GENERATIVE ASSEMBLY PROCESS PLANNING

by
LUC LAPERRIERE, B. Eng., M. Eng.

A Thesis
Submitted to the School of Graduate Studies
In Partial Fulfillment of the Requirements

For the Degree

Doctor of Philosophy

McMaster University

January 1992

GENERATIVE ASSEMBLY PROCESS PLANNING

DOCTOR OF PHILOSOPHY (1992) McMASTER UNIVERSITY

(Mechanical Engineering) Hamilton, Ontario
TITLE: Generative Assembly Process Planning
AUTHOR: Luc Laperriére

B. Eng. (Université du Québec a Trois-Riviéres)
M. Eng. (McMaster University)

SUPERVISOR: Dr. Hoda A. EIMaraghy
Professor and Director
Cantre for Flexible Manufacturing
Research and Davelopment

NUMBER OF PAGES: xx, 292

ABSTRACT

The benefits of automating assembly sequence generation include: |
1} insuring that no potentially gao& assembly sequence is oirerlooked, 2) reducing
planning costs, 3) accelerating the analysis of the economical impact of different
design solutions, 4) standardizing and improving the quality of the produced plans,

and 5) contzibuting to achieving autonomous assembly systems.

Previous rosearch in assembly planning focussed on the generation and

evaluation of all possible assembly plans for the product under consideration.

This thesis presents a graph-theoretic approach for simultaneously
generating and evaluating products’ assembly / disassembly sequence altematives
and producing an optimum assembly plan according to predefined criteria. It aims
at improving the efficiency of the assembly planning process and producing optimal
assembly / disassembly plans. The developed graph-theoretic approach enables
the determination of assembly sequences which transform any arbitrary initial state
of the product into any arbitrary finc! state. Practically, this means many different

types of assembly problems to be handled uniformiy.

A product is described in terms of its components and the assembly
relationships between them. This description lends itself to a graph representation,
where vertices correspond to the set C of assembly components and edges

correspond to the set R of assembly relationships.

For a product with 'n” components, the ganeration of an assembly sequence

is mapped into the problem of finding a sequence of "n—1" mutually exclusive cutsets

in the graph model and its subgraphs. Each cutset corresponds to a disaszembly

operation of the physical product which produces two smaller subassembliss.

‘Assembly sequences are encoded in a directed graph of assembiy states,
representing the search space. Geometric feééibility and accessibility constraints
have been developed to help reduce this combinatorial search space.
Assembly-related criteria which guide the search to an optimal solution are

described. They are:

1) the number of re—orientations,

2) parallelism armong assembly operations,
3) stability of the subassemblies, and

4) clustering of sirnilar assembly operations.

Integrating the evaluation of these criteria as the search graph gets
expanded, enables the direct generation of an optimal disassembly sequence of a
given product with respect to these criteria. Standard search methods, including
breadth first, depth first, best first, A" and hill climbing, are used to guide the search
towards a single and optimal assembly sequence. The A" method can generate
optima! solutions without explicitly generating the whole directed graph of asserﬁbly

states.

An interactive computer tool, based on the above approach, was devaloped.
GAPP — a Generative Assembly Process Planner uses various search methods to
incrementally construct the directed graph of assembly states and generate optimal
assembly / disassembly sequences. Examples of real products are included to
demonstrate GAPP's use and potential for assessing assembly, disassembly,
repair, maintenance, assembly of multiple products and assembly error recovery

procedures.

ACKNOWLEDGEMENTS

The author would like fo express his deepest appreciation for the valuable

supp.ort provided by his supervisor, Dr. H. A. ElMaraghy.

Special thanks are extended to systems analyst Todd Pfaff for his
nrogramming assistance. Many thanks are also due to friends and colleagues for

their advice and encouragement.

The financial support of Université du Québec a Trois-Riviéres, in the form
of post—graduate scholarships to the author and the research scholarship from Dr.
H. A. EIMaraghy's research funds, including MRCO and NSERC, are also greatly

appreciated.

This work is dedicated to my wife, Annie, whose confidence and moral

support made it all possible.

TABLE OF CONTENTS

DESCRIPTIVENOTEcennnununee Crestiessrieserraensrannns . il
ABSTRACTcoiviineerrnnnnnsannsns Canasssseesentssraseanans il
ACKNOWLEDGEMENTS ...viiierrriiestncesncecasatsrnnncrannees '
TABLE OF CONTENTS .. iiucvrtrncncernranensnsnscessasterssscnss vi
LISTOFFIGURESccovitvrinneerinnenenrenssaossssonnnsnsanaase xi
LISTOF TABLES ...ovcettiierecniesnnacennncssssssnssnasnsnannees XX
CHAPTER 1 ...t iiiiietiintnionnessorunannsssssnnornssernnsonee 1
INTRODUCTION ...ttt iiraririnneiiisserassnnsss 1

1.1 Process planningccoeiiiiiiiiiiieniaiirieiesienaiienen, 1
1.2 Computer—Aided Process Planning (CAPP) 3
1.2.1 Variant CAPP systemsottt 4

1.2.2 Generative CAPP systemsccoviieirireeniniennnn 5

1.3 Assembly planningoovviiiiiii i e e 8
1.4 Motivations for automating assembly planning 9
1.4.1 Combinatorial complexitycovviiiiiiiiiiiiiiinee, 9

1.4.2 Economical justificationociiiiiiiat 10

1.4.3 Standardization and quality of the generated plans 1

1.4.4 Applications in task level robotic languages 1

145 CAD/CAMIINK ...ttt 13

1.4.6 Benefits by otherdomains e 13

1.5 0verview Of GAPP ... ittt iit it 14

vi

CHAPTER2......cct000een .
LITERATURE REVIEW
2.1 Relevant research

21.1 TheworkofBourjaultccciiveiniiiiireianane,
2.1.2 Thework of Whitneyetal.c.coieveenennn
2.1.3 The work of Homem De Mello and Sanderson
2.1.4 Theworkof Huangandbleecooiiiininannn

2.1 .5 The work of Wolter
2.2 Dther relevant works ...
2.3 Nead for research

2.3.1 Selection of assembly planscceeiiiiiiiiiian,
2.3.2 Merging the generation and selection processes
2.3.3 Handling arbitrary initial and final assembly states
2.3.4 Handling multiple productscocviviniiiiienne
2.3.5 |dentification of the moved and fixed subassemblies

2.4 Scope of the research ..
2.5 Thesis organization

CHAPTEH =

GRAPH MODEL OF THE PRODUCT

3.1 Definitions
3.2 Role of tha graph model
3.3 Merging components ...

CHAPTER4cccvnuvnaess

llllllllllllllllllllllllllllllllllll

PROBLEM FORMALIZATIONccvvviiii i

4.1 Definitions

4.2 Formal descriptionoftheproblemovvieienn,

4.3 Search direction
4.4 Generation of the cutsets

4.4.1 An algebraicapproachoovieiiiiiriiiiiiiiens
4.4.2 Non—completegraphscooiiiiiiiiiiiiant
4.4.3 Updatingthecutsetsc.ooiiiiiiiiiniinnes
4.5 Benefits of the adopted approachccvviiiniiiininesn

4.5.1 Arbitrary initial state
4.5.2 Multiple products ..

specificationooiiiiiiiinn

4.5.3 Arbitrary goal state specificationc00ee

4.5.4 Computation speed

16
16
16
16

29
36
39
42
47
47
50
51
52
52
56
57

59
59
59
71
73

75
75
75
85
88
91
91
96
100
103
103
103
104
106

CHAPTERGSccvvvvenvnnne

OPERATIONS CONSTRAiNTS

5.1 Combinatorial complexity
5.1.1 Tree graph model ..

5.1.2 Complete graph model

5.2 Constraints on assembly o

5.3 Geometric feasibility constraint

5.4 Accessibility constraints . .
5.4.1 lllustrative examples

5.4.2 Restricted components

5.4.3 Other constraints ...

PErationsovvenvenrnnieniiienns

5.4.4 Transforming restricted components into forbidden states ..

CHAPTERG...... cenesens
EVALUATION CRITERIA
6.1 Number of re—orientations

6.1.1 The need for re—orientations
6.1.2 The notion of the moved and fixed subassemblies
6.1.3 Computing re—orientations in GAPP

6.1.4 Anexample

6.1.5 Effects on assembly states
6.1.6 Search cost associated with re—orientations

6.1.7 Underestimating re—0

6.2 Parallelism among assembly operations

s saasaSssen AR R eadBESSRERBNSRRERREREAS

rientation’s remaining search cost

6.2.1 Typel versus type2 parallelismcovviinnnen

6.2.2 Parallelism in GAPP .
6.2.3 Search cost associated with parallelism

6.2.4 Underestimating para

6.3 Stability of the subassembli
6.3.1 Introduction

lielism’s remaining search cost
Y 2 P

6.3.2 Degrees of freedomcciiiiiiiiiiiiiiiieee
6.3.3 Adding penalty degrees of freedom

6.3.4 Search cost associated with stability
6.3.5 Urderestimating stability’s remaining search cost
6.3.6 Stability: criterion versus constraint
6.4 Clustering of similar operations

6.4.1 Benefits of clustering
6.4.2 ldentifying similar ope

6.4.3 Search cost associated with clustering
6.4.4 Effects on assembly states
6.4.5 Underestimating clustering’s remaining search cost

6.5 Competition among criteria

rationsinGAPPcoeenvnt

109
109
109
110
112
115
117
122
122
126
126
127

129
129
130
130
132
135
139
141
143
143
160
150
151
156
157
162
162
164
167
170
171
172
173
173
176
178
178
179
180

CHAPTER 7 eeveniiereressennnnnes
'SEARCH METHODS
7.1 Definitionscvcviviirnnnn

7.2 Keeping track of the best pathtoanode

7.2.1 Costfuncticn

7.2.2 Resetting the best parent of a node inthe openset
7.2.3 Resetting the best parent of a node in the closed set
7.3 Violating the history independence assumption
7.3.1 Failure to reset the best parentpointer
7.3.2 Mistakenly resstting the best parent pointer

7.3.3 Multiple goal nodes

7.4 Breadth first and depth first exhaustive search

7.5 Best firstsearch
76A*search
7.7 Hill climbing search

CHAPTERBcc.vivverencannnsss
RESULTScoiiiiiiiiiinnnnns
8.1 Effect of the search constraints
8.2 Effect of the search criteria
8.3 Effect of the search methods ..
8.4 Generation of repair plans.......

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

8.5 Recovering from assembly &rrorscoovieiiiiiiinnn..

8.6 Multiple products planning
8.7 A more complex product

CHAPTER9.....c...ivivvnnnnneess

DISCUSSION AND CONCLUSIONS

9.1 Summary of achievements

9.1.1 Graph theoretic approach to assernbly planning
9.1.2 Identification and formalization of evaluation criteria
9.1.3 Merging the generation and evaluation processes
9.1.4 Reduction of the combinatoricsccveviivenet,

9.2 DiscusSionovinieeennnnn
9.2.1 Problem size

9.2.2 Comparison with other assembly planners

9.2.3 Programming environment

183
183
183
185
185
187
188
190
191
194
198
199
201
203
208

211
211
211
213
217
219
222
225
227

237
237
237
237
239
240
241
243
243
244
246

9.3 Future work

9.3.1 Additional evaluation criteria
9.3.2 Development of monetary cost functions
9.3.3 Generation of assembly graph from CAD models
9.3.4 Relaxing assumptions
9.3.5 DFA feedback
9.3.6 Link with scheduling

BIBLIOGRAPHY

APPENDIXA

PROGUCT DESCRIPTION FILES
A.1 The air cylinder
A.1.1 Qverview of the file format
A.1.2 Identifying relations
A.2 Interpretation of the input file by GAPP

A.2.1 Setting

A.2.2 Error checking
A.3 PDF of ihe flashlight
A.4 PDF of the ball—point pen
A.5 PDF of the multiple products
A.6 PDF of the base subassembly of a heat detector device

APPENDIXB

KRUSKAL'S ALGORITHM
B.1 The original algorithm

B.2 An example

APPENDIXC
WINDOW INTERFACE
C.1 Control window
C.2 Parameters setting window

C.3 Edit window

MR N A A N R RN R N BN RE I I]
--

...............................
..

....................................

upthegraphmodelcooviiiiiiinnannn

..

.......................................

sEsERAaBRBEId AT RIS aessasw 4P BB QAR WS ERSEAEST BB
--
--

C.ADisplay WiNdOWvveriiinrniiiiecein it
CHEOUPULWINAOW .. uevvviiinvriteieraenerneiseirnnninenaes

APPENDIXD

DATASTRUCTURESvtivrvetiiinarsaririsecesonranannaiinns

D.1 The class "List”

--

D2Theclass ™Mem”ovvviereeiiinsnrraesrtnasssssasesssoens

D.3 Advantages

246
246
247
248
248
249
249
250
261
261
261
261
264
277
267
268
269
270

271
272

274
274
274
275

279
279
280
282
284
285
285

287
287
287
289
291

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

1.1:

1.2:
1.3
1.4
1.5:

2.2

2.3:

2.4:
2.5
2.6:

2.7

2.8:
2.9:

2.10:

LIST OF FIGURES

Central role of process planning in a manufacturing
ONVITONMEN,. iiiivrirenrnsennsasonsorsosnoesenss

Structure of an ideal generative CAPP system.
Asimpleplatetobemachined.00aht,
Three blockstobsassembled.ccvcvuvt,

Block diagram of GAPP.cooiiiiiiii i,

: Anoilpumpassembly([5].coiiiiiiiiiiiiaie,

Graphe des liaison fonctionnelles (graph of connections) for the
oilpumpinfigure 2.1 5], ... viiiriiii ittt

One of the six trees in the forest of assembly sequences for th2
oil pumpinfigure21[5).coviiiiiiiiiiiii e

A ball-pointpentobe assembled [11].ovvt
Graph of connections for the ball-point pen in figure 2.4 [11]. .

The first two ranks in the search graph of the ball-point pen in
figure 2.4. The first rank is the completely disassembled state
(no liaison established). The second rank shows the
establishment of the three liaisons by which assembly can start.

Directed %raph of assemtly states for the ball-point pen in figure
2.4 [11]. Every path from the root node (top) to the leaf node
{(bottom) is a feasible assembly sequence. Although this

graph is directed, downward pointing arrow heads have been
neglected forsimplicity.c.ciiiiiiriiiiiiiiinaan,

A simple product to be assembled [23]).

Correspondence between the relationa! model (top) and the
graph of connections {bottom) for the product in figure 2.8 [23].

A machanically unfeasible operation: part screw1 is blocked by
thecap 23] ...t i it ittt et etineacenanas

Xi

12
15
17

17

22
23
23

26

28
30

31

33

Fig. 2.11: The AND / OR graph which represents all disassembly sequences
of the product in figure 2.8 [23E
Fig. 2.12: A tilt mechanism to be assembled [28].
Fig. 2.13: Feature Mating Operation Graph of the tilt mechanism in figure
=0 - -2)
Fig. 2.14: Scissorstobe assembled [80]. i v,
Fig. 2.15: Assembly Constraint Graph for the scissors in figure 2.14 {80].
Fig. 2.16: Two feasible plans of a hypothetical product: plan 1 is better with
respectto accessibility.o ittt
Fig. 2.17: Two feasible plans of a hypothetical product: plan 1 is better with
respecttostability.o i il e,
Fig. 2.18: Two products which cannot be built by a dichotomic planner [81].
Fig. 2.19: Three exan'ple problems which cannot be solved by a
monotone assembly planner. Example (b) is taken from [81]. .
Fig. 3.1 Exploded view of an éir cylinderassembly,
Fig. 3.2: Examples of air cylinder components having a contact relation
betweenthem. oo i e
Fig. 3.3: Examples of air cylinder components having an attachment
relationbetweenthem. ot iiiiii i,
Fig. 3.4: A typical example of two components having a blocking relation
betweenthem.co ittt iiiiiieennannenas
Fig. 3.5: Examples of air cylinder components having a blocking relation
due to an intermittent contact betweenthem.
Fig. 3.6: Further examples of air cylinder components having a blocking
relation betweenthem.o,
Fig. 3.7: Examples of air cylinder components not having a blocking
relation betweenthem.o n e,
Fig. 3.8: Air cylinder assembly drawing. i e
Fig. 3.9: Aircylindergraphmodel.ot

Xii

35

36

37

41

48

49

54

55

60

61

62

63

64

65

66
67

67

Fig. 3.10:

Fig. 3.11:

Fig. 3.12:

Fig. 3.13:

Fig. 4.1:
Fig. 4.2

Fig. 4.3

Fig. 4.4:

Fig. 4.5:

Fig. 4.6:

Fig. 4.7:

Fig. 4.8:

Fig. 4.9:

Fig. 4.10:

Fig. 4.11:

Fig. 4.12:

Air cylinder directed graphmodel.counns.
A hypothetical ﬁhal configuration of the air cylinder.

Graph model corresponding to the final configuration in figure
1 0 B

Air cylinder's directed graph model in the case where the
piston, piston_rod, piston_screw and piston_o_ring have been
combined intoasinglecomponent.t

Two subgraphs of the air cylinder graphmodel.

Air cylinder's non-blocking subgraph.

An unconnected subgraph of the air cylinder’s graph model (top)

along with its unconnected non-blocking subgraph (bottom). . .

Two induced subgraphs of the air cylinder's graph
model: D{bearing_o_ring, bearing, pisten_rod, piston]
and D[piston_screw, piston, piston_o_ring, body, cover].

Two subgraphs of the air cylinder's graph model which are not
induced subgraphs: the top one has a missing edge
(piston_rod, piston), while the bottom one is not connected. . . .

Two possible air cylinder assembly states.

A cutset in the air cylinder's completely assembled state:
{(R1,R2, R3,R4,R5,R6,R7}.coiiviiiiiiinnnnnnnn

A cutset in an air cylinder’s arbitrary state:
{(R1,R2, R3,R4,R5,R6,R7}.cviiiiiiiiininnenn

A set of edges which is not a cutset: three induced
subgraphs are resulting from their removal.

Formal approach to assembly sequence generation. From top
to bottom, sequence 1 involves cutsets {{R1, R2}, {R3}},
sequence 2 involves cutsets {{R1, R3}, {R2}} and sequence 3
involves cutsets {{R2, R3L, {R1}. ...,

Merging the common nodes of the 3 assembly sequences in
figure 4,10 into a graph of assembly states,

Directed graph of assembly states.

Xiii

70

72

72

74
76

77

79

- 80

81

82

83

84

86

87
90

Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4.13:

4.14:
4.15:

4.16:
417.

4.18:

5.1:

5.2

5.3:

5.4:

5.5:

5.6:

5.7:

5.8

ga; a graph model; (b) a spanning tree in the graph model;

c) the three vectors in the fundamental system of cutsets

relative to the spanning tree; (d) four vectors resuiting from

four linear combinations of the three vectorsin(¢c). 92

Procedure "make_subtree()”. et 94

iag a graph model; (b) a spanning tree in the graph model;

c) the three vectors in the fundamental system of cutsets

refative to the spanning tree; (d) four vectors resulting from

four linear combinations of the three vectors in (c): the last
combination is not a cutset ofthegraph. 97

Procedure "make_subgraph()”.c. . ciiiiiennnnnn. 99

Determination of the cutsets of a new child node from an analysis
of the ones inherited fromitsparent. 102

(a) a graph model with six cutsets; (b) incrementing the binary
vector to find all possible combinations of cutsets. 108

a) a four components product with a tree graph model;
b) a four components product with a complete graph model. .. 110

Unconstrained directed graph of assembly states for the product
in figure 5.1a. There are 8 vertices, 12 edges and 6 paths. ... 112

Unconstrained directed graph of assembly states for the product
in figure 5.1b. There are 15 vertices, 31 edges and 18 paths. . 114

Three blocks to be assembled (left) along with their graph
model (right).ciiiiiiiiii i i i i i, 116

lllustration of the effect of adding feasibility constraints to the

directed graph of assemnbly states of the 3 blocks in figure 5.4:

the shaded node and dotted edges are eliminated, leaving

only 2 disassembly sequences.cccieiiiiarienn. 116

A cutset in the air cylinder's graph model, along with the
disassembly directions of the incident components of the relations
inthiscutset, ittt it iiieiinn, 118

Four blocks to be assembled (left} along with their graph
model (ight).coviriiiiiiiiiiiiiiietririiienenens 121

Unconstrained directed graph of assembly states for the product
in figure 5.7. There are 13 vertices, 25 edges and 14 paths. .. 121

Xiv

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5.9:

5.10;

5.11:

5.12:

513:
6.1:

6.2

6.3:
6.4.

6.5:

6.6:

6.7

6.8:

6.9:

6.10:

Directed graph of assembly states for the product in figure
5.7 after considering the geometric feasibility constraint. There
are now B vertices, 12edgesand6paths.

A cutset in the air cylinder graph model, along with the
disassembly directions of the incident components of the
relationsinthiscutset.cciiiiiiiiiinianen,

A geometrically feasible disassembly operation where the
moved subassembly {bearing, bearing_o_ring} is inaccassible.

A typical example of an inaccessible component (a) in a
geometrically feasible disassembly operation.

A feasible disassembly operation to be avoided.

lllustration of a the effects of constraining the initial and goal
orientations of the parts in an assembly operation.

lllustration of a disassembly operation where a part can be
removed from underneath because of sufficient clearance. ...

Procedure "find_re_orient(})”. ittt

A disassembly operation which consists of removing the
cover_screws fromthe aircylinder.

Graphical representation of the disassembly operation in
figure 6.4.

Configuration resulting from the disassembly operation
and re—orientation infigure 6.4.ciiiiinen.,

Assembly state corresponding to the configuration of the air
cylinderinfigure 6.6.coiviiiiviiiiinenrnnnnnns

At one instance in the generation of the directed graph of
assembly states: node "a” has just been generated

and an underestimation of the cost associated with
re—orientations in the best path from this node to the

goal node mustbecomputed.coniiininnn.

(a) a subassembly to be disassembled; (b) induced subgraph
of (a); (c) assembly state containing this induced subgraph;

(d) two cutsets by which the subassembly can be disassembled. .

Procedure "underestimate_re_orient()"....................

xv

122

123

125

125

127

131

133
138

139

140

142

142

144

146
149

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

6.11:

6.12:

6.13:

6.14:

6.15:

6.16:

6.17:
6.18:
6.19:
7.1:
7.2:

7.3

7.4:
7.5:

7.6:
7.7:
7.8:

7.9

An AND / OR tree representing one possible assembly
plan of a hypothetical unconstrained product of 8 components. 152

An AND / OR tree representing anocther possible assembly
plan of a hypothetical unconstrained product of 8 components. 153

Two shallowest AND / OR trees of a hypothetical unconstrained
product of 11 components: in (a), operations {a, b, ¢, d}, then
{e, f, g}, then {h, i} can be performed in parallel, for a total

of 9; in (b), operations {a, b, ¢, d, e}, then {f, g, h} can be

performed in parallel, foratotalof8. 185
An unconstrained path from a new child state to the goal which

is optimal with respect to type1 parallelism. 159
Simplified geometric model of the flashlight product. 162

Three initial disassembly operations that can be applied to the
completely assembled flashlight.t 163

Two possible initial disassembly operations of the three blocks. 167

A simple product to be disassembled. 174
Shell subassembly of a heat detector device. 175
GAPP's basicsearch procedure.cocviiiiininanaans 184
Accumulation of cost to the nodes in an arbitrary path. 186
State of the search graph of a 4-components product after

a few iterations of the search procedure in figure 7.1. 187
Resetting the best parentofnode E. 188

State of the search graPh of the 4—components product after
a few more iterations of the search procedure. 189

Resetting the best parents of nodes Eand G. 190
An instance in the search graph: node F' has just been generated. 191

Resetting node D to point to node F without changing the best
pathtonode F.oovviiiii it i 192

Expanding node Fto yield goal node G. 183

xvi

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

7.10: Changing the best path to node F and then expanding it.

193

7.11: An instance in the search graph: node F’ has just been generated. 194

7.12: Resetting node D to point to node F and changing the best path
to node .

7.13: Expanding node F to yieldgoalnode G.
7.14: Not changing the best path to node F and then expanding it. . .
7.15: Modified search graph for the example in section 7.3.1.
7.16: Modified search graph for the example in section 7.3.2,
7.17: Multiple goal nodes ina searchgraph,cvvuues,

7.18: A hypothetical search graph for a 4~components product.

7.19: A search graph with a solution path substantially better than

all others. The number beside a node is the cost of the best path

(o T (L30T Vo L=

7.20: A search gfaph in which no solution path is substantially better
thanallothers.cciii ittt tinintinnrenas

7.21: Stete of the search graph after each iteration of the A* algorithm
for a hypothetical 3—components product.

7.22: State of the search graph before (top) and after (bottom) the
second iteration of the hill climbing search method for the
hypothetical 3-components product,

8.1: A feasible assembly sequence of the flashlight obtained without
USiNg @ny Crterion.ovvviiiiiiienrecnnnecssanrnnons

8.2: Optimal assembly sequence of the flashlight with respect to the
stability criterion. i i e e e

8.3: Optimal assembly sequence of the flashlight with respect to the
stability and parallelism criteria with equal weight.

8.4; Olatimal assembly sequence of the flashlight with respect to
all four criteria withequalweight.00,

8.5: Optimal assembly sequence of the air cylinder obtained using
the first four search methods intable 83.

Xvii

185

185

196

197

197

198

200

202

203

205

210

214

214

216

216

218

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

8.6:

8.7

8.8:

8.9:

8.10:

8.11:
8.12:
8.13:
8.14:

8.15:

8.16:

8.17:

8.18:

8.19:
A.1:
A2:
A3
A4
A.5:

B.1:

Optimal assembly sequence of the air cylinder obtained using
the last search methcds in table 8.3 (hill climbing).

Transforming the air cylinder's completely assembled state into
a state enabling access to the faulty bearing_o_ring.

Optima! repair plan generated by GAPP to access the
faultybeaning_0_rng.cciiiiiiiiiiiineninnnn,

Transforming the state in (a) into that of (b) by placing the
piston_o_ring on top of the {piston, piston_rod} subassembly. .

Unexpected state resulting from an error in the execution of the
operationinfigure 8.9. i it i e

An error recovery plan generated by GAPP.
Two products to be disassembled.
Optimal multiple products plan generated by GAPP.

Exploded view of the base subassembly of a heat detector
device (17 components).ccvviiiiiiniaennennen,

Product description file generated for the base subassembly
ofaheatdetectordevice...............ccciiiien...,

Assembly sequence of the base subassembly used by the
company in the actual production.

ésAsF%nbly sequence of the base subassembly generated by

Assembly sequence of the base subassembly obtained by
providing more weight to the clustering criterion.

Screendump of GAPP's windowing interface.
Product description file generated for the air cylinder.
Product description file generated for the flashlight.
Product description file generated for the ball-pointpen.
Product description file generated for the multiple products. . . .

Product description file generated for the base subassembly
of a heat detector device. eeesasaereraaaenes

Kruskal's algorithm.ot iiiininiinnnienn

xviii

219

221

222

223

224
225
226
227

228

229

231

232

235
236
263
269
270
27

272
275

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

B.2:

B.3:
B.4:
B.5:
C.1:
c.2:
C.3:
C.4:
C.5:
D.1:
D.2:
D.3:
D.4:
D.5:

(a) some graph; (b) weight assignment to the edges of this
graph; (c) number assignment to the vertices of this graph. ...

New graph after the firstiteration.
New graph after the second iteration.
New graph after the fourth iteration.
Default position of GAPP's windows on screen.
Thecontrolwindow.coiiiiiiiiiiiiieiennrasnes
The pop-up window displaying statistics of the search process.
Thesettingswindow. ittt iinenennens
Air cylinder’s solution in the output window.
Hierarchy of listclasses. vt iviniinnrenn.
Schematic representation of a Listinstance.
Hierarchy ofitemclasses.ot
Schematic representation of an Item instance.

Schematic representation of an heterogeneous list.

Xix

276
277
277
278
279
280
281
283
286
288
289
290

291

292

4
g
Q
:
3
3

PRI

VTR

(£
v

rEeind T b5

Table 5.1:

Table 5.2:

Table 6.1

Table 6.2:

Table 8.1:

Table 8.2:

Table 8.3:

Table 9.1:

LIST OF TABLES

Statistics of the directed graph of assembly states for
products with atree graphmodel. 111

Statistics of the directed graph of assembly states for
products with a complete graphmodel. 113

Search cost of the three operations in figure 6.16 for
relative weights of 25 and 50 for the stability and
parallelism criteria, respectively. 182

Search cost of the three operations in figure 6.16 for
relative weights of 50 and 25 for the stability and
parallelism criteria, respectively.couu... 182

Number of nodes and number of assembly sequences
in the directed graph of assembly states of the air
cylinder as a function of the constraints being used. 212

Number of nodes and number of assembly sequences
in the directed ?raph of assembly states of the flashlight
as a function of the constraints being used. 212

Comparison of the search space size required to find
an optimal solution for the air cylinder using five different
searchmethods.0iiviiiiineneninenn, 218

Comparison of the number of nodes generated in
expanding a search tree and a search graph to find
the optimal assembly sequence of three products. 241

CHAPTER 1

INTRODUCTION

This first chapter introduces GAPP, a Generative Assembly Process Planner
developed in this thesis. The first section of this chapter gives a brief overview of
process planning, as it is generally perceived in a manufacturing environment. The
second section describes the increasing role of the computer in process planning
and the two approaches for implementing computer—aided process planning. The
third section describes the assembly planning problem in more details and outlines
the particular difficulties in automating assembly planning. The fourth section
summarizes the motivations for implementing GAPP. The last section is a brief

overview of GAPP’s structure.

1.1 PROCESS PLANNING

Process planning is the task which transforms the product's design data into
the instructions from which it can be manufactured (figure 1.1). A record of the
results of this transformation on paper or in computer memory is called a process

plan.

Process planning generally involves the following activities:

1- identification of product components and subassemblies,
2- determination of operations and their order of execution,
3- selection of machines, tools and fixtures,

4- calculation of process time,

5- calculation of cost.

Underlying some of these activities is their impressive combinatorial
complexity. Various decisions for the second and third activities above can lead to
a seemingly infinite number of process plan combinations. Activities 4 and 5 are
directly influenced by these various decisions. Their output also serves as a metric
to assess the goodness of a particular process plan. Therefore, it is imperative that
the decisions in activities 2 and 3 be the result of a careful and rational

decision-making process.

| product’s design data

process planning

machining inspection [assembly | i ofhers |

Fig. 1.1: Central role of process planning in a manufacturing environment.

The logic behind this decision-making process is very complex, due to the
large size of the knowledge involved, and very subjective, due to a Iéck of
formalization. As a result, the quality and the number of process plans generated
in a plant are highly dependent upon the experience, preference and skills of the
various planners who were assigned the task to generate them. This is illustrated

by a striking example, provided by Groover and Zimmers [15]:

... a total of 42 different routings were developed for various sizes of a
relatively simple part called an "expander sleeve”. There were a total of 64
different sizes and styles, each with its own part number. The 42 routings
included 20 different machine tools in the shop. The reason for this absence
of process standardization was that many different individuals had worked
on the parts: 8 or 9 manufacturing engineers, 2 planners, and 25 NC pait
programmers. Upon analysis, it was determined that only 2 different routings

through 4 machines were needed to process the 64 part numbers.

1.2 COMPUTER-AIDED PROCESS PLANNING (CAPP)

The recent years have sean many attempts to provide computer tools which
assist planners in their complex task. The key idea is to capture part of the logic
involved in the process planning activity. More rational and consistent plans can be
produced as a result. These tools are generally implemented using one of the

following two approaches:

1- variant process planning approach,

2- generative process planning approach.

1.2.1 Variant CAPP systems

Underlying variant CAPP systems is tiie concept of Group Technology (GT).
This technique consists of grouping different parts into families, where each family
is characterized by common design and / or manufacturing attributes of the parts
within it. If the families are formed with common manufacturing attributes in mind,
all the parts within a family are likely to share similar process plans. A master
process plan can be associated with the family and used for any new part

determined to belong to this family.

Part commonalties in a family are usually expressed in the form of a code
associated with the family. When the process plan of a new part is required, a code
is first determined for the part. If this code is identical to an existing family code, the
master process plan for the family is retrieved and serves as the basis for
establishing the proceés plan ofthe new part. If no match is found, the process plan
of a family with a similar code is retrieved and adjusted td suit the new part. Two

major benefits of this approach are as follows:

1- it saves the planner from always starting the process plan of a new part
from scratch, as the process plan for a similar part can always be retrieved

and adjusted;

2- it provides a certain level of standardization of the process plans
generated, as new process plans are always constructed from previously

existing ones.

On the other hand, an important drawback of the variant approach is the
implicit assumption that the retrieved process plans are good ones to begin with.

The underlying GT concept is also very time consuming in its implementation.

Another drawback is related to the correctness of the retrieved process plans for a
new part: unless extreme care is taken when classifying and coding the parts, the

retrieved process plan for a new part might be inappropriate.

The variant approach represents a significant improvement over the
traditional manual process planning. Itis used in many existing CAPP systems, far
too numerous to be mentioned here. Nevertheless, it does not solve the root
problem, i.e. it does not formalize the decision logic behind the process planning

activity.
1.2.2 Generative CAPP systems

Generative automated process planning is an attemptto capturé the decision
logic of the human planner, formalize it, and implement it on a computer. The input
to the generative CAPP system ideally contains a comprehensivﬂe model of the
product. The system uses its knowledge about the process planning activity to
reason upon the model and generate an optimal (or at least near—optimal) process
plan automatically, in reasonable time, and without any human intervention. This

approach is depicted in figure 1.2.

|T=’roduct model | —m~] Generative CAPP system |—»= | Optimal process plan

i

Process planning knowledge

Fig. 1.2: Structure of an ideal generative CAPP system.

- Suchasimlistic view of a generative CAPP system hides the real complexity
behind its implementation. A detailed illustration of this complexity is provided here,

for the machining process of the simple plate in figure 1.3.

Fig. 1.3: A simple plate to be machined.

The first process planning activity consists of determining from which raw
part will the plate be machined. In this case, a forging, casting or a sheet metal can
be considered. The choice depends on factors such as the part's material, its

dimensions and production volume.

Next comes the choice of the riachining operations to be performed. If the
thickness of the plate is small enough and a sheet metal is chosen for the blank, the
hole in the plate can be punched. For a larger thickness the blank would probably
be a casting in which case a cenfering and drilling operations would be more
appropriate. Depending on the dimensional accuracy, surface finish and function
of the hoie, further operations such as internal boring, internal grinding, reaming or
honing could also be added. Similar decisions on the operations to be performed

are required for every other functional surface of the plate.

Once the operations have been identified, their ordering neads to be
determined. For”"n" operations to be performed, there are nl ways of ordering them.
In practice, nnt all of the permutations are feasible, due to geometric and

technological constraints. All such constraints must be identified and the unfeasible

7

operation sequences eliminated. For the ones that remain, additional criteria such

time and cost must be used in order to justify the choice of a particular sequence.

Next comes the choice of the machines, tools and fixtures. Assuming that
the plate requires a drilling operation, a drilling machine with the proper bit and
fixture need to be selected. This selection depends heavily on the size, material,
accuracy and production volume of the plate, as some combinaticns of these
parameters might be incompatible with some combinations of the drills, bits and
fixtures on the shop floor. Availability is also an important decision parameter at this
stage. Pieces of equipment being repaired or maintained must not be part of the
selection. To complicate the prebiem even further, if many plates or any other part
that requires drilling operations are released simultaneously for production,
competition for available resources becomes important. Maximum machine

utilization and avoidance of bottlenecks become a major concem.

Estimating the time required by each operatiors constitutes the next activity.
Tool feeds and speeds need to be determined for drilling the hole. These must be
carefully chosen to optimize the tool life. If the hole needs further operations such
as centering or boring, tool change and setup times also become part of the

equation.

The last activity consists of estimating the production cost of the part. Every
decision in any of the previous activity has a direct impact on this parameter. This
justifies the importance of making the right decisions at any previous stage of the

process planning activity.

This simple example should suffice to show how complex the process

planning activity really is, and how even more complex it becomes to formalize the

decision logic behind it and implement this logic in a generative CAPP system. This
is reflected by the actual state of the research in this area: most systems
implemented to date simply isolate each activity and try to find optimal solutions for
each one of them. Since the decision_sQ in each activity aifact each other, this
approach does not guarantee optimality for the overall nrocess plan generated. The
commercial potential of generative CAPP systems is such that their development

is an active area of research.

1.3 ASSEMBLY PLANNING

CAPP systems have mainly been developed for the machining
manufacturing process. 1tis not until very recently that such systems have started
to emerge for the assembly process. Some of the reasons for this are outlined

below.

Any assembly operation consists of establishing the physical contacts
between: a) two parts, h) a part and a subassembly or, ¢) two subassemblies. For
the establishment of a single connection between two parts, any ¢f the above three
situations can occur, depending on the stage in the assembly sequence this
connection is established. Unike machining, the characteristics' of an assembly
operation and the resources? required to perform it can be very different for all three
situations. This is an .mportant source of complication in the generation of an

assembly process plan.

Another reason is the larger number of parts to be treated. In machining, all
the process planning activities focus on a single part or, at most, on a family of similar
parts. In assembly, all the parts and subassemblies that make the product, which

1. Such characteristics include the forces involved, the stability of the subassemblies, the
graspability and fixturability of the subassemblies, and so on...

2. Such resources include machines {or manual operators), tools, fixturas and fasteners.

can have quite dissimilar characteristics, have to be analyzed simultaneously in the

generation of the assembly process plan.

Still another reason is the complexity of most assembly tasks. To a ceriain
extent, an assembly task is a material handling and manipulation task. Unlike
traditional material handling tasks in which a part is simply moved from one location
to another, assembly tasks involve complex interactions between the two parts
being joined, between the parts and tools and between the tools and fixtures. As
a result, assembly operations can require a considerable amount of handling and
orienting the parts in order to mate them properly. The main effect of these
complications is to limit the automation of assembly operations. They most certainly

have some othe effects on the generation of tha assembly process plan.

1.4 MOTIVATIONS FOR AUTOMATING ASSEMBLY PLANNING
1.4.1 Combinatorial complexity

In assembly, an important part of the process planning activity is the
determination of the prodiuct's assembly sequence. This consists of determining a
feasible order of comoining the components together to construct the product. This
task is usually periormed by a human planner, who carefully examines the assembly
drawing and generates the assembly sequences by mentally disassembling the

product and reasoning about the various constraints [78).

The cunstraints alone rarely lead to a single assembly sequence. Industrial
products of ten to twenty components typically present thousands of feasible
assembly sequences [41]. It is then very likely that the human planner, as expert
as he may be, will not have the ability to generate and evaluate all the many feasible

assembly sequences, specially fora non trivial product. The human planner usually

10

considers only a very small subset of them when making the decision of which one
to use in production. This means that potentially good assembly sequences might
be overlooked. Systematic and automated procedures for generating all passible

assembly sequences of any given product would help overcome this problem.

1.4.2 Economical justification

Traditionally, assembly is either performed manually or using hard
automation mass production devices. With the emergence of short life cycle
products, flexible automation using programmable assembly robots has become a

patticularly attractive altemnative.

Many companies are still reluctant to incorporate assembly robots into their
assembly plant. One major reason for this is that assembly planning is still being
done by hand. For small series production, which is the category in which a large
majority of companies fall, this means that high manual planning costs must be
amortized over the relatively small number of units to be produced during the
relatively short life cycle of the product [22]. Automatic planning procedures could
significantly reduce planning costs and provide financial opportunities for

automation investments such as implementing assembly by robots.

Parallel to this is the fact that even minor changes in the product design can
significantly affect assembly options and costs. Assembly costs are known to
account for up to 60% of the total product cost. 1tis then essential that many design
alternatives be evaluated before actually starting production. Procedures for
automatically generating assembly plans could greatly speed up this analysis of the

economical impact of different design solutions.

11

1.4.3 Standardization and quality of the generated plans

Assembly process plans generated by a computer are much more consistent
than those generated manually. In the case of a variant system, a first levei of
consistency is achieved by the fact that all planners use the same software. Every
new plan in a variant system is also constructed from previously existing ones. Still,
some of the key decisions in the generation of a new process plan are subject to the

personal experience and skills of the planner.

A generative CAPP system pushes the consistency even further, since the
decision logic encoded inthe software is consistent. A generative assembly planner
is also likely to produce more optimal plans than its manual or variant counterpart.
This is due to the speed advantage of the computer, which provides it with the
capability of generating and comparing a large number of different assembly plans,
maybe even all possible ones, before taking the final decision as to which one to use

in production.
1.4.4 Applications in task level! robotic languages

A great deal of research has been concemed with the development of high
level languages for robotic assembly in order to facilitate the robot programming of
complex assembly tasks [47] [56] [63] [68]. It is generally agreed that these
languages should consist of an ordered list of high level commands relating to the
operatioris to be performed. Forthe 3 blocks in figure 1.4, such commands would

be of the form:

1- place plate against base,

2- fit pin into plate and base.,

12

Given these high level commands, the robot would reason upon a three
dimensional description of its surrounding world in order to infer the lower level
details underlying each one of them. For the first command above, this includes
identifying the position and orientation of the plate in the workspace, moving

towards it without collision, grasping it properly, moving it towards the base without

collision, and so on.

pin

plate

base

Fig. 1.4: Three blocks to be assembled.

Part of the activities of an automated assembly planner is exactly the
automatic determination of the high level operations (or commands) to be
performed, along with the identification of the parts and subassemblies that they
involve and their order of execution. Integrating such a planne. into the robot

controller can simplify the programming task evei further. That is, instead of

13

specifying an ordered sequence of task level operation to be performed as above,

the programming task could now be reducad to a single statement of the form:
assemble blocks.
1.4.5 CAD / CAM link

Historically, both CAD and CAM systems have evolved ratherindependently
of each other. This translates into the existence of highly specialized but also very
isolated islands of automation. For example, most major manufacturing companies
have both a CAD system and some NC machine tools. Very few of them have the

facilities for generating their NC programs directly from the CAD database.

The potential of integrating CAD with CAM is enommous. Unfortunately, the
complexities involved are such that a true and complete integration is still many
years away. It has long been recognized that CAPP is a key starting point for
achieving this integration. The development of CAPP systems for either machining,

inspection or assembly is then well justified in this respect.
1.4.6 Benefits in other domains

Process planning is an activity shared by many different domains, including
construction, manufacturing, medicine or even restoration. A study of the
requirements for automating process planning for the particular case of

manufacturing assembly is likely to be beneficial to many other domains.

14

1.5 OVERVIEW OF GAPP

Figure 1.5 shows the block diagram of the developed GAPP. Atthe top leval
are the various inputs, which include the graph model of the product to be

assembled and the various environment parameters.

At the heart of the system is the assembly process planher. It has 3
fundamental characteristics: it is generative by nature; it generates assembly

sequences systematically; and the assembly sequences that it generates are

optimal®,

The generative characteristic means that GAPP does not need to know
previously generated assembly plans of a similar product in order to come up with
an assembly sequence of anew product. GAPP considers every problem itis faced

with to be a new one and the solution to every problem is started from first principtes.

The systematics of GAPP have two importantimplications. First, they ensure
that no potentially good assembly sequence of a product is ever overlooked.
Second, they ensure that the results are always consistent. This means that running
GAPP twice for the same product with the same parameters* necessarily produces
the same assembly sequence. This can be contrasted with two different human
planners who are likely to come up with different assembly sequences of the same

product.

Finally, GAPP has the power to enumerate all assembly sequences of a
given product. It can also generate directly the optimal assembly sequence for that

product without exhaustive search.

3. Whether the assembly sequence rendarad by GAPP is optimal or not depends on the search
method. This issue will ba covered in more detalils in chapter 7.

4. Such parameters include search constraints, relative weight of search criteria and search
method.

. search method

i
} [graph model of ihe produdy -

: search constraints
{ lenvironment parameters search criteria

|

| P p—p—

outputs

T]
= type of operation :
' . . moved sub bly |
I linear sequence of (optimal) oved subassemoly
I assembly operations fixed subassembly !
| I
= directions of insertion =
| - B —— N

lto scheduling applications]

Fig. 1.5: Block diagram of GAPP.

15

CHAPTER 2

LITERATURE REVIEW

This chapter revigws some of the important works which emerged in the field
of assembly planning. A detailed description of five of these works is provided in
the first section. A less detailed description of other relevant works is provided in
the second section. The third section highlights important aspects of assembly
planning which still neeq to be researched, based on the characteristics of existing
works reported in the first two sections. The fourth saction describes the scope of

this research. The last section outlines the remainder of this thesis.

2.1 RELEVANT RESEARCH

The works described in this first section have been carefully chosen by the
author. It is believed that their detailed description should give a good insight into
the essence of the assembly planning problem, as well as a better understanding

of some of the tools that have now been developed to tackle this problem.

2.1.” The work of Bourjault

Bourjault [4] is among the first ones to propose a systematic approach to
assembly planning, which ensures the exhaustive generation of all the assembly

sequences of a given product.

16

______ geari

L]

"N &
MM —

722

Fig. 2.1: An oil pump assembly [6].

Fig. 2.2: Graphe des liaison fonctionnelles (graph of
connections) for the oil pump in figure 2.1 [6].

17

18

His approach first consists of modelling ths assembly as a simple® and
connected® graph, called graphe des liaison fonctionnelles (graph of functional
connections, or simply graph of connections). Each vertex in this graph represents
one component in the assembly. Each edge, also called fiaison, reflects the
presence of a physical connection between two components in the product. Figure

2.2 shows the graphe des liaison fonctionnelles for the oil pump in figure 2.1.

Once the graphe des liaisons fonctionnelles has been generated, a
structured set of symmetric questions is asked to the user. Each question must be
answered by either "yes” or "no”. If L;, Lj and Ly are liaisons in a product, a typical

question has the form:

1- Can L; be established if L; and Ly have already been established?

The symmetric question has the form:

2- Can L; be established if L; and Ly have not been previously established?

The result of this systematic questioning process is a list of precedence

constraints expressed in the form of binary relations R and S, defined as follows:

R=((LiL) | (LiL) € LxL A

2.1
L; cannot be established ifL; is already established) @1

S={(LiL) | (LL) € LuL A

2.2
L; cannot be established if L; has not been established } @2)

where L denotes the set of all liaisons of a product. If more than two liaisons are

involved, these binary relations can be easily converted into "n—ary” relations:

5. A simple graph is one in which any two vertices are connected by at most cne edge.
6. A connected graph is one !n which there is a path between any two of its vertices.

19

R={iLL, -..Ly 1 (LiLy, -. L ELXL .. XL A
L; cannot be established ifL; A .. A L, are already established }

2.3

S={ (Ll -..La) I (L .. Iy ELxL .. XL A
L; cannot be established itL; A .. A L, have not boen established }

(2.4)

These precedence relations simply expiess the fact that the establishment
of a particular fiaison of a product generally requires the presence or absence of

other liaisons of that product.

Bourjauit ziso introduces the notion of the state of an assembly. In his work,
these states zrs translated into logical functions. A binary variable f; is first

associated with each fiaison L; in the graph, which determines the state of the

corresponding liaison at a particular point in time in the assembly process:

1 . .
= { if L; is established (2.5)

0 if L; is not established

The assembly state Sy at any point in time of the assembly process of a

product with "n" liaisons can be characterized by a binary vector of length "n’,

obtained by simply concatenating the binary variables f;:

Sk={f, b, -., I} (2.6)

20
The logical function associated with this vector is:

Or=FEFE. LK (27)

where F¥=f¥ or F¥, according to whether L; is established or not in the k!h state.

Bourjault then reconstructs for each fiaison the list of all the states permitting
its establishment. The logical function associated with the set of all such states for
a liaison L; is denoted by C; and is called condition de réalisabilité (establishment
ccndition) for fiaison L. If liaison L; has "s” states authorizing its establishment, the

condition de réalisabilité C; for this liaison is given by:

Ci=3 = Z(l‘lf") (2.8)
k=1

=1\ =1

As an example, the condition de réalisabilité for liaison L, in figure 2.2 is as

follows:

C1 = hbhlikhkh + hbhlikhkh + hhhfibhh + hhbhhkih
Lbhfibhl + Abhhishh + hbhhbhh+ hibhlhkh
bkl + hbhilkhkh + Wbk hbhikhE
fbhafafsif

(2.9)

Such conditions de réalisabilité are obtained by analyzing the precedence
relations obtained from the questioning process. For example, an affirmative

answer tc the question:

Can L; be established if j has alrsady been established?

21

means that no C will contain expressions including ## and that C; will not contain

expressions including 7% unless L; and L can be established simultaneously.

The systematic exploitation of the condition de réalisabilité of each liaisornin
a product leads to the generation of all its feasible assembly sequences. Toillustrate

how this can be achieved, assume that function C, of liaison L4 of some product has
the totally disassembled state f% . f, init. By the definition of C, this means that

there exists at least one assembly sequence which can start by the establishment

of this liaison. Assume now that function Cs of liaison Ly of the same product has
the state £i% . J, but not the state fi. f, in it. This says that although no
assembly sequence can start by establishing L, this liaison can be established as

soon as Ly has been established, meaning that the first 2 operations in at least 1

assembly sequencae of that product consists of establishing Ly and Lp, successively.
If another Faison Ly for that product had £% . £, in its Cy function, another partial

assembly sequence starting by Ly and Ly would be generated. It should be clear
how a systematic repetition of this process for all L; and all C; can iead to the

generation of all feasible assembly sequences of a given product.

This systematic generation process lends itself to a forest structure to
represent all the feasible assembly sequences of a product. The root node of each
tree in this forest is one of the liaisons by which the assembly process can start. Any
path from the root node of a tree to any of its leaf nodes is an assembly sequence,
where each node in the path represents the liaisons that are established. The total
number of assembly sequences i3 given by the number of leaf nodes in every tree

in the forest.

22

The oil pump in figure 2.1 has six trees in the forest representing ali its
assembly sequences. Figure 2.3 shows one such tree, contributing to 8 of the 54

feasible assembly sequences of this product.

/L\
Li, Ls Ls Ls, L7 Le

A AL KA

Lss b7 Ly, L Lslel7 Ly ks LsLs Li,La Lils L7

L4! LG L‘ls LS L‘h L3 L1, L3
L5l Lﬁ’ L7 L5! Lﬁ! L7 L4s LB L4| L5| LT

Fig. 2.3: One of the six trees in the forest of assembly sequences for
the oil pump in figure 2.1 [6].

One offspring of this initial work by Bourjault includes the automatic
determination of subassemblies from an analysis of the assembly sequence trees
16]. Another offspring is the representation of the assembly sequences using Petri

nets from an analysis of the R and S relations [5].

2.1.2 The work of Whitney et al.

The work by Whitney et al. [79] is an adaptation of the earlier effort of
Bourjault. Their approach is essentially the same as that of Bourjault. However, it
presents some important improvements which make the developed methods more

applicable to products with a larger number of components,

23

The approach starts by representing the product as a graph of connections.
This graph is directly equivalent to Bousjault's grap#:. des liaisons fonctionnelles.

Figure 2.5 shows the graph of connections of the ball~point pen in figure 2.4.

cap

@ body button

head

[] «— ink
tube

Fig. 2.4: A ballpoint pen to be assembled [12].

Fig. 2.5: Graph of connections for the ball-point pen in figure 2.4 [12].

TR L TR T A T e S

24

Then, as is done by Bourjault, the user is asked a series of questions for
obtaining the precedence relations. An important improvement lies in the number
of such questions that the user must answer. For an assembly consisting of "n"
liaisons, De Fazio and Whitney [12] showed that the number of questions "Q" to be

asked using Bourjault’s approach necessarily falls into the interval:

"> Q = 2(+ n) forn = 3 (2.10)

For 25 liaisons, which is typical of a product with 10 to 15 parts, this means
that at least 1,300 and at most 800 million questions need to be asked. This makes

Bourjault's approach truly inapplicable for products with a larger number of parts’.

The basis of their improvement is to phrase the questions so that fewer of
them are needed. Although the form of these questions is similar to that of
Bourjault’s, their answer, instead of simply being "yes" or "no", now consists of
Boolean expieasions involving liaisons. Using this new approach, the number of

questions can be reduced to:
Q = 2n (2.11)

That is, two questions for each liaison defined in the graph of connection®. The two

questions for any liaison L; always have the form:

Q71;: What liaison(s) must be established before L; can be established?
Q2:: What liaison(s) must be left undone so that L; can be established?

7. This important limitation of Bourjault's approach is evident from the exampie products he uses
to demonstrate his results: these products always have very few parts (5 or s0) with very few
connestions (10 or so).

8. Chen[11] describes an approach in which only one question Is required for each liaison in the
graph of connections.

25

For liaison L;, a typical answer to both questicns is:

Al (L V (Lk A L) = Ly (2.12)

A2;: L= (L, Vv (Ls A LY) (2.13)

where — means "must precede” and L, Ly, Lm, L, Ls and L are other liaisons in

the product.

Using the rules of Boolean algebra, the answers are merged into a set of

precedence relations (PR) of the form:

(Lj VA{Lg A L) = L; (2.14)

Each PR is divided into a left hand side (LHS) and a right hand side (RHS).
The LHS consists of a Boolean expression involving liaisons which must be
established prior to the establishment of the liaison on the RHS. There is always
atmost one liaison on the RHS of any PR and no two different PR can have the same
liaison as their RHS. In other words, one and only one PR is defined for each RHS
liaison®. A liaison that has been established holds the value TRUE (or 1) in any of

the PR in which it appears, FALSE (or 0) otherwise.

Like Bourjault, Whitney et al. also use the concept of the state of an assembly.
In their work, the state of the assembly at any point in the assembly process is
characterized by a binary vector. There are as many positions in that vector as there
are liaisons in the graph of connections. A value of zero in a particular position of
the vector means that the corresponding liaison in the graph has not yet been
established. A value of one means that the liaison has been established. In

9. ltisreportedin[73]thatthis restrictionto asingle llaisonon the RHS of each PR greatly simplifies
the algorithm developed. In particular, it simplifies the translation of the PR into the actual code
in which they are manipulated and evaluated.

26

particular, a vector of zeros corresponds to the completely disassembled state and

a vector of ones corresponds to the completely assembled state.

Starting with the completely disassembled state at rank 0, the generation of
allthe assembly sequences of a product consists of determining all the next possible
states that can result from the establishment of some executable liaisons. These
new states are placed at rank 1 (see figure 2.6). Then, for all the states at rank 1,
all the next possible states *hat can result from the establishment of some further
executable liaisons are determined and placed at rank 2. For a product with "n”
parts, this process is repeated until the completely assembled state at rank "n—1"

has been generated,

Legend: LijLlz|Ls|Ls|Ls .
done undone

rank 0

PI] rank 1

Fig. 2.6: The first two ranks in the search graph of the ballpoint pen in figure
2.4. The first rank is the completely disassembled state (no liaison
established). The second rank shows the establishment of the three
liaisons by which assembly can start,

27

To determine if a particular liaison is executable, it is first assumed to be
established. Therefore, the RHS of its corresponding PR becomes TRUE and the
PR is triggered for evaluation. If the Boolean expression on the LHS of this PR also
evaluates to TRUE, then the liaison is executable. A new vector state is created with
a"1" in the position of the newly established liaison. The value TRUE is also set for
this liaison in the LHS of all the PR's in which it appears. This enables the LHS of

some subsequently triggered PR to evaluate to TRUE in the next ranks.

Whenever a new state is generated in a rank, it is compared to all existing
states in this rank to see if it is indeed a new state before adding it to the rank. The
resulting structure to encode all assembly sequences of a product is called a
directed graph of assembly states. This constitutes another improvement to
Bourjault's work, as the directed graph of assembly states is much more compact
than Bourjault's trees. Figure 2.7 shows the directed graph of assembly states

representing the 12 assembly sequences of the ball-point pen in figure 2.4

It is worth mentioning that although Whitney et al.'s work represents an
important improvement in the number of questions asked for acquiring the
precedence knowledge, it also requires much more reasoning on the part of the user
to supply the answers. Bourjault's questions are answered out of context. This
means that one has to reason upon only the parts involved in the liaisons in a
question, without having to consider if the remainder of the assembly can be
completed or not. This is not the case for the modified questions of Whitney et al.

Perhaps the best way to describe this limitation is to use the authors’ own words [13]:

28

Legend: [Li]te[Le[li]ls] J

done undone

Fig. 2.7: Directed graph of assembly states for the ball-point pen in figure
2.4 [12]. Every path from the root node (top) to the leaf node
(bottom) is a feasible assemtly sequence. Although this graphis
directed, downward pointing arrow heads have been neglected
for simplicity.

b
F:.- L
i
?:1‘.
&

29

"Questions cannot be answered by simpiy considering interference between
two parts—sets named in the question. Physical reasoning is involved. The
user must identify and consider subsequent states. The price is evident but

there are benefits: question count is reduced, perhaps greatly.”

The work of Whitney et al. has recently matured into an interactive computer
aid specially designed to assist a user in the determination of the assembly
sequence(s) of anew product[13]. A solid modelleris used to help the user visualize
the geometric constraints involved in the questioning process. When all questions
have been answered and the preccrdence constraints determined, the directed
graph of assembly states representing all assembly sequences satisfying these
constraints is displayed to the user. The sequence count can then be reduced to
a reasonable size by interactively editing the graph and screening all possible
solutions. The user reasons upon mechanical criteria, such as suitable
parts—mating, jigging or parts orientation and interactively eliminates undesirable

states, arcs or entire assembly sequences from the graph.

2.1.3 The work of Homem De Mello and Sanderson

Another significant work in assembly planning was done by Homem De Mello
and Sanderson {24] [25] [26]). Their approach starts by the construc_tion of a
relational model of the assembly. The graph of connection introduced by Bourjault
is a simnle subgraph of the relational model of the assembly and it can be easily
obtained. Figure 2.9 shows this correspondence between the relational model and

the graph of connections for the product in figure 2.8.

30

P SN

A ’ N

,4 "W W . ", " " e O Vi, ", f \
s \\\\

cap receptacle stick handle

Fig. 2.8: A simple product to be assembled [25].

One important characteristic of Homem De Mello and Sanderson’s woik is
that it uses a decomposition approach. That is, they transformed tha problem of
generating all mechanical assembly sequences of a product into the problem of
generating all disassembly sequences for the same product’®, Under the
assumption that no assembly operation involves parts deformation, any assembly

sequence is just the reverse of the equivalent disassembly sequence.

The generation of all possible disassembly sequences starts by obtaining the
graph of connection from the given relational model of the assembly. All the cutsets
of this graph are generated. The set of all cutsets represent all possible ways of
splitting the graph. Physically, this represents all the ways the assembly can be split
into two subassemblies. The same process is then repeated for the new

subassemblies, for the sub—subassemblies, and so on, until only single parts are
left.

10. The work of Sekiguchi et al. [72] is one of the earliest ones that could be traced by the author
which uses this disassembly approach.

31

relational model

1 part
O contact
A attachment

L4

L5 L2 graph of connections

nd

)
[o]
o
o/
~
w
:\
[ui)

Fig. 2.9: Correspondence between the relational model (top) and the graph
of connections (bottom) for the product in figure 2.8 [25].

32

In practice, only a subset of the set of all cutsets corresponds to feasible
decompcsificns of the assembly into subassemblies. The determination of which
cutsets correspond to feasible decompositions is based on the computation of three

predicates: geometric feasibility, mechanical feasibility and stability.

The computation of the geometric feasibiiity predicate is separated into two
stages: local analysis and global analysis. The local analysis consists of
determining if there exists a direction in which a component (or subassembly) can
be moved infinitesimally, with all remaining components of the assembly being fixed.
This is achieved by computing the polyhedral convex cone of motion for the
component (or subassembly)_ under investigation. = Ary component (or
subassembly) whose polyhedral convex cone is not a point can be moved
infinitesimally in some direction. The global analysis consists of determining if a
component (or subassembly) which can move infinitesimally can also be moved to

infinity without colliding with any of the remaining components of the assembly.

The mechanical feasibility predicate is TRUE if the attachmenfs acting onthe
contacts of a decomposition are not blocked in the resulting assembly, and are not
present in either one of the subassemblies. Figure 2.10 illustrates this concept:
although it is geometrically feasible to remove the pin, the access to screw? is

blocked by the cap. Therefore this operation is mechanically unfeasible.

The stability predicate is TRUE if the parts in either physical subassembly of
a decomposition maintain their relative position and do not break contact
spontaneously. The algorithms for computing this predicate were not discussed in

the published literature.

33

body
pin
% R .
ca % 1774 —— pin cannot
P % ——+~ beremoved
%
qzzz\

screwl

Fig. 2.10: A mechanically unfeasible operation:
part screw1 is blocked by the cap [25].

The decompositionr approach lends itself to an AND / OR graph
representation of assembly sequences, where the root node corresponds to the
complete assembly, terminal nodes correspond to single parts, and intermediate
nodes correspond to subassemblies. Every node (except terminal nodes) is split
in pairs of children nodes, each corresponding to a feasible decomposition of the
parent node. A parent node and any of its pairs of children nodes are linked by
hyperarcs in the graph. Figure 2.11 shows the AND / OR graph of the prodtict in
figure 2.8.

Compared to both works described earlier, the disassembly approach used
in this work is clearly distinguished. A more subtle difference lies in the targeted use
of the developed planning systems. Whitney et al. focus on assembly sequence

design, where assembly sequence issues are considered during the design stage

34

of a new product. The issue here is the economical impact of different assembly
sequences on the assembly system which will be used to assemble the new product

in large quantities.

On the other hand, Homem De Mello ard Sanderson focus more on
low-volume, flexible robotic assembly of existing products and address more
particularly the problem of upportunistically scheduling assembly operations. The
typical scenario is a product to be assembled (or disassembled or repaired) in a
robotic cell where parts arrive in random order. The issue here is the flexibility of

the plans produced to avoid idle time in waiting for particular parts to arrive.

Offsprings of Homem De Mello and Sanderson's work include the
detzimination of two criteria from which the various assembly plans in the AND/OR
graph can be evaluated and the best one selected!!, using standard graph
searching ischniques [26). An interactive system for generating and evaluating
assembly plans, called PLEIADES'2, has also been recently proposed, as a

practical implementation of some of the techniques described in this work [67].

1. The first criteria is the maximization of the flexibility of sequencing the assembly tasks, while
the seraid is the minimization of the assembly time through parallel execution of assembiy

- iasks.

i?. PLEIADES stands for PLanning Environment for Integrated Assembly system DESign.

35

- Bl

Fig. 2.11: The AND / OR graph which represents all disassembly sequences
of the product in figure 2.8 [25].

36

2.1.4 The work of Huang and Lee

Huang and Lee [31] [32] [33] describe a knowledge—based assembly
planning system. The assembly is described by an undirected graph called Feature
Mating Operation Graph (FMOG). Two different types of vertices are present in the
graph: those that represent components of the assembly (set S) and those that
represent feature mating operations between components (set C). Each vertex in
S is connected to at least one vertex in C. Each vertex in C is connected to at Ieast
two vertices in S. Vertices in C are never connected with each other; neither are

vertices in S. Figure 2,13 shows the FMOG of the tilt mechanism in figure 2.12.

s (R @ .
""" —] o

3 C profile view
T 1

front view

Fig. 2.12: A tilt mechanism to be assembled [31].

37

screw

A) B
insert

place_on

C

insert_peg_and_retainer

F C) insert

. place_on
insert

'
E @, D

place_on

Fig. 2.13: Feature Mating Operation Graph of the tilt
mechanism in figure 2.12 [31].

The authors propose a symbolic representation of the precedence

knowledge of an assembly. Two predicates,

MP (P, ;) (2.15)
NL (P, Pj) (2.16)

are defined. The former reads "Must Precede” and the latter "No Later than”.
Clearly, these are equivalent to the R and S relations defined earlier in Bourjault's
work, respectively. Howevar, one important distinction lies in the representation of

the state operators P; and P;. In Bourjault's work, each operator L; and L;in the R

38

and S relations could only represent a single state. The operators P, and P in the
above predicates can actually represent a set of states. Huang and Lee describe
in details how this compression can be achieved using the concept of the product

of two states coupled with the rules of Boolean algebra [31].

The product is studied from a disasé.embly point of view. The authors
recognized that a questioning process similar to that of Whitney et al. could be used
to acquire the precedence knowledge. Only the format of the two questions asked
would have to be changed and adapted to the disassembly approach. The

questions would have the form:

Q1;; What is the set of operations which must be undone before and no
later than undoing operation i?
Q2: Whatis the set of operations such that operation i must be undong

before and no later than that set of operations?

Instead of this questioning process, the authors use geometric reasoning
techniques to acquire the precedence knowledge about geometric constraints
automatically’. A Geometric Mating Graph (GMG) is constructed, which is a
completely connected and undirected graph. Vertices in this graph are the mating
components or an additional part required for a mating operation in the assembly
(such as a fastener). Edges are divided into two subsets: solid and dotted. Solid
edges represent geometric relationships between components that are in physical
contact, while dotted edges represent geometric relationships between

components not in physical contact.

13. The authors referto geometric constraints as hard constraints. Othertypes of constralnts which
can influence precedence knowledge, such as ease of assembly or even parsonal preference,
are referred to as soft constraints.

39

Two procedures, find_pre_conditions() and find_post_conditions(), process
the GMG and find automaticslly the pre—condition and post-condition for each
mating operation in FMOG. The pre—condition of an operation is the set of all
possible states of the assembly which must 6ccur before or no later than performing
this operation. Similarly, the post—condition of an operation is the set of all possible
states of the assembly which have to appear after or no earlier than finishing this

operation.

The generated precedence constrainis become part of the static knowledge
base, along with the assembly structural knowledge and the resources constraints.
A set of production rules (three of them to be exact) is maintained in the assembly
rule base. An assembly plan consists of an ordered list of instances of those rules.
The inference mechanism implements a graph search algorithm which searches
through a large space of assembly plans to find the optimal assembly plan based

on the criteria specified by the user, or on the default value set up by the system.

2.1.5 The work of Wolter

Wolter [83] describes XAP / 1, which stands for eXperimental Assernbly
Planner, version 1. This is a rule-based system which has the ability to generate

a single aind optimal assembly sequence that best satisfies some criteria.

The approach starts by proposing insertion trajectories for each of the parts
in the assembly, for example "screw down” or "insert from above". For each
proposed trajectory of each pan, all other parts which would block that trajectory if
they were already assembled are determined. Clearly, if a part cannot be moved
in any of its proposed trajectories without colliding with some other parts already

assembled, then this part must be assembled before these other parts. This

Sl AT TR AT

o

40

geometric information is modellez using rules relating trajectory usage to part

sequencing, for example:
if part A uses trajectory X then it must assembled before part B.

Such rules are generated for every possible collision that can ocecur during the

assembly process.

For convenience, an Assembly Constraint Graph (ACG) is used initially to
represent graphically the set of all possible collisions. Sequencing rules such as the
one above then become easier to extract from the graphical representation. The
nodes inthe ACG are the various parts to be assembled. A directed edge from node
A to node B means that part A collides with part B along some trajectory, thus
requiring part A to be assembled before part B. As parts may have many proposed
trajectories, two nodes in the graph may be linked by more than one directed edge,
i.e. the ACGis nota simple graph. Figure 2.15 shows the ACG of the scissors in
figure 2.14.

The set of all sequencing rules forms a rule network., An assembly plan
consists of an ordered list of instances of these rules. The inference process can

start by either supplying a trajectory assertion, such as:
part A uses trajectory X
or by supplying a sequencing assertion, such as:
part A must be assembled before part B,

The former are matched against the left hand side of the rules in the rule
network, while the latter are matched against their right hand side. In any case, the
inference engine finds all other assertions which arise as consequences. Rule

chaining results in the generation of an assembly plan.

41

Fig. 2.14: Scissors to be assembled [83].

BLADE1 BLADE2

Fig. 2.15: Assembly Constraint Graph for the lscissors in figure 2.14 [83].

AN BT T T 4T AT T -

42

The search through the rule network is mapped into the expansion of a binary
search tree. A branch-and-bound method is used to find the optimal path in this
tree, which corresponds to an optimal plan. The method basically consists of always
selecting the leaf node of the search tree with the best rating and applying a new
assertion to this node, yielding two new child nodes: one forwhich the assertion was
applied and one for which the negation of the assertion was applied. Ratings for
both new children are computed using criteria such as directionality of the operation,
manipulability of the parts involved and fixture complexity. The ratings are always
computed locally, in the cense that they evaluate the effects of the current assertion

without considering any cascading effects at deeper levels in the search tree.

Wolter’s work is innovative, as it focuses on both the automatic generation
and evaluation of assembly plans. Nevertheless, an important limitation of his work
lies in the linearity characteristic of his planner: XAP / 1 cannot handle oparations
where more than one part is moved and assembled with another part or
subassembly. In other words, out of the two subassemblies involved in an assembly

operation, at least one must be a single part.

2.2 OTHER RELEVANT WORKS

“Khosla and Mattikali [33] describe a system capable of generating an
assembly sequence from a 3-D model. They first model the product using the
NOODLES solids modeller [33]. The graph of connection (called component graph
in their work) is generated automatically from the 3-D model. The component graph
is then split in various feasible ways, simulating a disassembly process'. One
characteristic of this work is that if more than one split is possible for a particular

14. Although this "splitting” process is fundamentally the same as the decomposition process
introduced by Homam De Mello and Sanderson, the details of its implementation seem to be
different.

43

subassembly, heuristics are used to evaluate and order them. An example of such
a heuristic is that a split involving a top-down operation would be better than another
involving a sideways operation. Unlike Homem De Mello and Sanderson'’s work,
where all feasible assembly sequences are generated and encoded inan AND /OR
graph, a consequence of this evaluation process is that a single, most preferable
disassembly plan can be directly generated and encodad in an AND / OR tree.
Another interesting characteristic of their work is that it proposes to model the
assembly faciiities in order to determine if a particular product can indeed be

assembled from them.

Heemskerk and Van Luttervelt [21] model the product in a part relation
network, which is similar to the graph of connection. An important characteristic of
this network is that some of its edges represent relationships among components
which are not in physical contact, such as enclosing or blocking. Highlights of the
work include the use of a clustering algorithm, which iteratively scans the part
relation network and checks for part groups that meet a cluster specification. This
pre—processing of the network helps identify subassemblies apriori and therefore
reduces the combinatorial complexities involved. Heemskerk and Van Luttervelt
also propose the use of heuristics (in the form of accessibility and stability checks)
to select good disassembly sequences among clusters. The generated assembly
sequences are encoded into an Assembly State Transition Diagram (ASTD), which

is similar to the directed graph of assembly states.

Lee and Gil Shin [46] also use a clustering technique for extracting potential
subassembliss of the product a priori. An Aftributed Liaison Graph is first
constructed for the product, whose vertices are the product parts and whose edges

represent direct contacts or near contacts among the pants. A Weighted Abstract

B -

W,
RSt

44

Liaison Gfap_h (WALG) is then obtained by merging sets of mutually inseparable
vertices of the Attributed Liaison Graphinto a single vertex in the WALG. The edges
in the WALG are given some weight based on the strength of the corresponding -
connection and on the cost of the corresponding assembly operation. Preferred
subassemblies are then extracted from the WALG, based on the computation of
stability and structural preference indices. The recursive extraction of preferred
subassemblies results in a single disassembly plan. This plan is encoded in a
Hierarchical Partial Order Graph (HPOG), which is in factan AND/ OR tree that may

contain more than one assembly sequence.

Delchambre [16] [17] creates an approximate geometric model of the
assembled product using judiciously disposed parallelepipeds. A list of parts which
obstruct the removal of each component in each direction, as well as a list of liaisons
among the assembly components, are automatically generated by reasoning upon
the geometric model. Precedence orders due to geometric, mechanical, stability
and technological constraints are then obtained for each liaison. Pracedence
graphs that satisfy the precedence orders are generated to represent all the feasible

assembly sequences of the product.

The author [37] [39] [40] describes a programming system capable of
automatically generating robotic assembly sequences. It is a generative robotic
assembly process planner. A geometric model of the product to be assembled is
first defined in a feature—based product database. Two types of assembly
relationships (namely physical connections and spatial constraints) among
components are modelled interactively in graphical relation diagrams. An initial and
final relation diagram is used to describe the initial and final state of the world,

respectively. The validity of the physical conneétions defined in the final relation

45

diagram is checked by analyzing the information contained in the feature—based
product database. A single robotic assembly sequence is automatically generated,
from an analysis of the relational data defined in the final relation diagram.
Subassemblies are identified automatically. An intéresting characteristic of this
syste_m..is that the component (or subassembly) to be moved at each step of the

sequence is explicitly provided in the assembly sequence formulation.

The approach taken by Ko and Lee [38] to automatically generate
assembling procedures starts with the creation of a mating graph of components,
where vertices are the component inthe assembly, and edges correspond to various
mating conditions (such as fit or againsf) between components. The component in
that graph which has the greatest number of connections with other components is
then chosen as a base component, and it is located at a specific vertex of a
hierarchical tree. Any components connected to the base, and which do not move
relative to it, are then grouped and located in the tree as children vertices of the base
vertex. The latter thus becomes the root of a subtree. This process is recursive and
uses each grouped component as a new base component. Any component having
a relation with a base but which movaes relative to it is not connected to the base in
the hierarchical tree. Itis rather placed at the same level as that base, thus forming
the root of another subtree. Pant of the assembly sequence is explicitly providedl by
the hierarchical tree, since it is assumed that any base should be assembled after
its descendants. The sequence of assembly an:ong the children of a base vertex,
and among bases at the same level in the tree remains to be determined. Both
objectives are achieved using interference checking. The final assembly

sequences are coded in the form of a standard precedence diagram.

46

Chang and Wes [10] déscribe a knowledge—based planning system fdr
mechanical assembly using robots. It is divided into two parts: a kri'owledge base
and a control structure. The knowledge base is divided into workpiece structures,
assembly operations and assembly principles. The workpiece structures contains
all the physical information about the workpieces to be assembled (shape, material,
contents...). The assembly operations describe robot actions that change the world
state (assembie_raw_part, puton, fasten_fixture...). The assembly principles
consist of assembly—process—expert rules of thumb (if grasped surface is smooth,
then use rubber gripper). The second part of the system, the control structure, uses
the information in the knowledge base to formulate an assembly plan. There ars
two phases in this process: siructure analysis and plan generation. The structure
analyzer uses the assembly principles to determine ari assembly sequence. Here,
an assembly sequence simply consists of an ordering of the workpieces to be
assembled, without any reference to the operations involved in assembling them.
The structure analyzer also posts some constraints on the to—be—determined
assembly operations. These constraints are determined based on some of the
properties of the workpieces in the assembly sequence. Finally, the plan generator
selects the appropriate operations for mating the assembly sequence’s workpieces,
making sure that the constraints posted by the structure analyzer are satisfied for

each operation.

There exists many other works on assembly sequence generation, each
having their own advantages and limitations. For example, Miller and Hoffman [57]
focussed on assembly planning with fasteners. Hoffman [23] used ray casting
techniques in orderto find the successive translations from which a component can

be disassembled from another. Shpitalni, Elber and Lenz[73] analyzed connectivity

47

graphs to determine possible subassembly candidates for disassembly, with
multiple disassembly directions allowed for sach candidate. More racently,
Zussman, Lenz and Shpitalni [87] described a relational model for the produk:t to be
assembled, along with methods by which this model could be automatically
generated for a 3—-D geometric description. Wilson and Rit [61] described a system
which computes automatically the separability of pairs of 2-D subassemblies. They
maintain geometric dependencies among parts such that once their removability
has been computed in a parent subassembly in which they appear, it does not need
to be re-computed in children subassemblies in which they might also appear. The
reader can refer to the bibliography at the end of this thesis for references to further

works in assembly planning and related research areas.

2.3 NEED FOR RESEARCH

2.3.1 Selection of assembly plans

Research on assembly planning to date has involved four basic issues:

1- how to represent the product to be assembled;

2— how to generate an assembly plan, which involves the
determination of precedence constraints;

3— how to represent the resulting assembly plans;

4— how to select the most suitable assembly plan(s).

The first three issues can now be considered a solved problem. The last
issue is very complex and remains a research challenge. This complexity stems
from the difficult formalization of the decision logic involved in trying to select a

particular assembly plan among a list of possible ones.

48

To illustrate this, consider the two feasible plans in figure 2.16. It is rather
easy for the human planner to determine that plan 1 is better than plan 2, since in
plan 2 parts B and C in the last operation are very difficult to access. Surprisingly,
this notion of "accessibility”, so obvious to the human planner, is very hard to mode!

by a computer.

A
————
B
-
ol__|
plan 1 plan 2

5 1]
C operation 1 C I I

o= ———y e
I B | . | B I
C operation 2 C

Fig. 2.16: Two feasible plans of a hypothetical product: plan 1
is better with respect to accessibility.

49

Consider now the two feasible plans in figure 2.17. Once again, it is rather
easy to determine that plan 1 is better than plan 2. This timse, the choice is motivated
by stability considerations, as the first operation in plan 2 would result in a rather
unstable configuration. Stability is another notion which is usually very obvious to

the human planner but which is still very hard to model by a computer.

B
A
-1
ptan 1 plan 2
B
A
operation 1 ~
C
B B
[~ A
- operation 2 [~
c C
[~ P [~]

Fig. 2.17: Two feasible plans of a hypothetica! product: plan 1
is better with respect to stability.

S0

An important area of research is the identification and formalization of such
criteria which directly influences a planner’s choice of assembly plans to use in

production.

2.3.2 Merging the generation and selection processes

Most research works that addressed the issue of selecting assembly plans

are characterized by two different activities:
1- the exhaustive generation of all possible plans, and
2- the selection of the most suitable one(s).

In [13], the set of all possible solutions is generated automatically. Then the
user makes all the important decisions for selecting good assembly plans by
examining and editing all possible olutions to a smaller size. In [28], the set of all
possible solutions is first generated, then the best one selected automatically by

evaluating some relevant criteria.

Because all solutions need to be generated prior to the selection, a major
problem with this approach is that the medium by which these solutions are
represented can grow quite large'S. The memory required for storing this medium

prior to the selection process might not be negligible.

Animportant refinement is to merge the generation and selection processes
into a single generation process. Good (possibly optimal) assembly plans should
be generated directly, as opposed to being selected from an exhaustive set of
previously generated plans. The advantages of this generative approach are
evident savings in both time and memory. Developing the methods for

implementing this approach is an important area of research in assembly planning.

15. For example, such mediums include Bourjault's trees, directed graphs of assembly states and
AND / OR graphs.

51

Wolter, in [80], made a first attempt in the adoption of this generative
approach. However, Wolter’s planner suffers from the important limitation that it
cannot handle subassemblies. Better methods for implementing the generative

approach must be developed.

2.3.3 Handling arbitrary Initial and final assembly states

Most assembly planners use the implicit assumption that the initial state of
the problem corresponds to the completely disassembled (or assembled) product,
while the final or goal state corresponds to the completely assembled (respectively
disassembled) product. Although this assumption is certainly reasonable for the
most general case, there are typical applications where an assembly planner must

violate this assumption.

One such application consists of determining a disassembly plan for
repairing a parn or subassembly of a produci. In this case, the initial state is the
completely assembled product, which complies with the general case. The goal
state, however, consists of a partially disassembled product’®. The planner must
have the ability to find the set of operations that leads to this partially disassembled

state.

Another typical application is the determination of an error recovery plan for
assembly robots. In this case the goal state remains the same, i.e. the product still
needs tc be completely assembled. The starting point of the new plan, however,
is the unpredicted state resulting from the error in executing the assembly plan,

which consist of partially assembled product!?. The planner must have the ability

16. It is assumed here that the repair does not requirs the total disassembly of the product.

17. It is assumed that the resulting unpredicted state is neither the completely assembled nor
complately disassembled product.

52

to find the new set of operations that leads from this new partially assembled state

to the goal.

Methods for handling homogeneously arbitrary initial and final states of the

product need to be determined.

2.3.4 Handling multiple products

The near future should see mono and multi-agent flexible assembly cells
with the capability of assembling simultaneously two or more products of the same
family, or even totally different products. The success of these cells wili rely heavily
on an efficient sequencing of the respective operations of the different products
being worked on. In particular, a typical sequence for one agent would consist of
a mix of operations on different products within the cell, for example two consecutive

operations on product A, then an operation on product B, then another operation

on product A, and so on,

In terms of planning, these cells will require that the planner be able to
analyze multiple products simultaneously and interleave their respective required
operations in the produced plan. Methods for achieving this type of functionality

must be developed.

2.3.5 ldentification of the moved and fixed subassemblies

A standard result of the research in assembly planning is that disassembly
plans should be generated then reversed to obtain a corresponding assembly plan.
In doing so, the disassembly of a large assembly into two smaller ones becomes a
problem of finding whether a subassembly possesses a collision~free trajectory

along which it can be removed from the larger assembly. Denoting this removeable

53

subassembly by Sy and the larger assembly by S, the second subassembly S,

resulting from the disassembly operation is simply given by:
$=8-5 (2.17)

Clearly, if S is removeable along some trajectory, S; is also removeable in
the opposite trajectory. In the execution of the assembly operation which brings both
subassemblies together, generally one of the two subassemblies will be moved

while the other will remain fixed.

Most assembly planners do not make ths distinction as to which of S; or S,
should be moved or fixed during assembly. This kind of knowledge finds its proper
use in robotic and automatic assembly, where switching of the moved and fixed
subassemblies in an operation can have a significant effect on its reliability.
Methods must be developed to make this important distinction for each assembly

operation in an assembly plan.
2.3.6 Elimination of restrictive assumptions

Research in assembly planning is characterized by a list of frequently used
assumptions. Among the most widely used is the dichotomy of the plans produced.
Basically, a plan is dichotomic if each operation in it never involves the simultaneous
assembly of more than two subassemblies, where subassembly is defihed as a
single part or a set of connected'8 parts. In other words, every operation in the plan
consists of mating at most two parts, or a part and a set of connected parts, or two

sets of connected parts.

Two instanzes of "products” requiring non-dichotomic operations have been
identi.ied by Wolter [84]. The first instance, figure 2.18a, requires the simultaneous

18. "Connected” here refers to the notion of being in physical contact.

54

and coordinated motion of at least two parts in different directions towards a third
one. The second instance, figure 2.18b, requires either the simultaneous and
coordinated motion ir. different directions of subassemblies {B, B1} and {C,C1,C2}
towards part A, or the motion of part A towards unconnected subassemblies {B,B1}
and {C, C1, C2}. In any case, the dichotomic assumption is violated, since once

again at least three stubassemblies must be mated in the same operation.

(@) (b)

Fig. 2.18: Two products which cannot be built by a dichotomic planner [84].

Most assembly planners are also monatons. A plan is considered monotone
ifthe moved parts or subassemblies involved in each ofits operations can be moved
directly, i.e. using a single translation, to their final position without ever being moved

again in subsequent operations. Three consequences of this limitation are given

below.

C C
N \ \ \
N N N A N
N N N N (a)
N N N N
N N N N
?\\ N A [N N

N N N

AN

8 B

initial state - goal state

(b)

(c)

Fig. 2.19: Three example problems which cannot be solved by a
monotone assembly planner. Example (b) is taken from [84].

55

56

First, a monotone plan never presents the undoing of already done
operations. Figure 2.19a shows the iritial and goal states of some "product”. The
transformation of the former state into the lattsr involves removing part C from part
B and later Undoing this operation, i.e. place part C back on part B after part A has
been insertad into part B. The monotonic assumption is violated in this plan because

part C is moved twice in two different operations.

A second consequence of the monotone assumption is illustrated in figure
2.19b. To assemble this "product”, part C must first be nlaced in a temporary position
into B, then A is inserted, then C is moved again in to lock part A. The monotonic
assumption is violated in this plan as part C is once again moved twice in two

different operations.

A third consequence is illustrated in figure 2.19¢. In this example, placing
part A into its desired position involves a first translation along z- then another
translation along y-. This "product” viclates the monotonic assumption, since part

A cannot be moved direciiy to its final posiiion by a single translation®,

Methods of overcoming any of the above two restrictive assumptions without

introducing new ones still need to be developed.

2.4 SCOPE OF THE RESEARCH

This research focusses on the first five issues discussed in the previous
section, with an accent on the first two, i.e. the formalization of the decision logic
involved in the selection of assembly sequences and the merging of the generation

and selection processes.

19. To the author's knowledge, only Hoffman’s [23) and Sedas and Talukdar's [71) assembly
planning systems do not make use of the monotone assumption. The fonmer uses ray casting
techniques which take considerable processing time, even for simple problems. The latter is
restricted to two dimensional objects.

57

The formalization.of the decision logic first consists of identifying the metrics
(called criteria in this work) which enable the planner to assess the goodness of the
various assembly sequenc~s. Four criteria are proposed and used in this work,

They are:

1- number of re-orientations,
2- parallelism,
3— stability, and

4~ clustering.

The first three criteria above have already been proposed in the literature.
The last one is introduced in this research. Methods of computing automatically the
cost associated with these criteria for different asembly sequences is an important

objective of this research.

The merging of the generation and selection processes consists of
incrementally expanding a search graph until the best scliticn path is found,
instead of expanding all solutions and then traverse them to find the best one. This
is accomplished through the use of standard search algorithms which emerged from
the Al field. Initially, these algorithms have been developed for efficiently traversing
rule networks in expert systems problems. They have been adapted to suit the

assembly planning problem tackled by this research.

2.5 THESIS ORGAN!ZATION

The ramaining chapters in this thesis are organized as follows. The graph
model of the product, which constitutes the primary input of GAPP, is described in
the next chapter. How the problem of generating an assembly process plan can be

mapped into a graph search problem is described in chapter 4. Chapter 5 presents

58

some assembly related search constraints which have for effect to reduce the
search space. The various criteria by which GAPP can assess the goodness of the
assembly sequences it generates are presented in chapter 6. The search methods
by which GAPP can sail through the search space are covered in chapter 7. Chapter -
8 discusses the res"'lts obtained from GAPP using various industrial products.
Conclusions and future work are covered in the last chapter. Appendix A presents
the product description files generated for the example products used throﬁghout
this thesis. Appendix B describes Kruskal's algorithm for finding a maximim
spanning tree in a graph. Appendix C describes GAPP's windowing interface.

Appendix D describes GAPP’s data structures.

CHAPTER 3

GRAPH MODEL OF THE PRODUCT

The primary input to GAPP is a description of the product to be assembled,
in terms of the components from which it is made and the assembly relationships
between them. Thi": description lends itself to a graph representation of the product
to be assembled, which is the focus of this chapter, The first section p_rovides some
definitions which are the prerequisite for a mathematical definition of the graph
model of the product. The second section describes the role of the developed graph
model. The third section describes how different parts of the product can sometimes

be merged into a sing'le vertex of the graph model.

3.1 DEFINITIONS

Component is a solid element added to the aséembly during the éssembly
process and which is not a subassembly. A component can be fiexible or rigid. The
set of all components of a product is denoted by C. Using the air cylinder shown
in figure 3.1, a possible component set is as follows: {bearing_o_ring, bearing, body,
piston_rod, piston, piston_screw, piston_o_ring, ccver_o_ring, cover,

cover_screws<0},

20. Although there are 8 screws, all of them have been combined into the single component called
“cover_screws”, Section 3.3 will discuss the benefits and implications of merging different parts
into a single component.

59

ZH

v+ =2

\N NN

N

I
| 1
e wd
A
£y
[
L1
1 | I |]
b] Ll &
— Jo-
[| 3 P —
« —

60

bearing_o_ring

bearing

body

piston_rod

piston

piston_screw
piston_o_ring
cover_o_ring
cover

cover_screws
8 equally spaced

Fig. 3.1: Exploded view of an air cylinder assembly.

61

Two components have a contact relationship between them if they are in |
constant physical contact in the assembled product?! and if, when holding one of
them while the other remains moveable, there exist an orientation which will cause
the moveable component to lose its physical contact with the fixed one. Contactis
a symmetric binary relation on C. Therefore the two incident components in a
contact relation are necessarily an elemént of C x Cwhere x denotes the
cartesian product of two sets. The set of all contacts of a product is denoted by C'.
Figure 3.2 shows examples of some air cylinder components which have a contact

relationship between them.

§W NN

cover and cover_o_ring

Fig. 3.2: Examples of air cylinder components having a contact
relation between them.

21. "Constant physical contact” means that contactis maintained throughout the normal functioning
of the product. For example, the piston and cover of the air cylinder do not have a contact
relationship between them since their physical contact is intermittent.

62

Two components have an attachment relationship between them if they are
in constant physical contact in the product, if they do not move relative to each other
during the normal functioning of the product and if, when holding one of them while
the other remains moveable, there does not exist any orientation which will cause
the moveable componeni to lose its physical contact with the fixed one. Attachment
is a symmetric binary relation on C. Therefore the two incident components in an
attachment relation are necessarily an element of Cx C. The set of all
attachments of a product is denoted by A. Figure 3.3 shows examples of air cylinder

components which have an attachment relationship between them.

bearing and bearing_o_ring

NN =7

77

bearing and body’ {press fit)

Fig. 3.3: Examples of air cylinder components having an
attachment relation between them.

63

Two components have a blocking relationship between them if they are not
in constant physical contact in the product and if a linear translation of one of them
in one of its possible disassembly directions?? results in a collision with the other.
Blocking is a symmetric binary relation on C. Therefore the two incident
components of a blocking relation are necessarily an element of C x C. The set
of all blockings of a product is denoted by B. Figures 3.4, 3.5, 3.6 and 3.7 will help
clarify this most important definition.

Figure 3.4 shows a typical example of a blocking relation using two air
cylinder components. These components never enter in physical contact in the
normal functioning of the product?®, A possible disassembly direction of the
piston_screw is z-. Moving this c'omponent in this direction results in a collision with
the cover. Therefore these two components have a blocking relationship between

them.

2

piston_screw and cover

Fig. 3.4: A typical example of two components having
a blocking relation between them.

22, The set of possible disassembly directions of a cumponent must necessarily be a subset of the
st {X+, X—, y+, Y=, 2+, Z-}.

23. That the piston_screw and cover never enter in physical contact can be verified in figure 3.8.

64

Figure 3.5 shows two examples of air cylinder components which have an
intermittent contact between them in the normal functioning ¢f the product.

Therefore these components have a blocking relationship between them.

——

-

bearing and piston piston and cover

Fig. 3.5: Examples of air cylinder components having a blocking
relation due to an intermittent contact between them.

Figure 3.6 shows further examples of air cylinder componen's having a

blocking relation between them.

Figure 3.7 shows examples of air cylinder components not havinga blocking
relationship between them. inthe first example, the piston_screw and cover_o_ring
are not in physical contact. Linearly translating any of these two components in one
of their possible disassembly directions does not result in a collision with the othey.
In the other example, the piston_rod and body are not in physical contact. Linearly
translating the piston_rod in either x+, x—, y+, or y— would result in a collision with
the body. However these directions are not possible disassembly directions of the

piston_rod.

The important role of blocking relations will become clear in chapter 5 when

the notion of the geometric feasibility of an assembly operation will be dizcussed.

]

1 -

)
[

|

bearing_o_ring and piston piston_o_ring and cover

r._
| —

3>

fe—

II I

piston_rod and cover bearing and cover

bearing_o_ring and cover

Fig. 3.6: Further examples of air cylinder components having a blocking
relation between them.

65

66

2

piston_screw and cover_o_ring

]

N AN

-—-
e

e . e - S ——— ——— .

piston_rod and body

Fig. 3.7. Examples of air cylinder components not having a blocking relation
between them.

Two components have a relation between them if they either have a contact,
attachment or blocking relationship between them. The set of all relations of a

product is denoted by R and must satisfy:
R=C|JAlUJB (3.1)

¥0 is an incidence function that associates each relation with its two incident

components. The domain of this functionis R andtha range are elements of C x C.

For example, if the relation in figure 3.4 is denoted by "r";

W{r) = (piston_screw, cover). (3.2)

67

From these definitions, the graph model of the product can now be defined

asthe simplegraph G={C, R, ¥ }. Figure3.9 shows the air cylinder's graph model.

contact

bearing_o_ring
bearing
piston_rod
piston_screw
piston_o_ring
piston

body
COVer_screws

cover_o_ring
cover

NN
\

yﬁ:‘/f\\\\\%\

N

\

D —

Fig. 3.8: Air cylinder assembly drawing.

RN RN

attachment e=——

Air cylinder graph model.

68

The product’s graph model, as defined so far, is similar to most other models
used by other researchers in assembly planning. Following are some further
definitions, which help distinguish GAPP's graph model from other models in the

literature.

Name() is a function that associates a name with a component. The domain
of this function is C and the range is any combination of the letters in the alphabet

and the numbers 0 through 9.

Goal() is a function that associates a goal flag with a relation. The domain
of this function is R and the range is the set {yes, no}. Ifthe goal ﬂag of a particular
relation is set to "yes”, this means that this relation should remain unbroken in the
final state resulting from the disassembly process applied by GAPP. This feature

will be discussed in more details in chapter 4.

Directions() is a function that associates an incident component of a relation
with the list of all its possible disassembly directions. The domain of this function
is AR X Candtherangeis any combination of { x+, x—, y+, y-, z+,2-}. Forthe contact

relation between the piston and body in figure 3.2:

directions((piston, body), piston } = { z=} (3.3)

directions((piston, body), body) = { z+ } (3.4)

Type() is a function that associates a type with a relation. The domain of this

function is R and the range is the set { contact, attachment, blocking }.

Operation() is a function that associates an assembly operation with a
relation. The domain of this function is R and the range is the set { against, fit,

fit_and_twist, press, crimp, screw, rivet, weld, solder }

€9

ey, ;Restriéte‘do is a function that associates a list of restricted components with
a re]afibh’: A restricted component "c” for a relation " is one whuh should not be
part ¢f any of the two subassemblies involved in the establishmér.’t"bf "r", otherwise
it woulij greatly complicate, or even provent, the establishment of "r". The domain

of this function is R and the range is P(C) whereP denotes the power of a set, i.e.

the set of all subsets of a set. Chapter 5 will discuss this feature in more details when

the notion of constraints is introduced.

Moved() is a function that associates a moved component in a relation. The
domain of this function is R and the range is C. Assume a product corisists solely
of the two incident components of a relation. Then the moved component is
generally the smaller of the two components in the relation or the one which has the

best grasping characteristics of the two.

Fixed() is a function that associates a fixed component in a relation. The
domain of this function is R and the range is C. Assume a produci consists solely
of the two incident components of a relation. Then the fixed component is generzlly
the larger of the two components in the relation or the one which has the bust

fixturing characteristics of the two.

Ambiguous() is a function that associates an ambiguity flag with a relation.
The domain of this functicrni is R and the range is the set { yes, no}. If a relation has
its ambiguity flag set to "yas”, it means that its moved and fixed component can be
interchanged. In other words, there is no clear distinction as to which component
should be moved and which should be fixed when estabiishing the relaticn between

them.

To distinguish between the moved and fixed component of a relation, every

relation in the graph model is cenverted into a directed edge. Such an edgeis called

5T

© s

70

an arc and is represented by an arrow in the product's graph model. By convention,
the fixed component is the one with the incoming arrow head. The set of all arcs is
denoted by R'.

From these further definitions, the product’s graph model can now be
re—defined as the simple and directed graph D={ C. R’, ¥,}. From a graph-theoretic

point of view, G is the underlying graph of D and D is an orientation of G.

Fig. 3.10: Air cylinder directed graph mode!.

Figure 3.10 shows the the air cylinder's directed graph model. The directed
arc from vertex iabelled "b.:1.” to vertex labelled "bea” means that the bearing_o_ring
should be moved and assembled with the fixed bearing24, in the case where the
product weuld consist solely of these two components. If a decision cannot be taken
as to which component should be moved and which should be fixed in a relation, the

arc’s direction is irrelevant. These arcs are pictorially represented as edges with no

24, Note that it would not make much sense to do the reverse, i.e. fixing the bearing_o_ring and
moving the bearina towards it to establish the connection between both.

71

arrow heads. When the ambiguity flags of each arc in D is set to "yes”,) becomes

isomorphic o G and both representations can be used e'é[uiiiéiéniiy. ‘

3.2 ROLE OF THE GRAPH MODEL

Given some graph model of a product as defined in the previous section,
GAPP tries to find a totally ordered set of assembly operations which results in the
establishment of all the relations in the graph model. Therefore, underlying the
formal definition of the product’s graph model is the important assumption that it

must represent the state2® of the product resulting from the assembly process.

Most of the time, this state is the one represented on the assembly drawing
like the one in figure 3.8 for the air cylinder. However, it is important to understand
that the product's graph model need not necessarily be tied to its assembly drawing,
where all connections among components are established. For example, there
might be applications whers the resuit of the assembly process should be a set of
distinct subassemblies2® instead of a complete product. An unconnected?? graph

model which reflects this situation can be generated instead.

Figure 3.11 illustrates a hypothetical final configuration of the air cylinder
resulting from some assembly process. Figure 3.12 shows the corresponding graph
modal. Feeding this new graph to GAPF, assembly operations which assemble two
components each in a different subassembly, for example the cover and the body
in figure 3.11, will not be generated. The graph model of the product is used o reflect

some final configuration of the product resulting from some assembly process, in

25. The concept of the state of an assembly will b2 iormally defined in chapter 4.
26. A subassembly will be formally defined in chepter 4.
27. Connection will be formally defined in chapter 4.

72

terms of the components’ relations established. Whether this model reflects a totally

or partially assembled configuration is not a problem for GAPP.

B
| I—

gl >
’

Fig. 3.11: A hypothetical final configuration of the air cylinder.

' @ {0,

Fig. 3.12: Graph model corresponding to the final configuration in figure 3.11.

73
3.3 MERGING COMPONENTS

Although the identification of the components of a product is a fairly
straightforward process, it is still worth presenting. Consider the parts which are
listed in figure 3.1 for the air cylinder example. These pars constitute the
componants of the product. According to the definition of a component, it is
understood that all these parts are individually mated at some point in the assembly
process. Each partis also associated with a specific vertex in the air cylinder graph

model.

Assume for example that the piston, piston_screw, piston_rod and
piston_o_ring are pre—assembled and enter the assembly process as a whole. In
this case, one is not concermned with the sequence of assembly of these parts. Ifthe
same graph model as in figure 3.10 is kept, the assembly sequence generated by
GAPP wili contain some operations which concems the order of assembly of these

four parts.

To remedy this situation, one solution is to merge these parts‘ into a single
component (call it piston_sub) and associate it with a single vertex in the graph
model. Figure 3.13 shows the new graph model, in which the vertex labelled "p.su”
represents the piston subassembly“. As a consequence, GAPP looks at the four
parts in the piston subassembly as a single component and does not find their

sequence of assembly??,

28. From a graph-theoretic point of view, the edges between the piston_rod, piston_o_ring,
piston_screw and piston in figure 3.10 that are not part of figure 3.13 are said to have been
"contracted”. As such, merging two incident vertices is equivalent to contracting the edges
between them.

29. Asmentioned earlier, this merging concept had already been applied to the modelin figure 3.10,
where the sight cover_screws had been sombined into a single component labelled "c.sc.” in
the graph. As a result, GAPP vill not try to find the individual sequence of assembly for these
aight screws.

74

Fig. 3.13: Air cylinder's directed graph model in the case where the
piston, piston_rod, piston_screw and piston_o_ring
have been combined into a single component.

This type of merging reduces the component count, which in turn significantly
reduces the combinatorics of gensrating assembly sequences. Hov.ever, one must

keep in mind that the order of assembly of merged components is not retumed by
GAPP.

CHAPTER 4

PROBLEM FORMALIZATION

This chapter describes how the generation of an assembly sequence can be
mapped into a graph search problem. The first section provides some definitions
which are the prerequisite to a formalization of this mapping. The second section
formalizes the problem. The third section justifies the use of a disassembly
approach to the assembly planning problem. Section four describes how the
cutsets of the product's graph model are generated and updated. Section five

highlights some important benefits of the adopted approach.

4.1 DEFINITIONS

Let D={C, R, ¥,} be the directed graph model of some product; let H be
a graph with vertex set V, edge set E and incidence functionw,. H is a subgraph
of Dif VC C, EC R and v, is the restriction of w, to E. Note that the use of ¢

implies that H is also considered to be a subgraph of D for the special case where
H =D. Figure 4.1 shows two subgraphs of the air cylinder's graph model i figure
3.10.

75

bea) @ @

Fig. 4.1: Two subgraphs of the air cylinder graph model.

76

77

LetH={C, R', ¥, } be any subgraph of D and let H' be a subgraph of H with
vertex set C, edge set R'-B and incidence function v,. where W¥,. is the restriction
of ¥, to R'—B. H'is called the non-blocking subgraph of H and H is called the

underlying graph of H'. Figure 4.2 shows the non-blocking sutbgraph of the air
cylinder’s graph model.

Fig. 4.2: Air cylinder's non-blocking subgraph.

LetH={C, R, w,} be any subgraph of DandletH' = { C, R-B, w,. } be the
non-blocking subgraph of H. Two vertices of H are connected if and only if there
exists a path between them in H'. Connection is an equivaience relation on C which
partitions this set into non—empty mutualy exclusive subsets3®. Two vertices are
connected if and only if they belong to the same subset. If all the vertices of H' are
connected, then H' and H are also connected. It can be readily verified that all the
vertices in the non-blocking subgraph in figure 4.2 are connected. Therefore this
graph is itself connected, and by definition so is its underlying graph, the graph

30. Two sets are mutually exclusive if their intersection is empty.

78

model of the air cylinder in figure 3.10. Figure 4.3 shows an unconnected subgraph .
of the air cylinder’s graph model {top). This subgraph is unconnected because its

non—blocking subgraph is unconnected (bottom).

subgraph

non-blocking subgraph

Fig. 4.3 An unconnected subgraph of the air cylinder’s graph model (top)
along with its unconnected non-blocking subgraph {bottom).

79

Let D ={C, R', ¥, } be the graph modal of some prodt:ct; let V be a subset
of C; and let H be the subgraph of D whose vertex set is V and whose edge set is
the set of those edges of D that have both ends in V. H is called the induced
subgraph of D, denoted by D[V], if and only if H is connected. Figure 4.4 shows

two induced subgraphs of the air cylinder’s graph model. Fig:tre 4.5 shows two other

subgraphs which are not induced subgraphs.

(1

()

Fig. 4.4: Two induced subgraphs of the air cylinder's graph model:
D[bearing_o_ring, bearing, piston_rod, piston] and
D[piston_screw, piston, piston_o_ring, body, cover].

80

(1

()

Fig. 4.5: Two subgraphs of the air cylinder’s graph model which are
not induced subgraphs: the top one has a missing edge
{piston_rod, piston), while the bottom one is not connected.

Let D = {C, R, w,} be the graph model of some product and let W = { Hy,

Hy, ..., Hn } be a set of mutually exclusive induced subgraphs®! of D with component

sets Gy, Cy, ..., Cp, respectively. Wis an asserably siate of the product represented

by D if and only if:

GUeU ..UG=c (4.1)
Figure 4.6 shows two possible air cylinder assembly states.

31. Two subgraphs are mutually exclusive if the intersection of their vertex set is empty.

81

p.SC.

Fig. 4.6: Two possible air cylinder assembly states.

A cutset is a set of edges of an assembly state, the removal of which yields

anew assembly state containing one and exactly one more induced subgraph than

the original state.

Figures 4.7, 4.8 and 4.9 will be used to clarify this most important definition.

82

In figure 4.7, a set of seven edges has been removed from the air cylinder’s
completely assembled state which contains one induced subgraphi. This removal
yields a new state with two induced subgraphs: D[bearing, bearing_o_ring] and
Dlpiston_rod, piston, piston_screw, piston_o_ring, body, cover, cover_screws].

Therefora this set of edges is a cutset.

Fig. 4.7: A cutset in the air cylinder's completely
assembled state: {R1, R2, R3, R4, RS, R6, R7).

83

in figure 4.8, a set of seven edges have been removed from an air cylinder's
arbitrary state which contains two induced subgraphs. The removal of this set of
edges yields a new state with three induced subgraphs: D[bearing_o_ring, bearing],
Dlpiston_rod, piston, piston_o_ring, piston_screw, body] and Dlcover,

cover_o_ring, cover_screws]. This set of edges is therefore a cutset.

Fig. 4.8: Acutsetin an air cylinder's arbitrary state:
{R1, R2, R3, R4, R5, R6, R7}.

84

In figure 4.9, a set of six edges has been removed from the air cylinder's
':Edmpletely assembled state which contains one induced subgraph. The removal
of this set yields a new state with three mutually exclusive induced subgraphs:
D[bearing_o_ring], D[bearing, body, piston, piston_o_ring, piston_rod,
piston_screw, cover, cover_o_ring] and D[cover_screws]. This violates the

definition. Therefore, this set is not a cutset.

Fig. 4.9: Asetofedges whichis nota cutset: three induced
subgraphs are resulting from their removal.

85

Following are some further definitions.

A subassembly is a set of vertices in an induced subgraph. Note that every

component is aiso a subassembly.

An assembly operation is an action in the assembly process which resuilts
in the complete and definitive establishment of all the relations in a cutset.
Physically, an assembly operation is an action which brings two and exactly two

subassemblies together to form a larger subassembly.

A disassembly operation is an action in the disassembly process which
results in the complete and definitive breaking of all the relations in a cutset.
Physically, a disassembly operation is an action which splits a subassembly inta two

and exactly two smaller subasszmblies®2,

An assembly sequence is a totally ordered set of assembly operations

which results in the establishment of all relations in the graph model of the product.

A disassembly sequence is a totally ordered set of disassembly operations

which results in the breaking of all relations in the graph model of the product.

An assembly plan is a partially ordered set of assembly operations, any

linear extension of which is an assembly sequence.

A disassembly planis a partially ordered set of disassembly operations, any

linear extension of which is a disassembly sequence.

4.2 FORMAL DESCRIPTION OF THE PROBLEM

Assume the graph model of a product of "n” components is connected. Using
the definitions above, it can be readily verified that an assembly sequence for that

32. As there is always an assembly or disassembly operation required 10 establish or remove the
edges in a cutset, the notion of a cutset and that of an assembly or disassembly operation are
interchangeable in this work.

86

preduct contains exactly n—1 assembly operations. Therefore the generation of an
assembly sequence is formally equivalent to finding a sequence of n—1 mutually
exclusive cutsets in the product's graph model and its induced subgraphs. Figure
4.10 depicts this formal approach to assembly sequence generation, where the
graph model of a hypothetical product with 3 components named "a”, "b”, and "¢”

is used.

® © ® © ® ©

Sequence 1 Sequence 2 Sequence 3

Fig. 4.10: Formal approach to assembly sequence generation. From top -
to bottom, sequence 1 involves cutsets {{R1, R2}, {R3}},
sequence 2 involves cutsets {{R1, R3}, {R2}} and sequence 3
invoives cutsets {{R2, R3}, (R1}}.

A closer look at figure 4.10 leads to an important observation: all 3 assembly
sequences have common top and bottom nodes. This suggests thatthe 3 assembly
sequences could be more compactly represented if their common nodes were

merged. Figure 4.11 shows a graph representation of this reduction. The nodes

87

(or vertices) in this graph are the various assembly states of the product. The edges
commespond to the assembly (or disassembly) operations that transform two incident
states from one to another. The graph itself is appropriately called a graph of

assembly states and was introduced earlier in chapter 2.

Fig. 4.11: Merging the common nodes of the 3 assembly sequences
in figure 4.10 into a graph of assembly states.

Recall that any path from the root node to the leaf node (top down)
corresponds tc a disassembly sequence. Conversely, any path from ihe leaf node
to the root node (bottom up) corresponds to an assembly saquence. Also note in
figure 4.11 that since n = 3, i.e. 3 vertices in the product's graph model, and since
the graph model is connected, then any path from the root node to the leaf node
contains n—1 = 2 edges, i.e. 2 assembly or disassembly operations required in any
assembly or disassembly sequence3,

33. Section 4.5.1 will discuss the special case where the graph model of the product is not
connected,

88

4.3 SEARCH DIRECTION

The problem of generating an assembly sequence for a product has just
been mapped into the problem of finding a path into the graph of assembly states.
Atthis point, the question is in which direction should the graph be searched: bottom
up or top down? Because we are dealing with the generation of assembly (as
opposed to disassembly) sequences, it would seem more logical to search the
graph in the direction of assembly (as opposed to disassembly) operations, i.e.
bottom up. There are several good reasons that justify the use of a disassembly

approach instead.

First, an important Atrtificial Intelligence principle stipulates that any graph
should always be searched in the direction of the lower branching factor [66].
Generally, there are much less ways of initially disassembling a product than there
are ways of initially assembling its disassembled components. The disassembly

approach, which yields the lower branching factor, should therefore be used.

Note that this statement is not true for a totally unconstrained product, i.e. a
product for which the set of all cutsets in its graph model and any of its subgraphs
is assumed to correspond to feasible assembly operations. To illustrate this,
consider a totally unconstrained product of "n” components which graph model is
Ky, the complete graph with "r” vertices. Mathematically, there are 211 ways of
initially disassembling this product, while there are n(n—1)/2 ways of initially
assembling it. It can be readily verified that the former expression is always larger
than the latter for n > 3. Consider now another totally unconstrained product, also
of "n" components, but which graph model is a tree. There are n—1 ways of initially
disassembling this product, as there are n—1 ways of initially assembling it. In any

case the assembly approach yields the lower branching factor.

89

Practically, such totally unconstrained products do not exist so this argument
does not hold. That there are less ways of initially disassembling a product than
there are ways of initially assembling its disassembled components is also evident
by looking at the product’s graph of assembly states: the node corresponding to the
completely assembled state always has less connections with other nodes than the
one corresponding to the completely disassembled state. This can be verified using

the directed graph of assembly states of the ball point pen showed earlier in figure
2.7.

A second good reason is given by Homem De Mello and Sanderson [27]: the
disassembly approach requires no backtracking. Using the assembly approach,
backtracking may be necessary because there are assembly operations that are
physically feasible but which do not lead to a solution. To illustrate this, consider
again the three blocks shown earlier on page 12. 1t is certainly possible to start the
assembly by fitting the pin into the base. However, this renders the insertion of the

plate unfeasible and therefore requires backtracking.

Clearly, the disassembly approach should be used, meaning that the graph
of assembly states should be searched in the top down fashion. It is this strategy
that has been imp!amented in GAPP. The graph of assembly states in figure 4.11
becomes the directed graph of assembly states in figure 4.12, where each edge has

now been given a direction.

0

Fig. 4.12: Directed graph of assembly states.

Through the remaining of this thesis, the vertices in the directed graph of
assembly states will be equivalently referred to as nodes or states. The root node
(top) will be equivalently referred to as initial state, and the leaf node (bottom) as final
or goal state. The directed edges in this graph will be equivalently referred to as
disassembly operations, cutsets or links. For two incident nodes, the one with the
incoming edge will be called the child and the one with the outgoing edge will be
called the parent. Note that any node in the search graph is always the child of at
least one node and the parent of at least another node. The only exceptions are
the root node, which is a parent only, and the leaf node, which is a child only. The

arrow heads of the directed edges will also be neglected for simplicity.

91

4.4 GENERATION OF THE CUTSETS

4.4.1 An algebraic approach

LetD={C, R', ¥;} be the directed graph model of some product. It has been
shown that P(R') is a vector space over the field of integers modulo two, that the
set of all cutsets of D is a subspace of that space, and that the fundamental system
of cutsets relative to a spanning tree or spanning forest of D is a basis of the cutset
subspace {2] [48].

To generate all the cutsets of D, a spanning tree® of D is first selected using
Kruskal's algorithm35, The fundamental system of cutsets relative to this spanning
tree is then computed. The set of alt cutsets in the fundamental system providas a
basis forthe cutset subspace. Linear combinations of the cutsets in the fundamental

system give the set of all cutsets of the graph.

For a graph with "e” edges, a vector in the cutset subspace has "e” positions,
one for each edge of the graph. Each position in the vector has a value of either 1
or 0, the two elements in the field of integers modulo two. The values 1 or 0 are
associated to an edge which is part of a cutset or not, respectively. Using this
vectorial representation, linear combinations of the cutsets are obtained by simply
performing a position-wise addition of the corresponding vectors carried out in the

field of integers modulo two. Figure 4.13 will be used to illustrate these concepts.

34. If D is not connected, a spanning forest Is selected instead.
35. Kruskal's algorithm is presented in appendix B.

cutset 1 111|0]010]1

cutset 2 o{111j01|11]0

cutset 3 olt1jo0|1}11]1

cutset 1 + cutset 2 11c{1]011 1|1

cutset 1 + cutset 3 1 o]o 111]0

cutset 2 + cutset 3 olO0l1111011

cutset 1 + cutset 2 + cutset 3 111l1l1l0]0

(d)

Fig. 4.13: (a) a graph model; (b) a spanning tree in the graph model; (c) the
three vectors in the fundamental system of cutsets relative to the
spanning tree; (d) four vectors resulting from four linear
combinations of the three vectors in (c).

92

93

Figure 4.13a presents the graph model of some hypothetical product with
four components®S, Without loss of generality, it is assumed that this graph is
connected and that ali the edges in it are of the contact type, i.e. every component
has a contact relationship with every other component. Given this graph modal, the
first thing to do is to select one of its spanning trees using Kruskal's algorithm. In

figure 4.13b, the selected spanning tree corresponds to bold edges in the graph.

Next, the cutset associated with each spanning edge in the graph is
computed. For a particular spanning edge, this first consists of adding this edge to
the set M of marked edges. One of the two incident vertices of this edge is selected
and placed into the set S. A recursive loop examines each spanning edge of the
graph in tum, except the ones in the marked set M. For any such spanning edge

being examined, two situations may arise:

1- one of its incident components is included in S while the other is not, in
which case this other incident component is added to S and this edge is
added to M;

2— none of its incident components is included in S, in which case another

spanning edge is selected for examination.

This algorithm is presented in figure 4.14. It stops when there are no more

spanning edges that satisfy the conditions of the first case above,

36. Note that this graph is the complete graph with 4 vertices, Ky.

94

procedure make_ subtree(component, spanning_edge)
add component to S
add spanning_edge to M
for all spanning_eciges in the graph model
if spanning_edge is in M
pick another spanning_edge
if spanning_edge has one incident component in §
add other incident component to S
add spanning edge to M
restart the loop
if spanning_edge has no incident component in 8

pick another spanning_edge

Fig. 4.14: Procedure "make_subtres()".

It should be clear that, given a spanning edge "e” in the graph aind given one
of its incident components "a”, this algorithm constructs the set S of all components
connected to "a” via spanning edges only, in the case where "e" was removed from
the initial graph. By running this algorithm twice, once for each incident component
of "e", two component sets S; and S, get generated. The cutset associated with "e”
is easily identified as the set of edges which have one incident componentin S; and

the other in Sy, or vice—versa.

Using spanning edge e4 and incident component "a” in figure 4.13b, the sets
are initially set up as M = {es} and Sy = {a}. A first iteration of the ioop examines

spanning edge e3%7. None of its two incident components are included in Sy, so a

37. Edges o4 and e; are not examined prior to e3, as the former has been marked and the latter is
not a spanning edge.

95

next spanning edge is picked for examination, e4in this case. This edgeis such that
its incident component "a” is included in S; while its incident component "d” is not.
Component "d" is therefore added to S, which now becomes S = {a, d}, and edge
84 is added to M, which now becomes M = {e, 84}. A next iteration of the loop
examines all unmarked spanning edges of the graph again and tries to add new
components to the set S;. It can be readily verified that the result of the algorithm

for edge ey and component "a" are the sets:

Sy ={a, d, c}and
M= {efr €4, 63}'

Similarly, for edge e, and component "b”, the resulting sets are:

S, = b} and
M ={e,, ey, 83}.

The edgss in the cutset associated with spanning edge ey can now be easily
identified as being those which have one incident component in S; and the other

in Sy, respectively. The cutset associated with e, is then:

{ey, ez, 65},

Repeating this process for every spanning edge of the graph leads to the
igentification of the fundamental system of cutsets corresponding to the selacted
spanning tree. For the spanning tree in figure 4.13b, the fundamental system of

cutsets is as follows:

{91! &z, 36}:
{ez, es, es} and

{92: €4, €5, 96}'

96

This fundamental system of cutsets is given the vectorial representation in
figure 4.13c. The set of all cutsets of the graph is obtained from the linear
combinations of these vectcrs. Three such combinations are trivially given by the
three vectors themselves, Any other combination involving more than one vector
can be computed nicely by the simple position-wise addition of the vectors in it,
carried out in the field of integers modulo two. Figure 4.13d shows the results of all
possible linear combinations involving more than one of the vectors in figure 4.13c.
Together, figures 4.13c and 4.13d show the vectorial representation of all seven

cutsets of the graph in figure 4.13a.

4.4.2 Non—complete graphs

A spanning tree of a connected graph with "n” vertices contains "n—1" edges.
This implies that there are also "n—1" cutsets in the fundamental system of cutsets
associated with this spanning tree, and that there are 2%1-1 possible linear

combinations of the cutsets in this fundamental system3e,

A complete graph has 2™1-1 cutsets. Therefore every possible linear
combination of the cutsets in the fundamental system of cutsets relative to any of
its spanning trees gives one of the cutsets in this graph. The complete graph K, in
figure 4.13a is an example of such a case: there are 24-1-1 = 7 cutsets in this graph,
each corrasponding to a linear combination of the three cutsets in the fundamental

system in figure 4.13c.

38. For"n—1" cutsets, there are 2™ ways of combining them. The expression 211 is obtained
by omitting the non—combination, i.e. the combination resulting from a selection of none of the
cutsets.

cutset 1 111]l0]|0]|0

cutset 2 o{1|11]01]1

cutset 3 ol1]lo]11]1

()

cutset 1 + cutset 2 1101|011

cutset 1 + cutset 3 110{01111

cutset 2 + cutset 3 olol1l1]o

cutset 1 + cutset 2 + cutset 3 1{1]1]1]0 ‘:> not a cutset

(d)

Fig. 4.15: (a) a graph model; (b) a spanning tree in the graph model; (c) the
three vectors in the fundamental system of cutsets relative to the
spanning tree; (d) four vectors resulting from four linear
combinations of the three vectors in (c): the last combination is not
a cutset of the graph.

97

98

The graph model of most products is not complete. Therefore such a graph
has less than 21-1 cutsets in it. This implies that some of the linear combinations
of the cutsets in some fundamental system of cutsets relative to one of its spanning
trees does not correspond to a cutset in this graph. In particular, the removal of
some sets of edges resulting from some linear combinations of cutsets splits the

graph into more than two induced subgraphs, thus violating the cutset definition.

Figure 4.15d illustrates this. One of the vectors obtained from a linear
combination of three others in figure 4.15¢ is not a cutset, as it splits the graph into

the three induced subgraphs with vertex sets: {a, ¢}, {b} and {d}.

A test is performed to determine if a linear combination of cutsets results in
a set of edges which is also a cutset. The algorithm which implements this test is
presented in figure 4.16. Note that this algorithm is very similarto that of figure 4.14.
Three differences are that the set M initially contains all the edges in the set of edges
resulting from a linear combination, that non-spanning edges are also included for
examination, and that a further check in the loop is performed to see if the examined

edge has both incident components in S, in which case this edge is added to M.

99

procedure make_subgraph{ component, list_of edges)
add component to &
add list_of_edges to M
for all edges in the graph modal
ifedgeisin M
pick another edge
if edge has one incident component in S
add other incident component to S
add edge to M
restart the loop
if edge has no incident component in 8
pick another edge
if edge has both incident components in 8
add edge to M
pick another edge

Fig. 4.16: Procedure "make_subgraph()".

it should be clear that, given a set E of edges resulting from the linear
combination of scme cutsets of a graph and given an incident component "a” of an
arbitrary edge in E, this algorithm constructs the set S of all components connected
to "a”, in the case where E was removed from the initial graph. By running this
algorithm twice, once for each incident component of an arbitrary edge in E, two
component sets S; and 5; get generated. The set E of edges is a cutset if and only
if each edge in this set has one incident component in Sy and the other in S,, or

vice~-versa.

100

4.4.3 Updating the cutsets

One way of generating the directed graph of assembly states is as follows:
generate all the cutsets in the initial state; for each cutset, create a new state of the
directed graph in which all edges of this cutset have been removed; generate the
cutsets of each new state; for each cutset of each new state, create a new state of

the directed graph in which all edges of this cutset have been removed, and so on.

Although this approach is certainly feasible, it requires the computation of a
new set of cutsets for each new state added to the directed graph. This leadsto a
lot of computations and the time taken for generating the directed graph of assembly

states of even fairly simple products might not be negligible.

In GAPP, only the sat of all cutsets in the initial state of the directed graph of
assembly states is ever generated. Any other cutset in any other state is obtained
by simpiy updating this set of cutsets in the initial state. Figure 4.17 depicts the
essence of the approach. Afterthe six cutsets of the root node have been computed,
six new states3? of the directed graph are generated. The six cutsets of the root
node are inherited by each new child node. A deletion of some edges of the inherited
cutsets, not part of the new child node, must first be performed. For examf:le, child1
was obtained from cutset {e4, e, 85}. The edges in this cutset must not be part of
any of child1's cutsets. They are therefore deleted from the inherited set, yielding

the new cutsets:

39. Only 4 of these six new states are shown in figure 4.17, due to a lack of space. This should not
influence the demonstration that follows.

101

1- (6o},

2~ (eg},

3 {eq},

4~ {eq),
5~{}, and
& (e, &4}.

Out of this new list, the first and second, as well as the third and fourth, are
combined as they both represent the same cutset. The fifth, which was removed
from the root node to generate child1, is eliminated as it became empty. Therefore,

the list becomes:

1- {62} [
2~ {e4},
3- {92: 94} .

Algorithm make_subgraph() showed in figure 4.16 is then used to check ifthe
remaining sets of edges are indeed cutsets. Running the algorithm for the above
sets of edges leads to the elimination of the last one, as this set does not satisfy the
definition of a cutset. That s, by removing {e,, e,} from child1, a new state with more
than one induced subgraph than child1 would be generated. The cutsets of child1

are then:

1-{e-} and
2- {94}.

Repeating this process for every new child node leads to the determination

of their cutset from a simple analysis of the ones inherited from their parent.

102

root node

@ b)
=] =5)
© ()

child1 child2 child3 child4

cutsets of root node

Y

{e1, 82}, {©2, €3, €5}, {e3, e4), {1, €4, €5}, {01, €3, &5}, {es, e4, €5}
0 inherited by child1

{91- 92}- {92v €3, eS}s {93- 94}| {e‘ls €4, 95}! {31! €3, 95}3 {921 €4, 95}

0 remove edges not in child1

{92}1 {92}’ {84}, {34}1 {}l {ea, 34}

0 combine similar sets, remove empty sets

{e2}, {eq}, {e2, €4}

0 eliminate non—cutsets
{en}, {eq} cutsets of child1

Fig. 4.17: Determination of the cutsets of a new child node from an analysis
of the ones inherited from its parent.

103

4.5 BENEFITS OF THE ADOPTED APPROACH

4.5.1 Ai-itrary initial state specification

So far, it has been assumed that the product's graph?nodel. and therefore
the initial state ‘of the directed graph of assembly states, was connected. As
mentioned in chapter 3, there might be applications where the final configuration of
a product resulting from some assembly process might consist of different
unconnected subassemblies®. In GAPP, such situations translate into the

generation of an unconnected product graph model.

The approach developed for generating and updating cutsets, essential for
the expansion of the directed graph of assémbly states, is directly applicable to
unconnected graph models. As far zs GAPP is concemed, the only difference
between a connected or unconnected graph is that a spanning tree must be
selected in the former, a spanning forest in the latter. No further artitacts or special
rules are required to handle both cases, as or.2 is just the generalization of the other.
Apart from giving GAPP the flexibility to handle assembly problems represented by
both types of graphs, the developed approach also provides for thair unified

processing.

4.5.2 Multiple products

The process of generating and updating the cutsets in a state is totally
independent of the particular physical subassemblies represented in that state.
This provides GAPP with a most powerful feature: the subassemblies in a state need

not be pait of the same product.

40. An example of such an application is a product which is only panrtly assembled in the factory and
which remaining assembly is left to the consumar.

104

Extending the discussion in section 4.5.1, this means the graph model of two
or more different products can be combined into a single but unconnected graph
model in the initial state, and that GAPP can generate a single assembly sequence
where two or mors consecutive operations apply to two or more différent products.
A practical application of this is the determination of an assembly plan for a robot
assembling two products of the same family (or even two totally different products)

simultaneously.

4.5.3 Arbitrary goal state specification

Another assumption used so far is that the product is completely
disassembled as a result of the disassembly process, i.e. the goal state consists of
all unconnected coniponents. Once again, there are many applications which
violate this assumption, for example repair planning and error recovery planning in

robotic assembly.

For the former application, the part or subassembly to be repaired might not
require the complete disassembly of the product. Thus the goal state need not be
the completely disassembled state. For the latter application, itis quite possible that
the goal state should consist initially of the completely disassembled product.
However, should an error occur in the execution of the plan, this error could result
in an unpredicted state. This new state, which might not be the completely

disassembled state, becomes the new goal state of the planner!.

Dealing with such problems in GAPP simply requires the appropriate sstting
of the goal flag of each relation in the graph model, which was briefly discussed in
chapter 3. Given some graph model of the product, any relation of that model which
has its goal flag set to "yes” will never be broken in the disassembly operations

41. Chapter 8 will show examples of using GAPP for repair planning and error recovery planning.

105

generated by GAPP. In other words, these relations are “sealed off" from the
disassembly process. This implies that the goal state will present some induced
subgrapas containing these relations, i.e. the goal state v.iil not correspond to the

completely disassembled product.

In repair plahning. the disassembled state which permits the access to the
faulty parts or subassemblies is identified and the goal flag ofthe remaining relations
in that state is tumed on. A disassembly plan which transforms an initial state of the
product, usually the completely assembled stats, into this disassembled state is
generated by GAPP.

Errors occur often during assembiy for many reasons. Such errors cannot
be predicted in advanze and hence the state of assembly, from which replanning
to complete the assembly should start, would not be known apriori. In this case of
error recovery planning, the connections among components in the unpredicted
state resulting from an error are identified by the programmer and their goal flag
turned on. A disassembly plan which transforms an initial state of the product into
this unpredicted state .s generated by GAPP. The reverse of this disassernbly plan
gives the assembly plan required to recover from the unpredicted assembly failure

state and complete the assembly of the product.

Interm:s of generating the cutsets of the graph model, this type of functionality
is provided by eliminating all the cutsets which contain at loast one relation with its
goal flag tumed on. The remaining cutsets in the initial state and their updated
version in subsequent children states ensure that no goal state will ever be reached

in which a "sealed" relation does not appear.

106

Itis interesting to note that the same functionality can be achieved by merging
the components of each induced subgraph of the goal state into a single component,
instead of tumning on the goall flag of the relations in these subgraphs. This implies
the generation of a new graph model with different vertex and edge sets for every
different goal configuraticn being dealt with. Turning the goal flag of the relétions
on and off is a much better approach, as the same graph model can be used for

different goal configurations.

4.5.4 Computation speed

Once the fundamental system of cutsets relative to some spanning tree of
a graph has been determined, all possible linear combinations of these cutsets must
kie. computed in order to generate all other cutsets of the graph. To perform this
computation, the cutsets in the fundamental system are labelled and associated
with a position in a binary vector, where each position holds a valus of either 0 or
1. For"n" cutsets in the fundamental system, the binary vector is incremented from
1 to 21, Each increment corresponds to one possible linear combination, given
by including in this combination all the cutsets whose corresponding position in the

vector is not 0.

Figure 4.18 illustrates this concept. There are six cutsets in the graph.
Therefore, thr, binary vector has six positions. Starting with a value of 0, a first
increment of the vecior corresponds to the combination of cutset "cg” and no other
cutset. A second increment corresponds to the combination of cutset "cs” only. A
third increment corresponds to the combination of cutssts "cs” and "cg”, and so on.
In tum, each cutset in the fundamental system of cutsets is associated with a binary
vector, as shown earlierin figure 4.13c. The vectorial representation of a new cutset

resuiting from the linear combination of two or more cutsets is obtained from the

107

position—wise addition of their corresponding vectors, carried out in the field of
integers modulo two. This addition directly corresponds to the bitwise XOR operator

of the C** language, in which GAPP is implemented.

As will be seen in the next three chapters, the expansion of the directed
search graph of assembly states involves much computations. For example, the
feasibility of the disassembly operations associated with each edge in the graph
must be computed. An evaluation of the goodness of these operations with respect
to some criteria must also be computed. Housekeeping computations, such as
identifying new generated nodes that already exist in the graph and keeping track

of the best path to a node, must also be constantly performed.

The developed approach for generating the cutsets of a graph is such that
the cutsets computations need to be performed only once, prior to the expansion
of the directed search graph of assembly states. The cutsets of any state of the
graph are obtained from a simple update of the ones inherited from their parent
states. This relieves the main search algorithm from performing these computations
ateach new stats of the search graph and enables it to focus more on the feasibility,
evaluation or housekeeping computations. Furthermore, as far as the apriori
computation of the cutsets is concemed, the approach of incrementing a binary
vector to find all possible combinations of cutsets and using bitwise operators to

determine the result of a particular combination both lead to very fast computations.

¢1={R1,R2}
c2={R2,R3, R5}
cz={R3, R4}
cs={R1,R4,R5}
cs={R1, R3, RS}
cg={R2, R4, R5 }

initial value

first increment

second increment

third increment

108

binary vector

Y

C1 C2 C3 C4 C5 Cg

ojojojojojo

(b)

Fig. 4.18: (a) a graph model with six cutsets; (b) incrementing the binary
vector o find all possible combinations of cutsets,

CHAPTER 5

OPERATIONS CONSTRAINTS

This chapter describes the various constraints on the assembly operation
associated with a cutset, which have the effect of eliminating some of the edges,
vertices and paths in the directed graph of assembly states. The first section locks
at the theoretical combinatorial complexity underlying the generation of this graph,
in terms of the number of vertices, edges and paths that it may contain, The second
section introduces the notion of constraints on assembly operations. The third and
fourth sections describe the geometric feasibility and accessibility constraints,

respectively.

5.1 COMBINATORIAL COMPLEXITY

This section looks at the combinatorics involved in the automatic generation
of the directed graph of assembly states. The analysis is performed for three
important parainicters of this graph: the number of vertices in the graph, which
corresponds to the number of states to be generatsd; the number of edges in the
graph, which corresponds to the number of disassembly operations whose
feasibility needs to be analyzed; and the number of paths from the initial state to the

final state in the graph, which corresponds to the number of assembly sequences.

109

110

Two cases are analyzed for each parameter: a corinected product whose

graph mode! is a tree and a connected product whose graph model is complete
(figure 5.1).

O
G

Fig. 5.1: (a) a four components product with a tree graph model; (b) a four
components product with a complete graph model.

The product is assumed to be totally unconstrained. This means that the
disassembly operation associated with each edge in the directed graph of assembly

states is always assumed to be physically feasible.
5.1.1 Tree graph model

For a totally unconstrained product of "n" components with a tree graph

model, the number "x” of nodes in the directed graph of assembly states is given by:
Xp=2M1 (5.1)
The number "y"of edges in the directed graph of assembly states is given by:

y=1 (5.2)
Yn=2)p1 +22 (5.3)

m

The number "z” of paths from the root nods to the goal node is given by:

Zn=(n—1) -15.4)

Table 5.1 shows the values of these parameters for products with 10 to 15
components. '
Table 5.1

Statistics of the directed graph of assembly states for
products with a tree graph model.

number of number of nodes | number of edges | number of paths

components (eq. 5.1) (egs 5.2 & 5.3) (eq. 5.4)
10 512 2,304 362,800
11 1,024 5,120 3.628,800
12 2,048 11,264 39,916,800
13 4,096 24,576 479,001,600
14 8,192 53,248 6,227,020,800
15 16,384 114,688 87,178,291,200

Figure 5.2 shows the unconstrained directed graph of assembly states forthe

product in figure 5.1a.

112

Fig. 5.2: Unconstrained directed graph of assembly states for the product in
figure 5.1a. There are 8 vertices, 12 edges and 6 paths.

5.1.2 Complete graph model

For atotally unconstrained product of "n" components with a complete graph

model, the number "x" of nodes in the directed graph of assembly states is given by:

Xo=x1=1 (5.5)
)
xn="i(";‘) Xo-i- (5.6)
&0

The number "y"of edges in the directed graph of assembly states is given by:

Wo =2

n-1

Wo=nl+ Y w

E2

Yn=Wp=n+1

113

(5.7)

(5.8)

(5.9)

The number "2” of paths from the root node to the goal nods is given by:

~i

Table 5.2 shows the values of these parameters for products with 10 to 15

(5.10)

components.
Table 5.2
Statistics of the directed graph of assembly states for
products with a complete graph model.
number of number of nodes | number of edges | number of paths
components (eqs 5.5 & 5.6) (eqs 5.7,5.8 & (eq. 5.10)
5.9)
10 115,975 4,101,559 2,571 E9
11 678,570 44,491,126 1.414 E11
12 4,213,597 528,067,061 9.336 E12
13 27,644,437 6.804 E9 7.282E14
14 190,899,322 9.455 E10 6.626 E16
15 1.382 E9 1.409 E12 6.958 E18

Figure 5.3 shows the unconstrained directed graph of assembly states forthe

product in figure 5.1b.

114

Fig. 5.3: Unconstrained directed graph of assembly states for the product in
figure 5.1b. There are 15 vertices, 31 edges and 18 paths.

Tables 5.1 and 5.2 clearly show the combinatorial explosion of the number
of nodes in the directed graph of assembly states as the number of components in
the product and the number of connections among them gets larger. Practically, the
figures in table 5.2 are not realistic since no product is ever represented by a
complete graph model as shown in this example. Even the figures in table 5.1 are
way above the average statistical values that are generally obtained for the directed
graph of assembly states of real industrial products with a corresponding number

of components. The reason for this is simply that these figures were obtained

115

assuming that the product was totally unconstrained. Although not realistic, the
figures were still necessary at the initial development stage of GAPP, in order to
compare its results with those predicted by the theory. It was verified that the results
obtained from GAPP using hypothetical unconstrained products are always in

agreement with those predicted by th:eory.

5.2 CONSTRAINTS ON ASSEMBLY OPERATIONS

Consider the 3-blocks product along with its graph model in figure 5.4. Note
that this graph model is isomorphic to that of the hypothetical product shown earlier
on page 86. From a purely mathematical point of view, the direcied graph of
assembly states for the three blocks should be identical to that of the hypothetical
product {page 90). There should be a disassembly sequence of the three blocks
corresponding to every directed path in this graph. Practically however, this may
not be true because some of the disassembly operations associated with the edges

of the directed graph are physically unfeasible.

In particular, it is initially impossible to remove block "b" from the tota!
assembly. This results in the elimination of an edge in the search graph, which in
turn results in the elimination of an entire disassembly sequence. This is illustrated

in figure 5.5.

In general, the consideration of the various feasibility constraints of the
disassembly operations associated with each edge in the directed graph of

assembly states considerably reduces the size of this graph.

116

SR Se
<

Fig. 5.4: Thres blocks to be assembled (left)
| along vith their graph model (right).

Fig. 5.5: lllustration of the effect of adding feasibility constraints to tha
directed graph of assembly states of the 3 blocks in figure 5.4:
the shaded node and dotted edges are eliminated, leaving only
2 disassembly sequences.

Ao PN T A e A

117

In this work, two types of constraints on assembly oparations are used:

1— geometric feasibility constraints, and

2— accessibility constraints.

Each one is discussed individually in the following sections.

5.3 GEOMETRIC FEASIBILITY CONSTRAINT

The contact and attachment relations defined in the product's graph mode!
restrict the degiees of freedom of the components in the assembly. For example,
a peg ihat loosely fits into a hole has only two degrees of freedom: one translation

in the direction of the hole axis and one rotation about the hole axis.

One way to test the geometric feasibility of an assembly operation is to
determine if a component or subassembly of the product possesses a local degree
of freedom in some directior;, by aralyzing the contacts and attachments in the
graph model. However, a subassembly that effectively possesses a degree of
freedom in some direction might still be impossible to remove, because it might
collide in that direction with some other components in the assembly with which it
is not in physica! contact. This is the reason for defining blocking relations in the
graph model of the product. These relations help determine whethera subassembly
that possesses a local degree of freedom in some direction is also removable in that

direction without colliding with the remaining components of the assembly,

Figure 5.6 will be used to illustrate this concept. It is desired to determine if
an operation that would split the air cylinder into the two subassemblies
‘viston_screw} and {bearing_o_ring, bearing, body, piston_rod, piston,

piston_o_ring, cover, cover_o_ring, cover_screws} is geometrically feasible.

118

iston_screw along (z—
R1 e P O 9(z)

piston_rod along (z+)

piston_screw along (z-)
R2==""_ piston along (z+)

iston_screw along { X+, X—, y+, y—, z+
RS < PO g{ Y+ ¥= 2+)

over along (X+, X—, Y+, y—, z—)

Fig. 5.6: A cutset in the air cylinder's graph model, along with the
disassembly directions of the incident components of the
relations in this cutset.

Associated with this operation is the cutset {R1 R2 R3}. The disassembly
directions for the incident components of the relations in this cutset, which are also
shown in figure 5.6, are used by GAPP in order to compute the geometric feasibility

of this operation.

Attachment R1 and contact R2 reveal that the piston_screw could be
removed along z—. However, blocking relation R3 reveals that the piston_screw can
be moved in any direction except z— in order to avoid a collision with the cover. This

operation is not geometrically feasible since there does not exist any disassembly

119

direction from which the piston_screw can be removed. It is important to note the
role of the blocking relation, which helped determine that although the piston_screw
could be moved locally along z—, it could not be completely removed from the

product in this direction.

Generally, not every component in each subassembly resulting from a cutset
is incident to the relations in this cutset. In the above example, the component in
the {piston_screw} subassembly is iiccessarily incident to all relations in the cutset
since it is the sole component in this subassembly. However, only components
piston_rod, piston and cover of other subassembly {bearing_o_ring, bearing, body,
piston_rod, piston, piston_o_ring, cover, cover_o_ring, cover_screws} are incident
to the relations in the cutset. The components of a subassembly whict. :re incident
to the relation(s) in the cutset from which this subassembly was formed will be called

the matched components.

From this, GAPP formally concludes that an operation is geometrically
feasible if the intersection of all the disassembly directions of all matched
components in either one of the two subassemblies resulting from a cutset is not
empty. For the example above, this means that either one of the following two

expressions must be satisfiad:

dir(R1, piston_screw) (N dir(R2, piston_screw) (N dirA3, pistcn_screw) = {}
(5.11)

dir(R1, piston_rod) (M) dir{R2, piston) (N dir(A3, coven) = {} (5.12)

where dir() stands for the directions() function described earlier in chapter 3.

120

Evaluating the expression given by (5.11) yields:
{z=} N 2=} N X+ x=y+ y-z+}={}. (5.13)

Therefore the disassembly operation corresponding to the cutset {R1, R2,
R3} in figure 5.6 is geometrically unfeasible. The consequence of this is the
elimination of all the state transitions of the air cylinder’s unconstrained directed
graph of assembly states which correspond to this cutset. Considering the
geometric feasibility of all other possible cutsets in all other possible state transitions
in this graph leads to a reduction in the number of state transitions (edges) in it,
which in tum results in a significant reduction in the number of assembly sequences
(paths). A smaller reduction in the number of nodes (vertices) is also usually

obtained.

In the unconstrained case, the air cylinder's directed graph of assembly
states has 2,678 nodes, for a total of 6,519,744 assembly sequences (paths). By
including the computation of the geometric feasibility constraint during the
generation process, the graph is reduced to 2,322 nodes and 646,380 azsembly
sequences. This kind of reduction has been observed to vary from one product to
another, with strongly geometrically constrained products exhibiting the most
significant reductions. Figures 5.7, 5.8 and 5.9 illustrate this reduction for a simpler

product.

121

block a

@ block b
@ block ¢

| %@ block d

Fig. 5.8: Unconstrained directed graph of assembly states for the product in
figure 5.7. There are 13 vertices, 25 edges and 14 paths.

122

Fig. 5.9: Directed graph of assembly states for the product in figure 5.7 after
considering the geometric feasibility constraint. There are now 8
vertices, 12 edges and 6 paths.

5.4 ACCESSIBILITY CONSTRAINTS

5.4.1 lNiustrative examples

Geometric feasibility constraints result in a major reduction in the number of
edges, and therefore paths, in the directed graph of assembly states and eliminates
most of the unfeasible disassembly operations. Nevertheless, geometrically
teasible disassembly operations might still be impossible to execute for accessibility
reasons. Consider for example figure 5.10. It is desired to determine the feasibility
of an operation ihat would split the air cvlinder into the two subassemblies
{piston_rod} and {bearing, bearing_o_ring, piston_screw, piston_o_ring, piston,

body, cover, cover_screws, cover_o_ring}.

123

piston_rod along (z+, z-)
R1 <bearing_o_ring along (z+, z-)

. piston_rod along (z+, z—-)
R2=_ bearing along { z+, z-)

iston_rod along (x+, x=, y+, y—, z+)
R3 <;p)iston along (X+, X—, y+, y—, 2—)

R4 <§iston__rod along (X+, X—, y+, y—, z+)

over along (X+, X=, y+, y—, z—)
iston_rod along (z+)
RS <giston_screw along (z-)

Fig. 5.10: A cutset in the air cylinder graph model, along with the
disassembly directions of the incident components of the
relations in this cutset.

124

The relations in the cutset show that z+ is a possible disassembly direction

for removing the piston_rod:

dir(R1, piston_rod) (M difR2, piston_rod) (M} dir(A3, piston_rod)
(M) dirR4, piston_rod) (") dir(RS, piston_rod) = {z+ }. (5.14)

Considering geometry alone, the corresponding disassembly operation is
feasible. Practically however, it is clearly impossible to perform this operation
because one of the matched components in the cutset?2, i.e, the piston_screw, is
inaccessible. That is, no tool can access this component to hold against the

screwing torque applied to the piston_rod.

Another example of such a situation for the air cylinder is the removal of the
{bearing, bearing_o_ring} subassembly from the complete assembly (figure 5.11):
although this subassembly is geometrically feasible to remove along the z+
direction, the lack of access for a tool to hold this subassembly in trying to remove

it makes the corresponding disassembly operation impossible to execute.

Figure 5.12 shows a generic example of a component which is geometrically
feasible to remove but due to access restriction the corresponding disassembly

operation could be considered unfeasible.

42. The definition of a matched component was given in section 5.3.

125

| S

-——

\\N AN

]
v/

Fig. 5.11: A geometrically feasible disassembly operation where the
moved subassembly ({bearing, bearing_o_ring} is
inaccessible.

(9]

Fig. 5.12: A typical example of an inaccessible component {a) in a
geometrically feasible disassembly operation.

126

This notion of accessibility of the matched component has not been
implemented in GAPP, nor has an investigation been conducted to determine the
complexity involved in its formalization. It promises to be very hard to compute

automatically and constitutes an interesting area for future work.

5.4.2 Restricted components

To cope with accessibility constraints, GAPP relies on the notion of imposing
restricted components in relations. Forthe example in figure 5.10, making the cover
a restricted component for the attachment relation between the piston_rod and
piston_screw prevents GAPP from generating the unfeasible operation. This
specification expresses the intuitive fact that the establishment of the relation
between the bearing and body is impossible if the piston_rod is part of any two
subassemblies involved in the establishment of this relation. Similarly, solving the
situation in figure 5.11 requires making the component piston_rod a restricted
component in the relation between the bearing and the body. Solving the generic
case shown in figure 5.12 requires making component "c” a restricted component

in the relation between components "a” and "b”.

5.4.3 Other constraints

The concept of imposing restricted components in relations can be used to
model other types of {(sometimes) more subtle constraints. Consider for example
the situation depicted in figure 5.13. It is geometrically feasible to remove the
bearing_o_ring along the z+ direction. The intemal diameter of the body can also
be assumed to be large enough to avoid any accessibility problems for the tool used
to remove the bearing_o_ring. Assume that for some reason, the {bearing,

bearing_o_ring} mus* be disassembled first, and only then can the bearing_o_ring

127

be removed from the bearing. To model such a constraint, the body can be made

a restricted component in the relation betwsen the bearing and bearing_o_ring.

\%
N A\\\\\\

Fig. 5.13: Afeasible disassembly operation to be avoided.

5.4.4 Transforming restricted components into forbidden states

The specification of restricted components for some relations of the graph
model, used to express accessibility and other constraints, are translated into

forbidden states in the directed graph of assembly stztes.

Let"r" be & relation in the graph model of some product; Ist "c” be a restricted
component of "r"; let K = { k;, ks, ..., kj} be the set of all cutsets of the unconstrained
directed graph of assembly states which include "r"; let Sq; = {c4, Co, ..., ¢j} and Sy
={c1, €2, ..., ¢} be the set of components in the two subassemblies obtained from
cutset k;, respectively; and let O = {04, 0, ..., 0n} be the set of all assembly states
containing any of the S, or Sy in which "¢ is included. The specification of restricted
component "¢” in relation "r" induces a constraint precluding all states in © from

being generated in the directed graph of assembiy states.

128

Consider a new state with two new subassemblies obtained from the removal
of the edges in some cutset. If the new subassemblies in the state include any of
the restricted components specified for any relation in the cutset, then the new state

becomes part of O and is therefore forbidden.

Formally, if two new subassemblies are denoted by S, and S,, and if the set
of ali restricted components in all relations of the cutset by which these two
subassemblies were obtained is denoted by RES, an operation is feasible underthe

constraints induced by restricted components if:
S1U SN AR=S=1{}. (5.15)

A single relation may have many restricted components. A single relation
may also be part of many different cutsets. Therefore. there might exist many states
of the directed graph which do not satisfy eq. (5.15) above. Consequently, the
specification of restricted components in relations can drastically reduce the

number of states in the directed graph of assembly states,

For the air cylinder, a total of 7 restricted components were specified for 6
relations in the graph model. Without considering geometric feasibility constraints,
the graph was reduced to 151 nodes and 10,432 assembly sequences (paths).
Considering both geometric feasibility constraints and constraints induced by the
specification of restricted components on relations, the graph has 85 nodes with 728

feasible assembly sequences.

CHAPTER 6

EVALUATION CRITERIA

The previous chapter showed how vérious constraints can be used to greatly
reduce the size of a product's directed graph of assembly states, compared to the
size of the corresponding unconstrained graph. Nevertheless, even with the
consideration of all constraints, the directed graph of assembly states might still be

quite large and contain numerous feasible disassembiy sequences.

This chapter describes four criteria used to evaluate the goodness of the
disassembly operations associated with each edge of the directed graph of
assembly states. As a result, among all possible paths of this graph, those which

correspond 1o "better” disassembly sequences can be identified and selected.

The first four sections respectively describe the following four implemented

criteria:
1- the number of re—orientations in the assembly sequence,
2- parallelism among assembly operations,
3- stability of the subassemblies, and
4- clustering of similar assembly operations.
The last section describes how conflicts among criteria may arise and how

these conflicts are resclved by GAPP.

129

130

6.1 NUMBER OF RE-QRIENTATIONS

The choice of an assembly sequence which requires the least number of
re~orientations helps reduce the assembly cycle time by eliminating re~orientation
operations. It also avoids the design of complex assembly tools and fixtures often
required for performing re—orientations. This section describes how re—orientations
are computed in GAPP and how these computations ¢an be used to rate the

different paths in the directed graph of assembly states.

6.1.1 The need for re—orientations

The dichotomic assumption used in this work implies that every assembly
operation consists of bringing two and exactly tws subassemblies togsther to form
a larger subassembly. The orientation ofthese subassemblies priorto the execution
of assembly operaticn and the desired orientation of the new structure resulting from
the assembly operation play an importar: role in determining whether a

re—orientation is required.

Figure 6.1 illustrates this concept. In figure 6.1a, starting from the initial state
of the paits, the goal configuration can be achieved without any re—orientation. in
figure 6.1b, the initial orientation of the pin is such that achieving the goal
configuration first requires its re—orientation. In figure 6.1¢c, a re—orientation of both
parts is required. By simply changing the goal orientation in figure 6.1¢ to that of

figure 6.1d, no re—orientation of the parts is now required.

131

= = =

goal state (a) initial state
qoal state initial state
<= — <o
gor; state (c) initial state

= ===

yeal state (d} initial state

Fig. 6.1: lllustration of a the effects of constraining the initial and goal
orientations of the parts in an assembly operation.

132

Although the same operation of mating the pin to the plate is performed,
special constraints on the initial and goal configurations of these parts may require
re-orientation. An important observation is that some re—otientation is definitly
required if the initial orientation of the parts is different than their orientation in the
final configuration. If all parts have the same orientation in bdth their initial and goal
configurations, It is easily conceivabie that there must exist a plan to assemble them

without any re~orientation, as depicted in figures 6.1a and 6.1d.

Consequently, given some known orientation of the product in its assembled
state, GAPP can always find a disassembly plan in which no re—orientation is
required, i.e. in which the resulting orientation of all disassembled components is
the same as their original orientation in the assembled product. To the author's
knowledge, every assembly planner uses this fundamental assumption. The
following sections describe concepts which enable GAPP to generate disassembly

plans in which re—orientations can occur.

6.1.2 The notion of the moved and fixed subassemblies

Various properties of the two subassemblies involved in an assembly
operation are generally such that a distinction can be made between which
subassembly should be moved and which should be fixed in its execution. A typical
example of this is provided by Haynes and Morris {18]: in an operation that mates
a cup of coffee and a dining table, the cup is moved and placed on the table, and

not vice-versa*s,

43. There are several criteria which can be used to decide which part is best moved or fixed in a
given assembly operation. Examples of such criteria are: size, waeight, flexibility, loose
componants, etc. For every relation defined in the product’s graph mode!, the user specifies
the component to be moved as part of the relation’s definition.

133

One can apply this concept to the example in figure 6.1 and decide that the
pin should be most naturally moved to the fixed base in executing the assembly
operation that mates them both. In doing so, the situation depicted in figure 6.1a
does not present much of a problem: simply pick the pin and insert it from above into
the base. However, an important complexity arises in the situation depictedin figure
6.1d: the pin must be inserted from undemeath. The question to be considered is

whether such an operation should be considered feasible or not.

The clearance between the subassembly to be removed from undemeath
and the closest object with which it would collide when removed from that diretion
play an important role in trying to answer the above question. In figure 6.1d, if one
imagines the assembled parts to be lying on a flat table, then the removal of the pin
from the base using the downwards direction is clearly impossible because there
is no clearance between the pin and the table. For some parts like those in figure
6.2, the clearance between part "a” and the "table” is large enough to enable the

disassembly of part "a” from undemeath.

CeCaCatatalytLial s Lol atat CePglelylelatatolalyl
E:Etﬁ:‘cﬂc‘c‘c‘:‘:‘cﬁﬁﬁcffEcﬁgﬁcﬁcﬁfft,:,c,:,ﬁﬁtff,ﬁ,c,c,:,:,cﬁcfcﬁa,c,c,c,c,cfc,c,c,f,tfc]

Fig. 6.2: lllustration of a disassembly operation where a part can be removed
from undemeath because of sufficient clearance.

134

Assuming that sufficient clearance exists to remove a part from below, the
kinematic capabilities of the resource(s) used to perform such an operation also
impose restrictions on its feasibility. A human operator can easily perform the
operation in figure 6.2. With a little programming effort, a robot with a jointed—arm
configuration could probably succeed in performing this operation as well. Special
workheads and fixtures have also beeri used in automatic assembly which enable
insertions of parts from below. Nevertheless, a resource like a SCARA robot could
never perform such an operation, nor would any other resource which is restricted

to top—Jdown or sideways movements.

Due to the complexities involved in assembling (or disassembling) a part
from undemeath, GAPP assumes such operations to be unfeasible when the
re—orientation criteria is being considered. The concept of the moved and fixed
subassembly of an assembly operation, along with the assumption that the moved
subassembly cannot be inserted from undemeath, enable GAPP to generate
disassembly plans in which the orientation of the components in their disassembled
configuration minht be different from that in their assembled configuration. In other

words, GAPP generates plans in which re—orientations can occur.

Before actually describing how re-orientations are computed in GAPP, a few
things need to be clearly understood. First, only the orientation of the product in its
completely assembled state can be constrained. In generating the product's graph
model, an orientation must be chosen. This orientation of the product as reflectec:
by the graph model is implicitly part of the input of GAPP. On the other hand, the
orientation of the completely disassembled components cannot be constrained.
This origntation is decided by GAPP as it generates the disassembly sequences of

the product. Therefore, aithough one always knows the orientation of the product

135

prior to disassembly, one cannot predict the orientation of ihe completely
disassemnbled components atthe end of the disassembly process aprplied by GAPP.
In particular, if the re—orientation criterion is tumed on, the orientation of the
disassembled components will be such that the least number of re—orientations will

have been required in the disassembly sequence.

Second, it is important to understand that any re—orientation generated by
GAPP applies to the subassembly before it is split into two smaller ones. For
example, maintaining the reasonable assumption that the pin should be the moved
subassembly, the {pin, base} subassembly in figure 6.1d would first be re—oriented,
then the pin removed from above in the new orientation. In this case the resulting
orientation of both disassembled components would be different from that in their

assembled configuration.

Finally, it must be clear that a single component is never re—oriented by itself.
Therefore a plan like the one in figure 6.1d cannot be solved by GAPP. This relates
to the fact that the orientation of the disassembled components cannot be
constrained, and that a component can only be re-oriented as part of a

subassembly.

In the following sections, the subassembly to be split into two smaller ones,
{pin, base} in figure 6.1 and {a, b} in figure 6.2, will be referred to as the parent

subassembly.

6.1.3 Computing re~-orientations in GAPP

Determining whether a disassembly operation requires a re—orientation of
the parent subassembly is rather easy. GAPP first examines the relations in the

cutset. [t uses algorithm make_subgraph() presented earlier on page 99 to

136

construct the two subassemblies S; and S, resulting from the removal of the
relations in the cutset. Itthen picks either one of these two subassemblies and adds
all its matched components to the set M. For each matched component in this set,
it counts how many are moved and fixed, respectively, by analyzing the
user—defined moved and iixed components defined apriori in the grap. model.

Assuming that S; was chosen for examination, three outcomes are possible:

Case 1: the number of matched components in S; specified to be moved is
greater than the number of matched components specified to be fixed,

#moved > #fixed:

In this first case, GAPP concludes that Sy is the moved subassembly and S,
the fixed subassembly in the disassembly operation that separates them. If the
orientation of the parent subassembly is such that S; can only be disassembled
along z—, GAPP further concludes that a re—orientation of the parent subassembly

is required prior to removing S4. As a result, S, is removeable along z+.

Case 2: the number of matched components in Sy specified to be fixed is
greater than the number of matched components specified to be moved,

#moved < #fixed:

Inthis second case, GAPP concludes that S; is the moved subassembly and
S1 the fixed subassembly in the disassembly operation that separates them. If the
orientation of the parent subassembly is such that S, can only be disassembled
along z—, GAPP further concludes that a re—orientation of the pare nt subassembly

is required prior to removing Sp. As a result, S, is removeable along z+.

137

Case 3: the number of matched components in Sy specified to be moved is
equal to the number of matched components specified to be fixed,

#moved = #fixed.

In this last case, GAPP does not know which of S1 or S, should be moved
orfixed. The decision is rade by looking at the possible disassembly directions of
each. In particular, if one subassembly can be removed along 2+, it is selected as

the moved one. Otherwise S; is selected as the moved one by default.

This algorithm is implemerited in the procedure p'resented in figure 6.3. The
call to this procedure each time that a new nods is generated in the diracted graph
of assembly states helps determine if a re—orientation is required in the disassembly
operation which transformed the parent node into the new child nods. Keepingtrack
of how many such re—orientations are required in all paths from the root node to the
goal node permits the selection of the path with the smallest number of required

re-orientations.

138

procedure find_re_orient(Sy, S, cutset)
put matched components of S; in M
for all relations in cutset:
if this relation is ambiguous
pick another relation
if the moved component of this relation is in M
moved++
else
fixed++
if moved > fixed
S, is the moved subassembly
if disassembly directions of S; = z— only
return re—orientation required
if fixed > moved
S, is the moved subassembly
if disassembly directions of S; = z— only
return re—orientation required
if fixed = moved
if &4 has z+ disassembly direction
Sy is the moved subassembly
else
Sz is the moved subassembly

return no re—orientation required

Fig. 6.3: Procedure "find_re_orient()".

139

6.1.4 An example

Figures 6.4 and 6.5 will be used to illustrate the concepts developed in the

previous section.

=
[P

N
7

!

A

Fig. 6.4: A disassembly operation which consists of
removing the cover_screws from the air cylinder.

Figure 6.4 depicts a possible initial disassembly operation of the air cylinder
which consists of removing the cover_screws. Figure 6.5 shows the graph
representation of this disassembly operation. Two relaticns, R1 and R2, are
included in the cutset. This cutset splits the initial assembly into the two
subassemblies Sy = {cover_screws} and S, = {bearing, bearing_o_ring, piston_rod,
piston, piston_o_ring, piston_screw, body, cover_o_ring, cover}. The two sets of
matched components in Sy and S, are {cover_screws} and {body, cover},
respectively. Using the former set, relations R1 and R2 reveal that the sole matched

component {cover_screws} has been specified as moved one twice. Using the latter

140

set, relations R1 and R2 reveal that both matched components {body, cover} have

been specified as fixed.

moved: cover_screws along (z-)
R1 <fixed; body rod along (z+)

Fig. 6.5: Graphical representation of the disassembly operation in figure 6.4.

Atthis point, GAPP concludes that in an assembly operation which mates S,
= {cover_screws} with S; = {bearing, bearing_o_ring, piston_rod, piston,
piston_o_ring, piston_screw, body, cover_o_ring, cover}, Sy is the moved

subassembly and S, the fixed one.

The orientation of the air cylinder in figure 6.4 is such that the moved
cover_screws must be removed along z-. This represents the only possible

disassembly direction of this subassembiy. GAPP further concludes that a

141

re—orientation of the air cylinder is required prior to this disassembly operation. As

a result of this re—orientation, the cover_screws can be removed along z+.

6.1.5 Effects on assembly states

The decision by GAPP of which subassembly should be moved and which
should be fixed is made by analyzing the initial user specifications of the moved and
fixed components in each relation in the graph model. The decision of whethera
re—orientation is required or not is based on the assumption that the moved
subassembly cannot be removed from underneath. In themselves, these decisions
can be easily computed at each state transition of the directed graph of assembly
states. A non-trivial complication resulting from a re—orientation is that the new
orientation of the subassernblies involved must e updated in the new state after

the disassembly operation.

Performing the disassembly operation in figure 6.4 yields the new
configuration in figure 6.6. The corresponding new child state is depicted in figure
6.7. Because of the re—orientation, the list of disassembly directions of each
component in each of the new child state's relation must be updated. Every
disassembly direction along z~ becomes one along z+, and vice-versa. For
example, edge R1 in figure 6.7 originally specified {x+, x—, y+, Y= 2=} and {x+, x—,
y+, y=, Z+} as the possible disassembly directions of its incident components cover
and body, respectively. In figure 6.6, these disassembly directions must be updated
to become {x+, x~, v+, y—, z+} and {X+, x—, Y+, Y=, Z-}, respectively. This type of
update must be performed for all relations in any two subassemblies resulting from
a disassembly operation requiring a re—orientation. This dependency of a state on
the orientation of the subassemblies that it contains may slightly increase the

number of nodes in the directed graph of assembly states,

NN

—————————————— ?w
6 '§ Y WW?
S L

Fig. 6.6: Configuration resulting from the disassembly
operation and re~orientation in figure 6.4,

Fig. 6.7: Assembly state corresponding to the configuration
of the air cylinder in figure 6.6.

142

143

6.1.6 Search cost associated with re—orientations

Iif the re—orientation criterion is tumed on, GAPP associates a cost to the new
state of the directed graph of assembly states resuting from a disassembly
operation which required a re—orientation. The value "re” of this cost is obtained

from the constant function:

(6.1)

ro< 4 Wre if re~orientation required
0 ifno re—orientation required

where "w,,” is the relative weight of the re—orientation criterion as specified by the
user. For example, if the user specifies a unit weight of 25 (on a scale of 0 1o 100)
for this criterion, a cost of 25 units is added to every new child state resulting from

a disassembly operation requiring a re—orientation.

6.1.7 Underestimating re—orientation’s remaining search cost

The next chapter will discuss the use of various search methods for
traversing the directed graph of assembly states in order to find an optimal
disassembly sequence of some product. Among thesa methods is the well known
A’ algorithm. This algorithm guarantees finding the optimal solution in an OR graph,

provided that the following three conditions are satisfied:

1- the cost of getting from the root node to a particular node of the search
graph can be determined precisaly,

2—the cost of getting from the particular node to some goal node can be
reasonably estimated, and

3- the cost in 2 is never over—estimated.

144

This section deals with conditions 2 and 3 above, i.e. methods for finding
good underestimations of the cost of re—orienting. This problem is depicted in figure
6.8: given a newly generated node in the directed graph cf assembly states, an
underestimation of the remaining cost associated with re—crientations in the best

path from this new child to the goal must be obtained.

root node

O node generated

N

\ , hode not generated yet

P A s —
TN TN N TN
\. ./ \ ./ _J
e s
O TOYAYAYA R _ . .
[NL ML 2L N 07 L whatis the cost associated with
\ TSN N N / re—orientations in the best path?
\ NN
-..____- __;_}‘_/’
goal node

Fig. 6.8: Atone instance in the generation of the directed graph of assembly
states: node "a” has just been generated and an underestimation
of the cost assaciatad with re~orientations in the best path from this
node tothe g¢¢ - .- must be computed.

145

An analysis of the cutsets in the new child state can lead to a good
underestimation of the cost associated with re~orientations in the best path betwaen
this child and the goal. Before describing the algorithm which performs this analysis,
it is shown that at best, each induced subgraph of an assembly state requires at
least zero and at most one re—orientation in the disassembly operations that splits

this subgraph into individual components.

To illustrate this, refer to figure 6.9. It shows a simple plate with a pin to be
removed from the top and ‘wo pins to be removed from underneath. Without loss
of generality, the graph model of these parts can be consids:ed an induced
subgraph of some larger graph and can therefore be seen as one of many
subassemblies of the state in figure 6.9c. It is now desired to compute an
underestimation of the number of re—orientations required to disassemble this

subassembly.

An analysis of cutset {R1} reveals that moved component pin1 must be
removed from underneath, which requires a re-orientation. So does moved
component pin2, by analyzing cutset {R2}. On the other hand, cutset {R3} specifies
that moved component pin3 can be removed from above. Atotal of six permutations
in the order of execution of the disassembly operations associated with each of

these cutsets is possible, as follows:

1-R1, A2, A3
2-R1, R3, R2
3~ R2, A1, R3
4~ R2, R3, R1
5-R3, A1, A2
6- R3, R2, R1.

146

pin3 @
g ™

R1 R2

pin1 pin2 @ @

(a) {b)

plate

7

N
RS_
N

pasere
]

Fig. 6.9: (a)asubassembly tobe disassembled; (b} induced subgraph of (a);
(c) assembly state containing this induced subgraph; (d) two cutsets
by which the subassembly can be disassembled.

147

Out of the six possible permutations, 5 and 6 require a single re~orientation;
1 and 3 require two re—orientations; 2 and 4 require three re—orientations. The last
four permutations result in disassembly sequences in which more than one

re—orientation is required. Therefore, they are not optimal in this respect.

The generalization of these results is as follows: let A be the set of all pins
that can be removed from above; let B be the set of all pins that can be removed from
below; let "min” be the minimum number of re—orientations required to remove all
pins from the plate; and let "max” be the maximum number of re~orientations

required to remove all pins from tie plate; then it can be readily verified that:

\ 0 ifIBl=g
- 2
min [1 otherwise (62)

IA! + 18 if 1Al =18

max = <18l + 1 if 1Al > 1B (6.3)
2x 1A+ jr (g5 1Al

For the exampie in figure 6.9:

Al =1, 1Bl =2, min =1, max=2x|Al +1=3. (6.4)

These results can apply to any arbitrarily induced subgraph consisting of
other components than plates and pins: the set A above becomes the set of all
subassemblies of this induced subgraph which can be removed from above; B
becomes the set of all subassemblies of this induced subgraph which can be
removed from below; "min” becomes the minimum number of re—orientations
required in the disassembly operations that splits this subgraph into individual

components; the mapping for "max” is not relevant.

148

An underestimation of the cost associated with re~orientations in the best
path between a new child node and the goal node is obtained from an analysis of
the cutsets of this new child. For each cutset, a first check determines if the cutset
results in a feasible disassembly operation. if not, a next cutset is selected for
investigation. If so, a check is performed to see if any of the incident components
of the relations in this cutset are included in set POOL. If so, a next cutset is selected
for investigation. If not, the two subassemblies which would result from its removal

are computed using procedure make_subgraph() shown earlier on page 99.

The two subassemblies are then passed as argument to procedure
find_re_orient()in figure 6.3. As a result of this call, GAPP knows if the cutset under
investigation would result in a re—orientation in a later disassambly operation. Ifa
re—orientation would indeed be required, a re—orientation counter is incremented by
one. As a re—o:ientafion is found for the induced subgraph to which this cutset
applies, and as either zero or one such re—orientation of the subassembly
represented by this induced subgraph is required in the best possible case, any
other remaining unprocessed cutset which applies to the same induced subgraph
need not be examined. This is achieved by adding all components of the induced
subgraph to which the cutset applies to the set POOL. This algorithm stops when
there are no more cutsets to be investigated. The procedure by which this algorithm

is implemented is presented in figure 6.10.

Using the value of the counter whicii gets increment in the procedure, an
underestimation "u_re” of the cost associated with re—orientations in the best path

from a new child node to the goal is simply given by:

u_re = Wy X counter (6.5)

149

Itis worth mentioning that it is absolutely necessary to compute the feasibility
of the disassembly operation associated with the cutset under investigation. To
illustrate why, assume there exists a cutset of an induced subgraph whose
corresponding disassembly operation is unfeasible and requires a re—orientation.
Also assume that the disassembly cperations associated with all other cutsets of
this induced subgraph are feasible and do not require any re—orisntation.
Processing this "unfeasible” cutset in procedure underestimate._re_orisnt() would
mistakenly increment the counter by one. This would result in an overestimation of
"u_re" in eq. (6.5), which would in tum violate the condition for ensuring optimality

in performing an A’ search over the directed graph of assembly states.

précedure underestimate_re_orient(new._child)
ure=0
POOL = {}
for all cutsets of new:_child:
if any incident component of the relations in this cutset
is included in POOL
pick another cutset
Sy, 8 = make_subgraph(incident_ component, cutset)
flag = find_re_orient(Sy, S, cutset)
if flag = TRUE
add S; and S, to POOL
u_re++
pick another cutset

return u_re

Fig. 6.10: Procedure "underestimate_re_orient()".

150

6.2 PARALLELISM AMONG ASSEMBLY OPERATIONS

The selection of an assembly plan which allows parallelism leads to
signiﬁcant reductions in total assembly cycle time but may require additional
‘Vé'quipment. In contrast, an assembly plan in which no parallelism can occur s likely
to require a longer cycle time but can theoretically be performed using a single
flexible resource (for example a robot). It is important to analyze the economic
trade—off between longar assembly time and the use of additional equipment early
in the product design and manufacturing planning phase, to ensure cost
effectiveness. This section describes how parallelism is computed in GAPP and
how these computations can be used to rate the different paths in the directed graph

of assembly states.

6.2.1 Typel versus type2 parallelism

Type1 parallelism refers to the simultaneous execution of two or more
assembly operations in which the resulting subassemblies have no component in
common. In other words, if operation1 mates subassemblies Sy and S5, and if
operation2 mates subassemblies Sz and S, then the simultaneous execution of

these two operations presents type1 parallelism if:

(S1 U S} NS U 8a) =}, (6.6)

The simultaneous fitting of the piston_o_ring to the piston and of the
bearing_o_ring to the bearing in the air cylinder product is an examipie of type1
parallelism; so is the placing of the cover against the body simultaneously with the

screwing of the pié.fon_screw to the piston_rod.

151

Type2 parallelism refers to the simultaneous execution of two or more
assembly operations in which the resulting subassemblies do have components in
common. In other words, if operation1 mates subassemblies St and Sy, and if
operation2 mates subassemblies Sz and S, then the simultaneous exacution of

these two operations presents type2 parallelism if:

SIN&US)=8 o SNSUS) =S (6.7)

The simultaneous fitting of the piston_screw and piston_o_ring to the piston
is an example of type2 parallelism; so is the placing of the cover against the body
simultaneously with the fitting of the bearing to the body. These two examples have

the piston and body as a common component, respectively.
6.2.2 Parallelism in GAPP

GAPP can evaluate assembly plans only with respect to type1 parallelism,

as any operation executed in type2 parallelism violates the dichotomy assumption.

To determine how good a disassembly operation is with respect to type1
parallelism, a count of the number of component in the two subassemblies resulting
from the disassembly operation is performed. The smaller ihe difference between
the component count in each subassembly, the better the cperation with respect to

the parallelism criterion.

Atone extreme, if a feasible plan exists in which every disassembly operation

always splits a parent subassembly into two subassemblies with an equal number

152

of components, then maximum type1 parallelism is achieved*. At the other
extreme, if every operation in any feasible plan always consists of removing a single

component at a time, then no type1 parallelism exists.

level 1

level 2

level 3

Fig. 6.11: An AND / OR tree representing one possible assembly plan of a
hypothetical unconstrained product of 8 components.

To illustrates this, refer to figure 6.11. It shows the AND / OR tree
representation of an assembly plan for a hypothetical product with 8 components.
The nodes in this graph represent various subassemblies. Hyperarcs fepresent
disassembly operations that split a parent subassembly into two smaller
subassemblies. The number of components in each subassembly at each node is

labelled in the node.

In this plan, every disassembly operation splits a parent node into two child

nodes with an equal number of components. As a result, operations "a”, "b”, "¢" and

44. Note that this can be achieved only if the parent subassembly has an even number of
components. For a parent subassembly with an odd number of components, the best that can
be achieved is to split this subassembly into two subassemblies whose respective number of
components differs by one.

153

"d” can be perfonmied in parallel, then operations "e* and "' in parallel, then operation

"g" by itself. Altogether, 6 operations can be performed in type1 parallelism in this
plan.

level 1
level 2
level 3
level 4
level 5
level 6

level 7

Fig. 6.12: An AND/ OR tree representing another possible assembly plan of
a hypothetical unconstrained product of 8 components.

Consider now figure 6.12. It shows another AND / OR tree for the same
8-components product. However in this case every disassembly operation consists
of removing a single component from the parent subassembily, yielding a child node
witii one component and another with one less the number of components of its

parentnode. No type1 parallelism is ever possibie in this case, as no twc hyperarcs

ever appear in the same level in the tree.

Clearly, the "shallowest” the AND/OR tree is, the more hyperarcs can appear
at each level in the tree, and the more type1 parallelism is possible [29]. Therefore

a necessary condition for maximizing parallelism among disassembly operations is

154

that their corresponding AND / OR tree representation be the shallowest of all the

trees representing all possible partial orders of these operations.

The depth "d” of the shallowest AND / OR tree for a totally unconstrained

product of "n” components can be computed as follows:

d= [logan] (6.8)

where [] denotes the ceiling operator, in this case the smallest integer larger than

logz n. For example, the depth of the shaliowest AND / OR tree of a totally

unconstrainec product of 11 components is 4, as log, 11'-.-.—:'3.32 and [3.32] = 4.

Still, there can be more than one tree of equal shallowest depth for products
with a certain number of components. For example, figure 6.13 shows two
shallowest trees of depth 4 for an 11-components product. Note that the one which
splits the parent nodes into two child nodes with the smallest difference in their
component count, i.e. figure 6.13a, is the one in which the larger number of
operations can be performed with type1 parallelism, i.e. 9 compared to 8 for figure
6.12h,

Therefore, a sufficient condition for maximizing parallelism among
disassembly operaiions is that these operations always consist of splitting the
parent subassembly into two subassemblies with the smallest difference in their
component count. This difference is "zero” if the parent subassembly has an even

number of components, and "one” otherwise.

(b)

level 1

lavel 2

level 3

level 4

level 1

level 2

level 3

level 4

155

Fig. 6.13: Two shallowest AND / OR trees of a hypothetical unconstrained
product of 11 comporents: in {a), operations {a, b, ¢, d}, then {e, f,
g} then {h, i} can be performed in parallel, for a total of 9; in (b),
operations {a, b, ¢, d, e}, then {f, g, i} can be performed in parallel,

for a total of 8.

156

6.2.3 Search cost associated with parallelism

To avoid making the distinction between a parent subassembly with an even
or odd number of components, both possible values in this best case situation are
merged into a single one using some convention. In particular, if "dif’ denotes the

difference in ;.3 componiant count of the two subassemblies and "n” denotes the

number of components ir- their parent subassembly, then the convention value dif

used by GAPP is given by:

0 if dif=1 and n is odd (6.9)

0 if dif=0and n is even
dif=
dif otherwise

in the worst case, it can be readily verified that the maximum difference "d"
between the component count of two subassemblies resulting from splitting a parent

subassembly is simply given by:

d= n-2 ‘ (6-10)

For example, in the worst case, a parent subassembly with 11 parts can be
split into two subassemblies where one has 1 component and the other 1G, for a
difference between their component count of 10-1 = 9, which is also equalto 11-2

as given by eq. (6.10) above.

The cost associated with parallelism can now be defined as the linear
function:
_ Wpa X dIf

pa=———r— {6.11)

157

where "wp," is the relative weight of the parallelism criterion as specified by the user,

dif is the value of the difference in the component count of the two subassemblies

as given by eq. (6.9}, and "d" is the maximum value of this difference as given by
eq. (6.10).

For example, if the user specifies a weight of 25 (on a scale of 0 to 100) for

the parallslism criterion, the operation associated with hyperarc "j" in figure 6.13a
and 6.13b results in unit costs of 0 and 7.33, respectively. Note that if dif = d, then
pa = wpa which is the maximum possible value of the cost associated with type1

paralielism for any possible disassembly operation.

If the parallelism criterion is tumed on, meaning that the user has not
specified a value of "0 as its relative weight "Wpa", this cost is computed and added
to the new child state resulting from a disassembly operation in the directed graph

of assembly states,

6.2.4 Underestimating parallelism’s remaining search cost

As in the case for the re—orientation criterion, given a newly generated node
in the directed graph of assembly states, an underestimation of the remaining cost
associated with parallelism in the best path between this new child and the goal must

be obtained if the A” search method is used.

Recall that in the case of the re—orientation criterion, a fairly good
underestimation could ba obtained from an analysis of the cutsets in each induced
subgraph of the new child state. As each state knows about its cutsets, the

information thzt was reasoned upon to obtain the underestimation was local to the

child state.

158

Unfortunately, such a good underestimation for the parallelism criterion is not
as straightforward to obtain as in the case of the re—orientation criterion. To explain
why, first note that for any new child rode, there must exist an unconstrained path
from that node to the goal in which the cost associated with type1 parallelism as
given by eq. (6.11) has the value "0" for every disassembly opsration in thils path.

One such path is presented in figure 6.14 for a hypothetical new child state.

It follows dirsctly that a lower bound for the cost associated with parallelism
in the best path from the new child to the goal is "0” and this value can always be
used as an underestimation for this criterion?5. Although this value is certainly an
underestimation for this criterion, it is most probably not a good one. That is, this
value assumes that the product is totally unconstrained. By adding constraints on
disassembly operations in the remaining paths, it is very likely that this lower bound
will never be achieved. For example, itis possible that the disassembly operations
resulting in node "B” in the unconstrained path in figure 6.14 might be physically

unfeasible.

435. The value "0" is actually a trivial underestimation for any criterion.

159

feasible

Pa = Wpa
feasible
—— pas= wpa
-L oy,

unfeasible
\

\
N)] goal state

Fig. 6.14: An unconstrained path from a new child state to the goal which is
optimal with respect to type1 parallelism.

A much beiter underestimatior: could be obtained by corsidaring only the
feasible remaining paths from the new child to the goal, i.e. paths in which every
disassembly operation is feasible. However, since these paths have not been

generated at the time when the underestimation is naeded, one must always

160

assume that an optimal unconstrained path like the one in figure 6.14 will tum out
to be a feasible one, which means that the value "0" is actually the best possible:

underestimation that one can get for this criterion.

As will be shown in the next chapter, such a trivial value for an
underestimation of any criterion is not very helpful in trying to reduce the
combinatorics involved in the expansion of the directed graph of assembly states.
The strategy used to overcome this problem for the parallslism criterion consists of
"looking one step ahead” of the new child node for which an underestimation is
required. That is, all the children of this new child aré temporarily generated and
the cost associated with type1 parallelism as given by eq. (6.11) is computed for
each corresponding disassembly operation. The minimum cost of all temporary

children is kept as an underestimation "u_pa” for the original child node. That is:

upa= min(wL:-@) for all tc; (6.12)

where "ic;” is the ith temporary child of the naw child for which an underestimation

is required.

For example, assuming that the disassembly operation resulting in node "B”
in figura 6.14 is indeed unfeasible, the new improved underestimation would be the
maximum cost "wp,", as computed for the disassembly operations resulting in nodes
"A” and "C".

Obviously, as this new value is obtained by considering only feasible
disassembly operations, on average it will represent a much better underestimation

than the trivial "0" value in which every remaining operation is assumed to be

161

feasible. The only exception is the case where one of the feasible "look ahead"
disassembly operation also resulted in a value of "0” for the cost associated wiih

parallelism.

If the new child for which an underestimation is required is actually the goal
state, no temporary child is ever generated and the value retumed by eq. (6.12) is
"0", which is a perfect estimation. If there is only one remaining disassembly
operation to transform the new child into the goal state, this goal siata is generated
as the only temporary child and a perfect estimation of "0" is once again obtained
from eq. (6.12).

Ifthere are "r” remaining disassembly operations to transform the new child
into the goal state, an arbitrary number of temporary child states of this nsw child
can be generated. The cost of the best path from the new chi'd to the goal consists
of the sum of the costs of eash disassembly operations in this path. Eq. (6.12)
retums the lowest of all cost values computed for every disassembly operation
resulting in every temporary child. This minimum value is the cost of the first
disassembly operation in the best path from the new child to the goal. As any other
remaining disassembly operations in this best path either adds to the cost or ail have
a cost of zero, eq. (6.12) is guaranteed to be an underestimation of the cost of the

best path from the new child to the goal.

Itis interesting to note that "looking ahead” of the new child node for which
an underestimation is required can be extended deeper. In the extreme case, one
could generate the whole portion of the directed graph of assembly states from the
new child node to the goal and obtain a perfect estimation of the cost associated with
parallelism in the best path from this new child to the goal. However, the

compuiational expense of obtaining such a perfect estimation would not be justified.

162

6.3 STABILITY OF THE SUBASSEMBLIES

6.3.1 Introduction

The choice of an assembly sequence with highly stable subassemblies
improves the reliability of assembly operations. This reduces assembly cycle time
by preventing errors during execution. Moreaver, it reduces the nee V}or tools and
fixtures, greatly simplifies their design and drastically reduces their cost. The
flashlight in figure 6.15 will be used to illustrate how the execution of different
disassembly operations might influence the stability of the two resulting

subassembiies.

-
endcap ——»}/ / spring
/ #

4 Y
Q W
Q]
\ e battery2
B
N
body —sN N
z+ I N——=—N]
::; N
\ \
+
y S R——— battery1
)
‘Q N
[7]
% — %
bulb
reflector ff
head —_..5
lens

Fig. 6.15: Simplified geometric mode! of the flashlight product.

163

Figure 6.16 shows three feasible disassembly operations that can be applied
to the completely assembled flashlight. Knowing that the spring is attached to the
endcap, that both batteries can slide freely inside the body, and that the area of
contac'trhl?etwsen battery2 and battery1 as well as between batteryt and the bulb is
very small, fhe first operation in figure 6.16 is clearly the best one, as far as the

stability of the two resulting subassemblies is concemed.

operation 1 operation 2 operation 3

Fig. 6.16: Three initial disassembly operations that can be applied to the
completely assembled flashlight.

In particular, in the second operation both batteries are likely to slide out of
the body and fall when the {endcap, spring, body, battery1, battery2} subassembly

is removed from above. In the third operation, both batteries become highly

164

unstable and fall out. In the fist operation, the removed spring and endcap remain
attached together while at the same time their removal leaves the {battery1,

battery2, body, head, lens, reflector, bulb} subassembly in a stable stats.

By measuring the stability of the two subassemblies resﬁlting from the
disassembly operations in any path of the directed graph of assembly states, one
can select the path in which the overall stability is maximum. The next section
describes how this notion of subassembly stability can be evaluated from the
cemputation of the degrees of freedom of the components in this subassembly, and
how maximizing subassembly stability maps nicely into minimizing the number of

degrees of freedom of the components in a subassembly.

6.3.2 Degrees of freedom

A component in 3-D space has a maximim of 6 degrees of freedom: 3
translations and 3 rotations. In GAPP, a distinction is made between the actual
direction of a translation or rotation involved in a dagree of freedom, which gives a
total of 12 "degrees of freedom” for this same component: {x+, x~, y+, y—, 2+, 2-,
X+, X=, Y+, Y=, Z+, Z-}. The lower case and upper case letters denote translations

and rotations, respectively.

As GAPP does not consider rotations, only 6 possible translations remain.
These are; {x+, x—, y+,y-, 2+,2—,}. Eachcorrespondtothe 6 disassembly directions
that can be specified for a relation in the product's graph model (chapter 3).
Therefore the degrees of freedom in GAPP are actually "translational” degrees of

freedom.

When two components are in physical contact, the degrees of freecom that

they present are reduced depending on the type of the contact. For example,

- 165

placing a square block on top of another leaves 5 degrees of freedom for each block.
Fitting a cylindrical peg into a hollow cylinder open at both ends leaves only 2
translational degrees of freedom for each part. The less degrees of freedom that
two physically contacting ‘,components have, the more constrained the relative

motion between them is, and the more stable these two components are.

The computation of the cost associated with the stability criterion is based on
an evaluation of the degrees of freedom of each component in the new state
resulting from a disass;embly operation. The degrees of freedom in a state is simply
the sum of the degrees of freedom of the components in this state. By convention,
any unconnected component in a state is assumed to have zero degree of freedom.
A direct implication of this is that a goal state in which all components are

unconnected has zero degree of freedom.

For a new child state, the components in this state are processed
sequentially and the computation of their individual degrees of freedom is
performed. This computation of the degrees of freedom of a single component "¢”
is as follows: identify the set R of all contact and attachment relations of the new child
state in which this component is involved. For each such relation " in R, identify
the corresponding possible disassembly direction "d" of this component, as

retumed by the function:;

¢ = directions(r;, c) (6.15"

Identify the directions which are common to all "d” and add them to the set
D. The analysis of these common disassembly directions determine the degrees

of freedom of "¢”. Two cases can oceur:

166

Case 1: if D is empty, component "c” has 0 daegrese of freedom. This can
happen either if "¢” is unconnected or if its contacts and attachments with

other components in the state are such that they completely immobilize it.

Case 2: if D is not empty and does not contain "z-" as one of its elements,
count the number of elements in it. This number corresponds to the degrees

of freedom of "c” in the new state.

Figure 6.17 will be used to illustrate these concepts. It shows two possible

disassembly operations that can be applied to the three blocks shown earlier.

In the state resulting from operation 1, the pin has 0 degree of free.om
because it is not connected. The plate has 4 degrees of freedom due to its contact
with the base, namely {z+, x+, x—, y+}. Similarly, the base has 4 degrees of freacom
due to its contact with the plate, namely {z—, x+, x-, y=}. In total, the state resultingr

from operation 1 has:
0 + 4 + 4 = 8 degrees of freedom (6.14)

In the state resulting from operation 2, the base has 0 degree of freedor
because it is not connected. The pin has 1 degree of freedom, namely {z+}, as a
result of its connection with the plate. Similarly, the plate has 1 degree of freedom,
namely {z-}, as a result of its connection with the pin. In total, the state resuiting from

operation 2 has:
0+ 1+ 1=_2degrees of freedom (6.15)

The state rasulting from operation 2 in figure 6.17 is, therefore, more stable

than the one resulting frorr. operation 1, as it is has the less degrees of freedom.

167

pin
plate

Z+ I base
X+ y+

<
-
@

flo-

operation 1 operation 2

Fig. 6.17: Two possible initial disassembly operations of the three blocks.

6.3.3 Adding penaity degrees of freedom

Although operation 2 in figure 6.17 is the one with less degrees of ffeedom,
it is interesting to note that intuitively one would rather consider the subassemblies
resulting from operation 1 to be more stable, even if they pres-nt more degrees of
freedom. Such a conclusion is directly influenced by the fact that the loose plate,

part of the moved subassembly in operation 2; is- likely to fall during the execution

168

of this operation. If the plate was attached (for example press fitted) to the pin, then

its chancas of falling during the execution of operation 2 would vanish.

Apart from a quantitative examination of the degrees of freedom of each
component in a state, it seems important to also include as well a qualitative

examination under three aspects:

1) what are the particular degrees of freedom of a component,
2) which of the moved or fixed subassembly is the component part of, and
3) whether the component is attached or not to some other component(s) in

the state,

Including these further notions helps make the difference between an
unattached component, part of the moved subassembly with a z- degree of
freedom, and another attached component part of the fixed subassembly with an
x+ degree of freedom. Although quantitatively both components have only one

degree of freedom, the former is clearly much more unstable than the latter.

In GAPP, these notions are modelled by simply adding penalty degrees of
freedom to the components in a state. Once the common disassembly directions
have been identified in the set D, two further cases are provided which result in

penalizing the components satisfying these two ca:ses:

Case 3: if D is not empty, and it contains "z—" as one of its elements, and
component " is not attached to any other component in this state, and
component “c” is part of the fixed subassembly of this state, then give "c¢"the
maximum degrees of freedom, i.e. 6, to reflect that it is highly unstable in the

fixed subassembly in this new state.

169

Caso 4: If D is not empty, and it contains "z-" as one of its elements, and
component "c” is not attached to any other component in this state, and
component "c” is part of the moved subassembly of this state, then give "¢
twice as many degrees of freedom as the maximum possible case, ie. 12,
to indicate that it is highly unstable in the moved subassembly in this new

state.

In the state resulting from operation 1 (figure 6.17), the pin has 0 degree of
freedom because it is not connected. The plate has 4 degrees of freedom due to
its contact with the base. However the base is part of the fixed subassembly, it has
"z-" as one of its degrees of freedom in this state and it is not attached to any other
component. Therefore case 3 above applies and the base is given § degrees of

freedom. In total, the state resulting from operation 1 now has:
0 + 4 + 6 = 10 degrees of freedom (6.16)

In the state resulting from operation 2, the base has 0 degree of freedom
bacause it is not connectc, The pin has 1 degree of freacdom as a result of its
connection with the plate. However, the plate is part of the moved subassembily, it
has "z—" as one of its degrees of freedom in this state and it is not attached to any
other component. Therefore case 4 abova applies and the plate is given 12 degrees

of freeciom. In total, the state resulting from operation 2 now has:
0+ 1+ 12 = 13 degrees of freedom (6.17)

Using these new heuristics, the state resulting from operation 1 in figure 6.17

is now considered more stable than the one resulting from operation 2.

170

Using the same technique, it can be verified that the number of degrees of
freedom in the state resulting from operations 1, 2 and 3 for the flashlight in figure
6.16 are 8, 18 and 16, respectively. Therefore operation 1 in figure 6.16 is the one

which results in the most stable state.

6.3.4 Search cost associated with stability

The cost associated with stability can now be defined as the linear function:

= Wg X dof (6.18)
ccx 3

where "wg" is the relative weight of the stability criterion as specified by the user,
"dof” is the number of degrees of freedom in the new state resulting from the
execution of the disassembly operation, "cc” is the number of connhected
components in the new state, and "3" represents an average va'ua of the number
of degrees of freedom of a component in a state. The denominator "cc x 3" then
represents the reasonable estimation that in the worst case, every connected

component in a state would have 3 degrees of freedom.

For example, if the user specifies a value of 25 (on a scale of 0 to 100) for
"wgt", the first and second disassembly operations in figure 6.17 result in unit cost

values of 41.66 and 54.18, 12spectively.

If the stability criterion is tumed on, meaning that the user has not specified
avalue of "0" as its relative weight "wy,”, this cost is computed and added to the new

child state resulting from a disassembly operation in the directed graph of assembly

states.

171

6.3.5 Underestimating stability’s remaining search cost

Stability is another criterion for which a good underestimation is hard to
obtain from a simple analysis of whatever data is available in the new child state.
The technique of "looking ahead” of the new child described earlier for the
parallelism criterion was found to be a good way for obtaining a reasonably good

underestimation for this criterion.

Given anew child state, an underestimation "u_st" of the cost associated with
stability in the best path from this child to the goal is obtained by first generating
temporarily allthe feasible children states of this new child. The cost associated with
stability for each disassembly operation resulting in each temporary child state is
then computed using eq. (6.18) and the minimum value for all children is keptas an

underestimation for the original child. That is:

wst X cof

u_st:mm(o % 3) for all tc; {5.19)

where "t¢;” is the I™ temporary child of the new child for which an underestimation

is required.

If the new child for which an underestimation is required is the goal state, no
temporary child is ever generated and the value returned by eq. (6.19) is "0", which
is a perfect estimation. Iif there is only one remaining disassembly operation to
transform the new child inito the goal state, this goal state is generated as the only
temporary child and a perfect estimation of 0" is once again obtained from eq.
{6.19)45,

46. Recall that, by convention, the goal state consisting of all disassembled components has zero
degree of fresdom.

172

If there are "n” remaining disassembly operations to transform the new child
into the goal state, an arbitrary number of temporary child states of this new child
can be generated. The cost of the best path from the new child to the goal consists
of the sum of the costs of each disassembiy operations in this path. Eq. (6.19)
retumns the lowest of all cost values computed for every disassembly operation
resulting in every temporary child. This minimum value is the cost of the first
disassembly operation in the best path from the new child to the goal. As any other
remaining disassembly operations in this best path either adds to the cost or has
a cost of "0" if it is the last operation, eq. (6.19) is guaranteed to be an

underestimation of the cost of the best path from the new child to the goal.

6.3.6 Stability: criterion versus constraint

Homem De Mello and Sanderson [25] suggested that a disassembly
operation resulting in an unstable configuration should be considered unfeasible4”,
This implies that stability could become one of the constraints introduced earlier in

chapter 5.

In terms of the directed graph of assembly states, the important distinction
between considering stability as a constraint or a criterion is that in the former case,
a node in which unstable subassemblies exist would never be generated, while in
the latter case such a node could be generated but be associated with a high cost

with respect to the stability criterion.

GAPP’s philosophy of considering stability as a criterion instead of a
constraint is justified by three good reasons. First, any unstable configuration can

always be made stable by using proper clamping or fixturing. Although this may

47. The authors define an unstable configuration as one in which the parts do not maintain their
relative position and break contact spontaneously.

173

increase tooling costs, this situation can still b2 very justifiable, specially if it results
in a significant reduction in cycle time or an important increase in productivity.
Second, there may exist some products which cannot be assembled without
running into unstable configurations. The candelabra in Miller and Hoffman [57] is
an example of such a product. Third, although nodes with unstable configurations
can be generated, providing a sufficiently high relative weight to the stability criterion
can prevent any such node from being selected in the disassembly sequence
returned by GAPP, which is practically equivalent to not generating these nodes at

all.

6.4 CLUSTERING OF SIMILAR OPERATIONS

6.4.1 Benefits of clustering

The last criterion used in GAPP relates to the clustering of similar
disassembly operations into successive operations in the final assembly sequence.
The underlying motivation for implementing this criterion lies in the benefits that

such a clustering can provide.

Take for example the simple product in figure 6.18. The disassembly of this
product simply consists of removing both screws and the block from the plate along
the z+ direction. Altogether, there are six possible permutations in the order of

execution of these three disassembly operations. They are:

174

1- remove screw1, screw2, block
2- remove screw1, block, screw2
3—- remove screw2, screw1, block
4- remove screw2, block, screw?
5 femove block, screw1, screw2

6— remove block, screw2, screw1

NENN\EN

Fig. 6.18: A simple product to be disassembled.

Whether a robot or human performs the disassembly of this product, it is
obvinus that the tooi to be used to remove both screws is different from that used
to remove the block. It can be readily verified that disassembly sequences 1, 3, 5
and 6 above require a single tool change and that disassembly sequences 2 and
4 above require two tool changes. The selection of either one of disassembly
sequences 1, 3, 5 or 6 would be most desirable as they minimize the number of tool
changes. Note that these 4 sequences are the ones in which the maximum number
of similar operations could be performed consecutively, i.e. two consecutive

unscrewing operations.

175

" - fin
% - ferrule
TT = garment
f &4—-—- shell
O - washer
- spring

AR - cap

-t plunger

Fig. 6.19: Shell subassembly of a heat deiactor device.

Consider now the shell subassembly of a heat detector device shown in
figure 6.19. Knowing that the fin is pressed to the ferrule, that the ferrule is pressed
into the garment, and that the garment is pressed into the shell, the clustering of

these similar operations into successive operations in the assembly sequence may

176

not only reduce the number of tool changes for the resources which execute the
corresponding assembly opeiations, but may also suggest the merging of these
similar operations into a single operation using a single resource. As a matterof fact,
2 of these 3 opsrations are known to be executed simultaneously in a single
pressing operation by the company producing the heat detectors to which these

shell subassemblies belong.

Clearly then, important benefits can be obtained from the clustering of similar
oparations into successive ones in the assembly sequence. The next section
describes how similar disassembly operations generated by GAPP can be

recognized.

6.4.2 Identifying similar operations in GAPP

The identification of similar disassembly operations in the directed graph of
assembly states first requires the labelling of the cutsets with particular operation
names. Checking the similarity among disassembly operations in this graph then
becomes the simple problem of checking whether their associated cutsets have

similar operation names.

For a cutset with a single relation, the operation name for the cutset is simply
the one retumed by the operation() function applied to its refation. For example, the
operation name of cutset R3 in figure 6.9 is "fit". However, when a cutset consists
of more than one relation, the operation specified for each relation might be different.
For exaniple, the cutset shown earlier in figure 6.5 consists of 2 relations. The
operations associated with relations R1 and R2 in this cutset are screwing and
fitting, respectively. The problem arises as to which name should be specified for

the operation associated with this cutset.

177

GAPP solves this problem as follows: the operation specified fer each
refation in the product’s graph model is given some weight corresponding to the
strength of the connection resulting from the execution of this operation. The
stronger the connection, the larger the weight. For example, a relation between two
components which is established by periorming a screwing operation is stronger
than another relation established by simply placing the two involved components
against each other, The Weight associated with the former operation is larger than

the one associated with the latter.

From this, the disassembly operation associated with a cutset bacomes the
operation of the relation with largest weight among all relations in this cutset. The
screwing operation associated with relation R1 is stronger than the fitting operation
associated with relation R2 in the example in figure 6.5. The former operation is
given alarger weight than the latter and the operation name associated with the two

relations in this cutset is "screw”.

This simple technique for associating a single disassembly operation among
all possible operations specified for the relations in a cutset can be generalized as

follows:
operation(cutsef) = max operation(r) for all r; in cutset (6.20)

where "operation()” is the operation() function described earlier in chapter 3 and r;

is the it relation in the cutset.

Once all cutsets have been given an operation name in this way, the
identification of similar operations in the directed graph of assembly states consists
of matching similar names for tha cutsets associated with the operations in this

graph.

178

The cutset associated with the disassembly operation which transforms
some parent node into soma child node will be referred to as the generative cutset

of the child node in the section that follows.

6.4.3 Search cost associated with clustering

Given the operation name of the generative cutset of some parent node and
given the operation name of the generative cutset of one of its child nodes, the cost

"cl” associated with clustering can now be defined as the constant function:

ol {0 if operation(child) = operation(parent) (6.21)

We if operation(child) = operation(parent)

where "wq" is the relative weight of the clustering criterion as spacified by the user,
"operation(child)” is the name of the operation of the child's generative cutset and

"operation{parent)” is the name of the operation of the parent's generative cutset.

For example, if the user specifies a weight of 25 (on a scale of 0 to 100) for
this criterion, a cost of 25 units will be added to every new child state which
generative cutset operation name is different than that of its parent. By convention,
the cost associated with this criterion for every child of the root node in the directed
graph of assembly states is assumed to be zero. In other words, the value of
operation(parent) where parent is the root node is always assumed to be equal to
operation{child) where child is one of the root node’s children, resulting in a cost of

zero in eq. (6.21).

6.4.4 Effects cn assembly states

An important assumption for a heuristic function that computes the cost of

a criterion in a state of the directed graph of assembly states is called

179

histery-independence [84]. In essence, this assumption speciﬁ_es that the
computation of the cost associated with a criterion depends only on the local
information avaitable in the new state for which this cost is being computed. Without
this important assumption, the directed graph of assembly states is not guaranteed

to be a suitable representation for sets of optimal assembly sequences.

Unlike any other criteria discussed so far, the computation of the cost
associated with clustering for a new child node, as given by eq. (6.21), violates the
history—independence assumption. That is, the computation of this cost also
requires the knowledge of the operation that was applied in the generation of its
parent, i.e. the computation does not depend only on the iocal information available

in the new state which cost is being computed.

The next ctiapter will present a method for keeping track of the best path to
a node. This will be an appropriate time for presenting a method for ensuring that
optimal paths can be represented in the directed graph of assemily states even

when the history—independence assumption is violated.

6.4.5 Underestimating clustering’s remaining search cost

The technique of "looking ahead” of the new child described earlier for the
parallelism and stability criteria is used again here for obtaining a reasonably good

underestimation for the clustering criterion.

Given a new child state, an underestimation "u_cI” of the cost associated with
clustering in the best path from this child to the goal is cbtained by first generating
temporarily all the feasible children states of this new child. The cost associated with

clustering for each disassembly operation resulting in each temporary child state is

180

then computed using eq. (6.21) and the minimum value for all children is kept as an

underestimation for the original child. That is:
u_cl=min ¢! for all tc; (6.22)

where "tc;” is the it" temporary child of the new child for which an underestimation

is required.

if the new child for which an underestimation is required is actually the goal
state, no temporary chiid is ever generated and the value retumed by eq. (6.22) is
"0%, which is a perfect estimation. If there is only one remaining disassembly
operation to transform the new child into the goal state, this goal state is generated

as the only temporary child and a perfect estimation is once again obtained from eq.
(6.22).

If there are "n” remaining disassembly operations to transform the new child
for which an underestimation is required into the goal state, an arbitrary number of
temporary child states of this new child can be generated. The cost of the best path
from the new child to the goal consists of the sum of the costs of each disassembly
operations in this path. Eq. (6.22) retums the lowest of all cost values computed for
every disassembly operation resulting in every temporary child. This minimum
value is the cost of the first disassembly operation in the best path from the new child
to the goal. As any other remaining disassembly operations in this best path either
adds to the cost or has a cost of "0", eq. {6.22) is guaranteed to be an

underestimation of the cost of the best path from the new child to the goal.

6.5 COMPETITION AMONG CRITERIA

Given a disassembly operation in the directed graph of assembly states, and

given eqs (6.1), (6.11), (6.18) and (6.21) to compute the goodness of this operation

181

with respect to the four correspanding criteria, this operation is likely to be good with
respect to some criteria and not as good with respect to others. An obvious example
of this is disassembly operation 1 for the flashlight in figure 6.16: although this
operation is good with respect to stability, it is not so good with respect to parallelism.
On the other hand, operation 2 in the same figure is very bad with respect to stability
but is best with respect to parallelism. Operation 3 is still very bad with respect to

stability but is better than operation 1 with respect to paralielism.

Clearly, in trying to determine which of these three operations is the best with
respect to both criteria, the relative importance among these criteria plays an
important role. For example, if one considers stability to be more important than
parallelism, operation 1 will be selected. Forthe reverse case where parallelism is
considered to be mere important, operation 2 would now be selected as the best

one. An overall measure is the summation of all four defined criteria.

In GAPP, such conflicts are resolved by providing some weight to the various
criteria used in the evaluation process. These weights are supplied interactively at
the click of the mouse by the user prior to the disassembly sequence generation
process. Any criterion whose relative weight has been set to "0' is ignored by GAPP
in the computations. The higher the weight of a criterion, the more influence it has

in deciding which disassembly operation is the best among different possible ones.

As an illustrative example, assume that the relative weight of the
re—orientation and clustering criteria have been setto the value "0”, and thata weight
of 25 and 50 has been set for the stability and paralielism criteria, respectively. With
this particular set up, it can be verified that the cost of the three operations in figure
6.16 will be as in table 6.1. Note that because operation 2 is the best one with

respect to parallelism, which is the criterion with the largest weight, this operation

182

becomes the one with the lowest total cost, even if this operation is the most
unstable of the three. Similarly, by switching the weight values for bath criteria,
stability becomes predominant and operation 1 now has the lowest total cost, as

shown in table 6.2.

Table 6.1
Seaich cost cf the three operations in figure 6.16 for relative weights of 25 and
50 for the stability and parallelism criteria, respectively.

Operation # Stability search | Parallelism search | Total search cost
cost (eq. 6.18) cost {eq. 6.11)
1 7.40 35.71 43.11
2 16.66 0 16.66
3 14.81 21.4 36.21

Table 6.2
Search cost of the three operations in figure 6.16 for relative weights of 50 and
25 for the stability and parallelism criteria, respectively.

Operation # Stability search | Parallelism search | Total search cost
cost (eq. 6.18) cost (eq. 6.11)
1 14.81 17.85 32.66
2 33.32 0 33.32
3 29.62 10.7 40.32

it will be shown in chapter 8 how a variation of the relative weight of the
various assembly planning criteria causes different optimal assembly sequences to
be generated by GAPP.

CHAPTER 7

SEARCH METHODS

This chapter describes the various methods by which GAPP incrementally
constructs the directed graph of assembly states and generates an optimal
disassembly sequence, which when reversed gives an optimal assembly sequence.
The first section provides some definitions. The second section describes how to
keep track of the best path to a node. The third section describes the effects of
violating the history independence assumption. Section four describes two
exhaustive search methods, namely breadth first and depth first. The fourth, fifth
and sixth sections describe the best first, A" and hill climbing search methdds,

respectively. These 5 search methods are all available in GAPP.

7.1 DEFINITIONS

The process of generating the directed graph of assembly states will now be

referred to as the expansion of a search graph.

A node of the search graph has been expanded if all its children nodes
resulting from the feasible disassembly operations corresponding to some of its

cutsets have been generated.

The set of all nodes of the search graph which have been generated but not
yet expanded is called the open set. Initially, only the root node corresponding to

the product's graph model is on the open set.

183

184

The set of all nodes of the search graph which have been generated and
expanded is called the closed set. If the whole search graph gets expanded in the

search process, no more nodes remain in the open set and zll nodes are included

in the closed set.

Assuming that the root node of the search graph has already been placed

in the open set, the basic search procedure used by GA-P is as in figure 7.1.

1 while the open set is not empty
2 pick one node from the open set
3 remove this node from the open set and add it to the closed set
4 find all feasible disassembly operations that can be applied 1o the
subassemblies in this node by analyzing its cutsets
5 for each feasible disassembly operation:
generate a corresponding new node of the search graph
if the new node already exists on the open set:
delete it
make parent point to existing node
if the new node already exists on the closed set:
delete it
make parent point to existing node
else
add the new node to the open set
make parent point to it

Fig. 7.1: GAPP’s basic search procedure.

Variations of the above basic search procedure define the 5 search methods
that have been implemented in GAPP. A discussion of the use of particular search

methods is presented in chaptzr 8.

185

7.2 KEEPING TRACK OF THE BEST PATH TO A NODE

7.2.1 Cost function

The introduction of the various criteria in chapter 6 gives GAPP the ability to
evaluate the many different disassembly sequences in the directed graph of
assembly states. Integrating the evaluation of these criteria into the searci
procedure as the search graph gets expanded, enables the direct generation of an
optimal disassembly sequence of a given product with respect to these criteria.
Depending on the search method used, the optimal solution can even be obtained

" without exhaustive generation of the whole search graph.

To achieve wis type of ‘functionality, each node of the search graph is
associated with a pointer to its best known parent. Since every node has only one
such parent, the backward path through the best parent links between any two
nodes in the search graph represents the best path between these two nodes. In
particular, the backward path from the goal node to the root node represents the

optimat assembly sequence of the product.

Inherent in the concept of the best path to a node is the measure of a path’s
goodness. In GAPP, this is accomplished by associating a cost to each new node
that gets generated in the search graph. This costis denoted by "g” and is computed

using the recurrence formula:

g = g(parent) + ¢cg (7.1)

where "g(parent)” is the cost of the best path from the root node of the search graph
to the parent of a new node, and "cg" is the cost of the disassembly operation

transforming the parent of the new node into thé new node itself,

186

The value of "cg” is in tum obtained from the functions which compute the

values of the various criteria:

cg=re+pa+st+cl (7.2)

where the values for"re”, "pa”, "st” and "cl" are obtained from eqs (6.1), (6.11), (6.1 8)
and (6.21), respectively. Figure 7.2 iliustrates the cumulative nature of the cost

function given by eq. (7.1) for an arbitrary path.

Fig. 7.2: Accumulation of cost to the nodes in an arbitrary path.

187

7.2.2 Resetting the best parent of a node in the open set

To illustrate how the cost function is used to keep track of the best pathto a
node, consider figure 7.3. It shows the state of the search graph for a hypothetical
4—components product after a few iterations of the basic search procedure outlined
in figure 7.1. The bold edges in figure 7.3 correspond to a best known parent link.
All other edges correspcnd to the usual parent—child link. Bold nodes correspond

to nodes in the closed set. All other nodes are in the open set*s,

Fig. 7.3: State of the search graph of a 4~components product after
a few iterations of the search procedure in figure 7.1.

First note that every node has a single pointer to its best known parent. For
example, out of the two parents of E, only B is identified as its best known parent.

Working our way through the best parent links, it is very easy to identify that, out of

48. These conventions will be used through the remaining of this chapter.

188

the two possible paths to E, the path {A, B, E} is actually the best one generated so
far. Similarly, the path {A, C, F} is the best known path to F.

Fig. 7.4: Resetting the best parent of node E.

Assumse now that in the next iteration of the basic search procedure, node
D is selected from the open set and sxpanded to give node E’, as depicted in figure
7.4. Note that this new node is the same as E already in the open set. Therefore
E' is deleted and D is set to point to E instead. Because the cost of this rew path
to E is lower than the path {A, B, E} in figure 7.3, the pointer to the best parent of

E is reset to D and ihe best path to E is now {A, D, E}.
7.2.3 Resetting the best parent of a node in the closed set

Consider now figure 7.5. It shows the state of the search graph for the same

4—components product after a few more itarations of the basic search procedure,

189

Fig. 7.5: State of the search graph of the 4—components product
after a few more iterations of the search procedure.

Assume that node B is selected for expansion in the next iteration to yield
node E', as depicted in figure 7.6. Once again, node E’ is the same as node E, so
E' is deleted and B is set to point to E instead. The resulting new cost to node E
through path {A, B, E} is now lower than the earlier one through path {A, D, E}.
Therefore the best parent of E is resetto B. However this time node Eis in the closed
set. Due to the cumulative nature of the cost function, this implies that the cost of
the best path to its child G has also been improved4S. Therefore this new iower cost
must be propagated to G50, In performing these computations, the new cost to G

49, If G also had children, their cost would also be |mproved as would the cost of their children,
of the children of thelr children, and so on.

50. In GAPP, when the best path to a node "n" on the closed set has been resst, the new improved
cost is propagated in a depth first fashion starting at *n” through the whole state of the search
graph.

190

is also lower than the earlier one through path {A, C, F, G}. The best known parent

of G is then reset from F to E, yielding the new best path {A, B, E, G}.

Although this kind of housekeeping could be avoided by expanding a search
tree instead! of a search graph, the important reduction in memory consumption thut
this approach provides greatly justifies its usage. This will be discussed in more

detail in chapter 9.

-
-
-
-
-
-
-

Fig. 7.6: Resetting the best parents of nodes E and G.

7.3 VIOLATING THE HISTORY INDEPENDENCE ASSUMPTION

The repetition of the above process until the goal node gets generated
ensures that the optimal path to the goal is always known, i.e. the optimal assembly

sequence has been generated. Nevertheless, a complication may arise when the

191

history indeper.dence is violated in the computation of the cost associated with a
criterion such as clustering. In particular, ttie optimal path of the search graph might

be missed. This is demonsirated in the next two sections.
7.3.1 Failure to reset the best parent pointer

Figure 7.7 shows an instance during the generation of the search graph for
a hypothetical 4—components product. Each edge in the graph is labelled by an
arbitrary name corresponding to some disassembly operation. A bar above an
operation name means that this operation also requires a re—orientation of the
parent subassembly before it can be executedS!. The top and bottom values beside
each node represent the values _of "cg” and "g” in eq. (7.1), respectively. These
values are obtained for the case where relative weights of 75 and 50 have been
specified for the re—orientation and clustering criteria, respectively. 1t is assumed

that parallelism and stability have been tumed off.

;g newly generated child

Fig. 7.7: An instance in the search graph: node
F' has just been generated.

51. A parent subassembly was defined at the end of section 5.1.2,

192

In order to decide whether new child node F' is equal to already existing node
F, the subassemblies in these two states as well as their orientation must be
compared. Assuming that nodes F and F' indeed represent the same
subassemblies in the same orientation, then these two nodes are the same.
Therefore node F’ can be deleted and node D can point to already existing node F.
One must also determine if the resulting new path to F is better than the current one
by comparing the cost values. As the cost to F’ is larger than the best one to F in

figure 7.7, the best parent pointer of F is not reset. This is illustrated in figure 7.8.

Fig. 7.8: Resetting node D to point to node F
without changing the best path to node F.

Assuming that node F gets expanded in the next iteration to yield goal node
G, the best path from the root to the goal which passes through F has a cost of 100.
This is depicted in figure 7.9.

Consider now the path from the root to the goal in figure 7.10. This new path
results from a change of the best parent of node F from node C to node D. Note that

the total cost to the goal in now smaller than that in figure 7.9.

193

Fig. 7.9: Expanding node F to yield goal node G.

Fig. 7.10: Changing the best path to node F
and then expanding it.

194

What has just been shown by this simple example is that the trua optimal path
of the search graph might be missed by a failure to reset the best parent pointer of
some node. This may happen when some criteria which violate the

history—indepericence assumption are used in the computation of the cost function.

7.3.2 Mistakenly resetting the best parent pointer

Figure 7.11 shows an instance in the generation of the search graph for
another hypothetical 4-components product where the relative weight of the
re—orientation and clustering criteria have been interchanged and the operation

transforming node F into node G has been changed.

newly generated child

Fig. 7.11: An instance in the search graph: node
F' has just been generated.

In this case, assuming that nodes F and F' represent the same
subassemblies in the same orientation, the search graph in figure 7.12 is now
obtained. Expanding node F to goal node G results in an optimal path with a total
cost of 175, as depicted in figure 7.13. But then, in figure 7.14 the optimal path

obtained by not resetting the best parent of F has a lower cost of 125.

Fig. 7.12: Resetting node D to point to node F and
changing the best path to node F.

Fig. 7.13: Expanding node F to yield goal node G.

185

196

Fig. 7.14: Not changing the best path to node
F and then expanding it.

This example shows that the true optimal path of the search graph might be
missed by mistakenly resetting the best parent pointer of some node. Once again,
this may happen when some criteria which violate the history-independence

assumption are used in the computation of the cost function.

To solve this problem, the operation name associated with the generative
cutset of a node must also become part of its description. Two nodes are equal only
if their generative cutset>2 have the same operation name, apart from having the
same subassemblies in the same orientation. Using these concepts, the expansion
of the search graphs for the examples in sections 7.3.1 and 7.3.2 results ini the new
search graphs in figures 7.15 and 7.16, respectively. Note that both nodes F and
F' are now part of the graphs, and that the optimal path from the root to the goal has

been correctly recorded in both cases.

52. A generative cutset was defined at the end of section 6.4.2.

Fig. 7.15: Modified search graph for the example
in section 7.3.1.

Fig. 7.16: Modified search graph for the example
in section 7.3.2.

197

198

7.3.3 Muitiple goal nodes

In incorporating the operation from which a node was generated into the
node’s description, an important implication is that the search graph may now
present multiple goal nodes. For example, in figure 7.17 nodes G and @ may
represent the same subassemblies in the same orientation. But since they were not
obtained from the same disassembly operation, thay are not equsi and cannot be

merged into a single node.

Fig. 7.17: Multiple goal nodes in a search graph.

The best path to every such goal is obtained from the backward traversal of
the graph through the best parent pointers starting at each goal node. In the
example above, two such best paths are {A, C, F, G} and {A, D, F’, G’}. Among all
possible best paths, the overall optimal path is simply the one with lowest cost. In

the example above, the optimal path is {A, D, F’, G'}.

199

7.4 BREADTH FIRST AND DEPTH FIRST EXHAUSTIVE SEARCH

Given the basic search procedure in figure 7.1 together with the notion of the
best path to a node described in the presious sections, two exhaustive methods
avaitable in GAPP for generating the optimal assembly sequence of a pioduct can

nsw be presented.

1- f the basic search procedure is applied until the open set is empty, and
if the node selacted for expansion in step 2 is always the e_arliest of all the
nodes added in the open sel, then the whole search graph is generated in
a breadth first fashion. The path through the best parent pointers from the
best goal node to the root node represents the optimal assembly sequence

with respect to the chosen criteria.

Using this search strategy, the order of expansion of the nodes in the search
graph of figure 7.18 is {A, B, C, D, E, F, G, H} and the optimal path is {H, G, C, A}.
2~ If the basic search procedure is applied until the open set is empty, and
ifthe node selected for expansion in step 2 is always the latest of all the nodes
added in the open set, the whole search graph is generated in a depth first
fashion. The path through the best parent pointers from the best goal node
to the root node represents the optimal assembly sequence with respect to

the chosen criteria.

Using this search strategy, the order of expansion of the nodes in the search

graph of figure 7.18 is {A, D, F, H, C, G, B, E}. The optimal path is still {H, G, C, A}.

200

Fig. 7.18: A hypotheticai search graph for a 4—components product.

It is interesting to note that the sufficient condition which guarantees the
exhaustive generation of the whole search graph is to keep on expanding new
nodes until the cpen set is empty. Expanding the earliest added (breédth first
search) or latest added (depth first search) node in this set is just a means of insuring
a systematic search. The whole search graph is eventually expanded and the
optimal assembly sequence retumed even if the selection is not done

systematically.

It is also very important to understand at this point that GAPP actually
searches through an implicit search graph, meaning that the graph is being
generated as it is searched. This is in contrast to a search through an explicit search

graph, in which case the search is performed through an already existing graph.

201

7.5 BEST FIRST SEARCH

The breadth first and depth first search strategies guarantee the generation
of the optimal assembly sequence of a product. Nevertheless, these methods
become inefficient for products wiln a large number of components, duz to the
significant combinatorial explosion of the number of nodes in the search graph
(section 5.1). The best first search method is a possible way of overcoming this

protlem.

Unlike exhaustive search methods, which are characterized by a systematic
selection of either the eatrliest or latest node added to the open set until this set
becomes empty, the best first search method is first characterized by its ability to
select the best node on the open set, i.e. the one with the lowest value of the cost
function given by eq. (7.1), and by its ability to stop the search as soon as the goal
node is selected from this set. This implies that some nodes might remain in the

open set at the end of the search process.

If a path of the search graphis substantially'betterthan all others, this method
finds this path directly. This is illustrated in figure 7.19. In a first iteration of the
search procedure, node A gets expanded, yielding nodes B, C and D. In the second
iteration, node B, with the lowest cost, is expanded to yield node E. The low cost
of node E leads to its expansion in the third iteration to yield node F, then node F
in the fourth iteration, then node G in the last iteration. Clearly, because one path
is substantially better than all others, this path gets explored further and further and

the optimal solution is found directly.

202

Fig. 7.19: A search graph with a solution path substantially better than all others.
The number beside a node is the cost of the best path to this node.

If the difference between the cost of every operation in the search graph is
small, then the best first search method approaches an exhaustive search. This is
illustrated in figure 7.20. In this case, a first iteration expands node A and a second
one node B. In the third iteration, node C is expanded instead of E. Similarly, in the
fourth iteration node D is expanded instead of either E or F, and so on. Because of
of the similar cost value of each operation, expanding the search graph using this
search method does not provide a substantial improvement compared to

exhaustive methods. However, the optimal path is still selected in the end.

203

Fig. 7.20: A search graph in which no solution path
is substantially better than all others.

7.6 A* SEARCH

‘itis problem with the best first search strategy is that, since the cost function
is cumulative, the nodes closer to the goal generally have a higher cost value than
those farther fromit. This leads to a selection of the farther nodes to be expanded
in the next iteration, which translates to a search pattem close to that of exhaustive

search.

The A" algorithm [59] [66] is the tool used by GAPP to generate optimal
assembly sequencss imore efficiently. The main difference between the best first
search strategy and the A* search is that the cost associated with a node also
includes an estimate of the cost of the best possible path from this node to the goal.
As aresult, the nodes closer to the goal need not have a higher cost value than those
farther from it, which leads to a more direct generation of the best path in the search

graph.

204

In the A* formalism, the cost associated with a new child node is given by:

f=g+uh (7.3)

where "f" is the estimated cost of the best path from the root node to the goal node
which passes through the new child node, "g" is the cost of the best path from the
root node to the new child node as given by eq. (7.1), and "uh” is the underestimated

cost of the best path from the new child node to the goal as given by:

uh=u_re+u_pa+u_st+u cl (7.4)

where the values for "u_re”, "u_pa”, "u_st” and "u_cl" are obtained from egs (6.5),
(6.12), (6.19) and (6.22), respectively.

As mentioned earlier, the A" algorithm is guaranteed to find the optimal path
of the search graph, provided that the value of "uh” is an underestimation of the cost
of the best path from the new child node in the search graph to the goal node. This
condition was shown to hold true in the computation of "u_re", "u_pa”, "u_st" and
"u_cl"inchapteré6. Ineq. (7.4) above, the value of "uh” is the simple addition of these
4 parameter values. It follows that the A" algorithm is guaranteed to find the optima!
assembly sequencein the directed graph of assembly states using the values of "uh”

as defined above.

Figure 7.21 will be used to show how an A* search works. The figure consists
of a series of snapshots, each corresponding to the state of the search graph after
each iteration of the A* algorithm, which is a variant of the basic search procedure

in figure 7.1.

A hypothetical 3-components product is used in this example. The cost of

the operation which transforms a parent node into a new child ivode, "cg”, the cost

205

of the best path from the root node to a new child nods, "g”, the underestimated cost
of the best path from a new child node to the goal node, "uh”, as well the cost
estimate of the best path from the root node to the goal node which passes through
a new child nods, "f", are specified beside each node.

open set: {A}
closed set: {}

Before first iteration

open set: {B, C}
closed set: {A}

After first iteration

Fig. 7.21: State of the search graph after each iteration of the A*
algorithm for a hypothetical 3-components product.

206

open set: {B, D}
closed set: {A, C}

After second iteration

open set: {B}
closed set: {A, C, D}

After third iteration

Fig. 7.21 (continued).

207

The first snapshot corresponds to the state of the search graph prior to any
iteration of the search algorithm. Only the root node has been generated at this

stage. The cost of this node, as reflected by the "f" value, is of courss 0.

The second snapshot shows the state of the search graph after a first
iteration of the search procedure. Node A, which was the only one on the open set,
was expanded to yield nodes B and C. These two nodes were then added to the

open set and node A was removed from the open set and added to the closed set.

In the third snapshot, node C was expanded and added to the closed set.
Node D was generated, its various costs computed and added to the open set. Note
that the cost of the best path to C, reflected by the "g" parameter, is actually higher
than that of the best path to B. However, because of the high underestimation of
the remaining cost in the best path from node B to the goal, node C was selected

instead.

In the fourth snapshot, node D is now removed from the open set. As this
node is recognized to be the goal nods, the algorithm stops at this point. Using the
best parent pointers, the optimal path from node D to node A gives the optimal

assembly sequence:

1- assemble (a) with (b)
2—- assemble (a, b) wih (c).

If the actual cost of the path from node B to the goal was below 7 instead of
the estimated 10, then the best path in the graph would be {A, B, D}, with a cost of
15 and lower, compared to 16 for {A, C, D}. Because of the overestimation of "uh”
at node B, this path would never be found. This shows the importance of supplying
an underestimation for the "uh” parameter in order to guarantee optimality in an A*

search.

208

7.7 HILL CLIMBING SEARCH

The A" algorithm is very powerful, as long as good values for "uh” can be
found. Atone extreme, if the values for this parameterare perfect estimations, there
is no search, i.e. the optimal path is found directly. Atthe other extremes, if the best
underestimation is always 0, the A* algorithm becomes the same as the best first

search method.

In GAPP, the heuristic functions used to compute values for"uh” are such ihat
the number of nodes to be expanded before finding the optimal solution using an
A" search is always much smaller than when using breadth first, depth first or best
first search methods. Nevertheless, for products with a large number of
components, the combinatorics of the problem are such that in spite of the
significant reduction provided by the A’ search, the number of nodes to be expanded
may still be unacceptably large. In such cases, a hill climbing search can be

performed instead.

Like the A* and best first search methods, the hill climbing search meihod is
characterized by its ability to remove the best node on the open sst and to stop the
search as soon as the goal node is selected from this set. However, unlike any other
methods discussed so far, the hill climbing method removes all other nodes on the
open set once the best one has been selected from it. This makes backtracking to

previously generated nodes impossible.

On one hand, the hill climbing search method ensures the generation of a
good assembly sequence, due to its ability to always select the best node on the
open set. Also, for a product of "n” components, it ensures that the assembly
sequence is generated in polynomial time, i.e. in exactly n~1 expansions, since

nodes are not accumulated on the open set. On the other hand, a limitation of this

209

method is that it is does not guarantes the optimality of the found assembly

sequence.

To illustrate this, consider figure 7.22. It shows the state of the search graph
prior and after the second iteration of the hill climbing search procedure for the
hypothetical 3~component product. Oui of the two possible nodes on the open set
that can be expanded in this second iteration, node B with lower cost is selected to
yield node D. Node D is then added to the open set and node B removed from it
and added to the closed set. As part of the hill climbing formalism, node C is also

removed from the open set.

Clearly, in the next iteration of the algorithm, there is no other choice than to
select node D for expansion, as tﬁis node is the only one on the open set. However,
note how high the "g" value of node D is, compared to that of node C. This suggests
that perhaps node C should have been expanded instead and a less expensive path
to node D be found. Assume that effectively, the cost of the operation that
transforms node C into node D is 5 units of cost. This , yields a "g" value of 15 for
node D. What becomes obvious from this example is that the assembly sequence

generated by the hill climbing search method was not the optimal one.

open set: {B, C}
closed set: {A}

Before second iteration

open set: {D})
closed set: {A, B}

After second iteration

Fig. 7.22: State of the search graph before (top) and after
(bottom) the second iteration of the hill climbing search
method for the hypothetical 3~components product.

210

CHAPTER 8

RESULTS

This chapter presents some of the results obtained from GAPP, Sections
one, two and three analyze the effects of the search constraints, search criteria and
search methods, respectively. Sections four, five and six show applications of
GAPP in repair planning, error recovery planning and multiple product’s planning,
respectively. Section seven presents GAPP's output for the base subassembly of
a heat detector device consisting of 17 components. GAPP's optimal solution for
this assembly is also c-:ompared to the actual plan used in produciion. A typical

screendump of GAPP’s environment is provided at the end of this chapter.

8.1 EFFECTS OF THE SEARCH CONSTRAINTS

The main effact of the geometric feasibility constraint and those induced by
restricted components is to reduce the search graph size. Depending on the
particular product being analyzed, this reduction varies for each particular type of

constraints.

Geometric feasibility constraints contribute to the elimination of edgesin the
directed graph. Therefore, expanding the graph while considering this type of
constraints usually leads to a significant reduction in the number of edges and
consequently in the number of paths in it, compared to the unconstrained graph.

This is evident from the resuits in tables 8.1 and 8.2. The geometric feasibility

21

212

constraint led to reductions of 91% and 96% in the number of assembly sequences

(paths) for the air cylinder’s and flashlight's directed graphs, respectively.

Table 8.1
Number of nodes and number of assembly sequences in the directed graph of
assembly states of the air cylinder as a function of the constraints being used.

geometric restricted # nodes # of assembly
feasibility components expanded sequences
off off 2,678 6,519,744
on off 2,322 646,380
off on 151 10,432
on on 85 728
Table 8.2

Number of nodes and number of assembly sequences in the directed graph of
assembly states of the flashlight as a function of the constraints being used.

of assembly

geometric restricted # nodes

feasibility components expanded sequences
off off 858 333,792
on off 331 12,896
off on 414 66,024
oh on 192 5,425

On the other hand, the specification of restricted components in relations is

transformed into forbidden states of the search graph. Therefore, the use of such

213

constraints contributes to a reduction in the number of nodes of the diracted graph
of assembly states, compared to the unconstrained graph. In particular, when
considering constraints induced by restricted components, tables 8.1 and 8.2 show
reductions of 94% and 52% in the number of nocles in the air cylinder's and
fiashlight's directed graphs, respectively. The smaller reduction for the fiashlight is
easily explained by the fact that only 2 restricted components in 2 relations were
spacified for this product, compared te 7 restricied components in & relations for the
aircylinder. T:ere were therefore a lot more forbidden states generated forthe latter

product.

8.2 EFFECTS OF THE SEARCH CRITERIA

Once the search space has been reduced through the computation of
constraints, the remaining soiutions must be evaluated, using the four criteria, and
the best one selected®3. This section highlights the consequence of specifying the
relative weights of the four assembly planning criteria defined in this thesis.' In
particular, different weight assignments lead to different optimal assembly
sequentes being generated for the same product. Figures 8.1, 8.2, 8.3 and 8.4 will

be used for illustration.

In figure 8.1, an assembly sequence of the flashlight was obtained without
using any of the four criteria. Although this assembly sequence is feasible, it may
not be optimal. In fact, it is easy to see that the operations in lines 6 through 10 lead

to highly unstable assembiy configurations.

53. If no criterion is specified, an arbitrary solution is generated by GAPP.

ot

214

fit (lens) (head) from z+

 screw { bulb) (reflector) from z+

RE-ORIENT 180 DEGREES

screw (reflector bulb) (head lens) from z+

screw (body } (head lens reflector bulb) from z+

against (battery1) (battery2) from z+x+y-+x—y—

against (battery2 battery1) (spring) from X=Y+X+y—Z+
fit and twist (spring battery2 battery1) (endcap) from z+
RE-ORIENT 180 DEGREES

10— screw (endcap spring battesy2 battery1) (body head lens reflector bulb) from

Z+

Fig. 8.1: A feasible assembly sequence of the flashlight obtained without

using any criterion.

screw (Eulb) (reflector) from z+

RE-ORIENT 180 DEGREES

fit (lens) { head) from z+

screw (reflector bulb) (head lens) from z+

screw (body } (head lens reflector bulb) from z+

fit (battery1) (body head lens reflector buib } from z+

fit (battery2) (body head lens reflector bulb battery1) from z+
fit and twist (spring) (endcap) from z+

RE-ORIENT 180 DEGREES

-

10~ screw (endcap spring } (body head lens reflactor bulb battery1 battery2) from

Z+

Fig. 8.2: Optimal assembly sequence of the flashlight with respect to the

stability criterion.

215

To remedy this situation, a new solution was generated in figure 8.2, using
the stability criterion with a weight of 50 units. This time, the generated assembly
sequence is optimal with respect to this criterion. However, it might be poor with
respact to any of the othr,.ar three criteria which have not been used. For example,
a little investigation of this sequence shows that it is not very geod with respect to

parallelism, as shown by lines 5, 6, 7 and 10.

At this point, it would seem like a good trade off to consider both the stability
and parallelism criteria in the search process and provide them with equal relative
weight, for example 50. The solution corresponding to this strategy is shown in
figure 8.3. Note how ineffici_ent this solution became with respect to the
re—orientation criterion, which was not considered. Also note how the operations
in lines 9 through 12 are still highly unstable, in order to provide better parallelism

in the plan.

This example shows the importance of the selection of the relative weight of
the various criteria. In this research, these relative weights are provided by the user
using common sense and experience. For example, providing more weight to the
stability criterion than any other is a recommended practice. A formal solutionto the
important issue of selecting relative weights is not covered by this research and
promises to be achallenging area for future work. Figure 8.4 shows another solution

where all criteria with equal weight of 50 units have been used.

Clearly, the variation of the relative weight of the various evaluation criteria
leads to the generaiion of different optimal assembly sequences for the same
product. This feature can be exploited in concurrent engineering where alternate
assembly sequences obtained by changing the importance of various criteria can

be analyzed and compared.

PR

PEPYTPY

216

fit and twist (spring) (endcap) from z+
RE-ORIENT 180 DEGREES

screw (bulb) (reflector) from z+

RE-ORIENT 180 DEGREES

fit (lens) (head) from z+

fit (battery2) (body) from z+z-

screw (endcap spring) (body battery2) from z+
RE-ORIENT 180 DEGREES

against (battery1) (bulb reflector) from X—y+x+y~z+

10~ screw (reflector bul’ battery1 } { head lens) from z+
11- RE-ORIENT 180 DEGREES

12- screw (battery1 bulb reflector head iens) (battery2 body spring endcap) from

Z+

13- RE-ORIENT 180 DEGREES

Fig. 8.3: Optimal assembly sequence of the flashlight with respect to the

stability and parallelism criteria with equal weight.

fit and twist (spring) { endcap) from z+

RE-ORIENT 180 DEGREES

fit (lens) (head) from z+

fit (battery1) (body) from z+z—

fit (battery2) (body battery1) from z+

screw (endcap spring) (body battery1 battery2) from z+
screw (bull) (reflector) from z+

RE-ORIENT 180 DEGREES

screw (reflector bulb) (head lens) from z+

10~ screw (body battery1 battery2 spring endcap) (head lens reflector bulb) from

Z+

Fig. 8.4: Optimal assemb'y sequence of the flashlight with respect to all four

criteria with equal wsight,

217

8.3 EFFECTS OF THE SEARCIH METHODS

For any of the five available search methods except hill climbing, GAPP is
guaranteed to retum the optimal assembly sequence with respect to any of the four
criteria which have been turned on. However, because different search methods
explore different paths of the search graph first, differenii optimal assembly
sequences can sometimes be returned by different search methods, in terms of the
operations to be performed and their order of execution. Of course, the total cost
of these assembly sequences will necessarily be the same. Differences in the
sequences obtained from different search methods simply express the fact that

there can be more than one optimal assembly sequence for a given product,

Another effect of the different search methods relates to the search time and
space required to generate an optimal solution. Both the breadth first and depth first
methods, which are exhaustive, must expand the whole search graph in ord=rto find
the optimal solution. On the other hand, the best first and A" methods can
sometimes generate the optimal solution rather directly. Finally, the hill climbing

method always finds a solution in polynomial time, with no guarantes of optimality.

Table 8.3 summarizes these facts for the air cylinder product. All four criteria
were used and given an equal weight of 50 units of cost. Note the important
reduction of nodes obtained from the A" search. Also note that the hill climbing
method found a solution which cost is very close to that of the optimal solutions
returned by all the other four methods®4. The solution retumed using the first four
metheds in table 8.3 was the same and it is presented in figure 8.5. The solution

returned using the hill climbing method is presented in figure 8.6.

§4. That the hill climbing method results in a solution almost as good as the optimal one is a
particularity of this example and cannot be generalized.

218

Table 8.3
Comparison of the search space size required to find an optimal solution for the
air cylinder using five different search methods.

search # nodes on # nodes on total # of total search
method open closed nodes cost
breadth first 0 122 122 553.10
depth first 0 122 122 553.10
best first 39 65 104 553.10
A 34 38 72 553.10
hill elimbing 0 10 10 553.24

1- against (piston) (piston_rod) from z+

screw (piston_screw) (piston_rod piston) from z+

fit (bearing_o_ring) (bearing) from z+2—

fit (cover_o_ring) { body) from z+

fit (bearing bearing_o_ring) (body cover_o_ring) from z+z—

fit (piston_o_ring) (piston piston_rod piston_screw) from z+z—

7~ fit (piston_o_ring piston piston_rod piston_screw) (body bearing
bearing_o_ring cover_o_ring) from z+

A G R

8~ fit (cover) (bearing_o_ring bearing piston_rod bbdy piston_o_ring piston
cover_o_ring piston_screw) from z+

9~ screw (screws) (cover body bearing bearing_o_ring piston_rod piston_o_tring
piston cover._o_ring piston_screw) from z+

10- RE-ORIENT 180 DEGREES

Fig. 8.5: Opiimal assembly sequence of the air cylinder obtained using the
first four search methods in table 8.3.

219

1- against (piston } { piston_rod)} from z+

2- screw (piston_screw) (piston_rod piston) from z+

3— fit (piston_o_ring) (piston piston_rod pistori_screw) from z+z—

4- fit { bearing_o_ring) (bearing) from z+z—

5— fit { cover_o_ring) (body } from z+

6- fit (bearing bearing_o_ring) (body cover_o_ring) from z+2Z-

7- fit (piston_o_ring piston piston_rod riston_screw) (body bearing
bearing_o_ring cover_o_ring) from z+

8- fit (cover) (bearing_o_ring bearing piston_rod body piston_o_ring piston
cover_o_ring piston_screw) from z+

9- screw (screws) (cover body bearing bearing_o._ring piston_rod piston_o_ring
piston cover_o_ring piston_screw) from z+

10— RE-ORIENT 180 DEGREES

Fig. 8.6: Assembly sequence of the air cyiinder obtained using the last
search method in table 8.3 (hill climbing).

8.4 GENERATION OF REPAIR PLANS

Designing a product for ease of assembly is a well established concept.
Recsiiiy, concepts such as design for disassembly, maintainability and repairability
have also been introduced. For example, some components within a product may
be expected to fail during service and be replaced periodically. The efficiency of the
disassembly sequences enabling access to this part may vary with different design
solutions. GAPP enables an analysis of various disassembly sequences required

for repairs for particular design solutions.

Consider the air cylinder’s bearing_o_ring. Thisis an example of a part which
is fikely to be replaced several times during this product's life. To reach this faulty

part, the cover_screws must be removed first, then the cover and cover_c_iing, and

220

finally the subassembly made up of the piston, piston_rod, piston_o_ring and
piston_screw (figure 8.7). In order for GAPP to generate such a plan, all that is
required is the identification of those relations of the graph modal which should not

be broken in the repair disassembly plan. In this particular exampla, these relations

are as follows:

(bearing, bearing ring)
(bearing, body)
(piston, piston_rod)
(piston, piston_o_ring)
(piston, piston_screw)

(piston rod, piston_screw).

The goal flag of these relations must then be set to the value "yes” in the
product description file read by GAPP. These relations will not be part of any cutset
used in the search process. This ensures that the generated disassembly plan will

preseive the above relations. The optimal disassembly sequence retumed by

GAPP for this example is presented in figure 8.8,

Once again, different solutions can be generated by changing the relative
weights of the criteria. Also, given a fixed set of weight assignments, the cost of
optimal disassembly sequences obtained for different design solutions can be

compared, and the design yielding the lowest disassembly cost can be selected.

MW A Py S Y YW

Fig. 8.7: Transforming the air cylinder’s completely assembled state
into a state enabling access to the faulty bearing_o_ring.

221

1- RE-ORIENT 180 DEGREES

2- unscrew (screws) (cover body bearing bearing_o_ring piston_rod
piston_c_ring piston cover_o_ring piston_screw) from z+

3- unfit (cover) (bearing_o_ring bearing piston_rod body piston_o_ring piston
cover_o_ring piston_screw) from z+

4- unfit (cover_o_ring) (body bearing bearing_o_ring pistori_rod piston_o_ring
piston piston_screw) from z+

5— unfit (piston_o_ring piston piston_rod piston_screw) (body bearing
bearing_o_ring } from z+

Fig. 8.8: Optimal repair plan generated by GAPP to access
the faulty bearing_o_ring.

8.5 RECOVERING FROM ASSEMBLY ERRORS

An important characteristic of any assembly planner is its ability to generate
plans for recovering from errors which occur during the execution of assembly
(disassembly) operations. In particular, the planner must have the ability to
generate a new set of operations to transform the unpredictable assembly state due
to the error into the goal configuration of the product. The following example

illustrates how such functionality is achieved in GAPP.,

Consider an assembly operation of the air cylinder which changes the state
depicted in figure 8.9a into that of figure 8.9b by placing the piston_o_ring on top
of the {piston, piston_rod} subassembly. Due to the instability of this last
subassembly, assume that during the execution of this operation, the piston falls
from the piston_rod such that the new state depicted in figure 8.10 is obtained as
a result. In order to recover from this error, a new optimal plan starting at this

unpredictable state must be generated. This requires the simple identification of all

223

the relations of the resulting state which have alreacdy been established in previous

successful assembly operations.

D_DI
D
D'a-
13
- ——g "

NANZLE== 2 NNN\N\

VAl el A i A A A ' AN

(a)
1 N A 555
_ \ a4 X = }
NN Z =7 N a !

F—1
P

(b)

Fig. 8.9: Transforming the state in (a) into that of (b) by placing the
piston_o_ring on top of the {piston, piston_rod} subassembly.

224

For this example, these established relations are simply:

(bearing, bearing_o._ring),
(bearing, body), and

(cover, cover_o_ring).

Setting the goal flag of these relations to the value "yes” enables GAPP to
generate a new assembly plan, possibly including different operations than those
in the briginal plan, and which does not involve the re—establishment of those
relations which have already been established before the error occurred. Figure

8.11 shows the recovery plan generated by GAPP for this particutar example.

p—
o

="
!

Fig. 8.10: Unexpected state resulting from an error in the execution of the
operation in figure 8.9.

225

against (piston) (piston_rod) from z+
screw (piston_screw) (piston_rod piston) from Z+
fit (piston_o_ring) (piston piston_rod piston_screw) from z+z—

PEr T

fit (piston_o_ring piston piston_rod piston_screw) (body bearing

bearing_o_ring cover_o_ring) from z+ .

5~ fit (cover) (bearing_o_ring bearing piston_rod body piston_o_ring piston
cover_o_ring piston_screw) from z+

6— screw (screws) (cover body bearing bearing_o_ring piston_rod piston_o_ring
piston cover_o_ring piston_screw) from z+

7- RE-ORIENT 180 DEGREES

Fig. 8.11: An error recovery plan generated by GAPP.

8.6 MULTIPLE PRODUCTS PLANNING

Consider the identical products in figure 8.12. It was demonstrated in section
6.4.1 that at least one tool change is required to disassemble one of them. Assume
a robot must assemble these two products consecutively. Assume also that the
strategy used to accomplish this task is to repeat the execution of the optimal plan
obtained for a single product. One possible optimal plan consists of removing the
top block, changing the tool, then removing both screws. If this plan is to be
executed for the disassembly of both products, then 3 toel changes will be required:
one before removing both screws of the first product, one before removing the block

of the second product, and one before removing the screws of the second product,

Alternatively, a better solution would be to change the plan for the second
product and take advantage of the current tool mounted on the robot after the
disassembly of the first product. For example, after the first tool change to remove

both screws on the first product, the same tool could be kept and used again to

226

remove the screws on the second product. A second taol change is still required

to remove the top block from the second product.

The best solution consists of removing both blocks, changing the tool, then
removing all 4 screws. Although obvious, this solution is characterized by
consecutive operations on different products. In other words, both products must
be analyzed simultaneously in order to come up with the optimal plan to
disassemble them both. The graph-theoretic approach to assembly planning
developed in chapter 4 enables GAPP to handle such an important class of
assembly problems. The graph model of each product (whether identical or
different) is simply considered an unconnected graph model. They are considered
collectively and the optimal solution generatad by GAPP for this problem is
presented in figure 8.13. Note that only one tool change is required. Also note that
GAPP chose to start with the screwing operations rather than the placement of

blocks. This is still an optimal solution.

block1 block2
screwl screw2 screw3d screw4
E_' [[
NE NG NENNNEN
— plate1 = — plate2 ==

Fig. 8.12: Two products to be disassembled.

227

-4
1

screw (screwd) (plate2) from z+

screw (screw3) (plate2 screw4) from z+

screw (screw?2) (plate1) from z+

screw (screw1) (plate1 screw2) from z+

against { block2) (plate2 screw3 screw4) from Z+x+y+x—y—

N OO N

against (block1) (plate1 screw1 screw2) from Z+X+y+x—y—

Fig. 8.13: Optimal multiple products plan generated by GAPP.

8.7 A MORE COMPLEX PRODUCT

So far, the air cylinder (10 components) and flashlight (9 components)
products were used to demonstrate some of the key concepts developed in this
thesis. This section shows the optimal solution generated by GAPP }or the base
subassembly 6f a heat detector device which consists of 17 components. An
exploded view of this product is shown in figure 8.14. The corresponding product
description file is shown in figure 8.15. The actual manual assembly plan used by
the company which produces this device is shown in figure 8.16. The solution
generated by GAPP is shown in figure 8.17. This solution was generated using
equal relative weights of 50 units for each of the four defined criteria. The A search
method was used. There were 343 and 1,810 rodes in the open set and closed sets,
respectively, at the time when the optimal solution was found. Real elapsed time

to get this solution was about 9 minutes on a Sun SPARCstation2.

rivet2
bottom_spring

bus_bar

terminal_bar2

lock_spring

center_plug

calibrating_screw

dust_cap1

228

gasket

diaphragm

rivet1

(0 oimm 0 4

top_spring

base

= ==

terminal_bar1

CFfe— felt

%— vent_screw

C

o dust_cap2

Fig. 8.14: Exploded view of the base subassembly of a heat

detector device (17 components).

component gasket
component diaphragm
component fop_spring
component bottom_spring
component bus_bar
component rivet1
component rivet2
component base
comronent terminal_bar1
component terminal_bar2
component lock_spring
component center_plug
component cal_screw
component dust_capi
component felt
component vent_screw
component dust_cap?2

relation no gasket diaphragm yes z+ z— attach press

229

relation no diaphragm base no z+x+x—y+y- z—X+x—y+y— attach press gasket

relation no bus_bar base no z+ z- contact fit rivet1 bottom_spring top_spring

relaticn no bottom_spring bus_bar no z+ z- contact against rivet1
relation no top_spring base no z+ z— contact against rivet2

relation no bottom_spring diaphragm yes z—- z+ blocking
relation no top_spring diaphragm yes z— z+ blocking
relation no bus_bar diaphragm yes z—- z+ blocking
relation no rivet1 diaphragm yes z— z+ blocking

relation no rivet2 diaphragm yes z— z+ blocking

Fig. 8.15: Product description file generated for the base
subassembly of a heat dstector device.

230

relation no rivet1 bottom_spring no 2+ z— contact against
relation no rivet1 ierminal_bar1 no z+ z- attach rivet

relation no rivet2 top_spring no z+ z— contact fit

relation no rivetZ terminal_bar2 no z+ z—- attach rivet

relation no lock_spring base no z- z+ contact fit center_plug cal_screw
relation no center_plug base no z- z+ contact fit

relation no center_plug cal_screw no z+ z— attach fit lock_spring
relation no cal_screw base no z- z+ attach screw

relation no cal_screw bus_bar yes z- 2+ contact against

relation no dust_cap1 base no z— z+ attach fit

relation no cal_screw dust_cap1 yes z+ z— blocking

relation no center_plug dust_cap1 yes z+ z- blocking

relation no lock_spring dust_cap1 yes z+ z- blocking

relation no felt base no z— z+ attach fit vent_screw
relation no vent_screw felt yes z— z+ contact against
relation no vent_screw base no z— z+ attach screw
relation no dust_cap2 base no z- z+ attach fit
relation no dust_cap2 vent_screw yes z— z+ blocking
relation no dust_cap? felt yes z- z+ blocking

relation no terminal_bar1 base no z- z+ contact against rivet1
relation no terminal_bar2 base no z- z+ contact against rivet2

Fig. A.5 (continued).

1— against terminal bar1 and base

2- against terminal bar2 and base

3~ RE-QRIENT base

4— fit bus bar on base

5- against bottom spring and bus bar
6~ against top spring and base

7a— rivet bottom spring and bus bar to terminal bar1
7b~- rivet top spring to terminal bar2

8- RE-ORIENT base

9~ fit center plug into calibrating screw
10~ RE-ORIENT calibrating screw

11— fit lock spring to base

12— fit calibrating screw to base

13— fit dust cap1 to base

14— fit felt to base

15— fit vent screw to base

16— fit dust cap2 to base

17— RE-ORIENT base

18a—-press diaphragm to base

18b-press gasket to base

231

Fig. 8.16: Assembly sequence of the base subassembly used by the company

in the actual production.

232

1~ fit (felt) (base) from z+

2- fit (center_plug) (cal_screw) from z+
3~ RE-ORIENT 180 DEGREES

fit (lock_spring) (base felt) from z+

T P

screw (cal_screw center_plug) (base lock_spring felt) from z+

6— screw (venl_screw) (base lock_spring center_plug cal_screw felt) from z+
7~ against (terminal_bar2) (base lock_spring center_plug ...) from z+
8~ anainst (terminal_bar1) (base lock_spring center_plug ...) from z+
9- fit (dust_cap2) (base lock_spring center_plug ...) from z+

10~ fit (dust_cap1) (base lock_spring center_plug ...) from z+

11— RE-ORIENT 180 DEGREES

12— fit (bus_bar) (base lock_spring center_plug ...) from z+

13- against (bottom_spring) { bus_bar base lock_spring ...) from z+

14— against (top_spring) (base bus_bar bottom_spring ...) from z+

15— rivet (rivet2 } (terminal_bar2 base bus_bar bottom_spring ...) from z+
16— rivet (rivet1) (terminal_bar1 base top_spring ...) from z+

17~ press (diaphragm) { base bus_bar bottom_spring ...) from z+

18- press (gasket) (diaphragm base bus_bar bottorn_spring ...) from z+

Fig. 8.17: Assembly caquence of the base subassembly generated by GAPP.

233

Compared to the plzn used in production (figure 8.16), the one retumed by
GAPP (figure 8.17) is clearly better with respect to re—orientations. The simple
explanation for this is that the bases are currently assembled manually. Therefors,
due to the dexterity of the human hands, one is not too concermned about op_timizing
the number of re—orientations and the plan in figure 8.16 is considered satisfactory.
On the other hand, if a robot or automatic assembly line were to perform the
assembly of this product, re—orientations would become an important matter and
a plan like the one generated by GAPP would certainly be more desirable. In
particular, this plan avoids the design of complex assémbly tools and fixtures often
required for performing re—orientations. Furthermore, assembly cycle time is

reduced by eliminating re—orientation operations.

One disadvantage of the plan produced by GAPP, compared to the one used
in production, relates to the physical "proximity” of the assembly operations. Inthe
production plan, operations were naturally grouped according to the location were
they take place on the base. For example, in lines 14, 15 and 16 of figure 8.16, the
felt is inserted first, then the vent screw is inserted to squeeze the felt, then the dust
cap is placed to cover both parts. Clearly, as these operations focus on ‘a specific
location of the base, it was logical to group them into successive operations. This
can be contrasted with GAPP’s solution, where these same 3 operat'ions now
appear in lines 1, 4 and 9, respectively. This is a simple consequence of the fact
that no criteria have been implemented to consider the notion of physical proximity

of the assembly operations.

It is also worth mentioning that in the actual production plan, some of the
operations are actually performed simultaneously, for example the riveting

operations in lines 7a and 7b and the pressing operations in lines 18a and 18b in

234

figure 8.16. GAPP cannot combine different operations into simultaneous ones due
to the dichotomy assumption. Nevertheless, the clustering criterion helped make
these operations successive, which may suggest their combination into
simultanecus operations. This is indicated by lines 15 and 16 for the riveting

operations and lines 17 and 18 for the pressing operations in figure 8.17.

The fact that the base is re~oriented only once in the plan produced by GAPP
also means that all the operations on one side of the base are performed, then the
base is re-oriented, then all the operations on the other side are performed. This
prohibits the clustering of similar operations cn different sides of the base into
successive operations, which would necsssarily require a re-orientation. By
providing more weight to the clustering criterion and less weight to the re—~orientation
criterion, a plan requiring extra re—orientations but providing more clustering of
similar operations on different sides of the base can be obtained. One such plan
is shown in figure 8.18. Relative weights of 100 and 25 were specified for the
clustering and re-orientation criterion, respectively. The other two criteria were
turned off (zero weight). Note thatin this new plan the base is now re—oriented twice

such that many similar assembly operations on different sides could be clustered.

235

1- fit (bus_bar) (base) from z+

2- RE~ORIENT 180 DEGREES

3- fit(felt) (base bus_bar) from z+

4—- fit (center_plug) (cal_screw } from z+

5- RE-ORIENT 180 DEGREES

6- fit (lock_spring) (base bus_bar felt) from 2+

7- screw (cal_screw center_plug) (base bus_bar lock_spring felt) from z+

8- screw (vent_screw) (base bus_bar lock_spring center_plug ...) from z+
9- fit (dust_cap2) (base bus_bar lock_spring center_plug ...) from z+

10~ fit (dust_cap1) (base bus_bar lock_spring center_plug ...) frcm z+

11— against (terminal_bar2) (base bus_bar lock_spring center_plug ...) from z+
12~ against (terminal_bar1) (base bus_bar lock_spring center._plug ...) from z+
13— RE-ORIENT 180 DEGREES

14— against (top_spring) (base bus_bar lock_spring center_plug ...) from z+
15— against (bottom_spring) (bus_bar base top_spring lock_spring ...) from 2+
16— rivet (rivet2 } (terminal_bar2 base bus_bar bottom_spring ...) from z+

17— rivet (rivet1) (terminal_bar1 base bus_bar bottom_spring ...) from z+

18- press (diaphragm) (base bus_bar bottom_spring top_spring ...) from z+

19~ press (gasket) (diaphragm base bus_bar bottom_spring ...) from z+

Fig. 8.18: Assembly sequence of the base subassembly obtained by
providing more weight to the clustering criterion.

236

il
dn

§334930 087 INITE0-3M
+2 woJdj (mesdsuoys)d BupaTisasd wojsid Buyuuo I
181d pouuoisjd Bupa Bupaesq Bujureq Apoq Jeaod) (sABJDSTIeADD) RBUDE
+2 W04} { maads"uoysid Buys eand
uvojsid Bupsuoyed Apoq poiruoys)d Bujausg BupaTBujaneq) { ssaod) 3¢
+Z w0} { Bupa~ussaod Bujus 0
ujreeq Bupaeeg Apoq) (meuosucysyd posTuoysid uoyepd Bupouoysid) 34
~z+z WOy (BupJ~Jaavd Apoq) (OupsBupdeoq Bupdwag) 3}
+2 wous (fApog) (Buja=denoa) 33
=242 w04j (Bugaeeq) { BupsBupdseq) 314
~242 w04} { mesovuoyed poaTuoysid vojeld) (BupaTuoyspd) 3
42 woyy { uoynjd pooTuoyspd) M maaas uojeid) meus
+2 woJy (posTuoysid) ¢ uoysid) supel
98°2L5 1500 TYiDL
T 1530030035 AMRISSY 30 y3I0WM
0F 03507] NO SIOON 40 HIBWNE
0 N340 ND S300N 40 HISHWM
pe=Buj eysnya g=A31110939 0Sz1LeL19Sed GI=IUNLI0-81 W)Y)IY
QIUSPEINIY ST93TW0E iejulnsysuo)f
HOBY3IS DNIGHITD TIIH :Poyjew yiive
ojuj-uaisid ety jonpasd I

R [
T ¢ [+c] :Buptsyeny)
0 [52) : AaLpeng
[1] [os] [CTRLELY] ¢

B v [91] : juspac-sy

Bujpqupia LLIHL POYIBH YdJwes
pouspeassd A o'k 8114 nding
djJsjesnsy N sva* A3 o)} Awide)g

I8UFRLLUOY YaiTeg bsup-uoysyd ey 3anpog ||

“ 0w

: co. - - . . sty e
o) GEmwy) (iEng) (meD) epuswoolf

nding = .?S-mh Avideigm 1ip3 @ A3bLiaieiAl

et

Gupa—1eaDs jusuctig
Buj s uays)d yusuodunsil
meJos~uojeid Jusuoduoal
uoysid jusuodun:
pos-uojeid jusuodun:
Apog jusuocdun:

BujJuraq jusuodhum:
Buja~Bujaweq jucuoduo

0jut NOISTd

LTS

interface.

ing

Screendump of GAPP’s windowi

Fig. 8.19

CHAPTER 9

DISCUSSION AND CONCLUSIONS

Chapter 2 described the state of the research in assembly planning and
outlined some of the issues which required further research. The first section of this
chapter summarizes research issues which have now been solved by GAPP. The
second section includes a discussion of these achievements. The third section

outlines some important issues which are still to be solved in future work.

9.1 SUMMARY OF ACHIEVEMENTS

9.1.71 Graph theoretic approach to assembly planning

Once the product has been mapped into the developed directed graph
model, the expansion of the search graph first requires the determination of all the
cutsets of this graph model. The feasibility of the disassembly operation
corresponding to each cutset is then computed. If the cutset corresponds to a
feasible operation, a new node is generated whose graph model is that of its parents
minus the edge(s) of the cutset. This process is then repeated for the new child
node, forits children, for its grandchildren, and so on, until a node with a completely
unconnected graph corresponding to the completsly disassembled state has been

obtained.

A key element in the above approach is the determination of the set of all

cutsets of the product’s graph model. An algebraic method for doing so has been

237

238

developed and presented in chapter 4. Basically, the method consists of first
selecting a spanning tree of the graph model. A fundamental system of cutsets
relative to this spanning tree is then obtained. The linear combinations ofthe cutsets

in this fundamental system represent the set of all cutsets of the graph model.

The beauty of this approach is that it is applicable to any type of graph madel
- connected or unconnected. PhySicalIy, this means that the graph model of the
product need not be restricted to a completely assembled product, nor to a single

product. This enables GAPP to handle problems such as:

1) finding the sequence of assembly of a product which is to be only partly
assembled leaving the remaining assembly for the consumer to complete,

2) finding the partial assembly sequence of a product resulting in the formation of
subassemblies to bq tested, and

3) finding the simultaneous sequence of assembly of multiple (different) products.

A method has also been developed for preventing already established
relations from being re—established in the assembly plan. The method consists of
eliminating all cutsets in which these relations are included. This enables GAPP to

handie other interesting problems suck: as:

4) generating repair plans to replace faulty parts, and

5) re—planning to recover from unpredictable execution errors.

Most assembly planners developed to date are rigid in the assembly
problems that they can tackle. For example, most assembly planners assume that
the product is initially completely disassembled, and that the assembly process
consists of completely assembling it. The graph~theoretic approach developed in

this thesis enables GAPP to handle arbitrary initial and final states of the product.

239

This makes GAPP an innovative and very fiexible assembly planner which can

handle many different types of assembly problems uniformly.

9.1.2 Identification and formalization of evaluation criteria

Four criteria have been identified to assess the goodness of varigus - -

assembly sequences:

1) the number of re~orientations required in executing a sequence,
2) the temporal independence of the operations in the sequence (parallelism),
3) the stability of the subassemblies involved in each operation, and

4) the clustering of similar operations into groups of successive operations.

It was shown in chapter 6 how these criteria represent metrics which can be
used to assess the quality of assembly sequences. Methods of computing
automatically these criteria as the search graph is expanded have also been

described in chapters 6 and 7 and have been implemented in the GAPP software.

This represents an important contribution. Forthe first time, assembly plans
can be evaluated automatically and the best one selected. This is in contrast to
traditional assembly planners developed to date, which simply enumerate feasible
assembly plans without any notion of their relative goodness. The importance of this
novelty can be appreciated by the fact that, for any of the five assembly problems
outlined in the previous section, GAPP has the ahility to evaluate different solutions
and render the optimal one, for example an optimal repair plan or an optimal error
recovery plan, instead of simply finding an arbitrary feasible plan or enumerating all

feasible plans.

240

8.1.3 Merging the generation and evaluation processes

The goal in assembly planning has been to develop software tools to assist
(or evenreplace) planners in their complex task of selecting the assembly sequence
tousein prbduction. Researchers realized very early that methods of enumerﬁting
a product’s numerous feasible assembly sequences were a prerequisite in the
achievement of this goal. As a result, a large number of assembly planners were
developed which focus on this particular problem. As better enumeration
techniques emerged from these works, the focus of assembly planning naturally
shifted towards the evaluation and selection of the many assembly sequences

generated.

Although legical, this approach suffers from the important defect that the
generation and selection processes are separated. As a result, means of storing
the many possible solutions is required prior to their evaluation. it was one of

GAPP’s main objectives to break the established pattern:
generate then evaluate

and change it to:

evaluate as you generate.

The introduction of the various criteria in chapter 6 gives GAPP the ability to
evaluate the many different disassembly sequences in the directed graph of
assembly states. Integrating the evaluation of these criteria into the search
procedure as the search graph gets expanded, enables the direct generation of an
optimal disassembly sequence of a given product with respect to these criteria.
Appropriate search methods, in particular the A™ algorithm, guide the search

towards a single and optimal assembly sequence, without explicitly generating the

241

whole directed graph of assembly states. The methods developed to achieve this
integration of search and evaluation into a single process are an important novelty

and represent a major contribution of this research.
9.1.4 Reduction of the combinatorics

Methods by which GAPP determines if a newly generated node already
exists somewhere on the open or closed set have been developed and described
in chapter 7. In terms of the search medium, these checks permit the expansion of
a search graph instead of a search tree. Although these checks represent extra
computational effort, their presence is well justified if one considers the important
reduction in the number of expanded nodes that they provide. This can be verified
by comparing the two columns in table 9.1. The former and latter represent the
number of nodes reSi:lting from performing an exhaustive breadth first search
through a free and graph structures, respectively. Both straiegies returned the

same optimal assembly sequence of the corresponding products.

Table 9.1
Comparison of the number of nodes generated in expanding a search tree and a
search graph to find the optimal assembly sequence of three products.

product to be No. of generated nodes | No. of generated nodes
assembled (search tree) (search graph)
ball-point pen
(6 components, 39 14
figure 2.4)
air cylinder
(10 components, 2,160 122
figure 3.8)
flashligh:
(S compo:t. . 15,311 421
figure €. o

242

Ancther concept developed to reduce the combinatorics is that of the
geometric feasibility constraints and those induced by the specification of restricted
components in relations. Geometric feasibility constraints contribute to the
elimination of state transitions in a product’s directed graph of assembly states. This
usually leads to a significant reduction in the number of edges, and consequently
in the number of paths, in this graph. The specification of restricted components in
relations s transformed into forbidden states of the search graph. This contributes
to a reduction in the number of nodes of a producfx directed graph of assembly

states. Together, soth types of constraints can drastically reduce search time and

space.

Integration of the A" and hill climbing search methods also contributes greatly
to the reduction of the search space, as shown earlier in table 8.3. In particular, the
A’ method enables GAPP to generate an optimal assembly sequence without
generating the whole search graph. This translates into an important reduction in
the number of generated nodes for finding an optimal solution, compared to an
exhaustive method like breadth first or depth first. For a product of "n” components,
the hill climbing method always retums a feasible (but not necessarily optimal)
assembly sequence of this product by expanding only n-1 nodes of the search

graph.

Finally, the method developed in chapter 4 for updating the cutsets of a new
state based on the knowledge of the cutsets of its parent state also contributes to
a reduction in the combinatorial complexity of the assembly planning problem. This
method avoids the total re—computatici of the cutsets at each newly generated

state of tne search graph.

243

The complete integration of all the above concepts to reduce combinatorial
complexity into the GAPP's software represents an important innovation provided

by this thesis.

9.2 DISCUSSION

9.2.1 Problem size

Section 5.1 clearly showed the combinatorial complexity underlying
assembly planning. In particular, the search space increases exponentially with the
numbear of components and relations. Sections 5.3 and 5.4 showed how the
computation of relevant constraints can help reduce the search space. This
reduction varies from one product to another, depending on its geometry and other

properties.

So far, the 17—components, 31-relations base subassembly of a heat
detector device represents the largest problem solved by GAPP. However, this
product is clearly not highly geometrically constrained by nature. This means that
there probably exists more constrained products with larger number of components
for which optimal assembly sequences can be generated by GAPP. Similarly, there
might exist some very unconstrained products with less components for which

GAPP will never find an optimal solution®S,
There are at least 3 different ways of overcoming this limitation:

1) Better underestimations can be developed for the 4 implemented criteria.
The better the underestimations are, the more directly the optimal solutions
using an A" search are found. Ideally, if perfect underestimations can be
obtained, then optimal solutions can be found in n—-1 expansions for a

55. By not finding & solution, it is meant that the seaiui graph grows large enough to actually
exhaust available memory before any solution can ba reached.

244

- with "n" components. For example, using GAPP 16 expansions would be
needed to find the optimal assembly of the base subassembly in figure 8.14
(n = 17), instead of the 1,810 expansions required using the currently

implemented heuristics in GAPP.

2) A large product can be broken down into a number of smaller
subassemblies. Individual optimal solutions for each subassemblies can be
found at first. An optimal solution for combining the subassemblies to form

the larger product can then be found.

3) While the search graph gets expanded, a concurrent process could be
developed to eliminate already generated nodes, edges and paths which are

not likely to be part of the optimal solution.

In the current GAPP implementation, the second solution above is directly

applicable. The first and last solution would regquire further research.

9.2.2 Comparison with other assembly planners

To the author’s knowledge, there exists only two assembly planners, apart
from GAPP, provided with the ability to both generate and evaluate assembly plans

automatically.

The first one is Homem De Mello and Sanderson's [26]. A fundamental
difference is that this planner expands an AND / OR graph instead of a directed
graph of assembly states. Benefits of this type of graph over the directed graph of
assembly states include the fact that it can be substantially smaller (less nodes) and
wat it explicitly represents parallel operations. The smaller size implies that
products with larger number of components can theoretically be handled.

Nevertheless, in the published literature [25] the largest product described by the

245

authors is the 11-parts Assembly From Industry first introduced by De Fazio and
Whitney [11]. This is comparable to the air cylinder used throughout this thesis. in
its actual implementation, another important difference is that this planner selects
optimal assembly plans using an AQ’ search over the set of all plans. These plans
must be exhaustively generated previously and encoded in the AND / OR graph
prior to the search. In other words, the search is performed through an explicit
search graph. GAPP integrates the generation and evaluation processes. In
particular, optimal assembly sequences can be retuned by GAPP without
generating the whole search graph. In otherwords, the search is performed through
an implicit search graph. An additional difference concerns the specificity of the
generated optimal plan. GAPP returns a total ordering of assembly operations {(an
assembly sequence). Homem De Mello and Sanderzon’s planner returns only a

partial order (an assembly plan).

The second assembly planner approaching GAPP's capabilities is Wolter's
Xap-1 [80]. Like GAPP, this planner integrates the generation and selection
processes. A branch and bound method, similar to the A’ algorithm used by GAPP,
helps generate optimal assembly sequences without exhaustive search. However,
a binary search tree gets expanded instead of a graph structure. Most importantly,
assembly operations involving subassemblies are not permitted. This last aspect
is very restrictive and drastically reduces the search space by not considering a
large number of plans involving subassemblies manigulation. This implies that
products requiring subassemblies formation cannot be processed by this planner.
In addition, although Wolter has implemented a few evaluation criteria, the
important notion of parallelism among assembly operation is prohibited by this

restriction. On the other hand, products with much larger number of parts can be

246

products comply with this restriction (an example product with 37 parts which can
be assembled by always adding one part at a time is presented in [80]). Finding

optimal plans for such products requires much less time and space.

9.2.3 Programming environment

GAPP has been implemented with about 5,000 lines of C** code. A nice user
interface has also been developed using the Sunview windowing package (see
figure 8.19 and also appendix C). Every part of the code dealing with the setup and
control of the windowing interface has been kept in a separate file. To port GAPP
on other machines not supporting Sunviews, all that is required is code compilation
without linking this file. Similarly, other windowing packages can be designed and

placed in a separate file to be linked during compilation.

9.3 FUTURE WORK

Any of the achievements in section 9.1 represent one more step towards the
solution of the assembly planning problem. Nevertheless, some other important
issues in this field remain a challenge for researchers. Among the most important

ones are those outlined in the following sections.

9.3.1 Additional evaluation criteria

In its present implementation, the solutions generated by GAPP are optimal
with respect to only the four criteria implemented so fa:. rurther evaluation criteria
which influence the selection of the plans need to be identified, and, most
importantly, formalized. Examples inciude the physical proximity of assembly
operation, execution time, subassembly’s graspability and fixturability, and so on...
This represents a natural extension of the current work. The developed methods

can easily provide for such an extension.

247

9.3.2 Development of monetary cost functions

in the current implementation, the same assembly operation can have
different cost values by simply varying the relative weights of the selected criteria.
For example, an assembly operation transforming state A into state B may result
in a unit cost of 115 when relative weights of 40 and 60 are used for the stability and
re—orientation criteria, respectively. By simply changing the relative weights to 20
and 80, the new cost of the same operation could become 95:,‘ i:ﬁr example.
Extending this concept to every assembly operation in a sequence. 2 variation of
the relative importance of the criteria may actually lead to different optimal solutions
being generated. As a result, different optimal assembly sequences might be

generated depending on the relative weight assignments.

By using monetary costs in the computations instead of the subjective
relative weights, each operation cost with respect to some criterion becomes
invariant, and so is the cost of each individual assembly sequence. As a result, a
single overall optimal assembly sequence can be generated, i.e. the one leading to
minimal monetary assembly cost®6. This is a raust desirable feature of a planner

as it eliminates subjectiveness in the selection of optimal assembly sequences.

Ideally, for a single assembly operation, individual mo'rie"tary costs obtained
for each criterion add up to give the total monetary cost of this assembly operation.
Monetary costs of each aperation in an assembly sequence add up to give the

sequence’s total cost.

An implementation of this concept requires the development of detailed

models representing the monetary cost contribution of each relevant criterion. Due

- 56. Itis reasonably assumed that the overall optimal assembly sequence of any product is the one
which minimizes monetary costs.

248

tothe large amount of variables to be considered in the determination of such costs,

this concept promises to be a challenging area for future work in assembly planning,

as well as in process planning in general.
9.3.3 Generation of assembly graph from CAD models

GAPP's graph model of the product is set up from the interpretation of the
information which is manually entered in a product description file (appendix A).
Although this file is fairly easy to generate even for complex products, a good idea
would be to try to automate its creation. As a matter of fact, it has been recognized
that the relations among components is one type of information which lends itself
to being inferred from some CAD model of the product. Research in this area has

already started and preliminary resuits seem encouraging [84].

9.3.4 Relaxing assumptions

The assembly ptan of any product requiring the simultaneous assembly of
two or more subassemblies towards a third che cannot be generated by a
dichotomic planner; and the assembly plan of any product requiring pans to be
assembled from successive translations in dificrent directions cannot be generated

by a monotone planner.

Although many products exist whose assembly plans violate one or both of
these assumptions, th:sy are used by most assembly planners developed to date,
including GAPP. The relaxation of the dichotomy and monotone assumptions
described in chapter 2 represent an important target for future research in assembly

planning and would result in widening tiie scope of applications.

249

9.3.5 Design For Assembly feedback

GAPP is for now an open ioop system, in the sense that it simply processes
the product’s graph model and produces the optimal assembly sequence for that

product,

An interesting aspect of future work will be to provide GAPP with enough
intelligence to actually recognize problematic design features of the product, i.e.
features which contribute to higher assembly costs in the optimal plan. Suggestions
of clever design changes to lower assembly costs could then be part of GAPP's
outputs. The system developed in [36] seems to be a first move towards an.

implementation of this concept.

9.3.6 Link to scheduling

An important aspect of future work is to assign machines, tools, fixtures and
operational times to every assambly operation generated by the planner. This
constitutes an essential link between the process planning and scheduling activities.
In particular, given the operations to be performed and their order of execution, and
also given a list of posSible resources for each operation (tools, fixtures, machines
and time), a scheduler would select the resources for each operation such that
machine utilization will be maximized and bottlenecks will be minimized. This
promises to be a chalienging issue as cnes again this selection is characterized by

an important combinatorial complaxity.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Asama H., Yokota K. and Yoshikawa H. (1988), "A Knowledge-Based Task
Sequence Planning System for Maintenance Manipulators®, Preprints of

Ro.man.sy '88, pp. i-8.

Bondy J. A. and and Murty U. S. R. (1976), "Graph Theory With Applications”,
North-Holland.

Bourjault A. (1984), “Contribution & une approche méthodologique de
lassemblage automatisé: élaboration automatique des séquences

opératoires”, Thése d'Etat, Université de Besangon Franche~Comté, France.

Bourjault A., Chappe D. and Henrioud J. M. (1987), “Elaboration Automatique
des gammes d'assemblage a laide de réseaux de Pétri",
Automatique-Productique Informatique Industrielle, Vol. 21, no. 4, pp.
323-342.

Bourjault A., and Henrioud J. M. (1987), “Détermination des sous—assemblages
d'un produit & paric des séquences temporelles d'assemblage”,
Automatique~Productique Informatique Industrielle, Vol. 21, no. 2, pn.
117-127.

Campagne J.-P. and Caplat G. (1989), "Elaboration Automatique de gammes
d’assemblage”, Automatique-Productique Informatique Industriells, Vo). 23,
no. t, pp. 53-68.

Canny J. (1986), "Collision Detaction for Moving Polyhedra®, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 2, pp. 200-208.

250

251

[8] Chan K. C., Benhabib B. and Dai M. Q. (1990), "A Reconfigurable Fixturing
System for Robotic Assembly”, Joumal of Manufacturing Systems, Vol. 9, No.
3, pp. 206-221.

[9) ChangK.H.and Wee W. G. (1988}, “A Knowledge-Based Planning System for
Machanical Assembly Using Robots”, [EEE Expert, Vol. 3, no. 1, pp. 18-30.

[10]Chen C. L. P. (1989), “Precedence Knowledge Acquisition for Generating Robot
Assambly Sequences”, Proceedings of IEEE International Conference on

Systems, Man and Cybernetics, Vol. 1, pp. 71-76.

[11]De Fazio T. L. and Whitney, D. E. (1987), “Simpiified Generation of all
Mechanical Assembly Sequences”, IZEL: Joumai of Robotics and Automation,
Vol. RA-3, no. 6, pp. 640-658.

[12]De Fazio T. L. et al. (1989), “Aids for the Design or Choice of Assembly
Sequences”, Proceedings of IEEE International Conference on Systems, Man

and Cybemetics, Vol. 1, pp. 61-70.

[13]De Floriani L. (1989), "A Graph Mode! for Facs—io—Face Assembly”,
Proceedings of IEEE International Conference on Robotics and Automation,

Scoltsdale, Arizona, pp. 75-78.

[14]Frommherz B. and Werling G. (1990), "Generating Robot Actions by Means of
an Heuristic Search”, Proceedings of IEEE Intemnationa! Confarence on

Robotics and Automation, Cincinnati, Ohio, pp. 884-889.

[15]Groover M. P. and Zimmers E. W. (1984), "CAD/ CAM: Computer-Aided Design

and Manufacturing”, Prentice~Hall.

250

{16] Delchambre A. (1990), "A Pragmatic Approach to Computer-Aided Aésembly
Planning®, Proceedings of IEEE Intemnational Conference on Robotics and

Automation, Cincinnati, Ohio, pp. 1600-1605.,

[17]Delchambre A. and Wafflard A. (1991), "An Automatic, Systematic and
User-Friendly ~Computer-Aided Planner for Robotized Assembly”,
Proceedings of IEEE Intemational Conference on Robotics and Automation,

Sacramento, Califomia, pp. 592-598.

[18]Haynes L. S. and Moris G.H. (1988), "A Formal Approach to Specifying
Assembly Operations®, Intemational Joumnal of Machines Tools and

Manufacturing, Vol. 28, No. 3, pp. 281-298.

[19]Heemskerk C. J. M. and Van Luttervelt, C. A. (1989), "The use of Heuristics in
assembly sequence Planning”, The Annals of CIRP, Vol. 38, no. 1, pp. 37—40.

[20]Heemskerk C. J. M. and Reijers L. N. (1990), "A Concept for Computer—Aided
Process Planning of Flexible Assembly”, The Annals of CIRP, Vol. 39, no. 1, pp.
25-28.

[21]Hoffman R. L. (1989), "Automated Assembly in a CSG Domain”, Proceedings
of IEEE International Conferance on Robotics and Automation, Scottsdale,
Arizona, pp. 210-215,

[22]Homem De Mello L. S. (1989), “Task Sequence Planning for Robotic Assembly”,
Ph.D. Thesis, Camegie-Mallon University, Department of Electrical and

Computer Engineering, Pittsburgh, PA.

[23]Homem De Mallo L. S. and Sanderson A. C. (1988), “Automatic Generation of
Mechanical Assumbly Sequences”, Report no. CMU-RI-TR-88-19, The
Robotics Institute, Camegie-Mellon University, Pittsburgh, PA.

253

[24]Homem De Mello L. S. and Sanderson A. C. (1989), “A Correct and Complete
Algorithm for the Generation of Mechanical Assembly Sequences”,
Proceedings of IEEE Intemational Conference on Robotics Automation,

Scottsdale, Arizona, pp. 56-61.

[25]Homem De Mello L. S. and Sanderson A. C. (1990), “AND / OR Graph
Reprosentation of assembly Plans”, IEEE Transactions on Robotics and

Automation, Vol. 6, No. 2, pp.188—1 99.

[26]Homem De Mello L. S. and Sanderson A. C. (1990)', “Evaluation and Selection
of Assembly Plans”, Proceedings of IEEE International Conference on Robotics

and Automation, Cincinnati, Ohio, pp. 1588-1593.

[27] Hoummady A. and Ghosh K. (1888}, "Gsnaration and Evaluation of Assembly
Sequences in Computer-Automated Process Planning”, Intemational Journal

of Computer Applications in Technology, Vol. 2, No. 3, pp. 151-158.

[28]Huang Y. F. andLee C. S. G. (1989), "Precedence Knowledge in Feature Mating
Operation Assembly Planning”, Proceedings of IEEE International Conference

on Robotics and Automnation, Scoiisdale, Arizona, pp. 216-221,

[29)+uang Y. F. and Lee C. S. G. (1990), "An Automatic Assembly Planning
System”, Proceedings of IEEE International Confererce on Robotics and

Automation, Cincinnati, Ohio, pp. 1594-1599.

[30]Huang Y. F. and Lee C. S. G. (1991), "A Framework of Knowledge-Based
Assembly Planning”, Proceedings of IEEE Intemational Conference on

Robotics and Automation, Sacramento, Califomia, pp. 599-604.

254

[31]Hutchinson 8. A. and Kak A. C. (1 880}, "Extending the Classical Al Planning
Paradigm to Robotic Assembly Planning”, Proceedings of IEEE International

Conference on Robotics and Automation, Cincinnati, Ohio, pp. 182-189.

[32]Hutchinson S, A. and Kak A. C. (1990), "SPAR: A Planner That Satisfies
‘Operational and Geometric Goals in Uncurtain Environments”, Al Magazine,
Vol. 11, No. 1, pp. 30-61.

[33]Khosla P. K. and Mattikali, R. (1989), ‘Determining the Assembly Sequence
from a 3-D Model", Joumal of Mechanical Working Technology, Vol. 20, pp.
153-162.

[34]Kim 8. H. and Lee K. (1989), "An Assembly Modelling System for Dynamic and
Kinematic Analysis”, Computer Aided Design, Vol. 21, No. 1, pp. 2-12.

[35]Ko, H. and Lee K. (1987), “Automatic Assembling Procedure from Mating
Conditions”, Computer Aided Design, Vol. 19, no. 1, pp. 3-10.

[36]Kroll E., Lenz E. and Wolberg J. R. (1988), “A Knowledge—Based Solution to the
Design—-For-Assembly Problem”, Manufacturing Review, Vol. 1, no. 2, pp.
104-108.

[37]Laperrigre L. (1989), “Autornatic Generation of Robotic Assembly Sequence”,

Master’s Thesis, McMaster University, Hamilton, Ontario, Canada.

[38]Laperrigre, L. (1990), “A Study of the Combinatorial Complexity of Automatically
Generating Mechanical Assembly Sequences”, Report no.
FMRD—08-01-1990, Flexible Manufacturing Research and Development

Centre, McMaster University, Hamilton, Ontario, Canada.

255

[39]Laperridre L. and EIMaraghy H. A. (1989}, “Automatic Generation of a Robotic
Assembly Sequence”, Proceedings of 15t ASME International Conference in
Flexible Assembly, Montréal, Canada, pp. 15-22.

[40]Laperrigre L. and EiMaraghy H. A (1991), “Automatic Generation of a Robotic
Assembly Sequence”, International Joumal of Advanced Manufacturing

Technology, Vol. 6, No. 4, pp. 299-316.

[41]Lee K. and Andrews G. {(1885), "Inference of the Positions of Components in
an Assembly: part 2", Computer Aided Design, Vol. 17, No. 1, pp. 25-29.

[42]Lee K. and Gossard D. C. (1985), "A Hierarchical data Structure for
Representing Assemblies: part 17, Computer Aided Design, Vol. 17, No. 1, pp.
15-19,

[43]Lee S. and Gil Shin Y. (1990), “Assembly Planning Based on Subassembly
Extraction”, Proceedings of IEEE International Conference on Robotics and

Automation, Cincinnati, Ohio, pp. 1606—1611.

[44]Lisberman L. |. and Wesley M. A. (1977}, "AUTOPASS: An Automatic
Programming System for computer controlled Mechanical Assembly”, /BM

Joumal of Research and Development, Vol. 21, July issue, pp. 321-333.

[45]Lin A. C. and Chang T. C. {1989), "A Framework for Automated Mechanical
Assembly Planning”, Joumal of Mechanical Working Technology, Vol. 20, pp.
237-248.

[46]Liou F. W. et al. (1989), "Design of a Flexibtle Fixture for Flexible Assembly — A
Case Study”, Proceedings of 15t ASME International Conference in Flexible

Assembly, Montréal, Canada, pp. 85-92,

256

[47]Lippman S. B. (1989), “C++ Primer”, Addison-Wesley.
[48]Liu C. L. (1968), "Introduction to Combinatorial Methematics®, McGraw-Hill,
[49]Liu C. L. (1977), "Elements of Discrete Mathematics”, McGraw-Hill,

[50]Liu P8. and Fu L.-C. (1990), "An Efficient Method of Solving Problems of
Classiiication and Selection Using Minimum Spanning Tree in a Flexible
Manufacturing System”, Proceedings of IEEE International Conference on

Robotics and Automation, Cincinnati, Ohio, pp. 2148-2153.

[51]Liu Y. and Popplestone R. J. (1989), "Planning for Assembly From Solid
Models®, Proceedings of IEEE Intemnational Conference on Robotics and

Automation, Scottsdale, Arizona, pp. 222-227.

[52]Lozano—Perez T. (1983), "Spatial Planning: A Configuration Space Approach”,
IEEE Transactions on Computers, Vol. C-32, No. 2, pp. 108-120.

[53]Mazer E. (1984), "LM-GEO: Geomietric Programming of Assemnbly Robots”,
Advanced Software in Robotics, A. Danthine and M. Geradin (eds.), Elsevier

Science Publisher B. V. (North-Holland), pp. 99-110.

[54]Miller J. M. and Hoffman R. L. (1989), "Automatic Assembly Planning With
Fasteners”, Proceedings of IEEE Intemational Conference on Robotics and

Automation, Scottsdale, Arizona, pp. 69-74.

[55]Miller J. M. and Stockman G. C. (1990), "On the NumSer of Linear Exansions
in a Precedence Graph®, Proceedings of IEEE International Conference on

Robotics and Automation, Cincinnati, Ohio, pp. 2153-2141.

[56]Nilsson N. (1980}, "Principles of Artificial Intolligence”, Springci~Verlag.

257

[57]Nnaiji B. O. (1988), "CAD-BAsed Schema for an Assembly Planning Reasoner”,
EXPERT SYSTEMS, Strategies and Solutions in Manufacturing Design and
Planning, Andrew Kusiak (editor), SME Publications Development Department,
pp. 215-255.

[58]Nnaji B. O., Chu J.—Y. and Akrep M. (1988), "A Schema for CAD—Based Robot
Assembly Task Planning for CSG-Modelled Objects”, Joumnal of Manufacturing
Systems, Vol. 7, No. 2, pp. 131-145.

[59]Nnaji B. O. and Liu H.—C. (1990), "Feature Reasoning for Automatic Assembly
and Machining in Polyhedral Representation”, /ntemational Joumal of
Production Research, Vol. 28, No. 3, pp. 517-540.

[60] Popplestone R. J., Ambler A. P. and Bellos |. M. (1978), "RAPT: A Language for

Describing Assemblies”, The Industrial Robot, September issuse.

[61] Popplestone R. J., Liu Y. and Weiss R. (1990), "A Group Theoritic Approach to
Assembly Planning”, Al Magazine, Vol. 11, No. 1, pp. 82-97.

[62]Preiss K. and Shai O. (1989), "Process Planning by Logic Programming”,
Robotics and Computer-Integrated Manufacturing, Vol, 5, No. 1, pp. 1-10.

[63] Rich E. (1983), “Artificial Intelligence”, McGraw-Hill.

[64]Rocheleau D. N. and Lee K. (1987), "System for Interactive Assembly
Modelling”, Computer Aided Design, Vol. 19, No. 2, pp. 65-72.

[65]Rondeau J~M. and ElMaraghy H.A. (1989), "Development of a
Knowledge—-Based Robot Task Plannng System for Mechanical Assembly”,
Proceedings of 15t ASME Intemational Conference in Flexible Assembly,
Montréal, Canada, pp. 23-30.

258

[66]Rosario L. M. (1990}, "Design for Assembly Analysis: Extraction of Geometric
Features from a CAD System Data Base”, The Annals of CIRP, Vol. 35, no. 1.

[67]Sanderson A. C., Homem De mello L. S. and Zhang H. (1990), "Assembly
Sequence Planning”, Al magazine, Vol. 11, No. 1, pp. 62-81.

[68] Sedas S. W. and Talukdar S. N. (1987), "A Disassembly Planner for Redesign”,
Intelligent and Integrated Manufacturing Analysis and Synthesis, The Winter
Annual Meeting of ASME, Boston, Massachusetz, pp. 95~100.

[69] Sekiguchi H. et al. (1983), "Study on Automatic Determination of Assembly
Sequence”, The Annals of CIRP, Vol. 32, nc. 1, pp. 371-374.

[70] Shpitaini M., Elber G. and Lenz E. (1989), "Automatic Assembly of Thiee
Dimensional Structures via Connectivity Graphs”, The Ariais of CIRP, Vo. 38,
no. 1, pp. 25-28,

[711Smith 8. F., Keng N. and Kempf K. {1990}, "Exploiting Local Flexibility During
Execution of Pre—Computed Schedules”, Report no. CMU-RI-TR-90-13, The

Robotics Institute, Camegie Mellon University, Pittsburgh, Pennsylvania.

[72] Tonshoff H. K. and Anders N. (1989), "FLEXPLAN — A Cciicept for Intelligent
Process Planning and Schaduling”, CIARP intermnational Workshop on Computer
Aided Process Planning (CAPP), State—of-the—-Art, Future Directions, New

Tools, Hanover University, Federal Republic of Germany, September 21-22, pp
~ 87-106.

[73]Watabe H. et al. (1989), "Inteference Recognition Among 3D Solid Models for
Assembly Planning”, Proceedings of 15t ASME International Conference in

Flexible Assembly, Montréal, Canada, pp. 79-84.

259

[74]Wesley M. A, et al. (1980), "A Geometric Modelling System for Automated
Mechanical Assembly”, IBM Journal of Research and Development, Vol. 24,

January issue, pp. 64-74. i |

[75]Weule H. and Friedmann Th. (1989), "Computer-Aided Product Analysis in
Assembly Planning”, The Annals of CIRP, Vol. 38, no. 1, pp. 1-4.

{76]Whitney D. E. et al. (1988), “Computer Aided Design of Flexible Assembly
Systems”, Report No. CSDL R-2033, C. S. Draper Laboratory Inc., Cambridge,

Massachusetts.

i77]Wilkins D. E. (1988), "Practical Planning: Extending the Classical Al Pianning

Paradigm”, Morgan Kaufmann Publishers.

[78] Wilson R. H. and Rit J.-F. (1990), “Maintaining Geometric Dependencies in an
Assembly Planner”, Proceedings of IEEE Intemnational Conference on Robotics

and Automation, Cincinnau, Ohio, pp. 890-895.

[79]Wolter J. D. (1988), "On the Automatic Generation of Plans for Mechanical
Assembly”, Ph.D. thesis, University of Michigan, Department of Computer,

Information and Control Engineering.

[80]Wolter J. D. (1989), "On the Automatic Generation of Assembly Plans”,
Proceedings of IEEE International Conference on Robotics and Automation,

Scottsdale, Arizona, pp. 62-68.

[81]Wolter J. D. (1991}, "A Combinatorial Analysis of Enumerative Data Structures
for Assembly Planning”, Proceedings of IEEE Intemational Conference on

Robotics and Automation, Sacramento, California, pp. 611-618.

260

[82]Zhang, W. (1989), "Representation of Assembly and Automatic Robot Planning
by Petri Net”, IEEE Transactions on systems, man, and cybemetics, Vol. 19, No.
2, pp. 418422,

[83]Zozaya—Gorostiza C., Hendrickson C. and Rehak D. R. (1989),

"Knowledge-Based Process Planning for Construction and Manufacturing”,

Academic Press.

[84] Zussman E., Lenz E. and Shpitalni M. (1990}, "An Approach to the Automatic
Assembly Planning Problem”, The Annals of CIRP, Vol. 39, no. 1, pp. 33-36.

APPENDIX A

PRODUCT DESCRIPTION FILES

This appendix shows the Product Description Files (PDF) that were manually
generated for some of the products used as examples throughout this thesis. The
first section presents the air cylinder's product description file and describes how
this file was manually generated. The second section describes how GAPP sets up
the internal graph model of the product from an interpretation of the product
description files. Sections A.3, A.4, A5, and A.6 simply present the PDF of the
flashlight, ball-point pen, multiple products and hzsat detector products,

respectively.

A.1 THE AIR CYLINDER

A.1.1 Overview of the file format

The format of the product file is very simple. Each line in the file is either a
comment line, a component line or a relation line. A component line starts with the
keyword "component” and has 1 argument after the keyword: the component's
name. A relation line starts with the keyword "relation” and has up to 9 arguments
after the keyword. They are, in the required order of appearance: goal flag, moved
component name, fixed component name, ambiguity flag, moved component's

disassembly directions, fixed component’s disassembly difrecticns, relation’s type,

261

262

operation required to establish the relation, list of restricted components. Any other

line is treated as a comment line.

Figure A.1 shows the product description file that was manually generated
for the air cylinder in figure 3.8. In this file, lines 1, 2, and 13 are comment lines.

Lines 3 to 12 are component lines. Lines 14 to 36 are relation lines57.

Two simple rules apply in the generation of the product file:

1-- components must be defined before any of the relations in which they appear;

2- the erguments of a relation line must be supplied in the pre—defined order.

On the other hand, the order of definition of the components and relations is
irrelevant, as long as the first rule above is satisfied. For example, any permutation
of lines 3 to 12 and 14 to 36 in figure A.1 is permitted. In general however, the
definition of both the components and the relations should follow some systematic

order for better clarity, as illustrated for the air cylinder in figure A.1.

At present, the necessary information about the product is entered in the file
by the user in the pre—determined format. The file is then read and interpreted by

GAPP and the intermal graph model of the product is set up accordingly.

The simple format of the pioduct file makes it very easy for a GAPP user to
create the file manually, even for complex products. All that is required is the
identification of the various components in the product and the various relations
between them. The identification of the product's components has already been
discussed at the end of the third chapter. The next section discusses the

identification of the relations among components in more detail.

57. Line numbers have been provided for reference only. They are not part of the actual file format.

263

1- AIR CYLINDER info

P

3- component bearing_o_ring

4- component bearing

5- component body

6~ component piston_rod

7— component piston

8- component piston_screw

9- component piston_o_ring

10~ component cover_o_ring

11— component cover

12- component cover_screws

13-

14~ relation no bearing_o_ring bearing no z+z— z-z+ attach fit piston_rod body

15~ relation no bearing_o_ring piston_rod no z+2—~ z-z+ contact fit

16— relation no bearing_o_ring piston yes z+ z- blocking

17- relation no bearing_o_ring cover yes z+ z— blocking

18— relation no bearing body no z+z— z-z+ attach fit piston_rod

19— relation no bearing piston_rod yes z+z—~ z-z+ contac! fit

20- relation no bearing piston yes z+ z- blocking

21- relation no bearing cover yes z+ z- blocking

22— relation no piston_o_ring body no z— z+ contact fit

23— relation no piston body no z— z+ contact fit

24~ relation no cover body no z—y+y—X+X— Z+y+y—x+x—contact against
COVer_screws

25— relation no cover_screws body no z-y+y=-x+x— Z+y+y—x+x— attach screw

26— relation no cover_o_ring body no z- z+ contact fit

27- relation no piston_rod piston yes z+ z— contact against piston_screw

28~ relation no piston_screw piston_rod no z- z+ attach screw cover

29- relation no piston_rod cover yes z+ z— blocking

30- relation no piston_screw piston no z—- z+ contact fit

31— relation no piston_o_ring piston no z+z— z—z+ attach fit body

32— relation no cover piston yes z-x+x~y+y— z+x+x-y+y— blocking

33 relation no piston_screw cover yes z+ z- blocking

34~ raiation no piston_o_ring cover yes z+y+y—x+x— z-y+y—x+x— blocking

35~ relation no cover_o_ring cover no z+X+X—y4y— Z—x+x=y+y— contact fit

36— relation no cover_screws cover no z— z+ contact fit -

Fig. A.1: Product description file generated for the air cylinder.

264

A.1.2 Identifying relations

The identification of the relations among the components in the product is a
fairly straightforward process. The general methodology is best described in the

following algorithm:

1- Examine the product in its assembled state

2~ Select ane component (call it SOLFCE)

3- For all other components :
Determine if component SOURCE has a contact, attachment or
blocking with another component (call it DES T.), according to the
definitions in section 3.1
If there is no relation between SOURCE and DEST. or if the relation
already exists®8, pick another DEST. component

Else define a new relation betwsen SOURCE and DEST.

Mathematically, for a product of "n" components, this algorithm is known to
requiren(r—1)/2steps. Inpractice, the userwould be tempted to take some short
cuts, For exampile, considering the air cylinder, if the component selected in step
2 is tha cover_screws, it would not seem logical to look for relations between it and
“remote” components, such as the bearing or the bearing_o_ring. Line 3 of the
abova algorithm could then be modified as "for all nearby components”. But the
danger of overlooking some relations introduced by this simplification greatly
outweighs its benefit. In fact, experience with the system has shown that the above
algorithrn should be thoroughly followed, even if it is sometines obvious that two

iemacie componants are not relatad.

58. The relation between SOURCE and DEST. might huve already been defined it DEST. had
previously been processed as a SOURCE component.

265

Once a relation has been identified using the above algorithm, its various
attributes must be determined, in the pre-determined fixed order. First, the goal
attribute must be set. Recall that a value of "yes” for this attribute means that the
corresponding relation to which it applies will remain in the goal state, i.e. it will not
be broken by any of the disassembly operations generated by GAPP. For the file
in figure A.1, it was assumed that the air cylinder had to be completely

disassembled, that is all relations have their goal flag set to the value "no".

Next, the moved and fixed components must be selected. For most relations,
a decisicin can be taken as to which component in the relation should be moved and
which should be fixed, if the product consisted solely of these two components. For
example, it is obvious that the bearing_o_ring should be moved and assembled to
the bearing and not vice—versa. In line 14 of figure A.1, this is expressed by putting
"bearing_o_ring” before "bearing”, and by setting the ambiguity flag to "no”. There
are cases where no clear decision between the moved and fixed components can
be made. For such ambiguous cases, simply set the ambiguity flag to "yes”. The
two components involved in the relation can then appear in any order in the relation
line. It should be noted that a blocking relation is aiways ambiguous, as it does not
nply a physical contact. The notion of which component should be moved or fixed

in the case of a blocking relation becomes irrelevant.

Next, the disassembly directions of both the moved and fixed components
in the relation must be determined. This implies a decision on iiis finai orientation
of the product, since different orientations lead to different directions. For the file
in figure A.1, the directions were determined according to the orientation shown in

figure 3.8.

266

The first set of disassembly directions corresponds to the first component
- that appears in the relation line and the second set to the second component,
respectively. Note that the directions of both components are always opposite. For
example, if one component can be disassembled along z+, the other component

must necessarily have z- as one of its disassembly directions.

The disassembly directions are determined locally, by first isolating the two
components in the relation from the rest of the product and maintaining their relative
position and orisntation. Then, all the possible directions in which one component
can be moved without colliding with the other are determined. These directions can

be any combination of the elements in the set {X+, X=, y+, y—, Z+, z-}.

Another atribute that must be set for a relation is its type (contact, attachment
or blocking). Assigning the wrong type to a relation has some effects on the
assembly sequence(s) being generated. It is therefore imperative for the user to
have a good understanding of the differences between the three types. The
definitions and examples in section 3.1 are believed to be clear enough to avoid any

kind of confusion.

Thetype of the relation does not say much about the assembly operation that
itinvolves. Thizis the purpose of the operation attribute. The value for any relation’s
operation is always the answer to the following question: what is the oberation that
must be performed in order to bring the twe components of the relation to their
assembled state, if the product consisted solely of these two components? For the
products that have been worked on so far, the answer to that question is always one
of the 9 pre—gsiined operations: against, fit, fit_and_twist, press, crimp, scre', rivet,

weld, solder. This set is not exhaustive and can be extended to suit other products.

267

Note that it is irrelevant to specify an operation for a blocking relation (lines 16, 17,
20, 21, 29, 32, 33 and 34 in figure A.1).

The final attribute of a relation is actually an optional one. It consists of a list
of restricted components which presence in either one of the two subassemblies
involved in the establishment of a relation would complicate or even prevent the
execution of the corresponding assembly operation. Lines 14, 18, 24, 27, 28 and
31in figure A.1 are examples of relations with restricted components. Implications

of this last attribute of a relation have been discussed at the end of chapter 5.

A.2 INTERPRETATION OF THE INPUT FILE BY GAPP

A.2.1 Setting up the graph model

In order to create the graph model, GAPP reads the product file sequentially,
one line at a time. For lines which start with the keyword "componenrt”, GAPP
allocates memory for a new component object {call it ¢) and adds it to the set C of
D. Then it reads the first and only argument after the keyword=® {call it arg1) and

applies the function:
name(c) = arg1.

For lines which start with the keyword "relation”, GAPP allocates memory for
a new relation object (call it r) and adds it to the set R’ of D. Then it reads the 9
arguments after the keyword®? (cali them arg1 to arg9, respectively) and applies the

following functions:

58. Re all that this argument is the component's name.

60. Recallthat these arguments are, in order: goal flag, moved component name, fixed component
name, ambiguity flag, moved component's disassembly directions, fixed component's
disassembly difrections, relation's type, operation required to establish the relation, fist of
rastrictad components.

268

goal(r) = argt1

moved(r) = arg2

fixed(r) = arg3
ambiguous(r) = arg4
direction(r, arg2) = arg5
direction(r, arg3) = argé
type(r) = arg7
operation(r) = arg8
restricted(r) = arg9.

A.2.2 Error checking

Some checks are performed to ensure that the file read by GAPP is
consistent. A first of these checks ensures that the names of the moved and fixed
components of a relation correspond to the names of components defined earlier
in the file. Another check is concerned with the values of the goal(), ambiguity(),
directions(), type() and operation() functions. In particular, any of the values for
these functions must be one of those included in their respective pre—defined range
{section 3.1). The optional list of restricted components is also checked, i.e. the
names supplied for these components must match those of eXisting components
defined eariier in the file. Finally, there must be at least 1 component and 1 relation
defined in the file. If any of those restrictions is violated, a pop—-up error message

that describes the erroneous situation is displayed to the user.

269

A.3 PGF OF THE FLASHLIGHT

component head
component lens
component reflector
component bulb
component battery1
component battery2
component body
component spring
component endcap

relation no lens head no z+ z— attach fit

relation no lens bulb yes z—x+x~y+y— z+x+x-y+y— blocking

refation no lens reflector yes z—x+x—y+y- z+x+x~y+y— blocking
relation no lens body yes z—X+x—y+y— z+x+X~y+y- blocking

relation no lens battery1 yes z—x:X~y+y— z+x+x-y+y- blocking
relation no lens battery2 yes z—X+x~y+y— Z+X+x-y+y- blocking
relation no lens spring yes z—x+x—=y+y— z+x+x-y+y— blocking

relation no lens endcap yes z—x+x—y+y— Z+x+x~y+y-- blocking
refation no bulb reflector no z— z+ attach screw

relation no bulb battery1 yes z=x+x=y+y— z+x+x-y+y— contact against
relation no reflector head no z+ z— attach: screw body

relation no reflector body yes z-x+x—y+y— z+x+X—y+y- blocking
relation no reflector battery1 yes z—x+x-y+y— z+x+x—y+y— blocking
relation no reflector battery2 yes z—x+x—y+y-- 2+X+x—y+y— blocking
relation no reflector spring yes z—x+x-y+y- z+x+x-y+y- blocking
relation no reflector endcap yes z--x+x--y+y— z+x+x~y+y— blocking
relation no head body yes z— z+ attach screw

relation no battery1 body no z+2z-- z+z~ contact fit

relation no battery1 battery2 yes z—x+x—y+y— z+X+x-y+y— contact against
relation no battery2 body no z+z— z+2— contact fit

relation no spring battery2 yes z+x+x—y+y-— 2-X+x-y+y— contact against
relation no spring endcap no z— z+ attach fit_and_twist body

relation ne spring body no z+ z— blocking

relation no endcap body yes z+ z— attach screw

Fig. A.2: Product description file generated for the flashlight.

A.4 PDF OF THE BALL-POINT PEN

component cap
component head
compcnent body
component tube
component ink
component button

relation no ink tube no y+ y- contact fit
relation no cap body yes y- y+ attach fit
relation no tube head no y+ y- attach fit ink
relation no cap head yes y— y+ blocking
relation no head body yes y- y+ attach fit
relation no button tube yes y+ y— blocking
relation no button ink yes y+ y— blocking
relation no button body no y+ y- attach fit

Fig. A.3: Product description file generated for the ball point pen.

270

271

A.5 PDF OF THE MULTIPLE PRODUCTS -

component plate1
component block1
component screw1
component screw2

relation no block1 plate1 no z+x+x—y+y— z—x+x=~y+y- contact against
relation no screw1 plate1 no z+ z— attach screw
relation no screw2 plate1 no z+ z— attach screw

component plate2

component block2
component screw3
component screwd

refation no block2 plate2 no z+x+x-y+y— z-x+x—y+y- contact against
relation no screw3 plate2 no z+ z— attach screw
relation no screw4 plate2 no z+ z—- attach screw

Fig. A.4: Product description file generated forthe multiple products.

272

A.6 PDF OF THE BASE SUBASSEMBLY OF A HEAT DETECTOR DEVICE

component gasket
component diaphragm
component top_spring
component bottem_spring
component bus_bar
component rivet1
component rivet2
component base
component terminal_bar1
component terminal_bar2
component lock_spring
component center_plug
component cal_screw
component dust_cap1
component felt
component vent_screw
component dust_cap2

relation no gasket diaphragm yes z+ z— attach press
relation no diaphragm base no z+x+x-y+y— 2—x+x-~y+y— attach press gasxet

relation no bus_bar base no z+ z— contact fit rivet1 bottom_spring top_spring
relation no bottom_spring bus_bar no z+ z- contact against rivet1
relation no top_spring base no z+ z—- contact against rivet2

relation no bottom_spring diaphragm yes z— z+ blocking
relation no top_spring diaphragm yes z— z+ blocking
relation no bus_bar diaphragm yes z— z+ blocking
relation no rivet1 diaphragm yes z- z+ blocking

relation no rivet2 diaphragm yes z— z+ blocking

Fig. A.5: Product description file generated for the base
subassembly of a heat detector device.

il
(N

refaticn nic riveti boticm_spring 66 Z+ z- carizsct ageinst
refetion no rivet? terminal_bart no z- z—- ook rivet
selztion no rivet2 icp_spring no 2+ 2—contact fit

rafzlicn no rivetZ terminzgl_bar? ric z+ z— aitzch rivet

refaticn no leck_spring base no 2~ z- contact fit centar_piug cal_screw
relzticn ro center_plug base no z- 2+ contact &

relation no centar_plug cal_screw ne z+ z— attach fit lock_spring
relaticn no cal_screw base no z— z+ attach screw

refation no cal_screw bus_bar yes z- 2+ contact agamst

refaticn no dust_cap1 base no z— 2+ attach fit

relation no cal_screw dust_cap1 yes z+ z— blocking

relation no center_piug dust_cap1 yes 2+ z- blocking

reiation no lock_spring dust_cap1 yes z+ z— blocking

relation no felt base no z- z+ attach fit vent_screw
relation no vent_screw felt yes z— z+ contact against
relation no vent_screw base no z— z+ attach screw
relation no dust_cap?2 base no z- z+ attach fit
relation no dust_cap2 vent_screw yes z— z+ blocking
relation no dust_cap?2 felt yes z— z+ blocking

relation no terminal_bar1 base no z— z+ contact against rivet1
relation no terminal_bar2 base no z~- z+ contact against rivet2

Fig. A.5 (continued).

APPENDIX B

KRUSKAL’S ALGORITHM

This appendix describes Kruskal's algorithm [2], which is a standard graph
theoretic algorithm used to select a minimum spanning tree in a graph. The first
section presents Kruskal's algorithm. The second section presents an example of

its application.

B.1 THE ORIGINAL ALGORITHM

Assume a graph G exists which consists of aset V={vq, va, ..., vy } of vertices
andasetE={ey, ey, .., €y} of edges. Also assume that some fuiction w(v;, v;)
exists which can compute the weight of the edge between vertices v; and v;. By

applying this function to every edge in the graph, G becomes a weighted graph.

Many real-ife problems translate into the selection of a minimum spanning
tree in a weighted graph, i.e. a spanning tree which edges have the lowest possible
weight. Kruskal's algorithm was developed for this particular purpose. The

algorithm is as follows:

274

275

1-R={,S={.
2- Assign each vertex of the graph with a different number.
3- Choose an edge ¢ of E not already in R or S with smallest w(s;);
4- If g; is such that G[S + g;] is acyclic:
add e; to the set S of selected edges.
Assign both vertices of this edge with the larger number of the two and

propagate this larger value to all connected vertices in S.

else:
add e to the set R of rejected eclges.

§- Repeat steps 3 and 4 and stop when they cannot be implemented further.

Fig. B.1: Kruskal's algorithm.

In the fourth step, one must determine if the edga e; which has the smallest
weight of all edges, not already selected in S or R, can be added to the spanning
tree without generating any cycles. To check for such a condition, the numbers of
both incident vertices of this edge are compared. If these numbers are the same,
then the addition of this edge to the building spanning tree will generate a cyc'e and
therefore this edge must be rejected. This should become clearer from the example

in the following section.

B.2 EXAMPLE

The graph in figure B.2a will be used to illustrate the use of Kruskal's
algorithm. Firstapply the weight function to every edge in this graph. In GAPP, given
a product's graph model, this weight function retums a number proportional to the
strength of the connection between the two incident components of the

corresponding relation. For example, a "screw” relation is given more weight than

276

an "against” relation. Hypotheticai weight assignments are shown in figure B.2b.
Once this is done, a number is associated with each vertex in the graph. The
numbers can hold any value, as long as they are different for every vertex. An

arbitrary number assignment is shown in figure B.2c.

Fig. B.2: (a) some graph; (b} weight assignment to the edges of this
graph; (c) number assignment to the vertices of this graph.

277

At this point, the graph can be processed through Kruskal's algorithm. Inthe

first iteration, edge (a, b) is selected and added to S. Number 1 of vertex "a"

becomes 2 and the new graph is as in figure B.3.

Fig. B.3: New graph after the first iteration.

In the second iteration, edge (a, <) is selected and added to S. Number 2 of
vertex "a” becomes 3 and this new value is propagated to the incident vertices of
all edges selected so far. This results in changing number 2 of vertex "b” to the value

3 as well. The new graph at this point is as in figure B.4.

Fig. B.4: New graph after the second iteration.

278

In the third iteration, edge (b, ¢) is the one with lowest weight which is not
already in S or R. However, the numbers of the incident vertices of this edge are
the same, i.e. 3. This signals that an addition of this edge to the building spanning
tree would result in a cycle, violating the definition of a spanning tree. This edge is

therefore added to the set R of rejected adges.

In the fourth iteration, edge (c, d) is the one with lowest weight which is not
already in S or R. Number 3 of vertex "¢” becomes 4 and this new value is
propagated to the incident vertices of all edges selected so far. This results in
changing number 3 of vertices "a” and "b" to the value 4 as well. The new graph at

this point is as in figure B.5.

Fig. B.5: New graph after the fourth iteration.

The next two iterations of Kruskal's algorithm will process remaining edges
(a, d) and (b, d). Both will fail the conditions for being added to the spanning tree
and will therefore be added to the set R. The set S contains the edges which
constitute the maximal spanning tree of the graph. This spanning tree corresponds

to the bold edges in figure B.5.

APPENDIX C

WINDOW INTERFACE

Starting the execution of GAPP brings up five windows on the computer
screen, as depicted by figure C.1. A temporary window also gets displayed while
GAPP is searching for an optimal solution. Each window and their functionalities

are described individually in the following sections.

Computer Screen

R

Control Window

Edit Window ——
Settings Window

—]
Display Window Output Window

Fig. C.1: Default position of GAPP's windows on screen.

279

280

C.1 CONTROL WINDOW

The detailed control window is shown in figure C.2. When running GAPP, it
appears in the upper right comer of the screen. This window performs two main

functions:
1- it controls the visibility of all other windows in the interface, and

2- it controls the interactions between the user and GAPP (what the user

wants to do and when).

By default, all windows in figure C.1 are visible when GAPP is first invokec.
Clicking left in the square boxes in the line labelled "visibility” changes the visibility
{(on or off) of the corresponding window. Of course, the visibility of the contro!

window itself cannot be tumed off.

Visibility: edit Ig/display E/settings youtput

Commands: (EDIT) (DISPLAY) (ASSEMBLE (SAVE) (QUIT)

Fig. C.2: The control window.

Clicking left on the buttons in the line labelled "commands” stasrts the
execution of the process labelled on the button. The EDIT button is used to edit a

file in the edit window. The file that gets edited is the one in the line labelled "product

TR TN

BRI ey

281

file” in the settings window (figure C.4). The DISPILLAY button is used to display a
raster file, usually 2 gesometric model of the product to be assembled, in the display
window. The file that gets displayed is the one in the line Iabelled""display file" in the

settings window.

The ASSEMBLE button starts the execution of the search process. The
product’s directed graph of assemibly states gets expanded until a solution is found.
Statistics of the search process also get displayed in a temporary pop—up window
(figure C.3). Once the search process is activated using this button, no other
commands will be accer ‘ed in the window interface until a solution is found. The

pop—up window disappears when the search process is terminated.

Number of cutsets combinations: 512
Number of dichotomic cutsets: 27

Number of nodes in the open set: 236

Number of nodss in the closed set: 367
Number of assembly sequences: 1,693

Fig. C.3: The pop—up window displaying statistics of the search process.

The SAVE button saves all textual output which appears in the output window
in afile. The file which receives this output is the one in the line labelled "output file”
in the parameters setting window. If the file already exists, a pop-up window asks
for a permission to overwrite the existing file. | Fi_nally, the QUIT button stops GAPP

and terminates all processes associated with GAPP’s windowing interface.

282

C.2 PARAMETERS SETTING WINDOW

The detailed parameters setting window is shown in figure C.4. When
running GAPP, it appears in the middle right comer of the screen, below the control
window. This window is first used to specify the file names required by the EDIT,
DISPLAY and SAVE buttons of the control window. Most importantly, it is also used
to set some important parameters which directly influence the search process and

the solutions generated by GAPP.

The line labelled "product file” in this window is used to specify the name of
the product description file. When GAPP is first invoked, the blinking caret is already
at the beginning of the field used for typing this file name. If a name must be typed
with the caret positioned somewhere else in the window, left clicking over this field
wiltbring the caret back. Pressing the returmn key successively will also cycle through
the various text fields in this window. A typed file name must exist in the directory
from which GAPP was invoked and cannot have more than 22 characters. Upon
left clicking on the EDIT button, this file can be edited in the edit window. Upon left
clicking on the ASSEMBLE button, this file will get interpreted by GAPP and the

internal graph model of the produgct will be set up accordingly.

The line labelled "display file” is used to specify the name of a raster file
containing the geometric model of some product. The blinking caret can be

positioned over this field as described above.

The line labeiled "cutput file” is used to specify the name of a file which will
receive all the textual information displayed in the output window throughout a

consulting session.

283

Product file: air_cylinder.info Search Constraints:
Display file: cylinder.ras E/Geometric
Output file: cylinder.out Iﬂ/ﬂestﬁcted Componerits

Search method: O depth first

re-orientations: [25] [N |
paralllism: [50) N |
sabity: 75 AN
T g —

Fig. C.4: The settings window.

The line labelled "search method” is used to select one of five search
methods available in GAPP. These methods determine the way GAPP sails through

the directed graph of assembly states in order to find a solution. They are:

284

1) breadith first,
2) depth first,
3) best first,

4) A", and

5) hill climbing.

The first two methods ensure solution's optimality but are exhaustive. The
next two also ensure solution’s optimality without necessarily expanding the whole
search graph. The last one always finds a good but not necessarily optimal solution
in polynomial time. The choice of any of the methods is performed by left clicking
on the cycle symbol (little circle with arrows) until the desired one appears on the
left hand side.

The line labelled "search constraints” is used to turn search constraints on
and off, by left clicking in the corresponding square box. These constraints and the

search space reductions they may imply were fully described in chapter 5.

The lines labelled "re—orientations”, "parallelism”, stability” and "clustering”
are used to specify the relative weight of the corresponding criteria. A criterion which
relative weight has been set to zero is not considered in the search process. The

criterion with the largest weight is the one which GAPP tries to optimize the most.

C.3 EDIT WINDOW

The edit window is actually a shell like any other shells in Suntools. This
shell's default directory is the one from which GAPP was first invoked. By
positioning the mouse over this window, the user can execute any shell commands,
like changing the directory, executing programs, editing files, and so on. This

window; is called the "edit window” simply because the file at the text caret in the

285

settings window gets automatically edited under "vi” in this window when the EDIT
button of the control window is clicked. For example, if the text caret is at the
"product file” line of the settings window, left clicking the EDIT button of the control

window edits the product description file in the edit window.

C.4 DISPLAY WINDOW

The display window is used to display the raster file specified at the "display
file” line of the settings window. The display occurs when the DISPLAY button of
the control window is clicked. The display window has been provided with both

horizontal and vertical scrolling capabilities.

C.5 OUTPUT WINDOW

When GAPP reaches the solution to some problem, this window displays the
results of the search process. These include overall statistics of the search process
and the solution itself. Every line of the solution has the following format;

operation (moved subassembly) (fixed subassembly) from disassembly_directions

If all ambiguity flags have been set to the value "yes”, tha order of appearance
of both subassemblies in the line becomes irrelevant. Also, no disassembly

directions are returned when the geometric feasibility constraint is turned off.

An output obtained using the air cylinder is shown in figure C.5. The firstline
specifies the name of the product description file from which GAPP constructed the
graph model. The second line specifies the search method used. The third line
specifies the constraints that were used. The fourth line specifies the relative weight
ofthe criteria. The fifth, sixth and seventh line are statistics about the directed graph

of assembly states that was expanded. The eighth line specifies the total unit cost

286

of the optimal solution. The remaining lines represent the actual assembly

sequence generated by GAPP.

Product file: air_cylinder.info

Search method: BREADTH FIRST SEARCH

Constraints: Geometric_feasibility Restricted_components

Criteria: re—orient=50 parallel=50 stability=50 clustering=50

NUMBER OF NODES ON OPEN.: 0

NUMBER OF NODES ON CLOSED: 122

NUMBER OF ASSEMBLY SEQUENCES: 728

TOTAL COST: 553.10

against (piston) { piston_rod) from z+

screw (piston_screw) (piston_rod piston) from z+

fit (bearing_o_ring) (bearing) from z+z—

fit (cover_o_ring) (body) from z+

fit (bearing bearing_o_ring) (body cover_o_ring) from z+z—

fit (piston_o_ring) (piston piston_rod piston_screw) from z+z~

fit (piston_o_ring pision piston_rod piston_screw } (body bearing bearing_o_ring
cover_o_ring) from z+

fit (cover } (bearing_o_ring bearing piston_rod body piston_o_ring piston
cover_o_ring piston_screw) from z+

screw (screws) (cover bocly bearing bearing_o_ring piston_rod piston_o_ring
piston cover_o_ring piston_screw) from z+

RE-ORIENT 180 DEGREES

Fig. C.5: Air cylinder's solution in the ouiput window.

APPENDIX D

DATA STRUCTURES

This appendix describes the C** data structures on which GAPP is based.
A first section describes the class "List”. A second section describes the class
"ltem”. Advantages of the developed data structures are presented in the third

section.

D.1 THE CLASS "LIST”

Expanding the directed graph of assembly states and representing the actual
subassemblies at each different state is all done by list processing. A general class

called List has been defined as follows:

class List {
public: List();

List(Item*);
virtual ~List();
void add(item*);
void remove(ltem*);
int find(tem*);
void purge_primary();
void purge_all();

ftem “head;

287

288

This class is actually a superclass, meaning that its above definitions are

inherited by four sub—classes, namely:

Cutsst,
Subassembly,
Open, and
Closed.

A Cutset is a list of relations, a Subassembly is a list of components, Open

and Closed are both lists of nodes of the search graph.

Cutset Subassembly Open Closed

Fig. D.1: Hierarchy of list classes.

The member functions of the List superclass contain the usual definitions for
the constructors and destructors. Various processing functions such as adding an

item, removing an item, finding an item, etc. are also added.

The List superclass presents only one data member: "head”. This member
is of type Item, which is also a superclass (it will be defined in the next section). This

data member is a pointer to the firstitem in the list. It is inherited by all sub—classes.

289

The schematic representation of any instance in the List hierarchy is as in

figure D.2.

instance name

List’ tem

“can be any of List, Cutset, Subassembly, Open or Closed

Fig. D.2: Schematic representation of a List instance.

D.2 THE CLASS "ITEM”

General properties of lists are captured in a List superclass. Similarly, the
general properties of the items in a list are captured in a second superclass called

Item. Its definition is as follows:

class ltem {
public: Item();
ltemi(Item*);
virtual ~ltem();

item “item;
ltem *next;

290

Three sub—classes inherit the general definitions of the ltem superclass:

Component,
Relation, and
Node.

The only member functions in the Item superclass are the required

constructors and the destructor.

Component Relation Node

Fig. D.3: Hierarchy of item classes,

Two data members are also defined: "item” and "next”, Both are of type Item.

This provides the schematic representation in figure D.4 for any instance in the Item

hierarchy.

291

instance name ;’-\\ ltem
item A
next f"\\
__/
Item® Item

“can be any of Item, Component, Relation, Node

Fig. D.4: Schematic representation of an ltem instance.

D.3 ADVANTAGES

An important advantage of the above data structure design is that lists of
heterogeneous objects can be built. That is, the head of any instance in the List
hierarchy can pointto any instanceinthe ltem hierarchy. Thusif"c1”is a Component

instance, "r1” a Relation instance and "n1” a node instance, one can have the list:
{ct,ri,n1}
which has the schematic representation shown in figure D.5.

A second advantage is related to the way that lists are set up. When GAPP
reads the product description file, Component and Relation instances are
constructed. The "item” and "next” data members of these instances, inherited from
the Item superclass, are set to null. The same applies when a Node instance is
constructed during the search graph expansion. Thus no instance in these three
subclasses ever point to each other to form a list. Rather, each instance is added

to a list through the "add” member function defined in the List superclass. This

292

function constructs an instance of the ltem superclass whose "item"” data member
points to the actual instance to be added in the list. As a result, the chaining through
the head and next pointers in any list always passes through "dummy” instances of
the item superclass (figure D.5). The actual Component, Relation or Node instance
that was added to the list can be reached through the "item" pointer of the dummy

Iltem instance.

The rationale for such a design is as follows. For each node in the directed
graph of assembly states, the required lists of relations and components must be
generated. Because each node has different relations and components, such lists
are different for each node. If lists had been built by making components and
relations point to each other, duplication of all components and relations would have
been required at each node, to correctly maintain the pointers among them. Due
to the size of the directed graph of assembly states, such duplications would have
resulted in serious memory limitations. One can now appreciate the advantage of
inserting a "dummy” instance of the ltern superclass to build a list, as it requires little
memory and prevents duplication of the actual Component or Relation instances at

@ach node.

instance name

List" ltem item ltem

“can be any of List, Cutset, Subassembly, Open oi Closed

Fig. D.5: Schematic representation of an heterogensous list.

