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ABSTRACT

Two of the magnetic properties of ,antiferromagnet,
CsMnF3,'were studied by thermal neutron scattering tech-

niques.

L

. Spin wave-dispersion curves, along the two high
symmetry directions (00f) and (£00), were determined and
were satisfactorily fitted to a theoretical model with two
nearest neighbour exchange constants, le = 0.134%,003 THz ‘

A

and-Jé3 = 0,.094%.0105 THz, and one second ﬁearest'neighbour

exchange constant, J35?~ 0.0138%£.003 THz. The spin wave

propertles can be described 1n terms of an E§fect1Ve aniso-

tropy field of -2700%900 Oe along the crystal ¢ axis. This

field constrains the spins to the basal plane of the crys-

tal. The caIaulations show that magnetic dipole-dipole
interactlons, alone, provide enough anlsotropy to account
for the observed results. ;
The sublattlce magnetization, over the_femperaturé.
range of 6.8 K to 72.2 K, was measured. This shows a
- N

critical phase transition with a critical exponent 8 given

by 8 = 0.317+.009.
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CHAPTER I

INTRODUCTION

This thesis.describes experiments to measure two of
”;“”’\vﬁﬁhe magnetic properties of the antiferromagnet'CsMnF3. 'The
first experiment concerns the détermination of the frequency
. of excitati;ns of tﬁé magnetic system at low.temperature;
these excitations are known és spin waves and from measure-
mentS“of'their frequency we can getermine~thé nature of the
interactions between the maénetic moments in the atoms. The
second experiment measures the macnitudé of the aligned moments
-as a function of temperatur¢; the mo ents are aligned below |
a temperature known gs the Nel tempera ure and the transi-
tion from the aligan to non—allgned state is of a type known -
as a'critical phase transitiona The information provided by

the experiment4contribﬁtes to knowledge of critical phase

transitions,

I-1 Magnetism:

In the first part of this section we shall talk brief-
ly about different t&pes of magnetic-order and ih the second )
part the interactioﬁé which bring about such-magnetic order

will be discussed. A more complete historical introduction .to

magnetism can be found in the books, "The theory of ﬁagnetiém"



by Mattis {1965) and."Magnetism and ‘mattexr" by Stoher (1934).

a_- Magnetic order: Many crystals have an ordered magnetic
structure. This means that,in the absence of an é&xternal mag-
netic field, the mean magnetic moment of at least one of the
atoms in each unit cell of the crystal is non-zero.

In tﬁe‘simplest type of magnetically—ordereqk%rystals;
that is ferromagnets such as Fe, Ni, Co and Gd, the mean mag-
ﬁeéic moments of all the atoms have the same orientation proj‘
vided that the\/?mperature does not exceed a critical value
kriown as the Curie temperature. @Phig alignment of the moments
gives rise to spontaneous magnetic moments on a InAaCroscopic
scale, even in the absence of an external magnetic field.

Almost all salts of the Léter 3d transition metals

(Mn, Fe, Co, Ni) are found to be antiferromagnets. Antiferro-

- . @

magnets are materials where. the moments of the magnetic atoms
are aligned, but the alignment is such that, for ever{/glom

on a particular crystal site, "there is another atom on an

A}

-

y equivalent.site with an antiparallel alignment of its moment.
Experiments have shown that s%ph situations occur very com-
monly in the halides, cﬁalcoggpides, pnictides, sulphates,
~carbonates, nitratés and otﬁer s;¥ts of the transition metals.
To account for the antiferromagnetism, an antiferromagnetic
crystal must consist of a set of'sublattices'(called magnetic
sublattices), each of‘which has a non zero mean magnepic '

. moment; but the sum of the mean moments of the subiattices

-

me of irs if the - -

“
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ture of the antiferromagnet is les$ then a critical temperature
known as the Néel temperatute.

| Another class of magnetically oxdered materials are
the ferrimagnets. These consist of a number of magnetic sub--
lattices whose magnetié moments are uncompensated (in contrast
to antiferromagnets) and so exhibijt a spontapeous magnetic mo-
ment. ‘Exampleg of this type are compeund of transition metals
such as the ferrites Fe304, MnFe204, CoF 204 etc. There are
more complicated magnetic orderings such as, helical, canted

and modulated structures, but-ﬁe shall not discuss them in

this thesis,

-

b - Exchange and superexchangg_iﬂteractions: The.magnetic
order in ferromagnets and antiferromagnets is the resﬁlt of
correlation Between the directions of the electron spins on
individual atoms. This correlatlon ‘is in turn. dte té the
fact that the space symmetry of the wave function depends on

the magnitude of the resultant spin of the system of electrons.

This dependence is a conéequence_of the principle of indis-
-

- tinguishability of identical particles and is responsible for

the fact that the ehergy-of the system dépends on the magni-
tu@e of i¥§ resultant spin, since different yalues'of the

energy of the system in general correspond to wave functions

with different space symmetry.

It is 1mportant to note that these effects pccur

even 1f the Hamlltonlan for. the system does not contaln terms



describing magnetic, that is relativistic, interactions between
the electrons. Thus we-are discussing a purcly quantum me-
chanical effect which results from the fact that electrons

obey Fermi-Dirac statistics., This effect is called the ex-
change effect, and the dependencé of the energy qf the system
on the ﬁagnitude of its resultant spin.is referred to as being

due to the exchange interaction.

S

/ It was Heisenberg (1926) who pointed out that ordinary

electrostatic interactions among electrons, together with the
Pauli exclusion prlnC1ple, could lead to an exchange lnterac—
tion whlch strongly coupled the electron spins, For an

assembly of local orbitals Dlrac (1929) showed that the exchange

*

interaction day be written as
H_ =- L J 8 S (1~1)
mn-m —

where Jn is the exchange integral, §m is the spin of atom m
and §n the spin of atom n. Clearly for Jmn > 0 the lowest
state of such an interaction is that in which all spins are
parallel, or fer%ﬁmagnetic. Jmn depends upon the distance
between atoms m and n, and falls off rapidly with increasing
7/ . T,

distance, because there is no significant oveflap of orbitals
beyond near neighbor atoms.

Néel (i932).expressed the idea that igteractions Qith

I“%egative sign (i.e.'Jmn < 0) can lead to antiferromagnetism,

in which different sublattices of spins in a crystal can align

-



themselves antiparallel. Most insulating magnetic materials

are observed -to be antiferromagneéic at low.temperatures. In
1934 Kramers proposed that the magéétic cations have wave func-
tions which are strongly admixed with anion wave functions. This
makes it possible for cations to couple indirec?ly. Because

the magnetic cations are separated by at least one anion,
Kramers called this type of exéhange "superexchange". Pertur-
bation theory gives an effective exchange from this mechaﬁlsm,

though it can be shown that the theory is poorly ebnvergené.

Anderson (1959) developed a method which overcomes the conver-

]
1

gence problenﬁ, In this approach he first constructs the wave

functions of magﬁetic ions surrounded by the various diamagnetic
N h]

anions, exclusive of the exchange effects of the other magnetic

ions, and then lets the magnetid‘ions interact. He showed

that the admixture of p wave functions into the magnetic wave

function is the primary mechanism for superexchange. Thus super-

exchange is a direct result of covalent binding effects in

magnetic crystals.

I-2 Spin Waves or Magnons:

%

The so-called Heisenberg Hamlltonlan given by equation
(I-1) has beeh employed for several decades, both as a tool
for a largejnumber of etudlég/ln theoretical physlcs and as
an extremely powerful model forAthe inﬁerpretation of a wide
varlety of experlmental properties of 1nsulat1ng magnetlc

crystals. It is found to account successfully for many proper- |

ties of a wide variety of materials.
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With the Heisenberg Hamiltonian as the basic ingrédicnt
in the magnetic Hamiltonién, F. Bloch (1930) and J. E. Slater -
i1930) showed that spin waves were the elehentary excitations
from the ordered ground state at low temperatures.

There are soﬁe similarities between the elementary
excitations in a magnetic material and those of an elastic

AN

solid., 1In the latter, we know that if an atom is displaced
from its equilibrium position, it will oscillate wit@ thé
motion and frequencies associated with the harmonic oécillato;s,
or normal modes of the'crysial. Theieffect of quantum mecha- \
nics on thié motion is to quantize the energies of the normal
modes, with the_regulting guanta known as phanbns." The analo-
gous normal modes, in materials Qith an”ordered magnetic
structure, are the spin waves. When the gquantum mechanical
nature of spins is takeﬁ into account, these are also quantizea
with the quanta of enexgy known as mdgnons.
There are excellent reviews and books available on

sﬁin waves, including the books, "The theory of ﬁagnetism" by
Mattis (1965), "Spin waves" by Akheizer, Bar'yakhtar and
Peletminskii (1968) , and "Elements of fheoretical magnetism"
by Krupicka (1968), and the reviews by Hennion (1972), Keffer
(1966) and Kranendonk ahd Van Vleck (1958).- »

| We shall develop spin wave.theory in Chapter II and

apply it to CsMnF., which is an antiferromagnet with six sub-

3
lattices per unit cell. Cﬁépter IITI will deal with the ways

of measuring spin wave enﬁrgies by means of thermal neutron



spectroscopy. ‘In Chapter IV we shall present the results of

]

neutron scattéring experiments in CsMnF3 and shall fit them to

the theoretical model.

I-3 Critical Phase Transitions:
Phase transitions are one of the striking aspects ‘of
the. macroscopic physical world. In many cases the various
phaéés of matter seem quite dissimilar and sepafate, and transi-
tions between them are abiupt. Nevertheléss{ by varying the
ﬁemperature or qther thermodynamic parameters, tﬁo distinct
phases can frequently be made more aﬁd more similar in their
éroperties until, finally, at a certain critical point, all
differences vanish. -ééyond this point only one hoq?geneous
equilibrium ohase exists and all changes are continuous and
smooth. The most familiar example of such a critical point
.is that which terminates the coexistence curve of a liquid
and its vapour at a characteristic temperature, pressure
\ané density, Tc, Pg/éﬁa P 'The Curie'point of a ferromagnetic
crystal is where the spontaneous magnetization goes continuous-
ly to zero and thé Néel point is where the alternating spin
.ordeerf an antiferromagnet disappear.
In a formal way those transitions in which one or

- 14

more first derivatives of the relevant tﬁermodynamic potentials

r

change discontinuously as a function of their variables may be
called "first-order phase trénsitions?. For a.fldid it is

appropriate to consider the.Gibbs\free energy G as a function

« " L4
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§F)T and the entropy

_of P(and T; the specific volume v = (

%%‘P are discontinuous across the vapour pressure curve.
oF

In a ferromagnet the equilibrium magnetization M = - (§F

= - (&)

)T’\
where F is the Helmholtz free energy é;d‘ﬂ the magnetic field,
changes abruptly as the field vasses through zero when T is
leés than Tc‘

In contrast, transitions in @hich the first derivatives
of the thermédynamic potential remain continuous while only
higher~order derivatives such as the compressibilify, the
specific heat or the susceptibility are'divergent or change
. discontinuously at the transition Roint are. termed "second~

S
)

order phase transitions". It ig usualiy for such transitions
that the term "critical point" is used. A dominant characteris-
tic of the second—ordér'phase transition is the large increase
of the microscopic fiuctuations in the vicinity of a critical
point which heralds the approaching transition. Fluctuations
of density, eneréy; magﬁetization, etc., can reach effehtively
macroscopic magqitudes and correspondingly the related second
thefmodynamic aerivativés and the intensities for the scéttering”
of waves off the system become very large or tend to infinity at
certain wavelengths.

The point of interest in the study of critical pheno-
mena both expeiimentally and theoretically, is the determinﬁ—
tion 6£ the asymptotic laws governing the apéroaph to a critical

point. Nowadays it is customary .in the study of critical



phenomena to assume that various quantities of interest have

a simple ﬁower-law behavior at or near the critical point.
For example, in a simple ferromaanet in which the seconé-éraer
phase transition takes place at H = 0, one assumes that the

spontaneous magnetization M behaves asymptotically as

T ~T B

MY () op (1-2)
o] A

where T approaches the critical temperature T, from below,

with B a positive number. The critical point exponegx\g\ifs

)

a value-in the range 0.3-0.5. To be more precise one assumes
that the limit

B = lim {(log M_)/log(e)} ‘ (I-3)
€+0 S be)

exists. Here ¢ is defined as

T -T
C

T ’ N
C

€ =

In our discusion below we shall always employ the sharter and
more expressive‘notation (I-2), with the understanding that
(I-3) provides a more précise and realistic definition.

There are many other exponents, which are summarized
in Table (f~l). In Table .(I-1) C is the specifiC‘heag (sub~
scriptg H and v for constant magnetic field and constant volume),
H the mdgﬁetic fiéldﬂ M ;he magneti?ation, Y = (3M[$H5T the

susceptibility, g,the entropy, P the pressure, p the density,



-

Table (I-1)

Definitions of critical point exponents.

10

Exponenﬁ

Quantity Variable Region
Fluids
CV € ~-q! p=pc, 'I‘-<Tc
P Pe € B coex., T<T
DC;DG £ B coex., T<T_
KT £ —y' coex., T<Tc
lp-p | lo-p,| 8 T=T
dZP/de“ € -9 coex. , T<TC
Magnetic Svstems

Cy - - H=0 , T>T,
CH £ f“' H=0 , T<'1‘c
MS £ B =0 , T<Tc
X - =Y =0 , T>T,
X e‘ -y H=0 , T<T,
H M ) H>0 , T= c
H M 65 H>0 ¢ 8T8
s,-S M 1+E H>0 , T=T;
T-T, ‘ M o H>0 , s=s_
(32 /a2t g e -y, 4=0 , T>T_
g .0 - -v =0 , T>T_
r T 2-n H=0 , T=T_




Ky the isothermal compressibility, £ the correlation length and

’ﬂ‘ \

I' the pair correlation function. A subscript ¢ denotes the

value of a quantity at the critical point. [7

/
In recent years much study has been done on the subject

of critical phase transitions."The results of phenomenological
theories and model calculations h;ve shown that some relations
exist between different critical exponents. Also it is believed
that ﬁhe knowledge of two or maybe three exponents in a par-
ticular system is enough to calculateZ::T“Eﬁé‘éﬁponents.

Here we shall finish our remar about the critical
phenomena and refer the jinterested reader to some excellent
reviews such as the books, "Phase transitions and critical
phenomena" by H. E. Stanley (1971) and "Phase transitions and
critical phenomena" edited by C. Domb and M.S. Green (1972-1976).
In Chapter V we shall report some experimental results on

critical magnetic neutron scattering from CsMnF. and shall find

3
the magnetic order parameter exponent, 8, for CsMnF3.

I-4 Crystal and Magnetic Structure of CsMnF3:

The compounds XMnF3 exist in the pervoskite-tyge

structure when X is Na, K, Rb or NH4. Simonov et al (1957)

showed that, unlike the other triple floride compounds, CsMnF

has the same structure as hexagonal BaTiO X-ray measurements

3'
by zalkin et al in 1962 confirmed this proposed hexagonal
structure.

The lattice parameters of the hexagomal cell are

[ [
a = 6.213+,003 A and c = 15.074:.004 A so that c/a = 2.426.
< .



12
With six formulas per unit cell, the calculated density is’
4.84 g/cm3. The atomic coordinates were given by Zalkin, Lee
and Templeton (1962). A sketch of half of the unit cell is
shown in Fig. (I-1) and the atomic coordinates are given in
Table (I-2). The space group is P63/mmc. The structure is built
up of six closed-packed layers of Cs and F ions with the Mn
ions’ located in the fluorine octahedral holes between the
layers. The Cs2 atoms have 12 fluorine neighbors arranged as
in hexagonal close packing; the poxnt symmetry at these sites
[ ‘\\\\ is 6m2(D3h) The Csl and Cs3 atoms also have 12 fluorine’
-»ne\?hbors, but are arranged as in cubic close packlng, the
poiht symmetry at these sites is 3m(C

3v
feature of this structure is that there are two manganese

). The tvferesting

sitee. One-third of the manganese atoms, designated Mnl and

Mn4 occupy the centers of fluorine octahedra that share their
/

corners with other octahedra, as in the perovskite structure.

i

'The remaining two-thirds of the manganese atoms designated

2 and Mn3 are in distorted fluorihe octahedra that share
i

one face and three corners with other octahedra. Whereas

Mn

the ppint symmetry of the Mnl and Mn4 sites is 3m(D the

3a
point symmetry about the Mn, and Mn, sites is 3m(C3v). The Mn,
and Mn3 atoms are distorted out of their close-packed positions
to a distance 3.004 2 apart. The distortion of the structure
does not affect greétly,the various Mn-F distances, but the

. o
various F-F distances range from 2.69 to 3.52 A. The struc-

ture of the other half of the cell is analogous to that of the
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first half; it can be obtained by rotating the first half

through 180 degrees about the ¢ axis and triyélating it %.C

along the c axis.

Below the Néel temperature the magnetic moments associa-

2+

ted with the Mn ions lie in the vlane pérpendicular to the

hexagonal c axis. The;magnetic laﬁtice can be divided into
six sublattices in which spins on each sublattice are anti-
parallel to spins on any adjacent sublattice. The complete
magngtic cell,of CsMnF 4 is shown in Fig. (I-2). This spin
arrangement has been confirmed by torsion experiﬁent, anti-
‘ferromagnetic®resonance (AFR) experiments (K. Lee égfal 1963),
neutron diffraction studies (S.J. Pickart 1963) and by the

present work.

~

)
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CHAPTER 1II

SPIN WAVE THEORY

It was shown by Bloch (1930) that the low-lying states
of spin systems coupled by exchange interactions are wave .
like. Tﬂe waves are called spin waves;-. the energy is quarji )
tizgd and the quantum of energy is called a magnon.

In this chapter we shall study first simple ferromag-

netic and antiferromagnetic spin waves and then, the theory

will be applied to CsMnFB, which is a more complicated case.

II1-1 Spin Waves in a Simple Ferromagnetic System:

A simple ferromagnetic system can be described by the

isotropic Heisenberg exchange Hamiltonian

J S.'Sv (II"'l)
3,8 =3 =j+¢

where JG is the exchabge integral which is assumed to be posi-

tive, S. is the‘spin angular momentum operator of the atom at j

and § is the vector connecting the atom at j to the atom at

i+s .
Eq. (II-1) can be written in expanded form

- XX VoY ., o2 -
gex ‘26 Jﬁ[si§i+§ + sisifQ + sis ] . (I11-2)

Z
)+ &
.8 1L



We shall define z as the equilibrium direction of the ferro-
magnetic arrav of spins.

Let us define the spin laddexr operators S+ and § as

SE_ = sz ¥ i s;.’
- (I1-3)
sT = 8% -3 gY
- L bl 1 N
Using eq. XII—3), eq. (II-2) can be reduced to
l tem o oot 2.2
H = - I J,. [=(8.S. + 8.8, ) + s.s. .]. (II-4)
ex j,6 & 27138 1iS i 3+s

We express the spin operators in terms of the spin dgtiatiin

operator , ~
1 1
+ _ 2 -1.2 )
S. £ (28)"{1-n.(2S) "17a.
Pl b Nl
1 1 (
e 2 + -1.2
S. = (28)%a.[l-n.(28) ] (II-5)
Bl 4 L
$% = 's-n, | '
l l ) .
where ni = agai,is the operator of the number of spin devia-

tions, a and a are the boson creation and annihilation
operators and they obey the commutation relation

+ a

This transformation was first used by Holstein and Primakoff

and so is called tﬁe Holstein-Primakoff t;ansformation'(l940).
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As T » 0 (i.e. at low temperatures) we know tnat

>

<afa.> » 0 sO we can let\(l afa./ZS)l/2 =~ 1., Then with this
33 1 33
approximation eq's (II-5) wi

11l be simplified to

1
.+ 2
S, = (28)7a,
N p)
1
- 2 +
S. = (29)"a. (II-6)
h] %3

z +
S. =8 - a.a,

Nl
Dyson (1956) and Maleev (1958) developed an alternative form
of transformation which we shall not consider here.

Let us substitute eq. (II-6) into eq. (II-4)

2 + +
H = - ¥ J, 8 - L J.Sla.a. + a.a.
ex i 2 j.8 & AIrE T T3S
- ata * (X1-7)

%3 7 Pgeeties]

. e +_ 4+ :
Notice that the quadrat1c~term aiaiai+§ai+§

This is a good approximation at low temperatures and is in

has been omitted.

accordance with our previous assumption on reducing eq. (II-5)to

eq. (II-6). The first term in the Hamiltonian is constant and is

the zero-temperéture energy. Since we are going to be con-

cerned with.excitations, this term does not concern us.

It is convenient to make a transformation from atomic

+ .
operators aj,aj to spin wave operators bk,b;

_— e — —

P el

defined by
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1= +

-\ (I1-8)

ot

b, = N 2 z elE‘laj
. d
>

ke

where j is the position vector of atom j in a Bravais lattice.-

. St&creates a magnon of wave vector k and bk

-— —

commutation relations,

destroys one. The

bl =0 ; {bk,b

—

b= 80 (I1-9)

+
[bklb.}i'] - [bkl

— —

+
kl

i~ +

can be shown to hold. After the tfansformation, Hex (eq. (11-7))

assumes the following form: .
H = constant terms - 2 ¥ J.8 L [b+b (elh'é - 1))
ex § & x kk
=E - 285 J.5 bib (k8 _ 1) ‘ (II-10)
(o) S Xk ..
§- —_— l{_ - =
=E_ + 251 bb, (L J,(1-eiX"8yy |
o ; k E!ﬁ& é

—

So the energy of a magnon with wave vector k is

B, =25 1 g (1-e'Kd) | (11-11)

z

§ =

For a centro symmetric crystal this reduces to
E£.= 28 g Jé(lhcos k-38) .
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I11-2 Spin Waves in a Simple Antiferromagnetic Systemg

Let us consider a magnetic Bravais lattice which can be
divided into two sublattices % and m. Let us also assume that
in the equilibrium state all atoms at £ sites have spins paral-
lel to the’ z direction and all the atoms at m sites have spins
antiparallel to z direction, with equal number of £ and m
sites. The Heisenberg exchange Hamilténian for this lattice

can be written as

N N
. 4
H =-12 3 .8+S, - £23 .5 .+5
ex {gor 28'=2 =2 mmt  WOOTm
. (11-12)
-2 1%, 58
g m AW m

(N.B. in this exprességh each term is counted twice) where
the first term gives the interactionxwithin the 2 sublattice,
the second term gives interaction within the m sublattice and
the tpird term gives the interactions between the two éub-

lattices. Using eq. (II-3) we transform s* and s¥ to, S+ and

\
N :
Y 1, o -t 2.2
Hex = zi' Tpgel5(8gSge + 5¢80,) + 5,5,,]
N
2 1, %o -t z2.2 ' :
mi' Jmm'[z(smsm' + Smsm,) + Smsm,] (II-13)
_— 1 otem ) oty 2.2 '
2 f ngjz(szsm + S8 ) + sps 1.
Am ' ,
Let us nowntransform Sz, SZ and S; to boson operators a; and apr
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- + ) .
and SZ, S+ and § to boson operators b and b according to
m m m m m

—

eqs. (II-6). Hex transforms to

N
_ P + + 2 + +
Hox =7 4o Tyqr (8023 + 39300 As® - s(agagrag.ag)]
N
2 2 + + + +
—mi‘ 3 8Ty, +b b, = bby bo,b )]
3 N
2 2 + + + + :
- - - e +
2 sz Iom!™S +S (b b+ agag) + sa,by a b )]
il N 3 -
-14
= % 82[—22 Jogt ~ £? Jum' 2 i sz] ~ (11-14)
! m'
N |
2 + +
+ S xi' Jogilagag * 3pi8g0 7 Bgfpr 7 agay. !
N
.2 + + +
} + -
+ S mi‘ 5 (bbb Do, b bbb ]
N

2 + + + o+
- + .
258 ;; Jmllbmbm aga, + albm + agbm]

We transform and write the Hamiltonian in terms of spin wave

operators 2y and b&. _a& and bklare defined by

-— —

o =
ol

) k m N ;

o
"
A

a = |

ike '
0 et ‘5—“))}i . (II-15)

2
N

|~ ™

Here % and m are the vectors connecting the atoms at 2" and m

sublattices to the origin respectively, and k is the reduced

I

wave vector confined to the first Brillouin zone. Using
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eq. (II-15) one can show that

// 2 !
NS :
HGX = —'*2"" '{— ZJS(O) + ZJD(O)]
+ 8% [$+a + bbb 1123.(0)-23.(k)=23._(0)] (II-16)
x Kk kK'k S S = D
+, +
28 }z: 3 (k) [ukbE + akb_}il
where N N
2 2
J (0) = £° 3 =3¢ J
S( ) X e gt o
N
J(0) = £% g
p'Y) = Lm
m
N
_ 2 ike (2-2")
Js(k—) B Z. o€
%
Jy(k) = L J(pre k2 (n.m., p=4-1) .

p

In the eq. (IXI-16) the first térm is constant, the second
term is diagonal and‘répresents the interactions within the
individual sublattices and the third term is nOn—diaggnal
and represents the interactions between the two sublattices.

We define
B(k) = -28 JD(E)

AlK) = -2813,(0) -3¢ (0)+35 (1))
CEs N82[-T_(0)47_(0) ]
0 S D

and simplify the Hamiltonian to
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H' = H, - E, = I A(k)(aja_ + bib )

=
-~
l:v +
i?\"

+ ¥ B(k )(a + a

Kk b,

) . (II-17)

=
= +
|~ +

In order to diagonalize H', we use Bogoliubov's technique

(1948) and transform it to a new set of bose operators ak's

and B 's which are obtained from linecar comhinations of ak's

and bk We define
+
“k T %%t Eb.}s
» (11-18)
r _+ ' LD
B, = UEaE + ka <

“in

|
|

and require that H' can be written in diagonal form

A

+
1k”

' =
. “k

z A 6 B . (II-19)
k LA

[x'+

z
k

Alﬁ and Azk are the magnon eﬁerg%gs. The boson operdtors QE

. \//ﬂh . \ . . .
and Bk must satisfy the commutation relations

+ _ + _
[aﬁ,a.}s,] = [BEIB}—(-'] -6}(]('

——

(II-20)

. o
!aE,BEI = [ak,B—}S] = 0

oy and Bk are the annihilation operators for the new states

and the new states are the linear combination of the states

of different sublattices. Using (II-17)

1y — - + +_ ) ' ‘_
ﬁaE.H ]-—.UEA(E)aE YEA(E)bE+UEB(5)§E vﬁB(E)ag . (I1-21)
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Also from (II-19)

l +
{uk, ] = AlEqE E(Uhahw__bl:) (I1-22)
Equating (II-21) and (1I-22) we get
UEA(E) - VEB(E) = XlEUE ’
(11-23)
U Bk) - VEA(E) = Xlg X

In order to have non-trivial solutions for Vk and Uk’ the

determinant of the above set of equaticns must vanish.

A=Ay Bl |
Then we get
! 1
Ay = F e - B s’ (11-24)

—

as the two degenerate eigenvalues of the isotropic exchange

Hamiltonian. Eq. (II-24) shows_that the condition for the
stability of the model is

A(k) > B(X) .

back into the

V and U can be obtained by substituting Alk

Eq. (II-23). We get

Vk = sinh 65 : Uk = cosh BE

B (k) .A(k)
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II-3 Spin Waves In CsMnF

3 ~
In the first part of this section we shall consider a
i

model, described only by an exchange Hamiltonian and in the

sccond part we shall add the effects of dipole-dipole interac-
o'

tions to the original Hamiltonian.

a - The isotropic exchanae Hamiltonian:

CsMnF3 is chemically a typical insulating transition
métal compound. Only the manganese atoms are magnetic and
measurements on similar materials (for a bibliography relating
to experimental data on antiferromagnetic substances, see .
Nagamiya et al 1955) indicate that the coupling between th
magnefic moments is mainly superexchange (see Section I-1-b)?

We define the lattice translation vector as

) R =mna+ nzg * n,c (II1-25)

and the vector connecting the ith atom to the origin of a

cell by
. = u,a + v,b + w,c (II-26)
. =i i— i= i=
where a, b and ¢ are the primitive crystal axes; n,e Ny and

n, are arbitrary integers and ui,vi and W, are the atomic co-
\ordinates of ith atom in the cell. The magnetic lattice

can be divided into six sublattices, in which the array of
spins on each sublattice is antiparallel to the spins on

any adjacent sublattice. Details on magnetic structure of

3

]
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v

CsMnF3 aregiven in section (I-4).

‘ We assume that the only non zero exchanée constants
are for the nearest neighbor (n.n.) and second nearest neighbor
(s.n.n.)}Mn atoms. ' Let us define Jnm as the exchange consta
representing the)coupling between the nth Mn atom and nearest

Mn atom on the mth sublattice. We number the Mn atoms in

ascending order in the direction of crystal ¢ axis (see fig.

-

(I-%) )~ By looking at the crystal symmetry of CsMnF, we can

3
-
show that there exist only two independent nearest neighbour

exchange constants, J12 and J23, and only one independent |

S.n.n. exchange constant'J35. The reason is that J45 = J 6

= J = J J = and J =

34 = J120 Ise T J23 26 = J35°
shows that, as the n.n.'s there are three Mn

Also figure (I-1)

, atoms coupled —

1 through the Fl atoms and one Mn3 atom to an
L

the three F2 atoms. Similarly the number of n.n. coupllngs

between the remaining Mn atoms. can be determined. As the

to Mn through

i .n.n.'s M
; S.n.n n,

: atoms and Mn3 5 37 Mn4 and F5 atoms.

Considering the magnetic structure of CsMnF3 and

recaliing eq. (II-6), we can write the spin operators (SZ, S

atom is coupled to Mn,. through Fl, Mn, and F

6 1 6

. %
,atom to Mn. through F

+

and S7) in\terms of boson operators (a',a) as

s?
1

-

mqoyyi-l o+
(1T ey B AR )

+ : ¥ :
. +2.)= . .)0, . .) 0. -
Sl(gn &1) (25) [a1(5n+&1)61,odd+a1(Bn+&1)§l,even] (11-27)

N N =~

‘ - , + h
i Si(5n+&i)-(28) [ai€5n+&i)6i,even+a}(5n+&i)6i.0dd] *

3
H
-
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where
(1 for i = even number
F ven | and,
1.eve |0 for i = odd number
- "u.
(1 for j = odd number
85,048 ~ 7

0 for j = even number

.Let us assume that there are 6N manganese atoms in the crys-

tal (i.e. N primitive cells).k '
Recalling eds. (II-27) and the procedure we followed

to get fromt eq. (IIQllsto eq: (II-14) we get the following

expanded exchange ﬁgmiltonian in terms of boson operators for

'CsMnF3 . , -

N +
H,, = Eg ZSle_{i a2(§+&Z)a2(3¢§2)+a2(3¢3—§¢g2)

. ) + .

X az(§“§"9+&2)+a2(579-&2)a2(8797&2)

+ +(R~a+£ Ja, (R-a+2 5+a+(R+2 ) (R+2 )

T8 STl 86\ DAL TG\ DT 267 %6 ' T 26

+ at(R-a-b+s.)a (R-a-b+i_)+6a) (R)a. (R)-
6 = aT2Tg! Fg I ITATIT LI TG, 12V 1T

t [a, (5)61'2‘(&&2)%1 (R) 32(3‘9_'.1?_“"&2“) +a; (R)a, (R-b+1,)

+ ’al (R)a (R-atlc)+ay (R)a  (RtL )+a) (R)ag (R-a-b+L )

“+.C.C.1} _ ¢

4

(equation continued next page)

" T —



o+
—2s{§ Jyqa, (Rt )a, (REL,)

+ _+
b 3y lay (Regy)a, (Re2,)+ay (R¥bFL,) 2y (REDFL,)

(§+Q

..l
a, (Rtbtarl,)a, (RtL, 23

+

[J23a3(R+2 )a, (R+R )+ {a3(§+&3)a4(§+&4)

+ a3(5+&3)a4(5}2}&4)+a3(§+&3)a4(§%9+g+&4)}

+

c.c.1}
e

+
-25{2 J23 6(R+2 Jag (RHL L)L) la, (R+2,)a, (R+L,)

2

+ +
+ a, (3+3+_l3+&4):a4 (RtL,+atb)+a, (R+a+i,) a4\(§+3+_9v_'4) )

+
+ (J23+3J12)a5(5+&5)a5(3+&5)

4

[7,585 (Rt2)a  (RtL, )+3, {§5(§+_&5).a4(_1_2_+_&4)

4o

a5(§+&5)a4(5+&4-+§+2x:a5(5+&5)a4(BT&4+a)}

+ c.C.1} ' o , L -~

+ - ‘ + oo .
_2SJ35{§ 3a3FB%&3)a3(§%&3)fa5(§f&5)a5(§+&5)

+ + oo .

+ a5 (_13_-*‘&5—_8_._) a5 (.}3."-.8‘.5—.5_1.) +a5 (B.'*'_‘Q:s"p.) a5"(B..+.’Q;5 b)
+ . MR _ X -

+ 3a, (R¥g )@, (Rh ) +ac (RtL, glag(RtL . ~0)

~g-a)+ag (R¥L

N
+ a6 (_134'.5!.’.5*9.“3) 66 (R+% 6

~c-bla (R+L

6 6

l— [a (R+£ ){a (R&-k )+a (R+£ a)+a (R+4% —b)}

+ ' - * .
+.a2(§}£2){36(5%&6-g)+a6(§%& -gf§)+a6(§%&6—g:2)}

6
s
+ C.C.1}

~c-b)".

29

+
+a+b) 1+ (3,433, ,)as (R¥gy)as (RLy)

(I1-28)
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where C.C. in each bracket means all the Hermitian' conjugates
of the terms in that bracket . Also notice that we have used
R instead of R. In order to transform from bose operators,

ap andla;, to spin wave operators, bk and b;q we define the

following transform&tion egquation

(-1) Ik (R+2.)
e —J b (k) . (II-29)

where bj(k) satisfies the commutation relations (II-9). We
substitute eq. (II—29) into the Hamiltonian (II-28) and follow

the steps taken in section (II-2) for the 31mple antiferro-

J
magnetic case, and 1et bj(E) = bj' Then we get
Hex = EO + i {Al(zb b.+bT b +bt b +2b b +b5b5+b b’ )
+ B, (b b.+b'b_+b? b +b™b )
2737377575766

3

+ . .
+ A (b b +b2b2+b b5+b b_) ‘

* TR (II-30)
+[A2(5)b b +A3(E)blb6 :

+ [A (k)(b3b2+b5b )+A7(k)p3b4-.

* Agfﬁ)b5b4*A11‘k)b3b5

+ s
+ A 2(g)b2b6 + C.C.1}

'where - - -
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A, = =683, |
ik-2. ik+(%2.-b) ik (Z.,-a-b) . _
_ Xidg, FETIZpTR) ARTIZTETRN ey
A,(k) = 283, ,le +e +e )
ik (f,-a-g)  ik- (& -c) .iK: (L-a-b-c)
Ay(k) = -287,,1le te +e ]
A4 = - ZSJ23
L ike (2,=2.) ”
Rg(k) = -283,,e™2 2273
- ike (R,~2.) dike(L,+b+L.) ik-(%,+bt+a-£.)
A, (k) = =253, [e =4 73 e 4 34— 4 3
7'% 12 : ‘
ike (8,-2g) ke (2 +bra-g)  ikL(g,+a-2)
Ag(E) = —2SJ12[e +e +e 7]
Byo = 785935 .
ike (£.-2.) ike(L.-a=£.) ik (2 +b=2.)
_ Rolfgmhy)  ARTIEgTATIy) SR RAETRTR3
A, (k) = 28J35[e . +e +e | ]
- ike (L-c-%,) ik (& -c-a-%,) ik (R .~ctb-2)
A, (k) = 287 .le T 2 te 6 2

We diagonalize the Hamiltonian (II-30) -using Bogoliubov's
technique 'in akgeneral form to that given in thé previous

section. Let us construct new bose operators, o, 's, from

linear cdmbinationé of spin wave operators, bk S.
o, = C bléc b++c b ;c b++c b_+c b+ (I1-31)
k 1"} 7272 7373 474 5"5 66 [ - .
e obeys the commutation relation v
[0, rar,] = § s (I1-32)

Then we regquire the Hamiltonian (II-30) to be written in the
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, +
ox 0 i K LGE (II-33)

where Ak is the spin wave energy of the state with vector k.

From equations (II-32), (II-33) and (II-31) we get

[a ,Hex] = A Q

L. (11-34)

=

= A (clbl+c2b2+03b3+c4b +C b +06b )

But from (II-30) we get

[a..,H 1 = b, [2A,c

k'lex! T PpleR cyR, (KhcymAg(k) el

+ % .
+ b, [A,(k)c cy A102+A (k)c A4c2~Alocz—A12(£)c6]

-i b3[-A6(E)cz+(Al+A4)C3-A7(E)C4+Aloc3+All(k)Csl
(I1-35)

+[ X k 2 +Ar
+ b, A7(_)c3— Ajc, Ag(g)csl

+ bgl-Rg(k)c, + (A +A ) c A (k)c6+Alo 5+A11(k)0 ]
+ S o
+ bglhy () cy+ag (K)eg= (A +A,=A) o eohy, (k) e,)

Finally, similérly.to the simplé antiferromagnetic case we get
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(2A1—Ah), -2, (k) 0 0 ' 0 r A5 (k)
* ' * , ) }’
_A2 (_]E) ¢ "Al"A4_ AG(B") : 0 ’_ 0 7 ——-Alz (_:)
Alo"A};) '
i 0 s mALK) (A +A,+ -A, (kY Ay (k) 0
lO—Ak)
* A *
0 * A >
, 0 AR “Ag (k) (AyFRA A, ~h (k)
Byomhy!
‘% * ' . ,
9 Alp—)\k)
\ )
- . v (11*36)

where all the non-diagonal elements are complex. This matrix
equation can be solved numerically fer any given wave vector k

if the exchange constants are specified. There are six real solu-
tions for the eigenvalue Ak' given 'wave vector k. 'Due eo fhe
anti-Hermitian symmetry, for each solutlon A there is also
a_solution —Xk. There are three branches of—fhe dispersion

curves and the states, are degenerate as in the simple anti-

B . ] . .
ferromagnet described in the previous section.

b - The effects of dipole-dipole 1nteractlons on the spin waves

in CshnF3 ~

In the.last subsectlon we determlned the spin wave

energles in CsMnF, for the isotropic exchanqe Hamlltonlan. Like

most actual physical systems, CsMnF3 also has anlsotroplc interac-
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tions. These arise mainly fiom maénetic dipole-dipole interac-
tion and spin-orbit coupling. Spin-orbit couplings are not
normally important in Mn2+ ions and magnetic dipole-diple
interactions are the most likely source of anisotropy. In

this section we shall determine the effects of dipolefdipole

L1

interactions on the spin wave dispersion curves.

We take the total Hamiltonian HT as given by

where Hdnd represents the dipole-dipole interactions and Hex
" is the exchange Hamiltonian which was treated in the previous
subsection. The magnetic dipole-dipole interactions are
given by {(R. M. White 1970)
2 2 -

Raea = 77 T8 TSy 8y )38 ) (S, D] (XI-3T)
14

where p, is the Bohr magneton, g is the Landé factor, S,
is the spin associated with atom at position u and r
is the vector connecting u to u' (i.e.*r =u - u'). We

define

—

r’ o= x + iy ; r = x - iy . ' (II-38)

Equation (II-37) can be simplified by rearranging the terms..

and noting- that
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2 2 , ' .
g u 1 3
B 1 2 2..2.2 .1, + ~ ~ +
Lo g [{r7-3z )Susu'+E(SuSu'-+SuSu')

H

d-d 2 uu' r
2 20 3 - 24 4.z
x (3z2°-¢7) - 5T (Susu'+susu') _
3 + z - -~ Z 3 + -2
- = - 2 (S
5 2r (Susu‘+susu') 4 { usu'[r J

A +.2 ’
+'susu.[r 1)1 . \

Since we have assumed z to be the equilibrium direction of
the spin, the stability condition demands that the terms

linear in x and y vanish, so that at equilibrium

2 2
-9 ¥y (A [(r?-32%) %87,
Hd—d = — L. 5 u u
Toau! :
) R 2 2
by (susu.+susu,)(3? -r") . (11-%9)

3 - - -
- 7 it T P s, N1 A )

Experiments by Lee et al (l963)‘sho§ that a large
axial anisotropy along the ¢ axis and a weak,siQfold aniso-
tropy in the transverse plane confine the spin to the crys-
tal (L,2,0) direction. This éreferred axis is assumed to be
the equilibrium direction (z) of the spin.

Let us define

2 2 2
FE=”B Et it S = -3 4%
r 2 : rS : r 8 B r5

i . -

o)

Then we can rewrite
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H

I
}
48]
~
o]
w
m

a-d

-+

+ o+ K - -
+ L]
B_r_susu, BESuSu' ,

We split the summation over u to summation over En and &i
and u' to Bn, ana &j (En aﬁa Qi have been defined bv egs
(IT-25) and (II-26)). Tn order to reduce the number of sub-
scripts we shall use n instead oﬁ_gn and i inétead of &i.

Let us redefine

(I1-40)

where d = n'-n = R ,~R . Now let us define the Fourier

-n
transform of E... and B. .
13 13d
ik- {2.-2.-4)
E,., =t E ..e"= =i —=j = ;
ajk g iid (I1-41)
-1 Bt ik (8;-2,-0) L
Bisk 7 L Pije® i=3 =




2

-25 z

ndij

E{ 54

z

+25 T ([ by k)b,
k1 jd

k i

——

(k)

+ £ bl (K)b, (k)
j)"]

r E,..

ig 134
b} {b

ljk

+ S (k)b (k)E

le (

+ b (k)b (k)Eljk i oddéj

T E

+ «
* bi(E)b ijgéi,even

+ b (k)b (-k)é, ,oddaj,ev

3.
i,even j,o0

L+
+ bi(ng (~k)§é

+ +
+ by (K)by (~k) 8

. 8,
i,even j,o

where C.C. means Hermitian conjug

brackets, and ﬁ%

l for i =
S, =
1.even 0 for i =
- 1l for j =
8, =
Jsoad 0 for j =

(-

85, 0aa

[b (k)b (- k)é
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i-3
El d( 1

179y
i-j),even

even

+ C.C.}
8.
i,odd j,even

eh

ad

dd] + C.C.}
ate of the terms in the

Pa

evenp number
and
odd number

odd number

even number

el .
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Then recalling eq. (¥#I-30) the total Pamiltonlan can

be written as

t
= = b PR { !
Hp = Ho 4 Hy 4 = By + By ; H, (k) + 1y (k)
where L. is defined hefore and L. = —282 b E...,, the
0 0 dij iijd
constant term in ”d—d' 0{ course for the sake of saving some

space we have not written H_ in expanded form.
Symmetrizina the Hamiltonian with kK restricted to only

positive values in the summation we get

H = E +E. +

s = Eg*B (-k). (I1-42)

i By (R)HH  (SR)I+H g G (K)+H

Now we define Gy in terms of suitable linear corbina-
. - + . ..
tion of operators b, (k) and bi(g) with coefficients c. and c;

R
|~
|

(I + '
= ¢,by (k)*+c,b) (-k)+c b, (k) +c, b, (-K)

+

vt + !
c b3(£)+c by (-k)+c, b, (k) +c,b, (-k)

3

-+

LIS - + t
Cgbg (k) +egbo (k) +e b (k)+c b (-k)

which diagonalizes the symmetrized Hamiltonian (II-42) with

eigenvalue Ak

= "bT (- 'y o=
= AK[clbl(g)fclbl( k)+....+c6b6( &?]

I

+H A
[ak

TS]

K"k
Finally followina the procedure we used to get from

eq. (II-34) to (ITI-36), we get the followinc matrix equation
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which cives the eicenvolue )

X
[The matrix 1s given in the next page] = 0 (11-43)
- L - N N - ¢ 45 5 < + .
where Hl 4F10+2111(})+?A1 ind M, 1120+2Ill(}:)+1\l+1‘\4 éigj
Ay to A, Lij(E) and gij(£) have been dgfined earlier. The
diagonal terms E = % B (k:=0).
10 _ 1) -
J=1
It can be shown that
Byg = Eyg = (Byyr2Fypm2P37F )y
. .
E..=E_ =E, = E, _ = (E,,-F. +E, ~-E_,~E__+E

11 "12 713 723 725 2€)k=0'

60 50 30 20

We write Elj(g) and Bij(E) in terms of dipole suns, D??(E)

E..(k) = -clD?%(x)/4
e 13- (11-44)
= XX AYY oy o in XY
By k) C[Dij(}_<_) D3 (k)-21Dy 3 (k) 1/8
where
aB - 1 « B _ 2 -
Dij(E) = I £ [3rijrij rij]exp(1E lij) '
1) rij

c & S. gzuBz/volume oX the cell

= 0.000258 THz for CsMnFB,

a and B8 represent any one of the three cartesian coordinates

X, vy and z.



40

—m —

) S B FUUCSIU

t

e —— e e e b e

i Tay

v+
onlaz

6D Vay

R

4
—

Y= 'H

.
4
" 1 ¥
‘ s =99
. 2
! e ()7 "q%-
X
: — +
X
. !
{ A % 7 +
' i
' Cmy 7 dy TR X
! M——— ha
-
‘u, .
N AT
B VR -} Bt
! “
- %
, (7 -
P
[ - humul s
. s ST~
‘ »
— PJ ~ . w\u.
O G B
— " - (o
Ag,rkw. v, A
Ll
———
= .. =_ 5t
VRN A kg -
» o
e . VY4
B e e
.
[ o
"~ N ,s«\
o Cret Tea
(- T
—— - * -
- t -
”
. - A’ o AI.
’ Ui o=
G e o= —-—
, ! ,Um..‘ .
. - 37
; A P Te-
\ -
T
— et e e -
9~ Oyov-
e g
. r...\.. a” ) AM-vw,w,ll
T ¥ M
¥*
A




41

The numerical caiculation of the dinole sums can
be performed usinc the BEwald technique. This technigue in-
8 ) . .
volves: doing the sums to near atoms directly, and the sums for
atoms at mo;é than certain distance in reciprocal space
(M. Born and K. Huang (1954)). The computer progranm for cal-

culatﬁng these sums was written by Dr. E. R. Cowley of Brock

University.

c - The effects of phenomenological anisotropy theory on the
magnon dispersion curves ot CsMﬁF3:

At sufficiently lowwgemperatpre (T<<TN), the modulus
of the sublatﬁice maanetizétién vector M is practically inde-
pendent of temperature and the anisotropy energy can be looked
upon as a funztiOn only of direction of M.

In the phenomenological Bescription of an antiferro-
magnet the anisotropy Hamiltonian; Ho L is usually represented
by an expansion in powers of the angular components of M and
only the first few terms are retained (Landau and Lifshitz, 1960).
The expansion must of course include only those combinations
of the products of components of M which are invariant with
respect to the symmetry elements of the crystal. These ele-
ments include the time revgrsal operation (t + -t) in which
the components of M change their signs. Consequently the ex-
pansion for Han contains only eQen powers of_the components

]

of M.

In actual fact we believe -that most of the anisotropy
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=

o

in CsMnF3 ariges from the dipole-dipole interaétions. However
since it has been widely used 'in the literature, we use thc
phenomeno]oqical single~ion anisotropy eneragies in this sub-
section and show the effect on the spin wave onerqieé.

gMicroscopically for a4 simple two-sublattice uniaxial
antiferromagnet one can write (Belson et al 1959) and (Smit
et ?} 1959)

H =

1 .2 2
an 5 [Kl(cos el) + Kz(cos 62)] (II-45) -

z
R
1 , are the anisotropy constants and el and 62

are the angaﬁs between the direction of spins and the crystal

where K, end K

symmetry axis. In the case where ﬁégnetic atoms in both suh-

lattices have the same surrounding atoms; Kl and K2 are equal.

We recall from the previous seCtion that there is a large axial
anisotropy along the g.axis and-a weak sixfold anisotropy in

the basal plané of CsMnF Thus ignoring the wéak basal plane

3.
anisotropy, we can generalize the equation (II-45) and write

’
b
~

2 .
) Ki cOSs Big, .

H =
an

I o1 o

1
3 -(II-46)

1

i
Looking at the crystal symmetry of CsMnF3 it can be shown that
, . ‘
K,=K, and K, =K =K =K . Therefore there are two 1ndgpendent
axial anisotropy constaqsi~§irandrxz. Since we have already
asshmed z (the equilibrium direction of the spin) to be.the
crystye? (1{2,0)'direct10p, the x ‘component of the séin can be

assumed to lie along the crystal ¢ axis which is also the
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direction of the ecffective fields. Then we can havg

cosOi = S?/S, and consequently

~ 1 X N2 X 2
Han = ﬁ 3 {Kl[(SlB/S) + (545/5) ]
2 ’ (I1I-47)
[(s /s + (ng/s +(s /s) +(s /s
Now we define the'£5tal°sublattice magnetization, M, as
. M=3NSgu : (II-48)
B
A .
where N is‘the number of cells indthe specimén, g is the Landé
factor, Mg is the Bohr magneton and S is equal 5/2 for Mn2

ion. Using eguations (II-3), (II-27), (II 48) and gding through
some manipualtionS.Han can be transformed to

o v Ky L i

. _ 1 + +
Han = EO { lﬁ al +alal+2a1al

g

4+a4a4+2a4a ]

+
+a2a2+2a2a2

> (II-49)

ot - : :
3 3+a3a3+233a3 , ' e

+ o+

5 5+a5a5+2a5a5

+.t

6 6+a6a6+2a6a 1} .
Ky K,

.Note that o and e |

spins’ of Mn2+ ions. Using eq. (II-29) we write Han in terh;'

are the effective fields actingﬁon the



of the spin wave oﬁerators b(k) and b+(53 '

w oM
.H._ = E + —=

+ + ) _
in = Ep * 3 (K)/MIE B (R)D] (k) +b) (k)b (-K)

k /

+ + +,
+2b1(5)bl(5)+b4(5)b4(—h)

+
+b (5)b4(~£)+2b4(£)b4(£)]

4
+ KMz bY ()bt (-x)+b_ (k)b (=k)
/TN P2t Pp TR TR RR T R
+ + + i : _
+2b5 (k) b, (k) +b3 (k) b3 (-k) (I1-50)

: +b3(g¢b3(—g)+2b§<5)q3(5>"
+b§<gybé<—5{+ps(g)b5(-g)
+2Dy (k)b (k) +b (k) b (k)
+b (k)b (-k)+2bg (k)b (k) ).

Then recalling equation (II-30) the total Hamiltonian can be

written as

Hy = H_ + H_ :
ex n ' - (I1I-51)
+ +

E0 E0 i Hex(h) * i Han(E)

— —

i

is the constant term in Ha .

. t
is defined before and E n

0 0
. Finally following the prbcedure we used to get from eq. (II-42)
*

where E

to (II-43) we get the following matrix equation which gives

the eigenvalue Ak
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' 1 K'I K2
> = MM =h+ S = S .
where Ml 2A1+Dl, h2 Dl A4+Alo+?2, Dl M;Band 02 v ”B

1 to AJZ and Kl and, K2 have been defined earlier. The

eq. (I1-52) can be solved numerically for any given wave vector

A

k if the exchanage constants and anisotropy constants are speci-

fied.

II-4 Interaction of Thermal Neutrons with Crystals:

The measurements of the phonons and magnons in solids
can be done by various techniques, among thch that of neutron
scattefing is the most important. A general account of neutron
sCattering techniques is given by P. A. Egelstaff (1965) and
G. E.. ﬁaconA(1962). Here we will consider only the case of
.magnetic neutron scattering.

' Since a neutron has a magnetic npment UNr.itS interac-
tion with a magnetic field arising from the unpaired electrons
of an atom can be written.as” (Marshall and Lovesey 1971)

-z
i

G ooH, (11-53)

Y uN i

where the components of G are the Pauli spin matrices for
the neutron and y, the gyromagnetic ratio of neutron, is
equal to 1.91. H, is a magnetic‘field due ﬁo a single elec-
tron moving with velocity Yei givéh by the Dirac's theory of
the ele;tron.

In the case whéfe only the spin is scattering the
neutron scattering cross-section of an N spin system per unit

solid .angle @ and unit interval of outgoing energy E* can be

written as (Marshall and Lovesey 1971)
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do _ . Ye N —= 2
doaeT = o) g k0 B , .
Me (I1-54)
PPN B
x 3 A8 . =0 0.8 (0,w)
B af a B =

where ¢ and m, are the charge and the mass of the electron and
£(Q) 15 the atomic form féctor defined as the Fourier trans-
form of the normalized‘spin density associated with the atom.
k and k' are the incident and scattered‘yave vectors of the

neutron: «,8 = x,y,2 and

S B(Q,(D) = I p; I exp(iQ* (R -R, ,))
: if *toae! L=t
“k) ' (I1-55)

O B ;.
x <l|52|f><f‘32.]l>5(ﬁw‘ﬁi+Ef)- .

Here S% is the a component of the spin operator on the lattice
site . |i> and |f> are the initial and final states of the
spin systém with Ei a nd Ef energies, Pi is the probability of
finding’térget spin system in its initial state }i>.

epr-Ei/KBT)

P; T 3 exp(—Ei/KBT)
i

(11-56)

where KB is Boltzmann's constant and T is the absolute tem-

perature. . ' ’
Considering energy and momentum conservation laws, the

change in the energy (fw), and momentum (#iQ) of the scattered .

neutron can be written as

AM



Q=k-k'=1+g
5 - (I1I-57)

_ 1 '
Hw = 7@; (k™ - k')

1 1s a reciprocal lattice vector, and g is a vector in the
first Brillouin'zone of the target material. Mn is the
negtrOn mass and, in eq. (II-54), éa is the o direction cosine
of Q..

S(Q,w) is the Van Hove's scattering function and is
the space time Féurier transform of the time dependent -spin-
spin correlation function. It contains all the information
about the scattering system.

It can be shown that for an isotropic Hamiltonian such

~as (II—lz)eé.(II~54) reduces to (Marshall and Lovesey 1971)

2 2 2 '
S = (B B le@f s s o, w)
m c L
€ &
where ® )
XX _ . _
§77(Q,w) = T p. I exp(iQ*(R,~R/,))

if 152 (II-58)

. X .
x <1|S£|f><fis§,|1>6(h9+Ef—Ei)

Eq. (II-58) shows that Fhe scatéerinq crosé section d?-
pends on the wave vector and energies of the incident and‘
scattered particles, only. So the whole spin wave spectrum
can be determined by means of neutron inelastic experipents.

LN For "‘a simple antiferromagn;ﬁ the magnetic dynamic struc—h

-~

'tu;e factor (m.d.s.f.)his given by {(Tondon 1973) and (Nagai
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et al 1961)

m.d.s.f. cosh2ft = sinh2¢ (-1)
. q q

A+ B )/
( d a g«

i,

where A_, B and A_ are defined in section (II-2).
a 4 g
Because of the complexity of the magnetism in CsMnF3
the dynamic s.f.'s were not calculated and the experiment
was carried out by simply looking for magnons in a number of
different zones.

* The nuclear elastic structure factor En is given by

(Bacon 1962)

Fn(hkz) = § bjexp{2ﬂ1(hui+kvi+2wi)] (II-59)

where bj is the scattering length of the atom j,h,k and £
’ 2
are the Miller indices and uy v. and wj are the atomic

coordinates of the jth atom in the cell.

Eq. (II-59) can be also used to calculate the magnetic

elastic structure factor Fm, except that, instead of bj one has

to use the magnetic scattering amplitude Py and sum over
just the magnetic atoms (Bacon 1962). Using eq. (II-59) and

proper nuclear and macgnetic scattering amplitudes we calcu-

_ 2 _ 2 > .
lated I = IFnI and I_ = IFmI for CsMnF,. The results of

the calculation are given in Table (IT-1).



Table (IT-1) Calculated nuclcar and maagnctic scattering
intensities and the d spacings of some planes

of CsMnF,.
Miller Indices d spgcing 1 I
= T 3 R n v m

"~ 0 1 15.074 0.000 0.219
0 2 7.537 0.176 0.000
0 3 5.025 0.000 60.686
0 4 3.768 0.137 0.000
0 5° 3.015 0.000 6.802
0 6 2.512 245,705 0.000
0 7 2.153 0.000 5.626
0 8 1.884 0.104 0.000
0 9 1.599 0.233 -
0 0 5.381 0.003 0.000

-0 0 2.690 0.060 0.000
0 0 1.794 1.283 0.000
0 0 1,345 0.864 0.000
0 o - 1..076 0.615 0.000
0 0 0.897 106.151 & 0.000
0 0 0.768 0.001 ! 0.000
0 0 0.673 8.678 . 0.000
0 0o 0.598 2.128 - .
0 1 5.067 1.081 14,082
0 1 2.648 26.876 13.195 .,
0 1 1.341 28.880 11.269
2 0 1.553 132,642 0.000
0 2 2.534 61.202 14.666
0 2 1.324 50.918 12.595
0 3 2.372 73.607 0.008
0 3 1.299 70.149 0.001
0 4 2.189 32.333 6.015
2 6 1.321 223.655 0.000
0 8 1.543 36.404 16.119
0 9 1.422 38.041 0.837
1 1 2.015 7.314 10.301
1 1 1.485 1.300 10.217
0 - 2 4.379 1,335 16.218
1 2 1.963 1,991 11.572
0 3 1.687 2,026 42..585
1 3 2.642 0.000 37.425
0 7 1.999 0.787 24.473
0 8 1.778 1.760 43.482
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CHAPTER T11

EXPERIMENTAL APPARATUS AND TECHNIQUL

I11-1 Specimens:

)

In order to study spin waves and magnetdc critical
phenomena in CsMnF, we used two different specimens. Details
about these specimens are given separately in the next two

paragraphs.

Specimen I: For spin wave studies we used a single crystal
' [}

of CsMnF, which was purchased from Crystal Tec*. The crystal

3
had-a cylindrical shape of diameter 1.0 cm and length 4.5 cm.

The directions of principal axes were determined by an x-ray
precession camera. The crystal ¢ axis was found to be 47.5
degrees from the cylindrical axis. _Since‘we were interested

iﬁ looking at the spin'wave speEtra in two major symmetry
directions, the crystal was mounted with the (0 1.0) plane
horizontal. Taking account of the spectrometer's resolution
and using the maximum focussed neutroﬁ elastic peak, the mosaic
sprgad of the specimen was estimated to be less than 8 minutes
(Fig. III-1). A photograph of the crystal and its -mount is

given in Fig., (III-2) where the camera is looking at the direc-

*Crystal Tec

Centre d'Etudes Nucleaires des Grenoble,

Laboratdire d'Electronique et de Technologie de
1'Informatique

Grenoble, France.

51
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13000
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x=1065A
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9000} -
7000}
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SPECIMEN TABLE ANGLE () (degrees)

Fig. I1I-1 Maximum focussed neutron elastic peak
(y scan) of the crystal.




-

Fig. III-2 Ph%ut‘;ograp'h of the crystal and its
molint.

El

53
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tion of the crystal a axis.

Specimen II: In order to avoid any extinction effects we uscd
a powder specimen to rmeasure the maonetic critical scattering.
30 grams of powdorcq CsMnF3 was purchased from ICN K&K Labs*.
The powder was placed in a tetragonal aluminum C;ntainer of

4.5>4.0:0.5 Cm3 size.

111-2 Cryostats:

Most parts of tne experiment were carried out at
liquid He temperature, and for this we used a cryostat which
was made by Sulfrian Cryogenics+. Since the original sample
chamber of the cryostat was toé small for ¢gu work, we rebuilt
the tail of the cryostat. The diameter of the new sample
chamber is 5.5 cm. This cryostat holds liquid He for a period
of 12 hours, so that for continuous experiments one his to
refill every 12 hours. It is capable of keeping the Lemperature
constant at 4.2 K, but is not equigﬁed for varying the tempera-:
ture.

For the last part of the experiment which a variable
temperature cryostat was required, we purchased a cryostat from
&xford Instruments Inc.++. The tail of this cryostat was also

designed and made at McMaster University. It has a cylindrical

*
ICN Canada, Ltd., 1956 Bourdon St., Montreal, Quebec H4M-1V1
Canada g

+Sulfrian Cryégenics Inc., 391 East*Inmaﬁ Ave., Rahway, N.J.
07065, U.S.A,

H~The Oxford Instrument Co. Ltd., Osney Mead, Oxford, England.
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shape sample éhambor with diameter 10 em. This cryostat is
insulated by super insulating material. Iﬁs liquid He capacity
is 3 liters and holés'liduid e for more than 24 hours. The
temperafuro of the spgdimon can be controlled by varying the
amount of current passing throuch the heater. The temperature
rg%ge is 6 K to 78 K using liguid He and 78 K to room tempera-

turc using liquid N With a good constant voltage power sup-

5
plie£ the temperature stability is within 0.1°K.

| We E%ed two precalibrated GaAs diode thermbmeters for
measuring theé sample temperature. One of the thefmometers was
ﬁounted on the top and the other on the bottom of the specimen
's0 that it was possibie‘to measure the temperature éradient
across the sample. This temperature gradient was less than 0.1°K.

The GaAs thermometers were purchased from Scientific Instru-

ments Inc.*.

I1I-3 Meacurcments of Spin Waves:
¢ . -
Some preliminary experim?nts'concerning the crystal

structure of CsMnF3 were carried out at the 2-axis spectrometer

at the McMaster University reactor. Also a few points of the
(1L 0 0) acoustic branch of the magnon dispersion curves were
measured by the 3-axis spectrometer at the McMaster University

reactor.

N

1.

* ’ .
Scientific Ingtruments,lnc. .
632 South F.'street/Lake Worth, Florida 33460 U.S.A.

~
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Ali the other measunements described in this thesis
wege carried out on ige McMaster University triple—axis,&sec~
trometer at the NRU Reactor af Chalk River Nuclear Laboratories. .
Detailed descriptions of this spegtromete} have been given by
Brockhouse (1961) and by B:ockhoﬁse et al (1968). A schematic
diagram of this spectrometer is given in Fig. (III-3).

Neutrons of energy E, are selected from the continuous
spectrum of the reactox %y Bragg reflecéion from (é 2 0)
planes of the Cu double monochromating crystals, with mono-

'.,4, I
chromating angle*@m. This monochromatic beam of neutrons is

écattered by the speéinen through an angle. ¢ into the analyzer,
v belng‘the orlentatlon of the specimen w1th respect to
lncmdent beam. The scettered neutrons are detected by a He3
counter at position B after Bragg reflection from the aneiy—
zing crystal, with an angle Q;. The ‘detector at posi*ion'A
acts as a .background counter. The Sollerncoﬂllimators,ncz,c3 and
C, deteimine the directions of the neutrons- Collins .(1963)
and Cooper et al (1967) showed thét the instrumentai fesolul-
tion depends an the colbamatlon angles Lo a3 and a, of the.

1nd1v1dual collimators C2, c. and C réspectlvely, and the‘«

3
mpsalc«spread:of the monochromat%ng and enaly21ng cryetals,
| It has been emphasized‘bg Brockholise (1961) that #Q.
(mementum‘transfer) and-ﬁw (energy transfer) are the atural
variables for any neutron scatterlng e:nérlments. Th efore
it is natnral to employ the "constant O“ oxr the "constant E"
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method in the measurement of magnon spectra.

During an experimént, a major symmetry plane of the
specimen is usually chosen te coincide wifh the spectrometer
plane which is determined by the incidentlneutron wave vector

!

56 Bnd‘scattereq neutron wave _Vector k'. (ho,wae kept fixed
throughout our experiments.) In the “constant.Q" mode of
operation, the experiments are performed by selecting a suitable

v

Q to observe the magnon of interest and by scanning the range
of frequency expected.. Such a scan can be achieved by operating
the spEctrometer so that the values qf ¢, ¥ and OA (or Gm)
are adjusted while keeping Q f;xed. The operation is then con-
trolled eolae to record the number of counts at this particular
point.in the (Q,w) space for a predetermined numbexr of counts
in the monitor fission detector and then ro move three of the
above angles)so as to reach an adjacent point still keeping
the value of Q unchanged. . This precess is repeated successively

\enéll the scanning of the predetermined freéuency range is com-
pleted. The overall control of the maehine is via preprogrammed

. punched taée'produced by a-computer. (Fer details of operation
see Ph.D. thesis by A. Larose (1975).) ° After the scan, the
frequency of the magnon of 1nterest is determlned by the peak
of the neutron group, whlch occurs when the frequency and wave
vector satlsfy the dlsper51on relation. In the "epnstant E"

mode of operatien; the eﬁergy traﬁéfer.is held fixed aed Q

is allowed to vary. along some chosen direction in reciprocal

space, The'constant Q method iy employed throughout these

1 s
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experiments. Fig, (J1I-4) shows the photoaraphs of the specc-

trometer with the 'Oxford cryostat on it.

.

3’

LE ]



Fig.

s

III.[-:'4

Two v1ews of the triple- axis spectrometer
at Chalk River with the Oxford cryostat

on it.
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CHAPTER IV

EXPLRIMENTAL RESULTS AND DISCUSSION
' PART I: SPIN WAVES

IV-1 Gencral Remarks:
The magnon dispersion curves were obtained, by means

of neutron inelastic scattering, along the two major symmetry

directions, (00f) and (£00). ’ .

A few points of the (£00) acoustic brancﬁ were mea-

sured by the 3-axis spectrometer at the McMaster University

reactor. ,Then we tried to measure some ppints of the (00%&)

y
acoustic branch and some points of the optic branéhbs, but
because of the low intensity we could not see any‘magnon peaks.
Thereiore the eXperimeqt was terminated at McMaster and éon—
tinued on the McMaster triple-axis spectrometer at the NRU

Reactor of Chalk River Nuclear Laboratories. At Chalk River,

generally, the acoustic magnons were intense enough to be found

' 'easily, but the magnons of the optic branches only gave weak

peaks. Since the dynamic structure factor was not calculated,
many different zones were tried out and very long couhting )

. 4
times were spent in order to obtain good counting statistics.

Usually each scan tbok more than 12 hqurs and in some cases
about 24 hours. All' the magrion scans were darried out at 4.2 K
initially, using the .Sulfrian Cryosfat ksee séctiOn I11-2).
Except for the lower optic branch in the’ (£00) di}eétioﬁ the

61 K
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'3

results were satisfactoLy at this temperaturc. After scan-
niﬁg ép; very long times and using many different zones, the
_magnons of the lower optic branch in the (£00) .direction
'proved to be too weak to measﬁre at 4,2 K. Therefore we trans-
ferred the specimen to the Oxford cryostat (see section III-2);
raised the temperature to 18.2 K, and scanned again. This
time the magnons were more.intense and we werd able to measure
them. Later in this chapter we shall show how the results
obtained at 18.2 K were normalized to 4.2 K.

In order to make sure that the results obtained at
low temperatures were magnons rather than phonons or some
other ekcitations,wwarepeated many of the scans at room
temperatu;e. ’The room temperature scans showed no peaks and
proved that indeed our low temperature peaks ‘were magnons.

In orxrder to'have good ‘energy resolution for measuring

the acoustic magnons, we selected an incident neutron beam of
. ) Sy ~

. N\
frequency 3.849 THz. (This is the lower limit of the McMaster

3-axis spectrometér at the Chalk River NRU Reactor.) It

shodid be mentioned that the intensity of the beam at this
frequency is low. Thus for looking at the optic branéhés
wé needed a beém with more intensity. To obtaih»; more inteénse
beam we sacrificed reéolution and seiécted an incident neutréﬁ
beam of frequency '6.538 THz. %his lies almost in the middle

of the reactor spectrum, and the.number of neutfons available

at this frequency is the highest obtainable.

v



Iv-2 Method of Analyzing Data:

The experimental results werce plotted and the data
points seemed to give complete dispersion curves in the two
high symmetry direcL}ons. Thus we developed a theory. of spin
waves for CsMnl (sece section II-3) and attempted to fit itl

3
to the observed results. A specific direction was assumed for

the spins and the dipole sums, given in eq. (II—44)/wcre

calculated. Then by using the results of the dipole sums and

’

varying the threc exchange constants, the matrix equation

7 ‘

(il‘§3) was fitted to the experimental results. The results
of CdlCulat ons were satlgfactory and identical for all the

directions in the basal plane of the crystal. But when the
|§

spins were-assumed to be aligned along the ¢ axis, the calcu-
lated spin wave frequencies came out to be complex nuﬁbers.

" Also some other directions, out of the basal plane were tried
and the results showed that the spin system goes ﬁnstabie.

-In order to obtain a least-squares fit to data, a

)

function F was defined by

.
3

N v_(n)-v (n) 2 .

c exp’ T
LR ST -y e (1v-1)
n_l exp ..1

1

F= 5w

where N is the number of data points, M is the number of adjus-
table parameters (in this case the three 1ndependent ehchdnge

constants le, o3 and J ) vc(n) is the cglculated magnon

35

frequency, ve (n) is the observed freéuency and 'Av i (n) is

the estimated errmnr on the determination of the observed magnon

frequehcy. The function F was minimized, giving a minimum



value of Fmin = 0.91. The Optihum_values of the exchange

constants, corresponding to this minimum, were determined. For
ph

later use we denote the optimum fitted exchange constapts by

0. -0 0 )|
12" Jp3 and Jog.

To estimate the error in each of the three exchange

J

constants, we procceded in the following way. First Fmin was

normalized to l and six different ' values for F were calculated.

. _ -0 0 _ 0
Fl was calculated by having J12 = le + Ale, J23 = J23 and
0

I35 = J35¢
that, instea

0 0
AJ23 an@ AJ35.

_ -0 0 _ -0 : .
J23 = J23 + AJ23 and.J35'- J35. FS and F6 were also obFaln?d

in the same way as F, except that, instead of J

F2 and F3 were obtained in the same way except

of d and J were in turn increased by

127 J23 35
0 0

was calculated with le = Jl2 + Ale,

4 357 J,3 and

were kept at their optimum values respectively. In this

. 0 o _ .0
calculation we had Ale 23 = J23/100 and
0

35 = J%é/20. Then to a first approximation we assumed

J12
_ -0
= le/lOO, AJ

AJ
the function AF (deviation of F from its minimum value} to

have the quadratic form

.AF‘; F-1 _
=2 (03,02 + A, (83,7 + A3}AJ$5)2' L o
+ 2{A4}§§12)(AJ23).+_A5(AJ12)(AJ35) ‘ (Iv-2)
+ Ao (AT,5) (AT,40)]
for small values of AJLZ’:AJZB and AJ35. Al to As‘are the
co?fficients of.thé quad¥atic equation and Aﬁlz, AJ23 and“AJ35

are the deviations of J and J,. from their optimﬁm

127 Y23 35
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values. Using equaﬁion (1v-2), Fl to FG and the values of

AJ's, Al to A6 were calculated for two standard errors-in F.
Then the principle axes of the ellipsoid and their directions
were determined by diagonalizing and getting the eigen vectors

of the matrix

Ay By By
Ay By B
Ag A Ay

1 DA2 and DA3. The eigen

. vectors showed that J23 was almost indecpendent of le and

We denote the eigenvalues by DA

. S i
QBS’ but le and J35 were correlated 0 the error in J23

was, simply obtained by inverting and taking the square root of

'\\\_4~95541 In order to estimate the errors in Jq and Jyg We

followed a similar procedure-as for J23, which also took ac-

count of the correlation effects.

IV-3 General .Description of the Results:

As it was mentioned in section (III-3), the constant
Q meéhbd was used throughout'thesé experiments. Theiefore‘

- each magnon was identified with a given value of Q and pro-
Qidcd us with raw data consisting of the neutron counts vefsus
the neﬁtron freﬁuéncy loss. The raw data were ploéted agijth;
mégnﬁn creation peaks were obtained (of coﬁrse-iﬁ cases where

therc was a peak!). Then each peak frequency was*geﬁérmined
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carefully and, according te the goodness of the po;k, an esti-
mated error was assigned to the peak frequency. Some of these
magnon peaks arc shown in figures (Iv-1), (IV-2) ard (IV-23),
whtre the small cireles represent the gbserved data points and
the solid curvgg7are drawn by hand. The figures show that,
while the low q acoustic peaks are very sharp and well defined,
the others, in gencral, are broad. For the broad peaks, errors
of 0.02, 0.03 and even in some rare cases 0.04 THz were given,

The magnon frequencies of the lower optic (£00) branch
were obtained af 18.2 K. Therefore a small correction had to
be made to map these frequencies back to 4.2 K, where.the rest
of the dispersion curves ware determined. To do this we as-

i

simed that the magnon fiequencies in CsMnF, would approximately

3

have the same temperature hnd q dependence as in RanF3 and
used the‘éxperimental cesults 5f Saundersor. et al (1972},
which gives the temperaturc aﬁd vave vector dependence of spin
wéve energies 1in RanFB. Tha changes in mean fregquency with

increasing temperature are given in figure (IV-4) as fractiﬁhal

shifts, -

AV(T)  _ V(4.2)-v(T)
V(4. 2) vid.2)

versus reduced wave vector, g* = alq|/m., where v(4.2) is the
frequency at the corresponding g* from a smoothed, two-para-
meter,fitted dispersion relation to the 4.2 K data. According -

to this figure spin waves in RbMnF are softened independent

3
of wave vector by 2.8%, when the.temperéture i's raised from
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®2.2 x to 0.38 TN Ip Ouf case the temperature of the sampie
was ralsed from 4.2 X to 18 2 K (0.36 T ) the equ1valent
correction would be 2.5%. .This correction is very small and
in some cesesis even smaller then'the estimated error in the
soiu wave freqoency. The"observed magnon frequencies for.,

- each g value, at 4.2 K, are given ip table (IV;l). Also .
table (IV-1) ihcludes the estimsted error of each of these
freqhéncies. =

The complete'magnon dlsper51on curves*are shown in
flgures (Iv—b) and (IV—G) The small c1rcles w1th the error

. bars are the obserwed data p01nts ‘and the SOlld curves are

" obtained from tﬁe theory given in sectJon (II 3 b)lf/These
flgures sbow that most of the exoerlmental pointg lle -on the
theoretlcal curves, and the overall flL is qulte satlsfactorv

. It follows that tne soln—wave ex01tat10ns are- well represented

by our theoretical model and that our startlng Hamlltonlan

1s a’ good descrlptlon of the magnetlc prOpertles of CsMnF3

1
{

Iv-4: The Exchange Constants: ‘ . . a4

. The best f*t ‘to the observed data p01nts is shown 1n
_f;gures (IV~5) and (IV~6) by the SOlld curves. The optlmum¢

values for the- exchange constants were - determlned to be

= 0.134:,0033THz ='d§094i.oxos THZ.

V23,

S T35 =+0: 01382,:003 THz.

Seavey et al (1969), using paral@el pumplng technlque, ob—
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Table (IV-1) Magnon frequencies (ih units of THz) of CsMnF,
‘at 4.2 K with estimated errors. '

(00&) Branch

§=cqz/2ﬂ ' vl;(Acoustic) ; vz-(OptiCS V3 (thic)

0.10 0.132 %01 - 1.24 03

0.1% - 0.155£.02 - -

’0;20 0.215%,02 " 0.95%03 " 1,25 ;.oia_'

10,25 - - 0.255%,02, - - .
0.30  0.25 .03 10.89£.03 1.255 .02

0.35 0.34 .t 03 - -

0.40 ¥ - .7 0.31°£03 - 0.88%.03 1.28 03

_0.45:; 0.35 %03 - -

0.50 - S 0.38 £,02 0.86+. 04 : " 1.28 £.03
(£00) Branch I S
£=éqx/?ﬂ vi;kACQus§f%9 véb(Optic)" Vg f0ptic)

— —~ , :

0.00 - - : 0.99+.03 1,17 +.03

0.05 E 0.156%.01 - - . 1.26 :%6;’“

0.10 ' 015{2r501 b 1.05+.02 1.35 .03

0.15 ° ©0,483%,01 e ' 1.42A¢.oz'

0:20 - 0.62 4502 <« . '1.08%.03 . 1.45 £.03
o35 0.77 .02 T 1057 w03

6.30': " © 0,89 £.03: i.lli.Oél 1.72 .02
0.35° 0,98 £.02 S 191 £.03
" 0,40 - 1:02 .03 1.11:.03 |, 1.87 £.03

_ i - . . :

" l.94 04
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tained the values 0. 105 THz and 0.096 THz for le' and,J.23

respectlyely. However, they assumed just two non zero ex-

.change constants, le

observatlons. This can be seen ln figures (IV-7) and (IV-8),
. o

and J23, which does not satisfy our

where the solid curves, representing the theory with‘J35 = 0,

are .compared with the experimental data points.

IV-5 Anisotropy Fields:

Assumlng Just dlpole dipole 1nteractlons as the SOurce
of anlsotropy, our results indicate that there is a negatlve
axial anisotropy field, which forces the spins to stay on the
basal plane and.no anisotropy in the plané.. Iﬁ this section
weishallgat;empt:fg#cglculate the'magnituce of.tpis axial |
'aniéotrOpy field.

The effectiVeacnisotrOpy-flelds{: ki/M and kz/ﬁ) were
defined in sectlbn (II—B—C)? .Note chat Kl/M acd kz/M are
assumed to be along the chystalfé;axis‘éﬁd'the spins are
cdnstrained_tokche:baggl plahéf Also it is worth fecalling
that, K,/M acts on the spins of Mn, and Mn atoms and KQ/M

1 .4

Mn., Mn. and Mn. atoms. ° !

acts on.che 5p1nsxof an, 3 5 6 .
Since the inclusion of the.effective anisotropy field

in the spin wave theory éffects, mainly, 'the magnon frequen—:

cies'at q =.0, we calculated the magnon frequen01es at q = 0"

for,several Kl/M and KZ/M values ‘and compared the results w1th

.-procedure we found that, the only’satisfactory“result can be

.
3

the. values shown in f;gures (IV—S) and (IV 6). Ehrouqh thls n'
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obtained by putting

K /M = K,/M = -2700 * 900. Oe.

- .

The fact that Kl/M = KZ/M‘agrees with the-resﬁlts of K. Lee ’
et al {1963), but the value 2700 Oe is much smaller than their
fesult, 7500 Oe. Assuming an anisotropy fielé of.~7500‘0e{
and g = 0 we get 6.2 THz for thg acoustic magnon frequency. -
As figures (IV-5) aqd (IV-6) show, 0.2.THz is‘mucg larger than
the value we obtainéd experimentally.



CHAPTER V
EXPERLMENTAL RESULTS AND DISCUSSION
PART II: CRITICAL MAGNETIC SCATTERING,
’ \

v

V-1 General'Remarks: . .

\
\

In this chapter we shall report the resuth\of mag-
. netic neutron scattering from a powder specimen of CéynF
and shall ‘use them to find the crltlcal index 8.

Using equation (II-51) one can show (de Gennes 1963}
thot | |

I MZ(T) X . ' (v-1)

3

where I is the ‘elastic (or Bragg) magnetic scattering inten-

sity and M(T) is théhspontanqgus'magnetization at temperature
»‘y ¢ .F‘;f‘

T. Then from eduations (V-1) and (I-2) one gets

Mmooz )P (V-2)
- B S
which leads to a way of measuring the exponent B. Equation

(v=2) should hold for an anlsotroplc antiferromagnet reallzlng

~

Py

that ‘M(T) is the spontaneous sublattice magnetlzatlon.
" In order to.measure M(T) as accurately as possible,’

iﬁ ts desirable to find a.scéttering plane with a large.mag—
* . . ) » ] a2 ¢ - N l N LI
netic scattering intensity and zero (or.very low) nuclear

!
l
»

. scattering intensity. Ihspectioh of table (II-1)”and our

previous experimental‘results from single crysﬁai of CsMnF3

L.
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shows that Lhe (003) and (101) planes both have a very small

nuclear scattcrlng 1nten51Ly ahd high magnetic scattering

J
intensity. Table (II-1) also shows that the d spacings of
e <

(003) and (101) planes are very close to each other. This .

-
made us suspect that dsing a powder specimen, to measure either

of these peaks might result in difficulties] The primary
reason for using a powder sample was to elininate extinction

) ’ . °
effects. 1In this experiment we used a neutrbn beam of 1.317 A

which gave a separation of about b.l degrees. khetwen the’(003)

and~(lOl) peeks. This separation ;s too small to be resolved
w;th our lnstrument and it 1is also very small in’ comparlson
.w1th the full half height width (FHHW) of the powder patterns. ~
Thus we reallzed that the powder spec1men does not cause any,,d[/f/‘
dlfflculty because the two peaks. 51mplv lie on t0p of each
other. . In fact having the two peaks together adds to’ the
intensity of the magnetic peak and provides better statistics.
Thisf}s,COnfirmed by figure (V-1) which gives the powder pat-
tern of (003) plus (101) at 6.8 K and 295 K. fThe flathess .
of ‘the powder pattern at 295 K in@icates‘tha£~the nuclear ,
intensity of k003) plus (ioi) is practically zero.

- | . The Oxford eryostat (section II-2) was used ;n this s
expe}iment. Ddring each count the temperature of éhe sample
‘was tontrolled manually and kept constant within 0.1°K. g;;o

the femperaﬁupe gradient acrees the, sample was measured
several t;mes“aed was‘founa.to'behiess thian 6‘l°K.-

1
' ¢
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V-2 Experimental Resultss

e m— r———

The comfplete powder pattern of thesspecimen was taken
with the double axis spectrometer at' the McMaster University

nuclear reactor. All the peaks béelonging to CsMnF3 and Al

(the sample ¢container) were™present. This showed that the

sample was indeed CsMnF with a high purity factor. All the

3
other r¢sults reported here were taken with the lcMaster
triple-axis spectrometer at the NRU Reactor of éhalk River
Nucleér L&boratories.e The anélyser crystal of the spectro-.
meter was set so that the counter would detect only the elas-
tiéally scattered néptr;hs: "Tﬂe beam had a wave length of
1.317 R an&,‘as the\room temperature measurements:of figure

(v-1] shows, the half wave 'length contamination was very

~ small.

»
.

The superimposed. (101) and (003) peak position was
found at'6.8 K and the counter angle was maintained at %he
peak positidn_for the rest of tﬂz exﬁeriment. The tempera-

L

ture of the 'specimen was raised stepwise and at each step

maintained constant while the peak intensity was measured..
-Aféer,every few temperature steps the powder pattern~of.tﬁe
peak was taken to seé whether the peak brofile had changed in
any way. Three of these poWder.pafterns are shown in figureg
{v-1) and (V—Z).L These‘powde;.patterns were taken at 6.8 K,

33,3 K and 47.2 K. ‘They show that, the width (FHHW) stayed .

constant at 36' and the peak position changea only by 0.1
. 7 : ' S N '
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V-2 Experimental Resultse

— o — —

.

The confplete powder pattern of thesspecimen was taken
with the double axis spectrometer at' the McMaster University

nuclear reactor. All the peaks belonging to CsMnF , and Al

(the sample c¢ontainer) were\ércsent. This showed that the

sample was indeed CsMnF..with a high purity factor. All the

3
other r¢sults reported here were taken with the McMaster
triple-axis spectrometer at the NRU Reactor of Chalk River

Nucledr Laboratories. The anélyser crystal of the spectro-,

meter was set so that the counter would detect"only the elas-
“~

tiéally §céttered néptrons: nTﬁQ beam had a wave length of
1. 317 R anéy’as then\room temperature me&surement§iof figure
(V;lf shows, the hal wave'lengtﬁ contamination was very

. ;mall. ,

Thé'suﬁerimposed.(lOl) and (003) peak position was
found at 6.8 K and the counter angle was maintained at %he

'S

. uy . .
peak position for the rest of the experiment. The tempera-

ture of the ‘specimen was raised stepwise and at each ‘step

» ¥

maintained Constant while the peak_igiznsitg was measured..

-After,every few temperature steps the powder pattern of.tﬁe
peak was taken to seé whether the peak profile had changed in
any way. Thrge of these powder patterns are shown in figure§
{v-1) and (V—Z).L These powde;_pétterns were taken at 6.8 K,
33.3 K and 47.2 K. They show that, the width (FHHW) stayed .

constant at 36' and the peak position changea only by 0.1

7’ - 4
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» - i3 * - i -
degrees; to correct for this iry taking measurements at inter-
" mediate temperatures the counter angle was adjusted. They
also show that the wing intensity (background) increases with

temperature.* Thereforé a corresponding background was assigned

%

to each peak. The cxperimental data are given in table (V-1)

Y J -

Near TC each count was over a period of 2 hours and far from
TC, cach count was over a péfiid of 30 minutes. In table (V-1)

each count and the estimated background has been normalized -

o

to 1.5 hours swhich amounts to 300,000 monitor “counts. '
In figure (V-3) we have plotted the neak intensity
)
e
versus temperature. The small cirsles represent the observed

b

intensity and the solid line is drawn by hand. This shows

that the peak intensity varies smoothly with temperature and

behaves qualifatively just as would be expected for a critical

s R ¢
phase transition at about' 50 K.

A

V-3 Critical Egponent B2

Considering equation (V-2) one can write

.l _Log1I
Log(l~T/TC) -

r's
where I = peak intensity-background. Thus the critical exponent
of the magnetization B can be obtained directlyf?rom the log-
'log plot of I versus (l—T/Tc) i1f the c;itical temperature is
specified. .
Since TC 1s not accurately known, four possible values

for T, were considered, 49.5, 49.6, 49.7 and 49.8 K. In log-

P
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Table (v-1)

Obscerved (101)+(003) magnetic peak intensity and

85

corresponding estimated background versus tem=-

perature

.

Temperature
degrees K

Counts/1.5 hours

Estimated Background

6.8
13.7
21.4
28.25
33.5
33.9
38.65
42.75
47.25
48.1
48.7
50.75
52.75
53.0
54.4
55..0
56.0
57.05
58.4
59.2
61.2
62.9

72.2

38020
36097
33045
29392
26250
26197
21816
17616
11542
9853
8541
6332
6186
6408
6112
5848
6004
5933
5737
5878
5653
5700

5827

L A4

- 2400
2550
2750
3000
3300
3300
3700
4100
4750
-4840

4900

g* 5300

s
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log 'plots of corrected peak intens'ity (I) versus reduccd‘£€h~u
perature (l—T/fc) for TC = 49.8 K and 49.7 K, the points do
(hot liekénfﬁ%%t}aiqht line. Far away from and close to Tc

the points stay below the line. The opposite effect is ob-
served for TC = 49.5 K. The best graph corresponds to TC =
49,6 K where mo;t of the points, except for a few far away
from TC lie on the straight line (figurc (V-4)). The points

far away from T, are insensitive: to T, The value of critical

cexponent for TC = 49.6 K 1is

»

The error of 0.009 in £ corresponds to a relative error of

0.1°K in tenperature.

The critical indey B has been measured for tnree other

antiferromagnets. MnF., Tucciarone et al (1971) find

3’

B = 0.32¢.02, in MnF., Heller (1966) finds 8 = 0.335%.005

2!
Cooper et al (1966) find B-= 0.37. No error

and in KMnF3,

was quoted in the last of these three measurements. It

should perhaps also be mentioned that B for MnF., was measured

2
by NMR technique and that this may not give a-reliable

involved, our result is in good

{

agreement with the ones for RanF3 and MnF2 but it probably

falls below the value for KMn?3. We should mention that no

theoretical method is kncwn for determining B accurately

result bacause the NMR frequency may not be proportional to
M(T). Considering the err:>§\\

R,
for Heisenberg models, other tHEn by application of the scaling
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(Te-T)/ T,
Fig. V-4 Log-log plot of the superimposed magneti;\béé;

intensity of (003) ang (10l) in CsMnF, against
(Te=T)/Tc for Tc = 49.6 K. The solid”line has
slope of 0.634, ’
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law (Stanley $1971). The scaling law equation (Fisher 1967)

f = A - ¥ (v-3)

‘can be used to predict R if the gap parameter 2A and the
susceptibility exponent y are known. vy and 2A have been’

estimated only for cubic lattices and two special caées of

Spin—% and spin—infjnity. Baker et al (1967) obtained

y = 1.432.01 and 2A = 3.63:.03 for spin-% Heisenberg

model by highﬁtempe{ature expansion method. Then using

equation (V-3) B was found to be 0.3857.025. For spin infinity

Ferer et al (1971) found y = 1.4054.02 and 24 = 3.54:.03. ;
Using these values B comes up 0.3641,03, 1In both cases the
experinental values fall below the valucs estimated by the —
%caling law.

x The value of TC = 49.6 K can be compared with TC = 53.5 K
and Tc'= 64 X obtained by Le§'et al (1963) and Pickart et al
(1963) respectively. Since our thérmometers~were calibrated
against a GaAs»thermOmeter purchased from Scientic Instruments
Inc. (section I1I11-2), we can not be very sure about the abso- .
lute accuracy of 'I‘C = 49.6 K. We believe ﬁhat the value 64K

is definitely too high ancd the Néel temperature for-CsMnF3

should be in the region 47 K to 53 K.



CHAPTER VI !
4

SUMMARY AND CONCLUSION

Cs_MnF3 has hexagonal structure with a = 6.213+.003 A

%

o ‘.
and ¢ = 15.074:.004 A, The unit cell is built up of six

.

closed-packed layers of Cs and F ions with Mn ions located

in the fluorine octahedral holes between the layers. An in-
@ N .
teresting feature of this structure is that there are two

different manganese sites. One third of the manuanese atoms

-

occupy the centers of those fluorine octahedra that share
their corners with other octahedra, as in the perovskite

stracture, and the remaining twa thirds of the manganese atoms
~

arc in distorted fluvorine octahedra, that share one face

and three corners with other octahedra.
I

In this thesis we have reported the results of our

R . 4
studics on two of the magnetic properties of this mpound;

the wave vector dependence of spin wave frequencies and-6he

-

temperature dependence of magnetization. . e

- Spin wave frequencies were measured along the two
r :
high symmetry directions (00f) and (£00) by %pelastic
. 2
- <&
neutron scattering techniques. In general the optic mggnon
¢ Y

peaks were weaker and broader than the acoustic magnon peaks.

The observed magnon dispersion curves were smooth and were
. ;

N

interpreted by spin wave theory. ) o R
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To build up the theory we assumed a model with six
magnetac sublattices per unit cell, two ncarest neighbour

exchange constants, and J and one second ncarest neigh-

,le 23!

bour c:ichange constant, 5@5. We also assumed that the magnetic

dipole~dipole i%telactions would be the main source of aniso-
tro,wy.

*  We were able to obtain astable configuration only
when the spins were assumed to lie in the basal plane of the

'Y

crystal. The best fit to the observed data was obtained when

0.134:.003 THz , J,, = C.094+.0105 THz

J12
and
J35 =—0.0l%8!.003 THz

"The errors in ;;;~2§change constants correspond to two stan-
Qara errors in the function F, which was minimized for the

. ™ .
best fit., A model with on}y two nearest neighbour exchange

constants, and J which was assumed by Seavey (1969},

12 23"
does not satisfy our observed results,

A similar effect to dipole-divpole interactions was
found by assuming an effective anisotrovy field of -2700%900 Oe

aiong the crystal c axis. The direction of this effective

field is in accord with\the previous observations by K. Lee

.

al ((1963), though the value 2700 De is much smaller than

the value (7500 Oe) given by them. Our experimental results
¢

indicate clearly that 2700 Oe is «&4he correct value for the

anisotropy field.
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No evidence was found to support the existence of °

a six-fold anisotropy cnergy in the crystal basal plane; if

such a.term exists (as i5 likely) it is much smaller than

the term contining the spins to the basal plane.

-

The nature of the magnetic phase transition in CsMnF3

X

wassadfdied by measuring the magnetic peak intensity of the
' 2

combined (101) plus (003) reflections over the tcmperature

range of 6.8 K to %5.2 K. A powder sample was used to §void

extincpion effects. '

A

A sharp peak (indicative 0f macnetic long range order)
AN

¥

is observed below Té. The width (FHHW) pf the peak stays
constant throvghout the terovatuse vooge nnd e peak pesi-
tion changes only by d.l devree~s.  The peak ntensity de-
crcases smoothly with temperature and the phase transition
appears to have the typical properties of a second order phase
transition.

The value for the c¢ritical exponent B was found to

be
B = 0.317+,009 .

The error in f carresponds to a relative error of 0.1°K in

the temperature. This should be compared to the previous
-

measurements in RanF3, MnF2 and KMnF3 which are, respéctlvely,

0.32%,02 ; 0.335:.005 and 0.37. For two special cases

of the Heisenberg model, spinwé and spin-infinity, the scaling
\

i

y
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law predrcts 0.385¢7029 and 0.364'.03 Tespectively.,

*

The Néel tem aturce was found to be 49.6 K, which
can be compared to previous measurements of 53.5 K and 64 K.
We can not be very sure about the absolute accuracy of our
value, but we belicve that 1t should be in the reqgion 47 K .
to 53 K.

We hope these results will stimulate further theores

tical and experimental work on more complex antiferromaanetic

systems.
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