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CHAPTECR 1

INTRODUCTION, AND REVILW , .-

s . .

Due to the recent breakthrough in minicompurter teéﬂholqu,

extensiveé ingerest hés been expressed on their applicétion to chemical
. . AN . . «

processes., The versatilities of digital minicomputers enablés the
interfaéin% of cpe computer with various pr;cessuuhitéiand their rea%
time on—line<control4 glthougé the aép}icability of var%ous_cohputer
control séhemes‘on chemical processes is still a point of debé;e,-it is
quite clear that the credibility of winicoméuter appliéation is '
continuously gaining support from industry and *‘is no loﬁger.an'academic
exbfﬁise. The flexibility of the minic&&puter makes theé imple%entaéion

of control theories hore feasible.
- o .

Advanced qoncrol.theories have been well developed forha’lgng‘

!

time. ZPEreviously,,K the problems related to their real time épplications'

° .

were three fold:
<R,

the lack of suitable computer systems, .
- . [\ . T

large investment with doubtful economical returns, and
» - R

the lack of trained personnel.

&

The availability bf.miqicomputers solves the first problem. The second

.

obstacle hinges on the careful planning of the agﬁligatipn. Large

capital is indegd required initially, but in the loang run, efficieat

~

-



L s
- . . <

* , - -
control of the process will increase product production rates, reduce the

production cest and reduce problems caused by human errors. Modern

sophisticated control schemes ean also be applied and tested, thus R

ultimately improving the product ‘quality. Besides, the increasingly

modest computer hardware cost will offset part of the financial problem.

The 7lack of trained people*will still be a problém in the near future.

However, as more industries adopt digital computer control systems, the

Y

. ' !
necessity of the training of personﬁal will be extended to other
- rd ’

academic and technical institutions. ,

. .

-

.

The many advantages of minicomputer control applications have

been pointed out by West {[1976). Various combinations of distribuced

control systems are rendered possible and operator/computer rapport: is

-

greatly improved. Data logging for process analysis and plant operation

scheduling is becoming more efficgent. Controls on process inputs- .

outputs, feedstock urilization and the reduction of utilities are the

general objectives of most present computer applications. However, not
many Tresults are published in_literature because of secrecy and company
o . -

policies. ,As it is a relative new field, exciting new challenges in

the future applications are.abunddnt.9 The recent trend of industries.

moving to automation proves the computer control applications are

[y

beneficial and the usage of minicomputer systems will undoubtedly be

expanded in the future. °®

A * .

4



1.1 Objectives of This Thesis

/ B . B . .

In this thesis, a piloé plant scale catalytic reactor is. being

studéed. The work can be divided into two pérts ~ process modelling and

the direct digital control (DDC) of the process,using modern stochastic

* . 3 g 1 - -
control theory. The aim is to control the extents .or production rates:

.

of thé products about desired levels by adjusting the inbut reactant

flowrates. A statistical approach is used for the development of.a
- * b . .

pfocess model by fitting plant data empirically. Thkis procedure includes

-~

the identification of thé structure of the. system, parameter estimation

'] . . N . N
and diagnostic checking of the dynamic-stochastic model. From the
. . . 0 .

N

.
resulting model, & multivariate optimal stochastic feedback controller’.

- is designed using dynamic programming and Kalman filtering theories for -

DDC purpose. Implementation of this controller on the reactor system

will determine the effectiveness of this control procedure for such -

complex systems. i

- .

N

1.2 Modelliﬁg and Computer- Control on Chemical Processes

The DDC computérs have been widely adopted in many industries

in the past decade, especially in the pulp and paper ZAsprom et al

[1975)), and steel makiﬁg industries, -where sophisticated control |

strategies have prdven to be successful. Industrial app}icdtidns on

- .
’ .

chemical processes are, however, limited to simple single loop control -

or occasionally cascade control on some linear, stable and well-known

. 4

unil operations. Extensive control studies had been done by Fisher and *

[ ) .
§ebo;g‘[¥926] on a double-effect evaporator. Marroquin et al {1973}




“S~—_implementation of control theories on ‘commercial plants. Lee and

» »

N . . 4
applied control on a batchxyeactor and a CSTR. Controls on an extractive

distiliation column had been carried out .successfully by Jackson [1974],

Hu and Raminezi[l972],‘just_to’name a few,.

Reports on the computer control of complex chemical processes
are extremely sparse. The problem may Be accounted for by two reasons -

the difficulties in understanding the process dynamics .and the
9 . )

.
"

. Weekman [1976] expféssed an industrial viewpoint on the coatrol of complex

systems. Since many chemical processes have unknown dynathic characteristics,

7
.

. ‘modelling -is a major difficulfy. Even with weil understood kinetics,
~
A3

dynamiq model development from 3asic’physical equatioris is usually

difficult becduse of large nonlinearities and the distributed parameter
1

it has been shown that advanced control techniques

. nature ‘of the models.
. . J
such as fultivariable control may imprbve process performances. (Fisher

and Seborg {1976]). The additional performanc®t gains from the advapcoed .
control techniques will be weighed against the extra work incurred in

the controller designs and installation. : : . -
L .
. . For complex packed bed reactors, various aspects of their

transport and thermo®namics propertigs have been studied intensively.

“*( Fromenct [1974], Sigai and Fass {19707, Foréuson and Tinlayson [1970]).

These studies all provided substantial insight necessary for the

formulation of a mechanistic dynamic model. .With the inclusion of axial
N Y -

-and radial gradients, ,three dimensional partial differential equations

. . .

(PPL) are invqlved. - The PDE's can be converted into scts of ODE's

.

and then linearized so that control theories and parameter estimation

.o



. N
- .

" can be applied.” Finlayson [1972] applied the concept of orthogonal »

. , ] .
collocation for efficient solution of {hese complex dynamic equations,
/ . .

. Vakil et al [1973] derived. a control scheme for a fixed bed reactor

-/ ~ N . ' -
using temperature data. Jutan [1976] oBtained ¢ dynamic model of -an

-

exothermic reactor suitable. for on~line multivariable control . T
. .

-
. .

applications. The reporfed application® of control on these complex, i

reactors is rare.” Hong and MacGregor [1973] used a 'black box' transfer

function-noirse model approach to statistically, identify a model and

control ‘a°continious stirred tank procesg. Wright and Bacon [1973)

- .

successfully identified-such an empirical model for a dual input heat

exchanger system. These results indicate that chemical processes can

N »
. - .

be modelled using different methods and.various control strategies can

~ -
LIS

then be designed accordingly. - . ’ . e
. Rl . . 3
1.3 . Previous anid Current Control Work on the-Catalvtic n-Butane

Hydrogenolvsis Reactor

v .

The pilot plant’ tubular packed bed reactor was built by

c e

T{cmblay.[L977]. The flexibility and the complex nature of the system
t ..

allow the testing of many advanced control schemes. Tremblay and

. ~ N

Wright f1973] successfully used a single variable cascade control ) -

N

scheme for the control of butane conversion. Model reference adaptive

«control strategy was attcmpted-by'Tnemblay {1977). Jutan [1976] d;rived“

-

a dynamic=stochastic model from theoretical material and energy .

balances, and Jdesigned and implemented a multivariate stochastic

.
‘

contraller. In this thesis, a similar multivariate stochastic control, .

scheme will be developed using empiricallv identified multivariate
. N e "

r Iy .



, A seven dimensional discrete state space model resulted after linearization -

transfer function-noise models., Sinéé\éhis wprk‘apd,Jutdh'S'afe-cléself
‘related, a discussion of his'approach will be helpful in this study. -
. * ~ . j v - -
. In Jutan s dynamlc model bulldlng, the three dlmenslohal PDF -

.
. .

) ‘representlng the reactor dynamlcs were reduced ‘to” se#%n fzzst order’ODE's  /

by using a quasi—steédy state‘assuﬁption,on the toncentration dynamfcs awd .
. LR R L . - . ~ - ’

Y - T ~ » * - 3

approximating’ the partigi‘ﬁerivétives using merhods of orthegonal collocation.

g . . o - L R S

.y - - - - » A ° .. a x
about opérating profiles and discretization in time (Jutan et al [19?6a)}.

- The parameters of the state space model which descrlbed the’ atlal e T

. \11 .7».--‘\-"

temperature dev;anlons were aﬁtomatlcally determlned for a glven ch01ce of v

, . -

three phvsical parameters - egéective radial conductivity, effective radial-

o - e

- -

. dlffu%lVlty and che catalysc act1v1ty parame@%r (Jhtan et al [l976b]) ,The :

. - ,Y -
axxal temperatu%es at the collocatlon points were- o bta;ned by quadratlc
¥ -

= . - . L v -

interpolétion from,nearby temperature mgasqrements: A stochasticﬂmodelﬂ

N

for the dlsturbances was® then lnconporated inte the dynamlc‘state~spate-

oo e

e model. An 1nferent1al relatlonshlp for the three theoretacally

-~ ( N . .
~

1ndependent ex1t concentratlons 1n terms of cemperature and 1n1et f}ow

. . N

devxatlons was also derlveJ and ubed in the controlltr ob3ect1vc funct;on.

« . - P N - e

.. -A'multivgriate feedback. controller wés~dcsigned.from,thc

oo

« ~
.
d . ~

.,\ R A * ~- . ‘,.!-’ Lo - ;.~‘ - - . B : 3
_nesulting dynamic—stochastlc model by‘dynamlc grogrammlng, and was

a7 v -
-

Kalman £ilter theory was used to obtaln the state estlmates. Despite all

. - - - r

the assumpt;ons 1nvolved ifr the modelLlng, ﬁhe Lontroller performance N

- - « >
- N N ‘- .

.. was very saCLafactory, “and 1ts perﬁormdnce when*=u§3éated to’ bothvtheA' -

. .. . s
inhérent‘stqchastic distdtbances in.the éystem‘and to a deterministic_ldéd ;

.

-

~ ¢ ‘ .

.

1mplemented under p11Qt plant operating condlt ons (Jutan et. al [l976c}) -



hatd

P L0
. . Q .. .
N - - ~
. R L

. - K s . . M . . * L3 . 5 . N - > ¥ - -
*change. in wall tgmperature was considerably superior te a well-tumed

‘single 1oop prqportionél—iéﬁagral {PT) contraller.

. ST TR T ; Y
, 7 '
@ ) N A

- Jutan s result is one, of th? very - few successful reports on

¢

modelllng and control of a complex packed bed reactor, prOV1ng chat

~

3

However,

involved in the modelling part.

.

'advanced control technlques are appllcable to real world procesSes.

\the,dr;wback of .this work(i§ the.tremendbus amountnéf time

2

_The parameter estimation of. the

.

- sta:e~spaée model was also time consuming.

éngthy and éedious
s

¢ .
mathematlcal Qperatlons have to be carrled out 1n thls proCedure

- -

8631des, in thls case good models fox .the’ reaction klnetkcs of the

"

,would’be undvgiiaELe.

assumes

7.

-applicable

-

- confroller

lfundamental material and encrgy'balanges.

“ae ¥
Faed

hydrOgenoly31S'of n-Butane had been establlshed (Orllckas [1972]),,

Shaw [197&]), przgadLng 1nvaluable 1nformatlon in. settlng up the
- . 3

-+

.
.

to apply in&ué;riéllyu.

.

* lia T * N - \ o ..4\ -

] «

A

dIn view‘of these difficqrﬁies,'aﬁ alternativé approdch’ which

. e . N .t - “t

the reactor -as ‘a “bléck box' will be presented~ﬁere. Dynamlc

noise quels which can be statistically 1dentlfled from plant’ data

procedurle of- thls emplrlcal modeI bulldlng has been systematleally

o -

bbra impoﬁtant,_lt is

-

aocuheﬁted and Wlll be dlscussed in Chapter 2

-
.

plant data are measuréd

- - .
v . -

"a
) Fa . .

. médgl'éan,bq;easily:qonve:tea ingh a §tace-space model‘form for whiqh

..All‘chese'féctOrs'make‘Ehis‘apprpacﬁ difficult”

The

to any complex chemlcal react&& prov1ded all the. necessary

directly.from transfcr funct1on—type models is Cedlous, chxs

-and stochastlc behav1@urs %an be descrlbed bv dlsgrQCe cransfer functlon—

-

Although derxvatxon of a multlvarlate stochascmc

‘In many cases,_such informarion-

l;
.



[

.

" .,
.
v

e - T - <t ‘g P ) st AR
. stréighsﬁorward design cechqihues‘exist. EIc'ié significant in this -

. N .
“
3

approach thac all the 1ndependenn cornr trolled varxables Afe measured or .

> i -

cdn be 1nferted froﬁ other measuraﬁle varlables. Alchough the nUmber of

f . t

parameters 1nvolved w1ll increase rap1q1y as the dlmen51onality oE che .

LI - 9,

- \
;nputs and ohtputs lncrease,‘thls effecc can be mlnlmlzed by using, the
R o . - . . N ~ . *

- . . . et s
conicept of principal component analysis on the output time series

- ’ B . . . . -

: §tructgre<t6'redude th% dimensional%ty.of the bgtgutf;,This will be

. e - >

“outiined iq‘Chaptegaé. Many chemical processes seldom involve more, than

« - 0

Y,

three 1nputs and three outputs. _Thus, transﬁef functlon—n01se models are

R S oo C e Lt
often suitable for most, regulatory control purposesr © - . 'L
L B} PR e . ’ - -
. 7 In this'work;,aQmultivariaxe‘stbchastic constr&ined féedback A

. . . .-

N . o

COntroller is derlve& from the transfer fumctlon -noise model A similar
. N B ; ~ . * ,,' -

controller de31gn procedure ta that used 1n Jumah s. work lS follo&ed..‘.

Other progects currently being 1nvest1gated on Chl& reactor -inclade °

self—tuning.adaptive contrql; a dual tascade concroller yith decoupling

.

effeets and'veriations on model reierence adaptive control. . 0

% e - . .. . - .- . .~ )

1.4 OQutliile of the.Following .Chapters - . T . YL

.t - N . - _:, v ::‘ . . . e e e . o . . ‘ . o ‘_‘
Chapter 2.reviews: the rclevant materlal 1n the llterature 1 N

. " - -
- N - N © .

on the madglllng technlques for mullearlate processes. Seotlou 2. l

o s

P .
. . - -
, U v . » . ..

glves a br1ef descrlptlon of ’ mulclyarlaxe tlme serles models and ther%

< .
- > . .
. b v

14

‘varibus~caﬁdnical forms.. The three phases o{ formulatioh-—iidentification,‘

- PN - . ‘-“ et 'N A
. e . .- .

. ~'parameter estlmatlon &nd diaghostic check1n§ are presented in Qrder. ..

- . -
T~ . . . - -
A » .

Sectlon 2 Z deaIs wlth the formatlon of parsxmonious multlvarlate MR

- * -
- N <. ~ v -

transfer‘function-ﬁoise‘models. These multivariate forms are often- : -

e .



.

-
3

extensions from univariate models. Sectian 2.3 gives “an example, . .

b4

.

N .
) - R .

2 -illuécracing the construction- of multivariate models. An alterngti;g

- . .

représentation- of the dynamit-stothastic $ystem in state space model form.

~

.

. o . .

..is shown in Section 2.4+ Different methods "for the conversion of "transfer

function models to this form are presented.  The benefits of these two

) . . Y
forms:of model representation-are also compared. - . .

-~

N

N . . . 4

A s

In Chapxér 3;\the confiéuracion of the pilot plant reac¢tor and

s

- x

the process-digital minicomputer- are reviewed. Section 3.1 presents

-

the ba

' 4

sic reaction-kinetics of the cat@lytie hydrogenolysis of n=butane.
- {3 -

. -

. . - ¥ . . - -
A-brief descriptibn of the equipment - tubular reactor, reactant flow .

<

network, cifculating cil network and the’ process gas chromatograph-

<

. e
H .
- ¢ . » . .

. . : L.
programmer is found in Section 3.2. Section 3.3 provides an overview

of the.real t

facilities. A summary of the collection of basic software for the .

’

’

A

N
.

ime~pchess‘coﬁtrol Nova Computer system and its auxiliary

- . «

+ N
.

control of this pért%sdlar reactor is dlso given. Section 3.4 "indichtes

-

.

.

the necessary interfacing between.the reactor sysgem and the process

computer; .

ar

&

Chapter 4 generally qcéou&gs for -the actual modélling of the

LAY <

- . hY
* - 2 . . -
. s L -
> ?

reactor system,\the‘proﬁlems‘encounte;bd and .their solutions. Section 4.1

outlines the data ac

- r

quisition scheme which is vital for the model building.

Due to the configuration Qf'che.pfgzess gas chromatograph, exit .

N

‘concentratigns are available only every six minutes which is far tos- -

long to bas

.

A}

. N
.- -

e a practical control scheme on these measurements only. -

- . ~ v

Section 4.2 will describe the development: of.an inferential. scheme for

. \ . . )
- - R a* DN €

»8
o
"

-

o



. .
v

. .

'pfe¢icting the eXit concentrationsg from the axial temperature measurement

v

and the input flows present .during the previous interval.: Canonical

variates are formed by the linear combinations of these measured predictor
T em T . - * ; o -

" variables, and pseudo-concentrations in terms of extents are regenerdted.

-~

The resJits from this canonical ‘correlation analysis and the validity

and advantéges of the method are also discussed. Finally, a real time .

* version O6f. the recursive leéast squares fit is introduced to improve the

parameter estimations in the prediction equation under drifting operation

. .

" conditions. Section 4.3 is concerned with the”building of a multivariate

. . transfer function-noise model for the reactor system. Despite the

\

-

success in model fitting, it was suspected that not all three output
- . ~? .

¢ - ‘

.extents deviates needed to be controlled. 1In fact, in Section 4.4, a

-

test for-the reduction of the -output dimension showed that only two

- » . . - €
.independent outputs contain 'most of the activity' of the system. The

. - ”

formulation of .this test is presented. With two ‘independent outputs

N

chosén, a two inputs—twvo outputs model is refitted and the final model

. -
.

is then transformed to thé state space model form.

. - . N

. R ;
- Chapter 5 outlines 'the optimal stochastic control theory .from

.

- 1 .

which the multivariate'feedbacK contﬁpllef is derived. Section 5.1

-
.

> N ~ 3 -
and 5.2 -indicate the desipn precedure from transfer function’'and state
" N . N Al

space model forms. Kalmans filter and controller design by dynamic
- .. . . .
programming are briefly discussed. A simulation study is carried out -

o -
to confirm the performance of the various controllers. Section-5.3

" describes the implementation of the multivariate -contreller and the——-.

»
.

results from thisg ‘run-wre.presented.

’

. -
. e
. v - -

V3
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. T - - . CHAPTLR 2 S '
s ) ' - MULTIVARIATE PROCESSES ] oot
2.1 Multivariate Timé'Serieé Analysis ‘ - B

> . . . - .
. .

- 2.1.1 General Formulation of-ﬂuLtzvarlate Time aerles ‘ ye

e e e e e e e e e e e e e e e e e e

A stochastic process is a statistical phenomenon in time

. .

governed by probabilistic laws. A time series is defined as a sequence

of observations on a variable measured at different points in time. Thus,

- -

.it is a realization of a stochastic process. In the case of more than

one variable, a multi%aniate time series is represented by the vector

- " -
. . N .

N(t) xhlch has elements n, t,‘where . .
, -

i=1,2,....,n n = number of variables

t=1,2,....,7 . T = total-time intervals
. by . . ’ .
. - - ~
. ) In this thesis, 'only discrete- time series models sampled at
equispaced intervals of time are consideréd. A unified approach to -
. , . ’ . .. ~ 2 -. . .
modelling univariate time series has been presented by Box and Jenkins
A . - *
+ [1970]. 1ultivariate time series .models of the forms’ considered in this

Ehesis were first systematically presented-by Quenouille [1957), and
. “later by Wilson [1970],,Aiavi [1973)} and many .others. In genéral, a

multivariate time series can be modelled as a weighted sum of .past

- ~ -



.
H

-values of a
. . -t
where .
. N * 1is
=t
» <
~X L 18
’ is
-t
v{B) =
. Po-
- ~
- It is

_corrected and

.

2

7(B) = g‘ch), such that

: - I, = a

. . .

- U

2Bz,

multivariate white noise sequence a.:

the (nx1) vector of time series variates

the mean value of the series

a white neise séquence with mean Q and

backward shift operator, such that Bk§k

assumed that from here on, all the series are mean

-~

is a matrix.

series in the operator'B

-

equation (2.1) is’ 'rewritten as:

.

)

t

N,o= 2(Ba, -

~

covariance matrix D

1,
V.

t;k

<
"Equation (2.2) can be expressed in another form with

"

(2.1a) "

Again, 7(B) is a matrix series in the backward shift operator B.

. < -
The uniqueness of Equation (2.2) and (2.3) hinges on the statlonarity

~

and invertibility conditions (Wilson {1970}, Alavi [1973]). In brief,

}B? < 1.

i

\

.

a process is stationary and invertible if «¢(B) and 7(B) converge for all

"12.

[
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) s 3.
. . - > ) . R .
Defining the covariance matrix of the mulrivariate,
wvhite noise seqflence at'as the expectation: ’ N - ..
; EQ aT) =D 3 . ) “(2.4)
. €t =3 - “ts . ’ R
- 5 =‘{O ~ 8 # t "
ts 1 s =t .
- "
where ) ’
D  is the dispersion matrix ) ‘o .
] ’ - .
E( )is the expectation. : .

Superscript T is the transpose of the vector. }

n othér words,’ the white noise a - are uncorrelated with gs at different
.' . - -

time periods. Correlatioh-may exist among the components when t = 5.

o N r

On’ many occasions, a time series is non-statiomnary, that is, the

series has no fixed mean level.. Data rtends to drift away from the local
« (4

mean level although local sequences of the sericé‘cgg be described by

- .
~

a.stochastic model. Stationarity can be attained by means of differencing,

-

which is represented by the inverted delta operator 7, where Vd = (l-B)d.-

- T .
- .

Generally,; the value of d is rarely greater than 2.
. . .

il *In practice, a parsimonious model is required from modelling.

.
.

It has the fewest number of parapeters possible to best describe the .

séries., It is the aim of achieving parsimony that different modelling
. N A

A

techniques are déveloped. ] -
Quenouille’ [19577] defined a discrete, stationary multivariate

.«
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3t
.

. . .
time series model in the general form

~ . . .
“ . N

. & . .o .
o 28 77N, =2 2, - (2.5)

where . - - . . .
2(B) .and 8(B) are finite mat¥ix series in the operator/B, such that

v

PEAS |

- ) . ‘7 .
, 2(B) = I+ 3B+ 9,8° + ...+ ;psp (2.5a)
8(B) = I+ §B+ 8,B° + ... + gqsq (2.5b)
P, q is the order of matrix. 2(8) and 9(B) respectively, »

Vd-is a diagonal matrjy4 of differencing operators. -

- <«

. Matrices 3(B) and 3(B) are both full: and the orders\p&} and q;j

of individual ®lements are not necessarily the same.: Equation ¢2.5).

. L

designates an Autoregressive-Integtated-Moving-Average (ARLIA) process

i

I,

-

‘of erder (p, d, q)l when the AR operétor 2(BY

-
7

<
~d

T S

- v

- S

which is a moving average (MA) model qf order q. Wheraas when the MA

operator 8(B) = I,

-

s L) yd N, = ae) ) S (2.7

it is an autoregressive (AR) model of oxder p...

“ The generﬁl model Equation-(2.5) although may be able to

describe the process, thg rapidly increasing number of parameters as the

.
P - -
. .

¢ N

4



. _number of .series increases makes it impractical for efficient
. identification and estimation. More important, .there are too many
degrees of -freedom in-the full parameter matrices, ;(B) and 8(B). It is

difficult to obtain pn%‘yé identification’'since it can easily be shown

that there are an infinite number of solutions to the full matrix model

. -

which will yield the same residual'covariance structure (Rao .and

Y

Kashyaﬁ [19761). This, it is necessary”co choose ‘alternative Eanonical

forms which will yield unique solutions corrésponging to a given’

covariance structure.-

. « . -
- .

«

" "Wilsen [1970] sdggégted a canonicdl ‘form having a diagonal

é(B) matrix with order p f\maxépi),-and with full 8(B) and Z matrices.

® 3 ’ : : 3 -
. No theoretical explanation. is attempted for this particular seélection.

- . .

. Rgchér,.it is.primarily for the .ease with -which one can identify the

process structuré from data. The diagonal 9(B) matrix regenerates an
FN . ) . l_
R intermediate multivariate series bt from Nt’ facilitating series

identification. However, by choosing full 9(B) matrix operator, °

estimation is more difficult since M\ parameters entér nonlinearly’

while the AR parameters'enéer Linearly. Yet, subsequent tests inflicate
. . this model form provides adequate and satisfactory representation-of

-

many stochastic processes.., This model fothlation'protedure will be -.

LN
. -
o

presented in greater detail”ip the following secciqnsf

4 . - N . »
. .
/ ~

‘w 3 X - - .
- - Many other possible canonital model structures exit and each

. . - 4 .
. - A

- - has its advantages and disadvantages (Rao and Kaéhyap {1976]). . *
V. -

Alavi [1973] suggested an intermediate model form in which neither .

.
.
- hd -
4 .

15.

o
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. s
-
.

¢(Bf‘nor 2(3) is consp}ained to be fuil‘or diagonal. Both.¢ijZB) and -
5ij(B) are alloéed to- have different ordeqs and the order of the @odel
depends on the maximim values of pij and qij'

Other suggestions (Akaike [1974], 'Parzen.[1974]) restrict the

model to be ,pure autoregressive because of the ease in estimating their

4 Ry

Al
parameters, even though more parameters than necessary may be involyed.

”

The‘required order .of thé autoregressive modelr-is found by successfully

,fitting higher order AR models and using some form of decision or .

.

.

hypothiesis test to indicate whether more terms are neéessaf}.
. . o . }

In viewing .all the possible ‘routes fo} modelling, the model

B T T

-

*

suggested by Wilson is.adopted for the most part.of this thesis. The

-other férms are by no means inferior; rather it is.am arbitrary choice

’

\from many équally adequate selécc;ons. Although-Wilson's model may not-

give a perfect parsimonious represcitation, it is the author's feeling A
. > 2 RS g -

. that with this structure, the readers with somey knowledge in ‘waivariate
a - . .

~

. . . ' 4 .
time series will'find the model development easy to follow. Other.

L Y

modelling techniques will, however, be supplemented wheneyer additional

’

information is dcemed necessary. Moxe details on the properties of

. .
- -

various timé_segics representation can be formed in the literature,

v

mentioned above. | r .. o ¥
! ~

e o ot e i e e St e . S . D o T e Yo A e S e e i e S A e B0 e i T e i S e e e
. > - *

Model building consists of three sﬁngs - identification, )
escimdtio?'iyﬁ diagnostic‘checkingt Identiffcation of a procéss is the

" 4 : - ‘!. -
proper choice ¢f a preliminary model with iﬁl!lql parameters and .order

L ‘3- -
. .~ . . . .
R . {'
.
. [

e




dstimates. By estimation, the model is fitted statiécicalky and the best

A
S .

4 *

17.

2

parameter estimates are obtainéd. "The final diagnostic checking involves

testing for any inadequacies in the model.’ The model form will be

- ..

~

adjusted and the procedure repeated until the diagnostic checks indicate

no model inadequacies,

(a) identification

.

These three stages are summarized below,

\\\\.

>

. e . ) : . .
In irdenti¥fication,.the concepts of covariance, autocorrelation,

¢ross—correlation and partial correlation fuhctions dre most commonly

used. The férmulations'of these funccions have been well-defined

-

(Box and Jenkiﬁs [1970], Quenouille [1957], Alavi [1973]) and thggzﬁiii o

.

not be discussed here, A brief description of the bghuvfbur of the

P -

auto- and partial” correlation functions of the three classes of time

.

seriés moaéls‘— AR, MA and ARMA dre-summqrized in Table 2.1

o
.

TABLE 2.1: AUTO- AND PARTIAL CORRELATION FUNCTIONS OF ‘AR, MA AND ARMA ~ °

PROCESSES

Ll

-

- .

A

Autocorrelation Functions

. O

-
Partial Correlatien
‘Functi . ol
unctions, ¢kk

RS,

.

Autoregressive
Process, AR

\J =
JONNEFN

Tails of f exponentially
or as damped sine wave

Cuts off é; lag p

/

o s

Moving Ave;age
Process, MA.
N, = 8(B) 2,

Cuts off at lag q

4

Tails off exponentially

or as damped sine wave

-

“Moving Average
Progess, ARMA

Autoregressive-. ’

Tails off exponentially y

or damped sine wave after *

first (gq~p) -lags

LY

Tails off exponentially
or damped sin¢ wave
after first (p-q) lags

\

-
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Following Wilson [1970], a uhivariate linear discrete model

R . . < . D %

is fing&\fgentified separately for each series such -that .
' ;i ;i . _
n, ° = a, - 3, a,- + 5, n, . (2.8)
1,5' it k:l i,k it~k K=1 ik it~k
e
3 - " -
The discrete parameters p, . of 5. and 9, are fitted and
< P © pl" ql ".L,k > J_,k‘_; = .
checked. The pi_aﬁa :i K AR parameters are taken as good inétial estimates
s . ’ * N .
for the corresponding elements in the multivariate model. The n. o series
* . N M b

, - > . .
are then checked for cross—correlgtions. If these n, . are not cross-

[ 2

‘correlated, the multivariate model is simply the- combination of -all

~ .

individuall univariate models, i.e.‘g(B) and 6(B) have diagonal elements

only. For. cross—correlated Ry intérmediate series bi

are generated
) . .

by filtaring the original series through the ¢(B) operators..

-

- /) )
. Pik i,k (2.9)

Y .

A2
o
]
o]
]
B [N e Bt =)

Sample cross-correlation functions between the bi !s ‘are then examined

’

to find the lag k at which they appear to cut off. This lag k will be the

" order of the MA operator 2(B) such that q max(qij), noting that.qij-s

- * !
©aye not necessarily the sSame, ) . -
3 - :

‘ .

b > .‘ - v . - ‘- N -
(b) Estimation o . f

L3

When p and g are properly chosen, estimation cah be carried out.

» . N -

The continuous parameteérs o, and- @, .
] P : ¢1,k ij,k

the maximum likelihood estimation procedure as outlined by Wilson [1970, -

are estimated in this thetis by

. AR

~

1973). The algorithm which minimizes | & @, gi!_is based on iterating
’ e t=1 )
\ . e 2ok

I



-

) . . . . 'y
’ \x1m¢ee&—cﬁﬁg2tiénal estimgtion of residual dispersion matyix D and
. . - : . . , <
.conditional estiﬁatioq of parameter 2. Ragid‘convergéﬁae\ié often -’
recached even with poor preliminary estimates. For agz\chosen vaiue of
the parameters, the residuals z, .can be calculated recursively using
"o ’ . *
R n -
;1 ) = )
0 = n, - . . + 2.10
it ist Py b n < (2.1

L e A 8., a.
Kol i;k i;t-k 551 k:l ij,k th k

Initially, Gij K values with i #-j.can be set to zero. The

3

e before- some time point tl are also set eiﬁal to zero-in order to
3
. " start fhe recursive calculation. X
(c) Diagnostic Checking
, =

N .

. Y "

The diagnostic checks are based -on the fact that if the model is

.
N 1

adequate the residual sequence oL shquld appéar to approximate a nulti-

19..

)

.

.7variaté white noise sequence. This implies that éach element of 4 should

.

approximate a univariate wvhite noise sequence and several tests can be

performed to check "this (Box and Jenkins [1970}) .~ The sample‘auto-
* . N - “
. correlations of the residuals, r, ij(k)_can be calculated for each pair

(S 30N

of series 1,3 and for lags k = 1,2,....,K} and compared with the two
. - O
standard error limits 2/vT' where T' =T - t, + L. 1€ the model is

.

1
. ‘correct, the r& ij(k) would hdve an-expected value zero and a standard
error of apprbximately 1//1'. An approximate overall test can be hd
. dbtained by comparing . . - i . T
-~ ] o~ . ) .
9 L . K 32 ( Tooe
. =T - k) - : . 2.11
*i3 k_gl ERTAE //) ¢ (2.11)

o 7 .
with the critical value of a Chi—sqgﬁxgd distribution with (K - p - @ *

£ -



"« D which is the generalized variance of the residuals. In fact, decisions

degrees of freedom.- These two tests form the basis for/model chbckﬂng.

. .

. : [} ‘ L]
If several models show no inadequacy, a model dlscf&mination can be, '

performed by examining the determinant of the residual.dispersion matrix

.
.

. .e ' . : ) . . ;
on model imprdvement should be based on [P} since Chi-square statistics are

«
> - . .- -

sometimes insensitive and misleading .for model selection (Alavi [1973]). .

-

. The algorithm of identification, estimation and diagnostic

“checking is summarized in Figure 2.1.
: : 2

(S

. ‘In many cases, a pure AR process is desirable for time series

-~

. .
rnodelling. AR parameter estimates from thé& identification step are ‘

fairly dcecurate estimates$. A criterion for identification of the ﬁropgr'

. order of -the AR operator was developed Ey Akaike{[lQ?&] for univariate :

- . .

‘series, and can be extended to multivariate case (Pgrzen [1974]). This

. -

procedure inveolves fitting mulrivariate AR models of. increasing order T
. - . - 5 . -

r . - x-
and testing for the significance of the informatioll contained in the

additional parameters. Alavi [1973] presents an algorithm. for recursively.
*computing these higher order AR parameter matrices ang-thereby.obtiining
pseudo partial corrélation matrices as well.

. LI



FIGURE 2.17. ALGORITHM FOR MULTIVARIATE TIE $ERIES MODELLING

/ Identify, fit and check‘indivigual

series n,
. 1,t

o

Check correlations between_ni c
* 4 >

t

NO

~

@

'i'es

Generate intermediate series bi c and identify
b4

order q of MA operator 0(B)

L

Perform parameter estimation by the -
: .. maximum Likelihood:method

2

3

Perform Diagnostic Checking

“Model adcquate?

"Final Model Obtained <
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2.2 . Multivariate Transfer Function - Noise Model . - )
< " ' -3 . "
2:2.1 ‘Genera] Formulation of Trnnsfgr Puncclon - V01be Model °

¥

In many chemical processes, thie dynamic behaviour of the svstem
~ - - [ F

» ~

can be represented by a transfer function which relates the inputs to the

responses. Together with a mnoise. term which describes all the uncontrollable

disturbances in the system, Box and Jenkins [1970) defined a univariate

transfer function~-noise model for.a discrete linear system:

; . « _ e

Y - z . \__/".‘J
‘ - y = v u _ + N * . . '
. . t k=0 k "t-k . Tt ) . - )
: - £ V(B) u + N o - (2.12) -
>with' : . " ) - . ‘ - :
) ‘ _ w(B) b . R
v(B) = FC) B , )
E —‘0 + v.B " 2 L ' Co ) )
=Y vl + vzl + ... L ,(_.13{
where - - o ' . : . . -

"V(B) .is_the transfer function with impulse response weiglits v _,

= »

w(B), 6(B) - polynomials of order r and s %espectivély

4 - 5
b is the dead time or delay

Y . <

Ve ~ mean-corrected stationary output series’

: . . - : St ) ! ’

u. - mean Lorrected statlonary 1nput series - . : .
. Nc -~ mean corrected stationary noise term, ' ?



. ; - ) ' X
e : E -
. ' - & - . N ©
: ! i Similarly, a multivariate transfér,function-noise model can
-t . s . . * ’
. .bg/defined (Wilson [1970]1).as:. .. :
L . ) : ; g
. N T , . .. ] . .
- = V(B + N o
R AL (OO . zas
. . ¥ . . .
. - : ) .
yhere a8 :

. -
. - "X, is a (m x 1) vectop—ef outputs e
u
-t

: . . . ) . .
V(B) is a, (m x n) transfer function matrix with the (i,j)-th -

is a (n x.1) vector of inputs _ ) \

» «

element given by ' . .e
N b, .. ‘ B .
e e e B s
= " . 7 -
: i3 ® 855 (B T Coe 2.1

The multivariate disturbances gt.cén befmodelleﬁ by the ARIMA
% . . ! . . .

time series models discussed in the previous sections. .’ )

. The discrete paréméters bij‘ rij’ sij of the Eransﬁer funccion -

L2 » .

- [ 4 * L.
and pi} q..5 dn of the noise model, and the continuous parameters: ..

ij . )
. 1 i - . . - ,
< - ., T - _ . . - . - .
oij,k’ 9ij)k"¢i,k’ranq eij;k arg to bebldentlfled tFom input and outp?c
\\\\;daipd The multivariate/transfer function model is stable if and only if
‘all the individual transfer functions are stabie such ghat-éijiﬁ).has no .
“,- zero for !Bl_g 1. Similarly, the.rfMel is invertible if and only if m = n

."- and the determinant of the multivariate transfer function LY(B)’ has no

>

zero_ for |Bj < k.  Models can be unstable or non-invertible and in each -

case a controller is needed to stabilize.the closed-loop system.

hd . - «
.

AProcesses with non-invertible transfer functions are referred to as =~ °

- [ * -
being non-minimum phase.

. . . 3 . -

N - - —— . - - N .
e o - . . - — o
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"-In practice, real world processes are very rarely noise-free °

'and thus.the inclusion of

[

Et s necessary. These stochastic disturbances

will cause the responses t6 drifr a&ay from their operating mean level

"if left uncontrolled. It is assumed that EE can be modellied independently
. : . 0. . * . ’ S

of the transfer function -of.the system by the time séries models of the '

’
» 4 N
-

last section.,k Thus, the model equation (2.14) consists of a transfier

function

]
.« .

nodel for fhe:dynamic part and a time series model for the e

stochastic part of the system, as shovmn in Figure 2.2. . .

FIGURE 2ﬂ2; ‘A §CHEMATIC DYNAMIC—éTbCHASTIC PROCLSS i .
v E_lt_ '
‘ ) " » Stochastic J :
. X L , Process g-l(B)ﬁ(B?{ ; .o
’ . : | . .
- ‘.“ N .
. -t
/ Process Xt‘ ) vy - C
S ¥| Dynamic V<B{ ot . T .

..

0 . . »
*

Xt - deterministic output vector, {m x 1)

;-
[

>
.,




B (a) Identification of the Transfer Function: .

’

.

' the input with known stochastic structure into a white noise. sequence.

$-2.2.2 Identification, Estimation and Diagnostic Checking ..

e = o e T et S o . T e o S S e o i e e e S e v o e Y ——

The purpose of transfer function model identification is to

regression, prewhit-ening and spectral analysis. Only;t?e prewhitening
N N B >

s L3 [

.
P

Lo - determine the impulse response functions and the discrete parameters
, ] . » ) . ) . , , T . B [}
R i of the system. Postmultiplying Lq. (2.14) by u__,, summing from
PR . .
k = -~ to =, and taking expectations with the condition that §c,and ..
u_ are uncorrelated will give the .general identifiication relationship .
- : * ) ’ - ‘ "
N P (B) =V(B) T (B) ' ’ . (2.16) .
- =yu - ~u. .
J . where . . - .o ‘ v . . -
. X . F}u(B)‘- cross-covariance matrix gemetating function .
. -y 3 . ’ ¢ N - .
J. X between inputs and outputs, and is équal to ,
/ - o k : . =~ N .
: L op,, (08 S ,
- 3 3 v k= ’ . "
: - ' « ' . 1 . . -
- * I (B) - autocovariance matrix generaring fuﬁccbqn_of“ik* .
. . -u oo - . -
. . . k . -
’ o inputs, = I Eu(k)B‘ - . . , .
.kz-—oo - LI K
’ The procedurd will start with the construction of -univariate

output and multivariate input systems. Three approachés to identify

. V(B) using Equation (2.16) are mentioned by Rilson. [1970] - linéar

. method will be presented here. The essence of this approach is to transform

identified for .tha:inputs such that

‘. g ' L Qan. .



« T : hd
-

~(8) = 57(B) #(B) . S o

where

2
]

Substituting Equation (2.17) into the transfer function model

Equation (2.14) gives

. A

BIOR RO

r N .

R O R : o (2.18)

—

Wtth Q?e cross—covariance generating fuanction EVJ(B) and residual

dispersion matrix D formed \
Za .

"U(B) = z;u(B) g;l ‘ . (2.19)/"
Thus, - - h
v(B) = (2.20)

With the impulde response func;:iori.vij K of each paixr of input~
/ ‘o i R )
opriate order of the uih(B), Sij(B) operators

output determined, the apy
. 7

and the delay order ¢can be obtained. The N, series egn then~be

regenerated from EQuation (2.14) and its stochastic syrycture identified

separately by the methods of Section 2.1.2. R
S . : -

.The advantages of Eragéié;ffdnction_model identification by
prewhitening havéd been pointed out by Bax and Jedkins [l97b], an?/
- / - -

Wilson [l970f? The only significant -disadvantage, is the need ‘of prior

iS

knowledge about the input structure. -Since  the input stachastic

. : : - 3
structure of many processes are quite simple and the identification is-

* -
&

relativgly casy, the prewhitening approach is recommended for

LRy gl



- .

preliminary transfer function identification.

- »

(b) Preliminary Estimation and Checking of the Trans%er Function Model:

- .

. . REN ) )
Rewriting the i-th row of Equation (2.14) with the discrete

parameters properly identified,

) o -

. E ws (B . . : '
v, o= ) P=su, .+ N i=1, ... m (2.21)
l’t j=l oij(B) J)t bi- l’t . * .

3

N >

and representing each Ni c by\§ upivariate time series model
b
s .
=8 (B) e. 2.21a)’
c 1( ) it ) ( )

- . . —

d..
;i(s? TN

x

Equation (2.21) représents'a multivariate input, univariate output, model.

The error terms ei N for each output i is regenerated from Equation
e . . \

(2.21) and (2.2la) for any choice of the parameters. The non-linear
. . . T
least square estimation algorichm will be used, which minimizes T -
" . t=l .
This algorithm resembles the .univariate case except there are more than
- - - . ) . - S
one input. N
}
Two earlier assumptions form the basis of the model diagnoétic
checks: . ) <.

'(}) The ifput white noise aj and the output residuals-ei N
. . ’ . i ’
. (i=1,2, ..., m 3 =1, 2,7/.., n) should not be
. . . -
cross-correlated. ’ - ) . - .
. 8 . '
(2) The residual sequences e . should be abptoxim%tely a N

- i ’ . L
white noise sequence, i cK implids that they should not

be autocorrelated. .



* . . . TWT
.

- ' 1, ’ ! .
. The 'sample cross-gorrelations L ij(k) and sample aurocorrelations

r

r, ii(k) can be-tested by cbmparing them with their approximate 957
3 - ~

probagbility limits + 2 /YT and by ‘computing the statistics -

B

2 Ko o ' '
=T % ors L l(k ' 2.22
Xe,1 = T T Tow, 1y 00 | L (2.22)
and . K . i .
2 = g k ©(2.23)
. Xe,i1 = T o1 Te,1i(®) &

which should be distributed as Chi-square distributions with

(K - sij - rij -~ 1) and (g - Py T qi) degrees of freedom, respectlvel?

A3
ARV

if the model is adequate.

-
~

-~

Proper model -modification, if ﬁecessary,,éan.be achi ved‘by

3

rea,ij(k) and ré,ii(k)' If the trausfer fu?ctxpn

- examining the resultin
is' inadequate, there will be both significant cross-corréglations<and
. ¥ . H )

N

autocorrelations. When the transfer function model is/correct but the . ’
. ; , . g

‘noise model is dinadequate, tgén sigﬁificant utocghrelations should be

- M ] . - -
observed. Medel improvement can then be adjust accordingly .
(c) Identification df the Multivariate Ngise, Model:
Whgé’y1e_models Eddation (2.21) have been correctly-fitted and

. N - .

checked, the multivariate noise model can then be constructed. Cigss-—

.

correlatiohs between output disturbances series are first tested. Shmplél/

-

cross-correlations r; ij(k) between the univariate residual series .
¥ - e -

e, .'s are compared with their standard ermor 1/v%. If ré'ij(k) are : .
4 ~ . M - . s ‘ . N

not greater than expected, the disturbances may'be-pure‘GUCpuc series

. > -
~

~
s s ¢

o



4

/ -.' : ; . . " .

/ﬁeasurement error and thé multivariate model will be a combination of all
* Wy -

-,

multi-inputs, univariate output models. However, in many cases, if
there\are unmeasured and yncontrollable disturbances affecting all sutput

series/simultaneously,. output noise series will then have significant

cross-correlations and the 9(B) operators of the stochastic.model have

to be re-estimated. Following the procedure.outlined in Section 2.1.2,

<
.

the ¢(B) operators are chosen to be diagonal with~pi K parameters from
3 > , -

the univariate output hode} {(2.21). The intermediate.series Et are hgéin',

regenerated as before. For estimation, the identified diagonal Gi K
.- - - k]

, (A3 parameters are initially

parametérs are retained and the éij

¥

< .
set to zero,  The multivariate noise model can then be obtained through
Sy . e

-

estimation and the diagnostic checking.
(d) Estimation and Diagnostic Checking of the Muitivqriate

‘Dynamic-Stochastic Model: -

The- multivariate transfer function and.mu;ﬁivariate noise models -

are combined for the final model fitting. All the parameters are re-

|
-
“

estimated along with the new eij E paramchers, although they ‘are not
. s X .
expected to change significantly. The transfer function model should
remain approximately the same sinee .it. is not adjusteﬂ. Multivariate

residuals 2, are regenerated and are passed for parameter cstimation-

-by non~-1inear leastisquarés fit. Wilson's algorithm [1970] in “Section

*

2.1.2 can again be used to obtain the maximum likelihgad estimates of

[
~ <

. * ) PR O R T s, ‘ s P B ’ .
the ‘parameters by minimizing | & a, atL, i.e. to minimize the .
. e=1"7 T L . )

rs ~ ~ .
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»or

determinant of the variance-covariance matrix of the computed a, vector.

A computer program writtep'for estimation and later modified by
Jutan [1976] was used to carry out the estimation. The same tests as

in (b). are used for model adequacy checking.' .

g -

It should be nqted that tgz abowe proceduyre is ‘only a geperal

‘guide for multivariate dynami;;étochastic model building and 6ne need

not follow the step by step 'onstruction strictly. Rather, good

judgement is essential andfgome of the intermediate steps can be =

’

skipped without jeopardizing the model building. The procedure should

bé.followed disﬁreetly, depending on the particular process beiﬁg studied.

13

An algorithm of .the vhole procedure is illpsérated in Figure 2.3.

2.3 - Example . 7 . -

An exdmple employing the model'building'Cechnique described in
the two previous sections is presented here. A, two-input, two-output

modgl was simulated with known random variable series, input series,

..and stophastic-dynamib strqéture. The time model has the following

form: ’ -

- 1.7 SR ks T
Uy (_____10—1;)BQ; 28 u, . N
- e M- 0.5B It N
= . ' + (2.2
- . 3+ B .
Ya,c -5z B
- - L
i-0.38 0
Q. ' 1-0.88
. »




&

Withjresiduél dispersion matrix ' . = .
_ T, _ ;6 3
D=E (@,.a) = I3 -4l .

With onLy-thé'input and ouggul series, the procedure of

*. identification, cstimacion and diagnostic chécking Qere'perfﬁfmed.
Detailed sgtep by step model con:tructlon is glven in Appendlt.l. The
 final fifted model bascd on these sléulated input- OuLput data is ;noun

below, with parameter values corrected to 2 decimal places.

r~ — — o . e R —_ {._ P
10 - 0.97 B : . .
Y1,¢ S—-os08 B - 2:02B R A T NiLe
. 3.03 + 1L.03 B . 2.0, .
Y2t - S-oses 08P OToars? B |2 N2,
K (2.26)
- . - - ‘ _ {A
) 1 - 0.44 B 0 1 0.54B E
0 1 -70.85 B. 0 1.- 0.10 B a, |
_;t i
SN _ - ) |
: . (2.27)
_ 6.05 2.52, - < v -
=llsy 5 93] s : i
- N - . N . (
- 3 ) \‘“fi
A comparlson of the true’ and fitted modula shows excellen )
égreemgnt. It should be emphablzed that the author had no prior fgnowl;dbu

of th'e model structure before building the above model. Some co%ﬁE;%S\

‘can be drawn from this example. ) - <;~ N

A

LR ARy



. .

The fitted transfer function agrees very well with the true
fotm, probably Because the signal to noise ratio is fairly large-in

this study. In fact, the ratio of the standard deviation of the output ‘

v
.

signal to its corresponding npise series is about 15 and 3 respectively.
~"Experience has shown 'that most model building difficulties are due to

’
.

the stochastic part of the modél, Since the repreientation of the-

N
.

stochastic behaviour of the model .is not unique, varipus .model forms .

can describe the noise series adequately.

! The designed input series u, were uncorrelated white noise

R

sequences, as confirmed .by the identification. This simplified input

)

series makes:the model building procedure a little easier. In praetice,

whenever possible, the input series are desigied to be uncorrelared.

its advaq&ages are pointed out by Box and Jenkins [197¢]. Thus, the, .

-

choice of uncorreldted random variables as input in this example is
. . W ‘ ) -
redsonable. Although the model is relatively” simple, thi% test.does

. P

demonstrate thaty these model builéing.techniques are capable of leading
to the identification of é'reasonabge process dynamic-stochastic . | .

model from input—output data only.

2.4 Alternative Representation din State Space Model™ Form

- - -

.

. ‘ ‘Stace—spaée model development was made pépuldr by Kalman tl963]

who expressed-the dynamic of "the system by a set of linear first oxder

ordinary differential equaktions



b

: - _
.
" x@) =AX @)+ B u@k) ‘ —_—
yG@) =Hx ()
*

where : .

A, B, B - parameter matrices; t - continuous time’ . ..

\ P '\‘ . » "
‘X - (2 x 1) yvector of state variables
X - time derivative of X
& ¢ .

u =~ (n x 1) vector of manipulated input variables

- .

y - (m x 1) vecror of measured output .variables

. -

Physical equations from theoretiial mass. and encrgy balances

are generally used to, describer the dynamic behaviour of the process.

These equations can Psually be reduced and transformed into.sets of -
purely deterministic ODE's as in Lquation (2.28). Mechanistic models
. - r . PP

are frequently expressed in continuous time and Lhen discraetized if
-~ . ‘ - .
necessary by integration over the sampling interval,

. ) : /
. An extension to include the stochastic dikturbancés producds
v » . A
the stochastic discrete. Linear state-space model Equation (2.29)

-

many

- * - . a N .

capable -of representing the input—output characteristics of

industrial processes ) , ’

x(e+l) = A X(t) + Gu(e) + [ a(e) - '
v - = . .
cyLe) = B ox(x) + a(o) ] -

where . T 4 .

) L is a parameter matrix . ot .

2
.

a{t) is a-vector of white noise sequence.

v - * «



The whole system is-réérescnted by ‘2 first order difference

equations in the state variable x(t).  These state variables are

abstract quantities which may have phyéical meanings about the system,

Upon close examination, they are made up.of two groups - those states- .
) . o . '} .
x (t) that identify to the dyndmic part, the sa called ‘'controllable’

and 'observable' states; and those representing the stochastic part,
* e N -

, - o o, : *  ob .
the 'observable' but 'uqconcrolLable states X (ty.

-
"

Apnother commonly used equivalent linear discrete, state-space
. - 4 -. - ) ]
model form is:

A 50 + 6 @ + u(®

x(t+l) =
' . s (2.30)
y(£) = Hx(t) + v(t) - . - . S
.- a ) i
where, . X g . .
w(t) - (2 x°1) vector white noise sequence due to disturbances
. L4 .

- "and modelling .error : oo .

v(t) - (n' x 1) vector white noise sequence due to measurement
S .

errar

-~

w(t) and v(t) are assumed independent of ecach other, with variance-~’
covariance: : s

E(‘jt W) = §i .
N -E(_\{t vt) = kz ‘ (2.31)
E(w vT y =0 ‘for all j
© NS St = attJ
r L] 3
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- w . T .

- This form is widely adopted in literature of filtering thgorf,

yet, it.is not uniquely identifiable from input-output data alone

(MacGregor [1973]). The. conversion bet@ en Equatlon (h.h9) and (2. 30)
can be carried out eqéily: ) . : . :, e

2.4.2 Transformatlon from Transfer Function Form to State Variable Form

i o B s o e A P Sk v i St s o s B it o T e 7 i e S e . e ek e i o e e ] Y A e Y o At e e e et e S o Bt A ot S S e e W P i i o o

The transformation to-disérete state model- from transfer

function form is ;bcaincd gy the real}zatioﬁ of the ratidnal transfer
function.matrix into a minimal dimensional system of diffexence«

‘equations {(Equation (2.29)). This ﬁinimal realization is k;own to be
controllable and observable (Sinha and szsa'[1974i) and many,ﬁeﬁhdds

¢ . : . ) . , . \ e .
are available for the*trangformation. Sinha [19753) classified these

- -

. methods. ¥into 3:main groupsr—: - - T ) . y
. . . . i
B ¢ 3 .
(a) * Methods starting with non-minimal realization forms which
‘ ° T - » - i . o
' are then reduced to get a realization that is_ both :

-~ controllable and observable (Ho and Kalman;[1965]).

.

»

N - 2
(b) o Methods starting with the Markov parameters of system and* -

then obtaining a suitable trahsforma&ion of the resulting
Hankel matrix (Sinha and Rozsa [19741) .-

H

() Methods basing on system formulation introduced by .

ES

Rosenbrock [1970]. S e

<

«

A comparison of these three groups indicates that ‘an algorithm

pr&poséd by Rozsa and > Sinha .[1974] requires less computation . A brief

3 . .

description of their algeorithm will b€ presented here.



FEs

2 . . s, . . : »

Consider a strictly proper (m x n) rational transfer function

matrixf’\_l(s) in-which m and_n are the numbér-of outputs and inputs

respectively’ " The minimal realization procedure. is to obtain the
- s M . . . . .
matriceés, A, Brand H for a minimum number of'states.z suéh that
PO . -1 Ca .
,. Ves) =H (s I —4) " B ! (2.32)
] The transfer function matrix V(s) can be expressed a
. . _ --l N _2 . —3 . . N N \ .
V(s) = go s + Jl s + 22’6'\ + ... . ) i (2.33)
" where i ) : - . g
C g rHATB 120, 1,3, ... : :
.- . . AR . e
The 'Hankel macr-ix‘§i: is defined as . . )
e - — ) Ty <
" 4o Ty e 3 ) :\..x_/
P O R
. . . : g .
. L. = . ‘a (2.34)
. ~11 . . - f - )
. . . 3 . ¢ .
AJia i s g
- . '—— s . - -— . -
- Ho- .o oY .
A 4 * : " RS
- = (ia 3 as A% ... adThom) - vin
- ‘H.-A * -
Juat ) ) &
. ¢ ,“—,‘ . < “‘ . rd :- - .
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- . gj and yi are the contfollaﬁiiity and observability matrices;

respectively. The Hankel matrix §i: can be transformed in;o'the_Hermite

normal form by outer product so that A, B and H are directly obtainable.

_ Due/fo~she structure of yj,.the matrix B is given by

) K

= 3 - . 2
B=le;s € -vvvy ) . (2,35

.

wher% e is a unit vegtor of dimension 2.

. & .

) o The H matrix is made up of the first m rows of the 2 columns

-of the Hankel matrix §ij' The columns of matrix A are given by .the N s

. o] . . )

'k + n columns of the matrix Qj, with k= 1, 2, ..., 2. -~ - - <o T
) ,;.' . . . . : 'Y

oL Thus, the basis of this method is to convert the ‘Hankel matrix

-

into its Hermite Normal form from which matrices A» B and H can be read . -
- - B - . . -

off directly. The transformation can be performed §yscematipally in -2
"steps, with ¢ being the rank of the Hankel matrix. Hicklin et ‘al [1976]

have written a standard [Fortran program for the minimal realization

-

- of a linear, time-invariant multivariable system from a strictly proper-

z * .

"ritional- transfer function matrix.

.

e - .

It is noted .that-most of the formulations are designed for

continuous time éystemst However, since the_ transfer function here is

-

discrete, the corresponding discrete state-space model parameters can

FﬁTe evaluated in the same manmer. . ] . . -



“‘Function-noise modei'(é.lé)z

L ' .

2.4.§ Representation, in State Model Form * "_ .

—— e e e e e A e —— e e ——————————

.

The transfer function-in Equation (2.14) can be c;énsformed

into discrete state—spéce form (2.29) by- the concept of minimal

realization.of a transfer function magrix. Rewriting.thé transfer

.

.

- y(t) = V(B) u(e) + N(t) - ° (2.14) ‘
which is made up of .thé stochastic model, ) ’
l . .
) N(E) = p(B) a(t) . (2.2) ) 3
- » X
and the deterministic model with output Y(t) T
S X)) = V() ule) | - (. ' . (2.36)
,

Equation (2.2).and (2.36) are analogous to a system with two
cransfer_functioné V€B) and w(B) with the cérresponding inputs u(t) and

é(ty. Both V(B) and Y(B) can be converted into the state model form.

is

@

Assumipg the dynamic transfer function V(B) and the stochastic gransfer
function vw(B) are both'proper or strictly proper raf@onal matrices,

* - *

that is, if we leét s = B_}; the degree of the polynomfal in terms of ‘s

“at the denominator of the transfer function' is greater than or equal to

PR

that in the numerator. The -linear system is stable when the txansfer

- e . . L . ‘ "
function matrix is -.either proper or strictly propet ratidnal, wpereas

an irrational matrix implies non-stationarity and ‘cannot be réalized;f s

>

. . . .



From'minimal realization, 'V(B) can be expressed as

- .
X (e+l) = A" §+(t) + §+ u(t)
. S (2.37)
4
Y(e) = §+ §+(tz .
But the actual observed output is y(t) such that
% .
yle) = ¥(t) + N(v)- . . (2.38)
Expressingxgxﬁ)-into state model form, ..
’ 4
% x % e % .
X (t+1) = A x (t) + B a(t) ) .
n S - - ¥ (2.39) .

= K -
N(t) = H x (v) “

<

. Incorporate Y(t) and N(t) in Equation (2.37) and (2.39) into

2

Eéuation (2.387:

(2.40
and — —-° — . y
< L ! * i X+(t—) {
y(t) =1 H ¢ N | i
- Y L SR é
L—- o _ L x ()

Equation (2.40) is a general complet® representation of the
multivariate transfer function—-noise model in discrete state vardiable

<

form.

s 1
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~ .

. The state space model has the advantage of unifiying tite

0

representational form for lipear dynamic-stochastic processes. For
- e s

o

-~ . .
different linear_ﬁysféﬁsf the state form is. standard and only the

4 . .
paramefer matrices have to be changed. The thodel unify is a great

-

advantage in subsequent control and filtering calculations. Due to the
. ]

v

first order difference equation form and its stagewise characteristic,

the concept of dynamic programming can’"be ‘introduced for optimal

stochastic controller and filter designs. These equations are easily

X

solved iteratively on digital computers. , The state model is particularly

suitable to the optimal stochastic control devefopment on multi-input-
* t‘

£ . - ~

outrput- svstems where the derivation of cbnqul schemg from the transfer

> . * - - . A
function-noise model is quite tedious.

On the other hand, the state representation does not usually

provide the insight and understanding of the pfocess and noise that is
provided by transfer function ARIMA modél. Idencification of state

space mode} is difficult and the estimation of parameters réquires

extensive knowledge about the process dynamies. It is much easier to -

.
\

i A@tify the model structure from input-output data in thé transfer—

L3

-

funttion ARIMA modé} form.

. -

Traditional state modelling concerns mainly the dynamic part- .

of the system . The sﬁoéhastic.represen;ation of the distutrbances is

-

added as a . hindsight to compensate for observeéd drifting. The combined

model is required to describe the process.
< . . ;

wy
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The mbdelliﬂg éhoicé(betweeq‘gtéte @odel and transfer function-
noise.fqrm-i§ a matter of convenience since they can equally well «
fepresent the lineay dynamic-stochastic systgms._ In this thesis,

a comprémised modelling épprwach is proposed. Both modél forms are used’

to complement each other's deficiencies. 1In short, a multivariate

.

transfer function-noise model is developed with plant empirical ihput-
output data. This will provide a good understanding of the dynamic-

; <
stochastic behaviour of the proceéss. This model is then transformed . -

into the state variable form as in Equétion (2.40). An optimal

stochastic controller is then derived using filtering theories and

dynamic progrémming. The detail modelling and ¢ontrol design procedure

. -

will be-presénted in’Chaptgrs 4 and S.
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CHAPTER 3

PROCESS REAGTOR AND COMPUTER SYSTEM

. . Pl

-

<
-

L An overall review of the pilot plant catalytic packed bed
n-butane hydrogenolysis reactor system is presented here for completeness.

Detniled information of insftrumentation, equipment dimensions and construction,

a

and, calibraticns are given by Tremblay [1977] whe built andlincerfaced this

reactor system. Figure 3.1 shows the configuration.

~

FIGURE 3.1: OVERALL CONFIGURATION OF REACTOR SYSTEM AND COMPUTER

.

. oil out ’ oil in
. . A .
N . L ) A .
. Hoy B . " 0
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' 7 — . K trations
1 - ] H ¢ -
! N ;
! I . '
1 1 § ..
‘ " THERMOCOUPLES ;
] . T
. 1 | i ;
! ¢ ! . i
.' 1 t v '
! ' . ‘
} . ) . ] ]
L ! ' l'
bDC COMPUTER
\~>;f§f ’ Yery briefly, the following sections deal with the reactor l
. kinetics, the reactor and its flow nectworks, the DDC computer and the

interfacing between computer and ‘process.
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3.1 Reaction System Kinetics

The reaction being investigated is the catalytic hydrogeholygis
of n-butane with excess hydrogen over a nicgél—silica gel catalyst. The
coméonents in the exit product stream consist of methane, ethane, propane,
uﬁreacted butane and hydrogen. The reactions occur at high temperature

environment and are highly exothermic. ' T

.

The selection of this particular reaction scheme is due to the

- .

following reasons. Firstly, the chemical reaction kinetlcs are complex

and also highly exothermic, exhibiting characteristics similar to many

B

industrial catalytic packed bed reactions. The prime concern is to '///'
- /

\ . ‘ .
model and control a complex process resembling those ‘industrial processes.
<

.

Thus; various modelling techniques and the applicability of most

modern control theories cdn be tested. Secondly, the kinetiés of -

n-butane hydrogenolysis had been extcnsivcly.studied (Orlikas [1970],
Shaw [1974]). The ;nderstadding of the rqactions_providésxgreac help -
during réacfor modelling, though this is not strictly compulsoxy in this
wark. Also the analysis~6f product stream using gas chrumacoéraphy

techniques is relatively simple and well documented. All these factors

« .

) 13
favour the selection of this scheme for: control studies. .

. e
An overall reaction mechanism for the hydrogenolysis of n-butane

°-is shown in Figure 3.2. . - ' .

The corresponding hydrogenolysis reactions can be represented
[ - *

by six equations of which only three are indépendeht.

& : -
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FIGURE 3.2: OVERALL REACTIONS SCHEME
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C3.HS + H.Z ——> 02 H6 + CH

. : ’ o (3.1)

C2 HB + H2 —_— 2 CHL,*

I
CJ* HlO + 3 Hz-—'———'—i- 4 CH

C3 38 + 2 H2 ———-——-——->'_ 3 cn_;‘

’

The reaction scheme,in Figure 3.2 is based on two assumptiwns:
s

1

(1) Burtane and Propane are absorbed on the catalyst surface

before the reactions take place.

(2 The reaction products may react furnther or be desorbed.

, P

An additional assumption suggests the conversion of butane

and propane directly to methane does not oOccur because of the - low

. Probability of breaking two or three carbon bondg simultaneously. In

this case, the last two.reactions in Set (3.1) will not occur.

The overall rate balance of the six reactions is
L "4
’

>

= 3R - 2R, - R, (3.2)
“i, C,H), NI R TH r

 J

4o,

s Mo hriar &
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3.2 Reactor Flow Svstem and Networks ’ '

'3.2.1 . Reactor, Process Gases and Coolant Network

The reactor system wWas built by Tremblay [1970]. The process systeh

consists of three main components: the packed bed tubular reactor, reactant

flow system and the coolant.network. For completeness, each of them will
be discussed briefly in turn.

(1) Pilot Plant Tubular Packed Bed Reactor:

A detailed layout of the reactor is shown in Figure 3.3. It
consists of two concentyic sections of stainless steel pipe with

.
I3

diameters 1.5 and 2 in. respectively; and the inner tube is 28 cm. long.

. -

H

Nine chromel-alumel thermocoupdes are located along the reactor axis

and three at the radial positions. The exact distribution of these

thermocvuples is shown in Table 3,1 a-b. The inner feactor tubes can

be removed from tha svstem chrough a gland at the top end At either end

are two plugs of steel rod and disks. The upper porous disk allows

the distributigen of reactant gases while téc'luwer gisk segves as a

:subport for the catalyst. The bocto; end is filled with inert silica
5 .

gel to avoid direct contact of catalyst with the support disk, thus

llandLlnb end effects.  Coolant oil enters from the botrom and

fLow&counLer-currontly in the annulus. - The catalyst used ds nickel on-

refrigeration grade silica gel, which is of approximately spherical

shape. The preparation of this .catalyst' is outlined by Tremblay [1977].
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FIGURE 3.3: SCHEMATIb'LAYqu OF THE TUBULAR PACKED BED REACTOR
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(2)  __Redctant Flow Network:

« "

‘Figure 3,4 .shows the schematic flow diagram of the reactant

L

network. Four flow paths c¢an be basically identified - the main ﬁach

to the

reactor, two paths for flow calibrations and the last for

flushing the reactor with hydrogen. The input flowrates were

determined from the pressure drops across a calibrated flowmeter,
) .

4

measured. by a differential pressure transmitt@r. The maximum flowrates

of n-butane and hydrogen can reach 30 and 160 cm3/sec espectively at

STP.

2

~ ’

=

.y

The gases are first mixed, flow through.a back pressure »

regulator and the stream can then be directed into 3 sectioms of the.

system:

" (a) ;

o),

(e)

heater

5
0

£ >

during calibration, .it is directed to the flowmeter.

calibration station;

prior to plant startup, it is bypassed and vented;

during operation, it is conveved to the reactor.

;During operation, the feed stream is preheated dby an electrical

before entering the reactor. The downstream pressure of the,

reactor is maintained by another buck pressure regulator so that part

of the

is. needed for the reactor, calibrated mixture preparation station and '

exlt product could be 'pushed' to the gas chromatograph.

The main gaSesuppliés are pure hydrogen and n-butanc. Hydrogen

N
X

the catalyst condition unit; and also acts as a carrier gas for the -

-
3

ta

& b

B e Rl
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process gas chromatograph. n-Butane is required in the reactor.and the

i
N

.calibrated mixture preparation station which in addition needs methane,

.
'
kS

propané and eLhane'gaé‘ Carbon Bioxide is necessary for the preparation

t

of Eatglyst and’ its -storage. Ah air supply is ‘required for ché_heac
. . * - . . 4 . " N
exchanger of the .coolant oil system, the gas chromatograph, the E/P

transducers to actuate control-valves and also the catalyst condition
“

unit.

(3 Coolant Network: } ’

~ -The circulating coolant oil serves Tto maintain contstant

. . -

-reéctéf‘wall temperature and also initiate the reactibp at start—up.' .
A ‘schematic flow diagram of the c?oLant system is in Figu;e.3.5.. The
;oolant~floQ is_continugus}y circulated at ; constaﬁt rate by a’-
s : : ; . 1

centrifugal bump gquipped w@th'high'Semperatufe.éland and" gasket

- materials. . The o1l flows thropgh fﬁe‘shgll side of J'single pass hedé
exchanger and is- cooled by 23 psig. éompressed air at the .tube -side. ST

- . After passing through a  flexible pipe which reduces thermal stress, it

enters the jacket of the reactor. The exit coolant is heated by six

§ T
-- - . . .

electrical resistance heaters which have an overall capacity of about

- -

"6 kilowatts using low vo{tage! high curmeat AC source. o :

&
. . .

o
o »

<

The head'tang_has a capacity of about-three imperial gallons,

It serves as an_expansion chamber for the oil during reactor startup,

R N - -
‘and alsh- keeps Ehe,c5blant_system topped with o0il. To ensure that the -t

-

v g v, 3 . i . .
tank remains cool during high temperature reaction, a water cooler is

o~

.
.

installed. Five thermoéouplés are located at different positions\in._- '

.'th coolant network and are indicdtedhiﬁ.iable 3.2. Detailed procedyre °

- '
» . s . » . ~
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+in the' reactor startup, normalfoperations and shutdown sehug‘ge are
S 3 ® . .

given by T}emblay.{l977];

Y

TABLE 3.la: LOCATIONS OF AXIAL THERMOCOUPLES ALONG REACTOR

4

Teﬁperhtune' Thermocouple ‘Location, In. from Normalizéd Axial .
 Number Temperature Bottom Support Position from Support
'Tg Ti0 0.50 0.046
T8. T6 - 1,75 0.159
T7 T15. ., 3.00 - 0.273
T6 T18 4,25 . 0.386
’ T5 TlZ. *5.50 0.50Q .
T, 9 6.75 0.614
T3 ~ T7_ '8.90 "0.727
TZ T13 o 9.25 0.841
Tl T16 10.50 0.955

TABLE 3:1b: LQCATIONS OF RADIAL THERMOCOUPLES IN REACIOR .

‘Thermocouple Temperature.

Location,

Bottom Support

In. from Normalized Position

on Radial Direction

T8
T14
T7 -

5,50

.0.60 ‘

8.00 0.60
1.75 ' 0.60 s

.

TABLE 3.2: LOCATIONS OF THERMOGOUPLES ALONG COOLANT SYSTEM:

i,

.Thecmocohple Temperature

Loca&ions

%

Tl

<12

_—
T4
T T21

Oil
Air
Alr
0il

. 0il,

inlet of heat exchanger

inle® Gf- heat exchanger

outlet. of heat exchanger

inlet of reactor

outlet of reactor.

53.
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frequently, gas chromatography is used to analyze the composition

-

"and distributionsof the product stream. The gas chromatograph system.

eﬁbloyed here is the Beckman Instruments’ Inc. model 6700 Process - ,

Chronatograph eduibped with thermal conductivity detector (Qperation ’

»

Nanhal<ll973]). It consists of an analyzer and a programmer which can

be interfaced to a .computer. The programmer Provides a cpntrbl

signal to operaté the analyzer where products analysis is taking place.

Two different streams” from the reactor system.are usually fédzf

- To. - - L. : \
to the chromatograph: a hydrocarbon -gaseous mixture of known composition
. . .. .
used for calibration .and the effluent stream from the reactor exit.

The analytical strategy.was devised by Tremblay [1977]. Basically,

\

hydrogen gas is é@opted as the céériér gas. The re;atiye mole fractions
of hydrocarbons from a calibrated mixture and the carbon to hydrogen
ratio in the feeé'st}eam enable the detefminécion of product

composition . .This strategy'is valid prévided that a feed flpw change

does not oceur within 3 seconds before sample injection..

.

A scheme ‘for the analysis of methane, ethane, propane and

butane is shown in Figure 3.6. A dual column, tem port wvalve. and

detector are in the analyzer. The ‘sample (about 0.8 cm3)'is injedted
/ hd . .

into column 1. The analysis cycle starts one second after the

-

injection and valve A is'energized‘ All the lighter cpmpanents,

N

methane. and ethane enter column 2 after.39 seconds. Valve B is then

R

energized, tfapping.methane‘andAethane inside column 2. Propane and

.
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butane campthen floy‘£§ the detector for ané%ysié. At';99 seconds after

the anaiysis cycle starts, valve B is ée:enérgized, allowing methane

and ethane to be analyéed.\ The whole cycle takes 360 seconds. Yalvé A

-QiiL then bé de-energized, picki;é ué ; newzsample and ; new Sycle
T - ~

- restarts. Table 3.3a and 3.3b indicate the time fof the opening-of'

valves and components analysis in the analyzer.

TABLE 3.3a: VALVE TIME (SECONDS) ' P
Mode ) ] R
. : > .. - Energized . De~-energized
Valve -.° y " s - ’ '
A ) 2 - . 85
B S . 4o 200

0 Second - Time for injectioh

TABLE 3.3b:  COMPONENT ANALYSIS TIME . )
R o
Mode s .
. On . ) Off - -
Component .
Propane . - J 45 K ‘ 80 -
Butane . . 108 . . ) 199 .
Methane ' 217 ’ 280
Ethane . - © 296 ' 345

0 Second - Analysis Cycle Starts =~ ™ o . )
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3.3 Mini-Computer System and Programming

e et e o e e i S R s Y e e . o T g o e > e et ot e o W B e e S e e o e et P e

A layout of tHe éomputer facilities in the Chemical Engineering

Process Control Laboratory of McMaster University at the time of this

~

sgpd& is given in Figure 3.7. A .dual procéss computer system consisting

-

of a Nova 1200 andNa Nova 2/10,comput9r is supporied byisata General

Corporation's Real Time Disk Operating System (éDOS). They share a

256 K fixe@ head disk without the inté}érqcessor bus, (IPR). Each

., computet consists of 32 K words of 16 bits central processor memory,

-
g

"Yeal_ time clock and powerfail monitor. 'Penipheral'devicés‘at;éched to

'the system inhelude two teietypes, a"high speed paper tape‘reader and
o

-

paper tape punch, and a lineprinter. More rebently,'two<new fixed

-

head disksA(ghown by dotted lines) -were added and Qpnnecte& tdfche

Nova 2/10 computer, increésing the flexibility and bulk storage capaéity
P - :

of the system tremendously.

The Noyva 2/10 is configured foriconﬁyol applications while
.the Nova lZOO'ig mainly for program development and debugging.
Interfacing devices ta the Novd 2/10 include 16 ‘channels’ of analog .

input m&iliplexe& into a singlé 10 bit .ADC, 16 contact ‘sense inputs,
-~ &
16 relay outputs and 6 chanhelé”pf analog output from a 10 bit‘ﬁéé.

<

Both assembler language and real time Fortran IV pragram are used for

IS

control studies. A user—proceés compunicatian.executive program

- N - -

package has lbeen developed for on-line conirb{ and dqta'acqéisitibn.

~

57.
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FIGURE 3.7:

CONFIGURATION OF COMPUTER

_SYSTEM AT McMASTER UNIVERSITY

-

L4

»

Qi DISK DPPF (

PAPERTAPE
PUNCH
NOVA 1200. TRLETYPE
.| 32 K r1C
1 " PAPERTAPE
READER
© /. SHARED 256 K -
. . FIXED HIEAD DISK|.
—-———— AN :
(__PISK bpe AE : TELETYPE
: -
¥ ry
I NOVA 2/10
------------- 32 K RTC
LINEPRINTER
H ] .
16 | & 16 16
A/D D/A relays contact
. Sense

U

L{d

58,

o

P

P SR S




59.

S

3:3:2 _iReal Time Programming , .

_‘fhe details andls;ructure of assembler and Fortran IV computer
languageg a?d the RDOS are given in the respective operating ;anuais
[ 1975 J+ In control studies, ;n—line commuﬂication.su?h as-data
logging and éon{rol ougputs are a? integFal part of efficienﬁdmonitoring
-of'procesé operations. Tremblay [1975] developed an intéraptive
on-line.exscutive package fof this £urpose. This generalized operating
system executive, know; by its acronym "GOSEX', is based dh the RDOS
and is notAApplication dépendeAC. This package is capable of supporting
high lével language, displaying and changing patrameters on-line,
providing fgcilitieg.for data plotring, profiling and  storage; and the
ini;iation and stéppagé of user programs. Up to 30 éutput peripheral

2 .
devices can be attached to the package. A general configuration is given

by Tremwblay [1975}. These-include 2 teletypes, 2 lineprinters, 2

high speéd paper tape punch, 8 maghetic tape transports, 8 cassette

tape'transports and 8 parallel disk channels. Proper linkage between

‘the GOSEX package and user routines is maintained by an interfacing

~

program.

The-basic monitoring softwares for the reactor system'are

géveloped by Tremblay [1977]. -A brief summary’ of these programs are

.
A P

sﬁown in Table 3.4. -

-



4
f
’ TABLE 3.4: BASI‘C SOFTX?!-ARE;S FOR REACT(?)K i
PROGRAM _RURPOSES
PTAPE GOSEX parameter .tape
RTAPE . Réac'tor‘ parameter tape
SYMBL GOSEX symbols definitions
SYM;BI.l Reactor symbol‘s:;diafinitions
VISOR Reactor supervisi;g program
_CSCON Contact sense 'pr-ogram‘,
FLAG Alarm flags‘ for Fort:ran-pi&ranz
SETUP Reactor initial conditions setup
. .QENCHA Quick. cooling Qf reactor
}.’ANIC. Emergenc;f shutdown of'sysc'e‘m

w~

)
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Programs PTAPE and RTAPE are used to configure the “executive
., & -

" . programs to user's purposes. - Only those parameters that relate to the
. - .

peripherdls may be changed, according to user's. requirement. SYMBL and

SYMBL1 defind all the symbols that can be displayed on-line during

opeFatidn. VISOR ig:xhe*reagtor supervising program which records

the reactor éemperatures, input flowrates and maintains the setpoint of

the input flow controllers. CSCON‘Bbpervises tﬁe contact’ sense and
'reco;ds the composit;on of exit stream from the gas chromatograph.

Mole fractions of various species an& the butane conversion will be

calculated. Reactor axial temperatures'aﬁd‘flow conditions at the

& . -

time of sample injection are also stored. When Real Time TFortranm IV

proérams are included, designed alaym messages can be transmitted

through prograrm FLAG. The SETUP program is responsible for the

setting of reactor wall temperature -at the startup procedure. It
sets up conditions for program VISOR. When the reactor temperature is

-

increasing rapidly and is unable to be controlled, e.g. reactor

_runaway, quick cooling can be achieved by initiating program QENCH.
A .
1
o .

Under certain abnormal or ecmergency situations,- program PANIC is used -

to shut down the reactor.by cutting off the reactant flows and rapid

-

cooling of circulating oil. To restart reactor monitoring, SETUP is-

Qnitiaced. . ‘ . N

. . Usu;ily, all these programs are not to be changed for this

pilot plant tubular reactor, excebt in PTAPE where users can declare

. : - -

the number of peripherals requireé for their purposes. .These programs
s

‘form the backbone of the software on reagtor control studies. :

6l1. -

Y



Additional programs for data acquisition, control action, etc. are

iz]corporate.d with this basic software. ’ ’ g
HaabA .

N

3.4 Process Reactor -~ Computer Interfacing
i h!

Proper interfacing is required to establish the linkage

fl

between process equipment and the c&mputer. Process Yariables measured
by transducgrs are transmitted to the process computer. These
variables are the 19 therﬁocoupleiteﬁperatures, two input flowrates
and the product stream cémpositidns. The temperatures and flowrate;

- .

are recorded by computer programs while the concentrations are

analyzed by .a programmable gas chromatograph. ' The thermocouple signals
" A
<Are multiplexed inte two identical thermocouple transmitters. A total -

of 22 inputs can be ‘multiplexed into the two éodputef ADC's and unused

thernocouples are to measure room témperature . A twelve paint rotary

-

relay selects the pair of thermocouples to be switched into the inputs

- - - \ +

of the thermocouple transmitters, limiting the multiplexer time cycle

to twelve seconds.

Two differential pressure transmitters are used to determine
aar - . . .

the' flowrates of hydrogen and n-butane; while a third one measures the °

" pressure drop across the reactor. These transmitters consist of

.

tfansdﬁgﬁrs and independént power ‘supply, T i

. .
.

‘It is necessary to manipulate the flowrdtes of inputs and

cooling air during operatien. Also,.rapid venfing of reactants aud .-

.

flushing the reactor with hydrogen are required at different stages

of operation. Compressed air is supplied to, the ﬁeat-éxchaqge} at the



v . s

ceolant network by actuating a twd-way solenoid valve ‘in order to

- . T .- R .-
maintain comstant oil temperature. The reactant flows are manipulated

by applying a pneﬁmatic signal to the diaphram of, the control valves.

. .

These signals are generated by voltage to pressure (E/P) transducers.
Rapid venting and hydrogen flushing are achieved by the actuating

of a two-way solenoid valve and two three-way Solenoid vdlves

1
i

respectively.

Two modes of operation are possible for the reactor. An
automatic mode where the process is monitored auﬁomatically by the .

- 1 .

computer during normal eoperations.. During start=up, shutdown or

.

abnormal conditions, a manual mode which over-rides ‘the computer

commands is needed. Under automatic positions, DAC sigrals from the

computer are directed to an E/P transducer which actuates the control

valve; To attuate the solenoid valve, a computer relay activates

the transistor, supplying the power. At manual position, DC manually .

A

operated Goltagé source suppl;és the necessary voltage to the E/?'

transducer. Mapual actuation of the solenoid valves are required
in this case. _— )

Complete designs on switching networks of the control valves

solenoid valves and multiplexing are giveﬁ by Tremblay [1977].
- ’ ‘ -

~

e~

g
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CHAPTER 4 -

- N )

DATA ACOUISITION AND MODEL BUILDING

<r

.

kS

7Figure 4.1:

4.1 Closed-Loop System

e - s i e o S ke e e e e et e e — e e e

Ideally; & dynamic-stochastic model can be constructed with

open-loop input-out data, folilowing the procedure descrfhed in

- N «

-

Sections 2.1 and 2.2, However, very few industrial processes,
particularly those on which control is necessary, tan-be operated for

1 ) .
any length of time in an open-loop mode because of product

specifications or safety considerations. Their stability must be ’

maintdined either manually-by an operator or by some simple feedforward-

feedback coéntrol. The pilot plant butane .hydrogenolysis reaccor‘being

[y

investigated here is highl¥ unstable if left ‘uncontrolled, due to ’

. o - T
extreme nonlinearities ‘and netisy disturbances. Therefore, a univariate

]

feedback coﬁtrol scheme was implemented during Qata collécrien. Tha

) . ! . e .

addition of- thlb control presents a problem for the dynamlc—stochastlc

[N
model buildirg. - - ) : o
: , PO \

Consider a univariate system under feedback control in

> -

T 64,

ot
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"determined by the sample cross—correlation functiopns between input :

4

Recall the assumptions’ that u, and N_ are uncorrelated for an

- »

open loop system; Therefore, the impulse response function can be

. .
.

- .
. P

and output. However, Under: closed-loop conditions, u, and Nt are

correlated; and the cross+-correlation of Ye and u, onl§ gives the ) <.
»

- * : < * » - . -~

inverse of the ednérdller coefficient (Box and MacGtregor [1974}). No

information about the transfer function is provided. ., - . ) .

.
»

.

e

The closed—loop,1dent1f1catlon problem has been 1nvest1gated ) .
exten31vely by Ljumg‘et al I1974 1975] and Box ‘and MacGregor [197&] -7
-
They suggested the addition of a programmed 'dlther noxee dt thh '

» .
.

known_sgrqcture to the input series, as shown by.the dotted line
@ .t

S »

in Figure 4.1. .This 'dither' noise d, is ‘'uncorrelated with’ the

_ input and—Nt. With the 'dither' noise-output and '@Ethgf‘ noeise~-input .

.

‘sample cross-correlekion'generating functions determined (r (B)'and .

-

Tiu (B)), the 1mpul§e response functlon.can be calculated by either - -

(B .. : y

long division ——z?gy or equatlng the. coefficients of the ﬁbwers of B. - .

»
-

Thls 1dent1f1cat10n procedure is feasible no matter whether the “ o

‘controller CCB) structnré is known'or not. On occasions," one wauld . .

have-plaht.data,w1xhout the knowleage of whether 1t 1s collected ©

-
-

under closed~loop or openfldgp.' In th;s case,.a s1gnlf1can£ cross- e

LIRS M

correlation between yt and ué at lag zero lnﬁiceteﬁthe presence

- A ~

of feedbaek control. pnder?open-loop, sinde most s§e§ems do not heye e .

.- . N A N .
. ~ “ - N * - T . - v

iﬁstaﬁfanebus'tiansfer‘frqm fqpuc to output,‘ﬁg is preeéica}lyizero._

3t
¢
‘

B ORI W aedd
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Ih some systems models can be derived successfully' from

closed loop data

sufficient.noise

- ' ~

w1thout the addition of 'dlther noise if- there isi

in the feedback loop. Box and MacGregor [1976]

showed that parameter estimation can still be.attained. Yet, with

Fs

the inclusion of

-1 . . ,
dt to the input during data.acquisition, parameter

estimation‘efficiency is greatly improved. Sometimes, however, only. .

the functlons of

» ~

the parameters that appear in the optlmal control

. 4

p———

equatlon are requlred. In this case, no transfer fhnctlon is lnvolved

and closed-loop data are adequate to prpvide efficient parameter .

function estimation without the 'dither' noise. . . .

. With the

estimation and diagnostic checks can bé cartied out by methods-

-

’
~ t .

.

transfer function properly identified, parameter

-

mentioned earlier, as if they are in open loop situations. N '

o T e S .t i S

model building.

Plant' input-output data dre required for dynamic-stochastic

- . - o
.

- e, e 4 o

-

El

‘A. data_ acquisition.scheme was devised and a schematic

- . . -
.

layout is shown in Figure 4.2. - . .

-

-The axial temperature profiles and the effluent product

t - . -

~

‘Stream. are the two groups of outputs. The characteristics of the

H

.. - - - . - -

a .

input streams, coolant condition and .the. extent of reactions are

reflected by the

temperature. A o, temperature data is readlly'available at least - -

every 12 secondg,

control by controlling’ the ho} spat tempe;ature,. The Eargetfhpt spot

.

4

temperature profiie and ﬁarticulgrliethe hot. spot .

- .

Durzng'data acquzsltlon, the Teactor was kept under S

-

. B - S
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) exp%fed. ) ) . ) ’

‘stream. A 30-second-samplipg iqte;yal was arbitrarily chosen. For

-~

'setéoint was set to be about 25-30°C zbove the circulating oil -

temperature. The experimental hot spot was. compared and the output
errdr was.passed to a univariate proportional-integral (PI) feedbatk

controller which adjusted the setpoint of the butane flow. A second

.
« .

PI feedback controller was used to maﬁipulaca_the butane flow stem

[

valve position. This scheme resembles’ that of a cascade control,

-

system, where the first PI controller acts as a supervisory component.

- The purpose of ‘this cascade setup is to avoid sudden.drastic changes

.

in ﬁhe butane flow. The eupervisory‘conQrolxer will smooth the -

adjustment of the butane valve. '

. »
.

TraditionElly, hydrogen had been used as the manipulated

-’

variable. However, tests had shown that.in this reactor,, use of the

v
- - .

hydrogen flow is unsatisfactory if the hot spot setpoint is more thaﬁ

30 C above the 011 temperature. L%iif excursions of hydrogen flow

were ewperlenced to keep the reaCCOr about the desired operatlng

-

:level. With butane flow as the manipulated variable, a temperature

différence of 50°C cin, be tolerated without the reactor running away. .
Besides, ‘bufane is the limiting reactant and this is, therefore, -to.be

» -

.
. . .

To facilitate closed—loop 1dent1ficat10n a programmed
™~ - .
whlte no;se was added to the feedback locp manlpulatlng theé butane ', .

-
-
« N . .

the first 200 daka,‘the‘hydrdgeﬁ flow was 6ainga;ﬁed ét—;cs'setpoint,‘

-

wifh no noise.aﬁde32 This implied a univarietekcibsedrloop system- .



- Equation (4.1) every 30 seconds. Lo e . :

. . - . - \ N .
N .

.
.

k] . - .

"and-identification can be made easier. After the necessary data had

been collected, another noise sequence following an AR(1) process was

added to the hydrogen stream. "The structure of these two noise series

were formulated in Apﬁéndix 2.1. The purpose of'the AR(1) disturbances = .
was to excite the hydrogén.flow such that mere flow pattern variations

.

were available to improve parameter estimation. The variances and

intensity of these perturbations could be adjusted on-line.” It is °

. R . . . o
important that the minimum hydrogen to butane flow ratio was at least

3:1, otherwise the catalyst would be deactivated instantaneously due to

-

carbon depositions from excess butane. On the other'hand, the butane

.
»

and hydrogen flows should.sot hit the upper and lower flow restrictions
which maintain the critical ratio frequenﬁly. The closed~loop .

identification would not be feasible under this situation.

-~ [y

The eff;uént stream was aqilyzed_By the process gas'

-~

chromatograph and' the compositions were available about every 6 minutes.

.

Input. flows were hanipuiaCed and réﬁq:ggd’evegy 30 seconds. Profile

- - —

L,

temperatures wére meéasured every 12 -seconds. .f;‘ﬁréecxsp smooth out

\V

the variations of the mgnip&lated,fnput flows and the controlled

. B

temperatures (Smith [1972]),filteTred temperatures were calculated by .

LT T = aNed) + QeddT () (CRY

where . )
. T is” the filtered temperature:*
. - Ej .

- 3

Tr is the measured raw temperature

- - - *

. v

. ag is the filtering constant,

.

%
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.

.

-

-

o

\

" “These filtered temperatures were recorded in 30 secand y

intervals and were used for modelling later. The experimental imput.

.
- N

flows and output products data are shown in Figures 4.3 to 4.7.

‘Instead of mole fractions, the extents of various components were I
adopted as the responses.  The extent is defined as the amount of

specié% reacted or generated in gm mole/segond. Because the production

Y

rate is a.prime concern in planqupération, the extent of a reacté#n

would previde necessary

A

information for‘this‘purpose: Concentration imn

mole fraction is independent of -the amount of product stream. By a

suitable choice of total dnput flow, the extents would reflect the -
. '{

production of the réquired cohpbpenﬁs.

z e

The_bperécimg cpndifion§ for data acquisition add*thl
formulation of the extents are given in Appendix 2.i_and 2:37\ About

~ - -

seven hours of data were collected; and three hours of flow;ates are

"“shown in Figure 4.3 to 4.4. As discussed in Chapter 3,  since there are

only three independent componénts in the process reagtions, the extents
Lot « T, et . . e

. -

M .

of propare, butane and hydrogen were chesen as tpe\outputs: Henceforth,

. . i .- .
the extents will be used, instead of mole fractioms. .

-
. -
B
. N . -

4,2 Development of & Prediction qugtion for Exit Products

§.2.1 The PgobIZm .

. . *

" ° The exit copcentrations of.varicdus components. are intended to

»

-

be used for controlling the reactorAsystem. However, due to the

. . ~ s . -~

restrictions on the process analyzer,’ concentration analysis results

- . .

are only available about .every 6 minutes..‘Thig large sampling interval

-, N .
- N N . - . -

4 - - E_— L] N »

.
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v

is impracdtical to be used for:the control of- this highly exothermic, :
.3 - LR

-

potentially un§tablg reactor. Some means have to be devised to overcome _
. . i ) Lot

. / : .
this problem. - '

N _ ) . . . o

In earlier.work by Jutan [1976], he developed a méchanistic

model which simulated the dynamic behaviour of the reéctor about a steady

.
il

‘" state situation. Although in reality unsteady state is dlways the case,

)

a quasi~-stéady state condition can be assumed. = For most catalyst

gaseous reactors, the response of concentrations upon changes in reactor

.

. conditions is almost -instantaneous, while the response rate of thé

.
- .

temperature wave is at least 1000 times slower. This implies that

- . ‘ -
ﬁpon-perturbﬁtion, the reactor concentration.will qq%;k;yAattain a

quasi—steady state. As the slower témperature dynamic response then | .

moves' to its new.steady state level, the concentration will follow iﬁ:

~Jutan derived a thépretical:predictive relationship of the

a M -

three indepéndemt exit concentrations in terms of the reactor axial

’
A .

temperature profile and inlet flo&_deviaéiqns during the past sampling

\ -, at

interval. . - _ .
. 7 N . ) - * ' ’ * ’
: * x - - . . .
€le) = R T(t) +# 8 u(e-1) : : (4.2 -
where % . % ) . N . Tl
R , 3 -~ parameter matrices, (3x7) and (3x2) respectively. t .
c . — exit concentration deviations, (3x1) : X
. - T - — axial témpergtu;e deviéxions,.(7xl)

- . - -



Since both T(t) and u(t-l) are.auailable‘every 30 seconds,

pseudo-concentration data can be regenerated-from the above relationship.

. .
¥

The assumption of-quasi-steady state enables us to express concentrations

- -

as an algebraic function of the inputs and the axial temperatures.

' . - * %,
In Jutan's analysis, the parameter matrices R and S came

directly out of the theoretical,model once it was fitted with plant
concentration)” temperature and flow data. However, it was shown that '

the temperatures are hlghly correlated among themselves (Tremblay (1972&),

and therefore not- all the temperature data lS ‘meeded to prov1de good

., -

predictiqné. A more parsimouious form.can. be emplqyed. Hexé, the

concept df‘canonical variables and correlations is introduced to.

formulate a predlttlon equatlon similar to Equatlon (4.2} in the following

. ~
. . )

parts. It 1nvolves a statistical study of various c0mb1natlons of
variables and llnear canonical transformatlons are then carrled out,
. Another approach was prOposed by Tremblay [1977], where a reduced

subset’ of three temperature yariables were chosen on physical and -

erigineering judgement. These three variables were the hot spot

temperature, its.normaliged~axialhﬁositidﬁ.and the area-under the :

temperature profile. The concentrations - were- then fitted using these

three pseudo teépératune variables plus’ the two output flow deviations.

L
. .

. ‘c(t) = P F(t) + g u(t- -1) _ L (4.3)
where T - . ’
e P, Qg - parameter matrices,” (3%3) and (3%2} respectlvely
-F © - vettor of temperature function (3x1) . . T
iv . ) - N ) - : - A
N . AY N -
A .. ‘ .

K
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A comparison of these two approdches will be given in
Section 4.3.2, e

___-._._—_—__...____._——-_.—__.._.___...——-...__—_—.....__....___.-.........___—__._. —— e et e e =

R e e e s o

" The idea of ‘canonical>~eegrelation analysis is to determine a

new coordinate system for two sets of variables such that the

correlatjions between them is maximized. The linear combination of

‘variables in each set that have the maximum correlation-‘will define:
e - -

4he first new coordinate. A second linear combination in each set,
which are uncorrelated with the first linear combination, -and which
have maximum correlation are then defined. The proceduré i5 repeated

until the new system is completely specified.

- '

A ‘description of this canonical ‘correlation procedure ‘is'

A .

; -~ .
given by Anderson [1958]. Briefly, two sets of variables are.first

4

"defined. 1In this case,

.

T _ . .

: L U T ' -

and ) I . T (4.6)

. T - ] e - : '.‘ M .

: Myrom ATps Moo oo Toi by ogs g poy] %,

where the u data are those that ex15ced during the last sampling perlod ‘,'
L T ' . :
e.t M ’ - & ' "

M= [-57-) R ‘ : (4.5)
-2



and let the covariance matrix of M be denoéed by . -

L

, )
S B P
o [ — — - (4.6)
by NP
where T \;
211‘ = E(gl yl), (3x3) ‘
& T .
Corpy = BGY M), (LD .
_ ‘ (4.7)
‘ T .
Ly, = E(x\_Iz M), (11x3)
s 2 EQL MY (11 :
22 - :_2 =2 ) ( :’\ll) : >

. -

.1t can be shown that thé 3 linear combinations of the predictor

-
.

variables in M, that are most highly correlated with the three

2

s

concentration variables in M, are given 'by the eigenvectors y corresponding

1

-to the 3 largest eigenvalues in the following equation:
. . . '

CofmEts AT ly=0 BN CRE)

where
A° is the eigenvalue . . T .

. . . R
.Y 1is the corresponding eigenvector- .

3
J]

. 4

Equation (4.12) is analogous to the real syvmmetric generalized

matrix.eigen-problem of the form -
. A x = A ge X e _ . 7 . (4.9)

.

[X]



Theoretically, three eigenvectors Xy corresponding to the

. . .

eigenvalues k2 will, be determined since 211 is of'rank 3. These’

eigenvectors are the three different linear combinations of Tl’ T2’ .‘.,‘Tg,

U3, Uy which are most ﬁighly_correlated with the linear combinations

LS

of concentrations. The square root of individual eigenvalue i.e.,

12 2 2. . .
11, A, and A3, is equal to the magnitude of correlations between the

new canonical variates.. With these eigenvectdrs defined, new canonical.

sam

variates are then defined as

s

. « . .
A * .

’ T BN ' : (4.10)
= . = 2 .
Zi Iir.lij_) - i 1’ N _3 )

The new tanonical variates-zi‘s are orthogonal to each other,

i.e. no correlation among themselves. Stavistically, the Zi's are the’

optimal choite of the sets of temperatures and. flowrates to predict

the.concentratiops. Assuming a ‘linear model, the prediction equation
will be . ' . . ’ )

gle) = 5 z(v) : : - @,

.

where 3 is the prediction parameter matrix (3x3). "By a linear ledst

~ .

e

squares fit, 8 can be determined.

An alternative canonical system is also suggested here.

Assuming the the éwd inpuf flows are known to be impdrtqﬁt, only the . -

temperature- data is transformed into canonical variates, 4.e.

. * _ . - ) - ‘T' ) ) ‘. )
Lo [Tl,,. o Tl | (4.12)

- * - . Y B b
The same formulation as.above is repeated; and the new pseudo-

. v
»

concentration-prediction equation is: . o

.

LU

-
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*

C(t) = 8

H

* * . e :
Parameter matrices.§l (3x3) an¢p§2 (3x2) are 'fitted as before by least

squares,

..._...,_—_.__..._.._...-_—...——-———-———_..-—_.__._..__._..._._..__._...__-_—-_._ ——

The seven-hours exit concentration 'data from the gas

chromatograph and their corresponding temperatures and input flows are

used to set up the prediction equation, Since the input flow vqfiables

are collected at room temperatbre and“pressure (assume STP conditions),

they have to be corrected to the reactor operating coaditions.- Also,

they are converted into their mean deviateés which are being used for

model construction. A total of 62 concentration data sets are avilable.

: Table 4.la_and.4.1b-show the results of the eigenvalue;

“

eigenvector analysis and the cbrregponding least square fit for the
three independent variables (Equation 4.,11). The.last row of ‘these

parameters in Table 4.lb corresponds to the canonical variate Zy with

the smallest eigenvalue and the first row corresponds to Zy with the

largest li. o

. Parameters Bl’ 8 and §3 are corresponding to the: responsed

Cl’ C2 and C3 ;espectlvely.' In equaFioA form, . )
o | [.23078-04  .1016E-05 * .479SE-06 'zl\_-]—/‘)
qc = | 2014B-04  -.4077E-05  .25725-07 oz, | 610
Lo . .
1 c, ! [4087E-04  -.1466E-04  .12278-05| | 2z, | ‘

(c) + % u(t-1) » ' (4.13).
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where J—l,.' propane.
‘Ci - mean corrected extents 1 = < .2, butane
. ' . ; L3, hydrogen
- Tables 4.2a and 4.2b give the same information with the "five
independent variables in the form of Equation (4.13): Fifteen parameters\
are’ igvol‘;ed in this case. In equation form, ) " o .
C; .2307E-04 . .10l6E-05 .4821E-06 =—.2571E-08 ~-.1586E-08 ]2
Cz‘« = .2914E-04 -, 4077E-05" .2712E+~07 =-.1598E-08 ~-.2144E-09 ]2
c, .4087E-04 -.146BE-04 .1227E-05 -.2004E-10  .2468E-08 | |z
L - L N ’ -
L] \\ u
where o L \l
"u; = mean corrected butane flowrate . -
3 . * N - 9
C L -
uj; = mean corrected hydrogem flowz:ate
, ' , (4.15)
TABLE 4.la: . EIGENVALUES AND EIGENVECTORS OF THE GENERALIZED SYMMETRIC -
MATRIX E@LU.ATION (4.8) = LINEAR COMBINATIONS OF NINE
» . .
TEMPERATURES AND TWO FL_ON!‘QATES
EIGENVALiJEé , . uy butane flowrate
22 N NS ‘ hydrogen flowrat
Ay 5 \ 3 .y, ‘1) rogen flowrate
0.8908 0. 5602 /0 0767 .
CORRESPONDI\IG EIGENVECTOR, ¥ . '
 PREDICTOR VARIABLES
"1 L L : - .
| -0.0881 0.2129 : -0.1620 |- Ty ¢
| 0.1688 =-0.2225° - ~0.¢ 0703 . T2, ¢ L
 ~0.0489 - | 0.1160" e R 0.0492 R £ O
1 0.159%0 ~0.1725 - _ R —0 1028 8 ________}‘_4_’_;_ ]
- 0.0775 . =0.0476 " | . 0.8894 _ T Tse_ - AW
.—~0,028% - 70.1087 © 0:0482 ' Te,c = -
L ~0.0038 ~0.0161 : . -0.5722° N
. 0.1121 -0.3118 ©o=0.1172 | - Tg 4
~0.0693 .. 0.1694 . ¢ ' 0.0698 ] Tg,c L
92815, b 700101 T T T TTR0a046 T T T Wil T T,
~0.0160 .f  =0.1358 tT0.13348 a2 per -
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TABLE 4.1b: PARAMETER,ESTIMATIONS FROM LS FIT OF C;

78

"(WITH CONFIDENCE INTERVALS)

Al

e

BTN

Propane, C

l Butane, Cl'

| Hyd;ogen, C

»

(+ .27E-05)

(+ .52E-05)

TABLE 4.2a:

T
»

1 5 2 "Candnical Variates
£y £ : 3 ) )
_ - - :
- 2307E-04 .2914E-04 - .| .4087E-04 Zy. i
(+ .02E-04) (+.03E-04) | (+ .0SE-04) ‘
:1016E-05 -.4077E-05 © . 1466E-04 z,
. (+. v 21E-05) “(+ .28E-05) -{+ .05E~04) - -
: i ) :
! .4795E-06, .2572E-07 j % 1227E-05 2, ‘
L (+ .22E-05) .

EIGENVALUES AND EIGENVECTORS - LINEAR COMBINATIONS OF

"MINE TEMPERATURES

<. .

- EIGENVALUES - " ‘.
4 By SV
fﬁb.@730 . 0.3396 d=q533 -i;
| - CORRESPONDING EIGENVECTOR .~ ° : s
; s o PREDICTOR' VARLABLES
] X) ] 1) 137 7
,é ~0.1546 | -0.1542 -0.1143 7 ) T, (&)
| 0.2004 ~0.2000 0.1055 | T,(t)
5.—0.1127 | 0.0144 t - o.o0167 3 .T;(t)_ ‘
. q}{49a .o © 0.1901 ~-0.1694 * Té(t)
s -~0.0708 .0.4024 . 0.7776 i Tgle)
'=0.1050 0.1927 ' -0.0739 ? T (e
,.0.1110 ~0.0647 ~0.5555 ‘E T, (t) ,
02794 ST -0.1436 = -0.Q077 4 {7 Tg(t)
- -0.1085 A -0,2707 9.2936 . ‘Tg(cf .

-ri

>
o

A

-
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N _ T o
4:2b: “BARAMETER ESTIMATES FROM.LS FIT FOR- 5: VARIABLES -
o ~ - —' —— N - :* PR . - ‘~‘... \)‘ -
{ Propane,'ci 'Batane; C2 Hydrogen, C3 .
- - S - — Sezzmmmor s T VariaQes
By . g, §3: - -
R N . « S ~ . . ’ M . ’ « - * <€
. 2307E-04 .2914E-04 | - .4OBTE~0h z, -
~ hh -
. - . . . : *
V1016E-05 - ~. 407 7E-05 -.1466E-04 -2, ¢
. - Lo . " a
.4821E-06 «2712E-07 ¢« ,1227E-05 Zy L,
D : = R — <
~.2571E-08  ~I <.1598E-08' ~.2004E~10 ! uy
- 1586E-08 - | <.2144B%09 . 2468E-08-, U,

N

-

e

3
~

The residual variances from the linear least squares fit of

-

these two apﬁfoaches are given in Table 4.3. ~. ~
- . T . . 13 .
TABLE 4. 3: RESIDDAL VARTIANCES COMPARISON -

PN

] ) L - e 10
Measured Output I Re§14ual Vaf{aﬁces x 10
. . Three Canonical Three Varjiates Plus -
- Variates Two Flows
C1 0:724,; - 0.750 )
’ . - . . e \.
} &, 1.243 «1.286
- F .
) C3 - ; 4,266 - 4.416
l N :
' N
e . - ] .. H

e
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< . . '-, . N - .
o . - .
o .

. - ~~ [ LR .

*

essentlally 1dentica1 residual variances.. There 1s‘itherefore, no 2
-» .

preference for either approach onm the basas of LS - The first approach

is however chosen 51n\e less parameters are anOlVBd Thus, the
prediction equation is represented by Equation (4.11).

— N ~- [ M

. An analy31s of the result shows that those’ parameters (last.

~ -

1n”Table 4.1b) corresponding. to the smallesc elgenvalue ig.are

mall and have wide confidence intervals. .Thisg implies that 23

v
-

relatively insignificapt and-the other two canofiical variates Z z
> % two ¢

?
e »~ » . . N 1

. «t - N
are able to represent most information about the set of variables.

2 -

. ‘ ‘ c. -
evertheless, Z3 is included in the prediction equdtion for a complete
! : oL ] ;

description of the system. . ) . ) e e e

With the pfeéiction equation.properiy set’ up, pseudo-extent

- ‘deviates arg generated from the 30 seconds interval data.on’ temperatures

.. .- 7 . h ~
- and flowrates. The fact that they are not independent would not affect
the identification procedure. Each respoheg is fitted separately-

similar to a single response system.

. “ o N - - ~

[y

N » ' . . 8

T e e et e e T e et et 4 et e 0 e e . S e S e S

.

- The three.canoﬁical variaQes represent the optimal choice of

1ndepéndent'Var1ables for. the predictlon of concentraCLOns. ..The - -

- »

canon1cal correlatlon proceéure determines :he three linear

.
. . .

tombinations of measured 1ndependent varlables that are most n;ghly

.
- v

A’ comparison oﬂdgﬁese gsz\approaches gpdlcates that they have -//

~& "

.

R P R
. P
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~

correlated with the linear combinations of -the responses. Statistically, .

the»canonicaiivariages are orthogonal, i.e. they are independent varilates.,

This orthogonal feature is particularly attractive-in the subsequent

least squares fitting because it gives rise to independent and accurate
parémeﬁqr estiyates. Also, in the recursive least squares .algorithm

described .in the next section it widl result in-"faster convergence of

the estimation. - ' - ’ . ,

*
.

%" It had been pointed out.that,(Tfemblay [1977)), alchdugh this "~

. e -

reactor' conditions at run time remain

. - -

congept is’ adéquate as long‘as the

the sane as when the data was collected, a sHift of operating'levels on

parameters such as catalyst decay, sqcpoiht‘cﬂangé may jeopardize the

adequac§ of ‘the fiqtiné‘ ‘Refitfing under new conditiogs'will then be

Tequired. Although this is correct to a certain extent, the prediction

.. -

errprs can be minimized by parémetef updating in the predittion equation,
) ] . N -

These updated parémeters are adjusted to improve the respoﬂse

predictions and they will also beé capable of partially Eahcelling odc\‘,

~d

P

o

anf_effeqts of chaéges-in the canbnical variates as wel;. Iﬁesidqé, o ‘
an ogn-line updating scheme ;f ;he eige vector Qiemeuts can be dexrived
easily.- Wheéeyer conait}on§ spift. . ,.4a number of Eeﬁperatu%e.
and fiow data aré collected qgﬁ';n on-line eigenvalue-eigenvector

- . -

‘analysis is -carried. out, For this work,. this on-line analysis is not
‘ : B ] .

being done because it" is believed that the recarsive least squares

parameter updating can eliminate‘the errors incurred from shifting -~
e - N ' ) B v 2

conditions. A

. N .
' . ~ . .

7

R .
N L B
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* On the other hand, thg canonical analysgis has proved to be.
supgfior to the approach used by Tremblay [}9771 in whiEh ﬁempéfature

variates were chosen somewhat arbitrarily - hot spot temperature, its

position and the integral under the-temperature curve plus the two

-~

flowrates — and fit them empiiicallj. For a test, the same set of -

ddta used by Iremsla§-(61 data) was used to fit the.prediction

equationﬂ(&.ll) using canonical variates.
variances of the predicted responses in Tébleié,Q.

Comparing the residual. -

> -

P Y

TABLE 4.4: ~ RESIDUAL SUM.OF SQUARES GOMPARISON . o
{ i} i . ’ . .
3‘ Response' ) . i} _ Res%duals Varlances (% lO )

; . Canonical Analysis Arb1Crary Fltclng

. ¢, - : 0.946" b e ‘
v . A

’-' G, - ot . 542 - : 8.92

; Cqy o [ : 1%.2 ) 38:90 -

A 50% improvement ip terms of residual variances’ is achieved.™

- - -

- ’ - L8 -
The correlation matrix of the canonical variates is shown in -

.. . . &+

Appendix 3.1 COgether thh the corrélatlon matTlh from arbitrary
) .. o
flttlng By examining’ ‘individual paraméter confideace intervals

N ~ -

(Appendix 3.1), the'barameter cstimates from canonical analysis are

greacly improved, ‘except for the“lgaSC 1mporta$; lxnear %fmbxnatlon.

Although a dLrect comparlbon is 1mp0551ble due to different number of-

PR PO S

PN Y
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.
« - .
. - 3 .
- - . . »

o - .
parameters involved,.it s obvious that canonieal correlation is a

"better method for the prediltion,equation construction, gven though o

~

L . . ) L
it uses fewer parameters. . .

.

Another advantage of canonical corielation is that tﬂgir

_variates are normalized since :. ¢ eigenvector elements are scaled such
that y? Lyp X = I.(see Appertdix 3.1). "As shown in Table 4.1b, the

’ 1]

parameters from the same response. have equal confidence intervals. ‘ '
. » . - . . .

-

It is a ‘direct restlt of this mormalizatiom. * « = = R

.
® . . -

.

N v .

A modified representation of the responses might be . —

suggested £6r use in the subsequent—todel building and contrdl. -In..- -

. -~ . - ‘
—— »

Vview of the success of canonical correlation, probable dependencies
. P -

-

-

among reéponses could: be effectively’elimiﬁaCed'if, rather than uéing_ ) .

* the extents Ci's as the responses to be predicted and contr

-
-

were to use the canoitical variates wons 2 c (analogous, to the "
. . > -. .-". i - . '., .
e the response variables sinte they are orthogenal. The dynamic

v T ~

stochastic model could then-be identified q}fh these linear - combinations

h N

against the measured input, flows., This is partiéhlarly useful when a

LY A

Sincé there are at

large number of Sutputs and inputs are iRvolved.

most three output responses and two inputs IR this work, for’

>

siﬁpbificacion, this approach is not adopted.

.
L R N A A

¢ <2 ) . i ‘

it .is interesting 'to compare the characteristics of the " R
- E . . . i . . “ﬂf& o .
data.set collected in this work and that Tollected by. Tremblay [1977] "+ . » % |

- -

in his.Ph:D. thesis. Both sets of data were collected under similar
\ - B . - ) . >

circumstances, except with different operating conditiond. =Im his B P

. .
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_ ‘Table 4.5. _
TABLE 4.5: ) CO‘fPARISO\I OF RESIDUAL VARLU\CES N TWO D'IFFERENT DATA SETS
, Y : 11,
. Residual Variances (x 1057)

.

"study, -it was under a ‘more éxtreme condition.witH the kot spot

temperature about 50°C,abové the coolant oil éetpoinc.

of the added 'dlther noxse to the butane flow was unchanged while the
-

- variance of the AR(l) ‘noise serles to the hydrogen stream was>1ncreased

periodically.

-

>

-~

The- variance

-
v

Applying-the canonical correlation on the data, the

R ] . i g - : N ) * ry . -
residual variances of the two data sets after LS fit are given in

RESPONSES

Lo B -

This Work \

Tnemblay~s Wprk,

4 Cy 7.2% R 0.946 -
\r R
c., - 12.43 . 5.42 .
v 2 . . ~
li* . X -
b c, 42.66 19,2 .

E It is obvitous that Tnembla&'s data results in-smaller residual
‘ . . .

‘va?iadces, especially for the response propane extents.

.

/

o

»

"It is

ex%ectéd since_fhe butane conversiqn increases under a higher

-

temperature profile, giving a more significant amount of propane and

reducing the cffects of the incurred errors.

sevére conditions, the butane fiow hits the. upper and lower flow 11mit

.

However,

.

under such -

5requently in o;der to concroL the hot spot cemperatuie, exhibiting

-8

the characteristics of the so called ‘bang-bang'

-

control,

The

84,
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closed-loop identificatian using this flow data would not be feasible

and no transfer function model <an be built, although the data set is
X . ) c

still useful for the dynamic-stochastic mddel fitting and controller

designs.' Thus, there is a3 trade-off between these two data sets.
- - - ‘

S
In the view that transfer function-stochastic model building is an

integral part of our object, the data cvollected in this work is used.

Additional details can be obtained frOﬁ Trenblay s data when it 15

- >

necessary. .

.._-_—...___.—___.________—_———_—_..___._ — o ——— e ——  —— — d

a

v -
It is worthwhile to investigate the accuracy of the parameter
matrix 2 in Equation (4.11) in. subsequent control runs. These
parameters are first fitted off-line, based on the data collected at

the time of the experiment. It has been observed that the conditions

rh

of the Yeactor characteristics change with time, e.g. a new bed

-

catalyst mav be used or the 'old' catalyst deactivates gradually.

A different coolant temperature would then be needed to initiate the

£

rea¢tion., Also, there mav be a setpoint change oy load change “at the

time of on-line control.. All these condition changes may throw the
prediction eqdation off-balance when applied during on-line contrel.

Y

The prediction parameters may have changed in the dgw situvation. -Thus,

an on-line re-estfnation scheme is.required to-update the parameter
: S5 ] !

-

matrix 8. 1t was decided that the eigenvectors forming the canonical

v

variates need not be updated, although updating on-line is not

1mpossible. Rather, only the regression ‘parameters : in Equgtion (4.11)



were to be updated. The appropriate eigenvector space may change but

most of the changes can probably be accounted for by adapting £

—The essence of parameter'dpdacing is %hat whenever new
concentration extents are av;ilable, they are compared with their
predicted -values from Lquation ké.ll). The pfﬁdiction’errors, €
which are the residuals will be used for updating. Several recursive
identification metﬂods havé been compared (Soderstrom et al [1974]).
aspreal time Kersion of the recursive linear least squares (RLS) rethod

is discussed here. Recall that the least squares estimates of

parameter vector & in the equatien ¥ = x 2 + ¢ is given by ,
“ . T ,-L T .
g (w T x ¥ (4.16)
where .
¥, Y = wvectors of independent and dependent variables

respectivelwv.

If the data is becoming available in a sequential manner, it -
is advantageous to make this algorithm recursive. The recursive least

squares parameter updating formulation 'is given as follows:

-

L (eD) = 2(6) + K (e+1) e (erD) o (4.17

P(t) ;(t+l)

i_:wgt-{*-l) = (-4.13?)

xfe+ ':(c+1)T £{t) 7 (t+l)

P(E) re+l) e+’ ple)

p(t+1) = [p(c) - it (4.19)

:
- !
P I JOR )
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e(e+l) = y(e+l) = o (e+) ! (1)

<

where .
pataneter estinates vector ™3

b >
|

- independent variable vector (

(TR

equal to the (t+l1)-th row cof

o ~ a matrix proportional to the

of independent variables (3 x
K - weighting factor vector, (3 x

W - nmeasured dependent variable

- .foruetting factor .

S - prediction error, dififcrencés

and predicted

.

t
. . L t-s
discounted sum of squares function L X >
3=1
factor ins chosen to be smaller than one i

z

to changing conditions. in this way, old r

and have little influcnce on the estimates.
factor K does not tend to zero, which is a

-

i
wishes to track changing parameter values.,

34

(0) = 0 and p(0) = = 1 could be assumed.

the

o

number, about 10 times the variances o

Convergence can be reached.rapidly in this manuner.

=% 1)

3 x 1)

covariance matrix

3)

'y

buetween neasured

‘he above RLS metnod actually nminimizes the exponentially

2
(s)7. TFhe forgetting
f it is desired toe adapet
esiduals will be discounted

If \fé 1.0, the weighting
necessary condition if one
For starting values,

a is assigned a large

corresponding y.
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The appropriateness of the RLS method depends on the

assumption that the prediction error ¢ is a white noise sequence. I

this condition is not fulfilled, consistent estimates cannot be
obtained. In this studv, since the concentration data is available
evefy si: minutes, the parameters will be updated oniy ebery 12
sampling intervals and it is félt tﬁat little serial correlation will

exist. ’ .

»
-

-

Table 4.6 gives the resulting impulse response functions v, ’
J

-
-

for the three transfer functions (fquation 4.2). They are plotted in .

Figure 4.9 to 4.11. Also, Figure 4.12 to 4.1% show the corresponding

step response functions.

<
’

From Figure 4.9 to 4.11, a dead time delav of one period

can be idenrified in each casg. . Apparently, the dvnamics cannet be
-
identified vasily. It is because "the thermal waves are slow to

respond.  Their iupulse response functions stretch odt €o a large lag

giving the illusion of no immediite dvonamics. However, from the step
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responses and based on the known kinetics and previous work, first
order transfer function can be identified. Thé transfer fumttion model
form with first order dynamics is given by

L
.JO - ulB ~
= 4 .2
Tt (1 S B ) ut"‘l (4._1)
1
Equation (4.21) is referred as a (1, 1, 1) model, i.e. ) .
order ¥ = 1, s = 1 and delay b = 1.

L3

TABLE 4.6: IMPULSE RESPONSE FUNCTIONS vj

. ’
~

. h Impulse Response Func;ion v, X 106
Lag j : . . el
? Cl and ucaﬁlo f C2 and UC&H]O C3 and UCQHLQ
| 0. - 0.281 } 0.235 . 0.184"
z 1 * _ 0.841 ; 0.812 o 0.749
| 2 ' 0.098 | 0.129 , 0.162
¥ ' 1 .
% 3  o.lel, ; 0.235 © o 0.252
} '
| 4 . 0.155 L. 0.273 0. 384
5 0.131 | 0.125 C o.124
; 6 0.163" i 0.188 0.206
| Te- . 0.173 | 0.213  0.098
) ' ! :

A problem arises in the identification of the dynamic responses

against hydrogen flow. The hydrogen flow is.left uncontrolled, i.e.

under open-loop while the exit concentrations are under closed-loop.

‘



. .

Both open and élosed—lpoy igeﬁgification methods would not be
applicable.” However, it can reasonably_ge assuméd'chat the hydrogen
dynamics'resembles tha; of bu;ane.' Previous wqu of Apen-loop
univariate iﬁentification:on.hyarogen flow had indicated a ;imilar

Vj pattern. Although they wgrg done under very different coﬁditions,
they do-provide d preliminary ﬁodel form for the hydroéen flow. For
tentative identification purposés, tﬁe elements of the transfer f;nctéon
matrix are all chosen Eb have the éame form as in_hquatidn (4.21).

In general,

v

W Y]
= _O______l;_ . s =, 9 . PR ’ , n:
Yo 0= 5B )uj,t-—bij 1=1,2,3; 3 =1,2 (4.22)

145 data -in which both hydrogen and batane flows were

- -

perturbed were available. With prelimina(y-t@ansfer function parameters,

.

noise series were generated and identified. The results of noise,

identification of the original series and. its first difference are

~

given in Figure 4.45 to 4.20. Two stochastic.forms are .possible,: B

multivariate AR(1) or integrated MA(l). 1In order to design a controller

- -~ ’

‘equipped withﬁintcg;al action, an unstationary ngise series is needed.
< . . - . . o s ‘\\ -
Thus, the IMA(1l) model is. chosen. Significanf.crﬂss—corrclations

among the noise series, are observed and'are shown in Figure 4.2} to

3

4.23. :

The multivariate transfer function-noise model is refitfod.__,

2
o
*

by the multivariate estimation algorithm. outlined in Secgtion 2.2,
Subséquenp fittings indicated .the § parameters.reléted\to the hydrogen

. : !
¢ . L {

»

Py

e ek



input were extremely ‘poorly e
improve the fit and so wgre'dréppgd. Dug.io.the large number of
parameters involved (24 pdrameters) and the memory capacity of tﬁe-»’/

CDC 6400 computer sjgtem; only 145 data sets can be used for

» -

é

PEN

A

9%.

stimated and did not significantly ‘ . v

-

estimation. Tﬁus, tﬁe‘fittidg was carried out twice and the average

values‘of the parameters were listéd,&n the final model. The result

of each fitting is given “in Appendix 3.2 gnd the final model éiﬁed

below (with the appféximate 95% confidence intervalé of each parameter - Co

1

.shown in brackets).

&

=By, =

<

L *

~

~
. e

ol
N

-

S~

L322 EAD s ) (+.18) ’
5.97 - 4.28B 5
B = =0. - 0.125B)B
. T om0 BB
Co .03 )
< ' r T
'#’ 0 u o
‘ } L “g,y
(+£.37)  (+.51) (+.28)  (+.30)
- 7.2 -~ 4.923, - - 250B)} B N
: — 5884 B, (70257 - 0.250B)F +
- (+.02), “
¢ = l}legt L
(+.65)  (+.85) (+.52) C(+.52) -
9.62 = 5.73B ‘
.900. -~ 0.4 :
T —Ggs0s B (0-900.- 0.480)8 .
. &.03) K o
o . (4.23)
~ - ' S ,
(+.28) {(+.33) (+.12) ° . .
1 - 0.502B 0.021B " £0.085B .
(+.44) (+.50) T(+.19) '
0.3688 ¥ 1'- 0.5438  -0.2268 a, (4.24)
- = . . ) “*
(+.80) . - (+.90) (+.34) " )
| 0.250B 0.281B 1 - 1.402B . ;

N B A 2l T



yed

. Covariance matrix of residuals vector

5

76.5 -

122.1

. 218.2

-

is
132.5 |
218.2 x 10°° -

394.56

A comparison between the average residual variances and the

- s

pfegicted response variances is given in Table 4.7.

-

TABLE 4.7: . RESIDUAL VARIANCES AND PREDICTED RESPONSE VARIANCES

; . T T
RESPONSES RESIDUAL VARLANCES x 1072 | ©REDECTED RESPONSE
: N VARIANCES x 10
¢, . 47.7 , 635
G .
c, 122.1 . v 1094
C, 394.6 2446

H

The autocorreldtion and cross-correlation of the residuals

are determined .and examined. No substantial correlations are observed

<

= .

and these residuals are practically white noise sequences. A more

detailed description of the model building is presented in:,

Appéndix 3.2.

4

-

92,
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. ) The-fitted transfer function, Equation (4.23), shows that the
" dynamics rélaging to bﬁtanq flow are the dominant components of the

process. Their transfer-function gains ané much larger than that with

-

the hydrogen flow.. This confirms the characteristics of the hydro-

.

génolysis reactions whose reactivity is véry sensitive to the amount

-

of the key reactant butane. Sincqiphe hydrogen flow was in large excess

Y

. ag
{(at least 5:1 in flow ratio) and the magnitude of the input perturbations

\

in it were small relative to this gain, limited dynamic information was

extracted from the collected data. Besides, no initial identification

of this model form is available.

- .

The relatively insignificant hydrogen

‘dyhimic effect is'illustrated by the small transfer function gains and

’
. - . ~e

the absence of ; paramerers. Parameters with the butane flow are more

accurate due to proper preliminary identification dand larger input : :

perturbations. Since the system dynamics are heabily dependent on

these paramet@rs, Equation (4.23) should be able to. represent the

- . -

<

deterministic part of the. process reactor model. 5

. ) . K] [
It is observed that positive dynamic gains associate the

outputs with the butane flaw, while the hydtogen flow and the outputs -

.
. -

are 'related with effectjve negative gains.  This confirms_tﬁe

\ . . .
theoretical reaction behaviour in which the production and conversign
' .o .

-

of Jutput products increases with the butane flow and decreases with

h?ﬁrogen flow.

The noise model, Equation (4.24) indicates &rfull moving -
- }

MR LY T T oY
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avérage parameter hagigﬁ with most :parameters having large confidence

3

, intervals. :Howevgr, the model Equation (4.23) and (4.24) are formed by

.

averaging parameter values of two fitted.models which are fitted with.
twb difFerent sets of data (see Appendix 3.2 for these model'forms):

,The ad8ed perturbations to both hydrogen and butané in the sécoﬂd set

-

have larger variances. The noise parametefs of ‘the resulting fitted

¢ . .

model,'Eduation A3.8b),.bave relatiyely smaller cogﬁiﬂence intervals
. and thus are more reliable. This is because the dynamic effects are

bgtter estimated and therefore*@he noise .is more apparent and is easier
\ .

to be detected. "Another indication of a better overall model form is

given by the determinant of the residual covariance matrix D. It has .

LY

a |p] = 564.3 as opposed to $18.5 resulting from the firsg 145 data.

Equation (A3.8a) and (A3.8b) can-be altefﬁatively used:as,the final

<

fitted model.

Y .

’, - From Table 4.7 the variance values of the residuals are

about 10-157% that of the' corresponding predicted responses. Thus,

the '‘noise effects would not overshadow the effects of the d&namics

-

~ >

in the data set.

-

In the fitted model-, there are high Eorrglations among the

»

parameters that are related to the same input.flow, and also in the

noise model. These are probably due to the corrclated regenerated'

pscudo-extents. The correlations cannot be avoided because of the

nature of closed-loop ctonditions. All the output extents depend on

the manipulated butane flow. Since the aim is to deéign a feedback

.
» -

< -

«
B e b + R P
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n %

. . . VoL x ) ) .
controller to mainpain the output levels, the?pofrelacad outputs will

1
not hinder the design of control scheme. ° !
& ] |

° ’ - h + . ‘
Due to the large number of parameters (2§) involved and the
limited numbez (143) of data used for fitting, the fitted model is less

precise than it could be, though adequate, A lérger number of data

shoéuld provide more accurate parameter estimations. 1In order to

. , 7
structure must .be reviewgd. Under the conditions during data acquisiq{on,
. N ¢

investigate. the possibility of reducing .parameter numbers, the output

the amount of.ethane produced was practiéally Zero (f 0.1%). 1Lt imgplie
4 .

- K

that a modification of the reaction kinetics is possible. Tt sheds

some light. about reducin the output dimensions without misinterpreting

‘the dynamic-stochastic behaviour of the process. This possibility

N

is considered in the following section. g

-+
»s
-

4.4 ' Dimensionality Reduction of Multivariate’System

»

4,4.1 General Fo}mulagébn

-The dimensionality reduction of non-dynamic multiresponse
data has been studied by Box et. al*{1973]. Arguing in a similar
manner, Box and. Tiao [1976]'propbsed the reductien of multivariate.

time series-into vectors of canonical variates. Consider a general multi-
variate kinear dynamic-stochastic system

. *

= ) ’ . * 2
Y, 7 YB) g+ N , . ‘ (4.25)

Although there are' m outputs, there may be only m-p linear combinations

of them which exhibit significant disturbances and that are in need of

. . -,
- . 5
U . 4

[T R
B



‘control. Thé remaining lingar combinations express the natural

dependencies among ‘themselves and are represented by random errors.

Consider a multivariate first order autoregressive model.

Define the agtocqvériancgs'of lag k a$

T.

L = ElY, Lt+k]'
- N
T _ . T -
: Ek . E[}_It :lt—'k]-

It follows %rom Equation (4.26)

T_ T
i = 2 Lk

b
"3

or
- -1 -1
hd 21 Lo -
with.k = 1 and ;  symmetric.

N

If k= 0,

where . £ o
- -k -k.

- Substitute Equation (4.29) into (4.30)

.

.. N S Rl
* -0 -1 -0 =2

(1]

N

linear combinatiens of §U_where Nlt =

~

-

iT
1

N

-t

.

.
.,
N

o

“; >T
26 T 5 e

(4.26)

(4.28)

v MacGregor [1972] showed .that -a canonical form.of several

(4.29)

(4.30)

(4.31) .

etc. can

96.
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respresent 'most of the activity' of the process. This activity is
measured by the idea of.the 'most forecastable variation'. The first

principal component

"

T T : _ .
31 i 28y Tl o o

’ & B g‘ C

=
i

T
1
(1) + ay )

~

=. Y "l
Nl;c—l (§'3-)

is obtained by choosing &1 which maximizes the ratio of the variance
of the forecast Nlt(l) to the variance of the forecast error 2
. -

max

T
1

.0 T
V(Nlt(l)] - Y
2 .

=1 V[alt]. 2

L2

1 )

Equation (&.33)_is-known as the Rayleigh Quqtienth(Noble [1969])

and the solution is solved by.the generalized eigen-problem

- ok ‘ . .
lif zg* Ly - £12, =0 ) . ¢4.3%)

% .
kl is a non~-zero eigenvalue corresponding to the eigenvector -
“

.
fanad

&l <hich forms the linear combinationlgi Bt'

Equivalently, the same

solution can be obtained by maximizing the ratio

~ .

T T ~1

max VW) tp Ty T L Ay . :
; . ) L . . (4.35)

with 0 < Ul < 1.

¢

(4.33)

'97.
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< hid . N " N te
¥y is the largest root of the determinant equation
) .o } /\\
- T -1 {
r - = '
‘| Iy Ly Ly - w iy ' Y ' . (4.36)
* ' - » ’
1 is related to.ll such that -
*
Al .
o = My ' . (4.37)
+ . .
Al } ‘ .
Since T énd rT F—l r afé positive defi;ite there are m
-0 21 -0 -1 R AN
. - ‘ . AN . . /;2? ,
positive roots uys My, ««-.s M. tO Eguation (4.36) witW m corresponding

=

vectors &f, Eg,(....,.ii. Let &§ form the raws.oaf the m % m matrix L

Tt .. . « ¢ T . ; s
which is’ then normalized,~L £ L° = I. By a non-singular transformation.

v

of Equation (4.26)

N = = 4 N
Et E LC (E PA E ) E Ec_l + E gt
- J . ; ) e (4
ét_l(l),+ a, ) , ‘(4.38)
\ -
. The canonical variates &lt’ ....,:&mt_are the most forecastable,

next most forecastab]e etc.

-
.

. A statistical test is designed. (MacGregor [1972]) to détermine
e

the significance of the root's u Assume (m-p) roots have

l, ..H.Um. '

g e pse 2 . . C s
values significantly larger than zero. It was shown that the remaining,

3

roots “m—p+l’ um—p+2’ ceeees Mo should be asympto?;cal%y distributed

as a Chi-square.distribution with 2\p degrees of freedom.

< -

* . . 0 ~ s .

<

98.
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X 4

Ll S 2 ‘
: - [(n-m) T 2.(2m4-1)]1t‘,n A= XZﬁ . : (4.39) )
with ]
m
A=} (I-u,) - . (4.40)
J=m-p+1 J .

13

The above ﬁofmulgtion is bésgd on the -assumption that §g can be
adequately represented by a m&ltivariate AR(1) model. The proceddré
can hé extend?d for_a general AR(p) model. Since the AR(l) form can
readily be applied‘to many multiv;riate progesses, in the sense that
only. ‘the multivariaté’series dimensions are of intﬁgest, the

formulation based on an AR(1l) model.is adequate.

~

Applying_the canonical reduc;ion to the three output series
zt of 358 data eth, the eige?values A* and u 6btained>are listcd‘in
Table 4.8. The corresponding eigenvectprs are given in Table 4.9.
The Chi-square statistic test of‘assumi@g>tue smallest eigenvaluq is
‘not signific#nt from zero is give; by Table 4.10.

.

The three outpuf canonical variates éj are:

~ A ,'.

€y = 1.498 ¢) - 0.702 ¢, + o.ois §3 N
&, = 5.213 Cy, = 5.355 C, + 0.875 Cy S (4.41)
- €, = 2.79 ¢ - 11.99 C, + 4.157 €4 .

-~

b . .
Obviously, all three eigenvalues are significantly difierent,

. * * *
from zero. "However, eigcnvqlue k3 is much smaller "than ll and 1.
£ . T
Although it- is still-significantly different frém zero, only 6.9% of its.

.
"4

.V

-

sk appopinronp L w oo vtk -+
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eap

uariqtion is forecastable (since Hy = .069);\\\_ ) -
‘ R - !
T 'TABLE 4.8: EIGENVALUES FROM CANONICAL REDUCTION
3 . o . . n\"
f - 1 : \ b3
f i Generalized Eigenvalues uﬂ'_ i .
. * . w N I
I A omala,
i 1 i
} 1 ? 1.829 T 0.6465
i { .
] 2 ; 1.039 ] 0.5096%
3 ; ‘ o e
| 30, 0.0744 , 0.0692

TABLE 4.9: -GENERAiIZED EIGENVECTORS ASSOCIATED WITH THE EIGENVALVES

- Eigenvecdtors ™ (x 10+5) )
i 1 — ‘ Variables
! 2 * =y ! %,
)
: - L R
1.498 5.21.2 ! 7.79° Cl
{
|
-0.702 -5.355 ° ~11.99 ¢,
' ' < .
b
é
0.038 . 0.875 4.157 . C3
: . - i ) .
‘El corresponding to the Jérgest eigenvalue xi
. "
5 ? )

o At

(W SR USCEIVIEEE

f\)&
,-ffx



-
- o+

e X
* AND 1. ARE ZERO

TABLE '4.10: CHI-SQUARED TEST THAT AZ 3

r Roots that are Insignificant

v —— ]

-[{(n-m)- %(Zuﬁ-l) ] in A

2 -
2r(.03)

r o= 1 25.1 6.00

9.49

AT
o

|

|

2

[N

~

Box et al [1973] show that small eigenvalues will result if

there is a linedr relationship among Ghe responses. This léd us to

suspect that some such relatidnship e¢xisted among the cxtents of the

+

form

/\ Cy= 7:79 € = 11.99 C, + 4.16 C5 =0

or approximating the relative ratio of the warious eXtents,

2. - =
2-C 3 C, + C4 0

Upon analyzing the data of Tremblay taken at somewhat more extremg
conditions (50°C temperaturg rise), the same linear relationship .
: w N . ‘
associated with the smail eigenvalue appeared. Comparing this wit
) ,

h

the stochiometric equation (3.2) when the rate of generation of ethane

is negligible

=3 R, 2R,
an C My - CHg

tThus, this analysis has‘uncovered what in hindsight is a basic

(4.

2)

. she D
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v

redundancy amonig the réspensgs at these conditions., Hence, rather

, -

than habing three independent outpuf extents, there are in realirty

only two independent ones which need to be controlled. Therefore, it

\

‘was décided fhgt a two-dimensional output would be adequate to describe

-

the system. 1In this case, less parameters are involved (14 compared to

» ~

24), and thus more data can bé& used and model} fitting would be more

efficient. A little information about the dynamic behaviour might be

lost from the reduction of output dimension. However, it is -a

S

worthwhile trade-off since ‘most of the activity' of the dynamics can
- - +

f [
3

still be retained by an appropriate choice of outputs.

/o

Thefe are two choices of output combinalions:

1u2.,

(ay The two lipear- combinations of the three extents ’
.- < . > * % . .
corresponding to the large ecffects ?l and A, . * X
—~ . 4
(b) The extents of any two species among hydrogen, propane

.and butane.

v

The first choice (a) may carry more information about the

-

three output structures but they are not as physically weaningful.
\

The relationship between these linear combinations and the input

v

flows ate not -clsar, leading to difficulties in identification.

- -
N

Besides, controller design may cause complication in sctting the

¢

output level to be controlled. Nevertheless, it does provide -an
alternative to fit a dynamic-stochastic.model. Good model can be

constructed by choosing the appropriute set of two outputs (b). It is

believed that butane extents should be included due to the importancée of

<

.
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- -

the butane component and its conversion rate.. The remaining component

is either the hydrogen or propane extent . It is gequired.to have a

[y

component that can best be predicted from Equatioﬁ (A.ll).< This logical

deduction leads to ‘the choice of propane extent. To justify this

, &
selection, the ability of these three components to be predicted can be

-

tested by taking the ratio-of the standa;a deviations of the responses

-

and theig corresponding residuadls wben they are generated by Equation (4.11).

ES

The results-are shown in Table 4.11.

TABLE 4.11: RATIO OF SIGNALS TO NOISE

N &t
>
i -
Component ; o Response 51 o Residual Signal/Noise
i {signal) (noise)
C,- -E .. 252E~04 ' .850E-05 . | 2.96
. '
N
. 2
c, © .331E-04 1.11E-05 . 2.98
) - ; . . L -
c,  .495E-04 | 2.06E-05 2.40
L1

The results indicate the extents of propane and butane provide

%
-

LQ

Refitting of Dynamic-Stochastic Model: . . T e

a higher signal to noise ratio.

Using 300 data sets, the two inputs, two output§ dynamic-

stochastic model-«is reﬁitted with the same transfer function and ndise

IS
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structures Residuals auto— and

" Flgure 4.24 to Flgure 4,27,

GP 31)

) R | (+.18)
¢ ! 5.900 - 4.231 B.
“i,e T T"omes s B
{ 3 (+.026)
10% % P =
T (£.29) (+.%2)
| 1
e ‘ | ,7.170 - 4.862 B
i
\\ C G e T"oss7 5 B
0 i (+.023)
\ -
\e T
\ \\
\ D (+.24)
\'.'" , 1 -0.326 B
' ‘ (1-BY N_ = ’
) v (+.38)
!3 0.698 B .
\\ —
Covariancg matrix of residuals
. _-+48.55 76.44
- P Elhelin 124 55)
Considerablﬁ improvement
/
R for the noise model.  The new mo
design.
4.4.3 Trans formation to State

—.__—-__.___.._.___.__—_.-.____—-—..___-._

Before takiﬁg the transf

-

to Lhe state model form, a-slighy

Becauqe an Lntegratgd form of th

cross-correlations are shown in

— - -_—

(+.12) (+.12) _
(—0.6}4’- 0.121 B)B Lul,t
. : + N
-t
(+.19)  (+.20)
-0 - |
(-0.183 0.237 B)BI u2,t
¢ 4o g
: _ (4.43)
(+.15) 3 -
-0.2218 = % .
2, (4.64)
| (+.24) [
1 -.1.121 gj
42.
S are generaliy obtained, éépecially‘

del will be used for the controller

model

4

o e ey ————

ormation‘of dynamic-stochaétic

t modlficatlon on u

u, lS necessary

e noise model is 1nvolved the optimal

104,
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3

controller will be in the form of ¥ éc (i.e.; it will contain integral
action). Therefore, anticipating -this one can express the dynamic-
stochastic model in terms of 7 Uy by combining Equation (4.43) and

(4.44) trogether to give

a o
»

. - ' - ) N ; | ' \\
vo=@-IBTV® T, -1 e® a 4.45)" s

The corresponding augumented state-space model is in the form
. e .

N s

similar to Equétion (2.40).
«7

it

A x(£) £ G 7 u(r) + T a(e+l)

N

x(t+1)

y(t) = H x(t)

- N -

Applying the minimal realization transformatien described,in Section 2.4

1

" to the model Equationr(4.43) and (4.44), the aqgmented_paramefer

matriceé_é, G, I and H are set up and axe -given in Appenrdix 3.3. The, - \
. . ) . ) .

- final statge vector congains 9 statés, in which 5 identify to the

-

dynamic part and 4 correspond to the stoclastic part. - N

-\,

o

ped
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CHAPTER 5

Foom
OPTIMAL ﬁULTIVARIATE STOCHAST}C_CONTROL
L ,‘.
é.f ) StoéﬁaStic Contyql Theory.Using Transfer Function Noise Models

& .

Discrete stachastic feedééck control on a univariate transfe; .
function-n;ise modeliwag developed by Box and Jenkiﬁ?‘ll970] and
Astfgm'[1970]. Extension to %nclﬁdg-multiyaria;e dynamicjétochasFic
systemé was outlined Qy Wilson fi970]. Ba;iqdi}y, the objeét is }6
minimize the output dev;at&ons frém target values by adjus;ing thé

manipulated inputs — a minimum variance criterion.  An optimal

controller is designed to satisfy.this criterion. In practice, a -

quadratic objective function is normally used which includes possible

-

. restrictions on the variances of the inputs

s m{n T A . T ’ ]
whére 93, 32 are poéitive semi-definite matrices. ' N

The detailed formulation of the univariate optiﬁal feedback
controller is‘giben Ey Box and Jenkins [197@]}. 1In essence, the output

noise represents the disturbances that drive the output off target if

no control action is taken. This noise series is forecasted at a time

t, for (b+l) steps ahead (b ~ dead time of process dynamics). The next .

- N » .
input setting is then fixed so as to cancel out this .forecasted, noise

vglue.' Equivalently, the process output variance is minimized with

r
. £

113,
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proper manipulation of input series, The formulation of a multivariate
control scheme is quite complicated because of- variations in the -~

individual transfer functions of the matrix. Computation is lengthy

and is not guitable for computer solution. A generalization of the

development is presented by Wilson [1970]). A more commonly used

approach is to deriwve the control scheme from an equivalent state

™

h\ -
space model.
* - d
~

5.2 Optimal Stochastic Control Using State Space Model

5:.2:1___Feedback Control Desizn | T
(a) Optimal Controller Via Dynamic ProgrammingE .
. The .optimal stdchastic feedback controller on linear discrete

&

state variable models was first developed by Kalman [1960]. The design
of optimal stochastic control schemes with the concept of dynamic

programming and Kalman filter has been widely adopted (Noton {1965},
»

Astrom [1970], Meditch [1969]).

; : X LN
For a general linecar, discrete state space model in the form

< -

of Equation (2.29) or (2.30), one optimizes the quadratic ‘performance

criterion -
' . N-1 . . "
min - T T T -
o B x x.Q,x%. . . . 5.2
u(t) t=1,...,N LIENglﬁN.+ izc(;Lglll + SLQZEL)} 2o 6 -)

where Qf’ Q, are positiyehigﬂi;dlfinite matrices, '
- ] = -

3
by
- -

The dynamic programming solution of the optimal control |

-

-problcm.is (Astrom {19701):

s 114,

.

~e

WY n b e Sy SF



. where

state value §_ will uéualiy occur gquite rapidly. S.-and the steady

- 115.

W) = <L w0 - (5.3

< R . ' - Q 1]

u(t) is the optimal control setting to be applied at time
v . -

~

L(t)

(n x1).

@ - .
x(t/1) is the conditional expectation of the state vector

. - > ~
E[x(t)/y (1)} where y{(t) are the known output ‘data

an

availaﬁle at time t, i.e. y(1) = (XT, Y10 > Zd)'

is the control matrix given by *

S L(t) = [Q, + 6¢'s(e)61 e s(e)a _ (5.4)
- where . ' <
S 8(t) = _T§(c+1)§'+ Q . >

1

- ATS(erDGIe, G+ 6) e s (e (545)

»
-

with initial cordition S(N) = Q-

L4

Thé convergence of the matrix S(t) to a fixed constant steady
e . -— < .

state «control matrix L_ are obtained by iterating between Equation

(5.4) and (5.5) until convergence. Thus,

£

C is a weighting matrix (often diagonal) which determines

Ts A : .o (5.6)

-0 =

-1
=[Q +G65,C 7 G

*x - . . |
Q, = ul ¢ H ; ) s (5.7)

AN

the relative weighting placed on the variances and covariances of -the

< . .



., ’

Qutput Z(t). 92 is a diagonal patrix which placés constraints on;Fhe

*

variances of various inputs u(t).

Q=12 T

where XA is a vecter of constraints,

~

% -
In practice, gz-and C are botq unknown. A trial and error

iteration is applied until tiie variances of the inputs-and outputs as

predicted from the model are jointly acceptable.

(b) Kalman Filter:

-

For the general state variable model Equation (2.30) it is

shown (Jazwinski [1970]}) that the estimates of the state vector x(t)

and x(t+l) given X(t) an&.g(t) informatien up to and including time t

-

are expressed by

-

»

x(t/e-1) = A x(t-1/t-1) + G u(t-1)
with covariance matrices

P(t/t) = P(e/t-1) - K B P(e/e-1).

P(e/e-1) = A PG-1/e-1)4 + R

-

_The Kalman filte£ matrix K is defined asg

K = BCe/e-Du [ pCe/e-DR + Ry

x(e/t) = x(e/e-1) + Rly(e) - H x(c/e-1))

(5.9)

(5.10)

(5.11)

(5.12)

1 (5.13)

-

116.
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In some cases, the.time period between a change_in the input
and the effect on the output is less than ong whole period’df delay.

. " . %
A state model representation for a process with nonstationary noise and

* .

" no appreciable transport 'delay (f£=0)’, as the case here, is‘given by s

.

Bquation (4.44):

- 1
o>

x(e+l) = A x(t) +'G ¥ u(r) + I ale+l) | ' "
: - (5.44)
£ = 1 x(0) Y |

z -
ad

In this case, the simultaneous state- estimator x(t/t) is required’

for the conéfél equation (5.3). Substitute Equation (5.10) into (5.9),

N

with 7 u_ replacing u_ ' ] : ~ ‘ - R
x(e/e) = A x(e-1/t-1) + G ¥ u(erl) N
£+ Kly(e) - H A g(t-—l/‘g—l)— H G-V u(t-1)]} ,
. . & - T - .
or . } . .
x(c/e) = (A=K H aAlx(c-1/¢-1) + [G - K H G)¥ u(r-1) coe
-+ K oy(e) . ) (5.14)
" The matrices R, and R, for this.case‘are.dpfined as
Ry =1t L . . o . . . ‘ X
(5.15)
§2 = 9 /
» A% N
" F ’

'
N
e et o ¢ A S &P
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o
£ - The nonstationary nature of disturbances leads to adjustment
N .
on the change of the manipulated variable ¥ u(t) in Equation (5.3). Thus,.
7 u(t) = - L x(e/e) : (5.16)

When there is a time lag of f sampling periods, the state estimator

Equation (4.46) is given by

(5.17)

2

_suit the reqhired control action. MacG go} [1973] suggested a

procedure for control scheme design with nstraints placed on the .

inputs. 1In .essenge, for a control matrix L,»

and variﬁqsg:tovariance matrix of y(t) are ca lated and this is

repeated -until these variances are acceptable. Various constraint

" matrices 91 and'g2 can be tried for the design of L.-

ey
~

r t

pa—
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The formulation of the-input and output'varianceé of the

- . . “ . .
control equation (5.16) is given by MacGregor [1973]:

\.Var[z(E)] = Ely(t) ZT(E)}¥= H yx QT + 32 (5.18)

-

varlv 'u(e)] = (v w(e) v v ()] = 1 (v~ e"/01Lr  (5.19).

AR

.
Fl

where YX is the ,variance matrix of the state vector x(t) and is given

.by - B ‘\ ’ ) k . o
V= Elx(t+13x (t+1)] , " |
ey v W W BT/l 6 + 6 L, BTle/ow
: o T .T SN . .
+GL, P (e/t) L G + Ry . (5,20)
where . v '
’ W=1[a-CL] A ) v (5.2

P”(t/t) is-the converged solution of Equation (5.9) and (5.11).
~ ~ N\ «

. MéEGregor [L§73] shows that with one per&od of delay in the process’

>

dynamics, the variances of inputs and outputs ate
¢ y < B

Var[V u(t)] = L. YQ ém © o (S.Zi)
1 Lo T - .
Var[y(t)] = H YQ H™ + & - . (5.23)
vhere YQ of the séate vector x(t+l/t) is . ; . . .-
. “v . -‘ ‘:‘}“: <" ~ .
VoW erzr . e (529

1190
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- . ©

; . . In eitﬁér cdse, an iterative solutio# to a matrix equation (5%20)

.

or (5.24) is requi;ed to Bbﬁain Va;{V E(t)] and Var[y(t)]. Computer

programs written.in Fortran IV had been developed for, the design of- .

-

L

==

K and the examination of the input, output variance-covariance.
£ R ' - )

.o . .o a 6 . . .

matrices.. - i . o )

. .

Mﬂ

»

A

«  Reduction of Var[7V u(t)] by‘constraining is ‘at the expense of
! u I € .

« @

hed

. ‘the simultapeous estimator x(t/t) 'is set up as in Equation (5.12).

incieaging Var[f(t}], and the minimum variance walues cannot be

,maintained. However, output variance will usually increase very

. ~

slightly while a large reduction of Var[7 u(t)] is obtained. Thus, the s . .

success of.the constraining strategy #s 5udged on the basis of
R D0e = - RNE !
- ] o

relative changes in the input and output variances. An overall

- L ' . F .

PRy T S

algorithm for the optimal stbchasgid control scheme is presented in

Figure 5.1.

- . .

C. - . BT .
5.2.2 Controller Design for 'Reactor ' . . . ’ ) T

° ° -

< . £ Tl . . . . .
< A& multivariate optimal stochastic feedback controller-is .
. \ - . . 3 : .. - . . - ‘;

- designgd for the dynamic—stochastic model in state space ‘form," g LI
. . " ] ” R A

- \

Equation (4.4@) in whic¢h the change of the butane 3nd hydrogen‘ .
H . - .

1

- -

flowrates deviates are the inputs,‘hhé;kgpropane and butane extents T
. v L . . - - N t
2 B . ; ., ) . X P .
° ‘deviates are the outputs. . With the Kalman filter matrix K determined, . . N

-

18 - . . -

The resuits:ofrg and the sets of equations of the estimator x{t/t) are
i - « . . ‘ . “a . - - X . ?
., listed in Appendix 4. - .- - d

. -~

B The control matrix L is aesigned\vith-the wedighting matrix .

C chosen to.bq the identity matrix I, that is, minimizing the.

:
>
Bt At oy g ol

< 4 . . = - B F
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..FIGURE 5.1: ALGORITHM OF OPTIMAL STOCHASTIC CONTROL DESIGN
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-
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Calculate Kalman .filter matrix, g‘
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TR .
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matrix Q, -
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Calculate steady state control mateix L_ .
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* Detérmine Var[v u(c)] and Var[y(t)]

LR T TN LR AL L




ae

. e

unweighted sum of the output variances of p;opane and butane“extents:
Various consgréint matrices 92 for the inpug are tested and the
theoretical results on the varia5ge§ of input-output aﬁe‘given in
Table 5.1. Ogtimal‘stbchascic Eontrolléfg bave been'designea for a
pumbﬁr pf different inﬁut Yariénce constraint matrices 92. In gegeral,

as 92 becomes larger the variances of ;he output propane and.butdne

éxtents "increase. With equal weights on the input variances (2nd case),

the variance of the hydrogen flow decreases rapidly while that of

.e
<«

butane goes up. This is due to the fact that-hydrogen flow variance

is so much larger. The last three 92 matrices use*unequal weigﬁting -
. . . t

in order to emphasise reduction on the variance of the butane -

manipularion. The control matrix L " corresponding with the various_Q2

o, -
- .

are given in Appendix 4. ‘Generally, the output variance ‘increases,
as larger restrictions are placed on the inputs manipulation, as :

-3 -
.

indicated in Table 5.1. 'Some of the discrepancies’may be due to.
computation round-off errgr. It is observed that a higher conséraint

.

is_placed on the butane manipulation, thus ensuring . a gradual butane

flowrate change and preventing a sudden flux of..this stream.

.

ST

Tog o %-

. ) , i
Simulation studies of optimal stochastic ‘control on the - N

reactor-are caxrried out in this section using the identified dynamic-

stochastic model- equation (4.4@) of the reactor and the derived

optimal stochastic coﬁtrollep equation (5.16) .and (5.17): The

. - > " - ‘. * .
simulations are used to confirm the optimal controller .design

-«
- .

~

TR

BnaRip ot
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' . »e (/1’
W

~
.

calculations prior to implementing the controller on the actual reactor.
They also provide an insight .of the performance of various optimal

feedback controllers fro tion of the predicted input

manipulation and the output data. All-the design cases discussed in
thg‘previous section are simulated. wo white noise sequences are

used to simulate the output propane arjd butane extents. In this case,

fof simplicity, the residuals resplted from the model fitting in
Chapter 4 are fed into Eduation (5,25) with u(t) and x(t) set

initially to be zero. The states x(t+l) and s estimators x(t+l) are

~3-

updated simultaneously with Equation (5.17) for the calculation of the
7'u(t) and y(t). An algorithm of this simulation is outlined in

Figure 5.2, given the state spacé model

x(t+l) = A f(t) + G Vg(t) + T E(F)

y(t+l) = H x(t+l1) S .

The simulation results corresponding to the cases of iab}e 5.1

- are given in Table 5.2. It can be seen that the simulation results
on the input-output variances agree quife well with ihe.théorétical

cases. The simulated outputs in extent deviates and the control

actions in.terms of input flowrates related to the .4th case.in Table. *’

. - .
)

5.2 are plottédriﬁ Figure 5.3 and 5%4. . The large variation.of the

simulated hydrogen floweate could be resulted from its slightly inadequate

- , i . R . ._ . - ) 7 - -
transfer functions with.the output responses in Equation (4.41). ]
- ) h . ! J.
. - . >

.

N
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TABLE 5.1: THEOREIICAL VARTANCES OF INPUTS AND bUIPUTS OF THE

TWO INPUTS-TWO OUTPUTS DYNAMIC-STOCHASTIC MODEL

EQUATION (4.44) UNDER VARIOUS INPUT CONSTRAINTS

v

j Constraint Matrix Var([7 Yooy 1 | var[7 uy ] Var[zt]
| e 4%10 2 .
| £}
1 (0 3 0.103 8.22 48.5 76.47
t(_) » . 76.4 124.6
’—-‘-'.’.
2 J1 ' d} 0.140 ’ 3,14 (49.0 75.9 |
. . . L |
} N ) 75.9 125.4 |
= = - -
i;a 750 0 0.046 4.02 7492 }6.37
L -1 0 1. ) ' 76.8 125.9 |
., L_ 4 | . o
4 75 0, 0.Q57 1.13 f51.3 74.27]
0 10 | L?z‘.z '132.6
' > PR
(100 0 0. 052 Q0625 | [153.8 170.9
L 0 25 L70.9 139.5
‘J = ) . K
1) .
where D Cl’;}v, '
“t . > h
'CZ, : ) .

=

16) "7 u(t) = -L_x(t/t).

PRSI S S F I 4
.
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TABLE 5.2: SIMULATION RESULTS FOR THE VARIANCES OF INPUT FLOWRATE

MANTIPULATIONS AND OUTPUT PROPANE AND BUTANE EXTENTS

e N T

X

Constraint Matrix Var[? u.- ] Var[9 u; ] Var{v(t)]
C,H Hs =
4710 )
3, L
- - . j %
- — ) — -
1 i 0 0 g.101 . 8.57 | 489 76.9
io 0 I L76,‘9 125.2
! ) x | g
2 1_1 0] 0.142 ) ‘ 3.08 49.6 "76.4
’Lo' 1} | ' i 76,4 125.7
3 .50 0 0.046 ; 3.97 T50.5 78.3"
<0 1t - ' 78.3°  125.9,
L—- _i 3 H < . L— - —_
4 75 L0, 0.061 0.927 753.3 76.3"
0 10 ’ ! 76.3 . 131.0!
3\ _i. — . -
. - [ ]
5 rloo 0 - 0.058 0.430 .i_ss.'t) 74.6 .
LI | N i
Po 25 . 74.6 132,21
L 5 ] L 13224
— .
) propane extent deviates
yle) = '
o butane extent dqvi?tes )
. C o

- et mint e s e 8
. .
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FEGURE 5.2: ALGORTTHM OF THE S'[I‘R’I.:A'PION STUDY
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5.3.1- Controller Implementation (

——— . —— ————— T ———— ——— (o Tt - . T Bt o ot

With the optimal stochastic feedback controller prop?fly

’

selected, a schematic control flow diagram.is shown in Figure 5.5.
Because the coolant oil temperature dynamic response is very slow the
wall temperature cannot be used. as the manipulated variable, although

it is used to adjust the reactor conditions to give the:desiréd level
of steady state conversion and selectivities. Also it is used in this

-

. . ,
study as a lead- disturbance to test the control algorithm. The axial

temperature profile and the flowrates during the preceding interval are

" used to predict the. output responses every 30 seconds. The baraﬁe;er; of

the prediction equation'(é.lﬁ) are updated by RLS whenever new concentration

.data are available, presumably every 6 minutes. The multivariate

feedback controller will then adjust the_input flow accordingly.

_ The control software written in real time Fortran IV was . - .
developed and incorporated into the basic reactor software “in Section

3.3.3. The sampling interval is atbitrarily chosen to .be 30 seconds.

~

. ) -
Jutan [19761 used an interval of 60 secondﬁryhile Tremblay [1977] chose
Y} - ~ ) J ..

..- ~
30 seconds for the model reference control scheme on this reactor. It

had been shown that €MacGregor [1975]) more frequent control i.e. a

short sémpling intervial does not necessarily ilnprove the control

efficiency. No attempt was made at selecting the oqtimal sampling
interval. Since in previdus work, a B0 secend period was shown to be

adequate, it_w%s used in this study. " In hindsight, this was probably

. s *

«
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a poor choice because it was not an integral multiple of thé basic
12-second cﬁcle time ofvghe thermocotiple multiplexecr. ﬁowcver, all the
12—secoAd temperature measu;ements wpré filtered by the digital filger
T{t) = 0.5T(t~-1) + O.S'Tr and the error from this lack of. synchronization
of temperaéhre can be somewhat reduced. The overall control algorithm

is given in Figure 5.6.. o .

-

The objcctive- of the control. algorithm is to hold the prediceted

propane and butane extents about their set points. Thus, the performance

index used in this study is defined as the sum of squares of the output

extent deviates from these set points.:

x

In order to improve the parameter updating procedure, a modified

version of Equation (4.16) ia.adoptéd here. An extra paramcter 3; which

is initially set to zero is added in each row with the corresponding

variate Zo being 1. TheSe.éo's are used to provide extra flexibility

.

ig,ﬁhe prediction equation in case the reaction conditions durilg the

2 ‘ . - - - . . )
implementation are different from those at .the time the data was
M AN . . i . a
- :

collected for fitting. The prediction parémeters can then adapt to

« the new conditions more rapidly. 'On the other-hand, if the shift in

reaction condition is minimdl, these BO parameters will remain -small.

Thus, the inferential concentration prediction can be rewritten as:

) o | |
gt*[ﬁ"".gl['ét’].' . (5.26) .

-1 .

The controller matrix qorrespondiﬁg to the uneven constraint

matrix of case 4 in Table 5.1 was chosen for this study. The constraints

placed on the input streams are high enougﬁ such that drastic change in.

) _ S .7 1o,
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FIGURE 5.6: MULTIVARIATE FEEDBACK CONTROL 'ALGORITHM
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avoided. At the same time, the variance of the controlled

-

fldwrate is

variables increases about only 5 to 10-percent from the unconstrained

controller. Although theoretically the first two chse§ show smaller

variances of the ‘output responses, the variations of the manipulated 3

©

. I
inputs may be too large in practice and these loweér values may not

" be attained easily.
. : 5

. .. ® °

. - ..
in the operation of the contact senses which supervise the transmission

During the implementation some problems were encountered
.

.of analyzed output concentrations from the chromatograph to the

compiter. In most cases, only 9 to 10 analysis cycles of concentration

.

. . H .
were obtained before contact sense failure occurred. Thus,. a compromise. -

approach was adopted during the control run. Befofe the implementation

of the multivariate controller, a univar}aé% PI controller which
manipulated the_ butane (lowrate was used to bring up the reactor axial

temperatures to the desired profile. The gas chromatograph was then

initiated for amwalysis and the parameter updating procedure was.also.

-

; started. After a few cycles of parameter updating, the multivariate

feedback controller was implemented. The results.from one such control

. IS
.. 9

run are given in Figure 5.7 to 5.1, with the wall temperature set at
- o . - - .

245°C. _ ' T

.

. From Figure 5.7 it can be seen that the switch from Pl control

ta multivariable control induces large chapges” in.the input flowrates.

These transient effects also cause large fluctuationg of the prédicted

M - - v
N * ; €

.
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ACCUMULATED OBJECTIVE FUNCTION

| FIGURE 5. 7: PREDICTED EXTENTS x 10°

AND IHOT SPOT TEMPERATURE
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Cor FIGURE 5.9: HYDROGEN AND BUTANE FLOWRATE . L3+,
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extent values. In addition, since the parameters in the prediction

~
- . . . .l

equatlon for the extents vere updated only three tlmes, the estlmatlon

o
-

_equatlon may not Jbe satlsfactory at the tlne of switching to the

0y

« . h - _ k3 - -
the predicted- extents adapt quite well to fit the measured values—t

[ < B K s

multivarieble,controller. As the predlctlon model parameter estimates

- . i/

improve, so will the predicted extents. After approx1mately ‘100

i’

30—second time lntervals and nine chromatograph analyses the contact

sense failea and no more analyses were aveilable. By thlS tlme (p01nt B

. -
-

in ?1gure 5.7) the B parameters are apparently reasonably satlsfactory,.

and the predicted.propane and butane ex&ents-are close to the measured

] . o’ R

wvalues. Due to the limited availability of'méaspted-output extents, a

& Te

.-

‘more detailed comparison of the predicted and. the measured extents is

ot . .>‘§ T8 . . _ .
not feasible. However, it dan be seen from the few comparisons that

. e S w
- : .

-

The performance of the‘multiveriable controller mugt - also be

B - -~
evaluated on the basis of the predictel extents because of the .absence |

of actual measured extents in the latter part of the rud. “After the

. . N LN
. -

- ‘ -", " ) v & - : s N -
.initial transients due to Qwiteh\over from the PI contreoller and_-

~ T
.

.updatlng of . the’predlctlon equatlon have died out, the multrvariable'

-w

controller pexforms very well as seen by the “fact that the predlcted

.

extents are held very close tq-thelr targeg values between p01nts B

and C in Figure 5. 7 @he varlances of propane andébutane extents are

.
- . . .~

found to be 27 8 x. 10 l?and 43 3 x lO 12

A ~

perl Tbey are con51§erébiy lower than the theoretlcal and 31mulsted

values 1n Table S‘l and 5 2‘ The rate of risé ‘of the berformance )
~‘ R N . . g~

respectlvelyg durlng this.  ~.

( re 5 8) is quite small durxng this period and the manlpulaced o

P
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input flows are much amoother and ﬁorelstable than they were under Pl

control. The hot spot temperature was mdintained relatively constant - °

2 -

hot, spot (0.61 from the.top of the reactor) had shifted somewhat towards

-

the centre of the reactor. Also, the hot spot temperature fs lower than
the one under PI control (a 19°C rise opposed to 27°C) and generally the

temperature profile is flattened out. Yet, the production rate of -
., . . - - .‘ Q . N . >
propane and butane were maintained under this_ lower temperature profile.

v - Q - ’ - ‘
In order to test the rabustness of thé controller, the wall

téhpérature was dropped to 243°C at poipt C in Figure 5.7. The butane

flowrate increased slightly while the hydrogen flow decreased. The

controller performed quite well and was able to keep the reaction from

‘dying out.' Aftér an initial drop.in the predicted extents they soon .
recovered to near their target vglues. This canh be seen as a slightly*
steeper rise in the objecti&e function just after the d¥op in the wall
temperature followed Sj a return to a niore gentle rise.- Be;ause a iow

herogé#*flbw limit had been impased‘at 65 cm3}seé-at,STP, the hydrogen

. . .

flowrate remained at that level. After 10 minutes, the oil temperature

= . : .
was raised back to 245°C (point D) #&nd consequently, the hydrogen and

butane flowratés re;ufned to near their level prior to-the step change.

Due to the'cbn;:oller encountering the hydrogen flow lowef limit and - .

due also to ‘the relatively short duration of, the test, the contro{ler'
X . : § e

performance £6 such a change ‘may be incorclusive. .

- . - . « * .
. . * . -
.
. . - B

compared with ‘that during PTI control and ‘the normalized pesition of the ’

136.

‘
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- to- the. most signifibant canonical variate 2Z

137.

A

¢ " L

It is' noted that both h}drogen and butane flowrates decrease

c0ntihuously'although'their flow ratid (u, /u ) is maintained relatively
4 . > omy'YcM | ;

constant, about 6:1 as shown in Figure 5.10.

>

A-plausible explanation for thé.fallipg flowrate-could be’

» . ¢ ‘

that the heat losses from the reactor are becoming Yess and gradually

an equilibrium would bes reached as tHe run. proceeds.

-

The parameters in the inferential concencrétion.prediccion .

équation after 9 cycle§ of updating are shown in Equation (3.27):

©

— — p——— AN . R e —
c; ~.6364E~06- .2269E-04. .1904E-05 -.1316E-05| |-
- . I3 ~ . )
C, | = |-.1122E-05 ;2806E-04 =.2807E-06 =-.6293E-06 | |2z, | (5.27)
N e -
'03' , -.3817E-05 . .3732E-04° -.27408-05  .1298E-05 | | 2, .
L J | . ) - —
: . | %3]
te = . ) . ,

Comparing with the fitted parameters in thé‘prpdiction equation

-

(4.14), large changes are obgeived except for those parameters éoryespquing

~ y M '

1+ This' is expected because

the paramecqrs‘associatedkwith Zy and to a certain extent z, had very

‘large confidence intervgls as §ho&n in Table—éllb.- This Eonfi%ms the

. . 2y . N . .
belief that 2, and Z) contain most of the prediction information in T

1 2

the -set_of temperatures and flowrates. The 80 parameters aré changed.
~ . :

x

from o 'to some’ values in the first cqlumn, thué'diﬁferént:operacing'

conditions from those during data collection. were ehcountered. .

. Unfortunaéely, since only a limited amount of measured concentraticn

< -

data was ayailable, the parameters were not updated cortinuously.

- ) b . - :
1 ~
-
. v
>

M4

n 0

O Y
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.startup or shutdown sequences. The different catalyét,prqperties may“

" implementation oY this particular multivariable controller from an _

. . ) ) ) . : . . 138,

-

Throughout the rum, the slight offset in butane extent prediction in : -

Figure 5.7 could have resulted from, these imperfect- parameters whiéh

|8 N .
cannot adapt efficiently to any further changes in the reactor system. :

»
-

. X ) . . . . .
However, the inclusion of integral action in the-controller should be

’_gbézéﬁability to cancel out the offset -

able to eliminate this offsect.
" Y Pl

I

might be due to the integrﬂf action not being large enough. If Fhe

reactor is under controlled for an’extended period of time the offset

-
2 . R

is expected to disappear eventually.

The catalyst used in this particular run was prepared about

v

5 days before the run and thus was quite fresh. Because this catalyst

and tQp oné used foféiﬁﬁinmdel fitting were not from the same batch,

discrepancies in the catalyst characleristiecs are. expected to exist
i * . ’(\?_ B . . .

such as the catalyst activity.. From previous experiments, it is ~ .
v ..\ '

believed that catalyst activity does not change significantly during
~ - 4 v " . N

- R

a run. Rather|, gradual deactivation probably occurs during reactor-

.

account for most of the changes in reactor conditions<”/ . )
T . . . - <

From this and several other similar control runs, it cdn be

B

concluded that proper parameter updating is the key to sub%essfu%\ .

, .
U

empfrical model, A performance comparison with the controller designed -

[ P

by Jutan from theoreticdl physical equations may be premature due to

the contact ‘sense problem. Neyertheless, it can be seen that this

a

‘controller is able to-control the output production rates about their .

target -values épd the control action is éonsiderably smoother than a ) .

Onivariate PI controller. .




a' ’ - \

iQZHAPTER F 6.

CONCLUSION AND FUTURE WORK
®

Thé modelling of compilex chemical systems has always been a e

»

major problem in the studies of the application of.modern control theories.

Traditional process moaelliﬁg.based on theoretical material and energy ’ )

balances are usually time consuming and tedious. In,view of'this,

an alternative ﬁodelling route is presented here, which-is relatively

simple and easily applicable to chemical progegsés. . ’ -

~
.

An empirical multivariate transfer function-noise model

describing the dynamic and stochgstié behaviour of a pilof plant

.
¥

catalytic reactor was built, bdsed on, plant, input-output data. A .

statistical approach using the concept of'multivé;iate time series and

-

transfer functions was applied. Efficient modelling was achieved by the

. .
identification of process dynamics and stochastic mgise structures,

_tﬁe estimation of the model parameters and the diagnostic checking of

the fitted model by somé's%agistical tests. A fairly adequate two ‘

input-two output model wasgobtained~for the reactor. & low order (9th) .

state space model.was then obtained by the minimal realization. of the .

multivariate transfer ﬁunction-noise model. -

Redctor exit concentrations were inferred from measured - ,
- - . "".- > » B -

temperature and input flowtate variabieé“uéiﬁgAa.prgd;ction equation

: IR 139, .
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1

based on canonical predictor variables, This procedure was found to

give better predictions and to be successful in reducing the correlations
v - . N . - :

~ampng the temperature variables. Also, the dimensidnality of the .
) L . . . , Y
effluent extent series was reduced to two by another canonical analysis,
- R -
while still retaining most of the information on the process:. -

- ~
.

Multivgriate optimal stochastic controllers were derived from.

s

the‘identifiéd 9-th order state qpacé model using Kalman filtering
theory and dynamic programming. Despite Lﬁe difficulties in the

contact sense operations encountered dyring the implementatiom tun,”
3 . . . . N

hd -

the ﬁerformande of the controller .was quite satisfactory and considerably

-~

- . s A
better- than a univariate PI" controller. \Parameter updating on the
s . - « ~ R ~ -

prediction of exit concentrations played a key role iun this particuilar

- - . -
-

case due to the shifting of reactor denditions. ‘o . '
As a comparisén'with-Jutap's [1976] theoretical multivariate

. . N & 'u,
model on .this reactor, the empirical model is relatively easy to be

developed. However, there is nS_intention to claim this apﬁroéch to

be superior. Rather, an alternate modelling procedure is presented

here and the mddelling choice will depend-on the particular cir&umstanceg,

The addition, of integral actions to the controller should eliminate the

-

offsets of the controelled.exit extents despite the presénge of load

> - -

changes, thus maintaining a steady output product rate.

‘ . B

A3

Future Work on the Reactor ) : ) .

-

‘Certain improvements on this work can be suggested here.

)
~ - _ - .

‘Because ,of the success of diﬁeﬁsionality reduction, it might be interesting
~. . - - .. - “ t': N

.

‘e
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v . - .

to express the outputs as linear combinations of the various extents.

, -

'Tﬂis would eliminate the'high\corrélatipns~among,the predicted extents

« f

<

as well as the occurrence of the highly correlated parameter estimates
in the transfer function model. Also, perturbatiqﬁ with higher variations

could be added to the hydrogen flowrate during the data écquisition, thus

improving the identification of the corresponding dynamics.
» . -7 R :

After eliminating the problem with the contact sense it might L

be worthwhile performing further, more comprehensive runs with the

present multivariate stochastic controller in order to evaluate its

performance better. ‘ ' ) ,

e Be -

.
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A Dynamic state matrix. . ) .o - . -
ay Vector of white'noise sequence. : .
T, . . - Al
B. Control matrix, . . ’ ..
* [
- - *
- B Backward shift operator. R ’ \ i
’ bt Intermediate series. .
b Dead-time delay. - . . . .
* - A
e . Ty
c’ Weighting matrix.
. . ’ ) ) o 1, propane
Ci Concentrations of outputs in extents, -g.mole/sec. 1 =] 2, butane
N ’ - 3, hydrogen
D Dispersion matrix of residuals, ) ) ) L v
! - 3 ] 1 PR . * ¢ .
dt . . hdither' noise saries. . . e .
d - Order” of differencing. - '

ﬁ( ) " Expectation va%ye.

. . : L L ) )
e, Univariate output residual series. o .
F Vector of temperature functions. . -
' »
. . ¢ .
G . Control matrix. . ’)\\\5 . .
i Measurement matrix. : . .
1 ldentity matrix, . . o -
J Element*matrix of the Hankel matrix.
K- Kalman filter matrix. s
. 142, . ' _
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o

Number of lags. ~

. One step ahead forecast of ﬁ.

Weighting matrix, fﬂé.léi.

«

Matrix Eor-the non-singular canonical transformation.
Stead§ F&ate feedback gain.

Veéﬁor of linear combination.

Vector of measured_vatriables.

Number of output variables. e

*
Terminating time period of control.

Stochastic noise series. .

Vector of canconical variates.

-

Number of input variables.

- -

Parameter matrix, (4.1), ‘covariance matrix of X, (5.11).

Order of autoregressive operator, - g .

*

Parameter matrix, (4.1)." .

Positive definite matrices, (5.1) and (5.2).
oL . ’
Ordeg, of moving average operator. :

Variance-covariance of white noise gseries, (2.31p.
. . ]

Parameter giﬁxix'for prediction‘eqﬁatioﬁ, 4.2)

’

Rate .of reaction.

"

e

o ariia |} el




Sample autocorrelation function. .

Order of & parameters in transfer function.
- ) -

Hankel matrix, (2.3%).

farameter matrix for prediction eqddtioﬁ, (4.2).

Ordér of w parameters in~transf;r function. >
Temperature deviations, °K.
Discrete time interval, sec.
ngonical form of Cr?nsfgr functibn, (2.18).
Controllabii ity matrix, (2.34).

Vector of inpﬁt variables.

Transfer function matrix.

Observability matrix, (2.34).

Impulse response function.

White noise sequence due to measurcment error. ) .-

o . . . :
White noise sequence due to disturbances and modelling error.

- . .

- . e

Véccquﬁé independent variables.
" N : <

State vector at sample time t.

Statte estimate (simultancous) of x . : . .

oo . ~
Vector dépendent variables. ‘ ‘

Vector of output variables.

N

Variance matrix of state estimator.

.
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e

o

.

Vector of* canonical variates. - : N

Input thte noise series. -

Filtering constant, ({.l)..'

Parameter vector of the prediction equation, (4.11).
Standard deviation of series, -
Eigenvalues of thé generalized eigén-problcm, (4.8).
Forgetting factor: Cﬂ.lS): ' ) ) . :
Vector of coﬁstraint, (5.8).
Independent variable vector,’ €¢4.18). . . ’ -
Output error.

!

Dynamic .parameter (denominator) of transfer £function..

13

- » . <

Dynamig parémeﬁer.(numerator) of transfer function.
Autoregressive operataer. i .
N (.24 - -

Moving average operator. s

.0

Izati() of 0 to -t\ polynomial' . - " " o

- >

Ratio of ¢ to O polynomial. .,

™ ow b Yed -,

A 3
Unit variable (either 0 ox-1).

Total time iIntervals or centinudus  time

Mean value of time series.

¥
Roots. of the determinantal equation, (4.36).

' .

. 5

Al
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Lua

.@kk

(k)

Variance-covariance matrix.

>
1

Chi-square statistics.
Autocovariance matrix at "lag k.
‘Cross—~covariance matrix at lag k. -

Eigenvectors. : .

’

Ratio of generalized- variances, (4.40).
dth difference operator. :
Autocorrelation function.

Partial correlation function.

T

.Subscripts and Superscripts:

"Transpose of a matrix.’

| 4

Denotes estimates ‘e.g. x(t). :
y -0 .

. . -

Subscript infinity refers to steady state

Denotés vector or matrix.

R

. R 4 .
Denotés derivative with respect to time
or canonical variate N,

_Denotes individual output.

«

Denotes individudl input.

he »

o . .
Dynamic part of state vector, x (t).

&

e
W<

dx/dt

Stochastic part of state vector, X or canonical

form of eigenvalues, A%

- . N

9
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- APPENDIX 1

APPLICATION OF MULTIVARIATE TIME SERIES AND

TRANSFER FUNCTION IDENTIFICATION

The modelling sequence of the model example in Sectiqn 2.3 are

presented here. The procedure in Section 2.1 and 2.2 are followed for

the constfucpion of Equation (2.26). A total Of 347 sets of two—inputs,.

two-outputs data are available and are given in Figure Al.l and Al,2.

FIGURE Al.1:  INPUT SERIES, u

1,t

i
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v . . |

-

{a) ____Identification of Input, Output Series -

The autocorrelation and partial correlation functions of each

input and output series with no differencing are shown in Table Al.1, with

) .
the approximate 957 confidence limits. It ,is obvious that the inputs
*are uncorrelated white noise series and Yiee Yo c'are stationary AR(1)
. b . 3

processes., The fact that the inputs are white noise sequences

simpliftfes the modelling procedure.

{(b) Transfer Fuﬁbtion Identification

S o . e " o e e e B e e o W St e e o e

-

Crosscorrelation functions between each input and output are
given in Figure Al.3 to Al.6. 1Individual transfer functions can be

identified as the following, with the preliminary parameters determined.

b4

(1)

¥yt and SIS , order r =71, s = 0, h = 1. - -
v - 19.5
1,607 1= 0.47 B "1,e-1 (al.la)
2
L (ii) Y1 ¢ and Xy o order. r =1, s =0, b =1 3
] ) .
© .31
Al.l
Y1,6 TTZ0.641 8B Y2,¢-1 (a1 b?
(iii) Yo and Xt order r =1, s =1, b = 1
r \ ’
_3.74 + 0.75 B
Y1,6 1 -0.918 U1, e-1 (Al.le)

[EERLP VRPN T
.




and x

. Y2,¢ 2,¢°
i . 2.12
T e et e o l
Yo,6 T T -0.478 Y2,t-1 (a1.1d)
S . N '
(c)_____Univariate Output Noise Series Regeneration
- The regenerated univariate noise series are shown in Figure
Al.7 to Al.8. = Each di " is identified and thd& rtesults are shown in

— > 2

< a ..
Figure A1.9 to Al-.10. A stationary ARMA(l,1) model can, be tentatively

~
. e
RS

assigned to each series.

S

. 1+ 0.25 B -
el i
. - "M, T1-0.68 -%1,t . : (al.2a)
. 1% 0.7 B ) . : : ‘
R : : Al.2
e~ 1<0.78 2,0 . : o, (ala2b)
(d)____ Preliminary Estimation and Diagnostic_Checking of Two )
Inputs-Univariate Output Model .

.

The two transfer function-noise models corresponding te the

L4 -

two outputs are fitted and checked. The fitted models are:

10.13 - 2,49 B :

e ST T o3 8 ) e T3 Yy e g )
> i ) ..j ‘ (A1.3 )
n = (At0.27B. ) i
Lt~ ‘T-0.36 B “lye R
and . )
anc _.2.93 - 1.00.8 . 2.05 L
Sy, = O + 0.53 B )‘”1,t-1 *a 0.41 B2, e-1 T Mo e .
o (AL.4 ) .
. (1= 0.09 By . .
R . 2,t 1 - 0.86 BY “2,t

.
€t

. S . . _ 154,

.14
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*

The crosscorrelation between the univariate output noise series
“is shown in Figure Al.11. Significant crosscorrelations are observed
and a multivariate stochastic modellis thus necessary. The bivariate
.'intermediaté series Et is generated and again the crosscorrelation
S between bl,t and bi;é is determined in Figuré Al.12. The qrésscorrelation
/’—\\~fzhas a cuc,off lag of 1, indicatiag the maximum order of the
multivariate moving average matrix is\at ﬁost one. Therefore, the

multivariate noise ‘model was assumed to be a multivarjate ARMA(1,1) form.

. e e e e e e " s " " e B v e e it e . e B e o o S n SA3, et e . A s S ok o S e o Ak et A e T e e i S e o o e

- ~

LA With the éff diagonal elements in the @(é) matrix initiall&
set’ to zero and assumed to be of order 1, Equation (Al.3) and (AL.3) .
were cdmb%ﬁed for the final estimation and checking. Tﬁe final model
Equatio& (2.27) was oétained, and the autocorrelations among the
residuals. and the crosscorreiacions between the inputs and the
residuals ére insignificant pnﬁ thus the nodel equation (2.27) is

- 3

adequate,

[Ty e
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TABLE Al.1l:

IDENTIFICATEON OF INPUT AND OUTPUT SLRIES

(;. Autocorrelation Functions, 0y

T \ t
lag k ul,t/ { Y2 ¢ ) 1, Y2.¢
} - i :
1 r.on -.007 492 .845
2 112 .054 .326 . 706
3 ~.026 .089 . 149 . 586
4 -.033 ° =.031 . 089 494
S5 . .070 .108 112 435
6 045 . 018 .100 . 369
7 .063 -.074 .091 . 300 .
8 -.045 .062 .038 .252
9 .082 -.033 074 . 200
1q -.050 -.034 .01l 151
b. Partial Correlation Functions, ¢kk
lag k ) U e i Y5 e yl,t y2,t
1 .071 » =-,007 .492 . 845
2 .107 054 .110 -.Q26 ]
2 3 ~.042 .090 . -.064 -.013
4 ~-.041 -.033" 011 027
5 .085 099 .093 .065
6 .043 ’ 015 .019 -.0350
.7 .038 -.080 009 - -.044
8 -.059 042 -.036 .038
9 .089 -.021 .075 -.042
10 -:049 -.038 ~-.060 -.036
épproximace 957 coﬁfidence 1imit on correlation = ,107
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OUTPUT NOISE SERIES» N1
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FIGURE Al.7 & Al.8:REGENERATED NOISE SERIES, n and n,

2,¢t

Number of Discrete Time Intervals

0 50 10¢% 150 298 25 300 . 338
0 50 108 159 283 250 3890 3538
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Inpulse Response Function Between Input and Output
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FIGURE Al. 9: Ny . Identification
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APPENDIX 2

. DATA ACQUISITION 4

A2.1 Added 'dither' Noise Structure

~
-

IA order to facilitate closed-loop identification, a ‘'dither’,
noise series was added to the manipulated butane flow -under feedback
control. Another perturbation was imposed on the hydrogen flow to
excite its variations for efficient model identification. It was

arbitrarily decided that an Ah(l) noise process would be added to the

hydrogen flow while the 'dither' noise was a series of random variables.

., -

>
These two disturbance series wert¥generated by computer software.,
Evenly distributed random numbers were first generated, which were then
converted into normally distributed random series. The desired noise

series structure was Obtained by filtering the random variables

. through the appropriate process $(B) operators.

P e e € e et o i e o e At it e e S e e e o L ot . s S = = o~ = ———— T~ — o —— — ——

The algorithm is based on the Data General's Relécatéble

R

Math Library File [1973]}. JEvenly distributed random number ﬁe is

N

calculated by
R(t+1) = [R_(t) + A+ C} mod (2'%) . | L (A2.1)

where
A

2
G+ 27+ 1)

O
il

33031 (octal)

~
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A

" and arg 1 mod (érg 2) is defined as arg 1 -(arg l/arg 2) arg 2, with

(arg 1/arg 2) being the truncated value of the.quotient.
16

the routine produces numbers in the tange O < R <2

16

- 1'and has .a

maximum cycling perioed of 277, The fractional value RV between the

16

range 0 and l can be obtalned by dividing R by 2

Ry = Ry

the random number generation. Starting Re(t)t=1

2

i.

A modified version of the ‘supplied routine was used for

values which must be

Fheoretically, °

odd numbers are chosen to be 1001 and 789, both of which produce random

numbers with a cycle period of more than 1300 numbers without repeating

itself.

‘carefully so that the resulting random numbers have long cycling

periods, otherwise répeated cycling effects will be resulted.

The formation of random number series with normal distribution

is devel

Le&

and

It is critical that the starting Re(t)'s_should be selected

Conversion Into Normally Bistributed Random Varlables

-...-__-—..-_—_—_—_......__—-—_..___._—..—-.._..._.__-_.__...__._—..__-.___.._______——..._

oped

ARGL-

ARG2

by the following formulae:

o SRSV
= [_—'0‘* 10g10 '(I{Nl-a]

2.0 % m' Ry,
N
. b

[ARGl ® cos (ARG°) * o ¢ (1 - éi)l/“

[ARGZ'* sin (ARG2) * 0; % (1 93)1/2

o

normally-distributed random numbers

-

2 * standard deviation of series ...

1/72.

/2.

(A2,

(A2

.3)
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LY

-

Fa

subscript i

-

\

]

Y
= IFIX[¢HQ *~d

7

X s

'={l, noise added to butane flow

. )

2, noise added to hydrogen flow

%
IFIX[6, *d

v

L 4

The two noise series were ge

4

2

C

4

nerated by
< =

+ a.

t-1 1,(:] .

Hy,t=1 +a, .l

kY

a

Table AZ,1l were adopted. It is noted tha

A2.2 'Operatipg Counditions of the Ddta Colléction Run

N

(A2,4) -

For the data‘acquisition-run, the fbollowing parameters in
_ ¢ lon Lne’ . 1

>

'changed on-line

« -

~
A

untfl the optimal conditions -arg attained.

values (2 times the

.

2

‘ Ed
standard deviations) of the AR(1l) process and

~

Fl

)

-
.

<+
The ¢

[T4

the random dither noi'se series were adjusted ¢onstantly on-line and

t all these parameters can be

A

et fiad and T . o
The AR-parameters are specified and g5 values can be adjusted on-line,

their variations are increased up to éfva$ug_of-25. ‘ t
. B ~ . ke e =
‘ . O - . ' -
A2.3 Transformation of Product Mole Fractions Into Extents ..
* N N . B ° N o
' 'i = N - ) ’ ’ ) ’ ' - .
» .~ Total input flewrate, u, = u, .. + Uy ccfsec, Converting -
o . b T, G, H ) .
_ S - . - ‘; R, - , L ,k 10‘- 2 ) . R 4
" - the flowrates_ into.gm mole/sec, g .
L. . N - ~ - * 'P e
. : - atm . .
Mol lowrate = 3 . - 2.
_ Molar £ WTats R - (A2.5)
o P . : room z
" where™ - X S ' . - o C
L Pétm- - .atmgSphéric pressure, 1 atm. -
TR~ - ..universal gas éaps#an;, 82.06 (c;ﬁéim)f(g.mole}{°x)‘
. T SR s . ST TR
. - .room temperature, 2938 A . o
b . :Q.om- oo - ? ] AL tﬂru Y. 2,?1# o . - . . .
&r{' -. - . . “ n . .
. R . . N . . - : . - .
- . P % s - » < 4 -
» - . i - ) h ) ) 8 *
et - - e - ~ LY
- -

.
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B TABLE A2.1: PARAMETER SETTING DURING THE DATA ACQUISITION RUN

163,

w
- ’ -Parameters Values
. , T . —
Filtéring Constant, ag . 0.5
Coolant 0il Setpoint 246°C
Hot Spot Temperature Setpoint 273°C’ i
| Hydrogen Flow Setpoint at STP *100 ce/sec
Butane Flow Sefpoint at STP 15 cc/sec °

Hydrogen Flow Uppet- Limit
Hydrogen Flow Lower Limit

Butane Flow Upper Limit

Butane Flow Lower Limit

160 ce/fsec
85 cc/sec
22 "ce/sec

8 cc/sec

0.6

ol




. "

"where

LA

. , * ‘
.o . ) Uy 1

Cc = 82,06 x 298 g mole/sec

The extents of propane, butane and hydrogen are defined

.

as:

" C... =G *MF
Calig ¢ C,Hg

. \.
MF- ~ mole fraction of components in product stream -

-~ .

- 'Ci -+ extents of comporent.
. \
- ¥
- e Ay
- ‘l . » b [
~ - g

. >
. .
“ -
. . .
B -~ =
>
. N
IR ) d 2 1
B - B
- . ! . \
- -~ ~ - -
- . . -
-
- r
- L -~
- - -
- - . . - . - N . oo.
- - = -
‘ - - » =
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' o APPENDIX 3

DYNAMIC-STOCHASTiC MODEL CONSTRUCTION

A3.1 Comparison of Caﬁonical Correlation and The Fitting of

o Temperature Functions on the Formulation of Predicted ' "
Equation ‘ . - . -
The concentration predictfng equation (4.11) can be formulated

by two apprbabh%g - the canonical correlation analysis in this thesis

and the discrete selection of functions of temperafures and flowrates

. RV
for the 1ndependent variables as adopted by. Tremblay [1977] A *
R .
* comparison of the standard dev1atlons (shown in brackets) of 1nd1v1dual
. parameters sij is given in the'following equatichs., The parameters
‘were fitted with the Same set of 61 concentration ‘data, .and the )
"normalized correlation matrix of the parameter est;ﬁates in each
approach is also given. .
(a)_-. Canonical Correlatlon Analysis . <
________________________________ :
. . . 3
(1) Predicc}on Equation Parameters with Staﬁdarg Deviation: E.
T 7 T (+.8D) (+.81) .81, | , !
c, 21,027 -1.39 . -0.231 2, i
- R . . * . r -
\ . l * ('i‘l.aﬁ) (’1'1486) (tlnSé) . ) . = . M L
‘: c, | =| 36.55 15.54 1.109 z, x 1078 . -3 .
| ol 360 xes.es) - 3ael) | | \ .
'aL‘c:5 .| 60.78 45.14 7 0.325 || z,
. ‘__ L - K N . — N —

165. . T




(i)

(11)

166.

Normalized Coxrrelation Matrix of Parameters:

— ’ -1
1 -0.0006 -0.0001
-0.0006 1 : ~0.0002
-0.0001 -0.0002 Tl

" Fitting With Input

e e e = o e . e et = . . A P A S St T S . 7 v St > S . et s e S s

Temperature

- ~ h j ad y—
r'(jé.SB) (£2.53) (+1.65) (+6.70) (+2.34)
i -~
5.99 + =0.223 -0.353 10.30  -1.88 F,
L (+2.57)  (+1.83) (+8.68 - (+3.53) (+1.24) _ ,
§ 5 : -
I 1.37 -0.537 =811  4.71 10.864 F, x 1078
1.(49.3)  (+4.82) (43.14) (+12.7) (%4.47)
L_13'7 . 0.686  -0.728 20.2  -3i55 | | F,
- 'i .
R . Y1,e-1
. '{'":- : T
"““** "-\"‘_ - K
i oy TS|
(A3.2).
Normalized Correlation Matrix of Parameters: N
C -0.612  ©.738  -0.297  -0.246
~0.612 1 .. -0.400 0.850 0,173
]-0.738  ‘-0.400 1 = =0.132. -0.272
- 14
« - i . ~ s !
+-0.297  0.850 . -0.132 1 0.975
. =0.246 ' 0.173 - -0.272 0.075 1 .-

* »

et

[ P TP
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The eigenvalues and eigenvector of the generalized symmetric

matrix in Equation (4.6) were computed by suﬂqoutine RSG of the Fortran

SSP library routines package [1973]. Thé\resulting eigenvectors from

this routine are normalizéd- such that

T
Y oI, x =1

are defined in Section 4.2.2.

where I‘and §22 ‘ ) -

Examining individual eigenvector Y separately:

T 5 .. 1 when i =j
I £22 Yy 0, when i # j

o
. . . { .

From the formulation of canonical variates Zi in Equation (4.8):

) . ~ T ) . L ‘

Zi =¥ é2 . (X.IO) 5 .

~

In matrix form,

(A3.3)

(A3.4)

Sinqg §22 = E(z_}2 ég),'chg variance-covariance ‘matrix of the

canonical variates is given by:
. -

T, . T T
E(Zz).= E(x" 4, Ay 1)

o X Ipycl

?

(43.5)

From‘Equaﬁion (A3.5), the canonical variates are orthogonal ta each

other, as shown by the normalized cotrelatikn matrix. In this.case,

the variance-covariance matrix is equivalent to the normalized

. a -

correlation matrix.

167,
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A3.2 Results From Model Building .

o o e i =t e T S T . v . S e, o Wt e T e e e e e e e B, e e e e e e o et T B i e i e S b e e i o ek . e S

o B ot ek ek e i o B i S e S S A S AL s S SO A

Due to. the closed-loop nature of the data collected in this

work, it was not possible to identify the form“of the transfer

.function involving the hydrogen input flowrate. However, earlier .

work on univariate transfer function identification between Eucanq

i

* T
conversion and hydrogen flowrate under open loop gave an indicatiopn

of the system dynamics although the operating conditions were quite -

differeﬂt in that case. Using 143 data sets, the impulse response

and the step response functions are given in Figure A3.l-and A3.2,

. » ~

They have the same characteristics as‘%@pse between the butane

<

flow and the various outputs (Figure 4.9 to 4.14) in Section 4.3.1,

except’ that a negative dynamic behaviour is invelved. Thus; the

selection of model Equation (4.25) is wvalid, at least for the

purposé of preliminary identificatien. . ’

¥ -

_——__._--.._.-__........_

.
¥

-

The'closed loop identification in Sectiom 4.3.1 together

with the Information from the open-loop results in (a) above give a
i - :

transfer function matrix with element of the form Equation (4.21).

) Th&_transfer function matrix is fitted with 145 Qata and the residuals

represent the stochastic noise of the sfétem. The deterministié model

ind .

is given below, with a total of 18 dynamic parameters and thei;‘

standard deviations in hrackets. ) "

. .
.

P, gbi. ‘i
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T : I B -
; o (+.22) (+.37) (+.20) . (+.39) ; i
i N 1
| 5.42 - 3.21 B, < 0.85 -~ 0.16 B | :
Co. (+.03) (+.35) - j |
. . '\ N ‘ ]
(#.33) (+.48) S(+.32)  (+.44) | !
. - 6.44 - 3.66 B - 0.55 - 0.27 B ' - |
P, = 0808 B T=%2¢F B Myt
B (+.03) €+.28) ;' ;
: i
A{+.59) (+.78) (+£:56) (+.60)
8.2% ~ 4.09 B © - ,0.37 ~ 0,83 B )
Y3 ¢ T-osis 2 B oo B .
] (+.03) (+.200 ~ -
e (A3.6)
where Yi-c is the deterministic output such ‘that 9: = Zt + §t1

- »
. . . . . s

vy

~ RN - . -, [T - L

The unlvarlate re51dual series were identified (Figure 4.15 to

Ay

4, 20) . as-elthe; AR(1l) or IMA(L,1) processes. higb éorrélation among

'these stochast;c dlsturbanges were observed and heoce a multlvarlace
EEpchaStié mddel was required The "IMA(1,1) model was chosen and the
off dlagonal polynomlals in termegaiis s of the operator matrix G(B)

were all assuned to be of oider one. ComBLnlog the multlvarlate .

transfer funltion model equatlon (A3..6) ana the mu1c1var1ate IMA(L,1)

l“‘ *

hﬁgé highly-cofrelated

o‘_

stochastlc model

was refitted.

model was observed and those'phrameters from'the same output response

A

“the integrated model with 27 continuous parameters

In suhsequent_estima;iéns, poor convergenée for th}s

The diffipulty in convergence might be due

to the relatively small added noise perturbation in the hydrogen

-t

~

».
A S

.Stream whlch was at least five C1mes larger>than that of butane-

-

SRk, Rl q&,m

Ba s Y T
A3 &

4
-
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_ =t
Thus, a much"highey perturbation should be added to the hydrOgép

. e ST
flowrate so that Ehe flow vé}iation.patierns are more apparent, -In
vieQ of this problem,‘the ) ghrameﬁérs in thékpransfer functions
involving uy were omigtéd and the data was refitted: This meant that
the responses wefe diregtiy p%oportionhl to the hydrogen flowrates, and
essentially, equally good fit; can still be obtained under'this

situation. Two fitted models from two sets of 145 data are shown .

below, with the standard deviations ef the parameters in the brackets.

(i) First 145 Data Set Set:
Average standard deviation of hydrogen flow =‘8-cm3/sec
Average stgndard déviac}on qf butane flow = 10 cm3/séc
— = — ’ . —_ - _
| C(£.25) (£.45) (+.18) (.19
; -,5.77 - 3.99 B '
I B - -
Cl,t ! § T - o8, 5 ) B f 0.810 - 0.201 B) B ucaﬁio"
; (+.04) ‘ : ' - ‘
i ) :
| (+:62) (+.63) ’ '
: =" = (+.30)  (+.32)
6 - 6.99 - 4.67 B, _ < _ < v
107 x C2,t ( 1~ 086 B > B (- 0.465 - 0.359 B) B uH’)’t .+ Ny

. : (£.03) . ‘ s

(£.76) ($1.05) (£.55) (+.57), .
9.19 - 5.58 B

Cy ¢ : =555 > b (0,501 - 0.664 B) B
(+.04) .

N o
- .

(A3.7a)

LI TP A A Al




‘ 4
) 1-0.553 B 0.179 B -0.202 B
' 0y .
v gc = 0.362 B 1 - 0.514 B ~0.305 B a,
0.313 B 0.774 B 1-71.378
- ¢ (A3_.71?)
Covariance matrix of residual vector
47.9 76.4 136.1 |,
o . -12 .
D = 76.4 125.5 225.9 x 10 (A3.7c
136.1 225.9 - 411.6 )
©(ii) Second Set of léS_Data: i
Average standard deviation of hydrogen flow = 10 cm3/sec
Average standard deviatien of butane flaw = 12 cm3/sec
- T B 2 3 ' — — —
(£.20) (£.30) C(17) (£.17)
6.17 - 4.58 B :
T (=5 g6c 5 B (- 0.45 -0.0508) B | UCAHlO’c
. : —(:.03) ’
4 .
N (.31) (£.40) (+.27)  (+.27)
6 - e /.51 - 5,18 B _
107 x Cz,c = ( T = 0.504 B ) B (0.049 - 0.141 B) B “uz,c oy
(+.02) .
Qt.SA)_ (+.64) (+.48) - (+.27)
"10.04 -~ 6:28 B "y . ,
165 ¢ T 5508 5. B (1.298 - 0.304 B) B, )
- (+.02) ha

(A3.8a)

171.
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r_ ——
(+.194) (+.167) (+.079
1 -~0.45B - 0.137 B 0.032 B
(+.288) (+.214) " (+.110)
TN, - 0.375 B 1 - 0.573 B -0.148 B a, (83.80)
(+.503) (+.385) (+.199)
0.187 B 1.336 B 1 - 1.435 B

Covariance matrix of residual vector:

v,

73.6 128.9

r“
l 7376 118.6 210.4 | (A3.8¢)
{_}ﬁs.g 210.4 377.5 .

Correlation Between Univariate H, Series and Butane Conversion

-

47.
3

FIGURE A3.1: Impulse Response'Function‘ FIGURE A3.2:-Step Responge Function
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A3.3. Transformation- of Transfer Fuynction Matrix .Into State Space

Model Form

[y

The dynamic-stochastic behaviour of the catalytic reactor

system has been deV&loped and is represented by Equation (4.41)" and

(4.42). Anticipating that integral control action will-be involved,

is used is shown by

a modified version of the model in which ¥ U,

Equation (4.43{. The transformation is to reallize the dynamic transfer
function ﬁatrix (I-1I h)—ly(B) and the stochastic 'transfer function'
matrix (I - I B)ml 3(B) into. the corﬁesponding st§te forms,
Augumenting:the dynamic and stochastic state space model form$ into the

.

final model Equation (4.44):

x(t+l) = A x(t) + G ¥ u(t) + T a(e+l)
] (4.44%)
y(t) = H x(t) g o ' _ e
where .
{;— —
) 0 0 -2.525 - 0
|
0 0 -0 0 0 |
E .
A = 0 1 1 0 0 0
X ' i
1 0 0 2.755 0 | ’ :
E o
0 0 0 -0.770 0 f
e e e % ____________________ u
.i 0 0 0 0 ]
! .
; X
\ ; 0 G 0 0 >
9 : - ) . ~
I o1 0 1 4] -/’/\
.
) {
r O 1 0 1
| - \
— ’ et

vy

e e e S

el

NPT
A

T
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1

=~
=]
i
10

8.664 -0.183

7.563 -0.735

_—— e o = -

.=0.735

-0:420 f9.989 7.170

8.234 6.790

.

- . —e —— ey

1 0 0.674

‘0 1 0.698

-0.221

-0.121
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’
The Kalman filter matrix K defined inkEduation (5.11) is given )
here: » te <z
0 Q- 0 "1 0 . 6—1
B *»
K = -
- - |
0- 0 0 -0 0 0 .
; With the A, G and H matrices ddtermimed in Appéndix 3, the <
simultaneous state estimator 5(t/t5 can then be sét up from Equationr'lf ' :
—~ (5.12). The controller matrix L, of Equation (5.14) corrasponding to
varivus constraint matrices. in Table 5.1 .and ‘5.2 are- given below:
. — . — . :
v .
! LEC!‘,C - s
- L, ox (t/t:.) . - ’
v - ' .
.qu;t v e
LT %
—. = 3 i
0 o - . . %
- . N -~ K
(L 2 0 ‘0 . :
— \ - " :
- ‘ :
‘ 1,449 =.043 .-.043 1.636 1.238 .091 "-.035 ,.091 --.035.; .
- 00 '= ; ) k .’ v

RESULTS ON OPTIMAL STOCHASTIC CONTROLLER DESIGN

Dy

APPENRIX 4

I

2.182 . 600 .60Q 3,121 1.143 -.106

.
P

4

11'-1:5? -01‘06

-2157_J

r

oo~

-
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