Period Problem by SDD
( n=9; Last period of the planning horizon )
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TIME STATE S, | DECISION E.T. TIME STATE S, DECISION E.T.
n  (x,y) ' (u,v,j) D.C. n (x,y) ' (u,v,3) D.C.
(a) (b) (e) (d) (e) {a) (b) (c) (d) (e)

5 (00) 0 (2 0 0)* 34.27 B (20) o0 (0 00) 18.27

1 (200) 34,11 1 (000) 18.11

2 (200) 33.96 2 (000) 17.96

3 (200) 33.82 3 (000) 17.82

4 (200) 33.69 4 (000) 17.69

5 (200) 33.57 5 (000) 17.57

6 (200) 33,47 6 (000) 17.47

8 (01) O (200) 34.49 8 (21 o (001) 18,27

1 (200) 34.36 1 (001) 18.11

2 (200) 34,25 2 (001) 17.96

3 (200) 34.17 3 (0 01y 17.82

4 (200) 34,10 4 (00 1) 17.69

5 (200) 34.05 5 (0 01y 17.57

6 (200) 34,01 6 (001) 17.47

8 (02) © (0 20) 30.27 8 (22) o (0 02) 18,27

1 (0 20) 30.11 1 (002) 18.11

2 (0 20) 29.96 2 (002) 17.96

3 (020) 29.82 3 (0 02) 17.82

4 (020 29.69 4 (002) 17.69

5 (02 0) 29.57 5 (002 17.57

6 (0 20) 29.47 6 (0 02) 17.47

8 (10) 0 (0 00) 28.30 8 (30) o0 (000 12.06

) 1 (0 00) 28.07 1 (000) 11.98

2 (000) 27.84 2 (000) 11.91

3 (00 0) 27.62 3 (000) 11.84

4 (000) 27.42 4 (000) 11.78

5 (0 00) 27.23 5 (000) 11.72

6 (000) 27.06 6 (000) 11,67

8 (1 1) 0 {01 0) 26,27 8 (3 1) 0 (00 1) 12.06

1 (010) 26.11 1 (001) 11.98

2 (010) 25,96 2 (001) 11.91

3 (010) 25,82 3 (001) 11.84

A (010) 25.69 4 (001) 11.78

5 (010) 25.57 5 (001 11,72

6 (010) 25.47 6 (001) 11.67

8 (12) o (020) 24.06 8 (32 o0 (0 02) 12,06

1 (020) 23.98 1 (002) 11.98

2 (0 20) 23.91 2 (002) 11.91

3 (0 20) 23,8 3 (002) 11,84

4 (0 20) 23.78 4 (002) 11.78

5 (0 20) 23,72 5 (002) 11.72

6 (0 20) 23.67 6 (00 2) 11.67

* Decisions in bold are different than those in Table II1-2(ii).

Table II-7(ii): Solution to 10-Period Problem by SDD (n=8)
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TIME STATE S, | DECISION  E.T.  TIME STATE S, _| DECISION  E.T.
n (xy) % (u,v,j) D.c. n xy) % (uv.,j) D.c.
(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
7 0 0O (300) 45.29 7 (20 0 (0 00) 30.56
1 (300) 45.14 1 {0 0 0) 30.36
2 (300) 44,99 2 (0 00) 30.14
3 (300) 44.85 3 (0 00) 29.91
4 (300) ‘4,71 4 (0 00) 29.69
5 (300) 44.59 5 (0 00) 29.49
6 (300) 44.47 6 (0 00) 29.30
7 (1) 0 (300) 45.55 7 (21 0 (0 01) 30.56
1 (300) 45.39 1 (0 01) 30.36
2 (300) 45.27 2 (001) 30.14
3 (300) 45.17 3 (001) 29.91
4 (300) 45.08 4 (001) 29.69
5 (300) 45.02 5 (0 01) 29.49
6 (300) 44.97 6 (0 01) 29,30
7 (02 o0 (020) 42.56 7 (22 0 (0 02) 30.56
1 (0 20) 42.36 1 (0 02) 30.36
2 (020) 42.14 2 (0 02) 30.14
3 (020) 41.91 3 (002) 29.91
& (020) 41.69 4 (002 29.69
5 (0 20) 41.49 5 (0 02) 29.49
6 (020) 41.30 6 (0 02) 29.30
7- (L0) O (000) 40.76 7 (30) 0 (6 00) 23.29
1 (0 00) 40.53 1 (0 00) 23.14
2 (0 00) 40.26 2 (0 00) 22.99
3 (000) 39,9 3 (0 00) 22.85
4 (0 00) 39.66 4 (0 00) 22.71
5 (0 00) 39.37 5 (0 00) 22.59
6 (000) 35.11 6 (0 00) 22.47
7 @11 o0 (010) 38.56 7 (31 0 (0 01) 23.29
1 (010) 38.36 1 (001) 23.14
2 (010 38.14 2 (0 01) 22.99
3 (010) 37,91 3 (001) 22.85
4 (010) 37.69 4 (001) 22.71
5 (010) 37.49 5 (0 01) 22,59
6 (010) 37.30 6 (001) 22.47
7 (12 o (020) 35.29 7 (32) 0 (0 02) 23.29
1 (020) 35.14 1 (0 02) 23.14
2 (020) 34,99 2 (002) 22.99
3 (020) 34,85 3 (0 02) 22.85
4 (020) 34.71 4 (0 02) 22.71
5 (020) 34.59 5 (0 02) 22.59
6 (02 0) 34,47 6 (0 02) 22.47

Table II-7(iii): Solutioen

to l0-Period Problem by SDD (n=7)
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TIME STATE SM a DECISION E.T, TIME STATE SM n "DECISION E.T.
n (x,y) ' (u,v,j) D.C. n (x,y) ' (u,v,§) D.C,
(a) - (b) (e (d) (e) (a) (b)) «(e) (d) (e)

6 (00 O (300) 55.73 6 (20 0 (000) 41.03

1 (300) 55.58 1 (0 00) 40.84

2 (300) 55.42 2 (000 40.63

3 (300) 55.27 3 (000 40,43

4 (300) 55.13 4 (000 40.22

5 (3040) 55.00 5 (000 40,03

6 (300) 54.89 [ (000 39.85

6 (01 O (300) 55,97 6 (21 0 (001) 41,03

1 (300) 55.81 1 (001) 40.84

2 (3 00) 55.68 2 (0 01y 40.63

3 (3 00) 55.57 3 (00 1) 40.43

4 (3 00) 55.49 4 {001y 40.22

5 (300 55.42 5 (001 40.03

6 (300) 55.37 6 {001 39.85

6 (02 0 (020 53.03 6 (22 0 {002 41,03

1 (0 20y 52,84 1 (00 2) 40.84

2 (020) 52,63 2 (00 2) 40,63

3 (0 20) 52.43 3 (00 2) 40,43

4 {0 2 0) 52.22 4 (002 40.22

5 (020 52.03 5 (00 2) 40,03

6 (0 2 0) 51.85 6 (00 2) 39.85

6 {1 0) 0 (000 51.00 6 (30) 0 (0 0 0) 33.73

) 1 {(000) 50,80 1 (00 0) 33,58

2 (0 00) 50.56 2 (0 00) 33.42

3 (000 50.30 3 (0 0 0) 33.27

4 (000) 50.04 4 (00 0) 33.13

5 (000 49.78 5 (0 0 0) 33.00

6 (0 00) 49.54 6 (0 0 0) 32.89

6 (L1 0 (0O10) 49,03 6 (3 1) 0 (00 1) 33.73

1 (01 0y 48.84 i (001 33.58

2 (010) 48.63 2 (001 33.42

3 (010) 48.43 3 (0ol 33.27

4 (010 48.22 4 (00 1) 33.13

5 {010 48,03 5 (00 1) 33.00

6 (010 47,85 6 {00 1) 32.89

6 (12 0 (0 20) 45.73 [ (3 2) 0 {00 2) 33.73

1 (0 20) 45.58 1 00 2) 33.58

2 (0 20) 45.42 2 (00 2) 33.42

3 (02 0) 45.27 3 (G0 2) 33,27

4 (0 20) 45.13 4 (00 2) 33,13

5 (0 20y 45.00 5 (0 0 2) 33.00

6 (0 2 0) 44,89 6 (00 2) 32.89

Table II-7(iv): Solution

to 10-Period Problem by SDD

(n=6)
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TIME STATE SH a DECISION E.T. TIME STATE SH n PECISION E.T.
n  (x,y) ' (u,v,j) D.C. n {x,y) i (u,v,j) D.C.
(a) () (e) (d) (e) (@ () (e) (d) (e)
5 {0 0) c (300) 65.13 5 20 0 {0 0 Q) 50.42
1 (300 64.98 1 (000 50.24
2 (300 64.83 2 (0 0 0) 50.04
3 (300) 64 .68 3 (0 0 0) 49,84
4 (300) 64.55 4 (0 0 0) 49.64
5 (300 64.42 5 (0 0 0) 49,45
6 (300 64,30 6 {0 0 0) 49,28
5 (0 1) 0 (3 00) 65.39 5 (2 1) 0 (00 1) 50,42
1 (300 65.23 1 (0 0 1) 50.24
2 (300 65.10 2 (0L 50,04
3 (300) 65,00 3 (0 01) 49 .84
4 (300) 64.91 4 (0 0 1) 49 .64
5 (300 64.84 5 (00 L) 49 .45
6 (300) 64.79 6 (0 0 1) 49,28
5 (0 2) 0 (020 62.42 5 (2 2) o {0 0 2) 50.42
1 (0 2 0) 62.24 1 (0 0 2) 50.24
2 (0 2 0) 62.04 2 (0 0 2) 50.04
3 (0 2 0) 6l1.84 3 (00 2) 49.84
4 - (02 0) 6l.64 4 (0 0 2) 49,64
5 (0 2 0) 61.45 5 (0 0 2) 49.45
6 (0 2 0) 61.28 6 (0 0 2) 49 28
5 (10) 0 (000 60,36 5 (3 0 0 (0 0 0) 43.13
1 (0 0 0) 60.17 1 (00 0) 42.98
2 (0 0 0) 59.94 2 (000 42.83
3 (000 59.69 3 (0 0 O) 42,68
4 (0 00) 59,43 4 (0 0 O) 42.55
5 (000Q) 59.19 5 (0 0 0) 42 .42
6 (00 0) 58.95 6 (0 0 O) 42.30
5 (1 1) 0 (01 0) 58.42 S (3 ) 0 (0 0 1) 43.13
1 (010 58.24 1 (00 L) 42 .98
2 (010 58.04 2 (001D 42.83
3 (010 57.84 3 (001 42.68
4 (010 57.64 4 (00 L) 42.55
5 01 57.45 5 (001 42,42
6 (01 Q) 57.28 6 (00 1) 42.30
5 (1 2) 0 (0 20) 55.13 5 (3 2) 0 (0 0 2) 43,13
1 (020 54,98 1 (00 2) 42 .98
2 (020 54.83 2 (0 0 2) 42,83
3 (0 2 0) 54.68 3 (00 2) 42.68
4 (0 20) 54,55 &4 (00 2) 42,55
5 (0 2 0) 54,42 5 (0 0 2) 42,42
6 (0 2 0) 54.30 6 (0 0 2) 42.30
‘ole II-7(v): Solution to 10-Period Problem by SDD (n=5)
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TIME STATE SM a DECISION E.T. TIME STATE SM n DECISION E.T.
n (x,y) ' {u,v, 1) D.C. n (x,y) ' (u,v,J) D.C.
(a) (b) (e) (4) (e) (8) (b) (e) (d) (e)

4 (00 0 (300) 73.59 4 (200 o (0 0 C) 58,89

1 (300) 73.45 1 (000 58.71

2 (300) 73.30 2 (0 090) 58,51

3 (300) 73.15 3 (0 00) 58.31

4 (300) 73.00 4 (0 00) 58.11

5 (300) 72.89 5 (000) 57.92

6 300y 72.77 6 (C00) 57.75

4 (01 O (300) 73.86 4 (21 o (001 58.89

1 (300 73.70 1 (001 58.71

2 (300) 73.57 2 (001 58.51

3 (300) 73.46 3 (001) 58.31

4 (300) 73.38 4 {(001) 58,11

5 (300 73.31 5 (0 01y 57,92

6 (300) 73.26 6 (001) 57.75

4 (02 0o (0 20) 70.89 4 (22 o (002) 58.89

1 (020) 70.71 1 (002) 58.71

2 {0 20) 70.51 2 (0 02) 58,51

3 (020 70.31 3 (0 02) 58.31

4 (020 70.11 4 (002) 58.11

5 (020 69.92 S (022) 57.92

6 (0 20) 69.75 6 (002) 57.75

4 (10 o (000) 68.83 4 {(30) 0O (0 00y 51.59

’ 1 (00 0) 68.64 1 (0 00) 51.45

2 (0 00) 68.41 2 (0 00) 51.30

3 (000) 68.16 3 (00 0) 51.15

4 (000) 67.90 4 (000) s51.01

5 (000) 67.66 5 (000) 50.89

6 (000) 67.42 6 (0 00) 50.77

4 (11 o (01 0) 66.89 4 (3 1y 0 (001) 51.59

1 (010) 66.71 1 (0 01) 51.45

2 (010) 66.51 2 (001 51.30

3 (010) 66.31 3 (001 51.15

4 (010) 66.11 4 (001) s1.01

5 (010 65.92 5 (001) 50.89

6 (010) 65.75 6 (001) 50.77

4 (12 o (020) 63.59 4 (32 0 (0 02) 51.59

1 (0 20) 63.45 1 (0 0 2) 51.45

2 (02 0) 63.30 2 (0 02 51.30

3 (020) 63.15 3 {00 2) 51.15

4 (0 2 Q) 63.01 4 (002) 51.01

5 (0 20) 62.59 5 (0 02) 50.89

6 (020) 62.77 6 (0 02 50.77

Table II-7(vi): Solution

to 10-Period Problem by SDD

(n=4)
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TIME STATE S, | DECISION E.T. TIME STATE S, _| DECISION E.T.
n (x,y) ! (u,v, 1) D.cC. n  (x,y) ' (u,v,3) D.C.
(a) (b)) (e) (d) (e) (a) (B) (<) (d) (e)

3 (00 0 (300) 81.21 3 (20 0 (0 00) 66.51

1 (300) 81.07 1 (0 00) 66.33

2 (300) 80.92 2 (0 0 0) 66,13

3 (300) 80.77 3 (0 00) 65,93

4 (300) 80.64 4 (000) 65.73

5 (300) 80.51 5 (0 00) 65.54

6 (300) 80.39 6 (0 00) 65.37

3 @O1) o (300) 81.49 3 (21 o (001) 66.51

1 (300) 81.32 1 (0 01) 66.33

2 (300) 81.19 2 (001) 66.13

3 (300) 81.09 3 (0 01) 65.93

4 (300) 81.00 4 (001) 65.73

5 (300) 80.93 5 (001) 65.54

6 (300) 80.88 6 (0 01) 65.37

3 (02 0 (020) 78.51 3 (22 o0 (002) 66.51

1 (020) 78.33 1 (0 02) 66.33

2 (020 78.13 2 (002 66.13

3 (020) 77.93 3 (0 02) 65.93

4 (020) 77.73 4 (002) 65.73

5 (020) 77.54 5 (0 02) 65.54

6 0?2 77.37 6 (00 2) 65.37

3 @10y o (600) 76.45 3 (30) o (000) 59.21

1 (000) 76.26 1 (0 00) 59.07

2 (000) 76.03 2 (0 00y 58.92

3 (000) 75.78 3 (000) 58.77

4 (000) 75.53 4 (0 00) 58.64

5 (000) 75.28 5 (0 00) 58.51

6 (000) 75.05 6 (0 00) 58.39

3 (11 o0 (010) 74,51 3 31 o (001) 59.21

1 (010) 74.33 1 (001 59,07

2 (010) 74,13 2 (0 01) 58.92

3 (010) 73.93 3 (0 0 1) 58.77

4 (010) 73.73 4 (0 01) 58.64

5 (010) 73.54 5 (0 01) 58.51

6 (010) 73.37 6 (0 01y 58,39

3 (12 o (020 71.21 3 @32 0 (002 59,21

1 (020) 71.07 1 (0 02) 59.07

2 (020 70.92 2 (002 58.92

3 (020 70.77 3 (002 58,77

4 (020) 70.64 4 (0 02) 58.64

5 (020 70.51 5 (002) 58.51

6 (0 20) 70.39 6 (0 02) 53.39

Table II-7(vii): Solution

to 10-Period Problem by SDD

(n=3)
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TIME STATE SH n DECISION E.T. TIME STATE SH n DECISION E.T.
n (x,y) ! (u,v, ) D.C. n  (x,y) ! (u,v,J) D.C.
(a) (b} (c) (d) (e) (a) (b) (c) (d) (e)

2 00y O {(300) 88.07 2 20 0 (000) 73,37

1 (300) 87.93 1 (000 73.19

2 (300) 87.78 2 (oo 72,99

3 (300) 87.63 3 (C 0Dy 72.79

4 (300 87.50 4 (000 72.59

5 (300) 87.37 5 (0 00) 72,40

6 (300) 87.25 6 (0 0 0) 2.23

2 1y O (300) 88.35 2 (21 o (0 01) 73,37

1 {300y 88.18 1 {001y 73.19

2 (300) 88.05 2 {001 72.99

3 (30090 87.95 3 (001 72.79

4 (300Q) 87.86 4 (001 72.59

5 (300) 87.79 5 (001 72.40

6 (300) 87.74 6 (001 72.23

2 (02 O (020 85.37 2 (22 0 (002 73.37

1 (020 85.19 1 (0 0 2) 73.19

2 {0 2 0) B4.99 2 (0 0 2) 72.99

3 (02 0) 84.79 3 (00 2) 72.79

4 (0 20) 84,59 4 (00 2) 72.59

5 (02 0) 84,40 5 (00 2) 72.40

6 (0 2 0) 84.23 6 (00 2) 72.23

2 (L 0) 0 (000 8331 2 (30) o (00 0) 66.07

’ 1 (C00) 83,12 1 (0 0 0) 65.93

2 (000) 82.89 2 (000 65,78

3 (00 0) 82.64 3 (0 00 65,62

4 (000 82,39 4 (000 65.50

5 (000) 82.14 5 (0 00) 65.37

6 (000 81,91 6 {0 00) 653.25

2 (1 1) 0 (010) 81,37 2 (31 0 (00 1) 66,07

1 {010y 8l.19 1 (0 0 1) 65.93

2 (01 0) 80.99 2 (00 1) 65.78

3 (010) 80.79 3 (C 0 1) 65.63

4 (01 0) 80.59 4 (00 1) 65.50

5 (010 80.40 5 (00 1) 65.37

6 (010) 80,23 6 0 01) 65.25

2 (1 2) 0 {020y 78,07 2 (32 o0 (00 2) 66.07

1 (0 20) 77.93 1 (002 65.93

2 (020 77.78 2 (002 65.78

3 (020 77.63 3 (002 65.63

4 (0 2 0) 77.50 4 (0 0 2) 65.50

5 {02 0) 77.37 5 {00 2) 65 37

6 (02 0) 77.25 6 (00 2) £i3.25

Table II-7(viii): Solution to 10-Period Problem by SDD (n=2)
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TIME STATE S, /| DECISION  E.T. * TIME STATE S, | DECISION E.T.
n  (x,y) ' (u,v,j} D.C. n  (x,y) ’ (u,v.3) D.c.
(8) (b) (e (d) (e) (a) (b (e (4 (e)

1 (00 O (300) 94.25 1 (20 0 (000 79.5

1 (300) 9.10 1 (0 00) 79.36

2 (3 00) 93,95 2 (000) 79.16

3 (300) 93.81 3 (0 00) 78.96

4 (300) 93.67 4 (000) 78.76

5 (300) 93.54 5 (0 00) 78.58

6 (3 00) 93,43 6 (000) 78.40

1 (01) o (300) 94,52 1 (21 o (001) 79.5

1 (300) 94.36 1 (001) 79.36

2 (300) 94.22 2 (001) 79.16

3 (300) 94.12 3 (001) 78.96

4 (300) 94,03 4 (001) 78.76

5 (300) 93.97 5 (001) 78.58

6 300) 93,91 6 (001) 78.40

1 (02 0 {0 20) 91.54 1 (22 o (002) 79.54

1 (0 20) 91,36 1 (002) 79.36

2 (0 20) 91.16 2 (002) 79.16

3 (0 20) 90,96 3 (002 78.96

4 (020) 90.76 4 (002 78.76

5 (0 20) 90.58 5 (0 02) 78.58

6 (0 20) 90.40 6 (002) 78.40

1 (10) 0 (0 00) 89.48 1 230y 0 (0 00) 72.25

1 (0 00) 89.30 1 (000) 72.10

2 (0 00) 89.07 2 (000) 71.95

3 (0 00) 88.82 3 (000)y 71.81

4 (0 00) 88.56 4 (0 00) 71.67

5 (000) 88.31 5 (000) 71.54

6 (0 00) 88.08 6 (000) 71.43

1 (11 0 (0 10) 87.54 1 (31 0 (001) 72.25

1 (010) 87.36 1 (001) 72.10

2 (010) 87.16 2 (001) 71.95

3 (010) 86.96 3 (001) 71.81

4 (010) 86.76 4 (001) 71.67

5 (0 10) 86.58 5 (001) 71.54

6 (0 10) 86.40 6 (001) 71.43

1 (12) 0 (0 20) 84.25 1 (32) o (002) 72.25

1 (0 20) 84.10 1 (002) 72.10

2 (0 20) 83.95 2 (002) 71.95

3 (0 2 0) 83,81 3 (002) 71.81

4 (0 20) 83.67 4 (002) 71.67

5 (02 0) 83.54 5 (002) 71.54

6 (0 20) 83.43 6 (0 02) 71.43

Table II-7(ix):

Solution

to 10-Period Problem by SDD

(n=1)



157

TIME STATE S, | DECISION E.T. TIME STATE S, _| DECISION E.T.
n (x,y) ! (u,v,j) D.C. n  (x,y) ' (u,v,§) D.C,
&) (b) (e} (d) (e) (@ (b) (e (d> (e)

0 (00) 0 (300) 99.80 0 (20 o (0 00) 85.10

1 (300) 99,66 1 (0 00) 84,92

2 (300) 99.51 2 (000) 84.72

3 (300) 99.36 3 (0 00) 84.52

4 (300) 99,23 4 (000) 84,32

5 (300) 99.10 5 (0 00) 84,13

6 (300) 98.98 6 (0 00) 83.96

0 (01) o0 (300) 100.08 0 (21 o (001) 85.10

1 (300) 99,91 1 (0 01y 84.92

2 (300) 99.78 2 (001) 84.72

3 (300) 99,67 3 (001) 84,52

4 (300) 99,59 4 (001) 84.32

5 (300) 99.52 5 (001) 84.13

6 (300) 99,47 6 (001) 83.96

0 (02 © (020) 97.10 0 (22 o (0 02) 85.10

1 {020) 96.92 1 (002) 84,92

2 (020) 96.72 2 (002) 84,72

3 (020) 96.52 3 (0 02) 84,52

4 (02 0) 96.32 4 (002) 84,32

5 (020) 96.13 5 (0 02) 84.13

6 (020) 95,96 6 (002) 83.96

0 (10) 0 (000) 95.04 0 (30 o0 (000) 77.80

| 1 (000) 94.85 1 (0 00) 77.66

2 (000) 94.62 2 (000) 77.51

3 (00 0) 94.37 3 (000) 77.36

4 (000) 94,12 4 (000) 77.23

5 (000) 93.87 5 (000) 77.10

6 (000) 93.64 6 (000) 76.98

0 (11) o (010) 93.10 0 (31) o0 (001) 77.80

1 (010) 92,92 1 (001) 77.66

2 (010 92.72 2 (001) 77.51

3 (010) 92,52 3 (001) 77.36

4 (010) 92,32 4 (0o01l)y 77.23

5 (010 92.13 5 (0oL 77.10

6 (010) 91.9 6 (001) 76.98

0 (12) O (020) 89.80 0 (32) o (002) 77.80

1 (020) 89.66 1 (0 02) 77.66

2 (0 20) 89.51 2 (002 77.51

3 (020) 89.36 3 (002) 77.3

4 (020) 89.23 4 (002) 77.23

5 (020) 89.10 5 (002) 77.10

6 (02 0) 88.98 6 (002) 76.98

Table II-7(x): Solution to 10-Period Problem by SDD

( n=0; Beginning of the planning horizon )
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PERIOD STATE DECISION EXPECTED TOTAL
t (x,y) (u,v,3) DISCOUNTED COST
(a) (b) (c) (d)*
113 (0 0) (4 0 0) 214,90
113 (0 1) (310) 212.90
113 0 2) (220 210,90
113 (0 3) (1 30) 208.90
113 (0 &) (0 4 0) 206,90
113 (0 5) (0 5 0) 205.89
113 (1 0) (300) 208.90
113 (1 1) {(210) 206.90
113 (1 2) (120 204.90
113 (1 3) (0 3 0) 202.90
113 (1 4) (0 4 0) 201.89
113 (1 5) (0 41) 201.89
113 (2 0) (2 0 0) 202.90
113 (2 1) (110) 200,90
113 (2 2) (0 2 0) 198.90
113 (2 3) 03 0) 197.89
113 (2 &) (0 31) 197.89
113 (2 5) (0 3 2) 197.89
113 (3 0) (100) 196.90
113 (31 (0 10) 194.90
113 (3 2) 020 193,89
113 (3 3) (0 2 1) 193.89
113 (3 4) (0 2 2) 193.8¢%
113 (3 5) (02 3) 193,89
113 (4 0) (0 0 0) 190,90
113 (4 1) (010 189.89
113 (4 2) (011) 189,89
113 (4 3) (012) 189.89
113 (4 4) (01 3) 189.89
113 (4 5) (01 4) 189.89
113 (5 0) (0 00) 185.89
113 (5 1) (001 185.89
113 (5 2) (0 0 2) 185.89
113 (5 3) (0 0 3) 185.89
113 (5 4) (0 0 4) 185.89
113 (5 5) (0 0 5) 185.89

* Minimum expected long-run total discounted cost

Table II-8: Solution tc infinite-horizon Problem with SDD
(for t=113; Na=x).
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PERIOD STATE DECISION EXPECTED TOTAL LOWER UPPER
t (x,y) (u,v,j) DISCOUNTED COST BOUND BOUND
(a) (b) (e) (d) (e)* (£)*
8 (0 0) (4 0 0) 126.81 214.90 214.90
8 (01 (310) 124 .81 212.90 212.90
8 (0 2) (220 122.81 210.90 210.90
8 {0 3) (L 30) 120.81 208.90 208.90
8 (0 4) {0 4 0) 118.81 206.90 206.90
8 (0 5) (0 5 0) 117.79 205.89 205.89
8 (L 0) (300) 120,81 208.90 208.90
8 (11) (210) 118.81 206.90 206.90
8 (1 2) (120) 116.81 204,90 204,90
8 (13) (03 0) 114,81 202.90 202.90
8 (1 4) (0 4 0) 113.79 201.89 201,89
8 (15) (C 4 1) 113.79 201.89 201.89
8 (2 0) (200) 114.81 202.90 202.90
8 (2 1) (110) 112.81 200.90 200.90
8 (2 2) (0 2 0) 110.81 198.90 198.90
8 (2 3) (0 3 0) 109.79 197.89 197.89
8 (2 4) (03 1) 109.79 197.89 197.89
8 (2 5) (03 2 109.79 197.89 197.89
8 (3 0) (100 108.81 196.90 196.90
8 (3 1) (0 10) 106.81 194.90 194.90
8 {3 2) (0 2 0) 105.79 193.89 193.89
8 (3 3 (0 21) 105.79 193.89 193.89
8 (3 4) {0 2 2) 105.79 193.89 193.89
8 (3 5) (0 2 3) 105.79 193,89 193.89
8 (4 Q) (0 0 0) 102,81 190.90 190.90
8 (4 1) (010 101.79 189.89 189.89
8 (4 2) (011) 101.79 189.89 189.89
8 4 3) (0 12) 101.79 189.89 189.89
8 (4 4) (01 3) 101.79 189.89 189.89
8 (4 5) (01 4) 101.79 189.89 189,89
8 (5 0) (00 0) 97.79 185.89 185.89
8 5L (001) 97.79 185.89 185.89
8 (5 2) (00 2) 97.79 185.89 185.89
8 (5 3) (0 0 3) 97.79 185.89 185.89
8 (5 4) (0 0 4) 97.79 185.89 185.89
8 (5 5) (0 0 5) 97.79 185.89 185.89

* LOWER BOUND = UPPER BOUND

Table II-9: Solution to Infinite-horizon Problem
{SDD and Error bounds approach; for t=8)



CHAPTER 9 CONCLUSIONS

9.1 Discussions

Part II of the thesis analyzed the repairable-item inventory
system with random demand and dynamic return processes. In the analysis
of the system, the dynamic inventory problem was remodelled as a
discrete-time Markov decision model with two-dimensional state and
three-dimensional decision spaces. The system and decision rules
defined throughout the analysis were used to eliminate unnecessary
decisjons before they were being considered while the transition
probabilities for each and every remaining decision are derived using
tools from probability. The Markov decision model was then solved for
both finite-time and infinite-time Planning horizons using the backward
induction algorithm and the method of successive approximations,
respectively. Later, two acceleration techniques, i.e., error bounds
approach and State Decomposition by Dimension (SDD), were utilized for
speeding up the convergence of successive approximation,

Reduction in decision space is a very important procedure in the
analysis of the system (especially for those with a large number of
states) because it avoids unnecessary computation time and effort by
eliminating most of decisions before they are to be considered. With
X=20 and Y=20, the number of decisions before reduction is 9261, which
is quite large to handle. The decision space reduction procedure

reduces the number of decisions to 441, that is a reduction by 95.2%.

160
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For the finite-horizon Markov decision problem with N stages, (X+1)(¥+1)
states per stage and (K+1)(X+1)(¥+1) decisions per state (before
reduction), where K-min(X,Y), solution by the backward induction
algorithm requires one addition for the stage return plus (X+1)(¥+1)
multiplications and (X+1)(¥+1) additions for the summation term for
glven stage, state and decision. Thus the total number of computational
steps required is N(K+1)T2[2T+1], where T=(X+1)(Y+l). For the same
problem, with the reduction procedure the total number of computational
steps becomes NT2[2T+1], showing a decrease by a factor of K+l. Without
using the decision space reduction procedure, inventory problems with a
large number of states may not be solved even with a very sophisticated
computer,

To study effects of changes in the cost parameters on policy
structure for infinite-horizon problems, we have run the programs using
different values of f, P, C and R. Considering the data in Section
7.4.2 as the base case, we chose each of the following parameter values:
£-0,1,2; p=0,1,4,-2; C=0,4,8; and R=4,8. For each case, the algorithms
terminate in a finite number of iterations with an optimal policy and
the corresponding cost. However, for the problems with zero inventory
holding cost (i.e., f=0) or non-zero set-up costs (i.e., C#R#0) we were
unable to determine any types of fixed pelicy structures. Determination
of a fixed policy structure seems to be impossible when f=0 because
junking decision is never optimal., When CwRe0, interactions among these
set-up costs and unit purchase and repair costs (¢ and r) make policy
structure unstable (i.e., the repair-before-purchase (RBP) pelicy is not

always optimal ).
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Somewhat interesting results include the following. When C=0
and R»0, we have unstable policy structures since the RBP policy is not
always optimal (i.e., r<c+p). When Ce0 and R=0, however, we are able to
determine a fixed policy structure since the RBP policy is always
optimal for this case. The set of solution parameters for such a case
is different than the one introduced earlier because it requires an
additional parameter regarding the purchase decision. We denote this
set of extended sclution parameters by 3»'( m,vw,nm,gm). The parameters
regarding the repair decision (8,) and the junking decision (¢,) have
the same definition as before. The parameters regarding the purchase
decision (uw,nm) are now defined as follows: if xn+yn<um, purchase up to
”m'(xn+yn); otherwise, do not purchase. An explanation follows. When
the repair decision can not raise the serviceable inventory co B, one
of the following two purchase decisions is made: (i) if xn+yn<yg, repair
all available repairables (yn) and then purchase qm-(xn+yn) serviceables
so that the total number of serviceables after the repair and purchase
decisions is equal to n, and (ii}) if x by v, do not purchase any
serviceables. One should notice that the purchase decision discussed
above is similar to the order-up-to (i.e., (s,$)) inventory policy for
consumables, where v_ and n, act like s and S, respectively.

The error bound approach is an existing computational technique
which accelerates the convergence of successive approximation for
infinite-horizon problems. It was found that with the error bounds
approach the totsl computation time required to find a stationary policy
is reduced by approximately 93%. The SDD, a state decomposition

technique developed in this thesis for speeding up the convergence of
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successive approximation, can be used for both finite-horizoq and
infinite-horizon problems. The SDD was proved to be very efficient in
computati;n time and very effective in the objective function values.
For a 5-period finite-horizon inventory problem with X=20 and ¥=20, the
SDD reduces the total computation time by 86% with little increase
(L.e., 0.86%) in total cost. Although the SDD is more efficient and
effective for inventory problems with a large number of states, the
successive approximation method utilizing both the SDD and the error
bounds approach for infinite-horizon problems may reduce the computation
time by almost 96%. It may be dangerous to make a general conclusion on
the performance of che SDD since the results obtained above was based on
a few examples. However, the results based on other examples we have
tried (although they are not included in this thesis) also show that the

validity of the SDD still remains.

9.2 Modifications to the Model
9.2.1 Junking of Serviceables

Consideration of the additional decision variable of Junking of
serviceables is possible in the situation where the cost of holding a
serviceable unit is very high. This modification, however, deoes not
affect the solution methodology developed in Chapter 7, and can be
easily taken care of.

Let s, be the number of serviceables junked in period n and q be
the cost (or scrap value) per unit Junked. A cost occurs if q>0 and a
scrap value occurs if g<0. Then the control (un,vn,jn,sn) is an element

of a four dimensional control space U. The state equations (6-1) and
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{6-2) become X4 max[Q, xn+un+vn-sn-wn] and Yosl™ yn-vn-jn+zn,
respectively. The new constraints are: jnfvn =¥, and S,V S X,
The second constraint means that the net total units junked must not be
greater than the beginning inventory. Also the expected cost per stage
(7-1) changes to:
¢(x'y)(u,v,j.s) - 2,0 +cu+ o R+ xv+pj+qs + £ max[0,y-v-i]
+ h E{max[0,x+tu+v-s-w]} + b E{max[0,w-x-u-v+s]]},

Propositions 7.1 and 7.2 can be revised using the new system rules and

then the optimal solution can be obtained using the similar analysis,

9.2.2 Backorders case

The change from the ‘lost sales’ case to the ‘backorders’' case has
no impact on the solution methodology used in Chapter 7. For the
‘backorders’ case, however, the system equation (6-1) becomes X4l
u AV, indicating & negative serviceable inventory at the beginning

- x_+
n

of a period is possible. For the solution wethodology previously used
to work, we must introduce a negative capacity limit for the serviceable
inventory, namely, X(>0). Thus, x and y are the state variables of the
two-dimensional state (x,y), where x--X,..,-1,0,1,..,X and y=0,1,2,..,¥.
The negative capacity limit X can be considered as the nzximum number of
backorders the inventory manager intends to make for unsatisfied
demands. Propositions 7.1, 7.2 and 7.3 can be modified so that the
number of states and the number of decisions will become (X+X+1) (V+1)
and (K+1)(L+l), respectively, where Kemin(X+X,¥) and L-max(X+X,¥). The
expected cost per stage (7-1) will remain the same; however, b is now

defined as the penalty cost per unit backerdered.
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9.3 Comparison with Similar Models
In this section, the inventory models studied in this thesis are
compared to the similar inventory models investigated by the following

three authors: Veinott [1966], Phelps [1962], and Simpson [1972][1978].

9.3.1 Veinott’s Model

The inventory models studied in this thesis 1s more general than
Veinett’s model. It will be comparable with Veinott's model when the
following changes are made. First, the ‘backorders’ case instead of the
‘lost sales’ case is considered (see Section 9.2.2). Second, the
warranty period (M) is zero (i.e., units demanded in the current period
only can be returned for repair) and the percentage of the demand for
serviceables returned (§) is a fixed constant (rather than a random
va;iable) so that the demand/return relationship (7-5) becomes z - 8wn,
which is a perfect correlation between the demand and return processes.
Third, the junking decision is not permitted. Finally, the set-up costs
of purchasing serviceables and repairing repairables are negligible
(i.e., C=R=0). Thus, Veinott’' model is a specilal case of the modified
N-period model studied in this thesis which can be solved for an optimal

solution by the methodology similar to the one used in this thesis.

9.3.2 Phelps’ Model

Phelps’ model differs in three ways from the steady-state
inventory model studied in this thesis. First, an additional decision
variable of junking serviceables is included. Second, as in Veinott's

model a perfect correlation between the demand and return processes is
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assumed. Finally, the set-up costs of purchasing serviceables and
repairing repairables are negligible. The first difference can easily
be modified in the model iIn this thesis (see Section 9.2.1). The second
and third differences have been discussed in Section 9.3.1, Thus,
Phelps' model is a special case of the modified steady-state model
studied in the thesis and can be solved by the methodolegy similar to

the one used in this thesis.

9.3.3 Simpson’s Model

Simpson and this thesis investigate the similar problem and
solve for optimal solutions to both finite horizon and infinite heorizon
problems. Simpson’s models and the models studied in this thesis differ
in the following ways. First, Simpson considers the ‘backorders’ case
for the unsatisfied demand for serviceables while this thesis assumes
the ‘lost sales’ case. Second, Simpson's models do not allow the set-up
cost of purchasing serviceables and of repairing repairables while the
models in the thesis do. Third, Simpson assumes zero salvage value {or
zero cost) for repairables to be junked while this thesis allows a
constant salvage value (or a constant cost) per unit. Fourth, this
thesis considers a more realistic relationship between the demand for
serviceables and returns of repairables. A joint probability density
function between the demand and returns is known (i.e., assumed) for
each period in Simpson’s models while it is derived in this thesis from
the dynamic demand/return relationship, where not only a random
proportion of the demand in the current period but those in the previous

periods may be returned for repair. Finally, Simpson utilizes a dynamic
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programming technique with the Kuhn-Tucker saddle point theorems to
determine a definitive optimal solution structure. This thesis,
however, uses a Markov decision process with a decision space reduction
technique and the method of successive approximations to obtain an
optimal solution which the corresponding optimal solution structure can
be derived from. While the solution methodology used by Simpson is not
applicable to the 'lost sales' case, the approach used in this thesis is
applicable to the ‘backorders’ case (see Section 9.2.2).

The dynamic return process considered in this thesis also leads
to instability of policy structures. However, the policy structures
obtained (with C=R=0) in this thesis for the infinite-horizon problem
seem to be consistent with those in Simpson. It would be quite
interesting to know whether both the 'lost sales' and ‘backorders’ cases
constitute the same policy structures for the proposed inventory

problem.
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APPENDIX II-A: CLASSIFICATIONS OF BEPATRABLE-ITEM INVENTCRY MODELS

a)

b)

d)

a)

b)

a)

WITH RETURNS

d/Retu ations s
Perfect Correlation (Complete Dependency): - A known proportion of
the demand for serviceables in a certain period are returned for
repalr in the same period.

Phelps [1962], Veinott [1966]}, Schrady [1967], Allen & D’Esopo
[1968]}, Brown et al., [1971]

Perfect Non-Correlation (Complete Independency):

Simpson [1970], Heyman [1977]{1978}, Isaac [1979], Muckstadt
& Isaac [1981), Albright & Soni [1988]

Joint Probability Density Function between Demand and Returns (for
a given period):

Simpson [1972][1978]

Dynamic Correlation: - Random proportions of serviceables demanded
in the current and previous periods are returned.

Cho [thesis]

es o view Polic
Continuous Review Policy:

Schrady {1967]), Allen & D'Esopo [1968], Heyman [1977][1978], Isaac
[1979], Muckstadt & Isaac [1981], Albright & Soni [1988]

Perjodic Review Policy:

Phelps [1962], Veinott [1966), Simpson [1970], Brown et al.[1971],
Simpson [1972][1978), Cho [thesis]

ehavior of Demand/Retur rocesses

Deterministic:

Schrady [1967]
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b) Stochastic;
Phelps [1962], Veinott [1966], Allen & D’Esopo [1968), Simpson
(1970), Brown et al. [1971], Simpson {1972](1978), Heyman {1977]

[1978]}, Isaac [1979], Muckstadt & Isaac [1981], Albright & Soni
[1988], Cho [thesis)

4 cha ad e
a) Instantaneous (zero times):

Phelps (1962], Veinott [1966]), Simpson {1972][1978], Heyman [1977]
[1978], Cho [thesis]

b) Constant:

Schrady [1967], Allen & D'Esopo [1968}, Brown et al. [1971]), Isaac
[1979], Muckstadt & Isaac [1981], Albright & Soni [1988)

¢) Stochastic:

Simpson [1970]

epai imes
a) Instantaneous (zero times):

Phelps [1962], Veinott [1966], Simpson [1972](1978], Heyman [1977]
[1978], Cho [thesis]

b) Constant:
Schrady [1967], Allen & D'Esopo {1968), Brown et al. [1971)
¢) Stochastic:

Simpson (1970), Isaac [1979], Muckstadt & Isaac {1981], Albright
& Soni [1988]

6. Set-up Costs for Purchase and Repair

a) No set-up costs:

Phelps [1962], Veinott [1966], Schrady [1967], Allen & D'Esopo
(1968), Simpson [1970), Brown et al, (1971], Simpson (1972][1978],
Heyman [1977]([1978], Isaac [1979], Muckstadt & Isaac [(1981],
Albright & Soni [1988)
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b) Constant set-up costs for purchase and repair:

Cho [thesis]

1. Control Varjsbles
a) Purchase Decision:

Allen & D'Esopo [1968], Simpson [1970], Brown et al. [1971], Heyman
[1977])[1978], lsaac [1979], Muckstadt & Isaac [1981]

b) Purchase and Repair:
Veinott [1966], Schrady [1967], Albright & Soni [1988]
¢) Purchase, Repair, and Junk (Scrap):

Phelps (1962), Simpson [1972][1978], Cho [thesis]

8, Plapyning Time Horizon
a) Finite Time:

Veinott [1966], Brown et al. [1971], Simpson [1972][1978],
Cho [thesis]

b) Infinite-Time (Steady-state):
Phelps [1962], Schrady [1967], Allen & D'Escpo [1968], Simpson

[1970][1972][1978], Heyman [1977][1978], Isaac [1979], Muckstadt
& Isaac [1981], Albright & Soni [1988], Cho [thesis)

lutio e

a) Optimal Solution:
Phelps [1962], Veinott [1966]), Schrady [1967], Allen & bB'Esopo
(1968), Brown et al. [1971], Simpson (1972](1978], Heyman [1977]
{1978) (for M/M/1/N), Cho [thesis]

b) Approximation:

Simpson [1970}, Heyman [1977][1978] (for G/G/1/N), Isaac [1979],
Muckstadt & Isaac [1981], Albright & Soni [1988)
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APPENDIX II-B: COMPARISON OF FIVE RELEVANT INVENTORY MODELS

A brief description of each of the models in the literature,

directly related to this research is given. In order to compare these
models, we will look into the following areas.

(a) Model Structure (Assumptions):

1) Demand/Return Processes

2) Demand/Return Relationship

3) Type of Review Policy

4) Backorders or Lost Sales (for Unsatisfied Demand)
5) State Variables

6) Control Variables

7) Purchase/Repair Times

8) Distinet Cost Consideration

9) Planning Horizon

(b) Solution Approach:
10) Solution Methodologies

11) Solution Type/Structure
12) Other comments

Fhelps [1962]:

1) Stochastic demand and repair processes.

2) Perfect correlation (complete dependency): - a fixed portion of
demand is returned.

3) Periodic review policy.

4) Lost sales

5) Two state variables: servicesble and repairable inventories.

6) Four control variables: purchase, repair, junx(S) & junk(R).

7) Instantaneous purchase/repair.

8) Infinite-time (steady-state).

9) Nili.

10) Decision analysis,

11) Optimal policy is specified by seven regions in the state plane.

No closed-form solution; No algorithms.
No determination of the boundaries of the solution structure.

Veinott [1966]:

1)
2)
3)

Stochastic demand and repair processes.
Perfect correlation.
Periodic review policy.
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4) Backorders.
5) Two state varjables: serviceables and repairables.
6) Two control variables: purchase & repair.
7) Instantaneous purchase/repair.
8) Finite-time.
9) Nil.
10) Decision analysis.
11) Optimal policy is specified by three regions in the state plane.
No closed-form solution; No algorithms.
No determination of the boundaries of the solution structure.
Siwpgon [1972](1978]:
1} Stochastic demand/return processes.
2) Joint probability density between demand and returns,
3) Periodic review policy.
4) Backorders.
5) Two state variables: serviceables and repairables.
6) Three control variables: purchase, repair & Junk.
7) Instantaneous purchase/repair.
8) Beth finite-time and {nfinite-time.
9) Negligible salvage value from junking a unit.
10) Dynamic programming with K-T Theorem.
11) Optimal solution is described by seven regions.
Optimality has been proved.
Determination of the boundaries of the solution structure.
No algorithms for the generalized model.
Algorithms for the specialized N-period and steady-state models.
Closed-form solutions for special cases of the steady-state model.
12) The solution methodology is inapplicable to the "lost sales" case.

Isaac [1979], Muckstadt and Isaac [1981]:

Both demand and returns are Poisson processes.

Perfect non-correlation: two independent random variables.
Continuous review policy,

Backorders.

One state variable: net inventory position.

One control variable: level of procurement.

Constant procurement and Stochastic repair times.

Infinite-time (steady-state),

Nil.

Decision Analysis - use of a normally distributed random variable
an approximation of the stationary distribution of net inventory.
Assumption of a continuous (r,Q) procurement policy,
Approximated closed-form solution,

Decision-maker has no control over the quantity of repair.
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Cho_[thesis]:
1) Stochastic demand and return processes.
2) Dynamic correlation: Quantity to be returned in the current period
depends on the demands in both the current and previous periods.
3) Periodic review policy.
4) Lost sales.
5) Two state variables: serviceables and repairables.
6) Three control variables: levels of purchase, repair, and junk.
7} Instantaneous purchase/repair.
8) Both finite-time and infinite-time (steady-state).
9) Constant set-up costs for purchase and repair.
10) Markov decision process (Dynamic programming in Markov Chains).
Successive approximation.
11) Optimal solution.
12) Development of acceleration techniques.

Applicable to the ‘backorders’ case,
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APPENDIX TI-C: PROOF OF PROPOSITION 7.3

Lemma 7.1: The total number of decisions before some decisions have
been eliminated by the decision and system rules is (K+1)(X+1)(¥+1).
Proof: U=X, V=K and J=¥, where K-min(X,¥), by Proposition 7.2. Since u
may take any one of (X+1) different values (i.e., u=0,1,2,...,%), v may
take any one of (K+l) different values (i.e., v=0,1,2,...,K), and j may
take any one of (Y+l) different values (i.e., j=0,1,2,...,¥), the total
number of decisions before some decisions have been eliminated by the

decision and system rules is (K+1)(X+1)(¥+1). Q.E.D.

Lemma 7.2: Two types of decisions, (uw>0,v>0,j>0) and (uw>0,v=0,j>0),

would never be optimal.

Proof: There are eight types of decisions based on the value (positive

or zero) each of three decision variables u, v, and j takes. These are:
(1) (uw0,v>0,1>0) (11)  (w0,v>0,3j=0) (iii) (w0,v=0,3>0)
(iv) (w0,v=0,j=0) (v) (u=0,v>0,3j>0) (vi) (u=0,v>0,j=0)
(vii) (u=0,v=0,3j>0) (viii) (u=0,v=0,j=0)

We will prove that two types of decisions (i) and (ii{i) would
never be optimal by showing that they are dominated by other types of
decisions or are invalid in some situations. In Section 6.2, we assumed
that r<c+p, that is, the cost of repairing a repairable unit is always
less than the net cost of junking the unit and purchasing a new
serviceable unit. Decision (u>0,v>0,3j>0) would never be optimal because

it is always dominated by decision (u>0,v>0,j=0). Let y be the number
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of repairables in the repair facility at the beginning of a period and s
be the number of serviceables replenished to the storage facility to
meet demand eicher by repairing repairables or purchasing serviceables
or by both, Assume that vy units are repaired (i.e., v-v1<y) and y-vqy
units are junked (i.-., j-y-vl). Thus s-vy units must be purchased
{i.e., u-s-vl) so that the serviceable inventory will increase by s.

The cost of decision (w0,v>0,j>0) is then R+rv1+c+ c(s-v1)+p(y-v1). 1f
one follows decision (u>0,v>0,j=0), all units in the repair facility are
repaired (i.e., v=y) and s-y units must be purchased (i.e., u=s-y). Of
course, there are no units to be junked. The cost of this decision is

R+ry+C+c(s-y). Let

Cost of (uw>0,v>0,3>0) < Cost of (uw»0,v>0,i=0)
R + v, + C + c(s-vl) + p(y-vl) < R+ry+C+ c{s-y)
rvy - Vv4¢ + py - PV, < Iy - ¢y

(r-c-p)vy < (r-c-p)y

Since r-c-p<0 from the cost function (i.e, r<c+p), after simplifying we
get v >y, which violates our assumption V<Y Thus, the cost of (w0,
v>0,j=0) is less than that of (u»0,v>0,j>0), implying that decision
(w0,v>0,j=0) is always superior to decision (w0,v>0,3j>0).

As far as decision (w0,v=0,j>0) is concerned, it becomes
invalid or is dominated by other decisions. Zero repair decision (vw0)
may be made under any one of two circumstances, that is, y=0 or y>0., If
y=0 (no repairables in the repair facility), .'.en the above decision is

invalid because there are no units to be junked (i.e., j=0). If y>0
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(some repairables), however, decision (w0,v=0,j>0) is dominated by
decision (u=0,v=0,}>0). Because the cost of repairing a repairable unit
is always less than that of junking the unit and purchasing a new
serviceable unit, the case y>0 and v=0 indicates that the storage
facility has enough serviceables to meet demand and there is no need to
replenish more serviceables to the storage facility. Thus with decision
(w0,v=0,j>0), extra costs will be incurred due to a purchase of

unnecessary se -viceables. Q.E.D.

Jemns 7.3: The number of decisions eliminated by the decision rules,
(w0,v>0,3>0) or (uw0,v=0,3i>0), is (K+1)XY¥.

Proof: The decisions witp w0 and j>0 will be eliminated by the
decision rules. Since u may take any one of X different values, v may
take any one of (K+l) different values, and j may take any one of ¥
different values, the number of decisions eliminated by the decision

rules is (K+1)XY. Q.E.D,

Leoma 7.4: The number of decisions eliminated by the system rules,

(utv>R) or (v+i>¥), 1s } K(K+1)(3L4K#S).

Proof: Number of decisions eliminated by the system rules (c) or (d)
number of decisions eliminated by (¢) + number of decisions eliminated

by (d) - number of decisions eliminated by bath (¢) and (d)

Number of decisions eliminated by (c):
If v=0, u may not take any value; j may take any one of (¥+1) values.

If v=1, u may take only one value; j may take any one of (¥+1) values.
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If v=2, u may take one of 2 values; j may take any one of (¥+1) values.
If v=K, u may take one of K values; j may take any one of (¥+1) values.

Thus, the number of decisions eliminated by (c)

= (O+14243+. .. .+K) (T+1) = % R(K+1) (T+1) .

Number of decisions eliminated by (d):
If v=0, ] may not take any value; u may take any one of (X+l) values.
If v=1, j may take only one value; u may take any one of (X+1) values.

If v=2, j may take one of 2 values; u may take any one of (X+1) values.
If v=K, j may take one of K values; u may take any one of (X+1) values.

Thus, the number of decisions eliminated by (d)

- (O+14243+. .. . 4K) (R+1) = % K(K+1) (R+1).

Number of decisions eliminated by both (c) and (d):
If v=0, u may not take any value; j may not take any values,
If v=1, u may take only one value; j may take only one value.

If v=2, u may take one of 2 values; j may take one of two values.
If v~K, u may take one of K values; j may take one of K values,

Thus, the number of decisions eliminated by both (c) and (d)

02412422442, 42 % K(K+1) (2K+1) .
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Therefore, the number of decisions eliwinated by either (c) or (d)

- % K(K+1) (T+1) + % K(K+1) (R+1) - }, K(K+1) (2K+1)
- %x(x+1)[3(i+?)-2x+5]
- % R(K+1) (3L+K+5)  since RT4¥ = K4L = LiK. Q.E.D.

Jemma 7.5: The number of decisions eliminated by both the decision
rules, (uw0,v>0,j>0) or (uw>0,v=0,j>0), and the system rules, (u+v>X) or
(v3>0), is } R(K+1)(3L+K-1).
Proof: Number of decisions eliminated by both the decision rules and
the system vules (d) & (e):

If v=0: both u and j may not take any value.

If vel: when u-0 to X-1, j may take only one value;

when u=X, j may take any one of Y different values.
If v~2: when u=0 to X-2, j may take only one value;

when u=X-1 to X, j may take any one of Y different values.
If v=3: when u-0 to X-3, j may take only one value:

when u=X-2 to X, j may take any one of ¥ different values.

If v=K: when u=0 to X-K, j may take only one value;

vhen u=X-K to X, j may take any one of ¥ different values.

. The number o: decisions eliminated by both the decision rules and the

system rules
= 0+ (X+¥-1) + 2(R+Y¥-2) + 3(R+¥-3) + ..... + K(X+Y-K)

= (A-1) + 2(A-2) + 3(A-3) + ..... + K(A-K) where A=X+Y
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A+2a+3a+ ... +Ka - (1% 2% 3% .+ kD

3 xxs1) - % K(K+1) (2k+1)

3 R(KHL) [3(Re) -2K-1]

- % R(K+1)(3L+K-1) since X+Y¥ = K+L = L+K.

Therefore, the number of decisions to be considered in che MDP

Total number of decisions before elimination - Number of decisions
eliminated by the decision rules - Number of decisions eliminated
by the system rules + number of decisions eliminated by both the
decision and system rules

(K+1) (X+1)(¥+1) - (R+1)XY - % K(K+1) (3L+K+5) + é K(K+1) (3L+K-1)
(R+1) (R+T41) + F K(RHL) (3L#K-1-3L-K-5)

(R+1) (X+Y+1) - R(K+1)

(K+1) (X+Y-K+1)

(K+1) (L+1) = (X+1)(¥r1) since X+¥ = K+L = L+K, Q.E.D.
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APPENDIX II-D: COMPARISON OF THREE CDHPUTATIQHAL METHODS IN MDP

(L

(2),

POLICY ITERATION

Not applicable for a finite horizon problem.

Requires solution of a linear system of simultaneous equations,
implying that each iteration takes a long time.

Terminates in a finite number of iterations (for fimite space sets)
Not attractive for a model with a very large number of states,
because the dimension of the system is equal to the number of
points of the state space.

The number of iterations required before termination may depend on

the quality of an initial policy selected,

LINEAR PROGRAMMING

Not applicable for a finite horizon problem.

Requires solution of a system of simultaneous linear equations.
Terminates in a finite number of iterations (for finite space sets)
Becomes impractical for very large M and K, where M is the number
of states and K is the number of decisions.

There are (M+l) functional constraints and KM original variables.

i.e., 1In our problem, if X=¥=10 then:
M= (X+1)(T+1) = 11%11 = 121
& K= - 121,
Thus, # of constraints = 121 + 1 = 122

& # of variables = 121*%12]1 = 14641,
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METHOD OF SUCCESSIVE APPROXIMATION

Probabilistic dynamic programming algorithm,

Applicable for both finite and infinite horizon problems.

Never requires the solution of a system of simultaneous equations,
implying that each iteration can be performed simply and quickly.
Requires less computer storage space.

For a finite horizon problem, the method ylelds an optimal policy.
For an infinite horizon, discounted cost problem, the method yields
an optimal policy after a finite number of iterations.

For an infinite horizon, discounted cost problem, many techniques
are avallable for accelerating the convergence of the successive

approximation method (i.e., error bounds approaches, etc.).
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APPENDIX II-E: TRANSFORMATION OF THE RECURSIVE RELATIONSHIP FROM THE
FINITE-HORIZON PROBLEM TO THE INFINITE-HORIZON PROBLEM.
N
Assume J(x,y)- ¢N(x,y) =~ 0 for (x,y)eS when N+,
Let Q-0 = 0% | (x,y)€S, n=0,1,... .
(x,¥) “{(x,y) ' ' T

Using the recursive relationship (7-9),

ng’y)- 0, (x,y)eS, n=N

and

Q?;?y)'(u?i?j)[ $ix,y) BV + °x§_o yg_op(x.y)(x'.y')(“’v'” Q?;?:;')’
for (x,y)eS; n=0,1,...,N-1,

Replacing Qﬁ;?y) with Jf;fy), (x,y)eS, t=0,1,...,N-1, the recursive

relationship of the successive approximation method is stated as follow.

0

J(x,y)- 0, (®,¥)eS
and
) S
t+1 t
(x'y)-(ulln‘i;?j)( ¢(x.y)(u,v,j) + ax%‘-o y?_op(x'y)(x; .yl)(uqvlj) J(xf .yr),

for (x,y)eS, t=0,1,...,N-1,

where fo ) now is the minimum expected total discounted cost of the

system starting at state (x,y) and evolving for t time perlods,
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APPENDIX JI-F: COMPUTER FROGRAM - BACKWARD INDUCTION ALGORITHM (BIA)

REM * THE PRCGRAM "THE21FIN.BAS" FINDS OPTIMAL POLICY, WHICH MINIMIZES +
REM * THE TOTAL EXPECTED DISCOUNTED COST FOR A FINITE-TIME REPAIRABLE *
REM * INVENTORY MODEL USING THE BACKWARD INDUCTION ALGORITHM. *
REM * *
REM * *
1/(wbar+l) w=0,1,...,wbar
REM * Demand function: (W) = { *
REM * P(w) 0 otherwise *
REM #* *
REM * = ( Developed 6/25/91 Revised 3/19/92 ) - *

! Define dimensions.

DIM 1isymbol$(500), ksymbol$(500)

DIM usymbol$(500), vsymbol$(500), jsymbol$(S00)

DIM preoptcost(500), optcost(500), avgsmcost(500), ptrans(500)
DIM probw(20), probgew(20), probz(20, 10, 20), probgez(20, 10, 20)

! Input data.

tf = 10 'final time

alpha = .9 'discount factor

capC = 4 'fixed ordering cost

c =6 ‘unit ordering cost

capR = 4 ‘fixed repair facility setup cost
r=4 'unit repair cost

fwl 'holding cost for repairable items

h =2 ‘holding cost for serviceable items
p=0 'Junking cost

b =15 ‘penalty cost of unsatisfied demand
xbar = 3 'maximum storage capacity

ybar = 2 'maximum repair capacity

wbar = 3 ‘maximum possible demand

delta - .2 ‘proportion of units demanded returned
maxwarranty = 2 'warranty periods for goods demanded

IF xbar >= ybar THEN
lvalue = xbar
kvalue = ybar

ELSE
lvalue = ybar
kvalue = xbar

END IF

ubar = xbar
vbar = kvalue
jbar = ybar
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totnstate = (xbar + 1) * (ybar + 1)
totndec = (ubar + 1) * (vbar + 1) * (jbar + 1)
ndecae = (kvalue + 1) * (lvalue + 1)

! Set optimal cost at the final stage to zZero,

FOR i% = 1 TO totnstate
preoptcost(is) = 0
NEXT 1%

' Define the demand process (i.e., p.m.f. & c.d.£.).

cummprobw = 0

FOR w% = 0 TO wbar
probw(ws) = 1 / (wbar + 1)
cummprobw = cummprobw + probw(ws)
probgew(ws) = 1 - cummprobw + probw(ws)
"PRINT w%; probw(ws); probgew(ws)

NEXT ws

' Define the return process (i.e., p.n.f. & c.d.f.)
CLS

zbar = (maxwarranty + 1) * wbar
sbar = maxwarranty * wbar
zbarfactor# = 1

FOR s% = 0 TO sbar
FOR wg = 0 TO wbar
zcombination = 0
cummprobz =
FOR 2% = 0 TO zbar
diffzwg = z% - wg
IF diffzws > s% THEN
probz(s%, ws%, z%) = 0
cummprobz = cummprobz + probz(ss, wi, z%)
probgez(sg, wi, z3) = 1 . cummprobz + probz(s%, ws, za)
ELSE
totsw = s% + w§
swfactor# = 1
IF totsw = 0 THEN
swfactor# = 1
ELSE
FOR fact% = 1 TO totsw
swlactor# = swfactor# * facts
NEXT facts
END IF

zfactor# = 1
IF z% = O THEN

zfactor# = 1
ELSE
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FOR facts = 1 TO z%
zfactor# = zfactor# * facth
NEXT fact®
END IF

zdiffs = totsw - z%
zdifffactor# = 1
IF z% = totsw THEN
zdifffactor# = 1
ELSE
FOR facts = 1 TO zdiffs
zdifffactor# = zdifffactor# * fact$
NEXT facts
END IF

zcombination = swfactor# / (zfactor# * zdifffactor#)
probz(s%, w%, z%) = zcombination * delta " z%

* (1 - delta) " zdiffs
cummprobz = cummprobz + probz(ss, ws, z$%)
probgez(s%, w$, z%) = 1 - cummprobz + probz(s%, w%, z%)

END IF

NEXT z%
NEXT w$
NEXT s%

' Print out input data,

'CLS

PRINT "< INPUT DATA FOR FINITE-HORIZON PROBLEM: THE21FIN.BAS >"
PRINT " "

PRINT "tf ="; tf, "final time"

PRINT "alpha ="; alpha, "discount factor"

PRINT "capC ="; capC, "fixed ordering cost"

PRINT "c ="; ¢, "unit ordering cost"

PRINT "capR ="; capR, "fixed repair facility setup cost"

PRINT "r ="; r, "unit repalr cost"

PRINT "f ="; £, "holding cost for repairable items"

PRINT "h ="; h, "holding cost for serviceable items"

PRINT "p ="; p, "junking cost"

PRINT "b ="; b, "penalty cost of unsatisfied demand"

PRINT " "

PRINT "xbar ="; xbar, "maximum storage capacity"

PRINT "ybar ="; ybar, "maximum repair capacity"

PRINT " "

PRINT "wbar ="; wbar, "maximum possible demand"

PRINT "delta ="; delta, "proportion of units demanded returned®
PRINT "warranty ="; maxwarranty, "warranty periods for units demanded"
LOCATE 24, 24: PRINT "Press any key to continue ..... ", INPUTS$(1)

TIME$ - "00:00"
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* Determine a state space and a decision space.

ks - 0
FOR us = 0 TO ubar
FOR v = 0 TO vbar
FOR j% = 0 TO jbar
deltax® = ul + v§
deltays = v& + j%

IF deltax® > xbar OR deltay$ > ybar THEN
k& = ks
ELSEIF u% > 0 AND j% > O THEN
kg = k3
ELSE
ks = ky + 1
is = 0O
FOR x% = 0 TO xbar
FOR y% = 0 TO ybar
ig = i% + 1
isymbol$(is) = STR$(x%) + STRS(ys)
IF x% + deltaxs > xbar OR deltay% > y% THEN
ug = ul
Ve = v
js = js
ELSE
usymbol$ (ks)
vsymbol$ (k%)
Jsymbol$(ks)
ksymbol$ (k%)
END IF
NEXT y%
NEXT x%
END IF

STRS(u%)
STRS(vs)
STRS$(i%)
usymbol$(ks) + vsymbol$(ks) + jsymbol$(ks)

NEXT j%
NEXT vs
NEXT us

' Determine optimal policy at each state and period.
FOR t% = tf TO 1 STEP -1

IF t% - tf THEN
CLS
PRINT "OPTIMAL SOLUTION TO THE"; tf; "- PERIOD REPAIRABLE ITEM
INVENTORY MODEL:"
PRINT ™ "
PRINT SPC(0); "< PERIOD >"; SPC(2); "< STATE (x,y) >"; SPC(4);"<S>";
SPC(3); "< DECISION (u,v,j) >"; SPC(3); "< EXPECTED COST >"
PRINT " "
ELSE
PRINT " "
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PRINT SPC(0); "< PERIOD >"; SPC{2); "< STATE (x,y) >"; SPC(4);"<S>";
SPC(3); "< DECISION (u,v,j) >"; SPC(3); "< EXPECTED COST >""
PRINT " "
END IF :

iy =0
sumoptcost = 0
FOR x% = 0 TO xbar
FOR y% = 0 TO ybar
i3 = i3 + 1
totsmcost =
FOR 8% = 0 TO sbar
FOR k% = 1 TO ndecae
u$ = VAL{usymbol$(ks))
v = VAL(vsymbol$(ks))
J% = VAL(jsymbol$ (k%))
netdeltaxt = x% + us + vy
netdeltays = y% - v - j%
IF netdeltax$ > xbar OR netdeltays < O THEN
ks = k%
ELSE

! Determine Transient Probability matrix.

idoty = O
FOR xdot% = 0 TO xbar
FOR ydot% = 0 TO ybar
idot% = idots + 1
differxs = netdeltaxs - xdots
differys = ydot: - netdeltays

IF differxs < 0 OR differys < O THEN

ptrans(idots) = 0
ELSEIF xdot$ = O AND ydot% = ybar THEN

ptrans{idots) = O

FOR w§ = differxs TO wbar

ptrans(idot%) = ptrans{idots) + probw(ws)
* probgez(s%, ws, differys)

NEXT w%
ELSEIF xdot% = 0 AND ydot% < ybar THEN

ptrans(idots) = 0

FOR w = differxt TQ wbar

ptrans({idots) = ptrans(idot%) + probw(ws)
* probz(s%, ws, differys)

NEXT w%
ELSEIF xdot$ < 0 AND ydots = ybar THEN

ptrans(idot3) = probw(differxs)

* probgez(s%, differxs, differys)

ELSE

ptrans(idots) = probw(differxs)

* probz(ss%, differxs, differys)

END IF
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NEXT ydots
NEXT xdots

! Determine cost function.

IF us > O THEN
fixorders = 1
ELSE
fixorders = 0
END IF

IF v% > 0 THEN
fixrepairg - 1
ELSE
fixrepairt = 0
END IF

eholding = 0
FOR w% = 0 TO netdeltaxt

eholding = eholding + h * ((netdeltaxs - ws) * probw({ws))
NEXT ws

epenalty = 0
FOR w% = netdeltaxs TO wbar
epenalty = epenalty + b * ((ws - netdeltaxs) * probw(wg))
NEXT wt
cost = fixordert * capC + ¢ * u% + fixrepairs * capR + r *
V# + p * j% + f * netdeltays + eholding + epenalty

suml = 0
FOR idot% ~ 1 TO totnstate
suml = suml + ptrans(idots) * preoptcost(idots)
NEXT idots
sum2 = cost + alpha * suml

IF k% = 1 THEN
optks = ki
mincost = sum?

ELSEIF sum2 >= mincost THEN
optks = optks
mincost = mincost

ELSE
optk% = k§
mincost = sum?

END IF

END IF
NEXT k%

decisiont - optks
optcost(i%) = mincost
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* Print out results

inveg = ty - 1
IF s% = 0 THEN
PRINT TAB(4); inves; TAB(1S); i%; TAB(19); "("; isymbol$(is);
* 3*; TAB(33); s%; TAB(43); decision%; TAB(47);: "(":
ksymbol$ (decisions); " }"; TAB(65); USING "#HNHE, #H",
optcost{is)
ELSE
PRINT TAB(33); s%; TAB(43); decision%; TAB(47); "("; ksymbol$§
(decisions); " )"; TAB(65); USING "siusis# ##"; optcost(iy)
END IF
totsmcost = totsmcost + optcost(it)
NEXT s%
avgsmcost(i%) = totsmcost / (sbar + 1)
sumoptcost = sumoptcost + avgsmcost(is)
PRINT " "

NEXT y%
NEXT x%

PRINT " "

avgoptcost = sumoptcost / totnstate

PRINT TAB(19); "Average total cost per state ="; USING "##Ht #t";
avgoptcost

FOR i% = 1 TO totnstate
preoptcost(is%) = avgsmcost(is)

NEXT 1s

PRINT " "

PRINT " "
NEXT t%

PRINT "Total Processing Time = "; TIMER
PRINT * "
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APPENDIX IT-G: COMPUTER PROGRAM: SUCCESSIVE APPROXIMATION METHOD (SANM)
(WITHOUT/WITH ERROR BOUNDS)

REM * THE PROGRAM "THE22NEW,.BAS" UTILIZES THE METHOD OF SUCCESSIVE *
REM * APPFROXIMATIONS TO DETERMINE AN OPTIMAL POLICY, WHICH MINIMIZES *
REM * THE EXPECTED LONG-RUN TOTAL DISCOUNTED COST FOR INFINITE-TIME +*
REM * REPAIRABLE-ITEM INVENTORY MODELS. THE PROGRAM ALSO UTILIZES *
REM * AN ERROR-BOUND APPROACH TO ACCELERATE THE CONVERGENCE OF THE
REM * SUCCESSIVE APPROXIMATION METHOD. *
REM

REM * Assumptions: *
REM * - Discount factor ( 0 <~ alpha < 1 ) *
REM * - Poisson demand process *
REM * - Return process is Binomial with parameters (Q,68), *
REM #* where QI is obtained from E(w). *
REM

REM * - { Developed 8/07/91 Revised 1/30/91 ) - *

* Define dimensions.

DIM isymbol$(5000), ksymbol$(5000), decisions(5000)
DIM preoptcost(5000), optcost(5000), ptrans(5000)
DIM probw(100), probz(100), probgew(100), probgez(100)

' Input data.

tf = 150 'final time

alpha = .9 'discount factor

capC = 0 'fixed ordering cost

c=26 ‘unit ordering cost

capR = 0 'fixed repair facility setup cost
r=4 ‘unit repair cost

f=-1 ‘holding cost for repairable items
h =2 'holding cost for serviceable items
p=0 *Junking cost

b= 15 'penalty cost of unsatisfied demand
xbar = 5 ‘maximum storage capacity

ybar = 5 ‘maximum repair capacity

mratew = 3 ‘average demand

delta = ,2 ‘proportion of units demanded returned
maxwarranty = 2 'warranty pariods for goods demanded

! Check for the assumption of bound errors approach,

IF alpha = 1 THEN
CLS
LOCATE 11, 18: PRINT "Discount factor cannot be 1 for a convergence,"
LOCATE 13, 27: PRINT "Please select ‘alpha’ again.”
LOCATE 15, 32: PRINT "( O <= alpha < 1 )"
END
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ELSE
beta = alpha / (1 - alpha)
END IF

IF xbar >= ybar THEN
lvalue = xbar
kvalue = yhar

ELSE
lvalue = ybar
kvalue = xbar

END IF

ubar = xbar
vbar = kvalue
jbar = ybar

totnstate = (xbar + 1) * (ybar + 1)
totndec = (ubar + 1) * (vbar + 1) * (jbar + 1)
ndecae = (kvalue + 1) * (lvalue + 1)

' Set optimal cost at the final stage to zero.

FOR is = 1 TO totnstate
preoptcost(is) = 0
NEXT is%

' Define demand and return processes.

cummprobw = 0
wg =0
DO WHILE cummprobw < ,999999
wlactor# = 1
IF w§ = 0 THEN
wlactor# = 1
ELSE
FOR facts = 1 TO ws
wfactor# = wfactor# * facts
NEXT facts
END IF
probw(ws) = mratew * wg * EXP(-mratew) / wfactor#
cummprobw = cummprobw + probw(ws)
probgew(ws) = 1 - cummprobw + probw(ws)
Wk = wk + 1
LOOP
wbar = wg - 1

-

" Total demand during the warranty periods is calculated from E(w).

totsales% = (maxwarranty + 1) * mratew
zbar = totsales%
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zbarfactor# = 1
IF zbar = 0 THEN
zbarfactor# = 1
ELSE
FOR factg = 1 TO zbhar
zbarfactor# = zbarfactor# * facts
NEXT facts
END 1IF

zcombination = O
cummpxobz = 0
FOR z% = 0 TO zbar
zfactor# = 1
IF z% = 0 THEN
zfactor# = 1
ELSE
FOR fact% = 1 TO z%
zfactor# = zfactor# * facts
NEXT facts
END IF

zdiffg = zbar - z%
zdifffactor# = 1
IF z% = zbar THEN
zdifffactor# « 1
ELSE
_ FOR facts = 1 TO zdiffs
zdifffactor# = zdifffactor# * facts
NEXT fact$
END IF

zcombination = zbarfactor# / (zfactor# * zdifffactor#)
probz(z%) = zcombination * delta " z& * (1 - delta) " zdiffs
cummprobz = cummprobz + probz(z%)

probgez(z%) = 1 - cummprobz + probz(z%)

NEXT z%
! Print out Input data,

CLS

PRINT "< INPUT DATA >"

PRINT *® "

PRINT “tf «"; tf, "final time"

PRINT "alpha ="; alpha, "discount factor"

PRINT "capC ="; capG, "fixed ordering cost"

PRINT "¢ ="; ¢, "unit ordering cost"

PRINT "capR ="; capR, "fixed repair facility setup cost"
PRINT "r ="; r, "unit repalr cost"

PRINT "f ="; £, "holding cost for repairable items"
PRINT "h ="; h, "holding cost for serviceable items"
PRINT "p ="; p, "junking cost"
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FRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
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"b ="; b, "penalty cost of unsatisfied demand”
n L]

"xbar ="; xbar, "maximum storage capacity"
"ybar ="; ybar, "maximum repalr capacity"

" n

"mratew =", mratew, "average demand"
"delta ="; delta, "proportion of units demanded returned"
"warranty ="; maxwarranty, "warranty periods for units demanded"

LOCATE 24, 24: PRINT "Press any key to continue ..... ", INPUTS$(1)

TIMES

= "00:00"

* Define states, decisions, and determine optimal policy at each state

and

each period.

FOR t% = 1 TO tf

IF t% = 1 THEN
CLs
LOCATE 11, 6: PRINT "OPTIMAL SOLUTION TO THE"; tf; - PERIOD

REPAIRABLE ITEM INVENTORY MODEL:"

LOCATE 25, 65: PRINT "please wait ..."
ELSE
LOCATE 25, 65: PRINT "please wait ..."

END

IF

is =0

FOR

X% = 0 TO xbar

FOR y% = 0 TO ybar

is = 1% + 1
isymbol$(1%) = STR$(x%) + STR$(ys)

ks = 0
FOR u% = 0 TO ubar
FOR v§ = 0 TO vbar
FOR j% = 0 TO jbar
DELTAX® = u% + v§
DELTAYS = v% + j%

IF DELTAX% > xbar OR DELTAY:% > ybar THEN
decision%(is%) = 0
ELSEIF ut% > 0 AND j% > O THEN
decision%(is) = O
ELSEIF x% + DELTAX$ > xbar OR DELTAY% > y% THEN
kt = ks + 1
decision%(is) = O
ELSE
kt = ks + 1
decisionk(is) = k%
ksymbol$(ks) = STR$(us) + STRS(ve) + STRS(j%)



! Determine Transient Probability matrix.

netdeltax$ = x% + ug + v§
netdeltays = y% - ve - j%

idots = 0
FOR xdot% = 0 TQ xbar
FOR ydot% = 0 TO ybar
idots = idots + 1
differxs = netdeltaxs - xdots
differys w» ydots - netdeltays

IF differx® < 0 OR differys < O THEN
ptrans(idots) = 0
ELSEIF xdot$ = 0 AND ydots = ybar THEN
ptrans(idoty) « 0
FOR w3 = differxs TO wbar
ptrans(idots) = ptrans(idots) + probw(ws)
* probgez(differyw)
NEXT ws
ELSEIF xdot% = O AND ydot% < ybar THEN
ptrans(idotg) = 0
FOR w% = differx% TO wbar
ptrans(idot%) = ptrans(idots) + probw(ws)
* probz(differys)
NEXT wg
ELSEIF xdot$ <> 0 AND ydot% = ybar THEN
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ptrans(idots) = probw(differxs) * probgez (differys)

ELSE
ptrans(idots) = probw(differxs) * probz(differyt)
END IF
NEXT ydots
NEXT xdots

! Determine cost function.

IF us > 0 THEN
fixorders = 1
ELSE
fixorders = @
END IF

IF v§& > 0 THEN
fixrepairs = 1
ELSE
fixrepairs = 0
END IF

eholding = O
FOR wt = 0 TO netdeltaxs

eholding = eholding + h* ((netdeltax% - w%) * probw(ws))

NEXT wy



195

epenalty = 0
FOR w& = netdeltax$ TO wbar

epenalty = epenalty + b* ((w$ - netdeltaxs$) * probw(ws))
NEXT ws

cost = fixorder$ * capC + ¢ * u$ + fixrepairs * capR + r *
vi + p * j% + £ * netdeltayk + eholding + epenalty

suml = Q
FOR idot% = 1 TO totnstate
suml =~ suml + ptrans(idot%) * preoptcost(idots)
NEXT idot$
sum? = cost + alpha * suml

IF k% = 1 THEN
optks = k%
mincost = sum?

ELSEIF sum2 > mincost THEN
optk% = optks
mincost = mincost

ELSE
optks = k3
mincost = sum?

END IF

END IF

NEXT j%
NEXT vs
NEXT u$

decision%(it) = optks
optcost(is) = mincost

' Calculate error bounds.

differror = optcost(is) - preoptcost(is)
IF iy = 1 THEN
minerror = differror
maxerror = differror
ELSEIF differror <= minerror THEN
minerror = differror
maxerror = maxerror
ELSEIF differror >= maxerror THEN
minerrer = minerror
maxerror = differror
ELSE
minerror = minerror
maxerror = maxerror
END 1IF

lowerror = beta * minerror
uperror =~ beta % maxerror
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NEXT y$%
NEXT x%

! Print out results

PRINT SPC(0Q); "<T>"; SPC(4); "<STATE (x,y)>"; SPC(2):
"<DECISION (u,v,j)>"; SPC(2); "<EXPECTED COST>": SPC(3);

"<LBOUND>"; SPC(3); "<UBOUND>"

PRINT ™ "

sumoptcost = 0

FOR i% = 1 TO totnstate
invtg = tf - ¢8 + 1
lowbound = optcost(is) + lowerror
upbound = optcost(i%) + uperror
PRINT TAB(l); t%; TAB(8); i%; TAB(13); "(": isymbol$(is); " )";
TAB(25); decision%(is); TAB(30); "("; ksymbol$(decision%(is));
" )"; TAB(4Ll); USING “sawhssttmstt ##"; optcost(is); SPC(3):
lowbound; upbound
devision = i% / (ybar + 1)
IF devision = {% \ (ybar + 1) THEN
PRINT " "
ELSE
devision = devision
END IF
preoptcost(is) = optcost(is)
| Swnoptcost = sumoptcost + optcost(is)
NEXT i%

PRINT " "

avgoptcost = sumoptcost / totnstate

PRINT TAB(20); "Average total cost per state ="; USING ™"#mitit# #4":
avgoptcost

PRINT "

NEXT t%
PRINT "Total Processing Time = ":; TIMER
PRINT " "
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APPERDIT II-H: COMFUTER PROGRAM: BIA WITH THE SDD

REM * THE PROGRAM "THE23FIN.BAS" USES THE BACKWARD INDUCTION ALGORITHM *

REM * WITH A STATE DECOMPOSITION TECHNIQUE TQO APPROXIMATE THE OPTIMAL *
REM * POLICY, WHICH MINIMIZES THE TOTAL EXPECTED DISCOUNTED COST FOR A *
REM * FINITE-TIME REPAIRABLE INVENTORY MODEL. *
REM * *
REM * *
1/(wbar+l) w=0,1,...,wbar
REM * Demand function: W) = { *
N P 0 otherwise .
REM * *
REM * - ( Developed 6/25/91 Revised 3/19/92 ) - *

' Define dimensions.

DIM isymbol$(100), ksymbol$(100), pxtrans(80), pytrans(80), ptrans(80)
DIM usymbol$(100), vsymbol$(l00), jsymbol$(100), optdecisions(100)

DIM optcost(1l00), optxcost(l00), optycost(100)

DIM prexoptcost(1l00), preyoptcost(100), preoptcost(100)

DIM avgsmcost(100), avgsmxcost{1l00), avgsmycost(1l00)

DIM probw(20), probgew(20), subprobz(20, 20), subprobgez (20, 20)

DIM probz(20, 20, 20), probgez(20, 20, 20)

' Input data.

tf = 10 'final time

alpha = .9 'discount factor

capC = 4 'fixed ordering cost

c=5 ‘unit ordering cost

capR = 4 'fixed repair facility setup cost
r=4 'unit repair cost

f=-1 ‘holding cost for repairable items

h =2 ‘holding cost for serviceable items
p=0 'Junking cost

b =15 ‘penalty cost of unsatisfied demand
xbar = 3 ‘maximum storage capacity

ybar = 2 ‘maximum repair capacity

wbar = 3 '‘maximum possible demand

delta = .2 'proportion of units demanded returned
maxwarranty = 2 'warranty periods for goods demanded

* Check for the assumption of bound errors approach.

IF alpha = 1 THEN
CLS
LOCATE 11, 18: PRINT "Discount factor cannot be 1 for a convergence."
LOCATE 13, 27: PRINT "Please select ‘alpha’ again."
LOCATE 15, 32: PRINT "( O <= alpha < 1 )"
END
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beta = alpha / (1 - alpha)

END IF

' Print out input data,.

CLS

PRINT "< INPUT DATA FOR FINITE-HORIZON PROBLEM WITH SDD; THE23FIN.BAS >
PRINT " "

PRINT "tf ="; tf, "final time"

PRINT "alpha ="; alpha, "discount factor"

PRINT "capC ="; capC, "fixed ordering cost"

PRINT "c ="; ¢, "unit ordering cost"

PRINT "capR ="; capR, "fixed repair facility setup cost"

PRINT "r ="; r, "unit repair cost"

PRINT "f ="; £, "holding cost for repairable items"

PRINT "h ="; h, "holding cost for serviceable items"

PRINT "p ="; p, "junking cost"

PRINT "b ="; b, "penalty cost of unsatisfied demand"

PRINT " n

PRINT "xbar ="; xbar, "maximum storage capacity"

PRINT "ybar ="; ybar, "maximum repair capacity"

PRINT " n

PRINT "mratew ="; mratew, "average demand"

PRINT "delta ="; delta, "proportion of units demanded returned"
PRINT "warranty ="; maxwarranty, "warranty periods for units demanded"
LOCATE 24, 24: PRINT "Press any key to continue ..... "y INPUTS(L)

IF xbar >= ybar THEN
lvalue = xbar
kvalue = ybar

ELSE

lvalue = ybar
kvalue = xbar

END IF

ubar = xbar
vbar = kvalue
jbar = ybar

totnx = xbar + 1
totny = ybar + 1

totnstate = totnx * totny
totndec = (ubar + 1) * (vbar + 1) # (jbar + 1)
ndecae = (kvalue + 1) * (lvalue + 1)

! Define the demand process (i.e., p.m.f. & ¢.d.f.),

cummprobw = 0
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FOR w% = 0 TO wbar
probw({ws) = 1 / (wbar + 1)
cunmprobw = cummprobw + probw{wg)
probgew(ws$) = 1 - cummprobw + probw(w$)
NEXT ws%

* Define the return process (i.e., p.m.f. & c.d.£f.)

zbar = (maxwarranty + 1) * wbar
sbar =~ maxwarranty * wbar
zbarfactor# = 1

FOR 8% = 0 TO sbar
zcombination = 0
cummsubprobz = 0
FOR z% = 0 TO zbar
subprobz(ss, z%) = 0
FOR ws = 0 TO wbar
diffzws = z% - wd
IF diffzws > s% THEN
subprobz(st, z%) = 0
ELSE
totsw = 5% + w§
swfactor# = 1
IF totsw = O THEN
swfactor# = 1
ELSE
FOR facty = 1 TO totsw
swfactor# =~ swfactor# * facts
NEXT facts
END IF

zfactor# = 1
IF z% = 0 THEN
zfactor# = 1
ELSE
FOR facts = 1 TO z%
zfactor# = zfactor# * facts
NEXT facts
END IF

zdiffs = totsw - z%
zdifffactor# = ]
IF z% = totsw THEN
zdifffactor# = 1
ELSE
FOR fact% = 1 TO zdiffs
zdifffactor# = zdifffactor# * facts
NEXT facts
END IF

zcombination = swfactor# / (zfactor# * zdifffactor#)
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subprobz(s¥, 2%) = subprobz(s%, z$) + zcombination * delta * z%
* (1 - delta) " zdiffs * probw(ws)
END IF
NEXT ws
cummsubprobz = cummsubprobz + subprobz(ss, z$%)
subprobgez(s%, z%) = 1 - cummsubprobz + subprobz(ss, z%)

NEXT z%
NEXT s%

FOR s% = 0 TO sbar
FOR ws = {0 TO wbar
zcombination = 0
cummprohz =~ 0
FOR z% = 0 TO zbar
diffzws = z% - ws
IF diffzws > st THEN
probz(s%, w%, z§) = 0
cummprobz = cummprobz + probz(s%, wg, z%)
probgez{s%, w%, z%) = 1 - cummprobz + probz(s%, wk, z%)
ELSE
totsw = S% + w8
swfactor# = 1
IF totsw = 0 THEN
swfactor# = 1
ELSE
FOR fact$ = 1 TO totsw
swfactor# = swfactor# * facts
NEXT facts
END IF

zfactor# = 1
IF z% = 0 THEN
zfactor# = 1
ELSE
FOR fact$ = 1 TO z%
zfactor# = zfactor# * facts
NEXT facts
END IF

zdiffs = totsw - z%
zdifffactor# = 1
IF z% = totsw THEN
zdifffactor# = 1
ELSE
FOR facts = 1 TO zdiffs
zdifffactor# = zdifffactor# * facts
NEXT factg
END IF

zcombination = swfactor# / (zfactor# * zdifffactor#)
probz(s%, w%, z%) = zcombination * delta * z%



* (1 - delta) " zdiffs
cummprobz = cummprobz + probz(s%, wk, z%)
probgez(ss, ws, z%) = 1 - cummprobz + probz(s%, w%, z%)
END IF

NEXT z%
NEXT wk
NEXT s%

' Set optimal cost at the final stage to zero.

FOR ix% = 1 TO totnx
prexoptcost(ixs) = 0
NEXT ix%

FOR iys% = 1 TO totny
preyoptcost(iys) = 0
NEXT 1iys

FOR 1% = 1 TO totnstate
preoptcost(is) = 0
NEXT 1%

TIME$ = "00:00"
' Determine a state space and a decision space.

ks = 0
FOR ut = 0 TO ubar
FOR v$ = 0 TO vbar
FOR j& = 0 TO jbar
deltax% = ug + vi
deltay® = vs + j%

IF deltax$ > xbar OR deltay% > ybar THEN
ke = kg
ELSEIF u% > 0 AND j% > O THEN
ke = ks
ELSE
ke = kg + 1
is =0
FOR x% = 0 TO xbar
FOR y% = 0 TO ybar
it - {2 + 1
isymbol$(i%) = STR$(x%) + STR$(y%)
IF x% + deltax$ > xbar OR deltays > ys THEN
us = usg
vE = v
jr = js
ELSE
usymbol$(ks) = STRS(us)
vsymbol$(ks) = STRS(vd)
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Jsymbol$(ke) = STR$(j%)
ksymbol$(ke) = usymbol$(ks) + vsymbol$(ks) + jsymbol$(ks)
END IF
NEXT y%
NEXT x%
END iF

NEXT j%
NEXT v%
NEXT u$

* Determine optimal policy at each state and period.
FOR t% = tf TO 1 STEP -1

IF ts = tf THEN
CLS
PRINT "OPTIMAL SOLUTION TO THE"; tf; "- PERIOD REPAIRABLE ITEM
INVENTORY MODEL:"
PRINT "
PRINT SPC{0); "< PERIOD >"; SPC(2); "< STATE (x,y) >"; SPC(4);"<S>";
SPC(3); "< DECISION (u,v,j) >"; SPC(3): "< EXPECTED COST >»"
PRINT " "
ELSE
PRINT * "
PRINT SPC(0); "< PERIOD >"; SPC(2): "< STATE {(x,y) >"; SPC(4);"<S>";
SPC(3); "< DECISION (u,v,j) >"; SPC(3); "< EXPECTED COST >"
" PRINT " "
END IF

iz =0
ix¢ =~ 0
iyt = 0
sumoptcost = (
FOR x% = 0 TC xbar
ix% = ixs + 1
FOR y% = O TO ybar
totsmxcost = 0
totsmycost = 0
totsmcost = 0
is = s + 1
iys = iys + 1
FOR s% = 0 TO sbar
FOR k% = 1 TO ndecae
ut = VAL(usymbol$(ks))
v% = VAL(vsymbol$(ks))
j% = VAL({jsymbol$(ks))
netdeltaxt = x% + us + vs
netdeltay$ = y% - v% - j%
IF netdeltax% > xbar OR netdeltays < O THEN
k% =~ k%
ELSE
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' Transient probabilities for the repair/junk decision.

iydots = 0
FOR ydot® = 0 TO ybar
iydot% = iydoty + 1
differys « ydott - netdeltays
IF differy$ < O THEN
pytrans(iydots) = 0
ELSEIF ydot$ =~ ybar THEN
pytrans(iydots) = subprobgez(s%, differys)
ELSE
pytrans(iydot%) = subprobz(ss, differys)
D IF

NEXT ydots
* Cost function for the repair/junk decision.
costy = p * j% + f * netdeltays

sumly = 0
FOR iydot% = 1 TO totny
sumly = sumly + pytrans(iydots) * preyoptcost(iydots)
NEXT iydots
sum2y = costy + alpha * sumly

IF k& = 1 THEN
optkys = k%
minycost = sum2y
ELSEIF sum2y > minycost THEN
optky% = optkys
minycost = minycost
ELSE
optkys = k%
minycost = sum2y
END IF

! Transient probabilities for the purchase/repair decision.

ixdots = 0
FOR xdot% = 0 TO xbar
ixdot% = ixdots + 1
differx% = netdeltaxt - xdots
IF differxs < 0 THEN
pxtrans{ixdots) = 0
ELSEIF xdot$ = 0 THEN
pxtrans(ixdott) = probgew(differxs)
ELSE
pxtrans(ixdots) = probw(differxs)
END IF
NEXT xdots
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* Cost function for the purchase/repair decision.

IF us > 0 THEN
fixorders = 1
ELSE
fixorders = 0
END IF

IF v& > 0 THEN
fixrepairs = 1
ELSE
fixrepairs = 0
END IF

eholding = 0
FOR w& = 0 TO netdeltaxs

eholding = eholding + h * ((netdeltax% - ws) * probw(ws))
NEXT w%

epanalty = 0
FOR w% = netdeltaxt% TO wbar

epenalty = epenalty + b * ({(w$ - netdeltaxs) * probw(ws))
NEXT w%

costx = fixorders * capC + ¢ * us + fixrepair® * capR
+ r * v¥ + eholding + epenalty

sumlx = 0
FOR ixdots = 1 TO totnx
sumlx = sumlx + pxtrans(ixdots) * prexoptcost(ixdots)
NEXT ixdotsg
sum2X = costx + alpha * sumlx

IF k% = 1 THEN
optkxs = k%
minxcost = sum2x
ELSEIF sum2x >= minxcost THEN
optkxs = optkxs
minxcost = minxcost
ELSE
optkxs = k%
minxcost = sum2x
END IF

sum2xy = sum2x + sumly
IF k% = 1 THEN
optks = kg
mincost = sum2xy
ELSEIF sum2xy > mincost THEN
optks - optks
mincost = mincost
ELSE
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optks = ki
mincost = sum2xy
END IF
END IF
REXT k%

optxcost(ixs) = minxcost
optycost(iys) = minycost

totsmxcost = totsmxcost + optxcost(ixt)
totsmycost = totsmycost + optycost(iys)

optdecision¥(is) = optks
optsymbol$ = ksymbol$(optks)
totcost = mincost

' Calculate total cost using the original cost function.

ug = VAL(usymbol$(optdecision%(it)))
ve = VAL(vsymbol$(optdecision%(it)))
Js = VAL(jsymbol$(optdecision®(ig)))
netdeltaxs = x% + us + vi
netdeltay$ = y% - v§ - i%

idotys = 0
FOR xdot% = 0 TO xbar
FOR ydot®% = 0 TO ybar
ldott = idot: + 1
differxs = netdeltaxs - xdots
differy$ = ydot$ - netdeltays

IF differx% < 0 OR differys < 0 THEN

ptrans(idots) = 0
ELSEIF xdot$ =~ 0 AND ydot$% = ybar THEN

ptrans{idots) = 0O

FOR wg = differxs TO wbar

ptrans(idot%) = ptrans(idots) + probw(ws)
* probgez(s%, ws, differys)

NEXT wg
ELSEIF xdot% = O AND ydot% < ybar THEN

ptrans(idots) = 0

FOR w8 = differxt TO wbar

ptrans{idot%) = ptrans(idots) + probw(ws)
* probz(ss, ws, differys)

NEXT ws
ELSEIF xdot% < 0 AND ydot% = ybar THEN

ptrans(idot3) = probw(differxs)

* probgez(s%, differxs, differys)

ELSE

ptrans(idots) = probw(differxs)

* probz(s%, differxs, differys)

END IF
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NEXT ydots
NEXT xdot%

IF us > 0 THEN
fixorders = 1
ELSE
fixorders = O
END IF
IF v& > 0 THEN
fixrepairs = 1
ELSE
fixrepairy = 0
ERD IF

eholding = 0
FOR w$ = 0 TO netdeltaxs

eholding = eholding + h * ((netdeltaxs - wg) * probw(ws))
NEXT w$

epenalty = 0
FOR w% = netdeltaxs TO wbar
epenalty = epenalty + b * ((w% - netdeltaxs) * probw(ws))
NEXT ws
cost = fixorder% * capC + c * us + fixrepairs * capR + ¥ % vy
+p * j% + £ * netdeltays + eholding + epenalty

suml = O
FOR idot% = 1 TO totnstate
suml = suml + ptrans{idot%) * preoptcost(idots)
NEXT idots
optcost(is) = cost + alpha * suml

totsmcost = totsmcost + optcost(is)
! Print out results

invey = t% - 1
IF s% = 0 THEN
PRINT TAB(4); invts; TAB(15); i%; TAB(19); "("; 1symbol$ (i)
" )", TAB(33); s%; TAB(44); optdecision%(i%); TAB({48):
"("; ksymbol$(optdecisions(is)); " )"; TAB(60); USING
"HHERRERAEE Y opteost(is)
ELSE
PRINT TAB(33); s%; TAB(44); optdecision%(is); TAB(48); "(";
ksymbol$ (optdecision%(i%)); " )": TAB(60); USING
"RIHEEHRNE  ##" ; optcost(in)
END IF

NEXT s%

PRINT * "

avgsmxcost(ix%) = totsmxcost / (sbar + 1)
avgsmycost(iy%) = totsmycost / (sbar + 1)
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avgsmcost(iy) = totsmcost / (sbar + 1)
sumoptcost = sumoptcost + avgsmcost(ig)

NEXT y%
NEXT x%

FOR it = 1 TO totnstate
preoptcost(is) = avgsmcost(ig)
NEXT is

FOR ix% = 1 TO totnx
prexoptcost(ix%) = avgsmxcost(ixs)
NEXT ixs

FOR iys = 1 TO totny
preyoptcost(iys) = avgsmycost(iys)
NEXT iys

PRINT " "

avgoptcost = gsumoptcost / totnstate

PRINT TAB(10); "Average total cost per state ="; USING “##, 4",
avgoptcost

PRINT *» "

NEXT t%
PRINT "Total Processing Time = ": TIMER



208

APPENDIX II-Y: COMPUTER PROGRAM: SAM WITH THE SDD

REM * THE PROGRAM "THE24NEW.BAS" USES THE SUCCESSIVE APPROXIMATION
REM * METHOD WITH A STATE DECOMPOSITION TECHNIQUE TO APPROXIMATE THE
REM * OPTIMAL POLICY, WHICH MINIMIZES THE EXPECTED LONG-RUN TOTAL
REM * DISCOUNTED COST FOR INFINITE-TIME REPAIRABLE-ITEM INVENTORY
REM * MODELS. THE PROGRAM ALSO UTILIZES AN ERROR-BOUND APPROACH TO
REM * ACCELERATE THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS.

* % % * % F

REM
REM *# Assumptions:

REM * - Discount factor ( 0 <= alpha < 1 )

REM * - Poisson demand process

REM # - Return process is Binomial with parameters ((,5),
REM * where {1 1s obtained from E(w).
REM

* % % %

g
*

- ( Revised 8/30/91 ) - *

! Define dimensions.

DIM usymbol$(500), vsymbol$(500), jsymbol$(500)

DIM isymbol$(500), ksymbol$(500), optdecision®(500)
DIM pxtrans(500), pytrans(500), ptrans(500)

DIM optcost(500), optxcost(500), optycost(500)

DIX prexoptcost(500), preyoptcost(500), preoptcost(500)
DIM probw(200), probz(200), probgew(200), probgez(200)

' Input data.

tf = 150 'final time

alpha = .9 'discount factor

capC = 0 'fixed ordering cost

c =6 'unit ordering cost

capR = 0 ‘fixed repair facility setup cost
r=-4 ‘unit repair cost

f=1 'holding cost for repairable items

h =2 'holding cost for serviceable items
p~0 *junking cost

b =15 'penalty cost of unsatisfied demand
Xbar = 5 ‘maximum storage capacity

ybar = 5 ‘maximum repair capacity

mratew = 3 'average demand

delta = .2 ‘proportion of units demanded returned
maxwarranty = 2 ‘warranty periods for goods demanded

' Check for the assumption of bound errors approach.

IF alpha = 1 THEN
CLS
LOCATE 11, 18: PRINT "Discount factor canmot be 1 for a convergence."
LOCATE 13, 27: PRINT "Please select ‘alpha’ again."
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LOCATE 15, 32: PRINT "( 0 <= alpha < 1 )"
END

ELSE
beta = alpha / (1 - alpha)

END IF

! Print out Input data.

CLS
PRINT "< INPUT DATA >"
PRINT "
PRINT "tf ="; tf, "final time"
PRINT "alpha ="; alpha, "discount factor"
PRINT "capC ="; capC, "fixed ordering cost"
PRINT "¢ ="; ¢, "unit ordering cost"
PRINT "capR ="; capR, "fixed repair facility setup cost"

PRINT "r ="; r, "unit repalr cost"

PRINT "f ="; £, "holding cost for repairable items"
PRINT "h ="; h, "holding cost for serviceable items"”
PRINT "p ="; p, "junking cost"

PRINT "b ="; b, "penalty cost of unsatisfied demand"
FRINT " "

PRINT "xbar ="; xbar, "maximum storage capacity"

PRINT "ybar ="; ybar, "maximum repair capacity"”

PRINT " "

PRINT "mratew «"; mratew, "average demand"

PRINT "delta ="; delta, "proportion of units demanded returned"

PRINT "warranty ="; maxwarranty, "warranty periods for units demanded"

LOCATE 24, 24; PRINT "Press any key to continue ..... *. INPUTS(1)
IF xbar >=- ybar THEN

lvalue = xbar
kvalue = ybar

ELSE
lvalue = ybar
kvalue = xbar
END IF

ubar = xbar
vbar = kvalue
Jbar = ybar

totnx = xbar + 1
totny = ybar + 1

totnstate = totnx * totny
totndec = (ubar + 1) * (vbar + 1) * (jbar + 1)
ndecae = (kvalue + 1) * (lvalue + 1)
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! Define demand and return processes,

cummprobw = 0
wg = 0
DO WHILE cummprobw < ,999999
wfactor# = 1
IF %% = O THEN
wfactor# = 1
ELSE
FOR facts = 1 TO ws
wfactor# = wfactor# * facts
REXT facts
END IF
probw(ws) « mratew " w% * EXP(-mratew) / wfactor#
cummprobw = cummprobw + probw(ws)
probgew(w$) = 1 - cummprobw + probw(ws)
wWE = wi + 1
1ooP
whar = wg - 1

N

! Total demand during the warranty periods is calculated from E(w),

totsales$ = (maxwarranty + 1) * mratew
zbar = totsales%

zbarfactor# = 1
IF 2zbar = O THEN
zbarfactor# = 1
ELSE
FOR fact$ = 1 TO zbar
zbarfactor# = zbarfactor# * factg
NEXT facts
END IF

zcombination = 0
cummprobz = 0
FOR z% = 0 TO zbar
zfactor# = 1
IF z% = 0 THEN
zfactor# = 1
ELSE
FOR facty = 1 TO z%
zfactor# = zfactor# * facts
NEXT facts
END IF

zdiffg = zbar - =z%

zdifffactor# = 1

IF z% = zbar THEN
zdifffactor# = 1
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ELSE
FOR facts = 1 TO zdiffs
zdifffactor# = zdifffactor# * facts
NEXT facts .
END IF

zcombination «~ zbarfactor# / (zfactor# * zdifffactor#)
probz(z%) = zcombination #* delta “ z% %* (1 - delta) " zdiffs
cumpprobz = cummprobz + probz(z%)

probgez(z%) = 1 - cummprobz + probz(zs)

NEXT z%
! Set optimal cost at the final stage to zero,

FOR iIx% = 1 TO totnx
prexoptcost(ixs) = 0
NEXT ix%

FOR iys% = 1 TO totny
preyoptcost(iys) = 0O
NEXT 1iys

FOR 1% = 1 TO totnstate
preoptcost(is) = 0
NEXT i%

TIMES ~ "00:00"
' Determine a state space and a decision space.

ks = 0
FOR us = 0 TO ubar
FOR v§ = 0 TO vbar
FOR j% = 0 TO jbar
deltaxs = us + vg
deltays = v§ + j%

IF deltax% > xbar OR deltays > ybar THEN
k$ = ks
ELSEIF us > 0 AND j% > O THEN
ke = ks
ELSE
k¥ = ks + 1
is =0
FOR x% = O T0 xbar
FOR y% = 0 TO ybar
i = iz + 1
isymbol§(i%) = STR$(x%) + STR$(y%)
IF x% + deltaxs > xbar OR deltays > y% THEN
ug = ug
vE = v§
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Js = js

ELSE
usymbol$(ks) = STRS(us)
vsymbol$(ks) = STRS(ve)
Jsymbol§(ke) = STR$(j%)
ksymbol$(ks) = usymbol$(ks) + vsymbol$(ks) + jsymbol$(ks)

END 1IF

NEXT y%
NEXT xs3
END IF
NEXT j%
NEXT v%
NEXT us

' Determine optimal policy at each state and period,
FOR tg = 1 TO tf

IF t% = 1 THEN
CLS
LOCATE 11, 6: PRINT "OPTIMAL SOLUTION TO THE"; tf; ™. PERIOD
REPAIRABLE ITEM INVENTORY MODEL:"
LOCATE 25, 65: PRINT "please wait .;."
ELSE
LOCATE 25, 65: PRINT "please wait ..."
END IF

i =0
ixs = 0O
iys = 0O
sumoptcost =
FOR x% = 0 TO xbar
I8 = ixe + 1
FOR y% = 0 TO ybar
is = is + 1
iys = iys + 1
FOR k% = 1 TO ndecae
ug = VAL(usymbol$(ks))
vd = VAL(vsymbol$(ks))
j% = VAL(jsymbol$(ks))
netdeltax$ = x% + ug + vg
netdeltay$ = y% - v§ - j%
IF netdeltax$ > xbar OR netdeltays < O THEN
kg = k%
ELSE

' Transient probabilities for the repalr/junk decisions.

iydots = 0
FOR ydot% = 0 TO ybar
iydots = iydots + 1
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differys = ydots - netdeltays
IF differys < 0 THEN
pytrans(iydots) = 0
ELSEIF ydots$ = ybar THEN
pytrans(iydot:) = probgez(differyt)
ELSE
pytrans(iydots) = probz(differys)
IF

NEXT ydots
! Cost function for the repair/junk decision.

costy = p * % + £ * netdeltays
sumly = 0
FOR iydots = 1 TO totny
sumly = sumly + pytrans(iydot%) * preyoptcost(iydots)
NEXT iydots
sum2y = costy + alpha * sumly

IF k% = 1 THEN
optkys = k%
minycost = sum2y
ELSEIF sum2y > minycost THEN
optkys% = optky%
minycost = minycost
ELSE
optkys = k%
minycost = sum2y
END IF

' Transient probabilities for the purchase/repair decisions.

ixdots = 0
FOR xdot% = 0 TO xbar
ixdot¥ = ixdots + 1
differxs = netdeltaxs - xdots
IF differxs < 0 THEN
pxtrans(ixdots) = 0
ELSEIF xdot% = (O THEN
pxtrans(ixdots%) = probgew(differxs)
ELSE
pxtrans(ixdots) = probw(differxs)
END IF
NEXT xdots%

' Cost function for the purchase/repalr decision.

IF us > O THEN
fixorders = 1
ELSE
fixorders = O
END IF
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IF v > 0 THEN
fixrepairs = 1
ELSE
fixrepairs = 0
END IF

eholding = 0
FOR w$ = 0 TO netdeltaxs

eholding = eholding + h * ((netdeltaxs - w¥) * probw(ws))
NEXT wg

epenalty = 0
FOR w8 = netdeltax% TO wbar

epenalty = epenalty + b * ((w$ - netdeltaxs) * probw(ws))
NEXT ws '

costx = fixorders * capC + ¢ * ug + fixrepairs * capR + r * vs
+ eholding + epenalty

sumlx = 0
FOR ixdots = 1 TO totnx _
sumlx = sumlx + pxtrans{ixdot$) * prexoptcost(ixdots)
NEXT ixdots
sum?x = costx + alpha * sumlx

IF k% = 1 THEN
optkxs = kg
minxcost = sum?x
ELSEIF sum2x > minxcost THEN
optkxs = opthkxs
minxcost = minxcost
ELSE
optkxs = k%
minxcost = sum?x
END IF

sum2xy = sum2x + sumly
IF k% = 1 THEN
optks = k%
mincost = sum2xy
ELSEIF sum2xy > mincost THEN
optk$ = optks
mincost = mincost
ELSE
optks = k%
mincost = sum2xy
END IF '
END IF
NEXT ks

optxcost(ix%) = minxcost
optycost(iys) = minycost



optdecisiont(is) = optks
optsymbol$ = ksymbol$(optks)
totcost = mincost

' Calculate total cost using the original cost function.

u$ =~ VAL(usymbol$({optdecision$(1i%)))
v$ = VAL(vsymbol$(optdecisions(is)))
J% = VAL(jsymbol$(optdecisions(is)))
netdeltax% = x% + ug + vi
netdeltays = y% - v§ - j%

idots - O
FOR xdots = 0 TO xbar
FOR ydot% = 0 TO ybar
idot% = idots + 1
differx% = netdeltaxs - xdotsg
differy$ = ydot$% - netdeltays

IF differx% < 0 OR differys < 0 THEN
ptrans{idots) = 0Q
ELSEIF xdots = 0 AND ydot$ = ybar THEN
ptrans(idots) = 0O
FOR wi = differx% TO wbar
ptrans(idot3) = ptrans(idots) + probw(wsg)
* probgez(differys)
NEXT ws
ELSEIF xdot% = 0 AND ydots < ybar THEN
ptrans{idots) = 0
FOR w$ = differxs TO wbar
ptrans(idots) = ptrans(idots) + probw(ws)
* probz(differys)
NEXT w$
ELSEIF xdot$ < 0 AND ydots = ybar THEN
ptrans(idots) = probw(differxs) * probgez(differys)
ELSE
ptrans(idot%) = probw(differxs) * probz(differys)
END IF
NEXT ydots
NEXT xdots

IF us > 0 THEN
fixorders = 1
ELSE
fixorders = 0
END IF
IF v > 0 THEN
fixrepairg = 1
ELSE
fixrepairs = 0
END IF
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eholding = 0
FOR wg = 0 TO netdeltaxs '

eholding = eholding + h * ((netdeltaxs - w$) * probw(w%))
NEXT w%

epenalty = 0
FOR w& = netdeltaxs TO wbar
epenalty = epenalty + b * ((w$ - netdeltaxs) * probw(ws))
NEXT w$
cost = fixorders * capC + ¢ * ug + fixrepair$ * capR + r * v
+ P * j% + £ * netdeltays + cholding + epenalty

suml = 0
FOR idot% = 1 TO totnstate
suml = suml + ptrans(idot$%) * preoptcost{idots)
NEXT idots
optcost(is) = cost + alpha * suml

! Calculate error bounds.

differror = optcost(is) - preoptcost(is)
IF i3 = 1 THEN
minerror = differror
maxerror = differror
ELSEIF differror <= minerror THEN
minerror = differror
maxerror = maxerror
ELSEIF differror »= maxerror THEN
minerror = minerror
maxerror = differror
ELSE
minerror = minerror
maxerror = maxerror
END IF

lowerror = beta * minerror
uperror = beta * maxerror

NEXT y%
NEXT x%

* Print out results

PRINT S5PC(0); "<I>"; SPC(4); "<STATE (x,y)>"; SPC(2):
"<DECISION (u,v,j)>"; SPC(2); "<EXPECTED COST>"; SPC(3):
"<LBOUND>"; SPC(3); "<UBOUND>"

PRINT " "

sumoptcost = 0
FOR i% = 1 TO totnstate
invegs = tf - t3 + 1
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lowbound = optcost{is) + lowerror

upbound = optcost(is) + uperror

PRINT TAB(1); ts; TAB(8); 1%; TAB(13); "("; isymbol$(is);
" )"; TAB(23); optdecisions$(is); TAB(30); "("; ksymbol$
(optdecision®(i%)); " )™; TAB(41); USING "#HEHHREHE ##";
optcost(is); SPC(3); lowbound; upbound

devigsion = i% / (ybar + 1)

IF devision = i% \ (ybar + 1) THEN

PRINT * "
ELSE

devision = devision
END IF

preoptcost(is) = optcost(is)
sumoptcost = sumoptcost + optcost{is)
NEXT i%

FOR ix% = 1 TO totnx
prexoptcost (ix%) = optxcost(ixs)
NEXT 1ixs

FOR iys = 1 TO totny
preyoptcost(iys) = optycost(iys)
NEXT 1iy%

PRINT * "

avgoptcost = sumoptcost / totnstate

PRINT TAB(20); "Average total cost per state ="; USING "madabs, #4";
avgoptcost

NEXT c%
PRINT "Total Processing Time = "; TIMER
PRINT * "
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