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ABSTRACT

It i8 a well-known result of I.C. Gohberg, M.G. Krein
and T. Kato that 1f T is a gemi~Fredholm oporator between Banach
spaces and P a bourded oporator of norm small enough, or a
compact operator, then T+P is a semi-Fredholm operator with the
same 1ndex as T. ‘

This thesis is concerned with extensions of thls result’
to more general locally convex spaces. A sysfematic stu is ’
made of suitably defined small bounded or precompact perturbations B
ot ¢§ and ¢ -operators. The resuﬁ%s obtained apply in particular
to Frééhet spaces and effectively extend the theorems of I,C.
Gohberg,.M.G. Krein and T. Kato as well as several of Ju.N,
Vliadimirski, ‘

Duality is shown to be a convenient tool to prove many

of these results. Some applications are also given.
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INTRODUCTIOR

An important theorem concerning non-analytic perturbations
of linear operators is the following result of Gohberg, Krein (5)
and Kato (10) :

It T is a semi-Fredholm operator be en Banach spaces

[}
\

and P a bounded operator of norm small enough, or a compact
operator,.then T+P 18 a semi-Fredholm operator with tho\sane
index as T kcf. definitions in Chapter 0).

This index theorem has numerous applications. It can be
used in particular to prove the existence of solutions of certain

A

functional equations (c¢f. (11)). . .

There are similar situations with linear partial diffe-
rential operators, whsre the spaces involved are Fréchet spaces
rather than Banach\apaces. The question then arises whether a
goeneralized version of the index theorem holds.

This thesis deals with extensions of the theorem of thpgfg,
Krein and Kato to more general lo¢ally convex spaces, in parfigukar
to Fréchet spaces.

In the Jetting of general locally convex spaces, it is
possible to define geveral concepts of '"small" perturbatigns'
which reduce in case of normed apaces to operators with small
norms. In Chapter i we first conmsider small, compact or precompact

perturbations in the sense that, when restricted to certain

suitable subspaces equipped with convenient norms, the perturbing

1
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operators are small in norm, compact or precompact. It is assumed
that these normed "subspaces" are Banach spaces and that the
restricted operators satisfybthe hypotheses of the {lndex theorenm
of Kato. We establish several stability theorems, intluding the
stability of the index.

In Chapter II we investigate small or precompact pertur-
bations in the sense that the perturbing operator maps a nelgh-
borhood of the origin into a small bounded disk or a precompact
disk. We make extensive use of duality.. It turns out that in the
duals, the adjoint operators constitute perturbatiéns of the type
considered in Chapter I. The suitable Banach "subspaces" in thisg
case are those generated by clomed equicontinunous disks. We
apply the results of Chapter I, and obtain by duality stability
theorems for amall bounded and precompact perturbations of <§+
and QL -operators. (The case of compact perturbations is settled
by some theorems of Schwartz (23), K8the (12) and Schaefer (22);
it is algo covered by our approach.) -

Our results in C;aptore I and II yleld several generali-
‘zations of the theorems of Gohberg, Krein and Kato, espocially for
4{ -oporators. They also strengthen many results of Vladinmirski,

announced without proof in (26;27).

Chaptor‘III deals with some variations of the previously
congidered perturbations, and contains some applicationz. In
particular, the ftability results are extended to the case
where the perturbing operators are bounded "relative to the

unpertunped operators”", This follows a concept introduced by



Sz-Nagy (24) for Banach gpaces. Next, perturbations of semi-

Fredholn operators with conplemented ranges and kernels are

studied. Pletach (20) considered this problem for operators !
acting from a space into itself. We treat it for different
domain and range spaces. We also study the behaviour under
perturbations of operators which "1ift" certain familles of
weakly compact disks. Finally, the thesis ends with asome
spectral properties of bounde& operators in sequentially
complete locally convex spaces, and an example of bounded
perturbations of (¢ ) partial diferential operators between
Fréchet spaces.
The main text is preceded by a preliminary Chapter O,
where notations and.some frequently used lemmas are gathered.
The croass-references are gelf-sxplanatory, and of the
forms Section III.4.1, Theorem II.12, etc... . The first (Roman) .
numeral réfers\to the chapter. The theorems, propositions, ‘ §
lemmas and corollaries are numbered consecutively within each - i
chapter.
Part of our results appeared or will appear ia (3;15;

16;17318).

e L



CHAPTER O .

. NOTATIONS AND SOME AUXILIARY RESULTS

In this chapter, we define some of the less common Eermi-
nologies and notations that are used in the text. For those termi-
nologies and concepts that are not defined here, we refer the
reader to (13, Kothe).

We also prove succinctly some of the auxiliary results
to which we shall often implicitly or explicitly refer in the

main. text. These are mostly well-known.

O.1. Notations relating to the spaces
Throughout the text, ﬁb will be concerned mainly with

vector spaces, which we assume to be defined on a same real or
complex scalar field.
let E be a vector space. A subset ACE 1s an absolutely

convex set, or a disk, if A contains all linear combinations of
n n

the form 151 ¢y, such that x,€ A, i=1,...,n, and E’_Jcﬂ <1,
- S . - n

If A contains all linear combinations of the form 22 CyXys
i=1

xiC A, i=1,...,n, for all scalars €y then A is a linear subspace.
For convenienco, we also call a linear subspace simply a subsgpace
(as opposed to subset, when the subset is not linear).

If ACE then <A)» (resp. »A< ) denotes the absolutely convex

-
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. bBull (resp. lipear hull) of A, that ia the intersection of all

disks (resp. subspaces) cdht;ining A,

It L is a subspace of E, then dim L denotes the (algebraic)
dimension of L and codim L (or more precisely codimE,L) the codi-
mension of L 1n E.

Let A, B be two subsets of E. We say that A absorbs B if
B< AA for some scalar A » O, If L is a subspace in E, we say that
A i1s absorbent in L if LC A<, '» |

By locally convex Bpacefte mean a locally comvex topological
vector space, which is assumed Hausdorf{ unlesé otherwise stated.

@3 Let E be a locally convex space. By neighborhood in E we
mean a (not necessarily open) neighborhood of the origin in E,
unless otherwise specified. The closure of a subset A is demoted
by (A)R

Let ACE be a disk. We denote by EA the space generated by
A, that i1s »A< topologized by the Minkowski gauge of A (equivalently,
E, has a base of neighborhoods composed of the sets AA, A>0).

We say that the disk A isdnormigg izr EA is a normed space,
that is J}otA = {0}. If moreover E, is a Banach s?ace, then A is
sald to be conpleting or a Banach digk. We say that A 1s a finite
digk 1f E, is a finite dimensiopal (euclidean) space.

' Let L, M bé two subspaces in E. We say that L is a coaglemth,
or algebgaic complemént, of M in E, and write E = L O M, if
L+M=EandMOL =10}, We say that L 1s an algebraic and topo-.
logical comélcmgdt'ot M 1f moreover the projection of E onto M

along L'is continuous.



Wo donmote by E' the dual of E, that is the space of all
continuous (linear) functionals defimed on E. We refer to the

pointwise convergerco topology on E or Et in the duality (E, E+)

as thoe weak topology, charactorized by the term "weak" (e.g. woeak

closure, weakly compact etc...). Unless otherwlse specified, E'

is always equipped with the weak topology.

In the duality (E, E'), the polar of a subset A is denoted

by A° 1 if ACE then A° = {f€E 1 |t(x)] &1, Vxed]; if AckE'
&
then A° = {x€E : |f(x)| §1, V real

b

0.2. Notationg relating to the operators
Lot E, F bo two vector spaces.- By operator from E into F

woe mean a linéar oporator defirod on a (lino;r) subgpace of E,
with values in F.

Let T be an‘oporator fronm E into F. Then D(T) and R(T)
donote the domain (of definition) and the range (of values) of T
rospectivoly. Tho graph of T is G(T)=J(x,y) &ExF : x «D(T),y=Tx}.
We denote by N(T) the kermsl (or pullespace) of T :

N(T) = {xGD(‘i’) t Tk s 0}.

Wo uge the notations nul(T) = dim N(T) for the pullity
of T, and dof(T) = codim R(T) for the deficlency of T. Notice
that nul(T) and dof(T) may bde infinite, If at least one of them
is finite, then wo define thé index of T to be ind(T) = nul(T)

- def(T), and we say that T han en index.
In this connection, we should stfess that we will not

distinguish between different cardinalities of infinity, that ig

f\
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wo also write a = b 1f both & and b are +oor both are - (but
+oo f =o0), )

For ACE and BCF, we write TA = {Tx : x€AND(T)} and
T'B={xaD(T) : Tx&B].

Let E, F be locally convex spaces and T an operator from
E into F.’

We gay that T bhas a closed graph if G(T) is closed in
ExF (and not only in D(T)xF).

We say that T is open (resp. almogt open) if TU (resp.

(TU)"NR(T)) 1s a neighborhood in R(T), for any neighborhood U
in E, (It could be proved easily that it is equivalent to say
" that T is almost open 1f (TU)™ is a neighborhood in (R(T))™ for
any neighborhood U in E. See (%) in the proot of Tlheorem 0.15.)
We say that T is weakly open if it is open when E and F are
equipped with the weak topologies.
- Tha operator T is called a Q* (resp. Q_) -operator it

(a) T has a closed graph, (b) T is open, (c) R(T) is closed and
(d') nul(T) (resp. def(T)) is finite, which we denote by nul(T) ¢
(resp. def(T)<®®), N

We say that T is a peni-Fredholm operator if it is either
a ¢+ or a ¢ -operator, and a Fredholn ®perator if it is both a
¢, and a ¢_~operator (af}er the familiar terminology in Banach
spaces).

We say that T is a bounded (resp. compact, precompact,

or weakly compact) operator if (TU)™ is bounded (resp. compact,

precompact 1.8, totally bounded, or weakly compact) in F for



gome neighborhood U in E.
{

Finally, if D(T) is dense im E, then T' denotes the

adjoint operator of T, from F' into E'.

0.3. Some_ lemmas
We gather here some of the auxiliary (known) resul',/

:\,
which we shall often use in the main text. We use the symbol ./.
to mark the end of a proof.

P
We begin with some lemmas on norming and completing disks.

LEMMA 0.1, Let L be ‘a linear subspace and A a disk in a vector

apaée E. The following are equivalent :

———

(a) LﬁEA is cloged in E,,

rd

(b) N\ (1+¢A) = L .
t>»0
Proof. (a) => (b) ¢ Let x € N(I+tA). Let £,>0 be any

g»o0
sequence converging to 0, For each En there is x, ¢ L such that

X - xne £nA. We have X

L~ X € LOE

A,asmdxn---x1 —+ X - X

in E,. By agsunption (a), x - x, & LﬂEA; hence x € L.

1

(b) = (a) : Let xnt L(!EA and x, —+Xx in EA’ For any
€ >0, there is X, such that x - x € &A. Thus x & IL+¢&A. Since £%0

is arbitrary, we have x ¢ (\(L+fA); hence x€LNE, ./,
. &€>0

LEMMA 0.2. If A, B are two Banach digks in g vector am E such
“that-A+B ig norming, them A+B is a Banach disk.

Proof. We consider the operator T : E, x E — ExvB

defined by (x,y) —» x+y. Obviously T is continuous, open and onta.

Moreover N(T) is closed. Indeed, E,,p 18 Hausdorff, and T is



defined everywhere on G = EA x EB and continuous, thus T has a

closed graph. Since G(T) N(Gx{0}) = N@)xio} is closed in GxE,,p,

it follows that R(T) is closed. Kow G = E, x EB topologized by

A
A x B is a Banach space (as a product of two Banach spaces),
therefore E, n, being isomorphic to 6/N(T), is also a Banrach

space /.

LEMMA 0,3. Let E, F be two vector spaceg, ACE, BCF be two disks,

and T an operator from E in}o F.

(a) 1If H(T)(\EA ig ¢loged in E, then TA is morming.

(b) If A, B are Banach disks and G(T) n(EAﬂB) is cloged

in E,xFg, then ANT "B 1s_a Banach digk.

B

Proof. (a) : Let N(T)ﬁEA be closed in E,. In view of
§

Lemma 0.1, [) (N(T)+€A) = K(T). On the other hand,

£»0
N eTa = T( ) (€A+RK(T))) = T(R(T)) = {ol.
£»0 &£>0

(b) : Let x, be a Cauchy sequence in E,, where C = ant'B.

Then S :Lé a Cauchy sequence in EA and Txn a Cauchy sequence in
Fg (as x, - x € £T-]B implies Tx - TxmieB). Since A and B are
completing, there exist x and y such that X, =X in EA and

Tx, ¥ in Fp. Since G(T) N(E,xFy) is closed in E,xFp, it follows
that (x,y) 6 &{T) ﬂ(EAxFB), that is x €« D(T) and Tx = y. For any

¢ >0, there 18 an integer m such that r-xa ¢A and

Tx - Tx € £B, thus (x- x) € £ANT'B, for all n3m. This shows

that X, ~*Xx in E, ./,

LEMMA O,4. Lot E bo a locally convex space and K a bounded diek
which ig sequentially complete in E, Then K ig a Banach digk..

e L NI W SO
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In particular compact digks are Banach digks.

Proof. Since K is bounded, EK has a topology finer than
that induced by E. Thus% is norming. Let X, beaa Cauchy sequence
in By. Ther x is a Cauchy sequence in E, and x, € AK, Vn, for
some A large enough. Thus X, converges to some X € AK in E. We
now prove that X, —* X in EK‘ Lot £¢> 0 be given. Then X =X & &K

for n, m large enough. Now X =X, X=X in E, and x-xmael( since

K is sequentially complete ./.

We nmow turn to some results involving an operator. In the
remainder of this section, we shall always assume E, F to be
locally convex spaces, and T an operator from E into F such that

D(T) is. dense in E (80 “‘that the adjoint operator T is defined).

LEMMA 0.5. a(r)e ={(-1*s,8)6 E'xF* : gaD(Th)}.

In particular’, G(T*) is weakly closed in F'xE',

Proof. It is well-known that u € (ExP)” 1s of the form
u = (£,8), where f€E' and g&F ; if h = (x,y) ¢ ExF, then
u(h) = £(x) + g(y).
It follows that u = ({.s)c G(T)° 1f and only if u(h) = 0O,

Yh 6G(T) , that 1s f(x) + g(y) = O or equivalently f£(x) = -g(?x),

for all x €D(T). This is equivalent to : g€ D(T') and t = -T'g.

U

Rence G(T)® = {(-T+g,g) : gGD(T"')}.
Since G(T)° 1s weakly closed im (ExF)*, and the weak
topology on (ExF)+ is the product of the’weak topologies on E'

and F', it follows that G(T*) is also weakly closed in F'xE' ./.

PP WSS

o
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LEMMA O.6. If T bas a closed graph, then D(T*) is weakly dense

in F,

Proof. It is equivalent to prove that p(Th)e = {0} in F.
Lot ya D(T*)°. Then g(y) = 0, ¥g «D(T"). In view of Lomma 0.5,
(0,¥) €G(T)°°, But G(T)°° = (6(T))” = G(T). Therefore y=T0=0 ./,

LEMMA 0.7. Lot L bo a closed subgpace of E. Ther din L <o if

and only if codim I°<oe in e, Furthernore dim L = codin L°,

duality, codim L<®if and only if din L°<w, and

codim L = dim 1°,

Proof. If E' is equipped with the weak topology, then
gt may be canomically identified (via the evaluation operator)
with E. On the other hand, L° is weakly closed and L = (L)™ = ILee,
Thus we meed only prove the second (dual) part. ‘

Assume that codim L 2 B, n an integer. We prove that
dim L° 3 n. Let x, seeesXy be linearly independent and such that
- >fx seses3X, J<NL = {0}. By the Hahn~-Banach theorem, there are
Lireeest € E' such that £, € I° and ti(xj) = 61:] (Kronecker
symbol), for i,j = 1,000p0,

Theee functionals are linearh independent, for if s
1 =1,...y,n are scalars such that 15_'] ¢;f; = 0, then 153(:1!1(11)

J =0, J = 1,e0eyn, Thus dim 1° 3 n,

We now.prove that if codin L = n, then dim I° = n, lLet
Xy f; be as above. Let N(f ) be the null-space of f, . We prove
first that L = ﬂ R(f e Lot x £ L and x = x' + x" with X'= Zn a,x;
and x"eL, Sincta; # 0 by assumption, at least ome scalar 2:1

should be non zero. For. that ay» We have f,(x') = a; #0,

YA N . ma
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n .
whereas £,(x") = 0, Thus f,(x) # 0, and x & (\ N(f,). This shows
n i=1
that N N(fi) ¢ L (the converse inclusion is trivial).
i=1 n
Now let f GLl°., By the above, K(f) o N N(fi). By a well-
i=1

known property of linsar functionalas, £ is a linear combination

of the f,'s. Hence din 1° = n ./,

i
LEMMA 0.8. Assume that D(T) = E, and T has a closed graph. Then

R(T)° = (R(T))” and R(T)® = N(T'), the closure being taken with

[ 3

regpect to the weak topology.

Proof.The second equality is a direct consequence of the
definition of T' (and is true even without the assumptions D(T) = E
and G(T) closed).

For the first, we prove that N(T) = R(TV)°. It is obvious
that N(T)C R(T')°. Convergely, let x«R(T')*, Then Tx « D(T")°,

In view of Lemma 0.6, Tx = O, that is x€¢ N(T) ./.

For the next few results, we shall need the following
(ct. (8,Grothendieck)) :

LEMMA 0.9, Lot N be a closed subspace of E. Let Ew denote E equip-
) e

ped with the weak topology. Then E'/‘N = (E/R)', and the common

topology is the weak topology in the duality (E/N, N°), N° being
the polar of N in E'. . S

Proof. We first prove that (E/N)*= N°. Let f« (E/K)*;
then f defines in a canonical way an ? ¢E' such that ?eN°, This
agsociation is clearly linear, one~to-one and onto (by direct
examination of the topology on E/K and the definition of Fene),

Since E and E' have the same dual, we have proved in fact that
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(E/R)+= (E'/N)+z N°, It remains only to prove that the weak topo-~
logy on E/N in the duality (E/N, N°) is finer than that of E,/K.
Let A be a (weak) neighborhood in E_ . We have to prove that there
is a finite disk DEN° such that D°<c A+N (polar taken in the dua-
11ty (E, EV)). Now trivially (A+N)° = A°NK°, N being linear.

Since A° 1s a finite diek in E', A°NK° is contained in a finite

disk D'C N°. We have then D!°c (A+R) C 2A+N. Take D = 2D' ./.

As a direct consequence of Lemma 0.9, we have :

LEMMA 0,10, If T is opon then T is weakly open.

Proof, It suffices to romark that if £ € N(T)° then g
defined by g(Tx) = f£(x) is a comtinuous functional on R(T), which
extends to a coatinuous functiomal om F, by the Hahn-Bamach

3

theorem ./,

The argument in the preceding proof also yields immedlately
the following

LEMMA O.11, Asgsune that D(T) = E and T has a closed graph, If T
is woakly open then R(TY) is weakly cloged.

Proof. We already know that (R(T'))™ = N(T)° (Lemma 0.8).
We mow prove that R(T') = N(T)°, But this is immediate, for if
t €N(T)°, t‘hon g defined by g{(Tx) = t(x) extends to a continuous
functional Z<E'. Thuas € D(T") ana 7'z = t&R(T") ./.

If we return to the aasumption.D(T) denso in E, then R(T+)
is a fortiori weakly closed in the duaiity (E, E+) it T is weakly

open. We now prove that the converse holds true.
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LEMMA O.12, Agsume that T has a cloged graph, Then R(TY) is weakly
cloged if and only if T is weakly open.

Proof. It remains only to prove the "only if" part. Equip
E' and F' with the weak topologies, Simce T has a closed graph,
D(T") 1s demse im F', thereforo T'' is defined from E'*= E into
FH= F, In view of Lemma 0.5,

G(T)°° = {(x,y) «ExF : (~17g)(x) + g(y) = 0, Vge D(T")}

o0

= {(x,y) ¢ ExF : g(y) = ('I{'*s)(x), vE en(T) }
= {(x,y)¢ ExF : xa DT ), ¥y = Tﬂx}
= a(T™h),

Since G(T) = (G(T))" = G(T) , we infer that T = T**,

The Lemma 1s now a comsequence of the following :
LEMMA 0.13, If R(T) is closod, then T' is open from F' into E'

oquipped with the weak topologies.
Proof. We should prove that 7% induces (in a g¢anonical

way) a one-to-orpe operator fronm F+/N('I:+) into E*, which is open
when F+, Y are equipped with the weak topologies. In view of
Lemna 0.9, we should prove that if ye& N(T*)° and

A= §5¢F+ : lg(y)l < z} is a (weak) neighborhood in F", then T A
is a (weak) neighborhood in R(T+). But this is immediate beczuse
K(T*)° = (R(?))™ = R(T) by assumption, therefors y = Tx for some
x€D(T). Mow T'A = §£¢E :|r(x)| <€} N R(TY) ./,

Firally we prove some sufficient conditions from which

to infer that T 1a opon when it is almost open.

LEMMA O.14. T 18 open if and only if it is woakly open and almost
open.
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Proof. TEF "only if" part 1s obvious. Conversely, let T
be woakly open and almost open. We have to prove that the one-to-
one operator from E/R(T) into F induced by T is open. In view of
Lemma 0.9, we nay assume without loss of generality that T is
one-to-one,

Lot U be any closed neighborhood in E. Thenm (TU)” AR(T)
is a neighborhood in R(T). We now prove that "weak openness™ of
T implies TU = (TU) " NR(T). Indeed, since ! i weakly comtinuous
from R(T) into E, and the closure of a disk is the same whether
it be in the originmal or in the weak topology, we have

' (19)~ ¢ (*7' (TU))” N D(T)
c U N DT).
Thus (TU)"OR(T) = TT"'(TU) ¢ TU, that is TU is a neighborhood
in R(T).

If now U 18 an arbitrary neighborhood in E, and

U' = (1/2 U)"c U, then by the preceding paragraph TU' (and a

fortiori TU) is a neighborhood im R(T). Hence the conclusion ./.

DEFINITION., A laocally convex space E is said to be fully complete
if it has the following property :

(P) : It H 18 a linear subspace in E' such that HNU® is
woakly closed, for all neighborﬁoods U in E, then H i8 weakly
closed,

We refer the reader to (21, Robertson and Robertson) for
the various properties (and their proofs) of fully complete spaces.
We recall only that _

(a) Fully complete spaces are indeed complete,

PR R
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(b) A quotient of a fully complete space by a closed gub-
space is fully complete,
(c) Frechet spaces are fully conplete,

» (d) The following theorem holds, to which we shall often

refer in the main text :

THEOREM 0,15, Apgsume that E is a ?;llz complete locally comnveXx

/gggco and T an operator from a subspace D(T)CE into a locally
convex space F, such that the graph G(T) is cloged in ExF.
I£ T is almost open, then T is opem and R(T) is cloged.

Progf. A proof of this theorem may be inferred directly
from (21, Robertson and Robortson, Proposition 10). We simply
netice that (a) the ome-to-one operator from E/N(T) into F induced
by T has a closed graph im (E/N(T))xF, because N(T)x{0} ca(T),
thus the projectiom of G(T) into, (E/R(T))xF along X(T)x {0} is
Btill ¢losed (consider the set :ioorotic complenent of G(T), and
the fact that the préjoction is an open operator), and (b) E/S(T)
is also fully complote. Therefor; we nay assume without loss of
generality that T is one-}p-one (‘1""1 is "nearly continuous" (21,
Robertson and Robertson) from R(T) into E and has a closged graph).
The operator T is open by (21, Robertson and Robor&aon, Proposi-
tion 10). Now let ¥ bo a filter in R(T) converging to y in F. The i
filter in E generated by T“‘{ is Caunchy, thus :znverses to x in
E (E being in particular complete). Simce G(T) is closed in ExF,
we infer that x €«D(T) and Tx = ¥ dR”(‘r).

We may also prove directly that T is open as follows.

@ e T

e g -
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In view of Lomma O.14 it suffices to prove that T is weak-
ly open.

Let @ = (D(T))"CE. Then G'= E'/G°. In visw of Lemna 0.12,
we should prove that R(TY) ie woakly closed in the duality
(G, E+/G°), if we consider T as an operator from G into F,

Lat H be the inverse image of R(T") by the canonical quo-
tient operator Q : E+-'E+/G°. The problem reduces to showing that
H is weakly closed in E® (cf. Lemma 0.9) because G°CH (so that
if H is closed, the image of H by Q, which is R('l'+), will be
closed : consider the set-theoretic complement of H, and the fact
that Q is an open operator). Since E is fully complete, it is suf-
ficient to prove that HNU° is weakly closed for amy neighborhood
U in E (property (P)). We nay assume without loss of generality
that U is closed. Thern (U NG)° = (U°+G°) = U°+G°, simce U° is
(weakly) compact and G° (weakly) closed. This shows that if
0 = UNG then, in the dual G', U° = QU°. Therefore

UNE = 0°0 Q' (R(T))
U° N (Ue+a° ) NQ~ (R(TY))
= 0°0 Q”' ((Que) AR(TY))
= 1N QT (Ten ().
We row show that U°f\R(ik) is weakly closed in G+, from

H

which it will follow tkat U°NH is weakly closed (Q being con-
tinuous), and the proof will be finished.

Now there is a neighborhood V in F such that
VﬂR(T)C'(TU)'. We may assume V to be open; then VNAR(T) is dense
in VA(R(T)) . Thue VN(R(T)) " c (VAR(T)) c (T0)”. Moreover, if
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) -

x € (V)" N(R(T))", ther Ax&VN(R(T))", YA : 0 € A<1. Thus
(M)"NR(T)) e (VAR(T)) ) e (TD)".
((#) Incidentally, this proves that T is almost open if (TU)  is
a neighborkood im (R(T))  (or R(T)) for any neighborhood U im E.)
Taking the polars, we obtain
7+=100 ¢ (Vo+R(T)O)"
cvo+N(T"), p
V° being compact and N(T") = R(T)° closed.

Now lot ¥ be a filter in U° N R(T'), weakly convergent to
tefo tnc*, If AeF then {(T°'A)NAV°} define a rilter § in V°.
There is an ultrafilter Q' finer than @ which converges to an
elenent g € V°, since V°‘ is compact. The filter generated by T+§'
is finer than ? and coxverges to f in F'. since G(T+) is closed
in F'xG* (Lemma 0.5), we have geD(T") and. T7g = r60°N R(TY).

Thus 0°NR(T') is closed ./.

-

g

TTIR o e o ap v e, iy W ot




"CHAPTER 1

KATO'S THEOREM AND SOME EXTENSIONS

In this chapter, we present the statement of a classical
result of Gohborg, Krein (5) and Kato (10) concerhing small and
compact perturbatiqna of semi~Fredholm operators botween Banach
spaces and some extensions to more gemeral locally convex spaces.

The main problem shall bo to definme a suitable concept of
"small" perturbations whon the spaces afe no longer normed.
Several such definitions may be ﬁossible. In thig chapter we
study a typo of perturbations based on the following idea : a
perturbation preserves “"nice™ properties i} it does when the opo-
rators are restricted to suitable eubspaces; We consider '"small"®
porturbations accordingly and obtain some extemsions of the re-
sult of Gohberg, Krein and Kato. Some other possible extensions
are derived in the next chapter whego somelprincipléé and results
deveioped ig,thiq chapter are used im ¥he duals. Several results
of Vladinirski (26); Goldman ahg Krackowski (7) are also obtained,

and in many cases strengthened by this approich.

1.1, The theoren of Gohberg, Krein and Kato

THEOREM I.! (Gohberg, Krein (5), Kato (10)3% let E, F be Banach
»

-
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gpaces, T a soemli-Fredholm operator and P a contimuous operator

from E into F such that D(T)c D(P).
(A) Let Y(T) = inf{0Tx8/d(x, N(T)) : xCD(T),bx 4 H(T)}
if T#0and Y(T) = if T = O (in which case E 93"’3‘ should be

tinite dimensiopal), If WP < ¥(T), then T+P is g gemi-Fredholm

operator, nul(T+P) ¢nul(T), def(T+P) ¢def{T) and ind(T+P) = ind(T).

(B) Li P is a compact operator, then T+P is a semi-Fred-

holn- operator and ind(T+P) = ind(T).

(C) There exists @ > O such that, for all A in the an-

nulus 0<[A]< @ , nul(T+AP) and def(T+AP) are constant.

We refer the reader to (6, Goldberg) f?r a proof of this
theorem. _

Part (A) of¢this theoren was essentially established by
Gohberg and Krein in (5), but anly for a less precise upper bouné
of IIPl. Tho formulation WPl < Y(T) is due to Kato in (10). This
bound is the best possible if oﬁe considers the following simple
counter-example : take T = I, P = «I, I being the identity ope-
rator; then ¥(T) = 1, iPl =1 and T+P = O,

Part (B) im fact holds for more genéfal locally convex
spaces, as was proved earlier by Schwartz (23), KSthe (12) and
Schaefor (22) (cf. Theorens I.é‘& I1.8). Kato (10) proved it for
P belonging to a larger class of operators (in Banach spaces)
which he called "strictly singular".

A generhlize& version of Part (C) shall be proved im Chap-
toer II, Thedren II.S. ' |

For convonlonce, we will refer henceforth to this theoren

[

[P,
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as Kato's theoren.,

If B, B! denote the unit balls of E, F rospoctively, then
NPl = inf {A>0 t PBCAB'} and ¥(T) = sup { w30 : pB'NR(T) < TBL.

The first equality follows immedlately from the definitionm
of §Pll., For the mecond, lot 8§ denote the right-hand side. If
T = O then obviously ¥(T) = 6 = e ., Suppose T ¥ O. Then

¥(T) = inz{liTxll : x €D(T), d(x,N(T)) = 1}.

We prove first that 6 S ¥Y(T). Let M 30 be such that
/\AB‘ NR(T) € TB, and consider any x € D(T) such that d(xo,N(T)) = 1
(d(x,L) denotes the distancoe of x to L in terms of the norm of t/he -
space). If ITx || < M thon ITx|| <(1-€&)M for some O < & <1. Thus
Tx G (1=-t)TB, which would moan that x & (1=&)B+N(T). This would
show that d(x,N(T))s1-¢ , contrary to our assunption on x. Thus
ITx{{ 3 #, thorefore 8 < Y(T). We now prove that for any 0<& <1,
wo have (1-€) Y(T)B'NR(T)<cTB, and this would show that 6 = X(T).
Lot y = Tx & (1-8) Y(T)B'AR(T). We may assume that Tx ¥ O. Then
hTx{l € (1-8) ¥ (T) € (1=-eNMTxI/d(x,R(T)). This shows that
d(x,X(T)) $1-% ., Thore is thus an x,& B such that x-xocl(('l‘), that
is Tx = Txoﬁ TB. The proof of the equality under consideration
;.s now complote, ~ ‘

Part (A) of Kato's theoren now reads :

THEOREM 1.2. Lot E, F bo Bamach spaces with unit bails B, B' res-
poctively, Lot T be a semi-Frodholm operdtor and P a_contimuous
oporator fron E into F guch that D(T)C D(P). ‘

Aggune that there exist positive co%tmstg— M and A such

that
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Then T™+P ig a semi-Fredholm opgrator, nul(T+P) ¢nul(T),

KB AR(T) ETB, PB € AB' and ’4>)\ .

def(T+P) ¢ dof(T) and ind(T+P) = ind(T).

REMARK, The condition MB'NR(T)CTB implies that T is open. Mow
as E/N(T) is complote (which is a consequence of the fact that T
has a closed graph, hence B(T) is closed, and that E is a Banach
space), it also implies that R(T) is closed. Thus the above theo-
rem holds with T (a priori) an oporator with a closed graph (in
ExF) and which has an index.

There are several proofs of Kato's theorem (cf. (10; 11,
Kato), (6, Goldberg), (14, Le Quang Chu)), alllef which depend
on a cruclal theorem of topology due to Borsuk, cgncerning odd
nappings of a sphere into another of emallef dimension (cf. (5,
Gohberg, Krein)). The result of Borsuk is used via the following

LEMMA I.3. lot M, B bo subspaces of a normed space E. If din K <

and din M >dim N, then there exists an xaM, x ¥ O guch that

———

d(x,K) = lxl.

Wo refer tkhe reader to (6, Goldborg) for more details
about this lemma.

Kato!s theorem l}aa nunerous applications to ordinary dif-
ferential equations. The atabil:;.ty 0f the index is a useful tool
to prove soveral existence theorems. We refer the reader to (11,
Kato) and (6, Goldberg) for the many examples of theso appli-

cations.

We reproduce here one brief example from (6, Goldborg)

PR . o [URUVEUS S—
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to 1llustrate some general ideas about such applications.

EXAMPLE. Let Z be a difforential expression of the form
n
T = & Dk
k=0 ak
vhorq each a, is a complex-valued function on a compact interval
I. For each positive integer n, we define An(I) to be “the set of
complex-valued functions £ on I for which D2 'f = £(3°1) (the

)th derivative of f) exists and is absolutely continuous on

G
(n=1
I. Let & _(I) = C(I) (continuous fumctions om I), and L, (I) be the
set of lebesgue-integrable functions on I.
We say that T 1s the maximal operator associated with Z

1 T is defined as follows : ‘ 3

D(T) = {f : Ii«mn(r)ru,](x), Tt GL1(I)} ,

Ttx Tt £ a0 .

k=0

(Since absolutely continuous functions are differentiable a.e.,
T is defined a.e., on I for rdAn(I).)/

We have the followling

THEOREM. Let k bo a bounded measurable function on IxI, a, e I (I,

0s1€n-1 and -~ e Lo (I). Then there exists o > O puch that for
n

IA| < @ » the equation
n
I a @) + 0 fxe,t)ie)ds = 3(t) ace.
yGL,(I)
has precisely n line independent solution in A (I). '

Proof. Lot T be the maxinal oporator associated with
n
i
T = Z D”. Dofine P on L, (I) by
i=0 E LI
(P)(t) = L k(s,t)2(e)ds.
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It is proved in (6, Goldberg, Theorems VI.3.1! and VI.3.2)
that T is a Fredholm operator, nul(T) = n and def(T) = O,

Obviously, P is‘a bounded operator; hence for |[APIl < ¥(T)
we have nul(T+AP) .s\ixh{('r), def(T+AP) €def(T) and ind(T+AP) = ind(T).

Consequently def(T+AP) = O and nul(T+AP) = n ./.

REMARK. In fact in the precedimg proof P is a strictly singular
operator and, as a comsequence, the equation has precisely n
linearly indepemdent solutions in A (I) for all A except for at
most a countable set of oxceptional imolated points {)1} with no
accumulation point at finite distance (cf. (6, Goldberg, Theorem

VI.8.7),from which our example is taken).

There are similar situations for lipmear partial dif-
ferential equations (see Example III.4.3). But there, the spaces
are frequently Frechet spaces or more general locally convex
spaces (of distributioms). Therefore it seems interesting to deter-
mine whother or not generalized versioms of Kato's theorem, for
locally convex spaces, exist. It is this question that we treat

in this thesis.

I.2. First extensions of Kato's theorem

The question woe are concerned with is how Kato'!'s theorenm
can be extended to more gemeral locally convex spaces. The most
natural answer is to look first at normed spaces, where, if no-
thing else, a£ loast the concept of small perturbations is still

clear,
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Wo notice that in Kato's theoren, the completeness of F

is not really essential.

I.2.1. Extension to the case of normed range spaces

If F 18 complete we nay extend P by continuity, and there-
F ]
fore D(T)c D(P) may be replaced by (D(T)) ¢ D(P). With this remark,
Kato'githeorem holds true in the followirg slightly more general

case =
L o

THEOREM I.4. Let E be a Bamach space, F a normed space, T a semi-

Fredholm operator and,P a contipuous operator from E imto F such

that (D(T))” € D(P).

(A) Assume that there exist a neighborhood U in E, a
neighborhood V in F and 0 < ¢ <1 such that VAR(T)CTU and PUcEV.
Ther T+P 1g a semi-Fredholm operator, nul(T+P) ¢ nul(T),

v
def(T+P) € def{(T) and ind(T+P) = imd(T).

(B) Asgume that P 1s a procompact operator, then T+P is
a_semi-Fredholn oporator and ind(T™+P) = ind(T).

(C) Thore oxists © > 0 guch that, for all A in the an-

nulus 0 < Al <@, nul(T+AP) and def(T+AP) are comstant.

FProof. The proof will he quite characteristic of those in
Chapter II,. It makes use of Kato's theorem and duality.

That T+P has a closed graph in ExF is straightforward,
because T has a closed graph, P is contimuous and (D(T)) ¢ D(P).

We now prove that T+P is almost open. We may assune
withoht loss of generality that D(T) = D(T+P) = E.
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Let U, V be as in the statement of the theorem. For (B)
we may assume that PU is precompact in F.

We may assume without loss of generality that V is closed.
Then from

VAR(T) c TU
(R(T) is closed), %y taking the polars, and using the fact that
(tu)e = 77" loe, R(T)® = N(T*), we obtain
*=Tge ¢ (ve+n(T*)) e vean(T?)
since Ve is weakly compact, N(T+) weakly closed, and the closure
is taken with respect to the weak topology in the dualityﬂ(F,F+).
Thus U° N R(T')c T've,

This means that T 1g open from the Banach space F into
the Banach space oM generated by V° and U° respectively (this is
equivalent to using the strong topologies on F' and E+). In view
of Lemma 0.5, T® has a closed graph.

On the other hand, X(T*) = R(T)°, R(TY) = R(T)° (lemnmas
0.8 and 0,11), so that nmul(T)* = def(T*), def(T*) = nul(T) and
1nd(T*) = -1nd(T) (Lemma 0.7). Thus T' is a semi-Fredholm operator.

“lge > &~'ve, thus

In case (A), from PUC £V we get P’
P'V° € £U°. Wo apply Kato's theorem, part (A), and obtain that
T++P+L j:s a semi~Fredholm operator, nul(T++P+) $ nul('r*),
def(T*+P") gde(T*) and ind(T*+P*) = ind(r").

In case (B), from the precompactness of PU, it follows
that V° 'is precompact with respoct to the semi-norm generated by

4=

P 'U°, by a well-known property of precompactness in duality

(8, Grothendieck), For any A > 0, there iz a finite seot

»
T el

e pratr e




27

Fc >P 7 lue ¢ (=F*) such that vo € F + AP*"'u°; theretors

P've ¢ P'F + AU° and this shows that P' is a compact operator.
Now Kato's theorem, part (B), applies. As a result 1t +P* 16 a
semi-Fredholm operator and ind(T'+P*) = ind(T").

In both cases, T +P* 1s open : there is p >0 such that

puear(r'+p) e (1tephive,
that is
p(rtept)we € v s neTter®),
As T'+P" = (T+P)*, by duality we obtain
MVAR(T+P) <& ((T+P)U)7,
thus T+P is almost open.

Sirce E is a Banac;h space, hence fully complete, we deduce
further that T+P is open and R(T+P) is closed"('l‘heorem 0.15).

Now from the fact that R(T+P)° = R(T +P%), N(T+P)° =
R(T*+P"), we infer ind(T+P) = ind(T), and furthermore in case (4),
nul(T+P) ¢ nul(T), def(T+P) & def(T).

There is ¢>0 such that, for all A in the annulus O<l)l<e,
nul(T*-H\P*') and def(T++AP+) are constant. By duality part (C)

is proved ./.

We now give some counter-examples to show that Kato's
theorem fails when E is not complete., More precisely, what we
shall fail to obtain is that the range of the perturbed operator
T+P be close‘d in the case of small perturbations, or in the case

of compact perturbations of 9_ -operators.
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I.2.2. Some counter-examples

We present first a counter-example concerning small’ per-

turbations of ¢*-operators and ¢L-operators.

COUNTER-EXAMPLE (i). Let E be 'the space of all polynomials defined
on the interval (0,1/2), normed by the sup norm : £&E if and
only if f is of the form f = f(x) = .; aixi, B=1,2,... 5, and
el = sup{lr(x)l : xe(0,1/2)} . Obvizgsly E 18 a normed space
but not a Banach space (E is a dense subspace of C(0,1/2), by
Welerstrass' theorem), Let F = E, T = I the identity operator,
and P be the operator "multiplication by x" defined by Pf(x)=xf(x).
Then

IPell € sup §ix) Jex)l @ x €(0,1/2)}

S 1/2 sup {]f(x)\ : x6(0,1/2)%
g 1/2 el .

Therefore lIPll £1/2, whereas Y(T) = Y(I) = 1, The operator T is .
of course an onto isomorphism (g very particular Fredholm operator)
but R(T+P) fails to be closed, and since def(T) = O, we have
def(T™+P) > def(T) as a consequence. Indeed, (T+P)f(x) = (1+x)f(x),
therefore R(T+P) is the subspace of all polynomials divisible by
(14x). It 1s of course'a proper subspace of E (consider g(x) =1
for instance), and in fact it is a dense subspace of E (which is
consistent with the fact that §(T*+P*5 = 0, from which we get
(R(T+P))~ = F, if we pass to the duals as in the proof of
Theorem I.4). ‘

In this counter~example we even know that T+P is one-to-

one and open (with a closed graph), as shown by the following

B
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LEMMA I1.5. let E, F be normed spaces, T an injective open operator

and P a_bounded operator from E into F guch that D(T) < D(P) and

I Pll<¥(T)., Then T+P is injective and open.

REMARK., This result in fact extends to the case of gemeral locally
convex spaces, as will be proved in Chapter II (Theorem II.Z2).

For convenience we present a direct proof here.

Proof. We prove first that T+P is one-to-one. Assume x#0
bs guch that (T+P)x = O, We may choose Jlx|l= 1. Then ||Tx})| 2¥(T)
whereas ||Pxl| < ¥(T), in contradiction with the assumption Tx=-Px.

We now prove that T+P is open. Let Yy = (T+P)xn be a
sequence in R(T+P) converging to y = (T+P)x. We khave to prove
that X, —* X, By congidering J, - Y on ths one Rand and X, = %
on the other, we may assume that yn—-o. It xn-,c-o then there
exists a subsequence, rebaptized e such that anllit for some
€ >0. Congider hn'= x /lix W; then b il = 1 and (T+P)h <
ﬂ(T+P)xnﬂ/£ , thus (T+P)hn'—>0. But this leads to a contradiction

because ([(T+P)n | ZNTh ) - WP I 3 X(T) - BPU > O ./,

b 2

Before passing on to the next counter-example, we need

a lemma.

LEMMA I.6. Let E, F be locally convex spaces and T an operator

from E into F, with D(T) = E.

‘. Let E, be a subspace of E and"l‘l denote thﬁXrestriction

of T to E, with range space F.
If N(T) € (R(T,))” and T ig open, then T, is open.

[
SV ot et ey e oy gn T e T W
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Proof. Let U, = UnE‘ be a neighborhood in E,, U being

1
a neighborhood in E. Then

[ 4

(U+N(T))NE, € (T+(N(T,))7)NE,
c (20+8(T,))NE,
€ 20 +N(T, )e
The second inclusion is due to the fact that (A)  C A+U
for any set A and any nelghborhood U. The last inclusion is proved

as follows. Let x = x, +x_ with x, €20, x Then

|
aE‘ because H(T‘ ) CE,. Thus x

26 N(T‘) and xéE] .

X, = X=X ¢2UﬂE‘ and

] 2
x €(2UNE,) + N(TI).

1

¥e now prove that (TU)ﬂR(T‘) c aTU] . Let ¥y = Tix1 ’ x,tE] ’

be such that y €TU, that is y = Tx, with x€U. Then x -x ¢N(T),

1
thus x, € (U+N(T)) NE, < 20, +R(T,) from what is proved in the
preceding paragraph. Therefore deTUl .
Since TU is a neighborhood in R(T), and R(T‘) < r(T),

it follows that T,U; is also a neighborhood in R(T1) o o

COUNTER-EXAMPLE (ii) (Vladimirski). In (2?), Vladimirski gave
the following counter-example to show that a compact perturbation
of a é_-operator from a normed space into a Banach space need not
give rise to a ¢_-operator.

let X be an infinite dineneionqi‘ﬁanach space and K a
compact, injective operator from X into itself. We may take for
instance X = 1, and K the operator defined by K(ei) = o, /1,
1=1,2y... , where e; is a base element o, = (0405000y1,05004)

with 1 at the 1B position.
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let F = X and Z = X 0 F, the Banach space constructed as
the sum of two coples of X. Consider K now as an operator from
X into F. Let Qy (resp. QF) be the canonical projection from 2
onto X (resp. F). Let P = KQX. It 18 clear that P is a compact
operator and QF a ¢L-operator (both from Z into F).

We have N(Qi.)"”é’ X and N(P) = F, thus N(Qg+P)NX = fo}
because N(QF+P)nx = N(QF+P)0N(QF) = N(P)nN(QF) = XNF = {o} .

Let L be an algebraic complement of R(QF+P) + X in 2,
that is N(Qp+P)+X+L = Z and (R(Qp+P)+X)NL = {0l (the three sub-
spaces N(QF+P), X and L form an algebrafc decomposition of 2).

Let H be a dense subspace of codimension 1 in x'(a ig the
null-space of a non continuous functional on X). ‘

Let E

B + K(QF+P) + L, Then E is a subspace of codi-
mension 1 in Z, Moreover E is not closed in Z, because ENX = H
and H i3 not closed in X.

Let T (resp. P') be the restriction of QF (resp. P) to E,
with range space F. Obviously P' is a compact operator. We prove
now that T is a 4{_-operator. It 18 clear that G(T) is closed
in ExF, since it is the restriction of G(QF)' Moreover, R(T) = F
because TE = QF(E+N(QF)) = QF(E+X) = QP(Z) = F.

Finally, T is open in view of Lemma 1.6, and of the fact
that N(T) = H is dense in N{QF) = X.

Now R(T+P') is not closed in F, because otherwise
(QF+P)']R(T+P') would be closed in 2 (QF+P being continuous).
But (QF+P)"]R(T+P') = E+N(Qy*P) = E since K(Qp*P) cE by cons-

truction. The counter-example is established.
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COUNTER-EXAMPLE (i1i). We notice that the preceding counter-
example 1s still valid for A K in place of K, for any A > 0. The
operator P! is bounded (being compact), thus JAP'|| < ¥(T) for A
small enough. This proves that a small perturbdbation of a ¢L-
operator from a normed space into a Banach space need not yield

a 4)_ -operator.

The only case we have left out up to mow is compact per-
turbations of ¢+-operatora. It turns out that these perturbatians
are "good", without assumption on E, as sgovn by a theorem of

Schwartz, Kothe and Schaefer below.

I.2.5. The theorens of Schwartz, Kothe and Schaefer

When E, F are locally convex spaces, the case of compact
perturbations is settled by the following theorems due to Schwartz
(23), Kothe (12) and Schaefer (22).

THEOREM 1.7 (Schwartz, KGthe, Schaefer). Let E, F be two locally

convex spaces, T a © -operator and P a compact operator from E
=Ty

into F such that D(T)C D(P). Then T+P is a ¢ -gperator and

ind(T+P) = ind(T).

REMARK, We may no longer have nul(T+P) < nul(T). Let T be a one-
to-one ¢+-operator. Let x # O be a point in E, and L a closed
subspace,topological and algebraic complement of > {xo§<,i.e.
guch that L+>{x 1< = E and x, ¢ L. Lot P be defined by

Px = -’I‘xo and Px = 0 1f x QL (P is a continuous operator of rank

)
1 (i.e. R(P) = > {Px } < ). Then nul(T+P) = 1, whereas nul(T) = O,
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As a comsequence of the equality ind(T+P) = ind(T), we may also
have def{(T+P) >def(T), 1f we choose T with def(T) &0,

THEOREM I.8 (Schwartz, KSthe, Schaefer). Let E, F be. two Frechet

spaces, T a ¢ -operator and P a compact operator from E into F
such that D(T) cD(P). Then T+P is a @_ ~gperator and ind(T+P)=ind(T).

Schwartz and K5the proved Theorem I.8 by usimg Theorem I.7
in the duals F+ and et equipped with the compact convergence
topology (i.e. topology generated by the polars of the compact
dieks)., Vladimireki (25) used a tochnique of "extraction and come
pletion” to construct Frechet spaces out of gemeral locglly con-
vex spaces and then applied Theorem I.8 to obtain a segeralization
of it. He proved that Theorem I.8 holds for E a fully cﬁmpleto
space (in particunlar E ;Dfrechet space), F any locally convex
space and P a precompact operator, Coumter~example (ii) shows
that the completoness of E is essential.

We yill prove in Chgptor II the theorems of Schwartz,
Kothe and Schaefer and the result of Vladimirski by a different
approach, which giyea relatively short and gonveniznt proofs
(Thaoxoma‘II.éa and II.24). We use duality, but unlike Schwartz
and.KSthe, we do mot seek locally convex topoiogies on the whole
of the spaces Ff and E+ for which P’ nay be‘a convenioent pertur-
bation of T'. Instead, we consider convenisnt subspaces of F'
and EY (which are essentially Banach spaces generated by closed
equicontinuous sets), such that rostrictgd to them, Pt 15 a ngood"

perturbation of T*. This approach is partly motivated by the fol-
lowing (cf. Theorem I.9) : a perturbation leaves the index
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invariant if it does when the operators are restricted to suitable
subspaces.

The preceding remark gives us a means of using résu;%s
proved for Banach spacos in a more general setting of locally
convex spaceg. In particular, we will be able to comsider “small
perturbationg wher the spaces are not normed, in the sense that
they be small when restricted to suitably normed subspaces.
Another type of "small"™ perturbations {small bounded operators)
will be studied in Chapter II.

I.3..Some bagic results

!

I.53.1, Stability of the index
The following algebraic¢ result forms the basis of our

.
approach.

THEOREM I.9. let E, F be vector spaces and T, P operators from
E into F such that D(T)C D(P).

A, (n,) Agsume that
(a) T has an index,

v -

(b) Given any finite dimemsionsl subspace N CN(T), there

are subgpaces E'CE, F'CF such that
TE' = F'NR(T), XcE', R(P)CF!
and nul(T'+P') $nul(T'), def(T'+P') Sdef(T'), 1ind(T'+P') = 1ind(T'),

T*, P! being the restrictions of T, P to E' with range space F!.

. Then nul(T+P) ¢ nul(T), def(T+P) & def(T) and
1nd(T+P) = ind(T). ‘
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B. (H,) Assune that
(a) T has an index,

(b) There exist subspaces E'C E, F'CF guch that
TE' = P'AR(T), R(P)CF!

and ind(T'+P') = ind(T*'), T', P' beinpg the resgtrictioms of T, P

to E' with range space F'.
Then ind(T+P) = ind(T).

We need a lenma @

LEMMA I.10, lot E, F bo vector spaces, T, T' two operators from

E into F such that D(T') & D(T), dim (D(T)/D(T')) = n <o and

T = T* on D(T') (we henceforth refer to T as a finite dimensional

extension of T')., Assume that T' has an index.

Then ind(T) = ind(T!)+n.

Proof. It suffices clearly to prove this for n = 1. It
there 18 x ¥ 0, x GD(T) and x ¢ D(T') such that Tx = O, then
nul(T) = nul(T*!)+ andaR(T) = R(T'), thus def(T) = def(T'). If
there 1s no such x, then nul(T) = nul(T') and R(T') is a proper -
subspace of R(T). Indeed, fix x ¥ 0, x 6D(T), x & D(T'); if
R(T) = R(T') then Tx = T'x' for some x'&G D(T'). Then T(x-x') = O,

and x-x' & D(T*), contrary to our assumption. Thus

def(T) = def(T')-1, In both cases, ind(T) = ind(T')+1 ./.
For later referemces, we also prove the following.

LEMMA 1,11, In the setting of lomma I,10, if we furthermore

assume that E, F are locally convex spaces, then the followinmg
holds : ’

s
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(a) IZ T* has a closed graph, then T hag a closed graph,

(b) Iz R(T') is closed then R(T) is closed.
(¢) If T' is open and R(T') is closed, then T is open

(and R(T) is closed).

(d) If T' is almost open then T is almost open.

(e) If L is a subgpace in E such that D(T)CL and

(D(P*))"cl, then (D(T))” cL.

Proof. (a) & (b) follow from the fact that the sum of a
closed subspace and a fimite dimensioral subspace is closed :
we have dim (G(T)/G(T'))< %0, dim (R(T)/R(T')) <, Similarly,
(D(T'))” has a finite codimension in (D(T*))"+D(T), and the.latter
is consequently closed, For (e), remark that thus
(D(T))” c(D(T*))"+D(T) c L. For (c), we may assume without loss of
generality that D(T) = E. There exist finite dimensional subspaces
MCN(T) and N CE suoh that, algebraically, D(T')OM = D(T')+N(T)
and D(T*) O M 6 K = E. Then R(T) = R(T*') © TH. Since R(T') is
closed and dim TN <%, the decomposition R(T) = R(T!') 0 TN is
also topological.
Let U bq a neighborhood in E. There are neighborhoods

”

U1, D,, D2 in D(T'), M, N respectively such that U'+DI+D2<:U.

Now T(U'+D +D2) = T'U'+TD, where T'U' is a neighborhood im R(T")

1 2
(T' 15 open) and TD, is a finite disk generating TN. Thus
T'U'+TD,, and a fortiori TU, is a neighborhood in R(T). For (d),
keeping the notatioms of the proof of (c), we remark that
(R(T))™ = (R(T'))"+IN as (R(T'))™+TN <(R(T))" and (R(T*))™+TN

is closed. On the other hand,
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(T(U'+D, +Da))" = (T'U'+TD2)' = (T'U')'+(TD2)"
as (TDZ)' is compact. Simce (T'U')” is a meighborhood im.(R{T!))",

it is easily seen that (T'U')'+(TD2)’, and consequently (TU)™
are neighborhoods im (R(T))~ ./.

Proof of Theorem I.9. The proof is elememtary but some-
what long., We hreak it down to several smaller steps.
(a) We first prove that under the assumption (H1) or (Hz)
we have R(T) + F' = R(T+P) + F!'. Indeed,
R(T) + F' = R(T+P=P) + F!
€ R(T+P) + R(P) + F!
C R(T+P) + F! .
and R(T+P) + F' & R(T) + R(P) + F' C R(T) + F',
because R(P) C F',
let F* = F' + R(T) = F' + R(T+P)., It follows that
codiny, R(T) = codimyp, R(T)NF'
cod;.ml?,, R(T+P) = codimy,, R(T+P)NF'.
For if N € F' is such that X 0 (R(T)-NF') = F', then
K 0 R(T) = F*, and the first relation follows. The second is
obtained similarly. ’
We shall make use of the above in the following forzm,
which gives the conmnection between T, P and T', P! :
(1) det(T) = def(T') + codimp bl s
(2) def(T+P) = def(T'+P') + codim

F
if R(T)AF' = R(T') and R(T+P) NF' = R(T'+P') in F', The former

F,,

is satisfied by assumption; the latter shall be proved to hold
for suitable E', F' (cf. relation (4) in (c)).

PRV
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(b) lLet ¥ be any finite dimensiomal subspace of N(T). We
may assume that NCE', where E' satisfies (51) or (EZ) : in case
(H,), this is included in the assumptions; in case (Ha), let
E" = E'+N, where E' is givon in (Ha); we still have
F'NAR(T) = TE"; let T", P* be the restrictions of T, P of E" with
range space F!', then in view of Lemma I1.10 and the assumption
(Hz), we‘ have ind(T"+P") = ind(T"); it suffices now to robaptize
E® as E'.

(c) We now prove A and B in the case nul(T) <%, In view
of (b), we may choose E', F' satisfying (Hl) or (Hz)uand such
that R(T)<CE.

The following relations hold, and are ceantral to our

proof @
(3) B(T+P) = B(T'+P') ’
(%) R(T+P)NF' = R(T'+P) .

b 4

For the relation (3), let x €« X(T+P). Then Tx = -Px and
consequently Tx aF'NR(T). Simce F' NR(T) = R(T!') by assumption,
there 1s x'G E' guch that x-x' @B(T). As B'+X(T) = E', we infer
that x€E!', that is B(T+P) cE', Thus X(T'+P!) = N(T+P).

For the gglation (4), let y& R(T+P)\F', Then y = (T+P)x
and Tx = y-Px, It follows that Tx §R(T)NF' and, as above,

‘X @E', that is y e¢R(T'+P'), ‘

We now have, in addition to the relations (1) and (é),
thoe following : )

(5) aul(T) = nul(T') , .
(6) . nul(T+P) = nul(T'+P*) ,




and
(7) ind(TT+P') = ind(T') .
In case A, we have furthermore
(8) nul(T'+P') < nul(T'), def(T'+P') s def(T').

Whether def(P') and codim_, F" are finite or infinite

F
(we do not distinguish between different cardimalities of infi-
nity), the relatioms (1), (2), (5), (6), (?), (8) together show
that ind(T+P) = ind(T) and, in case A,
nul(T+P) ¢nul(T), def(T+P) & def(T).

{d) We now prove A and B in the case nul(T) = o and
def(T) <, :

Let N again be any finite dimensional subspace of N(T),
E', F' satisty (B,) or (H,) with RcE' (c¢f. (b)) and T', P' be
the restrictions of T, P to E' with range space F'.
We have immediately

dim N gnul(T'), mul(T'+Pt) ¢ nul{T+P).
Now the relation (1) still holds, with codimp F' ¢ oo,
but the relation (2) may fail to be true, In its place, we have
(2') def(T+P)  def(T'+P*)+codim, F"
because R(T'+P')CR(T+P) NP' trivially.

In case A, we have from the relations (2') and (1)

def(T+P) ¢ def(T! )+cod1mF ™

¢ def(T).

In case B, we simply notice that def(T'+P') < ®@ because

39

ird(T!'+P') = ind(T') and def(T')< o, In view of the relatiom (2!)

it follows that def{T+P)<oo ,

N ki
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We now prove that in both cases A and B, we have
nul(T+P) = oo, and the proof will be complete.
This is indeed the case because
nul(T+P) 3 nul(T'+P)
2 ind(T'+P*)
2 ind(T!)
2 nul(T') ~ def(T')

> dim N - def(T) + codim, F"

F
2 din B - def(T).
Since dim N may be arbitrarily large, we infer that

pul(T+P) = o ./,

IMPORTANT REMARK, A closer examimation of the proof shows that

in Theorem 1.9, the assumption R(P)CF!' can be replaced by

P(D(T))<F'. Indeed, since D(T+P) = D(T), all that we use in the

proof, as far as P is concerned, is the restriction of P to D(T).
This remark applies implicitly in all that follows

henceforth. . '

Stronger conclusions may be drawn from Theorem I,9 if
furthermore R(P)CR(T), by taking F = R(T) (cf. Theorems I.17,
1.18, 1.20).

In this line of thought, we have the following.

THEOREM I.12., lot E, F bo vector spaces and T, P oporators from
E into F such that D(T)C D(P).

(H.),) Assume that




(b) Given any finite dimenmsional subspace R €D(T), there

is a gubspace E'CE guch that OCE', PE'C TE' and
pul(T'+P') = nul(T!), R(T'+P') = R(T')

if T', P' demote the restrictioms of T, P to E'.

Then nul(T+P) = nul(T) and R(T+P) = R(T).

y;
Proof, It follows from the assumptiomn R(P) CR(T) that

R(T+P)CR(T)+R(P) CR(T). We may thus assume that F = R(T), that
is def(T) = O.

We now prove that R(T+P) = R(T) (= F),Iby showing that
1t L is any finite dimensional subspace of F such that
LAR(T+P) = {0}, then L = {O}.

There exists a finite dimensional subspace X D(T) such
that TN = L. Let E' satisfy (HB) with NCE!', S:.lnce LCTE! and,
by assumption, (T4P)E' = TE!, it follows that L = {0},

We now prove that nul(T+P) = nul(T).

Assune that nul(T) < %, Consider any finite dimensional
subspace NCR(T+P). Let E' satisty (H3) with N+K(T)CE', and
Tt, P' be the restrictions of T, P to E'. We have NCN(T'+P!)
thus dim N snul(T'+P'). But nul(T'+P!') = nul(T!) and
nul(T') = nul(T) because N(T)CE' (whence N(T) = N(T')). Thus
dim X §npul(T). Sinco NS N(T+P) is arbitrary, this shows that
nul(T+P) € nul(T)< o# , By replacing N by N(T+P) in thé above, we
obtain nul(T+P) = nmul(T) (because now R(T!+P') = N(T+P)),

Assume now that nul(T) = fad . Take any finite dimensional
subspace NCN(T) and let E! satisfy \’(33) with XCE!, Then

41
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nul(T+P) 2 dim N(T+P)NE'
2 dim N(T)NE!
2dim N.

Since dim N is arbitrary, it follows that nul(T+P) = o ./.

I.3.2. Stability of the topological characteristics
Theorens 1.9 and I.12 are purely algebralc in nature. We

now prove some sufficient conditions for the perturbed operatar
to be a ¢‘_ or & -operator when its restriction to some suitable

subgpaces 1is one,

PROPOSITION I.13, Let E, F be locally convex spaces and T, P

operators from E into F such that D(T) < D(P),

Assume that
(a) T is open, R(T) is closed and def(T) < % ,

(b) There exist two subspaces E'C E equipped with a local~

ly convex topology t1 finer than that induced bj\E\, and F'Cc F

equipped with a (not necessarily Hauadorff a priori) locally

th the following conditions 1

convex topology t

2
- P maps some neighborhood U, im E into a bounded digk

_i_E (F'! tz)’
- TE'C F!,

$a
- The restriction T'+P' of T+P is open from (E', t,) into

(Ft, ta)l R(T*+P') is cloged in (F', ta) and godinmy, R(T'+P') < 00,
Then T+P i3 open.

Proof., We may assume without loss of generality that
F = R(T)+R(T+P).

#
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Let UCUO be any neighborhood in E; we will prove that
(T+P)U is a neighborhood in R(T+P).

&
Since T is open, there is a nelghborhood VYCF such that

VAR(T)c TU.

Let LCR(T+P) be an algebraic and topological complement
of R(T) : R(T) 0 L = F. There are a finite disk D generating L and
a neighborhood V' in F such that "

V!Cc VAR(T+P) + DCTU + D
C (T+P)U + PU + D.

Let D' be a finite digk in E such that D = (T+P)D!. We
have V' N R(T+P) c(T+P)U + (T+P)D*' + (PU)NR(T+P),

Now PUNR(T+P) is a bounded disk in (F', ta). Moreover
R(T'+P') is closed and has a finite codimension in (F', ta), and
R(T'+P') CR(T+P) NF', By considering a finite dimemsional sub-
space, complement of R(T'+P') in R(T+P))F', we see that there
exist a finite disk K CR(T+P) and a bounded disk B in '
(R(T*,Pt), tz) such that (PU) NR(T+P) cK+B., Since K = (T+P)K',
K' a finite disk in E, and (T'+P')U is a neighborhood in
(R(T',Pv), tz) (T*'+P' being open from (E', t') into (F', t2)>,
there exists A > O such that

V' NR(T+P) C(T+P)U + (T+P)D' + (T+P)K' + A(T'+P1)U,

As U absorbs D' and K', there is M 20 such that

M VIOQR(T+P) € (T+P)T ./,

We will use this proposition in the followimg form :

COROLIARY I.14., lLet E, F bo locally convex spaces, and T, P

gperators from E into F guch that D(T)< D(P),
Y

N\

O b R b, B sty IArrian,



Agsume that

(a) T ig open, R(T) is ¢losed and def(T)< <o,

(b) There are a bounded disk B<E, a digk B'cF and a

neighborhood U  in E such that

- W_cB', TE;CF

B-"B'?
- The restriction T'+P' of T+P is open from Ej into Fp,»

R(T'+P') is closed in F and codimp, R(T'+P!) < oo,

Bt?
Then T+P 1s open.

)
If furthermore T has a closed graph (i.,e. T ig now a ¢ -

operator), P is contimuous, (D(T)) < D(P) and E/X(T+P) is com~

plete (which is the case if E is fully complete) them R(T+P) is
cloged and T+P is a q> -operator.

Proof. The first part follows directly from Proposition
I.13, The last part follows from Theorem 0,15, The assumption
(D(T))" c D(P) ensures that G(T+P) is closed in ExF ./.

Another simple sufficient comdition for R(T+P) to be

closed is given by the following

PROPOSITION I.15. Lot E, F be locally convex spaces, and T, P
operators from E into F such that D(T) <D(P).

Agsume that T is a ¢+-operator, T+P is open, nul(T+P) <%

and there exist a neighborhood U in E and a bounded Banach disk

BcF guch that PUCB.

Thon R(T+P) is cloged and T+P ig a ¢+—oporat.or.

Proof. Since B is a Banach space, we remark that P has

a continuous extemsion from (D(P))” into Fpe Thus we may assume



that (D(T))” ¢D(P), end conuegenth' G(T+P) is closed.

As both nul(T) and‘;ul(T+P) are finite, there exists a
closed subspace L such that (algebraically and topologieally)
E=1L 0 (N(T)+N(T+P)). It suffices now to prove that (T+P)L is
cloged because R(T+P) = (T+P)L + (T+P)N(T) and (T+P)N(T) is finite
dimensional. For simplicity, we will keep the notations T, P to
denote the one-to-one restrictions to L.

Lot ¥y €((?+P)L)- and ¥ be a filter in (T+P)L converging
to y. Then (T+P)-‘¥ = q is a Cauchy filter base in L. Now P is
continuous from L into FB’ Pé? is a Cauchy filter base in FB’
thus converging to an element 2 éF, This implies that the filter
base Tg = (T+P—P)q converges to y-z € R(T) (R(T) is closed). The
operator T-] being continuous from R(T) into L, it follows that
@ = 77 Tgconwrergee to x = T (y-z) € L, Due to the closed graph

of T+P, we have (T+P)x = y and y& (T+P)L ./.

Proposition 1,15 shall be used in Chapter II (Section
1I.1.2) in connection with perturbations by small bounded ope-
rators. Now we are considering small perturbations in the sense
that, restricted to suitable subspaces squipped with a norm, the
perturbations are small,

4

I.4. Small perturbstions

Kato's theorem on small perturbations makes use of Loemma
I.3, which requires the setting of normed spaces. It seems that
to obtain a version of Kato's theorem in more general locally

convex spaces, it may be appropriate to assume the existence of
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some suitably large norming disks in the spaces, which satisfy
Kato's conditions.

In this section, we will examine a series of situations
centering upon the above idea and to which the general results
of the preceding section apply.

The stability of the index 1s carried through nicely.
However, when we turn to the stability of the topological
characteristics ("semi~-Fredholmness"), difficulties arise. Gene-
ralizations of Kato's theorem for ¢L-operators are obtaimed here,
along with some related results. We will deal with the topo-
logical aspect of small perturbations of ér-opeﬁgtors‘in
Chapter II.

T4 1. Stability of the index

THEOREM I.16. Let E, F be vector spaces, and T, P gperators from
E into F such that D(T)< D(P), ’

Assunme that g

(a) T hag an index,

(b) There exist a Banach disk BCE and a norming disk

Bt <F such that

- R(P)CF TE.CF

B? ““B" "B!?
- it T', P! denote the restrictions of T, P to Eg with

range space Fp,, then (D(T')) " <D(P'), the closure being taken

in By, | :

- T' has a closed graph in EBxFB,,

(c) B'NAR(T)C TB and PB € gB' for gome 0 <&< 1,
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R
Then nul(T+P) € mul(T), def(T+P) § def(T) and
ind(T+P) = 4ind(T).
1f nul(T)-< @, then there exists ¢>0 guch that for all
A ip the annulus 0 <|A|<E, nul(T+AP) is a constant (mot exceeding
™1(T)). ~

Asgunption (b) may be reg}gce&

(b') There exigt Bamach diw B¢ E agnd B' € F guch that
R(P) € Fy, and G(T) N(Ep x Fy,) ig closed in Ey x Fy, .

~Proof. lot N be a te 1 subspace of N(T),
generated by a finite disk D, Y

Fix any ¢! s(l\:’lh that ¢¢g'< 1. For A>0 small enough,

APD c (&'~¢)B' because R(P) C Fy,. Write D' = AD; then
PB + PD!' = P(B+D') < ¢'B!,
4 On the other hand, TEg, ., € Fy, because D'c X<K(T), and
B'NR(T) < TB C T(B+D!).

-~

Moreover B+D! is a Bs(nach disk, Indeed, let K = R, © NZ’

where K, C Ey and K, {e Eg = Eg,py (dim N, <, din N,<®). No,
may choose D' = D, + D_, with D, and D, gemerating N, and N
- 1 2 1 2 1 2

respectively; then B+D' = (B+D‘ )+D2. In EB, B+D3 generates the
same topology as B because D, is absorbed by B. It ig ‘now clear

that Ep,py = Ep,;, @ Ep 1s a Banach space (cf. also Lomma 0.2).

1 2 . ‘
Also, by virtue of Lémma I.11, the restriction of T to

Ep,pt Bas a closed graph-in Ep oy X Fg,e
Theorems I.; (A) and I.9 A glve the conclusiomns. If B!

is completing, we may apply directly Kato's theorem (Theorem I.2)

/

instead of Theorem I.4.

&7
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It may happen that we have Banach disks B, B&ouch that

R(P) € F,,, B'(A\R(T) C TB and PBC B!, 0<&<1, but that a priori

Bl
TEp % Fgy. If G(T)N (Eg x Fy,) is closed in Eg x Fy,, then
BNT™'B' 1s a Banach' disk by virtue of Lemma 0.3. We may then
apply Theorem I.16 with BAT 'B' in place of B, dropping the
assumption (D(T'))” & D(P!').

That pul(T+AP) is constant for [A] # 0 and small enough,
if nul(T)< ®@, is proved as follows. With referemce to the firat
part of the proof, let N = X(T) and T', P! denote the restrictioms
of T,l P to Eg 1y with range space Fg,. Then by Theorem 1.4 (C),
nul(T'+AP') is constant for |Al # O and small enmough. But
nal(T'+AP') = nul(T+AP). Indeed, if x &€ N(T+AP), then Tx = =APx
belonge to R(T)1Fg,, as R(P) C Fy,. From B'1R(T) € T(B+D')} it

follows that R(T)N\Fy, = R(T'). Therefore x € E + N(T). Since

B+D!
N(T) € Epyptr 1t follows that X&Eq, s thus x EN(T*+AP'); hence

R(T'+AP') = R(T+AP) ./.

REMARK. In view of the important remark following Theorem I.9,
we may replace in Theorem I.16 the assumption R(P)CFB, by
P(D(T)) CFB‘

-

If furthermore R(P)CR(T), we have the following :

THEOREM I.17. Let E, F be vector spaces, and Ty P o gorgtorg from
E 1nto F such th_g D(T) € D(P).
" Assune_that there exist a Banach digk BCE and a norming
disk B'CF guch that ’ )
(a) R(P)cR(T) NFy, ,
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(b) TERC Fp, »

(c) if T*, P' denote the restrictioms of T, P to E; with

range spage Fp,, then (D(T'))” cD(P'), the closure being taken
in Eg,

(d) T* has a elosed graph in EpxFy,

(e) BI{NR(T)CTB and FB € £B' for some 0<E < 1.

Then nul(T+P) = nul(T) amd R(T+P) = R(T).

If BY is completing, we may replace assumptions (b), (c)
and (d) by "G(T) N (ExFy,) is cloged in EpxF,,".

Broof. Since R(T+P)CR(T)+R(P)GR(T), we may assume
without loss of generality that F = R(T), thus def(T) = O. Apply
now Theorem I,16; ‘der(T+P) £def(T) inplies that def(T+P) = O that
is R(T+P) = R(T). Row ind(T+P) = ind(T) .implies that
nul(T+P) = nul(T), We need only justify that we may take B' N R(T)
instead of B', In case B' is a norming disk, no difficulty arises.
In case B' is completing, we may aem,mo that ‘I‘EBC FB' by taking
BAT 'B' and we remark that R(T') is closed in Fg, because T'
has a closed graph and is open (and Eg is a Banach aps}ce); there~
fore B'NAR(T) = B'AR(T') is also completing ./.

REMARK. The assumpton (D(T*))"¢cD(P') is realized for instance
it P is everywhere Woefined, i.e, D(P) = E, or more generally if

B&D(P).
As a corollary-ot Theorem I.17, we have the following

THEOREM I.18. Let E, F ba vector spaces, and T, P operators
from E into F such that D(T)c D(P).
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Assume that there exists a Banach disk BCD(P) and
O0< &€ <1 such that

- R(T)NEy i closed in Ep,
- PBC eTB.

Then nul(T+P) = aul(T), R(T+P) = R(T).

Proof. We pr<;§'e that the assumptions of Theorem I.17 are
satisfied for B' = TB. It suffices to show ,ﬁ:ﬁat TB is a norming
disk and the restrictiom of G(T) 1s closed jf;gi:BxFTB.

That TB is a norming disk follows from lemma 0.3. Row
let x, X € D(T)ﬂEB, x,»x in Ep and T;m»y in Fpp. Since ye >TB <,
there 18 x'é€ D(T)N Eg such that Px!' = v As Tx ~y—0 in Fpg» there
is u @ D(T)A Ey such that Tu = Tx -y and u, -0 in Ej. Ve have
then xu-um-x' s N(T)N EB and xm—um-x' — x-x' in Egx. By assumption
N(T) NEg is closed in Ep, thus x-x!' €NX(T). Hence x &D(T) and

TX =Y of e

I.4.2, Stability of the topological characteristics N

The following generalizes Kato's theorem on small pertur-

bations of ¢_-operators.

THEOREM I.19. Let E, F be locally convex spaces, and T, P
operators from E into F such that D(T)<C D(P).

Aggume that
(a) T ig a ¢ ~-operator, <«

(b) Thers exist a neighborhood U in E, bounded Banach
digks BCE, B'CF gnd 0 <& <1 puch that

- Wt o pggardy




B'NR(T)cTB, PB C E£B', PUCBH!,

Then T+P is open and has a cloged graph, nul(T+P) ¢ nul(T),
def(T+P) § def(T) and ind(T+P) = ind(T). '

The range R(T+P) is cloged (and thus T+P is a ¢_-ogerator)

under elther of the following additional agsumptions :

(¢) E/S(T+P) is conmplete, which ig realized if E 1is a

Frechet ce, or more generall fully complete,

(¢') nmul(T)<o0, in which case both T and T+P are

Fredholm-operatorg.

o

Proof. Since P is c;mtinuous from E into Fp,, and Fg, 1s
a Banaéh space, we may extend P by continulty and therefore
assume that (D(T))” < D(P). It follows that G(T+P) 1s closed in
ExF. On the other hand, G(T) N(Ey x Fp,) 1s closed in Ep x Fy,,
because the topology of EB (respe. FB,) is finer than that induced
by E (resp. F). All the assertions follow now directly from
Theorem 1.16,Corollary 1I.14 and Proposition I.15. To apply
Corollary I.l4, we need only notice that if we replace B by

BnT']B', then T', P' gatisfy Kato's theorem (Theorem I.2) ./.

REMARK., In the preceding theo;'em, assumption (b), we may replace
"B' a bounded Bamach disk" by B! a bounded disk, TEBC FB' and
(D(T*))" < D(P'), where T', P' denote the restrictions ot T, P

to E; with range space F,, and the closure 1s taken in E.". The

B ]
condition (D(T'))” € D(P') in turn is satisfied in particular if
(D(T))” € D(P) (closure in E) or 1f D(P) = E. This simply reflects

the possibility of using Theorem I.4 ingtead of Theorem I.2.
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Arother situation where we may infer that R(T+P) is closed

occurs when def(T) = 0, or R(P)cR(T), in such a way that \

R(T™+P) = R(T). In this line of thought, we have the following

THEOREM I.20. Let E be a locally convex space, F a vector space

and T, P operators from E into F guch that (D(T))” < D(P).
Asgume that there exist a neighborhood U in E, a bounded
Banach digk B C E and O <& <1 guch that

- N(T)NEp ig cloged in Ep»
- PU C TB, ’

- PB € E&TB,

Then nul(T™P) = anl(T), R(T+P) = R(T) and the images of

the topology of E by T and T+P are the same.

The agsumption “N(T)nEB is closed in EB" is gatisfied

in particular if nul(T)<e or if F ig also a locally convex space
and T has a closed graph in ExF.

Proof. By considering the Banach disk BN\ (D(T))~, we may
assume that B € D(P). That nul(T+P) = nul(T) and R(T+P) = R(T)
is a consequence of Theorem I.18,

To prove the second part, we may assume rithoutiloss of
generality that R(T) = F. Let U'C U be any neighborhood in E.
¥e have

(T+P)U' € TU' + PUO' C TR + TB C ATU!
for A>0 large enough, since B,being bounded,ié absorbed by U',

If T*, P' denote the restrictions of T, P to Eg with

range space FTB’ then T', P' satisfy Theorem I.4., Thus T'+P' is

onto and open : there is ra).O such that TB ctA(TN-P‘ )B CF(T+P)B.

N M B s ey SRV
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We then have
TU' € (T+P)U' + PU!
c (T+P)U' + TB
c (T+P)U' + F(T-!-P)B
c E(1+p)U’,
for some $> O large enough.
Thus the topologies defined by [TU'} and {(T+P)U'} when

U' runs through the neighborhoods in E are the same ./.

REMARKS. The preceding proof shows a little more : for each
neighborhood U!' € U in E, the semi-norms gemerated by TU' and
(T+P)U' are equivalent. It follows in particular that T is open
(resp. weakly open, or almost opem) if amd only if T+P is open
(resp. weakly open,or almost open).

We also motice that the last part of the proof is essen-
tially that of Propositiomn I.13.

Theoren 1.20 strengthens a result of Vladimirski announced
without proof im (26). He stated the theorem under the assumptions
"F ig a locally convex space, T has a closed graph in ExF, P is
continuous, PU € TB and B € £U" instead of our weaker assumptioms

"K(T)NE, 1s closed in Ey, PU € TB and PB G €TB".

B
By taking the quotient of the range space by a finite
dimensional subaspace, we obtain ;1 relaxation of the assumption

R(P) <€ R(T) as follows.

PROPOSITION I.21. Lot E be a locally convex space, F a vector
gpace and T, P operators from E into F guéh that (D(T))” < D(P).
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Agsume that there oxist a neighborhood U in E, a bounded
Banach digk BCE, a finite dimensioral subspace RCF and 0<E < 1

sugh that
- H(T)ﬂEB is closed in.E

B’

- WCTB'.'N’
- PB C ETB+N.
Then R(T+P)+M = R(T)+N and ind(T+P) = ind(T).

If furthermore F is a locally convex space, T is open,

has a cloged graph (which implies that N(T)GEB is closed in EB),

R(T) is closed and P is continuous, then T+P is open, has a

¢loged graph and R(T+P) is closed.

The proof of Proposition I.,21 is a combination of

Theorem I.20 and the following

LEMMA I.22, let E, F,,G be locally convex gpaces, T am operator

from E into F which has a cloged graph, and S an operator from

F into G such that D(S) = F and nul(S)< e,

(a) If def(S)<o0 , then T and ST have simultaneously an

index and ind(ST) = ind(3)+ind(T).

(v) If 5 is continuous and ST is open then T is open.
(c¢) If S is continuous, ST open and R(ST) is closed, then

R(T) ig closed (and T is open).
<

Proof. (a) : this part is purely algebraic. let

N(S) = (N(S)NR(T)) @ L ,
F =R(T) 9L O M ’
= R(ST) © sSM .

R(S)
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Since S is one-~to-one or M, we have

nul(ST) = nul(T) + dim (®(S)NR(T)),

(]

i

def(ST) = def(S) + dim SM
= def(S) + dim M

def(S) + def(T) - dim L

i

def(5) + def(T) =~ nul(S) + dim (R(S)NR(T)).

Because nul(S)< e and def(S)<w , the preceding equa-
lities show that nul(ST)< o if and only if nul(T) <% and
def(ST) < 0 if and only if def(T)< ® , Moreover
ind(ST) = ind(S) + ind(T).

(b) and (¢) : by considering the quotient E/R(T) we may
assume without loss of generality that T is one=to-one. Write
N = T-'M(S) = N(ST); dim ¥ < @, Let E' be a closed subspace such
that (algebraically and topologic;al]:i) E=NG$ E!',

Let ¥ be an ultrafilter converging to y in R(T) (resp.
in B, for (c)). Let q be the ultrafilter T F (we make no dif-
ference between a filter defined on a subset of a set and the
filter it generates on the whole set). Since T has a closed graph,
we need only show that q converges to some < in E.

Let @' denote the projection (ultrafilter) of G on E
along K.

Since S 1s continuous, S F converges to Sy € R(ST) (for
(¢), it is because R(ST) is assumed cloged). Furthermore the res-
trict:l:on (ST)' to E' is injective and open. Thus ?':(ST)'“"S%z
converges to x' = (ST)"lSch'.

Let Q denote the projection of E onto N along E', and /.

B LIRS P s ol

ikl e S
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a euclidean norm on R. Let % be the ultrafilter on the real

line definmed by {anu: XCA, A€ @}, which 1s the image of the
ultrafilter q by the mapping x »[|Qx]l. If we consider the compact
extended real line (-o, +), then 7'6 converges to a point

h, 0% h&reo,

If h <® then the set A = {x€E : §Qx|lsh+1} bolongs to
(10. Hence its compact projection QA = {x"‘ N | x"nShﬂ} belongs
to the ultrafilter Qq. This shows that the ultrafilter Qg con~
verges to some x" € QA., Thus g -» xt+xh,

If h = 00, then the set B = {xcE : nQ;Il>O} belongs to
¢ . The ultrafilter U on E defined by {x/llell:x GA, A€ ?, ACB}
has the following characteristics : (1-Q)Y -0 in E', QU -»x"
in N such that |x"l = 1 (compactness of {x"€N : [[x"| = 1}) and
TU >0, ThusU ~»x" # 0 and TU 0 in contradiction with the as-

sumption that T be injective ./.

REMARK. We could prove (b) and (¢) by using filters instead of
ultrafilters, that is without the axiom of choice {(cf. (3,

M, De Wilde, Le Quang Chu)).

]

Proof of Proposition I,21. We may assume without loss of

generality that F = R(T)+N., Let G = F/NK and S be the canonical

quotient operator from F onto G. We have SPU CSTB, SPB C &STB.
Since K(ST) = T 'N, with dim K <eo, it follows that N(T)

has a fimite codimension in N(ST). Thus we may write

N(ST)!\EB = (N(T)ﬂEB) 9 L with ddm L <w (dim L cannot be in-

finite as LCN(ST) and LNN(T) = {0}). As N(T) N Ey 18 closed in
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Egs we infer that N(ST)f\EB is closed in E

B

By Theorea 1.20, we have

nul(S(T+P)) = nul(ST+SP) = nul(ST),
R(S(T+P)) = R(ST+SP) = R(ST) (= G).

The last equality shows that R(T+P)+N = R(T)+N, Since
ind(S(T+P)) = 1ind(ST), and ind(S) is finite, it follows from
Lemma I.22 that ind(T+P) = ind(T).

Assume now that T is open, has a closed graph and R(T)
is c¢losed. We first show that ST is also open, Let W be an open
neighborhood in E, then TW is open in R(T). Let N'cR be such that
(algebraically and topologically) R(T) 6 B' = F. Now
T™W+(R(T)NN) is open in R(T), thus TW+N = TW+(R(T) NN)+N' is
open in F., This shows that STW is an open neighborhood in
G = R(ST). Since T+P has a closed graph (because P is continuous
and G(T) is closed), we may apply Theorem I,20 and Lemma I.22,
and infer that T+P is open and R(T+P) 1s closed in F = R(T)+N {
(recall that R(S(T+P)) = G). If we return to the initial F in
the statement, then R(T+P) is still closed in F because '

R(T)+X is ./.

REMARK, The last remark following Theorem I.20 applies here as
well : Proposition I1.21 was announced without proof in (26,

Vladimirski) under similar but more restrictive assumptions.

I.5. Compact perturbations ‘

L3
PR I I

We now apply Thecrem 1.9 B, Generally, we may do so when, i
- ’
restricted to suitable subspaces, the perturbations preserve
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only the index as opposed to the case of "small" perturbations,
where a kind of semi-continuity of the nullity and the deficiency
takes place as well. This often happens when we deal with com-

pact perturbations.

I1.5.1, Stability of the ilzziox

THEOREM I.23. let E, F be vector spaces, and T, P operators from

E into F such that D(T)< D(P).

Agsume that

(a) T has an index,

(b) There exist Banach disks BCE, B'CF such that

- G(T) N(EgxFg, ) is closed in EpxF,, ,

- R(P)CF,, and PB is relatively compact in F,, (i.e.

(PB)-E;E compact im Fg,),

- B'N R(T) CTB.

Then ind(T+P) = ind(T),

Proof. We may replace B by the Banach disk BAT ' B
which we rebaptize as B. We have then the additional relation :

TEg = FBﬂR(T). It T', P' denote the restrictions of T, P to E

B

. with range space FB" then T' has a closed graph and is open

from the Banach space Ep into the Banach space Fy,. Hen%q R(T) is
closed, that is T' is a semi~Fredholm operator, and P! is a com-
pact perturbation of P', That ind(T+P) = ind(T) follows now from

Kato's theorem and Theorem I.9 B ./.

If in the preceding proof, we use Theorem I.; instead of
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Kato's theorem, we obtain\the following

PROPOSITION I.24. let E, F be vector spaces, and T, P operators

from E into F such that D(T) €D(P).

Agsume that

(a) T has _an index,

(b) There exist a Banach disk BCE, a norming disk B'CF

such that -

S
- Ir¥', Pt denote the restrictions of T, P to Ey with
range space Fp,, then (D(T'))"€D(P'), the closure being taken

in Bg,

- T' hag a closed graph in EBxFB. ’
- B'AR(T)CTB , ‘ (3

- PB 15 _precompact in FB' .
Then ind(T+P) = ind(T).

One may relax somewhat the assumption R(P)CFB, as follows.

PROPOSITION I.25. lLat E, F be vector spaces, and T, P operators

from E into F such that D(T) c D(P).

Assume that
(a) T has an index

(b) There exist a Banach disk BCE, a norming disk B'CF

and a finite dimensional subspace NCF such that

- R(P)CFp,+N, TEZCF

BT"Br ? .
- If T' denotes the restriction of T to Ey with range

space Fg,, then (D(T'))” <D(P), the closure being taken in Fg's

B o LA o
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- TY has a closed graph in EpxFg, ,

- B'AR(T)CTB ,

- PBC &B!' for gome 0<€< 1, or PB is precompact in

FB,+N, topologlzed by B'+D, D being a finite disk generating K.

Then ind(T+P) = ind(T).

If B' is completing, we may replace the assumptions

(D(T*))” eD(P), TE;CFg,, and "T' has a closed graph in EpxFp,"

by "G(T)NEpxFy, 1s cloged in EpxFp,".

Proof. From the relations TEBCF and B'NR(T)CTB we

Bl
get TEy = R(T)NFy, . Moreover R(T) NFy, has a filnite codimension
in R(T)ﬂ(FB,+N). Consequently, there exists a finite dimensional
subspace L generated by a finite disk D', such that L<cD(T) and
T(EB+L) = R(T)ﬂ(FB.+N). Now B+D' is a Banach disk generating

Eg+L (cf. Proof of Theorem I.16), and it induces on Ey the same
topology as B. Similarly B'+D defines a norm on FB'+D’ which is
equivalent to that by B' on Fg,.

If T, P" denote the restrictioms of T, P to EB+D' with
range space Fp, ., theﬁ ™ ig a semi-~Fredholm operator, finite
" dimensional extension of T'y, in view of I@mﬁ:as'l.lo and I.11.
If PB C EB', and P' denotes the restriction of P to EB
with range space Fp,, then ind(T'+Pt) = ind(T') by Theorem I.If;
Thus ind(T"+P") = ind(T") by Lemma I.10,

If PB is precompact in Fp, ., then P(B+D') 1is also pre-
compact in FBHD because PD'! 18 a finite disgk in FB'+D‘ Thus

ind(T"+P*) = 1ind(T") by Theoren I.4. Theorem I.9 B shows that

-

1nd(T+P) = ind(T) ./. :

GRSV
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I.5.2. Stability of the topolegical characteristics

We now consider the question whether T+P is open and .
R(T+P) is closed, when T has .these properties and P is a "compact"

perturbatiOn. If we considér compact perturbationp in the sense

<

_that P is a compact oparator then the answers are given by the

theorems of Schvartz, Kothe and Schaefer ( Thcorema 1.7 and I.8)
and Vliadimirski ('l‘heorem 1L.22). We vill prove the? in Chapter I1I
(see remark fqllovrins COrollary I.28), Here we consider compact
perturbations in the sensd' of Theorem I.23, that is the restric-
tion of P to certain subspaccs is & compact operator.

. As in the ‘case of gmall perturbﬁbns, we obtain positive
answers..for ¢ -operators, esaentially via the techniques of Pro- '

posit,ion I 13. It turns out in fact that compact porturbationa

- o ¢ -operators esaentially reduce to small perturbations modulo

- a fin\te dig:engional subspace.,

TREOREM i.26. _Lg_t_. Ey F be Ioce,l_};v_.coﬁvex apaces, and T, P ope~

. .. Assume that . w / :
(a) Tis g $ -op_erator,
, (b) There exist a neig_l;borhoo "U in E, a bounded Banach

{

»',_-TE CFy, B'R(T) CTB , ' Lo
"= PRGB! and PB“ is precompact in FB, . .

hen T+P-i8 a ¢-oggrator and 1nd(T+P) = ind(T).

If B is a ‘bounded Banach disk, -then we nay drop the ag="
A -

o’

»

~4“
. - . v
K ] » Cog .

3 . .
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Proof. Since R(T) is closed in F, R(T)NFy, is closed in

-

PB' (this in fact also follows from the fact that T is open from

the Banach spaco’EB into FB' and has a closed éraph). There exists
a finite dixlaonaional subspace HCFB
and topologically in Fp,) Fy, = H © (R(T)NFg,). Thero is thus

, such that (algebraically

A > 0 such that B' C AB' \R(T)+N,
Let U' = A~ U. Then
PE'C B' NR(T)+X
C TB+KR .
On 'the other hand, PB is precompact in FB' . Consequently,
for a fixed 0 < &< 1, there is a finite set E such f.hat '
PBCE+ EAT'BICEL £TBN |
If N* = N+ >E<, then dim R' < ® and
PU'CTB + N ,
PBcCeTB + X' ,
Piropoaition I.21 applies to give the conciuaiofu;.«
If B' is a Banach disk, we replace B by Bn\'l‘.':'TB' . We

nay also e%tend P by continuity and obtain (D(T))” CD(P) ./.

The following results of Goldman, Krackowski (7) and
Vladimirski (26) are direct comsequences of Theorem.I.26 : -

COROLIARY I.27. Finite dimesiomal perturbations (Goldmen and

Krackowski). let E, F be 'localg convex spaces and T, P operators

Irom E into F such that D(T)cCD(P). >
Assume that P ;la a c-ontinuoun operator of finite rank,

1e0. R(P) ig finite dimensional, If T is an open operator, with
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a closed graph and a closed range, then T+P is an open operator,
with a closed graph and a closed range.

1t T is 8 ¢ -operator then T+P is a ¢ -operator and
ind(T+P) = 1nd(T).

_Pg_o_g,t_. By aseumption, there is a tinito disik D such that
PU €D, We may assume that F = R(T) +>D< Now there 1s a finite
disk D' in E such that DAR(T) CTD'. It is immediate that FD' is
precompact in Fj (suclidean space). It suffices now to apply
Theorem 1.26 ./.

REMARK. It can be seen from the proof that if T is a <¥>+-operator,
then T+P is also a ¢4-operator and ind(T+P) = 1ind(T). This is
also an immediate consequence of the theorem of Schwartz, KGthe
and Schaefer (Tlieorem 1.7), since P is a fortiori a compact

o} perator .

COROLLARY I.28. lLet E, F be locally convex spaces, and Ty P o ope-
gators from E into F guch that D(T) CD(P)

Assume that T is a <]>_-omrator, and P g compact operator.
Let K be a compact disk in F guch that PUCK for some neighbore

hood U _i_g'E.‘

If there exists a compact disk K' in E such that
KNR(T)CTK', then TP is a ¢-omrator and 1ind¢T+P) = 1ind(T).

Proof, It suffices to provo that PK' is precompact in F..
But this is trivial since P is continuous trom E into FK and
K' 18 compact in E ./. -
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REMARK. Corollary I.28 covers the theorem of Schwartz, Kothe

and Schaefer on compact perturbations of ¢L-operators (Theorem
I1.8). Indeed, when E, F are Frechet spaces, then for anf compact
digk K € F, there exists a compact disk K' ¢ E such that

KNR(T) € TK', (A proof of this is based on the fact that any
precompact disk in a metrizable locally convex space 1s contained
in the closed absolutely convex hull of a sequence converging to

0.) We say that such an operator T lifts compact disks.

Vladimirski (26) in raét announced, without proof, a
rgsult more general than Corollary I.28. He considered pertur~
bations of the type PU € TB+K, where B is a bounded Ban;ch disk
such that B C U for some 0<E<1, and K a compact disk, His

result may also be strengthened by our approach :

PROPOSITION 1.,29. Let E, F be locally convex spaces and T, P
>

operators from E into F such that (D(T))™ C D(P).

Assume that
(a) T is & 4{-oge;§tor,
(b) There exist a neighborhood U in E, a bounded Banach

disk B C E, a compact disk K € R(T), a_finite dimensional subspace

NCF and 0< £<1 gsuch that
PUCTB+K+N and PBCETB + K + N,
(c) There exisks a compact disk K' < E guch that K < TK',

i;pgerator and ind(T+P) = ind(T).

1f T lifts compact digks, then we may sim assume in
(b) thHat K be a compact digk in F (instead of XK € R(T)).

Y

Then T+P 1s a

W | ot G o
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Proof. We may assume without loss of generality that
D(P) = E. Replacing K by &"K, we may also assume that

PUCTB + K+ X , PB C £(TB+K) + X .

Fix any ¢' >0 such that g" = e+ e <1, Thox;g is a
finite digk DCE such that K'C D+&'J. We have then

P(B+K') C P(B+D+ &'U)
C &(TB+K) + B + PD + £'PU
C E(TB+K) + e'(TB+K) + PD + N
Ce"T(B+K') + N ,
where N' = N + >PD¢ is finite dimemsional.
On the other hand, {,P
PUCT(B+K') + R ,

Since B+K' is a Banach disk (Lemma 0.2), the conclusions
follow from Proposition Iz21.

Assume now that T ur{:e compact disks, and that g‘g’x/:P.
1nst§ad of K&R(T), Let L be such that (algebraically @v{t{;b-
los';lcally) F=R(T) ® L, dim L < ®, let K'-’ be thp pro;j‘ection of -

K onto R(T) » along L. Then there exists a compact digk K" cE
such that K'C TK". We l;ave then .
PUCTB + K' + L+ N
PBCETB+K'+ L+ N ,

and the first part applies ./.




CHAPTER II

DUALITY AND BOUNDED OR PRECOMPACT PERTURBATIONS

OF SEMI-FREDHOIM OPERATORS

In this chapter, we study perturg;tions of semi-Fredholm
operators by addition of small bounded operators or precompact
operators (definitions in Chapter O). The main tool used is
duality.

In Chapter I, we considered *"small" or precompact per-
turbations in the sense that the perturbing operakors, vhen res-
tricted to suitable subspaces equipped with convenient norms, are
small in norm or precompact. Now, when we deal with "globally"
bounded or precompact perturbations, in the sense that the per-
turbing operator maps some neighborhood into a bounded or pre-
compact diag, it turns out that the approach developed in
Chapter I applies handily in the duals, where the suitable sub-
spaces are Banach spaces generated by closed equicontinuous disks.
One obtains easily the stability of "almost openness". The stabi-
1lity of the index-is readily secured when suitable aésuﬁbtions
of completeness are placed oﬁ the spaces in such a way that the
perturbed operators become semi-Fredholm operators. These assump-

tions are satisfled im Frechet spaces.



67

II.1., Bounded perturbations of ¢*-op_eratora

II.1.1. Gengral results ’

The following simple lemma shall be important for our

proofs :

LEMMA II.1. Lot E, F be 1%;1 convex spaces, T an injective

open operator and P a bounded operator from E into F such that
D(T) C D(P).

If there exist a mesighborhood U in E, a nelighborhood V

in F and 0<€< 1 such that PU is bounded, VAR(T) € TU and

PU € €V, then there exist a base of neighborhodds U inm E for

'@ch these relationsg hold.

Proof. Let U'CU be any neighborhood in E. We need only
prove that there exists a neighborhood U" CU' which satisfies
relations similar to those in the statement.

There is a neighborhood V' in F such that V' R(T)c TOY,
T being open. Since PU is bounded, there is A > O small enough
such that APU C V', If we take U" = U' N AU and V" = V' () AV,
then V'NR(T)CTU" because T is injective. On the other hand

PU" C APUC(EV')N( EXV) |
cem L/,

Using this lemma, we can prove immediately the following
(ct. Lemma 1.5 and (16, Le Quang Chu, Proposition 3)) :

THEOREM II.2. Let E, F be locally convex spaces, T an injective

open operator and P a bounded operator from E into F such that
D(T)C D(P).
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If, for a neighborhood U in E, & neighborhood V in F and

0<E< 1, PU is bounded,
VNR(T) CTU and PU CevV

then T+P is an injective open operator.

If furthormore (D(T)) €D(P), T has a closed graph and
either E or R(T) is complete, then both T and T+P are injective
Q;omrgtorg.

Proof. By lemma II.1, the relations
(%) VAR(T)CTO , PUCeaV
nold in fact for a base of meighborhoods U in E (tb each of which
corresponds a neighborhood V in F).

It A 1s an absorbeat disk, let Py denote the semi-norm
associated with A (the Minkowski gauge of 4). Then it follows
from the relations (#) that (cf. Theorem I.3)

Py(Tx) 3 pp(x) , py(Px) € Epg(x) , xeD(T) .

AConsequently,

Pg(Tx+Px) > py(Tx) - pytPx)
(¥ %) 2 Pp(x) - epg(x)
2 (1-8&)p;(x) , VxeD(T+P) .

This shows that T+P is injective and open. Indeed, 1if
(T+P)x = 0, then (##) implies that pU(x) = O for U belonging to
a base of neighborhoods in E. Since E is Hausdorff, x = O.
Moreover, we may 11‘:ter immediately from (%) that

(1-8)VQOR(T+P) C(T+P)U

if we assume U to be closed (which is no loss of generality).

v N

R
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If (D(T))"CD(P) and T has a closed /g;‘apﬁ, then T+P has
a closed graph, P being contimuous. Let be a filter in R(T+P)
which converges to y € F. Let 7‘3_'(’T+ lq . Then ¥ is a Cauchy
filter base, as T+P is open. If E is complete, en ¥ converges
to x €E and the closed graph of (T+P) implies that x ¢D(T+P) and
y = (T+P)x €R(T+P), If R(T) is complete, we proceed as follows :
we remark that P¥ is a Cauchy filter base, therefo:?
T?.z (T+P-P)F also defines a Cauchy filter in R(T), which con-
verges to some y' € R(T) (R(T) is complete, hence closed). As T
is injective and open, this shows that '¥ converges to

sz-‘y' O/o’

AN

REMARK., We note that, for a base of closed neighborhoods U in E,
we have VAR(T)CTU, PU C €V, 0< & < 1, implying

(1-[MeVAR(T+ AP) c(T+ AP)U , V[M¢1 (T injective). In normed
spaces, this means that the minimum modulus ¥ (T+ AP) is not
less than (1-JAl€) Y (T) (T being injective).

Theorém II.2 deals with the topological characteristics
0f T+P, The stability of thée index is asserted in the following

THEOREM II,.3. let E, F be locally convex spaces, T am injective
open operator and P a bounded operator from E into F such that
D(T)c D(P). /

Assune that there exist a neighborhood U in E, a neigh-
borhood V in F and 0 < €< 1 guch that PU is bounded,

VAR(T)CTU gnd PU C eV .

Then T+P is injective, open and
codinm (R+P)J” = codim (R(T))” .’
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In particular, if R(T) and R(T+P) are closed then

ind(T+P) = ind(T).

Proof. That T+P 1‘3 injective and open is proved in
Theorem II.2. For the last part, we may assume that E=D(T)=D(T+P).

From VNAR(T) C TU we infer quite easily (cf. proof of
Theorem 0.15) that we may write (V)™ N(R(T))™ < (TU) . By duality
we get +Tge ¢ vo 4 N(rt ), that is

oen R(T )CrT V°.

In tact R(T*) = E* because T is injective and open (cf.
Lemmas 0.8 and 0.12),

On the other hand, from PU C €V we infer that

P+--1

ve 5 &”'ve, that 18 P've < gv°,

Since PU is bounded, we have p(p*) = F' , and R(P') € > U°<,

Now U° and V° are weakly bounded Banach disks, being
weakly compact. Moreover G(T+) is weakly closed (Lemma 0.5).
All hypotheses of Theorem I.17 are satisfied. We infer in parti-
cular that R(T +P") = R(TY) = E R which yields again by duality
nul(T+P) = nul(T) = O, and pul(T*+P*) = nui(tt ), which ylelds
codim (R(T+P))” = codim (R(T)) . We need only ascertain that
(r+P)* = T+P", vut this follows from the fact that P 1s conti-
nuous. Indeed, it is trivial that D(T'+P*) = D(T*) € D((T+P)7).
Conversely, if géD((T+P)+) and f = (T+P)+g, then for any x€éE, =
wo have f£(x) = g((T+P)x) = g(Tx) + g(Px)‘. Consequently,
g(Tx) = £(x) - g(Px) is a continuous functional on E (by the
composite continuity of f, g, P). Therefore g € D(T'), which
implies that D((T+P)*) < D(T*+P*) ./, A



As a consequence of Theorems II1.2 and II.3, we have

THEOREM II.4. Let E, F be locally.convex spaces and T, P operators

from E into F such that (D(T))” < D(P).

Assume that (a) T is a ¢*foperator, (b) P is_a bounded

operatar and (c¢) either E or R(T) is complete.

Then there is @ > O such that for all [Al<@, T+ AP is

a ¢ -operator, nul(T+MP) $nul(T), dez(T+ \P) Sdef(T) and
ind(T+ A P) = 1ind(T).

Proof. Let L be a closed subspace such that E = L © N(T)
(algebraically and topologically). let T', P' denote the res-
trictions of T, P to L with range space F, then f' is an injec-
tive ¢#-0perator and P' a bounded operator. Let U', V' be neigh-
borhoods in L, F respectively such that PU' is bounded and
VIAR(T') €T'U'. Lot @ =sup§ IAl: AP'U'CV'}. Then @ >0, and
tor all (Ml <e, -thera is8 0< £< 1 such that VIOAR(T') CT'U' and
APUt C €V', By Theorem II.2 and Theorem II,3 T'+ AP' is an in-
Jective #l-operator and ind(T'+ A P') = ind(T*) (remark that ei-
ther L or R(T') = R(T) is complete). By Lemma I.11, ™ AP 15 a
¢+-—operator and ind(T+ A P) = ind(T). Moreover, it follows from
N(T+MP)NL = {0} that nul(T+ A P) $nul(T), and as a result
def(T+ A P) ¢def(T) ./.

ﬁEHARKS. Theorem Il.4 does not fully render Kato's theorem in
case of Banach spaces. Our estimate © makes use of a complement
L of N(T). Assume that E, F are Banach spaces with unit balls
B, B',:and B'*NR(T)CTB, PBCEB', 0 <€ <1. Lot B =(B+H(T))NL

T Bt 4 ey, i

e sty it Y
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and B, = BNL, We have then B!'N R(T) o:.‘.TBo but a priori

1
PBo @& £B', Bowever, by virtue of a lemma attributed to Auerbdach
(ct. (19, Piestch)), we may choose L such that the projection
from E onto L along N(T) has a norm not exceding (n+1),: vhe}-e

n = dim B(T). Thus B C (n+1)B,. As a result, (n+! )"'PBo C eB'.

We may say therefore that in Banach spaces, our proof could only
yield a @ about (nul(T)+!) times less precise than Kato's esti-
mate ¥ (T). It should be noted that to prove that T+P is open,
Kato uses the powerful Lemma I.2.‘In fact, our estimate is
roughly that given by Gohberg and Krein in (5).

The proof of Theorem II.; also allows the followlng for-
mulation (: there exist a neighborhood U in E, a neighborhood V
in F such that if PU is bounded and FUCV, then T+P is a ¢ -
operator, nul(T+P) £nul(T), def(T+P) ¢def(T) and ind(T+P)=ind(T).
Indeed, it suffices to take U = U'+U", where U" is a neighborhood
in N(T), and V = £V' with any O < €< 1,

This formulationr, for T a continuous (h-operator and E
a complete locally convex space, is given without proof in (27,
Vladimirski).

-

We now prove an extension of Part (C) of Theorem I.l.
The proof partially follows (6, Goldberg, Cor. V.1.7),

‘ which in turn is an adaptation of (5, Gohberg and Krein, Lomma 8.1).

THEOREM@II.é. Undef the assumptions of Theorem II.;, there exists

@ >0 guch that, for all A in the annulus 0 < |Al< @,

nul(T+ AP) is a constant (not execeeding nul(T)).

.
*
-
PR v i
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Proof. We now construct two closed subspaces E‘c: E and
F1CF such that the restriction 'I‘1 of T to El is a surjective
4>+-operator onto F1 s, the restriction P‘ of P is a bounded pertur-

bation of T, and that F(T+AP) = N(T,+AP,), ¥ A £ 0. Theorem II.4

1
will then show that, for |A| ¥ O small enough T, + )sP] is surjec-
tive and ind(T,+ AP, ) = 1nd(T,). Fron that it will follow that
nul(T+AP) = nul(T1+)\P,) = nul('l‘,) which 1BI a constant.

We may assumé without loss of generality that
E = (D(T))” = D(P), Let x&N(T+AP), A ¥ O, Then Tx = - APx, and
Px € R(T), which means that x ¢P™' (R(T)). let R, = R(T) and
D, = P'IRI. Now since x &D;, - APr€TD; . let D, = R,, then
x GP™'R, = D,. We comstruct by induction D, € E, R_C F, n=1,2,..,

-1
such that 'I‘Dn = Rn+1 and Dn+l = P Rnﬂ . We have inmediately

o [ . d
Dy DDyD seo » Ry DR, D ous o Lot E; = 1211)‘ and F, = Q]R"'
By construction, 1f x € N(T+AP), A ¥ O, then x €D ,

nx1,2,... , thus N(T+AP) CE,, Y A ¥ O,

1
Moreover '1’1'31 C F‘1 ’ PE‘ (- F‘ by defimition of E1 ’ F1 .
. We now prove that E’ and F1 are closed, by showing

inductively that Dn’ Rn are closed, n=1,2,.,. » First, R, is

1
closed by assumption, and D‘ is closed because P is contiz‘;noua.

If D, is closed, then D _+N(T) is closed as nul(T) <® . Since T
is open, T maps the set-theoretic complement (in E) of Dn+N(T)
into an open set A of R(E). But TD, = T(Dn+R(T)) is obviously

the set-theoretic complement of A im R(T). Thus TD, 1is closed
' \ .

1

in R(T), hence in F. As a result, Dnﬂf:é P~

p

in Eo . }

Rnﬂ is also closged

<N
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It follows in particular that if E or R(T) 1s complete,

then E, or F] is complete,

1
‘ Obviously G(T‘) = G(T)ﬂ(Ele1) is closed in E,xF, . We

now show that T, is open, let U1 be a neighborhood in E Let

1 1°

E, + N(T) = E; 0 L, with L CX(T) and dim L<%®, Since E, is

closed, the decomposition E, © L is also topological; it follows

1
that U, + N(T) = U, + (N(T)NE,) + L is a neighborhood in E,+N(T),

the restriction of a neighborhood U in E, Now TU{ia a neighbdbor-

hood in R(T). We show that T,U, = TUﬂR(Tl). Indeed, let y=T,x

1
=Tx with x, € E, and x €U, Then x = X, + (x-X,) belongs to

1

U N(E,+N(T)) = Ul-m(T). Thus y = Tx € TU, = T,U,. Consequently
TUnR(T‘) c T;U,n. (The converse inclusion is trivial and not
needed.) As a result, T,U, is a neighborhood in R(T‘) (ct. also
Lemma I.6).

We now prove that ‘1‘1 is surjective. Let ycsli‘1 . For each
integer n 31, there is x, € Dn such that X, = 7. Since nul(T)< o
and Dn o Dnﬂ’ it follows that, starting from some rank k,

m(t(')r\nn = N(T)an, Vn 3 k.
By definition of the xn's, wo have x, -x5 € R(‘:l‘)ﬁDk = N(T){\Dn,
¥n > k. Thus xk‘Dn” Vn 3k; consequently x, €E, and Tx, = ch(T,__).
To sum u?f'lH is a surjective ¢*-operator. '

We now remark that if PU is bounded in F for some neigh-
borhood U in E, then P(UnE1) is bounded in F,, thorefore‘P‘ is
a bounded operator. Our ‘proot is complete, in view of the

L 2

opening observation,./,



75

REMARK, If E‘is & Bangﬂachiapé.co, F a normed space, T a {-op&rator
and P a boundc;d éperator, then we may api)ly the preceding resunlt
to T+, P* in thé duals. We then infer by duality that def(T+AP) -
is a cohat‘z‘;.nt for |Al ¥ O small enough. This c?mpletes the proo\‘f

v =,

of Theorem I.1 (C).

K

¢ We have been d}ealins with T+AP for|MMemall enough. With
- a (more genaral) condition "& la Kato", we may got some 1nfor-

> mation on nul(T+P) and codim (R(T+P))” as follows.

. PROPOSITION II,6. Let E, F-be locally convex spaces and T, P

operators from E intc F such that n(:r) < dP).e. | T
ﬂge that there exist a neiswrhood U in E, Y4 reigh-

horhood v 1n F g_x_g 0<g <1 such that PU is bounded,

RN _vnn(nc('m) and  PU CEV.

| .Q(a) If codim (R(T)) <% , then '
‘co&m (R(T+P))” & codim (R(T)),

and there oxists @ >0 such that &_gL(R(T*AP)) is a constant

| fox 11 A £n_the annulzs 0 <1Xl<e.
: ’ (b) &Twwmmwk”
. _ls__g nul(T+P) $-nul(T). In this case, if codinm (R(‘I‘)) .

then codim (R(T+P))™ = ‘ee 5 if codin (R(T))” < them, in addition

<

‘ 'NP 13 wegg ggh.

- From Vn (‘1‘) C(TU) ", ihere v may ba assuned open. we inter that

‘ -«
3y “
A F

. . - . L. . . = . N
- . - " : . - B . . tT o
W ] - M l. ~ T - * * '.' . . " N " -
., . 5 K > . . e . . -
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A

(V)" O(R(T))” € (TU) . By duality we get t=lge V°+FI(T+), oo
that is UPAR(T ) c THve,

From 27U C gV ;ve obtain by duality P+V° C £U°, Since PU
is bounded (thus P is continuous), we have D(P") = F* and

R(P') € >T°<,

Moreover, G(T+) is weakly closed in F+xE+, and ge, ye

‘are weakly bounded Banach disks, thus e(1h) n(F:;o X Ego) is

closed in F;,, X E§°

generated by U° (resp. V°)..

, if Ego (resp. Fy,) demotes the Banach space

In case (a), it follows from codim (R(T))” < ® that
nul(fI‘+) < ®, Theorem I.16 shows that nul (T +p") < mil{T") and
that there exists ¢ >0 such that N(T"+AP') is constant for
0 <lxl<e@. since ('I.’+P)+ = jr++P+, by duality we get

codim (R’(T+P))— € codim (R(T))”, and codim (R(T+MP))” is copjgmt

 for O <|)|[<€.

-

In case (b), sin‘c‘e T has a clogsed graph and is weakly
open, R(T') is weakly closed (R(T') = N(T)°, by Lemmas 0.8 and
0.12), M?_reov.er, def(T") = nul(T) < @, Theorem I.16 shows tt}.iat
def(T*+P*) € der(T") and ina(r'+p*) = imaczhy. .

Consequently, vith i:espect to the weak topology,

codim (R(T"+P"))” < codim R(T'+P*) < codim R(T")

< codim (R(T+))-, T .

as R(T) & (R(T7))7. By duality, nul(T+P) ¢ mul(T). .

" . If'é‘ods‘,;n (1-2(’1‘-):)" = &'y then nuI(T"") ='do -1t follows

"~

fxom ind(T*+P") .= ina(T") that‘n;_:l‘(w‘f“qu-p*)'.: o ; hence

condim - ¢9

CR

)
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If codim (R(T))" <o, then mul(T') < and
codtn (R(T*+P*)™ = mul(T*+F*) @ -ind(T*+p*)
" ‘ ¢ -ind(T")
§ codim (R(T"))"= mul(r").

By duality, nul(T+P) ~ codim (R(T+P))~ s nul(T) = codim (R(T)) .
We can see that the equallity holds if and only if we have equa-
11ty at (%) , that is if and ohly if codim (R(T'+P'))™= codim R(T'+P").
Since codim R(T'+P") <, this is equivalent to saying that
(R(T*+P*))” = R(T*+P) or R(T'+P") ie weskly closed. By Lemma
0.12, R(T*+P%) 15 weakly closed i1f and only 1: T+P is weakly
open (T+P has a closed ggaph) o/

I1.1.2. Bani‘ch-bounded | _perturbations, Weakly compact perturbations
In Theorem II.4 » assumption (;&): that either B or R(T) 15 . -

complete, is designed to ensure that R(T+P) 1is closed. There is

an alternative assumptioh to the same effect, which is an fmee-‘

. diate application of I{ropoaition I.15. -

DEFINITIOR. Let P be an operator bestween two locally convex
spaces E, F. Wo say that P is _B_n;_ngchfbogg;iod it PUCB for some
noighborhood U in E and a bounded Banach disk B in F.

; In hrtieular, i2 P is a bounded operator and F is aeqnén-
tially complete, then. P is a Bana:h-boﬁnded operator.
Indeed, if PUCB vhore Bis & bound'ed disk, then’ (B)™ is sequen-
tia,lly complete, thua a Banach disk by. J..amna Oupe

Weak:w compact operators are also Banach-baunded oporators.
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Theorems II.3, II.; and ProposTtion I.15 yield imme-
diately the followinag

THEOREM II.7. lLet E, F be locally convex spaces, T an injective

¢+-opgggtog and P a Banach-bounded operator from E into F such
that D(T)CD(P).
Asgume that there exist a neighborhood U im E, a neigh-

borhood V in F and O < €< 1 guch that PU ig boufided,

vnR(T)c'm _;.ng PU CeV .

Then T+P is am 1njectiu ¢-op__o_rator and ind(T+P) = ind(T).
In particular def(T+P) = def(T).

REMARK, Under the assumptions o\f Thoorem II.7, there exist in Y
fact nelghborhoods U im E, V in F, a boundod Banach disk BCF
and 0 < £ < ! such that VAR(T)C TU, POCBC &V,

Indeed assume that PU CK, VOR(T)C TU, PU c &V, PU is
pounded ahd 0 < € <1 » for meighborhoods U, U, in E, V in F, and
" a bounded Banach disk K CF. Thom, in view of Lemma II.1, we may
assume UCU and V to be closed., Let B = ﬂ (1+€)K N (PU)™. Ob-
viously B is a bounded disk, It is a B_gmch disk becanse B is
closed in the Banach space F ((PU)” is alsoc closed :Ln FK, and

n (1+€)K 1is the closuro of K in Fy ) and B generates a topology
: A

finer than that of FK
&

S:l.neo (pU)~ < &V and PUCPU CK, we have then

e g b

W\R(T)CTU , PUCBGCeV . : /

*

,monm II. 8. Let E, F bo lgcalg conyex spaces, T a cb-op_eratog ,
and P a_Banach-bounded operator from E into F such that D(T)D(P). g
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Then there oxists o >0 such that for IAl<e, P+ AP 1s
a ‘;#’f serator, mul(T+AP) ¢ nul(T), def(T+AP) ¢ def(T) and
ind(T+AP) = ind(T).

~-

¥e may choose @ >0 guch that nul(T+AP) is comstant for
0<lIrl<e.
The theorem holds in pdtticular 1f P is a weskly compact

\

operator.

Proof. It remaims to prove only that nul(T+ AP) is cons-

"tant for 0 <|A<@. But a close examination of the proof shows
that Theorem II.5 also holds true under the assumptions of
Theorem 1I.8. Indeed, let 142613, where U is a neighborhood in E-
and B a bounded Banach disk. We may assume B to be cloged in the
Banach space F, otherwise we take EQ;:(HS)B' Then, with the
rotations of the proof of Theorem II.S, BnF' is a bounded Ba-
nach disk t‘F, is closed), and P, (UNE,)CBNF,. Thus P, is a
'%anach-bcunded operator, and the proof of Theorem II1.5 is carried

through ./.

II.1.3. Igomorphiam of the rangés

If T is an injective open operator, and P a bounded ope-
rator small enough, it is easy to infer from Theorem II.2 that
R(T) is '1eomo\rph1c to R(T+P) :

. PROPOSITION II.9. Under the asgumptions of Theorem II,2 (the
first p'gtz, there is an isomorphism from R(T) onto R(T+P),
+ Proof. Iet I denote the canonical 1rijogtion'qt R(T) into
PR T"t RN ‘ : ’ E’ '



There 1s a neighborhood U in E, a neighborhood V in F
and 0 < £< 1 such that PU is bounded, VAR(T) CTU and PU c £V.

We remark that R(T) = R(I) and T"'V&U. Therefore
VAR(I) = IV and PI™'V ¢ &V, where PI™'VCPU is bounded. Theorem
II.2 shows that I+PT™! ig injective and open; moreover it is
continuous, therefore it is an isomorphism from R(T) onto .
R(I+PT™'), But it 1s immediate from T+P = (I+PT™')T that
R(I+PI™') = R(M4P) ./.

For a non injective ¢+-operator T, we have :

PROPOSITION II.10. Let E, F be locally convex spaces, T a ¢,

operator and P a bounded operator from E into F such that

(D(T))” ¢b(P).

Agsume that either E or R(T) is complete, or P is a Banach~

bounded operator, Then there exists e> O such that for any

0 <lAjlglalce, ther; is an isomorphism from R(T+A,P) onto R(T+A,P)
(and T+AP, T™ NP are ¢, -operators).

Proof. Let L be a closed subspace such that E = L @ N(T)
algebraically and topologically. Let T", P' denote the restric-
tions of T, P to L. In-view4f Theorems ITs4, II.5, I1.8 and
Proposition I11.9, there exists @ >0 such that, for 0<lAl<e,
TI+AP' 15 an injective tf_‘-oporator_, 'R(T'-b'hP') is isomorphic t£>
R(T') = R(T) and nul(T+MP) is constant. In particular, if A and

Ay are such that 0<{A 1| (<@, then R(T'+AP), R(TI+APY)
are closed and there is an 1§omorphi-ai fron.: R(T'+ M P') onto
RYI'+ MP!), since both.are isomorphic to' R(T). It suffices now

3

at
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Then there oxigt a base U ot neighborhoods in E such

that to any U€U , there corresponds a bounded disk BCE such

that BC €6 and PUN(R(T))” C(TB) + A.

<

Proof. It suffices to prove that for any neighborhood
U!' in E, there is a neighborhood UCU' which h{g\ts the property in

»

the statement. }
Since 'Bo is bounded, there is A >0 such tl;hat AB CEeT'. !
Let U = U') ).UO and B = ABO. Then
Bec(eU')N(AET ) c &(U'NXTU,) C&U. Moreover,
PUN(R(T))™ € APU_N(R(T))” ,

C MTB))™ + AA

C (T(AB)))" + Ar

C (TB)” +4A ,

3
1f we choose A &1 ./.

I1I.2.1. An_extension of Kato's theorem

In Chapter I,'fhgorem 1.19, we already obtained an ex-
tensilon of Kato's ‘theorem on small perturbations of ¢ -operators.
The perturbations considered there are ofitha type "small when
restricted to suitably normed auhepgcea". Wé now prove another
possible extension, where the perturbations are of the type
PUNR(T)CTB and BC&U, 0<€< 1.

The n&in tool is duality. We apply the resulty developed
in Chapter I, notably Theorem I,16, to obtain the stability of
the index. The snitablelB§nach spaces are readily provided by

5 —

¢l d e b tixyY- ;¢ in the dualls. An i of
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R(T+A P) = R(T'+A;P') 0 M, (algebraically and topologically)
vith din M, = din M, <. We know that dim R(T+AP) = dik N(T+A,P)
and N(T+A,P)f\i a N(T+MP)AL = {0}. As a result, there exist
finite dimensional ‘subspaces Ll’ L2 such tEEt

L 6 N(T+A,P) © L, =Lo N(T+MP) © L, = E. It is obvious from

dim N(T+MP) = dim N(T+AP) that dim L = dim L,. TPake

M, = (T+AP)L, and M, = (T+M\P)L,. Then T+AP (resp. T+A,P) 1is
one-to~one on L @ L, (resp. L © La), thus .

e

= din ¥, %

M, nR(iNA\P') = M,AR(T'+A,P1) = {0} and din X,

(:diml(' =dim112) o/o

I1I.2. Bounded perturbations of ¢L-oggratorg :
Part (a) of Proposition.l{.G already gives an indication

pertaining to def(T+P) 1f def(T) < @ . Because we do not havé
Lemma II.1 for $_-operators, we cannot prove the stability of
the topological characteristics with the mere assumption that P
be a bounded operator. We need to assume turfh.r the existence
of a suitable bounded disk in ths domain space. This additional

hypothesis intervenes via the following lemma, which plays a
i =
Y
k) - . M/
LEMMA II.11, Let E, F be locii;; convéx spaces and T, P operators
from E into ¥ guch that D(T)cC D(P). |
Aogume that theie exist a meighborhood U, in E, a boun-.

role sinilar to. that of Lemma II.1,

dog-disk B CE, a disk ACTF and 0 ¢ <! such that B, € £U, and

“~

PO N(R(T))"c(TB )" + & .
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Kato's theoren in theao’Banach spaces, combinmed with duality,
yields the stability of "almost openness". If the domain space
is fully complete, we infer that the perturbed operator remains
a ¢ -operator with preservation of the index.

The result which we obtain fully renders Kato's theorem

(for ¢_-operators) in the case of Banach spaces.

THEOREM II.12. let E, F be locally convex spaces and T, P

operators from E into F such that D(T) cD(P). ' ,

Asgume that
(a) T is almost open with codim (R(T)) < and P is

continuous,

(b) There exist a base U of meighborhoods in E such that

for each U€ U, there is 0<&< 1 for which
PUN(R(T))™ € &(Tu)" ,
(c) There exist a neighborhood U, in E and bounded disks
BCE, B'CF such that - .
PI_C(TB)” + B . |
Then T+P is almost open and codim (R(T+P))” §codim (R(T))".
There is @ >0 such that codim (R(T+AP))” is f:onatzant tor

0 <irl<e.
4

If T and T+P are ¢_‘-opgrators, which is the case in’
particular if T has a closed graph, (D(T))"CD(P) and E is fully

complete, then ind(T+P) = ind(T). -

w

Proof. We may assume without loss of generality that.
E = D(T) = D(T+P), F = (R(T))” + R(P) and UcU_1r V€Y.



We prove first a lemma.

’ 8
LEMMA II.13, Let W (resp.U ) demote a basge of neighborhoods in

(R(T))” (resp. E). Then f<wUPU> : wel, ve U} torm a base

of neighborhoods in F,

Indeed, <WUPU> is absorbent in F because of our as-
sumption (R(T)) +R(P) = F., Moreover, given <W1U PU,> and

<W,UPU,> we can find 036%, w3¢w such that g\c U,N T,
and W cw]nwz. Thus W, U PU C<W, VP> n<w‘2 PUR» from

3 3 5
which it follows < wju PU;> C <W UPU, > N¢H, UPT, > . Since all
neighborhoods involved are absolutely convex, it is clear that
{<WUPU> : Wsw', Ucu} define a locally convex topology t
on F,

Let V be an arbitrary neighborhood in F, and
. W= VQO(R(T)) . Since P is continuous, there is a neighborhood
U in E such that PUCV, Thug <W UPU??C_V, which shows that t is
finet than the topology of F. The con;::ruction of t indicates
that t coincides with the topology induced by F.on (R(T))”. Also
(R(T))™ 1s closed for the (a priori fine;) topology t.
Iet N be a finite dimensional subspace such that
N @ (R(T))” = F algebraically and topologically. The topology
of F and t also coincide on N, being both Hausdorff. As a result,
t is equal to the topology of F,
A 'We now return to the proof of Theorem II.)2. Since (TU)"
is a neighborhood in (R(T))", V = <(TU)" U(s'lfﬂ)_> 12 "a néigh-
" borhood in F, by virtus of Lemma II.13.



ED°AR(T)® = eD*NKN(TT)CVe, and D° is absorbent in F').

Let L = F+V° (resp. M = E*Uo) be the Bamach space gene-
rated by V° (resp.AU°). Let T', P' denote the restrictions of
'I‘+, Pt to L with range space M. In view of the rolatiﬁna (1),
(2) we have U°AR(T') = USNR(T') = T'V® and P'V° C £0°.

The operatorr?t" has a closed graph in LxM (G(T+) is
weakly closed in F+xE+), ;nd nul(T!) = nul(T+) = codim (R(T)) ¢oo.
Thus T! is a ¢*-—operator. We remark that D(P+) = P‘, P being
\ continuous; in particular D(P') = L., Kato's theorem applies to
show that T'+P' is a ¢ -operator, nul(T'+P') ¢ nul(T'),
def(T'+P') $def(T!') and ind(T'+P') = ind(T').

Assumption (¢) implies PUC(TB)” + B', which in turn

implies by duality BeA T B cB1e N (1B)°C 2P*™"

U°, Since B'°
is absorbent in F' and B° in E', this means that p*(D(T*)) c M.

Theorem 1,16 (cf. also the subsequent remark) applies
to show that mul(T'+P*) € nul(T*), def(T*+P") ¢.des(T") and
ind(T*+P*) = 1nd(T*). Furthermors, there is @ >0 such that
nul(T++z\.P+) is constant for O <[l Q. A8 rtept = ('I'+P)+, we
obtain by duality that codim (R(T™+P))” ¢ codim (R(T))” and
codim (R(T+ AP))” is constant for 0 <M< @ (this is in fact é
already proved in Proposition 1I.6 (a)). If T and T+P are
¢, -operators, then R(T') = K(T)°, R(T) = N(T')°, -~
R(T*+P*) = N(T+P)° and R(T+P) = N(T*+P*)e, thue 1nd(T*+P*)zind(T*) ’
yields ind(T+P) = ind(T).

It remains only to prove that T+P 1is almost op;n.

We remark, as in the proof of Theorem I.9, that
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R(T'+P*) NM = R(T'+P'), Indeed, 1f £€R(T +PT)NM and t=(T"+P")g,
then T'g = t~-P'g e M AR(T") (recall that PT(D(T))cM). But

MNR(T")

]

R(T') because U° NR(T') = T'V°.  Thus g e L+N(T") = L.

As a result t€¢R(T'+P') (similarly, we also have
N(T + APY) = N(Tr+APr), VA),
From the fact that T'+P' is open, there is P)O such
that
MUCNAR(T +P*) = MUCAR(T'+P') € (T1+P1 Vo,

As a result, M(TH+P")lpecve o m(T'+PY).
As (T*»P)+ = T++P+, we have by duality

((T+P)U)-D'AVOR(T+P) .
Sipce U is arbitrary in the base U of neighborhoods in E, this

shows that T+P is almost open ./. Lt

As a consequence of Theorem II,12, we have the following

extension of Kato's theorem for 4)_ -operators

THEOREM 1I1.14. let E, F be locally convex spaces and T, P

operators from E into F such that D(T)CD{}’).

Assume that

(a) T is_almost open with codim (R(T)) <%, and P is -

a_bounded operator,
(b) There exist a n‘gignborhood U, in E, a bounded disk

B CE and 0 <E<1 such that

B,cEU, and PU_MH(R(T))"<c(TB))" .

Then -T+P 18 almost open and

codim (R(T+P))” € codim (R(T))” .



There is @ >0 guch that codim (R(T+AP))” is a constant for
0<liM<e.

If T and T+P are ¢L-Qperators, which is the cage if T

Hhs a closed graph, (D(T))” € D(P) and E is a Frechet space, then

ind(T+P) = 1ind(T).

éggg.. In view of Lemma II,11, there exist a base U of
neighborhoods in E such that to Ue«U, there corresponds a bounded
digk B € E with B < €U and PUN(R(T))” < (TB)” < &(TU)”. Moreover,
PU € B' for some neighborhood U in E and a bounded disglk B' € F,

We may therefore apply Theorem II.12 ./,

If (R(T))" = F, we have a more precise relationship

between ((T+P)U)” and (TU)™ : i;i

PROPOSITION II,.15. let E, F be locally convex spaces and T, P

operators from E into F such that D(T) € D(P).

Lot U be a neighborhood in E. Assume that

. (a) (TU)” is a neighborhood in F,
(v) PU < e(TU), 0<ext,

(¢) P is continuoug and PU € (TB)” + B', for gome bounded

disks B € E, B' C F,

]

_Then (1-€)(T0)™ C ((T+P)U)".

Proof., We may assume that E = D(T) = D(T+P)., Let vz(Tu)",
then as in the proof of Theorem II,12, by duality,
| AR = T*v and P've c gve.
. Let L (resp, M) be the Banach space genmerated by V°
(resp. U°) and T', P' the restrictions of T+, P* to L with range

M, T™h T
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L

If T and ™P are ¢ -operators, which is_the case in

particular if T has a closed graph, (D(T))” < D(P) and E is

fully complete, then ind(T+P) = ind(T).

Proof. We may assume that E = D(T) = D(T+P), 5
F = (R(T))” + R(P) and‘U cu_ .

In view of Lemma II.13, V= <(TU) V& 'PI> + N
is a neighborhood in F. Since PUN(R(T))” € &(TU)” + N, we have

VARI)™ ¢ <(TH) Ve Py N(R(T)™ + N
( C <M UETHARENTI> + 8 . 2
¢ (T6)” + K,

On the other hand, (TU)”™ + N € VN(R(T))™, by definition of V
(and the assumption N < (R(T))7). Consequently,

YNR(I)™ = (T0)7+8 and (V)" A(R(T))™ = ((T0)“+N)",

By duality we get

(1) ’ ()R = v o+ B(T),
On the other hand, PU C £V implies -
(2) P*ve ¢ ave,

"We remark ihat N° is weakly closed in F+, codim N° =
dim N <o and N(T7) € F° (as ¥ € (R(T))”). We may also assume,
as in the proof of Theorem II.12, that N(T') € >V°< , P being
continuous,

Let L (resp. M) be the Banach space generated by V°
(resp. U°). We notice that L € N°, Let T', P' be the restrictions
of T, P* to L with range apace M.

We prove first that
(3) U AR(T!) = T'VO,
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The inclusion T'V°® € U°NR(T') is trivial, from the

relation (1). Conversel\y\,@\et t € U°AR(T'). Then £ = T'g with

+-1

g 6 (T+"U°)f\L C(T 'U°)NN°, Consequently, g &N + N(T+),

in view of the relation (1); hence f €T'V°,

On the other hand, P'VC C £1°.

As dim N(T') = dim N(T') = codim (R(T))” <%, and T' has
a closed graph, Kato's theorem applies and shows that T'+P' is
a ¢+-operator, nul(T'+P') € nmul(T'), and ind(T*+P') = ind(T').

We cannot yet conrclude as we did in the proof of Theorem
II.12, because a priori M’nR(T+) # R(T*) and PY(D(T)) & M.

&
We remark however that PU C (TB)™ + B! + N, implies

+=1

Bon T B AN * < 2P*7'0°, where B'® 1s absorbent in F', B° in

E' and codim N ° < © , This means that P'(D(T')(\N_ °) € M. There
1s as a result a finite dimensional subspace M, € E' such that
Pr () ¢ M+M, . We may assume that MjﬂM = {0}, and M, is gene-
rated by a finite disk D,

The relation (1) shows that L has a finite codimension
in T5"M, since codim B © <%, On the other hand, M has a finite

codimension in M*-M1 . Thus L has a finite codimension in T"' (M+M, )
' a

As a result, there is a finite dimensional subspace L1 c F",

generated by a finite disk D', -such that LnL‘ = {0} and

4L, = T (MM ) .

1

’

Let L, = L+L, (resp. M, = M+M,) bo the Banach space

2
generated by V°+D' (resp. U°+D), Let T™, P" denote the réstric-

tions of“T+, P* to L, with range space M,. Then T" (resp. P")

2 2
is a finite dimensional extension of\T' (resp. P'), if we regard
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T', P! as ‘operators from L, imto M,. With domain space: L, and

range 'epace-Ma, it is clear that"'l", T'+P' are ¢+-operators (M -

is closod in the;Banach space M,). By virtue of Lemmas I1.10 and

1.1, T, T"+P"“are ¢’+—operators, ind(T"+P") = ind(T"), and
pul(T*4+P") € nul{T'+P') + dim 1.1 oo .

Furthermore, as P" is obviously a bounded operator, there 1s

e >0 such that nul(T"+ AP") is constant for O <'1Xl <

+=1

From L_ =T

2 Ha, wo deduce that -

M, NR(T") = R(T").
Py As in the proof of Theorem II.12, because
M(T*) €Ly, we have R(T'+P*) K, = R(I"+P"), and

Moreover P+(D(T+) JCM

N(T*+ AP') = N(T"+ AP"), YA, By duality, codim (R(T+P))” < %
and codim (R(T+ AP))” 4s comnstant for O <|M|<@. Moreover,
Theorem I.16 (or Theorém 1.9) shows that ind(T*+P*) = ind(7%).
Consequently, if T and T+P are ¢_-operatora, then ind(T+P)=1ind(T).
It remains to prove that T+P is almost open. As T"+P" ig
open, there 1is H>0 such that
M (U°+D) N R(T*+p") = M (2+D) (A R(T+PY)
C (4P )(Ve+Dr).
A fortiori '
pve AR(TH+PY) c(1r+PT) (vo+D1), ' o
hence
BT )T e + bt o+ n(TNeRY).
since T +P* = (T+P)¥, by duality we have
2((T+P)U)” > M(V AD'® ) NR(T+P).

As D'° is a (weak) neighborhood in F, _and‘U € U 15 arbitrary,

2
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this shows that T+P is almost'open.

To obta}n an apper bound of codim (R(T+P))", we may pro=-
ceed -as follows. First, in ‘the assunption (¢c) we may assume that
N, C (R(T))", since P is continuous and we may choose U, such
that the projection of PU_ on a complement of (R(T))™ along
(R(T))” is bounded. * ;

We may replace N by in the main proof, that is 18
may assume that No C KN, thusx N°°. This means that
PD(rh)NEe) € PP(D(T)NR P Y/c M, It g 6 R(T'+P")NK°, then
g = -P’g € MAR(TY). Therefore g ¢ (T*~'M)AI®. But the rela-

tion (1) shows that (T

M)NK = L; hence g &L and g€ N(T'+P'),
As a result, N(T++P+)1\Rf = N(T'+P'), From this it gollo:% that
nul(T++Pﬁ0 ¢ nul(T'+P') + codim N°
¢ nul(T') + codim N°
< nul(T*) + codim X°, \
By duality, and returning to tl;e initial notations of

the statenment, we obtain

codim (R(™P))” ¢ codim (R(T))” + dim (K+No) o
A8 a conseqqugéfot Theorem 11,16, we have the following

THEOREM II.17. Theorem II.16 holds if the assumption (b) is

replaced by ’
(b') There exist a meighborhood U in E, a bounded disk

Bo C E, a preconpact digk K CF, a finite dimensional subspace

N CF and O<&<1 guch that
B,C €U and PUN(R(T))™ < (TB))” + K + K.
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In particular, Theorem II.16 holds if both assumptions

’

(b) and (c) are replaced by .

(b") There exist a neighborhood U in E, a bounded disk

B C E, a precompact disk K CF, a finite dimensional subspace

NCF and O <E <1 guch that
BceU and PU € (TB)” + K + N,
If FU € (f?- + N, then (R(T+P))” + N = (R(T))” + N.

Proof. Let\M be a finite d{mensional subspace in F such
that F = (R(T))” 0 M. If K' is the projection of XK on (R(T))”

along M, then K' is precompact and K c.'K'ﬂ{-. Thus

PUN(R(T))™ C(TB), + K + M + X . .
Wo may docompﬁse M+K into K, +N, with nl.c (R(T)) \and
X, N(R(T))” = {0}. Then . N
(%) PUN(R(T))C(TB )™ + K' + K . v

By virtue of Lemma I1I.11, we may assume that (#) holds
for a base of neighborhoods U in E,

'Fix any ¢' >0 such that g" = g+ g'<1. As (TU) is a
neighborhood in (R(T))”, there is a finite dimensional subspace

K

5 €(R(T))” such that k' c e'(Tu)‘+R3< Consequently,

PUN(R(T)) < &(TU)™ + e (Tu)” + B, + K,
Cce"(TU) + H, + L
hence the assumption (b) in Theorem II.16 is satisfied.
If PUC(TB) +N, to prove that (R(T+P)) +N = (R(T)) 4N,
we may use duality, or proceed as follows. We may assume that

F = (R(T)) +N. Lot S : F»F/N bo tho canonical quotient operator.

It U is a neighborhood in E then (TU)” is a neighborhood in
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(R(T))". Let N = (N A(R(T))™) 0 N*, Then (TU)™ + (R NA(R(T))™)

is a neighborhood in (R(T))”, thus (TU)” + N is a neighborhood

in F, and SC(TU) +N) = S((TU)") is a neighborhood in F/N. Since

S is continuous, S((TU)”) &€ (STU)™, therefore (STU) 1is a neigh-

borhood in F/N. We now prove that (R(ST))” = F/N. We know that

R(T) is dense in (R(T))™, therefore R(ST) = S(R(T)) is dense in
= S((R(T))”). This shows that (STU)  is a neighborhood in

(R(ST))”, hence ST is almost opem. Moreover, codim (R(ST)) = 0,

SP is continuous and SPU C S((TB)") C (STB)~ < (STU) . Lemma II.l!

and Theorem II.12 (cf. also Theoren II.14) show that ”
- codim (R(ST+SP))” = 0
F/N.
We‘remark that (R(T+P))” + N is closed as dim N <o,

n

We want to infer that S({R(T+P))7)

Since S is open and K(S) € (R(T+P))” + N, the familiar argument
using set-theoretic complements shows that S((R(T+P) +N) =
SC(R(T+P)”) is closed in F/N. Consequently, S((R(T+P))") is
exactly the closure in F/N of S(R(T+P)) = R(ST+SP). But we have
proved that (R(ST™+SP))” = F/N, therefore S((R(T+P))”) = F/N.

As a result, (R(T+P))” + N = (R(T))” + N ./,

REMARKS Tpeorem I1.17 generalizes at the same time several
results announced 'ithout proof by Vliadinirski : Theorem 4.b and
1]

the remarks following Theorems 2 and 4 in (26). There, Vladimireki

considered perturbations of the type BC €U, PU C (TB)” + XK and

PU C (TB)” + K, with K compact, We note that Vladimirski's results

do not fully reduce to Kato's theorem for ¢L-oporators in Banach

spaces.

.
q%
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Theorem 1I.17 also provides a short proof of the theorem

of Vladimirski on precompact perturbations of @ -operators (25,
Theorem 2)., It shows that precompact perturbations of #L-operators

can be essentially reduced Eg "small" pertprbationsf

Theorem I1.17 should be compared with Proposition I1.29.

II.2.2. Bounded perturbations

' We now exanine a few cases where a bounded perturbation
also entails the existence of a suitable bounded disk in the
domain space, in such a way that the general results of the pre-

ceding section may apply. B

PROPOSITION II,18, Let E, F be locally convex spaces and T, P

operators from E into F such that D(T) € D(P).

Agsune that

(a) T 48 a $_-operator,

(b) P i a bounded oporg%or,

(c) E is such that any bounded disk of E/N(T) is contained

in the closure of the image of a bounded disk in E, by the

canonical quotient operator.

Then there is g>0 such that T+AP is almost open and

codim (R(T+AP))” ¢ codin (R(T))” for IM<@. We may choose e
such that codim (R(T+AMP))” is conatant for O <|\l| <e.

1f m+)P, IAl<@, is a ¢ -operator, which is the case if

(D(T))” € D(P) and E is fully complete, then ind(T+\P) = ind(T).

Proof. Lot Uo be a neighborhood irn E and B' a bounded

disk in F such that PU C B'. Let T denote the injective

y
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é{.-operator from E/N(T) into F induced by T. Since T~ is con-
tinuous, it follows that T 'B' 18 a bounded disk in E/N(T).

Let X denote the image by the quotient operator from E
onto E/N(T) of a set A. By the assumption (c¢), there is a bounded
atsk B C E such that T7'B' < (B)".

Lot o= aup{IH:ABOC Uo} . Fix any A such that |Al<g@.
Then Asoceuo for some 0< &<1, APU_C AB! and

APU_NR(T) € AB'NR(T) € AT((B)7)
o T(()\Bo)-).

We prove, as in Lemma II.11, that relations similar to
the above hold for a base of neighborhoods U in E. Indeed, let
U' be any neighborhood in E and § be such that E(AB ) c ¢U'. Let
0 =0'NEU,, and B =§AB . Then BC £U'NEET_C eV and

APUNR(T) € AP(EU ) NR(T) € B((EAB)™)
c M(B)7).
Fix any q' >0 such that g" =€+€'< 1, Then
(B)" c(e®)"c el + g0 c "0,
Consequently,
APUNR(T) € }((B)7) € T(e"0) ¢ g"1U.
Since this holds for a base of neighborhoods U in E and

P is bo{mﬁed, we may apply Theorem I1I.12 ./. '

Since (DF)-spaces (8, Grothendieck) satisfy the assump-

a

tion (c), we obtain as a corollary of Proposition II.i8 the fol-

10'(“ result of Vladimirski announced without proof in (26) :

»
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COROLLARY II,19 (Vladimir ). Let E be_a fully complete (DF)~-

space, F a locally confex space, T a ¢L-gperator and P a bounded

operator from E into F\;EEB that P in evorywhore definod.

Thom there exists @>O guch that T+AP is a ¢ -operator,

def('r»r):P) § def(T) and 1nd(T+AP) = ind(T), for A\ <e.

REMARK, The assumptiom that P be everywhere defined may be re-

placed by (D(T))~ € D(P).

The assumption (c¢) of Proposition II&{% is satisfied in
particular if any bounded disk im E/N(T) is contained in the
image of a bounded disk in E by the quotient operator.

o A Schwartz space is a locally convex space E such that,

for any neighborhood U in E, there is a neighborhood V in E
which is precompact with respect to the semi-norm associated
with U,

A Montel space is a locally convex space with the pro-

perty that any c¢losed bounded disk is compact.
It E is a Frechet-Schwartz space (i.e. a Frechet space
which is also a Schwartz space) and N(T) is closed, then E/N(T)

R} ]
is also a Frechet-Schwartz space, thus a Frechet-Montel space. 10

n
At]

)

(A Frechet=Schwartz space is a Montel space because every bounded
set 18 precoppact, thus relatively compact. On the other hand,
-the quotient of a Schwartz space by a closed subspace I a
Schwartz space : cf. for instance (4, Garnir, De Wilde and
Schmets, p. 146).) As a result, any bounded disk in E/N(T) is
contained in a compact disk irn E/N(T)., Since E is a Frechet

space, any compact disk in E/N(T) is the image of a compact disk
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in E by the quotient operator. (The proof*gaé§7a8 follows. If K
is a compact disk in E/N(T), then K is contained in the closed
absolutely convex hull K' of a“sequence converging to O in E/N(T).
This sequence is in turn the 13&50 of a sequence convdrging to O
in E, the closed absolutely convex hull of which is a compact

disk K", Now the image of K" is a compact disk and it coincides

with K'.) All this proves the following

THEOREM 11.20. Let E be a Frechet-Schwartz space, F a locally

conve ace, T a ¢ -operator and P a bounded operatpr from E

into F such that P 1s everywhere defined.".

There exists @ >0 guch that T+AP is a ¢ ~operator,

def(T+MP) € def(T) and ind(T+AP) = ind(T) for IAl<e. Wo may

choose @ such that def(T+AP) is conmgtant for 0 <1Ai<e.

REMARK. A locally convex space E is sald to be quasi-normable

‘1r for any neighborhood U in E,there is a neighborhood V in E
such that, for any £ >0, there exists a bounded disk B satisfying
VCB +E£U, Schwartz spaces are obviously quasi-normable. By
virtue of a result of Palamqdov (see (2, De Wilde)), if N(T) is
a Frechet, quasi-normable space, then any bounded disk in E/N(T)
is the image of a bod;ded disk in E by the quotient operator.
Therefore Theorem II1,20 holds also under the (more general)

assumptions that E be a Frechet space and N(T) quasi-normable.

Finally, it 'is imnediate that if N(T) has an algebraic
and topological complement L in E, thon any bounded disk in E/N(T)
is the image of a bdunded disk in L by the quotient operator.

In fact, in this case the bounded pertur! 1 « of T may be
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to a bounded perturbation of the injective Fredholm operatér Tt,

€==:Lha-reatriction of T to L, asz 18 shown in the following

THEOREM II.21. Let E, F be locally convex:spaces and T, P operators

from E into F such that P is everywhere defined.

Asgune %hat

(a) T i8 a ¢L-oporator such that N(T) ©¢ L = E algebraically
and topologically, for gome closed subapace L CE,

(b) P 18 a bounded operator and either E or R(T) is conm-

plete, or P is a Banach-~bounded operator.

Then there exists ©>O such that T+AP is a ¢_ -operator,

def(T+AP) s def(T) and ind(T+MP) = 1nd(T) for |A\<Q. We may choose

@ Buch tha def(T+A\P) is constant for O<IA|<@.

Proof. Let T', P' denote the restrictioms of T, P to L
with range space F, Then T' is an injective Fredholm operator,
P' is a bounded operator with either L or R(T') = R(T) being
complete, or P' is a Banach-bounded operator. By Theorems II.l4,
11.5, II.8, there exists e> 0 such that T'+AP' is an injective
Fredholn operator and ind(T'+AP!) = ind(T!') (thus def(T'+AP!) =
def(T')) for IA|<@.

We now prove that, for [Al<g, T+A\P 18 a ¢_-operator. That
T;XP has a closed graph is immediate because P ia_cont}nnous and
everywhere defined.

The range R(T+AP) is closed bocause R(T'+AP') is closed
and has a finite codimension in R(T+AP), as def(T'+AP')< % ,

It remains to prove that T+AP 1is open. Any naig/hborhood
U in E contains a neighborhood of the fora U'+U", where U!
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(resp. U") is a neighborhood in L (resp. H(T)). Wo remark that
(T+AP)U' =, (T'+AP')U' is a neighborhood im R(T'+AP'). Let

M € (T+AP)(R(T)) C P(N(T)) be such that M 0 R(T'+APt) = R(T+AP).
Then dim M <o, and clearly there is‘a finite disk D generating
M such that D € (T+AP)U", Therefore (T+AP)U' + D C (T+MP)U, where
(T+AP)U' + D and a fortiori (T+AP)U are neighborhoods in R(T+AP).
) For the last part, we repark that if PUO C B' for some
neighborhood Uo in E and a bounded disk B! c‘g; and B = T"]B',
then for |Al small enough, we have AB CEV , 0<&<1, and

-

)\PUoﬂR(T) C T(AB). We may therefore apply Theorem Il.l14 ./.

In Chapter III, Section IIXl.,2, we will study perturbatiomn
of semi-Fredholm operators with complemented ranges and kernels,
in particular the question under what conditions :Ln Theorem II.21
N(T+AP) is also complgnented (algobraically and topologically).

II.3. Preconpact. perturbations of @_-oggrg_torg

Theorem 11,17 contains the following result of Viadimirski:
if T is almost open with codinJ(R(T))-<oo and P is precompact,
then T+P is almost opon with codim (R(T+P)) " <o,

The proof of Vladimirski (25) is completely different
from ouras, and rather lengthy. It involvos a technique of extrac-
tion, separation and completion of coumtable subasystems of conti-
nuous semi-norms to derive Frechet spaces from the initial spaces

and to apply the theorem of Schwartz, Kothe and Schaefer (Theorem
I.8).

[ R I
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We now present another short proof which usges the same

~

.principles as for Theorem II.17. The 6nly difference ig that we
wili use the theorem of Schwartz, Kothe and Schaefer on precom-

pact perturbations of ¢+-operat6ra (Theorem 1.7 or Theorem I.1 (B))

N
rather than Kato's theorem on small perturbations (Theorem I.1 (4)).

THEOREM I1I.22 (Vliadimirski). Let E, F be locally convex spaces

and T, P gperators from E imnto F such that D(T) € D(P).

Assume that T is almost opem with codim (R(T))™ <o and

P is precompact, Then T+P is almost open with codim QR(T+P))-<oo.

Moreover, codim (R(T+AP))” = n 1s a constant for all

scalars A, except for at mogt a countable set of exceptional

points {A, } with no accumulation point at finite distance.

At these exceptional points, codim (R(T«H\ P))” > n.

Ir T and T+P are & -operators them ind(T+P) = 1ind(T). .

X

Proof. We may assume that E = D(T) = D{(T+P). Let PUOC K
for some neighborhood Uo in E and a precompact disk K in F, l

let U C U, be any neighborhood in E. There 1s a neigh-
borhood V in F such that (V)" N(R(T))” € (TU)". By duality, we
obtain U°{\R(T+) c'rt oy .ﬁ On the other hand, since PU is pre-
compact, it is a fortiori precompact with respect to the semi-
norm associated with V. Therefore, by duality, V° is precompact

+-l

with respect to the semi-norm associated with (PU)° = ge,

Hence PVe is precompact with respect to the semi-norm assocliated

with Ue°, 6

+=1y

Lot A = VONT ~'U°, then A is a (weakly bounded) Bamach

disk, because T =1go « (TU)® 1is weakly closed and V° weakly
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compact (Qge also Lemma 0.3). We ﬁgve immediately U°r\R(I+) = 7'a

and P+A is precompact in the Banach space generated by U°.

We also remark that mul(T') = codim (R(T))” <%, Let D
be a finite disk genmerating R(T'). Let L (resp. M) be the Banach
Epace generated by A+D (resp. U®), and T', P! denote the restric-
tione of T', P* 'to L with range space M.

It 18 clear that T' is a ¢;-operator and P! .a compact
oégrator from L into M, Theorem 1.7 (or Theorem I.1 (B}) shows

that T'+P' is a ¢+-operator and ind(T'+P') = ind(T'). Moreover,

a result of Gohberg, Krein (5) and Kato (10¥ also indicates that

dim N(T'+MP') = n is a comstant for all scalars A, except for

at most a countable set of exceptional points{A, } with no accu-
mulation point at finite distance, where aim FkT'+AiP') > n. /)
(Briefly, the proof runs as follows. We know that T'+AP' 1is a
¢+ ~operator for ‘any scalar A, By virtue of Theorem 1.1 (C),
rul(T'+ XN P') is a constant n(A) (not exceeding nul(T+AP)) for
0<¢|N- A[(Q().) and Q()\) >0 small enough. Any compact disk in the
scalar field is covered by a rinite number of such annuli (to-
gethir with their centers). Since there must be overlapping of -

these open annuli, it is easily seen that the constants n()) are

the same from one annulus to another., The exceptional points are

. ap
P bt

among the centers A, which are igolated.)

As usual, we remark that R(P*) ¢ M, N(T') € L and
R(T')AM = R(T*). A8 a consequence, R(T*+F" )M = R(T'+P') and
N(T*+AP*) = R(T'+AP'), ¥A, By duality, we obtain codim (R(T+P)) < e

and codim (R(T+AP))” has the property enunc¥ated in the theorem.

Foa
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[

4 We Erove that T+P is almost open ‘as in the proof of
Theorem II.16 : there is ra)O such that
p ve A R(T +P*) = MU R(T'+P') C (T'+P')(A+D).
Hence r(T++P+‘)"]U° c A+ D+ RT+P"), and vy duality,
2p™! ((T+P)U)™ > 4° N D° NR(T+P) DV ND® N R(T+P),
where D° 1s a (weak) neighborhood in F,
Theorem I1.23 shows that ind(T'+P') = ind(T"), If both

T and T+P sre ¢ -operators, then ind(T+P) = ind(T) ./.

An lmmediate consequence of Theorem 1I.22 is the following
generalization of the theorem of Schwartz, Kothe and Schaefer

(Theorem I.8)

THEOREM II.23 (Vladimirski). let E be a Frechet space (or more

generally a fully complete space), F a locally comvex space and

\

T, P operatdts from E into F such that (D(T))" < D(P).

If T 1g a $-operator and P a precompact operator, then

T+P 15 a ¢ -operator and ind(T+P) = ind(T), «
¥
Moreover, def(T+AP) = n i1s a comstant except for at most

a_countable of exceptional points {Ai} with no accumulation point

at finite distance, where def(T+A,P)>n.

II1., Precompact perturbations of ¢%-ogerators

We now prove a stability result.pertaining to brecompact
perturbations of é‘-operﬁéors similar to the theorem of Schwartz,
KOthe and Schaefer (Theorem I.7). The stability of the index is
proved by duality, the stability of the topological characterig-

tics by adapting the argument of Schwartz (23),.
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THEOREM II.24. lLet E, F be locally convex spaces and T, P

operators from E) into F such that D(T) €D(P).

Assume that T is a ¢+-_perator and P a precompact operator.

Then T+P is almost open and nul(T+P) <0, If T+P ip a

¢+-operator. then ind(T+P) = ind(T).

The operator T+P is a ¢+-operator (thus ind(T+P)=ind(T))

if P 1s a compact operator, or if (D(T)) cD(P) and either E 9_:;/

R(T) 45 domplete. In this case nul{(T+ AP) = n is a constant for

all scalars A , except for at most a countable set of exceptiomal

points {/\i} with no acfumulation at finite distance, where
nul(T™ A P) >n.

-Proof. We may assume without loss of generality that
E

i

D(T) = D(T+P). Let PU_CK for some neighborhood U  in E and
a precompact disk K in F, .

Let UCUO bé any neighborhood in E, and‘v a neighborhood
in F such that (V) " AR(T)C(TU) . By duality we arrive at
e AR(T ) cTtve, tet A = VN T 0o, then A is weskly compact,
thus a Banach disk. We have

AR(TY) = %2 . /

and P'A is precompact in the Banach space generated by U° (cf.
proof of Theorem 1I1,22). Since T is open, it follows that
rR(TY) = N(T)®, therefore def(T*) = nul(T) <%, Theorem I.23 shows
that ind(T'+P") = ind(T*), thus ind(T+P) = ind(T) if both-ﬁ’lbggnd
T+P are ¢+-operators. Also def(T +P') < o implies codim R(T+P)° <00,
hence nul(T+P)< o0 (this may also be proved directly by the ar-

gument of Schwartz (23) : considering the restrictions of the
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operators to a complement of K(T) in E, we may assume T injective;
restricted to N(T+P), T = ~P where T is open and P precompact;
it follows easily that there is a neighborhood U' in N(T+P) which
is precompact because U' = -T-IPU'; as a result dim N(T+P) <w),

We now prove that T+P is almOst‘oLpen. Let L (resp. M)
be the Banach space generated by A (resp. U°), and T', P' the
restrictions of T+, P* to L with range space M, We have proved
that T' is a &#_-—operator and P' a compact operator, thus by part
(B) of Kato's theorem (cf. also Theorem I1.23), T'+P' is a
¢_-o perator,

In particular de £(T! +i3-) <, Consequently,
codim, R(T*+PY )\ M gdet(TV+P1) <o, Lot M1CR(T;'+P+)nM be a
finite dimensional subspace such that

M, © R(T'+P') = R(T™+PT)NK .

Let £€M_, then £ = (T'+P )g. As R(P*)cM (PU being bounded),
5

1 b
¥g = £-P'g 15 an element of R(TY)NM = R(T'). Thus g € L+N(T").
As a result, there 1s a finite dimensional subspace L] CN(T+),

generated by a finite disk D such that (T++P+)Ll = M, (= P"If, ).

]

Let L2 = L+L, be the Banach space topologized by A+D, and T, Pv

1
the restrictions of T+, P* to L2 with range space M. Then T'+P"
i a ¢ -operator (cf. Lemma I,11). Now we have
' R(T*+PT)N\M = R(TM4PY)
. There 1s P)O such that
MU° NR(T'+PT) = pue AR(T+P)
[ (T"+P")(A+D!) ,

heanlu(T++P+)'1U° c A+D+N(T*+P"), and by duality,
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2 p"‘ ((T+P)U) D> A° ND° N R(T+P)
DV AND® NR(T+P) ,
which shows that T+P is almost open.

That T+P is8 a éﬁ’:‘pp&rator it P is a compact operator is
part of the theorem of Schwartz, Kothe and Schagfer. To prove
that it is so 1f P 18 a precompact operator, (D(T)) € D(P) and
elther E or R(T) is complete, we adapt the argument of Schwartz
(23).

.By considering a closed subspace L gfch that
L © (R(T) + N(T+P)) = E (algebraically and topologically), and
the restrictions of T, P to L, we may assume that both T and T+P .
are injective. We notice in particular that TL = T(L + K(T)) is
cloged in R(T) since L+N(T) is closed, T is open and
N(T) CL*N(T); thus if E or R(T) is complete, then L or TL is
complete. i

Let qﬁ be an ultrafilter in R(T+P) converging to y in F,
We should prove that the ultrafilter defined by ¥ = (T+P)"1g
converges in E, Let p be the continuous semi—x’xorm associated with
U, (such that PUo is precompact)., Consider the ultrafilter defined
by {p(x) : X&F, FGEF} on the (compact) extended real line
(~o0,+), Lot a be its limit, If a <+%, there exists F € F
such that p(x)<a+l, Vx €F. A fortiori (a+1)U €7 , ae
F C(atl )Uo. Consequently P?’, defining an ultrafilter in the pre-
compact disk (a+1)PU°, is itself Cauchy (cf. (8, Grothendieck)
or (13, KGthe)).As a result, ¥ = (T+P-P) ¥ defines a Cauchy

o
ultrafilter (since (T+P) ng does). If R(T) is complete then
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T¥ converges to a certain Tx @R(T), hence r-rr converges to x in b
(T is open). If E is complete we remark that ‘F = T_IT 7 is
Cauchy, thus converges to x €k. This proves at the same time that
T+P Is open and R(T+P) is closed, since it follows from ¥ -»x,
(r+P) ¥ = g-»y and the closed graph of T+P (assymption
(B(T))"CD(P)), that y = (T+P)x. ()

If P is a compact overator, or if (D(T)) ¢ D(P) and
elther E or R(T) is complete, them T+A P is a ¢, -operator for
all scalars AO. By virtue of Theorem II.5 (cf. Theorem II.8
for the case P a compact operator), nul(T+ AP) is a constant
n( r\o) for 0<|A- )‘o, < e( )\O) and @ ( )\O) >0 small enough. The
argument of Gohberg, Krein and Kato (cf. proof of Theorem II.22)
shows that nul(T+ A P) has the property enunciated in the statement

of the theorem ./.

KRENARKS. In the preceding proof, if P 1s a compact operator then
PF is a convergent filter (with the asscumption that M CH, K
compact). Thus T¥ = (r+P-P)¥ converges to a certain Tx €R(T),
hence :F—ax without any assumption of completeness of E or R(T).
"I‘his is the original argument of Schwartz (23).

Part of Theorem II.24 (that T+P is ¢‘+-operator and
ind(T+P) = ind(T)), if T 1s continuous, may be deduced from some
results announced without vroof by Vladimirski (27). Judging by
his statements, we think that his methods may be diffe-rent, using

completions of the spaces as in (25) rather than duality.

(#) The case a = +% 1is inmpossible, because if one considers t\he
ultrafilter defined by ¥'= {x/p(x) : x<F, Fe¥ } then the pre-
ceding argument shows that ' x' Z 0 whereas ([+P) F'—>0.



CHAPPER TI1

SOl FURTHDY RESULCS AND AP PLIJATIONS

In this chapter, we first study some extensions of the
results in Chapter 11 to the c¢ase where P may not necessarily be
bounded, but "T-bounded". This corresponds to the eoncept of
"relative boundedness" 1n<(11, Kato). Then we study perturbations
of semi-iredholam operators with complemented kernels and ranges.
We are mainly concerpmed with the stability of the latter proverty.
This extends a result of Pietsch (20). Next we apply the results
of Chapter II an the duals, using sultable locally convex topo-
logies on the duals for which P* i3 a convenient perturbatimg<3f
T+. This gives some stability results involving the proverty that
an operator lifts certain families of weakly compact disks (cf. Co-
rollary I.20 and subsequent remark). Finally we briefly derive
some spectral prorertiesof bounded operators in a sequentially
complete locally convex space, and prescent an example of small

perturbations of linear partial differential operators.

11¥7.1, T-boundedness

In (24), Sz-lagy remarked that stability results may be
extended to the case wherc P neced not be bounded, but is

"T~bounded", that is [IPxWgafxll + birxll, vx ¢D(7), for some-a,b2 0.
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This amounts to saying that P is bounded from D(T) ihto F_if D(T)
is equipped with the (stronger) norm llxll + IITx|l. We refer the
reader to (6, Goldberg) amnd (11, Kato) for examples and appli-
cations.

We have a similar situation im locally convex spaces. We
may assume that P is a bounded operator from D(T) into F if D(T)
is equipped with the (fimer) topology generated by {Uf\T-]V}
where U (resp. V) runs through a base of neighborhoods in E (resp.
F). (In case of normed spaces we would get this way the norm
sup{HxH,HTxﬂg rather than lx{+iTxil, but the two norms’ are equi-
valent.) We call this topology on D(T) the T-topology. The prefix
T shall serve to indicaté that D(T) is equipped with the T-topo-
logy (e.g. P is T-bounded or T-precompact). The T-topology coin-
cides with the topology induced by E if T is continuous. On the
other hand, T is always T-continuoug.

Most of the stability results could be generalized to

this case, because of the following :

LEMMA III.1, let E, F be locally convex spaces and T an operator

from E into F. Then

(a) T is open if and only if T is T-open,
(b) T is almost open if and only if T is T-almost-open.
\

Proof. The part "if" in both cases is trivial since the
T-topology is fimer than the topology om D(T) induced by E. We

‘ ¢
now prove the '"only if" part.

(a) Lot UNT"'V be a T-neighborhood in D(T). Then
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TUNT V) = (TONV o

For 1f y €(TU) NV, Then y = Tx with x€U, thus
xaUNT 'V, Hence (TUNVET(UNT 'V), (The converse inclusion is
trivial and not needed,)

As TU is a neighborhood in R(T) and V a neighborhood in
F, T(UNT"'V) s a neighborhood in R(T).

(b) Let UNT™'V be a T-neighborhood in D(T). We may as-
sume that V. is open (otherwise we take its interior). Since TU is
dense in (T0)7, we have VN (TU)™ & (VNTI) e (T(UNT 'V))™. Indeed
let yGV N(TU)” and <L be a neighborhood of y in F; then SLNV
is a neighborhood of y. Thus VN SLNTU is not empty.

Now VN(TU)~ is a neighborhood in R(T) and so is

(reunt'v)” L/

The general approach in dealing with T-bopnded pertur-
bations is thégfollowing. let T be a semi—Freth{: operator and

P a T-bounded, T~compact or T-precompact éperator. We consider

T, P as operators from D(T), equipped with the Tstopology, into
F, By Lemma III,1, T remains a semi-Fredholm operator, and P
becomes a bounded, compact or precompact'perturbation of T. Under
sultable assumptions as given in Chapter II, T+P is a semi~-
Fredholm operator, If we return to the initial topology on E,
then T+P is obviously open. The main stumbling block remaining. is
whether or not fo has a closed graph in ExF. This is answered

in the following

THEOREM 1lI.2. let E, F be locally convex spaces and T, P

operators from E into F such that D(T)CD(P).
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Agsume that
(a) T has a closed graph,

(b) P is a-<T-bounded operator.
Assume further that either

(c) P(Uon'r“‘vo)c:a for some T-meighborhood U _/\ T"’vo

and a bounded Banach digk BCF (i,e. P is a T-Banach-bounded

operator, which is the case im particular if F is sequentially

complete),

or

(c') G(T) is complete.

Then there exists @ >0 such that T+ AP has a closed

graph for l>‘l<e.

Proof, Let X = G(T) be equipped with the topology induced
by Z = EXxF. \

Let W = (UxV)NG(T) be a neighborhood in X, where U (resp.
V) is a neighborhood in E (resp. F). If Q denotes the projection
of G(T) on E, along F, then QW = UNT"'V, Indeed xGQW if and
only if (x, Tx)€UxV, that 1s 1f and only if xUNT" V.

Let I be the canonical injection of X imto Z and S the'
operator from X into 2 derix;ed by S(x,Tx) = (0,Px), xeD(T),.

Obviously I 1s an injective, continuous Q;—operator
(because R(I) = G(T) is closed in Z). On the other hand S is a
bounded operator, for if P(U_NT'V_) €B for a T-neighborhood
U NT7'V_ and a bounded disk B, and Wy = (U xV_)NG(T), then
SW, = {(0,Px) : x6U NT7'v_lc o} x B, where {0}x B clearly is

a bounded disk in Z, We also remark that
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R(I+AS) = {(x, Tx+APx) : x €D(T)}
= G(T+ AP) ,
Let @ = sup{lM: )\Bcvoi. Ir |)~|<Q then we have
IWO = (UOIVO)ﬂR(I) ’
)\swocioﬁ AB c (T xV,)
for some O0< g <1,
" Consequently I+AS is an injective (confinuous)
¢%goperator by virtue of Theorems II.2 and II.? (if B is a bounded
Banach disk then {O} x B 1s also a bounded Banach disk). In parti-

cular R(I+AS) = G(T+ A P) i8 closed ./.

THEOREM III.3, Let E; F be locally convex spaces and T, P operators

from E into F such that D(T) C D(P).

Assume that

(a) T hags a closed graph
and either

(b) P is8 a T-compact operator

(b') Pis a T~precompact operator and G(T) is complete.
Then T+P has a closed graph.

Proof. With the a;me setting as in the proof of Theorem
I1.2, S 18 now either a compact\operator, or a precompact ope-
rator with a complete domain space. The theorem of\Schwartz, Kothe

and Schaefer or Theorem 1I1.24 gives the conclusion ./, ¢

: ~
REMARK., Theorem III.3> is also given in (25, Vliadimirski).

Lemna III.1, Theorems IXI.,2, III,3 and the results of

Chapter Il immediately yield the following
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THEOREM IIl.4. Lot E, F be locally comvex spaces. and T, P &

operators from E imto F such that D(T) < D(P).

Asgume that

(a) T is_a ¢, -operator,

(b) P is a T-Bamach-bounded opérator, which is the case

in particular if P is T-bounded and P ig sequentially completse.
Then there oxists @ >0 such that ™ AP is a ®,-operator,

rul(T+ A P) € nul(T), def(T+ AP) ¢de2(T) and ind(T+A P) = 1ind(T)

for l)\l<e. We may chooge @ >0 such that nul(T+ AP) is constant
fg_r 0 <,)“v3<e.
£

. Proof. For \Al snall enough, T+ AP 15 a ca-oporator fronm
D(T) equipped with the T-topology into F, nul{T+ AP) ¢ nul(T),
def(T+ AP) §def(T) and ind(T+ A P) = ind(T), by virtue of Lemma
I1I.1 and Theorem II.8. Also nul(T+ AP) is conmstant for 0 <)\ < e
and e small enough,

If we return to the topology of E, then T+ AP is obviously

opon from E into F, for the T-topology is finer than that induced
by E. Theorem III.2 shows that T+ AP has a closod graph. Moreover

R(T+ A P) 18 closed; hence T+ AP is a ¢+-operator from E into F ./,

REMARK. The proof shows that Theorem III.4 also holds for P a
T-bounded operator if E and G(T) are complete, The completion
of G(T) ensures that G(T+\P) is closed, by Theorem III.2, and
the completion of E ensures that R(T+AP) is closed, T+ AP > #

being open.

Similarly, for T-compact or T-precompact perturbations

of ¢*-operat'ors, wo have, by using Theorenms II.24 and III.3 ¢



THUOREM II1I.S. let E, F be locally convex spaces and T, P

overators from B into ¥ such that D(T)c D(P).

Assume that

(a) T i5 a ¢+-Qgerator

and erther

(b) P is T-comvact

(b') P is T-precomvact, G(T) and R(T) are complete,

Then T+P is a ¢+-onerator and ind(T+P) = ind(T). Further-
&
more nul(T+ AP) = n is consfant for all scalars )\, except for

at most a countable set of/exceptional voints {Xi} with no accu-

mulation proint at finite géstance, where nul(?H-AiEO >n.

REMARI. Let L be a closed subspace such that N(72) & L = D(T)
(algevraically and topologically). If D(Q) 15 equivped with the
{~tovology, then the restriciion of T to L 15 r=continuous and
[~oren (lemma I11.1); hence it is a T-isomorrhism from L  onto
R(I). ‘herefore R(7) is complete 1f and only 1f D(T) is complete

when cruipred with tne T-toyology.

o
For umall perturbations of ¢ -orerators we havey : 93

A\ Y R

FROFCSITION IXl.e. Let 0, F ba locally convex spaces and T, P
L

o e
4

overators from £ iats ' such that D(T)C ().

Asocume that

(a) T is almost oven and codim (R(T))™ < oo,

(b) P is T-boundod, gnd there exists a bounded disk ICE

such that TB 13 bounded and

o Wy Y
. o Ko
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B Ca(U NTT'V,), P, ATV ) N(R(T))™C (TB)"

for some T-neighborhood U NT™'V_ and 0 < €< 1.

Then T+P is almost opem, codim (R(T+P)) g codim (R(T))~

and codim (R(T+AP))” is constant for 0 <iM<pe and ¢ >0 gmall

enough.

?

Proof. If BCE 1s bounded and TB is bounded then obviously
BND(T) is T-bounded. Moreover, P is T-bounded. It sdffices now

to apply Theorem II.l4 and Lemma III.! ./.

For precompact perturbations of ¢__—operators, we have
the following result of Vladimirski (25, Theorem 2), which can

be inferred immediately from lLemma III.? and Theorem II.22 :

PROPOSITIOR III.7. Let E, F be locally convex spaces and T, P

operators from E into F such that D(T)C D(P).

Assume that T is almost open with codim (R(T))” <o and

L ]

-

P 1s T-precompact,
Then T+P is almost open with codim (R(T+P)) < %@, More-

over, codim {R(T+ AP))” = r is constant for all scalars ) except

for at most a countable set of exceptional points {,\i} with no

accumulation point at finite distance, where codim (R(T+ )\iP))->n.

I11.2. Perturbations of semi-Fredholm operators with complemented

ranges and kernals 3
In (20), Pletsch studied small bounded perturbations of

semi-Fredholm endomorphisms (operators from a locally convex
space into itself) with complemented ranges and kernels. Here we

extend some of his results to the case of different domain and

Fad
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range spaces. In this section we consider only everywhere defined

continuous operators.

DEFINITIONS., let E, F be locally convex spaces and T an operatdr
from E into F (with D(T) = E).

We say that T is a };(resp. q;) -operator if Tg}ﬁ a con-
tinuous <§*(resp. é{) ~operator such that R(T) (resp. R(T)) has
an algebraic and topological complement in F (resp. E).

In particular if T is a continuous Fredholm operator,
then T is both \h and-‘ ¥ .

The following two propositions cﬁg}acterize *§+and ¢~
operators (in the remainder of this section, we shall always
assume E, F to be locally convex spaces and T, P continuous ope-

rators from the whole of E imto F) :

FROPOSITION III.8. Let”T be an operator from E into F. It T is a

qujresg.\y) -operator, then there exists a continuous operator

U (resp. V) such that S = UT (resp. 2 = TV) is a continuous

Fredholm operator of index zero. -

Proof. Assume that T is a Y -operator. Let L, M be closed
subspaces such that E = L 0 N(T) and F = M 0 R(T) algebraically
and topologically. Let T denote the isomorphism from L onto R(T)
induced by T4

Define U by letting Uy = T 'y if y «R(T) and Uy = O if
y €M, Obviously U is continuous, as 7! is. Let S = UT. Then S
reduces to the identity operator om L and S = O on N(T). There-
fore S ix a contlinuous Fredholm operator with

mul(S) = def(S) = dim N(T).

J

Y i s
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We proceed similarly for a Y -operator T. With the same
notations as above and V = U, then Z = TV is the identity ope- /

rator onp R(T) and Z = O on M with dim M <o ,/, /
Conversely, we have

PROPOSITION IIXI.9, If there exists a continuous gperai:or U (resp.

V) such that S = UT (regp. Z = TV) is a q,:*(re p. \y_) -operator,

then T is a P (resp. \p.) -operator.
Proof. Assume first that S = UT is a 4’+-operator. We have:
(a) N(T)cN(S), therefore nul(T) g nul(sS) <°°,

(p) Let I‘L be a finite dimensional subspunce such that

R(S) = N(T) @ L, . Let L2 be a closed subspace such that /
E=N(S) oL, =RK(T) 0L oL, Then TL, cN(u), (TL,) N B(0)= {o}
and 'f"L1 + TL, = R(T).

On the other hand, R(S) = U(TI;.Z). let T' (resp, T)

denote the injective operator from L, © L2 (resp. Lz) into R(T)

1

induced by T, and U' the restriction of U to TL2

onto R(S) induced by S. We recall

, into R(S). let

St be the isomorphism from LZ

that U' is injective on TLZ' We have the following diagram :

L. 2y L

2 2
'L Ty

R(S)
All three operators are continuous and bijective (i.e.

injective and surjective), and S' = U'T", Now S' is an isomorphisnm.

1

It follows that T ' = 5'~'¥' 1s continuous.

let (? = TV ¥ be a filter in TLZ which converges in F

* to y. Then U'q converges to Uyd R(S) because U ig continuous



119

and R(S) 1is closed by assumption. Therefore S'”'U'?:T"-]T" ¥= ?

1

converges to x = S'” Ul'y €L

t -— it
> As T 1s continuous q.. T ¥

converges to TW'x = ycTLZ.

This shows that TL, is clogsed in F; hence R(T) is closed

in F, as TLZ has a finite codimension in R(T). It also follows

from lemma I.11 that T is open.
(¢) Lot Q, be the continuous projection from E onto R(S).

Define an operator Q2 from F into TL2 by

QY = TS'-‘Q1Uy , YSOF .
Obviously Q2 is continuous. Now if ycTLZ, then
y = T"x, :cGL2 and Uy = U'y = S'x, Therefore, as Q1S'x = S'x,
-1
QY = TS'T QUy

= T5'7'Q,5'x

= Ts' " 'six

= Tx

=y .,
This shows that R(QE) = TL, and Q, is a continuous projection from
F onto TLZ' As a result, N(Qa) 0 TL?. = P algebraically and topo-
logically. From this qnd the fact that TI.2 1s closed and has a

finite codimension in R(T), it can be deduced that there is a
continuous projection from F onto R(T). We remark that
TL, CN(U)C_N(Qa). As dim (TLI) KL%, there is a ciosed subspace
MCN(QB) such that (‘I‘L‘) O M= “(Qa,) algebraically and topologi-
cally. As a result, M 0 (TLI) <] (TLZ) = F, hence M © R(T) = F
algebraically and topologically.

This proves that T is a %_-opergtor.

)
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Assume now that Z = TV is a Y -operator. We have :
(a') R(Z) CR(T) =>def(T) € def(2) <,

(b') Let M be a closed subspace such that F = M 0 R(Z)

w algebraically and topologically, Then, as K(z) = VT 'N(T), we have
, :

(VM) NN(T) = {0}. On the other hand MNE(V) = {0} and TVM = R(Z).

We havefthe following diagram

UL : “
N1
R(Z)

where T', V', Z' are the appropriate restrictiomns of T, V, Z.

All three operators T!', V', Z' are continuous and bljective, and

1 1

7' = T'V', Since 2' is an isomorphism, T'" ' = V'Z' ' is continuous.

similarly, V'~' = 2'7l1' 4s continuous. If F is a filter in VM

converging to.x in E, then T ¥ = T'¥ converges to Tx €R(Z), as

R(2) is closed. Thus Z'T § converges to 711

1

Tx eM. As a result,
¥F = vzt~ F converges to V'Z'” 'Tx = x 6VM, that is VM is closed,

Let E' = VM + N(T) = T~ '(R(2)). Sthce T 1is continuous
and R(Z) is closed, it follows that E' is closed in E.

Let Q@ be an operator from E' into VM defined by

Qx = V'2'"'Px , x&E!' .

Obviously Q 1s continuous. If x €VM then Q)c:V'Z'—1T'x=x.
Therefore Q is a continuous projection from E' onto VM. Moreover
N(Q) = N(T) by the defirnition of Q.

&

We remark that E' has a finite codimension in E because

»

TE' = R(Z) has a finite codimension in R(T). Moreover E' is closed,

therefore if L is a subspace such that dim L <o, L O E' = E, we

have N(T) © VM 0 L = E, which shows that there is a continuous
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projection from E onto N(T). g
{c') As R(T) DR(Z), R(Z) is closed and def(Z) <eo, it
follows that R(T) is closed. Moreover, since T' is open from VM

onto R(Z), it is easily seen that T is open from E into F ./.

As a consequence of these characterizations and the

stablility results in Chapter II, we have the following

TEEOREM IIT.10. If T is a ), (resp. Y.) -operator and P is a

compact operator, then T+P is a \|b+ (resp. \,U_) -operator.

Proof. There exists a continuous operator U (resp, V)
such that S = UT (resp. Z = TV) is a continuous Fredholm operator
of index zero, by Proposition II1.8. Consequently U(T+P) = S+UP
(resp. (T+P)V = Z+PV) i8 a continuous Fredholm operator of index
zero by virtue of Theorem II.24 (or the theorem of Schwartz,
KOthe and Schaefer), as UP (resp, PU) is a compact operator.

Proposition III.9 shows that T+P is a Y, (resp. ) -operator ./.

THEOREM III.11, If T is a \¢,~operator, P a _precompact operator

and E is complete, then T+P is a q#-ogerator.

Proof. As above, we have U(T+P) = S+UP where UP is now a

precompact thus compact operator ./.

THEOREM III.12. If T is a , (resp. Y ) -gperator, P a bounded

operator and E (resp. F) is sequentially complete, then T+ AP

is a \.y*(re p. J.) -operator for [A| small enough.

Proof.As in the proof of Theorem III.10, we have U(T+AP) =
S+AUP (resp. (T+AP)V = 2+APV), where UP (resp. PV) is a bounded,

thus Banach-bounded operator. It suffices to apply Theorem II.8 ./.
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REMARK. If A is a Banach disk in E, D(T) = E and TA is norming,
then TA is a Banach disk in F, It suffices indeed to notice that

T is a continuous, open operator from EA onto FTA’

obgervation, if B C F is a bounded Banach disk, then UB is a

———

bounded Banach disk in E. Therefore we have the following

With this

THEOREM III,13, 1f T is a W (resp. §.) -operator and P is a

Banach-bounded operator, then T+AP is a 4¢(resp. . ) -operator
for |A] smali’ enough. :

REMARK. In Theorems III.10 to III.13, the stability of the index

is already established in Chapter II.

I11.3, Lifting of weakly compact di

In Chapter II we used duality without explicitly consi-
dering perturbations of the adjoint operators with respect to
some locally convex topologies omn the duals. We only used the

Banach spaces gemnerated hy closed ednicontinuoua dieks. This is

v o+ 4 . +
R B et s S T I T

in contrast with Schwartz's prqor of the theorem on compact per-
turbations of ¢ ~operators between Frechet spaces (23), wheré he
used the compact convergemce topology (polars of compact disks)
on the duals.

In this section, weﬁpae Schwartz's approach. We apply
the stability results established in Chapters I amd II to T°, B',
when E+, F are equipped with suitable locally convex topologies
arising from duality. This leads naturally to the concept of

lifting of weakly compact disks in E, F.

. ——— . .
WW“M«H:&:#.«),@ o w&r\ S v
’
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DEFINITIONS, let ?:be a family of weakly compact disks of a local-
ly convex space E. We say that ¥'is saturated if

(a) A € ¥ = ,\Aé¥ for all scalars A ,

(b) A, B€¥F => 3c€¥: auBccC,

(c) EcU{A : Aég} .

In this section, unless there 1s explicit mention to the
contrary, a family of‘weakly compact disks is always assumed to
be saturated.

We use the affix ¥ (e.g. ¥ =compact, E;, (A)_;) to in-

-

dicate that ' is equipped with the locally convex topology

A

generated by the polars A®, A ¢ ? . .
We remark that the ¥ -topology 1s always coarser than
the Mackey topology and finer than the weak topology. If A is a
disk, then (Af'? is the same as the weak closure of A, therefore
we will simply write (A)".
Let E, F be locally convex spaces and T a@DOperator from ©
E-into F. Let ? (resp.g) be a saturated family of weakly compact
disks on E (resp. F). We say that T lifts g_l_:l Y it for any
B € g, there is A € ¥ such that BAR(T) « TA. If ¥ and & are the
families of all weakly compact disks (compact disks, or finite

disks), we simp}v say that T lifts weakly compact disks (compact

disks, or finite disks). Remark that T always lifts finite disks.

~

There is a simple relationship between the 1ifting pro-

perty of T and the "openness" of T+ :

1 P 3

P
- 2t

,e—'_rz’;.a'@an—‘.x,- LT e
e e .

b
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LEMMA IIl.14. Let E, F be locally convex spaces and ¥, Q saturated

families of weakly compact disks on E, F respectively. Let T be

an operator from E into F such that D(T) = E, R(T) is closed and

T 1s weakly continuous. -

Then T lifts 5'91 -F if and only if T is open from F%

into E}.

-

Proof. Since T is weakly continuous and D(T) = E, TA is
weakly compact, thus closed, for any ACV.

1f for any Bef, there is A6 ¥ such that BAR(T) C TA,
then T'T1a° € (TA)° € (B° + K(T*)).

1

We prove that (TA)® = T !

*=1p°, The inclusion T'~

A° € (TA)®
is trivial. Conversely, if g € (TA)®, then 56D('I‘+) as D(T7) = F+,
T being weakly continuous. Let £ = T+g, then obviously f € A°,

+-1A°.

which shows that ge&T

On the other hand B° 1s a Mackey nelghborhood in F+, B
being weakly compact. Thus (B® + N(T'))™ < (1+€)B° + N(T*) for
any € >0,

As a result, BNR(T) € TA entails A° R(T') < (1+6)T'Be,
£ > 0, hence ¥ is open from F% into E}.

Conversely, if ™ is open from F' into E+, then for any
Be §, there 1s A € ¥ such that 4°AR(T*) € T%B°, which implies

7"'4¢ = (TA)° € B° + N(T*). As a result, BNR(T) C (TA)" © TAX/.

REMARK. A closer examination of the preceding proof shows that
the assumption "R(T) is closed" is not necessary for the "if"
part and the assumptions "D(T) = E" and ®T is weakly continuous"

are not'necessary for the "only 1if" part.
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With this lemma,{Qe can now apply the stabllity results

in Chapters I and II to T+; P! from E% into E;.

DEFINITION. We say that T 1s a weak bomomorphism if T ie .weakly

continuous and weakly open.

PROPOSITION 111.15., Let E, F be locally convex'apaces and 7',4;

saturated families of weakly compact disks in E, F respectively.

let T, P be operators defined everywhere from E into F.

Assume that ‘.

(a) T is_a weak homomorphism, R(T) is closed and def(T)<%,

(b) T lifts gpz 7,
(c) There exists a ¥ ~compact disk K C E} and B Gqsuch

that P(K°) C B.

Then T+P is a weak homomorphism, R(T+P) is closed,

def(T+P) < ®@ , ind(T+P) = 1ind(T) and T+P lifts gél ¥.

Proof. By duality ™ is a ¢1-operator from Q% into E}

(Lemma IIXI.14).

\

thus P 1s continuous from E equipped with the Mackey topology

On the other hand, K® is a Mackey neighborhood in E,

into F. In particular P is weakly continuous; hence /T+P is weakly
continuous and D(P') = F*. From P(K°) C B we infer that P'B° C K,
wvhere B° is a C?-heighborhood. This shows that P* is a compact

operator from F+ into E+. By the theorem of Schwartz, Kothe and

Schaeter, T*+P* 16 a 4%,-operato; and 1nd(T*+P*) = ind(r?). In -
4Pt 18 weakly open and R(T*+P") is weakly closed. By Lemma 0.12,
T+P is weakly open and R(T+P) is closed. Also ind(T+P) = ind(T)

by duality. Lemma III.14 shows that T+P 1ifts gby g./.



126

By taking for ¥ and g)various families of weakly compact
disks, we obtain various corollaries of the preceding proposition.
The more notable familles are of course those of all finite disks,

weakly compact disks or compact disks.,

THEOREM IIl.16 (Finite dimensional perturbations). Let E, I be

locally convex spaces and T, P operators from E into F such that

D(T) € D(P). Assume that

(a) T is_a weak homomorphism, R(T) is closed and def(T)<®,

(b) P is a continuous operator of finite rank (i.e. R(P)

is finite dimensional).

Then T+P is a weak homomorphism, R(T+P) is closed,

def(T+P) < % and ind(T+P) = ind(T).

Proof. It suffices to assume E = D(T) = H{P) and take
for ¥ and § the families of all finite disks. Obviously T and
T+P 1ift finite disks. On the other hand, U° 1s weakly compact,

thus we may apply Proposition III.15 ./.

REMARK., It is obvious that it suffices a priorli to assume that

PU € D for a Mackey neighborhood U in E and a finite digk B < F,
but this is equivalent to the fact that P 1s” a continuous o>brufér
of finite rank, as N(P) is closed and has a finite codimension.

Theorem I1I.16 is also a consequence of Corollary I1.27,.

THEOREM III.17 (Weakly compact perturbations). Let E, F be locally

convex spaces and T, P operators everywhere defined from F into F.

Assume that
(a) T is a weak homomorphism, R(T) is closed and def(T) <%,

(b) P is a weakly compact operator,
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(¢c) E 1is a Frechet-Schwartz space.

Then T+P is a weak homomorphism, R(T+P) is closed,

def(T+P) <% and ind(T+P) = ind(T).

If furthermore F is a countable inductive limit of metri-

zable spaces and T is continuous, then T and T+P are 4L-operators.

Proof. Take for 7 the family of all compact disks and q
the family of all weakly compact disks. If B e<f, then BNR(T) is
a weakly compact disk in R(T), thus T-1B is a weakly compact disk
in E/N(T), where T denotes the injective weak isomorphism from
E/N(T) into F induced by T, Since E/N(T) is itself a Frechet-
Schwartz space, thus a Montel space (cf. remarks preceding Theorem
11,20), it follows that T-}B is in fact a compact disk, the image
of a compact disk A €A¥'in E by the quotient operater. Therefore
TA = BAR(T), which deans that T 1ifts gby 7. on the other hand,
Ue is 7’—compact. We may therefore apply Proposition III1.15.

The last part is a consequence of (1, De Wilde, Theorem
4y p.. 87) which asserts that under the assumptions on E, F, a

(continuous) weak homomorphism is also open ./.

1

REMARKS. If ipn Theorem III.17 F i8 a countable inductive limit
of Frechet spaces, then T is automatically continuous, and even
continuous from E into one of the constituent Frechet spaces,
by a closed graph theorem of De Wilde (1, p. 54).

The proof of Theorem III.17 shows that we may assume
PUCK for a Mackey neighborhood U in E and a weakly compact disk
KCF. Also, both T and T+P 111t § vy § .

o



.
-~

128

THEOREM III.18 (Lifting of compact disks). Let E, F be locally

conyex spaces and T, P operators everywhere defined from E into F.

Assume that

(a) T s a weak homomorphism, R(T) is closed and def(T)<o,

(b) T lifts compact disks,

(¢) P is a compact operator (or even a compact operator

when E is equipped with the Mackey topology).

Then T+P is a wesl homomorphism, R(T+P) is closed,

def(T+P) < and ind(T+P) = ind(T). Moreover, T+P lifts compact

disks.

Proof. It suffices to apply Proposition III.15 with ?»,q;

the families of all compact sks ./,

For esmall perturbati s,%:;/have i
PROPOSITION III.19. let E, F be-3dcally convex spaces, 7 , g

saturated families of weakly compact disks in E, F respectively

and T, P operators everywhere defined from E into F.

Assume that

(a) T is a weak homomorphism, R(T) is closed and def(T)< %,

(b) T lifts g oy ¥,
(c) There exists a Mackey neighborhood W im E (i.,e. W=K°

for a weakly compact disk K in E') and B € § such that PW CB.

Then there is @ > 0 such that for IM<€ y T+ AP i8 a
_ weak homomorphiam, R(T+ AP) is closed, def(T+ AP) < 0© and
ind(T+ AP) = ind(T). Moreover T+ AP lifts g by 7 .

Proof. The proof runs exactly as for Proposition III.15,

[

T Rt 5, i, g o - T
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except that W° is now a bounded Banach disk in Et; , and we apply

Theorem II.8 ./.

REMARK. We may assume that W is simply an absorbent disk in E,
and that P be weakly continuous, 1f F'% or Ezz i1s complete, in
particular it Y or F' 1s complete : we then apply Theorem II.4

instead of II.S8,
For operators T with nul(T) < %, we have

PROPOSITION II1.20. Let E, F be locally convex spaces and F ,q

saturated families of weakly compact disks in E, F respectively.

let Ty, P be operators everx;here der1J2h from E into F.

Assume that

(a) T is_weakly continuous and a ¢4-ogerator,
(b) T lifts qp,z?,
(c) There exist a neighborhood U  in E and B ég such

that PUQ CB.

Then there exists © >0 such that for INM<e, T+ AP is

a_ (weakly continuoug) ¢+-o erator, nul(T+ AP) £ nul(T),

def(T+ A P) ¢ def(T), ind(T+ AP

If furthermore P is_a precompatt—operator, then T+ AP

lifts q by ?r for all scalars )

Proof. By duality ™ 14 a ¢_—oporator from F% into E; .
Let UCU_ be any neighborhood E. There is a neighborhood V in

F such that (V) N(R(T))”™ c(T0)~. By duality, U* AR(T')cT've,

Fron PUCB we obtain P'E°CU°, But V° is absorbed by E°..

Therefore there exists ¢ >0 such that for [A|<g@,

nd(T) and T+ AP lifts g by ¥ .

b e e SWE T
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AP've c €P'B° € £0° for some 0 < €< 1. Since PP CU® and B° is
a éz-neighborhood, we nay apply Theorem I.19 to infer that

2%+ AP" 18 open from F% into Ey , that is T+ AP lifts ? ¥ .
It P is precompact then we may assume that PU is precompact;
hence P+V° is precompact in the Banach space generated by U°., We
may them apply Theorem I.26 to infer that T'+AP' is open for

all A .

»
"
-

The other assertions are proved in Theorem II,.7, P being

a Banach-bounded operator ./.

III.4. Some further applications

I1T.4.1. Extension of a theorem of Sz-Nagy on isomorphisms of

gubspaces .
Q

The following is a version in locally convex spaces of a
result of Sz-Nagy for Banach spaces (cf, (5, Gohberg and Krein,

Theorem I1.2)) :

PROPOSITION II1I%21, Let X be a locally convex space and P, @

@wo continuous projections, projecting X omto the subspaces

L= P, M= QX respectivaly, If there exist a neighborhood U,

a_bounded Banach disk B and O < & < 1 such that (P-Q)UcB < €U,

then the éuhggaces L, M are isomorphic, (The restriction of P to
M 18 an isomorphigm of M onto L.) ‘

In ticular, dim L = dim M, and the theorem holds for

B a priori a bounded digk if X is sequentially complete.

’
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Proof. The identity operator I is an isomorphism of X
onto itsel?, and P~Q is a small Bamach-bounded perturbation of I.
By virtue of Theorem II.7, I-(P-Q) is an isomorphism of X omnto
itself.

We have then

(I - P + Q)X

]

X,

P(I - P + Q)X PC=1L,

Since P° = P, it follows that PQX = PM = L, which shows that the
restriction of P to M maps M onto L. We now prove that it is in
fact an isomorphism from M onto L.

Ve remark first of all that L, M are closed, being the
ranges of continuous projectiong (1t 7; is a filter in L con-
vergidk to x X, then PF = ¥ converges to Px = x €L). Let Py

Qy denote the restrictions of P, Q to M and I, the canonical

M
injection of M into X, Thenm I, = Q, and P, = I, + (Py=Qy) -

Consider U,, = UNM as a neighborhood in M., Then

M

L0y = UnR(IM) ,

(Py=Qy)UyCB CET .

Theorem II.7 shows that PM = IH + (Pk-QM) is an isomorp@ism
from M onto R(Ph) =L,/

vy -

13

TIT.4.2. Some spectral properties of bounded operators in
sequentially complete locally convex spaces
//Fu—Y\\ In this section we shall always assume X to be a sequen-
\\‘V&;ally complete locally convex gpace defined on the complex field,
P a bounded everywhere defined operator and I the identity ope-~

rator in X.
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The resolvent set of P is the set of all scalars - A such

that P+A I is an isomorphism from X onto itself, The set-theoretic
complement of the resolvent set 1s the spectrum. The & -get of P
is the set of all scalars A such that P+ AI is a Fredholm ope-
rator. An element of the ¢-set is called a ¢ -point.

Followlng are some known results concerning the spectrunm
of a bounded operator (cf, (4, Garnir, De Wilde, Schmets)), which

may be derived immediately from Theorems II.7, I1I.8 :

PROPOSITION III.22. If there is a neighborhood U im X, a bounded

disk BcX and 0 <& < 1 guch that PFUCB ey, then I-P is an
isomorphism from X omto itself. '

REMARK,., Obviously, Propositiom III.22 holds also for am arbitrary
locally convex space X 1f B 1s a bounded Banach disk (Theorem II.7).
This is also proved in (Martens, E.: Invertibility of an operator.
J. London Math. Soc. (2), 12 (1976), 467-468), ®

PROPOSITION 1II1.23, The resolvent set of P is not empty.

Proof. Indeed, P+AI = A(A™'P+I), A £ 0, is an ismo-

morphism from X onto itself if |Al is large enough ./.

PROPOSITION I1l.24. The resolvent set and the.4> -get of P are

open.
Proof. If /\o # O belonga to the resolvent set of P then

for A £ O we have ' |
PrAL = MOATYPD) = ACATTReD) + (A7 N They

’

where the operator the brackéta 18 an isomorphism from X onto

- .



itself together with }\O—INI, for],\—l— Ao'l | small enough, or
equivalently, for |M- /\ol small enough.

If /\O = O belongs to the resolvent set of P, then X is
in fact a Banach space and P an onto isomorphism. Therefore P+A I
is also an onto isouworphism for IM small enough.

le proceed similarly for the ‘#—set (cf. (5, Gohberg and

Krein)) ./.

PROPOSITION I1I.25. ind(P+ AI) is constant in each (connected)

component of the d) -set of P.

Proof. If A, >‘o £ 0 are qlJ -points, let
PrAL = ACCATTPeD) + (172 A THP)

By Theorem II.O, ind(P+AI) = ind( )\O"‘Pﬂ) = ind(P+ A _I) for

-

l)\q- /\O"]I snall enough, orlequivalently for “\- kol small enough.
If 0 is a ¢-—point, then P is a Fredhod:a operator and in fact X
is a Danach space (if L ® N(P) = X, dimN(P)<w, then the restric-
tion of P is an isomorphism from } onto R{(P) (codim R(P)<we); as
P is bounded, this shows that !N(I’) is a normed, thus Banach space).
Therefore P+ AI is a fredholm operator and ind(f{A\f) = ind(P)
for | M small enough.

As a consequent ind(P+ A I) is a continuous function of "\
on the 'cp-set of P, therefore it is constant on each component

of the 4>-set of P ./.

REMARK, Fore generally, if X is a Banach space and P(X ) is a
continuous function of A € SLuwith values P(A) Fredholm ope-
rators in X, then ind(P( A )) is similarly proved to be constant

on each coémponent of 5L . This fact is a useful tool to prove
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several existence theorems in applications of Perturbation
Theary to Differential Equations for instance (cf. (6, Goldberg)
and (11, Kato)). We may have similar results for sultably defined
“continuous" functions T+P( A ) with T+P( A ) Fredholm operators
and P(A‘) Banach-bounded, in a locally convex space.

It 1s proved in the preceding proof that if O is a
@® -point then X is in fact a Banach space. The following is then

an immediate consequence of (5, Gohberg amd Krein, Theorem 3.2) :

PROPOSITION III.26. If every point in the complex plane is a

¢>-Eoint of P, then X 1g finite dimensional, Equivalently, 1f X
isg infinite dimensiomal, then there should be at least a point

A such that P+ AI is not a Fredholm operator.

III.4.3. An application in Linear Partial Differential Equations

We now present an example of bounded perturbations of
4{.-operators in Linear Partial Differential Equations, in which
‘Theorem II.IA can :e used. Our standard reference for this example
is HOormander's book (9), to which we refer the.reader for more
detalls concerning the various definitions and theorems used in

this spction. v

First we need some definitions.

DEFINITIONS. (a) Temperate weight function. A positive function

k defined in the n-dimensional esuclidean space R® is called a

temperate weight function i1f there exist positive constants C

and N such that

k(§e) € QecifdMe(p) , Vv §,0 €R7,
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-

‘A continuous functional on -f is called a temperate dig-

tribution. The set of all temperate distributiom is the (conti-
nuous) dual P’ ot f.

The Fourier transform f-»f in f+ is defined as the ad-
joint operator of the (classical) Fourier transform in f, i.e.
Jr‘(f) = £ t?), P € S . The Fourler transform in f+ extends that
in ¥ it J is considered as a subspace of ¥ ' (i.e. g,oef is
considered as a distribution), and it is a (weak) isomorphism of
F ' onto itselt,

Let k €™ and 1 $p €%, The space B, 18 the set of all
temperate distributions f € F? such that

- The Fourier tramsform T is a function,

- k.TeLP(RY).

B

b,k i1s a Banach space when equipped with the norm
A } 4

hell, = (@)™ [l §)2C8)|P a§)' /P
if p<ow, or '

. essential sup |k( ¥ )¢ 5)'
Eex

1}

men
if p=zo .

Let .S be an open set in R® and C:(‘—Q) denote the space
of ¢ functions with compact support in L2, Let D'(£L) denote
the ‘space of distributions in S (D'(R) is the dual of cgo(s)
ir C: (SL) 18 equipped with the familiar locally convex inductive
limit topology).

The space B;?li

(SL) is defined to be the space of f € D'(s1)
i for all Y &C_°(<1). Equipped with the topo-

,such that L €B
8 a tf P,
logy defined by the semi-norms

-~

e
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We now come to our example.

EXAMPLE. let Sl be a convex open set in Rn, keK,1¢p < o
and P(D) a differential operator with constant coefficients.

By virtue of (9, Hormander, Theorem 3.5.5), P(D) is a

loc

surJective operator from Bp kﬁ(n‘) onto Bloc
?

Pyk
spaces are Frechet spaces, it follows that P(D) is a surjective

(). Since the two

(continuous) ¢_ -—operato‘i" .

Let Q(D) be a differential operator with constant coef-
ficients, weaker than P(D). Let a = a(x)écg' (“L). We now consi-
der the differential operator ’

D{A) = P(D) + Aa(x)Q(D) , A sealar,

and show that D(A) is a surjective 43_ -operator and
ind(D())) = ind(P(D)) for |Al small enough.

Let K € SLbe the compact support of a(x).

Let V be a neighborhood in B;SE(SL) defined by

V= {5‘B]£T§(.n.') tlaglly €13

We mow prove that a.V = fa(x).g : & ¢V }= P(D)B for some bounded
disk B in B;i’;i;
let g€V, We may consider a.g as a digtribution with

(=),

compact support im R™. By virtue of (9, Hormander ren 3.2,1),
there exists a fundamental solution E of P(D) (i\,e. P(D)E =4 ,
§ being the Dirac measure), such that
- E € B%(R")
(- -F ]
- If £ =E#x(a.g), # being the convolution, then
P(D)f = ao‘ .

PSRN
We now show that, when g rumns through V, \{,he set B of all suech
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f, considered as distributions in %, #s bounded in B;L)o;-i;
?

Fix any ¥ EC: (<), Let K, denote the compact support

().

of ¥, K, = {xenn : ({x}-d-K)nKo # ¢}(recall that K is the sup-

port of a(x)). Then K, 1s a compact set (independent of geV),
Fix a \pec: (R®) such that Y= | on a meighborhood of

K,. Then the support of a.g is contained in K (¥g&V) and the

support of
E#{(a.g) -« (V.E) # (a.g) = ((1=¥).E) # (a.g)

does not meet the support Ko of (as supp (“1* uZ) G
SUpPp u, + BUPP ua).

Therefore Yf = Y(E ¥(a.g)) = YA(V.E) #(a.g)), with
V.E€B, g. By virtue o?f (9, Hormander, Theorems 2.2.5, 2.2.6),

2
there exists a constant C >0 (depending on ¥ ) such that

ll\pfllp’kf,'((:la.gnp,k - [WEl, ¢
SCI‘V-EU,,P . ‘

The latter constant being independeﬁt o‘I g&aV, this shows that

loc
Pk

The preceding argument 1s essentially an adaptation of

B is bounded in B i;(n).
(9, Hormander; Theorem 2.3.6).

Now Q(D) is a continuous operator. Consequently, there is
a neighborhood U in BI°C2(R) such that Q(D)UCV. As a result,

a(x)Q(MYU ca(x)VCP(D)B .

- I |M 1s small enough such that AB CgU f£3r some O <& < 1, then
D(A) = P(D) +Aa(x)Q(DP) is a surjective ¢ -opsrator with
ind(D(A)) = 1ind(P(D)), by virtue of Theorem II.l4,

If (D) is such that G( €)/P(%) -» 0, whon § -0, then
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a(x).Q(D) is a compact operator, therefore D(A) = P(D)+ a(x)Q(D)
1s a ¢ -operator with imd(D(A)) = ind(P(D)) for all A . Further,
D(A) is surjective except for at most a countable set of excep-
tional points {Ai}, with no accumulatisn point at finite distance.
The preceding also holds for a P-convex open set S (cf.

definition in (9, HOormander)).
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