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Abstract

Biframes and their homomorphisms are the subject of this thesis. Various tra-
ditional notions from topology and frarce theory are extended to this setting: com-
pactness, regularity, normality, zero-dimensionality, Booleanness, coherence, super-
coherence, continuity, supercontinuity and connectedness. The category of biframes
is shown to be complete and cocomplete, and its monomorphisms, epimorphisms
and projectives characterized. Of particular importance are the compactifications
— their correspondence with strong inclusions, the existence of zero-dimensional

ones and of least ones, and their relations to rim-compactness and normality.
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Introduction

Biframes, which were defined by Banaschewski, Briimmer and Hardic in

1983 {10], are simuitaneously generalizations of frames (locales) and of bitopological

spaces.

Bispaces were introduced by Kelly {23, 1963], and have been studied by many
authors since then. We do present results on spatiality where appropriate, but it is

on the relationship with frames that we concentrate.

Frame theory, in one respect, may be regarded as doing topology by making
the open-set lattice the basic notion. (For some of its history, see [22]). This
algebraic approach had its origins in the 1930’s with the work of Stone (for example,
[27, 28]), but frames were only defined in 1957 by Ehresmann (18} (who called
them “local lattices”; C.H.Dowker coined the term “frame”). Frame theory has the
advantage that many theorems which require some axiom of choicein the topological
setting, can be proved constructively in the frame setting. (One might mention
the Tychonoff Product Theorem [20, 29} and the construction of the Stone-Cech
compactification {11].) Often, when the frame and topological situations differ, the
former is better — for example, coproducts of regular frames preserve the Lindelsf

property [17]; products of regular spaces do not.

Before proceeding to an outline of this thesis, we give brief references, for
the interested reader, of work on biframes by other authors which has not been
discussed in this thesis. In [19], Frith defines the concept of a quasi-uniform frame,
and shows that, given the axiom of countable dependent choice, the completely
regular biframes are exactly those with a compatible quasi-uniform structure. Choe
and Chae [15] present adjunctions between categories of convex ordered topological
spaces and biframes and relate them to notions of separation and compactness.
Banaschewski and Briimmer [9] examine the concept of strong zero-dimensionality

for bispaces, and extend it to frames and biframes. In the process they introduce a



De Morgan property for biframes and prove that any zero-dimensional De Morgan

biframe is strongly zero-dimensional.

QOutline

The Preliminaries give basic definitions, mainly about frames, that we assume

in the ensuing chapters.

Chapter 1 defines the categories of biframes and bispaces (BiFrm and BiTop)
and describes the dual adjunciion which relates them. Various subcategories —
those of the compact, the regular, the Stone and the zero-dimensional biframes —
arc introduced, and related to the whole category. Congruences are discussed, and

the congruence biframes of bilattices characterized.

In Chapter 2 we give further categorical information about BiFrm — its
completeness and cocompleteness, its monomorphisms and epimorphisms. A for-
getful functor from BiFrm to the square of the category of sets provides a partial

substitute for the non-existent free biframes.

Compactifications are of central interest in this thesis. In Chapter 3 we
describe the isomorphism between the compactifications and the strong inclusions
of a biframe; we discuss the zero-dimensional compactifications and how one can
recognize them from their strong inclusions; and give partial results on the tricky

question of least biframe compactifications.

Chapters 4 and 5 proceed more or less in parallel — coherence and super-
coherence, relations to lattices and to semilattices, continuity and supercontinuity.
However, we emphasize spatiality in Chapter 4 and discuss projectivity only in

Chapter 3.

Chapter 6 describes the compact, regular coreflection of a normal, regular

biframe, provides a Urysohn Lemma in this context and shows that any regular,



Lindel6f biframe must be normal.

In Chapter 7 the notions of rim-compactness and of perfectness of compacti-
fications are extended to the biframe setting, A II- -compact basis for a rim-compact

biframe always produces a strong inclusion, and hence a compactlﬁcatlon of the
biframe in question,

The Booleanization of a biframe is given in Chapter 8. We discuss several
properties of biframe homomorphisms, particularly their behaviour with regard to

the pseudocomplement, in an (as yet incomplete) search for appropriate morphisms
in the study of Boolean biframnes. ) ‘



Chapter 0

Preliminaries

Our main reference for information on frames is {21}, and on category theory, [24].

For topology, any introductory text will do — [14] is an example.

The Boolean Ultrafilter Theorem, which states that any non-trivial Boolean
algcbra has an ultrafilter, is a choice principle strictly weaker than the Axiom of
Choice. Results which require its use are indicated by the initials (BUT).

We draw the attention of the reader to the list of category names and page

references in the appendix {on page 86).

0.1 Frames

A frame is a complete lattice L in which the distributive law z AVY = Vyer Ay
holds for all 2 € L, ¥ € L. A frame homomorphism, or frame map, is a set
function between frames which preserves finite meets and arbitrary joins (and thus
also the top (e) and the bottom (0) of the frame). The category of frames and frame
homomorphisms will be written Frm. It is co:nplete and cocomplete. (Johnstone

(21] works to « large extent with the dual category of Frm — the category of locales
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.— but we prefer the somewhat more algebraic approach given by Frm.)

A frame mup h : L—M is called dense iff 2(z) = 0 implics = = 0 for all
z € L. It is called codense iff A{(z) = e implies z = e for all z € L.

0.2 Topological Spaces

The category of topological spaces and continuous maps will be denoted Top. There
1s 2 dual wdjunction between it and the category of frames, given by the following

contravariant functors.

¢ O : Top—Frm assigns to each topological space its frame of open sets and
to each continuous function the frame map taking pre-images with respect to

that function.

e ¥ : Frm—Top can be expressed in a variety of ways, of which we shall use

these two:
For h: L-M in Frm,

1. ©L = the space of all frame homomorphisms ¢ : L—2 with open sets
To = {€] &(a) =1} (2 denotes the two-point frame),

2 h = composition on the right with h, or

2. ¥L = the space of all completely prime flters P of L with open sets
L. ={P| a€ P},
Zh = taking pre-images with respect to k.

The fixed elements with respect to this adjunction are called sober spaces

and spatial frames, respectively.
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0.3 Subframes, congruences and nuclei

A subframe of a frame I is a subset that is closed under the finite meet and arbi-

trary join of L.

A congruence on a frame L is an equivalence relation on L that is a sub-
frame of the product Lx L. We usually denote congruences by Greek letters. The set
CL of all congruences of a frame [ is closed under arbitrary intersections, thus forms
a complete lattice; in fact, a frame, with A=, e =L x L and 0 = {(z,z)| z € L}.
The correspondence is functorial, with Ch(6) being the congruence generated by
(h x h)[f], for any h : L—>M and € a congruence on L. Of special interest are
congruences of the form V, = {(z,y) € L x L| 2 Va = y V a} (the congruence
generated by the pair (0,a)) and A, = {(z,y) € L x L z A a = y A a} (the con-
gruence generated by the pair (a,¢)), for a € L. They are complements in CL, and
{Val @ € LYU {A.] a € L} generates CL. Furthermore, the map V : L—CL by
V(a) = V, is the universal frame homomorphism among those with image contained

within the sct of complemented elements of the range frame.

Congruences may equally well be defined for (bounded) distributive lattices,
as equivalence relations that are sublattices of the product. The set of congruences

again forms a frame; in fact, a Stone frame (for the definition of this, see Section 0.5).

A nucleus on L is a closure operator that preserves binary meet. There is
a one-one correspondence between the set of nuclei and the set of congruences of a

frame (via the fact that the kernel of a nucleus is a congruence).
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0.4 Downsets, upsets and ideals

For any elemert z in a partially ordered set X, we write |z = {y € X| y < z} and
tz = {y € X| y = z}. A subset Y of X will be called a downset if z<y,y €Y
implies z €Y, and an upset if 2z > y, y €Y implies z € Y.

One may define a functor D from the category of meet-semilattices to that
of frames, by letting DA be the frame of downsets of 4, and Dh give the downset
generated by the image of h.

An ideal of a frame (or a distributive lattice) is a downset that is closed

under finite joins; a filter is an upset that is closed under finite meets.

The functor J from the category of (bounded) distributive lattices to frames
is given by letting J A be the frame of ideals of A and D/ giving the ideal generated
by the image of h.

Analogous definitions may be used to define functors D : Frm—Frm and
J :Frm—Frm.

0.5 Separation and covering properties

The following terminology has been used to describe frames. In this section, L will

denote a frame, and a, b,c. .. elements of L.

o Regular frames. We write a< b (and read ‘a is rather below ¥) iff there
exists ¢ € L such that aA¢c = 0 and bV ¢ = ¢. Then L is regular iff
a=V{bl b=< e} foralla € L.

e Compact frames. An element ¢ € L is called compact iff, whenever
¢ < VX for some X C L, it follows that ¢ < V F for some finite subset F C X.
Then L is called compact iff ¢ € L is compact.
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¢ Zero-dimensional frames, Stone frames and Boolean frames.
Every element a € L has a pseudocomplement given by
a* =V{blbAa=0}. Lis called BooleaniffaVa" =¢ for alla € L, and
zero-dimensional iff it is generated by such a. A Stone frame is a compact,

zcero-dimensional frame.

e Coherent frames.
L is called coherent iff the set of all its compact elements forms a sublattice
generating it. The morphisms used in the category of coherent frames are

those that preserve compact elements.

¢ Continuous and stably continuous frames.
The relation < on a frame is given by: a € b (‘a is way below &’) iff, whenever
b < VX for some X C L it follows that ¢ < \/ F for some finite ' € X. Then
L is called continuous iff a = \/{b| b « a} foreach @ € L. A compact element
is then one which satisfies ¢ « ¢. Furthermore, a frame is stably continuous
iff it is continuous and the relation < is closed under finite meets (including
the top) of L. The morphisms used in the category of stably continuous frames

arc those which preserve <.

¢ Supercoherent and stably supercontinuous frames.
The relation <« is given by: a<b iff # < Y X for some X C L implies that
a < z for some z € X. An element ¢ € L is called supercompact iff c<e.
L is supercoherent iff every element is a join of supercompact elements,
and finite meets preserve supercompactness. L is stably supercontinuous
if @ = V{b| b<ga} for each a € L, and < is a meect-subsemilattice of L x L.

¢ Normal frames.
L is normal iff, whenever a Vb = ¢ in L, there exist u,v € L such that

rAv=0andaVu=e¢=bVuv.



Chapter 1

Basic definitions and constructions

1.1 Biframes and bispaces

The definition of a biframe that we present here, was first given in the 1983 paper

[10]). The results of this section are also taken from there.

Definition 1.1 1. A biframe L = (Lo, L,, L,) is a triple in which Lo is a frame
and Ly and L, are subframes of L which together generate it. This means
that any element a of Ly can be expressed as an arbitrary join of finite meels
of elements of Ly U Ly, or equivalently, a = V, x4 A ya for some z, € L,
Yo € Ls.

2. A biframe homomorphism (or, simply a biframe map) h: LM between
biframes is a frame homomorphism from Ly to My for which the restrictions

hiL;: Li=M; (i =1, 2) are also frame homomorphisma.

3. The category of biframes and their homomorphisms we denote by BiFrm.
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Terminology

e We refer to Lo as the total part of L, and L, and L, as its first and second

parts.

e The notation L;, L will be reserved for referring to the first or second parts
of L,soik=1,2,i#k.

o The restrictions of a biframe map h : L—M to its various parts will be
written hg : Lo— My, hi : Liy— M;, or equivalently, h|Lo, i|L:. If no confusion

can result, we may also simply write h : Lo— My, h: Li—M;.
The following notions about biframe maps will come in useful:

Definition 1.2 The biframe map h: L—=M will be called

e dense iff hy is dense, that is a = 0 whenever h(a) =0, for anya € Ly
s codense iff hg is codense, that is @ = e whenever h{a) = e, for any a € Lo

e onto iff ; and hy are both onto.

It is clear that a dense (respectively, codense) biframe map has first and
sccond parts dense (respectively, codense), and that an onto biframe map has its

total part onto.

The functor D : Frm~BiFrm given by D(L) = (L, L, L) (and the obvious
action on maps) is an embedding of Frm into BiFrm, and allows us to regard

biframe notions as extensions of frame notions. The left adjoint of D is given by

T : BiFrm—Frm, T(Ly, Ly, Ly) = Ly and Th = h|L,.
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Definition 1.3 /23]

1. A bispace (or bitopological space) X = (|X|,U,,U3) is a triple consisting of
a set |X| and two topologies U, and U, on 1 X].

2. A bicontinuous map f : XY between bispaces X = (|X|,U;,U;) and
Y =(|Y|,V1,V2) is a function between their underlying sets for which
F (XL U)—=(Y], V) is continuous for i =1,2.

3. The category of bispaces and bicontinuous maps will be called BiTop.

The well-known dual adjunction between topological spaces and frames may

be extended to one between bispaces and biframes, (We use the same notation for
both.)

¢ The contravariant functor O : BiTop—BiFrm is defined as follows:
For X = (|X|,Uy,Uz), OX = (0X,0,X,0,X) = (Ur V Uz, Uy, U) where
Uy V U, is the coarsest topology finer than U, and U,.
For f: XY, Of : OY =0X is given by Of(U) = f~'(U).

¢ The contravariant functor & : BiFrm—BiTop may be described in various
ways, of which we use the following two. For L = (Ly, L, L),

EL = (|BLol,{Zz:2 € Ih},{Ey:y € Ly}) and for h: L=M, Th: EM—EL
are given by

1. |Z Lo} is the set of all completely prime filters in the frame Ly and
Zo={P€|ELo|:a € P} for a € L.
Zh(P) = L{P).

z

2. |ZLo| is the set of all frame homomorphisms € : L—2 and

Za = {£] &(a) =1}.
Sh(€) = €.h.
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e The natural transformations are:
For a bispace X, ox : X—E0X sends z € |X| to the filter of open neigh-
hourhoods of z in the topology JpX.
For a biframe L, oy : L—OXL sends a € Ly to &,.

Proposition 1.1 The contravariant functors O : BiTop—BiFrm and
L : BiFrm—BiTop are adjoint on the right with respect to the adjunctions
ox : X—=3S0X aend o : L-OLL.

Definition 1.4 1. A bispace X is sober iff the map ox : X —>ZOX is a BiTop-

wsomorphism.

2. A biframe L is spatial iff the map o, : L-OZL is « BiFrm-isomorphism.

The dual adjunction between O and T restricts to a duality between the sober
bispaces and the spatial biframes, and this duality is the largest one coutained in

the given dual adjunction.

Proposition 1.2 1. The bispace X = (|X|,U1,Us) is sober iff the topological
space (| X|,U; VU3 is sober.

2. The biframe L = (Lo, L1, L) is spatial iff the frame Lq is spatial.

1.2 Compactness and regularity

The following definitions and results are also taken from [10]. The notions of com-

pactness and regularity for frames were defined in Section 0.5.

Definition 1.5 1. Let L = (Lo, Ly, Ly) be a biframe. For z,y € L;, we write
r=<; y iff there cxists c € L (i # k) such that z Ac=0andyVe=rc.
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2. L is called regular iff r =V z(z € L;, 2<; z) for all v € L; (: = 1,2).

3. A bispace X is regular iff the biframe OX is regular.

R.emarks

¢ If (Lo, L1, L,) is regular, then Lg is a regular frame.
¢ The image of a regular biframe under a biframe map is again regular.

* A bispace X is regular iff, whenever z € U for some U € O; X, therc exists
V € 0, X such that z € V and the Oy X-closure of V is contained in U (i # k).

Definition 1.6 1. A biframe L = (Lo, L, L,) ts compact iff Ly is a compact
frome.

2. A bispace X will be called compact iff OX is a compact biframe.

3. A bispace X = (JX|,Uy,U3) will be called Tp iff (|1X|, Uy VUS) is a Ty space.

Definition . The full subcategory of BiFrm consisting of the compact, regular
biframes will be denoted KRBiFrm.

Proposition 1.3 (BUT) Under the duality induced by O and T, the compact, reg-

ular biframes correspond to the compact, regular, Ty bispaces.

The result that the compact, regular biframes are coreflective in BiFrm is
also given in [10]. We present it in detail here because we shall need the functors
constructed later, and because it is an important example of biframe compactifica-

tions, which we study in more detail in a later chapter.
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Lemma 1.1 Any biframe has a largest regular subbiframe RL. This defines a
coreflection functor R from BiFrm to its full subcategory of reqular biframes.

PROOF. Suppose M C L is generated by the regular subbiframes R, C L. Then
cach « € M; is a join of elements & A ... A b,, by € (Ra)i (some «). Suppose
by = V., 21y, where z, € (R,): and z,<; b, witnessed by z,, A 2z, = 0 and

biVzy, =e 2ty € (Ro)k (k5#17). Then by A... Aby = Vzyoy A ... A Ty, where
(ZTimy Ao ATu YA (21, V..V 2y, ) =0and (i A...AD) V(21 V... V2o, ) = &
Hence M is a regular biframe. The coreflection property then follows from the fact

that the image of a regular biframe is regular. I

In the next definition we use the same notation, namely 7, for the functor
taking ideals, whether of frames or biframes. The context should make clear which

1s meant.

Definition 1.8 The functor J : BiFrm—BiFrm is given by the following:
J Lo denotes the frame of ideals of Ly. Then

(TL)i ={J € TLo| J is generated by J N L;}

(T L) = the subframe of J Lo generated by (JL), U (T L),.

For maps, Th: JL—-JM is Jh{J) = the ideal generated in (T M)y by the
image h|J].

Taking joins of ideals gives a biframe map JL—L (since J € (JL); implies
that \VJ € L;), which we restrict to 7, : RFL—L.

Lemma 1.2 For a compact, reqular biframe L, 7p, : RIL—L is an isomorphism.

ProoOr.  Consider the function j : L—J L given by j(a) = {z € Lo| < a}. Now
J(a) is an ideal, and we check that a € L; implies that j(a) € (J L);: Take z € j{a),
a=Vy(y=ia)sozAc=0,Vy(y=:a)Vc=efor somec € L;. Compactness gives
a y for which § V¢ = e, §<; a so that z< § € j(a) N L;. Thus j(a) is generated
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by j{a)N L;. Compactness and regularity of Lg show that j : Lo—(JL)a is a frame
map. Since the image of a regular biframe is regular, we can regard J as a biframe
map j : LoRJL. Now 7..j is the identity map on L by the regularity of Lg.
Further, 7 : (RJ L)o— Lo is codense (by compactness of Ly), hence one-one, and

onto, by the above. Hence 74, is a biframe isomorphism. |

Proposition 1.4 The compact, regular biframes are coreflective in BiFrm, with
coreflection maps 1 : RIL—L.

PROOF. Let h : M—L be a biframe map, and M be compact, regular. By the
previous lemma and the naturality of 7, we may writc h = 7. R h.ri!'. Uniqueness
of this factorization follows from the corresponding frame fact: Let i = 74, g for some

g: M—>RJL and consider the following frame diagram.

KM, ™ 7L Kig
N _ S
RITh

Here x4, a1, are join maps, and i;,, 15 are inclusions. We obtain

iL.g = th.n;,i, and hence ¢ = RJ h.ry,. - i

Remark

The definition of J used in [10] was slightly different to the one above.. It used
(T ={J € JLo| VJ € Ly)

(FL)o = the subframe of J L, generated by (7 L), U (7L)2.
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Certainly (JL); € (T L):.

J and J nced not coincide, even for regular biframes, as the following example
shows:

Ly = all open subsets of the real line, R

L, = all open downsets

L, = all open upsets

For UV € £;, U<; Viff U C V, so L is a regular biframe. Let J be the ideal
generated by all open intervals of finite length. Then VVJ = R, but J contains no
downsets nor upsets. Thus VJ € £; (i =1 or 2) but J is not generated by J N L;,
because J N L; = {B}.

1.2.1 Connectedness and the compact, regular coreflection
For a discussion of the frame notions on which this section is based, see [1].
Definition 1.9 For a biframe L,

o we call ¢ € Ly a connected element iff whenever c =2z Vy, 2 Ay = 0 for

some x € Ly, y € Ly, it follows thatc =z orc =y,

o and we call L a connected biframe iff ¢ € Lg is connected.

In the following, 2 as usual denotes the two-element biframe; 4 denotes
the biframe with total part the four-element Boolean algebra {0, a, b, €}, first part
{0, e, e} and sccond part {0,5,€).

Lemma 1.3 A biframe L is connected iff each homomorphism 4— L factors through

the unique map 2— L.

PROOF. (==) For any biframe map h : 4—L, h(a) V h(b) = ¢, h(a) A h(b) = 0 and
h(a} € Ly, h{b) € L,. Since ¢ € Lo is connected, h(a) = ¢ or h(h) = e and we obtain
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the desired factorization by defining h : 4—2 by A(a) = e or k(a) =0, respectively.
(<) SupposezVy=e,zAy=0and 2 € L, y € L. The map k : 4L defined
by h{a) = z and h(b) = y factors through 2—L,soz =eory =e. |

Lemma 1.4 Any dense biframe homomorphism h : M— L reflects connected cle-
ments, that is, h(c) € L connected implies ¢ € M connected. In fact, it suffices for
hIM, and h|M; to be dense.

PROOF. LetzVy=candzAy=0forz € M;, y € M. Then h(z)V h(y) = h(c),
h(z) A h(y) = 0 and h(z) € L;, h(y) € L. Since h(c) is connected, h(z) = h(c) or
h(y) = h(c), so h(y} =0 or h(z) =0, and by densenessy =0 orz =0; so z = ¢ or
y=c . |

Proposition 1.5 A biframe is connected iff its compact, regular coreflection is con-

nected.

PROOF. Let 7: M—L be the compact, regular coreflection of L. If L is connected,
so is M, since 7 is dense. Conversely, assume that M is connected and consider any
h : 4—L. The biframe 4 is compact, regular, so the universal property of 7 gives
f:4—M with 7.f = h. Since M is connected, f : 4—M factors through 2— M, so
h : 4—L factors through 2— L. Thus L is connected. 1

1.3 Zero-dimensional and Stone biframes

The following notions and results can be found in [4] and [9]. We repeat the con-

struction of the functors we shall use later, but omit proofs of the theorems.

Definition 1.10 1. For z € L;, we denote by z=* the largest y € Ly for which
zAy=0; thatis, 2* =Vz2(z Az =0, z € Ly).
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2. A biframe L will be called Boolean iff zvVz* =¢e forallz e LyUI-
We uote that whenever z V z°* = ¢ for z € L;, =* is the complement of z in
Lo, and z* € L.

3 A biframe L i3 zero-dimensional if and vnly if each L; is generated by those

z € L; satisfying z V z° = e.

4. (e} A compact, zevo-dimensional biframe will be called a Stone biframe.

(b) The full subcategory of BiFrm consisting of the Stone biframes will be
written StBiFrm.

5. (a) A Boolean bilattice B = (By, By, B,) is a triple in whick By is a
Boolean algebra, B; and B, are sullatiices of By such that By is generaied
by By U B, and an element of By is in B; if and only if its complement
s i By (1 # k).

(b) The homomorphisms of Boolean bilaitices are the Boolean homomor-

phisms between their total parts that preserve the two specified sublatiices.

(c) The resulting category will be written BooBiLatt.

For a correspondence between Stone biframes and Boolean bilattices we con-

sider the following functors:

e The Boolean part BL of a biframe L is the bilattice whose i-th part is
(BL); = {z € Li| xV 2° = e} and whose total part (BL) is the sublattice of
Ly generated by (BL), U(BL),.

o Theideal biframe J A of a Boolean bilattice A has total part (7 A)o the ideal
frame of A¢ and i-th part (JA); = {J € (FA)o| J is generated by J N 4;}.

{This is the same notation as that used for the ideal biframe functor from BiFrm

to BiFrm in Definition 1.8: "he context should suffice to prevent corfusion.)
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Proposition 1.6 The categories of Stone biframes and Baclcan bilattices are equiv-
alent, by the functors B and J. I SR

The natural transformations are ay : A~BJ A by a,‘(n) =la (for bilattices
A) and o1, : TBL—L by the map taking joins of ideals (for bifr\-a.mcs L)

Proposition 1.7 The Stone biframes are coreflective in BiFrm, with coreflection

maps oy, 1 JBL—L by taking joins.
Definition 1.11 Let X = (|X|,U,,U,) be a bispace.

1. X s pairwise Hausdorff iff any two unequal points can be separated by

disjoint open sets, one of which is in Uy and the other in Us.

2. X is pairwise zero-dimensional iff each U; is generated by those U € U;
for which there exists V € Uy, disjoint from U, satisfying YUV = X.

3. X is Boolean iff it is compact, parrwise Hausdorff and patrwise
_ s 1 r

zero-dimensional.

Proposition 1.8 (BUT) The category of Boolean bispaces is dually equivalent to

the category of Boolean bilattices.

Proposition 1.9 (BUT) The Boolean bispaces are reflective in BiTop.

1.3.1 Compact, regular biframes versus stably continuous

frames

An interesting connection between the compact, regular biframes and the stably
continuous frames (for unfamiliar definitions, see Section 0.5) was given in the paper

8|, which presents the following category equivalence.
g q
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o F: KRBiFrm—StContFrm is given by taking first parts, that is, FL = I,
and Fl = hy.

s G :StContFrm—KRBiFrm needs these definitions.
A filter F in a frame L is called Scott open iff, whenever V D € F it follows
that D N F # B, for any updirected D C F. (D is updirected iff whenever
dy, d3 € D there exists d3 € D such that d; < d3 and d; < d3.) For stably
continuous frames, the set of all Scott open filters forms a (stably continuous)
frame. Let Ar = VA.(a € F) for any Scott open filter ¥, Then define
GL = (Lo, L1, L2), where
Ly ={Vs aelL}
Ly = {Ap| F is a Scott open filter on L}
Lo = the subframe of CL¢ generated by £, U Ls.
For any h : L—M between stably continuous frames, Gh : GL—GM is given
by the restriction of Ch : CL—CM. (See Section 0.3.)

o The functor F' induces a right adjoint equivalence between KRBiFrm and
StContFrm. It has inverse G.

We do not pursue this equivalence any further, other than to note that the
following equivalences are contained in it. (For the equivalence concerning the Stone

biframes, see {4].)

KRBiFrm 2 SiBiFrm 2 KBooBiFrm
F||G

StContFrm 2 CohFrm 2 CFrm

where CohFrm denotes the coherent frames (see Section 0.5), KBooBiFrm de-

notes the compact, regular, Boolean biframes and CFrm stands for those frames
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in which every element is compact.

There certainly are non-finite frames in which every element is compact: for
example, the cofinite topology on an infinite set, or a dually well-ordered set. Thus
the compact, Boolean biframes need not be finite. This contrasts with the fact that,

under the assumption of the Boolean Ultrafilter Theorem, every compact, Boolean

frame is finite.

1.4 Congruences

1.4.1 Congruence biframes of biframes

The congruences of a frame were defined and discussed in Section 0.3.

Definition 1.12 The congruence biframe CL = (CoLo,C1Ly,C2L3) of a biframe
L is given as follows: C;L; is the subframe of CLg (the frame of congruences of Lo)
generated by {V.| z € L;i} U {A,] y € Li} (i # k) and CoLg is the subframe of CLy
generated by C;L; U CoL,.

The function V = V¥ : LoCL given by V(a) = V, for all « € Ly, is a
biframe embedding. It is also an epimorphism in BiFrm, since V : Lg—CoLg is
an epimorphism in Frm (see Proposition 2.2): if f.V, = ¢.V_ for all z € L;, then
fBz = g.; forall z € L;, since frame homomorphisms preserve complements, and

CoLo is generated by congruences of this form, so f = 4.

The correspondence L—CL yields a functer C : BiFrm—BiFsm. For
h: L—M, the map Ch: CL—CM is given by Ch(8) = congruence on M, generated
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by (I % h)[6). Since Ch(V;) = Vz) and Ch{Dz) = Qu(ey for € Ly, Ch is a biframe

homomorphism.

We recall from Definition 1.10 that a biframe L is called Boolean if every
z € L; has a complement in Ly, and that complement isin L (z # k). The Boolean
part BL = (BoLy, B1L,, B:L,) of any biframe L has
B;L; = {z € L;| z has a complement in Lo, and that complement is in L;} and
By L, the sublattice of Ly generated by ByL; U BaLs.

Lemma 1.5 V : L—CL is an isomorphism if and only if L is Boolean.

PROOF. V is an isomorphism

iff the first and second parts of V are both onto

iff for any z € L; there is a y € Ly with V, = A,

iff for any x € L; thereis a y € L; with y the complement of z in L,. |

Proposition 1.10 V : L—CL is the universal biframe homomorphism among those
h: L—M with Image(h) C BM.

PROOF. Suppose h: L—M is given with Image(h) C BM. Consider the diagram

L
[ —Y cL
h Ch

AV M

M VM(M)4+——e CM

We check that Ch(6) € VM(My) for any 6 € CoLg: For z € L;, Ch(V.) =
Vi) € VM(M;) and Ch{A:) = Apur) = Vi) € VM(M,) since Image(h) € BM
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(here h(z)* indicates the complement of h(z)). Since VM ; M—VM(M) is an
isomorphism, we may define & : CL—-M by h = (VMY=1.Ch. Uniqueness of &
follows from V% being epic. 1

1.4.2 Congruence biframes of bilattices

For a definition of a bounded distributive bilattice, we refer the reader to Def-
inition 4.2, The congruence biframe CA = (CAg,C1A41,C242) of a bilattice
(Ao, A1, A,) is given as follows:

C;A; is the subframe of C A (the frame of congruences of the bounded distributive
lattice Ao} generated by {V.|z € Ai}U (A, y € Ak} (i # k). Since CAg is gener-
ated by C14, UCy4,, CA is a biframe. It is compact (since V is finitely generated)
and zero-dimensional (since, for any z € A;, V: and A, are complements in CAop).
We recall that a bilattice (A, Ay, A2) is called Boolean if each = € A; has a com-
plement in Ag, and that complement is in 4y (i # k).

Lemma 1.6 For any Boolean bilattice B, CB is isomorphic to JB.

PROOF. Define f : CB—J B by f(6) = 6{0] = {a € B| (0,a) € §}. For any 8 € CB,
8[0] is certainly an ideal of By; if 8 € C;B;, then J = 8{0] is generated by J N B; :
Since B is Boolean, 8§ = VV( (0,z) € 8, z € B;) = YV, (0,z)ed, ze By). If
y € 9[0], (0,y) € V. for some z € B; such that (0,z)€ 8. Soy<ze JNB;, as
required.

Now f preserves and reflects inclusion, and is one-one. We show it is onto: For
J € JiBi,let 6 =UV,{z € JNB,;). Then 8 € C;B; and 0{0] = J. Hence f is a
biframe isomorphism. |

Proposition 1.11 The CA, A € BiLatt, are esactly the Stone biframes.

PROOF. It was already noted above that each CA is compact and zero-dimensional.
Conversely, if L is a Stone biframe, L & JBL = CBL. |
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1.4.3 Congruence biframes of frames

There is a natural way of regarding the congruences of a frame as a biframe (see

[9)).

For a frame L, the congruence biframe CL has

(CL)o = CL, the frame of all congruences of L

(CL), = {V,| a€ L}

(CL); = the subframe of CL generated by {A,| a € L}.

This congruence biframe is zero-dimensional, in fact strongly zero-dimensional,

in the sense of [9).
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Some categorical aspects of

biframes

The category BiFrm is complete and cocomplete. We describe its products, co-

products, equalizers and coequalizers.

Products The product of the biframes L, = (Lo*,L,*,L,%), a € I, is
given by [laerLa = ([TaLo®, [TaLi®, [ToL2"), with projection maps determined by
the frame projections pg : [[,Lo®— Lo”. (We note that [],Le" is generated by
[ToaLr® U L")

This has the universal property of a categorical product:
Given biframe maps h, : M— L, we obtain a unique frame homomorphism
e : Mo—]],Lo* for which p,.e = h, for each a € I. For z € M;, Pa-¢(z) € L for

all o, so e(x) € [1,L;%; hence e : M—T],L? is the unique biframe map required.

Equalizers Given biframe maps f,g : L-M, let K; = {z € Li| f(z) = ¢(z)}

(this is certainly a subframe of Lo) and let Ky be the subframe of Ly generated by

25
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K, UK;. Then h : K—L is the equalizer of f and g, where h is the natural em-
bedding map. Certainly f.h = ¢g.h. Suppose ! : N—L satisfies f.I = g.l. Then
I{N;) € K;, so l(Ng) C Ky and [ factors via h. The factorization is unique because

h is an embedding.

Example Clearly Ky C {z € Lo| f(z) = g(z)}. We give an example to show
that these two sets are not necessarily equal. Let
Ly = all open subsets of the closed unit interval E
L, = all open downsets
Ly = all open upsets
Let U be an open interval with end-points different from 0 and 1. Let f: Lo— TU
be given by f(W) = W UU, and finally let (Mg, M, M2) = (TU, f(L1), F(L2)).
Then we have a biframe map f : L—M by f(W) =W UU. Now L, is spatial, so
there is a frame map ! : £—2 such that [{(U) = 0. Composing this with the unique
map 2— M, we obtain a biframe map ¢ : L—M.
It (W) = f(W) = U for some W € Ly, then WUU =U, thatis W C U. If
g(W)= f(W)=E, then WUU = E. So {W € Ly| f(W) =g(W)} =
{W € Lo| W CUorWuUU = E}. However K; = {W € L] (W) = g(W)} =
(¢, E}.

Coproducts For the biframes L, = (Lo*, L%, L2°), a € I let

Io t Lo® —@gse1Lo™ be the (frame) coproduct injections. @, L, has @,Ly* as total
part, and the subframe of @,Lo" generated by U, ho(I:*) as i-th part. @, Lo is
a biframe, because @,Lo” is generated by U,ha(Le®), and the h, clearly become
biframe maps.

This construction has the universal property of the categorical coproduct:

Given f, : Ly— M, we obtain a unique g : @, Lo — My for which g.h, = f,, a € I.
By the definition of the first and second parts of @, L., ¢ is a biframe homomor-

phism.
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Coequalizers For f,g: L—M, let h: My— K, be the coequalizer, in Frm,
of f,g : Lo—Mo. Then h : M—K is the coequalizer of f and ¢ in BiFrm,
where K = (I, h(M1),h{(M,)). 1 : M—>N satisfies L.f = lLg, there exists

a unique k : Ko—Ng for which k.h = I. Further, & is a biframe map because
K(A(M3)) = I(M;) C N;.

The initial object and terminal object in BiFrm arc (2,2,2) and (1, 1, 1)

respectively (where 2 and 1 are the two- and one-point frames).

Pullbacks and pushouts Given h: L—N and k: M— N, let
Ki = {(z,y) € L; x M;| h(z) = k(y)} and Ky the subframe of Ly x M, generated
by Ky U K. Then the pullback of h and k is given by K = (I, K, K3) with the
obvious restrictions of the projection maps.
The example in the section on equalizers may be adapted to show that in general
Ko # {(2,) € Lo x Mo| h(z) = k(y)).
To obtain the pushout of v : L—»M and v : LoN, let s : M>M@N and
t: NoM@ N be the coproduct injections and let h : M @ N—P be the coequal-
izer of s.u and t.v. Then h.s : M—P and h.t : N= P give the required pushout.

The next propositions describe the monomorphisms and the e¢pimorphisms
in BiFrm.

Proposition 2.1 ¢) h is monic in BiFrm iff b, end h, are both onc-one.

b) ho one-one implies that h is monic, but not conversely.

PROOF. a)(==) Suppose h: L — M is monicin BiFrm and k,{: N — L,

are frame maps for which hk = A, l. Then the biframe maps
k,l:(N,N,2) — (Lo, L1, L) satisfy hk = ki, and so k = I. Hence h, is monic in

Frm, and so one-one. A similar argument shows h; onc-one.
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(=) If k,l: N — L are maps in BiFrm for which hk = hl, then k; = [;
and k; = [, and, since Ny is generated by Ny UN,, k=L

b) The first claim is clear, from (a). For the second, consider the following
example: let £o = all open subsets of the real unit interval, £, = all its open
downsets, £, = all its open upsets and My = all open subsets of the rational unit
intérval, M, == all its open downsets, M, = all its open upsets. Then the biframe
map h : £ — M given by taking intersections with the rationals has k; and A,

one-one, in fact isomorphisms, but kg is not one-cone. |

Proposition 2.2 o} h is epic in BiFrm iff hy is epic in Frm.

b) For any L in BilFrm, heving hy and h, onto implies that hq is onto, which

implies that h is epic, but neither of these implications can be reversed.

PROOF. a) This holds since the functor T : EiFrm — Frm which takes

total parts, is faithful and thus preserves and reflects epimorphisms.

b) These two implications are easily checked. The identity function
h: (N,N,2) — (N,N,N), N # 1, 2, has ko onto but h; not; the embedding
L — CL of a biframe into its congruence biframe is epic, but need not have total

part onto. |

In the next result we shall use the characterization of epimorphisms of frames
described in [25] to give an analogous characterization for biframes. On page 21 we
defined the ¢pic embedding V : L—CL of a biframe into its congruence biframe.
For ordinals a, we define C.{L) by the following (cf. [25]):

Co(L) =L

Can(L) = C(Ca(L))
CA(L) =lim{Ca(L) : @ < A} for limit ordinals A
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The map V, : L—C.(L) is then defined by the obvious composition;

C» becomes a functor and V, has total part one-one.

Proposition 2.3 A biframe map h : L—M is an epimorphism iff there is an ordi-
nal a for which V,(Mg) C Coh({CoaL)o).

PROOF. This is easily verified using the fact that maps in BiFrm are cpimor-
phisms iff their total parts are epimorphisms in Frm, and the characterization of

[25] mentioned above. |

In the important subcategory consisting of the compact, regular biframes
we know a little more about the monics. We recall (sec [3]) that in the category
of compact, regular frames, a map is monic iff it is one-one iff it is dense iff it is

codense.

Proposition 2.4 For h: L—M in KRBiFrm, we have that (1) implies (£) and
(1) implies (3), where

(1) ho is one-one iff hy and hy are both one-one.

{2) hy and hy are both dense iff ) and hy are both codense.

(3) h is monic in KRBiFrm.

PROOF. That (1) implies (2) and (1) implies (3} is clear.

Re (1): (=) This uses the fact (see {8, Lemma 7]} that, in KRBiFrm, if /; is an
isomorphism , & is also an isomorphism. If each k; is one-one, then b : Lo Image(h)
has each h; one-one, onto, hence an isomorphism, so hg is also an isomorphism, hence
one-one.

Re (2): (=) Suppose h, and h, arc dense. Take = € L; with A{z) = . Then
r=Vz(z € L; z=<; z), and compactness gives z € L;, 2<; z with L{z) = ¢. Thus
zAc=0, ¢cVz = e for some ¢ € Li; so h(z) A h{e) = 0, which gives h(c) = 0 and
thus ¢ = 0 (by the density of k on L;). So z = e, as required.
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(<=) Similar to (=>). _ |

We note that h; dense does not imply h dense, for A in KRBiFrm: Let
Lo = {0,a,b, ¢}, the four-element Boolean algebra, L; = {0,a,e}, L, = {0,b,¢e} and
h : L—2 the map satisfying h(a) = ¢, h(d) = 0. Then h; is dense but hg is not.

The above characterizations of monomorphisms and epimorphisms show that

BiFrm is wellpowered, but not co-wellpowered (since the category Frm is not).

BiFrm has a generating object (or separator), namely, (3@ 3,3,3): for
any f,g: LM with f # g, there exists z € L; with f(z) # ¢(z), and we may
define a map (3@ 3,3,3)—L by sending the middle element of the corresponding
3toz.

BiFrm has no cogenerating set (since this, taken with the properties of

completeness and wellpoweredness, would make it cowellpowered).

There is no free biframe on one generator: if there were, its total part would
have to be 3 (the free frame on one generator), so the only possibilities would be
(3,3,3),(3,3,2) or (3,2,3). These are not free, since a set map which specifies an
clement of the total frame not in the first or second parts, cannot be extended to a

biframe map.

We do, however, have the following (Ens is the category of sets and set

functions):

Proposition 2.5 The funcior U : BiFrm—Ens x Ens has a left adjoini, where
U(L) = (| L1, | L)), U(R) = (Jlu],R2|) and |...| is used to denote underlying sets

and set functions, respectively.
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PROOF. We recall that the free frame on a set X may be given by @, 3, the X-fold
copower of 3, with the set map X —@x3 denoted by ux. Since taking free frames
is left adjoint to the forgetful functor from Frm to Ens, it must preserve colimits,
So Dx3 ® By3 = Bxuy3. To define a functor G : Ens x Ens—BiFrm, we let
G(X,Y) = (Bxur3,Bx3,Py3) for any (X,Y) € Ens x Ens. The effect of G on
morphisms is given as follows. For (f,g) : (X,Y)—(X,¥) in Ens x Ens, we obtain
unique frame homomorphisms f and § making these diagrams commute:

X X .p,3 Y Y ey 3
f g )
r r
X f; Y G
uxr uY
r ¥
Di3 Gy 3

Since Pxuy3 = Gx3 © Dy3, there is a unique h : x 3Bz, p3 for
which the next diagram commutes.

Dy 3-———=Dyur 3 Dy 3
f :h i
H
B 3 Doy 3 ©y 3

Now define G(f, g) as this A : (@XUY:;? @X‘?’:@Y3)_"(e){'u}731®)?3:6}73)'
An argument similar to the one above may be used to check the universal property

for the adjunction. |
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Compactifications of biframes

3.1 Compactifications and strong inclusions

In frame theory, the compactifiable biframes are exactly those which admit strong
inclusions (see [5]). We present definitions of compactifications and strong inclusions
for biframes which allow us to obtain a similar relationship here: we acknowledge
our debt to [7].-

Definition 3.1 A compactification of a biframe L is a dense, onto biframe ho-

momorphism h: M—L from a compact, regular biframe M to L.

Definition 3.2 A strong inclusion on o biframe L is ¢ pair < = {(<;,<3z) of
relations on Ly and L, respectively such thai (for i,k = 1,2, i #k)

(SI1) y < w<d;a X b unplies that y<; b

(SI2) «; 1s a sublattice of L; x L;

(SI3) x<d;a implies that 2<; a

(SI4) z<d; a unplies that there ezists y € L; with z4;y<;a

(SI3) if x; a then there exist u,v € Ly such that udrv, zAv=0and aVu=e
(SI6) a = V2(zd;a)
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Remark

The condition (SI5) above (in the presence of the other properties of strong inclu-
sions) is the sime as: vd;a impl-i.es that a* <4, z*.

(=) udrv,z2Av=0,aVu=cethen a* Sudiv<z".

(¢<=) Take 2«;yd;a. Then a*d,y*d,z", so that y*drz*, 2 Az* =0,aVy* =¢

(since y<;a implies that y<; a, which is the same as y* Va =¢).
‘Lemma 3.1 On a compact, reqular biframe, (<1, <) is a strong inclusion.

PROOF. We check only (SI5):

If z<; athen st Av =20, aVv=e for some v € L. Compactness and regularity

giveu<, v withaVu=e. |

Lemma 3.2 For any onto h: N—L, if 4 = (,,d2) is a strong inclusion on N,
then 4 = (h x h{<11],h x h[<2]) is @ strong inclusion on L.

PROOF. (SI1) Take z < h(a)d; A{b) < y with ad:b in N; and =,y € L;. Now
T = h(s), y = h(t) 50 k(s A a) < h(a); h(b) < h(bV t) and s Aa; bV L.

(SI2) h x h preserves sublattices.

(SI3) If z«; a in N; (that is, h(z)<; h(a))}, then 2=<; a, so h(z)~<; h{a).

(S14) If h(z)d; h(a) then zd; y<;a so that h(x)<; h(y)<; h(a).

(SI5) If z<;a in N;, there exist u<iv in Ny with z Av = 0, a Vu = e. Then
h(x)dk h(v), h(z) A h(v) =0, H(a) V h(u) = e.

(S16) For a € N;, a = Vz(zd;a) so h{a) = Vh(z)z;a) hence also kia) =
V 2(zd; h{a)). |

Corollary 3.1 If L has a compactification, it has a strong inclusion,

We now ccnsider the converse of this corollary; that is, we construct a com-

pactification of L from a given strong inclusion.
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Let (<, ,<2) be a strong inclusion on L. For an ideal J € (JL); (that is,
an ideal J generated by J N L;), J will be called strongly regulariff z € J N L;
implies that there exists a y € J N L; with z;y. Let R; consist of these J and
Ro € J(Lo) be the subframe generated by Ry UR,. Then Ry C (JL)y. Now R; is
a subframe of J(Lo): it is closed under binary meets and binary joins by (SI2); 0
and | e are in it, and it is trivially closed under updirected joins (unions). Thus R

is a compact biframe; we verify that it is regular.

Define r; : Li—R; by ri(a) = [z]| £ a], where [...] denotes the ideal gener-
ated in Lo. Then ri(e) € R; by (512), (S14}.

Claim: a<; b implies that r;{a)=<; r:(b).

Proof: Take a<d;c<;band wdu withaAu=0,cVw=-e. Then
ri(a)Nre(u) = 0 and cVw € ri(b)Vri(u). Hence ri()Vri(u) =le and so ri(a)=<; ri(b).

Finally, for any J € R;, J = Vri(e)(e € JN L;) and a<d; b € J N L; implies
that r;(a}=<; r:(b) C J, which gives the regularity of R.

The join map 7, : R— L provides the required compactification of L. It maps
R: onto L; since Vri(a) = a, a € L;, by (SI6). That it is dense is clear. We have
thus shown the first part of the next proposition. For its second part, we need the

following terminology:

The compactifications (up to isomorphism) of a biframe L form a partially
ordered set under the partial order given by h: M—L < h : M—L iff there exists
a biframe map f: M—M satisfying fz.f = h.

The strong inclusions of L form a partially ordered set under set inclusion.

We denote these two sets by KL and SL, respectively.
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Proposition 3.1 A biframe L has a compactification if and only if it has a strong
inclusion. Moreover, the above constructions provide isomorphisms between KL

and SL inverse to each other.

PROOF. We first check that both constructions are order-preserving:

Given d; C dj, one gets R; C R;, hence R C R so that R—L < R—L by the
inclusion map R—7.

Given h : M—=L < k : M—L with f: MoM satisfying h.f = h, we obtain
hx k(<] = hf x hf[<] = (b x A)(f x f)[<] € k x R[], where X denotes the
relation < on M.

Next we verify that they are inverse to each other.

Let < be a strong inclusion on L, 17, : R—L the compactification associated
with it, and 9 the strong inclusion associated with that. Then a<; b implies that
ri{a)=<; r:(b), which, by the definition of 4, gives V r;y(a)<; V ri(b) and hence a<d; b.
Conversely, a<; b means that a = \VJ, b = VI where I,J € R; and J<; I. Then
there exists H € Ry with JNH = 0and IV H =|e. Thus zVy = e for some
z €I,y e H. Also, z«;b since [ is strongly regular. Now J N H = 0 implies that
ahy=0,s0a=aAzd;b Hence d; = 4;.

Beginning with a compactification h : M~—L of L, let < be its associated
strong inclusion, and 7, : R— L the compactification associated with that. Consider

the diagram

7L

R L
fz‘ h
R —ge M

where R is given by the strongly regular ideals with respect to <; on M;, and

k is the restriction of Jh. Since <; is a strong inclusion on the compact, regular
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biframe M, Ty : R—M is a compactification. It is codense (that is, its total
part is) by compactness of M, hence an isomorphism. We show that % is also an
isomorphism. Now h is dense because h is, and so one-one. (See [3].) It remains
to show % onto, and for this it suffices to prove ri(a) € Image(fz), a € L;. Let
J = [z € M;| h(z) € ria)). Then (Jh)J) = ri(a) because h is onto. To check
that J € R, take z € J N M;, so h(z)<;a. Then h(z) = h(u), a = h(v) for some
u<; v. Take u<; w~; v, hence u As = 0, wV s = e for some s € L. Now
h{z As) = h(uAs) =0, so zAs = 0, by the density of h. .So z<; w e JNM;, as
required. 1
Remark

It is clear that if (Lo, L,, Ly) has a compactification, so does Lo. The converse is

not true, as may be seen by considering (L, L, 2) for any non-trivial, compactifiable

frame L.

3.2 Zero-dimensional compactifications

Definition 3.3 h: M—L is a zero-dimensional compactification of L {f M

is compaci, zero-dimenzional and h s dense, onto.

Remark

L has a zero-dimensional compactification iff the join map JBL—L is onto iff L is
zero-dimensional.

Hence we consider only zero-dimensional biframes in this section.

Let KoL be the partially ordered set of zero-dimensional compactifications of L,

modulo isomorphism.

Definition 3.4 A basic Boolean bilattice of a (zero-dimensional) biframe L 15
any Boolean subbilattice A of BL which generates L (that is, A; generates L;).

Ordering these basic Boolean bilattices of L by inclusion gives a partially ordered
set, which we denote by BBB(L).
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We now describe two correspondences between zero-dimensional compactifi-

cations and basic Boolean bilattices of a biframe.

e For any such bilattice A, the join map o : JA—L is a zero-dimensional

compactification of L.

e For any zero-dimensional compactification h : M— L, h[BM| C BL is a basic
Boolean bilattice of L.

Proposition 3.2 The correspondences above are mutually inverse isomérphism.s
between BBB(L) and Ko(L).

PROOF. Let A be a basic Boolean bilattice of L, ¢ : JA— L the compactification
associated with it, and o[BJ A} C BL the bilattice associated with that. Since
(BT A) = {la| a € A;}, we obtain o[BJ A] = A. (See Proposition 1.6.)

Let h : M— L be a zero-dimensional compactification of L, A = h{[BM] and

o : JA—L the compactification associated with A. Consider

JA—Z L

h h

BM——— M
TEM—y
where & is given by A(J) = U{| h(e)| a € J} for J € (FBM)y. The bottom
join map is an isomorphism because M is compact, regular. h is onto since
h : (BM);—A; is onto, and % is dense because h is (and dense maps between

compact, regular biframes are one-one}). Thus & is an isomorphism too, and ¢ is

isomorphic to h. 1

The next result shows how zero-dimensional compactifications may be iden-

tified by looking at their strong inclusions.
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Proposition 3.3 The compactification associated with < is zero-dimensional if

and only if , for any a<;b, there exists c € L; with a < cd;c < b

PROOF. (==) Suppose we are given a zero-dimensional compactification

h: M— L with associated <; = h x h[<;]. Let ad;b and u<; v with a = h(u),
b = h(v). Now u=; v implies u € v, by compactness, and since

v =Vz(z € M;] z complemented, with complement ia M,), there exists a comple-
mented w € M; with v < w £ v. Then w=; w so ¢ = h(w) satisfies cd;¢c and
a<c<b

(=) Claim: If A; = {c € L;| ed;c} and Ay is generated by A; U A,, then
(Ao, A1, Az) is a basic Boolean bilattice of L.
Proof: A; is a lattice by (SI2). A is Boolean since cd; ¢ implies ¢<; c, that is, ¢ is
complemented with complement in Li. By (SI6) and our assumption, A; generates
L;, hence is basic.
Further, any strongly regular ideal J € R; is generated by J N A;: z € J implies
zd;y € J, which gives z < cd;c £ y € J, and thus z < ¢ € J N A;. Conversely,
any ideal J generated by JN A4; is in R;: z € J implies z < y € J N A4;, so that
rLyd;yeJ.

Hence JA = R and J A is a zero-dimensional compactification. 1

3.3 Least biframe compactifications

It is known (see [5]) that a frame has a least compactification iff it is regular and
continuous, and that any such compactification may be written in the form |a for
some element e maximal in a compact, regular frame. Further, a zero-dimensional
frame has a smallest zero-dimensional compactification iff it is continuous, and
that compactification is its smallest. (Any unfamiliar definitions may be found in
Section 0.5.)

We do not have analogous characterizations in the case of biframes. We
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present two partial results, with examples.

Lemma 3.3 Let L be a regular biframe such that each L; is stably continuous and
condition (5I5) holds for <; (the relation < with respect to the frame L;). This is
a necessary and sufficient condition for < to be o strong inclusion on L, and it is

then necessarily the least.

PROOF. (SI1) and (SI2) follow from the properties of <, with stable continuity.
(SI3) comes from the regularity of L.

(SI4) holds since < interpolates in a continuous lattice.

(SI5) is pustulated explicitly.

(SI6) holds because each L; is continuous.

Furthermore, if <; is any strong inclusion on L, then z<;y = V z(z<d;y), so that
zd;y. i

Example 1

Let Lo = all open subsets of the rational unit interval E

L, = all open downsets

L, = all open upsets

In L, UGVIfUCVorU=V=FEorU=V =0. Hence L; is stably contin-
uous (note that £; is compant). £ is regular because U C V implies U<; V; and
(SI5) is equally easy to chec:. So £ has a smallest compactification, by the lemma
above. It is given by taking (Mo, M, M) analogous to (£Lg, Ly, L) for the real
unit interval. M is compact, regular, and the restriction map M—£ is densc, onto.
InmM;, U<; VIfUCViIfUNE C VNE. Hence the strong inclusion induced by

this compactification is the smallest, and M is the least compactification of L.

Remarks

¢ The smallest compactification of £ has many new points.

¢ L is zero-dimensional, but its smallest compactification is not.
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¢ L;is not continuous, and thus does not have a smallest frame compactification.

Lemma 3.4 Let L be a reguler biframe in which each L; is continuvous, and a<; b

implies a<;b whenever a < e. Then L has a unique compactification.

PROOF. We verify that <; is a strong inclusion on L.

(SI1)~(S13) always hold.

(SI4) For a < e, a<; b iff a<;b (by regularity) and < interpoiates on a continuous
frame.

(SI5) If a<; b there exists ¢ € L; with a<; ¢<; b, witnessed by s, € Ly, a A s =0,
cVs=e, cAt=0,bVi=ec Then {<; s, as required.

(SI6) holds since L; is continuous.

Now <; is certainly the largest strong inclusion on L. It is also the smallest: if «;
is another, a < e, a=<; b implies a<;b, so that a«;b. |

Example 2

Ly = all open subsets of the open unit interval £

Ly = all open downsets

L, = all open upsets

L is certainly regular. Also, U<; V, U # E holds iff U C V, which implies that

U<V, thus £; is continuous. So £ has a unique compactification.

Remarks

¢ The unique compactification is again the biframe given by the closed unit
interval (mentioned in the previous example), with the relevant restriction

nmaps.

¢ The least compactification of £ is not obtained from the least compactification
of Ly, since the open unit interval is locally compact, Hausdorff and hence has

a one-point compactification.
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Example 3

Lo = all subsets of the natural numbers, N= {0,1,2,3,...}

£, = all downsets

Lo = all upsets

L is a biframe, using A = N and V = {J. It is clearly Boolean, and hence regular. £,
and £ are compact. For U,V € £;, UCV iff U «; V, so L; is stably continuous.
Alsoif U # N, U<; V implies U C V, which implies U «; V. Thu- :: has a unique
comp:ictiﬁcation, by the lemma above.

This compactification is given as follows. Let the set M = N U {«}, where » ¢ N
and n < % for all n € N. Let

M, = all downsets of M

My = {UU {+}] U is an upset of N}

My be generated by M, U M,.

Then M is compact, zero-dimensional and the restriction map M—£ is clearly

dense, onto.

The analogous example with N replaced by Z, the integers, also has a com-

pactification, using two points at infinity instead of one, as above.



Chapter 4

Coherent and continuous biframes

Compact elements and coherent frames were defined in Section 0.5. We denote the

set of compact elements of a frame L by K L.

Definition 4.1 1. A biframe L is called coherent if and only if Ly is coherent
and KLoN L; generates L; (i = 1,2).

2. A map h : L=M between coherent biframes is called coherent iff h|Lg is a
coherent frame homomorphism, thet is, if h(a) is compact for every compact

element a in L.

8. CohBiFrm is the category of coherent biframes and coherent maps.

Remark

L coherent implies L; and L, coherent, since K Ly N L; C K L;. The converse need
not hold, however: Let L be any coherent frame with a non-compact element, a.

The biframe (L, {0, e, e}, L) provides a counter-example.

Lemma 4.1 1. The Stone biframes form a full subcategory of the coherent biframes.

2. A biframe is Stone if and only if it is regular and coherent,

42
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PROOF.

1. If L is a Stone biframe, Lg is compact, zero-dimensional and hence coherent
(since one may show that an element of Ly is compact iff it is complemented).
Since KLy N L; 2 {z € L;| z V 2* = e}, and the latter set generates L;, L is

coherent. A map between Stone biframes is clearly coherent.

2. (=) If L is Stone, then for z € L;,
z=Vz(z€ L z<z, z2V2* =e})=Vz(z € L;, z £z, z<; ), hence L is
regular.
(&)U Lisregular, z = Vz(z € L;, z<; z) foreach x € L;. Soifz € KL,
then z<; z. Coherence of L gives y = Vz(zx € L;, z € y, ¢ € KLp) and
hence L Stone.

In order to obtain an analogue of the category equivalence between the co-
herent frames and bounded distributive lattices (see [21]), we make the following

definitions.

Definition 4.2 1. (e¢) A (bounded) distributive bilattice is a triple
A = (Ag, A1, A2) where Ao is o bounded distributive lattice and A, end

A, are sublatiices whose unton generutes Ay.

(b) A map h: A~ A’ between distributive bilattices is ¢ homormorphism

h : Ag— Ay of bounded distributive bilatiices which preserves the two

specified sublatiices.

(c) The category of bounded distributive bilattices and their homomorphisms
will be written BiLatt.

2. We define a functor K : CohBiFrm—BiLatt as follows:
K(Lg,L\,Ly) = (KLg, KLgN Ly, KLo N Ly)
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Kh=h|KLq
Note that (K Lo, KLy Ly, K Lo N L,;) €BiLatt because
(KLoN L) U (K Lo N Ly) generates Lo (as a frame), and hence KLy (as o

lattice). Kh is a morphism of bilattices since h preserves compact elements.

3. The functor J : BiLatt—CohBiFrm is given by:
T (Ao, A1, A2) = (T Ao, T1A1, T 242)
where J Ag 13 the frame of ideals of Ay and J;A; consists of those ideals J
generated by J N A;.
For h: A—A', Th is given by Jh(J) being the ideal generated by h[J).
Certainly J Ao is a coherent frame, and since its compact elements are ezactly
the principal ideals, J;A; is generated by J; AN KT Aq; so
J(Ao, A1, Az2) € CohBiFrm. Jh preserves principal ideals, hence compact

elements.

Proposition 4.1 K : CohBiFrm—BiLatt is an equivalence, with inverse J.

PROOF.  For any bilattice 4, let ay : A»KJA be given by as(a) =| a. Now
KJAoNJiAi = {lz| z € Ai}, so a, is easily seen to be a lattice homomorphism,
in fact, an isomorphism. For & : A—» A’ in BiLatt, ax.h(a) = K Jh.a4(a) =|a for
all a € Ag, so a4 depends naturally on A.

For a coherent biframe L, let o : JKX L—L be given by the join map. It is clear
that ¢ preserves first and second parts. We check that op|(JKL), is a frame
isomorphism. Order.is obviously preserved; it is also reflected: Suppose that

VI £V Jfor I and J ideals of compact elements. Then c € I implies ¢ < \VJ and
hence ¢ € J. Also or|(JKL); is onto, because any a € L; may be expressed as
a«=Vc(c<a, ¢c€ KLyNL;), by the coherence of L. Further, o, depends naturally
on L, since for any h: L—M in CohBiFrm, oy.JKh(I) = h.o(I) = R(VI) for
all [ € (TR L. . i
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Corollary 4.1 K induces an equivalence StBiFrm—BooBiLatt.

PROOF. This equivalence was already mentioned in [4]. We simply note that, for
Stone biframes, the functors K and B coincide, and for Boolean bilattices the two
ideal biframe functors (both denoted J) also coincide. X

In Definition 1.8 we introduced an ideal biframe functor between biframes.
Its range, however, is contained in the coherent biframes: The compact elements
of JoLo are precisely the principal ideals, and these form a sublattice gencrat-
ing JoLo. Also, any J € J:L; can be expressed as J. = \/ lz(z € TN L), so
KJoLoN J;L; generates J;L;. Further, the map Jh certainly preserves compact

elements and first and second parts, so it is coherent. We thus have a functor
J : BiFrm—CohBiFrm.

Note also that the map 7, : JL—L given by taking joins of the ideals in

question, is a biframe map.

Proposition 4.2 CohBiFrm s coreflective in BiFrm with coreflection maps

7L : JL—L given by taking joins.

PROOF.  Let h : M—L be given with M coherent, and consider the following

diagram;:

JL-—L .,
Jh{ h
TM T:' M

Jh is a coherent biframe map. Define k by sending any z € M, to the ideal
generated (in JoMp) by KMyN | z.
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Then k : My—ToMp is a cp_h,crcnt‘ frame homomeorphism: It is easily seen that &
preserves the bottom, the top and updirected joins. Preservation of binary meets
uses the compact elements being closed under these meets, and preservation of bi-
nary joins uses the fact that any element can be expressed as a join of the compact
clements below it. For compact ¢, k(c) =] ¢, so k is coherent.

We chieck that, for z € M;, k(z) € J:M::

If y € k(z), then y < ¢ < = for some ¢ € KMp. But z = Vz(z € KMoNM;, z < z),
so compactness of ¢ gives y < z for some z € k(z) N M;. So k(z) is indeed generated
by k(z) N M;.

Furthermore, since 71.Jk.k{c) = V(JR) | ¢ = h{c) for compact ¢, and M, is gen-
erated by K My we obtain 7.7 h.k = h, and this factorization is easily seen to be

unique. i

We now turn again to the relationship between biframes and bispaces, and
for that recall the dual adjunction given by the functors O and ¥ on page 11. Since
a biframe is spatial iff its total part is spatial (see Proposition 1.2), we obtain the

following lemma:
Lemma 4.2 The following are equivalent:

1. Every coherent biframe is spatial.
2. Every coherent frame is spatial.

3. The Boolean Ultrafilier Theorem holds.

In this section we shall refer to the (bilattice) spectrum functor
Il : BiLatt—BiTop. For A € BiLatt, let II4, be the lattice spectrum of Ag.
It has as points all bounded lattice homomorphisms £ : 4p—2 and as basic open

sets Ha = {gl E(G) = 1}, a € .4.0. We then let H(Ao,‘Al,Az) = (lHAol,Ol,OQ)
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where O; is the topology with base {Ils| a € A;}. For h : A-+4’ in BiLatt, define
[k : TA—IIA" by TTR(E) = £.h- Since (ITh)~Y(11,) = ITia) for any a € Ao, Ik is
bicontinuous. b

Proposition 4.3 II is naturally isomorphic to 7.

PROOF. For A € BiLatt, let a4 : IA—Z7A be given by aa(é) = €, where
fJ)=1if1¢ 13 [J ], and 0 otherwise. This correspondence is one-one and onto; it is
bicontinuous because a;'(;) = Ul (a € J) for J € J Ay, and it is open on cach

part because as(Il,) = T, for a € As. Thus ay is a homeomorphism of bispaces.

Definition 4.3 1. Call o bispace X spectral iff X is sober and OX is a coher
ent biframe.

A bicontinuous function f : (X |20, U2)— (| X7, U5, UY) between spectral bis-
paces 13 called spectral iff, for any U € U', VU, which is compact in U VU,

fHU) is compact in Uy V U,.

3. The category of spectral bispaces and spectral maps will be denoted SpecBiTop.

Lhe definition of a Boolean bispace was given on page 19.
Lemma 4.3 BooBiTop is a full subcategory of SpecBiTop.

PROOF. This follows from the fact that, in Boolean bispaces, the compact open

~ets are exactly the closed open sets. Alternatively, see Lemnma 4.1 . i

The following dual equivalences are then easy to verify.
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Proposition 4.4 (BUT)

1. SpecBiTop =° CohBiFrm by the functors O and T.
2. BiLatt =" SpecBiTop by the functors I and KO,

9. BooBiLait =" BooBiTop by the functors Il and KO.
Using Propositions 4.2 and 4.3 we obtain:

Proposition 4.5 (BUT) SpecBiTop is reflective in BiTop, with reflection maps
Tx 1 X—=IIOX given by 7x(z)(U) =1 if £ € U and 0 otherwise.

Lemma 4.4 For any biframe L, JL is regular if and only if L is Boolean.

PROOF. (==}Ifa € L;, then |a € J;L;. Regularity of 7L and compactness of | a
gives | a<; |a. This means that there exists J € J L, which is the complement
of | a; but J must then have the form | b, b € L, and b is the required complement
of a.

(=) For each a € L;, La<; ]a and these principal ideals generate J;L;. |

4.1 Continuity and stable continuity

We recall (see Section 0.5) that the relation < on a frame is defined by a < b iff,
whenever § € V X for some X C L, it follows that @ < V F for some finite subset
F € X. In a regular, continuous frame, it is known ([5]) that @ < b if and only if

a< b and Ta" is compact.

Definition 4.4 L will be called a continuous biframe iff Lg is a continuous frame
and, for cach x € Li, x =V =(z € L;, = € z in Lo).
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Lemma 4.5 Let L be a regular, continuous biframe. For z,y € L;, the following
are equivalent:

(1) 2 Ky (thatis, z < y in L;)

(2) z <y (thatis, z € y in L)

(3) z=<i y and Tz* = {z € Ly| z > z*} is compact

(4) z< y and 12" = {z € Lo| 2 > ="} is compact.

PROOF. (1} <= (2): That (2) i:ﬁplies (1) is trivial. Conversely, if z <; y and
y=Vit e Ly, t < yin Lp)thenz < {1 V... Vi, € y for some finite subset
t1,...,tn of the ¢’s.

(1) = (3): Take r <; y, or equivalently, by the above, z < y. Since

¥y = Vs(s € L;, s<; y) by regularity, z=<; y. Now let J be an ideal in T z* with
VJ = e. Since «; interpolates on L;, we obtain u € L; with z «<; v <; y. Then
*Vu=candu K<y<e=VY.Jimpliesu < j V... V jn for some finite subset
{j1,---2 7} € J. So2* V(G V...Vj,) =e, and we get e € J, as required.

(3) = (2): Take z<; y and Tz* compact. Let y < \/ J for some ideal J of Ly. We
have 2* Vy = ¢; thus z* VV J = ¢ and so Vies(z* V j) = e. But Tz* is compact,
$0 e = z* V jo, for some jp € J. Thus z = z A jg, that is,z<jpe€Jandz e J, as
required.

(2} <= (4): Similar to (1) <= (3). |

Remark

e By the lemma above, L continuous implies L; and L, continuous. The con-

verse does not hold (see the remark after Definition 4.1).

¢ The conditions for continuity are fairly restrictive, as is illustrated by the
following biframe not being continuous:
Lo = all open subsets of the real line, R
L, = all open downsets

£, = all open upsets
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For any U € Lo, TU is isomorphic to O(CU), where C denotes set-theoretic
complement. For U = (—00,0), U* = (0, 00), CU* = (—00, 0] and O((—o0,0])
is not compact. So TU*® is not compact. Thus U « V never occurs, for U,V

downsets, unless U = @, and so £ is not continuous.

Definition 4.5 1. L is said to be a stably continuvous biframe iff L is a con-

tinuous biframe and Ly is a stab.ly continuous frame.

2. A biframe map L : LM will be called proper if h : Lo— My preserves the
relation <.

3. The category of stably continuous biframes and proper maps will be called
StContBiFrm.

Remark

Every compact, regular biframe is stably continuous, and every coherent biframe is
stably continuous. (The former because a <; b iff a<; b, the latter because a «; &
iff there exists c € K LgN L; with a < ¢ < b.)

Proposition 4.6 A biframe is stably continuous if and only if it is the retract of a

colerent biframe.

PROOF. (=) For stably continuous L, define a function & : L—JL by

k{a) = {z € Lo| = < u}. Since Lg is a stably continuous frame, k : Ly—JpLg is
a frame map: it preserves the bottom and the top (use e <« e), updirected joins,
binary meets {because < is closed under them) and binary joins (because <« is
closed under them, and each element can be expressed as the join of elements way
below itself). If @ € Ly, k(a) is generated by k(a) N L;, so k is a biframe map. Now
the join map 77, + JL—L is a biframe homomorphism, and since V k(a) = a for
cach a € Ly (by the cc iuity of Lg), & is one-one. Hence L is a retract of JL.

(¢==) We show that the retract of any stably continuous frame is stably continuous.
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Suppose j : L—M and r : M— L are biframe maps satisfying r.j = 1, and M is
stably continuous. For any = € L;, j(z) = V{t| t € M; and t € j(z) in My}. Now
z =r.j(z) = V{r(t)]t € M;and t < j(z)in Mo}. But ¢ < j(z) in My implies
that r{t) < z in Ly, yielding the required expression of z. An analogous argument
shows that Lg is continuous, so it remains to prove stability. That e < e is clear.
We have seen that if £ € y and z < z in Ly, then z < 7(t) and z < r(s) for some
t K j(y), s K j(z), respectively, in My. Then z < r(t As) and t As < j{y A z) (by
the stable continuity of Mp), giving z € y A z in Lg. 1

Proposition 4.7 StContBiFrm is coreflective in BiFrm, with coreflection maps

7L : T L-—L given by taking joins.

PROOF. Let h : M—L be given with M stably continuous, and consider the
following diagram:

JL TL L

J hl

JM% M

h

J h is a proper biframe map. k& is the biframe homomorphism {considered
in she previous proposition) given by k(a) = {z € My| ¢ € ¢}, a € My. We check
that it is proper: Suppose ¢ € bin My. Express bas b= V{t| t € band ¢t € My}
and each suchtast =V{z Ay| z € M,y € M3,z Ay < t}. Since a € b, we obtain
a< ({1 An) V... V(z, Ayn) L bforsome zy,...,z, € My and yy,...,yn € My. Let
the middle element of this inequality be called z. Then }z is a compact clement of
JoMy (being an ideal gencrated by J,M; U JoM;), and k(a) Clz C k(b). Thus
k(a) < k(b).

Since 71.Jh = h.7y, we see that 7,.(Th.k) = h. To check uniqueness of Jh.k, we

suppose there were another map ¢ preserving < and satisfying r..¢ = h.
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Fix « € M. RS

Ift € ain My, g(t) € g{a) in JoLo, which mea,ns,!“_that ¢(t) €l s C g(a) for some
s € Lo. But then applying 71, gives h(t) < s € g{u), so that k(t) € g(a), and
(Jh.k)a} C g(a). Conversely, if ¢t € g(a), we have | t < g(a) = U{g(s)| s < a}, so
1 t C g(s) for some s <« a. Acting 7, on this inclusion gives t < h(s), s < a so that
t € (Jh.k)(a) and g(a) C (T h.k)(a). Thus g = Th.k. ' ]

For a discussion of projectivity versus stable continuity in biframes, we refer

the reader to Proposition 5.5.



Chapter 5
Supercoherence and projectivity

This section largely parallels the previous one—the concepts of coherence, compact-
ness, and so on, can be obtained from those of supercoherence, supercompactness,
etc. by replacing the conditions involving arbitrary joins with updirected ones.
We have, however, discussed projectivity in connection with stably continuous and

stably supercontinuous biframes together, at the end of this section (see page 58).

Supercoherence and stable supercontinuity of frames were defined in Sec-
tion 0.5. In this section, we denote the set of all supercompact clements of a frame
L by SL. A supercoherent frame is necessarily stably supercontinuous, since in this

case <y if and only if z < ¢ < y for some supercompact e.

Definition 5.1 1. (a) A biframe L is supercoherent ff Lo i3 @ supercoherent

frame, and each element of L; is a join of members of SLoN L;.

(6) A map h: L — M between supercoherent biframes is called supercoherent

if its total part h|Ly preserves supercornpact elements.

(¢) The resulting cetegory will be called SCohBiFrm.

2. (a) A biframe L is stably supercontinuous if Ly is stably supercontinuous,
end £ =V z(z € L;, 2z in Ly) for each z € L;.

53
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(b) The category consisting of the stably supercontinuous biframes and the

biframe maps whose total parts preserve the relation <, will be denoted
StSContBiFrm.

Remarks

1. Any supercoherent biframe is stably supercontinuous.

2. Any supercoherent biframe is spatial, since {c is 2 completely prime filter

exactly when c¢ is supercompact.

3. 1 and 2 are the only supercoherent, regular (or stably supercontinuous, regu-
lar) biframes. This follows because, for each z € L;, =  2(2<; z) and z<; =
means that there exists ¢ € Ly with 2 A¢ =0, ¢V z = e. Supercompactness

of e gives £ = ¢ or ¢ = ¢, and in the latter case z = 0.

The following definitions pave the way for an analoguc of the category equiv-

alence between semilattices and supercoherent frames (see [12]).

Definition 5.2 1. (a) A bisemilattice is a triple A = (A, A1, A2) in which
Ag 13 a meet-semilattice with unit and A; and A, are subsemilatiices

whose union generates Ag.

(b) A map h: A — A’ between bisemilattices is a homomorphism
h: Ag — A} of meet-semilattices which preserves the specified subsemi-

latlices.

(c) The resulting category will be denoted BiSLatt.
2. We define a functor §: SCohBiFrm - BiSLatt by the following:
S(Lo,LI, L)_) = (SLQ, SLO M Ll,SLo n Lz)

Sh= hlSLg
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where SLy denotes, as before, the s=t of supercompact elements of the frame
Lo. Note that, since every element of L; is a join of elements of SLy,

(SLoN L) U(SLy N Ly) generates SLq, as a semilattice. So S(Lo, Ly, Ly) is
a bisemilattice and Sh is a morphism in BiSLatt because h preserves super-

compact elements.

5. We define the functor D : BiSLatt — SCohFrm as follows:
D(Ao, Ay, A2) = (DA0, D1 Ay, D 4,)

where DAy is the frame of down-sets of Ay and D;A; consists of those down-
sets X generated by X N A;.

For h: A — A, the maorphism Dh: DA — DA’ is given by
Dh(X)=[J{IMz):z € X}

for any X € DAy. In DAy, a down-set X is supercompact iff X =|a for some
a € A, se DA 15 easily seen to be a supercoherent biframe. Since

Dh(la) =] h{a), Dh preserves supercompact elements.
Proposition 5.1 §: SCohBiFrm — BiSLatt is an equivalence, with inverse D.

PROOF.  For any bisemilattice A, let 74 : A — SDA be given by na(a) =] a.
Now 5SDAe N D;A; = {| ala € A;}, and 5,4 is casily seen to be a biscmilattice
isomorphism. 74 depends naturally on A, since for b : A — A’ in BiSLatt,
nah(a) = SDh.apa(a) =] h(e) for all a € Ay.

For any supercoherent L, €, : DSL — L is given by the join map.

¢ certainly preserves first and second parts; we show that £,|(DSL), is a frame
1isomorphism. Order is clearly preserved; it is also reflected: Suppose VX < VY
for X and Y down-sets of supercompact elements. Then ¢ € X implies ¢ < VY,
so that ¢ <t for some ¢t € ¥ and so ¢ € Y. Also £.|(DSL), is onto, hecause any
a € L; may be expressed as ¢ = V{s : s < a,5s € $Le N L;}. Further, g1, depends
naturally on L, since for any h : L — M, e DSh(X) = h.gp(X) = MV X) for all
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X € (DSL),. |

We now definc a down-set functor from biframes to supercoherent biframes,

which we also denote by D.

Definition 5.3 For any biframe L, let
DL = (DDLU1DIL11D2L2)

where D;L; consists of those down-sets X in DLg (the frame of down-sets of Lo)
which are generated by X N L;, and DoLg is the subframe of DLy generated by
DyLyUD,L,.

DL is a supercoherent biframe: The supercompact elements of DoLg are ezactly its
principal down-sels; they are closed under finite meets and generate DoLg. Also,
any X € D;L; may be written X =U{lz: z € X N L;}, so SDyLoND;L; generates
D L.

For h: L—-M 1in BiFrm, Dh: DL-DM 1is given by

Dh(X)={J{Ih(=z):z € X}.

Dh|DoLg is a frame homomorphism which preserves supercompact elements and

first and second parts.

We also note that r;, : DL— L given by taking joins of down-sets, is a biframe

map.

Proposition 5.2 A biframe is stebly supercontinuous if and only if it is the retract

of a supercoherent biframe.

PROOF. (==) For stably supercontinuous L, define k : L—DL by
k(a) = {z € Lo : x<ka) for any a € Ly. Then k|L, is a frame homomorphism:

it preserves binary meets because <€ is closed under them, and arbitrary joins
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because any element a can be expressed as a = V{t : t<xa}. If a € L;, k(a) is
generated by k(a) N L;, so k is a biframe map. The join map 7, : DL—L is a
biframe homomorphism, and % is one-one, because \/ k(a) = a for cach « & Lo (by
the supercontinuity of Ly). Hence L is a retract of DL.

(=) We show that the retraci of any stably supercontinuous biframe is stably
supercontinuous. .

Suppose j : L—M and r : M—L are biframe maps satisfying r.j = 1, and M is
stably supercontinuous. For any z € L;, j(z) = V{t|t € M; and t<j(z) in M;).
Now z = r.j(z) = V{r(t)|t € M; and t«j(z) in Mp}. But t<<j(z) in My implies
that r(t)<«z in Ly, yielding the required expression of z. An analogous argument
shows that Ly is supercontinuous, so it remains to prove stability. That c<€e is
clear. We have seen that if 2<€y and z<«z in Lo, then z < r(t) and z < r(s) for
some t<j(y), s j(z), respectively, in Mo. Then = < r(t As) and t A s<<j(y A 2)
(by the stable supercontinuity of M), giving z<€y A z in Lq. |

Proposition 5.3 SCohBiFrm and StSContBiFrm are coreflective in BiFrm,

with coreflection maps v, : DL— L given by taking joins.

PROOF. Since SCohBiFrm is a full subcategory of StSContBiFrm, it suffices
to prove this result for the latter category. Let h : L—M be given, with M stably

supercontinuous, and consider the following diagram:

DL—TL . [
‘Dh[ ‘h
|
DM T:’ M

Dh is a biframe map that preserves the relation <. k is the biframe map
(cousidered in the previous proposition) given by k{a) = {z € My|r<<a} for any
a € My. We verify that it preserves <«: Suppose a<«b in M. Express b as b =
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V{t:tegband t € My} andeachsuchtast = V{zAy:z € M),y € Ma,zAy < t}.
Since a@é:l;',-we obtain @ < z Ay < b for some z € M; and y € M, with z A y<b.
Now | (z A y) is a supercompact element of DoMy (being a principal down-set
generated by Dy M, U D, M,), and k{a) €| (z Ay) C k(b). Thus k(a)<k(b).. ..
Since 11,.Dh = h.ty, we see that 7,.(Dh.k) = h. To check the uniqueness of ﬁh.k,
we suppose there were another map ¢ preserving <« and satisfying 7,..g = h. Fix
a & M,.

If t<a in My, g(t)<<g(a) in DoLo, which means that g(¢) Cl s € g(a) for some
s € Lg. But then applying 1, gives h(t) < s € g(a), so that A(t) € g(a), and
(Dh.k)(a) C g{a). Conversely, if t € g(a), we have |t <kg(a) = U{g(s)|s<a}, so
1t C g(s) for some s<«a. Acting 7, on this inclusion gives ¢ < h(s), s<a so that
t € (Dh.k)a) and g(a) C (Dh.k)(a). Thus g = Dh.k. 1

5.1 Projectivity

Definition 5.4 We call a bifreme L semi-projective if the following condition
holds: for any onto biframe map f: M—N for which the right adjoint of the total
part preserves first and second parts, and for an arbitrary biframe map g : L—N,
there exists a biframe map h : L— M satisfying f.h = g, that is, making the following

diagram commaute:

'L
he g
x"-.

Lemma 5.1 For any bisemalattice A, DA i3 semi-projective in BiFrm.

PROOY. Let f : M= N be onto, and let r : Ny—Mp be the right adjoint of
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flMy. We assume that r[N;] C M;. Let g : DA—N be any biframe homomorphism.
Consider the diagram:

i1

M-—N

The function & : A—+DA given by k(a) =|a is a morphism in BiSLatt, as is
h = r.g.k, since r preserves meets and first and second parts, The map m : DA—M
defined by m(X) = V A{X] is a biframe homomorphism (it preserves finitary meets
and first and second parts because & does), and it satisfies m.k = h. Then f.m.k =
f-h = farg.k = g.k, since fr = 1. This shows that f.m = g, since the clemnents
k(a), a € A generate DA. i

Proposition 5.4 The semi-projectives in BiFrm are ezactly the stably supercon-

tinuous biframes.

PROOF. (==) For any biframe L, the join map 7y, : DL—L is a biframe homo-
morphism for which the right adjoint 7 : Ly—DyLg is given by
r(a) = UX(X € DoLoand VX = a). For a € L;, r(a) =| a, so r does preserve

first and second parts. Using the projectivity of L with respect to 1, we obtain

_ h: L—DL making the following diagram commute:

e

2

y > i S §
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So 7.k = 1, that is, L is a retract of DL, which is supercoherent. This makes L
stably supercontinuous.
(<=) This follows from Lemma 5.1, and the fact that retracts of semi-projectives

arc again semi-projective. ‘ |

We remark that since the category Frm has no non-trivial (ordinary) pro-
jectives (sec [12]), neither does BiFrm. (Replacing the condition “onto” by “epi”
in the definition of sewmi-projectives, gives the definition of ordinary projectives.)

An argument similar to the one above gives the following result:

Proposition 5.5 The stably continuous biframes are the projectives relative to
those onto biframe homomorphisms for which the right adjoint of the total part

preserves finite joins as well as first and second parts.



Chapter 6

Normality for biframes

Frith [19] gave the following definition for normality of biframes:

Definition 6.1 A biframe L is called normal if, whenever z Vy = ¢ for some

z € Li and y € Ly, there ezistu € Ly andv € L; withuAv =0 and zVu = ¢ = yVv.

We remark that normality can equivalently be expressed by the condition:
whenever zVy = e for z € L; and y € Ly, there exists © € Ly such that z Vu =

e=yVu'
Lemma 6.1 Any compact reqular biframe is normal.

PROOF. Suppose zV y = e for some z € L;, y € L. By regularity,

z = V{s| s<iz, s € L;} and y = V{t| t<iy, t € Li}, so by compactness there exist
s=<;z and <,y with sVt = ¢. Then sAc =0, zVec = eand tAd = 0, yVd = e for some
€ € Ly, d € L;. Also, cAd = cAdA{sVt) = (cAdAs)V(cAdAL) =0, as required. §

We recall (see [9]) that a biframe L is called strictly zero-dimensional

if it satisfies the following condition (or the corresponding one with L, and L,

61
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reversed): for each z € L) , z* is a complement of z in Ly and L, is generated by

these complements.
Lemma 6.2 Any sirictly zero-dimensional biframe is normal.

PROOF. Supposec that L satisfies the condition as stated above, and that zVy =e
forsomez € L),y€ L. Lt u=yAz*andv==z. ThenuAv=yAz"Az=0.
AlsozVu=zV(yAz*)=(zVy)A(zVz*)=e(since z and z* are complements,

by assumption), and y Vv =y V z = e; and u € Lo, v € L, as required. i

Corollary 6.1 1. Any Boolean biframe is normal.
2. ([19]) The congruence biframe of a frame is normal.

3. The Skula biframe of a topological space ts normal.
(SkX is the biframe for which (SkX), is the topology OX of X, (SkX), is
the topology on the underlying set of X generated by the closed sets of X, and

(S5kX), is the topology generated by all the open and all the closed subsets of
X.)

6.1 The compact regular coreflection of a normal

regular biframe.

The frame notions on which this section is based may be found in [1]. To study this
coreflection we look at the pair (<, <2) of relations, and begin with the following

letnma.

Lemma 6.3 If L is normel and regular, (<, <2) is a strong inclusion on L.
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PROOF. We check that <; interpolates (the other conditions clearly hold). If z~<;z
for z, z € L;, there exists ¢ € Ly such that ztAc=0and z Ve =e. By normality
there exist u € Ly, ve L; withuAv=0,zVu=e=cVv. Sor=<v=<r. 1

The compact regular coreflection RL of a normal, regular L may thus

be given as follows:

An ideal J of Ly generated by J N L; is called reguiar if z € J N L; implics
that there exists an element y € JN L; for which z<;y. Now (RL), consists of these
regular ideals and (R L), is the subframe of 7 Lo (the frame of ideals of Ly) gencrated
by (RL}, U(RL),. The compactification is given by the join map V : RL—L.

The first and second parts of this join map have right adjoints given by
ri + Li—=(RL);, where ri(z) = [z € Lijz<iz], the square brackets denoting the ideal

generated in Lg by the z’s in question.

With the above terminology, we obtain the following lemma.
Lemma 6.4 IfzVy=e for some z € L;, y € Ly then ri(z) V ri(y) = Lo.
PROOF. SupposezVy=ceforz € L;, y € L. By normality, there exist u € Ly,
veE LiwithuAv =0, zVu=e=yVe Inparticular, u<; y. We now apply

normality to zVu = e to get s € Ly, t € L; such that sAt =0,zVs = e = uVt. Now
t<;z,sc we have uVt = e for u € ri(y} and t € r;(z) and thus ri(z)Vri(y) = Ly. |

The above lemma characterizes this compactification, in the following sense:
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Proposition 6.1 Let h : M—L be a bifreme compactification and ¢; the right
adjoint of h|M;. Suppose that =V y = e for = € L;, y € Ly implies that

qi(z) V q(y) = e. Then L is a normal regular biframe and the compactification
It : M—L is isomorphic to \ : RL—L.

PrOOF. To sece that L is normal, take zVy = e, 2 € L;, y € L. By assumption,
qi(z)Var(y) = ¢, and gi(z) € M;, qx(y) € Mi. Since M is compact regular, and hence
normal, there exist u € My, v € M; suchthat uAv =0, gi(z) Vu=e = q(y) Vv.
Then h(u) A b(v) = 0 and z V h(u) = ¢ =y V h(v), as required.

Let r, and r, denote the right adjoints of the first and second parts of the
compactification V : RL—L. By the universal property of this compactification
there exists a biframe homomorphism g : M—RL making the following diagram

cominute:

RL—Y . 1,

M

We show that ¢ is an i omorphism. Since h is dense, g is also dense and so,
being a map between compact regular biframes, is one-one. To see that g is onto,
it is sufficient to show that each ri{x), x € L; is in the image of g|M;, since these
ideals generate (RL),. We claim that g.¢(z) = ri(z), z € Li.

(C) Take = € g.qi(x)NL;. Since g.qi(z) is a regular ideal, there exists y € g.g:(z)NL;
such that z=;y. Then z<;y € Vg.qi(2) = h.gi(z) = = and so z € r(x).

(2) Take = € L;, z<;z. There exists ¢ € Ly with zAc=0,zVe=e. By assumption
(@) V qile) = ¢, so g.gi(z) V g.qe(c) = Lo. This means that s V{ = e for some
s € gaq(xYN Lt € guqc) n L. Nowz=zA(sVE)=(zAs)V(zAt)=2zAs,
since 2 Ac¢c=0and { <e¢. So, finally, z < s € g.¢:i(z). 1
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Remark

If h: M—L is a biframe compactification for which ¢ (the right adjoint of h|ip)
preserves first and second parts, and preserves all binary joins, then L is certainly
normal and a similar argument to the one above shows that L; is normal and (RL),
is isomorphic to R(Lg). (See [1].)

6.2 Urysohn’s Lemma for normal biframes.

This section is based on Dowker and Papert’s 1966 paper, “On Urysohn’s Lemma”
[16]), which extends Urysohn’s classical topological theorem to frames. We shall

need the following lemma from that source:

Lemma 6.5 Let L and M be frames, let B be a base of L and let ¢ : B—M be a
function such that if {b;} is finite and Ab; < Veo, then Ap(hi) < V(ca). Then
extends to a frame homomorphism u: L—M.
(1 1s given by p(a) = V{p(b)|b € B, b < a}.)

Proposition 6.2 A biframe L is normal if and only if it satisfies the following con-
ditton: whenever eVy = ¢ for = € Ly, y € L,, there exists a biframne homomorphism
# : (OR, open downsets, open upsets) — (Lo, Ly, L) such thot p((—o0,1)) < z
and p{(0,00)) < y.

PROOF. (<=) To show L normal, consider z Vy = cfor z € L,, y € Lo,
and u as given. Since (—00,1/2) N (1/2,00) = § and (~o0,1) U (1/2,00) = R
(0,00) U (~00,1/2), we obtain u{(—00,1/2)) A u((1/2,00)) = 0, z V 1({1/2,00)) >
#((—00. 1)}V 1((1/2,00)) = ¢, p{(=20,1/2)} V y > pl(=00,1/2)) V (0, 20))
and p((—o0,1/2)) € Ly, p({(1/2,00)} € Ly, as required.

(=) Let Q denote the sct of rational numbers. For caci,":p € Q we construct

1l

C,

9p € La, hy € Ly so that g, A h, =0 and, if p < ¢ then gp V I, = ¢. Then. for p < g,
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hy=hyAe=hyA(gpV hy) =hy Ahy,
Yo =gsNe=g,N (g, Vhy))=g,Ag,
so that h, < h, and g, 2 g,. Let ry, ra, ra,... be a list of the rationals between 0

and 1. Then define

Q. = {r, 12, W} U{peEQIpL0}U {p € Qlp = 1}. For p € Qo define g, € L,
h, € Ly by:

forp<0, go=¢, hp,=0
go=y, ho=
=0, hh==z

for p > 1, §p=0, h, = e.

Suppose g,, i, have been defined for p € Q.. We now define g,, k. for r = rp4;.
Take the largest p € Q, with p < r and the least ¢ € Q,, with r < ¢. Then p < ¢
and g,V hy = ¢, g, € Ly, by € L. Apply normality to obtain g, € L,, h, € L; with
g Ay =0and g, Vh, =e=g, VI, If s€ Quyyand s <7 thens <p,so g, > gp
and g, Vh, = c. If s € Qs and s > r then s > g, s0 h, 2 hy and g, Vh, = €.
We have thus defined g,, h, with the required properties, for all s € Q,4;, and by
induction they may be defined for all s € Q.

Let B be the base of OR consisting of the open intervals (a, b) with a < b. Define
the function ¢ : B—Lg by ¢((a,b)) = V{g, A Iy| a < p < g < b}. The proof that ¢
extends to a frame homomorphism g : OR— Ly is the same as in the Dowker/Papert
casc. We repeat it here for completeness’ sake.

Let {a;j,b;), 7 = 1,...,n be a non-empty finite family of intervals, and let (a,, ba)
be a family of intervals such that N{a;, ;) C U(aa, b ). Then

/\&,:‘(((lj,bj)) = ( \/ gPlAhQ:)A'°'A( v anAhqn)

a1 <p1<g <b an <pn<gn<bn
= V.oV on Ay Ao Agp Ahy,

= \/ - \/{gnmx p A hinin q}

= V{gp A gl max a; < p < ¢ < min b;}
= o(N(a;, b)).
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For any rational numbers p and ¢ such that max a; < p < ¢ < min b;, the compact
interval [p, ¢] is contained in

U{(aa, ba)| all @} = U...U{(r,s)|aa < r < s < ba, all a}, for r, s rational. Hence
[p, ¢] is contained in a finite number of such intervals (r,s), and so the open interval
(P, ¢) is some finite union U{(r/, s:)] all !} of these. We may assume that no (re, 1)
can be omitted from the union and that (r;, &) overlaps (ri4nysi1). Ur<t<s<u
we have (g- A h;)V (g A Ry) = (gr V g)A (g VRIA (R, Vg) A (hs V 1) = g, A hy,.
Hence g, A by = V gr, A by, < Vo((as,bs)), and so Ao((aj, b)) < Ve((aa,ba)). If
U(@a,bs) = R then (-2,3) C (Ga,bs) and hence e = g_; A hy < v((-2,3)) <
V@((@a, ba)). Thus Ap((a;,4;)) < V¢((@a,ba)) even when the family (a;,b;) is
empty. Thus, by the lemma quoted above, ¢ extends to a frame homomorphism
#: OR— Lo given by p(U) = V{p({a,b))|(a,b) C U} for all U € OR.

We now check that u preserves the first ~nd second parts of

(OR., open downsets, open upsets), and thus extends to a biframe homomorphism,

as required. For c € R,

u((=00,c)) = V{o((a,b))l(a,b) C (-o0,c)}
VVi g Ahla<p<g<b, (a,b) C (—o00,¢c)}
V {helg < ¢} since g, = ¢ for p < 0.

€ L, and, similarly,

ulle,00)) = \/Vigp Abgla < p<q<b (a,h) C (c,00))
= V{glc<p}sinceh, =eforp>1
€ L,

Finally, u({~o0,1)) = V{hslg < 1} < hy = z and :
#((0,00)) = V{g,|0 < p} < g0 = - '
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6.3 Lindelof and normal biframes

Definition 6.2 A biframe L will be called Lindelof if and only if its total part is
Lindelof, that is, whenever VX = e ihere ezisis e couniable subset Y of X with

VY =e.
Proposition 6.3 Any regular, Lindelof biframe is normal.

PROOF. Suppose z Vy = c for some = € L;, y € Li. Since L is regular, we may
writc z = \V{s € L;| s=<iz}) = V{s € Li| sV =e}andy=V{t € L] t*Vy =e}.
Let N denote the set of natural numbers. Since L is Lindeldf, there exist countable
subscts S = {s,] a € N} C {se L] s*Vz=¢c} and T = {tg| 8 € N}

C{te Ly|t*Vy = ¢} such that YSVy=cand YT Vz =e¢. Fora, f €N, we
define mq = 54 AA{t3| v < @} and ng = t5 A A{s§| § £ B}. Then m, Ang = 0 for
all o, f € N,somAn =0form = V{m, a € N} and n = V{ns| 8 € N}; also
m € L; and n € L. Now '

mVy = \[maVy
= {:/(sa/\/\{t;:’YSa})Vy
- \Z(sa\/y)/\(/\{:;: y<a}vy)
= Visa VA AL VY: 7<)
- {/suw

= \/Svy

= e
and, similarly,

nvVr=\{tzva)A(A{sivz: §<)=\VTVz=e
a



Chapter 7

Perfect compactifications

Skljarenko [26] introduced perfect compactifications of topological spaces —

they are those compactifications Y of a space X with the property that

fre(Y —cly(X —U)} = cly frxU for all open sets U in X (where fr stands for the
frontier operator and cl! the closure operator). This idea was extended to frames in

[2], on which we base this section.

Definition 7.1 1. For any =z € L, U L,, a compactification h : M—L will be
called perfect with respect to z if and only if v (the vight adjeint of h|My)
satisfies r(z V 2°) = v(z) V r(z°*).

2. The compuctification will be called perfect if and only if r preserves first and

second parts, and h is perfect with respect to every x € Ly U L,.

J. Foru,v,w € Ly, (u,v) disconnects w if w =u Vv, uAv =0 end u,v #0.

Lemma 7.1 For h: M—L dense, onto and v; : Li—M; the right aajoint of LM,

we have:

1. r.—(;c)‘ = r;_.(::'), z € L;

69
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2. W(z*) = h(z)*, z € M;
PRQOF.

1. For z € L;, h(ri(z) Ari(z*)) = 2 A z* = 0. Density of h gives
ri(z) A ri(z®) = 0 and so ri(z*) < ri(z)". Conversely, ri{z) A ri(z)® =0 gives
z A h{ri(z)*) = 0 and so A(ri(z)*) < z* and ri(z)* < ri(z*).

For z € M;, z Are(h(z)") = 2 AV 2(z € My, h(z) = h(z)*). Now
h(z) = h(z)® implies that A(z) A k(z) = 0, so Dy the density of h, zAz = 0.
Thus xAre(h(z)*) = 0, and so ri{h(z)*) < z*. Applying k gives h(z)* < h(z*).

X

We note that if r (as mentioned above) preserves first and second parts, then
r{L; = r; (the right adjoint of h|Af;). Further, having a biframe map onto (both
parts) does not guarantee that the right adjoint preserves first and second parts:
Take Ly to be the four-element Boolean algebra {0, a, b, e}, with L, = {0,a,e} and
Ly = {0,b,e}. Let h : L—2 be given by h(a) = 0, h(b) = e. The corresponding

r:2— Ly has r(0) = a, r(e) = e and so does not preserve the second part.

Proposition 7.1 Let h: M—L be o biframe compactification for wiick r preserves

both peris. Then the following are equivalent:

1. h: M—L is perfect.

2. If (u,v) disconnects w (for someu € L;, v € Ly and w € Ly), then (v(u),r(v))

disconnects r{w).

S ravyy=r(z)Vr{y) forz € L..y€ Ly and z Ay =0.
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PROOF. (1) == (3): Suppose z € L;, y € Ly and z Ay = 0. Since r'prescrvcs
order, r(z} V r(y) < r(z V y). For the reverse inequality, we have y < z°, and so
r(xVy) < r(zVz*) = r(z)Vr(z"), by assumption. Similarly, r(zVy) < r(y)Vr(y®).
Thus

revVy) < [r(=) V()] Alr(y) vr(y®)]
= r(zAy)Vr@* Ay)Vr(z Ay*)Vr(z® Ay")
= r{y) Vr(z) Vr(z® Ay*),

sincey < z*, x < y*, 2 Ay = 0 and r(0) = 0 by the density of . Now

MeVy) = r(zVy)Ar(y) Vr(z) V(s Ayt
= [z Vy)ACE) VrE) Ve V) Ar(z Ay
= [eV)AF@VrE) VI Vy) Azt Ay
= [r(= Vy) A (r(y) V 7(2))] V r(0)
= r(z Vy) A(r(y) V (=),

Thus r(z V y) £ r(z) V r(y), as required.

(3) = (2): Suppose w = u Vv for some u € L;, v € Ly, u,v £ 0, u Av = 0.

(3) gives r(w) = r(u) V r{v) and r(u),r(v) # 0 (since r(u) = 0 implies that u = 0).

Also r{u) € M;, r(v) € M; siuce r preserves both parts.

(2) = (1): For z € Ly U L,, with z, 2" #£ 0, (2) gives r(z V z*) = r(x) Vr{z®) since

rAz* =0 Ilfz=0,then 2* =¢,sor(zVz") =r(z) Vv r(z*). |
For the following proposition we briefly review the correspondence between

compactifications and strong inclusions for frames (see [5)).

For a compactifieation h : M— L with right adjoint r, the strong inclusion
4 is defined by a < ¢ iff 7(a)< r(b). For a strong inclusion < on a frame L, call an
ideal J of L strongly regular iff, for any a € J, there exists b € J with ¢ 4 b. Then
the join map V : RL—L from the frame of strongly regular ideals of L to L is the

associated compactification.
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Proposition 7.2 Let h: M—L be a biframe compactification for which r preserves
both parts, and let <1 denote the strong inclusion on Ly corresponding to the frame
compectification h : My—Ly. Then h is perfect if and enly if a < z, aq z V 2"
inplies that a 4 z for alla € Ly and x € L;.

PROOF. (=) Take a € Lo, z € L; such that @ < z and e 4 z V z*. By the
definition of < and the assumption that & is perfect, we get

r(a)<r(z V z*) = r(z) V r(z*). Then there exists ¢ € Lo such that r(a) At =0 and-
tVr(z) Vr(z*) = e. Now

r(a) A (tvr(z®)) = (r(e}At)V (r(a) Ar(z*))
= 0Vr(aAz*)
= r(0)sincezAz*=0anda <z

= 0 since h is dense.

So r(a)<r(z) with separating element ¢ V r(z*), and we have shown that a < z.
(<=) We recall that r may be given by r(a) = {z € Ly] zd a}, all @ € L;,. We
must show that, for z € L;, r(z V z*) C r(z) V r(z*). So take a € r(z V z*), that is,
a € Lo withad zVz® Thena=(aAz)V{aAz*)

NowaAz <z,aAzdxVaz® implies that a A z 4 z by the assumption.

Also, a < 2 V z* implies that a < 2° V z*°, since z < 2°*

SoaAz® <z*, aAz®<dz®Vz* implies that a A z° q z°, again by the assumption.
Thus a € r(z) V r(z*), as required. 3 1

Proposition 7.3 Let h : M—L be a compactification for which r preserves both
parts. If x<i;y® for some x € L;, y € Ly, then r(z Vy) =r(z) V r(y).

PrRoov¥. Take x € L;, y € Ly with < y°. Then r(z)=<ir(y*), so that
r(xz)}* Vr{y*) = e and thus r{z*) Vr(y*) = ¢, by Lernma 7.1 . Now

rleVy) = rlVy)Alr(z?) V')
= r((zVvy)Aaz)Vvr((zVy)Ay)
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= rlyAz®)Vr{zAy")
< r(y)Vr(z).

We note that this result could also be obtained by observing that x<;y*
implies that =z < y*, which implies that = < y*; and applying the corresponding
result for frames. / |
Remark
For a biframe compactification h : M — L, r preserves first and second parts if and
only if the corresponding strong inclusions satisfy the condition:

For any ¢ € Ly and z € L; with a « z, there exists z € L; with ¢ £ 24, z.

Thus the assumption “z<;y*’
by “m <] y..”

in the above proposition could have been replaced

7.1 Rim-compact biframes

Definition 7.2 1. A regular biframe L is rim-compact if and only if cach

z € L; is a join of elex .13 z € L; such that T(z V z°) is compact.

2. Let L be a rim-compact biframe. A Il-compact basis B = (B,, B;) for L is
a pair of bases, B; for L; (1 = 1,2), such that

(a) = € B; implies that T(z V <*) i3 compact
(b) x € B; tmplies thai 2 € B,
(¢) z,y € B; imply that z ANy, zVy € B;.

Lemma 7.2 Let L be a rim-compact biframe.

Ta ng B; = {x € L;| T(x V z°} compact} gives a I1-compact basis for L.

PROOF. We verify the last two conditions in the above definition.

For the second, T(z V z*) compact implies T(z* V z°°) compact, since
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z < z°.
For the third, let 2,y € L; such that {(z V z°) and T(y V ¥*) are compact. Since Ta
and Tb are both compact iff T(a A b) is compact, we get T(zVz*)A(y Vy*) compact.
Now (z Ay)V(zAy)* = V(@AY IA([YVIEAY)) 2 (2Vz*)A(y Ay®), so
Tz Ay) V(z Ay)® is compact.

Also (zVy)V(zVy)®' =zVyV(z* Ay®) = (zVyVz*)A(zVyVy®) 2 (zVz*)A(yVy*),
sof(zvy)Vv(zVvy)is compact..‘ |

Lemma 7.3 Let L be a rim-compact biframe and B be a Il-compact basis for L. If
w € L; and v € By with wV u = e, then there exists v € By such that v=<; u and

wVuvs=e.

PROOF. Since L is regular and B; is a basis for L;, we have that

w=Vaz(z<; w, € B;). ThenuV Vz(z<; w, 2 € B;)=¢ and so
uVu'VVz(z<; w, r € B;) = ¢. Now T(u Vu") is compact, so there exist z; € B;,
I.[*j'<; wforj=1,...,nsuchthat uVu*V(z;V...Vz,)=e. Putz =2, V... Vz,.
Then z € By, z<; wand uVu*Vr = e Let v = uAz®. Then v € B, (by
the seccond and third properties of II-compact bases), and w Vv =wV{(uAz®) =
(wVu)A(wVz®) =eAe = e Further, v<; usincevA(u*Vz) = (vAu*)V(vAz) =
(uAz*Au*)V(uAz*Az)=0anduV(u'Vz)=e andu"Vz e L, i

Proposition 7.4 Let B = (B, B;) be a Il-compact basis for a rim-compact biframe
L. Define q; on L; by: z<;y iff there exists u € B; such that x<; u~; y. Then

dp = (d1,d2) s a strong inclusion on L.

PROOF. (Sii)If s € 2d;y < {1, there exists u € B; with z<; u=; y, so s<; u—; ¢
also.

(SI2) Since 0<; 0. e<; cand 0, ¢ € B;, we get 0<;0 and e<;e.

That <y, = implies z<d;y A z and z,y<;z implies z V yd; z follows from the
properties of the relation <; and the fact that B; is closed under finite meets and

finite joins,
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(S13) That <,y implies z<; y is clear.

(SI4) Take zd;y, and u € B; such that z<; u=<; y. Then 2* V u = ¢, so, using the
above lemma, we obtain v € B; satisfying v<; u and z*Vv = e. Hence z<; v<; u<; y.
Similarly we can get w € B; such that z<; v<; w<; u<; y, and then zd; wd; y.
(S15) Take zd;y and u € B; with z<; u<; y. Then y*<; u*<; z* and u* € By, so
y ' axt.

(SI6) For any = € L;, x = V z(z<; z, z € B;). We now show that z2<; z, z € B;
implies z<; z to obtain £ = Y 2(z<;z). Since 2* Vz = e and z* € By we obtain,
by the above lemma, v € By, v<; z° and vV = e. Now v<; 2* iff v* Vz* = e iff
z<; v*, and vV z = e implies that v** Vz = ¢, so v*=<; z. Hence 2~; v*<; = and
v* € B;, showing that z<; z. |

Lemma 7.2 and Proposition 7.4 together give a description of a compactifi-
cation for any rim-compact L — in agreement with the terminology for spaces [26]

and frames [2], we call this the Freudenthal compactification of L.

Lemma 7.4 Any zero-dimensional biframe L is rim-compact.
In fact, taking B; = {z € L;| < =} provides u II-compact basis for L, end the

corresponding compactification is the largest zero-dimensional one.

PROOF. Since L is zero-dimensional, z = Vz(z < z, z<; z) for each z € L;.
But z<; z implies that z V z* = e, so that T(z V z*) is certainly compact. The
remaining conditions for B to be a II-compact basis are clearly satisfied. The final
claim follows from this characterization: the comp=ctification corresponding to the
strong inclusion «i; is zero-dimensional iff, for any z<;y, there exists z € L; with
r<zd;2 < 4. |

Lemma 7.5 If L is mim-compact, end if B; = L; forms a Il-compact basis for L,

then < g corresponds to the largest compactification of L.

PROOF. If (d,',d2") is another strong inclusion on L, z<;'y .mplies that

zd; zq; 'y for some z € L; (by the interpolation property of strong inclusiuns).
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Then z<; z=<; ¥, 2 € By, as required. ]

In the theory of frames (and of spaces), the Stone-Cech and the Freudenthal
compactifications of a rim-compact frame (or space) are both perfect. We do not

know whether this is also the case for biframes or not.

To conclude, we take another look at two previous examples of compactifi-

cations, in connection with the concepts of this section.
Example 1

Ly = all open subsets of the (rcal) open unit interval B

£, = all open downscts

Ly = all open upsets

We recall that £ has a unique compactification, given by Mg = the closed unit
interval, M, = all open downsets, M, = all open upsets, and the cbvious re-
striction maps. It may be viewed as & compactification derived rom a II-compact
basis by taking B; = {U € L;}, since, for any U € L;, T(U V U*) is isomorphic to
O(C(U v U*)) (where C denotes set-theoretic complement), and the latter is equal
to O{z} for some z € E, and this is certainly compact.

Let 7 denote the right adjoint, as usual. Then r{(0,a)) = [0, a) and r((a,1)) = (a,1]
for @ € E, so r preserves first and second parts. Also r(U VU*} = r(U) Vr(U*) for

U € £;, so this compactification is perfect.

Example 2

Ly = all open subsets of the (closed) rational unit interval E
L, = all open downscts

L, = all open upsets
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1.

o

On the smallest compactification of L:

We recall that this is given by the restriction map M— L, where My = the real
(closed) unit interval, M, = all open downsets, M, = all open upscts. The
corresponding strong inclusion is given by U <; Vif U CVor U=V =E
or U=V =4.

This compactification may be obtained from the II-compact basis

B; = {U € £;| U has a rational end-point} (let its strong inclusion be denoted
by «; )» U «; V,then U C V so there exists W € B; with U c W cC V
and thus U=<; W=; V. Conversely, if U«;V, then U<; W-;.- ¥ for some
W € B;, hence U # V, that is U «; V (since the U € £; for which U<; U
are exactly those with irrational end-points). We also note that, for U € B;,
rUVU)=rU)Vvr(U").

. On the largest conipactification of L:

ForUe L;,, jUVU") = O(CUVU*)) = Ofz]} forsome z € E, or Of. In
either case, T(U V U*) is compact, so B; = £; provides a [I-compact basis for
L, which necessarily corresponds to the largest compactification of £ (by the
previous lemma). It could also be obtained by taking

B; = {U € L£;] U has an irrational end-point} = {U € £;| U=; U}. This
description makes it immediately clear that this compactification is zero-

dimensional.

On other compactifications of £:

Fix some V € {U € £;{ U has an irrational end-point}.

Let B;.= {U € £;| U has a rational end-point} U {V}

and By = {U € Li| U has a rational end-point} U {V*}.

Then (B, Bz) is a II-compact basis for £, and the resulting compactifica-
tion differs from the largest and the smallest. In this way, we can generate

uncountably many compactifications of L.
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Boolean biframes

In the setting of frames, the notions of a pseudocomplement and of Booleanness
were defined in Section 0.5. The set BL = {z € L] z = z*"} is a complete Boolean
algebra (called the Booleanization of L) and the function § : L—BL given by
B(z) = z** is a frame homomorphism. (A reference for these results is [13].) The
biframe psecudocomplement, z°, and the BBoolean biframes were introduced in Defi-

nition 1.10.

8.1 The Booleanization of a biframe

Consider an arbitrary biframe L = (Lo, L, L;). For any congruence ¢ on L, let 6;
denote the congruence 817; x L; on L;, and let ky and k; denote the respective nuclei.
The function h : L;/0;— Ly/8 defined by h(ki;(z)}) = ko(ki(z)) = ko(z) is a one-one
frame homomorphism, so L;/§; may be regarded as a subframe of Ly/8. Further,
Ly/8is generated by Ly /61 UL, /0,, since, if a = V, Ta Ay, for some z, € Ly, yo € L2
and ko(a) = a, then @ = V, ki(za) A k2(yo). Thus (Lo/8, L, /8, L2/8;) is a biframe
and the map (Lo, L1, L2)—(Lo/8, L1 /61, L2 /8,) is a biframe homomorphism.

8
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The Booleanization BL of a biframe L is constructed as follows:

Let = py, be the congruence on Ly generated by {(z V z*,¢)} r € L, U L;}.
Let p; = p|L; x L; and By, : (Lo, Ly, La)—(Lo/pt, L1 /1, L2/ pt2) be the biframe map
described above. We denote this map by f;, : L—BL. Certainly BL is a Boolean
biframe, because, for z € L;, ko(z)Ako(z*) = ko(0) and ko(z)Vke(z*) = ko(z v z*) =
ko(e).

The Booleanization of a frame is dense: we do not know whether this is

always the case for biframes.

The following is clear:

Lemma 8.1 A biframe L is Boolean if and only if B, : L—BL is an 1somorphism.

8.2 Weakly open homomorphisms

We return to the frame context for a moment, to state the following result ([13]):

For any frame homomorphisin h : L— M, these are equivalent—

1. Forany a € L, h(a"") < h{a)™.
2. Forany a € L, I(a)" = 0 whenever a” = 0.

3. There exists a map & : BL—BM satisfying fa.h = h.f1,; that is, making the

following diagram commute
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L —r o
BL 1[31\4
BL BM

Such frame homomorphisms have been called “weakly open”. (It is known
that, in general, the inequality in the first property mentioned above cannot be

replaced by equality — [13].)

The equivalence mentioned above makes these maps particularly useful in
the study of Boolean frames. For biframes the situation is not so clear. We discuss

the following candidates for weakly open biframe maps:
Definition 8.1 A biframne map h: L—M will be called
1. an A-map iff h(z*) = h(z)* for ellz € Ly U L,
2. a B-map iff h(z**) = h(z)** for allz € L, U L,,
3. a C-map iff h(z**) < h(z)** for allz € L U Lo,

4. a D-map iff h(z)* = 0 whenever z* =0, for all z € L, U Lo,

Cn

an E-map iff there is o map h : BL—BM satisfying Par.h = h.Br; that 18,

making the following diagram commute:

L —h
73 lﬁm

BL——=——+BM
h
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Lemma 8.2 An A-map is ¢ B-map is ¢ C-map s ¢ D-map.
Remark

¢ Any dense, onto biframe map is an A-map.

This was proved in Lemma 7.1.

e A C-map need not necessarily be a B-map, since these two concepts are dis-

tinct even in the analogous frame case. ({13])
Lemma 8.3 h is ¢ C-map iff h(z)* = h(z**)* for allz € L, U L,.

PROOF. (==) h(z"*) < h(z)** implies that h(z**)* > h(x)*** = h(z)".
(<) h{z**) L h(z**)** = hz)*". 1

Lemma 8.4 If L is a De Morgan biframne, that is, it satisfies z* V £** = ¢ for all
&€ LyULg then h: L—M is an A-map iff it is « C-map.

PROOF. (<) Forz € L, UL, z*Vz** =g, hence h(z*) V h(z**) = ¢ and also
R(z*) V h(z)** = e. Then h(z*) A k(z)* = h(z)* so that h(x)* < k(z®). 1

Lemma 8.5 Any composite f.f1 : L=BL—M is an A-map.

PROOF. Forz € Ly UL, fAL{zxVz') = e Taking meets with f.f.(z)* gives
fBu(z)® < f.Bu(=*). |

Lemma 8.6 Any A-map 15 an E-map.

PROOF. Let h: L—M be an A-map. Forz € Ly U L,, Ay .h(z Vz*) =
Bu(h(z) V h(z)*} = e, since h(z*) = h(z)*. Thus yy, (the congruence used in the
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formation of BL) is contained in the kernel of 8u.h, so there exists a function
Jo : Lo/pr—Mo/jps for which h.8 Lo = Bar.h|Lg. Further, h is a biframe map

because fy, is onto. ‘ I

We note tha. an E-map nced not, in general, be an A-map, because these

properties differ in the analogous frame setting. ([13])
Corollary 8.1 h: L—M is an E-map iff Bm.h: L-BM is an A-map.

PROOF. . (=) Follows from Lemma 8.5.
(<) Follows from Lemma 8.6. i

Corollary 8.2 Boolean bifremnes are reflective in the category of biframes and A-

maps (or biframes and E-maps).

Proposition 8.1 1. L is Boolean iff cach h: L—M is an A-map,
iff ecch h: L—=M satisfies h(zVz*) =¢,z € L, U L,.

2. L satisfles z =a**, x € Ly U Ly iff each h: L—M is ¢ C-map.

3. L salisfies the condition: z = e whenever z** = e iff each h : L—=M 15 o

D-maep.
PROOI.

1. If L is Boolean, tVz* = ¢ for all z € Ly UL, and so h{zVz") = e. I
this latter condition is satisfied, i{z) and h(z*®) are complements in M, so
certainly h{z*} = h(z)*. Conversely, suppose that each h : L—M is an A-map,
but L is not Boolezri. Then there is some z € LiUL, for whicha =z V z° < e.
The function h: (Lo, Ly, La)—(Ta, Ta, Ta) given by h(z) = z V a, is a biframe
map. Now h(z) = h(z") = a, so if h is an A-map, ¢ = a*, which is a

contradiction, since « is the zero but not the top in Ta.
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2. (=) For any = € L, U L,, h(z**) = h(z) < h(x)*.
(<=) Suppose there is an = € L, U L, with = # z**. Then
h : (Lo, Ly, L2)—(Tz, Tz, 1) given by h(z) = 2 V 7, is a biframe map. Now
hz)==z, h(z**)=z*"*and z** =z in (T:c,T:r,“‘-]‘:z:), soif h is a C-map, z** < z,

a contradiction.

3. (=) For z € Ly U Ly, if 2° = 0 then 2** = ¢, so z = ¢, 50 A(z) = ¢, and so
h(z)* =0. ;
(<=) Suppose there exists an x € L, U Ly such that z < ¢ and z** = ¢. The

map h : (Lo, L1, Lz)—(Tz, 7z, Tz) by taking joins with z satisfies h(z) = z,
thus 2(z)* = e, although z* = 0.

For the next lemma we recall that, for any biframe L, the ideal biframe JL

is given as follows:

(J L): consists of those ideals J in Lq that are gencrated by JNL;, and (J L)y
is the subframe of J Lo (the frame of ideals of Lg) generated by (JL); U (J L),.

For I' € (JL);, J € (TL) (i # k), we have

INJ=0 iff [zNJ=0,allzelINnlL;
iff zAy=0,allzelnlL;, yeJ
iff zA\/J=0,alzelINnL;
iff = <(\/J), all z € INL; (note that \/J € L)

So J* =L (VJ)* and J** =] (V).
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Proposition 8.2 i is an A-map (respectively a B-map, C-map, D-map) if and
only if Th 1= an A-map (respectively a B-map, C-map, D-map).

ProoOr. For A-maps:

(=) For J € (TL), Th(J*) = Th(L (V1)) =L B((V J)") and Th(J)" =

L (VIR =L (VA" Now h((V 7)) = A(VJ)* = (VALJ])", since h is an
A-map; so J. J*) = Th(J)".

(=) For z € L;, Jh((| z)*) = Jh(| z)* by assumption. Now

IR z)*) = Th{l (=*)) =] h(z") and Jh(} z)* =] h{z)" hence h(z") = h{z)".

For C-maps (the proof for B-maps is similar):

(=) For J € (FL)i, Th(J**} = Th(L (VJ)™) = h((V J)*) and
Th{J)* =L (VIT(J))** =1 (h(V J))*™.

Soif h((V J)**) < h(V J)™ then Jh(J**} C Th(J)*".

(<=) For = € L;, Jh{(] z)**) C Jh(| z)** implies that Jh(} (z**}))
Cl(VIh(] z))**, so that | h{z**) C| h(z)** and thus h(z**) < h(z)*".

For D-maps:

(=) For J € (JL);, J* = 0 implies | (VJ)* = 0, so that (VJ)* = 0 and
h(V J)* =0 (since h is a D-map). Thus Jh(J)* = | (R{V J)*)}) = 0.

(<=) For z € L;, z* = 0 implies that (| z)* = 0 so that Jh(| z)* =0 (since Jh is
& D-map), and, finally, | A(z)* = 0 and h{z)* = 0. 1

Proposition 8.3 If 7h is an E-map, then h is an E-map.

PROOr. We first note that, for any biframe L, the join map 71 : JL—L is dense
and onto, and so an A-map, by the remark after Lemma 8.2. Consider the following

- commuting diagram:
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JL _Eh_.JM_B\&.BJM

TL M ™
L M BM
h Bar

T is the biframe map making the right-hand square commute (it exists by
Lemma 8.6). By assumption, Jh is an E-map, that is, ﬁJM.._’]'h is an A-map (see
corollary to Lemma 8.6). Tjy, being a map between Boolcan biframes, is also an
A-map. Thus the commutativity of the diagram shows that Sx.h.7;, is an A-map.
We now obtain the result that fa.h is an A-map from the claim that follows.
Claim: If f: N—P is onto and ¢.f : N—=+P—Q is an A-map, then g is an A-map.
Proof: Let z € F;.. Then z = f(z) for some z € N;. Then g(z)* = g(f(z))* = ¢f(=*)
and hence gf(z)* = ¢g(f(2)*). |

Lemma 8.7 Biframe products are the products in the category of biframes and

A-maps (or B-, C- or D-maps).

PROOF. Let L =T], L° and p, : L—L* denote the projection maps.

For z = (z,) € Li, 2* = (), 50 pa(2®) = palz)*. Given A-maps f, : M— L,
the map A : M—L given by h(a) = (fa{a)) is an A-map, since, for z € M;,
h(2*) = (fa(2*)) = (fa(2)") = (ful2))* = (2)".

The proofs for B-, C- and D-maps are similar. ]
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Appendix: List of categories

The following is a list of the categories for which we use abbreviated names,
their objects (their morphisms are given in the text) and the page on which they

are defined.

Category Objects Page
Ens sets 30
Frm frames 4
Top topological spaces 5
BiFrm biframes 9
BiTop bitopological spaces 11
KRBiFrm compact regular biframes 13
StBi¥rm Stone biframes 18
KBooBiFrm compact Boolean biframes 20
CohBiFrm coherent biframes 42
StContBiFrm | stably continuous biframes 50
SCohBiFrm supercoherent biframes 53
StSContBiFrm | stably supercontinuous biframes 54
BooBiTop Boolean bispaces 47
SpecBiTop spectral bispaces 7
BiLatt bilattices 43
BiSLatt bisemilattices 54
BooBiLatt Boolean bilattices 18
CFrm frames with all elements compact | 20
CohFrm coherent frames 20
StContFrm stably continuous frames 50
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