RESERVOIR LENGTH EFFECTS ON THE SEISMIC RESPONSE

OF CONCRETE GRAVITY DAMS

By

TERRENCE A. BAUMBER

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Doctor of Philosophy

McMaster University

December 1992

© Copyright by Terrence A. Baumber, 1992



RESERVOIR LENGTH EFFECTS ON THE SEISMIC RESPONSE

OF CONCRETE GRAVITY DAMS



DOCTOR OF PHILOSOPHY (1992) McMASTER UNIVERSITY
(Civil Engineering and Engineering Mechanics) Hamilton, Ontario

TITLE: Reservoir Length Effects on the Seismic Response
of Concrete Gravity Dams

AUTHOR: Terrence A. Baumber, B.Sc. {University of Alberta)
M.Eng. (McMaster University)

SUPERVISOR: Professor A. Ghobarah

NUMBER OF PAGES: xx,199

ii



ABSTRACT

The behaviour of a concrete gravity dum-reservoir-foundation system is a very
complex system to analyze. Currently, the length of the reservoir is assumed infinite
during the seismic analysis and design of dam structures. Since many of the natural
reservoir systems are finite, this assumption may significantly miscalculate the
response of the dam monolith to earthquake ground motion. The objective of this
research is lo investigate the effect of a finite length upstream reservoir on the
monolith’s seismic response, including consideration of the reservoir’s characteristics.

This study is comprised of three main components. First, a closed form
solution of the dam-reservoir problem is developed. The ground motion is assumed
to only excite the dam monolith. Second, a detailed analysis procedure is used to
investigate the response of the monolith when both the monolith and the reservoir’s
far boundary is cxcited. Lastly, a stress analysis is conducted to examine the effect
of a finite length reservoir on the dynamic tensile stresses that are developed in the
monolith.

The finite length of the upstream reservoir was found to be a very important
parameter in defining the response of the dam monolith to seismic input. The
response  of the dam-reservoir-foundation system was found to be significantly

different when the reservoir’s length was assumed to be finite than when it was

il



assumed infinite. The ratio of the reservoir length to dam height (L/H), the
reservoir-foundation interface, the monolith’s elastic modulus, the phase of the
ground motion between the monolith and the reservoir’s far boundary, and the
reservoir’s far boundary have all been determined to be important aspects in defining

the monolith’s dynamic and seismic response.
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CHAPTER1

INTRODUCTION

1.1 BACKGROUND

The evaluation of the ability of a dam to survive earthquakes is an important
subject. Dams are constructed in order to impound water for power generation,
irrigation, navigation, and flood control. Failure of a dam can result in substantial
economic loss and, more importantly, considerable loss of life. The principal types
of dams are earth and rock, arch, and concrete gravity dams. The three types of
dams behave quite differently during earthquake ground motion because of their
different structural systems. The dynamic response and the failure mechanisms also
vary with the material used in the construction of the dam. Concrete gravity dams
are complex structures to analyze due to the importance of the interaction between
the dam monolith, the upstream reservoir, and the foundations.

To simplify the analysis, the majority of available research assumed the
reservoir to be infinite in length and completely straight. However, this assumption
docs not satisfactorily represent the natural reservoir systems. In the case of many
dams, the created reservoir is a finite lake while the river becomes an insignificant

feature of the system. An example of this type of dam-reservoir-foundation system
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is the Pacioma Dam located in California (National Academy Press, 1990). In other
cases, the crest of the dam structure may be placed parallel to the river's course.
The far bank of the river and the dam structure will thus create a finite length
upstream reservoir.  Also, rivers tend to meander through the countryside and
therefore are never completely straight. A bend in the river's course upstream of the
dam in fact creates a finite length reservoir. An example of this type of dam-
reservoir-foundation system is the Lower Crystal Springs Dam in California (Nationa!
Academy Press, 1990).

The primary consideration for siting a dam structure in a particular location
is the geological conditions of the surrounding arca and especially directly
underneath the dam monoliths. The length or geometry of the upstrcam reservoir
that is eventually created has not been considered as a factor that may influence the
structural design of the dam. Many dams have been constructed such that this
upstream reservoir is finite in length. Examples of a few of the well known dam
structures which impound finite length upstream reservoirs are listed in table 1.1, In
this research program, an analytical study is conducted to investigate the cffect of a
finite length reservoir on the response of a concrete gravity dam monolith.  The

effect of several important reservoir characteristics is investigated.



1.2 INFINITE LENGTH RESERYOIR

Westergaard (1933) was the first to examine the problem of the dynamic
forces in a dam-reservoir system. The dam monolith was assumed to be triangular
in cross section and the upstream reservoir to be infinite in length. A theoretical
pressure distribution assuming that the monolith behaved rigidly was developed.
From this pressure distribution, shearing forces and bending moments along the dam
height can be determined. The author suggested that these forces be treated as
additional static forces to be considered along with the hydrostatic forces that are
developed. An approximate pressure distribution which can be used for design
purposes was proposed. The author also suggested that the effect of the upstream
reservoir could be considered by assuming that it contributes additional mass that
moves with the dam monolith,

The earthquake event of December 11,1967 caused significant damage to the
Koyna Dam (Chopra and Chakrabarti, 1972). This is an 85.3 m (280 ft) high
concrete gravity dam located in southern India. Significant cracking of the concrete
was observed near the change in slope of the monolith’s cross section on both the
upstream and downstream sides. The experience at the Koyna Dam during the 1967
earthquake event prompted researchers to begin to examine the problem of concrete
gravity dams subjected to dynamic loads.

Chopra (1967) analyzed the system assuming that the monolith behaves

rigidly. Explicit expressions for the pressures generated in the reservoir were
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developed. The reservoir was assumed to be infinite in length. The author realized
that the hydrodynamic pressures were dependent on the frequency of excitation of
the assumed ground motion. In his study, the ground motion was assumed to be a
series of unit harmonics of varying frequencies.

The analysis technique developed by Chopra was expanded several times to
incorporate additional components of the system. The behaviour of the dam
monolith was assumed to be elastic. The effect of the fundamental mode of
vibration of the dam monolith was first considered (Chopra, 1968). It was
determined to be very important in the monolith's response. The higher modes of
vibration were then incorporated into the analysis by Chakrabarti and Chopra (1973a
and b). A more complicated analytical procedure was developed involving the use
of a substructuring technique in which the monolith and the reservoir were analyzed
separately. The interaction between these two substructures was incorporated
through the use of a boundary condition at the reservoir-monolith interface. These
studies were also the first to determine the importance of the vertical component of
the earthquake ground motion.

The flexibility of the monolith’'s foundation was considered by Chopra,
Chakrabarti, and Gupta (1980). It was found that increasing flexibility of this
foundation reduced the magnitude of the monolith’s response and the frequency at

which the fundamental response peak occurred.
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The analytical work conducted thus far by Chopra and his coresearchers
solved the equations of motion of the reservoir in a closed form manner. Saini,
Bettes, and Zienkiewicz (1978) developed an analysis technique in which the
reservoir was modelled using both finite and infinite elements. The reservoir was
apain assumed to be infinite in length. The results of this study compare well with
those obtained by Chopra and his colleagues. Roughly at the same time, Hall and
Chopra (1980) also developed a finite element analysis technique for the reservoir
substructure.  The reservoir was again assumed to be infinite in length. A one-
dimensional boundary condition to account for the reservoir-foundation interaction
was developed by these authors. The flexibility of the reservoir’s foundation was
found to reduce the magnitude of the monolith’s response (Hall and Chopra, 1980;
and Fenves and Chopi., 1984).

A simplified analysis technique was developed by Fenves and Chopra (1985a
and b) in which both hydrodynamic and foundation flexibility effects were considered.
Mcthods involving the use of the fundamental mode of vibration alone (Fenves and
Chopra, 1985a) and the use of higher modes of vibration (Fenves and Chopra,
1985b) were developed. These techniques enable the designer to perform an analysis
of the dam-reservoir-foundation assuming an infinite length reservoir for the initial
design of the dam structure.

Scveral attempts have been made to employ the boundary element technique

to the problem of the dam-reservoir-foundation system (Wepf, Wolf, and Bachmann,
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1988; and Jablonski and Humar, 1990). The main advantage of this technique is that

it permits the analysis of large problems that involve a large number of elements.

The boundary element technique only uses the nodes on the boundary of the body

to determine the response of the entire system.

Attempts were made to model the behaviour of the monolith after the
concrete first experienced cracking (Pal, 1976; El-Aidi and Hall, 1989a and b).
Cracking of the concrete was predicted in these studies to occur on both the
upstream and downstream sides of the monolith, just below the change in slope of
the cross section. This is the same location for cracking as experienced by the Koyna
Dam (Chakrabarti and Chopra, 1972). The elastic model developed by Chopra and
his colleagues is not capable of predicting the post-cracking behaviour once the
tensile capacity of the concrete has been reached.

Leger and Katsouli (1989) examined the problem of stability of the dam
monolith during seismic excitation.  This study determincd that stability
considerations are most critical during strong shaking. The authors determined that
the static stability safety factors were inadequatc to prevent sliding or overturning
from occurring during earthquake ground motion. Larger safety factors were
therefore suggested in order to ensure stability during major carthquake events.

The linear analysis of the dam-reservoir-foundation system was further
developed to incorporate the effects of a sediment layer on the bottom of the

upstream reservoir (Cheng, 1986; Medina, Dominquez, and Tassoulas, 1990; and
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Bougacha and Tassoulas, 1991a and b). Sediments were considered to increase
botlom absorption of the input energy and increase the damping in the system. The
layer of sediment was found to primarily affect the magnitude of the frequency at
which the fundamental mode of the overall system occurred. The layer of sediment
was assumed to be completely saturated. The depth of the layer of sediment also
influenced the magnitude of the system’s response. The response decreased as the
layer increased in thickness. Several of these studies found that assuming that the
sediments were partially saturated was more critical than assuming that the sediments
were completely saturated.

An experimental study on the behaviour of a dam monolith was conducted
(Donlon and Hall, 1989). A scale model of the Pine Flat Dam (California) was
developed and tested on a horizonlal shake table. The model experienced cracking
of the concrete on the upstream and downstream sides just below the change in slope
of the monolith’s cross section. This result agrees well with both the elastic and
inelastic analyses that have been performed ir the past on this structure. The elastic
analysis (Fenves and Chopra, 1984) and the inelastic analysis (El-Aidi and Hall,
1989b) both determined that the stress experienced by the inonolith will cause
cracking of the concrcte‘ at the same location. It should be noted that the scale
model itself was not analyzed numerically using either of the two above mentioned

techniques to confirm the results of the shake table experimental study.
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Two excellent review papers are available in the literature on the seismic
behaviour of dams by Chopra (1987) and Hall (1988). Hall's review article presents
a much more detailed review of the subject concentrating on the major experimental

work that has been conducted.

1.3 FINITE LENGTH RESERVOIR

Limited work to date has focused on the problem of assuming a finite length
upstream reservoir. Hall and Chopra (1980) were the first to examine this problem.
They investigated the response of a dam monolith that impounds a finite reservoir
of a triangular cross section. The analytical procedurc used is similar to that
developed by Chopra and his colleagues for the infinite length reservoir problem,
The ground motion was assumed to excite both the monolith and the reservoir
bottom. The water in the reservoir was assumed inviscid, irrotational, and
compressible.  The reservoir-foundation interface was modelled using a one-
dimensional boundary condition which neglects shear effects. It was discovered that
additional response peaks occurred in the Fourier representation of the monolith’s
response when the finite length assumption was made. These response peaks
occurred at excilation frequencies greater than that of the fundamental frequency of
the overall system. The finite length reservoir problem was however not explored

any further,
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Liu (1986) examined the same problem except that the water in the upstream
reservoir was assumed to be incompressible. The assumption of the water in the
upstream reservoir being incompressible removes the frequency dependency of the
reservoir's response. Pressure waves travel principally through changes of the density
of the waler with time. Including the effects of the compressible nature of water, or
its frequency dependent nature, allows the propagation of the pressure waves in the
reservoir to be considered. Experimental studies (Duron, 1987) have shown that
compressibility effects are very important in the response of concrete dams to
dynamic loads. In Liu's study, it was found that the slope of the reservoir’s bottom,
therefore the length of the reservoir, affected the pressures generated at the dam
face. As the length of the reservoir increased, the pressures at the dam face
decreased in magnitude.

Antes and Von Estorff (1987) studied the dam-reservoir-foundation problem
using the boundary element technique. The reservoir’s foundation was modelled
assuming that it behaved as a two-dimensional elastic solid. The response of this
foundation was therefore modelled by solving the two dimensional wave equation for
an clastic solid. The dam monolith itself was assumed to be rigid and the water in
the reservoir was assumed to be compressible. The work done by the authors
primarily concentrated on the development of the analytical technique utilizing the
new model for the reservoir’s foundation. The time histories of the hydrodynamic

force appear to be comprised of many frequency components. The results of the
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finite length reservoir case was not compared to those when the reservoir was
assumed infinite in length. The authors examined the effect of varying the value of
the elastic modulus of the reservoir’s foundation. It was found that as the elaslic
modulus decreased, the hydrodynamic force also decreased. The case of the far
boundary being flexible and the reservoir bottom being rigid was compared to the
case when both boundaries were considered rigid. It was determincd that the
increased flexibility of the far boundary reduced the magnitude of the hydrodynamic
force that the monolith experienced.

Aviles and Sanchez-Sesma (1989) showed that the reservoir’s length affects the
magnitude of the pressures generated at the dam face. The authors showed that the
phase of the ground motion between the far boundary and the monolith greatly
affects the pressures in a short reservoir. Phase effects were no longer important for
a reservoir length to height ratio of three. The water in the reservoir was assumed
to be incompressible. The reservoir’s equalions of molion were solved using a least

squares approach.

1.4 RESERVOIR-FOUNDATION INTERACTION

Insufficient research has been conducted into the subject of the interaction
between the reservoir and its foundation, This reservoir-foundation interface is a
major source of energy dissipation for the dam-reservoir-foundation system. Two

main approaches have been used. First, a one dimensional boundary condition was
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developed by Hall and Chopra (1980). It was developed based on equilibrium of

pressures in the reservoir and the resulting stresses in the foundation. Only vertical
equilibrium was considered. This boundary condition had been used to examine the
effect of the flexibility of the reservoir’s foundation on the monolith’s response
(Fenves and Chopra, 1984). The boundary condition assumes that the foundation is
comprised of a series of independent one-dimensional soil columns. The advantage
of this formulation is that it can be incorporated into the reservoir’s equations of
motion quite easily. The main disadvantage of the formulation is that it neglects the
cffects of shear stresses that are developed in the foundation. A source of energy
dissipation is therefore neglected in the analysis of the reservoir substructure.

The other approach that is used in the analysis of dam-reservoir-foundation
systems is to assume that the reservoir’s foundation acts as a two-dimensional elastic
solid (Cheng, 1986; Antes and Von Estorff, 1987; Medina, Dominquez, and
Tassoulas, 1990; and Bougacha and Tassoulas, 1991a and b). The motion of this
foundation was therefore governed by the two-dimensional wave equation. The main
advantage of this technique is that shear stress effects are considered in the analysis.
The cffects of a finite layer of sediments on the bottom of the upstream reservoir can
be considered as well using this foundation model.

The reservoir-foundation interface isan important source of energy dissipation
in the dam-reservoir-foundation system. In order to obtain an accurate estimate of

the system's response to earthquake ground motion, this interface must be treated
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correctly. The two dimensional approach that has been proposed requires a large
number of elements be used to model the foundation. A simplified two dimensional
boundary condition is required for design purposes in order that the effect of the

shear stresses in the foundation be considered yet still allow the analysis to be

performed efficiently.

1.5 OBJECTIVES AND SCOPE

The objective of this research study is to examine the effect of a finitc length
upstream reservoir on the response of a concrete gravity dam monolith to carthquake
ground motion. The parameters of interest are the ratio of the reservoir length to
dam height, the model used for the reservoir-foundation interface, the monolith's
modulus of elasticity, the cross sectional geometry of the reservoir, and the nature
of the ground motion.

To achieve the objective of this research, an analytical study was conducted.
There are three components to this investigation. First, a closed form solution of the
dam-reservoir-foundation system was developed assuming a finite length upstream
reservoir. The effect of the ratio of the reservoir length to the dam height, the value
of the wave reflection coefficient, and the value of the monolith’s modulus of
elasticity were investigated. The ground motion is assumed to excile the dam
monolith only and takes the form of a series of unit harmonics of varying

frequencies. Second, a detailed analytical procedure for the dam-finite reservoir-
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foundation system was established using the finite element tecl';nique. A two-
dimensional model for the reservoir-foundation interface was developed. This
detailed analytical procedure is utilized to investigate the effect of the ratio of the
reservoir length to dam height, the model for the reservoir-foundation interface, and
the cross sectional geometry of the upstream reservoir on the response of the
monolith. The ground motion is assumed to affect both the far end boundary of the
finite length reservoir and the dam monolith. Lastly, a stress analysis using four
actual earthquake ground motion records was performed. The effect of the finite
reservoir assumption on the dynamic tensile stresses developed in the monolith was
investigated.

In this thesis, the closed form solution technique for the dam-finite reservoir-
foundation system is described in Chapter 2. The results of a parametric study
assuming that the ground motion only excites the monolith are presented. A
simplified analytical technique is also developed in this chapter. Chapter 3 presents
the formulation of the detailed analysis technique. The verification of this analytical
technique is also presented. Chapter 4 presents the results of a numerical study
conducted using the detailed analytical technique assuming that the ground motion
excites both the far boundary of the finite length upstream reservoir and the dam
monolith. The results of the stress analysis are presented in Chapter 5. The

conclusions of the study are summarized in Chapter 6.
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Table 1.1 - Examples of the finite reservoir configurations

Dam Location Length',(L) Height,(H) L/H Type?
(m) (m)

Xiang Hong China 400 87.5 4.6 A

Dian®

Quan Shui' China 200 80 2.5 A

Monticello® USA 1750 93 18.8 A

Techi® Taiwan 1600 180 8.9 A

Crystal’ USA 1750 181 9.7 G

Gray USA 1000 175 5.7 G

Canyon’

Koyna® India 2000 103 19.4 G

Pine Flat’ USA 1340 122 11.0 G

St. Francis'® USA 305 56.4 5.4 A

Manuel M. Mexico 100 114 0.9 A

Dieguez'"!

La Soledad'!' Mexico 300 91.5 3.3 A

! Reservoir lengths were determined from maps of the particular arca, approximate
? Type: A = Arch Dam; G = Gravity Dam
* Clough, et. al., 1984a

! Clough, et. al., 1984b

5 Clough, et. al., 1987

8 Clough, et. al., 1982

7 Mandzhavidze and Mamradze, 1966

¥ Chopra and Chakrabarti, 1972

® Fenves and Chopra, 1984

1° Qutland, 1977

' Secretaria de Recursos Hidraulicos, 1976



CHAPTER 2

DAM - FINITE RESERVYOIR SYSTEM

2.1 INTRODUCTION

In this chapter, a simplified procedure for the analysis of dam-finite reservoir
systems is presented. The reservoir’s system of equations are solved in a closed form
to yield explicit expressions for the pressures on the dam monolith. These pressures
arc then introduced into the overall analysis technique for the dam-reservoir-
foundation system. The procedures for the analysis of each separate substructure are
first discussed in detail. This is followed by discussion of the overall solution
approach. The results obtained from the presented analytical procedure are then
compared to available solutions of special cases existing in the literature. This is
done in order to verify the proposed analytical technique. In particular, the proposed
procedure is compared to the work of Fenves and .Chopra (1984b) in which the
upstrcam reservoir is considered to be infinite in length.

The next scction of this chapter deals with the response of thie dam-finite
reservoir system obtained using the present analytical technique. First, the effect of
the finite length assumption on the pressures in the reservoir is discussed. Next, the

cffect of the reservoir length to dam height ratio on the overall system’s response is

15
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examined. The effect of the wave reflection coefficient on the system's response is
also studied. Finally, the effect of the dam's stiffness on the response of the dam-
reservoir system is evaluated. The last section of this chapter presents a simplificd

analysis procedure intended for use during initial design stages.

2.2 ANALYTICAL PROCEDURE

The analytical procedure used in this study utilizes a frequency domain
substructuring technique. The dam-rese:voir-foundation system is divided into three
separate subsystems. These are the dam monolith, the dam’s foundation, and the
upstream reservoir. The dam substructure is considered lo be a two-dimensional
elastic solid. The monolith is assumed to be under plane stress conditions. The
construction joints between monoliths are assumed smooth and frictionless.
Neighbouring monoliths are considered not o interact with one another,  The
foundation underneath the dam monolith is considered to be a visco-clastic half
space. The reservoir substructure isanalyzed assuming a finite reservoir length, The
reservoir is idealized as a rectangular tank of length L, and height H. The height of
the dam and of the reservoir are assumed to be equal. A schematic representation
of the physical system is shown in figure 2.1. The far boundary is assumed to be
unaffected by the earthquake ground motion. This boundary is assumed to be rigid
except for its absorptive capacity. The bottom of the reservoir and the far boundary

are assumed to have the same absorptive capacity. This absorptive capacity is
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modelled using the boundary condition developed by Hall and Chopra (1980).

Analytical expressions for the pressures in the finite length reservoir are derived and
used to determine the response of the dam monolith. The ground acceleration is
assumed to be a unit harmonic of varying frequency. It is also assumed to act only
in the horizontal direction. The vertical component of the ground motion has been
shown to cause considerable motion of the monolith (Fenves and Chopra, 1984b; and
Hall and Chopra, 1980). The response of the dam-finite reservoir-foundation system
to the vertical component of the earthquake ground motion is left for future
rescarch.  Addition  of the vertical component requires only a few simple
modifications to the analytical procedure. Only the first two modes of vibration are

considered in this analysis.

2.2.1 The Monolith Substructure
The dynamic response of a concrete gravity dam is governed by the standard
equations of motion for a structure subjected to earthquake ground motion (Clough

and Penzien, 1975), as given by:
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[M] Gy} + [C] tiCoy) + K] laGxy ) = M1 G0 + R 0} @.1)

where: M] = the mass matrix for the monolith
[C] = lhe damping matrix for the monolith
K} = the stiffness matrix for the monolith
{u(x,y,t)} = the displacement of the monolith
a(t) = the ground acceleration
{R,.. (D} = the additional hydrodynamic forces acting on
the dam face due to the reservoir
X = horizontal lateral coordinate direction
y = vertical coordinate dircction
t = time

The contribution of the upstream reservoir is represented by a new lerm on the right
hand side of equation (2.1). This term represents the additional loading on the dam
face due to the pressures generated in the rescrvoir.

Equation (2.1) can be simplified by expressing the displacements in terms of

the modes of vibration of the dam monolith.

(H(I,y,f)} = Z YJ(I) [¢J(x.y)} (2'2)
i

where : Y (1) modal displacement of j* mode
&,(x,y) mode shape of i mode
j = integer from 1to n indicating the mode number
of the dam monolith



19
Substitution of equation (2.2) into equation (2.1) and premultiplying by the

transpose of the mode shape vector yields a reduced system of equations:

M Y0 + C Y+ K Y0 ~ -l [M] &0 + oy R (&)

(2.3)
where M; = modal mass of mode j
G = modal damping of mode j
K; = modal stiffness of mode j

The modal displacements, Y(t), and the added forces due to the reservoir,
R, (1), arec assumed to have a harmonic time dependency. This is expressed in

equations (2.4) and (2.5).

Vi) - Y{w) e 2.4)

where: w = frequency of excitation
Y,(w) = amplitude of modal displacement at frequency w
= square root of -1
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R () = R (©) e (2.5)

where: R..(w) = amplitude of the additional hydrodynamic forces at
frequency w

The ground acceleration is assumed to be a unit harmonic impulse.

i) - et 2.6)

Substitution of equations (2.4),(2.5),and (2.6) into equation (2.3) yields the reduced

equations of motion of the dam monolith in the frequency domain,

[-0? M, + i C + K] Y(0) = =i, [M] + ()T (R, ()}
2.7)

Converting the modal damping and stiffness to their equivalent modal mass terms
and assuming constant hysteretic damping, the dam’s cquation of motion takes the

form:
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[-0? + (1+in)) @] M, () = -7 [M] + )T (R, ()
(2.8)

where: w; = natural circular frequency of mode j
T = equivalent hysteretic damping

All quantities arc known in equation (2.8) except for that of the additional
hydrodynamic forces, R.,(w). This term can be evaluated by examining the reservoir

substructure.

2.2.2 The Reservoir Substructure
The motion of the water in the reservoir is assumed to be inviscid, non-
conveclive, and irrotational. The equations that describe the motion of the fluid are
therefore the simplified Navier-Stokes equations,

5 3t (x,y,1) _ _9P(xy,0
ot ax

p(
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p (t) a'l’ﬂx,)’,f) i _aP(x,y,t)

(2.10)
ot y
where: ot = density of water
u(x,y,t) = horizontal velocity of fluid
v(X,Y,t) = vertical velocity of fluid
P(x,y,t) = pressure, in cxcess of hydrostatic
The continuity equation for a compressible fluid can be written as:
3p() . a(p(t)uJ(x,y,t)) . a(p(f)Vj(xs)’J)) -0 @.11)

ot ox ay

In fluid mechanics, water is usually considered as an incompressible fluid since its
density does not fluctuate significantly with time. Pressure waves are, however,
transmitted by changes in the fluid’s density, Fluctuations in density must therefore
be allowed so that the pressures can propagate in the reservoir. To ailow these
density fluctuations but yet still maintain the assumption of a constant density,

Lamb’s (1945) relationship between the pressure in the walter and its density is used:
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P(x,y,0)
p@) - p, + P 2D 2.12)
EW
where: Po = average density of water
E, = bulk modulus of water

As the density of the water is only changing slightly, it is assumed to vary with time
but not space. The spatial derivatives of the density are therefore equal to zero.
Only the derivative of the density with respect to time has a non-zero value.
Equation (2.12) can now be substituted into equation (2.11) to yield:

1 8PGoy) | SufxyD) | dfewd 2.13)
E, o Ox oy

W

Equation (2.13) represents the continuity equation for an incompressible fluid that
still accounts for the time-dependent nature of the pressure in the reservoir.

Combining equations (2.9), (2.10), and (2.13) and eliminating the x and y
component of the fluid particie velocity yields an equation which describes the spatial
and temporal variation of pressure in the reservoir:

& azp(x,)’,f) - azp(x:)’,f) + BZP(X,)’J) (2. 14)
E, o2 ox? Ay?




24

If the pressure is assumed to have an harmonic time variation as well, it can be

expressed as:

Px,y,t) = P(xy,w) e (2.15)

where: P(x,y,w) = amplitude of pressure at frequency w

Introducing equation (2.15) into equation (2.14) yields:

VP(x,y,w) + —Cw—z- P(xy,w) - 0 (2.16)

where: c? = E, / p, = square of speed of sound in water

This equation, along with the appropriate boundary conditions, describe the
distribution of pressure in the reservoir. The boundary conditions of the finite

reservoir system are presented in equations (2.17) to (2.20).
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H
B pe) = -p, + 02 p, Y B3O Kw) 2.17)
ox -1
where: $,*(0,y) = mode shape at dam face
oP ,
-é-(-L,y,w) - +i w g P(-Ly,w) (2.18)
x
where: q = damping caused by the reservoir-foundation interface
L = length of reservoir
LL0,0) - +i 0 g P:0,0) (2.19)
y
P(x,H,w) - 0 (2.20)
where:

H = height of dam which is taken the same

as the height of reservoir

The boundary condition given in equation (2.17) represents the acceleration
of the dam face. The first term on the right hand side represents the absolute
acceleration of the dam in its rigid body mode. This acceleration is proportional _to

the density of the fluid. The second term represents the relative acceleration of the
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dam in its individual modes of vibration. Equations (2.18) and (2.19) represent the
pressure gradients due to the absorptive capacity of the far boundary and the bottom
of the reservoir, respectively. The absorption capacity of the reservoir's foundation
is modelled according to the one-dimensional boundary condition developed by Hall
and Chopra (1980). In this formulation, the stress generated in the reservoir's
foundation is assumed to propagate away from the reservoir in a direction normal
to the reservoir-foundation interface. Equation (2.20) states that the pressure at the
free surface of the reservoir is zero. Previous work (Chopra, 1967) has shown that
the surface waves have a negligible effect on the pressurcs in the reservoir and can
therefore be neglected.

The pressures in the reservoir, at a specific frequency of excitation, can now
be determined by solving equation (2.16) subject to the boundary conditions of
equations (2.17) to (2.20). Equation (2.16) is solved by using the separation of
variables technique. The principle of superposition is used on equation (2.17) so that
the pressures due to the rigid body mode and the individual modes of vibration of

the dam monolith are determined scparately.
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o BRI () [ e (R10Ty | o gty Py, )
Pa(x.y,m) - +2poz K - lWqg

: 21
o [ (0 2y [y (- (g )+ iog] O
K - iwg
where: P(x,y,w) = pressure due to vibration of dam in its rigid body

mode

B = verlical separation constant of the m™ vertical mode
of the reservoir

m = integer ranging from 1 to infinity indicating
vertical mode number of reservoir

K = horizontal separation constant

o B () e (=00 4 e e ) Y,0) V()
K - iWg
P(ry.w) = <20 Y

R LD - e LH () - (097) + g )

2.22)

where: Pi(x,y,w) = pressure due to vibration of dam in its’ j" mode of
vibration

Y(y,0) - 2—5—[( B, +wg) e’ + (B -awg)el™1 @23
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H
Iam(m) - f fm(y,m) dy (2.24)
0
H
L, - [ ¥,0:0) 0,09) dy (2.25)
0
- -2y (2.26)
e

The solution to these boundary value problems are given in equations (2.21)
and (2.22). Eguation (2.21)is the closed form solution representing the pressures in
the reservoir due to the vibration of the dam monolith in its rigid body mode.
Equation (2.22) is the closed form solution representing the pressures in the reservoir

due to the vibration of the monolith in its j* mode of vibration.

2.2.3 Solution Procedure
The equations of motion are solved numerically, The mass and stiffness
matrices for the dam monolith are generated using the finite clement technique. The

additional stiffness resulting from the foundation underneath the dam monolith is
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calculated assuming that it behaves as a visco-elastic half-space. Mode shapes and
frequencies of vibration of the monolith are first calculated assuming an empty
reservoir.

To calculate the added modal force terms, the additional hydrodynamic forces,
resulting from the effects of the reservoir, equations (2.21) and (2.22) were multiplied
by the individual mode shapes and this product integrated over the height of the
dam, H. To perform these integrations in a closed form, a parabola was fitted to the
first two modes of vibration.

The earthquake ground motion used in this study was assumed as a unit
harmonic that has an acceleration magnitude of 0.305 m/s® (1 ft/s®). The response
determined from the analysis is therefore the Fourier representation of the response.
This means that the response of the structure is determined for discrete values of the
frequency of excitation over a specific range. The response of the structure to the
ground motion is determined for each mode individually. The Fourier
representations  of the individual modes’ responses are combined using a straight sum
of the product of the monolith’s modal response and the appropriate mode shapes.

This combination rule is given in equation (2.27).
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n
Y, (xyw) - ;Z{ Y(w) ¢ (xy) (2.27)
where: Yo (X,¥,&) = overall response of the monolith

The response of the monolith is non-dimensionalized by dividing by the
magnitude of the unit harmonic. The frequency of excitation is normalized to the

dam’s fundamental frequency excluding reservoir interaction effects.

2.3 VERIFICATION OF ANALYTICAL PROCEDURE

In deriving the expressions for the pressure components given by cquations
(2.21) and (2.22), a finite length reservoir upstream of the dam is assumed. As the
length of the reservoir increases, the pressure components are expected to approach
those derived by Fenves and Chopra (1984b) for an infinite length reservoir. At the
limit as the length of the reservoir approaches infinity in equations (2.21) and (2.22),

the pressure at the dam face (x = Q) is given by the following two equations:

| - 2 I -
P,,(O,y,m) - ‘2[3 02 p’" Om(m) Y(y’m)

(2.28)
ml ok, [ H(B% - (0 ) + iwg )
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- 2 7 Y
P0y0) - w207,y —bn n®) Tal00) ¥(0)

2 . : (2.29)
mtx, [ H (P, - (wg)?) + ing ]

These two equations are identical to the expressions derived by Fenves and
Chopra (1984b). The same coordinate system was used in deriving their expressions
as was usced in this study.

A sccond verification of the analytical procedure dealt with the response of
the dam monolith. This is intended to verify both the analytical method and the
computer program developed to perform this analysis. As the ratio of the reservoir’s
length to the dam’s height (L/H) increases to infinity, the results obtained should
approach those determined when an infinite length reservoir is assumed. A 91.44m
(300 ft.) dam, idealized as having a triangular cross section, was analyzed. The
downstream face has a slope of 0.8:1as illustrated in figure 2.1. The elastic modulus
of the concrete was taken to be 18 600 MPa (2.7 million psi). This modulus is low
for most of the concrete typically used in practice, This value was selected so as to
be able to directly compare the approach and solutions in this study to those of
Fenves and Chopra (1984b). The dam’s foundation was assumed to be rigid. The
water level in the reservoir was laken to be equal to the dam's height. The
reservoir’s foundation was considered absorptive and the wave reflection coefficient

was taken to be 0.9. Two modes of vibration were considered in this analysis. Only
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the monolith’s fundamental mode of vibration was coﬁsidered in the analysis
performed by Fenves and Chopra (1984b).

Four curves representing the response of the dam monolith for L/H ratios of
5, 10,20, and 40, are shown in figure 2.2. When the finite length boundary condition
is imposed on the system, many additional peaks are created in the response. When
the L/H ralio is equal to 5 (heavy solid line), several distinct peaks arc evident in
the response. These occur at normalized frequencies greater than one. These peaks
are referred to as supplementary response peaks. As the L/H ratio increases to 10,
the number of these supplementary response peaks increase. The magnitude of these
peaks decreases. This is presented in figure 2.2 by the thin dotted line. Eventually,
for very long reservoirs (L/H = 40), the response of the monolith with a finite length
reservoir is practically identical to that of a monolith with an infinite length reservoir.
The response of a monolith with a reservoir that has an L/H ratio of 40 is presented
by the thin solid line in figure 2.2. The heavy dotted linc in figure 2.2 represents the
response when the reservoir is assumed infinite in length. This curve is the same as
that determined by the analytical procedure of Fenves and Chopra (1984b).  As
evident from these two curves, the response of the system approaches that of the

system when the reservoir is considered to be infinite in length as the L/H ralio

increases.
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2.4 RESPONSE OF DAM

The cross section of a dam monolith is essentially triangular with a vectangular
area situated at the top of the section. This additional area is needed to support a
roadway and to provide for other services for the dam. In this study, however, the
cross section is idealized as having a triangular shape as shown in figure 2.1. This
triangular section is sometimes referred to as the structural section. Neglecting the
mass and stiffness of the rectangular shaped top section will affect the computed
frequencics and mode shapes, This in turn will affect the dynamic stresses that are
caused by the earthquake ground motion. Chopra and Chakrabarti (1972) illustratec
this point using the Pine Flat Dam cross section subjected to the Koyna earthquake
of December 11, 1967, Inclusion of the top rectangular section lead to a lengthening
of the fundamental period (excluding reservoir effects) by approximately 14%. It was
also found that the maximum principal dynamic stresses varied significantly between
the two cases. This idealization is made, however, as it is of interest to compare the
overall response of a dam monolith to earthquake ground motion assuming finite and
infinite  length reservoirs and to be able to compare with available solutions.
Although it may not be possible to obtain the monolith's true response to the ground
motion using the structural section, a qualitative comparison of the monoliih’s
relative response can still be made. Incorporating the additional mass at the top of
the monolith can be accomplished relatively simply once the analytical procedure has

been established.
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The dam monolith selected for analysis in this study is 91.44 m high with a
downstream slope of 0.8:1. The foundation under the dam monolith was considered
to be rigid. Two values of elastic moduli for the dam’s concrete were used, These
values were 18 600 MPa and 42 000 MPa. These are considered to be the extremes
of the range of typical concrete properties. These values for the concrete modulus
allow direct comparison with the work of Fenves and Chopra (1984b),

In addition to the monolith stiffness, two other parameters were varied to
determine their effect on the monolith’s overall response.  First, five values were
used in this study for the ratio of the reservoir’s length to the dam’s height (L/H).
The values used were 10,7.5,5,2.5,and 1. Reservoirs of a length that is smaller
than the height of the dam were deemed unrealistic. When the ratio of the reservoir
length to dam height is greater than 10, the monolith response was found to
approach the response of the infinite reservoir case. Cases of L/H ratios greater
than 10 were found not to provide any more information about the behaviour than
a reservoir with an L/H value of 10,

The second parameter to be evaluated was the wave reflection coefficient.
This parameter was varied from 1.0to 0.0in intervals of 0.1. A value of 1.0implies
that the reservoir’s foundation is completely reflective. A value of 0.0 implics

maximum absorption of the pressure waves.
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2.4.1 Pressures In Reservoir

When the reservoir is considered to be infinite in length, the pressures are
only allowed to propagate in the upstream direction. These pressute waves are
assumed to decay cxponentially as ticy travel away from the dam face. Therefore,
these waves carry energy away from the dam face. The only pressures that
significantly affect the monolith are those that are travelling in the vertical direction.
[f the reservoir’s foundation is considered to be completely reflective, the pressure

waves oscillate vertically with frequencies given by (Fenves and Chopra, 1984b):

0):" - (2”! -1 ) n C (2-30)
2 H
where w,’ = circular frequency of the m™ mode of the reservoir

The magnitudes of the pressures on the dam face, and therefore the response
of the monolith, are infinite at these frequencies if the reservoir-foundation interface
iIs considered to be completely reflective. This can be seen by examining equations
(2.28) and (2.29). The denominator of these equations must be zero in order that
the magnitude of the pressure becomes infinite. As the second term cloes not vanish,
the horizontal scparation constant of the system therefore must be equal to zero.
Using cquations (2.26) and (2.30), the horizontal separation constant is given by the

following expression,
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" - J[M}i - W (2.31)
2 H c?

When the frequency of excitation is such that « in equation (2.31) is zcro, the

magnitude of the pressure becomes infinite. This is resonance of the pressures in the
reservoir. Resonance only occurs at frequencies equal to those of the vertical
separation constants because of the assumed behavirur of the horizontal component
of the pressure.

When the finite reservoir length condition is imposed, the horizontal
component of the pressure waves are allowed to travel both upstream and
downstream in the reservoir. In this case, the pressures given by equations (2.21) and
(2.22) will have infinite magniludes when the reservoir’s bottom is assumed
completely reflective. As for the infinite length case, the denominator of these
expressions must be zero. In this case, there are two conditions that wili cause the
magnitudes of the pressures to be infinite. The first condition is that the horizontal
separation constant is zero. This implies a vertical pressure wave that decays
exponentially upstream. This is identical to the infinite length reservoir case.

The second condition for an infinite pressure magnitude is when the second
term in the denominator of equations (2.21) and (2.22) becomes zero. This condition

is expressed by the formula:
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(Kriogy ,a2x_g (2.32)
kK-iwg

When the reservoir’'s foundation is considered to be completely reflective, this

equation has imaginary valued roots, x, and are found to be equal to integer

multiples of #/L. This can be thought of as resonance of the reservoir in the

horizontal direction.
The vertical and horizontal separation constants, 8, and «,,can be substituted
into equation (2.26) which can be rearranged to yield the natural circular frequencies

of the reservoir in the form:

_ 2m -1, n Ty (2.33)
W C\l[ W ]+[L]

where n = integer ranging from O to infinity which represents the
horizontal mode number of the reservoir
When n is equal to zero in equation (2.33), the calculated frequency is for
resonance in the vertical direction, The frequency of excitation for the condition of

horizontal resonance (n # 0) is a combination of both the vertical and horizontal

scparation constants of the reservoir. This implies that there is coupling of these two
components.
When the reservoir's foundation is considered to be absorptive, the vertical

and horizontal separation constants are no longer solely real and imaginary valued,
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respectively. The separation conslants are shifted in magnitude and each have both

real and imaginary components.

2.4.2 Effect of Length to Height (L/H) Ratio

The pressure spikes that occur at the resonant frequencies of the reservoir will
in turn affect the response of the dam monolith. For an infinite length reservoir,
peak responses will occur in two instances. First, response peaks arc expected at
frequencies which correspond to the natural frequencics of the dam monolith, The
response peak occurring at a normalized frequency of 2.08in figure 2.2 (heavy dotted
line) is an example of this type of peak. For these types of peaks, a portion of the
water in the reservoir can be thought of as vibrating with the dam monolith, This
has the affect of adding mass and additional damping to the monolith. The
additional mass will tend to reduce the resonant frequencies of the monolith from
the values when the reservoir is assumed empty. This results, for example, in the
fundamental frequency of the monolith to be less than a normalized frequency of
one. The additional damping will tend to reduce the magnitude of the monolith's
response.

The second cause of response peaks is the additional hydrodynamic forces that
are the result of resonance of the reservoir. The fundamental response peak shown
in figure 2.2 (heavy doited line) is an example of this type of peak. For reservoirs

having an infinite length, this resonance causes significant pressurcs to occur at the
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frequencies associated with the vertical separation constants of the reservoir. The
pressures generated in the reservoir act on the dam face and induce a hydrodynamic
force onto the monolith. The pressures, and therefore the additional hydrodynamic
forces, have peak values at these frequencies. The additional hydrodynamic forces
will then in turn cause the dam monolith to vibrate. This mechanism results in the
creation of the response peak at the frequencies associated with the vertical
resonance of the reservoir.

Similar effects occur when the constraint of a finite length reservoir is added
to the system. The presence of the far end boundary of the reservoir causes
additional eigen frequencies to occur in the reservoir. As mentioned earlier, these
frequencies are associated with the horizontal resonance of the pressures in the
reservoir. Additional hydrodynamic forces are created at these frequencies as well.
The additional frequency components of these forces cause additional response peaks
to occur in the same manner as described in the infinite case. These additional
peaks are shown in figure 2.3. This figure represents the response of a monolith with
a reservoir having an L/H ratio of 5. The modulus of elasticity of the dam’s concrete
material is 18 600 MPa. The first peak at a frequency of approximately 0.8 in this
figure is duc to the vibration of the dam monolith in its fundamental mode. This
peak is also affected by the force created by the resonance of the reservoir in its
fundamental vertical cigen mode. The peaks to the right of this fundamental peak

are due to the effects of the additional hydrodynamic forces, The small peak directly
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to the right of the fundamental response peak is due to the resonance of the
pressures in the reservoir in its eigen mode corresponding to its fundamental vertical
and horizonta! separation constants. This peak has a very small magnitude and is
located at a normalized frequency of approximately 1.0. The next several responsc
peaks (normalized frequencies of 1.23 and 1.49) are due to the resonance of the
pressures in its eigen modes corresponding to the coupled fundamental vertical and
the second and third horizontal separation constants, respectively,

As the frequency of excitation increases towards the second mode of the dam
monolith, the monolith’s modes no longer solely dominate the response. The cffects
of the additional hydrodynamic forces caused by the coupled horizontal and vertical
resonances of the pressures amplify the motion caused by the resonance of the
monolith’s second mode. This is contrary to the infinite length case where the
resonance of this mode dominates over the eftcets of the hydrodynamic forces. In
this case, the resonant frequencies of the monolith and the reservoir do not coincide.

As the L/H ratio increases from one to ten, the number additional frequency
components present in the response increases. This can be scen by comparing
figures 2.4,2.5,and 2.6, These figures represent the overall response of a dam
having a modulus of 18 600 MPa and L/H ratios of 1,5, and 10, respectively. The
wave reflection coefficient is equal to 0.9. This phenomena is explained by
examination of equation (2.33). This equation is applicable for the case where the

bottom of the reservoir is completely reflective (wave reflection coefficient equal to
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one). The separation constants of the horizontal components of the pressures are
inversely proportional to the length of the reservoir. The spacing between the
separation constants therefore decreases as the reservoir length increases. This in
turn causes an increase in the number of frequencies at which additional
hydrodynamic forces occur. An increase in the number of response peaks therefore
also occurs. Similar effects are seen for other values of the wave reflection
coefficient. The length of the reservoir affects the monolith's response in a similar

manner for other values of the wave reflection coefficient.

2.4.3 Effect of Wave Reflection Coefficient

The wave reflection coefficient isan indicator of the absorptive capacity of the
reservoir’s foundation. This coefficient ranges from a value of 1.0to 0.0. When the
cocfficient has a value of 1.0, the pressure wave coming into contact with the
reservoir-foundation  interface is completely reflected back into the reservoir. The
reservoir-foundation  interface provides no additional damping to the reservoir
substructure. The maximum amount of energy from the pressure wave is absorbed
into the foundation when the wave reflection coefficient has a value of 0.0. The
interface provides the greatest amount of additional damping at this ccefficient value.
The additional damping (equation (2.19)) is a result of the increased flexibility of the

reservoir's foundation as the value of the wave reflection coefficient decreases. The
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relationship between the wave reflection coefficient, ,and the additional damping,

q, provided at the interface is presented in equation (2.34).

g-Lid-9
C l+a

(2.34)

The response of a monolith impounding a reservoir having an L/H ratio of
5 is presented in figure 2.7. The wave reflection coefficient has values of 0.9,0.7,
anc 0.5. The magnitude of the fundamental response peak decreases as the wave
reflection coefficient decreases as can be seen in figure 2.7.

The response at frequencies greater than that of the fundamenial mode is
significantly affected by the value of the wave reflection coefficient.  The
supplementary response peaks that are created by the coupled vertical and horizontal
resonance of the pressure waves are infinite in magnitude when the wave reflection
coefficient is equal to 1.0. This represents the case of a completely reflective
reservoir bottom. The magnitudes of the supplementary response peaks become
finite and decrease as the value of this coefficient decreases. Eventually for small
values of the coefficient, the response of the monolith approaches the response when
the reservoir is considered to be infinite in length. In this case, the pressures

resonating horizontally in the reservoir are damped out Icaving only the vertically

resonating components of pressure acting on the dam face.
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Figure 2.8 presents the relationship between the L/H ratio and the wave
reflection coefficient at which the finile reservoir response is no longer significantly
different than that of the infinile reservoir response. The responses were considered
to be significantly different if the difference in magnitude between the two cases at
any frequency of excitation is greater than one percent. For example, the finite
reservoir cffects are no longer present at a wave reflectivn coefficient value of 0.5
when the L/H ratio is equal to § (figure 2.7). The response of the dam monolith
when finite reservoir effects are considered approaches that of the infinite case for
larger wave reflection coefficient values when the L/H ratio is large. When the
reservoir is considered to be long, an increased length of reservoir bottom is
available to dissipate energy from this sub-structure.

The added mass for the fundamental mode of a monolith impounding a
reservoir having L/H ratios of one and infinity (wave reflection coefficient equal to
0.9) arc presented in figure 2.9. The added mass is calculated using the formula
presented by Fenves and Chopra (1984b) and equation (2.22). The modal mass, M,,
has a value of 1.0. It can be seen from the figure that the added mass that is created
by a finite length reservoir is greater than that created by an infinite reservoir for
frequencies less than that of the fundamental frequency of the monolith. This
increased added mass causes a decrease in the frequency of the monolith’s
fundamental mode. This can be seen in figure 2.10 which represents the response

of the monolith investigated in figure 2.9. This shift is approximately two percent
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and can be explained by the change in magnitude of the pressures created in a short
finite length reservoir. This frequency shift is a direct result of the increased
pressures that occur in the reservoir,

As the wave reflection coefficient decreases, the amount of the frequency shift
is reduced. The change in the frequency shift can be seen by comparing figures 2.10,
2.11,and 2.12. These figures represent the response of a monolith impounding a
reservoir having an L/H ratio equal to one (heavy solid line) and infinity (light solid
ling). The wave reflection coefficient has values of 0.9,0.7,and 0.5 for figures 2,10,
2.11, and 2.12, respectively. As the amount of bottom absorption increases, the
change in the added mass relative to the infinite length case decreases.  This
decreasing relative change in magnitude of the added mass therefore results in the
frequency shift between the two cases to decrease as well.

The decrease in the magnitude of the fundamental response peak can also be
seen by comparing figures 2.10,2.11,and 2.12. This effect can be cexplained by
examining the value of the added damping at this peak’s frequency. The added
damping is calculated using the formula presented by Fenves and Chopra (1984b)
and equation (2.22). The absolute magnitude of the added damping is larger when
the reservoir is finite in length than when the reservoir is infinite in length. For a
wave reflection coefficient of 0.9, the added modal damping values are 0.076 and
0.025 for the finite and infinite length cases, respectively. This is comparable to

twice the damping ratio multiplied by the modal mass of the monolith. This product
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has a value of 0.1. As the value of the coefficient decreases, the added damping
becomes larger. For a wave reflection coefficient value of 0.7,the modal damping
values increase to 0.182 and 0.076, for the finite and infinite length cases,
respectively. The large increase in the added damping value for the finite length
case causes the response peak's magnitude to be significantly reduced.

The added modal damping values further increase to 0.185 and 0.110 when
the wave reflection coefficient value is reduced to 0.5. The peak for the infinite
length reservoir case continues to reduce in magnitude whereas the peak for the
finite length casc does not decrease as significantly as seen in figure 2.12. This is due
to the small increase in the added damping that occurs for the finite length reservoir
between the cases where the wave reflection coefficient is 0.7 and 0.5. The increase
in the added damping values therefore is responsible for the decrease in magnitude

of the fundamental peak.

2.4.4 Effect of Dam’s Stiffness

The dashed line in figure 2. 13 presents the response of a monolith impounding
an infinite length reservoir. The monolith has an elastic modulus of 42 000 MPa and
the reservoir has a wave reflection coefficient of 0.9. Supplementary response peaks
are again created when the upstream reservoir is assumed to be finite in length. The
finite reservoir assumption allows the reservoir to resonate in the horizontal as well

as in the vertical direction, The effect of the finite reservoir length assumption can
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be seen in the solid line presented in figure 2.13, This curve represents the response
of the monolith when a reservoir having an L/H ratio of 5 is impounded, The
supplementary response peaks have significant magnitudes near the resonant
frequencies of the monolith substructure. This is similar 1o the case of a more
flexible (E, = 18 600 MPa) monolith.

The response below a normalized frequency of one must be noted. The
principal effect caused by an increase in the dam monolith’s clastic modulus is to
change the shape of the fourier representation of its response. The most significant
change occurs at normalized frequencies below onc. Two distinct response peaks are
present when the reservoir is considered to be infinite in length and the dam’s clastic
modulus is increased to 42 000 MPa. These two peaks are well defined when the
elastic modulus is large because there is sufficient separation between the
fundamental vertical eigen frequency of the reservoir and the frequency of the
fundamental mode of the dam monolith. For more flexible dams (18 600 MPa),
these two peaks are fused into a single peak. There is not sufficient separation
between the reservoir's cigen frequency and the fundamental frequency of the
monolith. This result for the finite length reservoir case confirms earlier conclusions
by Fenves and Chopra (1984b) for the infinite length rescrvoir case.

The peak at a normalized frequency of 0.62 is a result of the response of the
dam monolith to the added force created by the resonance of the reservoir in its

fundamental pure vertical eigen mode. The next two supplementary response peaks



47

are created by the response of the monolith to the added forces created by the
resonance of the reservoir in its eigen modes corresponding to its first vertical and
its first and second horizontal separation constants, respectively. The second
supplementary response peak is also influenced by the resonance of the monolith
itsclf in its fundamental mode of vibration. This can be seen in this peak’s increased
magnitude relative to that of the first supplementary response peak.

The frequency shift and magnitude reduction that occur at the fundamental
response peak when the reservoir is considered to be short is also present for stiff
dams. This is presented in figure 2.14. The solid line presents the response of a dam
monolith impounding a reservoir having an L/H ratio of 1.0. The wave reflection
coefficient is taken equal to 0.9. The dashed line in this figure is the response of the
system when the reservoir is considered to be infinite in length. The L/H ratio at
which this occurs is however increased as the dam’'s stiffness increases. This
magnitude reduction and frequency shift first occurs at an L/H ratio of 2.5 when the
dam’s clastic modulus is 42 000 MPa. This is contrary to a flexible dam monolith,
where this cffect first occurs at an L/H ratio of 1.0. The finite length assumption
also increases the magnitude of the system’s response at the higher frequencies as in
the case of a more flexible dam monolith.

The increasing value of the modulus of elasticity of the monolith results in the
monolith’s modes of vibration interacting with the reservoir’s modes at different

frequencies.  This can be seen in comparing figures 2.3 and 2.13. The increasing
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stiffness of the dam monolith results in its frequencies of vibration lo increase in
value. This in turn results in the monolith’s modes exciting different reservoir modes,
The response of the monolith therefore will be significantly different for the various

values of the monolith’s modulus of elasticity.

2.5 SIMPLIFIED ANALYSISPROCEDURE

The closed form solution technique can be simplified to produce an analysis
that is intended for initial design procedures. The effects of the finite length
reservoir on the response of the dam monolith are considered. In the derivation of
this analysis, it is assumed that two modes of vibration are important in the overall
response of the dam. The reservoir is idealized as being rectangular in geometry.
The dam’s foundation is assumed to be completely rigid. Under these assumptions,

equation (2.8) can be simplified to the following sct of equations;

[ F2 - (FI)Z I(Izzz) I
Y, (w) - ooy (2.35)
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i
M*y, = [ 6,00 P,0y.0) dy (2.45)
0

"
M*, - [ 6,(05) P0y,0) dy (2.46)
0

I', and T, are participation factors for the first and second modes of the monolith,
respectively.

In order to conduct the simplified analysis procedure, a separate dynamic
analysis is first performed on the dam monolith to determine its dynamic
characteristics. These include the frequencies of free vibration w, and w, and the
mode shapes. These characteristics are then used to evaluate equations (2.37),
(2.40), (2.41), and (2.42). The closed form solution for the pressures in a finite
length rectangular reservoir given by equations (2.21) and (2.22), and the parabolic
approximation for the monolith’s mode shape, are used to evaluate the remaining
terms. The modal responses are once again combined using equation (2.27).

In order to evaluate the accuracy of the proposed simplified procedure, a
numerical example is analyzed and the response obtained from the simplified
procedure is compared with the closed form solution. Consider the case of a

morolith impounding a reservoir having an L/H ratio of 5.0and a triangular cross
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section. The monolith height was assumed to be 91.44 m with a downstream slope
of 0.8:1. The modulus of elasticity of the concrete used was assumed to be 18 600
MPa. The response obtained using both the closed form solution technique and the
simplified procedure are plotted in figure 2.15. The simplified approach
underestimates the response by 7.6%. The closed form solution technique predicts
this response to be 31.4 and the simplified method predicts it to be 29.0.

The supplementary response peaks are also predicted quite accurately. The
response peak at an excitation frequency of 8.74 Hz has its magnitude overestimated
by 10.5% as compared to the closed form solution. The response peaks that occur
at higher frequencies are predicted with less accuracy as the excitation frequency
increases. The accuracy of both techniques begins to diminish as the [requency of
excitation becomes greater than that of the second mode of vibration of the
monolith. This occurs since only two modes of vibration are considered in both of
the analyses.

This simplified analysis technique is cffective in determining the response of
the system to earthquake ground motion when it is assumed to only excite the
monolith. The ground motion must only have significant cnergy at frequencies less
than that of the monolith’s second mode of vibration. Typically, this frequency range
is similar to that at which both intermediate and high a/v ground motion cvents have
significant energy. In this example, the frequency range that is applicable is from 0

to 15 Hz. The analysis procedure can not accurately predict the response of the



53

system at higher frequencies. More modes of vibration must be included in the
dynamic analysis in order to obtain an accurate estimate of the response at these

frequencics.
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Figure 2.1 - Schematic representation of dam - finite reservoir system
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Figure 2.2 - Effect of L/H ratio on monolith response
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Figure 2.5 - Response of monolith impounding reservoirs
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CHAPTER 3

DETAILED ANALYSIS OF DAM-RESERVOIR-FOUNDATION SYSTEM

3.1 INTRODUCTION

In this chapter, a more detailed analytical technique that is used to evaluate
the response of the dam-reservoir-foundation system, is presented. The system is
sub-divided into three substructures: the dam monolith, the dam’s foundation, and
the upstrcam reservoir. The first section in this chapter describes the three
individual substructures. The dam monolith and foundation substructures are the
same as those discussed in the previous chapter. A finite element analysis is utilized
in solving the reservoir's equations of motion. This is different from the previous
chapter where a closed form solution of these equations was obtained. The boundary
condition used to model the reservoir-foundation interface is also discussed. A new
two-dimensional formulation for the boundary condition was developed to model this
interface.  This proposed boundary condition incorporates the effects of shear
stresses: or soil column interaction in a simple formulation that is compatible with the
present solution approaches.

The last section of this chapter is concerned with the verification of the

analysis procedure. First, the effect of the size of the finite element mesh used to
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model the upstream reservoir is examined. The effect of the mesh size on the
hydrodynamic pressures and the modal forces is evaluated. The results obtained
using the proposed analysis are then compared to those obtained using the technique
involving the infinite reservoir length assumption (Hail and Chopra (1980), Fenves
and Chopra (1984b)). A comparison between the closed form solution developed in
the previous chapter and the detailed analytical technique is discussed. Finally, the
effect of the monolith's cross sectional geometry on its response in the case of finite

reservoirs is discussed.

3.2 ANALYSIS TECHNIQUE

In this section, the analysis of cach substructure is discussed individually. In
the reservoir substructure, the boundary condition at the reservoir-foundation
interface is analyzed. Two methods are presented to model this interface.  First, the
one dimensional boundary condition proposed by Hall and Chopra (1980) is
reviewed.  Second, a modified two dimensional boundary condition  which
incorporates shearing effects (soil column interaction) is derived. A bricl overview

of the solution scheme is also presented in this section,

3.2.1 Dam Monolith
The dam monolith substructure is modelled as a two-dimensional clastic body.

Each monolith is assumed to vibrate independently during strong earthquake pground
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motion. This implies that the interface between neighbouring monoliths is stress
free. The monoliths are therefore assumed to experience a condition of plane stress.
The response of the monolith is assumed to be steady state. The transient part of
the response is neglected. The damping in the monolith is assumed to be hysteretic.
The cquations of motion governing the dynamic behaviour of the monolith are given
by equation (2.8).

The additional hydrodynamic forces, R, (w), are calculated using the principle
of virtual work. The procedure for calculating these forces was given by Hall and
Chopra (1980). The stresses and displacements created due to the earthquake
ground motion arc calculated using the procedure outlined by Fenves and Chopra
(1984b). The response of the system is transformed from the frequency domain to
the time domain using the Fast Fourier technique., The modal time histories are
combined using a straight sum to allow for a direct comparison to the resuits

presented by Hall and Chopra (1980) and Fenves and Chopra (1984b).

3.2.2 Dam’s Foundation

The monolith’s foundation is modelled as a two-dimensional visco-elastic half
space. The analytical approach was originally developed by Dasgupta and Chopra
(1977). 1t was later incorporated into the dam-reservoir-foundation system’s
analytical model by Chonra, Chakrabarti, and Gupta (1980). This model! condenses

the foundation’s stiffness matrix to values occurring only at the monolith-foundation
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interface. This subsystem allows the flexibility of the monolith's foundation soils to
be considered in the analysis.

Taking the foundation’s flexibility and the subsequent interaction effects into
account will make the solution of the problem more complicated. However it will
not provide new information concerning the response of the dam monolith assuming
a finite length reservoir, For the purposes of this study therefore, the foundation was
assumed to be rigid. In the numerical analysis, the elastic modulus of the foundation
was taken to be one hundred twenty times greater than that of the monolith's elastic

modulus,

3.2.3 Reservoir

The motion of the reservoir is assumed to be irrotational, inviscid, and
compressible. The equations of motion of this substructure are given by equation
(2.16). This equation describes the response of the pressures in the upstream
reservoir. The sclution of the reservoir substructure’s equation is subject to four
boundary conditions when the upstream reservoir is consideied to have a rectangular
geomelry. These bou lary conditions are expressed in equations (2.17) through
(2.20). This system of equations is solved using the finite element technique
developed by Hall and Chopra (1980). It was, however, adapted 1o incornorate  the

boundary condition at the far end of the reservoir. Details of the implementation
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of the finite element technique can be found in the above mentioned reference and
the adaptations will be discussed in this and later sections of this chapter.

The boundary condition at the far end of the reservoir, as given by equation
(2.18), is assumed to be unaffected by the earthquake ground motion. A more
rcalistic situation, however, is that the earthquake ground motion will also affect this
far end boundary. To account for this boundary’s motion in a simple form, it is
assumed to vibrate only in its rigid body mode when it is excited. No attempt was
made to explicitly model the foundation at the far end boundary of the reservoir.
‘The ground motion at this far end is considered to be either in-phase or out-of-phase
with that which excites the dam monolith. In this case, the far boundary condition
may be presented as:

aP('L,)’,(O)
ax

- tp, +iwgqP(-Lyuw) 3.1
The first term on the right hand side of this boundary condition represents the
acceleration of the far end boundary in its rigid body mode. This acceleration is
proportional to the average density of the water. A positive value of the first term
on the right hand side of equation (3.1) indicates that the ground motion at the far
boundary is in-phase with that at the dam monolith. A negative value indicates the

case of out-of-phase ground motion.
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So far the analysis has been focused on a reservoir having a rectangular
geometry. In many situations, it may be more realistic to assume a sloped reservoir
bottom as shown in figure 3.1. Only threec boundary conditions are required when
the bottom of the reservoir is assumed to be sloped. Boundary conditions (2.17) amd
(2.20) can be applied to this case. Equation (3.1), or equation (2.19), is applicable
along the sloped bottom depending on the type of ground motion considercd. ‘The
first term of equation (3.1) only applies to the horizontal component of the ground
motion. The vertical component of the ground motion is neglected in this study.
The bottom absorption term on the right hand side of cquation (3.1) and (2.19) is

applied such that it acts perpendicular to the dircction of the reservoir bottom,

3.2.4 Reservoir’s Foundation

The reservoir’s foundation is responsible for the dissipation of a significant
amount of energy from the dam-reservoir-foundation system, Pressure waves in the
reservoir are generated during strong ground motion cvents. These pressure waves
will eventually strike the interface between the reservoir and its foundation,  Some
of the energy from the pressure wave will be reflected back into the reseevoir and
the remainder will be refracted into the reservoir’s foundation.  This refracted encrgy
causes a stress wave to be generated in the foundation soils. This stress wave
propagates =way from the reservoir-foundation interface and therefore draws the

energy away from the reservoir. The energy dissipation characteristics of the
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reservoir’s foundation is represented by the conditions at the boundary. The one
dimensional boundary condition normally used to model this interface will be
reexamined in a two dimensional formulation in an attempt to develop a more
representative model.

The one dimensional representation of the boundary condition at the
reservoir-foundation interface assumes that the foundation soils and the reservoir
both act as one dimensional elastic bodies. In this model, the reservoir’s foundation
is assumed to act as a series of one-dimensional elastic columns. The individual soil
columns are assumed independent of onc another with no inferaction considered.
The vertical displacement of these soil columns is the primary source of encrgy
dissipation. The effects of the shear stresses that are developed as these columns
deform relative to one another are however neglected. Full details of the derivation
and the finite element formulation of this boundary condition were given by Hall and
Chopra (1980). It is worthwhile to note that this boundary condition is formulated
in terms of an absorptive boundary element. This was done to keep the matrices
generated in the finite element method symmetric.

The amount of absorptive capacity available in each of these soil columns is

described by the wave reflection coefficient, a. This parameter varies from a value

of positive one to zero. A value of positive one indicates a condition of complete
reflection. All the energy from the incident pressure wave is reflected off of the

reservoir-foundation interface back into the reservoir. No energy is transmitted to
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the foundation. A value of zero indicates a condition of maximum absorption. Most
of the energy from the incident pressure wave is absorbed into the foundation
substructure. This energy is then carried away from the interface by means of a
stress wave which is created in the foundation.

In the one dimensional representation of the boundary effect, disregarding this
interaction between the soil columns neglects an important source of energy
dissipation. A boundary condition is developed which accounts for this interaction
between these individual soil columns.

There are two causes for the displacements that a soil column will experience.
IFirst, the pressures acting directly on the soil column will cause displacements. This
is precisely what was considered by the one dimensional boundary condition
discussed previously. Second, the pressures acting on the soil column will cause
displacements in the adjacent soil columns. From the theory of elasticity, a load
applied at the surface of a two dimensional body will cause surface displacement in
more than one soil column. The surface displacement of a two dimensional elastic
body under plane strain conditions caused by a distributed load acting over a length

of 2a, as shown in figure 3.2, is given by Crouch and Starfield (1983):



where;

v(xs,o) - ; T

F (1-
—-—(-}-?;2 {(x,-a)In((x,-a)* - (x,+a)ln(x,+a)?

+ (L'+a)ln(L'+a)* - (L'-a)in(L’-a)%

= horizontal coordinate direction

o
I

v(x,,0) = vertical displacement of soil
F, = distributed load

G = shear modulus

v = poisson’s ratio

a = half of load length

L = fitted parameter
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3.2

To derive the proposed boundary condition, three ncighbouring soil columns

are first investigated. This configuration is presented in figure 3.3. The behaviour

of the centre soil column is analyzed assuming that the load is applied to cach of the

three soil columns individually. Each contribution is then summed to obtain the total

behaviour of this soil column. The interaction between the soil columns is included

when the individual contributions lo the response are summed.

The proposed

boundary condition representing this total behaviour can therefore be written as:
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opP oj(xs,O,m) ) .
———ay-—-— ~-iwqgP (x00)+iwgb, P*lj(xs,O,m) 3.3)
+iwqgb, P (x,00)
where: P, = pressure acting on centre soil column
P,;; = pressure acting on soil column
to the left of centre column
P,; = pressure acting on soil column
to the right of centre column
O, = displacement parameter
k = integer indicating soil column

The first term on the right hand side of equation (3.3) represents the
behaviour of the centre column due to the pressures acting directly upon it. This
term has the exact same form as that of the one dimensional boundary condition
discussed previously. The second and third terms on the right hand side of equation
(3.3) represent the effect of the pressures acting on the two neighbouring soil
columns a distance +Ax, away. These terms have the same form as the first term
except for an additional parameter, ©,. This parameter is applied to scale the
displacement of this centre column since its displacement decreases as the distance
to the applied load increases. This displacement field, given by equation (3.2), is
presented in figure 3.2, The parameter ©, is the ratio of the vertical surface
displacement of the centre soil column caused by a unit pressure acting at a distance

kAx, away to the vertical surface displacement of this column when the same unit



79

pressure acts directly upon it. This parameter therefore accommodates the ralative

contributions of the neighbouring soil columns in a simplified form.

), - v(kAx,,0) (3.4)
(0,0)

where; Ax, = width of soil column (= 2a)

Substituting equation (3.2) into equation (3.4) yields the final form of the

displacement parameter.

(kAx -a)ln(kAx -a)* - (kAx +a)ln(kAx +a)*
-2a In(@® + (L'+a)ln(L'+a)*

k
(3.5)
+ (L'+a)in(L/+a)* - (L'-a)In{L'-a)*
~ (L'-a)n(L/-a)?

This displacement parameter will therefore range from a value of zero to a value of
positive one. A value of positive one indicates that the pressure is applicd directly
over the soil column. When the pressure is no longer influencing the soil column,
the displacement factor takes a value of zero. An intermediate value indicates that

the pressure is applied some distance away from the soil column. The parameter L'

defines the specific distance away from the soil column at which the foundation is

considered to have zero displacement.
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The boundary condition given by equation (3.3) can now be expanded to
incorporale the interaction resulting from a larger number of soil columns. This can

be written in the form:

3P (x,0, -
_:f(;y._“’) -iwg {kE 8, P (x+kAx0,0)) (3.6)

This boundary condition will be implemented in a similar manner to the one
dimensional boundary condition proposed by Hall and Chopra (1980). One major
difference is that the boundary condition given by equation (3.6) is a function of the

pressures acting at a distance kAx away (k # 0) as well as the pressure acting

directly at the soil column in question (k = 0). This results in the implementation
of this boundary condition to be more difficult than the one dimensional approach.
This difficultly can be overcome by assuming that the pressure acting at a distance

kAx away can be related to the pressure acting directly at the soil column and the use

of an iterative solution scheme. The relationship between pressures can be expressed

in the form:



P;- (P, (3.7)

where: el = pressure parameter

The proposed boundary condition thercfore becomes:

oP (x,0, =
.f%i) -iwg(}y 0,7} P, (x0,0) (3.8
ke-w

The pressure parameter, {, can be evaluated for the first iteration by
assuming that the pressure distribution is the same as that when the boundary
condition of Hall and Chopra (1980) is utilized. A closed form of the pressures on
the bottom of a finite length rectanguiar reservoir is given by equations (2.21) and
(2.22) when the dam monolith is vibrating in its rigid body mode and its j* mode of
vibration, respectively. In evaluating these expressions, the first term (m = 1} in the
series is considered since only a rough approximation is required. The reservoir
substructure is analyzed using these approximate values for the pressure parameters.
The pressure parameters are then recalculated using the updated values for the
pressure along the reservoir-foundation interface. This procedure is continued until
the magnitudes of the pressures do not significantly change from those of the

previous iteration,
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This formulation is not as rigorous as if the reservoir’s foundation was
modelled as an elastic half-space. This half-space is governed by the two-dimensional
wave equation (Antes and Von Estorff, 1987). The proposed two-dimensional
boundary condition only approximates the interaction between the vertical and
horizontal displacements of the foundation sub-structure. The displacement profile
assumed in the proposed boundary condition, however, is an adequate approximation
of the actual displacement profile that occurs during dynamic loads. The
foundation’s higher modes of vibration are assumed not to be significant in its
response.

The effect of using this proposed boundary condition on the monolith’s
response will be discussed in the following chapter. The response of the monolith
using the two dimensional model for the interface at the boundary will be compared

with that using the one dimensional boundary condition.

3.2.5 Numerical Solution Technique

he numerical solution technique utilized in this study is an adapted version
of the computer program developed by Fenves and Chopra (1984a). This program
is entitled 'Earthquake Analysis of Concrete Gravity Dams’ - EAGD-84. The
analysis of the dam monolith and the foundation underlying the monolith were
performed using the applicable routines of the above mentioned computer program.

The EAGD-84 program performs the reservoir analysis assuming an infinite length.
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A new reservoir substructure routine was developed to solve the finite reservoir case.
The finite element procedure outlined by Hall and Chopra (1980) was used in the
analysis instead of the procedure adopted in the EAGD-84 program. This was
modified to incorporate the finite length reservoir assumption. The adopted finite
element procedure required that the analysis be separated into two stages. First, the
dam-reservoir-foundation system was analyzed assuming that the ground motion was
a series of unit harmonics of varying frequencies. Second, the dam-reservoir-
foundation system was analyzed to determine the stresses and displacements that
occur due to the earthquake ground motion.

The frequency domain analysis of the dam-reservoir-foundation system
required that the equations of motion of the reservoir substructure be solved for cach
of the monolith’s individual modes of vibration separately. The dam monolith-
reservoir interaction is modelled using the reservoir boundary condition given by
equation (2.17). This boundary condition is expressed in terms of the monoliths
modal coordinates. This requires that the reservoir’s equations of motion be solved
separately for each term represented in this boundary condition.

When the ground motion is assumed to excite the far end boundary, the
interaction between the reservoir and the foundation at the far end of the reservoir
is governed by equation (3.1). The acceleration of this far end boundary is
considered only when the dam monolith is vibrating in its rigid body mode. This is

because the far end boundary isassumed to vibrate only in this mode, The first term
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of equation (3.1} should be taken to be zero when the monolith is assumed to be
vibrating in its flexible modes of vibration. The reason for this is because the motion
of the dam monolith and the far end boundary of the reservoir when they are
vibrating in their rigid body modes are absolute motions. The motion of the dam
monolith in its modes of vibration, however, is a relative motion. These two types
of motion can not be considered at the same time in a frequency domain analysis.

The calculated pressures are then converted into additional hydrodynamic
forces, R, (w). This is accomplished by using the principle of virtual work. The
procedure for this conversion is as outlined By Hall and Chopra (1980). The
calculation of the additional hydrodynamic forces must be carried out for each of the
monolith’s modes of vibration, as well as its rigid body mode. These additional
hydrodynamic forces are then introduced into the dam monolith’s equation of motion
(cquation (2.8)). The equations of motion are solved to yield the modal response of
the system for a specific frequency interval. This entire procedure must then be
repeated  for every frequency interval considered in the analysis. The calculated
modal responses are then stored for later use in the stress analysis. To determine
the Fourier representation of the system's response, the modal accelerations are
combined using equation (2.27). A straight sum combination rule allows for direct
comparison of the results to those reported by Hall and Chopra (1980) and Fenves

and Chopra (1984b).
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The dam-reservoir-foundation system may now be analyzed to determine the
stresses and displacements that occur due to actual earthquake ground motion
records. To perform this analysis, the modal responses calculated using the above

procedure were introduced into the appropriate routines of EAGD-84,

3.3 VERIFICATION OF ANALYSIS TECHNIQUE

An attempt was made to verify the analytical technique used in this study, A
discussion on the effect of the finite element mesh used to model the reservoir
substructure is first presented. The results of the analytical lechnique are then
compared to the results from the existing solution for the special case of the infinite
reservoir length assumption (Hall and Chopra, 1980; Fenves and Chopra, 1984b).
A comparison between the closed form technique presented in the previous chapler
and the detailed analytical technique is discussed. Finally, a discussion on the cffect
of the dam monolith’s cross sectional geometry on the responsc in the case of a finite
reservoir is presented. Two geometries are examined: an idealized triangular cross

section and the practical Pine Flat Dam type cross scction.

3.3.1 Effect of Reservoir Mesh
The degree of fineness of the finite element mesh will have a direct impact
on the accuracy of the analytical procedure and on the computer time needed for the

analysis. The size of the finite elements must be small enough that sufficient
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accuracy is obtained in the numerical results. Concurrently, the number of elements
must be limited such that the computational time required to perform the analysis
is minimized. To delermine the optimum size of the finite clement mesh, a 91.44m
(300 ft.) tall gravity dam having a triangular cross section and impounding a reservoir
having an L/H ratio of 5.0 is analyzed. The reservoir-foundation interface is
assumed to have a wave reflection coefficient of 0.9. The dam’s elastic modulus is
13 790 MPa (2 X 10° psi).

Three finite clement meshes were selected as shown i figure 3.4. The effect
of having four, cight, and twelve elements along the height of the dam face was
cxamined. This necessitated having 20, 40, and 60 elements, respectively, along the
reservoir’s bottom to keep the elements equally proportioned. The six node
isoparametric clement that is used in the reservoir substructure performs its best

when the two legs of the triangle are equal in length.

(a) Hydrodynamic Pressures and Modal Forces
The pressure distribution that is created along the dam face is dependent
upon the number of elements used to define the reservoir substructure, Table 3.1
presents the rcal component of the pressures acting along the dam face created by
the vibration of the monolith in its fundamental mode for the three finite element
meshes considered. The frequency of excitation is 3 Hz and the pressures are

normalized to the value of the hydrostatic pressure at the bottom of the reservoir.
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The pressures generated at this frequency of excitation do not change significantiy
with the use of an increasing number of elements,

The magnitudes of the calculated modal forces are however dependent upon
the number of elements used in the finite element mesh, Table 3.2 presents the real
component of the modal forces acting on the dam facc when the monolith is
vibrating in its fundamental mode. The frequency of excitation is again taken as 3
Hz. The modal forces are calculated by integrating the pressure distribution over the
height of the dam and multiplying by the transpose of the mode shape. The modal
forces are normalized to the value of the hydrostatic force acting on the dam flace.
As evident from this table, the magnitudes of the modal forces change with an
increasing number of finite elements used. An increased number of clements are
required to determine the shape of the pressure distribution more accurately.

A finer finite element mesh is required to calculate the response of the
reservoir substructure at higher frequencies of excitation or when excited by wigher
modes of vibration of the monolith. The pressure distribution is again not
significantly affected by the finite element mesh. However, the effect of the fineness
of the finite element mesh on the forces is quite significant. Table 3.3 presents the
modal forces created by the vibration of the monolith in its fundamental mode at a
frequency of excitation 10 Hz. An increased number of nodal points are required to
define the pressure distribution and the loaded area more accurately. This will allow

the modal forces to be calculated more accurately.
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(b) Response of Monolith

The response of the monolith, which is of interest in dam design, is affected
by the size of the finite element mesh used in several ways. The mesh size of the
reservoir substructure determines the accuracy of the modal hydrodynamic forces that
affect the monolith. This was discussed in the previous section. The finite element
discretization of the reservoir also influences the monolith’s response.  This
discretization is done in such a manner that the nodal points along the dam face
align with those of the reservoir substructure. As the number of nodal points along
the dam face increases for the reservoir substructure, the number for the monolith
substructure will therefore also increase. The response of a monolith impounding
a reservoir having an L/H ratio of 5 and a wave reflection coefficient of 0.9 are
plotted in figure 3.5 for various finite element meshes. Meshes of four, eight, and
twelve elements were used for the reservoir along the dam face. The response of the
monolith increases with an increased number of elements used in the analysis. Table
3.4 prescats the peak response at the fundamental frequency for the case of a finite
reservoir and an infinite reservoir (Fenves and Chopra, 1984b) when all three
reservoir meshes are considered. As evident from this table, the peak for the infinite
length case also increases with an increasing number of elements used in the
reservoir substructure (monolith mesh size is made compatible to that of the
reservoir mesh size). The magnitude of the fundamental response is therefore

dependent on the discretization of the reservoir. This is expected as the modal
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forces created by the reservoir substructure were shown in the previous section to be
dependent on the mesh size. It should be noted that there is no significant difference
in the prediction of the magnilude of the fundamental response for the same
monolith discretization when both a finite and infinite reservoir length is assumed.

The response of the monolith at higher frequencies of ecxcitation is
underestimated using a coarse finite element mesh. This can also be scen in figure
3.5. A finer finite element mesh is required lo capture both the magnitude of the
pressures and the shape of the pressure distribution at thesc higher cxcitation
frequencies. This is especially true when the monolith is vibrating in its higher
modes of vibration. The finite element mesh having eight elements along the dam
face underestimates the response at a frequency of 8.3 Hz by 11.7%. The four
element mesh underestimates the response by 28.8%. The response of the monolith
when a finite length reservoir is assumed is therefore dependent on the mesh size

used to model the reservoir substructure.

{¢) Computational Time Required
The fineness of the finite element mesh will also have a significant impact on
the time required to perform the complete analysis. The solution time increases as
the number of elements used in the analysis is increased. Table 3.5 presents the
times required to solve for the response of a monolith impounding a reservoir having

an L/H ratio of 5 and a wave reflection coefficient of 0.9. The solution time is
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determined using a 386-40 MHz microcomputer with a mathematical coprocesser.
The solution lime drastically increases as the number of elements used increases.
Pressures must be calculated at an increasing number of nodal points as the mesh
size increases. This increases the computational effort required to carry out the
analysis. The desired accuracy of the solution technique must therefore be balanced
with the time required to perform the analysis. A reasonable level of accuracy must
be obtained as well as a reasonable length of time required to perform the analysis.

In this study, the reservoir mesh having eight elements along the dam height
and 40 clements along the reservoir length was used. The accuracy of this reservoir
mesh was considered to be adequate. The magnitudes of the hydrodynamic pressures
and forces are determined quite accurately. The response of the finite reservoir
system at its fundamental frequency is predicted to be the same as for the infinite
reservoir system having a compatible finite element mesh for the monolith. This is
presented in Table 3.4. The underestimation of this response peak relative to the
finer reservoir mesh (12 X 60 elements) was approximately 12.5%. As this study is
more concerned with comparing the finite and infinite reservoir length assumptions,
the underestimation of the fundamental response peak is acceptable. The required

solution time of 32 hours was also deemed to be reasonable.
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3.3.2 Comparison with Infinite Reservoir Assumption

The results of the analytical procedure was compared with the existing
solutions for the infinite length reservoir case to verify the accuracy of the solution,
The resulis from the finite element procedure assuming an increasing L/H ratio
should approach that of when the reservoir is considered infinite in length. Three
values for the ratio of the reservoir length to dam height (L/H) were used: 5.0,10.0,
and 20.0. The analysis was conducted using the finite element procedure outlined
in the previous section. The results were compared against those obtained using (he
computer program EAGD-84 (Fenves and Chopra, 1984a) where the reservoir was
assumed infinite in length. These analyzes were performed using a 91.44 m (300 1)
tall dam monolith. This monolith was assumed to have a triangular cross section
with a downstream slope of 0.8:1.0. The dam's elastic modulus was taken as 13 790
MPa (2 X 10° psi). The first six modes of vibration were considered in this analysis.
Only the horizontal component of the ground motion was taken as the input motion.
The reservoir’s wave reflection coefficient was assumed to be 0.975.

Figures 3.6 (a), (b), and (c) present the responsc of a dam monolith
impounding reservoirs having L/H ratios of 5, 10, and 20 (thin solid lines),
respectively. The response of the monolith when the reservoir is assumed to be
infinite in length is presented as the heavy solid line in these figures. The response
of the finite length reservoir system can be seen to approach that of the infinite

length reservoir system as the L/H ratio increases. As this ratio increases, the
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number of the supplementary response peaks increase. At the same time, the
magnitudes of these peaks decrease with increasing L/H ratio, For very large L/H
ratios, the two solutions give identical results. It can be concluded that the analytical
procedure used to investigate the effects of a finite length reservoir on the response
of the monolith does reproduce the results of the infinite length reservoir case in the

limit.

3.3.3 Comparison between Closed Form Solution and Finite Element Procedure

In order to verify the accuracy of the closed form solution, a comparison is
made between the response obtained using this solution with the response obtained
using the finite element procedure. The response of the monolith obtained by using
both approaches are plotted in figure 3.7. The monolith was assumed to have a
triangular cross section. The first two modes of vibration of the monolith only were
considered in the analysis. The reservoir length was assumed to be five times the
height of the monolith. The modulus of elasticity of the monolith’s concrete was
assumed to be 27 580 MPa. The wave reflection coefficient was taken as 0.975. The
foundation underneath the monolith was assumed to be completely rigid.

The response of the monolith that is predicted by the finite element procedure
was found to be similar to that predicted by the closed form solution technique. The
closed form solution overestimates the magnitudes of the monolith's response. The

magnitude of the fundamental response peak is predicted by the closed form solution
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to be 31.4 whereas the finite element procedure predicts it to be 23.9. The closed
form solution correctly predicts the frequencies at which the supplementary response
peaks occur. The magnitudes of the supplementary response peaks arc also
overestimated but not as significantly. The supplementary response peak occurring
at a frequency of 4,54 Hz for the reservoir having an L/H ratio of 5.0 is predicted
by the closed form solution to be 11.66 whereas the detailed analysis predicts the
magnitude to be 11.13.

This difference in the magnitude of the fundamental response peak between
the closed forni solution and the finite element procedure was previously reported
by Fenves and Chopra (1984b). These authors performed a closed form solution of
the dam-reservoir problem for an infinite length reservoir with a completely reflective
reservoir bottom. The monolith was idealized as triangular in shape. One mode of
vibration was considered and the elastic modulus of the concrete was taken as 28 959
MPa (4.2 X 10° psi). The magnitude of the fundamental responsc peak was
determined to be 40.4 using this technique. They also conducted a finite clement
analysis using the program EAGD-84. The same monolith cross scction was used
and the reservoir was assumed to be infinite in length. Onc mode of vibration was
included in the analysis and the reservoir botlom was again assumed lo be complctely
reflective. The monolith’s elastic modulus was taken as 27 580 MPa (4 X 10° psi).
Fenves and Chopra (1984b) determined the magnitude of the fundamental response

peak to be approximately 28.2 using the finite element procedure. The slight



94

difference in the modulus of elasticity does not significantly affect the difference in
the two responses.

The same overestimation of the fundamental response peak’s magnitude
between that predicted by the closed form solution and that predicted by the finite
clement procedure occurs for this study as reported by Fenves and Chopra (1984b).
Excellent agreement was noted in this study between the frequencies at which the
fundamental and supplementary response peaks occur when the two techniques were
used. The finite element procedure developed in Chapter 3 therefore predicts the
behaviour of the system to be similar to that predicted by the closed form solution
technique that was presented in Chapter 2. The closed form solution therefore

satisfactorily predicts the behaviour of the dam-finite reservoir system.

3.3.4 Monolith Cross Sectional Geometry

Two cross sectional geometries were examined. The first cross section
examined was triangular in shape and usually termed the structural section. The
second cross sectional shape used was one similar to that of the Pine Flat Dam
located in California, and will be referred to as the practical cross section.
Schematics of the two cross sectional geometries are presented in figure 3.8, The
triangular cross section obviously neglects the effects of the mass located at the top
of the dam monolith. This top structure is used to allow for a road to be located on

the dam'’s crest or to support services for the dam itself.
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The cross sectional geometry significantly affected the frequencies of vibration
of the monolith when the reservoir was considered to be empty. The increased mass
of the practical cross section resulted in the lowering of the monolith’s frequencics
of vibration (Chopra, 1987). The frequencies of the first four horizontal modes are
presented in Table 3.6 for both cross sections when a finite length upstream reservoir
is considered. The other two modes (modes 3 and 6) are primarily vertical modes.

The decreased frequencies of vibration of the monolith in turn caused the
response of the overall dam-reservoir-foundation system to be altered. The cross
sectional geometry had the primary effect of lowering the frequencies at which all the
response peaks occurred.

The solution for the case of a finite reservoir was conducted for the two
monolith cross sections. The reservoir being impounded was assumed (o have an
L/H ratio of 5.0and the reservoir was assumed to have a wave reflection coefficient
of 0.975. The height of the dam was taken to be 91.44 MPa (300 ft) and its clastic
modulus was taken to be 13 790 MPa (2 X 10° psi). Figure 3.9 represents the
responses of the overall system when the monolith is assumed to have a triangular
cross section (heavy solid line) and a practical cross section (thin solid line). The
resonance of the monolith interacts with the resonance of the reservoir at different
frequencies for both of the cross section considered. This is a result of the decreased

frequencies of vibration of the practical cross section relative to that of the triangular
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cross scction. The fourier representation of the system’s response therefore is
significantly different for the two cross sectional geometries.

The effect of the change in the monoliths cross section becomes significant
when a finite length reservoir is assumed. All major response peaks that are present
in the fourier representation of the response are shifted to lower frequencies when
the practical cross section is analyzed. For example, the supplementary response
peak marked by the single headed arrow in figure 3.9 has a greater frequency shift
than the fundamental response peak. Depending on the frequency content of the
actual ground motion, significant changes in the monolith response may occur due
lo cross section variation.

The monolith’s cross sectional geometry has an important influence on the
system’s response. This is especially true when the reservoir length is assumed to be
finite. In order to realistically estimate the monolith’s response when impounding
a finite length reservoir, the monolith’s geometry must therefore be modelled as
closely as possible. It was decided that the monolith considered in this study should
have a practical cross sectional geometry. This will ensure that a more realistic

response of the monolith will be obtained in the analysis.



Table 3.1 - Pressures due to fundamental mode at w = 3 Hz
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Y/H Normalized pressures at dam face
4 Elements 8 Elements 12 Elements

0 0.0534 0.0537 0.0537
0.125 0.0545 0.0546 0.0546
0.250 0.0562 0.0564 0.0564
0.375 0.0584 0.0585 0.0585
0.500 0.0598 0.0600 0.0600
0.625 0.0595 0.0596 0.0596
0.750 0.0552 0.0550 0.0551
0.875 0.0386 0.0420 0.0418
1.000 0.0000 0.0000 0.0000

Table 3.2 - Modal forces due to fundamental mode, w = 3 Hz

Mode Normalized modal forces
4 Elements 8 Elements 12 Elements

i 2.983 3.102 3.126
2 -0.978 -0.820 -0.782
3 -0.438 -0.543 -0.566
4 -0.530 -0.681 -0.727
5 0.271 0.156 0.116
6 -0.143 -0.214 -0.221
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Table 3.3 - Modal forces due to fundamental mode, w = 10 Hz

MODE Normalized Modal Force

4 Elements 8 Elements 12 Elements

I 27.307 28.793 29.086
2 1.339 3.050 3.470
3 -7.381 -8.164 -8.339
4 2.356 0.697 0.216
5 2.741 -0.179 -0.922
6 -4.851 -5.587 -5.567

Table 3.4 - Peak monolith response at 3 Hz for various mesh sizes

Reservoir case 4 Elements 8 Elements 12 Elements
Finite 19.66 21.93 25.05
Infinite 20.71 22.01 24.78

Table 3.5 - Time required for analysis of complete system

Number of Elements Time Required (hours)
4 x20 8
8 x 40 32

12 x 60 72
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Table 3.6- Frequencies of monolith (Hz) with varying geometry (after Chopra, 1987)

Mode Structural section Pine Flat section % decrease
1 21,962 19,997 8.95
2 50.001 41,915 16.17
4 85.229 72.837 14.54
5 123,434 108,341 12.15
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Figure 3.1 - Schematic of monolith impounding
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Figure 3.3 - Configuration of neighbouring soil columns
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Figure 3.4 - Finite element meshes considered in the reservoir substructure
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TRIANGULAR PRACTICAL

Figure 3.8 - Dam monolith geometries
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CHAPTER 4

DAM MONOLITH RESPONSE

4.1 INTRODUCTION

In this chapter, the response and behaviour of a dam monolith impounding
a finite length reservoir is investigated. The ground motion is assumed to be applied
at both the monolith and the far end boundary of the reservoir. Two cases of ground
motion excitation are examined. The first case is a special case where the far end
boundary is assumed to be unaffected by the ground motion. The second case is the
general case when this far boundary is excited by either in-phasc or oul-of-phase
ground motion, This analysis was performed using the finite clement procedure that
was outlined in Chapter 3. The effect of the finite reservoir length, the wave
reflection properties of the reservoir bottom, and the geometry of the upstream

reservoir on the monolith’s response are evaluated.

4.2 DAM-RESERVOIR SYSTEM

A concrete gravity dam with a practical cross sectional geometry was selected
for the dynamic analysis. The monolith was taken to be 91.44 m (300 ft) high and

71.85 m (235.75 ft) wide at the base. The upstream reservoir was assumed to be
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completely full so that the height of the reservoir is equal to the height of the dam
monolith., The downstream flow channel was assumed to be completely empty. This
represents the case of maximum horizontal force on the dam monolith which governs
the carthquake design. A schematic of the selected dam-reservoir system when the
reservoir is idealized to have both a rectangular and a triangular geometry is
presented in figure 4.1,

A range of values was assigned to the various important reservoir parameters
in order to evaluate their effect on the response of the monolith. These parameters
arc: the ratio of the reservoir's length to the dam’s height (L/H), the reservoir-
foundation interaction and the upstream reservoir's geometry., The L/H ratio was
considercd to have three values: 1.0, 2.5, and 5.0. The reservoir-foundation
intcraction was modelled using the one and two dimensional boundary conditions
that were described in the previous chapter. The wave reflection coefficient’s value
(denoted as o) was taken as 0.975,0.7,and 0.5 for both models of this boundary
condition. The response of the monolith was also examined for cases when the
bottom of the upstream reservoir was considered horizontal or inclined in the form
of a rectangular and triangular reservoir geometry, respectively (figure 4.1). The
reservoir-foundation interface was modelled using the one dimensional boundary
condition developed by Hall and Chopra (1980) unless otherwise stated. Table 4.1
presents a summary of all the combinations of the above mentioned parameters that

were considered in this study. In all cases, the system was subjected to three cases
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of ground motion excitation: the monolith only excited, the far end boundary excited
in-phase with the monolith, and the far end boundary excited out-of-phase with the
monolith.

The concrete used in the monolith was assumed to have a unit weight of 24.3
kN/m?® (155.01b/ft*) and a Poisson’s ratio of 0.2. The monolith’s elastic modulus was
taken to be 20 685 MPa (3 x 10° psi). All the monolith’s modes of vibration were
assumed to have a damping ratio of 5% of critical. The monolith’s foundation was
assumed rigid. The ground motion considered in this frequency domain analysis was
assumed to be a unit harmonic. The frequency of this unit harmonic was varied from
0 to 25 Hz.

In the dam-reservoir-foundation problem, the monolith’s response is coupled
to the hydrodynamic forces that are created in the reservoir. The response of the
system and the applied loads are not truly independent of one another. For this
reason, it is not possible to present the results as true frequency response functions.
The response of the monolith is therefore presented in the form of a Fourier
representation.  This permits the effects of the forces created by the monolith's
inertia as well as the forces created by the response of the reservoir to be included
in the monolith’s response. In this chapter, the acceleration of the top upstream
corner at the crest of the monolith was taken as a representative quantity for
comparison. These accelerations are non-dimensionalized with respect to the input

ground motion.
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4.3 GROUND MOTION AT DAM MONOLITH AND FAR BOUNDARY

In Chapter 2, the ground motion was assumed applied only at the dam
monolith. A more realistic situation, however, is that the ground motion will affect
both the dam monolith and the far end boundary of the reservoir. In this section,
the ground motion is applied at the far end boundary and is considered to have
cither a O (in-phase) or 180 (out-of-phase) degree phase difference to that applied
at the monolith. The analysis of the monolith’s response with various L/H ratios was
performed using the finite element procedure developed in Chapter 3.

The two models for the reservoir-foundation interface are evaluated. For the
one dimensional boundary condition, the effect of the wave reflection coefficient is
discussed when the general excitation case is assumed. The proposed two
dimensional boundary condition is studied. The response of the monolith using this
boundary condition is compared to the response of the monolith using the one
dimensional boundary condition. Lastly, the response of the system is investigated
when the reservoir’s geometry is varied. The reservoir’s geometry is assumed to be

cither rectangular or triangular in cross section.

4.3.1 Reservoir Length to Dam Height (L/H) Ratio
The effect of the ratio of the reservoir’s length to dam height (L/H) on the
response of the dam monolith is investigated. The special case of the monolith alone

being excited by the ground motion is first discussed. The general case of the far
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boundary being excited by ground motion that is either in-phase vr out-of-phase with

that at the monolith is then examined.

(a) Special Case - Dam Monolith Excited Alone

The responses of a dam monclith that impounds a reservoir with a length of
five times the monolith’s height and a length that is infinite are compared in figure
4.2. The response of the monolith assuming a finite length is presented as the solid
line, The wave reflection coefficicnt was taken as 0.975. The response of (he
monolith assuming a finite length reservoir is increased significantly in the frequency
range of 4 to 8 Hz from that when the reservoir is assumed infinite in length, For
example, the non-dimensional acceleration of the top upstream corner of the
monolith at an excitation frequency of 6.01 Hz is increased from 6.59 10 22.08 when
the reservoir length is shortened to five times the monolith’s height from an infinite
length. This is an increase of 235%. The other three major supplementary response
peaks are also increased as significantly.

The presence of the far end boundary causes the creation of additional
response peaks in the dam’s overall response. These additional response peaks,
termed supplementary response peaks, occur at frequencies greater than that of the
fundamental frequency of the dam-reservoir-foundation system. The cxistence of
these peaks is primarily due to the finite geometry of the reservoir. The presence

of the far end boundary causes the pressures in the reservoir to resonate both in the
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vertical and horizontal directions. This coupled vertical and horizontal resonance of
the reservoir creates additional hydrodynamic forces on the face of the dam. These
additional hydrodynamic forces in turn, cause the monolith to respond at frequencies
of excitation which correspond to the resonance of the reservoir. These additional
resonances therefore result in the creation of the supplementary response peaks in
the Fourier representation of the monolith’s response.

These supplementary response peaks occur at frequencies which correspond
to the frequency content of actual earthquake ground motion events that are
characterized as having a high ralio of the maximum ground acceleration to
maximum ground velocity (a/v). If the earthquake ground motion has significant
energy at these particular frequencies, the response of the monolith will be
underestimated by the analysis assuming an infinite length reservoir.

The overall dynamic response of a dam impounding a reservoir having an L/H
ratio of 1.01is plotied in figure 4.3. The response of a dam having an infinite length
reservoir is again presented as a dashed line and that having a finite length reservoir
is presented as a solid line. The wave reflection coefficient was taken as 0.975. In
this example, the response of the monolith at a frequency of 6.69 Hz is increased by
192%. The magnitude of this response increases from 8.21to 23.96 when the L/H
ratio is shorten to a value of one from an infinite value. This will again result in an
increase in the monolith’s response if the actual earthquake ground motion has

significant energy at this particular frequency.
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The supplementary response peaks are primarily generated due to the
resonance of the reservoir substructure. At these particular resonant frequencics, the
monolith will still show some level of response, although not large. An cxample of
this type of supplementary response peak is labelled 'A’in figure 4.4, Figure 4.4
presents the response of a dam monolith impounding a reservoir having an L/H ratio
of 5.0 when it is decomposed into the contributions of its individual moacs. The
wave reflection coefficient was again taken as 0.975. This peak has significant
contributions from both the first and second modes of vibration of the monolith.

Supplementary response peaks are also generated through the combined
resonance of the monolith and reservoir substructures. This type of supplementary
response peak is labelled 'B’in this figure. Note that the actions of the sccond mode
are the most significant in the generation of this peak. The monolith’s motion is
increased due to its own resonant behaviour. This increased motion of the monolith
causes pressures to be created in the reservoir. The resonant frequency of the
monolith however coincides with one of the resonant frequencies of the reservoir.
The motion of the reservoir is therefore enhanced. This increased motion amplifies
the pressures that are created. This in turn affects the motion of the monolith. These
combined resonance response peaks lypically have larger magnitudes than those

generated sol .y by the resonance of the reservoir.
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(b) General Case - Dam Monolith and Far Boundary Excited

The relative phase of the ground motion that affects the far end boundary of
the reservoir influences the magnitude of the supplementary response peaks. The
response of a dam monolith impounding a reservoir having an L/H ratio of 5.0 when
subjected to in-phase ground motion (phase difference of O degrees), is presented in
figure 4.5. The wave reflection coefficient is taken as 0.975. The ground motion at
the far end boundary either increases or decreases the magnitudes of the
supplementary response peaks depending on the frequency of excitation, This can
be seen in comparing figures 4.2 and 4.5. Figure 4.2 is the response of the same
system when the ground motion only affects the monolith. The supplementary
response peak that occurs at a frequency of 4.30 Hz is increased considerably in
magnitude. This peak’s magnitude increases from 14.77 (monolith excited only) to
35.66 (far boundary and monolith excited in-phase). This is an increase of 141.4%.
The supplementary response peak at a frequency of 6.01 Hz is increased to a value
of 38.44 for the in-phase case from a value of 22.08 for the monolith only case. This
is an increase of 74.1%.

Supplementary response peaks that occur at frequencies of 4.89 Hz and 6.89
Hz are decreased by 86.5% and 52.9%, respectively. The peak at 4.89 Hz decreases
from a value of 19.01to 2.56 for the monolith only case. The magnitude of the peak
at 6.89 Hz decreases from a value of 19.66 to a value of 9.25 when the ground

motion is applied to the far end boundary.
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The motion of the two boundaries, when subjected to in-phase ground motion,
is such that it accentuates the unsymmetric eigen modes of the reservoir. Symmetry
of the reservoir’s eigen modes is measured about the mid-point of the reservoir’s
length in the horizontal direction. Symmetry in the vertical direction docs not exist.
As the monolith is moving away from the reservoir, the far end boundary is moving
towards the reservoir. This causes a reduction in the hydrodynamic pressures at the
monolith and an increase at the far end boundary. These unsymmetric cigen modes
occur at excitation frequencies of 4.30 Hz and 6.01 Hz in the above mentioned
example. Resonance of these reservoir modes therefore occurs and the resulting
pressures will have significant magnitude.

Response peaks that are associaled with symmetric cigen modes of the
reservoir are decreased in magnitude for this case of ground motion excitation. The
symmetric eigen modes occur at excitation frequencies of 4.89 Hz and 6.89 Hz in this
example. These particular modes do not satisfy the boundary conditions at the ends
of the reservoir. They are not excited by the ground motion and therefore their
magnitudes are decreased relative to the case where only the monolith is excited.

When the ground motion is considered to be out-of-phase, the exact opposite
occurs. Response peaks that were accentuated in the in-phase case arc now
diminished and visa versa. This can be seen by comparing figures 4.5 and 4.6.
Figure 4.6 represents the response of a monolith impounding a rescrvoir having an

L/H ratio of 5.0 when the ground motion at the far end boundary is cut-of-phase
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with the ground motion at the monolith. The wave reflection coefficient is taken as
0.975. The supplementary response peaks that occur at excitation frequencies of 4.30
Hz and 6.01 Hz have their magnitudes reduced by 45.8% and 73.1%, respectively.
The response peak that occurs at a frequency of 4.30 Hz decreases from a non-
dimensional acceleration of 14.77 when the monolith is excited alone to 8.02 when
the far boundary is excited out-of-phase. The response peak at a frequency of 6.01
Hz is similarly decreased from an acceleration of 22.08 to an acceleration of 5.93.

The response peaks that occur at frequencies of 4.89 Hz and 6.89 Hz have
their magnitudes increased. The supplementary response peak that occurs at a
frequency of 4.89 Hz increases from a magnitude of 19.01 to a magnitude of 36.44
when the far boundary is exciled out-of-phase. This is an increase of 91.5% over the
case where the monolith is excited alone. The other response peak increases from
a value of 19.66to a value of 30.07; an increase of 53.0%. These same two peaks
increase 1323.4% and 225.1%, respectively, when the out-of-phase response is
compared to the in-phase response.

The supplementary response peaks that are associated with the unsymmetrical
eigen modes of the reservoir are decreased in magnitude when the ground motion
at the far end boundary is considered to be out-of-phase. Peaks that are associated
with the symmetrical reservoir eigen modes have their magnitudes increased. As the
monolith is moving in towards the reservoir, so does the far end boundary. The

hydrodynamic pressures at the two ends of the reservoir will increase. This will tend
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to excite the symmetric reservoir eigen modes rather than the unsymmetric ones.
Significant differences in the magnitudes of these supplementary response peaks are
observed depending on the phase of the ground motion at the far end boundary of
the reservoir. The response of the system is therefore significantly dependent on the
phase of the ground molion that offects this far end boundary. An inaccuratc
estimate of the monolith’s response will be obtained if the ground motion at the far
end boundary in a finite reservoir is neglected in the dynamic analysis.

The response of the system when actual ground motion records are used in
the analysis depends on the relative phase difference between the ground motion at
the monolith and that at the far end boundary of the reservoir. The peaks that are
the most significantly affected occur in the frequency range of 4 to 8 Hz. Earthquake
ground motion events that are classified as having a high a/v ratio also have
significant energy in this frequency range. The dam-reservoir-foundation system will
therefore have dramatically different responses depending on the cnergy content of
the ground motion to which it is subjected.

The response of a dam impounding a reservoir having an L/H ratio of 1.01s
presented in figure 4.7. The ground motion at the far end boundary was considered
to be in-phase with the ground motion at the dam monolith. The wave reflection
coefficient was taken as 0.975. For this ground motion case, the magnitude of the
fundamental peak decreases significantly. When the reservoir is considered long

(L/H = 5.0), this peak has a magnitude of 28.84. It is reduced to a value of 21.33
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when the reservoir is shortened to an L/H ratio of 1.0. This can be seen in
comparing figures 4.5 and 4.7. The pressures in the reservoir caused by the rigid
body mode of the monolith decrease as the reservoir becomes increasingly shorter
in length, when subjected to in-phase ground motion. It was shown by Werner and
Sundquist (1949) that the pressures inside a tank having rigid vertical wcils affected
by in-phase ground motion will decrease as the length of the tank decreases. That
appears to be similar to what occurs in the case of a short reservoir, As the length
of the reservoir decreases, the pressures acting on the dam face decrease in
magnitude. The additional hydrodynamic forces created by the reservoir are
therefore also decreased in magnitude. This results in the reduction of the
magnitude of the system’s fundamental response peak.

For the case when the ground motion affecting the dam monolith and the far
end boundary is considered to be out-of-phase, the magnitude of the fundamental
response peak is increased as the L/H ratio decreases. The magnitude of this
response peak is increased from a value of 28.84 to a value of 37.76 when the
reservoir's L/H ratio is decreased from 5.0to 1.0. This can be seen by comparing
figures 4.6 and 4.8. Figure 4.8 presents the response of a monolith impounding a
reservoir having an L/H ratio of 1.0. The ground motion at the far boundary was
considercd to be out-of-phase with that at the monolith., The wave reflection

coefficient v-as taken as 0.975. This occurs because the pressures created by the rigid
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body mode are increased as the reservoir's length decreases as demonstrated by
Werner and Sundquist (1949).

This change in the magnitude of the fundamental response peak will alter the
response of the system when it is subjected to both intermediate and high a/v ratio
earthquake ground motion events when the reservoir is assumed to be short in
length. This response peak occurs at a frequency of 2.63 Hz, These wo lypes of
earthquake ground motion both have significant energy at this frequency. The
response of the system can be substantially increased or decreased, as compared to
the long reservoir case, depending con the reiative phase of the ground motion at the
far end of the reservoir. The length of the reservoir therefore has an important
impact on the overall response of the system when the ground motion is assumed to

affect the far end boundary as well as the monolith,

4.3.2 Reservoir-Foundation Interaction

In this section, the response of the dam monolith is investigated when the
system is analyzed using the one and two dimensional boundary conditions for the
reservoir-foundation interface. These boundary conditions were discussed in section
3.2.4. The first sub-section is concerned with the effect of the wave reflection

coefficient {(denoted as &) on the response of the finite reservoir system when the far

end boundary is excitcd. The interface is modelled using the one dimensional

boundary condition of Hall and Chopra (1980). This boundary condition excludes
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the cffects of soil column interaction, or shear effects. The second sub-section deals
with the effect of including the soil column interaction in the boundary condition for
the rescrvoir-foundation interface.  The proposed two dimensional boundary
condition that incorporates the effects of soil column interaction is used in this
analysis. The response delermined using this proposed boundary condition is
compared to that detcrmined using the one dimensional boundary condition

developed by Hall and Chopra (1980).

(a) One Dimensional Boundary Condition

The response of a dam monolith impounding a reservoir having an L/H ratio
of 5.01is presented in figure 4.9, The ground motion at the far end boundary is in-
phase with that at the dam monolith. The thin solid line in the figure presents the
response when the wave reflection coefficient is 0.975and the heavy solid line is the
response when the coefficient is0.7. The supplementary response peaks at excitation
frequencies of 4.30 Hz and 6.01 Hz are significantly decreased in magnitude by the
decrcased value of the wave reflection coefficient as shown in this figure. The
response peak at a frequency of 4.30 Hz is reduced in magnitude from a value of
35.66to 7.20 when the wave reflection coefficient is decreased from 0.975 to 0.700.
This is a decrease of 79.8% relative to the case of more reflective reservoir bottom

(e =0.975). The response peak at a frequency of 6.01 Hz is decreased by 74.8%,
changing in magnitude from 38.44 to 9.68.
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The fundamental response peak experiences a small decrease in magnitude
from 28.84 to 24.39, or of 15.4%. This reduction is the same as predicted when the
analysis assumes an infinite length reservoir (Hall and Chopra, 1980; Fenves and
Chopra, 1984b).

The response of the dam-reservoir-foundation system impounding a reservoir
having an L/H ratio of 5.0 no longer exhibits finite reservoir length cflects when the
wave reflection coefficient has a value of 0.5. Reservoirs having smaller L/H ratios

( < 2.5) are more susceptible to finite reservoir effects. All values of the wave

reflection coefficient should be considered for these reservoirs when the general case
of ground motion excitation is used.

The value of the wave reflection cocfficient has a significant impact on the
dam-reservoir-foundation system when a finite reservoir length is assumed. It has a
particularly dramatic effect on the magnitudes of the supplementary response peaks.
These response peaks have their magnitudes significantly reduced when the value of
this coefficient is changed only slightly. The reservoir-foundation interface dissipates
energy directly form the reservoir substructure. Response peaks that are generated
primarily by the resonance of the reservoir are therefore significantly reduced. Peaks
that are generated through the combined resonance of the monolith and the reservoir
have their magnitudes decreased by a lesser amount. The reservoir-foundation

interface does not dissipate energy directly from the monolith substructure. The
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choice of a coefficient value therefore is very important in the analysis of the overall

dam-reservoir-foundation system when a finite length reservoir is assumed.

(b) Proposed Two Dimensional Boundary Condition
The behaviour of a monolith impounding a reservoir having an L/H ratio of
1.0and a wave reflection coefficient of 0.975 is plotted in figure 4.10. The length

parameter, L', in equation (3.8) is taken as 150 m (500 ft). The ground motion at

the far end boundary was considered to be in-phase with that at the dam monolith.
The proposed two dimensional boundary condition which takes into account the
interaction between soil columns was used in this analysis. The proposed boundary
condition has the effect of reducing the magnitude of the fundamental response peak.
This response peak is reduced 7.7% from a value of 21.33 to a value of 19.69 when
the boundary condition is switched from being one dimensional to two dimensional.

This is true of the supplementary response peaks as well. The response peaks
that occur at frequencies of 4.15,6.69,and 9.28 Hz are decreased by 41.5%,7.9%,
and 40.1%, respectively, relative to the case where the one dimensional boundary
condition is used. The proposed boundary condition permits more energy to be
drawn out of the reservoir substructure than the boundary condition developed by
Hall and Chopra (1980) when the same value of the wave reflection coefficient is

assumed.
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The two response peaks that occur at frequencies of 4.15 and 9.28 Hz arc
generated primarily through the resonance of the reservoir. This boundary condition
dissipates energy primarily from the reservoir substructure. Very little energy is
dissipated  directly from the monolith, These two peaks are therefore affected
significantly by the proposed boundary condition.

The supplementary response peak that occurs at a frequency of 6.69 Hz is nol
reduced as significantly. This particular peak is generated from the combined
resonance of the monolith and reservoir substructures. Pecaks that are gencrated
solely by the resonance of the reservoir will be the most significantly affected by this
boundary condition,

The shape of the Fourier representation of the monolith’s response however
remains the same for both the proposed two dimensional and the one dimensional
(Hall and Chopra, 1980) boundary conditions. This is because the two boundary
conditions are similar in form. The interaction that exists between individual soil
columns has the primary effect of increasing the damping provided by the reservoir-
foundation interface. This increased damping in turn reduces the magnitude of the
monolith’s response to the earthquake ground motion. The resonant characteristics
of the reservoir itself are not altered by the proposed boundary condition.

The behaviour of the system when the wave reflection coefficient is reduced
to a value of 0.7 is somewhat similar to the case with a coefficient value of 0.975.

The response of a dam monolith impounding a reservoir having an L/H ratio of 1.0
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and a wave reflection coefficient of 0.7 is presented in figure 4.11. The length

parameler, L', was again taken as 150 m (500 ft). The ground motion at the far end

boundary was assumed in-phase with that at the dam monolith. The proposed
boundary condition reduces the magnitudes of the supplementary response peaks as
compared to the one dimensional boundary condition. The supplementary response
peak occurring at a frequency of 6.69 Hz is decreased by 29.7%. Its magnitude is
reduced from a value of 21.53 to 15.14 when the soil column interaction is
considered.  This reduction of the magnitude again can be explained by the
additional damping provided by the proposed boundary condition,

The proposed two-dimensional boundary condition that has been developed
is cquivalent to the one-dimensional boundary condition (Hall and Chopra, 1980)
with an increased damping value at the reservoir-foundation interface. The amount
of additional damping that is provided is dependent on the frequency of excitation,
the mode shape of the monolith that excites the reservoir substructure, and the
specific location along the reservoir-foundation interface that is considered.

The interaction between the reservoir and its foundation is an important
characteristic of the dam-reservoir-foundation system when a finite length reservoir
isassumed. The manner by which this reservoir-foundation interface is modelled wiil
significantly affect the response of the monolith to earthquake ground motion. The
monolith’s response has been shown to decrease in magnitude when the soil column

interaction, or shear effects, are included in the dynamic analysis. It is important to
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model this interface as properly as possible in order to obtain an accurate estimate

of the response of the monolith.

4.3.3 Reservoir Shape

The response of a monolith impounding a triangular shaped (heavy solid line)
and a rectangular shaped (thin solid line} reservoir are shown in figure 4,12, The
L/H ratio of this configuration is 5.0, the wave reflection coeflicient is taken as
0.975,and the ground motion is considered to be in-phase. The response of this
configuration when subjected to out-of-phase ground motion is presented in figure
4.13. The different reservoir geometrics cause the frequencies of excitation at which
the reservoir responds to be different for the triangular reservoir geometry than for
the rectangular reservoir geometry. The additional hydrodynamic forces, and
therefore the supplementary response peaks, for the triangular reservoir geometry
occur at different excitation frequencies than those of the rectangular reservoir
geometry.

The phase of the ground motion affects the reservoir’s cigen modes in the
case of a triangular reservoir geometry in a similar fashion to the casc of a
rectangular reservoir. In-phase and out-of-phase ground motion that affects the
reservoir’s bottom (or the far end boundary in a reclangular reservoir) excites
different eigen modes of the reservoir. This can be scen in comparing figures 4.12

and 4,12, The response peak at a frequency of 4.69 Hz is increased in magnitude
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from a value of 18.40 for the in-phase case to a value of 47.31 for the out-of-phase
case. This is an increase of 157.1%. The increase is calculated relative to the in-
phase ground molion case. The supplementary response peak occurring at a
frequency of 6.49 Hz is decreased by 54.0%. This peak decreases from a magnitude
of 31.50 for the in-phase case to 14.48 for the out-of-phase case.

The geometry of the upstream reservoir is an important parameter in defining
the monolith’s response. It has been shown to alter the frequencies at which the
supplementary response peaks occur in the Fourier representation of the monolith’s
response.  As a result, the actual earthquake ground motion may cause significant
response of the monolith at different frequencies for different assumed geometries.
The response of the monolith when it impounds a triangular shaped reservoir will be
very much different from that when the reservoir is rectangular in shape. It is
important therefore that the reservoir’s geometry be modelled as accurately as
possible.

The phase of the ground motion is also an important parameter in the
monolith’s response when the reservoir geometry is idealized as triangular as it is
when the reservoir geometry is idealized as rectangular. The phase of the ground
motion has been shown to influence the magnitudes of the supplementary response
peaks. This will in turn affect the monolith’s response to actual earthquake ground

motion. The phase difference between the ground motion affecting the monolith and
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that affecting the reservoir bottom mwust be considered at the same time as the

particular reservoir geometry is considered.

4.4 SUMMARY

The effect of a finite length reservoir has been shown to be very important in
the dynamic analysis of a dam monolith. The finite length reserveir resonales in the
horizontal as well as the vertical directions. This results in the creation of additional
supplementary response peaks at excitation frequencies larger than that of the
fundamental mode of the dam-reservoir-foundation system. The magnitude of these
response peaks are significantly greater than that of the response of a monolith that
impounds an infinite length reservoir. The response of the monalith will therefore
be significantly underestimated if the reservoir length is assumed infinite when the
actual reservoir length is finite.

The ratio of the reservoir length to dam height (L/H) is a significant
parameter that affects the monolith’s response. The value of this ratio determines
the number and magnitude of these supplementary response peaks that are created.
As the L/H ratio decreases, the number of these supplementary response peaks
decreases and their magnitudes increase.

The phase of the ground motion was also found to affect the magnitudes of
the supplementary response peaks. The specific response peaks that are increascd

or decreased in magnitude depend directly on the phase of the ground motion. In-
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phase motion cxcites the unsymmetric eigen modes of the reservoir. Qut-of-phase
ground motion excites the symmetric eigen modes of the reservoir. The L/H ratio
of the reservoir will determine the specific frequencies at which these symmetric and
unsymmetric cigen modes occur.

The modza! ‘hat is used for the reservoir-foundation interface has an impact
on the monolith's response when a finite reservoir length is assumed. Supplementary
response peaks generated primarily through the sole resonance of the reservoir are
affected more by the value of the wave reflection coefficient than thosc generated
through the combined resonance of the reservoir and monolith substructure. The
effect of the soil column inleraction, or shear effects, further reduces the magnitudes
of the response peaks when the proposed two dimensional boundary condition is
used. This boundary condition allows more energy to be dissipated from the
reservoir substructure than the one dimensional boundary condition of Hall and
Chopra (1980).

The reservoir geometry is a significant parameter in the response of the dam-
reservoir-foundation system when a finite length reservoir is assumed. The geometry
of the reservoir determines the resonant frequencies of this substructure. These in
turn determine the frequencies at which the supplementary response peaks occur in
the monolith’s response.

Finite reservoir effects will be the most significant when the dam-reservoir-

foundation system is being subjected iv earthquake ground motion that is classified
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as having an intermediate to high a/v ratio. These types of ground motion have
significant energy contents in the frequency range of 0 to 10 Hz, The most
significant supplementary response peaks are located in this frequency range for most
of the practical finite length reservoir geometrics. All the above mentioned
parameters must be considered simultaneously in order that a reasonable estimate
of the dynamic behaviour of the dam-reservoir-foundation system be obtained when

a finite length upstream reservoir is assumed.
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Table 4.1 - Cases of Dam-Reservoir-Foundation Systems Analyzed

Case L/H Wave Boundary  Reservoir Ground
Reflection Condition  Geometry Motion
Coefficient

1 5.0 0.975 1-D Rectangular Monolith only
2 2.5 0975 1-D Rectangular Monolith only
3 1.0 0.975 1-D Rectangular Monolith only
4 5.0 0.700 1-D Rectangular Monolith only
5 2.5 0.700 1-D Rectangular Monolith only
6 1.0 0.700 1-D Rectangular Monolith only
7 5.0 0975 1-D Rectangular In-Phase

8 2.5 0975 1-D Rectangular In-Phase

9 1.0 0.975 1-D Rectangular In-Phase

10 50 0.700 1-D Rectangular In-Phase

11 2.5  0.700 I-D Rectangular In-Phase

12 1.0 0.700 I-D Rectangular In-Phase

13 5.0 0.975 1-D Rectangular Out-of-Phase
14 25 0975 i-D Rectangular Out-of-Phase
15 1.0 0.975 1-D Rectangular Out-of-Phase
16 5.0 0.700 1-D Rectangular Out-of-Phase
17 2.5 0.700 I-D Rectangular Out-of-Phase
18 1.0 0.700 1-D Rectangular Out-of-Phase
19 5.0 0975 2-D Rectangular Monolith only
20 1.0 0.975 2-D Rectangular Monolith only
21 5.0  0.700 2-D Rectangular Monolith only
22 1.0 0.700 2-D Rectangular Monolith only
23 5.0  0.975 2-D Rectangular In-Phase

24 1.0 0.975 2-D Rectangular In-Phase

25 5.0 0.700 2-D Rectangular In-Phase

26 1.0 0.700 2-D Rectangular In-Phase

27 5.0 0.975 2-D Rectangular Out-of-Phase
28 1.0 0.975 2-D Rectangular Out-of-Phase
29 5.0 0.700 2-D Rectangular Out-of-Phase
30 1.0 0.700 2-D Rectangular Out-of-Phase
31 5.0 0.975 1-D Triangular Monolith only
32 2.5 0975 1-D Triangular Monolith only
33 1.5 0.975 1-D Triangular Monolith only
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Table 4.1 - Cases of Dam-Reservoir-Foundation Systems Analyzed (cont'd)

Case L/H Wave Boundary  Reservoir Ground
Reflection Condition  Geomelry Motion
Coefficient

34 1.0 0.975 1-D Triangular Monolith only

35 5.0 0.700 1-D Triangular Monolith only

36 2.5  0.700 1-D Triangular Monolith only

37 1.5  0.700 1-D Triangular Monolith only

38 1.0 0.700 1-D Triangular Monolith only

39 5.0 0.500 1-D Triangular Monolith only

40 25 0.500 1-D Triangular Monolith only

41 1.5 0.500 1-D Triangular Monolith only

42 1.0 0.500 1-D Triangular Monolith only

43 5.0 0.975 1-D Triangular In-Phase

44 2.5 0975 1-D Triangular In-Phase

45 1.5 0.975 1-D Triangular In-Phase

46 1.0 0.975 1-D Triangular In-Phase

47 5.0 0.700 1-D Triangular In-Phase

48 2,5 0.700 1-D Triangular In-Phasc

49 1.5 0.700 1-D Triangular In-Phase

50 1.0 0.700 I-D Triangular In-Phase

51 5.0 0.500 1-D Triangular [n-Phase

52 2.5  0.500 1-D Triangular In-Phase

53 1.5 0.500 I-D Triangular In-Phase

54 1.0 0.500 1-D Triangular In-Phasc

55 5.0 0.975 1-D Triangular Out-of-Phase

56 2.5 0975 1-D Triangular Out-of-Phase

57 1.5 0.975 1-D Triangular Out-of-Phase

58 1.0 0.975 1-D Triangular QOut-of-Phase

59 5.0 0.700 1-D Triangular Out-of-Phase

60 2.5  0.700 1-D Triangular Qut-of-Phase




136

Table 4.1 - Cases of Dam-Reservoir-Foundation Systems Analyzed (cont'd)

Case L/H Wave Boundary  Reservoir Ground
Reflection Condition ~ Geometry Motion
Coefficient
61 1.5  0.700 1-D Triangular Out-of-Phase
62 1.0 0.700 1-D Triangular Out-of-Phase
63 5.0 0.500 1-D Triangular Out-of-Phase
64 2.5 0.500 1-D Triangular Out-of-Phase
65 1.5  0.500 1-D Triangular Out-of-Phase
66 0.500 1-D Triangular QOut-of-Phase

Monolith only

In-phase

Qut-of-phase

= the ground motion was applied at monolith only

= the ground motion applied at the far boundary was in-phase
with the ground motion at the monolith

= the ground motion applied at the far boundary was out-
of-phase with the ground motion at the monolith
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Figure 4.1 - Schematic of dam-reservoir-foundation system
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Figure 4.2 - Response of long reservoir (L/H = 5.0), monolith only excited
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Figure 4.3 - Response. of short reservoir (L/H = 1.0), monolith only excited
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Figure 4.4 - Modal contributions for long reservoir (L/H = 5.0)
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Figure 4.5 - Monolith response for long (L/H = 5.0) reservoir
when ground motion is considered in-phase
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Figure 4.7 - Monolith response for short (L/H = 1.0) reservoir
when ground motion is considered in-phasc
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Figure 4.8 - Monolith response for short (L/H = 1.0) reservoir
when ground motion is considered out-of-phase
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Figure 4.9 - Effect of wave reflection coefficient on monolith

response for in-phase ground motion
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Figure 4.10 - Comparison of present and proposed boundary conditions for
in-phase ground motion and wave reflection coefficient of 0.975 (L/H = 1.0)
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Figure 4.11 - Comparison of present and proposed boundary conditior for
in-phase ground motion and wave reflectiun coefficient of 0,700 (I./H = 1.0)
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Figure 4.12 - Monolith response for rectangular and triangular geometry
(L/H = 5.0) assuming in-phase ground motion
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Figure 4.13 - Monolith response for rectangular and triangular geometry
(L/H = 5.0) assuming out-of-phase ground motion



CHAPTER 5

STRESS ANALYSIS

5.1 INTRODUCTION

In this chapter, the dam-reservoir-foundation system is analyzed using actual
carthquake ground motion records when a finite reservoir length is assumed. The
effect of the finite length reservoir characteristics (L/H ratio, phase of ground
molion, and reservoir geometry) on the tensile stresses that the monolith experiences
is investigated when the system is subjected to earthquake ground acceleration
records. The tensile stress experienced by the dam monolith is of interest because
this is the critical stress during earthquake excitation. Experience at the Koyna Dam
during the 1967 carthquake (Chopra and Chakrabarti, 1972) showed that cracking
of the concrete is more critical than crushing of the concrete during strong shaking.
The system configurations adopted for analysis in Chapter 4 are also used in this
chapter. Four actual earthquake ground motion records are used. Two are classified
as having an intermediate ratio of their maximum ground acceleration (in g’s) to
their maximum ground velocity (in m/s) (a/v) (0.8 < a/v < 1.2) and two that are

classificd as having a high a/v ratio (a/v = 1.2) (Naumoski, et. al,, 1988).
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In this chapter, the ground motion records used in the stress analysis are
described. The normalization of the acceleration records is discussed. The effect of
the ratio of the reservoir's length to dam height on the magnitude of the maximum
dynamic tensile stress is evaluated. The ground motion is assumed to only excite the
dam monolith. The effect of the phase of the ground motion that excites the far end
boundary of the reservoir is analyzed. Again, the magnitude of the maximum
dynamic tensile stress is of interest. The last section of this chapter examines the
effect of varying the reservoir gcometry on the dynamic tensile stresses.  Two

reservoir geometries are examined: rectangular and triangular.

5.2 EARTHQUAKE GROUND MOTION

Four earthquake ground motion records were used in this analysis. Two
records with an intermediate a/v ralio were selected. These are the Imperial Valley
(SO0E; May 18, 1940; El Centro) and the Kern County (N2ILE; July 21, 1952; Taft
Lincoln School Tunnel) records. The acccleration time histories of these wo
earthquake events are presented in figures 5.1 and 5.2 for the Imperial Valley and
Kern County events, respectively, These two records have significant accclerations
in the frequency range from O to 4 Hz. The records have low accelerations  al
frequencies greater than 4 Hz. The Fourier representation of the actual carthquike

ground motions are presented in figures 5.3 and 5.4 for the Imperial Valley and the
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Kern County events, respectively. Table 5.1 presents the recorded ground motion
characteristics of these records.

Two records having a high a/v ratio were also used. These records are the
San Francisco (S80E; March 22, 1957; Golden Gate Park) and the Saguenay
(Longitudinal component; November 25, 1988; St.-Ferreol) earthquake events (Wang,
1988). The acceleration time histories of these two earthquake events are presented
in figures 5.5 and 5.6 for the San Francisco and Saguenay records, respectively.
These records have significant accelerations in the frequency range from 0 to 15 Hz.
The Fourier representations  of the ground acceleration for the San Francisco and the
Sagucnay cvents arc presented in figures 5.7 and 5.8, respectively. The recorded
ground motion characteristics for these records are also listed in table 5.1.

All records have been scaled such that their maximum ground velocity is equal
to that of the Imperial Valley record. This record has a maximum ground velocity
of 0.334 m/s. This required that the acceleration records of the Kern County, San
Francisco, and Saguenay records be scaled by factors of 2,13, 7.26, and 12.32,
respectively.  Their maximum unscaled ground velocities are 0.155,0.046,and 0.027
m/s, respectively. The maximum scaled ground accelerations for the four records are
0.348 g, 0.332 g, 0.762 g, and 1.490 g for the Imperial Valley, Kern County, San
Francisco, and Saguenay records, respectively.

The dam-reservoir-foundation system assuming a finite length reservoir is a

high frequency system. The fundamental frequency of the complete system is
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approximately 2.6 Hz. This occurs near the extreme end of the frequency range at
which the Imperial Valley and the Kern County records show significant acceleration.
The absence of high frequency motion in these two records may be due to two
distinct reasons. First, the Kern County record was recorded 56 kilometres from the
epicentre. Some of the high frequency motion is iikely to have attenuated as the
ground motion event travelled away from the epicentre, The second probable reason
for the absence of high frequency accelerations may be because of the type of
accelerometer used io record the Imperial Valley ground motion. The Imperial
Valley record was recorded just 8 kilometres from the epicentre.  Such near field
events typically have significant high frequency components in the ground
acceleration record (Naumoski, et. al., 1988). The accelerometer used to record this
motion most probably had a low Nyquist frequency and was thus unable to record
the high frequency components of the ground motion,

The zround motion records were scaled to a common maximum ground
velocity to obtain a quantitative estimate of the effect of the frequency content of the
earthquake ground motion on the monolith’s response. It is not the intent of this
section of the study to compare the dynamic lensile stresses obtained from one
ground motion record with those from the other records. It is of more interest o
compare how the dynamic tensile stresses vary for each record separately when the
dam-reservoir-foundation system’s characteristics are altered. The ground motion

records were therefore scaled to the maximum ground velocity of the Imperial Valley
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record but their frequency content and a/v ratio were not altered. The number of
ground motion records used is too small for a meaningful statistical analysis to be

conducled.

5.3 FINITE RECTANGULAR RESERVOIR

The stresses in this analysis are determined at the centroid of each element,
The Fourier representation  of the system’s response is combined with the Fourier
representation  of the carthquake ground motion to obtain the system’s frequency
domain response. An inverse Fourier transform is performed to obtain a time history
of thc monolith’s displacements. These time histories are converted to strains at the
centroid and combined with the elasticity matrix of the element. This yields the
three components  of stress that the eclement experiences. The maximum and
minimum principle stresses are then determined. Figure 5.9 presents the finite
clement discretization of the monolith used in the analysis. The modulus of ¢lasticity
used in the analysis is 20 685 MPa. The compressive strength of the concrete is
assumed to be 17 MPa. The modulus of rupture of the concrete is assumed to be
2.5 MPa.

The tensile stress profiles for the dam monolith impounding a reservoir of
L/H ratio of infinity and 5.0 are presented in figure 5.10. The mcnolith alone is
excited by the Imperial Valley event. The stresses in the monolith assuming a long

finite length reservoir (L/H = 5.0) do not change significantly as compared to the
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infinite length case when the monolith is subjected o the Imperial Valley ground
motion record. This earthquake ground motion event has high input energy at
excitation frequencies below 4 Hz, The Fourier representation of the monolith's
response in this frequency range when the reservoir length is assumed finite is
identical to that of when the reservoir length is assumed infinite. This can be scen
in figure 4.2. This figure presents the response of a monolith impounding a reservoir
having an L/H ratio of 5.0 when the ground motion is only exciting the monolith.
The earthquake ground motion will not significantly excite the higher frequencies of
the dam-reservoir-foundation system. The two resuiting stress profiles shown in
figure 5.10 are virtually identical. The same results arc obtained using the other
three ground motion records considered in this study. The maximum value of the
dynamic tensile stress experienced by the dam monolith when subjected 10 the four
earthquake pground motion records used in this study are listed in table 5.2, The
maximum tensile stress that results from the infinite reservoir length assumption is
also presented. The monolith alone is assumed to be excited by the carthquake
ground motion. The numbers in the parenthesises are the clement numbers at which
this maximum tensile stress is located as shown in figure 5.9,

As the rescrvoir length becomes increasingly shorter, the maximum value of
the dynamic tensile stress begins to differ from that when the reservoir length is
assumed infinite when high a/v ratio ground motion records are used. The maximum

dynamic tensile stress caused by the Saguenay earthquake cvent is 24.6% greater
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when the reservoir has an L/H ratio of 2.5 than when the L/H ratio is infinite, The
maximum dynamic tensile stress is 11.51 MPa when the reservoir is assumed infinite
in length and is 14,34 MPa when the L/H ratio is 2.5.

Figure 5.11 presents the tensile stress profiles for the cases when the L/H
ratio of the upstream reservoir is both infinite and 1.0. The Saguenay earthquake
cvent is used and is assumed only to excite the dam monolith, The dynamic tensile
stresses are increased as the reservoir length decreases, as evident in this figure. The
maximum lensile stress experienced by the monolith is increased by 67.1% to a value
of 19.23 MPa. This increase in tensile stress is a result of the supplementary
response peak that is prominent in this coufiguration’s dynamic response (figure 4.3).
The Saguenay ground motion record has significant accelerations at the same
frequency as this supplementary response peak. The combination of the large
response peak and the high accelerations results in the increase in the dynamic
tensile stress.

Dam monoliths are susceptible to high frequency content earthquakes when
the upstrcam reservoir is assumed to be finite in length. These types of earthquake
ground motion have high energy contents in the frequency range of 4 to 15 Hz. This
is also the frequency range at which the supplementary response peaks occur in the
monolith’s response.  Dam monoliths which impound a reservoir of short length

(L/H < 2.5)are affected the most.
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It should be noted here that some of the dynamic tensile stress values are
greatly in excess of the modulus of rupture of the concrete. These higher stress
values occur primarily due to the scaling of the carthquake ground motion records.
The stresses increase proportionally with the scaling as the analysis is assumed linear
elastic. The objective of this section of the study is to obtain the location of the
highest tensile stress. This section thercfore is the most likely to fail. It is also of
interest to compare the tensile stress distributions when the reservoir characteristics
are varied rather than obtain a qualitative cstimate of the stresses expericnced by the

monolith.

5.4 PHASE OF GROUND MOTION

The maximum dynamic tensile stresses that the monolith experiences when
the far end boundary of the reservoir is assumed to be excited by ground motion that
is in phase with that at the monolith are listed in table 5.3. The same information,
but for the case where the ground motion at the far end boundury is out of phase
with that at the monolith is listed in table 5.4. As evident from these two tables, the
phase of the ground motion that affects the far boundary signiftcantly influences the
magnitude of the maximum dynamic tensile stress that occurs. The location of the
maximum stress is occasionally altered as well.

The dynamic tensile stress profile for the casc of a monolith impounding a

reservoir having an L/H ratio of 5.0 when subjected 1o the Imperial Valley
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carthquake record is plotied in figure 5.12. The far boundary of the reservoir is
assumed to be both unexcited and excited in-phase with the monolith., The maximum
dynamic tensile slress increases by 9.3%; increasing to a value of 5.42 MPa for the
in-phasc case from a value of 4.96 MPa for the unexcited case. The Fourier
representation  of the monolith’s dynamic response when the far boundary is excited
in-phase with that at the monolith (figure 4.5) has a large supplementary response
peak at a frequency of 4.30 Hz. This is at the extreme of the frequency range at
which this particular carthquake event has significant accelerations. This large
response peak increases the monolith’s response. The dynamic tensile stresses that
arc induced into the monolith are therefore subsequently increased.

The case of a monolith impounding a reservoir having an L/H ratio of 5.0
when the motion at the far boundary of the reservoir is considered to be out-of-phase
with that at the monolith is compared to the case where only the monolith is excited.
The Imperial Valley ground motion record is used. The maximum dynamic tensile
stress does not change significantly in magnitude as compared to the monolith only
excited case. The location of the maximum stress does however change. As evident
from table 5.4,the location drops to the base of the monolith (element 121, figure
5.9). This is a result of the large supplementary response peak that exists at a
frequency of 5.03 Hz (figure 4.6) participating strongly in the dynamic response of
the monolith. This response peak is due to the actions of the second mode of

vibration of the monolith.  Although the ground motion does not have high
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accelerations at this particular frequency, its combination with the large
supplementary response peak results in the monolith having significant accelerations
at this frequency. The lowering of the location of maximum stress is therefore a
result of the contribution of the response at the monolith’s fundamental frequency
(2.64 Hz, hydrodynamic effects included) and this supplementary frequency (5.03 Hz),

The response of a monolith impounding a short reservoir (L/H = 1.0) excited
by the Imperial Valley ground motion record is plotted in figure 5.13. In this
example, the far boundary of the reservoir is assumed to be both unexcited and
excited out-of-phase with the dam monolith. The increase in the dynamic tensite
stresses, relative to the unexcited case, can be seen in this ligure. The maximum
tensile stress that occurs is increased by 47.4%,as evident from comparing tables 5.2
and 5.4. The magnitude of the fundamental response peak is increased significantly
for the out-of-phase case as can be scen in comparing figures 4.3 and 4.8. This
increased magnitude of the fundamental response peak has the effect of increasing
the dynamic tensile stress levels in the monolith.

The increase in dynamic tensile stresses is even more significant when the
ground motion that excites the monolith and the far boundary has a high a/v ratio.
This type of ground motion has significant accelerations in the frequency range of the
supplementary response peaks that occur in the monolith’s dynamic response. ‘The
maximum dynamic tensile stress is increased” by approximately 15% for all the long

reservoir cases considered. This can be seen in comparing both tables 5.3 and 5.4



160

to table 5.2. The high a/v ratio ground motion events used in this study have
significant accelerations in the frequency range of 5 to 10 Hz. This is evident in
figures 5.7 and 5.8 for the San Francisco and Saguenay ground motion records,
respectively.  The monolith response also has large supplementary response peaks
in this frequency range (figures 4.5 and 4.6 for the in-phase and out-of-phase cases,
respectively). These large dynamic responses and ground accelerations will result in
the monolith having a larger response at these frequencies as compared to both the
infinite Jength case and the same finite length case but where only the dam monolith
is excited by the ground motion.

Figure 5.14 presents the dynamic tensile stress profile for the case when the
monolith impounds a reservoir having an L/H ratio of 1.0 when the San Francisco
carthquake ground motion record is used. The far end boundary is assumed to be
both unexcited and excited out-of-phase with the monolith. The maximum dynamic
tensile stress is increased by 53.2%. This can also be observed in comparing tables
5.2and 5.4, The Fourier representation of the dynamic response of the monolith has
a significant response peak at a frequency of 4.10 Hz as shown in figure 4.8. This
ground motion record also has significant accelerations at this particular frequency.
This, together with the increase in the fundamental resi)onse peak’s magnitude,
results in A large increase in the dynamic tensile stresses that the monolith

experiences.



161

The dam monolith, when finite reservoir effects are considered, is susceptible
to both intermediate and high a/v ratio events. The phase of the ground motion at
the far boundary of the reservoir increases the sensitivity of the overall system to the
earthquake ground motion. The dam-reservoir-foundation  system is however more
sensitive to high a/v ratio ground motion than to intermediate a/v ratio ground
motion. The phase of the ground motion that excites the far end boundary of the
reservoir must also be considered in conjunction with the L/H ratio of the upstream
reservoir. The dynamic tensile stresses are typically increased in magnitude when the
motion of this boundary is considered. However, some specific combinations of L/H
ratio, phase of the ground motion, and the ground motion characteristics may result
in a decrease in the dynamic tensile stresses. The upstream reservoir’s characteristics
must be carefully considered in order that an accurate estimate of thc monolith’s

response to the earthquake ground motion can be obtained.

5.5 GEOMETRY OF UPSTREAM RESERVOIR

The maximum dynamic tensile stress that the monolith experiences when the
reservoir geometry is idealized as triangular are listed in table 5.5. The ground
motion is assumed only to excite the dam monolith in this table. The primary cffect
of varying the upstream reservoir's geometry isto increase the value of the maximum
dynamic tensile stress that the monolith experiences. This can be seen in comparing

tables 5.2 and 5.5 for the rectangular and triangular reservoir geometry cascs,
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respectively.  The supplementary response peaks that occur in the Fourier
representation  of the monolith’s response are typically larger in magnitude when the
reservoir geometry is triangular than when it is rectangular. For example, consider
the casc of a reservoir that has an L/H ratio of 5.0 when the Kern County ground
motion record is used. The ground motion only excites the monolith. The maximum
dynamic tensile stress increases from a value of 6.05 MPa for the rectangular
reservoir case to a value of 6.97 MPa for the triangular case. This represents an
increase of 15.2%. Figure 5.15presents the Fourier representation of the monolith’s
dynamic response for the cascs of both a triangular and a rectangular reservoir
geometry both having an L/H ratio of 5.0. The wave reflection coefficient is taken
as 0.975. Figure 5.16 presents the Fourier representation of the dynamic response
of the same monolith when impounding both a triangular and a rectangular reservoir
both having an L/H ratio of 1.0. The larger supplementary response peaks for the
triangular reservoir geometry can be seen in these two figures.

The maximum dynamic tensile stress that the monolith experiences when the
reservoir is idealized as triangular and the ground motion that excites the bottom of
the reservoir is in-phase with that at the monolith are listed in table 5.6. The
maximum dynamic tensile stress for the triangular geometry is generally reduced as
compared with the tensile stress that occurs when the upstream reservoir geometry
is idealized as rectangular. This occurs for all earthquake ground motion records

considered in this study. High a/v ratio events tend 1o cause larger decreases in
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tensile stress than the intermediate a/v ratio events. This can be seen in comparing
tables 5.3 and 5.6.

The response peaks in the frequency range of 0 to 10 Hz are reduced in
magnitude when the ground motion is considered to be in-phase. This can be seen
in both figures 4.12and 5.17. Figure 4.12 presents the Fourier representation of a
monolith’s response when impounding both a triangular and a rectangular reservoir,
These reservoirs both have an L/H ratio of 5.0and are excited by in-phase ground
motion. Figure 5.17is the Fourier representation of the monolith’s dynamic response
when both the triangular and rectangular reservoirs have an L/H ratio of 1.0. The
reduced magnitude of these responsc peaks interact with the carthquake acceleration
record to produce a reduced monolith responsc.

The maximum tensile stress for the monolith impounding a triangular
upstream reservoir geometry are listed in table 5.7. The ground motion that excites
the far end boundary is assumed to be out-of-phase with that at the monolith, The
maximum dynamic tensile stress that is gencrated when the reservoir geometry is
triangular increases in magnitude as compared with that when the reservoir geometry
is rectangular. This occurs for all earthquake ground motion records considered in
this study. High a/v ratio events tend to produce larger increases in tensile stresses
than the intermediate a/v ratio ground motion records. This can be seen in
comparing tables 5.4 and 5.7. For examgle, the maximum dynamic tensile stress

caused by the San Francisco ground motion record for the case of a reservoir having
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an L/H ratio of 5.0is increased by 28.5%. The tensile stress is increased from a
value of [1.58 MPa for the rectangular reservoir case 1o a value of 14.88 MPa for wne
triangular reservoir case.

The geometry of the upstream reservoir is an important factor and should be
considered in the analysis of the dam-reservoir-foundation system at the same time
as the L/H ratio, the phase of the ground mation, and the specific ground motion
characteristics. The reservoir geometry significandly affects the magnitude of the
maximum dynamic tensile stress that the monolith experiences. The dynamic tensile
stresses are typically increased for the triangular reservoir geometry over those for
the rectangular geometry. The dam monolith is therefore more sensitive to
carthquake ground motion, especially when the event is characterized as having a
high a/v ratio, and the geometry of the upstream reservoir is assiined triangular,
The main exception to this is when the earthquake ground motion is assumed to be

in-phase with that at the monolith, where the tensile stresses are reduced.



Table 5.1- Recorded ground motion characteristics
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Earthquake Magnitude  Epicentral Maximum  Maximum  a/v

Event Distance Accel, Vel, (gs/m)
(km) (&) (m/s)

Imperial 6.6 8 0.348 0.334 1.04

Valley (1940)

Kern 7.6 56 0.156 0.157 0.99

County (1952)

San 5.25 11 0.105 0.046 2.28

Francisco (1957)

Saguenay (1988) 5.7 114 0.121 0.027 4.40

Table 5.2 - Maximum dynamic tensile stress (MPa), monolith only excited case

Earthquake rccord

Imperial Kern San Saguenay
L/H Valley County Francisco
oo 4.59(121)°  5.97(121)  9.19(24) 11.51 (24)
5.0 4.96(121)  6.05(24) 9.29 (24) 12.86 (24)
2.5 4.87(121)  6.81(24) 9.08 (24) 14.34 (24)
1.0 5.11 (24) 5.81(121) 11.79(24) 19.23 (24)

" location - element number (ref, Figure 5.9)



Table 5.3 - Maximum dynamic tensile stress (MPa),
far houndary in-phase with monolith
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Earthquake record

Imperial Kern San Saguenay

L/H Valley County Francisco
oo 4.54(121)" 5.97(121)  9.19(24) 11.51 (24)
5.0 5.42 (24) 6.73 (24) 11.92(24) 15.90 (24)
2.5 5.24 (24) 6.93 (24) 15.50(24) 14.46 (24)
1.0 5.52 (24} 4.62 (24) 12.54(24)  24.47(24)

" location - clement number (ref. Figure 5.9)
Table 5.4 - Maximum dynamic tensile stress (MPa),
{far boundary out-of-phase with monolith
Earthquake record

Imperial Kern San Saguenay

IL/IH Valley County Francisco
oo 4.54(121)"  5.97(121)  9.19(24) 11.51 (24)
5.0 5.19(121y  7.17(24) 11.58(24) 14.81 (24)
2.5 5.38(24) 6.69 (24) 13.43(24) 19.93 (24)
1.0 7.53 (24) 7.46 (24) 18.06(24) 14.87 (24)

*location - element number (ref. Figure 5.9)



Table 5.5 - Maximum dynamic tlensile stress (MPa),
monolith excited alone and triangular reservoir geometry
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Earthquake record

Imperial Kern San Sapgucnay
L/H Valley County Francisco
5.0 5.28(24)"  6.97(24) 11.66(24) 12.97 (24)
1.0 5.60(121)  7.36 (24) 14.44(24) 16.56 (24)

* location - element number (ref. Figure 5.9)

Table 5.6 - Maximum dynamic tensile stress (MPa),
far end exciled in-phase and triangular reservoir geomeltry

Earthquake record

Imperial Kern San Saguenay
L/H Valley County Francisco
5.0 4.49 24y 6.21 (24) 8.86(24) 16.56 (24)
1.0 3.95(121) 4.41(121) 7.62(24) 11.70 (24)

“ location - element number (ref. Figure 5.9)



168

Table 5.7 - Maximum dynamic tensile stress (MPa),
far end excited out-of-phase and triangular reservoir geometry

Earthquake record

Imperial Kern San Saguenay
L/H Valley County Francisco
5.0 6.21(24)  7.92(24) 14.88(24) 12,70 (24)
1.0 7.81 (24) 11.13(24)  24.27(24)  31.14 24)

* location - element number (ref. Figure 5.9)
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CHAPTER 6

CONCLUSIONS

6.1 CONCLUSIONS

In this thesis, the effects of a finite length upstream reservoir on the response
of a concrete gravity dam monolith to earthquake ground motion were investigated.
Three components comprised the analytical study that was conducted. First, a closed
form solution of the reservoir substructure of the dam-reservoir-foundation  system
was developed. A study was conducted that determined the effect of the ratio of the
reservoir length to the dam height (L/H), the effect of the wave reflection
coefficient, and the effect of the monolith’s elastic modulus. Sccond, a detailed
analytical procedure was developed for the dynamic analysis of the dam-finite
reservoir-foundation  system. A two-dimensional boundary condition for the
reservoir-foundation interface was also developed. The numerical study that was
conducted determined the effect of the L/H ratio, the model for the reservoir-
foundation interface, and the cross sectional geometry of the upstrcam reservoir on
the response of the monolith when the ground motion is assumed to excite both the
far end boundary of the finite length reservoir and the dam monolith. Lastly, a siress

analysis was conducted which determined the effect of the overall system when a
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finite length reservoir was assumed. This study has shown the importance of the
specific characteristics of a finite length reservoir on the response of a concrete
gravity dam monolith. The major conclusions of this research investigation are
summarized below:
1. Supplementary response peaks are created in the Fourier
represenlation  of the monolith’s response when the effect of a finite
length upstream reservoir is considered.  These supplementary
response peaks are generated through the coupled horizontal and
vertical resonance of the upstream reservoir. Large monolith response
and higher levels of stress are created at the frequencies of excitation

at which this coupled resonance occurs.

2. For small values of the L/H ratio (L/H < 5), the
supplementary response peaks can have significant magnitude
particularly near the frequencies of the monolith’s modes of vibration.
These supplementary response peaks occur at frequencies which
correspond to the predominant frequency content of both intermediate
and high a/v ratio earthquake ground motion records. The number
and magnitude of the supplementary response peaks are dependent

upon the L/H ratio of the upstream reservoir.



3. Finite length reservoir effects must be considered in the
dynamic and stress analyses of dam structures subjected to carthquake
ground motion characterized as having an intermediate a/v ratio when
the upstream reservoir has a L/H ratio of 2.5 or less. These effects
are important for reservoirs that have a L/H ratio of 5.0 or less when

the earthquake ground motion is characterized as having a high a/v

ratio.

4. The value of the wave reflection coeffictent significantly
affects the magnitudes of the supplementary response peaks when the
one-dimensional boundary condition is used in the analysis. As the
coefficient decreases from 1.0 (indicating increasing damping at the
reservoir-foundation interface), the response of the monolith cventually
approaches that of the infinite reservoir case. The supplementary
response peaks that are generated solely through the resonance of the

reservoir substructure are most significantly affected.

5. The interaction between the soil columns, or shear effects,
is a source of damping at the boundary of the reservoir and
foundation. The damping provided by the proposed two-dimensional

boundary condition was greater than that provided by the one-
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dimensional boundary condition for the same value of the wave
reflection coefficient. Neglecting the interaction between soil columns
therefore ignores a significant source of energy dissipation in the

reservoir substructure,

6. The value of the modulus of elasticity of the concrete used
in the monolith substructure has a significant influence on the
supplementary response peaks. Increasing the modulus of elasticity
increases the frequencies at which the monolith’s modes of vibration
occur. The magnitude and frequency of the supplementary response
peaks are subsequently altered. The dam monolith consequently will
behave differently when subjected to earthquake ground motion as the

modulus of elasticity is varied.

7. The proposed simplified analysis procedure can be used for
the initial dynamic analysis of the dam-reservoir-foundation system in
the preliminary design stage. It provides an accurate estimate of the
monolith’s response when the ground motion is assumed only to affect
the dam monolith. A more detailed dynamic analysis is required for
the later design stages to consider the combined effects of reservoir

characteristics such as the reservoir geometry, the phase of ground
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motion, the L/H ratio of the reservoir, and the specific frequency

content of the earthquake ground motion.

8. The phase of the ground motion that excites the far end
boundary of the finite length upstream reservoir significantly alters the
magnitudes of the supplementary response peaks relative to the case
where only the monolith is excited. The change in magnitude that
occurs is directly dependent on the assumed phasc of the ground
motion which excites the far end boundary. Ground motion at the far
boundary of the reservoir that is out-of-phase with that at the monolith

is the worst case of ground motion excitation.

9. Short length upstream reservoirs (IL/H < 2.5) are the most

susceptible to earthquake ground motion when both the monolith and
the far boundary of the reservoir are excited. Large monolith response

and high levels of dynamic tensile stress occur for these cases.

10. The geometry of the finite length upstream rescrvoir
significantly affects the response of the monolith. The upstream
reservoir will resonate at different frequencies for different reservoir

geometries. The monolith may respond quite differently to the
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earthquake ground motion depending on the geometry that is assumed

for the upstream reservoir.

11. The frequency content of the earthquake ground motion,
the L/H ratio of the reservoir, the phase of the ground motion at the
far end boundary of the reservoir, and the specific geometry of the
reservoir all must be considered together in order to obtain a
rcasonable estimate of the monolith’s response. If one of these
rescrvoir characteristics is omitied or determined incorrectly, the

reliability of the dynamic and stress analyses will be in doubt.

6.2 RECOMMENDATIONS

A list of recommendations for future research is presented below. These
rccommendations  have arisen during the course of this research and from the

conclusions drawn from it.

1. The effect of the vertical component of the earthquake
ground motion on the response of a concrete gravity dam monolith
when a finite length upstream reservoir is assumed, should be
investigated. Several studies have indicated that this ground motion

component has a significant effect on the monolith’s response when the



upstream reservoir is assumed to be infinite in length. Its effect should

also be significant for a finite length upstrcam reservoir.

2. The effect of assuming that the height of the water in the
reservoir is less than the height of the dam monolith should be
evaluated. The reservoir height is never equal to that of the dam
monolith’s height in existing structures. The behaviour of the monolith

to different heights of reservoir should be investigated.

3. A more detailed investigation of the reservoir should be
undertaken to determine the effect of viscosity, convection, and other
sources of energy dissipation in the upstrcam reservoir. Very little
attention, if any, has been given to these lopics to establish  their

relative importance in the response of the dam monolith.

4. A time domain model of the dam-finite reservoir-foundation
system should be developed. The frequency domain model used in this
study has many limitations including long solution times and difficulty
in adding new components to the model. Using the time domain will
allow the model for the system to be expanded and ncw solution

techniques implemented to decrease the solution time required.



5. The effect of the amplification of the pressure waves as they
propagate into a region of decreasing water depth should be
investigated. A large hydrodynamic force may be created as these
pressurc waves travel up the reservoir. Some of the energy may be
transmitted back towards the monolith and impose a large force onto
the dam face. This should be examined in conjunction with the effect

of the vertical component of the ground motion.

6. The reservoir's foundation should be modelled as a two-
dimensional elastic body. The models for the monolith’s foundation
and the reservoir’s foundation should also be combined into one single
model. The dam and reservoir foundation is an extremely important
part of the overall system and must be treated as rigorously as
possible. The effect of sediments on the reservoir bottom must be
considered as well in this new model. The foundation that forms the
far end boundary of the reservoir should also be modelled as
accurately as possible. This study assumed that it vibrated in its rigid
body mode. The flexibility of this boundary on the response of the

monolith should also be examined.
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7. The response of arch dams assuming a finile reservoir length
should be investigated. These structures may be very susceptible to
finite reservoir effects as they are usually quite flexible. These types
of structures are also more likely to impound a finite length reservoir,

especially those structures sited in mountainous areas.

8. A scale model test of the dam-finite reservoir system should
be undertaken to verify the analytical model. The scale model itself
should be numerically analyzed using the procedurc presented in this
thesis. Such experimental and numerical investigation would verify the
reliability of the analytical procedure that is currently being used in the

dynamic analysis of dam-reservoir-foundation systems.
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