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ABSTRACT

This thesis deals with game theory and its applications in
management science and focuses upon some management science areas such
as inventory control and new product development, It consists of six
chapters, each of which is written as a separate paper except the
concluding chapter. Some interesting theoretical findings and new
policies are obtained by using the game theoretical approach to
analyze certain management science problems.

The discussion starts with a review of static game theory
models and their applications in management science. Of particular
interest here is the state of the art of game theory as an analytical
technique in management science. Its strengths and weaknesses are
summarized. The review reveals some new research problems and future
research directions in this field. A few of these problems are
addressed in this disserctation,

Chapters Two and Three discuss the discount problem.
Particular attention is paid to the gaming nature and the buyer’s
demand aspect of the problem. It is shown that, if they work
independently and rationally, the seller and the buyer can gain from
price discount only if it can attract more demand from the buyer.
Nevertheless, they can gain from quantity discount even if demand is

constant. Quantity discount is always better than a price discount
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for the seller and, in certain situations, can be very efficient in
obtaining the meximum profit. Optimal decisions are obtained for both
the seller and the buyer under various conditions.

Chapter Four studies the order quantities of substitutable
products with stochastic demands. This analysis extends the newsboy
problem analysis into situations with three or more players. It is
shown that there is one Nash equilibrium for the problem. 1If any
player(s) acts irrationally, the other players’ decision problem
reduces to the one without the irrational player(s). If cooperation
1s possible, their decisions depend on whether side payments are
allowed. {f side payments are allowed, they will determine their
order quantities together. If side payments are not allowed, secure
strategies exist for each player. It is also shown that all players’
cooperation is often worthwhile and feasible.

Chapter Five analyzes the growth of new repeat purchasing
products. The purpose of this analysis is to extend the current
research on the diffusion of new consumer durable products to repeat
purchasing products in competitive markets. It is shown that markets
of repeat purchasing products will never saturate like that of
consumer durable products unless customers are extremely loyal to at
least one product. For new repeat purchasing products, the optimal
advertising strategy is increasing at the introductory stage and then
decreasing or possibly terminating after some time and, the optimal
service strategy is monotonically increasing at the introductory stage

and then possibly maintained constant at a certain level. Especially,
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more advertising should be done at early stages against competitors’
advertising campaign. The game is solved analytically for optimal
strategies in the case where all the control functions representing
the effects of advertising and service are linear in the control
variables,

Finally, the main findings and possible extensions to this

research are briefly summarized in Chapter Six.
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Chapter One

Static Game Theory Models and Their Applications

*
in Management Science: A Survey

In this chapter, we give a brief review of static game theory
models and their applications in management science. Our intention
here is twofold: On the one hand, we would like to provide the reader
with an overview of game theory and its applications in management
science. On the other hand, we intend to explore the mathematical
tractability of management science problems when formulated as game
theory models. We restrict our attention to static game theory models
and five management science related areas. Our discussion starts with
a general description of static game theory models and their solution
schemes and follows by an investigation of game theory“applications.
At the end of the chapter, we provide a brief description of some

other approaches of game theory.

* This paper has been published in European Journal of Operational

Research, Vol. 42, No. 1, pp. 1-21, 1989.



1.1. Introduction

The outstanding feature of game theory is modeling conflict
and cooperation in explicit mathematical forms. Thus it appears to be
an applicable method in management science. Strategy, cooperation,
offers-counteroffers, etc., are all factors that should be considered
by management scientists. 1In this chapter, we provide a survey of
game theory models and their applications in management science.

Because of the huge literature on this topic, the survey may
not be exhaustive and complete. The primary intention of it is to
galn some insights into game theory models and their applications to
management science problems on one hand, and to provide an overview of
the mathematical tractability of real games on the other.

Furthermoxe, we restrict our attention to static game theory models
and several areas in management science because a good survey on
dynamic (differential) game theory models in management science has
already been published by Feichtinger and Jorgensen (1983).

The chapter is organized as follows. In Section 1.2, we
provide an overview of static game theory models and their solution
schemes. Then, in Section 1.3, we investigate the applications of
these models in the management science area. Some comments and views

about game theory and its applications are provided in Section 1.4.



1.2. Game Theory Models

Game theory is a mathematical theory of decision-making by
participants in conflicting situations. It is generally attributed to
John von Neumann in his papers of 1928 and 1937 (von Neumann, 1928;
1937), although its origins can be dated back to the elghteenth
century (Rives, 1975). Nevertheless, the establishment point of game
theory is generally accepted to be 1928 when von Neumann proved the
minmax theorem. But only when John von Neumann and Oskar Morgenstern

published their impressive work: Theory of Games and Economic Behavior

(von Neumann and Morgenstern, 1944) in 1944, did game theory receive
much attention (Dresher, 1961). Since then, an enormous body of work
has been done in this area. A few references on these works are Kuhn
and Tucker (1950, 1953), Luce and Raiffa (1957), Tucker and Luce
(1959), Basar and Olsder (1982), and Owen (1982),

Game theory attempts to model conflict and cooperation and
study them by means of quantitative methods. A typical game has three
major components: a group of players, a set of rules of play, and a
payoff system. The players are the participants of the competitive
situation. Each of them makes a choice or choices from a set of
alternatives according to the rules of play which specify clearly what
each player is allowed or required to do under every possible
circumstance. The payoff system assigns an amount of payoff to each
player under each possible outcome. A game theory model is simply a

nathematical presentation of a game. It abstracts the three
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components into formal mathematical expressions and is concerned with
finding the optimal decision(s) for each player and describes how each
player should behave in order to cbtain the best possible outcome,
considering that the payoff to any player depends not only on his own
choices but also on the choices of the other players. In the present
literature, various game theory models have been developed to describe
different game situations. In this section, we first present several
classification methods of game theory models and then discuss their

mathematical formulations and solucion schemes.

1.2.1. Classifications

Game theory has been developed into a sound mathematical
theory and applied widely in social science and some other areas such
as the military. 1Its scope is so broad that one has ro find oneself
the appropriate model for his problem to obtain usable results,
Therefore classification of game theory models might be helpful in
modeling conflicting situations. In the following we give several
classification schemes which we found useful in our investigation.
However the actual scheme used for a particular game depends on the
situation it is designed to describe. The analyst should decide which
factor(s) should be used.

(1) Number of players. Game theory models can be classified
according to the number of players involved, i.e., two-person games,
three-person games, and n-person games, where n > 2 and is a positive

integer. For example, in games such as chess, there are two players,
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hence they are two-person games. In games such as horse racing, there
are usually a large number, say n, of participants, hence they are n-
person games. Clearly, two players is the minimum number for conflict
and cooperation to be present and three or more players can lead to
coalition formation, which brings about a major complexity in
analyzing n-person (n>2) games.

(2) Bature of payoff functions. Payoff function is another
classifying factor of game theory models. When the sum of the
players’ payoffs under every situation is zero, the game is called a
zero-sum game. Otherwise it is called a nonzero-sum game. In the
case of two-person games, players will work strictly competitively in
zero-sum games and somewhat in cooperation in nonzero-sum games
because, in zero-sum games, one player’s gain is always the other’s
loss., This distinction, however, is not so obvious in the case of n-
person games. Some players may still work cooperatively in zero-sum
games and strictly competitively in nonzero-sum games. In fact, we
can always add a dummy player to make n-person nonzero-sum games
become zero-sum and by doing so the nature of the problem will not be
affected.

(3) Nature of preplay negotiation. Games can also be
classified into non-cooperative games and cooperative games. A non-
cooperative game is one in which the players do not communicate with
each other and work independently to achieve one’s objective, and a
cooperative game is one in which the players or a subgroup of them can

discuss their strategies and make binding agreements. For exaample, in
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a 3-person'game where each of the three Players shows either 1, 2, or
3 fingers simultaneously and Player i wins $1 from each of the other
two 1f none of them shows i fingers. Otherwise it is a draw. If each
of the three players makes his cholce independently, the game is non-
cooperative; if any two of them agree to act together (obviously it is
profitable for them to do so), the game is cooperative. It will be
clear later that this classifying factor is crucial because {t
determines the formulation and solution scheme to the problem under
consideration. As in the above example, the normal form might be used
for the non-cooperative case whereas the characteristic form should be
used for the cooperative case. The mathematical formulation of games
will be discussed later ip this section,

(4) Number of Strategies. If the number of alternatives
available to each Player is finite, the game is called a finite game;
It is called an infinite game if at least one Player has an infinite
number of alternatives. For example, in a two-person game, suppose
Player 1 has m strategies and Player 2 has n strategies, the game is
finite only {f both m and n are finite.

(5) State of information available to each player. This
classification is usually used in the extensive formulation to be
discussed shortly. 1If every player’s information sets are singletons,
that is, any information set of any player includes only one node of
the topological tree and each player knows exactly where he is in at
each move, a game is said to have complete information. For example,

in games such as chess, each player knows exactly what the other and



himself did in the past, the game is one with perfect information.
Otherwise a game has incomplete information.

(6) Involvement of time. If time is a factor considered in
any player’s decision-making, the game is dynamic in the sense that
the players’ optimal decisions are changing through the decision
process. In particular, when time is changing continuously and the
state of the system can be described by a set of differential
equations, the game is a differential game. On the other hand, when
time does not affect decisions at all, the game is static. In our
discussion we concentrate on the second type and all the models to be
discussed, with a few exceptions, are static game theory models,

There are still other classifying factors such as restrictions
on side-payments, deterministic or probabilistic payoffs, etc.
However the above factors represent most of the generally used

classifying scenaries.

1.2.2. Mathematical Formulations

Most of the static game theory models can be described by one
of the three mathematical formulations: the normal form, the extensive
form, and the characteristic form. In this section, we discuss
briefly each of the three formulations as well as their applicabiliey,
An excellent discussion on their definitions, development, and

applications before early 1970's has been provided by Lucas (1972).



1.2.2.1. The Normal Form

The normal form is the most intuitive mathematical
presentation of a game. In brief, a game model in the normal form
consists of a set of players N = {Pl. PZ' ceey Pn]. a strategy space
M; for each player Pi' and a payoff system which assigns a certain
amount of payoff to each player for each possible combination of their
strategy choices. Let Mi - {ai| where a; is a strategy of player i}
and let Pi(al, 51 vy an) denote player i's payoff under the
strategy combination (al, COLRRRR an). The game is played when each
player selects an element from his strategy space. At the end of
play, each player gets Pi(al, Bgs vens an) when player i chooses
strategy a;. An element of Mi' ay, is called a pure strategy of
Player i. When a player uses a random device to choose a strategy
from his strategy space, he is using a mixed strategy. In other
words, a mixed strategy for player i is a randomization over his pure
strategies or a probability distribution over his strategy space Mi.
It is easy to note that a pure strategy a; of player i is a special
case of a mixed strategy with probability of 1 for as and probability
of zero for any of the other pure strategies. Furthermore, it is
usually assumed that each player knows all the strategy spaces and the
payoffs under cach possible outcome. Therefore a game is played in a
way that each of the players selects a strategy from his strategy
space, without knowing the others' decisions, to maximize his own

(expected) payoff,
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The presentation of games in the normal form is usually of a
function form in which a payoff function is defined for each player on
the product space of the players’ strategy spaces. However, two-
person finite games can be conveniently described by matrices with one
player, usually player 1, as the "row" player and the other, player 2,
as the "column" player. They are usually called "matrix games". In a
matrix game, each row of the matrix corresponds to a pure strategy of
player 1, each column to a pure strategy of player 2 and an element,
usually being a two-dimensional vector, denotes the payoffs to the
players under the corresponding strategy combination. For example, in
the game shown in Figure 1.1, each of the players has three pure
strategles and their payoffs under each possible combination of their
choices are shown by an element of the matrix. For instance, player 1
gets -1 and player 2 gets O when player 1 chooses strategy 1 and
player 2 chooses strategy 2. A player’s mixed strategy is a three-

dimensional vector s = (xl, Xos x3) satisfying xj =20 (j=-1,2, 3

1|08 (LY F2.1)
2l 0y @22 2
It 2y 3.2)

Figure 1.1, Matrix Game
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and Xyt Rob Xy = 1. To explore matrix games in more depth, the
reader might refer to many game theory texts such as Luce and Raiffa
(1957), Dresher (1961), Owen (1982) and Basar and Olsder (1982).

The normal form appzars to be well suited to conflicting
situations where each of the decision makers has a partial control
over the decision process through his decision variable and the payoff
to each player is determined when each of the players makes a choice
from a set of alternatives. Especially, when the decision variables
are continuous, a game car be well described by a set of continuous
payoff functions. The analysis of the game, in this case, is often
fairly "well-behaved" because of the convenience of analyzing
continuous functions. However, as the normal form treats players’
strategies as primitive elements and suppresses the decision prccess
into each player’s selecting a strategy from his strategy space, it is
inappropriate to use it to describe games where the decision making
process and information rather than the strategy spaces and payoffs
are lmportant to players’ decision making. Besides, a game theory
model in the normal form is concerned with each player’s optimal
decision, considering the impact of the other players’ decisions to
his own payoff, but does not specify what will happen if the players
cooperate. It is non-cooperative in nature although it may also be

used to analyze cooperation.
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1.2.2.2. The Extensive Form

The extensive form is another mathematical presentation of a
game. It was first presented by von Neumann and Morgenstern (19%944)
and then modified by Kuhn (1950). Xuhn's definition is usually used
in the present literature (Lucas, 1972).

The extensive form provides an explicit description of the
order of play and the information structure of each player at each
move of a game by using a specially designed topological tree
structure. The structure starts with a single node denotlng the
beginning of play and evolves in such a way that several branches
enanate from each node representing the alternatives available to the
player at this node. A node presents a choice point for one of the n
players. Again at the end of play there is assigned an n-dimensional
payoff vector with the ith element being the payoff to player i for
each possible outcome, Furthermore, each player’s choice peints are
partitioned into information sets, specifying what he knows at each
move. At the extreme case, every information set of any player
contains only one node and each player knows exactly where he is in at
each move. This is the case of perfect information.

A typical but simple example of an extensive game is depicted
in Figure 1.2,

In this game there are two players P1 and PZ' P1 has three
alternatives L, M, N and acts first in the play and P2 has two
alternatives R and B and acts after Pl's decision. At the terminal of

each ending branch there is a two-dimensional vector with the firstc
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element being the payoff to P1 and the second to Pz. For instance, P

and P2 both can get 2 If P1 chooses N and P2 chooses R. The broken-

1

lined circles represent the information sets of the players, where
these sets have the following interpretation: P1 has only one
information set and knows his position when making his decision and P,
has two and knows exactly Pl's decision if Pl chooses L but cannot

tell which decision, M or N, that P1 made when Pl chooses either M or

N.

[3-]]

zn

0.1)

1.1
(2.2)

o ———

(1.3

Figure 1.2. Extensive Game

Unlike the normal form case where a strategy for one player is
simply a scheme for him to select an element from his strategy space,
a player's strategy in the extensive form case is a complete plan
telling the player what to do at each of his information sets. A pure
strategy is then a complete plan in which the player picks a
particular alternative at each of his information sets and a mixed

strategy, as in the normal form case, is a probability distribution
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over the set of his pure strategies. In this case, the player might
also use a chance device to determine what to do at each of his
information sets. Such a complete plan is called a behavioral
strategy. For a more detalled discussion, the reader might refer to
Basar and Olsder (1982, pp. 39-65, pp. 92-149) and Luce and Raiffa
(1957, Chapter 3).

The extensive form improves the normal form in giving a whole
picture of the decision process. In fact, the normal form is only a
special case of the extensive form. It is then no doubt that the
extensive form is a more powerful presentation of a game, hence it is
natural to expect more applications of it to real problems.
Unfortunately, few applications of game models in the present
literature have been found to be of the extensive form. The
explanation of this fact lies mainly in two aspects. First, it is
often difficult, if not impossible, to depict explicitly the whole
decision process of a game. Especially, it is usually strenuous to
specify the information sets for the players. Secondly, it is often
not easy to solve a game In the extensive form, especially, when it
has a large number of cholce points. Although it was pointed out
almost two decades ago that it was time to search for solution
algorithms for games in the extensive form (Lucas, 1972), the problem
seems still being bypassed, possibly because of the difficulty of
doing so. Except for a few cases, for example, the case of perfect
information (von Neumann, 1928; Kuhn, 1950; Nash, 1950a, 1951) and the

case of perfect recall (Kuhn, 1952), there i{s no general method to
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find the equilibria. The usual method to solve an extensive game is
to partition it (if possible) into simpler games and solve them by
means of techniques used in the normal form case. These facts

substantially restrict its applicability.

1.2.2.3. The Characteristie Form

The characteristic form is a special presentation for n-person
(n > 2) cooperative games. It concerns the possible coalitions among
the players and attempts to find out what will happen if the players
cooperate. This form was originally suggested by von Neumann (Tucker
and Luce, 1959) and developed in detail by von Neumann and Morgenstern
(1944) .,

An n-person game in the characteristic form consists of a set
N« {l, 2, ..., n} or the set of players 1, 2, ..., n and a real-
valued function v(S) defined on the set of N's subset, including N
itself. The value of v(S) measures the total payoff or worth of §
when its members act together. More generally, v(S) might be defined
as the payoff to S when S is taken as one player in a game played
between S and its complementary set N-S. However, in this case, more
assumptions concerning the action of N-S are often needed to define a
well-behaved function v(S). Such an example is provided by Sherali
and Rajan (1987), which will be discussed in detail in Section 1.3.
Usually it is assumed that cooperation is always worthwhile, that is,
any two groups act together will get no less than that when they act

independently, or, mathematically,
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V{(SUT) = v(S) + v(T) where SNT =~ 4.

This property is called superadditivity. Obviously, v(N) is then the
largest amount of payoff that the players can possibly obtain,

The primal concern of the characteristic form is the
distribution of payoff among the players. So a game theory model {n
the characteristic form i{s designed to describe how the players should
or will distribute a certain amount of payoff. An imputation for an
n-person game is defined as a distribution vector X = (xl. Xor wens
xn) satisfying

n
Z x
i=1
(2) x; 2 v((i}) for all 1 e N,

;= v,

(L
where X is simply a way to distribute the joint maximum payoff v(N)
among all the n players, with xq being the payoff to player i,
requiring that each player gets no less than the amount he can get by
acting independently. The first condition is oftun referred to as
group rationality and the second condition as individual rationality,

A three-person game in the characteristic form is given by the

following example,
Example: N = (1, 2, 3},
v(N) =1,
v((1,2)) = v({2,3}) = v({1,3)) = 0.5,
v({1]) = v({2}) = v((3)) = 0.1,
In words, each player gets 0.1 should all the three players

work independently; any two of the three players get 0.5 jointly
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should they act together against the other who, in this case, gets
0.1; and the three players get 1 jointly should they work together.

An imputation is then a vector X = (xl. Xy x3) satisfying
X + % + Xy = 1,
X, 2 0.1 for 1 =1, 2, 3.
All imputations for the above example are shown by the

shadowed area in the equilateral triangle in Figure 1.3.

(0.0.1}

772

{1.0.0) {0.1,0}

Figure 1.3. Imputation Set

The set of imputations represents all the possible
distribution schemes that all the players might agree on and it is
usually non-empty. Clearly, to solve a game in the characteristic
form is equivalent to finding out some imputation(s) as equilibrium to
the problem. However, there is no generally accepted solution scheme
for games in the characteristic form, although quite a few solution
schemes have been developed based on different arguments. More

discussion on these schemes will be given in the following section.
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Works including Lucas (1981), Owen (1982), Dresher (1961), etc,,

provide extensive discussions on games in the characteristic form.

1.2.3. Solution Schemes

There 1s a basic dichotomy of solution schemes of game theory
models, namely that between non-cooperative and cooperative solutions
(Shubik, 1981). Non-cooperative solutions characterize how each
player should act when the players work independently and cooperative
solutions specify what might be the outcome of a game if the players
can communicate and make binding agreements.

The solution scheme(s) used for a particular game depends on
its formulation (Shubik, 1981). As a matter of fact, the formulation
of a model is a pre-solution to the problem under consideration in the
sense that a good model should capture the nature of the problem,
e.g., how many players are in the game, whether the players make
preplay communication, whether the players’ decisions depend on tinme,
etc, Among the three basic formulations, since the characteristic
form is designed particularly for n-person (n > 2) games with
coalitions, its solution schemes are cooperative, 1Indeed most of the
cooperative solution schemes are designed for games in the
characteristic form. On the other hand, the normal form treats
strategies as primitive elements and the extensive form gives a full
description of the play of a game and the information structure of
each player. But both of them fail to specify what will happen if the

players or any subgroup of them form a coalition. Although these two
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forms can be converted into the characteristic form under certain
conditions, non-cooperative solution schemes are usually used for

them.

1.2.3.1. Non-cooperative Solutions

There are two major types of non-cooperative solution, namely,
the Nash equilibrium and the Stackelberg equilibrium.

(a) Nash equilibrium, The Nash equilibrium is the main
solution concept for all kinds of non-cooperative games. It was
developed by Nash (Nash, 1950a) and then extended to all kinds of
games by many authors.

A Nash equilibrium is an n-tuple of "optimal" strategies, one
for each player, such that anyone who deviates from it unilaterally
cannot posslibly improve his (expected) payoff. Letting s; denote

*
Player 1's strategy, then a Nash equilibrium point is an n-tuple (31,

s;. .y s* ) such that
n
i, » * i, * *® * *
P (511 521 LR Sn ) z P (Slv vy Si_lv Sil Si+l' ey Sn )1
for i~ 1, 2, ..., n, vhere Pi(sl, Sor -ee Sn) is the payoff to
Player i under the strategy combination (sl, Spr eees sn). In

particular, when s: is a pure strategy for Player 1, say a:, for every
i, the solution is called a saddle point. In the case of two-person
zero-sum games, the saddle point, if it exists, corresponds to one
player’'s maxmin strategy and the other’s minmax strategy. In
addition, if a saddle point does not exist and the game is finite, we

can always find a mixed strategy Nash equilibrium point (von Neumann,
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1928). More generally, as Nash has proved, mixed strategy Nash

equilibria always exist for finite n-person games (Nash, 1951).
However, there is no general method of finding Nash
equilibria. Even for finite games, although the graphical method and
linear programming method are usually used in the case of two-rarson
games, they are not generally applicable. To find out 1f there is any
saddle point for an n-person game, one basically has to check
exhaustively all possible combinations of pure strategies (Basar and
Olsder, 1982). This is often strenuous because of the large number of
strategy combinations. For example, a five-person game in the normal
form with five strategies for each player would have 55 = 3125
possibilities! In the mixed strategy case, if a given game admits an
inner solution, that is, it assigns positive probability to each pure
strategy of each player, the solution can be found by solving a set of
algebraic equations (Basar and Olsdexr, 1982). Another method is
proposed by Scarf using an approximation algorithm (Scarf, 1967).
Nevertheless, for continuous games, the search of Nash equilibria is
often simplified by using differential calculus. As proved by Nikaide
and Isora (1955), pure strategy Nash equilibrium always exists for
convex games which are defined in such a way that each player’s payoff
function is concave with respect to his own strategy variable and
continuous in others’ strategy variables. Moreover each player's
strategy space is compact and convex (Nikaido and Isora, 1955). When
the payoff functions are differentiable, Nash equilibrium can be found

by letting the first partial derivative of each player's payoff
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function with respect to his own strategy variable be zero. A two-
person continuous game is provided in the following.

1 2
Example: Pl(xl,xz) - - 3% ¥ {1l - Ti;z)xl’ Xy € Ml - {xll x1>0}, (L

2
Po(x,,%,)) = In(l + Xp) - XiX,, Xy My = {x,] %,>0}, (2)
where x; is player 1's strategy variable, Pi(xl. xz) is Player i's
payoff function and Mi is Player i's strategy space (i = 1, 2). It is
easy to verify that the game is a convex one and therefore has at

least one Nash equilibrium, which satisfies

aPl(xl, xp)/3%; = - % + (L - Tj";z) -0, (3)
apzcxl. xy)/3%,y = 1—}”{2 - %, = 0. %)

Solving the set of equations gives a unique solution point (%,
1). Then the game has a unique Nash equilibrium (%, 1) with Pl - %
and P2 = 1n 2 - %.

The analysis is comparatively easy to handle in this case. We
note in the survey that it is this reclative facility of analysis that
often motivates analysts to formulate real game problems as continuous
games., For more discussion on continuous games, the reader might
refer to Nikaide and Isora (1955), Owen (1982, Chapter IV), and Basar
and Olsder (1982, pp. 165-194).

(b) Stackelberg equilibrium. Another important solution
concept of non-cooperative games is the Stackelberg equilibrium. As
the Nash equilibrium provides only the solution to a given game if no

one of the players dominates the decisjon process, Stackelberg

equilibrium specifies how one should behave if one has the potential
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to enforce his strategy on the others. Following the original work of
economist von Stackelberg (1934), the one who has the powerful
position in such a decision process is called the leader, and the
other players who react to the leader’s decision are called the
followers. The relevant concepts are illustrated ir the following by
a two-person game in the normal form.

Suppose Player 1 is the leader and Player 2 is the follower
who reacts to Player l's decision. If Player 1 announces his strategy
In advance, Player 2 will response in such a way as to maximize his
own payoff. Let R(all denote Player 2's optimal strategy({ies) to

Player 1's strategy a,, that is,

1’
Rtay) = ( a, | P2(a, ay) 2 P(a;, a,), age My).
R[ali is referred to as Player 2's response set. A Stackelberg
equilibrium with Player 1 as leader and Player 2 as follower is a
strategy combination (aI, a;) such that
pl(al, ay) = Pl(a}, Ria})).

Thus a Stackelberg strategy with Player 1 as leader is the
optimal strategy for him if he announces his decision first and both
players’ goals are to maximize their payoffs. If Player 1 chooses any
other strategy al, Player 2 will choose a strategy a to maximize
P (al, az) and the resulting payoff to Player 1 will be less than or
at most equal to that when the Stackelberg strategy with Player 1 as
the leader is used.

Consider again the example provided in the Nash equilibrium

discussion. Because Pl(xl, x2) is continuous and concave in Xy
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Player 1's response set to Player 2's strategy X, is uniquely

determined by (3), or,

1
=1y (5)
Similarly Player 2's response set to Player 1's strategy X, is
uniquely determined by (4), or,
1
Xo = = - 1. (6)
2 Xy
If Player 1 acts as the leader, Player 2 will respond
according to (6) and Player 1's payoff, in this case, becomes
2 3
Phixy, %)) = - 3 %2+ (1 - X% = - 3 x5+ %y, 7
which is obviously concave in Xq- Hence the optimal strategy for
Player 1 can be obtained by letting
1 1
dp /dx1 - - 3x1 + 1 =0 or X = 3- (8)

Substituting Xy into (6), we obtain X, = 2 and accordingly,
pl(1/3, 2) =~ ; and P2(1/3, 2) = 1n3 - Z. Therefore the Stackelberg
equilibrium when Player 1 acts as the leader and Player 2 acts as the
follower is (1/3, 2) with P’ = 1/6 and P% = 1n3 - 2/3. Both players
are better-off in this case. Similarly we can obtain the Stackelberg
equilibrium when Player 2 acts as the leader and Player 1 acts as the
follover as (3343, L3:ly yien pl . P2 and 22 = 1n¢f3E) . /5.2,
In this case, Player 2 is better-off but Player 1 is worse-off than
using their Nash equilibrium strategies.

It is shown in Basar and Olsder (1982) that if the follower’s
response to every strategy of the leader is unique, the leader’s

Stackelberg strategy will not be worse than his Nash strategy.
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However, the follower might be worse off because of his lower position
in the decision-making process. If the follower's regponse {s not
unique, we might modify the leader's optimal decision by his maxmin
strategy to the follower’'s responses. In this case the above
statement may not hold and the leader might gain less by using the
Stackelberg strategy than that of using his Nash strategy.

The Stackelberg equilibrium can also be extended to mixed
strategies and/or n-person games (n>2) in any form. For such
extensions, the reader may consult Cher and Cruz (1972), Simaan and

Cruz (1973a; 1973b) and Basar and Olsder (1982).

1.2.3.2. Cooperative Solutions

Most of cooperative solution schemes fall into the category of
solution schemes to games in the characteristic form. Although some
of them can also be applied to games in other forms, generally
accepted cooperative solution schemes do not exist.

(a) The negotiation set. The negotlation set Iin some sensge ig
a general solution scheme to cooperative games as 1t characterizes the
basic properties a cooperative solution should have. Let Pé denote
the payoff to Player i under the Nash strategy combinatien. Then this
1s the least amount Player i can get by acting independently and is
called his security level. When the Players decide to cooperate, the
basic properties a cooperative solution should have include (1) the
pPlayers should not be able to improve their payoffs jointly from any

such solution, that is, any such solution should be Pareto optimal,
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and (2) any such solution must not represent payoffs less than their
security levels. The set of such solution points is called the
negotiation set for the game (Luce and Raiffa, 1957, p. 118).

(b) Cooperative solutions to games in the normal form.
Cooperative solution to a given game in the normal form is often
specified as the negotiation set. But the negotiation set itself
usually cannot be taken directly as the solution to a game as it often
contains infinite number of points. It is more like a pre-solution.
To further single out a point, Nash developed a bargaining problem
solution under a set of assumptions (Nash, 1950a; 1953). Alcthough the
scheme received much criticism, it is a point in the negotiation set
and is fair in some sense. Other similar schemes include the Shapley
value (Shapley, 1953) and the works of Raiffa (1951; 1953).

(c) Solution schemes for games in the characteristic form.

The discussion of games in the characteristic form is very extensive,
This can be judged from the number of solution schemes that have been
developed for this form., These schemes include

{1) Core

(2) Shapley value

(3) von Neumann-Morgenstern stable set

{4) Bargaining set

{5) Kernel

(6) Nucleolus

(7) e-core

(8) Inner core,
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As an excellent discussion and review of these solution
schemes has been provided by Shubik, we do not repeat the work here

and refer the reader to Shubik (1981).

1.3. Applications

In the previous section we investigated the basic mathematical
formulations and different solution schemes of game theory. 1In this
section we will present a survey of the applications of these models

and solution schemes in management scilence.

1.3.1. Production and Inventory Management

Production and inventory management is a broad area of
research and decisio. models in this area are usually mixed with more
than one issue of production, lnventory, investment, and pricing.
Therefore models reviewed here might be relevant to marketing and
other areas and models reviewed in other areas might be relevant to
production and inventory decisions. According to our investigation,
the game theory models of production and inventory decisions in the
present literature can be roughly classified into two categories:
those that assume the market is determined entirely by the players and
help to find the market equilibrium conditions and those that assume
the players under consideration are only individuals in a competitive

market and help the decision makers find the optimal decisions. We
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investigate both types of models here, but with the emphasis on the

second which we believe is more relevant to our subject.

1.3.1.1. Models from the Market Perspective.

The point of view of this category of models is broad and the
main results obtained so far with such models are usually of a
theoretical and conceptual nature. They aim at obtaining the
conditions of market equilibria under certain market conditions and
investigate the existence, the uniqueness and possibly the stability
of such equilibria, with lictle attention paid to the optimal
decisions for individual players. A casual survey would reveal that
there are many such game theory models, most of them constructed by
economists under market conditions of duopoly, oligopoly, etc., in the
present literature. In the following, we discuss only a few of these
models and refer the reader to Shubik (1981, 1984) for an accurate
review. Especially, a fairly complete bibliography is provided by
Shubik (1981, 1984).

The so called oligopolist theory includes manv of these
mwodels. By assuming that the duopolists or oligopolists produce
homegeneous or differentiated but substitutable products, the models
analyze market equilibria given that the competitors have the common
objective of seeking profit maximization. For example, Levitan and
Shubik (1971) considered a non-cooperative duopolistic market where
the duopolists produce two substitutable products. The players’

objective functions were defined as



27
LP Y min (qi, xi) - py max (0, X, - qi), for 1 = 1, 2,

where P; denotes the price, qq the demand, Xy Player i’s decision
variable or quantity to be produced, and Py holding cost per unit of
Product i on inventory at the end of the period. The demand was
assumed to consist of two components: a random variable capturing the
uncertainty and a linear function of Py and P,. They analyzed the
conditions for symmetric equilibria both generally and specifically
for the case of uniform demand, although some open questions were
left. The main results of works discussing non-cooperative
oligopolistic markets are contained in Shubik (1984, Chapters 3 and
4).

A second greup of game theory models in this category discuss
cooperative oligopolistic markets. A typical and interesting example
was provided by Sherali and Rajan (1987) recently, studying the
situation where n oligopolistic producers are producing a homogeneous
product. They investigated the cooperative equilibria of the market
using models stemming from the potential threat or bargaining powers
of the players, assuming each player's profit to be the difference

between his sales revenue and production cost, that is,

ﬂ'i(qlr Py qn) - qu(Q) - Ci(qi), for i - l, 2,..., n,
n
where Q =

i=1

Player i and his average unit production cost. The worth of a

q and q9; and Ci(qi) are the quantity to be produced by

coalition S under a given combination of production decisions was

simply given by the sum of its members’ profits, or,



28

ws(qs. @5 ez «
1eS

where qT - {qi: i ¢T} and T is an arbitrary subset of N. Then, based

i(ql, .3 qn). for all S,
on different assumptions concerning the actions of N-S, they built
three cooperative games.

Game 1: N-35 plays against S and acts before S's decision,

v(S) = max min {ﬂs(qs, qN.s)}.
S S N-S _N-S
q9¢Q q "eQ
Game 2: N-S plays against S and acts after S's decision,
v(S) = min max {ﬂs(qs, qN'S)}.

N-S N-S§5 S .8
q ¢Q q €Q

Game 3: The members of N-S act independently,
v(S8) = max lrs(qs, qg-s)).
qsaﬂ

QS denotes S5's strategy space above. They showed that Game 1 and Game
2 are identical and by taking the Shapley value as the equilibrium of
the problem and considering the possible emerging coalition structure
of the players all the three games have equilibria under certain
conditious.

For further exploration in this field the interested reader

might consult the references provided above.

1.3.1.2. Models from Decision Makers’ Perspective.

The second category of game theory models of production and
Inventory decisions focus on the optimal decisions for individual
decision makers. Although some market conditions still have to be

assumed here, the primal concern of such models is the players’
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optimal deecisions, which are rightly what management scientists are
working on. Unfortunately, we have found in our survey that this
field has not been adequately studied by using game theory methods.
In the following, we survey this field in some detail, as we hope to
shed some light on the strategic nature of production and inventory
decisions as well as problems which are possibly worth more research
efforts.

In a recent paper Parlar (1988) developed a game theory model
addressing an inventory control problem where two individual retailers
are selling two substitutable products. Each retailer faces a random
demand. The retailers' concern is to order optimal quantities hence
to maximize their expected profit from selling the products, which
they order from other suppliers. Considering the substitution effect
and uncertainty of demand, the author first found the profit for one
player, say Player 1, under each possible situation. For example,
when both retailers order more than the actual demands, Player 1's
profit becomes

Ty o= SyX + ql(u - x) - e U, X=uand y s v,
Then Player l's expected profit was found as
Jp(u, V) = (sp4p) [ xE()dx + ufl £(x)dx] - p E(X)
+ (sy- a)fy ff', b(y-v)g(y)£(x)dydx
* (sy- apfy S5 (u-x)g(n) £(x)dydx + qpf (u-x)E(xydx - cju,
where u(v}) denotes the order quantity chosen by Player 1(2); X(Y) the
random demand for Player 1's(2’'s) product with demsity £(x)(g(y));

a(b) the substitution rate of Player 1’'s{2's) product with the other
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when Player 1(2) is soldout, 0 = as 1l (0=<b =< 1); s; unit selling
price; ey unit ordering cost; qy unit salvage value; Py unit lost
sales penalty for Player i's product; and B = [(u-2)/b]+v and A = [(v-
y)/a]+u. Player 2's expected profit was found analogously,

He demonstrated the existence and uniqueness of the Nash
equilibrium for each decision maker with the above payoff functions
and also showed that if anyone acts irrationally and tries to inflict
maximum damage to the other he will incur a loss and the other's
decision problem becomes a single player problem. Moreover the
players will gain if they cooperate.

Parlar’s work provides some insights into the strategic nature
of inventory decisions which may have been overlooked in the present
literature of inventory management. Traditienally, inventory problems
are studied in a framework in which a decision maker (a firm), facing
a certain pattern of demand, makes a decision of his ordering or
producing quantity under certain market and production conditions,
without considering other competitors’' decisions. Although such
models capture some elementary aspects of inventory problems, they
might also result in undesirable outcomes as they totally ignore
competitors. Especially, in inventory problems whzre there exist
substitution, discount, ete., one’s optimal decision may heavily
depend on other competitors’ decisions. Models developed from
exclusively one decision maker's perspective cannot adequately
describe such situations and game theory method should be used. In

Chapters two and three of this dissertation, we will discuss the
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quantity discount problem in a game theory framework and show that
game theoretical method would be a better way to study such decision-
making processes.

In the present literature, there seems to be cnly one type of
inventory problem that has attracted much attention from game
theorists, namely, that of stockpiling of commodities such as
petroleum that are subject to periodic supply and/or demand
fluctuations. 1In fact, this problem has become an important subject
of policy since 1979 when Iran slashed its oil exports by 5.5 billion
barrels per day, which drove the United States, Japan, and many other
countries into very difficult situations with oil supply.

An early work on this topic was done by Nichols and Zeckhauser
(1977), addressing the problem from a perspective in which governments
(representing consuming nations) stockpile a commedity in order to
suppress future prices set by a cartel of producers in future periods,
With the cartel’s objective being to maximize its present value of
profits in n periods and the governments’ objective being to maximize
the consumers’ surplus less costs associated with the stockpiling, the
authors investigated the problem in several cases under varying
conditions of resource constraints, storage and production costs, and
time horizon., For example, in the simplest one-cartel one-nation two -~
period case, a government, starting with no stockpiles and required to
end with no inventory, tries to decide its ordering quantity for each
of the two periods under the prices set by a cartel. The demand for

the product within the nation in period t, Ct' i1s determined by
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Ct - K - aPt,

where Pt is the price set by the cartel in period t and K and a are
constants. Suppose the government decides to stockpile S units in
Period 1, the government’s ordering quantities, Dt (¢t =1, 2), are

D1 - C1 + 8§ and D2 - C2 - 8,
The cartel’s discounted revenue, Y, can be found as
171

where ﬂp is the cartel’s one-period discount factor. The gain of the

Y - P D + 'BPPZDz'

nation, V, has two components: the consumers’ surplus and the
government’s net gain. With some manipulation, it turns out to be
V= Vl + ﬁcvz,

where Vi {(K/a) - Pl]Cl/Z - Pls, V2 - [(K/a) - P21C2/2 - B,S, and B,
is the nation's one-period discount factor. With this basic model,
the authors found that stockpiling aids both the consumers and the
producers, and one possible strategy for the producers is to charge a
unique monopoly price in every period regardless of the govermment's
decision. In sequel, they generalized the basic model to several more
realistic cases and found, in most cases, both the producers and the
consumers benefit from the government’s stockpiling, although the net
benefits in the case where the quantity of the commodity is limited
are unclear,

The problem was discussed by Nti (1987) from another
perspective in which n countries compete in procuring a homogeneous
commodity from a single supplier. At the beginning of the period, each

country j, facing a random domestic demand Dj - gj(P) + Ej over the



33
commodity, where gJ(P) is the deterministic component of domestic
demand at price P and fj is the random component of its domestic

demand, must order a certain amount Ij and sell it at price P It is

'R
assumed that the procuring cost, denoted by C(I), depends on the total
ordering size I = T Ij of the n countries and it is increasing and
convex in I. Then each country’s social profit is expressed as
w(D,, P,, I., I) =P, D, -~ I.C(I
3Pge By Ty D = ByDy D

- D 1£ D, <1

3 Ryt By 3 < Ty
- Pij - IjC(I) - rj(Dj - IJ) if Dj z Ij'

where hj and rj are Country j’'s inventory carrying and shortage
penalty costs, respectively. The model was analyzed both non-
cooperatively and cooperatively. The Nash equilibrium for each
country was investigated for existence and uniqueness., In addition,
he also showed that the incentive for the countries to cooperate is
very significant. The policy implications of the solutions were then
discussed.

Other game theory models on this topic include Balas {1981),
Hogan (1983}, etc., and follow a similar way.
1.3.2. Bidding and Auctions

Game theory models on bidding and auctions repregfent a major
portion of the present literature of game theory applications in
management science. This is basically because the specific strategic
nature of bidding and auction problems makes game theoretical approach

well suited to the study of such decision-making situations. In a

typical bidding and auction problem, each of the bidders, alming at
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winning the contract, selects a strategy to maximize his potential
profit, with an assessment of the others’ decisions. This is rightly
the phenomenon studied in game theory. On the other hand, as Rothkopf
(1969) pointed out, the traditional probabilistic approach is limited
as it ignores all the other bidders and suppresses their conflict of
Interests. It 1s then natural to expect that game theory would
attract much attention in this area. Indeed bidding and auction
problems have been discussed extensively in game theory approach.

This fact can be judged from the number of works done in this area.
Especially several reviews have been published (King and Mercer, 1988;
Engelbrecht-Wiggans, 1980), with a major portion devoted to game
theory models.

The pioneering work using game theoretical approach to bidding
and auction problems was done by Griesmer and Shubik in a series of
articles (Griesmer and Shubik, 1963a, 1963b, 1963c). Although, as
reviewed by King and Mercer (1988), these works do not really
adequately address the problem, they did introduce a powerful method
into this area. Later, in 1967, Griesmer, Levitan, and Shubik (1967)
built a more realistic model in which two bidders, each facing a
random cost, compete in winning a contract. The payoff for each
player was specified as the difference between the bid and his cost.
They worked with expected values.

Since their works, a wide variety of game theory models have
been built to study bidding and auction problems. A typical model has

the following features. (1) It is probabilistic. Either the bid or
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the bidders’ costs for the contract or both are uncertain, hence each
player’s payoff, usually expressed as the surplus of the bid over his
cost, is probabilistic. The players work with expected values. This
is realistic as each player can only make an assessment of his own
cost and/or the bid at the time of bidding. The distributions used
for such random variables include rectangular (Griesmer, Levitan and
Shubik, 1967), normal (Wilson, 1969), Weibull (Rothkopf, 1969),
loglogistic (Smith and Case, 1975), etc. The solutions to many models
depend heavily on the assumption of distribution. (2) The Nash
equilibrium has been the major solution scheme. As rules in bidding
and auction often restrict communications among bidders, bidding and
auction problems are usually non-cooperative and the Nash equilibrium
1s then the optimal strategy of each player, although cooperation has
been also explored in some cases (Smith and Case, 1975). 1In addition,
the normal form is usually used for bidding and auction models.

The basic questions asked in bidding and auction problems are
usually how much for a bidder to bid and/or at what level the seller
should set his reservation bid. These questions have been
successfully answered by many authors under certain conditions. The
reader might refer to King and Mercer (1988) for an accurate
description of this peint. In the following, we would like to poinc
out two problems that deserve more attention. First, many solutions
are dependent on the distributions of the randum variables under
consideration, which are subjective in the sense that they are assumed

by the analyst. As noted by Rothkopf (1980a), only a few models in
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the present literature succeed in attaining analytically unrestricted
equilibrium. Secondly, the Nash equilibrium is usually taken as
solution to various bidding and auction problems without attempting to
question whether it is proper to do so. Recently, Palfrey (1980)
investigated the use of the Nash equilibrium as a solution concept for
a bidding and auction game.in which exposure constraints are present,
that is, the sum of a player’s bids in a multiple-object auction
cannot exceed a certain amount. Let Hi denote this amount Jor bidder
1. Suppose there are I (= 2) bidders competing in obtaining J (= 2)
items and V} is the value of item j to bidder i, which is constant
and known with certainty. A feasible pure strategy for bidder i was

characterized by a non-negative J-.vector

ai-(b]i.’ ’bi)' 1-1, 2’ ey Il
where b; denotes the bid of Bidder i for Item j satisfying bj j'

i

the seller’s reservation bid and ¢ x 1 <M, 1is aunit column vector

here. The payoff function, wi for Player i, is assumed to be

J
L -ul ez sl i-b),
jo1 234
where 6} - 1 if bJ > b? for all k » i or Player i wins Item j; 6; -0

otherwise. He investigated the Nash equilibrium under several
conditions regarding the numbers of bidders and items and the values
of the items and found that the Nush equilibrium does mnot always exist
and 1if it does exist, it i{s not necessarily unique. In addition, the
Nash equilibrium typically yields zero "surplus". Based on these

results, we might challenge the Nash equilibrium as solution to
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bidding and auction problems because solution might exist for various
real problems and usually does not generate zero "surplus" for the
players. More empirical evidence is needed on the validity of game
theory models as well as their solution schemes on bidding and auction
problems,

There are wany other bidding and auction models using game
theory framework that are not reviewed here. A complete bibliography
on bidding up to early 1977 with nearly 500 papers, which includes
many game theory models, has been provided by Stark and Rothkopf

(1979) and some more recent references are provided at the end of this

dissertation.

1.3.3. Marketing

Judging from the number of papers published on game
theoretical approach in marketing, it has been another attractive area
of game theory applications. Especially, there are a number of
differential game theory models, part of which are reviewed in
Feichtinger and Jorgensen (1983), dealing with marketing problems.
This observation seems to fit well to the nature of marketing problems
as decision makers in such situations are often facing predictable but
unstable pattern of seasonal demand, which makes time become an
Important factor under decision makers’ consideration. Another common

feature of these models is that they are often mixed with issues of

production, prieing, inventory, etc.
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An early work using game theory to marketing problems was done
by Friedman (1958). He offered a game theoretic analysis of
duopolistic or more generally oligopolistic competition using the
market share attraction model, assuming the firms (players) compete
only on the advertising dimension and try to maximize their total
sales. Suppose there are n areas, each of which generates an amount
of sales, Sgv that can be influenced by advertising. By assuming that
the sales obtained by each player in each area is proportional to the

share of his advertising expenditure of the total advertising

expenditure in this area, the objective functions were defined as

n 1
P, = fllxi/(xi"‘ ¥4)ls; and P, -ifl[yi/(xi-F yi) sy,

i
where xi(yl) denotes Player 1l's (2's) advertising expenditure in Area
1. Then the Nash equilibrium strategies were found and the
implications of such strategies were discussed. Following this work,
many other models have been built by employing the market share
attraction model in a similar way that each player has only one
control variable (Mills, 1961; Shakun, 1965, 1966; Baligh and
Richartz, 1967a; Balch, 1971; and Schmalensee, 1976). Baligh and
Richarctz (1967a) discussed the television programming problem in which
n players, each creating a program to be shown at a certain time of a
day using a constrained or unconstrained budget, compete in attracting
viewers. The problem was formulated as an n-person nonzero-sum game

and analyzed both cooperatively and non-cooperatively. Especially,

some light was shed on the problem of optimum budget. On the other
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hand, Shakun discussed the problem in coupled markets where each of
two players (Shakun, 1965) or many players (Shakun, 1966) sells a
different class of products whose potential customers can be
influenced by the other players’ advertising. In particular, Karnani
(1985) used the game theory framework to examine the practical
implications of market share attraction models recently and showed
that they are consistent with previous empirical research in marketing
and business policy. Generally, these models =.e of the normal form
and Nash equilibrium strategies are used as optimal strategies for the
players. Furthermore as each player has only one control variable
they are comparatively easy to handle. However they over-simplify the
reality where often many factors rather than only one are present.
Another group of game theory models in the present marketing
literature consider the marketing channel problem. As a matter of
fact, the coordination function of market distribution channels has
been attracting increasing attention in recent years. The interested
reader might refer to Eliashberg and Steinberg (1987) and McGuire and
Staelin (1983a, 1983b) for some references of such works. For game
theory applications, Baligh and Richartz are among the first to study
market channel problems in game theoretic approach (Baligh and
Richartz, 1967b; Richartz, 1970). They analyzed vertical market
systems with several levels and {nvestigated the optimal strategies of
the players (firms) regarding the number of levels to be used.
However, their analysis was builr on a general basis. Later Zusman

and Etgar (1981) discussed market channels dominated by contractual
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exchange by using Nash bargaining theory and economic contract theory.
McGuire and Staelin (1983a, 1983b) addressed the problem from a point
of view of investigating the conditions desirable for a manufacturer
to use intermediaries between itself and the ultimate consumers of his
product. By assuming a market structure where each of two
manufacturers sells his product through a single retailer, who in
return orders exclusively from the manufacturer, they built three game
theory models regarding whether both, one or none of the two pairs of
manufacturer and retailer is Integrated. 1In other words, the
situation was described by a two-person game when both groups are
integrated; a three-person game when one group is integrated; and a
four-person game when none of them is integrated. Unlike most works
done on this topic, the manufacturers’ decision variables were defined
as their wholesale prices rather than quantities and the retailers’
decision variables as their retailing prices. Under certain
assumptions, for instance, each retailer‘’s demand is linear in the
retailing prices and each manufacturer has a constant variable
production and selling cost, they formulated each player’s profit
(objective) function. Then the Nash equilibria were found and the
results were compared to see which structure ard under what conditions
provides the best results. They found that the substitutability of
tha two products is crucial in the determination of the preferred
structure and even if manufacturers can do the selling tasks as well
as intermediaries they have a reason to place a "middleman" between

them and the market. Thereafter their works were extended by Coughlan
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(1985) by generalizing the original linear demand assumption into
several linear demand cases as well as into cases of demand concavity
or convexity with respect to own price. Especially some empirical
evidence on the validity of their models was obtained in the semi-
conductor industry. Some differential game theory models have been
also built recently to discuss this problem (Feichtinger and Harcl,
1985; Jorgensen, 1986; Eliashberg and Steinberg, 1987).

It is also worth mentioning that a few stochastic game theory
models have been built recently studying marketing, especially
advertising, problems. A stochastic game 1s a discrete time Markov
process in which conflicts of interests exist among the participants
(players), each of whom has a partial influence over the process
through his control variable. It is well suited to the studying of
decision process over several periods. However it is usually not easy
to find out the equilibrium point for a stochastic game. One way used
to resolve this problem is to analyze subclasses of such models
(Dirven and Verize, 1986; Sobel, 1981).

Based on our investigation, there seems to be a tendency that
recent research in marketing area in game theoretical approach is
becoming more involving and more dependent on time effect. Early
works usually deal with cases of two players, each of whom has one
decision variable, in a single or a few periods. However, more of

recent models are dynamic and involve more players and with more

factors under consideration.
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1.3.4. Queueing

Queueing theory is one of the traditional areas of management
science. However there have not been many game theory models built in
this area yet. Holt and Sherman studied a particular type of queueing
problem in a series of papers (Holt and Sherman, 1980; 1982; 1984},
from a point of view that a queue is like an auction. They considered
the situation where there are n peopie competing in cbtaining m (m <
n) prizes that are awarded at a certain time to the first m people in
line. Each participant, aiming at winning the prize, makes a decision
of arrival time, with an assessment of other participants’ arrival
times. This is like a sealed bid at an auction. Each participant i's
payoff function was defined as

Winner: V(wi) - W, - kw,,

i7i i

Losger: - kwi,
where V(wi) is Player i’s valuation function of the prize, which
depends only on his opportunity cost of time wie By is the time he has
to wait in line befure awarding the prize and k is a constant amount
of time that everyone has to spend to reach the place. It was also
assumed that one can know whether he can win the prize or not when he
arrives and, if not, he does not have to wait. Clearly, one can win
the prize only if there are fewer than m people in line when he
arrives. Hol* and Sherman investigated the optimal strategies, by -

a(wi), for the participants and discussed the factors affecting

transaction costs associated with waiting in line.
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Clearly, the situation discussed by Holt and Sherman
represents only a peculiar case of queueing problems. In fact, as
noted by Holt and Sherman (1984), a typical queue has individuals
jolning and leaving all day along and is not like an auction at all.
Therefore their works, though coping with conflict among participants,
are not widely applicable. Nevertheless, they did disclose an
importaat fact, which seems to be overlooked in the nresent context of
queueing, that entities in queue as customers may select their owm

arrival times and it Is always desirabl= for them to do so.

1.3.5. Finance

Another active area of game theory application 1s the area of
finance. Milnor and Shapley (1961) studied a corporation with two
major stockholders and many minor stockholders using oceanic game
theory models, It was assumed that the major stockholders compete
only in obtaining the control of the corporatiom, which hinges
entirely on a simple majority vote of the stock, and the minor
stockholders, collectively referred to as a "ocean", do not have
significant voting power individually. The problem was formulated as
a simple oceanic game:

[ %: Wis Woi al,
where W, denotes Player i’s power (i = 1, 2), a =1 - Wy = Wy, and 1/2
1s the majority quota. They investigated the distribution as well as
migration of shares and, thus, of voting power among the stockholders.

The major results were demonstrated graphically. Recently Powers
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(1987) extended their model to include exchange between cash and
shares and studied the feasibility and profitability of corporate
takeovers. They also showed the existence of the Nash equilibrium
strategies that result in one major stockholder’s taking control of
the company under certain conditions.

Alvazian and Callen (1980) discussed the leverage problem that
is faced by firms facing growth opportunities, recognizing that
shareholders and bondholders in such situations are actually involved
in a cooperative game. Consider an all-equity firm in a frictionless
financial maxket, its value at t = 0 is

v, - fzaq<3)[vcs> - 1]dS,

where q(S5) is the firm's equilibrium price at t = 0 of a dollar
delivered at t = 1 under state S, V(S) is the value of the investment
I contingent on S, and Sa 1s the breakeven point corresponding to V(S)
« I, The firm will invest if and only if V(S8) 2 I. In the case of
leverage, the firm will invest only if V(S) = I+P where P is the
additional amount the firm promises to pay to the bondholders after

state 5 is revealed. The firm’s value, in this case, is
v, = Jg a(s)[V(S) - I]ds,
L Sb

where Sb is the breakeven point corresponding to V(S) = I+P. Then the
returns to shareholders and bondholders under state §, using the
notations in the original paper, are

XE(S) -0 and XB(S) =0 when S < Sa;

XE(S) - V(S) -1 and XB(S) - P when S > Sb;
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XE(S) + XB(S) -V(S) -1 when S, <8< 5y, -

This 1s a game in the characteristic form. Aivazian and
Callen showed, using this model and Shapley value, that the value of
the firm is equal in both the leverage and all-equity cases, Then,
firm's investment decisions are independent of its financial
structure. However, they also showed by an example that this
conclusion may not be true in cases that involve more than two
parties. This is because the core of games with more than two players
may not exist, which, in a financial instituticnal arrangement with no
transaction cost, may bring about endless negotiation and a firm's
financial and investment decisions may be dependent on each other in
this case. The discussion wa: further extended to other financial
instruments such as bankruptcy, mergers, etc., using the game-
theoretic insights,

Aside from the game theory models in the areas surveyed above,
there are also many applications of game theory in othur areas. For
example, Tijs and Driessen (1986) provided an excellent review of game
theory applications in cost allocation with about 50 papers; Orgler
and Tauman (1986) built a model for cash management; Mamer and
McCardle (1987) discussed the adoption of new technology; and
McKelvey (1981) addressed the problem of agenda design. We do not
discuss these works in detail here. However some references on these

topics are provided in the reference.
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1.4, Concluding Remarks and Discussions

It is not surprising, with the plethora of game theory models
surveyed in this paper, we can conclude now that game theory has been
widely applied in management science. This is particularly true when
we consider the fact that the survey is restricted to static game
theory models and only some areas of management science. As we
mentioned at the beginning of the survey, game theory models conflict
and cooperation, which the classical single decision maker models
cannot represent adequately. It is then natural to expect game theory
to attract much attention. Indeed it has become one of the major
analytical methods of management science.

Nevertheless, we have also noted that some traditional
management science areas such as inventory and queueing have not
attracted the same amount of attention as others such as marketing and
bidding. This might be due to not only the less explicit strategic
nature of inventory and queueing decisions, but also the lack of
interest of game theorists. This, of course, calls for more attention
into these areas as well as the development of more realistic and then
more complicated game theory models for such decision making problems.

As shown in the survey, most of the game theory models have
been bullt in the normal form, with a few in the characteristic form
and almost none in the extensive form. This is primarily because, on
the one hand, the normal form is the most convenient form to formulate

and analyze and can also be used to analyze both non-cooperative and
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cooperative decisions; on the other hand, authors often used two-
person game theory models, which are presented basically in the normal
form, as their basic formulation to avoid complicated discussion and
left the n-person case as a further research direction, which,
however, has been rarely explored.

Despite the extensive discussion on and wide application of
game theory, none of its solution schemes has been accepted to be
absolutely applicable. For non-cooperative games, the Nash
equilibrium is usually used as solution to various proeblems, However,
as shown by Palfrey (1980) in the bidding situation, it may not
provide practical solution to certain real problems, although it does
provide good solutions in many other cases (Karnani, 1985; Coughlan,
1985). On the other hand, as we discussed in Section 1.2, Stackelberg
strategy is not worse than Nash strategy when the follower's response
to the leader’s decision is unique, but it seems to be ignored in many
cases, For cooperative ganes, the core is generally accepted both
theoretically and empirically. But it is more a pre-solution than a
solution scheme per se. Various other solution schemes, egpecially
Shapley value and nucleolus, have been usually taken as cooperative
equilibria, which unfortunately have been tested negatively by some
empirical tests (Willlams, 1988). Therefore care should be taken in
selecting game theory solution schemes for real problems.

Clearly, game theory is widely applied but is far from
perfect. There have been many studies on game theory in the past,

attempting to avoid its weaknesses, However none of these works seems
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to have been widely accepted. To gain a deeper understanding of game
theory we also provide a brief survey of some other approaches of game
theory.

Game theory is normative rather than predictive. Some
previous experimental evidence showed that minmax players (in two- or
three-player cases) are only the exception (Rapoport and Orwant, 1962:
Lieberman, 1962). Therefore the question concerning about the
validity and applicability of game theory has been long raised.

(1) The players' risk attitude. Eliashberg and Winkler (1978)
investigated what will happen if the assumption of linear utilicy
function made by von Neumann and Morgenstern (1944) does not hold. By
assuming exponential utility functions, they showed that players' risk
attitudes do play a role in the determination of the solution to a
game and players’ decisions usually do not coincide with that under
the original assumption. Unfortunately, this work has not yet
attracted much attention.

(2) The hypergame approach. The theory of hypergames was
developed in later 1970's (Bennett, 1977) and seems to have been
galning increasing attention in both its development per se and its
applications (Fraser and Hipel, 1984). It objects to the regular game
theory by arguing that the players usually do not have a common
perception of the problem in hand. Instead, they are actually trying
to play different games for the sume problem in hand (Bennett, 1980;
Bryant, 1983). Clearly this argument is often correct. But in this

case the formulation of a game theory model would be very strenuous.
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(3) The Bayesian approach. As stated by Kadane and Larkey
(1982), "We do not understand the search for solution concepts that do
not depend on the beliefs of each player about the other’s likely
actions...". The Bayesian approach is one way to resolve this problem
(Harsanyi, 1967, 1968a, 1968b, 1975; Kadane and Larkey, 1982), which
makes solution concepts to games depend on individuals’ subjective
assessment over the strategies the other players are going to use.
Recently there were discussions on this issue by Kadane and Larkey
(1982), Kahan (1983), Rothkopf (1983), etec.

(4) The metagame approach. The idea of metagames was
originated by von Neumann and Morgenstern (1944) and developed
formally by Howard (1966a: 1966b). The basic argument here is that
the assumption of rationality is inconsistent in game theory and some
other approaches should be developed to resolve these problems. The
theory of metagames is one of these theories that attempt to do so.

It is non-quantitative and built on the metagame Cree structure. As
tested by Howard (1966a), it is behaviorally accurate. However it is
often very strenuous to analyze a metagame. Therefore its application
is yet very restricted. For more discussion, the reader might refer
to Howard (1966a; 1966b; 1971) and Fraser and Hipel (1984).

Clearly all the above approaches improve the regular game
theory in some aspects. However the improvement is often offset by
the increased difficulty in some other aspects such as formulation and

analysis. Because of this reason, their applications are very limited



in certain fields. We do not review these works here but some
references are provided,
In the rest of this dissertation, we will investigate some

management science problems using game theory.
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Chapter Two

A Game Theoretical Analysis of the Discount Problem

Under Constant Buyer’s Demand

In this and the following chapter, we investigate the discount
problem. We treat the seller and the buyer as different players in a
competitive situation and analyze their discounting decisions in a
game theory framework. We consider the seller's optimal discount
schedule when discount does not affect the buyer’s demand in this
chapter and prove that it is always possible for the seller and the
buyer to benefit from discounting. While a simple price discount will
always make the seller lose, quantity discount can make both the
seller and the buyer gain and significantly improve their positcions if
carefully selected. By using a general all-unit quantity discount
schedule, we give both the seller’s and the buyer’'s optimal decisions.
It is shown numerically that our model gives significancly better
results than that of some models in the literature. Quantity discount

provides an efficient and easy to be implemented solution to the

discount problem.

31
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2.1. Introduction

Traditional discount models analyze primarily the buyer’s best
reactions to various price and quantity discount schedules piovided by
the seller. They minimize the buyer’s total inventory related cost,
agsuming that the seller offers a discount and then accepts the
orders, usually of larger sizes, that the buyer places (Sethi, 1984;
Hadley and Whitin, 1963; Peterson and Silver, 1979).

However, many authors feel that traditional discount models
are blased on the side of the buyer. They point out that the seller
uses the discount structure to lure the buyer to order larger sizes,
hence to maximize his profit. Decision models have been developed
solely from the perspective of the seller by Monahan (1984),
Rosenblatt and Lee (1985), Lee and Rosenmblatt (1986), Dada and
Srikanth (1987), and others, assuming implicitly that the buyer will
cooperate as long as the seller’s decision will not make him wor.:e-
off. A more generalized sclution procedure to the model developed by
Lee and Rosenblatt (1986) has also been provided by Goyal (1987).

Unfortunately, there is still one important property
overlooked in these two types of models. Consider a situation where a
buyer orders periodically from a seller, aside from the problem of
ordering size, another critical issue here is that of pricing. The
ordering size issue is controlled primarily by the buyer, whereas the
Pricing issue is basically determined by the seller. A settlement

occurs only if one agrees with the other’s decision. Traditionally
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these issues are usually settled through negotiations between the two
parties. Models developed from exclusively one party’s point of view
suppress the conflict of the seller and the buyer and fail to
incorporate the negotiation nature of the problem.

Game theoretic method seems to be a better way to deal with
this situation because it treats the seller and the buyer as partles
in a competitive situation and models their conflict and cooperation.
We present an economic analysis of the discount problem in a game
theoretical approach in this dissertation, treating each of the seller
and the buyer as one player in a two-person game. In this chapter, we
study the case where discount does not affect the buyer’s demand,
while in the following chapter we analyze the discounting decisions of
the seller and the buyer when discount does affect the buyer’s demand,

We have shown in Chapter One that game theory has become an
lmportant analytical method in management science. But few game theory
models have been developed to deal with inventory control problems.
One of these models was built by Parlar (1988) who considered the
problem of two retailers who sell substitutable products and attempt
to determine their optimal order quantities when demand is stochastic.
Our work here represents another inventory control problem that should
be considered in the game theory framework.

This chapter is organized as follows. In Section 2.2, we
formulate the discount problem as a two-person nonzero-sum game and
characterize the feasible solution area for it. In Section 2.3, we

solve the problem with the model built in Section 2.2, considering
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both price discount and quantity discount. The main findings and

possible extensions to this research are summarized in Section 2.4,

2.2. The Model

In this section ' e formulate our model with the following
assumptions.

(1) The seller’s unit selling price is the market price and
independent of the buyer’s ordering size and the buyer uses the
EOQ policy to determine his ordering size initially.

(2) There is only one single seller, one single buyer, and one single
product under consideration.

(3) The buyer’s demand is Jeterministiec and constant, lead times are
known with certainty, and no backlogging and lost-sales are
allowed.

(4) The seller and the buyer are motivated only by profit maximization
or cost savings,

(5) The seller buys the product from yet another external supplier and
the lead time is known with certainty.

(6) The players are rational and use only pure strategies.

We define the following parameters and variables:
Ab = the buyer’s fixed ordering cost per order;
A = the seller’'s fixed cost of processing one order placed by the

buyer;
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A, - the seller’s fixed ordering cost per order when ordering from the
external supplier;

D = the buyer'’s deterministic annual demand rate for the product;

P = the seller’s unit selling price or the buyer’s unit buying cost
in the absence of discount;

C = the seller’s unit acquisition cost from the external supplier;

Hb = the buyer's iInventory carrying cost per dollar per year;

Hs w the seller’s inventory carrying cost per dollar per year;

Q = the ordering size of the buyer under the competitive unit selling
price P, Q = J(2DAb/PHb);

x = the factor by which the buyer will increase his ordering size,
i.e., he will order (1+x)Q units each time;

y = the factor by which the seller will decrease his unit selling
price, i.e., he will offer a unit selling price of (l-y)P.

A discount scheme is defined as an agreement between the
seller and the buyer in which the seller agrees to offer a lower unit
selling price and the buyer agrees to order larger sizes. As the
seller offers the market unit selling price P and the buyer orders Q
units each time initially, a discount scheme is then a pair of
ordering size (1+x)}Q and unit selling price (l-y)P, which is
determined entirely by (x, y) and can be simply referred to as (x, y)
in the following discussion. =x and y are such that

0 = x, (1)

0sys= Yo' (2)
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where Yo > 0 is a point that the seller will not let his unit selling
price be less than (l-yo)P. Since it i{s normally unrealistic for the
seller to sell the product at a price lower than his acquisition price
C, we let Yo - 1-C/P. More generally, we might have Yo < 1-C/P as the
seller may want a positive profit margin. Here, x and y are the
buyer’s and the seller’s decision variables, respectively.

When a discount scheme is formulated, the following factors
might be modified. (1) The buyer incurs extra holding costs associated
with the extra quantity ordered each time. This factor is alseo
alleviated by his decreased unit buying cost. (2) The seller reduces
his inventory related cost as the buyer orders larger sizes. This
point will be clarified later. (3) The seller reduces order
processing cost and the buyer reduces ordering cost because the buyer
orders larger sizes hence fewer number of orders are placed each year.
(4) The seller decreases his sales revenue and the buyer reduces his
buying cost because of the lowered unit selling price.

The buyer’s concern in this problem is his total inventory
related and buying cost of the product, We express the buyer’s total
annual relevant cost, TC, as

TC = (Purchase cost) + (Ordering cost) + (Carrying cost)
= DP + A, D/Q + QPH, /2. (3)
If a discount scheme is formulated, the new total cost, TC

bi
is

TCy = DP(l-y) + DA /[(1+x)Q] + (14x)(1-y)QPH, /2. (4)
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Therefore, what the buyer can gain under (x, y) is wb(x, y) =
TC - TCb, or

mp{x, y) = yDP + [1-1/(1+x)]DA,/Q + [1-(1+x)(1-y)IQh, /2, (5)
where hb - PH is the buyer’s inventory holding cost per unit per year
in the absence of discount,

On the other hand, the seller’s concern is also what he can
gain from discounting. The relevant factors for him include the sales
revenue, the acquisition cost, the order processing cost and the
inventory related cost, which includes his inventory carrying cost and
ordering cost from the extermal supplier. His annual profit, denoted
by TP, can be expressed as

TP = (Sales revenue) - (Acquisition cost) - (Order processing cost)

- {Inventory related cost).

The first three terms are, clearly, DP, DC, and ASD/Q.
However, to obtain the inventory related cost, we have to consider his
optimal replenishment policy or his optimal ordering size from the
external supplier.

Suppose the seller buys a quantity at a time enough to meet N
orders of size Q. Because the first three terms in TP are independent
of N, the optimal N can be determined by solely examining his
inventory related cost. Consider the situation where the buyer's
ordering size is given, say Q. The seller’s demand pattern is
determined in which he provides Q units to the buyer every Q/D time
units (Figure 2.1}. As his replenishment should only take place when

the inventory level is zero (Peterson and Silver, 1979, p- 309), the
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optimal N is an integer and his inventory carrying cost per cycle, Ic,
becomes

I, = [(N-1)Q + (N-2)Q + ... + QI(Q/D)h,
- [N(N¥-1)Q/2](Q/D)h_, (6)
where hs - CHs is the seller’'s inventory holdiugz cost per unit per

year.

His average annual inventory carrying cost, Iy' can then be

obtained by dividing Ic by the length of one cycle, NQ/D, which turns

cut to be
Iy = {(N-1)/2]Ch_. (N
Inventory Level
&
N-1]0

1

(NQWD

.Qm-
Figurs 2.1. The Seller’'s Inventory Carrying Pattern

Since his average annual ordering cost is (DAe)/(NQ), his
total annual inventory related cost, denoted by TI, can be expressed
as

TI - [(N-l)/Z]th + (DA)/(NQ). (8)
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By differentiating TI with respect to N, assuming N to be a

continuous variable, we obtain

dT12/a8% - (2DA_)/(N°Q) > 0. (9)

TI is a convex function of N. The seller should order NQ
units each time if TI(N) < TI(N+l) and TI(N) < TI(N-1) which, after
some modification, turn out to be

Qo//[N(¥+1)] = Q < Qu//IN(N-1)], (10)
where Qo - J(EAQD/hS) is the seller’'s EOQ when he faces a uniform
demand of D units per year. Thus, the seller’'s optimal replenishing
policy can be determined by comparing the buyer's EOQ with his own EOQ
such that

N - 1 if Qu//2 s

- 24f Qy//6 Q< Qy/ 42,
- 3 1f Qy//12 < Q < Q //s,

Since the seller has to fulfill the buyer’s demand, we have N
=21, IfQ= QO/J2, the optimal N is 1 and the seller should order
each time what the buyer orders and carry no Inventory (lot-for-lot
policy). IfQ < QO/JZ, the lot-for-lot policy is not optimal. (10)
should be used to determire the seller's optimal replenishing policy.
In both cases, the seller‘s total inventory related cost is given by
(8).

Let NO denote the seller’s initial optimal replenishing

policy. That is, the seller orders NoQ units each time when the buyer
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orders Q units each time. The seller’s annual profit TP in the
absence of discount is
TP = DP - DC - AD/Q - [(No-l)/Z]th - (DAe)/(NOQ). (11)
When a discount scheme is formulated, the buyer’s ordering
size 1Is (1+x)Q and the above analysis still holds. The seller’s
optimal ordering policy is determined by
Qo// [N (N +1)] = (14x)Q < Qp//IN (N _-1)]. (12)
Nx is the seller’s optimal N for {(l+x)Q and its value is
determined by

N = No-i when Xy S X <X

X (13)

i+l
where i = 0, 1, ..., Ny-1, x5 = 0, x; = a/J/[(Ny-1)(Ny-i+1)]-1 for 0 <
i« NO' a= QO/Q. and xNO - o,
In this case, the seller’s total inventory related cost is
TIx - [(Nx-l)/21(1+x)Qh5 + (DAe)/[Nx(l+x)Q]. (14)
It is important to note that, at each Xy Irr0<ic Ng»
TIx(No-i+l) - TIx(No-i) and TIx is continuous. By differentiating
TIx in (xi, xi+1), we have
dTL, /dx = (No-1)(Qh/2)[1-(L+x,, )2/ (40)%) < o. (15)
TIx decreases as X increases. Therefore, the seller reduces his
inventory related cost when the buyer increases his ordering size.
The seller’s annual profit is

TPS = (1-y)bP - DC - ASD/[Q(1+x)] - (Nx-l)(l+x)Qh5/2
- DAe/[Nx(1+x)Q]. (16)
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What the seller can gain under (x, y) is xs(x. y) - TPs - TP,
or,

7g(%, ¥) = - YOP + [1-1/(14x)]A.D/Q + (Qh /2) [(Ng-1)-(N, -1)(1+x)]
- (DAe/Q)[l/(1+x)Nx-1/N0]. (17)
xs(x, ¥} is continuous in both x and ¥.

We have thus formulated the discount problem as follows. The
buyer and the seller formulate a discount scheme (%, y¥), over which
the buyer exerts his control through x and the seller exerts his
control) through y. By doing so the buyer gains wb(x, y) and the
seller gains rs(x, ¥). We assume that the seller and the buyer know
all the parameters in the two functions. This is a two-person
TIONZEro - sum (ws + o 0) game.

Consider the impact of an inerease in the buyer’s order
quantity on the seller. If the buyer’s ordering size i1s not less than
QO/JZ initially, he should use the lot-for-lot policy and any further
increase in the buyer’s ordering size will not alter this policy. His
gain by inducing the buyer to order large quantities in this case
comes from only the decrease in his order processing cost and ordering
cost associated with the buyer’s reduced frequency of ordering. If
the buyer’s ordering size is less than QO/JZ initially, he should not
use the lot-for-lot policy and order in batches including fewer and
fewer number of orders of the buyer when the buyer increases his
ordering size. His gain by inducing the buyer to order large
quantities comes from not only the decrease in his ordering and order

processing cost but also the reduction in his inventory carrying cost.
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It is worth noting that, if the seller is using the lot-for-
lot policy initially, Ng = 1 and Nx = 1 for any x > 0. (17) becomes
ws(x, y) = - yDP + [1-1/(1+x)](Ae+As)D/Q. (18)
This can be considered to be the case discussed by Monahan
(1984). He assumed implicitly that the seller is always using the
lot-for-let policy and carries no inventory. Our discussion may be
then helpful in clarifying two points. First, as also pointed out by
others (Lee and Rosenblatt, 1986; Joglekar, 1988), Monahan's
assumption of the seller’s lot-for-lot policy is usually unrealistic,
As shown above, the seller’s initial optimal replenishing policy
depends on his own EOQ and the buyer’s EOQ. The seller, as a major
intermediary, usually has better inventory facilities and thus his EOQ
1s often much larger than that of the buyer. Secondly, the buyer's
inventory carrying cost formula has been used to obtain the seller’s
saving in inventory carrying cost (Lal and Staelin, 1984; Dada and
Srikanth, 1987). This extension should be used only in situations
where the seller always carries a large inventory and determines his
replenishing policy independently of the buyer’s order quantity. It
can be seen in Dada and Srikanth (1987) that this translation requires
an additional condition Hb > HS for the existence of an optimal
solution. By including the seller’s replenishment policy, this
condition is unnecessary.
By the nature of the problem, no ome will play the game if the
resulting discount scheme gives him negative payoff. Hence wb(x, y) =

0 and ws(x, y) 2 0. After some algebra, these conditions become
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¥ = [(Cy/2)x%/(14x) 1 /IDR+(C, /2) (1+x) ], (19)
¥ S (1-1/(1+3)JA_/(PQ) + [Qh_/(2DB)] [ (Ny-1)- (N, ~1) (L4x)]
- [8,/(BQ) ] [1/(1H0N_-1/N, 1, (20)

where G, = J(2DAbhb). Both (19) and (20) are continuous in x.
Therefore, a possible discount scheme is determined by (19)

and (20) with x =2 0 and 0 < Y S ¥q- The set of such points is shown
by the shadowed area in Figure 2.2.

P

-
x

Figure 2.2. The Feasible Solution Area

Note that we assume that the condition y < Yo is not
restrictive in determining the shadowed area. As the shadowed area is
bound by LI 0, the value of Yo 1s not crucial in this case because
the seller can increase it if this can make LI 0. We mailntain this
condition in our analysis. The shadowed area characterizes the
feasible solution area for the problem., Any point on the boundary of
it represents a discount scheme which makes one gain and the other

neither lose nor gain, except the two end points at which no one gains
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or loses; any point inside it represents a discount scheme which makes
both players gain; and any point outside of it makes at least one
lose.

Proposition 1. It is always possible for both the seller and the
buyer to benefit from discounting.

Proof. We consider only H5 > 0 and Ae > 0. What we need to prove is
that the feasible solution area contains at least one point at which
my > 0 and T, > 0.

We define a function Y(x) by subtracting (19) from (20). Y(x)
is continuous in x as both (19) and (20) are continuous in x and the
feasible solution area contains at least one point at which both the
seller and the buyer gain if Y(x) > O for some x > 0.

By differentiating Y(x) with respect to x at x = 0, we obtain

dy/dx|, _o = A,/(PQ) + (1/DP)[DA_/(NyQ)-(Ny-1)Qh /2]

- A/(PQ) + (Q3-Ny(Ny-1)Q% Ih_/(2DBN,Q)

> 0 since A /(PQ) = 0 and Q < Qu//[Ny(Ny-1)]. (21)

Y(x) is strictly increasing at x = 0. Since Y(0) = 0, there
is an X > 0 such that Y(x) > 0 in (0O, xo). Q.E.D.

Thus, for any product that the seller and the buyer are
exchanging, it is always possible and worthwhile for both the seller
and the buyer to exploit the benefit of discounting. In the following

we will discuss how to formulate a discount scheme for the seller and

the buyer.
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2.3. Solutions to the Problem

We consider independent suppliers and buyers. In this case,
each one in a snpplier-buyef relationship pursues his own iInterest,
which is partly conflicting with the other’s. It is then, we feel,
usually inappropriate to assume, as done by some writers (Banerjee,
1986a), that the seller and the buyer will work in full cooperation in
the discount problem.

A careful examination of the discounting process reveals that
discount schedules are usually given by suppliers. Buyers react to
discount schedules by ordering each time the quantity which minimizes
their total relevant cost. Then the seller usually acts as the leader

in the process. We focus on this case in our analysis.

2,3.1. The Players’ Reaction Curves

If one player’s decision is anuounced to the other in advance,
the other will surely respond in such a way so as to maximize his own
payoff. For our problem, if the seller’s decision y is given, the
buyer will choose an x to maximize xb(x, y). When y goes through its
domain [0, yO], the buyer’s decision will form a curve over 0 < ys
Yo- This curve is called the buyer's reaction curve, which gives the
buyer’s best responses to the seller’s possible decisions (Basar and
Olsder, 1982). Similarly, we can define the seller's reaction curve
as the seller’s best responses to the buyer’s possible decisions.

For a given y, we can observe that
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dr,/dx = [1/(1+x)2]AD/Q - Qb (1-¥)/2, (22)
a?r sax? - - [2/(140%)18 0/Q < 0, (23)
hence L% is a concave function in x, x = 0. The optimal value of x,
for a given y, is obtained by setting (22) equal to zero, which gives
x =[1//(1-y)] - 1. (24)

We note that (24) is obtained by using Q = J(2DAb/hb). The
reader might verify that this is the same result as that obtained by
using the EOQ model when y is given.

On the other hand, for a given x, dxs/dy - - DP < 0. LI is
strictly decreasing in y and attains its maximum at y = 0 for any x.
The reaction curve of the seller is y = 0. He will never lower his
selling price if the buyer announces his decision in advance. Indeed
the buyer does not have the potential to act as the leader in the

discounting process.

2.3.2. Price Discount

We classify discount scenarios into two categories. A price
discount is one in which the seller gives a discount or simply a lower
unit selling price to the buyer, without setting a minimum for an
order to be eligible for the discount. In a quantity discount, an
explicit restriction is imposed on the order gquantity for each
discount, Either of the these two discounts is widaly observed in
actual business practice. We study price discount in this section and

quantity discount in the next section.
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Proposition 2. If the buyer's demand is constant, the seller will
lose if he gives a price discount to the buyer.
Proof. When the seller gives a price discount to the seller, he acts
as the leader in the discounting process. The buyer will follow his
decision by ordering each time his economic order quantity. His
reaction to any y given by the seller is uniquely determined by (24),
By substituting (24) into (17), we get the seller's payoff
function as
g = YDP + [1-/(1-¥))AD/Q + (Qhy/2) [(Ny-1)- (N, -1)//(1-y)]
-(DA_/Q) [J(1-y)/N_-1/N,], (25)
where N, is given by
N (N, -1)/a® < (1-y) = N (N _+1)/a%. (26)
Since Nx - NO when y = 0, from (26) we get
Nx - No-i when Y SY < ¥ 27
vhere i = 0, 1, ..., N0~1, Yo = 0, yNO = ¥ and Yy ™ 1-(N0-i+1)(N0-

i)/a2 for 0 < i < Ng.
In each interval (yi, yi+1), Nx is constant and L is
continuous and differentiable. We can also observe that No-i and NO-

1-1 give the same total inventory related cost to the seller when y =
Yy Thus LI is continuous at i for 0 < i < Ng- 7. is continuous for
yz 0.
Differentiating T with respect to y in each interval, we get
dr_/dy = - DP + (A D/Q)(1-y) /%2 . (@h_/2) (N_-1)(L-y)"3/2/2
+ (DA/Q) (1-y) 2/ am )
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S - D + (AD/QY(Ly) /2 + (DA Q) (L-y) M2/ (2N )

S - ((L-y)DP - AD/[(1+)Q]/2 - DA /(2N (1+x)Q)]}/(1-y)

s - ((L-y)DP - A_D/[(1+2)Q] - DA/[N, (1+x)Q)]1/(L-y)

= - (TP_+DC)/(1-y). (28)

We use (24) or l+x = 1//(l-y) to obtain (28).

It is very reasonable to assume that the seller gets a
positive profit for trading the product initially, i.e., TP > 0.
Then, for any y > 0 and TPs s 0, x_ = TPS-TP < 0. On the other hand,
for any y > 0 and T, > 0, dws/dy < 0 and % is strictly decreasing.
Since L is continuous for y = 0 and xs(O) -0, x, < 0.

The seller will lose if he gives a price discount to the
buyer. Q.E.D.

Proposition 2 suggests that suppliers should not provide any
price discount to their customers when the customers’ demand is
constant. If a seller gives a price discount to a buyer in this case,
the buyer will increase his ordering size according to his EQQ
formula. But this increase is always not sufficient to cover the
seller’s reduction in sales revenue. This finding seems to be
contradictory to the reality where, as we observe, suppliers often
give price discount to their customers. An explanation to this
observation is that price discount is a competitive strategy for
suppliers to attract more demand from their customers or to accelerate
the selling process of a product rather than a tool for channel

efficiency. In the next chapter, we will study this problem in the
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situation where the seller's discount will increase the buyer’s

demand. Our conclusions are consistent with these observations.

2.3.3, Quantity Discount

A quantity discount schedule Is characterized by a direct
association between the discount and the order quantity. Then
different restrictions on the discount and order quantity will result
in different quantity discount schedules. Indeed, different quantity
discount schedules are used by traders in the industries. A few of
such schedules as all-unit quantity discount, incremental quantity
discount, and carload lot discount, are discussed in Jucker and
Rosenblatt (1985). They showed that, for these schedules, an all-unit
quantity discount schedule is general enough to admit others as
special cases. Thus we consider only all unit quantity discount
schedules in the following analysis.

An all-unit quantity discount schedule can be defined as
follows. The seller offers a unit selling price P, for any order
between Qi and Qi+1 where 1 =1, 2, ..., n, P1 > P2 > L.0> Pn' Ql <
Q2 < ... < Qn and Qn+1 is infinity. All units in an order are
eligible for the appropriate discount.

When a single buyer is considered, only one order quantity
will be selected. Thus a quantity discount with only one break is
adequate for this situation. In the framework under discussion, an
all-unit quantity discount schedule with only one break can be defined

in terms of x and y as follows. The seller offers no discount for any
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order such that 0 < x < x; and a discount ¥y for any order such that

< x, where x, > 0 and ¥, > 0. A gquantity discount schedule can be

*1 1
represented by the break point or (xl, yl). Obviously the seller is
to find the optimal discount y, as well as the optimal break point %q.

Because the seller gains nothing if the buyer stays at x = 0
or the initial order quantity, he has to provide some incentive fer
the buyer to move away from x = 0. Let w = 0 be the least amount that
the buyer will be interested in quantity discount. Then under a
quantity discount given by the seller, the buyer should get at least w
or m = .

Now consider the buyer‘’s reaction to a quantity discount
schedule defined above given by the seller. The buyer’s optimal order
quantity 1s Q* if Q* = (1+x1)Q or (1+x1)Q if Q* < (1+x1)Q, where Q* -
Q/J(l-yl). In both cases we should have m, 2 Wor the buyer’'s optimal
order quantity is Q.

Lemma 1. If the seller gives a quantity discount to the buyer, the
break point has to satisfy the condition

(1+xl)J(1-y1) > 1. {29)
Proof. (1+xl)J(1-y1) > 1 is equivalent to (1+x,)Q > Q/J(l-yl) - QI.

Suppose (1+x1)J(1-y1) < 1. We have that Q: = (1+x1)Q or the
break point is below the buyer’s E0Q when a discount ¥y is provided.
The buyer will order according to his EOQ formula or {24). As shown
in Proposition 2, the seller will lose if ¥y > 0 in this case., Hence,

if the seller is going to offer a quantity discount to the buyer, it

must be such that Q° < (l+x,)Q or (L+x)/(L-y)) > L. Q.E.D.
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Lemma 1 suggests that if the seller is going to give a
quantity discount to the buyer, he should give his quantity discount
schedule in such a way that the buyer has to order more than his EOQ.
Lemma 2. It is always possible for the seller and the buyer to gain
from quantity discount.

Proof. From Proposition 1, we have at least one point inside the
feasible solution area at which ™ > 0 and 7, > 0. From the proof of
Proposition 2, we can see that the condition for Lemma 1 is satisfied
for any point at which T, > 0. Then, if we assign a point inside the
feasible solution area as the break point for a quantity discount
schedule, the buyer’s optimal order quantity is the break point; With
this schedule, both the seller and the buyer can gain, Q.E.D.

We now prove the following proposition.

Proposition 3. The seller’s optimal quantity discount schedule (xl,
yl) is given by

¥y = [9(Cy/2)x5 /(L)) 1/ DB+ (C/2) (L) ], (30)
where X maximizes LI
Proof. The seller is to find the optimal break point (xl, yl) which
maximizes LI By Lemma 1 and Lemma 2, such a point exists for an
appropriate w. As the buyer has to gain w to order more than Q, we
have M, = W. This condition has to be tight in maximizing Li because,
as we can see from (17) and (5), the seller will set X = © and make

the buyer lose otherwise,

Solving LI for y, we obtain (30). Q.E.D.
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Corollary 1. The buyer will get w, the least amount that keeps him
interested in ordering more than Q under the quantity discount
schedule,

Proof. This is obvious from Proposition 3. Q.E.D.
The seller has the full contrel of the situation as he
maximizes his own payoff by letting the buyer gain w. When w = 0, the

buyer gains nothing and the seller obtains all the benefit from
discounting. This specific situation is the case discussed by many
writers (Monahan, 1984; Lee and Rosenblatt, 1986). We are cautious
about it because the buyer may always need some positive incentive to
respond positively to a quantity discount schedule. Generally a
quantity discount schedule with a positive w seems to be more
appropriate,

Since T, 2w is always tight when maximizing LI decreasing w
usually means increasing the seller’'s gain. Then the seller gets his
maximum gain when w = 0 and will set w as small as possible. However,
as the buyer may not change his ordering policy without an attractive
incentive, in which case the seller gains nothing, the seller should
use a carefully selected w > 0 in a quantity discount schedule.

From Propesition 3, we obtain a solution procedure for (xl,
yl) as follows.

(a) Substitute Y1 given by (30) in w_, which then gives the
seller’s payoff function as a function of L3 alone.
(b) Find x, which maximizes x, given in (a).

(c) Substitute Xy into (30) to obtain ¥q-
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As Nx is a discrete function of x, finding Xy by maximizing L

given in (a) analytically is usually cumbersome. To avoid this
difficulty, we can also use the following non-linear programming model

to obtain the optimal solution.

MAX -yDP + [1-1/(14+x)]A_D/Q + (Qh /2)[(Ny-1)-(N-1)(1+x)]
x,y,N

- (DAe/Q)[l/(1+x)N-1/N0].
5.T.: yDP + [1-1/(1+x)]DAb/Q + [1-(1+x)(l-y)]th/2 -wz 0,
x < a/f[N(N-1)],
x = a/J[N(N+1)],
N 2 1 and integer,
y>0andy sy, (31)
Using a non-linear programming package such as GINO (Liebman,

et al, 1984), this problem can be easily solved.

2.3.4. Numerical Fxamples and Discussions

The following numerical examples will demonstrate our results
and illustrate some of the difference between our model and that of
Monahan (1984) or Lee and Rosenblatt (1986). The latter is a
generalized model of the former by relaxing the lot-for-lot
assumption. We will also provide a brief discussion on the model of
Rosenblatt and Lee (1985) as they considered explicitly the buyer’s
reaction in determining the seller's optimal quantity discount

schedule. They used a linear quantity discount schedule in their

analysis,
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Example One. D « 14400, Ay = $200, A - $100, A, - $400, P = $10, H
- 0.4, hs - $2.

If no discount is considered, we have Q =~ 1200, Qo = 2400, a =
QO/Q = 2 and NO -2,

If a quantity discount is te be given and the seller is
willing to let the buyer gain w = $200, we obtain the seller’'s optimal
quantity discount schedule as: no discount for any order between 1200
units and 2279 units and a 0.82% discount for any order greater than
or equal to 2280 units. Under this schedule, the buyer will order
2280 units each time and the seller will use the lot-for-lot policy.
The buyer gains $200 and the seller gains $456.49. o

In order to compare our model with Monahan’s or Lee and
Rosenblatt’; model, we use the data given in Example 1 of Rosenblatt
and Lee’s paper in the following example.

Example Two. D = 100, P = $10, AS = 50, Ab = 51200, Ae = $1200, Hb -
0.5, hs - $2.5.

When no discount is considered, Q - 219, Q, = 310, a = J2 and
Ng = 1. Then the lot-for-lot policy is optimal for any ordering size
larger than Q.

When a quantity discount is considered, by using Monahan's
model or Lee and Rosenblatt’s model (they are the same in this
particular case), the improved ordering size is 310 units and the
discount term is $0.6645. Under this arrangement, the seller gains

$93.97 and the buyer gains $50.85.
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If our model is used, letting w = $50.85 we obtain the

seller’s optimal quantity discount schedule as: no discount for any
order between 219 units and 409 units and a 13.45% discount for any
order larger than or equal to 410 units. The buyer will order 410
units each time, gaining $50.85, and the seller gains $120.18. On the
other hand, if the seller is satisfied with the gain by using
Monahan's model, he can provide the following quantity discount
schedule to the buyer: no discount for any order between 219 units and
419 units and a 15.75% discount for any order larger than or equal to
420 units. Under this schedule, the seller gains $93.97 but the buyer
gains $104.21.

Evidently, our model gives significantly better results than
theirs in the example. This i{s generally true because, by using the
game theoretical approach, our model adopts a more general framework
to form a discount scheme for the seller and the buyer. In their model
they assume that a "break even" discount is given to the buyer. By
doing so, they restrict the feasible solution area shown in Figure 2.2
onto a curve determined by their Equation (2). But our model imposes
no restrictions on the discount and order guantity. Note that the
buyer’s gain w can be changed according to their agreement, our model
provides a more efficient, more flexible and thus perhaps more
equitable way for the seller and the buyer to exploit the profit from
discounting.

Now let us consider Rosenblatt and Lee’s model, They give a

linear quantity discount schedule for the seller as p = 10 - 0,0059x,
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where p is the unit selling price and x is the ordering size. 1If this
schedule is given to the buyer, by substituting it into the buyer’s
total cost function, we obtain

C(x) = 120000/x -+ 0.25{10-0.0059x)x + 100(10-0.0059x). (32)

It can be verified that C({x) is monotonically decreasing in x
if x > 0. Therefore, the buyer’s optimal order quantity under this
schedule is not 438 units, as given in their paper, but infinity.

This schedule is clearly not optimal for the seller if such a schedule
exists at all. It can be shown that similar situations exist for
their Example 3.

It appears that some aspects may have been overlooked in their
analysis. First, quantity discount should be available to the buyer
only if he orders more than the order quantity when no discount is
provided. Therefore, if a linear quantity discount schedule is to be
given, it should be defined as p = a - b(x-x*) with the notations in
their paper. Secondly, should such a quantity discount schedule be
given, the seller gives the discount rate b and it is the buyer who
will choose an order quantity under this schedule. If the game
theoretical approach 1is used, the optimal b should be obtained by
finding the buyer's optimal order quantity x for b (x as a function of
b), substituting x into the seller's payoff function, and then
maximizing it with respect to b. Clearly this is not what was
obtained in their analysis. The authors found b as a function of x by
minimizing the buyer’'s cost function with respect to x and then

substituted it into the seller’s profit function to get the optimal x.
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By using some numerical examples, we also found that, should
the two factors above had been taken into consideration, the seller's
gain would usually be marginal, if not zero, by using a linear
quantity discount schedule. Using a continuous approximation for a

quantity discount schedule is usually not efficient.

2.3.5. Further Considerations
In this analysis, we concentrate on the case where the seller
and the buyer work independently. We give the seller’s optimal
quantity discount schedule by considering explicitly the buyer's
reaction to it. In the literature, several models have been developed
to address the joint solution of the problem (Coyal, 1976; Banerjee,
1986a; Joglekar and Tharthare, 1990). Under our model, by letting =«
be the joint gain of the seller and the buyer, or = = T b, we have
- [1-1/(l+x)](Ab+AS)D/Q + (DAe/Q)[l/No-l/(l+x)Nx]
+ (Qhg/2) [(Ng-1)- (N, -1) (14+x)] + (Qhy/2) [1-(L+x) (1-y)].  (33)
Differentiating = with respect to the discount term y, we get
dn/dy = (th/2)(1+x) > 0. (34)
Clearly, n increases as y increases. Then the seller should
set y as high as possible or his unit selling price as low as
possible. At the extreme, he should sell the product to the buyer at
his unit acquisition cost. In this case, however, his profit is
negative. Such a joint solution is highly artificial. Even if there
is some collaborative agreement for them to cooperate, letting one's

profit be negative will certainly put oneself in a position of great
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disadvantage in bargaining. It is more reascnable to assume that the
seller and the buyer will consider a discount scheme only if it will
not make him worse-off than his initial position.

Proposition 4. Quantity discount can be used to obtain the joint
maximum gain of the seller and the buyer when no one is willing to
accept a negative gain.

Proof. The joint maximum gain of the seller and the buyer when no one
is willing to accept a negative gain can be obtained by maximizing
{34) under the condition Tz 0 and LI 0. It can be seen from
Figure 2.2 that 7. 2 0 and T, 2 0 form a closed and non-empty area.
Then the problem has a feasible solution, denoted by (xo, Yo)-

Letting Xy = %5 and Yy = ¥o» the seller and the buyer can obtain the
joint maximum gain at (xl, yl). Q.E.D,
As the joint gain x increases when the discount term y
increases, the joint maximum occurs at the upper bound of the feasible

solution area or . = 0. The seller gains nothing at the joint
optimal point., We found that even this joint solution would be very
difficult to be implemented as the seller has to get compensation and
the problem becomes a bargaining problem here. Offering a carefully
selected quantity discount schedule to the buyer is not only more
convenient but also gives the seller more control of the process than
in a bargaining problem. It seems to us that joint solutions are
usually difficult to be implemented, although they are attractive in
term of joint gain. An appropriate quantity discount schedule is more

reasonable and feasible for the discount problem. As some numerical
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examples show, quantity discount schedules are very efficienc in
obtaining the maximum profit increase in certain situations. For
instance, in Example One above, the joint maximum gain is $670.96 but
the worst the seller and the buyer can gain together by using a

quantity discount schedule is $650.36 or 97% of the maximum.

2.4. Conclusions and Possible Extensions

In this chapter, we have discussed the discount problem under
the situation of a single seller and a single buyer with a single
product. Game theoretical approach is used and the main conclusions
are as follows.

(1) It is always possible for the seller and the buyer to
benefit from discounting as long as the seller’s inventory holding
cost and set-up cost are not zero.

(2) Price discount will make the seller lose if the buyer’s
demand is constant. Thus suppliers should not offer any price
discount to their customers when it can not attract more demand from
them.

(3) Quantity discount can always make both the seller and the
buyer gain. By forming an appropriate all-unit quantity discount
schedule, they can significantly improve their positions,

(4) Our model generally gives better or at least no worse

results than that of Monahan (1984) or Lee and Rosenblatt (1986),
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(5) Quantity discount provides an efficient, flexible and easy
to be implemented solution to the discount problem.

In this research, we have restricted our analysis to the case
of a single seller with a single buyer and a single product. We
realize that this is a major limitation of our study as well as many
others in the literature. In reality, a supplier usually has many
buyers. An interesting and challenging extension to our research
would be the analysis of a supplier’s optimal quantity discount
schedule when many buyers or many products are involved. In this
case, the seller’ optimal replenishing policy should include at least
one order of each buyer and a quantity discount schedule with many
breaks should be used. The problem would be not only a tough task but

also has a high potential of real business implementation.



Chapter Three

A Game Theoretical Analysis of the Discount Problem

Under Linear Demand

In this chapter, we analyze the discount problem for a
supplier and a buyer where the buyer, as a retailer, faces a linear
demand. Both price discount and quantity discount scenarios are
considered and optimal decision rules are obtained for both the seller
and the buyer in various situations. It is shown that, when the
seller and the buyer work independently, price discount can improve
their positions only if the market demand is sensitive to price
changes. Therefore, suppliers provide price discounts primarily to
attract more demand and secondarily to reduce inventory related cost.
Nevertheless, quantity discount can be of benefit to both parties even
if demand is constant and it will always bring a higher profit to the
seller than a price discount. 1In certain situations, it can be very
efficient in obtaining the maximum profit and then can be used as a

tool for both the seller and the buyer to improve their profitability.

81
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3.1. Introduction

The pricing policy of offering discounts to customers has
become a well-known practice in today’s industries and an active
research area in marketing and inventory management. Recently Dolan
(1987) provided a review of models on quantity discounts. He reviewed
three types of models according to the three principle motivations for
quantity discounts suggested by Buchanan (1953): (1) perfect price
discrimination against a single or a group of homogeneous customers,
(2) partial price discrimination against a group of heterogeneous
customers, and (1) improving channel efficiency. The first two types
of models focus primarily on economic issues such as consumers'
surplus and the third is mainly concerned with pricing and ordering
decisions of suppliers and buyers.

Our main concern in the present analysis is the pricing and
ordering decisions of suppliers and buyers, There are a number of
articles studying the discount problem for this purpeose (Goyal, 1976;
Jucker and Rosenblatt, 1985; Lal and Staelin, 1984; Lee and
Rosenblatc, 1986; Sethi, 1984). (lassical EOQ models discuss
exclusively the buyer’s best reaction to discount schedules provided
by the seller (Snyder, 1973). These models capture the basic issue of
the buyer’s ordering decisions, but they ignore the seller's principal
role in determining such discount schedules. Noting this shortcoming,
Monahan (1984) initiated and rany others (Banerjee, 1986; Lee and

Rosenblatt, 1986) followed the work on finding the seller's best
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discount schedules. They give the seller'’s optimal discount schedules
under various conditions, assuming implicitly or explicitly that the
buyer will cooperate as long as the seller’s decision will not make
him worse-off. In addition to these, a few models have been built
discussing the joint optimal decisions of the seller and the buyer in
the selling and buying process {Banerjee, 1986; Chakravarty, 1988).

The problem has also been studied from a game theoratical
approach. As we argued in Chapter Two, looking at the problem from
solely the perspective of either the buyer or the seller suppresses
the conflict as well as the cooperative property of the problem. Only
the game theoretical approach takes account of the actions of both the
seller and the buyer in a proper mamnner. Kohli and Park {1989)
analyzed the cooperative decisions of the seller and the buyer and we
discussed in Chapter Two the non-cooperative aspect of the problem
under constant buyer’s demand.

In this chapter, unlike most of the studies aimed to improve
channel efficiency, which assume that the seller‘'s discount will not
affect his demand, we investigate the case where the seller's discount
can attract more demand from the buyer. We analyze both price
discounts and quantity discounts. The efficiency of each schedule is
also discussed.

The chapter is organized as follows. We first formulate a
game theory model for a supplier and a buyer and then discuss their
price and order quantity when no discounting is considered. In the

subsequent two sections, we analyze the optimal decisions of the
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seller and the buyer for price discount and quantity discount. A
brief analysis is then done for their joint decision and the
efficiency of the discount schemes. Finally the main findings and

possible extensions to this study are summarized.

3.2. The Model

In this section we build a model for a market where a single
supplier (seller) sells a product to a group of customers (buyers)
who, as retailers, sell the product to ultimate consumers. The
customers are homogeneous with respect to their demand pattern and
cost behavior. Therefore, we can analyze the problem in terms of the
supplier and a single buyer. We maintain the sual assumptions of a
basic EOQ model in this study. That is, all lead times are known with
certainty, no lost sales and backlogging are allowed, etc.

Secondly, we assume that the buyer faces a linear demand as a
function of his unit retailing price, which increases as the price
decreases.

Thirdly, we assume that the buyer uses a constant profit
margin pricing policy, i.e., he charges a constant profit margin over
his unit acquisition cost on each unit he sells to ultimate consumers.
For instance, if his unit buying cost from the supplier is $1.00 and
he wants to earn a 20% profit margin, he sets his unit retailing price

as §1.20. This pricing policy, as we observe, is often used by
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retailers, especially small retailers and franchise outlets of
manufacturers, Nevertheless, if this is not the case, the profit
margin may be treated as a decision variable of the buyer. We
conjecture that this will not change the main conclusions of our
analysis.

We use the following notations.
A= the seller’'s fixed set-up cost of handling each order from the
buyer;
Ay = the buyer's fixed ordering cost per order;
H_ = the seller’s inventory carrying cost, expressed as the cost of
carrying one unit of the product for one year;
B = the buyer’'s inventory carrying cost, expressed as the cost of
carrying one unit of the product for one year, Hy > Hs;
P = the seller's unit selling price;
C = the seller’'s unit acquisition cost, C < P;
Q = che buyer's ordering size;
a = the buyer’'s constant profit margin on each unit he sells, that is,
he sets his unit retailing price as (l+a)P.
D = the buyer’s annual demand. Since it is a linear function of his
unit retailing price, it can be expressed as D = -a‘'(l+a)P + b,
or, simply D = -aP + b where a = a’(l+x) and C < P < b/a.
The supplier-buyer relationship under discussion is depicted
in Figure 3.1,
The buyer’s total profit or payoff function, denoted by =, ,

can be expressed as
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Canrylng Cost: Hg UnitYear Carrying Cost: Hy, UntYear Demand:

Sctup Cost A . Ordering Cost: Ay D =-aP+h
Praduca X SB“II’W Price: P [Unit Selling Price:
or Buy Selier Ordering Size: Q Buyer “*C]E'Nﬂh Consumer
=1 [Suppllen * | [Retailer) [-————— {Custamer)

Figure 3.1. Supplier-Buyer Relationship

N, - {Sales revenue) - (Purchase cost) - (Ordering cost) -
{(Carrying cost), or
wb(Q, P) = (14+a)P(-aP + b) - P(-aP + b) - Ab(-aP + b)/Q - QHb/Z
= a(-aP + b)P - Ab(-aP + b)/Q - QHb/2‘ (1)
The seller’s annual profit or payoff function, denoted by =x_,
can be expressed as
o= (Sales revenue) - (Acquisition cost) - (Set-up Cost) +
(Saving in Inventory Holding Cost due to the Buyer's Ordering).
Or
nS(Q, Py = (-aP+b){(P-C) - A (-aP+b)/Q + QHS/Z. (2)
Note that, in obtaining the seller's annual profit, we assume
that the buyer’s ordering size will not alter the seller's ordering or
producing policy. Therefore, the seller's saving in inventory holding
cost due to the buyer’s ordering is QHS/Z. This will occur 1f the

seller’s customers are many and small and decide their ordering
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quantities independently and the supplier, on the other hand,
determines his ordering or production policy on the basis of an
overall estimation of customer demand pattern. In situations where
the supplier decides his ordering or production policy on an
individual buyer basis, the analysis should be extended to include the
determination of the supplier’s ordering or production policy (Goyal,
1976: Lee and Rosenblatt, 1986; Rosenblatt and Lee, 1985).

In the supplier-buyer relationship under discussion, the
supplier sells the product at a unit price P to the buyer who orders Q
units each time. Their annual profits are determined by ﬂs(Q, P) and
nb(Q. P), respectively. Clearly each one’s profit (payoff) depends on
not only his own decision but also the other’s decision. Thus their

decisions should be analyzed in a game theoretical framework.

3.3. Initial Price and Order Quantity

We first consider the seller’'s price and the buyer's order
quantity in the absence of discount. In the case under discussion,
the supplier and the buyer consist of a market. Therefore, the market
equilibrium, if any, will determine the unit selling price and the
order quantity when no discount is considered., As each player may
wish to use the strategy which gives him the maximum payoff regardless
of what the other will do, the Nash Equilibrium seems to be

appropriate.
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Proposition 1. The game admits a Nash equilibrium which is given by
Q= (2//3)J1 (-aC+b)A, /H 1COS(B+x/6), (3
Py= (aGtb)/(2a)+A/(2Qy) , (%)
where § = (1/3)ATAN(3/3aA_//[4(-aC+b) s, /H, - 27a%a2].

Proof. We can observe

8m,(Q, B)/3Q - A (-aP+b)/Q%- H, /2, (5)
axs(Q, P}/8P = -2aP+aC+b+aAS/Q, ()
8%m,(Q, P)/3Q7 = -2a (-aP+b)/Q> < 0, 7)
a*x_(q, P)/oF? - -2a < 0. (8)

Hence wb(Q, P) and wS(Q. P) are concave in Q and P, respectively. The
game admits at least one Nash equilibrium which is determined by
a«b(q, P)/dQ = 0 and ans(q, P)/3P = 0 (Nikaido and Isora, 1955).
Solving the system of equations (see the appendix), we can get (3) and
(4). Q.E.D.
Consider the situation where the seller, if in a positien of
selling the product to ultimate consumers, faces a demand of -aP + b.
To maximize his profit (-aP+b)(P-C), his optimal unit selling price is
(aC+b)/(2a). When he is a supplier of a retaller, his optimal unit
selling price consists of (aC+b)/(2a) and half of AS/Q, which is his
average annual unit ordering cost when the buyer orders Q units each
time. The seller passes on half of this cost to the buyer. On the
other hand, if the seller offers the buyer the unit selling price
(aC+b)/(2a), the buyer’'s annual demand is {-aC+b)/2 and hence his

optimal ordering size is J[Ab(-aC+b)/Hb]. When the seller passes on
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half of his ordering cost to him he orders less each time by a factor
of 1-(2//3)C0OS(B+x/6).

When aAs is small compared to -aC+b, A is small and we can
approximate QO by

Qg = (2//3)/[(-aC+d)Ay /1, 1COS(x/6) = J[(-aC+b)Ay /H, ] . (9)

Note that the necessary condition for 8 to be real is
h(-aC+b)3Ab/Hb - 27A§a2 = 0. As -aC+b is the demand when the seller's
unit selling price is C and is usually very large, we maintain this
condition for our analysis.

Therefore, when no discount is considered, the seller will set
his unit selling price at P0 and the buyer will order Q0 units each
time. We use P0 and Q0 given by (3) and (4) as the seller‘’s initial
unit selling price and the buyer's initial ordering size. However,
the reader might note, this is not necessary for the analysis and our
model is applicable for any given initial unit selling price P, and

0
ordering size QO' If discount is considered, P < Po and Q = QO'

3.4. Price Discount

We have all seen ads like "20% off!", "save up to 50%", etc.
In these cases the seller simply offers his customers a lower unit
selling price by a price discount. To our knowledge, though there are
many studies on this common phenomenon, there have not been many

decision rules for the seller to follow in such situations.
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A price discount is a discount schedule where the seller
offers a certain amount of discount or simply a lower unit selling
price to his customers, no matter how many units a customer will order
from hiﬁ. Unlike qdantity discount schedules, in which price is
explicitly related to quantities, a price discount schedule does not
necessarily associate with quantities. 1In today's industries, as we
observe, suppliers often simply give price discounts, especially in
cases where the seller’'s customers are many and small or the seller
does not know, as it usually happens in practice, his potential
customers at the time he makes his discounting decision.

In a selling and ordering situation, when the buyer’s ordering
size is given, the seller will not offer any discount as it will
simply decrease his profit. Then the buyer does not have any
potential to act as the leader and the seller always has the leading
position in the process when they work independently. Although we do
observe that many buyers may propose a larger ordering size to
suppliers in exchange of a discount, this is more likely to be a
situation of quantity discounting because of the direct association of
Price and quantity in the relation. We will discuss it in the next
section. In this section, we analyze the seller’s price discount
decision.

When the seller gives a price discount to the buyer, the buyer
will react by ordering the quantity which maximizes his annual profitc
under the discounted price. The determination of the seller’s price

discount should then take the buyer’s reaction into consideration. We
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analyze the seller’s price discount in terms of Stackelberg
equilibrium, (Basar and Olsder, 1984),

Let x be the seller’'s price discount in absolute dollar value.
Then the seller’s unit selling price is P = Py - x, 0sx< PO-C since
C<Ps PO. Substituting P = PO - x into (1) and (2), we obtain the
seller’'s and the buyer's payoff functions as
0, (Q, x) = a(Do+ax)(P0-x) - Ay (Dytax)/Q - QH, /2, (10)
ws(Q, x) = (Dy+ax)(Py-C-x) - A_(Dy+ax}/Q + QH_/2, (11)
where D0 - -aP0+b. Since nb(Q, x) is concave in Q as shown by (7),
the buyer’s reaction to x is uniquely determined by awb/aQ = 0 which,
after some simple modification, turns ocut to be his EOQ formula, or
Q = J[2(Dyrax)A, /H, ]. (12)
Substituting (12) into (11), we obtain the seller's payoff
function as
7o (Q, x) = (Dytax)(Py-C-x) - A_(Dy+ax)//[(2(Dy+ax)A, /H, ]
+ (Hy/2)/((2(Dy+ax)a /H, ] . (13)
Differentiating LI with respect to x, we get
dns/dx - - 2ax -D0 + a(PO-C)
- (/D AJ(B/(28)) - H /(A /(2H,))1//(Dyrax),  (14)
-2 + (a’/8) (A /(R /2 ) - _Ja /2, )1/ (Dyrax)>
s -2a + (az/h)AsJ(Hb/ZAb)/J(D0+ax)3
< -2a + (az/h)ASJ(Hb/ZAb)/J(-aC+b)3 since x < Py-C. (15)

dzxs/dx2

Proposition 2. The seller and the buyer have unique Stackelberg

strategies which are given by

Q" - (2/43)J[(-aC+b)A, /R, 1COS (v+n/6) if Ag-(H /H)A >0, (l6a)
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- (2/J3)J[(-aC+b)Ab/Hb]COS(1-1r/6) if A_-(H_/H A <0, (16b)
* *
X = Py - (aG+b)/(2a) - (1/4)(A_-H_A /H )/Q
*
- A,/(2Q)-(1/4) (A_-H_A /1 )/Q", (17)
where vy = (1/3)ATAN{3J3/J[16(-aC+b)3Ab/(Hba2(As-HsAb/Hb)z) - 27)1).
Proof. Using the condition that 4(-aC+b)3A.b/Hb - 27A§a2 2 0 in the
third expression of (15), we obtain dzrrs/dx2 < -2a + a/f216 < 0.
Hence 7. is concave in x. The seller has a unique Stackelberg
strategy which is determined by dxs/dx = 0. On the other hand, the
buyer’s response curve is uniquely determined by (12). Solving dx /dx
= 0 and axb/aQ = 0, we can get (16) and (17). Q.E.D.
We need the condition that As-(HS/Hb)Ab » 0 for (16) and (17)
to be real. This condition is violated when the inventory related
costs are identical for the seller and the buyer, i.e., Hs - Hb and A
- Ab. For this special case, we can obtain from (l4) that x =
As/(ZQO) or P = (aC+b)/(2a). The seller should not pass on any
inventory related cost to the buyer. More generally, as the seller’s
inventory holding cost is usually sufficiently smaller than that of
the buyer, we have AS-(HS/Hb)Ab >0 .
From (17), we get
* * * * *
x 2 [(1/2)A/Q -(1/4)A/Q7] + (1/6)(H /KA /Q since Qp s Q
*
= (1/8)[A+ (H /M)A 1/Q”. (18)
The seller should offer a price discount at least equivalent
*
to one-fourth of [As+(Hs/Hb)Ab]/Q .
Two important observations can be made from the results of

Proposition 2. First, the seller’s price discount increases as his
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inventory related cost increases. This can be seen by simply looking
at (17). When As and Hs increase, x* increases. The seller is
willing to offer more discount to the buyer in exchange for a larger
" ordering size. This finding is consistent with that of many authors
(Lee and Rosenblatt, 1986; Monahan, 1984). They suggested that the
primary incentive for the seller to provide discount is to induce the
buyer to order more each time and hence to reduce his inventory
related cost.

This is not the only reason for the seller to do so, however,
We can also observe from (16) and (17) that the seller’s price
discount also increases as a, which can be considered to be the
sensitivity of demand to price changes, increases. This is less
obvious than the first observation. But if we consider 4 above, we
can see that, when a increases, ¥ increases, Q* decreases and hence x*
increases. Therefore, when the buyer’s demand is more sensitive to
price changes, the seller is willing to provide a larger price
discount to attract more demand from the buyer. Especially, if the
buyer’s demand is totally insensitive to price changes, say, it is
constant at DO' the buyer’s and the seller's profit functions are
Q. %) = aDy(Po-x) - A,D0/Q - QH, /2, (19)
xs(Q, X) - DO(PO-x) - ASDO/Q + QHS/Z. (20)
The buyer’s optimal ordering size is given by a«b/aQ =0 or

his EOQ formula

Q = J(2ADy/H,), (21)
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which is independent of x. The buyer will not change his ordering

size even if the seller offers a discount and the seller will incur a
loss if he does so. We have shown in Chapter Two that, even the buyer
increases his ordering size in this case, he will always under-react
to the seller’s discount by ordering less than the seller expects and
makes the seller lose.

Therefore the objective or rationale for suppliiers to provide
Price discounts to their customers is twofold: to attract more demand
from their customers and to reduce their inventory related cost by
inducing the buyer to reduce his frequency of ordering. The former is
more important because the seller should not provide price discount at
all when it can not attract more demand. Unfortunately this intention
has often been overlooked as many writers over-emphasized the
inventory cost saving intention. Our analysis shows that price
discount is more a mechanism of promotion or competitive strategy to
increase demand rather than a tool to improve channel efficiency and

thus should be studied including the demand relationship.

3.5. Quantity Discount

In this section we study quantity discount. It has been shown
in Chapter Two in the case of constant demand that quantity discount
schedules can be of benefit to both the seller and the buyer. 1In the

following we provide an analysis of quantity discount considering that
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discount can attract more demand from the buyer. Instead of using a
continuous approximation of a quantity discount schedule (Lal and
Staelin, 1984, Lee and Rosenblatt, 1986), we study quantity discount
in a more general framework. We focus on all-unit quantity discount
schedule as all other quantity discount schedules can be viewed as
special cases of it (Jucker and Rosenblatt, 1985). In addition, some
light will be shed on the buyer'’'s optimal decision when he tries to
take the initiative in quantity discounting.

When the seller‘’s initial unit selling price is P0 and the
buyer orders Qg units each time under PO' a quantity discount schedule
can be defined as follows: the seller gives no discount for any order
QO Q< Ql’ a discount Xy for any order Q1 Q< Q2, and so on to a

discount X for Qn < Q, where X, is in absolute dellar value, 0 < %, <

1
< X and Q0 < Ql < ... < Qn' In practice, a discounted price or
a percentage discount might be used for each step. But they are

simply different expressions of discount.

3.5.1. The Seller Acts as the Leader

As we observe in reality, quantity discount schedules are
usually given by suppliers. Customers react in their best way to
suppliers’ quantity discount schedules. In the designing of a
quantity discount schedule, the seller should choose the best
discounts X, as well as the break points Qi' i=1,2, ..., n.

Note that, Lf the buyer stays at Qg the seller gains nothing.

Then the seller has to offer an incentive or a discount sufficiently
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large to induce the buyer to move away from QO. Let w be the least
amount of gain that will make the buyer change his ordering policy,
where w = 0. The necessary condition for the buyer to order Q > Q0
units each time when a discount x is given is

nb(Q. x) z «b(QO. 0) + w, (23)

Counsider the buyer’s reaction to a quantity discount scheaule
given by the seller. He will choose the ordering quantity which
maximizes his payoff function. Let QI - J[2(axi+Do)Ab/Hb] or the
buyer’s EOQ when a discount Xy is given. For Q sQ< Qi+l with a
discount X4 his best ordering quantity is Qi if Qi 5 Qi < Qi+1' Qi if
Qi> Qi’ and he will not consider it at all if Qi+1 < Qi We then ueed
only to consider the first two types of steps for the seller.

When a single customer is considered, only one ordering
quantity will be selected. Therefore, the seller’s optimal quantity
discount schedule can be analyzed by using a quantity discount
schedule with only one break such that no discount for Q0 =Q< Q1 and
a discount x for Q = Ql' where x > 0,

As the buyer’s response depends on how the seller assigns the
value of Q1 and x, we consider two policies for the seller in the
following,

Policy I. Assign Q, and x such that Q = J[2(ax+Do)Ab/Hb].

The buyer will order according to his EOQ or (12). By

substituting (12) into (23), we obtain

a(2aP,-b-ax)x - J[2(ax+D0)Abl-Lb] + J(znoa.bub) - w2 0. (24)
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Solving (24) as an equation for x, we can get a positive x,
denoted by Xy which is independent of Ql' The necessary condition
for the seller to induce the buyer to order at least Q; units each
time becomes x = Xq

In this case, the seller’'s payoff function is determined by
(13). The seller is to find the optimal x and Q1 which maximize (13)
subject to x = x4 and Q1 = J[2(ax+D0)Ab/Hb]. Note that the second
constraint can be written as x = Xy = HbQ%/(ZaAb)-DO/a.

We have shown in Section 3.4 that T is concave in x and
axs/ax -0 if x = x* where x* is given by (17). Then T is increasing
when x < x and decr2asing when x > x*.

1£ q < q, x, Hb(Q’{)z/(zmb)-Do/a - x* since Q" and x"
satisfy (12). Hence the optimal x is x* or X, whichever is larger.
The value of Q1 will not affect the seller’s profit in this case. We
can arbitrarily assign any value between Q0 and Q* to Ql'

If Ql > Q*, on the other hand, Xy > x*. To maximize e
subject to x = Xy and x = Xy: the optimal x is X, or X, whichever is
larger. The seller‘s gain, L will be less than (Lf Xg < xl) or at
most equal to (1If Xg = xl) that of assigning Ql = Q*. We can
eliminate Ql > Q*.

Then the seller’s optimal x is x* or X, whichever is larger.
In particular, if (24) is satisfied with x*. x* 1s optimal. Ql can be
any value between Q0 and Q* and the buyer’s optimal order quantity is
given by (12) with the optimal x.

Policy II. Assign Q, and x such that Q; > J[2(ax+D0)Ab/Hb].
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The buyer will order Q1 units each time and the necessary

condition (23) becomes
a(2aP,-b-ax)x - Ab(ax+D0)/Q1- QH /2 + J(ZDOAbe) -wz=0. (25
The seller's payoff function is
- (Do+ax)(P0-C-x) - AS(D0+ax)/Ql + H.Q,/2. (26)
The seller’'s decision problem is to maximize 7, subject to
(25) and x < X;- Note that (25) gives a relationship between x and
Ql’ which can not be conveniently simplified to express x as a
function of Q1 In some simple form. Therafore, solving the problem
analytically would be cumbersome in this case. However, consider the

following non-linear programming model

gAX (Dg+ax) (Py-C-x) - A (Dy+ax)/Q; + H_Q,/2 (27)
1

S.T. a(2aPy-b-ax)x - Ay (ax+D() /Qy - QH /2 + chnoabnb) -wz0,

x < QJH,/(2a8) - Dy/a - 8,

Q1 > Q0 + &, x> 8,
where § is a very small positive number to ensure that 0 < x < Xy and
Q1 > QO' The model gives the optimal x and Q, which maximize L under
the condition that the buyer gets at least w and he will order Q1
units each time. Using a non-linear programming package such as GINO
(Liebman, et al, 1986), it can be easily solved.

For the non-linear programming model (27), by differentiating

the objective funetion or LI with respect to Ql' we get

ar_/3Q; = AS(D0+ax)/Q§ +H_/2 > 0. (28)
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Then x_ 1s increasing with Q1 and the first constraint must be
tight because the optimal Q1 would be infinity otherwise. 1In this
case, the second constraint is automatically satisfied for any limited
x but the buyer incurs a loss of infinity. Therefore, if Policy II is
used by the seller, the seller gains full control of the situation in
the sense that he maximizes his profit by letting the buyer gain w,
the least amount that will make him interested in ordering more than
Q0 units each time. As w is determined by the seller, the seller
might make the buyer gain very little by letting w be very small.

We can also observe from the above analysis that the seller
should not use price discounc whenever a quantity discount schedule is
possible. Because of the well-known insensitivity of the EOQ formula
to parameter changes, the buyer’'s response to a price discount is low.
Then the seller’s gain from price discount is usually very small. If
a quantity discount is possible, by letting w be the buyer’s gain from
price discount, the seller can develop a quantity discount schedule to
gain at least what he can gain from price discount.

Let us consider the following numerical example.

Example One. D = -200F + 2000, Ay = $100, Al = $80, H - $3, H, = $2,
C~$%4, a=0,5, and 4 < P < 10.

By using the decision procedures obtained above, we get the

following results.
(a) No discount is used.
Py = §7.2073, Qo = 193, m - $1433.89, LI $1752.81.

(b) Price discount s used,
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* *

x = §0.1906, @ = 200, m - $1494 .96, - $1761.28.
(e) Quantity discount 1s used.

We consider three different w's: $0.00, $14.34 or 1% of xb(Qo,
Po), and $143.39 or 10% of "b(QO’ PO)‘
Policy I. At X = $0.1906, the buyer will order 200 units each time
with a gain of $61.07. Then (24) is satisfied at x = 0.1906 when w <

61.07, For w > 61.07, we have to solve {24) as an equation of x to

obtain Xy The results are summarized in Table 3.1.

Iable 3.1, Optimal Solutions by Using Poliecy I

w X Q Q m Profit T Profit
1 b -]
Increase Increase

$0.00 $0.1906 199 200  $1494.96 $61.07 $1761.28 $8.47
14.34 0.1906 199 200 1494.96 61.07 1761,28 8.47
143.39 0.4893 199 209 1577.28 143,39 1742.25 -10.56

Ql is assigned to be 199 above although it could be any value
between 193 and 200.
Policy II. Solving the non-linear programming model with § = 0,001
for each w given above, we obtain the optimal discount decisicns as

shown in table 3.2,
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tima olutions b 5 olic
W x Ql Q ™ Profit L Profit
Increase Increase

$0.00 $0.7727 473 473 $1433.89 $0.00 $2088.51 $335.70
14.34 0.7796 462 462 1448.23 14.34 2073.09 320.28
143.39 0.8912 365 365 1577.28 143,39 1910.20 157.39

For each w, Policy II gives the seller a higher profit and
then it gives the seller’s optimal quantity discount schedule. For
instance, if w ~ $143.49, the seller’s optimal quantity discount
schedule is that no discount for 193 < Q < 364 and a discount of
$0.8912 for Q = 365.

The profit increase from quantity discount for the seller,
compared with his profit when no discount is considered, is very
significant in the example. The best the seller can get is a $335.70
or a 19% profit increase when the buyer gets nothing. He can get a
$157.39 or a near 9% profit increase even if he allows a 10% profit
increase for the buyer!

The seller’s gain from quantity discount is much more than
that from price discount. He can gain only $8.47 from price discount
while the buyer gains $61.07. If he allows the buyer to gain the same
amount, but he offers a quantity discount schedule instead of a price
discount to the buyer, his optimal quantity discount schedule can be
found to be that no discount for 193 < Q < 427 and a disecount of

$0.8080 for Q = 428. The buyer has to order 428 units in order to
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benefit from quantity discount. The buyer gains $61.07 and the sellar
gains $270.40!

In the above analysis, we use a quantity discount schedule
with only one break. There is no doubt that the seller can offer a
quantity discount schedule with more than one break to the buyer,
However, it is usually to the seller's benefit to limit the number of
breaks in a quantity discount schedule. As shown by the example
above, Policy II will usually give Ql > Q* and a discount higher than
that from Policy I. Then the seller can offer a quantity discount
schedule with two breaks using the two policies. But, in this case,
the buyer’s response may not be what the seller wants. For instance,
if w = §14.34 in the above example, the seller can offer the buyer a
quantity discount schedule such that no disceunt for 193 s Q s 199, a
discount of $0.1906 for 200 < Q s 461, and a discount of $0.7796 for
462 = Q. The buyer’'s response to this schedule would be to order 200
units each time. The buyer gains $61.07 and the seller gains $8.47,
If the seller provides a quantity discount schedule with only the
second break, the buyer will order 462 units each time, gaining

§14.34. The seller gains $320.281

3.5.2, The Buyer Acts as the Leader

Although the seller often leads in quantity discounting, the
buyer may also act as the leader by proposing a larger ordering
quantity to the seller in exchange of a discount. This is especially

true when the buyer is a major customer of the seller,
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In this case, the seller’'s reaction to any Q is uniquely
determined by aws/aQ =0 or P = (aC+b)/(2a)+As/(2Q), the buyer’s
profit function is

™ = (a/4)(-aC+b-an_/Q) (C+A /Qib/a) - Ay (-aC+b-aa_/Q)/(2Q)
- QH /2. (29)

Differentiating L% with respect to Q, we have

dr, /dQ = aA_(aA_- 2Ab)/(2Q3)+[aaCAS+(-aC+b)Ab}/(2Q2)-Hb/2, (30)
d’m, /dQ” = -3a8_(ah_-28)/(20%) - [aaCA_+(-ac+b)a )/Q°. (31)

let q = 3aAs( Ab-aAS/Z)/[aaCAS+(-aC+b)Ab] if 2Ab-aAS 2z 0 and q
-0 if 2Ab-aAS < 0. Then L is concave if Q > q and convex if 0 £ Q <
q. By solving dwb/dQ - 0, we get

Q- (2/J3)J[(aaCAs-b-A.bD)/Hb]COS(GH/G) if 24 -aa_ 2 0, (32a)

- (2/]3)][(aaCAS+AbD)/Hb]COS(E-«/G) if 2Ab-aAs <0, (32b)

where § = (1/3)ATAN{3J3/J[4(0aC+AbD/AS)3/(a2(2A.b/As-a)2HbAs)-27]} and

D = -aC+b. This is then the optimal quantity the buyer may propose to

the seller unless it is less than q, in which case the buyer’s optimal
decision is q.

Look at the seller’s reaction curve P = (aC+b)/(2a)+As/(2Q) in
this case. When Qq is fairly large, an increase in Q from Q will not
result in a significant decrease in price. Then the buyer's gain will
not be dramatic. Using the data in the above example, we obtain Q =
222 and P = $7.1805. The buyer gains only $3.71 while the seller
gains $59.47.

The buyer’s potential to get quantity discount from the seller

also depends on his inventory related costs and the sensitivity of
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demand to price changes. This can be seen by looking at Q given by

(32) which increases as a and Ab increase and/or Hb decreases. As
shown previoucly, the buyer will not move away from his EOQ when the
"demand is constant. Therefore the buyer and the seller have similar
interests in leading in discounting in the sense that they might gain
much only if their inventory related costs are large and the demand is

sensitive to price changes,

3.6. The Joint Solution

We have outlined the discounting decisions for the seller and
the buyer when they work independently. However, the seller and the
buyer might also be interested in finding out what they can possibly
obtain if they work together.

By letting m be the joint profit of the seller and the buyer,
® o= mt oo oor

r = (l+a)(-aP+b)P - (-aP+b)C - (A +A_) (-aP+b) /Q - Q(Hb-HS)/Z.(33)

we obtain

87/0Q = (A+A)(-aP+b)/Q7 - (H, -H )/2, (34)
gn/3P = (l+a)(-2aP+b) + aC + a(Ab+AS)/Q, (35)
8%x/3Q° = - 2(A+A) (-aP+6)/Q> < 0, (36)
8%x/3P% = -2a(l+a) < 0. (37)

Then Q; and Py which maximize x can be obtained by solving
dx/3Q = 0 and 39n/8P = 0, or,
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Qp = (2/3)/1(A+A ) (-aC/(L+a)+b) /(H, -H_) |COS(¥+n/6), (38)
P, = b/(2a) + C/[2(1+a)] + (A +A_)/[2(1+a)Q,], (39)
where ¥ = (1/3)ATAN{3J3/J[Q[-ac+(1+a)b]3/((1+a)32(Ab+As)(Hb-HS))-
27)11.
Their joint gain JG, compared with that at (Qo, Po), is
JG = m(Qy, Py) - m(Qy, Py). (40)

By comparing the optimal Q for each case discussed previously
with Q;, we can see that using discount schemes can rarely attain the
same level of ordering quantity as the joint solution. Then the
seller and the buyer can hardly obtain the maximum profit they can get
when working together.

However, quantity discount can be very efficient. Using the
data given in the numerical example above, we get PJ - $6.45, QJ -
513, JG = $336.93. If quantity discount is used, their joint gain is
$335.70, $334.62, and $300.78 for w = $0.0, $14.34, and $143.39,
respectively. They represent 99.6%, 99.3%, and 89.3%, respectively,
of $336.93 or the maximum profit increase they can possibly obtain
together! In such cases, if the seller and the buyer decide to
cooperate, they can simply use a quantity discount schedule. The
distribution of their joint gain can be determined by negotiating a
suitable w. Quantity discount can be used not only for the seller to

increase profit but also as a way of cooperation for the seller and

the buyer.
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3.7. Conclusions and Possible Extensions

In this chapter, we have discussed the discounting decisions
for both the seller and the buyer when they work independently and
discount will increase the demand. As a result, both of them can
improve their profitability by using proper discounting policies.
Decision rules are derived for both the seller and the buyer in
various situations. The other main conclusions include:

First, the objective for suppliers to provide price discounts
to their customers is always twofold: reducing their inventory-related
costs on one hand and increasing the market demand on the other.
Particularly, as shown in the study, attracting more demand is crucial
as none of them can benefit from price discount when the demand is
constant, even though there is much room to improve over their
inventory related costs. Price discount is then more likely to be a
competitive marketing strategy for the seller rather than a way of
cooperation for the seller and the buyer.

Secondly, the seller should use quantity discount whenever it
is possible. Although, the buyer might prefer a simple price discount
in some situations, quantity discount will always bring a higher
profit to the seller.

Thirdly, quantity discount schedules can be very efficient in
obtaining the maximum prefit increase that the seller and the buyer

can possibly obtain together. Therefore, they can be used not only
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for the seller to increase his own profit but also for both the seller
and the buyer to improve their profitability.

In the present study, we set out to analyze the optimal
discounting decisions of the seller and the buyer by including the
demand relationship. 1In our view, our analysis reveals some very
important properties of discounting decisions of the seller and the
buyer. However, we also realize, the analysis has some limitations.
First of all, it is done in a much simplified setting by considering a
supplier with a single customer. For the discussion of quantity
discount including many customers might give more representative
results. Secondly, we assume that the buyer uses a constant profit
margin pricing policy, which may not always be the reality.
Considering a profit maximizing customer regarding his retailing price
would be more appropriate but at the same time will tremendously
increase the difficulty of analysis. These limitations represent some

of the possible extensions to our study.

Appendix

Selutton for dm (Q. P)/3Q = O and ar_(Q, P)/3P = 0,
By setting om (Q, P)/3Q = O and dx_(Q, P)/3P = O, we have
Ab(-aP+b)/Q2~ H /2 = 0, (A1)
-2aP + aC + b + aA_/Q = 0. (A2)
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(Al) and (A2) give the reaction curves of the buyer and the
seller, respectively, as shown in Figure 3.2. It can be seen that the

two reaction curves intersect at two points when Q > 0 and P > 0.

P
1
The Buyer's Reaction Curve
P i
+ The Seller's Reaction Curve
Py
bl2a N
1 » 0
Q, Q,

Figure 3.2. The Reaction Curve

Solving (A2) for P, we get
P = (aC+b)/(2a) + A_/(2Q). (A3)

Substituting (A3) into (Al), after some modification, we

obtain an equation of Q as
3
Q° - [(-aC+b)Ab/Hb]Q +aA A /H -0, (A4)
The necessary condition for (A4) to have three real unequal

roots is a(-ac+b)3Ab/Hb - 278%a% 2 0. Since -aG+b, which is the

demand when the seller’s unit selling price is C, is usually very

large compared to the inventory related cost, we assume this condition
in our analysis.

Solving (A4) for Q, we obtain

Q - (2/J3)J[(-aC+b)A-b/Hb]COS(B+«/6) ' (A3)
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Q, = (2//3)/[(-aC+b)A, /H, 1COS(B-%/2), (46)
Q - (2//3)J((-aC+b)A,/H, 1COS(B+5%/6), (A7)
vhere g = (1/3)ATAN (3J3aAS/J[4(-ac+b)3A.D/Hb . 27A§a2]. Note that O =<
8 = n/6. Then Qy < 0 and Q2 < Ql'

Q can be eliminated as the buyer'’s ordering size cannot be
negative.

Q, can not be optimal. This can be seen by looking at the
case where AS = 0., In this case, P = (aC+b)/(2a) from (A3) and then
the buyer’s demand is (-aC+b)/2 and his optimal ordering quantity is
J[(-aC+b)Ab/Hb]. However, using Q,, we get that the buyer's ordering
quantity is zero since g = 0.

Ql gives the optimal decision in any case. By substituting Ql
into (A3), we get the optimal price Pl’ (Ql' Pl) is taken as the
solution, denoted by (QO' PO), namely

Qo = (2/43)/[(-aC+b)A, /H, 1COS(B+x/6), (48)
Py (aC+b)/(2a)+As/(2Q0), (A9)
where f = (L/3)ATAN (3/3aA_//[4(-aC+b) A, /H, - 27A2a’]. This point is
indicated by (Ql, Pl) in Figure 3.2.
The other solutions as (16), (32) and (38) are obtained

similarly. We will not repeat the solution procedures.



Chapter Four

A Three-Person Game Theory Model of

The Problem of Substitutable Products with Stochastic Demands

In this chapter, we build a game theory model for the single-
periocd inventory problgm where each of three (or more) retailers in a
common market tries to determine his optimal order quantity. Their
products are substitutable and have random demands. Therefore,
multiple-direction demand transfers occur when one or more retallers
are sold out. It is shown that there is at least one Nash equilibrium
for the problem if the players act independently and rationally. If
one or more players act irrationally to damage the others, the
decision problem for the latter reduces to that without the irrational
Player(s). We also study the cooperation of the players. Cooperative
players will switch excess inventory to those who have excess demand
and determine their order quantities collectively depending on whether
side payments are allowed. We show that, if side payments are not

allowed, secure (Nash) strategies always exist for each player in any

110
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case of cooperation. We also give conditions for cooperation in both
cases where side payments are and are not allowed and demonstrate that
all players’' cooperation is often worthwhile and feasible, especially

when side payments are allowed.

4.1. Introduction

In many situations, different products sold by different
retailers may be substitutable. Decision making issues related to
substitutability was first studied by McGillivray and Silver (1978)
for inventory control in the EOQ context. Since then several other
papers considering substitutability in inventory control have been
published (Parlar and Goyal, 1984; Parlar, 19853).

More recently Parlar introduced the game theoretical approach
to study this problem in the newsboy problem context (Parlar, 1988).
He observed that substitution often takes place between different
products sold by different retailers when the products have stochastic
demands. In such situations, each retaller’s profit function is
determined not only by his own order decision but also by his
competitors’ order decisions. Thus, the game theoretical approach
should be used to analyze each retailer’'s order decision. He analyzed
the problem when two retallers are present by formulating it as a two-
person nonzero sum game. It is shown in his study that there exists a

unique Nash equilibrium for the problem and, if one of the two players
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acts irrationally to damage the other, the optimal (defensive)
strategy for the latter reduces to the optimal order size in the
classical single-period newsboy problem. His model extends the
classical newsboy problem into situations with two retailers.

In this research, we study the substitutable product inventory
problem when three or more players are present. The presence of
additional players brings about multiple-direction two-way demand
transfers and coalitions between any two or among all of the three
players, which can not be dealt with by either one- or two-deecision
maker models. For simplicity of presentation, we present a three-
person game theory model in this chapter and analyze the problem using
both non-cooperative and cooperative solution concepts, The reader
might note in the following analysis that the major results of this
study can be generalized to situations with more than three players,

The chapter is organized as follows. In Section 4.2, we
develop our model. Then we analyze the model in the subsequent two
sections for non-cooperative and cooperative solutions, respectively,
Finally, in Section 4.5, we summarize our findings and discuss

possible extensions to our study.

4.2. The Model

We study the situation where each of three retailers tries to

choose his best order quantity when substitution exists among their
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products. Each retailer faces an independent stochastic demand, 1If
one is short of supply its excess demand will be fulfilled partly or
fully by those who have excess supply. The actual substitution
between any two products takes place according to a substitution rate
which depends on the products and other factors such as retailers!’
geographical locations. We consider only a single period with no
inventory at the beginning and n. inventory carrying cost., The
Inventory control problem in multiple periods represents a direction
of future research for this problem.

We use the following notations (i, j = 1, 2, 3).
'Pi := Player i (or Retailer 1).
u, v, w i~ Order quantity chosen by P1l, P2, P3, respectively;

X, Y, Z := Random demand for Pl's, P2's, P3's product with p.d.f.

X y
£(x). g(y), h(z) and e.d.£. F(x) = [ £(t)dt, G(y) = [ g(r)de,
0 0

z
H(z) = [ h(t)dt, respectively;
0

sy = Sales price/unit for Pi's product;
e i= Purchase cost/unit for Pi’s product, ¢y < sy
Py - Lost sales penalty/unit for Pi’'s product;

q; = Salvage value/unit for Pi’'s product, 9y < sy

aiJ := The fraction of Pi’'s demand which will switch to Pj’‘s product
3
when Pi is sold out, 0 s a,, sl and T a,, <1 (1~ j);
1 jo1 1

I, :- Random profit for Pi{ with J

i - E(Hi).

i
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If no substitution exists, each decision maker’s problem is
the classical single-period newsboy problem. If substitution exists,
however, each decision maker’s problem is much more complicated as
substitution may take place across different products. His profit
function will depend on not only his own order quantity but also the
others’ order quantities. Thus their optimal order decisions should
be analyzed in the context of game theory. In the sequel, we will use
the term "player" interchangeably with "decision maker".

Let us consider Player 1 first., For any given order sizes u,
v and w, there are five possible exclusive cases for demand transfers
between Pl’s product and the others’ pProducts to take place, depending
on the realized values of the random variables X, Y and 2. His profit
function in each case is shown in the following.

(1) x 2 u,

ni - squ - pl(x - u) - c,u. (1)

Pl has a shortage. Substitution does not affect his profit

function as he cannot satisfy any of his competitors’ unsatisfied

demand.
(2) X =u, y=sv, z 5w,
2
LS TR + ql(u-x) - cu. (2)
All players have excess supply and hence no substitution takes
place.

3)xsu, y<v, zzwu,

xi - slx+slmin[u-x, a31(z-w)]+q1max[0, (u-x)-aal(z-w)]-clu. (3)
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Pl and P2 have excess supply and P3 has excess demand. The
excess demand of P3 is then substituted by the excess supply of Pl and
P2. The amount of P3's excess demand to be substituted by Pl’s excess
supply is a31(z-w) or u-x, whichever is less, and Pl’'s excess
inventory after substitution is 0 er (u-x)-aBl(z-w), whichever is
greater,

(4) x Su, yzv, z 5w,

:? - slx+slmin[u-x, azl(y-v)]+q1max[0, (u-x)-321(y-v)]-c1u. (&)

Pl and P3 have excess supply and P2 has excess demand.
Similar to (3), Player l's profit is given in (4).

(5) xsu,y2zv, zz2w,

wi - 5% + slmin[u-x, a21(y-v)+a31(z-w)] +
qlmax[O, (u-x)-a21(y-v)-a31(z-w)] - eu. (5)

Pl has excess supply and P2 and P3 have excess demand. The
excess demands of P2 and P3 are then substituted by the excess supply
of P1. The amount of P2's and P3's excess demand to be substituted by
Pl's excess supply is a21(y-v)+a31(z-w) or u-x, whichever is less.

The expected profit of Player 1 is obtained by integrating x?

(k =1, 2, 3, 4, 5) over the respective regions as

uvw
I, - fu[slu-pl(x-u)-clu]fdx + f0f0f0[51x+ql(u-x)-clu]fghdxdydz

uvwo
+ fofof;tslx+slmin[u-x,a3l(z-w)]+q1max{0.(u-x)-a31(z-w)]-clu}fghdxdydz

uww

+ f fvfolslx+slmin[u-x,321(y-v)]+q1max[0,(u-x)-azl(y-v)]-clu]fghdxdydz
14«

+ fof;fwlslx+slmin[u-x,azl(y-v)+a31(z-w)]+q1max[0,(u-x)-321(y-v)
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-a41 (z-w)]-c,u)fghdxdydz, (6)
where £, g and h are the demand densities of Players 1, 2 and 3,
respectively.

If there is no substitution for Player 1's product, 1i.e., a5
= a4 - 0, then from (6), Player 1's expected profit function turns
out to be

© u
JlO - fu[slu-pl(x-u)-clu]fdx+fo[slx+q1(u-x)-clu]fdx

- (51+p1)f:xfdx+(sl+p1)uJ:fdx+q1f:(u-x)fdx-plE(X)-clu. (7
which is the objective function of the classical newsboy problem. The
optimal order quantity for this problem is given in Parlar (1988) and
elsewhere (Hillier and Lieberman, 1990, p. 709). 1In the following, we
assume that aij >0 (<3, i, 31=1, 2, 3).

After some simplifications, J1 becomes
&

u u
I - fu{slu-pl(x~u)]fdx + slfoxfdx + qu(v)H(w)fo(u-x)fdx
u u
+ 5,6(v) [ [L-H(A)](u-x)fdx + s{HOW [ [1-G(B)](u-x)fax
0 0

u A
+ G(v)f f [(sl-ql)a31(z-w)+ql(u-x)]hfdzdx

0w
u B W w
+ H [ [ [(sl-ql)aZI(y-v)+ql(u-x)lgfdydx + slf J | (u-x)fghdxdydz
0w vw(
w x G
+[ [ [s,(u-C)+q, (C-x)]fghdxdydz - c,u, (8)
vwi

where A = w+(u-x)/331, B = v+(u-x)/321 and C = u-aZI(y-v)-aBI(z-w).
Similarly we obtain the expected profit of Player 2 and Player

3 as
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@ v v
Iy = Iv[szv-pzcy-v>1g<y>dy + szIﬁygdy + qu(u)ucw)IA(v-y>gdy

v v
+ 8pF (] [1-HD) [ (v-y)gdy + o] [1-F(EY](v-y)gdy
0

v D
+ F(u)fof [(sy-9,)a3,(z-W) + q,(v-y)Ihgdzdy
W
m ® Vv v E .
+5)f JJ (v-y)efhdydxdz + H(W [ [(sy-qp)a),(x-u)+q,(v-y) ] Egdxdy
uwtbF Ou
o o F
+[Jf [sylv-F)+q,(F-y)]gfhdydxdz - c,v, (9)
uwo

where D = w+(v-y)/a32, E = u+(v-y)/a12 and F = v-alz(x-u)-asz(z-w),

and

© W w
Jy = I [s4w-p4(z-w) ]hdz + s3f zhdz + q3F(u)G(v)f (w-z)hndz
w 0 0
W W
+ 5,6(v)f [1-F(G)](w-2z)hdz + s,F(u)f [1-G(H)](w-2)hdz
0 0

w G
+ G(v)fof [(53-q3)al3(x«u)+q3(w-z)]fhdxdz
u

@

w w H
+ 53f [ | (w-z)hfgdzdxdy + F(u)[ [ [(53-q3)a23(y-v)+q3(w-z)]ghdydz
vul 0v

o
+ [ [ [s9(w-1)+q4(I-2) |hgfdzdydx - c,w, (10)
vull

vhere G = u+(w-z)/a13, H= v+(w-z)/a23 and I = w-a13(x-u)-a23(y-v).

If there are more than three players, each player’s expected
profit function can be obtained similarly. However the expressions
would be much more lengthy and the analysis would then be very
cumbersome. This is the main reason why we analyze a three-person
game instead of an n-person game in this study. Nevertheless, it can
be seen in the following analysis, all results in our study can be

generalized into the case of n (n > 3) players.
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4.3. Non-cooperative Solutions

We first consider the problem when the players make decisions
independently. There is no communication among the players in this
case. It is then important for each of them to use a secure strategy,
if possible, to guarantee himself a certain amount of payoff

regardless of what the others do. Such a strategy was proposed by

Nash (Nash, 1950). Mathematically it is the strategy (u*, v*, w*)
such that
S U S TN R (11)
3,08, VW et v, W, (12)
S O A S I N O (13)

This strategy, called Nash Equilibrium or Nash strategy,
ensures that Player 1 gets at least Ji(u*, v*, w*) if he stays on it
and he can not get more than this amount if he deviates from it
unilaterally.

Lemma 1. If each player’'s payoff function is continuous in all
decision variables and concave in its decision variable, the game has
at least one Nash equilibrium which is determined by letting the first
partial derivative of each player’s payoff function with respect to
its own decision variable be zero.

Proof. Player i's strategy space can be stated as (O, Mi] which is
compact and convex, where Mi is Player i’'s inventory capacity. If

each player's payoff function is continuous in all decision variables
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and concave in its own decision variable, the game is convex. Lemma 1
holds (Nikaido and Isora, 1955), Q.E.D.
We now prove the following theorem.

Theorem 1. The game admits a Nash equilibrium which is given by

a3 /du = 0, (14)
an/av -0, (15)
33,/3w = 0. (16)

Proof. By differentiating Jl with respect to u, after some

simplifications, we obtain

u
3J1/au - (sl+p1)[1-F(u)] + qu(u)G(v)H(w) + slG(v)f {1-H(A) | fu.:
0

u A u u B
+ qlc(v)f J fhdzdx + slﬂ(w)f [1-G(B))fdx + qlu(w)f J gfdydx
0w 0 0v
© @ o w
+s,[ [ [ fghdxdydz + q,f [ [ fghdxdydz - e (17)
vw(C vw 0
u
8%, s0u? - [Py E(+ (s -0 )R £ (s, a6 harEan/ay)

0 @

L5
+(51'q1)H(W)IOS(B)fdx/az]_"'(sl'ql)jufwf(C)ghdde]

< 0 since s, > q;. (18)

Similarly we have

v
an/av - (52+p2)[l-G(v)]+q2G(v)F(u)H(w)+52F(u)I (1-H(D)]gdy
0

v D v v E
+ qucuﬂof hgdzdy+szncw>f0[1-m>lgdy+q2H<w)I [ fgdxdy
w Ou
@ @ @ o F
+s,J IS gthdxdydz+q, [ [ [ gfhdydxdz-c,, (19)
uw F uw 0

v
62J2/3v2 - --[ng(v)-l-(sz-qz)F(u)H(w)g(v)+(52-qz)F(u)foh(D)gdy/a32



120
v © @
+<sz-qz)u<wnfofts>gdy/a12+<s2-q2)f J 8(F)fhdxdz]
vw
< 0 since S > qp. (20)

w
633/6w - (53+p3)[l-H(w)]+q3H(w)G(v)F(u)+s3G(v)f [1-F(G)]hdz
0

w G W w H
+ q36(v)J [ hfdxdz+s,F(u)] [1-G(H)]hdz+q,F(u)[ [ ghdydz
Ou 0 0w

@™ @ W ww ]
+ s3f J hgfdzdxdy+q3f J [ higdzdxdy - c,, (21)
uvlI uv 0

W
62J3/aw2 - -(pah(w)+(53-q3)h(w)F(u)G(v)+(s3-q3)G(v)f0f(G)hdz/al3

W ® @
+<s3-q3)F(u)fogca>hdz/a23+<s3-q3>fufvh<1>fgdxdyl

< 0 since s, > qg. (22)

Then Ji (1=1, 2, 3) is concave in Player i's decision
variable. Note that Ji also is continuous in u, v and w. Therefore,
the game admits at least one Nash equilibrium which js determined by
6J1/au -0, 6J2/8v = 0 and aJs/aw = 0 (Lemma 1) Q.E.D.

In the case of two players, Parlar (1988) proved that there
exists a unique Nash equilibrium for the game., In the case cf three
players, although we conjecture that there would be still a unique
Nash equilibrium, it is very difficult te prove the uniqueness.
Nonetheless it can be seen from the formulation of the game and the
proof of Theorem 1 that the existence theorem of Nash equilibrium can
be easily generalized to the case of n (n > 3) players.

The Nash equilibrium is obtained under the assumption that all
the players are rational, i.e., no one will risk lowering nis own

payoff for the purpose of damaging the others. This is usually true



121
in an actual market., However it would also be interesting to look at
the case where some players act irrationally. In this situation what
an irrational player can do is only to order infinitely many units
(Parlar, 1988). For instance, if Player 3 acts irrationally to damage
Player 1 and Player 2, letting w = =« and hence obtaining A = @« and C =

©, We aave

@ u u
Ji = fu[slu - Py(x-u)jfdx + slfoxfdx + qIG(v)fo(u-x)fdx

1
+ slj' {1-G(B) ] (u-x)fdx
0
uBb
+ IOI [(sy-ay)ay; (y-v)+q, (u-x) | gfdydx - cqu, (23)
v
© . v v
J, - J'vlszv-Pz(y-VHgdy + szfoygdy + qu(u).ro(v-y)gdy
v
+ szfotl-F<E>1<v-y>gdy

v E
+ IOI [(59-9)a;5(x-u)+q, (v-y) fgdxdy - c,v. (24)
u

It 1s easy to verify that (23) and (24) are the objective
functions of the two-person game discussed by Parlar (1988).
Therefore the optimal (defensive) strategy of Player 1 and Player 2
reduces to that when Player 1 and Player 2 are the only players. In
other words, if Player 3 acts irrationally to inflict damage on Player
1 and Player 2, Player 1 and Player 2 can simply ignore Player 3. As
shown by Parlar (1988), if Player 2 also acts irrationally to damage
Player 1, Player l's optimal decision is equivalent to that when he is
the sole decision-maker in the classical newsboy problem. We may

further generalize the result as follows. In an n-person game, if m
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(m < n) players act irrationally to inflict damage on the others, the
optimal decisions of the latter reduce to that in the (n-m)-person

game without the irrational players.

4.4. Cooperative Solutions

In this section, we discuss cooperation of the players,
Cooperative players might (1) switch their excess inventory, if any,
to anyone who has excess demand so that the latter can save in lost
sales penalty cost, and (2) determine their order quantities together
to maximize their joint profit. The latter, however, depends very
much on how they can divide their joint profit. If they can
compensate each other in any way possible, they will determine their
order quantities collectively to obtain maximum joint profit.
Otherwise they may determine their order quantities independently.
The condition that compensation can be made among cooperative players
in any way possible is referred to as "side payment” condition (Owen,
1982). 1In the situation where side payments are not allowed, each
player keeps his own payoff under any decision combination. We
consider both cases where side payments are and are not allowed in our
analysis.

We will use the following notation in this section.

Jij = the joint expected profit of Player i and Player j when they

cooperate;
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Ji(ij) := Player i's expected profit when Player i and Player j
cooperate;
J123 := the joint expected profit of Players 1, 2 and 3 when they
cooperate;
Ji(123) := Player 1's expected profit when all players cooperate;

Consider the case where Player 2 and Player 3 cooperate. For

given u, v and w, their joint profit equals to the sum of their

profits when they work independently if there are no demand transfers

between them. This way they can save lost sales penalty costs if

there are demand transfers between them.

There are four possible exclusive cases where demand transfers

between Player 2 and Player 3 can take place. The lost sales penalty

cost saving in each case is as follows.

(i) ysv, z2w, x5 u,

Player 1 and Player 2 have excess supply and Player 3 has
excess demand. The amount of Player 3’s excess demand substituted by
Player 2's excess supply is either v-y or a32(z-w), whichever is less.
Hence the lost sales penalty cost saving is p3min[v-y, aBz(z-w)].
(ili) yzv, z 2w, x5 u,

Player 1 and Player 3 have excess supply and Player 2 has
excess demand. Similar to (i), the lost sales penalty cost saving is
pzmin[w-z. a23(y-v)].

(lil) y s v, z2w, x 2 u.

Player 2 has excess supply and Player 1 and Player 3 have

excess demand. As Player 2 will switch his excess inventory to Player
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3, substitution between the products of Player 2 and Player 3 will
occur before that between the products of Player 2 and Player 1. Then
the amount of Player 2's excess supply going to Player 3's product is
either v-y or a32(z-w). whichever is less. The lost sales penalty
cost saving is p3min[v-y, a3z(z-w)].

(iv) yzv, z2w, x = u.

Player 3 has excess supply and Player 1 and Player 2 have
excess demand. Similar to (Lii), the lost sales penalty cost saving
is pzmin[w-z. a23(y-v)].

Taking the expectations of the lost sales penalty cost savings
over the respective regions and noting that Moy = My + 7y if lost

sales penalty cost is not considered, we obtain
@ W
Jog = Jy + 74+ pzj;fomin[w-z, a,4(y-v))ghdydz
v @
+ p3f0f min(v-y, a3z(z-w)]ghdydz
w
W w H
-J, +J, +p [f J (w-2z)ghdydz + [ f a,.(y-v)ghdydz]
2 3 2 o'H 0 v 23

VvV w© v D
+ p3[f0f (v-y)ghdydz + [ [ aq,(z-w)ghdydz]. (25)
D Ow

Note that the cooperation of Player 2 and Player 3 has no
effect on Player 1l's expected profit for given u, v and w. Player 1l's
expected profit function in this case is Jl‘
When no side payments are allowed, the expected profits of

Player 2 and Player 3 are

W o w H
Joazy =2 lefofH(w-Z)shdydz + Iof;a23(y-v)ghdydzl. (26)



323y =~ I3+ p3[I:J':<v-y>shdydz + f:f:a32(z-w)ghd3'dz]. (27)

Similarly we can obtain the expected profit functions for the
players when Player 1 and Player 2 cooperate and when Player 1 and
Player 3 cooperate.

When all the three players cooperate, they will switch excess
inventory to those who have excess demand. Then each player can
reduce his lost sales penalty cost. However, a conflict may exist in
this case. Consider the situation where Player 1 has 2 units excess
supply but each of Player 2 and Player 3 has 10 units excess demand.
If a,y - 0.3 and azy - 0.4, Player 2 has 3 units and Player 3 has 4
units of excess demand that can be satisfied by Player l's excess
inventory if such excess inventory is available. Clearly, in this
case, such excess inventory is not available. Then the players have
to decide how much of Player 1l's excess inventory goes to each of

Player 2 and Player 3. We assume, if such a conflict exists, the

product with a higher lost sales penalty cost has the priority to
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receive the excess inventory. Without loss of generality, we let Pz

Py Z Py as we can always arrange the players in such a way. By
following similar procedures as above, each player’s expected profitc

function is obtained as follows.
@ v
Sz 1+ P S minlagy(ew), vyl fgixdy
© W
+ pyf [ minfa;;(x-u), w-z]fhdxdz
u 0

= © v
= 3y + pylagof G(8)(x-wyfdx + [ [ (v-y)Egdxdy]
u us



126
o W

+ pl[a13f H(K) (x-u)fdx + [ [ (w-z)fhdxdz], (28)
u u K

where S =~ v - a 2(x-u) and K = w - a 3(x'“)'
Jaqaesy "2 * sz I minfay; (y-v), u-x]fgaxdy

+ PzF(u)f f min[a23(y-v), w-z]ghdydz

© o W
+ pzf f J max(o0, min{a,4(y-v), w-z-a;,(x-u)])fghdxdydz
u v 0

©ou
- J +p,[a f F(L)(y-v)gdy+f f (u-x)fgdxdy)
2°F21%21 v v i

-] © W
+p2F(u)[az3I H(M)(y-v)gdy+f IM(w-z)ghdydz]
v v

@ w K o o N
+p,(J [ fN(K z)fghdxdydz+823f f j (y-v)fghdxdydz], (29)
uv

where L = u-321(y-v), M- w-a23(y-v) and N = w-a13(x-u)-a23(y-v).
uwo

J3(123) - J3+p3f0fvfwmax{0, min[aBl(z-w). u-x-321(y-v)]}fghdxdydz

uve
+p3f T f (min[a31(z-w),u-x]+min[a32(z-w),v-y]}fghdxdydz

+p3f fof max{0, min[a 2(2 W), v-y- alz(x u) ] ) fghdxdydz
ulw
@ w ], w w T

- J3+p3[f f f (L-x)fghdxdydz+a3lf f I (z-w)fghdxdydz]

v @ u
+p4(a, lf f j (z- w)fghdxdydz+f0j fP(u x) fghdxdydz ]
w
u «o v
+p3[a32j f f (z-w)fghdxdydz+j0f jqcv y) fghdxdydz]
m @ S o o R
+p4J J [ (S-y)fghdxdydz+a,,[ [ [ (z-w)fghdxdydz], (30)
uwR uwo

where T = u-a21(y-v)-331(z-w), P = u-a3l(z-w), Q= v-a32(z-w) and R =

~a12(x-u)-a32(z-w).
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The joint expected profit function of the players is J123 -
Yra23 Y22 * Taqes)-

We first consider the case where side payments are not
allowed. In this case, cooperative players are bound only by an
agreement that any one who has excess inventory will switch the
inventory to others in cooperation whenever they need it. Since no
compensation can be made, conflict of interest still exists among the
players and each player will determine its order quantity
independently. Therefore, in either case where any two players
cooperate or all players cooperate, they are still forming a non-
cooperative game.

Lemma 2. If two players act against the third one and no side payments
are allowed between them, the game admits a Nash equilibrium,

Proof. 1In the following we prove the lemma in the case where rlayers
2 and 3 act against Player 1. The other cases are similar,

As shown in Section 4.3, Jl is concave in u when v and w are
given. By differentiating J2(23) with respecc to v, given u and w, we

get

w H
815 (23y/8V = 83,/dv - p2a23f0fvghdydz. (31)

2 2 2 2 v
8735(23y/8V" = 8735/8v7 - p2a23J’0g(H>hdz + Pyay H(W) (V)

\d
- [62J2/6v2+P2g(V)I - p2323fog(ﬂ)hdz - Pyll-a,,H)]g (V)]

<0, (32)
since 1-a,,H(w) 2 0 and 62J2/av2+p2g(v) < 0.
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Similarly, by differenciating J3(23) with respect to w, given

u and v, we get

v D
6J3(23)/3w - 3J,/3w - p3332f6fwghdydz, (33)
820, 00y /80% = 320 /3wP-p.a. [ h(D)edy+p.a. .G(v)h(w) < O (34)
3(23) W/9¥ -Paasy, o DBW P33, :

Therefore, the game is convex and admits at least one Nash
equilibrium (Lemma 1), Q.E.D.
When all the players decide to cooperate, if side payments are
not allowed, cooperation means only that they will exchange excess
inventory. They still have competing objectives and will determine
their order quantities independently. Therefore, they are forming a
non-cooperative game and Nash strategy should still be used.
Lemma 3. If all the players cooperate and no side payments are
allowed, each player has a Nash equilibrium strategy.
Proof. When no side payments are allowed among the players, the
expected profit functions (payoff functions) are given by J1(123) (1
=1, 2, 3). By differentiating each player’s payoff function with

respect to his decision variable, we obtain

831 (123y/34 = 8J;/3u - pl[alzqu(S)fdx + a13f;H(K)fdx], (35)

2

2 2 2 9 ° 7 =
8731 (123y/3u" = 8%3, /8u’- pllalzf;g(s)fdx + al3fuh(K)fdx]

+ [812G(v) + alaﬂ(w)]plf(u) <0, (36)
since alzc(v) + 313H(w) =1,

3J2(123)/av = dd,/8v - PZ[QZIIVF(L)BdY + 823F(u)f;H(H)gdyI. (37)
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2 2 _ .2 2 2 o 2
8°39(123)/0V" = 873y/8v -p2[321fv£(L)gdy + azsj;h(u)gdy]

+ [a21F(u) + a23F(u)H(w)]ng(v) < 0, (38)
since a21F(u) + 323F(u)H(w) =1,

o @ VvV @
833 193)/3W = 335/8w - paaal[f;wa(T)ghdydz + fof;F(P)ghdydz]

o @ u o
- Paaqo(J [ G(R)fhdxdz + [ [ G(Q)fhdydz], (39)
3732 uw 0w

2

@ Vv @
2 2 2 2 2
87T 3 193)/W" = 3°J4/8w -p3{a3lf;fwf(r)ghdydz+a31f0jwf(P)ghdydz

© © uw©
+ a2,f [ g(R)Ehdxdz + aZ,[ | (Q)fhdxde]
uw 0w

-] v ] u
- [a3l(f F(L)gdy+[ F(u)gdy)+a32f G(J) fax+f G(v)fdx}]p,h(w)
v 0 u 0

<0, (40)
@ v @ u

since a31[f F(L)gdy+[ F(u)gdy)+a,,f G(S)fdx+[ G(v)fax] = 1.
v 0 u 0

Therefore the game is convex and admits at least one Nash
ecuilibrium (Lemma 1). Q.E.D.

From Lemma 2 and Lemma 3, optimal strategies always exist for
each player in any case of cooperation when side payments are not
allowed. We use a superscript "*" to represent "optimality" when side
payments are not allowed. For instance, J:(ij) is Player i’s optimal
expected payoff when Player i and Player j work together. The reader
should note that the optimal values are obtained under different order
quantities u, v and w. We can define the following cooperative game.
Cooparative Game 1:

v(1) - 7, i~1,2, 3,
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V(L, §) = J5, .\ +3F imi, 1 1, 2,3
H j i(ij) j(ij)l j’ » j ’ ] L}
va, 2, 3) = J7 + 33 + 3%
1. 2, 1123) * J2¢123) * J3(223)-

In the case where side payments are allowed, cooperative
players will act as one player and order quantities that maximize
their joint expected profit. It {s usually true that any two players
who decide to cooperate will not inform others of their cooperation,
The third player will, then, keep his Nash strategy when all the
players work independently and the cooperative players will choose the
best order sizes to maximize their joint expected profit. We use a
superscript "**" to represent "optimality" when side payments are

*
allowed. For instance, Jitij) represents the value of Ji(ij) under
the optimal order quantities when Player i and Player j work together.
Note again that optimal value: are obtained under different order
quantities. We can also define the following zooperative game.
Cooperative Game 2:
*
V(i) =-J,, i =1, 2, 3,

V({i, j)-J:;! i"j: inj-ln 2, 3,

*k
123

If the players are going to cooperate, it is necessary that

v(l, 2, 3) ~J

they can find a solution such that no subset of the players can
Jointly get more by forming a coalition against the rest. The set of
such solutions is called the core, denoted by C(V). Mathematically
C(V) is the set of (ml, Z,, m3) such that (Owen, 1982)

(a) EZm

1 = V(S) where S is a subset of N = {1, 2, 33, {41)
ieS
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(b) 2 m, - V(N). (42)
ieN
Let us consider Game 1 first, Since it is defined in the case
*

where side payments are not allowed, Player i gets J if all

i(123)
players cooperate. The following theorem gives the necessary and
sufficient condition for the core of the game to be non-empty.
Theorem 2. The core of Game 1 is non-empty if and only if
* * * *
Ji(123) + Jj(123) = Ji(ij) + Jj(ij)' for all 1 » j. (43)
*

Proof. Let o, - Ji(123)' Since, by cooperating, each player will do

at least as well as when all the players work independently, hence,

* *
J1(123) =zJ or m, =z V(i). 1If (43) holds, my + mj - Ji(123) +
3

b)

*
i
*
1 =1

J;(123) 2 ey * J;(ij) =V, 1. As Tamg = J7,, = V(1,2,3), (ay,
m2. m3) is in the core.

On the other hand, because (ml’ Wy m3) is the only possible
way to distribute V(1,2,3) among the players, it is the only
imputation (Owen, 1982) for the game. Condition (43) is also
necessary. Q.E.D.

Theorem 2 provides the necessary and sufficient condition for

all the players to cooperate in the case where side payments are not

allowed.
Theorem 3. The core of Game 3 is non-empty if
J** % J**
13 % I max Uy (44)
i=1 ]
%k 3 %k 3
Proof, Letting m, = max {J }) + §;, where £ §,= J..., - £ max
i j idij i fml i Y123 -1 j

*k
{Ji(ij)} = 0 and Si 2z 0, we have
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m; 2 J;“zij) > JI - V(1) (45)
*k Jek

"R E iy P pag <V D, (46

o+ my +my - 333 - V(1,2,3). (47)

Then (ml, m, ma) is in the core, which is non-empty. Q.E.D.
The reader might compare the full expression of J123 with Jij‘
It is not too difficult to observe that the necessary condition in
Theorem 3 is much less restrictive than it appears to be. Then the
core of Game 2 is often non-empty. As a matter of fact, even the
condition in Theorem 2 is not very restrictive. If it is, we feel
that it is mainly due to the assumption that the product with higher
lost sales penalty cost has the priority to receive excess inventory.
This assumpéion makes an uneven distribution of the lost sales cost
saving among the players., If excess inventory is shared evenly when a
conflict exists, the core of Game 1 would be more likely to be non-

empty.

4.5. Concluding Remarks

In this chapter, we analyze retailers’' best order decisions in
a market where each retailer’s product has a random demand and can be
substituted by others’ products. We extend Parlar's two-person game
theory model as well as his results for this inventory control problem
to cases where more than two players are present. Because the

presence of additiomal players brings about many directions of two-way
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demand transfers among different products and coalition and
cooperation among different players, our analysis also features a
study of the players’s cooperation decisions.

It is shown in our study that there always exists a Nash
equilibrium for the game when the players work independently and act
rationally. If anyone works irrationally to damage the others, the
decision problem for the rational players reduces to that without the
irrational player. On the other hand, we have analyzed the
cooperation of the players in both cases where side payments are or
are not allowed. If side payments are not allowed, conflict of
interest stil]l exists among all players, who will then determine their
order quantities independently. Our analysis has shown that secure
(Nash) strategles always exist for each player in any case of
cooperation. We also consider two cooperative games when side
payments are or are not allowed and give conditions for the core of
each cooperative game to be non-empty. Our results can be generalized

to situations with more than three players.



Chapter Five

Strategie Planning for

The Growth of New Repeat Purchasing Products

In the last two decades, the growth of non-repeat purchasing
products has been studied extensively, but there has been very lictle
work on the growth of repeat purchasing products. In this chaptaer, we
build a diffusion (differential game) model, considering the
customers’ replacement purchases in the diffusion process of new
products, to study the growth of repeat purchasing products and firms’
optimal marketing strategies in the growth process. We show that, for
repeat purchasing products, the market will never saturate unless
customers are extremely loyal to at least one of the products in the
market. Thus advertising and promotional activities are always
desirable. The optimal advertising strategles are increasing at the
Introductory stage and then decreasing or possibly terminating after

some time. Especially more advertising should be done at early ustages

against competitors’ advertising campaign. In addition to

134
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advertising, we also Introduce a firm's effort to maintain high
customer satisfaction as a control variable, which we call service.

The optimal service strategy is found to be monotonically increasing
at the introductory stage and then possibly maintained constant at a
certain level. The game is solved analytically for optimal strategies
in the case where all the control functions representing the effects

of advertising and service are linear in their control variables.

5.1. Introduction

In the last two decades, a number of diffusion models have
been developed to study the acceptance level of new products. Using
the analogy between new product growth and an epidemic, these models
attempt to represent the acceptance level of a new product, in a given
potential market, as a mathematical function of the time elapsed since
its introduction and other marketing mix variables such as advertising
and price. Their purpose has been (a) to depict the successive growth
in the number of buyers of a new product and forecast its future
demand in terms of the diffusion process in progress, and (b) to
depict the relationship of various marketing variables to the
diffusion process and analyze firms' optimal decisions with respect to
advertising, pricing, ete.

The literature on the diffusion of new products is

substantial. However we have found in our investigation that two
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important factors have not received much attention. First, most
diffusion models deal with consumer durable products that each
potential consumer buys at most once within the planning horizon
(Bass, 1969; Mahajan and Muller, 1979; Kalish, 1983; etc.). Few
authors have considered repeat purchasing products, which represent a
majority of the products sold in every day life even if the planning
horizon is intermediate. Second, the aspect of competition has been
long-avoided in diffusion models. Although work on competitive
problems has recently begun, the progress on analytical solutions has
been slow (Clarke and Dolan, 1984: Dockner and Jorgensen, 1988).

In this chapter we develop a diffusion model to study the
growth of repeat purchasing products in a duopoly market. Qur concern
is the firms’ optimal marketing decisions in the diffusion process,
In the analysis, we observe that consumers’ buying behavior of repeat
purchasing products is different from that of infrequently purchased
products. This makes our model different from those found in the
literature. As competition is introduced into the diffusion process,
the model gets complex. This complexity enables us to make many
useful observations on the diffusion process but at the same time
makes explicit solutions difficult to obtain.

The chapter is structured as follows. In Section 5.2 wa
provide a brief review of some of the models that are relevant to our
study. In Sectionm 5.3 we formulate a game theoretical model for
repeat purchasing products in a duopoly. Then in the subsequent two

sections, we analyze the model and solve it in the case of linear
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control functions. Finally we discuss the conclusions and possible

extensions to our research,

5.2. The Literature Review

Researchers such as Bass (1969) have found that two groups of
new product adopters exist: Innovators wheo adopt a new product
{ndependently of others’ decisions and imitators who are influenced by
others’ decisions. It has also been found that the attributes of a
product can be differentiated by search attributes and experience
attributes (Nelson, 1970; 1974), Search attributes, e.g., style of
dresses, can be easily observed and verified and thus effectively
transmitted by producer originated advertising activities. However,
experience attributes, e.g., taste of food, can only be revealed by
using the product and spread by word-of-mouth communications. Thus
the conditional probability that an individual who has not adopted a
new product by time t, P(t), is mainly influenced by advertising and
word-of-mouth communication. P({t) is hypothesized to be linear in the
market penetration level as P(t) = a + bX(t), where X(t) is the total
number of adopters up to time t and a and b are parameters
represcnting the effects of advertising and word-of-mouth
communication, respectively. If each individual makes at most ome

purchase and the potential market size is N, the total number of
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adopters up to time t is determined by the differential equation

(Bass, 1969)

X(E) = [N-X(0)][a+BX(E)],  X(0) = X,.
Note that only those who have not adopted the product, namely, N-X(t),
can be influenced by additional information. This equation is central
to the development of diffusion models in the new product context.
Ozga (1960) is among the earliest to build mathematical

diffusion mod “s in the economics and management context. He assumes
that information can only be effectively spread by word-of-mouth
communication, That is, people are informed of the existence and

quality of a new product only through social contacts with those who

have already had the information. Therefore the number of adopters up

to a specific time t is determined by ﬁ(t) = c[l-X(t)/N]X{t), where ¢
is called the contact coefficient. When advertising is considered, ¢
is set to be d + e where d is the natural contact coefficient and e
represents the effect of advertising. His analysis reveals many
important properties of the innovation process, but it ignores the
primary effect of advertising to disseminate information about new
products (Horsky and Simon, 1983). Meanwhile Stigler (1961) studied
firms' advertising decisions by ignoring the word-of-mouth effect
(1.e., b = 0) and assuming a = § A(t) where A(t) is the advertising
expenditure at t.

Starting with Bass (1969), diffusion models have included both

a and b, Bass used regression analysis to estimate a and b and
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applied the model in forecasting the future demand of new consumer
durable products. The behavioral rationale in his model is found to
be consistent with other relevant studies in the social science
literature (Norton and Bass, 1987). Since then a number of
applications of the model for forecasting purposes have been reported
{Nevers, 1972; Dodds, 1973; Bass, 1980). By incorporating other
control variables into it, the model has alsc been widely extended to
analyze the relationship between the diffusion of new products and
various marketing and economic forces such as advertising, price,
learning effect, etec.

Advertising and price have usually been considered to be the
major marketing forces firms can use to control the diffusion process.
The coefficient of innovation, a, is generally accepted to be a
function of advertising. However there is no consensus among
researchers about where to place the price parameter. In fact,
authors have different views on the impact of price changes. Horsky
and Simon (1983) argue that price affects essentially the potential
market size which can be determined outside of the scope of a
diffusion model. They assume N to be a constant and analyze firms'
advertising decisions using a specific function for the coefficient of
innovation: a = a + AlnA(t). Their model was extended into the
stochastic framework by Monahan (1984). Other models studying
advertising alone include Sethi (1973), Kotowitz and Mathewson {1979)
and Teng and Thompson (1983).



140
In contrast to Horsky and Simon (1983), many authors claim
that price is essential to the diffusion process. In the last decade,
more than a dozen papers have been published on pricing in diffusion
processes, considering the diffusjon demand and/or the experience
curve costs. Robinson and Lakhani (1975) did the initial work in this

field. They introduced a price multiplicative into the basic

diffusion model such that k - (N-X)(a+bX)e'BP. where B Is a constant
and P is the price at time t. They analyzed, considering the learning
effect, optimal price paths for rapidly growing products. They seem
to have opened the field for further research and their work has been
a key stimulus for a number of other papers {(Bass, 1980; Dolan and
Jeuland, 1981; Spence, 1981; Bass and Bultz, 1982: Jeuland and Dolan,
1982; Kalish, 1983; Clarke and Dolan, 1984; Eliashberg and Jeuland,
1986; Dockner and Jorgensen, 1988).

Instead of treating either advertising or price alone, a few
authors have considered them simultaneously in a diffusion model.
Thompson and Teng (1984) developed a new product growth model,
combining the advertising models develeoped by Vidale and Wolfe (1957)
and Ozga (1960) and incorporating price by using the price
multiplicative introduced by Robinson and Lakhani (1975). By assuming
linear advertising cost, they derived a set of optimal advertising and
pricing rules for a monopoly in an experience curve cost situation.
Meanwhile they provided many insightful conjectures based on numerical

results for an oligopoly where price is determined by the market
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leader. Unlike Thompson and Teng (1984), Kalish (1985) ignored the
dynamics of cost. He separated the adoption process of a new product
into two steps: Awareness and Adoption. Awareness is generated
through advertising and word-of-mouth communication., State equation
of awareness growth is similar to Bass’s model (Bass, 1969), except
that Kalish differentiated the effectiveness of word-of-mouth
communication by those who are merely aware of the product and those
who have already adopted it., Adoption occurs only if one is aware and
finds the adjusted price (to risk) acceptable. Thus the total number
of potential adopters at time t equals the portion that are aware

multiplied by the number of individuals to whom the price is

acceptable. The number of actual adopters at t, X, is determined by k
= [N(P)I-X]k, where P is the price, N(P) the total number of potential
adopters, I the portion that are aware, and k a constant. By using
optimal control techniques, Kalish obtained encouraging results.
Particularly, some lights were shed on repeat purchasing products.

In the new product diffusion literature, there are also
several game theory models dealing with advertising and price
competition. Considering the fact that there are usually several
firms competing in the same market, the game theory approach is
appropriate for new product growth. However the research in this
field {s just at its beginning (Dockner and Jorgensen, 1988), and in

many cases it is merely an extension of a monopoly model. Teng and
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Thompson (1983) developed an advertising model for a momopoly and then

extended it into the case of oligopoly such that

xi - (7il+712ui)(l'x)+(713+714ui)(l'x)xin xi(o) - xiou fi=1,..,n,

where x; is the market share of Firm i, ug the advertising rate, 7ij

n

parameters and x = T xi: Each firm is to maximize its total profit
i=-1

with a linear advertising cost. Due to the difficulties involved in
obtaining analytical solutions, they generated a series of
computational results under different parameter settings td
demonstrate useful properties of optimal control trajectories. In a
later paper, Thompson and Teng (1984) extended the model to include
Price by using the price multiplicative in Robinson and Lakhan{ (1975)
and assuming price is determined by the largest firm. See Dockner and

Jorgensen (1988) for a discussion of some other game theory models in

this field.
It summary:

(a) Research on new product diffusion has made progress in recent
years. However works treating advertising or pricing
individually are more common than that treating them
simultaneously;

(b) The (differential) game theory approach seems to be an
appropriate technique to study new product growth, But it has
not been developed adequately yet, mainly due to the

difficulties in obtaining analytical solutions: and
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(c) Most of the diffusion models deal with merely the introductory
phase of new products or consumer durable products. Few models

have been developed to study repeat purchasing products.

5.3. The Model

In this chapter we study the growth of repeat purchasing
products in a duopoly market. We start with a general model with a
few assumptions. This allows us to observe some general competitive
properties of a duopoly market, In the subsequént developments, we
narrow down our analysis to more specific cases in order to obtain
stronger results.

We consider a duopoly where each of two firms, Firm 1 and Firm
2, produces a new product (brand) using similar technologies. Their
products, which are sold to a common market, are perfectly
substitutable with each other and frequently purchased by consumers.
The average consumption rate of each consumer is one unit for each
time unic. In the literature, to our knowledge, the only model
explicitly studying repeat purchasing products is Kalish (1985), in
which it is assumed that customers are extremely loyal to the brand.

In the marketing situations of an infrequently purchased
product, it is typically assumed that each potential customer buys the
product at most once. Therefore total sales equals the cumulative

number of buyers. The concern of a firm at any time, if its objective
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is to maximize total sales, is only those who have not purchased {ts
pProduct up to that time. Advertising and price are often considered
to be the major marketing forces that a firm can use to influence
consumers’ purchasing decisions.

In the marketing situations of a frequently purchased product,
however, sales is composed of both first-time purchases and
replacement purchases. While new buyers are attracted, its current
customers may leave the market. Thus a firm's concern at any time
should be not only those whe are not buying its product but also those
who are currently buying its product. In addition to advertising and
price, its effort to maintain high customer satisfaction, which may
include sales related services, improving quality, etc., would be its
another key strategic consideration. We call this service for
simplicity of exposition and will treat it as a control variable in

our analysis,

5.3.1. Assumptions

The following assumptions characterize our model.

(1) Price as well as average production cost is constant over
time and is determined exogenously. As shown by Thompson and Teng
(1984), a monopolist can adopt an optimal constant pricing rule
without loss of its profit if the price elasticity of demand is large.
The result might also hold for duopolists or oligopolists., Meanwhile,
when the technology is not new, cost saving by learning is usually not

significant.
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(2) The conditional probability that a customer who is not
buying any of the products will buy a firm's product at time t equals
to f(u) + bx, where u is the firm’s advertising spending at t, f£(u) a
function of u, x the firm's market share at t, b a constant, and 0 <
£¢u) + bx = 1. This formula was proposed by Bass (1969) for consumer
durable products and used by many other authors (Teng and Thompson,
1984; Wilson and Norton, 1989), A behavioral rationale can be found
for each component. Namely, f(u) represents the effect of
advertising, usually with df/du = 0 and dzf/du2 = 0 (diminishing
return), bx represents the effect of word-of-mouth communication, and
b can be called either the coefficient of imitation (Bass, 1969) or
the contact coefficient (Ozga, 1960)., This assumption has been tested
theoretically and empirically to be consistent with consumers’ actual
purchasing behavior. The reader should note, however, that in Bass's
model, the target market is the market portion that has not adopted
the new product. We will use it for the market portion that are
currently not buying, which may include both those who have never
adopted the products and those who have adopted (either one or both)
but not currently buying.

(3) The conditional probability that a customer who is
currently buying a product will repurchase it (repurchasing rate), r,
is a function of the firm‘s current service expenditure and the
quality level of its product. As pointed out by Parfitt and Collins
(1968), it is comparatively easy to influence first-time buyers, but

it is extremely difficult to influence repeat purchasing. However we
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observe that service does make a difference, within limits, with
respect to repurchasing rate, especially when it means quality
improvements. Therefore we take the repeat purchasing rate as a
function of service and quality. As quality is usually determined at
the product development stage, we treat it as an lmportant parameter
for firms to refer to when making their marketing strategies rather

than a decision variable in our model.

5.3.2. Notations

To define our model we use the following notations. As we
will use a continuous approximation in our analysis, all the variables
and functions are defined to be continucus and differentiable, except
possibly at a finite number of points., For i =~ 1, 2,
ui(t) = Firm i's advertizing expenditure at time t, 0 < ul(t) < Ui;
vi(t) = Firm i's service expenditure at time t, 0 < vi(t) s Vi:

xi(t) = Firm i's market share at time t and x(t) =~ Exi(t);

fi(ui)+bxi = the conditional probability that a customer who is buying
neither firm’s product will buy Firm i’'s product at time t,
df, /du, = 0 and dzfi/dug < 0;

ri(vi) = the repurchasing rate of Firm i’'s product or the probability

that a customer who is buying Firm i‘s product at t will buy the

2 .
S 0;

product at t+At, dri/dvi z 0 and dzri/dv
oy - the profit margin of Firm i’'s product;
By Firm i’s valuation of its market share at the end of the planning

horizon;
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N = the average size of the potential market;
T = the terminating time of the planning horizonm, {.e., the planning
horizon is [0, TI;
a - the rate of customers who stop buying Firm 2's product and switch
to Firm 1's product;
p = the rate of customers who stop buying Firm 1's product and switch
to Firm 2's product;
To improve clarity of expression, we drop the time argument as

well as other functional arguments whenever there is no confusion. In

the following discussion we will also use k to denote the derivative
of X with respect to t, Y’ the first derivative and Y“ the second
derivative of Y with respect to its control variable. Note that all
che control functions defined above have only one control variable.

This notation will not cause any confusion.

5.3.3. The Market Demand

In the case of a consumer durable, the market operates in a
simple way that its market share increases as new buyers are
attracted. For a repeat purchasing product, however, its market share
increases as new buyers are attracted and decreases as current buyers
leave the market. When competitors are present, a product's market
share also increases as buyers switch from competitors’ products.
Consider Firm 1 in (t, t+At]. During the period, (1-x)(f1+bx1)At can

be attracted from the market portion, 1-x, that is buying neither
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firm’s product at t, (1-r1)x1At will stop buying its product, and a(l-
rz)xznt will switch to its product from the rival‘s (Firm 2's)
product. Therefore Firm 1's market share at t+At is
xl(t+At5 - % + (1-x)(f1+bxl)At - (l-rl)xlAt + a(l-rz)szt. (1)
Its market share variation in [t, t+At], Axl, can be expressed

as Axl - xl(t+At) - xl(c), or

axy = (1-x)(f1+bx1)At - (1-rl)x1At + a(l-rz)xzdt.(Z)
Market Share Gains Market Share Loss Market Share Gains
by attracting new due to non- from the
Buyers repurchase Competitor

Dividing both sides of (2) by At and letting At - 0, Firm 1's

market share is determined by

X = (1-x)(f1+bx1) - (1-r1)x1 + a(l-rz)xz, (3)
31(0) - xlO’ ("’)
where %9 is Firm 1’'s market share at t = 0.

Similarly Firm 2's market share is determined by

Xy = (1-X)(£,+bx,) + B(l-r))x; - (L-r)x,, (5)
X,(0) = x,, (6)
where Xy 1s Firm 2's market share ac t = 0.
When all the parameters are given and all the decision
variables are determined, the firms’ market shares are fully

determined by (3) and (5) with the initial conditions (4) and (6).
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5.3.4. Profit Maximization
Each firm is to maximize its accumulated profit across the
planning horizon. Meanwhile, the ending market share is also
important, e.g., to maintain market leader. Since, for Firm 1, its
demand at time t is le, its instantaneous profit is lexl-ul-vl.
Therefore its total gain from the market over [0, T] can be expressed

as

" - (Cumulative Profit) + (Valuation of Ending Market Share),

T
- fb(lexl-ul-vl)dt + g% (T)

i

T.
-f (Nm,x, -u, -v,)dt + glfoxl(t)dt + 81X,

- o

-f (Nm, x; -uy -V +8y [(1-%) (£14bx, ) - (L-r )% +a(l-1,)x,] 1dt

o

+ 81X10- {7)
We use (3) to obtain (7).
Firm 2's total gain from the market over [0, T] can be

similarly obtained as
T

T, - folezxz-uz-v2+g2[(1-x)(f2+bx2)+ﬁ(l-r1)x1-(1-r2)x2]}dt
+ BoXog- (8)
Our model is generally consistent with many previous modeling
efforts in the diffusion process. When the market is near saturation,
no advertising should be done since its contribution to market share
increase is negligibly small. This can be seen by taking (1-x) =+ Q in

(3) and (5). Furthermore, diminishing return of advertising in time
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1s incorporated into the model in a way that its contribution to
market share increase shrinks as market penetration level increases.

It is also possible, with little modification, to extend our
model to include price as a control variable. When price is
considered, it affects essentially both the conditional probability
that a customer will buy a product given that he is not currently
buying and the conditional probability that a customer will repurchase
a product given that he is currently buying. By letting the control
functions (fi and Ly 1 =1, 2) be also functions of price, we can
incorporate price into our model. But this will dramatically increase
the difficulties of analysis. We leave it as a possible future
research topic.

As the reader might have noted, we implicitly assume in the
formulation that customers who leave the market simply join those who
are not currently buying the products and can be influenced by
advertising and word-of-mouth communication in the same way as those
who have never bought the products. Clearly our model simplifies the
reality since customers who leave the market, especially because of
unsatisfaction, are usually more difficult to be influenced by these
factors. However, when we use the model for the introductory phase of
new products, especially when o and 8 are close to 1, the market
portion that leave the market is small and our model can still well

represent the reality.
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5.4. Policy Implications

For non-repeat purchasing products, researchers have suggested
various optimal advertising and pricing policies for the introduction
of new products, using different diffusion models (Horsky and Simon,
1983; Monahan, 1984; Robinson and Lakhani, 1975; Dolan and Jeuland,
1981; Thompson and Teng, 1984; Kalish, 1985; ete.). 1In particular, it
has been demonstrated that the optimal advertising policy is to
advertise heavily at early stages of the introduction and to reduce
the level of advertising as sales increases (Horsky and Simon, 1983).
Optimal pricing policies are more dependent on the products and other
market conditions (Kalish, 1985).

For repeat purchasing products, there has not been much
research done. In the following, we will derive a series of optimal
marketing policies, using the model developed above, for the
introduction of new repeat purchasing products. We consider only
open-loop strategles (strategies that are functions of time alone) in
our analysis for mathematical tractability.

Using the payoff functions (7) and (8), we obtain the
Hamiltonians for the game as (Starr and Ho, 1969)

Hl - lexl-ul-vl + (gl+Al)[(1-x)(f1+bx1)-(1-r1)x1+a(1-r2)x2]

+ AZ[(l-x)(f2+bx2)+ﬂ(1-r1)x1-(l-rz)le, (9)
H2 - Nmzxz-uz-v2 + ¢1[(l-x)(f1+bxl)-(l-rl)x1+a(1-r2)x2]

+ (ByMp) [(1-%) (£,+0%,)48(1-x )%, - (1-x,)%, ], (10)

where Ai and ¢i are auxiliary wvariables.
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The optimal (Nash Equilibrium) open-loop trajectories ui(t)

and vi(t) maximize Hi (1 =1, 2) and satisfy Conditions (3) - (6) and

the following conditions (Basar and Olsder, 1982, Chapter 6)

-~

ii - - OH;/8x, (1 =1, 2), (11)
éi - - My /8%, (1 =1, 2), (12)
li(T) - ¢1(T) -0 (1i=1, 2), (13)

Ai and ¢i are the net benefit of having the constraints, (3)
and (5), respectively, relaxed by one unit and can be called as shadow
pPrices. An economic interpretation of them in the context of
strategic pricing can be found in Simon (1982).

We now prove the following theorem.

Theorem 1. If f; # 0 and r; » 0, ui(t) and vi(t) are optimal only if

(a) élfz/(zfiz) ~ Nag+ b/E + [f2+bx2-ﬁ(1-rl)]/(ﬂxlri)

- (l-ﬂ)Al-(l-a)Bll (1&8)
uy £/ (z£,%) = Nm,+ b/E, + [£)4b%; -a(1-1,) 1/ (ax, )
- (1-a)Ay-(1-H)B,, (14Db)
(b) Glr;/riz - lexl-[zfl+(1-r2)(xl+ax2)]/(xlr;)
- (1'ﬁ)01+(1'0ﬁ)D1. (158)
Gzr;/réz = Nayx)-[2Ex+(1-1)) (AR +,y) 1/ (xy20)
- (1-a)Cy+(1-af)D,, (15b)
where z = 1-x, A, = [(fj+bxj)z+(1~r1)xi]/(22f;), B,- (l-rj)xj/(zzf;).
Dy = (Loep)wy/(26)), Cp= (£ytbiy)/(Bry +(£ +bx +(Eyvb,) /B1x, /(2£.)
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and 02 - (f1+bx1)/(ar2)+[f2+bx2+(f1+bx1)/a]x2/(zf2), i, J =1, 2 and 1
“ 3.
Proof., See Appendix I. Q.E.D.

Note that if a = 8§ = 1, (14) and (15) become

(2) {11f;/(zfi2) - Nm1+b/fi+[f2+bx2-(1-r1)]/(xlri), (16a™)
UpEp/(26,7) = Nay#b/Ep+[£14b%, - (1) 1/ (xyT,), (14b™)
(b) {rlrI/riz = Nayx; - [2£,+(1-1,)%]/(x;1,), (15a)
VoTy/Ty? = Nmyx,- [2Ey+(L-1;)x]/(%yT,) (15b™)

Theorem 1 gives necessary conditions for optimal advertising
and service strategies. When all the functions are known and all the
parameters are given, optimal trajectories can be obtained by solving
these differential equations and Equations (3) - (6) simultaneously.
However, it is usually not easy to do so. In the following we will
use these conditions to derive optimal advertising and service

policies.

5.4.1. Market Perspective

When two products are launched into the same market, they
compete for market share. In the competition, optimal marketing
strategies usually determine a product’s temporary success or failure.
1t is a product’s quality level that determines its long-term
performance. We assume that advertising and service will be
maintained at a certain level, i.e., fi and r, are constant, after

some time. Then we have the following proposition.
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2
Proposition 1. (a) if a, A l, x = I X, will never approach 1 unless
i=1

ry - 1l or/and r, = 1;
(b) 1if r= 1 and rj< 1, X 1 and xj* 0 (1, =-1, 2; 1
1)
(¢c) ifa=1and g =1, X (1-r2)/(2-r1-r2) and X9
(l‘rl)/(z'rl'rz);
Proof. Note that if the limits of Xy and X, (t » o) exist, il -+ 0 and
X, 0.
(a) Assume that the limit of x,, denoted by xo (L = 1, 2),

exists and xg+xg - xo

= 1. Taking the limit on both sides of (3) and
(5), we obtain
-(L-x) )50+ a(l-r,)x] = 0, (16)
B(L-r)x] - (L-r))x = 0. (17)
Muleiplying (16) by g and adding it to (17), we get
-(1-ap) (L-r,)x3 = 0. (18)
Similarly we have

-(1-af) (1-r))x] = o. (19)
Since @, fwu 1, ifr <1 (i=1,2), « - Xg = 0. This
contradicts the assumption. Hence we have either the limit of x; does
not exist or x? + xg - xo e 1,
(b) For i » 1 and } = 2, substituting r, = 1 into (3) and (5)
and taking the limit on both sides of each equation, we have

(1-x°)(f1+bx2)+a(1.r2)xg -0, (20)
(1-x0)(f2+bxg)- (l-rz)xg - 0. (21)
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Multiplying (21) by a and adding it to (20), we get
0 0 0
(1-x )[f1+bx1+a(f2+bx2)] = 0, (22)
Hence l-xo- 0 since f1+bxg+a(f2+bxg) > 0. Substituting l-xo ~ 0 into
(21), we have -(1l-r )xo = 0 or xo = 0 since 1-r, > 0. Then xo -1 or
: 2772 2 2 1
%X = 1 and Xy = 0.
Analogously we have Xy 1 and X 0 if r, < 1 and T, = 1.

(¢) Adding (3) to (5) and taking the limit on the equation, we

have
0 0 0
(l-x )(f1+bx1+f2+bx2) - 0, (23)
Then 1~x0 = 0 since f1+bxg+f2+bxg > 0 and (16} and (17) hold with a =
8 = 1. Solviag the equations we obtain xg - (1-r2)/(2-r1-r2) and xg -
(l-rl)/(Z-rl-rz). Q.E.D.

In a regular market, «, § » 1 and the quality level of a
product is usually not so high as to keep all its custumers (to
repurchase it). Our proposition suggests that such a market will
never saturate. Therefore, there is always a portion of the potential
market not buying any product. Advertising and promotional activities
are always desirable, This provides an explanation of the common
phenomenon that advertising and promotional activities are always
done, no matter how long a product has been in the market.

If the quality level of a firm's product is exceptionallsy high
and the competitor’s is not, the firm will eventually dominate the
market. In more general situations, each firm shares part of the

market and the actual market share achieved by each firm is determined
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by the quality level of its product as well as its advertising and

gservice strategies.

In the rest of this section we assume that a = B =1 and X10 ™

X9 " 0.
5.4.2. Advertising

Using the necessary conditions for optimal advertising and
service strategies given in Theorem 1, we cbtain the following
propositions. Because the firms are symmetric with respect to policy
implications, we state the results in terms of Firm 1. All findings
are equally applicable to Firm 2.
Proposition 2. If the quality level of its product is extremely high,
il.e., r, - 1, Firm 1’s optimal advertising strategy is monotonically

decreasing.

%* L r
Proof. If r, = 1, the RHS of (l4a ) = le + b/fl+ (f2+bx2)/(x1r1) >

0. Then 61 < 0 since f; < 0. Q.E.D.
Proposition 2 suggests that optimal advertising strategles in
the situation assumed should be strictly decreasing over time,
regardless of what the competitor does. If customers are extremely
loyal to the brand, what is important to a firm at any time is only
those who have not adopted its product up to that time, as in the
situation of non-repeat purchasing products. It is important to

realize, however, that there is a time preference of the adoption of a

repeat purchasing product. In addition to the word-of-mouth effect
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which exists for both repeat and non-repeat purchasing products, each
adoption of a repeat purchasing product may generate a stream of sales
starting from the time of adoption. If the competitor’'s preduct is
not as good as its product, as stated in Proposition 1, the firm will
eventually dominate the market. Advertising in this case is only to
speed up the adoption process. 1f the competitor's product is as good
as its product, advertising is both to speed up the adoption process
and to attract customers from adopting the other product. Since
advertising is more efficient when the market penetration level is
low, more advertising should be done at early stages. The proposition
manifests itself by relatiﬂg advertising with its efficiency.

The results in Proposition 2 replicate what has been found by
Kalish (1985) in a monopoly. However the reader might note that we
are studying a duopoly market instead of a monopoly. This makes the
result more representative of an actual market.
Proposition 3. If 1-r1 > f2' Firm 1's optimal advertising strategy is
increasing at the introductory stage (xl is very small) and decreasing
afterwards (possibly terminating after a certain period.).
Proof. If 1-r; > f£,, [f2+bx2-(1-r1)]lt_o - {£,-(1-t ] < 0.
Since f2+bx2-(l-rl) is continuous in t, when t is near zero, it is

negative. 1If %y is very small, Nm1+b/f1+[f2+bx2-(l-r1)]/(xlrl) < 0.

* .
Then, by (l&4a ), Yy > 0 since f; < 0,



158

On the other hand, as Xy increases (x2 alse increases),

Nm1+b/fi +[f2+bx2-(1-r1)]/(x1ri) increases and could be positive after

a certain time. Then él < 0 since f1 < 0. Q.E.D.
Bass's studies indicate that the parameter a for consumer

durables is typically a few hundredths (Bass, 1969). Although no

similar estimates have been found for repeat purchasing products, the

magnitude of the parameter should be also around that area.

Meanwhile, Parfitt and Collins’s study shows a less than fifty percent

repeat purchasing rate (Parfitt and Collins, 1968). Therefore l-r. is

1
usually greater than f2' regardless of what advertising and service
strategies a firm uses. The condition of Proposition 3 usually holds.
A firm's optimal advertising strategy 1s to use increasing advertising
at the beginning of the introduction of a new product te convince its
potential customers to buy its product and decrease its advertising
expenditure gradually when its market share reaches a certain level.
The situation in the above proposition represents a regular
product. It also includes the extreme that rl ls very small, e.g.,
because the quality level of the product is low. In this case,
customers may either leave the market or switch to the competitor’s
product after the first purchase. The best a firm can do is to use
increasing advertising to convince those who have not adopted itsg
product to buy it. After this it may have to either maintain a low

market share or quit from the market.
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Proposition 4. If a firm anticipates an advertising campaign from its
competitor, its best counter-strategy is to launch the campaign before
the competitor starts it (to spend more before the competitor begins
the campaign).
Proof. When the competitor launches an advertising campaign, f2 is
higher (than no campaign). The RHS of (laa*) is higher if it is

positive and lower if it is negative, If the other conditions
(functions and quantities) are unchanged, this implies that |u1| is

higher if &1 < 0 and lower if &1 > 0. Therefore the advertising
spending curve becomes steeper when it is decreasing and flatter when
it is increasing. If the budget of advertising is constant, both the

cases imply more spending at early stages. ¢.E.D.

5.4.3. Service

Proposition 5. A firm's optimal service strategy is monotonically
increasing at the initial stage (then possibly maintaining at a
certain level).

Proof. It can be seen from (15a*) that its RHS < 0 when x, is

1

1 > 0 since L < 0. Q.E.D.

The proposition suggests that the optimal service strategy is

sufficiently small, which implies ;

to increase its service expenditure at early stages as its market

share increases.
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5.5. Optimal Strategies

As pointed out by many authors (Kalish, 1985), word-of-mouth
communication is not important for repeat purchasing products,
especially those that are relatively inexpensive. This is because
customers can afford to sample themselves. Therefore we can drop b in

our model and the state equations (3) and {5) become

*1 A-0E; - (L-r)xy + all-ry)x,,

- fl - (f1+1-r1)x1 - [fl-a(l-rz)]xz, (24)

% .
1

2 (1-x)f2 + ﬂ(l-rl)x1 - (l-rz)xz,

- f2 - [fz-ﬁ(l-rl)]x1 - (f2+1-r2)x2. (25)

The payoff functions are still given in (7) and (8) and the
initial conditions are (4) and (6).

Note that, after dropping b, the state equation system becomes
a linear differential equation system of %, and Xy If it can be
solved for Xy and Xo» the firms’ market shares can be expressed
explicitly in terms of their advertising and service strategies.
Because it is difficult to obtain general solutions of the system, we

consider a special case in the following by assuming that @ = 8 = 1.

Solving the system (see Appendix II), we obtain

t
%, (€) = L(t)(fo[cflw(r)+(1-r2)(1-cw(r))1L'1(r)dr+x10:, (26)

t
%p(E) = LIS (eE0(r)+(Lorp) (L-eW(r)) L L(rydran, ), (27)
0
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T T
where ¢ = 1-X)g-%pg, W(r) = EXP(-[ (£1+f;)dn]. and L(r) = EXR[-[ (2-

rl'r2>d"]' When the starting time is ty xi(t) can be simply obtained

by changing the lower limit for all integrations from zero to ty. If
fi and r, (1 = 1,2) are constant and (xlo, x20) - (0, O,
-0t -8,t -8,t
xl(c) - '#1(3 -e )/8 + (l'rz)(l'e )/82| (28)
-8t -6,t 8yt
Xp(E) = ~dpe ~ -e “)/6 + (L-r)(l-e ©)/8,, (29)
where By = l-rz-fl, By = l'rl'fZ' 91 - f1+f2, 92 - 2-r1-r2 and § = 2-

rl'rz'fl'f2‘

In the following we solve the game for optimal strategies in
the case where all the functions fi and ry (i =1, 2) are linear in
thelr control variables and each firm has a budgetary constraint for
both advertising and service spending. We assume the existence of
solutions. Then there exist four continuous auxiliary variables and
the optimal (Nash) strategies maximize the corresponding Hamiltonian
at every instant (Basar and Olsder, 1982, Chapter 6).

The Hamiltonians in this case are

I-l1 - lexl-ul-v1 + (gl+A1)[(l-x)fl-(l-rl)xl+(1-r2)x2]
+ Az[(1-x)f2+(l-r1)x1-(l-rz)le, (30)
H2 - Nmzxz-uz-v2 + wl[(1-x)f1-(l-rl)x1+(l-r2)x2]
+ (g2+¢2)[(1-x)f2+(l-rl)x1-(l-rz)le, (31)
where Ai and ¢i (L =1, 2) are auxiliary variables.
The necessary conditions for the optimal (Nash Equilibrium)
open-loop trajectories ui(t) and vi(t) (1L =1, 2), after some

simplifications, become



A - - Nay+(g1+A1) (£ 411y )4, [£,- (Lo7,) ], (32)
z, = (81 A1) (£} - (Lor,p) 143, (£,41-1,) , (33)
41 - By (E1+1or) 14 (g 4y [£,- (1-1)) ], (34)
¥, = - Nay+py [£] - (1-x,) [+(Bytb,) (£,+1-T,), (35)
A((T) =0 (L =1, 2), (36)
B (T) = 0 (1 =1, 2). (37)
The partial derivatives of the Hamiltonians are
8Hy/8uy = -1+(1-x) (g +A )£, (38)
3H, /3, = -1+rix1(g1+A1-A2), (39)
BHy/8uy = -1+(1-x) (g4, £, , (40)
aH,/av, = -1+r;x2(gz+¢2~¢1). (41)

Lemma 1. If the control function is linear in the control variable,
the optimal strategy with respect to the corresponding variable i{s a
piecewise function admitting either the budgetary constraint or zero

with at most a finite number of steps.

Proof. We prove the lemma in the case where f1 is a linear function

of Uy . The other cases are similar.
If £) is linear in u), 3Hj/6u) = -L+(1-x)(g+A )£, 1s

independent of 4;,. To maximize Hl' the optimal uy is determined by
U1 if aal/aul >0,
up -
0 if 8H1/6ui = 0,

where U1 i1s Firm 1's budgetary constraint for advertising. Since Al
and (l-x) are both continuous and non-constant, 6H1/au1 is continuous

and non-constant. It can change signs for at most a finite number of

162
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times in [0, T]. Therefore the optimal uy has at most a finite number
of steps. Q.E.D.
Lemma 2. If fi and r; {1 = 1, 2) are constant,

(a) ani/aui is strictly decreasing over time if g; = Nmi[(pi/pj
+91/62)/6+1/92] where 1, j = 1, 2 and {1 » j; and

(b) aui/avi is strictly increasing over time if g; > Nmi/ﬂ2 and éi
z 0.
Proof. We prove the lemma for i - 1.
When fi and r, (i =1, 2) are constant, Al and A2 are given by

(See Appendix III)

ﬂlt 5212
Al - -gl+Nm1p1/(016)+Nm1p2/(826)+c1e ~Cohqe . (42)
Hlt 92t
Az - lepl/(als)-lepl/(826)+cle +c2p1e . (43)
-8,T -8,T

where ¢ = [(gl-le/Gl)pl/E]e 1 and cy = {(le/ﬁz-gl)/ale 2 .

{a) Differentiating anl/aul with respect to t, we obtain

d(3H;/u)) /dE = d[-1+(1-x) (g, +$, )£, | /dt

- - x(gl+A1)f1+(1-x)f1Al
' th
- - (l-x)fl[le(p1+p291/62)/6 + c2p26e ]
6.t
2
<0 |{if le(p1+p261/92)/6 + c2p26e > 0. (44)
Note that we obtain (44) by using ; ~ (1-x)8l and (42). Since
6t
2
le(pl+p261/02)/8 + 52p26e >0 if g = le[(pl/p2+91/62)/6+1/82],

6H1/au1 Ls strictly decreasing if g = le[(p1/p2+01/02)/6+1/82].
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(b) Differentiating aH1/6v1 with respect to t and using (42)
and {43), we obtain

d(aHl/avl)/dt - d[-1+r1xl(g1+A1-A2)]/dt
. . 82t 02t
- rl[xl(le/éz-CZSe ) - x1c2892e |
>01f::<120&ndc2<0. (45)

Since ¢y, <0 if g > le/az, 6H1/3v1 is strictly increasing if

B > le/ﬂ2 and él z 0, Q.E.D.
If ug and Ve (1 =1, 2) are plecewise functions admitting
either the budgetary limits or zero with at most a finite nunber of
steps, fi and r; are also piecewise functions with at most a finite
number of steps. Then we can divide [0, T] into a finite number of
subintervals such that, in each such subinterval, fi and Ty (1=1, 2)
are constant and hence Al and Az are given by (42) and (43). Consider
any two such consecutive subintervals [tl, t2] and [t2. t3]. Since Al
and 12 are continuous, A%(tz) - A%(tz) and A%(tz) - Ag(tz). Solving
these equations, we get
6ie

2
gt
1.1 "272 2.2 "2%2 1 2
c26 e - c26 e + le/ﬂ2 - Nm1/82. (46)

We use a superscript j (j = 1, 2) to distinguish the functions
and parameters for the two subintervals.

In the following, we let 810 = Min (01). 811 = Max lﬂi}. Biop =
Min lui}, Byq = Max lpil, 60 = Min {§) and 61 = Max {6). Note that
910 = 01 = 811. Bio = By = By and 60 =6 = 61.
We now prove the following theorems.
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Theorem 2., If fi and £y (L =1, 2) are linear, T, (1 =1, 2) is not

decreasing over time and By < G10 - Nmi[(piofyj1+810/821)/61+ 1/821]

(1, -1, 2, 1 » j), the optimal advertising strategies are given by
U, whenO0=t<r

w - ! Votan, e, (47)
0 when ris t=sT,
where U, (1 = 1, 2) is Firm i’s budgetary constraint and To is T AL
ani/aui z 0 in [0, T] or otherwise determined by
lgy*A (r D 1(L-x(r 1€ - 1 = 0, (48)
(8, 76y (7)1 [1-%(r,) 1, - 1 = 0. (49)

Proof. From Lemma 1, the optimal trajectories u* and v: (1=1, 2)

i
are piecewise functions admitting either the budgetary limit or zero
with at most a finite numher of steps. Thus we can dividé [0, T] inte
N ( N is a finite integer) subintervals such that, in each
subinterval, fi and T, (i = 1, 2) are constant and, for any two such
consecutive subintervals, (44) and (46) hold.

Consider aHl/au1 in [0, T]. 1In the last such subinterval

[tN-l' T], we have d(BHl/aul)/dt <0 if g = G10 from Lemma 2(a).
N-1

In the second last such subinterval [CN-2' tN-ll' since 62 <
Bg. using (46) we obtain
N-1 N
.1.N-1 %2 CN. -0 (T-ty 4)
cp 6 te? Nla qumse) o gne 2 N (50)

Substituting (50) into (44), we also get d(BHl/aul)/dt < 0 if By =

Glo .
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Following the same procedures as above and working backwards,
we obtain d(aHI/aul)/dt < 0 in each subinterval. As aHl/élu1 is
continuous, it is monotonically decreasing in [0, T].

Similarly, aHz/au2 is monotonically decreasing in {0, T].

Th.en the optimal advertising strategies are given by (47) with
Ty being T if aHi_/aui z 0 in [0, T] or determined by aHi/aui = 0 or
{48) and (49) otherwise. Q.E.D.

Theorem 2 states that, provided that the firms’ service
strategies are not decreasing over time, Firm i's optimal advertising
strategy is to advertise at its budgetary level from the beginning and
possibly stop completely some time before T if gy S GiO' If gy > GiO'
we do not give the optimal advertising strategies here. However, by

differentiating (44) with respect to &, we get

2 9ot

a?(aHy /3u;)/dt% = (L-x)E; [Ny 0, (uybuy01/0,)/6 - §2e 2]

Cok2
>0 if ¢, S0 org =2 le/ﬂz. (51)
Hence aHl/au1 is convex if gy > le/az. It is then our conjecture
that the optimal advertising strategy in this case starts with the
budgetary limit, drops to zero after some time, and jumps to the
budgetary limit again near the end of the planning horizen.
Especially, if gy is very large, we can ocbsaerve from (44) that
d(BHl/aul)/dt > 0. Then aHI/aul is inereasing in [0, T) and, £
aHl/au1 >0 atc t =20, aHl/au1 >0 in [0, T]. The optimal advertising

strategy is constant at the budgetary level over [0, T].
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The optimal advertising strategies above are obtained under
the condition that the service strategies are not decreasing over
time. In the following we will prove that the firms’ optimal service

strategies are indeed not decreasing over time if B; > Nmi/ﬂz. From
(24} ard (25), we have X, = f1+pix-92xi. We assume that Xy 2z 0 for
any service strategles, i.e., ii - f1+pix-62xi = fi+pix-621xi =0,

Theorem 3, If fi and r, are linear, gy Nmi/ﬁzo and Xz 0 for any

service strategies (i-1,2), the optimal service strategies are given

by

0 when 0 =t < gy

v, o= i-1, 2, (52)

Vi when ai< t =T,

where Vi is Firm i's budgetary constraint and oy is determined by
{51""\1(‘71)‘Az(al)]xl(al)rl -1 =0, (53)
[32+¢2(02)‘¢’1(02)]xz(az)rz - 1«0, (54)

Proof. By Lemma 1, the optimal trajectories u: and v: (i =1, 2) are

piecewise functions with at most a finite number of steps.

Consider the subinterval [to, T] of [0, T]. We assume that v

2
has three steps in [to, T]. Then v, has either the form
Vzifcost<c1 Oift05t<tl
(a) vy = 0 1if tp=t< t2, or {b) Vy = V2 if t1 =t t2.
Vziftzsts'r Oiftzsts'r

1f v, has Form (a), for any r1 which is constant over [t

Ol
we have 8% - 8% > 6%. €y in the subintervals is determined by (46) as

T],

1 3 2
slesztl 05(T-ty)-05(ty-1y)

c1
2

3
= (Nm /8, - g,)e
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3
-8.(T-t,)
2 3 2 2 1 2
+ (le/s2 - le/ﬂz)e + lelﬂ2 - Nm1/82
< 0 if g)> Nay /6,4 since 6, = 43 > 92, hence ¢} < 0,(55)
2 k
-3 -8,(T-t,)
2.2 272 3 2 2 2 3
c26 e - (Nm1/92 - gl)e + Nm1/02 - le/ﬂ2
2 3
< Nm1/82 - le/ﬂz, if 8y > Nm1/820, (56)
3
3.3 %57 3 3
c26 e - le/82 - g < 0 if 8y > le/ﬂzo, and then ) < 0.(57)

If x, 2 0, from (45), we have d(3H,/3v))/dt > 0 when t, < t <

tl and tz st s T since ¢y < 0. VWhen cl st<t

62c

e 2 )-lex

2
.t
v o2 3 2.2 % 2.2 .3 3
- rl[(f1+p§x)(le/ag-Nm1/82+c§6 e L )(Ejrulx-03x, N, /03]

2l

2

-0 2
2

d(aH, /av,)/de = 1) [(E2rplx) (Nm, /0 2 N

2
“8,{t,-t)
' 2 2 2. "8yt

> rl(f1+plx)[(lefﬁg-Nm1/03)+(le/ag-le/sz)e

]
> 0, since 6% < 33. (38)
Then, d(aHI/avl)/dt > 0 in each subinterval and 8Hl/avl is
monotonically increasing in [to, T] since it is continuous.
The same is true when vy has Form (b).
Then v, can have at most two steps in [to, T].
On the other hand, if vy has only two steps in [to. T],
following exactly the same procedures above, v, can have at most two
steps in [to, T].

Therefore, both vy and v, can have at most two steps in [to.

T}. As to is arbitrary, vy and v, can have at most two steps in [0,

T].
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Since ani/avi is monotonically increasing in [0, T], the
optimal service strategies are given by (52) with oy determined by
al-li/a\ar:L =0 (i=1, 2) or (53) and {54). Q.E.D.

Theorem 3 states that, when the market is rising, a firm's
optimal service strategy is to start service at its budgetary level
some time after the beginning if gy > Nmi/ﬂzo. 1f gy < Nmi/ezo, the
optimal service strategies are not given here. However, we conjecture
that the optimal service strategies in this case are to start service
at the budgetary level some time after the introduction and drop to
zero some time before T.

Theorem 2 and Theorem 3 give the firms' optimal advertising
and service strategies. The optimal strategies depend on the firms’
valuation of their ending market share. In general, a firm’s optimal
advertising strategy is to start advertising at its budgetary level
from the very beginning and its optimal service strategy is to start
service at its budgetary level when its market share reaches a certain
level. If the firm’'s valuation of ending market share is low,
advertising and service are not justified and should be completely
stopped near the end of the planning horizom.

Note that, although each of Theorem 2 and Theorem 3 gives only
one type of the optimal advertising and service strategies, the
results can be combined. 1In the following we use a numerical example
to demonstrate the procedures of finding the optimal scrategies.

Example: ry - 0.4 + 0.001lv 0= v, = 4,

19
r, = 0.45 + 0.002v2, 0= v, s 3,
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fl = 0.02 + 0.005u 0= Uy s 4,

1)
f2 = 0.02 + 0.010u2, 0= u, s 2,
N-1,000, T = 12, m, = 8, m, = 10, g - 10,000, By = 14,000,
It is easy to verify that the conditions for both Theorem 2
and Theorem 3 are satisfied. Then the optimal advertising and
service strategies are determined by (47} and (52), respectively. At
t = 0, we have v, = 0 and u;, = Ui if aui/aui > 0. Letting U - 4, u,
= 2 and v, - 0, we obtain aHi/aui > 0 when t = 0. Therefore the

optimal strategies start with Vi =V, - 0, uy = 4 and u, = 3. These

2
strategles should be changed only if one of BHi/aui and BHi/avi (L -
1, 2) changes sign, By using (42) and (43) for )L (wi) and (26) and
(27) for xg with the strategies above, we obtain that ani/aui =
aHi/aui|t_T > 0 since BHi/aui is strictly decreasing over tiwe and
6Hi/avi = 0 has a unique solution in (0, 12). Solving aui/avi -0, we
get oy - 4,43 and gy = 1.49. Then, at t = 1.49, Firm 2 should start
its service at its budgetary level, i.e., vy = 3 and this strategy
should not be changed since 6H1/av1 Is monotonically increasing.
However the other strategies may change if the corresponding partial
derivative of the Hamiltonian changes sign.

With u;, = 4, u, = 2, vy - 0 and vy = 3, we obtain similarly
that aHi/aui >0 (Li=1, 2) in (1.49, 12] and 8H1/av1 = 0 has a unique

solution in (1.49, 12). Solving 6H1/6vl - 0, we get g, = 4.42, Then

1
Firm 1 should start its service at its budgetary level at t = 4.42 or

vy 4 and this strategy should not be changed according to Theorem 3.
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But the advertising strategies may still change depending on if
aHj_/au1 (L =1, 2) will change sign.
Wich u; = 4, u, = 2, vy - 4 and vy = 3 and following similar
procedures above, we obtain aHi/aui >0 (1«1, 2) in [4.42, 12],

Then the optimal strategies are given by

u’{-a, 0st=<12; u;-z, 0 st= 12;
« 0, 0s ¢t =<4.62, « 0, 0=1¢t=x1.49,
4, 4.42 <t = 12; 3, lL.49 <t =12,

In the above analysis, the budgetary limits of each firm's
advertising and service spending are not treated as control variables.
In many situations, firms’ game may also be very much in determining
their budget in advertising and service. Howevar, the inclusion of
such variables will not change the structure of optimal strategies
given above but creates the interdependency between the budgetary
limits and the time to terminate or start advertising and/or service.
With the results obtained above the problem becomes a static game in

this case.

5.6. Conclusions and Possible Extensions

The model presented In this paper studies the growth of new
repeat purchasing products, which has not been studied adequately in
the literature. Its contribution includes the development of a

diffusion model for repeat purchasing products, taking account of both
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first-time purchases and replacement purchases, and the derivation of
a set of optimal advertising and service policies and strategics for
such products in a duopoly market. The main findings can be briefly
summarized as follows.

(1) For repeat purchasing products, the market will never
saturate unless customers are extremely loyal to the products, which
could nappen only in some special cases, for instance, if the qualicy
level ¢f one producer’s product is extremely high. In more regular
situations, there is always a portion of the potential market that 1is
not buying any product. Thus advertising and promotional activities
are always desirable. This provides an explanation of the common
phenomenon that advertising is always done by producers, no matter how
long they have been in the market.

(2) It is usually demonstrated for non-repeat purchasing
products that the optimal advertising strategy is monotonically
decreasing over time. This strategy, as shown by our study, is
optimal for repeat purchasing products only 1if the quality level of
the products is extremely high. For a regular repeat purchasing
product, the optimal advertising strategy is increasing at the
introductory stage (some period starting from the introduction) and
then decreasing. If competition exists, more advertising should be
done at early stages to protect its market share increase from

competitors’ advertising campaign.
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(3) Optimal service strategies are increasing at the initial
stage and then decreasing or possibly maintaining constant at a
certain level afterwards.

{4) When the control functions are linear in their control
variables, it is possible to solve the game analytically for optimal
strategles. We have solved the problem for optimal advertising and
service strategies when the control functions representing the effects
of advertising and service are linear in their control variables and a
budgetary constraint exists for both advertising and service.

As an early attempt to combine repeat purchasing and the
growth of new products, our model leaves many problems unsolved, which
are possible directions of further research. We assume in the
formulation of our model that customers who leave the market can be
influenced by advertising and word-of-mouth communication as easily as
those who have never bought the product. In fact customers who stop
buying a product are usually more difficult to be influenced by these
factors. Future research might incorporate this fact by
differentiating the susceptibility to advertising and word-of-mouth
communication of different customers. In addition, price is not
considered in this study, although it can be well incorporated into
our medel. It is not only a challenge but also a tough task to study

pricing of repeat purchasing products, especially when competition is

considered,
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APPENDICES

Appendix I: Proof of Theorem 1.

H1 - lexl-ul-vl + (g1+A1)[(1-x)(f1+bxl)-(1-r1)x1+a(1-r2)x2]

+ 2 [(1-%) (£402,)+8(Lxy )% - (1or)x,],  (AL-1)
il = - Nmp+(gptA) ) [£)4bx) -b(1-x)+1er) 44, [£,+b%,-A(1-r )], (AL-2)

Az - (g1+A1)[f1+bx1-a(1-r2)]+A2[f2+bx2-b(1-x)+1-r2]. (Al1-3)
Since optimal strategies maximize Hl at every instant, the
first-degree partial derivatives of Hl with respect to uy and L
respectively, vanish, that is,

3Hy/3u; = - 1+ (g+A))(1-x)E, = O, (Al-4)
aul/avl =- -1+ (g1+A1)x1r1 - Azﬁxlrl - 0, (Al1-3)
or

Ap = - g+ /006 ], (A1-6)
'\2 - 1/(ﬁx1r1) + 1/[ﬂ(1-x)f1]. (AL-7)

Differentiating (Al-6) and (Al-7), we obtain

A, = [ifi-(l-x)fiﬁl/{(l-x)zf;1, (A1-8)
iz - (élri+xlr;§l)/(ﬁxfr;2) + 2 /8. (A1-9)

Substituting (Al-6) and (Al-7) into (Al-2) and {(Al-3), we also

get
A - - Nmy + [£)4bxy -b(L-x)+1-x; )/ [(1-x) £, |
+ [fl"'bxz'ﬂ(l-rl) (- 1/(ﬂxlr;)+1/[ﬁ(1~x) f;] l, (Al-10)

iz = [£)#bx;-a(l-x))])/[(1-%) ]



+ [£x+bxy-b(l-x)+1-r, (- 1/(ﬂx1r;)+1/[ﬁ(1-x)fi']l.
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(Al-11)

Equating (Al-8) with (Al1-10) and (Al-9) with (Al-11), with

certain simplification, we obtain (l4a) and (l5a).

Similarly we obtain (14b) and (15b).

Appendix II: Solution of the Market Share Model

The differential equation system becomes
%X - (l-x)f1 - (1-rl)x1 + (1-r2)x2,

xz - (l-x)f2 + (l-rl)x1 - (1-r2)x2,
xl(O) = Xyq>
x2(0) - Xy4-

By adding (A2-1) to (A2-2), we have

X = (L-%) (£ +E,),
dx/(l-x) = (f1+f2)dt.

{A2-1)

(42-2)
(a2-3)
(A2-4)

(A2-5)
(A2-6)

Integrating both sides of (A2-6), with the initial condition

X(0) = xlo+x20, we get

l-x = cW(t),

t
where ¢ = (1-x)5-X,4) and W(t) = EXP[-fo(fl+f2)df].

(a2-7)

By substituting (A2-7) into (A2-1), the state equation becomes

*1 = CE)W(t) - (2-7)-rp)x; + (1-r,)[L-cH(E)].

(A2-8)

t
Let x; = D(£)L(t) in (A2-8) where L(t) = EXP|[-f (2-r;-1,)dr].
0

Differentiating it with respect to t, we obtain
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D(t) - [e£W(EI+(1-1,) (L-cW(e)) |1 L(ey (A2-9)
or
t
D(£) = [ [efW(r)+(1-ry) (L-cW(r)) 1L  (r)dr + 4, (A2-10)
0

where d is an arbitrarily selected constant.
Substituting D(¢) into Xy - D(t)L(t) with the initial
condition xl(O) = X;, We obtain
t
xl(t) - L(eX [ {cf1W(r)+(1-r2)(l-cW(r))]L'l(r)dr+x10|. (A2-11)
0

Similarly we get

t
x,(t) = L(e) ([ [cfzwcr)+(1-r1)(1-cw(r))1L'1(r)dr+x20}. (A2-12)
0

Note that, if the starting time is not zero but ty. We only

need to change the lower limit for all integrations from zero to g

Appendix III: Solution of the Auxiliary Variable System

When fi and r, (L = 1, 2) are constant, the auxiliary system
is

Al - -le + (gl+A1)(1-rl+fl) - 12(1~r1-f2), (A3-1)

Az - - (g1+A1)(1-r2-f1) + Az(l-r2+f2), (A3-2)
with ending condition Al(T) - AZ(T) =- 0,

The engenvalues for the corresponding homogeneous system are

found by letting

1-r1+f1-9 -(l-rl-fz)

-(1-r2~fl) 1-r2+f2-8

-0



177
to be 8, - f1+f2 and &y = 2-r1-r2. The two engenvectors are found by
letting

1-r1+f1-6 -(1-r1-f2)

-(l-rz-fl) 1-r2+f2-6

to be Z{ = (1, 1) and Zg - (-pz, pl), where B - 1-r2-f1, Ky = 1-r1-

Z=20

f2 and T denotes ‘transpose’.,

Therefore the general solution to the homogeneous system is
T 81t 62t
(51+Al, Az) - clzle + czzze . (A3-3)
where ¢y and c, are arbitrarily selected constants.

For the non-homogeneous system, we let
T Elt 02t
(51+A1, Az) - cl(t)Zle + cz(t)Zze , (A3-4)
where cl(t) and cz(t) are to be selected.

Differentiating (A3-4), we obtain
T . ﬁlt . 6
d{(g*Ays A)]7/dE = ¢ (E)Ze © + cp(E)Zpe
.t %

+ ¢ (t)0,2e L ey (t)0,Z,e 2", (A3-5)

2t

Substi.uting (A3-4) into (A3-1) and (A3-2) and simplifying, we
also obtain

d[{g*A1, Ap)]7/dt =(-Nm), 03 +c,(£)8 218 ~ +c,(£)0,2,e © .(A3-6)

Equating the RHS's of (A3-5) and (A3-6), we get a system of

cl(t) and cz(t) as

. Hlt . ﬂzt

cl(t)e - cz(t)pze - -le, (A3-7)
. 31t . 02t

cl(t)e - cz(t)ple - 0, (A3-8)

or
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. -9,¢t
cl(t) - - (Flel/s) e ’ (A3-9)
. -8,t
cz(t) - (le/S)e , (A3-10)
where § = 2-r1-r2-(f1+f2). By integrating both sides of (A3-9) and

(A3-10), cl(t) and cz(t) are found to be

-4.t
ey (E) = [Nmyp /(8,6)]e 1, ey (A3-11)

-gzt .
cz(t) - - [Nm1/(926)]e + o) (A3-12)

where 2 and ¢, are constants to be determined by Al(T) - AZ(T) -0,
The solution to the non-homogeneous system is then found by

substituting cl(t) and cz(t) back into (A3-4) as

gty - lepl/(815)+Nm1p2/(826)+c1e81t-c2p2e82t. (A3-13)
81t 62t
Az - lepl/(OIE)-lepl/(826)+cle +c2p1e , (A3-14)
where ¢y and ¢, are determined by
GIT 82T
lepl/(618)+Nm1p2/(826)+c1e "CoH,e - g, (A3-15)
ﬂlT 92T
lepl/(GIS)-lepl/(826)+c1e +c2p1e -0, (A3-186)
or
-01T
e - [(gl-le/Fl)#l/ﬁle ' (A3-17)
-8,T

¢, = [(Nm/8,-5,)/6)e % . (A3-18)



Chapter Six

Conclusions and Discussions

Game theory models conflict and cooperation in explicit
mathematical forms. These factors usually cannot be modeled by single
decision maker models. Because of the general gaming nature of real
business problems, it is natural to expect game theory to be an
applicable method in Management Science. Indeed, as our survey shows,
it provides better solutions to real business problems in many
situations and has become one of the major analytical techniques in
Management Science.

However, the present form of game theory may be inadequate for
certain problems. One of its shortcomings is the lack of applicable
solution techniques. Despite the extensive discussion on and wide
application of game theory, none of its solution schemes has been
accepted to be absolutely applicable (Palfrey, 1980; Williams, 1988).
Therefore, care should be taken in selecting soluzion concepts.

There is no doubt that game theory has been widely applied in
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management science. Nevertheless some areas such as inventory control
and queueing have not attracted the same amount of attention as others
such as marketing and bidding. This might be due to not only the less
explicit strategic nature of such decision problems, but also the lack
of interest of game theorists. This calls for more attention into
these areas as well as the development of more realistic and then more
complicated game theory models for such decision making problems. In
this dissertation, we have studied a few of such problems. The main

findings and possible extensions are briefly summarized for each

problem as follows.

6.1. The Discount Problem

The discussion on the discount problem in the literature
focuses upon two perspectives. Classical discount models analyze the
buyer’s best reactions to variocus price and quantity discount
schedules provided by the seller. They give the buyer’s best order
quantity (Hadley and Whitin, 1963; Peterson and Silver, 1979; Sethi,
1984). Recently, decision models have also been developed for cthe
seller. These models give the seller's best discount schedules
(Monahan 1984; Rosenblatt and Lee 1985; Lee and Rosenblatt 1986; Dada
and Srikanth 1987).

There are two important factors overlooked in these two types

of models, First, a discount scheme consists of an order quantity and
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a discount term. The order quantity issue is controlled primarily by
the buyer, whereas the discount issue is basically determined by the
seller. A settlement occurs only if one agrees with the other’s
decision and can only be achieved through negotiations between the two
parties. Secondly, in many situations, suppliers provide discount to
attract more demand from their customers. Our research in this thesis
has taken these two aspects of the problem, which have not been
studied adequately in the literature, into consideration. The main
findings are summarized as follows.

(1) If demand is constant, the seller should not provide any
price discount to the buyer and then neither the buyer nor the seller
can gain from discounting. In this case they should resort to either
quantity discount or cooperation which may make both of thsm gain.

(2) If demand increases with discount, price discount may make
both the seller and the buyer gain. However, their gain in this case,
especially that of the seller, ic usually not very significant
compared with the maximum benefit they can possibly obtain.

Therefore, price discount is more likely to be a competitive marketing
strategy of suppliers cather than a tool to improve channel
efficiency.

(3) Quantity discount can be of benefit to both the seller and
the buyer. Especially, it always brings a higher profit to the seller
than a price discount. Thus, the seller should use a quantity
discount schedule instead of a simple price discount whenever it {is

possible. In many situations, quantity discount schedules can be very
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efficient in obtaining the maximum profit the seller and the buyer can
possibly obtain. They can be used not only as a tool for the seller
to increase profit but also as a way of cooperation for both the
seller and the buyer.

This analysis of the discount problem may be extended in the
following directions. First, demand could be stochastic. In this
case, expected values should be used in the computation of payoffs.
Secondly, there might be multiple sellers and/or multiple buyers
and/or multiple products. The research in the second case would be

not only very interesting but alse a tough task.

6.2. The Order Quantity Problem

Of Substitutable Products with Stochastic Demands

The decision model for the classical newsboy problem deals
with a single decision maker who faces a stochastic demand and gives
the optimal order quantity for the decision maker (Hillier and
Lieberman, 1990). Recently this model was extended by Parlar (1988)
into situations of two retailers whose products are substitutable and
having random demands. He introduced the game theoretical approach to
analyze the retailers’ order decisions. It is shown in his study that
there exists a unique Nash equilibrium for the problem and, if one of

the two players acts irrationally to damage the other, the optimal
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(defensive) strategy for the latter reduces to the optimal order size
in the :lassical single-veriod newsboy problem.

In more general situations, there may be more than two
retailers in 2 common market. We have extended Parlar’'s twec-person
game theory model into situations where three or more retailers are
present. The presence of additional players brings about multiple-
direction two-way demand transfers and coalitions between any two or
more players, which can not be dealt with by either one- or two-
decision maker models,

It is shown in our study that there always exists a Nash
equilibrium for the game when the players work independently and act
rationally. If anyone works irrationally to damage the others, the
decision problem for the rational players reduces to that without the
irrational player(s). If a group or all of the players decide to
cooperate, their decisions depend on if side payments are allowed. If
side payments are not allowed, conflict of interest still exists and
the players will determine their order quantities independently. 1In
this case, secure (Nash) strategies always exist for each player. If
side payments are allowed, the players will determine their order
quantities collectively. In either case, all players’ cooperation is

often desirable and feasible.
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6.3. The New Product Growth Problem

In the last two decades, a number of diffusion models have
been developed to study the acceptance level of new products. In
these models, the acceptance level of a new preduct in a given
potential market is represented as a mathematical function of the time
elapsed since its introduction and other marketing mix variables such
as advertising and price. They have been used to forecast future
demand of new products and to derive optimal marketing policies and
strategies concerning advertising, pricing, etc. The analysis has
been restricted to consumer durable products (Bass, 1969; Manajan and
Mullier, 1979; Kalish, 1983; etc.) and the aspect of competition has
been long-avoided (Clarke and Dolan, 1984; Dockner and Jorgensen,
1988).

Our investigation has extended the analysis to repeat
purchasing products in competitive markets. 1In the analysis, we
observe that consumers’ buying behavior of repeat purchasing products
is different from that of consumer durable products. Then, a firm's
effort to maintain high customer satisfaction, which we call service,
is another key consideration for a firm in our study. The main
findings of our study are as follows.

(1) For repeat purchasing products, the market will never
saturate unless customers are extremely loyal to at least omne product.
This could happen only in some special cases, for instance, the

quality level of one product is extremely high. 1In more regular
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situations, there is always a portion of the potential market not
buying any of the products. Thus advertising and promotional
activities are always desirable. This provides an explanation of the
commony phenomenon that advertising is always done by producers, no
matter how long they have been in the market.

(2) For a non-repeat purchasing product, the optimal
advertising strategy is usually monotonically decreasing over time
(Horsky and Simon, 1983; Kalish, 1985). This strategy, however, is
optimal for a repeat purchasing product only if its quality level is
extremely high. For a normal repeat purchasing product, the optimal
advertising strategy is increasing from the introduction for a certain
period and decreasing afterwards. Especially, more advertising should
be done at early stages to protect its market share increase from
competitors’ advertising campaign,

(3) Optimal service strategies are increasing at the initial
stage and then decreasing or Possibly maintaining constant at a
certain level afterwards.

(4) We have solved the problem for optimal advertising and
service strategies when the control functions representing the effects
of advertising and service are linear in their control variables and a
budgetary constraint exists for both advertising and service.

The present research represents only an early attempt to
combine repeat purchasing and the growth of new products. We assume
in the formulation of our model that customers who leave the market

can be influenced by advertising and word-of-mouth communication as
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easily as those who have never bought the product. This limits our
model to the introductory phase of new repeat purchasing products or
situations where the portion of customers leavinz the market is small.
Future research might improve our model by differentiating the
susceptibility to advertising and word-of-mouth communication of
different customers. In addition, price might be considered in the

analysis,

in conclusion, our analysis in this dissertation has shown
that game theory does provide a better understanding for some
Management Science problems. It is not perfect. However, with new
developments in it, more game theory models will certainly be
developed to provide a better representation and generate a better

understanding of real business problems.
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