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Abstract

This thesis presents an investigation into the effect of
recycle on the dynamic controllability and operability of
chemical processing systems. In particular, this investiga-
tion focuses on the effect that recycle has on the behaviour
of individual chemical units when they are configured such
that the product of the last unit is returned as a partial

feed to the first unit.

An experimental extractive distillation unit, which
separates a mix:ture of methanol and acetone using a water
solvent, was chosen for this study. Two aspects of this
system were highlighted in this thesis. The first is that
the system is subject to, and is to be controlled against,
feed flow and compositional disturbances. The second aspect
is that the system contains deadtime, and the analysis

techniques must take this into account.

There are currently several techniques for analyzing the
dynamic behaviour of chemical systems (without resorting to
exhaustive numerical simulations). It is demonstrated that
these techniques contain severe limitations which preclude
their use for a recycle system. Modifications presented in
this thesis to these techniques allow for their successful

application on a recycle system:; furthermore, these
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modifications are not limited to recycle systems oxclusive-

ly, but should be utilized on chemical engineering systems

in general.
In particular, these modifications are:

1. A methodology was formulated for determining
interaction for regulatory control systems. To
date, dynamic interaction techniques were c¢on-
strained to servo systems; the technique presented
in this thesis 1is the first to c¢onsider the

regulatory interactions of the system.

2. Interaction techniques were modified to take into
account deadtime, as all present techniques have the

shortcoming of being invariant to deadtime.

3. A technique for simplifying recycle transfer
functions was formulated. This was necessary because
recycle transfer functions formed from their
constituent subsystems cannot be inverted to the

time domain or used to design ccntrollers.

These techniques were applied to the extraction unit and
compared against simulations to demonstrate their effective-

ness. The large effect that recycle has on the open and
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closed loop response of this system was alsce demonstrated,
illustrating the importance ef considering the response of

the entire system, and not just its component parts.
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Chapter I

Introduction

To date, operability and controllability studies of chenical
engineering processes have been concerned primarily with the
servo behaviour of single unit operations. However,
individual units rarely operate in isolation, and it is
necessary to consider how they will interact with other
units in a plant. Furthermore, chemical units are rarely
required to follow setpoint changes, rather, it is necessary

to regulate them against feed and environmental changes.

What will be investigated in this thesis is the behaviour of
chemical systems subject to recycle. Although recycle
strongly affects both the steady-state and dynamic behaviour
of these wunits, ir<ufficient work has been done in
evaluating it., effect on the dynamics and controllability of
the process. This is in contrast to the body of research on
the effect of recycle on steady-state processes, where the
problem has been explored in depth due to its relevancy to

steady-state design simulation programs.

What is required, and what this thesis presents, are methods

for determining the dJdynamic response of a recycle system



given the individual unit responses. In addition, interac-
tion techniques will be presented which illustrate the
effect that recycle has on the plant input-output pairings.
These methods and techniques have the double advantages of
being much easier to formulate and solve, and much easier to
understand, than an exhaustive search wusing rigorous
non-linear simulations. In addition, the severe limitations
of all interaction techniques presently proposed in the
literature are illustrated, and corrections to these

shortcomings are derived and presented in this thesis.

1.1 Description of Thesis Work

A combination of two different techniques is used in this
thesis to investigate the effect of recycle on chemical
processes: an experimental investigation, and theoretical

studies.

The experimental work consists of obtaining responses from
an extractive distillation unit. This unit, described in
Chapter 2, is a pilot-plant scale apparatus for separating
methanol from acetone using a water solvent. The solvent
recovery column, which separates the water-methanol mixture

for recovery and recycle of the solvent, had to be designed,



commissioned, and constructed for this thesis. It was also

found necessary to re-engineer the extractive column as its

previous performance was poor.

The extraction unit was found to be ideally suited for a
realistic study of recycle systems because of its moderate
dimensionality (four inputs and six outputs). In addition,
the individual non-linear behaviour of each column is
sufficiently well understood to decipher the recycle eifects
from the individual unit effects. Most importantly, the
experimental apparatus was found to be an excellent vehicle
for evaluating published analysis techniques as it
highlighted any implicit, and frequently faulty, assumptions

used in these studies.

The second aspect of this thesis, and also the main academic
contribution, is a theoretical analysis of the control and
operability of plants with recycle. This area may be

divided into four different topics:
1. Analysis of Recycle Structure

In general, recycle will increase the time constant of a
system by a significant amount over the individual unit

time constants. However, no general statement may be



made on the effect that recycle has on the gains of the
system. This is particularly true when the system is
comprised of multivariable sub-units, since the process
gains were observed to increase or dJdecrease or even
change sign. In this thesis, an original concise
methodology of representing recycle transfer functions
was formulated in order to explain these effects. It was
also found that recycle amplifies the nonlinearities of a

system, and the reasons behind this are explained.

Simplification of Recycle Transfer Functions

Individual unit deadtimes result in the recycle transfer
function having deadtime terms in the denominator, making
these transfer functions untenable either for simulation
or controller design. It is thus necessary to attempt
some form of model simplification. While there are
several model reduction techniques that could nominally
produce simplified models (some of which were designed
for recycle systems), none were acceptable. Proposed in
Chapter 4 is a an elegant method, based on a Taylor
Series expansion, which is mathematically rigorous and
physically meaningful, and contains none of the flaws

present in the other methods.



3.

Disturbance Interaction Measures

Oone of the major contributions of this thesis is an
analysis technique for interaction in recycle systems, or
systems in general, when these systems must be controlled
against specified disturbances. Although several inter-
action techniques already exist, they are inadequate for
the majority of Chemical Engineering situations as only
the control structures for servo, not regulatory systems,
may be obtained. This deficiency is a result of the
inability of interaction techniques to analyze more than
a single transfer function. For regulatory interaction
analysis, it is necessary to consider both the
disturbance transfer function in addition to the plant

transfer function.

In order to address this limitation, it is shown that an
interaction analysis of a regulatory Linear Quadratic
controller transfer function designed for a specific
disturbance results in the correct analysis. Additional-
ly, it was found that one of the key algorithms used in
the design of Linear Quadratic controllers did not result
in a complete answer. It was therefore necessary to

derive an algorithm that provided the correct form for



4.

the Linear Quadratic contrecller.

Effect of Deadtime on Interaction Measures

One of the notable characteristics of recycle systems is
that the transfer function representing the effect that
one unit has on another is located exclusively on the
off-diagonal elements of the overall transfer function
matrix. If the units are temporally separate from each
other, the off-diagonal elements will have larger
deadtimes than the diagonal elements. Although this has
a strong effect on the response of the system, it was
found that current interaction analysis techniques are
invariant to deadtime. The reason for this is that these
interaction techniques are gain measures, which are

unaffected by deadtime.

In this thesis an algorithm for incorporating deadtime
information into interaction analysis techniques is
presented. This is accomplished by approximating the
complex transfer function matrix by a real matrix frame
(the mapping dependent on both the magnitude and phase of
the complex matrix), and then jerforming an interaction

analysis on the real approximate matrix. It is shown



that this real approximate matrix correlates better with
simulated responses of recycle systems than other

published interaction analysis techniques.

1.2 Concluding Remarks

The significant contributions of this thesis are summarized

below:

1. & solvent recovery column was designed, built, and
commissioned. The operation of the existing extractive
distillation column operating in tandem with the solvent

recovery column was greatly improved.

2. Presented a new methodology for obtaining transfer
functions of recycle processes that could be used in

simulation and control.

3. Derived corrections for two major deficiencies of
published interaction measure: their inability to
determine interaction in regulatory systems and their

exclusion of deadtime information.



4. Formulated an algorithm for the complete solution of a
polyncmial matrix Diophantine Equation, which is employed

in Linear Quadratic controller design.

The above analysis techniques are applied to the
experimental extractive distillation unit transfer functions
and the results are compared with simulated responses.
Because each element of the extraction unit is multivariable
in itself, the analysis techniques are used on both elements

and blocks of the overall transfer function matrix.



Chapter II

ExXperimental Work

2.1 Introduction

The experimental portion of this thesis is both a
continuation of, and a departure from, previous experimental
work performed in the Department of Chemical Engineering at
McMaster University in the area of process control. It is a
continuation of previous work in that it consists of
constructing and commissioning a pilot-plant scale chemical
processing unit. In this case the apparatus is a binary
distillation column which is coupled with an existing
extractive distillation column. This thesis departs from
previous work because it deals with the behaviour of whole
plants, not with the performance of controllers applied to

individual pieces of equipment.

Equipment details of the solvent recovery column constructed
for this thesis are outlined in this chapter. This includes
both the column itself and the computer interface used to
control the coclumn. Also shown is an analysis of controller
structure and step responses for the solvent recovery column

alone. It will be shown that the column was able to attain
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very smooth responses and, more importantly, the inputs
chosen resulted in a system that could effectively respond

to setpoint changes and attenuate disturbances.

A schematic of the entire experimental apparatus is shown in
Figure 2.1. The purpose of the extractive distillation
column, which takes feed for the unit, is to separate an
azeotropic mixture of methanol and acetone, using a water
solvent to break the azeotrope. Relatively pure acetone
leaves the top of this column, and a mixture of methanol and
water leaves as the bottoms stream. This bottom stream is
fed to the solvent recovery column (built for this thesis),
where normal distillation separates it inte methanol
(overheads) and water (bottoms). The recovered solvent is
then sent back to the extraction column as recycle. A small
solvent make-up stream is added to the solvent stream before
it enters the extraction column in order to make up for
solvent losses in both overhead product streams. Note that
this is a mass recycle only; energy recycle, that is,
changes in solvent temperature (which has a strong effect on
the extraction column) is nullified by the action of
low-level controllers. The extractive distillation column

was constructed by Langille (1983), and improved by Mayer
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(1885), Rajput (1988), and most notably by Latosinsky
(1988) . Complete details on the design and construction may

be found in these theses.

2.2 Solvent Recovery Column Description

The solvent recovery column is a glass four inch diameter,
twelve Lubble cap tray column with a total condenser and a
thermosyphon reboiler. The overheads were cooled with tap
water, while the bottom reboiler used 40 psig steam from the
university steam system. This steam was heated before use
to ensure that it was not wet. All flows were measured with
orifice meters connected to Rosemount 0-30 inch differential
pressure cells, and controlled with Badger Research valves.
The only stream that was not controlled was the cooling
water to the overhead condenser, as this is generally a poor
way to control heat removal from the column. To maintain a
constant reflux and feed temperature, these streams were
heated using electric resistance tape, with the amount of
current being controlled by local controllers. In addition,
liquid temperatures were measured on every tray, which,
although not used for contrel, were useful in determining

flooding conditions in “he column.
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Typical design and operating conditions for this column are
shown as Table 2.1. It was observed that the column would
flood at approximately 140% of the nominal steam flow.
There did not appear to be a lower limit of operation of the
column, which is typical for bubble cap trays. The feed
could be varied by approximately =20ml/min, the reflux ratio
varied by =3, and the steam flow varied by =10ml/min without
encountering any operability 1limits of the column. The
sclvent recovery column responses would, however, be

nonlinear over this range of operation.

Variable Value
Feed Flow 60 ml/min
Feed Comp Water:0.80 / Methanol:0.18 / Acetone:0.02

Reflux Ratio |4

Steam Flow 70 ml/min
Btms Comp Water:0.99 / Methanol:0.0l / Acetone:0.00
Ovhd Comp Water:0.02 / Methanol:0.96 / Acetone:0.02

Table 2.1: Nominal Operating Conditions
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The compositions of the overheads and bottoms streams were
analyzed asychronously by a Varian 3400 gas chromatograph.
This chromatograph is egquipped with a four port stream
selector valve and an automatic liquid sampling valve. 2
sample could be obtained and analyzed evary five minutes,
although it was possikle to reduce +*nis time to three
minutes if the gas chromatograph was temperature programmed.
A typical chromatogram of the bottoms stream is shown as
Figure 2.2; the clean separation cf peaks indicates that the
analysis 1is very reproducible. The chromatograph was
controlled by a Varian 402 intelligent terminal, which also
integrated the chromatograms. The results from this
analysis was sent t¢ a VAX 11/750 over &z RS-232 serial
link. Details of -<this communication may be found in the
thesis of Segall (1$83). With a new chromatograph column,
and care that a clean sample is obtained, it is possible to
obtain reproducible compositional data with very 1little

noise.



-

-

15

~ =
) 3 O
- -
l—
o w
m oa
T Wo>>mW
- e HO>XM
- Qa N
\ g "
v [ D0
w CZMN—8
T WoOKOe
xOM~¥YM
TOVVG
s 0]
—
?_', A0
- n WZIoewT
r < E E=fM—M
~ ™~ O — e« s =
zZ. . N - v O®—-N
— )] —— -
= n o
~ - M
- o J
. ..;. W FLegT
. — I Jd 4 0w
st oL JWNOT
o - T MIA~06
- < > & wWo - - -
o 3 0 ZECE®
. n 2
Ce o | D
o L] h 4
[TH L
O | -
E > e
S = 1 - o X
v At z 1 D =z CEWT +~
Y ut s T was oW
: . o 4 AaTawWo
. < TS| IEX
= = I 9 O a4 Z
] s O =« LA 4 T X =an
it - L - - @ 49
r ‘f‘ = rl: b - I wZ
v ] | - U o

160

Figure 2.2:

£i) werlea /sunnyvale,:

Typical Bottoms Stream Chromatogram

Data acquisition and flow control was accomplished using a

Digital Equipment Corporation FDP 11~34 running the RSX-11M

operating system. A complete description of this system may

be found in the theses of Wcng (1983) and Segall (1983).

This system was capable of acquiring all plant wvariables
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(flowrate, pressures, levels, and temperatures) excluding
compositions, and performing PID control on the flowrate

loops and temperature loops.

Medium and high level control was undertaken on the VAX
11/750 mini~omputer which was connected to the PDP 11-34
through a high speed data 1link. The medium level control
consisted of cascaded temperature and level controls, and
reflux ratio control on the solvent recovery column. The
general configuration of these low-level controls is shown
in Figure 2.1. The high level control was the composition
controllers, which were generally optimal multivariable
controllers (e.g., Dynamic Matrix Control). The VAX 11/750
also supported an operator interface program, based on work
by Yasuchenko (199C), which allowed an operator to overview

the process in real time and plot various process variables.

2.3 Input-output Configuration

Based on the past experience with other experimental
apparatus in the department, a critical but frequently
neglected step in controller design and verification is
determining the appropriate inputs and outputs of the

system, and how these should be 1linked together. Two
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factors need to be considered here: do the outputs represent
the true behaviour of the system, and do the inputs have an
adequate influence on the outputs? Both these factors will

be addressed in this section.

From Figure 2.1, it can be seen that there are ten valve
inputs that may be used to adjust flowrates for the
extraction unit, and five heating element inputs that may be
used to adjust feed and reflux temperatures. The outputs
are: ten flow measurements, five feed and reflux
temperatures, four levels (reboiler and corndenser level for
each column), and four compositions. As the flows are on
under low~level control, the ten flow measurements / ten
valves reduce to ten independent flow setpoint wvariables.
For this research, the controllable temperatures were not
degrees of freedom since they were controlled to be a set

amount cooler than the correspunding feed tray.

Four of the ten flow setpoints must be used to maintain the
material balance in the columns (i.e., level control). For
the extraction column, Latosinsky (1988) used the bottoms
and overhead flowrates to control the condenser and reboiler
level respectively. The reflux flowrate was set at a

constant value for all experiments, although no justifica-
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tion was given for this. Latosinsky successfully used the
reboiler duty and solvent flowrate to control the overhead
and bottoms composition. When both columns are coupled, the
solvent flow is recycled and is therefore not an independent
variable. The solvent make-up is, however, free to take on
a desired value, and this variable was used as an input

variable.

To summarize this section. the inputs, outputs, and
disturbances for the extractive distillation unit are listed
in Table 2.2. Note that the disturbances to the solvent
recovery column may also be considered the outputs from the
extractive distillation column. The outputs and distur-
bances are chosen so that they realistically characterize
the performance of the column, while the inputs have been
chosen so that they can effectively control the outputs at
their setpoints. In addition, the behaviour of the system
is reasonably linear at the operating conditions chosen, so
no linearizing transformations or non-linear controllers are

necessary.
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Column
Variable Extractive Column Solvent Recovery Column
Inputs Make-up Solvent Reflux Ratio
Reboiler Duty Reboiler Duty
Cutputs Bottoms Bottoms MeOH Concn
Acet/ (MeOH+Acet) Bottoms Flowrate
Bottoms Flowrate Overhead Water Fraction
Overhead MeOH Fraction
Distur- Feed Flowrate Feed Flowrate
bances Feed Composition Feed Composition

Table 2.2: Extraction Unit Inputs and Outputs

2.4 Level Contrecl Considerations

Previous research on the single extraction column
manipulated the product streams to control the level of the
reboiler and the condenser. Because these streams went to

tankage, it was not necessary to reduce the variance in
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their flowrate. However, when the two columns are coupled
together, the bottoms product streams from each column are
feeds to the other column. Therefore, it is necessary to
have level controllers that minimize the variance of the
flowrate of these streams in order not to introduce further

upsets.

Initially, these 1level controllers were of the PI
(proportional-integral) form, and it was observed that the
flowrate variance was larger than desired. Attempts to
reduce this variance by tuning the PI level controllers were
unsuccessful. The reason for this difficulty is that these
controllers were fundamentally of the wrong form. Propor-
tional-Integral Controllers are designed to minimize the
amount of variation of the level by varying the flow. 1In
contrast, what is required here is to minimize the flow

variation subject to the level being within certain bounds.

This level control requirement can be stated simply as an

optimization problem, i.e.:

Min (VOutlet Flow)?

s.t. level,,,< levei Slevel,,
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McDonald et al. (1986) derived a simple closed form solution
to this problem. They found that the resultant controller

was given by the nonlinear equation:

Outlet Flow = by/level,-level,.,

Where the subscript i refers to the current control interval
and i-1 corresponds to the previous control interval. The
term b represents the largest expected disturbance to the
process; disturbances of this size will result in a minimum
variance of the outlet flow without vioclating the level
constraints. Since it is difficult to apriori determine the
largest disturbance, the b parameter was used to tune the
controller, similar to the gain term in a PI controller.
This means that it is possible that a large disturbance
could result in a violation of the level constraints, but in

practice the b term was set large enough so that constraint

violation never occurred.

This controller was applied to the reboiler and the overhead
condenser 1level contrecl 1loops of the solvent recovery
column. Variance of the flow was markedly less than when
the PI control was used, and the controller was very easy to

tune. It was alsoc found that the system was stable over a
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wide range of the parameter b, thus this parameter could be
used to specify the trade-off between variance in the flow
and variance in the level quite directly. As the above
form of the controller is proporticnal only, a very small
amount of integral action was included in order that the
level eventually returned to a setpoint. iIn conclusion,
this optimal 1level controller was found to work very

successfully on the experimental system.

2.5 Dynamic Response of the Solvent Recovery Columnh

Experimental open loop responses of the Solvent Recovery
Column will be illustrated in this section for both control
and disturbance inputs. The size of the steps were chosen
so that the column would remain in a linear operating
region, although, as is typical for distillation columns,
changes were noted in the response between step-up and
step-down tests. The resultant transfer functions are the
average of these two directions. As expected, the column

response was found to be very repeatable with very little

noise.

Plots of the overhead impurity response for changes in the

feed composition and reflux ratio is shown as Figure 2.3.
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Clearly the column operates very well; there is little noise
in the data and these responses are repeatable. It should
be emphasized that obtaining a system that performs well
takes considerable effort - each component of the systenm

must be constructed (and reconstructed) to perform almost

flawlessly.

The response is essentially first order plus deadtime, or
perhaps an overdamped second order response with deadtime.
Because it is difficult to estimate the extra parameter for
a second order under-damped process, all responses were fit
using first order plus deadtime transfer functions. A 1low
order response is common for distillation columns, even
though the underlying system may be high order. fThe 1long
time constant (approximately ninety minutes) is partly due
to using reflux ratio to manipulate the overhead product
composition. Reflux ratio (as opposed to reflux) slows down

the response as it recycles part of the overhead flow back

into the column.

The complete set of transfer functions for the solvent
recovery column at the conditions shown in Table 2.1 are
given in Figure 2.4. The feed and composition disturbances

are for the solvent recovery column alone; the effect on
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feed and composition disturbances to the entire unit is
discussed in Chapter 7. These values are the averages of
the step up and step down tests, as shown in Figure 2.3.
The difference in the gains between an increase in
manipulated variable and a decrease in one was typically
about 20%; these differences were averaged in constructing

Figure 2.4.
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Figure 2.4 Solvent Recovery Column Transfer Function
OVHD-Overhead stream BTMS-Bottom stream RFLX-Reflux stream
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2.6 Bteady-State Analysis of the Solvent Recovery Column

One aspect of the system not mentioned in the previous
section is whether the inputs chosen would be the best set
to control the column. That is, are steam flowrate and
reflux ratio the most effective inputs for rejecting
disturbances and tracking setpoints, or would other inputs
(i.e., distillate flow and bottoms flow) be more effective
at these tasks? Considerable research has been directed at
this question, and it is the purpose of this section to
apply this research to show that the inputs chosen are the

most appropriate.

Table 2.3 gives the Relative Gain Array values (Bristol,
1965) for various input-output configurations of the solvent
recovery column. These values were generated from a
simplified model of the process, as shown in Shinsky (1985).
The headings across the top indicate that the overhead
(OVHD) composition should be controlled with the correspond-
ing input. Similarly, the headings down the left column
indicate that the bottoms (BTMS) composition should be
controlled with the corresponding input. The value in the
table for a given input-output pairing is the RGA for the

system. As the RGA value should be close to unity for good
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control, this table indicates that using either the reflux
flowrate or the reflux ratio to control the owveiliead, and
the bottoms flowrate or vapour flowrate (i.e., reboiler
duty) to control the bottoms composition would result in
acceptable control. Since it is difficult to control level
with the wvapour <flow, the bottom composition is best

controlled with the bottoms flowrate.

Control OVHD with =->|Distillate Reflux D/R D/V
Control BTMS with
Distillate 2.38
Bottoms 0.14 0.87 0.91
Vapour 0.13 0.87 0.91
B/R 0.13 10.27 2.55
V/B 0.13 19.27 2.99
vV/D 0.09 103.50
V/R 0.09

Table 2.3: Relative Gains for the Solvent Recovery Column
B - Bottoms Flow V - Vapour Rate
D - Distillate Flow R - Reflux Flow

What must also be ascertained is the conditioning of the

system, that is, how well the controllers will perform in

the presence of model mismatch. A simple graphical way to
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do this is to plct the gain vectors, as shown in Figure 2.5
(Latosinsky, 1988). These vectors were taken from the
actual experimental response of the column with the
operating conditions as shown in Table 2.1. Graphically,
what is considered is the ability of the addition of the
input vectors to extend to any point on the graph, these
points corresponding to the inputs required to negate a
disturbance. If the vectors are nearly colinear, then the
magnitude of the vectors would necessarily be 1large to
extend to arbitrary points, particularly if the point lies
perpendicular to the orientation of the input vectors.
Because thz2 inputs would be large to counteract a
disturbance, errors in their direction result in large
errors in the required inputs, and the system would be

sensitive to error, or be ill-conditioned.

For the reflux-steam flowrate configuration the gain vectors
are almost colinear, and it would therefore be expected that
the behaviour of any servo controller would be poor in the
face of model mismatch. Furthermore, the two disturbance
gains (feed flow and feed <composition) are almost
perpendicular to the irput vectors, indicating that

regqulatory controller performance would be poor as well.



29

In contrast, the gain vector plot using reflux ratio,
instead of the reflux flowrate, shown in Figure 2.6,
indicates that this system is very well conditioned, as the
two inputs are now almost perpendicular tc each other.
Again these values are from the experimental system with the
nominal operating conditions of Table 2.1. The result of
this is that the column has good setpoint tracking, as the
two input vectors map out the entire space. Although the
disturbance vectors have not significantly changed direc-
tion, regulatory control should be adequate as well, as the
input vectors have components in the direction of the
disturbances. For these reasons, reflux ratio and steam

flow were used as inputs to the solvent recovery coiumn.
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Chapter III

Recycle Analysis

3.1 Introduction

The purpose of this chapter is two-fold: +to illustrate the
effect that recycle has on an open-loop system, in
particular the Extractive Distillation Unit (i.e., the
system consisting of both the extractive distillation column
and the solvent recovery column with recycle of the
solvent), and to analyze the effect that recycle has on the
control configuration. Although the system is non-linear,
the majority of analysis in this chapter will be linear due

to the relative ease of manipulating linear systems.

The most distinctive feature of recycle systems is that
recycle introduces positive feedback. This can significant-
ly change the steady-state and dynamic response of the
system over its component parts, and can ultimately cause a
stable system to go unstable. A second feature of recycle
multivariate processes is that the recycle imparts a unique
structure to the process. It is this structure that will be

exploited for the system analysis and controller design.
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3.2 Effect of Recycle - Linear Analysis

Under recycle conditions, the output from each column in the
extractive distillation unit may be written as a function of
all the inputs, outputs, and disturbances. Mathematically,

this may be stated as:

vEDC

£, (YEDC, ySRC yEDC, ySRC, pEDC)
YSRC = g, (YEDC, ySRC  yEDC ySRC, pEDC)

Here +the Y’s denote outputs (column compositions and
flowrates), the U’s denote inputs (flowrates and reflux
ratios), and D is the vector of disturbances to the
extractive distillation unit (feed flow and composition).
The superscripts SRC and EDC denote the Solvent Recovery
Column and the Extractive Distillation Column respectively.
Thus the vectors in the above equation correspond to the
specific extraction unit variables as shown in Table 2.2.

In transfer function form, the above two egquations may be

written as:
YEDC <= GpEDC yEDC 4+ gGyEDC ySRC 4 GpEDC pEDC

ySRC = GPSRC ySRC 4 GISRC yEDC



33

The matrix Gp represents the transfer function between the
inputs and the outputs when each column is operating
independently. The interaction transfer function matrix Gy
relates how the outputs of one column affect the outputs of
the other column, again when the columns act independently.
For this matrix, therefore, the outputs of one column can be
considered as inputs (or disturbances) to the alternate
column when there is no recycle back to the original column.
Lastly, Gp is the disturbance transfer function matrix.
Note that all matrices represent dynamic transfer functions;

the suffix (s) was dropped for brevity. A block diagram of

this system is shown as Figure 3.1.

Writing the above two equations so that they represent the
system as an integrated unit results in the following

multivariable transfer function:

}/EDC _ GiDC 0 UEDC N 0 GfDC YEDC +GEDCD£DC
Y SRC 0 GiRC stc GfRC 0 Y SRC (4

or

Ysuc) ) Gfbf-‘ =1y Giﬂc 0 {7 £PC fo - £be
y SEE ={1- C SRE 0 & 0 Gikc [ SRE +Gp D
1
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This latter equation shows that the effect of recycle is to
multiply the individual unit transfer functions by {I -
Gr)~l. sSince Gy is generally of the same magnitude as Gp,
dividing by [I - Gy] can have a large effect on both the
gain and the dynamics of the individual plant transfer
function. Furthermore, although each of the matrices in the
above equation are of block diagonal form, the expanded form
of these equations will be a full matrix, and therefore

interactions in the system will increase.

G | - ———

Figure 3.1: Recycle Block Diagram
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3.3 Steady State Changes

For the steady state case, the above matrix transfer
functions reduce to numeric matrices, which may easily be
analyzed and manipulated. It is instructive, however, to
consider first the case where each substem is univariate,
since the matrix inversion becomes simple division. For
this univariate case, the recycle transfer function relating

the first input to the first output is:

gri

=y
4 1-gngi

where
ge 0 0 an
e (% o) (g, ')
0 dp2 g2

Note that here the units of gy;g7> are dimensionless, as it
represents the effect that the output has on itself as it
recycles back through the unit. General statements may also
be made on the magnitude of grjgy;s based on the type of
chemical processing unit it represents. For distillation
columns, gyi9712 is between zero and unity, as these unit
operations attenuate disturbances (a feed flow or

composition disturbance passes out through both the top and
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bottom of the column, as is therefore dividled between these
two streams). Similarly, heat exchangers attenuate distur-
bances, and their gyj972 term is also between zero and
unity. In both cases, moreover, grjgrz is usually less than
0.5. Th=2 only process unit that will not necessarily have a
gr1912 term between zero and one is a chemical reactor. 1In
this case, grjgyz can be greater that unity, as it is
possible for a composition or temperature disturbance to be

amplified in these unit operations.

As gr1972 ranges from zero to one, the overall unit transfer
function increases from its original magnitude to infinity.
As mentioned above, for distillation columns and heat
exchangers, grjgyz is usually less than 0.5, and therefore
the original transfer function will generally at most double
in magnitude when it is put in a recycle loop. As reactors
can have considerably larger grjgyz terms, it is possible
for very drastic gain changes to occur when these units are

put in recycle loops.

It is more difficult to make a general statement about the
effect that recycle has on the system in the multivariable
case, as the individual gain terms become mixed in the

matrix manipulations. To illustrate this, the experimental



37

gains for the solvent recovery column from Chapter 2 and the
experimental gains of the extractive distillation column

determined by ZLatosinsky (1988) are shown below using the

format outlined in section 3.2.

OVHD_COMP*°* 00 00 ©00 00 044 -0.33 -

BTMS_FLOW "¢ 0.0 0.0 0.0 00 102 -0.0l
BTMS_coMp??* 0.0 00 0.0 00 -1.09 058
OVHD_coMp™* |~ "l 00 -0.80 1.81 00 00 0.0
BTMS_FLOW ¢ 0.0 1.02 002 00 0.0 0.0
BTMS_COMPSRC 0.0 179 "0.61 0.0 0.0 0.0

0.44 -0.10 0.0 0.0 1.84 0.84

1.02 -0.01 0.0 0.0 MKUP_FLOW 1.04 -o.oz\

-1.09 -0.05 0.0 0.0 STEAM'® | 1:91 -0.11 (FEED-FLOW)
0.0 0.0 -0.14 0.14 RFLX_RATIO 0.0 0.0 FEED_COMP
0.0 0.0 0.01 -0.01 STEAM™® 0.0 0.0

0.0 0.0 0.01 -0.02 0.0 0.0
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which can be represented as:

OVHD-COMP::': 0.45 -1.05 0.00 0.45
BTMS_FLOW -2.85 0.31 -0.29 0.24
BTMS_COMP*%¢ 0.55 -0.98 0.01 0.82 Ngfrlf‘”ﬁf
OVHD_COMP™ | = -0.65 -1.85 -1.32 -1.22 RFLXARhf&TIO
BTMS_FLOW **¢ -2.91 0.31 -0.28 0.24 STEA M
BTMS_COMP **¢ 3.41 0.62 0.00 -1.41
1.32 -1.05
-3.01 0.50
n 6.35 0.92 (FEED_FLOW )
10.34 2.12 |\FEED_COMP
-3.97 0.51
6.37 -0.78

It is apparent that the effect of recycle has been to
drastically change the magnitude of the original transfer
functions, and occasionally the sign as well. Because of
the large changes in these gains, both the control system
configuration and the tuning of the controllers would be
different when the individual unit operations are placed in
a recycle configuration. This demonstrates the inadequacey
of considering only the isolated unit operations when
designing the control system for a plant. This point will

be further explored in Chapter 7.
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3.4 Dynamic Changes

In contrast to the steady-state case, the matrix transfer
function manipulations for the dynamic case are considerably
more cumbersome since the inversion of the [I - Gy(s)]
matrix results in a high dimensional system. Moreover, if
there are deadtimes in the system, the resultant transfer
functions are not amenable to further analysis because the
matrix inversion results in denominator deadtime terms.

This later aspect will be considered in Chapter 4.

For simpiicity, it is again constructive to consider a
system consisting of two single-input-single-output first
order systems which are connected in a recycle loop. For
this system, the transfer function between the input of one

of the systems and its corresponding output is:

-T 5 -T g -7 ] -t
KPI e Ton K”e 5.1 K,ze D12
Y = 1- i,

Kpie o (1, 5+1)(1,58+1)

(THS"' l]((T“S+ l)(T;28+ 1)._K“Kne'(fo,n*r.o,n}e)

i,

If there is no deadtime in the system, then the system

becomes:
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Kp(ts+1){1,58+1)
U,
TPIS"'I)((T]IS"'].)(leS"' 1)_KIIK12)

yl=(

The effect of recycle for the system with no deadtime has
been to add an additicnal two poles and two zeros to the
system. The dynamics of the isolated system are subsequent-
ly strongly modified by putting it in a recycle 1loop.
Although this result is not surprising, it has been the main
contribution of at least two papers (Denn, 1982; Ohbayashi
et al., 1989). Both these papers demonstrated that recycle
adds poles and zeros to the processing plants, and that
these poles usually result in an overdamped system with
slower dynamics. However, the examples used in these papers
were both for univariate systems, and, most importantly,
neither considered how to determine the time-domain response
or poles when there is deadtime. While the frequency domain
analysis shown in these papers is applicable to deadtime
systems, it provides little guidance to the actual response
of the system, or how to design controllers for these

systems.

It is, however, illustrative to show how the time constant

of first order systems increases with recycle. Using the
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method of moments (Papadourakis et al., 1988; Kapoor et al.,
1986), a simplified first order time constant approximation

for the recycle system given above is:

'rP1+K11K12(THT:2/Tm)
1-K,,K;,

T=

While this approximation will only be good if the system is
underdamped, the above equation shows that recycle has
increased the time constant of the system significantly.

Recall that KyjKr; is usually between zero and unity, and

therefore the denominator is less than one.

3.5 Nonlinear Analysis

While the analysis is predominately for linear systems in
this thesis, the effect of nonlinearities in recycle systems
will be briefly considered in this section. The extractive
distillation unit is relatively linear, as compared to other
common chemical engineering units such as reactors (Kozub,
1987) or pH units (Allison, 1986), but performance
improvements for distillation columns may be obtained by

incorporating nonlinearities into the controller design

(Chung, 1987)
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To illustrate the effect that nonlinearities have on recycle
systems, Figure 3.2 shows two sets of gains from a rigorous
simulation (the commercial simulator PROCESS was used here)
of the extraction unit. The first set was calculated by
determining the gains from each column individually using
PROCESS, and then calculating the gain for the entire unit
as shown in Section 3.2 (i.e., Gp = [I - Gr]~1Gp). The
second set is the gain for the simulation of the entire
unit. Clearly, there is a moderately large discrepancy
between these two simulations, larger than one would expect

from the nonlinearities in each of the individual columns.
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This discrepancy is in part caused by the effect that
recycle has on amplifying the nonlinearities present in each
individual unit. To illustrate this, if the system is
modeled by bilinear transfer functions (Rajput 1988), then

the Gr and Gp transfer function matrices may be replaced by:

G,=G,+J,y

Gp=Cp+J,py

Here the matrix J may be considered as the first derivative
in the Taylor series expansion of the non-linear transfer
function G with y as the independent variable. The entire

unit transfer function may therefore be represented by:

y=(/-¢,)"6¢,u
=(1—ﬁ,~J,y]q(§P+pr)u

If the scalar case is considered, the above equation may be

written as:

gru . Jryu
V=Gi-jiy 1-§1j1y

Expanding these fractions in a Taylor Series gives:
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_Geu  Gpliyu griiyiu
y= + 5+ T+
1-g, (1-¢,)* (1-g,)

Jeyu jrjzyzu jpj;yau
- -+ — 2+ — 3+“,
1-g, (1‘91) (]_Ql)

Two observations may be made about this last equation.
First, the largsr the terms jr; and jp, the more severe the
nonlinearity. Second, and more important, the larger the
recycle interaction, the more severe will be the effect of
the nonlinearities. This is a result of the nonlinear terms

being divided by (1-z)", where (1-g) is usually less than

unity.

This observation may be illustrated by comparing the
simulated process outputs as a function of the inputs for
the rcases where recycle is present and where it is absent.
For instance, Figqure 3.3 shows effect that the solvent
recovery column reboiler duty has on the bottoms composition
from thi: column when it is isolated, and when it is in
recycle with the extraction column. Figure 3.4 is a similar
plot for the extraction column, illustrating the effect that
the extraction column reboiler duty has on the overhead
composition. In both cases, the curve for the recycle

system is considerably more non-linear, indicating that the
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gain will change much more as the reboiler duties are
changed. Note that the curves approach colinearity as the

purity of the columns increase.
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Figure 3.3: SRC Reboiler Response
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3.6 Recycle Contrel Structure

The analysis of the previous sections indicated that the
open loop response of a recycle system can be significantly
different than the response of the individual units. It
would be possible, of course, to implement a large
multivariable controller on the entire unit, but this can
have strong disadvantages in terms of reliability and
simplicity, both because of the high dimension of these
controllers, and because the recycle increases the order of
the system as well (which must be reflected in a model-based

controller). What will be examined here is whether or not



48

smaller dimension, lower order controllers can adegquately
control the system, and if so, what are the most effective
couplings of these controllers. To do this, the inherent
striacture of recycle systems must be examined to determine
where maximum advantage could be taken of the positive

feedback / mass coupled aspects of the system.

3.6.1 IMC Analysis

It is illustrative to analyze the setpoint response and
distribution capabilities of various controller structures
when they are expressed in the Internal Model Control form
(Garcia and Morari, 1982). What will be considered here is
the response of the system when perfect control is obtained
on the entire recycle system, and when each individual unit

is under perfect control.

A block diagram of the IMC form for the recycle system is
shown as Figure 3.5. If the assumption is made that the
plant is exactly known and given by Gp = [I - Gy]=lGp, then
standard block diagram manipulations give the following

relationship:
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yt = GTGC(]+(GTGM)GC)—lyIP

H=6:6.(1+(6:-6,)e.) " +1}N,

Consider first the case when a perfect controller (based on
the entire unit transfer function) is applied. In thiz
case, Gp = Gp and Gr = Gp~l. sSubstituting these two

relationships in the above gives:

Y =667 (1+(6,-6.)6") "y,
+(~6:67 (1+(61-CL )67 + I)N,
=ycp

As expected, perfect setpoint tracking and disturbance
rejection is achieved when a perfect controller is used. In
contrast, consider the case when perfect controllers are
designed for each individual unit, and the interaction
effects are ignored. In this case, Gy = Gp‘l, Gy = Gp, and

Gp = [I - Gr)~lGp. Substituting these terms into the IMC

closed loop transfer function gives:

ye=(1-¢,)"¢,63(1+((1-6,)"¢,-¢,)e3') 'y,
H{-U-e) i (1+((1-6,) " 6,-60 )63 ) v ),

=ysp
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Again, the result is perfect setpoint tracking and
disturbance rejection. The difference here is that a
perfect model of the plant was not assumed, as the
interactions between the units were ignored. Intuitively,
this is because each column is able to perfectly reject any
changes, whether due to disturbances entering the plant or
because of setpoint changes in the other column. In other
words, perfect control in each sub-unit effectively breaks
the recycle nature of the system by isolating the changes in

each column.

The above analysis was for the limiting case of no model
mismatch, total model inversion for the control er block,
and no constraints on the manipulated variables. For the
realistic case of imperfect control, disturbances will
propagate through the system, and the effect of the recycle
structure will be apparent. However, this analysis
indicates that the changes to the system caused by recycle
may be attenuated by local controllers applied to all (or
any} of the individual units. Furthermore, the tighter
these controllers are tuned, the less that disturbances will

propagate through the systen.
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Figure 3.5: Recycle IMC Block Diagram

3.6.2 Recycle Interaction Measures

A complete analysis of interaction measures is given in
Chapter 6, but the purpose of this section is to analyze an
interaction technique that has been proposed exclusively for
recycle systems. This technique, proposed by Co and Ydstie

(1987) gives a measure (lambda) of the effect that recycle
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interactions will have on the performance of the system
designed with individual sub-unit controllers. Mathemati-

cally, this was presented as:

A=1=G 1 (8)G i (S)

where Gipt 1is the closed loop transfer function of the
system including the recycle dynamics, and Gloc is the
closed loop response of the system neglecting the recycle
dynamics. A serious disadvantage to this measure is that it
is dependent on both controller structure and tuning, and is
therefore of 1little use for apriori controller design. It
is also difficult to determine whether any interaction
problems are the result of the controller design or are

inherent to the process.

For these reasons, most system measures are based solely on
the open-loop transfer function, and it is informative to

determine lambda for the open loop case, as shown below:

A=1-G,.(S)CN(s)

=1-Go(){(1-6,() "6 p(s)) "

=G,(s)
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That is, the lambda term reduces to the interaction transfer
function matrix. As Co and Ydstie were concerned with the
effect of process design on the dynamics of recycle systems
(e.g., the location and use of intermediate storage tanks),
examination of the changes to the Gjy(s) matrix should be
sufficient. However, it is difficult with this measure to
determine whether any recycle interaction problems can be
solved with controller design or by redesigning the process.
Furthermore, it is not obvious what value of lambda leads to

acceptable closed loop behaviour.
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Chapter IV

Model Reduction Techniques

4.1 Introduction

Recycle processes with deadtime have the unique characteris-
tic of containing deadtime terms in the denominator, as well
as in the numerator, of the transfer function. While some
of the current methods of analysis and controller design can
account for numerator deadtime terms, none of them are
applicable tr systems that have deadtime in the denominator.
As these deadtime terms effectively produce an infinite
order transfer function, the order of the system must be
reduced before the system can be simulated or controllers

can be designed.

The 1literature available on model reduction is vast; a
recent survey by Sinha in 1982 stated that more than two
hundred papers had been published in the preceding sixteen
Years. Sinha divided the various model reduction techniques
into three groups: retention of dominant eigenvalues,
optimal matching in the time or frequency domain, and
property matching. A review of the 1literature by Ljung

(1988) covering the years 1984-1986 stated that the most
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notable work was that of Glovers (1984), who employed Hankel

norms to measure the difference between the actual model and

the approximation.

Unfortunately, the majority of these methods, including that
of Glovers (1984), are inapplicable to the one aspect of
recycle systems that necessitates model reduction -
deadtime. Instead, these methods deal with reducing a high
order state-space or rational polynomial transfer function
to a low order system. The justification for this is weak,
as all controller design and simulation techniques are
applicable regardless of the order of the system; the only
advantages are a saving in computer time, and possibly
(although not necessarily) a better conditioned problen.
The disadvantages are that it complicates the problemn,
usually results in physically meaningless states, and

introdrces inaccuracies.

In contrast, recycle system transfer functions systems must
necessarily be reduced, and with methods that are amenable
to the exponential deadtime terms. The purpose of this
chapter is to review four published methods of model
reduction, and to propose a new method, based on a Taylor

Series expansion, that is superior to the methods available
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in the literature. The four model reduction technicues
reviewed are: transformation to the discrete domain; the
method of moments; Pade approximations; and curve fitting in
the frequency domain. It will be shown that these
techniques, while potentially able to reduce recycle
transfer function models, all contain shortcomings which

preclude their use in this application.

4.2 Direct Transformation to the Discrete Domain

As accuracy is lost in all model reduction techniques, it
would be preferable if the transfer functions in the
s-domain were converted directly to the z-domain, where
deadtime is represented by rational functions, rather than
the by an irrational function. That is, the z-transform is
a direct transformation of deadtime, (i.e., z = e~TS) and
therefore appears attractive for the reduction of
denominator deadtime terms. Furthermore, the transfer
functions need to be converted using z-transforms to the
discrete domain for controller design at some point in the

design stage.

Jury (1964) presented the following formula for this

transformation
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1

1 R c+ jw m
F(z.m)=Z{F(s)}=5-2 ’f F(p)e "TI—-_—e_—fﬁdp

L-jm

When F(s) is of the form F(s) = A(s)/B(s), and B(s) has
simple poles, the above formula may be simplified and
analytically evaluated. Unfortunately, when the denominator
B(s) has complex poles, or an infinite number of poles, as
it does for recycle systems, then the above formula cannot

be simplified, and an closed form solution does not exist.

instead, the z-transform for recycle systems would be an
infinite series, obtained by simply expanding the
exponential deadtime terms in an infinite series. As such,
it would need to be reduced in order to perform any analysis
or controller design. Thus model reduction would still need
to be performed, although in a different domain; for this
reason the direct conversion to the discrete domain is an

unsuitable method for model reduction.

4.3 Method of Moments

The method of moments for model reduvrtion was first proposed
in the chemical engineering literature by Gibilaro and Lees

(1969) who used it to reduce rigorous models of plate gas
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absorption ceclumns to lower order transfer function models.
This method simply equates the first p moments of the
rigorous model with the first p moments of a simplified
model (p is the number of parameters in the model). Since
these moments may be easily calculated for any type of
transfer function, (a symbolic manipulation program such as
MAPLE is particularly useful) this method is fairly easy and

computationally efficient.

Transfer
Denominator| Function Element 1,1 Element 3,2
Order Term
Zeros - -
1 Poles -0,0059 -0.0059
Deadtime 0.0 0.0
Zeros -0.00554 -0.0051
2 Poles -0.0077+0.00291 |-0.0075+0.00191
Deadtime 0.0 0.0
Zeros -0.0045+0,00281 0.0149
-0.0054
3 Poles -0.0202 =0.0195
-0.0087+0.00071 |-0.0085+0.00101
Deadtime 22.47 0.0
Zeros -0.0395 ~0.0056
-0.0049+0.02801 0.0093+0.00551
4 Poles -0.0009+0.00101i |-0.0083+0.00114i
0.019340.0121 0.0185+0.00121
Deadtime 164.6 0.0

Table 4.1:

Method of Moments Reduction.
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This method was used to simplify models for recycle systems
by Papadourakis et al. (1988, 1989) and Kapoor et al.
(1986). While both research groups advocated the method of
moments for model reduction of chemical engineering systems,
the examples they chose contained little or no deadtime. 1In
order to evaluate this method on a system with significant
deadtime, two representative elements of the recycle
transfer function matrix for the extractive distillation
unit (Chapter 3) were reduced to simplified transfer
functions with various denominator orders (the numerator
order was always one less than the denominator order). The

results of this reduction are summarized in Table 4.1.

Two points can be made regarding these results. The first
is that the majority of the simplified transfer functions
contain no deadtime terms in the numerator. This is
because, as specified in the aforementioned references, if
the method of moments gave a negative deadtime term (i.e., a
prediction), it was set to zero. For the two examples
illustrated, this happened in the majority of instances.
The second point is that right-half-plane poles and zeros

non-systematically occur as the order of the model is

increased.
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Both these results arc iInconsistent with the expected
behaviour of a model reduction technique. The numerator
deadtime in the original model should be retained in the
reduced model, as no response can physically occur before
this value. The presence or absence of right-half-planes
poles and zeros (particularly poles) has a very significant
effect on the behaviour of the system. Any model reduction
technique should retain the dominant characteristics of the

system, which is clearly not the case for this technique.

What is the reason for this behaviour? As the method of
moments only equates the moments of the actual and the
reduced model, no constraints are put on the stability,
invertibility, or amount of deadtime that must be retained
in the reduced model. This aspect of the method of moments
was also pointed out by Sinha (1980), who devised a method
to guarantee the stability of reduced order multivariable
systems when the original system was stable. The main
drawback to his method was the requirement that the system
be expressed as a state space model, which is inapplicable
for systems with deadtime. Also, it is not always clear
that the original system is stable or unstable before the

model reduction is performed.
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4.4 Pade Approximations

A common method of replacing transcendental deadtime terms
with rational polynouials is through the use of Pade
approximations. These approximations have been shown to
have excellent frequency characteristics (Coughanowr and
Koppel, 1965), and plots of the step response for these
approximations, shown as Figure 4.1, indicate that the
initial time domain characteristics can be very good as
well, particularly for higher order (>4) approximations.
The transfer function used in this figure is for element 1,1

of the extraction unit.

Galloway and Holt (1988) evaluated various time-delay
approximations, including the Pade approximation, for the
simplification of multivariable systems. Their preliminary
conclusion was that Pade approximations are "exact" for the
analysis of SISO systems (the term "exact" was not defined);
for MIMO systems the accuracy increases with the degree of
the approximation. They also concluded that the Pade

approxir -:.ons are the best approximations for analysis and

control.
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Given the above, it would appear that the Pade approximation
would be a feasible method for replacing the deadtime
denominator terms with 1rational transfer functions.
Although the degree of the resultant transfer function would
be high (> 20), it would still be possible to convert these
functions to the discrete domain and hence design
controllers. A freguency domain ccmparison between the
actual and fourth order Pade approximation the system
simulated in Figure 4.1 is shown as Figure 4.2. The
validity of this approximation in the frequency domain is
demonstrated by the similarity of these two curves, at least

for the time frame of the simulation used here.

" ' j N T T Y T T

0.5- gl j-_.-f.-l-.-l-.-.-‘-..

0.4} .
'—
D 0-3 3 .
1%
B ooz} .
D

0.1} OR16/M 5L TRAMNSFER FUrier iz ]

o9 ; ,SECO"’"J ORCER PALE AFFRIX ;AT

. ' ’-‘ F../-r-_"" _Dt_ :F: =L =& I‘IWRQX PifAT JIU i
4.1 l ‘ : + d z ' i F3
0-0 1.0 2-0 3.0 ‘.0 5.0 6-0 7.0 8.0 9'0 10.0

TIME

Figure 4.1: Time Response Comparisons for Pade Approximations
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Figure 4.2: Frequency Response Comparison for Pade

Approximations

There is, however, one discrepancy in the two lines shown in
Figure 4.2. From the time domain analysis, it would appear
that most of the error occurs at the higher frequencies;
Figure 4.2 indicates that the largest error is at the lower
frequencies, and increases as the frequency decreases. To
investigate this further, the poles of the 1,1 element of
the extraction unit when the deadtimes are replaced by a

fourth order Pade apprcximation are listed in Table 4.2. Of
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the eleven complex pairs of poles, one pair is in the right
half plane, indicating that the approximate transfer
function is unstable, whereas the actual transfer function
is stable. This (small) instability results in the
approximated process diverging from steady state, and

results in the offset shown in Figure 4.2.

i
This phenomenon is not surprising given the form of the Pade

approximation. For recycle systems the Pade approximation
replaces the denominator deadtime terms with
right-half-plane =zeros, which, as they are in <the
denominator of the transfer function, can result in
right-half-plane poles. Similar to the method of moments,
therefore, the use of Pade approximations can result in an
unstable approximation to a stable transfer function. In
fact, Pade approximations and the method of moments have
been shown to be equivalent‘(Shamash, 1974). Due to this
limitation, and the further disadvantage that the resultant
approximations can be of very high degree, the use of Pade
approximations are unsuitable for reduction of recycle

transfer functions.
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Real Part Imaginary
Part
0.0 +0.0
-0.00828 0.0
-0.00998 +0.0
-0.01666 +0.0
=-0.03707 +0.0
0.01451 +0.06221
-0.,01500 +0.06210
=-0.13277 +0.16646
-0.17836 +0.04801
-0.42056 +0.53209
~0.57943 +0.17073

Table 4.2: Element 1,1 Poles Using a Fourth-Order Pade

Approximation

4.5 Frequency Methods

In addition to the moments of the recycle transfer function,
the other quantity that may easily be calculated is the

frequency response. It is therefore possibie to chtain a
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reduced order model of a recycle system by fitting the
parameters of a reduced order model to the frequency

response of the actual transfer function.

This technique was first proposed by Levy (19259), who used
it to fit rational transfer functions to frequency response
data. For these rational transfer functions (i.e., ratios
of polynomials), the problem may be formulated as a least
squares estimation, which may easily be solved. Two basic
improvements were made to this algorithm subsequent to its
publication. The first, by ©Payne in 1970, involved
calculating the steady state gain of the system apriori, so
it would not have to be included in the least squares
routine. Besides the obvious advantage of decreasing the
number of parameters, Payne found that this modification
drastically reduced the number of unstable simplified

transfer functions that were estimated from stable systens.

The second improvement, by Marchand (1973), employed the
maximum likelihood met):~d rather than least sjgquares in the
parameter estimation. However, with certain mild assump-
tions, the estimation rediaces to a weighted least sguares
criteria. The weights in this algorithm are given by |@|-1,

where |G| represeints the magnitude of the transfer function.
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Marchand used an iterative least squares technique, as the

weights are dependent on the current estimates of the

parameters.

The papers by these authors dealt with rational transfer
function matrices only - nc deadtime terms were involved.
The major difficulty with estimating transfer functions with
deadtimes is that the estimation problem becomes non-linear.
While efficient routines exist for the optimization of
non-linear problems, the objective function was found to
contain multiple local minima. On several examples
attempted, it was consistently difficult to determine if and

when a global minimum had been obtained.

A comparison of the actual and reduced order model frequency
responses for element 1,1 of the extraction unit transfer
function is shown in Figure 4.3. The reduced order model in
this case has a second order denominator and first order
numerator. The aforementioned modifications to the basic
parameter estimation were used with one addition: the
parameters were constrained so that the the reduced order
transfer was always stable. Although several initial
guesses were used, Fiqure 4.3 indicates that the model fit

is poor, particularly the magnitude at mid-frequencies. It
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is possible that only a local minimum was obtained, but a
mere likely reason for the poor fit is that the reduced
order model is underparameterized. Unfortunately, increas-
ing the number of parameters in the approximation resulted
in a much more Q@ifficult optimization, and the resultant
confidence 1limits on the parameter estimates commonly

included zero, indicating that the system was over-parame-

terized.
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Figure 4.3: Fregquency Response Fit

It may be possible to obtain reasonable approximations of

recycle transfer functions using this technique, but the
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basic difficulty is that the structure of the transfer
function and good initial estimates of the parameters must
be determined. Because there is 1little tc guide the
designer in apriori specifying these values, it is difficult

to consistently apply this technique successfully.

4.6 Taylor series Expansion

The previous techniques replaced the irrational deadtime
denominator terms with a rational polynomial or ratio of
rational polynomials. A less restrictive procedure would be
to rearrange the transfer function so that the denominator
deadtime terms were mnoved to the numerator. It is the
purpose of this section to illustrate such a technique and
to demonstrate that the resulting transfer function is

mathematically precise and intuitively attractive.

The rearrangement is accomplished by determining the Taylor
Series Expansion of the recycle transfer function using the
denominator deadtime terms as the independent variables.
This expansion is taken about the origin (giving the

Maclaurin series), and is expressed mathematically as:
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f(e-r‘s) ="Zof:f!0)e-mr‘s
kel pm -mrt & -kt,s
- 3 LRemeagle )

where f(exp(~v.s)) is <the recycle transfer matrix as a
function of the denominator deadtime exp(-t.s), fM(0) denotes
the m-th derivative of the function about the origin, and k
is the order of the expansion. As exp(-kr,s) converges
rapicly to zero as k increases, the expansion will
accurately approximate the original function at relatively
low orders. Note that in this expansion the denominator
deadtime terms have been converted to a summation of

numerator deadtime terms.

To illustrate this technique, and demonstrate the
effectiveness of this solution, a reduced order model for a
simple recycle transfer function will be obtained. The
example system used here is for a pair of heated stirred
tanks with recycle, as illustrated in Figure 4.4. Inputs to
this system are the electrical load of the heaters, while
the outputs are the tank temperatures. Recycle is from

partial recycle of the outlet stream from tank 2 returned to
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the inlet of tank 1; additional details may be found in Hugo
(1987). A state space model of this system may be

represented in the Laplace domain as:

1

G,,(8)=
18 s2+0.0375+0.0003181 - 0.0000795¢"40°¢
(0.00113(s+0.02341)e"°s 0.00002687¢"''°* )
0.0002645e"''%" 0.00791(s+0.01358)e™'%*

Note that even for this (relatively) simple system the
presence of the deadtime in the common denominator precludes
cbtaining an analytical inverse to the time domain or z
transformation. If a Taylor series expansion with trunca-
tion order of 4 is evaluated on the 1,1 element of the above

transfer function, the following series results:

G, (s)=0.0113(s+0.02341)e™'>  x

1 . 7.952x 1075 g"200s
(s+0.02341)(s+0.01359) ((s+0.02341)(s+0.01359))?
=9 _-400s
. 6.322x107 e . }+c(éﬂmsy
((s+0.02341)(s+0.01359))

{

The above Taylor expansion has some attractive intuitive

properties, as it duplicates the actual response of the
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process. A step change in the first tank’s input will
initially give a first order plus deadtime response, which
is given mathematically by the first term of the expansion.
This input will enter the second tank, causing a second
order response, and then return to the inlet of the first
tank, resulting in a third order response appearing in the
output of the first tank. The deadtime between responses
will be the cumulative deadtime in the recycle loop. This
response is given by the second term of the expansion.
Again, this response passes through the system, resulting in
a fifth order response after twice the system deadtime.
This is given by the third term of the expansion. This
recycle is carried on to infinity, but the recycle transfer

function is only carried out to a specified order.
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Figure 4.4: Heated Stirred Tanks Apparatus

For this system, the response is attenuated on each path
around the recycle loop, and the series will eventually
converge. The gain reduction at each iteration is given by
(Kr)?, where Ky is the term premultiplying the denominator
deadtime term, (0.0000795 in the example above) and n is the
order of the expansion. The error involved in the
approximation is therefore 1 - (K, )P. Alternatively, the

order of the expansion regquired to achieve a specified
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steady~-state error is n = 1In{l - accuracy). Note that this
is the only model reduction technique where it is possible

to specify the accuracy of the model reduction.

Also in contrast to the other model reduction methods
considered, the stability of the system is easily determined
using the Taylor Series expansion. From the above equation,
it is clear that the system is stable if and only if each
subsystem is stable and the Taylor series expansion
converges. This latter condition is equivalent to the
condition that the term K, being less than one.
Alternatively, a proof of the statement that the system is
stable if and only if each subsystem is stable and the term
premultiplying the deadtime denominator terms is less than

unity is given by the Taylor Series expansion.

Step responses for a second and a fourth order Taylor Series
approximation are compared with the true process response in
Figure 4.5. The step-like response of the system due to
deadtime in the recycle loop is clear from these plots. The
second order expansion is exact for the first "“step", while
the fourth order expansion is exact for the first and second
"steps". Only as the system approaches steady-state do the

curves differ, although the fourth-order response is clearly
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a very good approximation over the entire time period.
Figure 4.6 are plots of the Taylor Series approximations
when they are corrected to have the same steady-state value
as the original transfer function (which is easily
calculated). Here again the fourth order expansion is an

excellent approximation of the actual response.
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Figure 4.6: Corrected Taylor Series Approximations

4.7 Conclusiona

O0f the five methods considered for model reduction of
recycle transfer functions, the Taylor Series expansion
method was the only successful one in approximating the
actual response. It also had the advantages that it is
intuitively appealing and retains the stability (or
instability) of the original systems. A disadvantage is
that the resultant system would be of relatively high order,
although this is a minor inconvenience for computer-aided

design systems, and is probably necessary in order to match
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the unique responses of recycle systenms. Taylor Series
expansions for the transfer functions describing the
extraction unit are used in Chapter 7 to successfully

simulate and design controllers for this unit.

Direct conversion of the recycle %ransfer functions to the
discrete (z) domain was infeasible as the resulting
integration was analytically intractable. The method of
moments and Pade Approximation could (and did) result in
unstable approximations of stable processes. The disadvan-
tage of frequency domain curve fitting is that a non-linear
least squares estimation needed to be carried out for
several parameters. This was found to be difficult due to

local minima, and the lack of information in the frequency

response curves.
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Chapter Vv

S8ynthesis of Regulatory Control Structures

5.1 Introduction

An important part of the analysis of recycle systems is
determining whether the system may be controlled by single
loop controllers, as opposed to a multivariable controller.
Although good <control may easily be obtained from
Linear-Quadratic (MacGregor and Harris, 1987) or Dynamic
Matrix Control (Garcia and Morshedj, 1987), single 1loop
controllers are still preferred in industrial environments.
Consequently, considerable effort has been directed at
formulating interaction measures (McAvoy, 1983; Lau et al.,
1985; Manousithakis et al., 1986) that determine whether
adequate control may be achieved with single loop control,
and further, which inputs should be paired with which

outputs.

As noted in the introductory chapter, the recycie system
analyzed in this thesis is to be controlled for a regulatorv
response as opposed tc a servomechanism response. Unfortu-
nately, the majority of steady-state interaction techniques,

and all the dynamic ones, have the deficiency that they are
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suitable only for servo systems, and are irncapable of
determining interactions in systems subject to disturbances.
This is because interaction analysis techniques are
formulated for the analysis of single transfer functions.
Regulatory systems, in contrast, are described by two
transfer functions: the plant transfer function and the

disturbance transfer function.

Stanley et al. (1985) proposed a methodology, termed the
Relative Disturbance Gain, for determining steady-state
interactions for regulatory systems which was analogous to
the Relative Gain Array of Bristol (1964). This method
employs both the plant and the disturbance +transfer
functions in determining the pairings for a system subject
to specified disturbances. However, there are two shortcom-
ings to this method which preclude its application in this
thesis. As the analysis is only for steady state systems,
dynamic effects may result in different pairings (Tung and
Edgar, 1977) than those predicted from a steady-state
analysis. Secondly, it is analogous to the RGA, and
therefore it contains the same fiaws as this measure (Jensen
et al., 1986). In particular, the RGA gives misleading

results for triangular systems, that is, it implies that
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there is no interaction in systems that have one-way
interaction. The RGA is discussed more fully in Chapter 6,

Interaction Analysis for Deadtime Systems.

Formulated in this chapter is a rigorous method for
correctly determining the interactions in a regulatory
system that includes the gains and the dynamics of both the
plant and disturbance transfer functions. This method
employs a standard interaction technique, the Singular value
Decomposition (Lau et al., 1985), as well as some new
results in the design of Regulatory Linear Quadratic

Controllers.

5.2 Plant and Disturbance Transfer Functions

The first step in the analysis of interactions for
regulatory systems is to examine how the inputs relate to
the outputs in the presence of stochastic or deterministic
disturbances. Consider the closed loop block diagram of a
system, shown in Figure 5.1, where the top diagram shows the
controller configured in normal form and the bottom diagram
shows the Internal Model Controller form (Zames, 1981). The
matrix Ge corresponds to the IMC controller transfer

function, Gy corresponds to a model of the plant Gp, Gp is
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the disturbance transfer function matrix, and C is the
controller transfer function in normal form. Simple block
diagram manipulations give the following relationships

between the input and output (assuming noc model mismatch) :

yl=cpur+cdal=cmu’f+cdar

u,=-[1-G FG_.1"C Fy,

Because interaction analysis methods are capable of
analyzing only single transfer function matrices, most of
them use the plant open loop transfer function exclusively
(i.¢., the first equation above with at = 0) for the design
of regulatory and servo controllers. Setting ar = 0,
however, means that the disturbance model is not accounted
for in the analysis, and thus precludes examination of
regulatory control structures. However, the relationship
between the inputs and the outputs is also given by the
second equation, which includes the disturbance transfer
function, and this equation could be used for the analysis
of the control structure. It is this observation that will
be employed to obtain an analysis of regulatory contrcliar
structures. For the analysis to be successful, however, it

is necessary to choose the matrices Ge and F correctly.
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By correctly it is meant that the controller is designed so
that the controller is optimal in some rational sense. The
most comron design is to minimize the weighted variance of
change in the inputs and outputs; i.e., the following

quadratic performance objective is minimized:

o1&

J=llm—{zny1y:+VquzVU¢>
Naw NS

This performance index is used in Linear Quadratic (LQ)

Controllers (MacGregor and Harris, 1987), and a similar one,

with finite N, is used in Dynanic Matrix (DMC) Controllers

(Garcia and Morshedi, 1986).

If the weighting matrix Q, is taken as zero, then the
objective function minimization results in a minimum
variance, or ISF optimal, controller. Otherwise, it is a
constrained minimum variance controller (as shown by Doyle
and Stein (1981), one purpose of Q, is to increase the
robustness of the controller). As will be seen later,
setting Q; equal to zero results in a performance index
which is consistent with the interaction analysis technique

employed in this paper.
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In practice, an LQ or DMC controller is implemented with a
finite Q5 matrix, but this is rot a strict regquirement here,
as the purpose is to determine interactions, not to design a
robust multivariable controller. The Qs matrix weighting
the process outputs can be chosen to scale the outputs, but
it is usually clearer to set Q = I, and scale the transfer
functions before the crntroller design stage. The Q7 matrix
is then free to be used as an indication of the designers

concern about each output deviation in relation to the other

outputs.
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Figure 5.1: Closed Loop Block Diagrams

Top-Normal Form Bottom-Internal Model Controller Form

If these controllers are to be truly optimzl and applicable
for structural analysis, they must be designed for the
expected disturbances. Linear Quadratic Controllers ex-
plicitly consider the disturbance model in their design, and

standard Dynamic Matrix Controllers may easily be extended
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for specific disturbance structures. ©One significant
difference between IQ and DMC controllers is that the former
is designed using transfer functions or a state space
formulation, while the latter is usually designed using step
weights of the process and disturbance response. Although
step weights are convenient for computer implementation, it
is difficult (if not impossible) to obtain a closed form
representation of the controller. Since all dynamic
interaction analysis techniques need a closed form transfer
function, the DMC controller form is unsuitable for this
application. IQ controllers, in contrast, result in concise
closed forms that are suitable for interaction analysis.
The aspects of 1LQ controller design salient to this

application are given in the next section.

Once the matrices G and F have been determined, an
interaction analysis of the closed loop transfer function
will indicate the structural pairings (if any) of the
controller, and therefore the pairings of the system in the
face of the specified disturbance. Since Linear Quadratic
control is optimal in a least squares sense, any multiloop

controller would necessary be suboptimal in comparison.
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5.3 Linear Quadratic Controller Design

A lucid formulation of ILQ controller design is given by
MacGregor and Harris (1987). In summary, this technique
involves stating both the process and disturbance transfer

functions in their right fractional form; i.e.,

G,.=LR™'

G =0(pv?)"

Here R and év¢‘ are diagonal matrices, and d represents the
amount of differencing in the disturbance model. For step
disturbances, 4 is equal to one. The control block in

Figure 5.1 is then expressed as:

G =Rr-!

where the matrix I is determined for the solution of the

spectral factorization eguation:
r'r=L"Q,L+R'V'4Q,v4R
Analogously, the filter block F is given by:

F=T9"!
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where the matrix transfer function T is determined from the

solution of the matrix Diophantine Equation:

L'Q,8=T"T+P 20V¢

In the above equations the superscript * denotes complex
conjugation of the given matrix. Efficient algorithms for
matrix spectral factorization are given by Wilson (1972) and
by Jezek and Kucera (1985). An algorithm for the sclution
of the Diophantine Equation is given by Kucera (1979), but
it did not result in a minimal order of the matrix T, which
is necessary for the 1LQ controller design. The necessary
theorem and algorithm for obtaining this minimal order was
derived for this thesis, which, although a strong
contribution to control theory, is not germane to this

discussion, and is presented in Appendix A.

In the IMC format, Go is a stable realizable inversion of
the process model Gp, and F is a function of both the
“isturbance model and the process model. It is in the
filter block F that information about the characteristics of
the disturbance are incorporated into the IMC controller

design.
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5.4 Singular Value Decomposition Analysis

The Singular Value Decomposition technique has proven to be
a flexible tool in control system analysis (Lau et al.,
1985) and controller analysis (Doyle and Stein, 1981).
Although other dynamic interaction measure. such as the
Dynamic Nyquist Array (Jensen et al., i985) and the Relative
Dynamic Gain Array (Tung and Edgar, 1977) have been
proposed, the Singular Value Analysis has two advantages
over these measures for the application proposed here. The
first is that the SVD gives, in addition to information on

system interaction, an indication of the conditioning of the

system through analysis of the Singular Values (Johnston and

Barten, 1987).

The second advantage of the Singular Value Decomposition
Analysis is that, 1like the Linear Quadratic Controller
design technigque, it is based on a quadratic index. That

is, the singular values are defined as:

Il [HAx |2

A
Pmnn(A)= ST

IIA 2

A
mln( ) II Hz
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Here the notation |(Ix|l; denotes Euclidian norm. Because the
analysis technique is maintained on a consistent mathemati-
cal basis, the Singular vValue analysis technique is a

natural means to analyze the 1§ controller.

The results of Lau et al. (1985) will be reviewed for the
design of regulatory feedback control, and these results
will be extended for the synthesis of feedforward control
systems. Applying the SVD 0o a the magnitude of a transfer
function matrix at a specified frequency neatly deconvolutes
the matrix inte an input rotational metrix, an output
rotational matrix, and a diagonal scaling matrix (see Figure
5.2). If the input and output rotational matrices are
aligned with the standard basis vectors, then a natural
coupling exists within the system. This analysis is not
restricted to the steady state but may be applied over a
range of frequencies. The main disadvantage to SVD is that
it is scale dependent, although algorithms and heuristics
have been proposed to address this limitatien (Johnson and

Barton, 1987; Lau and Jensen, 1985).

Applying the singular value decomposition to the discrete m

by n transfer function matrix G(z-1) gives:



G(z")=u(z"")a(=z"" v (=7)

where 4(z"') has elements given by:

Am(z”)=aiz'q. i=1.”rankG(z”)

The o(z"') terms are the sirgular values of GTG(z™1l), while
U(z~1l) and v(z~1) represent the matrix of eigenvectors of
GGT(z"1) and GTG(z~l) respectively. Since o(z') is a
diagonal matrix, G(z~l) may be expressed as a summation of

dyads; i.e.,

Lau et al. (1985) used this formulation to propose an
interaction measure, 6, which is a measure of the alignment
between the system dyad v or z and that of a basis dyad e
(Figure 5.2). If the angle between vj and ey, or zj and ej,
is less than 15 degress, then more than 95% of the (i)th
dyad comes from the (k,1)th term, and a natural pairing
exists between the (k)th output and the (1)th input. To

carry this analysis out through a specified frequency range,
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it is necessary to use the relationship 271 = exp(-Tyw)

where T is the sampling interval and « is the continuous

frequency.
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Figure 5.2: The SVD deconvolutes a matrix into three
matrices: an input rotational matrix, a gain matrix, and an
output rotatiecnal matrix. The alignment between the
rotational matrices and the standard basis vectors, or
cartesian axis, are indicative of the interaction in the
system.

As mentioned previously, this analysis is equally valid for

the open-loop plant transfer function matrix (relating Yt to
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ut) or the closed-loop controller transfer functien matrices
(relating ut to y¢). However, as the Linear Quadratic
Controller contains information about the plant and
disturbance in a single transfer function, an analiysis of

the controller will lead to a proper pairing for regulatory

control.

5.5 Feedforward Control

For feedforward control in multivariable systems, the
question arises as to which of the process inputs should be
manipulated by the feedforward controllers. From Figure
5.1, it can seen that the relationship between the

disturbance inputs and the process inputs is given by:

ut = Go F Gg ag

when there is no model mismatch. Applying an SVD analysis
to the above equation will give the transfer function dyads
Wj multiplied by the singular values or gains of the dyads
0. The pairing (if any} given by the largest singular
value is the one which best characterizes the system, and is

the one that should be used in the feedforward control loop.
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5.6 Disturbance Condition numbers

As previously mentioned, Singular Value Decomposition
analysis is also useful in determining the conditioning of
the closed loop transfer function; i.e., the effect of model
mismatch on the performance of the controller. The
importance of this measure is that poorly conditioned plants
will be difficult to control regardless of the controller
used. Furthermore, Kouvaritakis and Trimbol (1988) have
shown that interpretation of interaction measures must be
done in consideration of the conditioning of the system.
That is, the interaction measures themselves may be
sensitive to modeling errors if the system is poorly

conditioned.

Skogestad and Morari (1987) have proposed a "disturbance
condition number" which accounts for disturbances when
analyzing the process regulatory behaviour. This measure
quantifies the effect of the disturbance direction on the

closed loop performance, and may be expressed as:

H8d,(z7") 1,
Owin |l (271112

Ya~«

where S is the sensitivity operator, given by:
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S=[I-6,C{z"")]

and C€(z~1l) is the controller transfer function expressed in
standard form. Interpretation of the disturbance condition
number is analogous to the standard condition number, in
that lower condition numbers indicate that the controller

will show increased robustness to model mismatch.

The difficulty with calculating the sensitivity operator is
that it requires specification of the form and tuning
parameters of the controller - both of which are difficult
to obtain apriori. Furthermore, it is the conditioning of
the plant that is needed; the above equation illustrates
that the sensitivity S changes with changes in the
controller parameters and structure. The same problem is
encountered in the design and performance analysis of Barton
and Johnston (1987). Their methodology requires computing

the singular values of the closed loop relationship:

Omax{=C(z7 )1+ Co(z7")C(27" )1 6 p(27")a,)

This value could then be used to give an indication of the
controller robustness in the face of a specified
disturbance. Note that it is again necessary to design and

tune the controller ¢(z~1l) apriori.
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In contrast, using the transfer functions obtained from the
1Q controller design results in the sensitivity operator

being expressed simply by:

s=[I-¢.(z7")e (27 )F(z')]

and the closed loop singular value derived by Johnston and

Barton is:

O max{Ce(27)F(27")C5(27 " )a,)

Both these terms may be easily computed once Gc(z‘l) and
F(z~l) have been determined, and regquire no tuning

parameters or variable pairings.

5.7 Analysis of a Binary Distillation Column

In this section, an SVD analysis is carried out on the open
loop and closed loop transfer functions for the solvent
recovery column when it is subjected to feed composition
disturbances. The reason for choosing this system as an
example at this point is that the multi-loop control
structure for simple binary columns is known apriori: for
feed composition disturbances, pairing the overhead

composition output to the reflux ratio (or flow) and pairing
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the bottoms composition to the reboiler duty results in a
relatively decoupled system (Stanley et al., 1985).
Furthermore, it is known that the system may be effectively
feedforward controlled using the reboiler duty as the
manipulated wvariable (Jafery and McAvoy, 1980). A full
analysis of the extraction unit using the techniques

described in this chapter will be given in Chapter 7.

Consider first an SVD analysis on the open-loop transfer
function, as recommended by Lau et al. (1985). A plot of
the alignment angle versus frequency is shown in Figure 5.3.
As the interaction angle is greater than 15 degrees at all
frequencies, it is apparent that no natural coupling exists
for the servo case, and a multivariable controller would be
necessary if tight servo control was required. Collinear to
this 1line is the curve for the LQ controller transfer
function designed for setpoint changes (i.e., the controller
with a unity filter block). The LQ controller was designed
with Q = I (as the inputs were scaled =0 that they
reflected their influence on the plant) and Q; = 0 (as it
was desired to obtain a minimum variance controller). Note
that using the multivariable LQ controller removes the need

for specifying any structure to the controller.
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The colinearity of these two 1lines illustrates that an
analysis of the servo controller gives the same results as
an analysis of the open-loop plant transfer function. This
will always be true if the process model is invertible and
minimum variance controllers are designed. If either of
these conditions does not hold, then the lines will not be
congruent, particul. <sly at high frequencies, but the
difference in general will not be enough to affect the

variable pairings.

In contrast, the alignment angle plot for the L controller
designed for feed composition disturbances is shown in
Figure 5.4. As the alignment angle is less than 15 degrees
over low to moderate frequencies, a natural coupling exists
between the inputs and outputs: reflux ratio to overheads
composition and steam to bottoms composition. Note that
this 1s in agreement with the results of Stanley et al.
(1985) cited above. There is increased coupling at higher
frequencies, but this is a natural result for minimum
variance controllers, since these controllers do not attempt
to achieve perfect decoupling, but rather minimize the
variance of the outputs (which is achieved at the expense of

high frequency interaction).
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Figure 5.3: Interaction angle (9) for the cpen loop
transfer function and the servo controller. The two lines
are collinear for minimum variance control of stable
systems.
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Figure 5.4: Interaction plot for the Linear ¢uadratic
regulatory controller designed for feed composition
disturbances.

For feedforward controller design, the SVD analysis of the
transfer function relating the process inputs to the

disturbances is shown below for the steady-state case:

2
u, = GcFGdal Iss- Zafwfa! Iu
{=]

0.136 0.238 0.962 0.128
{31 '5(0.128 0.962)+ 14'4(0.238 0.136)}"'

The interaction measure 6, is the arc cosine of the largest
element of these matrices, and the position of the largest

element corresponds to the best pairing for the dyad.
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Because the singular value multiplying the first matrix is
larger than that multiplying the second, this dyad has a
more pronounced effect on the system. The first matrix has
an interaction angle of cos~1(0.962) = 15.8 degrees,
indicating that the system is naturally decoupled, with the
pairing given by the (2,2) element. This element
corresponds to using steam in the feedforward control loop,
which is the recommendation given by Jafery and McAvoy
(1980). An analysis of the interaction angle as a function
of frequency, shown in Figure 5.5, indicates that moderate
interaction exists at mid frequencies. However, even at the
most severe interaction, over 75% of the magnitude of the

dyad is attributable to the (2,2) element.

In contrast, the second matrix in the above egquation is
dominated by the (1,1) element, which correspond to using
reflux ratio as the feedforward control variable. To
examine whether the gain of the first dyad is larger than
that of the second dyad across the entire frequency range,
the ratio of gains o,/0, is plotted as a function of
frequency in Figure 5.6. As this value is always greater

than unity, the input given by the first dyad (i.e., steam)
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always has a more pronounced effect on disturbance

rejection, and should be used in the feedforward control

loop.
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Figure 5.5: 1Interaction angle (8,) feor the transfer function
relating the disturbance to the inputs.
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Figure 5.6: Ratio of Singular vValues for the distur-
bance-input transfer function.

Finally, the disturbance condition number of Skogestad and
Morari (1987) is plotted in Figure 5.7, along with the
condition number of the plant transfer function. In both
cases the elements of the transfer function have been scaled
according to their rangeability (Johnston and Barton, 1587).
Both values are sufficiently small over the entire frequency
rance to indicate that the plant is well conditioned for
servo and regulatory control, and that the interaction

analysis is :obust to model mismatch. Note that condition



103

numbers do not indicate whether a system is naturally
decoupled, but only whether a multivariable controller will

be robust to model mismatch.
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Figure 5.7 Disturbance Condition number (solid 1line) and
Plant Condition Number (dashed line).

5.8 Conclusions

The synthesis of regulatory control structures must include
both the disturbance transfer function and the plant
transfer function in the analysis if the proper structure is

to be obtained. Because dynamic interaction techniques are
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incapable of simultaneously analyzing more than one transfer
function, it is necessary to combine the two transfer
functions by constructing a Linear OQuadratic optimal
controller designed for the specific disturbance, and then

analyzing the controller transfer function.

In this chapter, it was shown that the degree of interaction
and proper multiloop controller pairings for regulatory
systems may easily be determined using a Singular Value
Decomposition analysis on a 1Q regulatory controller. In
addition, the analysis can also be used to determine if the
system is feedforward decocupled, and which input would be

the most effective in the feedforward control loop.
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Chaptaer VI

Interaction Measures for Bystems With Deadtime

6.1 Introduction

The purpose of this chapter is to examine the effect that
deadtime has on the main dynamic interaction measures
currently available in the 1literature. It will be shown
that these measures are not a function of deadtime, although
plant interaction varies with deadtime. The reasons why
interaction measures are invariant with deadtime will be
illustrated, and a new interaction method will be developed

which is a function of deadtime.

As a starting point, consider a 2x2 recycle system, which in

the notation of Chapter 3 is expressed as:

c 1 ng gia
1'1_ 7 7 ! r
91.292.1\92,, 92,2

Here gp relates the input to the corresponding output when
there is no recycle, while gj represents tne effect that the
alternate system output has on the output. This indicates

that interaction may be determired by comparing the diagonal
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elements {those of the plant transfer function matrix)
against those of the off-diagonal elements (those of the

interactive plant transfer function matrix).

If each sub-unit in a recycle plant is widely separated
temporally from the other sub-units, then the off-diagonal
elements would have relatively larger deadtime terms than
the diagonal elements. Intuitively, what would be expected
is that interaction would decrease as the off-diagonal
deadtimes increased, since the response due to a disturbance
propagating through the system would be temporally separated
from the previous disturbance. This can be seen more
clearly by examining the Taylor Series expansion of one of
the diagonal elements for the two tank system described in

Chapter 4:

1 re'('m"n:)' r2e'2"p|"n:)'
Y {(m,)(wz) s+ )(s+72))? {(s+7,)(s+72))°

}Kl_;(s*' Tl]du“O("“-["’.'”]'):dl
Clearly, the greater the temporal separation between the
first tank and the second tank (reflected in the v,,+ 7,
term}, the more the system initially behaves 1like the
process without recycle. Because the control action under

closed loop conditions attenuates disturbances, the
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controller could remove the effect of the disturbance by the
time it returned through the recycle loop, provided that the

interaction deadtime was long enough.

Since the response is strongly affected by deadtime, it
would be expected that interaction measures would be a
function of deadtime. Figure 6.1 is a Dynamic Nygquist Array
(Jensen et al., 1986) of the two heated stirred tanks with
no deadtime between the sub-units, while Figqure 6.2
represents the same analysis for the system with a large
amount of deadtime between the units (20 minutes). (For tae
DNA analysis, the smaller the circles (termed Gershgorin
Bands) circling the Nyguist plot of the diagonal elenents,

the less interactive is the system).
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Figure 6.2: Dynamic Nyquist Array for a Recycle System With
Inter-Unit Deadtime

The fact that these plots are essentially identical
indicates that this measurement of interaction is not
affected by deadtime. This trait is common to all
interaction measures, and the reasons underlying this aspect
of interaction measures will be investigated in this

chapter. A new method proposed in this thesis wilil
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explicitly address this limitation, and it will be shown
that this measure accurately reflects the effect that

deadtime has on the closed loop behaviour.

Despite the large effort expended in dynamic interaction
analysis, it is curious that the influence of deadtime has
not been investigated. It turns out, however, that most of
the interaction techniques originated in the control theory
literature where the systems were (or were assumed to be)
rational and minimum phase. For these systems, fixed
integral relations exist between the gain and phase
components (Bode, 1945), and thus the phase behaviour of
these systems is determined uniquely by the gain plot.
Interaction techniques for these systems therefore only
considered the gain relationships of the system, and ignored
the phase relationships. However, the common occurrence of
deadtime in Chemical Engineering proces:zes means that the
transfer functions encountered in this discipline are not
rational or minimum phase, and that phase information needs
to be considered. As deadtime affects the phase severely,
and has no affect on the gain, it is necessary to consider
the phase behaviour in a Chemical Engineering interaction

analysis.
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6.2 Interaction Measure Requirements

Before preceding with a critical review of interaction
analysis techniques, it is instructive %o define interaction
precisely and to determine what approximnations are present
in the analysis. Jensern et ai. (1986) clefined interacticn

as:

Interactions in a closed loop multivariable system
are defined by the transmittances influencing the
way in which a reference input Ysp,i(s) or a
disturbance input dj(s) affects the set of outputs
vy(s}, Jj#i, or alternatively the transmittances
influencing the way in which an output Yi(s) is
affected by the set of reference inputs ysp'j(s),j#i
or disturbance inputs dj(s).

Several comments may be made on the above definition. The
first is that interaction is defined when the system is
under feedback control; open 1loop interactions are not
considered. The second is that interaction is a function of
frequency, so dynamic interaction measures are required.
The third commeunt is that the above definition states that
interaction must be measured for every loop in the plant.
This explains why popular interaction measures such as the
Relative Gain Array (Bristol, 1966} fail to detect

interaction in triangular systems. Finally, this definition
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is not a guantitative one in that there is no mathematical
criteria for discriminating between acceptable and unac-

ceptable interaction.

Given that dynamic interaction measures are required, what
frequency range needs to be examined to determine whether
the system is interactive? To answer this, consider the

closed loop transfer function of the standard form shown in

Figure 5.1:

Y(8)=[1+C,(s)C(XT (€ (s)C(8)y,, (s)+d(s))

At low freg-2ancies, assuming that stable integral
contrcllers have been applied, the following limits of the

above equation may be taken:

]ir?[!+GP(S)C(S)]'IGP(S)C(3)= [G,(s)C(s)] ' G, (s)C(s)=1
liT[I-i-Gp(s)C(s)]"]d(s)- 0

Therefore, the output at steady-state is given by:

l.iﬂrgy(s)-y.p(S)
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That is, no interaction is present at low frequencies. Note
that this result is independent of the controller (providing
that it is stable and has integral action), but is due

strictly to the presence of feedback.

Consider now the relationship that the setpoint changes and
disturbances have on the input to the process. Again, the
block diagram of the closed loop system in standard form may

be arranged to give:

u=[/+C(5)C,(s)) {C(s)y,,(s)~C(s)d(s))

Taking limits as the system approaches steady state gives:

nrgu(s)-c;’(s)y.p(s)—c;’(sw(s)

The above result indicate that steady-state interaction
measures are irrelevant to the systen outputs as they
quantify interaction at a frequency where any interaction is
negated by the presence of feedback. However, the open-loop
steady state interactions will affect the inputs to the
process and therefore affect the performance of the closed
loop response. Furthermore, it is often the case,

particularly for distillation columns, that dynamic
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interactions are roughly the same at every frequency, and
therefore these steady-state affects are also true for a

portion of the dynamics as well.

Considering the behaviour of the «closed 1loop transfer

function at high frequencies, the sensitivity function is:

Hm[/+G,(s)C(s)) ' =1

and therefore:

limy(s)=1im (G ,(s)C($)y,,(s)+d(s))

PRl ] 2

If norms of the above equation are taken, then the following

result is obtained:

Lim [} y(s) 1l = Hm{I1G ,(s)C(s)y,,(s)+d(s) 1}
SHmM{I1G,(IC(II HY,p() i+ 1Hd(s) N}
At high frequencies, the following limits are applicable:

lim 16 ,()C(s) 1= lim [l d(s) |{= O

And therefore:
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lim ] y(s)|1= 0

Since we are interested in the performance of the closed
loop system, then the above 1limits indicate that we can

neglect high frequency interaction.

It may therefore be concluded that the open loop response is
sufficient to determine steady state interaction, and that
high frequency interactions may be neglected. It is,
however, more difficult to ascertain +the effect of
mid-frequency interactions, as this involves specification
of the controller transfer function C(s) as well as the
plant transfer function Gp(s}. As the controller transfer
function is what we are ultimately trying to determine, it
would be convenient to know under what conditions
examination of the process transfer function Gp(s) alone

could be used to determine the closed loop interactions.

Jensen et al. (1986) attempted to answer this question by
expanding the closed loop transfer function into its
component parts to get (for a 2¥2 systenm expressed in the

standard form):

S 'Clgu"'Ctgzlk2512+91Q’2|0292202912“---
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$21™C)G217C€1G21€1G31=C;G21CaF 23~ 0.
$12%€2G127C2G12€191),=C2G 122G 22~ ».

S22 C29227 €28 12C1921%C2G 12,9 11C1 G2, = s

Where sj4y denotes the transfer function between the i-th
input and the j-~th output when the system is under control
using decentralized controllers Ci. As explained by Jensen
et al. (1986), the transmittances between an input Ysp,i and
an output y; is the sum of the direct transmittances (crgn
plus parallel transmittances —C1gnka@+ci19nC922¢2012-...), while
the relationship between an input Ysp,i and an output Y3 is

given by the interaction transmittance c,g,.

The assumption is made that the magnitude of the terms in
the above set of egquations decreases as the order increases,
and that the total transmittance may be approximated by the
first order transmittance terms (i.e., parallel transmit-
tances are ignored). If a comparison is made of the the
effect ygp,1 has on output y; as opposed to Y2, then this
could be approximated by comparing ¢,g,, and c¢,g,,. Since the
controller ¢, is common to both these terms, closed loop

interaction may be determined by comparing g, and g,;. Based
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on this analysis, Jensen et al. (1986) concluded that the
closed loop interaction may be determined by examining the

open loop transfer function.

There are two limitations to this ﬁethodology. The first
limitation concerns the role of the parallel transmittances
(i.e., c¢igaczgr). If the interaction transmittances (c,ga
and c,g,;) are significant, then so too are the parallel
transmittances (which are the product of the interaction
transmittances), and the assumption that the second and
higher order terms may be disregarded is no longer valig.
The second limitation is that if interaction is defined as
the way in which yj is influenced by the set of inputs
Ysp,j+ (i.e., the second part of Jensen’s et al. (1986)
definition, then a comparison is being made between c¢,gy...
and c;9.... Therefore, the controllers are no longer common

in these expressions, and they cannot be disregarded.

The preceding discussion implies that Jensen’s et al. (1986)
definition of interaction provides only necessary conditions
for determining interaction. This means that it may be
possible for a «closed loop system to show 1little
interaction, even though an analysis of the open~loop system

indicates significant interaction. However, because of the
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difficulty of designing correct control structures apriori,
an open-loop analysis is the most preferable method.
Furthermore, the analysis in Chapter 5 of control structures
using the LQG controller indicates that there will be little
difference for servo systems between an analysis of the open

loop system and the closed loop 1Q controller.

6.3 Analysis of Interaction Techniques

The purpose of this section is to review the main
interaction analysis techniques available in the literature
and to illustrate why deadtime has no influence on these
techniques. A thorough review of interaction analysis

techniques may be found in Jensen et al. (1986).

6.3.1 Relative Gain Array / Interaction Quotient

These two measures were developed in the 1960’s, the
Relative Gain Array (RGA) by Bristol in 1966 and the
Interaction Quotient (IQ) by Rijnsdorp in 1965. For a 2x2

system, these interaction measures are similar, being:

RGA=

_P2dn
nexn
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I 291202
guga

Here gjy corresponds to the i,j-th element of the open-loop
transfer function matrix. The RGA was originally developed
as a steady state measure, and has been extensively applied
by Shinsky (1985) and McAvoy (1983). An extension to the
dynamic case by Witcher and McAvoy (1977) is essentially an
evaluation of the magnitude of the above formula at various
frequencies. Clearly the dynamic RGA will be invariant with
deadtime, as the magnitude of a function is not affected by

deadtime.

Rijnsdorp originally derived the Interaction Quotient as a
dynamic measure, displaying both the phase and magnitude of
the function as a Bode plot. Because the phase plot is a
function of deadtime, the measure will change for varying
deadtimes. Interpretation of this measure is somewhat
similar to a Bode analysis of a standard open loop transfer
function, in that high magnitudes and/or increasingly
negative phase indicates that the system will be poorly

controlled.
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The problem with both these measures is that they are
actually comparing parallel transmittances to direct
transmittances, rather than comparing the interaction
transmittance to the direct transmittance. If g1z Or gq
equal zero then these measures will indicate that there is
no interaction in the systen, rather than one-way
interaction exclusively. As mentioned previously, this is a
general characteristic of interaction measures that use only

a single term to measure interaction, rather than a term for

each loop.

6.3.2 Characteristic Loci / 8ingular Value Interaction

Measure

Two closely related interaction methods will be examined in
this section: an interaction analysis based on characteris-
tic loci (MacFarlane and Kouvaritakis, 1977) and one based
on the singular value decomposition of the transfer function

matrix (Lau et al., 1985).

The characteristic loci method expresses an mxm complex

matrix in dyadic form as:
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G (jw)= Zlq.-(jw)ws(jw)v.-r(fw)

Conversely, the singular value decomposition method can be

used to express a complex matrix ¢,(jw) as:

Cpliw) = Z(jw)A(jw)IUT(jw)

- Zoi(fw)z,(fw)u.-’(wa

m

= Zaiwl

i=]

Here o,(jw) are the singular values of ¢,(jw) (i.e., the
eigenvalues of ¢I(jw)6,(jw)), =z(jw) are the eigenvectors of

¢,(jw)el(jw) and u(jw) are the eigenvectors of GiUw)G,(jw).

There are important differences between the characteristic
loci methed and the singular value decomposition in
analyzing the stability of a system. While the characteris-
tic loci method results in a necessary and sufficient
condition for stability (i.e., the generalized Nyquist
Stability criteria (MacFarlane and Belletrutti, 1971)),
singular values only result in a sufficient criteria for
stability, and are therefore conservative. However, it is

difficult to assess robustness with the generalized Nyquist
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stability criteria as this measure only determines stability
with respect to a single gain common to all loops. The
singular value measure does not have this shortcoming, as
different uncertainties may be placed in each element of the
transfer function (although the uncertainties cannot be

correlated with one another).

Furthermore, if the eigenvectors of ¢,(jw) are excessively
skew, they cannot be used in an assessment of closed loop
performance (MacFarlane and Kouvaritakes, 1577). The
singular value decomposition analysis does not have this
shortcoming because the matrices 2z(jw) and V(jw) are
orthonormal (the skewness is reflected in the singular
values). However, if the system is poorly cenditioned,
then it will be difficult to control regardless of the form
of the controller, and effort should be made in attaining a
better conditioned system before preceding with any further

analysis or design.

The characteristic loci does have one strong advantage over
all other techniques in determining closed loop interaction
from the open loop transfer function. If the product of the
controller and the process transfer function, given by

Gp(s)}C(s), is expanded into its dyadic form as:
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G,(s)C(s)= Zlq,(s)wi(s)v.’(s)
i=

then the closed 1loop transfer function (i.e., [I +

Gp(s)C(s)]"lcp(s)c(s)) is:

- = QI'(S) T
cLir .-.Z(Hq.-(s))w"(s)”'(s)

Which indicates that the eigenvectors w,(s) are unchanged
whether the system is under open or closed loop control. As
these eigenvectors are used in the interaction analysis, it

is necessary only to analyze the open loop eigenvalues.

However, the open loop transfer function still centains the
controller matrix, and it is instructive to determine the
relationship between the eigenvectors of Gp(s) and those of
G(s)C(s). Unfortunately, 1little is known about this

relationship except when Gp(s) and C(s) commute, that is:
Gp(s)C(s) = C(s)Gp(s)

In this case Gp(s} and C(s) will have a common set of
eigenvectors, which are given by the set of eigenvectors of

Gp(s). If a diagonal controller is used, then the above



124

relationship will hold if Gp(s) is diagonal as well, and an
examination of the eigenvectors of Gp(s) will correctly
indicate the closed 1loop interaction as well. In other
words, Jlow plant interaction is a sufficient condition for
low interaction under closed loop control. However, it may
be possible that a system with a highly interactive plant
transfer function Gp(s) will result in a non~interactive
open loop transfer function matrix Gp(s)C(s), in which case

examining the eigenvectors of Gp(s) will lead to erroneous

conclusions.

MacFarlane and Kouvaritakis (1977) employed an intuitive
argument in order to derive the characteristic 1loci
interaction measure. For closed loop interaction, the i-th
output of [I + Gp(s)C(s)]‘le(s)C(s) must respond to the
i-th input. This in turn means that one of the standard

basis vectors ej, where e is defined as:

O O —
o - O
o O O

o
o -
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must be a characteristic direction of the closed loop (or
open loop) transfer function. A measure of interacticn is
the angle between the vectors Wk(s) and the standard basis
vectors ej(s) for i,k =1, 2, ... m. This is cuantified by

the angular misalignment between these vectors, given by:

lwe(s).e|
cosf, = ————

C Hwe(s) ]

where the convention is adopted that k is chosen such that

Wx is the eigenvector that results in the smallest angle #6,.

Interaction analysis using the singular value decomposition
(Lau et al,, 1985) is completely analogous to the
characteristic loci technique. In this case, as shown in

Chapter 5, the interaction angle is given by:

NIAl

cosé
MCERTIVY

where W ,(s) is the singular value dyad matrix, and W,(s) is
the i,j-th element of W, corresponding to the i-th input and

j-th output.
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For both the characteristic loci and the singular value
decomposition interaction method, norms of eigenvectors are
used exclusively to determine interaction. While the
eigenvectors contain phase information, this information is
lost when norms are taken in calculating the interaction
angle as above. Therefore, “hese measures will not be
dependent on the deadtime in the system. A modification to
the characteristic loci method is shown in the next section

which results in the inclucion of phase information.

6.4 Inclusion of Phase Information

As shown previously, the alignment angle definition for the
characteristic loci methosd is given by the inner product of
the characteristic loci vector and a basis vecior. Although
this eguation is computationally feasible, 't is mathemati-
cally inconsistent in that it requires the inner product ci
w,(/w), which is a complex vector, and ej, which is a real
vector. MacFarlane and Kouvaritakis (1977) presented a
graphical justification for their method, showing that the
interaction angle <szpresents the angle between the

orthornormal basis vector and the eigenvectors (see Figure
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6.3). Again, the inconsistency with this conceptualization
is that it requires comparing vectors in n-dimensional real

space with those in n-dimensional complex space.
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Figure 6.3: Graphical Characteristic Loci Analysis

This inconsistency could be circumvented if the complex
vector w,(jw) could be first approximated by a real vector
a(w) that reflects both the phase and magnitude of the
complex vector. The methodology of MacFarlane and Kouvarji-
takis, as well as that of Lau et al., in effect approximates

the complex vector by real vectors which do not contain
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phase information. If a real approximate vacto.” a(w) can be
found which contains both magnitude and phase information,

but the analysis will be sensitive to deadtime.

While this will result in a correct interaction analysis of
systems with deadtime, the problem remains of determining a
real vector approximation e(w) to the complex vector w(jw)
that contains phase information. MacFarlane and Kouvari-
takis (1977) illustrated how this could be accomplished and
derived an elegant algorithm to attain the required real
approximate matrix. These authors were concerned with
decoupler design, which is analogous to the problem here
because decouplers require real matrices +that are
approximate inversions of the <c¢omplex plant transfer
function matrix at some frequency. Using the real
apprcximation to the complex eigenvector in an interaction
analysis may therefore be thought of as an analysis of the
decouplers that are required in order to attain a diagonal
open-loop transfer function. An analysis of MacFarlane’s
and Kouvaritakis’s (1977) procedure is zhown in the next
section, along with an analysis of the resultant

approximation matrix.
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6.4.1 Analysis of the Approximation Vectors

The purpose of this section is to examine the alignment
algorithm of MacFarlane and Kouvaritakis (1977) and to
illustrate how the eigenvectors are mapped from a complex
space to a real one. If W(w) is a set of complex
zigenvectors of the plant G(jw), then A(w) will be equivalent

to W(jw) if and only if:

Wl(jw)a(w)=e,

where a(w) is the i-th column of 4(w) and ej is the i-~th
column of the identity matrix. As a(w) and w,(jw) become
misaligned, the magnitude of the i-th entry of w'(jw)aljw)
will decrease, while the other entries will increase. The
ratio of the i-th entry of w'(wlaljw) divided by the
magnitude of all the other entries can be used as a measure
of the alignment of a(w) with w(jw). This can bz expressed

mathematically as:




where (w'), represents the i-th row of w'. If (w-),

expressed in terms of real vectors a, and g8, as:

(V-l),-"af*jﬁi

then the above definition of 6, may be expressed as:

W a)((w),.a,)

ST e

(L 3]

=

al(a,+jB;)(al-jBF)a,

Y alla,+jB,)(al-jBT)a,
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is

Here an overbar denotes complex conjugate of the quantity

over which it is placed. The last form of the objective

function illustrates that the optimal real approximation is

a weighted average of a vector orthonormal to the real part
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of (w'), and a vector orthonormal to the complex part of (v-'),.
The weights are dependent on the magnitude of the real and

imaginary parts of (v7').

Figure 6.4 shows a comparison between the real and imaginary
parts of (v'),, the magnitude of (v™'),, and the approximating
vector a, of (w'), for the transfer function used by

MacFarlane and Kouvaritakis (1977}, shown below:

G(s)= | (rl&s) rlis))

b.(sSI\T 5 (8) Ts)
where
6,(s)=s5*+11.675+15.7552-88.315+5.514

I,,(s)=29.25+263.3
I,(s)=-3.1465"-32.625?~-89.93s-31.81

I, (s)=5.6795°+42.675%-68.845-106.8
I,(s)=9.435+15.15

Figure 6.4 illustrates that as the frecuency increases the
vector ('), becomes increasingly complex, and the magnitude
decreases. At low frequencies, the transfer function is
predominately real, and the magnitude and real approximation
curves of (w''), follow this curve. As the frequency is
increased, (w-'), becomes more imaginary, and the magnitude
and real approximation curves shift over from the real curve

to the imaginary one.
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Figure 6.4: Eigenvector Plot for a Rational System

It can be seen that the approximate vector aj is
approximately ecqual to the magnitude at all frequencies for
this system. However, the example in this case is a matrix
of vational polynomials, i.e., a system without deadtime.
If the system is augmented with deadtimes of exp(-10s) on
the off-diagonal elements, the resulting plot, shown as
Figure 6.5, indicates that the real approximation vector
does not equal the magnitude curve at moderate or high
frequencies, but begins to oscillate around the abscissa.
The frequency of this oscillation equals the frequency at

which the Nyquist plot of the transfer function encircles
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the origin.

The approximating vector aj equals the magnitude vector for
rational systems because, as mentioned previously, the
magnitude plot completely characterizes the system. In such
a case, therefore, no new information is retained using the
approximation vector. However, when deadtime is present, as
it was for the system shown in Figure 6.5, then the real
approximation vector will also contain phase information not

present in the magnitude plot.
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Figure 6.5: Eigenvector Plot for an Irrational System
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6.5 Application to Heated Stirred Tank Apparatus

An application of the Characteristic Loci Method, using both
the actual complex transfer function matrix and the real
approximation matrix, will be illustrated in this section in
order to demonstrate the superiority of the latter method.
The example system will be the two heated stirred tanks
discussed in Chapter 3. Two conditions will be investigat-
ed: the first ﬁith no deadtime between the tanks, the

second with a deadtime equal to approximately two time

constants.

From previous studies (Hugo, 1985), it is knownr that the two
heated tanks apparatus is highly interactive. Although
multi-loop control is feasible, a multivariable controller
is required for good control. As the diagonal elements
(i.e., the transfer function relating the temperature of
tank i to the input to tank i, i = 1, 2) have a higher gain
and faster dynamics than the off~diagonal elements
(particularly when there is deadtime between the tanks),
they would naturally be chosen as the best pairings for a
multi-loop controller. Because these diagonal elements may
be approximated by a first order system with 1little

deadtime, PI control would give optimal performance if there
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was no interaction. For this reason, all closed loop
simulations were performed with PI controllers that were

tuned to give an acceptable response.

6.5.1 Comparison Between Interaction Angles and 8imulated

Results

Characteristic Loci interaction angles based on the complex
transfer function wmatrix (dashed 1line) and the real
approximation matrix {solid 1line) for the heated stirred
tanks (Chapter 4) with no inter-unit deadtime are shown in
Figure 6.6. The similarity of these curves indicate that,
in the absence of deadtime, both methods will 1lead to
substantially the same conclusions. At low to moderate
frequencies (i.e., w = 1/r, ~ 1/50) the interaction angle is
large, indicating that the =system will be highly
interactive. At high frequencies the interaction angle
drops to zero, due to the fact that the off-diagonal
elements are of higher order than the diagonal elements
(which is generally true for recycle systems). As mentioned
previously, however, the system gain will be low in this
region and will therefore not contribute significantly to

the closed loop response of the system.
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Figure 6.6: Characteristic Loci Interaction Angles using
the Real Approximation Matrix (solid line) and the Magnitude
of the Transfer Function Matrix (dashed line) for the Heated
Stirred Tanks with no deadtime.

This analysis is verified from the simulation results shown
in Figure 6.7. Because of interaction, the system responded
to a setpoint change of unity in the first tank very slowly,
requiring approximately one hundred time constants to attain
99% of the setpoint change. The plot of the process inputs
indicates that the controllers were very sluggish, but
increasing the gains or integral action merely increased the
initial temperature oscillations without significantly

decreasing the time it took to achieve steady state.
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Figure 6.7 Input and Output Responses for the Heated
Stirred Tanks With No Deadtime Under Multiloop Control

Characteristic Loci interaction angles for the system with
large inter-tank delay (100 minutes) are shown in Figure

6.8. Here again the dashed line represents the interaction
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angle based on the magnitude of the transfer function, while
the solid line is based on the real matrix approximation to
the complex transfer function. In this situation the two
lines differ markedly - the interaction angle for the real
approximation matrix oscillates about the abscissa for
frequencies greater than 0.03 Hz.. Note that the curve based
on the magnitude is substantially the same as that generated
for the previous case; this measure therefore indicates that

the process response will not differ between +the two

simulations.
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Figure 6.8: Characteristic Loci Interaction Angles using
the Real Approximation Matrix (solid 1ine) and the Magnitude
of the Transfer Function Matrix (dashed line) for the Heated
Stirred Tanks with deadtime.



139

The simulated response, shown in Figure 6.9, illustrates
that the inter-unit deadtime has had a large effect on the
system, as predicted by the analysis based on the real
approximation matrix. The system has more oscillation and
thus takes 1longer to settle, although the variance is
reduced as compared to the previous system (the PI
controller parameters are unchanged). This behaviour mimics
the interaction angle curve for the real approximation
matrix, which also displays oscillation. Furthermore, as
the root mean square or arithmetic average of the
interaction angle is smaller than for the system wi%*h no
deadtime, this measure also correc.ly predicts that overall

interaction will be diminished, and performance improved.
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Figure 6.9 Input and Output Responses for the Heated
Stirred Tanks With Deadtime Under Multiloop Control

The effect that off-diagonal deadtime has on reducing
interaction and on the characteristic loci interaction angle

is in general true. Figure 6.5 or 6.8 can be used fto
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illustrate the effect on the interaction angle. The dashed
line in this figure could alsoc have been generated from a
system with no deadtime (as it was generated using the
ragnitude of the transfer function) and this line is the
upper bound of the interaction angle curve for the system
with off-diagonal deadtime. On averace, therefore, the
interaction angle for the off-diagonal deadtime system is
less than for the system with no off-diagonal deadtime, and
the presence of the off-diagonal deadtime system will
therefore improve the performance of a multi-loop control

schenme,

This aspect of recycle systems was also discussed in Section
3.6.1, where the 1IMC control structure was used to
investigate the effect of diagonal controllers on the closed
loop performance. It was shown there that perfect
controllers for each of the subsystems would result in
perfect control of the entire unit, even if interactions
were ignored. As increased inter-unit deadtime results in
relatively better control of each of the subsystems, the IMC
analysis correctly predicts that the control of the entire

system should improve with increased inter-unit deadtimes.



1.5.2 Grosdidier and Moreri Interaction Measure

As discussed previously, Grosdidier and Morari (1986, 1987)
presented a method for evaluating interaction which could be
interpreted as a Bode plot, and would thus include phase
information. A plot of this interaction measure for the two
heated stirred tanks with deadtime is shown as Figure 6.10.

The pairings and the controllers are the same as those used

previously.

For this measure the gain is less than unity for phase
angles greater than 180 degrees, and therefore the system
will be stable. As this is the case in these plots, this
interaction correctly predicts that the pairings and tuning
parameters will result in a stable system. However, it is
difficult to infer actual performance from these plots.
Indeed, if the pairings are reversed, giving the interaction
plot shown as Figure 6.11, then the system will also appear
stable. Furthermore, it is difficult to tell from an
examination of Figure 6.10 and 6.11 which paring is

preferred.

In contrast, the method advocated in this chapter would
result in a plot of the characteristic loci interaction
angles for these reversed pairings with an interaction angle

or 75 degrees at steady state, approaching 90 degrees at
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higher frequencies. This behaviour would be <the same
regardless of whether the real approximate matrix of the
magnitude matrix were used, as the two curves converge at
high and low frequencies. Since small jinteraction angles
are required for good multi-loop control, the characteristic
loci plot clearly shows that the off-diagonal pairings would
be wrong. It is intuitively clear that the performance of a
controller based on the diagonal elements would be superior
to that based on the off-diagonal elements, as the diagonal

elements have faster dynamics and a larger gain.
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Tigure 6.10: Grosdidiers and Morari’s Interaction Measure
for the Diagonal Elements of the Heated Stirred Tanks With

Deadtine
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Figure 6.11: Grosdidiers and Morari’s Interaction Measure
for the Off-diagonal Elements of the Heated Stirred Tanks

With Deadtime

1.6 Conclusions

The purpose of this chapter has been to illustrate the
effect that deadtime, particularly the structured deadtime
found in recycle systems, has on interaction measures and
closed loop performance. The concepts behind all interac-
tion measures were investigated, and the most common
interaction measures were shown to be flawed as they are
invariant to deadtime. It was illustrated that the reason

for this is that these measures are maghitude measures only,
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which is not a function of deadtime.

To correct this shortcoming, a methodology is proposed in

this chapter which explicitly accounts for both the gain and

the phase of the system. This method may be summarized as:

Express the open loop transfer function Gp(s) as a

function of a specified complex frequency jw.

Approximate the complex transfer function 6,(jw) by its
real approximation (A(w)) using the method of MacFarlane
and Kouvaritakis (1977). This real approximation matrix
wili contain both gain and phase information of the

original matrix.

Express this real approximation matrix A4A(w) in its

singular value form, i.e., A(w)=2Z(w)A(w)UT(w).

Determine the inverse cosine o©of the largest element of
the matrix formed by 2z; u;T, where z; and u; are the

first eigenvectors of Z and U respectively.

Plot these angles for the range of frequencies. If
these angles are less than 15 degrees, particularly for
low to medium frequencies, then the system is decoupled,
and single 1loop control will give an acceptable

response.
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It wvas shown that this modification correctly predicted the
response of a simulated system for different deadtimes. In
addition, it was shown for recycle systems that temporally
separating the sub-systems results in deadtime on the
off-djagonal elements of the ¢transfer function matrix.
Increasing the off-diagonal deadtime reduced the closed loop
variance and increased the settling time for the case when

multi~-loop controllers were applied.
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Chapter VII

Analysis and Control of the Extractive Distillation Unit

The system used in the previous three chapters to
demonstrate the various techniques was primarily either the
two-input/two-output heated stirred tanks to the solvent
recovery column, and not the complete extractive distilla-
tion unit. The rationale for this was that it was
conceptually and mathematically simpler, and thus more
illustrative, to consider these 1low order systems to
illustrate the techniques developed in the previous
chapters, rather than the four-input/six-output extraction
unit. Furthermore, it is also possible to analyze these
systems by inspection of the open loop transfer function
alone, and their low dimensionality are fairly representa-
tive of examples used in the 1literature. Conversely,
industrial systems of any importance are generally of higher
dimension. It is necessary, therefore, to determine the
success of these techniques on higher order systems where it

is difficult to determine controller performance a priori.

Hence, the transfer functions for the extractive distilla-
tion column and the solvent recovery column of Chapter 2

will be used to illustrate the following aspects of recycle
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systems: the open-loop response of the complete system when
the transfer functions are manipulated as shown in Chapter
3; the applicability of the model reduction technique
developed in Chapter 4; the feasibility of the regulatory
controller analysis of Chapter 5; and the performance of the

interaction measures developed in Chapter 6.

As each column is individually highly interactive,
consideration is made of how recycle affects each subsystem,
rather than each individual loop. In this case, therefore,
decentralized control means the application of separate 2x2
multivariable controllers to each column. These were
compared to full 4x4 regulatory and servo controllers
applied to the entire unit. Note that for this case a block
interaction analysis is necessary, where blocks, rather than
elements, of the open-loop transfer function matrix are
compared. The extension of interaction techniques to the
block case is relatively simple, as the magnitude of each
block was assumed to be the maximum singular value of the

block (Arkun,1988; Manousiouthakis et al., 1986).
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7.1 Open Loop Responses

In order to obtain an open loop transfer function for the
entire extraction unit, the solvent recovery column transfer
function shown in Figure 2.5 and the extractive distillation
column transfer function from Latosinsky (1988) was

substituted into the ecuation for the entire recycle systemn,

i.e.:

EDC -1 EDC
(YEDC)={!—( © G, )} {(GP 0 )(UEDC)+GEDCDEDc>
D
},snc G}snc 0 0 Gixc stc

This equation was evaluated using the symbolic equation
solver package MAPLE, which, although the above is concise
and simple to solve with MAPLE, the resulting transfer
functions are relatively large, havir¢ approximately 30

terms in each element.

Furthermore, due to the matrix inversion, these transfer
functions contain denominator deadtime terms which preclude
directly using an inverse Laplace transform in order to
obtain time domain responses. It was therefore necessary to
use the Taylor series method of model simplification shown
in Chapter 4 in order to bring these denominator deadtime

terms into the numerator. This had the further effect of
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expanding the transfer functions, so that each element of
the extraction unit transfer function required approximately
i00 terms. The size of these transfer functions precludes
them from being shown in this thesis, although it was not
difficult to manipulate them using a computer. One strong
advantage of the Taylor series method over the other me.nods
examined in Chapter 4 is that no parameter estimation was
required in order to obtain a simplified model. Such an
estimation would be a formidable problem given the many
parameters needed for a good fit in each element, and the

many elements in this system.

Simulated open-loop responses of the simplified transfer
functions for the compositional outputs of the complete
extraction unit are shown in Figures 7.1-7.6. Input step
responses are given in Figures 7.1-7.4; sten disturbance
respcnses are shown in Figures 7.5 and 7.6. The inputs and
outputs for these simulations are shown in Table 2.2, with
the values being deviations from the steady state conditions
of Table 2.1. 1In all cases, a positive unit step change in

the inputs and disturbances was chosen.

In general, recycle has had the predicted effect of

considerably lengthening the time it takes for the system to
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come to steady state. As stand alone units, the settling
time was approximately 300 ninutes, as opposed to
approximately 1500 minutes commonly shown in these plots.
Although most of the curves are essentially first order
responses, a few are non-minimum phase under recycle and
also display rapid change in direction. This latter
behaviour is somewhat surprising, but is the result of
deadtime delaying the response of part of the system as it
passed through the recycle loop. Also, note that recycle
did not result in any unstable open-loop responses (as could

easily be seen from the expanded transfer functions as

well).
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7.2 Servo Interaction Analysis

As a first step in analyzing the system for servo
interactions, the steady state gain matrix for the
extraction unit using the individual experimental transfer

functions and the recycle equation given in section 7.1 is

shown below.

OVHD COMP®5© 0.279 -0.713 0.098 0.302 MKUP_FLOW
BTMS COMP* | [ 0.357 -0.663 0.017 0.541 STEAM'?®
OVHD COMP®*¢ | | ~0.467 -1.219 -0.417 -0.816 RFLX_RATIO
BTMS COMPS#¢ 2.274 4,132  0.030 -0.926 STEAMSKE

For the system without recycle, this matrix would be of
block diagonal form, with the upper left 2x2 matrix and
lower right 2x2 matrix would be full submatrices
(corresponding to the extractive distillation column and the
solvent recovery column respectively), with all other
elements zero. With recycle, however, the system |is
effectively 4x4, and it is difficult to see if there are any

dominant pairings, or dominant blocks of pairings.

Characteristic Loci interaction angles, using both the
transfer function and its real approximation (Chapter 6),
for each of the diagonal 2x2 blocks are shown as Fijyure 7.7

and 7.8. The most surprising aspect to these plots is that
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they are very oscillatory. Oscillation was noticed in the
system studied in Chapter 6, where the transfer functions
were simple first order plus deadtime. Because the systems
here are of very high order with multiple deadtimes, the
interaction angle plots are correspondingly much more
oscillatory. Obviously this hinders the analysis somewhat,
as it is necessary to consider the average value of these

oscillations when determining interaction.

Morari and zafirio (1989) wused a first order Pade
approximation to smooth out these spikes when they analyzed
simple systems using structured singular values. Although
this will successfully smooth out the responses, these
authors did not justify the use of this approximation. As
it was shown in Chapter 4 that Pade approximations result in
unreliable model simplifications (particularly first order

Pade approximations), their use is not recommended here.

One aspect of the system is clearly noticeable from these
plots - the system shows pronounced one-way interaction.
This 1is evident from the high interaction angle in Figure
7.7 (i.e., the inputs for the extraction column also effect
the solvent recovery column) and the low interaction angle

in Figure 7.8 (i.e., the inputs for the solvent recovery
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column have less of an effect on the extractive distillation
column). In both diagrams the solid iine is for the actual
transfer function, the dashed 1line represents the real
approximation matrix to the transfer function. This means
that a setpoint change in the extraction column should
affect both columns, but a setpoint in the solvent recovery
column should have relatively 1little effect on the

extractive distillation column.
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Transfer Function
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As expected, a 4x4 servo ILQ controller implemented on the
transfer functions for the extractive distillation wunit
(with no model mismatch) resulted in excellent control; an
example of this is shown as Figure 7.9 for a unit step
setpoint change in the overhead composition of the
extractive distillation column. This controller was tuned
to give good servo response while maintaining reasonable
input manipulations. Like the open loop responses, however,
none of the outputs behave as simple first or second order

systems, but rather display a jagged response.

When independent 2x2 servo IQ controllers were applied to

each column the closed-loop performance considerably
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worsened. An example of this is shown in Figure 7.10, where
the system is no longer even stable under closed loop for a
unit step change in the setpoint of overhead composition of
the extractive distillation column. This is of course due
to the model mismatch caused by effectively assuming that
there is no recycle effects. It was possible to stabilize
the system by increasing the weights on the variance of the
inputs during the controller design (i.e., detuning the
controller), but the system response was extremely slow at
this point, and it is preferable to determine a better way
of controlling the system. Note that the use of two
separate controllers would be common industrially, as the
effect of other units is commonly overlooked. Clearly for

this ~<ase, it is vital thai recycle effects be considered in

the controller design.
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7.3 Regulatory Interaction Analysis

The steady-state values of the system inputs necessary to
remove the effect of a unit step change in feed flowrate and

feed composition respectively are shown below.

MKUP_FLOW -4.1 -1.3
STEAMF®P® -5.3 -3.4 |(FEED_COMP
RFLX_RATIO | | -12.8 -2.2 (FEED_FLOW)
STEAM®R 30.0 10.6

Here again the recycle system is clearly multivariable, as
all the inputs must change to counteract either of the
disturbances. Although the disturbances enter the extrac-
tive distillation column directly, it is clear from the
input magnitudes above that the solvent recovery column
inputs must change the most. It is also clear that the
regulatory response is different from the servo response;
the common practice of examining the plant transfer function

exclusively would be inadequate in determining regulatory

control structures.

It 1is, however, difficult to determine what, 1if any,
adequate input-output pairings exist to control this system,
although it appears that both disturbances have a larger

effect on the solvent recovery column than the extractive
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distillation column. This would indicate that there may be
some natural disturbance decoupling in the system. However,
as pointed out in Chapter 6, it is necessary to determine
the dynamic interactions before drawing any conclusions on
variable pairings. The first step of the technique derived
in Chapter 5 for doing this is to design a 4x4 Linear

Quadratic Regulatory controller.

Unfortunately, when this was attemptod using the 4x4 recycle
system, the algorithm for solving the Diophantine Equation
failed. As it is required to solve this equation in order
to obtain the 1Q optimal filter for a specified disturbance
transfer function, failure of this routine precluded using
the method shown in Chapter S for regulatory system
analysis, or obtaining an optimal regulatory LQ controller
(servo LQ controller design does not require solving the
Diophantine Equation). It was found that the cause of this
failure was in solving for the Smith form of the given
matrices (see BRAppendix 1). Aalthough this algorithm is
recommended by Kucera {i975), it can be shown that that it

is numerically ill-conditioned.

This flaw arises because the algorithm necessitates

determining the difference between two internally generated
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large numbers. As small errors in these numbers result in
large error in their difference, the algorithm will commonly
fail. This algorithm was not an iterative one, but one that
should have completed in a finite number of steps. The fact
that this phenomenon was not reported in the 1literature
indicates the scarcity, and necessity, of practical

applications of these algorithms.

Although it was not possible to design regulatory L
controllers for the e:tractive distillation unit, it is
still possible to implement servo controllers that will
resuit in no steady-state offset, although at considerably
longer settling times. Figure 7.11 illustrates the
performance of the 4x4 servo IQ controller employed in
section 7.2 for a feed composition change to the extractive
distiliation column. Somewhat surprisingly, the regulatory
response is faster than the servo response, indicating that
there was some beneficial interaction present. This further
illustrates that the interaction for the regulatory system
would be different from the servo system, and it is
necessary to examine both the servo and disturbance *ransfer

functions before assigning input-output pairings.
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When individual 2x2 servo LQ controllers were applied to
each column, the response of Figure 7.12 results; as before
the system was found to be unstable, indicating that the
disturbance interaction is severe as well. Again it is
possible to obtain a stable closed system, albeit a very

slow one.
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169

7.4 Conclusions

The techniques reviewed and developed in this thesis have
been applied to the extractive distillation unit. This was
shown to be a severe test of their validity and feasibility,
because of the large dimensionality of the system and the
non-trivial forms of the transfer functions. Problems and
shortcomings of these techniques, as well as their

successes, have been highlighted on a realistic example.

Placing the distillation columns in a recycle loop was shown
to have a dramatic effect on the gains and settling times of
their open-loop step responses. This result was in
agreement with the analysis shown in Chapter 3. 1In
addition, the response of most of the outputs was no longer
a smooth first or second order response, but showed inverse

and non-smooth responses as well.

The time domain responses and controllers were obtained from
simplified transfer functions of the actual process. Again,
the reason why simplification was necessary was that the
recycle transfer functions contained denominator deadtimes,
which preclude controller design or simulation. The Taylor

series method outlined in Chapter 4 resulted in usable
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models of high accuracy which, although of high dimension,
were easily inverted to the time domain using a computer,

and were very simple to obtain.

The interaction analysis indicated that the system was no
longer of block-diagonal form, but was best controlled by a
full 4x4 multivariable controller. This was confirmed by
simulations, where it was observed that two independent
controllers resulted in severe degradation of the
closed-loop system compared to the performance of a full 4x4
controller. The most interesting aspect of the interaction
analysis 1is that the singular-value based interaction
measure plots were very jagged, which does not appear to
have a relationship with the actual performance of the
system. Although this was found to be caused by the
presence of deadtime, this problem is seldom mentioned by
other researchers (who in general use transfer functions
with no deadtime), and is a severe 1limitation to any

singular-value based measure.

Lastly, design of a regulatory LQ controller failed because
of a shortcoming in one of the subroutines used to solve the
Diophantine Equation. This subroutine was found to be

numerically ill-conditioned, and although recommended by
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several researchers, none of them seemed to be aware of this
problem. This is probably because these researchers used
small trivial systems for exam:les, which did not require
robust numerical techniques, and could usually be solved by
inspection. Although it clearly would have been preferable
to obtain an regulatory IQ controller so that the techniques
of Chapter 5 could be applied to the extractive distillation
unit, it should be remembered that one of the purposes of
experimental work is to determine where theoretical

techniques will fail, as well as where they will succeed.
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Chapter VIII

Conclusions and Recommendations

8.1 Conclusions

As stated in the introductory chapter, the purpose of this
thesis is to analyze the controllability and operability of
recycle systems. To this end, the extractive distillation
unit constructed for this research was found to be an
excellent vehicle for illustrating recycle interaction
effects, and for highlighting shortcomings in various

literature techniques. 1In particular, the following

conclusions may be made:

1. The behaviour of individual unit operations can vary
considerably once they are coupled with other units.
This means that it is not always sufficient to consider
interaction and control of a single unit, but how it acts

once it is installed in the plant.

2. Two shortcomings of all interaction analysis techniques
currently available in the literature have been addressed
and solved. The first shortcoming, interaction for

regulatory systems, deals with the fact +that chemical
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engineering systems mus. commonly be controlled against
load disturbances, not to follow setpoint changes.
Interaction techniques must therefore include the
disturbance transfer function in the recycle analysis,
and Chapter 5 demonstrated a method for accomplishing
this. The second shortcoming of interaction techniques
is that they make no account for system deadtime.
Because deadtime can account for a significant portion of
the dynamics c©f chemical engineering systems, techniques
presented in Chapter 6 enabled the inclusion of deadtime

into interaction analysis.

Becaus~ recycle results in deadtime terms in the
denominator of the plant open loop transfer function,
some method must bLbe formulated of simplifying the
transfer functions before they can be used for simulation
and control. Various techniques proposed in the
literature were examined in Chapter 4, and found to be
flawed. A new technique, proposed in this chapter, was
shown to be both mathematically rigorous and intuitively
attractive, and did not contain any of the flaws of the

other methods.
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8.2 Recommendations

Two recommendations may be made about the techniques
employed in this thesis. Both recommendations address
shortcomings of the arnalysis and were encountered when the

various technigques were applied to the extractive

distillation unit in Chapter 7.

The first recommendation is that the effect of deadtime on
any analysis employing eigenvalues needs to be considered.
This is because deadtime has the puzzling effect of causing
resonance peaks in the frequency plot of system eigenvalues,
which is difficult to explain in terms of any system
behaviour. This phenomenon is not just encountered in the
interaction analysis used in this thesis, but is also
encountered in the singular value techniques employed in
robustness analysis. Because these techniques are presently
being heavily advocated in the chemical engineering
literature, there is a wide rationale for exploring this
aspect of eigenvalues. There has been some recent work in
this area, using hopf bifurications (Boe and Chang, 1989),

that may shed some light in this area.
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The second recommendation is that a new algorithm for
solving the Smith form of matrices, used in the solution of
the Diophantine Equation, be formulated. This algorithm was
found to be inherently ill-conditioned, and, as it is
necessary in Linear-Quadratic controller design, a more
robust algorithm must be found if 1Q theory using transfer
functions is to gain wide acceptance. As mentioned
previously, the fact that this shortcoming was not
encountered previously attests to the lack of practical

applications of 1LQ controller theory.
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Abstract
Optimal control and filter theory using polynomial transfer functions requires the minimal
degree solution of a polynomia) bilateral Diophantine Equation. Algorithms for the general
solution of bilateral Diophantine Equations are available, but extending these to obtain the
minimal degree solution from the general solution is not trivial. Presented in this paperisa

methodology for determining the minimal realization from the general solution.

Introduction

The polynomial approach to optimel control and filter theory requires the minimal
degree solution of one or two matrix Diophantine Equations (MacGregor and Harris, 1987;
Roberts, 1986). While the solution of the unilateral Dicohantine Equation is straightforward,
the solution to the bilateral equation is considerably more complicated, although this
equation is more commonly encountered.

Kucera (1979) presented algorithms for the general solution of both the unilateral and
bilateral Diophantine Equations, although he only presented a methodolagy for obtaining a

minimal order realization of the unilateral equation, and did not indicate how the bilateral

1 Author to whom correspondence should be addressed.
2 Present Address: Xerox Research Centre of Canada, 2600 Speakman Drive,
Mississauga, Ontario, LSK 2L1

PAT-33



equation could be reduced. It is the purpose of this note to illustrate an extension of Kucera’s

algorithm in order to obtain a minimal degree solution of the bilateral Diophantine Equation.

Statement of the Problem
The equation to be solved for X and Y is:

AX+YB=C (1)
where A€Ryp(z], BERym{z] and C€Ry[z] are given polynomial matrices. For the design of
optimal controllers and filters it is necessary that the matrix X be of minimal degree, thus
determining a unique solution of the Diophantine Equation. The degree of the minimal
realization may be calculated by comperison of the degrees of each of the terms in the
Dicphantine Equation (MacGregor and Harris, 1987). Roberts (1986) stated that the minimal
representation may easily be obtained in 8 manner equivalent to that used by Kucera for
unilateral equations. That is, the general solution may be expressed as;

X=X0-TR (2)
where T is an arbitrary matrix and X0 is a particular solution to Equation 1. A right division
algorithm can be performed to give:

XO=UR+YV (3)
with deg V <degR
Setting T = U and substituting into Equation 2 gives X = V, with X being of minimal degree.
However, this methodology is not directly applicable to the general solution given by Kucera
(1979), as the general form resulting from Kucera's algorithm is:

X =U,, ®0- T-R)Ug/ @

Here the notation = means element by element (Schur) multiplication, and the unimodal

Smith form transformation matrices Uga and Ugg result from the formulation of the
algorithm, as shown in the next section.

The presence of the Schur mulitplication term in Equaticn 4 prevents transforming

this equation into the form of Equat.on 2, and thus it is not possible to use a matrix



polynomial division algorithm. Furthermore, multiplicatio:: of the XO and T-R matrices by
Usga and Ugp~! increases the degree of expression, and the effect of this multiplication must
be considered in order to attain the minimal realization.

A simple modification of the methodology proposed by Roberts {1986) would be to

rearrange Equation 4 as:

-1 _ (5)
Ups XUy =X0 - TR
The matrix T can be determined by solving the set of scalar equations:
XO0;=TyRy+ Vj (6)

and X can be determined by substitution of Equation 6 into Equation 5. Here the subscript ij
denotes the corresponding matrix element. Algorithms for performing polynemial division
are given by Kucera (1979), Wolovich (1984), and Zhang and Chen (1983). The matrix X then
equals UgaV Ugg ™!, which is unfortunately not the minimal realization of X, but rather the
minimal realization of Ugs ~ !X Uspg.

Modifications to the above algorithm which result in the minimal realization of X are
illustrated in this paper. Although the formulation derived here is applied to a system that
contains a Schur multiplication term, it is applicable to systems consisting of normal matrix

multiplication terms only as well.

General Solution of the Bilateral Diophantine Equation
For completeness, an outline of the algorithm for the general solution of the

Dicphantine Equation, as given by Kucera (1979) is shown below.

Step 1: Let
SA=UjaAUss (7N
Sg=UijgBUgsp (8)



be the Smith forms of A and B with invariant polynomials a3,ag,.... sy, &nd
by, bg....bg {i.e., S, is a diagonal matrix with polynomisls a; on the diagonal, the

subseript r indicates that A is of orderr).

Step 2: Premultiply Equation 1 by Uj 5 and postmultiply by Usg:

(9
-1 -1 _
U,AU,, U, XUy, +U, YU UpgBUp=U,,CU,
Step 3: Define
_ =1 (10)
X=U,, XUy
(11)
_ -1
Y=0U,YUg,
= _ (12)
cC=1y,€CU,
Step 4: Substitute Equations 7, 8,10, 11,and 12into 9:
S — -_ {13)
S, X+YS§;,=C

Step 5: Since S5 and Sp are diagonal matrices, they can be decomposed into the set of

independent scalar equations:

%%+§ﬁj= % i=1,2,..r j=1,2,..8 (14)
8 x; = ¢, i=1,2,..r. j=s+1,2,..m (5)
;ijbj = :ij i=r+1,..1; j=12,..8 (16)
0 = ¢, izr+l,..1; j=s+l,..m a7

b

Step 6: The general solution to this set of equations may be expressed as:

X =X0-T-R (18)

= 19
Y =YO+ 8T (19



Here X0 and YO are particular solutions, and T is an arbitrary polynomia! matrix.

Step 7: Substitute Equations 18 and 19 into 10 and 11 v obtain the general solution of X and

Y:
_ = =1_ -1 (22)
X =y, X Uy = U,,XO - TR} Ugy
=1 =1 (21)
Y=U YU,=U_(O+8DU,
Proposed Algorithm

The algorithm presented here is similar to that presented by Roberts (1986) in that
the value of T is found via & polynomial division algorithm. However, the matrix division
equation (Equation 3) is changed so that division may proceed element by element, and the
remainder term (and hence the X matrix) is of minimal order. This method depends on the

following theorem:

Theorem: The value of T in the general solution of the Diophantine equation, i.e.,

X =XO0 - RT (22)
where X is the minimal degree solution to Equation 1, is determined by solving the following
equation for Uand V:

X0=R'U+ YV (23)
and then setting T = W~! U. The minimal realization of X is then equal to V. The matrices
R! and W are determined from the factorization R = R'W, where W is the highest degree

unimodular right divisor matrix that can be factored from R (i.e., R and Rt are equivalent).

Proof: Clearly, X equals the remainder term V by direct substitution of T into Equation 22:
X = X0 -Rww-lu
X0 - R'U

(24)

it



and since from Equation 23, RtU=X0 -V, the above reduces to X=V.

It remains to be shown that the remainder V is of minimal degree. In polvnomial
division, the column degree of the remainder V is always less than the column degree of the
divisor Rt (Kailath, 1980), and therefore the smallest column degree of V occurs when Rt has
the smallest column depree. Therefore, the degree of W should be as large as possible, but W
is subject to the condition that it must be unimodular, as T is given by W1 U, which must be

a polynomial matrix. Therefore, V is of minimal degree when W is a unimodulur matrix of

maximum degree.

A similar theorem holds for the case:
X=X0-TWR' (25)

where W is the highest degree unimodular left divisor that can be factored from R.

For the general solution of the bilateral Diophantine Equation, examination of
Equation 4 indicates that the R°T matrix is pre- and post-multiplied by the unimodular
matrices Uz and Ugp ™! respectively. Applying the above theorem for this situation results
in the following equation for V:

U, , XOUZ =RT+V @)
As aresult of the Schur multiplication between R and T, this is further simplified to the set of

scalar equations:

. (27)
[UMXO U lij = RﬁTﬁ-f- Vu

Setting Xjj = Vjjresults in the X matrix which is of minimal degree.

Example

In this section, the above algorithm will be used to determine the minimal degree

solution of the Diophantine Equation for a non-trivial example, the optimal linear-quadratic



control of a packed bed reactor (Kozub et al., 1987). Using the transfer functions provided by

Kozub et &l., the Diophantine Equation becomes:

1.802° ~6.6428 +5.162° 5474 ~1.0225+ 7065~ 1727

—0.752° - 2.6228 + 2.275-0.11.% - 0.3527 1625- .19 0127 +.1028~.042°

-
1.0 +0.12621  _—0.12577% 1

021127 1.0-0.1397 "

L -

-2.74+2.222' +0.692+.1223+ 32  .50-.2421-.0822+.06:°-.01z-.01:°
X

-5.59+46.24z1-1.8622- 2962  .23-.2472! +.0922-.0623 + 0525 +.015°

1.0-z! 00
+zY* .
0.0 1.0-z

Here X is a matrix polynomial in R(z—!) and Y* is a matrix polynomial in R(z). For this
system the value of X may easily be determined by inspection. Comparing the degrees of each

of the above terms indicates that X is of degree zero and is given (by settingz~1=1) by:

1,126 -0.125
X =
0.211 0.861
Solving the Diophantine Equation using the algorithm given in Kucera (1979), gives the

general solution as:

1.0 2.15+41.1927 + .., -51434254+29650.52°
X =
0.0 1.0

26122+ ... +4702:M  [12.38:+ ... + 466.50 1 ]

0.0827°+ ...-0.1057°1 01825+ ... - 0.105:°18 ]




Now if X is determined using Equation 6, rather than the modified algorithm proposed here,

the resultant matrix is:

-863.4+0.271z7! +...6734.7°° —2312.8+0.7252”! +...18014.9:°
X=

0.211 0.861
Which is obviousiy of higher degree than the minimal realization, although the gain of this

matrix (i.e., the value at z=! = 1) is the same as the minimai reaiization. If the algorithm
presented in this paper is used, the term Uga, XO Ugg ~*, is divided element by elenient by R,

and as R is of degree one, the remainder term is of the proper degree zero and is given by:

1.126 -—0.125
X =
0.211 0.861
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Appendix 2

The MAPLE Symbolics Package

Throughout this thesis, the MAPLE Symbolics package was used
extensively for many of the matrix and calculus manipula-
tions. It was possible with this package to solve for and
manipulate the symbols in an equation, that is, equations
could be solved without expressing them in numerical form.
This is extremely convenient for the calculations undertaken
in this thesis, both for the matrix manipulations and the

calculus derivations.

For instance, as illustrated in Chapter 3, it was necessary

to determine the expression:
Gp(s) = [I - Gr(s)] 1Gp(s)

Note that the above matrices are all functions of s in the
Laplace domain, and contain both polynomials of s and
exponentiations of s. For matrices larger than 2x2, the
steps necessary to invert and then multiply the matrices are
extremely tedious. While a Fortran program could be written
to carry out the manipulations, it would likely be long and
cumbersome. In contrast, a solution for the above equation

could be obtained using the following three lines of code:
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IGI := linalg[add] (IDEN, GI, 1, -1):
IGIINV:= 1linalg[inverse] (IGI):

GT = 1linalg{multiply] (IGIINV, GP)

The first line of code adds the identity matrix (IDEN) to
Gr, the second determines the inverse of I+Gy, while the

third multiplies (I+Gr)~! by Gp to get Gp(s).

Similarly, MAPLE could be employed to determine the
derivatives of expressions, as was required for the model
reduction of the recycle transfer function. Because these
equations have exponentials of & in the denominator,
determining differentials as a function of s is cumbersome.
Indeed, Papadourakis et al. (1988,1989) describe an
algorithm for determining these derivatives. To do the

equivalent in MAPLE requires one command:

Here g is the term to be differentiated with respect to s,
and diff is the MAPLE command to carry out this

differentiation.

Lastly, MAPLE is useful in more classical contreol analysis,

as the block diagrams undertaken in this analysis are more
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efficient and illustrative if the symbolics are kept intact.
In fact, it should be possible to design and simulate an IQG
controller (which requires a substantial amount of abstract

linear algebra) using exclusively the MAPLE programming

language.
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Appendix 3

smith Matrix Algorithm

The purpose of this appendix is to illustrate how the
algorithm given by Kucera (1979) for determining the Smith
form of a polynomial matrix is inherently ill-conditioned.
As mentioned in Chapter 7, this algorithm was not iterative,
and should have determined the solution in a finite number
or steps. Failure of this algorithm precluded determining
the regulatory IQ contreoller for the entire extractive

distillation unit.

Given a matrix A, the algorithm requires, by suitable row

and column interchanges, to determine a matrix of the form:

(>

kk

k+1.k+1 -+ k+1.,m

al-- Ql
8- NI

l‘k-’-l . e
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After determining this matrix, it remains to check that
ay-1,k-~1 divides ag x, as this is a requirement of the Smith
form. If this is not the case, then a common divisor of
ax-1,k-1 @and agk,x 1s determined. This divisor may be

expressed as:

@k-1,k-1 P + ag,x 49 = g

The next step of the algorithm is to multiply polynomial p
by the elements in row k-1 and add this to the elements in
row k. Following this, the polynomial g is multiplied by
the elements in column k-1 and added to the elements in

column k. The rows and columns are interchanged to give:
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Following this, a further iteration is performed in order to
obtain the semi-diagonal form of the matrix similar to the
first matrix above. It is this step of the algorithm that
is ill-conditioned. Multiplying the matrix elements by p
and g increases the order of the polynomials, and usually
the magnitude of the polynomial coefficients. However, if
the matrix calculations were exact, the higher coei:icients
of these polynomials would sum to zero in the normal row and
column manipulations, leaving the resulting polynomials to
be of low order. But because there are residual errors,
particularly when the polynomial coefficients are not
integers, these polynomial coefficients do not sum to zero,
and the resulting polynomials bhave progressively higher

order with ever iteration, and the algorithm fails to

converge.
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Appendix 4

Btability of Recycle Transfer Functions

The presence of exponential terms in the denominator of
recycle transfer functions precludes the use of standard
techniques (Routh arrays, etc.) to determine whether the
system is stable or not. As illustrated in Chapter 4, use
of the Taylor Series expansion allows a simple way of
determining stability, and the purpose of this appendix is

to provide a proof of this methodology.

A recycle transfer function may be expanded using a Taylor

Series expansion to give:

K, = r"exp(-Tpyns)

(tys+1){rys+1)-rexp(~1,s) Pani(tis+1)(ras+1)"

Note that the denominator of the transfer function on the
left hand side contains the transcendental exponentiation
function, and there is no simple analytical expression to
determine the roots of this denominator. In contrast,
stability of the expression on the right hand side above may
easily be determined by examining two necessary and

sufficient conditions.
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The first condition is that the roots of the dencwinator of
each term in the expansion must lie on the left hand side of
the complex plane if the system is stable. Since these
roots are clearly 1/t},1/75k=1l,», then if r,.7;.20 then the
system is stable. Note that this is equivalent to stating

that each subsystem must be stable for stability of the

recycle system.

The other condition that must be satisfied is whether the

summation converges, i.e., does the following egquation hold:

r"exp(—rbns]

-3}

ai(t,s+1}(rs+1)"

The terms inveolving s in the above equation always have a

magnitude less than wunity, and the above condition is

therefore satisfied if:

Zr"soo

ne= |
To investigate the convergence behaviour of this term, let

S=lim ) r"

m-i-n.l
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Multiplying both sides by r and subtracting from the above
gives:

m

r§=lim) r

m-!lon_l

n~+1
(1-r)S =r=-limr"™
r-limr™

m+-==

S =
l1-r

Now for r greater than or equal to unity, the above
diverges, and the system is unstable. For r less than

unity, the system converges to r / (1-r), and the seriss

converges toc a stable value.

Q.E.D.



