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ABSTRACT

This research deals primarily with the design and implerentaticn
aspects of model based digital control algorithms. The performance of
model based digital controllers degrades whenever the proceszs input
saturates or the process model is significantly different from the tiue
process. Simulaticns and experiments have been performed to identify the
saturation problems in model based contrellers and four algorithms were
proposed to compensate for this problem. The saturation problem was
generalized to cover all situations where the output computed by the
model based coniroller cannot be applicd to the actual process. This
includes actuator saturation, operator override, temporary actuator
failure and asynchronous control. A generalized implementation scheme
of model based controllers was proposad and a dramatic performance
improvement was observed by using such an implementation scheme. The
second part of the thesis focuses on the robustness aspect of model
based controllers. The work reported here takes a time domain, rather
than the traditional frequency domain approach. A new stability
theorem and corollaries for uncertain systems have been derived and
applied to simulated processes. A new analysis method, Error Band
Method (EEM), has been developed to analyse the performance of a dynamic
uncertain control system. Monte Carlo simulations have been performed
to verify the validity of this approach. The method was extended to
include controller design and controller comparisons. This methodology
provides a different perspective to the analysis and design of uncertain

model based digital control system.
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CHAPTER 1
INTRODUCTION

1.1 INTRODUCTION

During the past decade computer process control has been gradually
accepted by the chemical process indusiries. Today, most operators rely
heavily on the computer. They very often cannct even run the process
without it. Computer control has become ar indispensable tool which
enables the operators to identify a more profitable operating region and

move the process to run at that region.

With the advances in computer hardware and operating systems, the
computer control algorithm has changed from being heuristic based to
model based. Heuristic algorithms such as PID (Proportional, Integral
and Derivative) contreller have been the main control algorithwms  for
over four decades in the process industry. The only way to make the
control system stable is to detune the PID controller. This is due to
the limited structure in the PID algorithm which cannot provide
adequate dead time compensation. Although detuning can make the
control system stable, the result is very often poor performance. In
order to improve the controller performance, one option is to make use
of a process model. Digital contrellers derived from a process model
are called model based digital controllers. If the process model is
correct and the implementation is proper, one should be able to achieve
closed loop performance which corresponds exactly to the controller

design specification and this would be the ideal situation. However,



when it comes to practical applications, the controller performance is
sometimes quite different from the designed specification (see Kusuma et
al, {1984)). This thesis addresses some of the problems assoclated with

these circumstances.

In many model based controller design algerithms it is assumed that
all of the control actions prescribed by the contreoller c¢an be
implemented. In fact, this assumption is often invalid. For example,
when a valve is fully open (saturation), any increase in the prescribed
centrol action will not be possible. Also, an operator override or
supervisory contrel override on the control action would be equivalent
to not implementing the prescribed control action. These situations are
not rare occasions. In fact, they happen quite often during normal
process operation. The effects of =aturation or override are seldom
addressed in either the controller cesign or its implementation. A
second issue surrounding the model based controller is the quality of
the process model, particularly in the processing industry where the
precess ig either poorly known or is too complicated to model except by
a simplified model. The discrepancy between the actual process and the
simplified model can cause the process performance to deviate from the
designed performance. The difficulty in the model mismatch problem is
the assessment of the effects of the mismatch between the actual process

and the process model.

There are tremendous economic incentives to solve the
implementation and model mismatch problems of model based controllers,

Accurate implementation can drive the system to operate closer to the



designed performance even in faces of saturatlen or override. Proper
handlihg of model mismatch in controller design can increase the time
duiing which the process operates within specification and decrease the
amount of product produced outside its specification. Higher production
within specification means higher Return of Investment. In the
processing industries, these are the key factors in maintaining a

competitive edge.

1.2 IMPLEMENTATION OF MODEL BASED DIGITAL CONTROLLER

A model based digital controller is an algorithm designed with the
aid of a process model. These controllers can be a piece of computer
code written in the host computer or a device function in a DCS
(Distributed Computer System). The common basis of these controllers is
the use of a process model. Usually a linear first order plus deadtime
model is used. The procedure is to take the process model and a design
criteria (desired closed loop time constant, desired variance, desired
bandwidth, etec.) through some mathematical operations and produce a
controller in the form of a difference equation. The implementation of
the difference equation is straight forward. However, what is not so
obvious is how to handle saturation, operator override, or supervisory
control override. The conventiconal approach is simply to take the
control actions which were actually implemented and to feed them back to
the difference equation for the next calculation cycle (see Smith
(1972), Luyben {1973} and Astrom et al. (1984)). However, this is not

the best way to handle these situations. The reasons for this problem



and its solutions are given in Chapters 2 and 3. By properly handling
the difference equation, one c¢an provide better performance during
saturation and override than the conventiconal way, provided that the

process model is adequate.

1.3 MODEL MISMATCH PROELEM

The model mismatch problem results from using a simplified process
model in the designing of the digital controller. Sometimes, one can
use a simple linear model to describe the entire behavior of the process
within the operating region. But for non-linear processes such as a
catalytic reactor, high purity distillation column, treating tank pH,
etc, a simple linear model is definitely not adequate. Usually one has
to lower the desired controller performance {"detune") of the controller
in order to stabilize the control system. If one detunes the controller
too much, the contreoller would not respond to any serve commands or
regulatory disturbances. Hence, there should be a balance point where
the control system 1is stable and still respeonsive to external
disturbances. This thesis focuses on a methodology to find this
balance point so that the resulting controller can perform well even

with a simple process model.

1.4 OBJECTIVE

Given that model based digital control algorithms improve control



performance in general, the objective of this thesis is to investigate
the issues related to the implementation of model based digital
algorithms. Two areas have been identified - saturation and model
mismatch. Saturation is a practical issue which causes lost performance
(see Gallun et al. (1985), Doyle et al. (1987), Campo et al (1990)).
There has been no research investigating why some model based
controllers lose performance while some {DMC, IMC, etc.) do not. This
thesis provides an answer to this issue. The model mismatch problem is
an active research area. Currently, there is no consensus as to ihe
solution. The freguency domain approach initiated in Doyle et al.
(1981), Postlethwaithe et al. (1981), Cruz et al. (1981) and Safonov et
al. (1981) is very popular, but the investigation is still far from
being a useful solution to the problem. This thesis offers a different
perspective by approaching the problem from the time domain. The Error
Band Method (EBM) has been developed in this work. This is by no means
a complete answer to the model mismatch problem. However, by providing
a different perspective to the problem and identifying the opportunities
with the time domain approach, this work can contribute to a general

solution in the future.

1.5 THESIS OUTLINE

Chapter 2 focuses on saturation protection for model based digital
algorithms. Four new saturation protection algerithms have been proposed
and are described in section 2.2. These algorithms were tested against
simulations and a stirred tank pllot plant process. The results are

collected in section 2.4. The conclusiens for the proposed algorithms



are described in section 2.5. Chapter 3 investigates the implementation
of model based digital controllers. The inadequacies of the
conventional algorithms are discussed, the causes of the inadequacies
are analyzed and remedies are proposed. These are contained in section
3.2. The proposed remedies are extended to MIMO systems. Simulations
were performed and the results are discussed in section 3.3. The link
between rational and irrational model based digital controllers is
explained in section 3.4 together with a conclusion. The model mismatch
investigation is covered in chapters 4 and 5. Chapter 4 focuses on the
stability aspects of the model mismatch problem. A theorem to test the
stability of the uncertain system has been developed and the derivatlien
is described in section 4.2 together with some corollaries of the
theorem. The performance aspects of the model mismatch problem are
discussed in chapter 5. A novel approach, the Error Band Method (EBM)
was developed to measure the performance of an uncertain control system.
The rationale and the procedures of the EBM are explained in section
5.3. A step-by-step example is given in section 5.4 to illustrate the

procedure of using the EBM to evaluate the performance of a model

mismatch system. Section 5.5 exemplifies two applications of EBM -
tuning and comparison of digital contrellers. Chapter 6 provides a
summary and conclusion of this thesis. There are still many areas,

particularly in the model mismatch area, which can be further
investigated. These research opportunities are identified and described

in section 6.2.



CHAPTER 2

SATURATION PROTECTION OF MoDEL BASED DiGITAL ALGORITHM

2-1 Introduction

Although the concept of digital control has been around for several
decades, the preocessing industry has been slow to incorporate this
technology. With the dramatic inerease 1n hardware and software

reliability over the past decade, digital controllers are replacing the

old analog contrellers. Usually these digital controllers are
implemented in a distributed computing environment. The system is
usually referred to as a Distributed Control System {(DCS). The

distributed layout increases system modularity so that redundancy can be
incorporated to enhance the system reliability. Inside these
distributed computers are preprogrammed functions such as filtering,
summation, multiplication, ratioing, PID contrel, Polynomial digital
control, etc. Some systems are flexible enough to allow BASIC or C
language programming for more advanced applications. All these tools
aim at improving the guality of process control. Unfortunately, in many
commercial or even custom-built contreol systems, one aspect of

implementing these digital controllers has been overlooked - Saturation.

Saturation occurs when the final control element, the physical
device acting on the manipulated variable, is temporarily unable to
respond to the signal from the controller. For the three term

controller (PID}, many anti-reset windup algorithms have been used to



handle the saturation problem (Gallun et al. (1985), Astrom et al. 1984,
Luyben (1973), Smith 1972). The typical strategy is to use conditional
integration; 1i.e., integrate the error only when it is appropriate.
When the PID controller 1is expressed explicitly in Proportional,
Integral and Derivative terms, it is easy to implement the conditional
integration algorithm. However, these terms are usually collapsed
together in model based digital controllers and saturation protection is
often implemented as a simple clamping of the controller output. By way
of an example, Figure 2.1 shows the simulation of a DAHLIN controller
(Dahlin (1968)) on a stirred tank process with a simultaneous failure of
the final control element for 10 contrsl periods and a setpoint change.
Curve (ii) is the response when the conventional clamping algorithm is
used for saturation protection, while curve (i) is the respconse without
saturation protection. Although the control signals in curve (i) were
greater than 10 volts for some periods, the final control element
saturated at 10 volts and control signals greater than this value were
of no use in achieving the desired closed locp performance. This figure
shows the need for a saturation protection algorithm to prevent windup.
However, the consequence of using conventional clamping is that the
optimality of the model based digital controller may be lost. This is
illustrated in the experiment shown in Figure 2-2a. By comparing the
three curves in Figure 2-2a: curve (i) represents the desired closed
loop response (DCLR), curve (ii) the closed loop responses produced with
the best saturation algorithm and curve (iii) from the conventional
clamping method, one can see that the conventional clamping method
results in a sluggish output response. One can conclude that two

aspects should be considered in dealing with the saturation problem;



controller windup and closed loop optimality. The conventional clamping

algorithm solves only the windup problem.

This chapter investigates some of the problems caused by
implementing model based digital controllers in applications where the
manipulated variable saturates; it then proposes and evaluates {four
solutions to these problems. The reset windup problem in model based
digital controllers can be sclved by employing either anti-reset windup
or simple clamping methods. However, simulation and experimental
results show that these methods produce a much slower process response
than the algorithms proposed in this chapter. Four saturation
algorithms were studied, ranging from an improved anti-reset windup
method to an on-line constrained optimization, with the aim of improving
the process response during pericds of manipulated variable saturation.
The simulations and experiments were performed on a pillot-scale
stirred-tank process involving dead-time. These simulations and
experiments were designed to show not only the improvement in the closed
loop performance by incorporating these saturation algorithms into the
model based digital control algorithm, but also the robustness of these
saturation algorithms to the severity of the control problem and to
model mismatch. They show that it is worthwhile to include these

saturation algorithms in model based digital controller designs.

The four proposed saturation algorithms are introduced in the next
section. The rationales behind each algorithm are discussed. These
algorithms are verified by simulations and experiments of a pilot-scale

stirred-tank process. Detalils of the process are presented in section



2.3. The simulation and the experimental results are described and
discussed in section 2.4. A conclusion follows in secticen 2.5. This
chapter deals mainly with SISC systems. The treatment of saturation

problem in MIMO systems are discussed in Chapter 3.

2.2 SATURATION ALGORITHMS

Four saturation algorithms are presented in this sections. They
differ 1in the extent to which they make use of process model
information. Digital controllers which are designed using a process
model and a performance criterion are referred to here as model based
digital controllers. Since model based digital controllers already make
use of a process model In the controller design equations, the
accompanying saturation algorithm can also make use of this information.
These algorithms are designed to solve the saturation problem for single
input single ocutput systems (SIS0) and are arranged in the sequence of
increasing computational efforts. A heuristic algorithm represents the
idea of conserving the control action prescribed by the model based
digital controller. A new anti-reset algorithm freezes the integration
of the cutput error only wren the saturation is a resuit of the integral
action. An optimal switch algorithm makes use of the process model to
explicitly calculate the optimal period for the control action to stay
at the saturation limit. The last algorithm, QIMC, treats the
satufation problem as a constrained optimization problem. [t will
provide the ultimate performance for a system with saturation, but will

require the greatest computation.
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The DAHLIN digital controller (Dahlin (1968)) was chosen as an
example of a model based digital controller. A desired closed loop
trajectory is specified in the design of this controller but the actual
closed loop trajectory will not follow the desired trajectory when
saturation occurs. Therefore, the sum of squared deviations of the
actual closed loop trajectory from this desired trajectory can be used
as a measure of the effectiveness of the saturation algorithm (see

equation 2-1).

T’ +i+f 2

cL cL
E: [Y actuaL 4t T Y pesred?’ ] (2-1)

j=j+1+f

where T’ is chosen as six time open loop constants (6t)
i is the current discrete control interval
f is the number of actual periods of delay in the process
model
cl. stands for closed loop

2.2.1 Conventional Saturation Protection

Many papers have proposed solutions to the windup problem, (Gallun
et al.(1985), Astrom et al. (1984), Smith (1972) and Khandria et
al.(1976}). These papers focus on the saturation problem in PID
controllers. The conventional solution is to freeze the integration of
the output error whenever the control action saturates. This is easy to

implement in the case of a PID controller because the integration term
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is explicitly expressed in the controller. However, model based digital
controller designs usually collapse the Proportional, Integral and
Derivative terms together as polynomials in VU(i) and E(1). The

velocity form of a general digital controller is:

QUCL) = BO1I*QU{I-1)+B(2%QU( 120+ . +B(Nb}*TU(i-Nb) (2-2)
—a(0)*E(1}  ~a{l)*¥E(i-1) -...-a(Na)*E(i-Na)

where the a(z) and B(z) polynomials are the results from
Dahlin Control design; Wright et al, (1988)

Harris et al.(1982) show that equation 2-2 can be separated into
terms which represent Proportional, Integral, 1st and higher order
Derivatives and Dead-time compensation contributions. The velocity form

of the general model based digital controller when Na=4 is:

VUCi) = BOI)*VU(I=-1)+B(2)*VU(i-2)+...+B(Nb)*VU(i-Nb) (2-3)
+KI1#{E(1)-EC(i-1)]
+K2*E( 1)

+K3*[E(1)-2E(i-1)+E(i-2)]
+K4*[E(1)-3E(i-1)+3E(i-2)-E(i-3)]
+KS*[E(1)-4E(i-1)+6E(i~2)-4E(i-3)+E(i-4)}]

where the K parameters representing the Proportional, Integral and

Derivative gains can be related to the « parameters in Equation 2-4 by

K5 = ~a(4) ;

K4 = -4,0%K5 + a(3) ;

K3 = -a(2) - 3.0%K4 - 5.0%K5 ;

Kl = a(l) - 2.0%K3 - 3.0%K4 - 4.0%K5 ;

K2 = —-a(0) - KI - K3 - K4 - K5 ; {2-4)

12



and the B parameters represent the Dead-time compensation terms. The
analogous Positional Form of the general model based digital controller

with Na=4 is:

UCi) = Uss+B(I1)*U(i-1)+B(2)*%U(i-2)+...+B(Nb)*U({i-Nb) (2-5)
+KI*E(i)
+K2* ¥ E(i)
+KI*[E(i)-ECi~1)}]
+ g [E(]}-2E(i-1)+E(i-2)}]
+K5%*[ECi}-3E(i-1)+3E(i-2)-E(i-3)]

where Uss 1s the steady state value of the controller output.

Once the model ©based contreoller has been rearranged into
Proportional, Integral etc. terms, then anti-reset windup can be
applied. During saturation, the conventional anti-reset windup
algorithm would freeze the summation term in the positional form,
equation 2-5, thus stopping the integration. This algorithm can be

implemented on digital computer as the following:

C AFTER CALCULATING U FROM EQUATION 2~5 WITH E As THE CURRENT ERROR
C SUM IS THE SUMMATION TERM K2*Z E(I)

IF {U.GT.ULMAX) THEN
U = UMAX
c STOP SUMMATION
SUM = SUM - K2 * E
ELSEIF (U.LT.UMIN} THEN
U = UMIN
C STOP SUMMATION
SUM = SUM - K2 * E
ENDIF (2-6)

13



When the velocity form, equation 2-3, of the model based digital
controller is used in applications where the actuator requires an

absolute signal rather than an incremental one, the controller output

U{i} is calculated as:

Ui} = U(i-1) (2-7)
HRO1I*¥VUCI-1)+B(2)*VU(i-2)+.. . +B8(Nb)*VU(i-Nb)
+KI*{E(1J)-E(i-1)] + K2*E(i)
+K3%[E(1)}-2E(i-1)+E(1i-2)]
+K4* [E(1)}-3E(i-1)}+3E(i-2)-E(i-3)]
+K5%[E(])-4E(i-1)+6E(i-2)-4E(1=-3)+E(i-4)]

and the conventional anti-reset windup algorithm is usually implemented

as a simple clamping:

c AFTER CALCULATING U FROM EQUATION 2-7
IF (U.GT.UMAX) THEN
U = UMAX
ELSEIF (U.LT.UMIN) THEN
U = UMIN
ENDIF (2-8)

This combination of a conventional clamping algorithm and a
velocity form controller, equations 2-7 and 2-8, is not always
eguivalent to the anti-reset windup algorithm used for the positional
form. equations 2-5 and 2-5. Writing an expression for U(i-1) by
shirting equation 2~7 backwards by one control interval and using this
to substitute for U(i-1) in equation 2-7, leads to equation 2-5 upon
repeated substitution for U(i-2), U(i-3) ... U{i-N). Segall and Taylor
(1986) show that this velocity form will be equivalent to the positional
form provided that no terms are discarded during the substitution

process. However, the clamping of the control action with the
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conventional clamping algorithm, equation 2~8, under a velocity form
controller simply discards terms; thus the velocily algorithm is no
longer equivalent to the positional algorithm. Since output errors are
being discarded during saturation, the apparent error seen by the model
based digital controller is smaller than the actual error. As a result,
the clamping algorithm prevents windup due to error accumulation during
saturation, but the process response becomes sluggish. Under these
conditions, the process output does noi follow the response specified in
the controller design procedure and the advantages of using a model
based digital controller are lost. The purpose of the subsequent
algorithms is to retain the windup protection capability while

preserving the optimality of the model based controller.

2.2.2 New Anti-reset Algorithm

This saturation algorithm is due to Segall and Taylor (1986). The
idea stems from the observed difference in the operation of the velocity
and positional forms of a model based digital controller during
saturation, equations 2-7 and 2-5. Iin order to minimize this
difference, Segall and Taylor suggested that the reset windup algorithm
should make a distinction between saturation due to integral action and
saturation due to Proportional, Derivative and Dead-time compensa:ion
terms. The integration should be frozen only when the saturation is due
to the integral action since error can only windup througzh the integral
mode. This idea is similar to the technique used in Gallun et al.

(1985). Although they focused mainly on PID controllers, their "control
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path" concept in implementation can be used in meodel based controllers
to prevent windup in cascade and feedforward control configurations. A
Fortran listing of the New Anti-reset algerithm applied to model based

digital controllers is shown in APPENDIX A.1.

2.2.3 Heuristic Algorithm

In the conventional clamping algorithm, equation 2-8, th: digital
controller discards excess control action whenever the control action
saturates; this results in a slow closed loop response. Intuitively, if
one preserves the contreol action and at the same time avoids the windup
problem, then one would expect to obtain a better performance. One way
to do this is to augment the current control action with the excess
control action from the last control interval. However, if the current
control action also saturates, one has to discard the excess control
action in order to prevent windup. Hence, only one past excess control
action can be preserved. The FORTRAN-77 code for this Heuristic
algorithm is listed in APPENDIX A.Z. This is a totally intuitive

approach and the resulting trajectory is usually underdamped rather than

ocverdamped.

2.2.4 Optimal Switch Algorithm

If one observes the closed loop response of the conventional

clamning algorithm in Figure 2-2a, one would notice that the control
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action comes off the saturation too early. If the control action were
to stay at the limit a little longer, the performance would be improved.
The Optimal Switch algorithm is based on this observatlion. The essence
of this algorithm is to make use of the process model to determine how
long the control action should stay at the saturation limit. When the
model based controlier prescribes a control action which is outside the
physical limit of the manipulated variable, this saturation algorithm
overrides the controller and calculates how long the contrel action
should stay at the limit so that the performance criterion in equation
2-9 will be minimized. 1In effect, this is a dual control strategy in
which the saturation algorithm takes over when saturation occurs and the
linear digital controller is operative when the manipulated variable is

not at one of the saturation limits.

When the manipulated varlable saturates at the 1ith control
interval, evaluate the performance index, I, over the future horizon, P,

for a saturation period of k control intervals.

i+P+f
. _ . , 2 _
TCI+1+1:P, k)= E: { Ydesired(J) Ypredicted(J) } (2-9)
JEi+1+f
for k =1, 2, e, P

These calculations are repeated for different wvalues of k until the
minimum performance index is found. The future horizon was chosen to be
six times the open loop time censtant, PT = 6t, in order to allew the

predicted output to acnieve steady state. Ydesjred(J) are the elements
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of the desired closed loop trajectory which is specified during the
design of the model based controller. In this study, a DAHLIN

controller was used and so the desired trajectory was an overdamped

exponential trajectory. Yprediected(J) are the elements of the

predicted closed loop trajectory from the feollowing convolution

summation:
N
Ypredicted(J+f) = E: h(l) = U(j-1) (2-10)
1=0
for j=i+l,i+2, .... i+P
where h(1) are the process impulse weights of order N. The process

inputs, U(j-1), used in equation 2-10 are determined by three different
mechanisms. For ({(j-1} < i, we can use the past process inputs since
these correspond to the pre-saturation perioed, During the particular
saturation period under consideration, k, the process input must be held

at its limit; thus faor i=s(j-1)<i+k,

U(j-1) = saturation value of U (2-11)

After the saturation period, we switch back to closed loop operaticn

using the feedback controller to calculate the process input; thus for

i+k = (j-1) < i+P
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Ng

U(j-1)=§: g(m)*{ Ydesired(J-l-m+1)-Ypredicted(J—l—m+1) (2-12)
m=1

where g{m) are the controller impulse weights of order Ng.

This algorithm is operative whenever the control action saturates
and, in effect, performs a discrete simulation of the control system in
order to search for the optimal saturation period. We used a direct
search starting with 1 period of saturation. Egquations 2-10, 2-11 and
2-12 are used to predict the output response and equation 2-9 is used to
evaluate the performance index. After incrementing the saturation
period, the <calculations of the predicted output response and
performance index are repeated. The saturation period continues to be
incremented until the performance index starts to increase. This
terminates the search and the optimal saturation period is the one
associated with the lower performance index. Note that it is assumed
that the objective function is a monotonic function of the saturation
period. The experiences from simulaticons and experiments show that this
is in general true for 1lst order plus dead time systems. For guaranteed
optimal solution, one can calculate the objective function I, 1in
equation 2-9 for the entire horizon P and pick the optimal saturation
period. The manipulated variable is then held at its saturation limit
for the optimal saturation period before reactivating the f{eedback
controller. Since the calculations involve only linear difference

equations, the computation time is not crucial.
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2.2.5 Constrained Quadratic Internal Model Control (QIMC)

The motivation for using QIMC comes from the desire to obtain the
best possible response from a saturated system. One way to achieve this
objective is to formulate the control problem as a constrained
optimization. In doing this, QIMC becomes a constrained optimization
algorithm rather than a control and saturation algorithm since it
calculates the process inputs which will explicitly optimize the
performance of the system while satisfying the constraints. The
development of QIMC follows from the work of Richalet et al. (1978) and
Martin (1981) on predictive, model based control and from the work of
Garcia et al. (1981} on Internal Model Cantrel (IMC). The framework
proposed by Garcia et al. {(1981) was used to define the process model in
terms of its impulse weights and the past and future process inputs.
This is incorporated into an on-line, constrained optimization procedure
which minimizes a quadratic performance index. This differs from the
Quadratic Dynamic Matrix Control (QDMC) proposed by Garcia et al. (1984)
in the way in which the control problem is posed as an optimization

problem and the way in which the on-line optimization with constraints

is solved.

For a Single Input Single Qutput (SISO) process, the following
section shows how to transform the problem of a saturating controller
into an optimization problem. The objective is to minimize the sum of
squared deviations between the predicted and desired output response

while satisfying constraints on both the value and rate of change of the
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manipulated variable and on the value of the predicted process output.
At the ith interval we have the measurement of the current process
output, Ymeasured(lj’ and we want to compute the process input for the

current interwval, U(i).

2.2.5.1 Process Output Prediction

Define a vector, Ypredicted(1+1+f:1+P+f), containing a prediction
of the process output from the i+1+f up to the i+P+f Interval in terms

of : a vector, (i:i+M-1), containing the sequence of process

Ufuture
inputs from the ith up to the i+M-1 interval which will be computed so
as to optimize the process performance; a vector, Upast(i-N+1:i-1).
containing a record of the process inputs from the i-N+1 up to the i-l
interval; a vector, Epredicted(l+1+f:l+P+f)' containing a prediction of
the effects of model uncertainty and external disturbances from the

i+1+f up to the i+P+f interval; and the matrices ¥ and ¢ containing

impulse weight information:

Ypredicted(1+1+f:1+P+f) = § * Ufuture(x:ifﬂ—l) + (2-13)
+ ¢ * Upast(l—N+1:i-1) +

Eredicted1*1:1+P)

These vectors define the amount of preocess information available at each

interval for the computation of those process inputs which will optimize
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the process performance. They define a subset of the total process
information and so define a local optimization problem at each interval.
We need to solve this sequence of local optimizations, rather than one
global optimization, because there are unknown external disturbances and
the model is nst perfect. This 1s similar to the Moving Window
Optimization concept. The forecast for the model uncertainty and
external disturbances, Epredicted(i+1+f:i+P+f). ran be derived from
either a stochastic noise model, if one is justified and available, or
from a deterministic model. In this application, it was assumed that
the process disturbance and model uncertainty were constant over the
precdiction horizon, P, and were uncorrelated with either past or future
values. Therefore, all the eliements of Epredicted(j+1+f:j+P+f) were

assumed to be equal to the value of the prediction error at the ith

interval. Thus, the jth element was defined as:

EPfEdiCtEd(j+f) N Ymeasured(i) B Ypredicted(i) (2-14)
and
N
YPredicted(j+f)=Z h(1) * U(j-1) (2-15)
1=0
for j=i+1, i+2, .... , I+P

where h(l) are the process impulse weights.
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2.2.5.2 Optimization Procedure

For the prediction period, i+1+f to j+P+f, the deviations of the
predicted output from the desired trajectory are used to define an error

vector which is to ke minimized:

£ iv]+f ivP+ = ; . i a3
Etrajectory‘i+1 F:irP+f) Ydesired(l+1+f.1+P+f) 2-16)

Ypredicted(1+1+f:1+P+f)

In this work an exponential response for the desired output trajectory
was chosen so that the results for QIMC could be compared to those from

the DAHLIN controller. Then by substitution for Y . (i+1+F: i+P+f)
predicted

from equation 2-13:

Etrajectory(1+1+f:1+P+f) = Ydesired(1+1+f:z+P+f) (2-17)

- @ * [ (i-N+1:1i-1)
past

Epredictedt ¥ 1t i+P+f)

~ ¥ o* Ufuture(1:1+ﬁ-1)

and defining E as these terms in equation 2-17 which are not functions

RR

of Ufuture
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ERR = Ydesired(i+1+f:1+P+f) -9 * Upast(i-H+1:i-1) (2-18)

- Epredicted(l+1+f:l+P+f)

the trajectory error can be expressed as

Etrajectory(1+1+f:1+P+f) = ERR - W*Ufuture(1:1+ﬁ-1) (2-19)

The optimization problem is to find the future control actions,

U which will minimize the sum of squared deviations from the
future

desired ¢trajectory. Thus, the optimization problem can be written
simply as:
; T 3
Min E .y * £ , = (2-20)
trajectory trajectory
U
future

T
= Min ERR - W*Ufuture * ERR - Q*Ufuture }

-

future

where ET . is the transpose of the vector. Upon expansion
trajectory
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T =
Min Etrajectory * Etrajectory 1 - (2-21)
Ufuture J
v T _ T
= Min ERR ERR 2% ERR * W*Ufuture

Ufuture

T
* Ufuture ¥V e Ufuture }

the scalar quantity E;R . ERR is a constant which is independent of

u . Therefore, the performance index to be minimized, I, can be
future

formulated as:

. L s T ~
Min [(i+1:i+P;M)=Min F*Ufuture + Ufuture*A*Ufuture} (2-22)
Ufuture Ufuture
r=-2%£6.*%
A = WT "y

Subject to the constraints on the value of the manipulated variables:

U (i:i+M-1)= U
ow

i ure(i:1+M-I)£ u J:gh(.LuH‘I—I)

fut h

Subject to the rate of change constraints on the manipulated variables
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(i:i+M-1)-U

Futupe(im1 IHH=2)] = U

| Uf”t“re difference(i:i+ﬂ-1)

Subject to the constraints on the value of the process output variables:

Y (i+1+7:1+P+f) = Y
low

predicted(1+1+f:i+P+f) = Yhigh(j+1+f:j+P+f)

If constraints on the process outputs are specified, then equation
2-12 will have to be solved at each iteration of the optimization
algorithm. For a linear process, A and ' will be constant during the
optimization iterations but ERR and hence I' will need to be evaluated
each time the QIMC algorithm is used to compute a new sequence of
process inputs. In this application of the QIMC algorithm to provide
the optimal performance under saturation conditions; the positional
constraints on the manipulated variables were determined from the
physical limitations on the heater units, the rate of change constraints
on the manipulated variables were set to *w in all experiments, and the
constraints on the process outputs were set to *w in all the
experiments. The constrained optimization problem, equations 2-14,
2-15, 2-17 and 2-22, can be solved by many algorithms. For this work,
the constrained Hill algorithm due to Resenbrock (1960) was chosen

because of its simplicity, see Kuest (1973).

One of the key questions in solving optimization problems is the
computation time. This is especially important in process control where

the computation time has to be less than the control interval. From the
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form of the objective function, equation 2-22, it is clear that the
computational effort will increase as one increases the number of future
control actions over which the optimal solution is sought. Fortunately
one can focus, in many instances, on the case: Qutput Horizon {P) equals
to 1 and Input Horizon (M) equals to 1. This has been shown in Garcia
et al. (1981) to be equivalent to a dead-beat controller, but a smoother
output response can be obtained by reshaping the setpoint with a filter.
For a system with 20 impulse weights, with both input and prediction
horizon set to 1, the computation time is less than 1 second on a VAX
11/750 minicomputer without a fleoating point accelerator. I[n the case
of a non-minimum phase system, the invertibility problem can be sclved

by increasing the prediction horizon (P).

Segall et al. (1985} derived an analytical solution teo the
saturation problem for the one-step ahead Minimum Variance controller of
Clark and Hastings~James (1973). This is equivalent to the P=1 and M=1
case in QIMC with positional, but not rate of change, constraints.
Segall et al. found that for a first order process, their saturation
compensation algorithm possesses a structure similar to the Heuristic
algorithm reported here; i.e., the last unimplemented contreol action is
added to the current control actien. Their algorithm takes a fraction
of the past unimplemented control action 1instead of the full
unimpiemented control action used in the Heuristic algorithm. The
fraction is determined by the process dynamics, the noise meodel, and the

desired closed loop trajectory.

One advantage of QIMC algorithm is the natural extension to MIMO
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systems. The QIMC objective function in equation 2-20 can be easily
modified to include MIMO systems. The general treatment of MIMO

saturation problem are discussed in Chapter 3.3.

2.3 PROCESS DESCRIPTION

The process under investigation was a pilot-scale stirred tank
process. A schematic diagram is shown in Figure 2-3. This work focuses
on controlling the {luid temperature which, depending upon the
application, was measured at the outlet of a 3 meter long pipe or at the
outlet of the bottom tank. The inlet flow rate was measured by a
rotameter and the nominal flow rate was 3.4 litre/minute. Two sets of
manually controlled heaters were used to adjust the equilibrium tank
temperature. Another set of heaters was used to implement the control
action so that the tank outlet temperature could be controlled. A
DEC (Digital Equipment Corporation) DPM23 equipped with the industrial
I/0 subsystem IPV12 served as the interface between the process
equipment and a VAX 11/750. The DPM23 front end was connected to the
host VAX 11/750 computer through a DECDataway network. A general
application software package was written to enable the communication
between the DPM23 and the 11/750 computers. The netwosrk supported six
pieces of process equipment: a stirred tank process, an extractive
distillation column, a selvent extraction column, a catalytic packed-bed
reactor, a pH mixing tank and a polymerization reactor train. Details
about the hardware and software of this network are contained in Wong

(1983) and Segall (1983). All the control algorithms for this
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stirred-tank process were written in FORTRAN-77 on the host computer and
they were incorporated inte an interactive real-time control program
which was capable of monitoring the process varlables, activating
different controllers, performing data logging and plotting historical

data on-line.

Since a process model is required in order to design a model based
digital controller, empirical meodels of the process were identified
using step tests. It was found that the nominal process (Process 1)
could be adequately described by a first order plus dead-time transfer
function relating the the voltage signal going to the heater in the top

tank to the temperature at the end of the dead time pipe:

0.95 ¢ %

G (s) = (2-23)
255s +1

Discretizing with a control interval of T = 45.0 second gave the pulse

transfer function for Process 1

0.15372"°
c (z ') = —~ (2-24)
P 1.0 - 0.8382 z

In order to check 1if the proposed saturation algorithms are

sensitive to the severity of the control problem, the process was
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modified so that the ratio of dead-time to time constant was greater
than wunity. Equations 2-25 and 2-26 represent respectively the
continuous and discrete transfer functions of the modified process
(Process 2). To modify the physical process, the overflow pipe shown in
Figure 2-3 was shortened so that the tank veolume and hence the process
time constant were reduced and the extra dead-time was added by using a

delay vector for the temperature measurement in the real-time computer

control program.

0.95 ¢ 2008

G (s5) = (2-25)
P 180s +1

Discretizing with a control interval T = 40.7 second yielded the pulse

transfer function for Process 2 :

0.1537z %

) = — (2-26)
1.0 - 0.8382 z

A 2nd order process (Process 3) was created by using the top tank
heater to control the bottom tank temperature. Fitting a 1st order with
dead time transfer function to the 2nd order relaticnship between the

bottom tank temperature and the top heater voltage gave :

0.9 e-IEOs

G (s) = (2-27)
P 200 s + 1

30



In fact, this is a practice used in many industrial applications whereby
the process 1is modeled by a low order transfer function. A simple
process model results in a simplified controller design procedure.
Discretizing equation 2-27 with a control interval of T=50.0 second

would yield :

y 0.199 z ¢
G(z ") = =3 (2-28)
P 1.0 - 0.7888 z

In order to illustrate the 1load disturbance problem, a
computer-controlled heater unit in the bottom tank was used to act as a
load disturbance to the control system. The bottom tank temperature was
controlled by the top heater unit as in the case of Process 3, and the
process transfer function was described by equation 2-27. A load
disturbance gave a transfer function between the bottom tank temperature

and bottom heater voltage of :

0.98 :
G (s) = (2-29)
110 5 + 1

The model mismatch problem was tested by reducing the inlet water
flow rate to the two-tank system to 40% of full-scale. Empirical step
tests showed that the transfer function between the tank top heater and

the bottom tank temperature could be adequately described by equations
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2-30 and 2-31 for the up and down dynamics respectively.

2.1 e-I50s
G (s) = (2-30)
p 750 s + 1
1.9 o"250s
G (s) = (2-31)
p 700 s + 1

At this low flow rate, the preccess shows asymmetric dynamics., Notice
that the process gain and the process time constant differ by about 100%
and 250% respectively from those in equation 2-27. The DAHLIN and QIMC
controllers, which were designed using equation 2-27, were applied to

this process in order to observe the model mismatch effect on the

saturation algorithms.

2.4 EXPERIMENTAL AFPPLICATION OF THE SATURATION ALGORITHMS

Before any experiments were run, simulations were performed to
investigate the proposed saturation algorithms. The performance indices
from these simulations appear in Table 2-1 and in the bar charts in
Figures 2-4 and 2-6. The simulations show that the proposed saturation
algorithms provide an improvement over the conventional clamping
algorithm. In order to verify that the improvement can indeed be

realized in practice, experiments were performed on a physical stirred
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tank process. The experimental results are shown in Figures 2-2 and 2-5
with the corresponding performance indices shown in Table 2-1 and on the

bar charts in Figures 2-4 and 2-6.

Figures 2-2a and 2-2b show the experimental application of the
different saturation algorithms to the stirred tank process configured
as Process 1. Curve (i) is the desired closed loop response for which
the Dahlin controller was designed using Equation 2-24 as the model of
the process. The desired closed loop time constant is chosen to be 1/4
of the open loop time constant; i.e., the closed loop time constant was
64 seconds. Curve {ii) is the control system under QIMC control. For
this run there is no constraint on the rate of change of the manipulated
variable and the desired set point trajectory is equal to that of DAHLIN
contreller. An exponential low-pass filter with time constant 64
seconds was installed in the feedback path to reduce the noise in the
temperature measurement. These experiments demonstrate that the
conventional clamping algorithm with model based digital contrellers is
inadequate. QIMC, curve (ii), provides the best response (in a least
squares sense) and the conventional clamping approach gives the worst
response. Curves (iv), (v) and (vi) correspond to DAHLIN control with
the Heuristic, New anti-reset and Optimal switch algorithms
respectively. It is interesting to note that all the proposed
algorithms perform better than the conventional clamping method. The
corresponding performance indices (sum of squared deviations from
desired trajectory) for Process 1 are listed in Table 2-1 and

illustrated in Figure 2-4.

33



In order to demonstrate that the effectiveness of the proposed
saturation algorithms is not significantly affected by the severity of
the control problem, the process was deliberately modified so as to
increase the dead-time to time constant ratio. The modifications
changed the dead-time from 45 to 200 seconds and the time constant from
255 to 180 seconds; this became Process 2. The appropriate process
model, equation 2-26, was used to re-design the DAHLIN and QIMC
controllers. The feedback filter for the QIMC controller was again used
in this experiment. The Performance Indices for this process are shown
in Figure 2-6 and listed in Table 2-1. Results of the experiments are
plotted on Figures 2-5. The experiments on Process 1 and Process 2
agree very well with the simulation results. The conventional clamping
algorithm was consistently the worst saturation algorithm in both the
simulations and experiments. The values of the performance indices in
Table 2-1 for simulation runs differ slightly from the experimental ones
because of measurement noise and inevitable model mismatch effects. The
temperature measurement had a precision of +0.15°C which affected the
calculated control action and  Thence the output performance.
Furthermore, the performance index obtained from the simulations assumed
that the model used in the controller design was an accurate description
of the actual process; this was not always true in the experimental
runs. The mismatch between the model used in controller design and the
actual process also affected the closed loop output performance and
hence the performance index. However, the simulation and exéerimental
results concur that QIMC, Optimal Switch and the New anti-reset
algorithm show improvement over the Heuristic algorithm and that all the

proposed saturation algorithms show considerable improvement over the
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conventional clamping algorithm.

2.4.1 Regulatory Control with Saturation Algorithms

The DAHLIN and QIMC controllers used in the previous experiments
were designed as servo controllers. It is possible to re-design them
for disturbance regulation when the type of disturbance is specified
(Mosler et al. (1967) and Smith (1972)}. Since explicit model
information is used in the Optimal Switch and QIMC saturation
algorithms, a model of the disturbance would be needed in order to
achieve optimal regulation during periods of saturation. In particular,
equations 2-12 and 2-14 would need to be modified to include the effect
of the disturbance on the predicted output. However, the purpose here
is not to investigate the design of TCAHLIN and QIMC contrcllers for
regulation but to demonstrate that the proposed saturation algorithms do
not experience numerical instabilities when the process is subjected to

load disturbances rather than set point changes.

The disturbance regulation experiments were performed on Process 3.
This is actually 2nd order between the bottom tank temperature and the
top tank heater voltage but was modeled as !st order with dead time.
The DAHLIN and QIMC controllers were designed using equation 2-26 for
setpoint changes with a closed loop tine constant of 50 seconds. A low
pass filter with a time constant of 50 seconds was also used in the
feedhack path of the QIMC controller to reduce measurement noise. The

disturbance was a step change in the bottom tank heater voltage from 5
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to 1 volt. This affects the bottom tank temperature in a purely i1st

order manner as seen in the load transfer function in equation 2-29.

The experimental results from Process 3 are shown in Figures 2-7a
and 2-7b. Since the controllers were designed to produce an exponential
closed loop response to a step change in the setpoint, the closed loop
desired response during a disturbance is a straight line (since there is
no setpoint change). This is a very ambitious control objective given
that the manipulated variable experiences significant dead time as shown
in, equation 2-27, whereas the load variable has a straight forward 1lst
order affect on the bottom tank temperature, equation 2-29, This, of
course, produces severe control actions during the disturbance and
causes the manipulated variable to saturate. This tests the saturation
algorithms during a disturbance but is not the best way of designing
controllers for load regulation. The results show that all the
saturation algorithms handled the disturbance without numerical

problems.

2.4.2 Model Mismatch Problems with Saturation Algorithms

Model mismatch is a very crucial problem in model-based controllers
and many research papers (Palmor et al. (1979), Marshall (1979), Doyle
et al. (1981), Lewin et al. (1991}, etc.) have discussed this problem.
The purpose in this section is not to present a solution to the model
mismatch problem but to 1illustrate this problem with respect to

saturation algorithms.
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2.4.2.1 Structural Model Mismatch (Process 3)

In this experiment, a process which is physically 2nd order,
Pracess 3, was modeled by the lst order with dead-time transfer function
given in equation 2-28. This low order, approximate model was used in
the controller design equations for the DAHLIN and QIMC and in the
saturation algorithms and thereby produced controllers which had the
wrong structure for this particular process; the controller did not have
enough poles and zeros to achieve the desired closed loop response
because it was designed using a simplified model. The closed loop time
constant was 50 seconds and the QIMC had a feedback filter with a time
constant of 50 seconds. The experimental respenses after a 3°C set
poeint change are shown in Figures 2-8a and 2-8Bb and the performance
indices are listed in Table 2-1 and illustrated in the bar charts in
Figure 2-9. The results show no significant differences between this run
and the previous runs even though there is inherent structural mismatch
between the real process and the model used in the controller design
equations. The fitting of a lst .order plus dead-time model structure to
experimental data is usual practice in many industrial applications and
this experiment demonstrates that the improvement in performance due to
the saturation algorithms can be realized provided that the simplified
process model adequately describes the dominant behavior of the real

process.

2.4.2.2 Gross Parameter Mismatch {Process 4)
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In this experiment the controllers were again designed using
equation 2-26 but the inlet water flow rate to the real process was
reduced to 40% of full scale. This mimiced a throughput change in an
industrial process where the process parameters change by a significant
amount. The controllers were not informed of the change in operating
point and so there was a gross mismatch between the parameters of the
model used in the controller design and the true process model. The
process actually had asymmetric dynamics and a comparison of equations
2-30 and 2-31 with the nominal process model, equation 2-27, shows

mismatch in all three parameters.

The experimental responses to a 3°c change in setpoint are shown in
Figures 2-10a,b. In order to determine whether or not the oscillations
were due to model mismatch in the controller design or to mismatch in
the saturation algorithms, a further experiment was performed. Instead
of the 3°C setpoint change, which caused saturation, a smaller setpoint
change {1°c) was designed so that saturation would not occur. If
osclillations were generated by this smaller setpoint change then they
must come from the mismatched controller and not from the saturation
algorithm. Results for the DAHLIN controller for both the 3°C and 1°C
setpoint change are shown in Figure 2-1la and the corresponding results
for QIMC in Figure 2-11b, These experiments suggest that the
oscillation is caused by model mismateh in the controller and not by

mismatch in the saturation algorithm.

The simulation and experimental results indlcate that QIMC produc:=
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more oscillations than the DAHLIN controller under model mismatch
conditions. This is due to the fact that QIMC uses more model
information than the DAHLIN controller. This result corroborates the
observation by Kestenbaum et al. (1976) that model based controllers are
more sensitive to model mismatch than controllers, such as PID, which
use process jnformation to a lesser extent; the question of the

optimality of these two types of controller notwithstanding.

From the simulation and experimental results, it was observed that
only the initial stage of the transient response is significantly
affected by the saturation algorithm; whereas the overall performance
is dictated by the coatroller and the extent of model mismatch. 7In any
particular experiment, the performance is governed more by the type of
controller and its tuning than by the saturation algorithm. There are
examples of a poorly tuned controller with a poor saturation algorithm
(e.g., the conventional «clamp) giving better performance during
saturation than the same poorly tuned controller with a better
saturation algorithm (e.g., new anti-reset windup). This is because the
better saturation algorithm does a better job in preserving the control
actions from the poorly tuned controller, hence allowing more of the
wrong control actions to affect the process. 0f course, the poorly
tuned controller degrades the performance when the manipulated variable
is not saturating and a better overall performance can be achieved with

a properly tuned controller and the best saturation algorithm.
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2.5 CONCLUSION

The simulation and experimental runs show that the proposed
algorithms not only handle the windup problem but alse perform much
better than the conventional clamping algorithm. Although more
computation is required for these new algorithms, the increase in speed
of digital computers means that these algorithms can be applied on-line;
this was demonstrated by the experimental work. The Heuristic and New
anti-reset algorithms can be implemented easily without too much extra
computer memory, therefore they may be incorporated intoc frontend
computer systems for low level control. The Optimal switch algorithm
requires a little more memory and computation and is more suitable for
implementation on high level con*rol algorithms in the host computer
The QIMC algorithm is a sequence of local, constrained optimizations
which is equally applicable to SISO and multivariable processes. It
provides the greatest flexibility in specifying the constraints on
process input and output and produces the best performance. It requires
considerably more computation than the other algorithms and is best
suited for higher level, supervisory control. The proposed saturation
algorithms show considerable improvement over the conventional clamping
algorithm; they give better performance as well as windup protection. It
is therefore worthwhile to incorporate these saturation algorithms into

model based digital control algorithms.
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2.6 NOMENCLATURE

YCL(j): closed loop response at time j

(i+1+f: j+P+f):vector (Px1) of predicted outputs

composed of Ypredicted(1+1+f)'

(i+2+f), ...,
{i+P+f)

Ypredicted

Ypredicted
Ypredicted

u (i:i+M-1): vector (Mx1) of future process
future

inputs composed of U(i), UCi+1), ...,
U(i+M=-1)

U (i-N+1:1-1)- Vector ({N-1} x 1) of past process
past

inputs composed of U(i-N+1),
uci-2), ..., U(i-1)

E . (i+1+f: i+P+f):vector (Px1) of prediction errors
predicted’

composed of the best available
forecast of the combined model
uncertainty and process disturbances
over the i+I+f to i+P+f prediction
peried

N: system order (# of impulse weights)
M: input horizon (# of intervals into the

future over which the precess input
is to be computed)

P: prediction horizon (# of intervals
into the future over which the
process output is to be optimized)

¢ matrix (PxM) of impulse weights for
future inputs

d: matrix (P x (N-1)) of impulse
weights for past inputs.
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Etrajectory

Ydesired

Y (i+i+f+i+P+f):
low

Y.,  (i+i+f+i+P+f):
high

U (1:i+M-1):
low

Uhigh(l:1+H-l):
(1:i+M=1):

Udifference

VUil

(i+1+f:i+P+f):

(i+1+f:i+P+f):vector {Px1) of future deviations

from the desired trajectory composed
of E . (i+1+f),

trajectory
(i+2+f), ...,

(i+P+f)

Etrajectory

trajectory

vector (Px1) of the desired output

responses over the prediction
horizon, composed of Y ed(i+1+f).

(1+2+F), (i+P+f)

desir

Ydesired Ydesired

Control Interval
discrete process dead-time

Vector (Px1) of low limits on the

output prediction

Vector (Px1) of high limits on the

output prediction

Vector (Mx1) of low limits on the

future inputs

Vector (Mx1) of high limits on the

future inputs

Vector (Mx1) of high limits on the

rate of change of future inputs

difference input at time i
u(l) - u(i-1)
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Table 2-1 : Performance Index for Proposed Saturation

Algorithm

Process 1 Process 2 Process 3

Algorithm

Simulation|Experiment{Simulation|{Experiment|Simulation|Experiment
Convent- 6.04 7.14 4.43 5.46 4.30 5.77
fonal
Heuristic 2.52 4.12 1.97 2.56 2.25 3.81
Optimal 1.99 2.5%9 1.56 2.13 1.74 4.53
Switch
New Anti-| 2.37 3.29 1.56 2.03 1.74 4,42
Reset
QIMC 1.97 3.02 1.54 1.73 1.73 3.68
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CHAPTER 3

IMPLEVENTATION OF RATIONAL MODEL BASED

DicitaL CoNTROLLERS FOR SISO AnD MIMO SysTEMS

3.1 Introduction

A theoretical and experimental investigation of saturation
protection for model based digital controllers has been discussed in
Chapter 2. However, saturation is only a subset of the more general
"Implementation Problem”. The implementation problem is here defined as
the loss of performance as a result of the method of implementing a
digital controller. The performance of a conventionally implemented
digital controller can deteriorate when the control action specified by
the controller is not fulfilled. This can be due to incidents suszh as
actuator failure, operator override or saturation, all of which occur
quite frequently in process control systems. In fact, some control
engineers apply model based digital control tec high level control loops
only to find the controller performance has been ruined by the
occasional override by the operators (see Doyle et al. (1987)). As a
result, model based digital control algorithms are usually considered to

be "not robust enough" for industrial applications.

There are many model based digital control algorithms available in
the literature, but their application to industrial processes is scarce.
One major factor is the lack of robustness in the algorithms for

industrial applications. In some cases, this is due to the fact that
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even though control engineers have spent a great deal of time on the
design of digital controllers, the implementation side 1is often
overlooked. This study identifies the inadequacy of the conventiocnal
implementation of model based digital controllers and shows a detailed
analysis of the implementation problem which leads to two simple optimal
remedies - a One~Interval Implementation and a Multi-Interval
Implementation. These implementations have been verified by computer
simulations and the results show that the proposed remedies
significantly 1improve the performance of model based digital
controllers. For highly coupled Multi~Input Multi-Output {MIMO) system,
the improvement is even more dramatic. Also, the other advantage of

these implementation schemes is their simple and efficient computation

Most of the early publication on saturation {Astrom et al. (1984),
Khandria et al. (1976), Smith (1972)) limit the investigation to PID
controllers. Their approach is mainly to freeze the integration when
the control action saturates. However, as demonstrated in Doyle et al.
{1987), a controller can windup even without an integrator. It only
needs a relatively "slow" <controller to produce the undesirable
saturation symptoms. Doyle et al. advocated a high gain feedback
approach which uses the implemented control actions. However, they also
pointed out that nalve application of their scheme can lead to
instability problem, Their scheme can be extended to MIMO systems.
"Directionaiity” is the key in the MIMO saturation problem. They argue
that the saturation scheme should preserve the "direction" of the
original contrel vectors. This direction issue is again emphasized by

Campo et al. (1990). Based on a state space framework, they studied the
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stability and performance of a saturation system, Their solution is
similar to the "conditioning controller" proposed by Hanus et al.
(1987). The idea is that the controller states should be driven by the
implemented control actions, not the “"caiculated" control actions. It
is interesting to note that though this saturation work starts from a
totally different basis, the final strategy is very similar to their
scheme : using the implemented control action to drive the controller.
Both Doyle et al. and Campo et al. pointed out that IMC controller using
a rational model implementation can provide a stable saturating system.
but has a sluggish performance. This work further shows that a
"properly implemented" IMC controller <can preserve the design

performance even in face of saturation.

Before focusing on the implementation problem, it is important to
define the types of model based digital controllers which are being
investigated in this chapter. Model based digital controllers in
input/output space can be divided into two categories : those which use
rational process models1 (e.g. Linear Quadratic Gaussian(LQG)
controller, Dahlin controller, Constrained Minimum Va,.ancel({MV)

controllers} - see Harris et ai. (1987):; and those which use irrational

process mode152 - see Cutler and Ramaker :1980) and Rict .et et al.
1 Models expressed in terms of fractional difference polyneomials.
-b
y(i) = 222 (i) + N(i) (Box and Jenkins 1970)
Z1z)
2 todel expressed in terms of impulse weights or step weights
N
y(i) = ¥ h(j)UCI-j) + d(i)
J':CI
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{1978). The term "rational"” here refers to the fact that the model can
be expressed in fractional form. Irrational process models lead to
control algorithms like IMC (Internal Model Control), DMC (Dynamic
Matrix Control), MAC (Medel Algorithmic Control) ; see (Cutler et al.
{1980), Garcia et al. (1981), Richalet et al.(1978), Rouhani et al.
(1982)) : note that there were studies which implement IMC using a
rational model (see Campoc et al. (1990}, Doyle et al. (1987)).
Irrational model based controllers usually perform very well even when
the control action cannot be exactly implemented. In fact, this study
found that the performance of 1irrational model based controller
corresponds exactly to the constrained optimal solution under certain
conditions. However, this characteristic is not inherent in controllers
which are derived from a rational process model, Dahlin, LQG or CMV
controllers (Wong et al. (1987a), xczub (1986), Doyle et al. (1987),

Campo et al. (1990})

The advantage of using a controller derived from rational models is
the parsimony in controller parameters. This makes the real time
computatisn of the control actions more efficient than the irrational
model based controllers. For a 2 x 2 system, using 40 step weights to
describe each transfer function, the computation time for irrational
model based contreoller can be three times longer than the rational model
based controller. For higher order and higher dimension systems, this

difference will be more dramatic.



The design of most rational and irrational model based controllers
is based on the solution of a quadratic optimization with very similar
objective functions. The intriguing question 1s why one type of
controller has inherent protection against the implementation problems
while the other has none. Because of the similar objective functions, it
should be possible to make a rational model based controller match the
performance of an irrational model based controller while still
retaining the efficiency of the rational implementation. This is the
purpose of this chapter. This study does not attempt to develop a new
controller. The issue is how to correctly implement a rational model
based digital controller so that performance is not lost when the
prescribed control action cannot be applied to the process. The major
contribution of this work is the analysis of the implementation problem

which leads to simple remedies and a clear interpretation of their

optimality.
This chapter is organized as follows. Section 3.2 presents the
design and implementation of a rational model based controller. The

difficulties with the conventional implementation are discussed in
section 3.2.3. This is followed by the proposed implementation schemes
- One Interval Implementation and Multi-Interval Implementation. These
schemes are used in a simulation study which is described in section
3.2.4. Sections 3.2.5 and 3.3 discuss the extensions of the
implementation schemes to long horizon controllers such as LQG and to
model based rational MIMO controllers. The conclusions are presented in

section 3.4. The nomenclature for this chapter is listed in section
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3.5,

3.2 Rational Model Based Digital Controller

The dynamics of a process can be represented in the input/output

space by rational backward difference polynomials :

-b
Process Model : y(i) = —Eé%é%—— UCi)+ N(i) (3-1)
Disturbance Model : N(i) = —ESEQ—E— a(i) (3-2)
@(z)V
Kn(z)z—b
Servo Trajectory Model : ysp(i) el ) B R(i) (3-3)
d

The notation wused here follows the backward difference operator

convention in Box and Jenkins (1970). For example, equation 3-3 means :

Or(Kn(z)) Or(Kd(z))

Yopl(i) = 17K, (0) Z K (J) RCi-j-b) - Z Ky(J)Y g (1)) (3-3a)
J=0 J=1

If tlhiese rational polynomial models are used to derive a digital control
law, then the conventional method of implementation ( defined below)
Wwill perform poorly whenever the prescribed contrel actions are not

exactly applied to the process. A common cause is the saturation of the
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manipulated variable, but operator override or actuator failure would
also cause this problem. This is the "implementation problem” under
investigation in this chapter. This study does not result in a
"global®” optimal solution to the problem, but, the proposed
implementation scheme can stop the performance deterioration found in a
conventionally implemented rational model based controllers. With the
proposed remedy the performance of the control system is always “close”

to the performance specified in the coniroller design.

All model based digital controllers solve an optimization problem.
The objective f{function of many model based digftal controllers is
quadratic and convex (see equation 3-4). Garcia et al. (1981) offered a

detailed discussion on the parameters of this equation.

i+P-1 2 i+M-1
Q = min Ez & [Yg (k+b)}-Y(k+b)] + E: 8 [VU(k)]2 (3-4)
WD iz, ’ k=i

wiiere P and M are the Output and Input Horizons respectively
and VU(i) € ﬂ”

For example, if «=1.0, R=0.0 , P=M=1 and an exponential trajectory is
specified for YSP(k+b), the optimization will result in a Dahlin
controller response., The coriginal derivations of Dahlin, CMV and LQG
controllers are quite different. However, by properly setting the
values of P, M, « and B in the optimization equation 3-4, this same
optimization can yield responses similar te those produced by these
controllers. Equation 3-4 is therefore used throughout this study so

that a general model based digital controller can be studied under the
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same f{ramework. From common basis, a common implementation problem can

be isclated.

The optimization in equation 3-4 requires a model of Ysp(i+b) and
Y(i+b) (see Appendix B-1 for details of these models). In the
input/output space, these models can be expressed in either ratjional

polynomial form :

-b
vei) = 2222 yeiy s —95-‘1‘-)—d ali) (3-5)
s(z) ¢(z2)v

or irrational (equation 3-6) polynomial form:

Y(i) = Gm(z) U(i) + y(z) a(i) (3-6)

where w(z), &8(z) and Gm(z) are themselves irrational polynomials

The rational polynomial model form has many advantages over the
irrational form. The rational form has less parameters, thus many
rational controller designs result in simpler algorithms and the
controller requires less computer memory space. Consequently the real
time execution of the algorithm is more efficient. Furthermore, the
compact rational polynomial models allow a more efficient stability
analysis, These are the incentives to provide rational digital

controllers with an optimal implementation scheme.

3.2.1 Optimal Solution
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The unconstrained optimal seclution for the objective function in
equation 3-4 cen be obtained using wvariational calculus. For
demonstration purposes, assume that the system is SISO (single input
single output) and that the input and output horizons are 1 (P=M=1);
i.e., using 1 control action to optimize the objective function which
penalizes only the first output after the process dead time. By

differentiating equation 3-4 with respect to the current change in the

control action, VU(i), one obtains :

59 _ ) . )
W")M— 2a Ysp(l+b) Y(i+b) J» w(0) + 2B VU(1I) (3-7)

where w(0) is the first term of w(z)

The optimum can be achieved by setting this derivative to zero.

Optimal Solution :

Ysp(i+b) - Y(i+b) VU(i) (3-8)

o w(d)

Equation 3-8 is the Optimal Unconstrained Solution for the linear
quadratic objective function in equation 3-4. The essence of this study

is to properly implement this Optimal Solution.
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3.2.2 Conventional Implementation

The conventional implementaticn of the optimal solution in equation
3-8 above is illustrated in this section. Substituting the rational
models, Ysp(i+b) and Y{(i+b) .see Appendix B-1) into equation 3-8,

produces another form of the Optimal Solution :

K (z)
n by w(z) .y I(z) .. _ B . )
R;TET— RUI) = —gezy U(D) 50a7 V(1) = W) (3-9}
w(z)z P
where N(i) =Y (i) - ==~ U(i)
m 3(z)

Feedback enters through the estimates of the current disturbance, N(i),
which 1is related to the measurement, Ym(i) {see Appendix B-1).
Equation 3-9 1s different from commonly seen rational digital
controllers. However, it can be shown that Egquation 3-9 can be
degeperated to a Dahlin or a MVC controller (see Appendixz B-3).
Usually, raticnal controller design software takes Kn(z). Kd(z). wiz),
8(z), 8(z), o and B as input parameters (Wright et al. (1988)). It then
calculates T(z) and finally produces a numerator polynomial, Nufz) and a
denominator polynomial, De(z) as shown in equation 3-9a where Ym(i) is
the measurement of the process output. These polynomials, Nu(z) and
De(z) are then used for the implementation of the controller.
Nu(z)

( R(i) - Ym(i) J = V(i) (3-9a)
De(z)
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The conventicnal implementation of a rational digital controller,

equation 3-9, 1is equlvalent to the following steps :

Step

Step

Step

1 - Polynomial Multipiication
Multiply Kd(z)afz)e(z) to both sides of equation 3-9, this results

in an irrational backward difference expression :

Kn(z)a(z)e(z)R(i) = w(z)Kd(z)e(z)U(i) (3-10)
+ T(2)K (2)8(2IN(I) + K (2)5(2)8(z)—E—ou(i)
caw(0)
2~ Separate the current control action frocm the past control
actions
B ©y = _
(u(O)Kd(O)B(O)+—E;?57— Kd(O)a(g}a(O)} Uci) = (3-11)}
- {"(M(Z)Kd(Z)e(Z))" ~(WKd(z)6(z)6(z)V)}U(I)

+ Kn(z)a(z)e(z)R(i) - T(Z)Kd(z)G(z)N(i)

where the operator, ~, 1is defined as following:

w(0) + w(1)z '+ w(2)2 3+ ... .. + winlz "

w(z)

~(w(z)) w(l)z e w23z %+ .. ... + win)z

This rearrangement makes U(i) depend explicitly on the R(i)'s,

the N(i)'s and the past control actions, U(i-j)'s.
3- To overcome the Windup problem, remember the actual values of
the past control actions U(i_j)imp’ rather than the calculated

values
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rw(omdm)em)+_’i__ K (0)5(0)0(0)) U(i) = (3-12)

aw(d) d B
-{~(w(z)Kd(z)8(z))- ~(—Ea?57——Kd(z)5(z)9{z))V}Uimgl)

+ Kn(z)é(z)efz)R(i) - T(z)Kd(z)E(z)N(i)

The use of past implemented control actions solves the windup problem

experienced when using equation 3-11 (Wong et al. (1987a)).

The conventional implementation is to clamp the control action when
saturation occurs. This is the same as using the past implemented
control actions, Uimp(i) and so Equation 3-12 is referred to here as the
Conventional Implementation. To demonstrate the poor performance of
this implementation, a simulation study was performed which was based on
an empirical model of an extractive distillation process (see Appendix
B). For the SISO case, only the top product {acetone concentration) was
controlled in the simulation. Also notice that for the sake of
demonstration, only saturation was used to illustrate the implementation
problem. The results can be applied to operator override or actuater
failure. The saturation protection algorithms introduced in chapter 2
were developed mainly to solve saturation problems which occur in SISO
cuatrol systems (except the QIMC method) while the general scheme
developed here applies to both SISO and MIMO control systems. Different
rational model based controller responses were designed and implemented
using equation 3-12. Figures 3-1, 3-2 and 3-3 are the responses
corresponding to Dahlin, One-Step OCptimal and LQG controllers when

control action saturation occurs. Since Dahlin controller is based on a
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servo design, a step response was chosen to test the saturation
behavior. However, MVC and LQG controllers are designed for regulatory
control, load disturbances were used to test the c¢-.trollers instead.
The Dahlin response was chosen to be 30 minutes; which is half of the
process time constant. With a=1.0, B vaiues are specified as 0.0 and
1.0E-7 for One-Step MVC (Clarke et al.1973)) and LQG responses
respectively, The true optimal solution can be obtained from an on-line
constrained optimization. This allows a direct comparison of the
conventional solution with the true optimal solution. One can see {rom
these figures that due to the contrel action limitaticns, even the
constrained optimal solution cannot reach the non-saturation solution.
However, the conventional implementation produces a solutlon which is
far from the feasible optimal seolution, Naturally the question raised
is "Which steps in the conventional implementation cause this loss of

optimality?"

3.2.3 The Problem in the Conventional Rational Digital Controller
Implementation

In order to investigate why the conventional implementation of a
rational digital controller performs poorly, the Optimal Solution in
equation 3-8 should bhe examined. To he truly optimal, the Optimal
Solution at the current time, 1, has to be satisfied. With rational
process models, the Optimal!l Solution can be rewritten as shown 1in
equation 3-9. Notice that the "to-be-calculated" current control
action, U(i), is grouped in equation 3-9 together with the past control

actions U(i-j)'s. if the calculated control action can be exactly
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implemented, there would be no distinction between the nature of U(i)
and the U(i-j)'s. Should the implemented ccntrol action be different
from the calculated one, U(i), then the past U(i-j)'s should use the
external readback values ( the actual implemented values ) and thus the
past U(i~j)'s should be handled differently from the "to-be-caiculated"
control action, U(i). Instead of performing the polynomial
multiplication in the conventional implementation (equation 3-10), one
should first separate the past control actions, U(i-j)}'s, from the
"to-be-calculated" control action, U(i). With Kd(0)=1.0, 8(0)=1.0 and

8(0)=1.0, Equation 3-9 then becomes :

K (z)
n

. T(z) o B . _
W R(l) - _ém N(I) = fw(O)'Pm-} U(l) (3 13)
wiz) 8 .
f a(z) aw(0) puci-1
w(z) otzyz !
where — = wl0) + —/—— (3-14)
a(z) 8(z)
and  olz) = 0(0) + o(1) z 1+ G20z % ¥ ... (3-14a)

Notice that the second term on the RHS of egquation 3-13 contalns only
past control actions because w(z) pegins with constant term. From the
optimization point of view, one should use the actual implemented
control actions, Uimp(i—j)'s, for the past U(i-j)’s in equation 3-13
because the optimal solution, equation 3-8, requires an accurate
prediction of the process output. With the rearrangement shown in
equation 3-13 and the incorporation of the past implemented control

actions, the optimal solution can be rewritten as :
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K (z)

g Cy_ n oy _ o T(z) .. _
{w(0)+55?57—} U(i)= R;TET_ R(i) 3z NCi) (3-15)
_,o(z) B .
{ a(z) aw(0) ) Uimp(1 1)

When comparing equation 3-15 with the conventional implementation in
equation 3-12, it shows that the difference lies in the treatment of the
past control actions, U(i-j)'s. Note that the solution here is similar
to the strategy used in Campo et al. {1990) and Hanus et al. (1987)

the controller states should be driven by the actual implemented control
actions, not the calculated ones. The polynomial multiplication step in
the conventional solution (see equation 3-10) is the erroneous step.
The polynomial multiplication operation implies that the Optimal
Solution in equation 3-8 can be implemented in all conirel intervals,
If the Optimal Solution 1is not properly compensated by using the
implemented control action, the polynomial multiplication will link the
past sub-optimality to the future solution and hence result in a
solution which is optimal only when the control actions can be exactly
implemented. Therefere, one can consider the remedy presented here as
correctly using the most recent process information in the optimization.
Of course, if the calculated U(i) can be exactly implemented, these two

solutions {(equation 3-12 and equation 3-15) are equivalent.

3.2.4 HRemedies for Rational Model Based Controllers

Equation 3-15 is the remedy for the implementation problem. There
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are two ways to calculate the control action described in equation 3-15

- the One-Interval Solution and the Multi-Interval Solution.

The One-Interval solution can be carried out as follows :

K (z)

.y _ 'n : -
m(z)z_b

2. N(l) = Ym(l) - —5"("‘2)—‘ Ulmp(l) (3-17)
Y L €0 -

3. YNfl) * eiz) N(IL) (3~18)
L w(z) B . -

1, Yufl) = {6(2) -5 w(O)}Ujmp(l 1) (3-19)
L B v o )

5. uci) -1/{&0(0)*—(1—“(7)-} [YSP(l) YN(J.) YU(.I )] (3-20)

One can obtain a Multi-Interval solution by multiplying both sides of

equation 3-15 by Kd(z)é(z)e(z).

K (2)8(z2)8(2){w(0)+—D—— ) U(i) = K (2)6(2)8(2)R( i) (3-21)
d aw(0} n

© TCz)K (2)82)Y (1) + (T(z)K (z)w(z)z ®
d m d

. - B .
Kd(z)e(z)w(z) +—E§?57~Kd(z)6(z)6(z)} Uimp(l 1)

The solution derived here is different from the optimal saturation
compensation solution proposed by Segall et al. (1984). Their solution

is based on the One-Step Optimal controller argument of Clarke et al.
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{(1971) which only accounts for the last unimpleme: ted control action.
If the controller action cannct be implemented over a period of time,

then their solution would not be "optimal®.

The One-Interval equations (3~16 to 3-20) and the Hulti-Interval iﬁ
equation 3-21 are exactly equivalent. The Multi-Intervai Solution
yields a compact expression while the One-frterval Solution separately
calculates the disturbance forecasts and the servo trajectory, which is
useful information for process monitoring and diagnosis. Notice that
both solutions have properly incorporated the past implemented control
actions into the Optimal Solution. The difference between the
conventicnal solution (equation 3-12) and the remedies (the One-Interval
solution (equations 3-16 to 3-20) and the Multi-Interval! solution
(equation 3-21)) explains the loss of optimality in the conventional

implementation.

As shown in the Multi-Interval solution (equation 3-21), the use of
the past implemented control action before the polynomial multiplication
breaks the connection between past sub-optimality and the future

solutions. Therefore, if one can :

1. avoid the polynomial multiplication and

2. use the past implemented contrel! actions,

then the resulting implementation would be optimal. These two criteria
for solving the implementation problems correspond exactly to the

natural implementation sequence for irrational model based controller
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(Cutler et al. (1980)) and expl:sin why irrational predictive controllers

do not have implementation problems.

To confirm the optimality of the proposed remedies, computer
simulations were again performed on the extractive distillation column
model, Both the One-Interval and the Multi-Interval solutlons were
applied to the Dahlin and the One-Step Optimal controller. The settings
of the controllers were the same as those in the conventional
implementation study (see section 3.2.2). In Figure 3-4, the responses
from the Cne-Interval and Multi-Interval implementations of the Dahlin
controller correspond exactly to the constrained optimal solutien.
Figure 3-5 shows the remedied and the constrained optimal responses of
the One-Step Optimal contreller; again all responses are identical.
These simulation cases show that the One-Interval and Multi-Interval
solutions provide optimal implementations of SISO controls. By comparing
Figures 3-4 and 3-5 with Figures 3-1 and 3-2, one can see that these
remedies significantly improve the performance of a rational digital
controller when compared te their conventional implementations. An
index of the relative improvement from the conventional implementation

can be calculated based on the integrated squared error :

25

ISE, = Za (¥ (i) = ¥ (1) 12 B (w (i) - w(i))? (3-22a)
i=0

where Y (i) and VU(1I) are the ideal process cutputs and inputs
when there are no saturation

Yb and VUb are the process ocutputs and inputs when there are

T



saturation

« and B8 are the weights used in the controller design

The «, 8 values in Equation 3-22a is to reflect the design criteria in
Equation 3-4. Effectively, eguation 3-22a is a measure of the deviation
from the designed objective function value. The relative improvement is

their ratie :

ISE

0
ISEcesied® ISE_ (3-22b)
ISEO : ISE based on proposed implementation
ISEC : ISE based on conventional implementation
The smaller the ISE , the better the implementation. Equation
scaled X

3-22a is a measure of the deviations of the objective function from the
ideal case; the ideal is when all control actions can be exactly
implemented. Equation 3-22b gives a relative improvement index,
ISEscaled' The indices for the different controller responses are shown
in Figure 3-6. For the Dahlin and One-Step Optimal controllers, the
ISE of the One-Interval Implementation i 61% and 32%
scaled
respectively. This means a reduction of 39% and 68% in the deviation

from the ideal response when the One-Interval Implementation is compared

to the conventional implementation.

3.2.5 Remedy for the LQG Controller

The proposed Iimplementation scheme has focused on the case of
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P=M=1. This case encompasses a wide class of controllers which uses the
exact medwl inverse (Harris et al. (1987}}). For a non-invertible
process model, the Dahlin or One-step Optimal controlier designs would
preduce an unstable controiler {(Smith (1972)). A more sophisticated
algorithm is required if one is to obtain a siable controller. LQG is
one algorithm which <can produce such a stable controller.
Alternatively, increasing the input and output herizon (P and M in
equation 3-4} also yields a stable controller. With large P and M
{relative to process dynamics), the optimal solution would be close to
the LQG solution in most cases (Harris et al. (1987)). The Optimal
Solution in equation 3-9 shows a close resemblance to the block diagram
{see Figure 3-7) of IMC (Garcia et al. (19813). The mast obvious
difference is the optimal filter, or disturbance forecast, T(z)se(z],
instead of a diagenal first order filter. Changing the values of P and

M in equation 3-4, or using spectral factorization in LQG design, is a

é(z)

means of achleving a stable approximate model inverse, —_— . In
w (z)
general, 1if —-:LEL- is invertible, the cptimal inverse of ——gizl— is
d(z) : alz)
8 . L . : .
__Lil_ However, 1if the ——;Lzl- is non-invertible, the w (z) can be
wiz) élz)

obtained frem spectral facterization (see Harris et zl. {1987)) or by
polynomia! inversion technique (see Astrom et al. (1934)). Therefore,
the general optiaal solutiorn for a model based rational digital
controller can be written as (Kozub (1986))

K (z)
R(I) -

Kd(z) g(z)

z) ey = 22 yey) (3-23)

3 (z)
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The extension of the One-Interval Implementation to this Optimal

L]
Solution in equation 3-23 is simply to break the ter... w (z) , into 2
s (z)
components, U(i) and U(i-j)’s and then to use the Uimp(i—j)'s in place

of the past U(i-j)’s.

K (Z) ~a
W (0UCi) = B R(1) - £ i) - LL2) v, (D) (3-24a)
d . é (z) P
"(z) w (z)
where 2127 - %0y + 2 1E7 (3-24b)
3 (z) 8 (z)
and
ca(z)z“b
NCi) = Ym(I) -—_— U, (1) (3-24c)
a(z) 1mp
The computation of equation 3-24b is trivial. A polynomial long
division can be wused to obtain the desired expressions. The

Multi-Interval solution can be obtained (see equation 3-25) by using the
identity in equation 3-24c and then multiplying both sides of the

One-Interval solution in equation 3-24a by Kd(z)a(z)e(z).

K (2)8(2)8(2)0"(0)U(1) = K (2)8(2)8(z)R(i) (3-25)
- T(z)K (2)3(z)Y (1) + T(z)Kd(z)w(z)z_b+1
-~ w(z)K (z)B(z) } U, (i-1)
d imp

A simulation was performed using the extraction distillation model
(Appendix B-2). The responses of the proposed One-Interval and

Multi-Interval solutions for the LQG implementation are shown in Figure
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3-8. The constrained optimal solution in this figure is generated by
constraining only the first future control action te the saturation
limit. The responses of both implementations are identical, meaning
that the constrained optimal solution is equal to the One-Interval and
the Multi-Interval seolutions. The ISEscaled for this LQG run is only

51% which means that the remedy cuts the deviation by 49% from the

conventicnal case.

In general, the constrained optimal soluticn, with constraints on
all the future control actions set to the saturation limits will not be
the same as the remedy solutions. This is due to the fact that for an
N-variable convex quadratic optimization which has simple bound
constraints, the constrained optimal solution is not necessarily at the
bound. Therefore, one cannot interpret the optimality of the remedies
by comparing them to constrained optimization. Instead, the optimality
of the remedy should be interpreted using a Moving Window argument. In
order to be optimal between the Iinterval i to 1+P-~1, the Optimal
Solution in equation 3-23 has to be satisfied. The One-Interval
solution in equations 3-24a,b,c enforces this criterion at every control
interval. One can then interpret the remedies as an optimization with a
Moving Window. If the control action cannot be exactly implemented, then
the system will not be optimal, but a fresh optimization with updated
process information is started in the next interval. As long as the
Optimal Scolution 1is properly compensated (i.e., wusing the past
implemented control actions), an optimal solution in the next window is
possible. This idea has been used in irrational model based predictive

controller algorithms (Cutler et al. {1980), Garcia et al. (1981)). In
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a predictive controller, one usvally calculates M control actions and
only the first one is implemented, In the next control interval,
another M control actions are calculated and again only the first cne is
implemented. This Moving Window concept has not been used in the
implementation of rational digital contrellers. This study provides the
link between the jirrational predictive controller and the rational
digital controller at the implementation level. One may ask: why bother
with rational polynomial forms of IMC when the irrational form does not
suffer from these implementation problems 7?7 The answer comes from an
analysis of the memory space and computer cycles needed to implement
these forms. The irrational form stores process models as impulse or
step weights and computes the prediction via convolution summations
{(multiplications and additions}. On the contrary, rational forms
require very few parameters to characterize the process models and the

prediction is a very efficient computation.

It should be noted that using the Internal Model! Control (IMC)
Structure alone will not solve the implementation problem. Kozub (1986)
has implemented rational model based controllers (CMV and LQG) using the
IMC structure and his results show that the controllers performed poorly
during saturation. Similar results were reported by Doyle et al. (1987}
and Campo et al. (1990). They alil implemented IMC controllers using a
rational model. If the polynomial multiplication 1in equation 3-23 lis
performed prior to separating the past control actions from the current
control action, the system wculd experience the same performance
deterioration as in the conventional implementation. Furthermore, if

one performs block-wise calculations as in Kozub (1986), (l.e.,
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-]
calculate U(I) from e(i) = _w (=) Ui} ; see figure 3-7), the

5(z)

conventional implementation would again produce poor performance if the
calculations are not properly compensated. The discrepancies between
"the conventional and the proposed remedy are 1illustrated in the

following section.

W' (z)
Consider a simple IMC controller ; e(i} = {(————) U(1)
a(z)

where wi(z) = w(0) + w (1) zul

SCz) = 1+ 8(1) 2z}

Conventional Implementation :

The error, e(i), signal is given by -

W (04" (1) 2
e(i) = = udi
1 +38(1)z

Perform polynomial multiplication :
w(0) UC1) = e(i) + &(1) e(i-1) - w (1) U(i-1)
Mark the implemented control actions for saturation protection:

w(0) UCi) = e(i) + &(1) e(i-1) - w' (1) Uimp(i—l) (3-26)

Remedy Implementation :

Separate U(i-1) from U(i) and mark the implemented control actions:

. w (1)=0"(0)8(1)
e(i) = w (0) Ui} + —— U, (i-1)
1+ 8(1)z 1P
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Perform Polynomial Multiplication :

e(i) + 8(1) e(i-1) = o (0)U(i) + w (0)&(1IU(i-1) +
(v (1)-w (0)a(1)) Uimp(i—l)

Rearrange the equation :

W (0) UCL) = e(i) + 8(1) e(i-1) - 0 (0) &(1) UCi-1) (3-27)
+ (W(0)s(1) - W () YU, (i-1)
Imp

The comparison above shows that even with IMC block-wise calculatiocn,
the conventional implementation will not be equivalent to the proposed
remedy. The terms wo(O)é(l)Uimp(i-l) and w (0)8(1)U(i-1) in equation
3-27 are missing in equation 3-26. If the Uimp(i-l)’s are equal to
U(i-1)'s, then the two equations are equivalent. This explains Kozub's
(1986) saturation problem where a CMV controller is implemented using

the IMC block diagram with conventional clamping on the control action.

3.3. Extension to MIMO Rational Digital Controller

Although the implementation schemes proposed have been developed
based on SISO systems, the result is applicable to both SISO and MIMO
systems. In a MIMO system, the model based digital controller design
would be complicated by the dimension of the system, but the basic

optimization is the same ( see eyuation 3-28 and compare with 3-4).
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0 i+P-1 P
Q = min a [Y (k+b)-Y_(k+b)j 3-28
ml. E: E:. q[ q,sp q i ( )
VU(i) g=1 k=i I jeM-

1
. Z ZBn[VUn(k)]z
k=1

=1

where P and M are the Output and Input Horizons
0 and I are the Output and Input Dimensions

wei) e R

One observation from the SISO implementation problem is that the success
of a conventionally implemented rational model based digital controller
relies on the exact execution of the prescribed control aétions. For a
MIMO systewm with interaction, the consequence of override, saturation or
actuator failure are more surious. If even one control action from a
conventionally implemented multivariate controll~— cannot be applied,
the effect will propagate into the entire control system. The
implementation problem in a multi-loop control configuration (i.e., a
decoupler with multiple SISO controllers), would be even worse since
there will be problems originating from implementation of the single
loop controllers and alsc problems stemming from the interaction of the
SIS0 controllers. Intuitively, one would expect the implementation
problem to be more pronounced in MIMO systems. There is very little
literature addressing the implementation problem of MIMO systems; Doyle
et al. (1987), Hanus et al (1987), Campo et al (1990) are among these
rare publications. In Doyle et al. and Campo et al., they pointed out
that MIMO saturation problem is further complicated by the

“directionality” of the process. In MIMO systems, the process gain is a
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function of the input direction because the effect of one input can be
reinforced or counteracted by the other inputs. Therefore, the actual
control vector direction should preserve the original "calculated"
control vector direction. Though this work did not incorporate this
idea, the remedy can be easily modified to 1include this extra
compensation, If the original vector is [Uz’uz’usl’ the implemented
vector should be 7[U1,U2,U3] where ¥ should be chosen such that none cof

the contrel actions, Ul, exceed their limits.

To illustrate the implementation problem in a MIMO system, a
simulation study was performed on the extraction distillation model
(Appendix B-2) ; the results are shown in Figures 3-9. This simulatlon
will be discussed in greater detail in section 3.3.2. A multivariate
Dahlin contrel was used to illustrate the effect of the implementation
problem. When comparing the saturated and the unsaturated responses for
the simulated acetone and methanol control loops, there is a dramatic
difference in performance. The conventional implementation scheme
preduces 10 hours of "off specification" product. This situation may be
tolerable for certain types of process where post-processing can be
performed to salvage the "off specification" product (e.g., blending of
the distillate in a refinery). However, in other industries (e.g., pulp
and paper), excessive moisture in paper simply cannot be used on a
printing machine and the product has to go through a whole cycle of
reprocessing. Therefore, it is crucial to devise a methed to remedy the
implementation problem for rational multivariate digital contrellers so

as to minimize the deviation from the original design specification.
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The Optimal Solution to the unconstrained MIMQ optimization
{equation 3-28) is very similar to the SISO solutinn equation in 3-9.
By differentiation and rearrangement of equation 3-28, the

unconstrained Optimal Solution is :

K (z) °
n , T(z) oy o ow(=z) ,

For a MIMO system, matrix rational polynomials are used to take into

account the increase in the system dimension. Note that the effects of

-]
w (z)
P, M, a and B were lumped together into the approximate model, [ }.
a(z)

Ratlonal MIMO model based controller design software can be used to
produce the matrix polynomials, [T(z)] and [w°(z)] (see Harris et al.
(1987)). Protection against override, saturation or actuator failure

can be obtained by applying the One-Interval solution to equation 3-29 :

Step 1 : Separate the past control actions from the

present control actions

K (z) ~o
° .y _I'n oy | T2 | e (2)],, . _
[w (0)]U(1) = K———d(z)}R(l) —a(z)]ﬁ(l) <0z) Uci-1) (3-30)
W (z) | _| o w (z) _
where [—-—-—a(z) ] —|:w (0)]+ [6(2) “ {3-30a)
-

For a 2x2 system, equation 3-30a can be expanded as:
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W (z) w (z)
11

12
-] -]
w {0) w _(0
611(2) 612(2) 11 '2 )
o ° = o +
o
“aa “az w0 w0
& -4 é z
21( ) 22( )
-0 -~ O
W
11(2) wlz(z)

The separation of the matrix rational polynomial in equation 3-30a is
the same as that in the single polynomial case (see equation 3-24a).
However, the separation has to be performed on the matrix elements one

by one.

Step 2 : Use the past implemented control actions and use them in

place of the past calculatad control actions

Kd(z) e(z) &(z)
L

K (z) ~o
[wo(OJIU(i) =[ n }R(i) -I_I£EQ]N(1) —[ v (Z)]Uimp(i-l) (3-31)

Equation 3-31 is the proposed implementation scheme for a rational MIMO
model based digital controller.
3.3.1 Optimality of Implementation Scheme

The proposed implementation scheme (equation 3-31) looks very
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simple. The unanswered questien is : how "optimal" is the solution?
Equation 3-29 is only optimal for an unconstrained system at time 1.
When the control action{s) cannot be implemented, the solution will not
be optimal. However, the attractive feature of the scheme in equation
3-31 is that, similar to the case of a SISO long horizon controller
(LQG)}, the solution in equation 3-31 makes sure that the past
unimplemented control action(s) will not affect the optimality of the
new solution. As long as the correct information is used at each
control interval, and the new control actions can be implemented, the
system will be optimal for that window. This is the same Moving Window
concept which was used to interpret the optimality of LQG implementation
scheme. For a MIMO system it is easier to perform the One-Interval
implementation (equation 3-31) since a Multi-Interval Implementation
requires matrix polynomial multiplications which can generate very long
polynomials. Thus, the Multi-Interval solution is not recommended. The
advantage of the One-Interval Implementation is that it also provides
the disturbance forecasts and the servo trajectories, which are useful
system information for process monitoring and diagnosis. From the
arguments above, one can see that the Internal Model! Structure and the
Moving Window Optimization are the links to the "optimal” implementation

of rational MIMO model based digital controllers.

3.3.2 Simulaticn of an Extraction Distillation Control System

The extractive distillation simulation was used again to verify the

proposed rational MIMO digital controller implementation scheme.
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Figures 3-9a,b show three responses of a multivariate Dahlin Controller:
with no saturation, with One-Interval Implementation and with
conventional implementation. The conventional implementation in this
case 1s simply to clamp the control action(s) at their limits. The
multivariate Dahlin controller has been designed with a deadbeat
response on both acetone and menthol contrel loops. The process model
of the extraction distillation (see Appendix B-2) is not invertible so
the process model has been modified in order to obtain a stable

multivariate Dahlin controller (see equations 3-31, 3-32a,b,c,d).

Acetone Conc. Gp, ,Gp Solvent flow
= 1.0e-3| 1 12 (3-32)
Methanol Conc. G c Steam Flow
Pa1 Pao
0.9059z 2 + 0.26352 3
Gp = =1 {3-32a)
11 1 - 0.627 z
-0.8544z * - 0.48342 2
Gp = — (3-32b)
12 1 - 0.5712z
-0.6487z © -0.8286z % -0.03139z >
Gp = — =5 (3-32¢)
21 1 + 0.4474z ' + 0.4082z
2.769 z ' + 2.533 22
Gp = — (3-32d)
22 1 - 0.6703z

The unit of concentration deviates is mole percent and the unit of
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flow rate deviates is ml/min.

The Multivariate Dahlin Controller for this simulation is :

s

[ 0.000 -0.554 ]

-0.649 2.769

1

0.9059+0.2635z2" -0.9710
[ w ‘2)] = 1.- 0.627 z ! 1. - 0.5712 22
5 (z) -0.5384 + 0.2334 2z} 4.389

1

1. +0.4474 " + 0.4082 272 1. - 0.6703z"}

since the a deadbeat response is required, Kn(z)/Kd(z) = 1.0 :
K () 1.0 0.0
_....._.._.n -
Kq'2) 0.0 1.0
Dahlin controller is a servo design technique. The optimal

filter, T(z)se{z), for an equivalent deadbeat response is (see Harris

(1982))
T(2) ) 1.0 0.0
o(z) 0.0 1.0

Figures 3-9a,b show that the proposed remedy is very close to the

unsaturated solution, but it takes the conventional implementation a
long time to reach the targets. The 0.02 and -0.02 mole percent

setpoint changes in the acetone and methanol targets are typical changes
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for this type of unit. The relative improvement  index,
ISEscaled(equation 3-22b), for this case was found to be 10% : i.e.,
the proposed scheme reduced the deviation generated by the conventional
implementation by 90%. Thus, the implementation scheme has had a big
impact on the performance of this MIMO control system. Two more
simulations were performed to verify the implementation scheme.
Figures 3-10a,b show the responses of an unconstrained LQG ( « = I and
B = 0 ) controller which was designed using the full non-invertible

process model in Appendix B-2. Notice the big swing in the acetone

response produced by the conventional implementation. The ISE

was
scaled

0.15%; 1i.e., the proposed implementation reduces the deviation by
99.85%. The tuning effect on the proposed implementation scheme is

shown in Figures 3-1ia,b. The LQG tuning parameters were
« = 9.0 0.0 and g = 2.0E-6 0.0
“ 0.0 1.0 0.0 20.0E-6

Since larger penalties were imposed on the process inputs relative to
the outputs, smooth input responses would be expected. This can be

observed in Figure 3-11la,b. The ISESC was again calculated and its

aled
value is 1.0%. This 1ls equivalent to a reduction in the conventional
deviation by 99.0%. One can conclude from these tests that the proposed
implementation scheme is not sensitive to the controller tuning. The
ISE for all simulated cases are presented in Figure 3-12. The
scaled
performance improvement 1is quite significant in both SISO and MIMO
systems, ranging from 39% to 99.9% reduction in the deviation caused by

the conventional implementation. The improvement is more dramatic in

MIMO systems than in SISO systems.
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3.4 Conclusion

This chapter has presented a general implementation scheme for SISO
and MIMO rational model based digital controllers. A detalled analysis
of the implementation problem has been performed which brings out the
fact that the different ways of implementing a rational digital
controller do make a difference in the controller performance during
pericds of manipulated variable saturation, operator override or
actuator failure. The analysis also in turn leads to simple remedies for
the implementation problems. The key is to separate past contrnl actions
from the current control action before any polynomial multiplication,
and to use the past implemented control actions instead of the past
calculated control actions. The optimality of these remedies can be
interpreted using the Mcving Window Optimization concept. Based on the
Internal Model Structure and the Moving Window Optimization, the
remedies for the impliementation problems are further generalized to
cover long horizon controllers, such as LQG and rational MIMO model
based controllers. Computer simulations have been performed to verify
the proposed remedies. The results demonstrate the superior performance
of these remedies. The amount of computation is no more than the
conventional solution, thus these remedies could be easily used to

implement rational model based digital controllers.
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3.5. Nomenclature

h(i) Process Impulse weight at time i
dafi) Process Disturbance weight at time i
Y(i) Process Model Output at current time i
Ym(i) Process measurement at current time i
Uci) Process Input at current time I
e(i) Error Signal in IMC Structure
Uimp(i) Actual Implemented Input at current time i
NCI) Noise Disturbance at current time i
-b
wiz)z
N(i) = Ym(I) - —_— Uim (i)
8(z) P
a(i) Random Shock at current time i
YSP(I) Set point Trajectory at time i
Y{i+b) Process Output Forecast at time i+b
YN(i) Filtered Disturbance at time i
T(z)
YN(i) = — N(i)
a(z)
YU(I) Intermediate output
N(i+b) Noise Disturbance Forecast at time i+b
Ysp(i+b) Set point Trajectory Forecast at time i+b
R(1i) Set point Input at time i
-b
; . _ owlz)z
GR(z) Rational Process Model ; GR(z) = 5(2)
wiz) Numerator of the rational process model
a(z) Denominator of the process model
az) =1+ a(z !t + 82272+ ...

a(z) Numerator of noise model -Box & Jenkins Form
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¢(z) Denominator of noise model

v Differencing operator, ( 1 - sz)

we(z) Approximate process model numerator

or(c(z)) Order of Polynomial G(z)

~(G(z)) ~ implies G(z) with first term removed;
G(z) = G(0) + G(1)z 1+ G(2)z"2

~G(z) = a1z 1+ Ge2)z72
o Output Trajectory Deviation penalty
B Input Deviation Penalty
d Differencing operator
P Qutput Horizon in Optimization
M Input Horizon in Optimization
I Dimension of process input
o Dimension of process output
¢f(2) Forecast error polynomials
T(z) Forecast related polynomials
e(z) _ T(z)
v~ ¥e? B
Kn(z) Numerator of Servo Trajectory
Kd(z) Denominator of Servo Trajectory

Kd(z) =1+ Kd(l)z_l + i

Y, (i), U (i) Process Qutput/input if control action can
b b ]
be exactly implemented
Yc(i),U (i) Process Output/Input using ccnventional
< implementation

Yo(i),Uo(i) Process Output/Input using One-Interval/
Multi-~Interval implementation
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wlz)
&(z)

matrix rational polynomial - Wilson

canoical form

wll(z) wlz(z)
wz)| | B3 (E T8 ()
3(z) wzl(z) w22(z)
621(2) 622(2)
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CHAPTER 4

ROBUSTNESS - STABILITY OF UNCERTAIN SYSTEM

4.1 Introduction

In the last two chapters, the implementation of model based
controllers has been addressed. | The heart of these mcdel based
controllers is a model of the process that they are te control.
Naturally, the success of these controllers would ultimately depend on
the correctness of the process model. If the model is not adequate, the
resulting performance can be very different from the design
specification as demonstrated in the simulation and experimental studies
in Wong et al. (1987a) and Kusuma et al. (1984). This dependency on
model adequacy is commonly known as the "robustness problem" or the
"model mismatch problem" in the control literature (see Bartlett et al.
(1987), Doyle (1982), Huang .et al. (1987), Palazoglu et al. (1986),
Bequette et al. (1987), Morari et al (1989), Skogestad et al. (1990),
Campo et.al (1990), Khambanonda et al (1990)). With the increasing use
of model based controllers, this issue has become a very active research
area. Although model based control theory promises significant
improvement over classical control techniques, the improvement cannot be
realized if the process model is not an "adequate" description of the

real process.

Stability is one of the important issues in the robustness problem.

It dictates the ultimate behavior of a contrelled system. Although many
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measures, such as gain margin, phase margin, etc, have been developed to
check the degree of safety designed into a controlled system, these
classical technigues are based on the model of an exactly known process.
In other words, if the process dynamics are known, these techniques can
analyze the closeness of the control system to instability. However,
for control systems with varying or uncertain dynamics, these measures

cannct be straight forwardly applied and modifications have to be made .

There are several methodologies to assess the stability margin of
an uncertain control system. These uncertainties can be attributed to
simplification of a complex physio-chemical process, changes in process
operating region, etc. In general, the dynamics of an uncertain process
can be modeled by a nominal model (Gm(z)) and an uncertainty (Un(z)}
about the nominal model (see equations 4.1la,b and Lunze (1982)}). The
stability of the controlled system can be assessed by analyzing a

characteristic equation similar to equation 4.1b.

Gp{z) = Gm(z) + Un(z) (4.1a)

G ](z] = 1 + Ge(z)Gp(z) =0 (4.1b)

c

vwhere Ge(z) is the controller

In many model based controller designs, a simplified nominal model,
Gm(z), is used in the design. Typically a 1st or 2nd order plus dead
time model is used and the model form can be described in a variety of

mathematical domains : frequency, input/output transfer function, state
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space, etc. The parameters in Gm(z) are assumed to be known and fixed
and the uncertainty of the controlled system lies in Un(z). There are
many ways to deseribe this uncertainty. Doyle et al. (1981), Horowitz
(1982), and others use magnitude uncertainty in the frequency domain.
Heinen (1985) and Yedavalli (1986) treat the uncertainty in the state
space domain with the uncerfainty specified through the parameters in
the system matrices. Kharitonov{1978), Bialas et al.(1983),
Barmish(1984), Soh et al.(19839) tackle the problem from the Input/Output
transfer function space. Each type of uncertainty characterization has
its own merit and provides a way to handle the stability investigation
for that particular space. It is important to note that transferring
uncertainty from one space to another usually introduces
conservativeness in the analysis. Therefore, it is better to use a
stability analysis which is compatible with the uncertainty
characterization; i.e., if the uncertainty is specified in the frequency
domain, then one should analyze the uncertain system using a frequency
approach. The work here focuses on the Input/Output transfer function
space. This takes into ascount the fact that control engineers in the
processing industries tend to be more familiar with input/output data
(step test, pulse test, etc.). Therefore, the Input/Output transfer
function space approach is easier to understand. Furthermore, the
Input/Output space 1is closely related to the time domain and
consequently the uncerta:n system’s performance can be assessed through
its time domain response. For a chemical engineer, this approach is
more natural than the bandwidth, resonant peak concepts used in the

frequency domain.
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Since an approximate model is typically used in the design of model
based controllers, there will be discrepancies (uncertainty)} between the
model and the actual process. If one is not careful in assessing this
process uncertainty, the more ambitious model based controller designs
Wwill probably cause problems rather than delivering the expected high
performance. Fortunately, the discrepancy between the actual process and
the model is not totally unknown. Ope can have an idea as to the extent
of the process uncertainty by doing repeat step tests or pulse tests.
In fact, this uncertainty should be part of the process description and
the controller design procedure should incorporate this information so
that the resulting controller can perform well even in the face of

process uncertainty.

This chapter addresses the stability issue of the robustness
problem. A formal problem definition is presented in sections 4.2
together with some background information on the stability of an
uncertain control system. Novel stability criteria are discussed in
section 4.2.2.1 and examples are shown in section 4.2.2.4. Section 4.3
presents a discussion of the application of these new results to the
design of model based controllers. A conclusion of this chapter is

given in section 4.4

4.2 Stability of Uncertain Systems

Throughout this chapter, polynomials are used to assess control

system stability. In general polyncmials are closely related to system
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stability through the closed loop characteristic equation (equation
4.1b). If one can specify the transfer functions for the controller and
the process then a closed loop characteristic equation similar to

equation 4.1b can be derived and this dictates the stability of the

control system.

In the investigation of the stability of an uncertain system using
the input/output transfer function space, there are two main categories
of uncertainty - polytopic and interval uncertainty. Although this work
focuses on the latter type of uncertainty, both types are discussed so
that the nature of the uncertainty description can be appreciated and an
appropriate uncertainty analysis can be selected. In this way, the

conservativeness of the result can be reduced.

4.2.1 Stability of an Uncertain Polytopic System

Consider the following family of polynemials :

{ =
Pr‘Z) rlPl(z) + rsztz) oL, * rnPn (4.2)
where
N
_ N, . _
r = (rl,rz, .,rN) € R ryz 0 for all i; z ry = 1
i=1
Pr(Z] represents a polytope of polynomialsg. This type of system

usually occurs when the uncertainties in process model parameters are

correlated. When r sweeps from 0 to 1, it spans an infinite number of
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polynomials. The objective is to determine the stability of this
infinite polynomial set. For a discrete system, this is equivalent to
determining whether all the possible roots of equation 4.2 have

magnitudes less than unity.

The major breakthrough in the stability analysis of polytopic
pelynomial systems was presented by Huang et al. {1987) and Bartlett et
al. (1987). They gave a rigorous mathematical proof using the theory of
topology. Their result shows that the stability of the family of
polytopic polynomials can be ascertained by checking the "exposed edges”

- pair wise convex combinations of polynomials, {(1—r]Pi(z)+rP {(z);

J
re(0,11; (i, jle(1,2,..,N}}. This checking only 1involves one free
parameter, re[0,1] and hence the computation can be readily performed.
Katbab et al.(1990) further generalizes Bartlett et al.’'s "Edge
Theorem" and presents a more efficient computation method to check
polytopic uncertain system. Although Bartlett et al.'s mathematical
result seems very interesting, the following example shows that their

result is non-trivial to implement in practice. The problem lies in the

degree of correlation between the process parameter uncertainties.

EXAMPLE :

Consider a simple 1st order plus dead time process under feedback

control (Gec), the characteristic equation is:

1

P(z) =1 -62z" +GecKp (1-8) z 2 (4.3)
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-T/T
p

where & related to the process time constant ( e )
T sampling time
T process time constant
G feedback controller
K process gain
F  unit throughput

If the process gain and the process time constant are related to

the process throughput, F, in the following manner :

f(F) (4.4a)
g(F) (4.4b)

Kp

O
1]

Then the characteristic polynomial in equation 4.3 can be written as :

P(z) = 1 ~g(F) 2% + Ge £(F)(1-g(F)) =z (4.5a)

Equation 4.5a contains only F and hence 1s one-dimensional. If the

uncertainty of F is :

F < F < F {4.5b)

The two extreme polynomials are :

fl

P (z) =1 - g(F1)2_1 + Ge £(F)) (1-g(F,)) z @ (4.6a)

P,(2) =1 - g(FZJz" + Ge £(F,) (1-g(F,)) z™2 (4.6b)

118



The result of Bartlett et al. (1987) basically proves that the stability

of equations 4.5a,b can be assessed by checking the exposed edge; i.e.,

P(z) = (1-r) Pl(z] + rPZ(z] (4.7)

¥ O0=r=1

Equations 4.5 and 4.6 show that the relations between the process
throughput(F) and Kp and & reduce the uncertain system te a one
dimension system. As the throughput changes from F1 to FZ' the
characteristic equation changes from equation 4.6a to 4.6b. In this
case, a one-dimensional search (checking the exposed edge) is adequate
to assess the stability of this type of uncertain system. The
assessment is computationally efficient and more importantly, the result
is non-conservative. However, in a real process, it is not trivial to
define an uncertainty correlation similar to the one shown in equation

4.4, If there happens to be little correlation between the polynomial

coefficients, then a different approach has tc be employed.
4.2.2 Stability of an Uncertain Interval System

A more attractive approach for processes with uncorrelated
uncertainty is to describe the uncertainty in terms of "interval"

polynomials.
Consider a discrete interval polynomial (see equations 4-8,4-9):

F(z) = 2" + (a +8 )z ....+(a1+f31)zl + (a +8) =0  (4-8)
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where the ak's are the nominal, fixed coefficients of the polynomial,
and the Bk's represent the perturbations in the coefficients. These

perturbations can take any values within the symmetric bounds:

-8B = B = B and

]
v
o
~
i
o
p—

. n=1 (4-9)
where E;and —E; are the upper and lower bounds of Bk

so that the perturbed system, F(z), contains an infinite number of
polynomials. The main concern here is to check the stability of F(z)
when the bounds, E;, are known together with the nominal coefficients,
ak’s. Wong et al. (1987b) show that this mathematical problem has a
direct application in the study of an uncertain control system: 1f one
can use historical operating records and operational experience to
estimate the uncertainty in the discrete Iimpulse response as a bound
similar to equation 4-9, then the response of the closed loop control
system will have a characteristic equation similar to equations 4-8 and

4-9. Therefore, the stability of the closed loop uncertain system is

given by the stability of equation 4-8.

Although there are many stability criteria in the literature (e.g.,
frequency criteria from the Nyquist theorem, root location from
eigenvalue theory), they are not suitable for perturbed coefficients
systems because one needs to check the stability of an infinite number
of polynomials; this is practically impossible. In the search for

necessary and sufficient conditions which guarantee the stability of the
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interval polynomials, the celebrated work by Kharitonov (1978) was a
tremendous step forward for continuous Interval polynomials. The
necessary and sufficient conditions for the roots of the perturbed
system (equations 4-8 and 4-9) to lie on the left hand complex plane, (
Re[Ak) < 0.0 ) requires the checking of four polyncmials rather than the
infinite set (see Mori and Kokame (1987), Bose and .hi (1987) and
Barmish(1984)). This theorem has had a significant impact on the study
of continuous uncertain systems and Barmish and De Marco (1987) have
provided a perspective of the application of Kharitonov’'s Theorem to
continuous, perturbed coefficient polynomials and matrices. However,
these results cannot be directly applied to discrete interval
polynomials where stability requires Itl|<1.0 (see Hollot and Bartlett
{1986) and Bose and Zeheb (1986)}. There are many conjectures on the
stability characteristics of interval systems. However, many of these
conjectures were either proven wrong or shown incorrect with
counter—-examples. For examples, the works of Bialas (1983), Argon
(1986), Juang et al. (1989) were disproved by Karl et al. (1984), Soh
C.B.(1990) and Shi (1990) respectively. As Bartlett, the leading
investigator in this area, points out in Bartlett (1990} that "In
general, non-conservative stability analysis can be extremely difficult
to carry out". Huang et al. (1987) used topology arguments to show that
the stability of discrete interval polynomials cannot be inferred by
extreme polynomials in general. They propose further restrictions on
equations 4-8 and 4-9 so that the necessary and sufficient conditlons
for the stability of the restricted discrete interval polynomial could
be obtained. However, these restrictions are too severe to be useful

for the study of control systems with uncertain parameters.
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Other studies (Berger (1982); Mori (1984); Dabke (1983);
Heinen(1985)) have tackled this problem by considering the location of
the ruots of the perturbed system equation. The roots of F(z)=0 satisfy

|z| =& and 8 > 0 if

+ B )/ s (4-10)

For the stability of a discrete system, & is 1 and equation 4-10

becomes:

.
o
1A
—

(4-11)

Equation 4-11 can also be obtained immediately from Jury's Dominance
Coefficients theorem (see Jury (1964)). Equaticn 4-11 is a conservative
stability criteria, in the sense that it becomes inconclusive when the
true process is still stable, because equation 4-11 is a necessary but
not sufficient condition for stability. Xi and Schmidt(1985) suggested
the ratios and signs of ak’s can be used together with the Monotonic and
Dominance conditions in Jury (1964) so that a less conservative criterila
can be achieved. They proposed two new theorems beyond equations 4-10
and 4-11 based on the ratios of ak’s. However, the perturbed
coefficient theorem that they proposed can not be applied te interval

type of perturbation.

This study propeses three criteria for the stability of discrete
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interval polynomials. They are all based on the Rouche's theorem and
they make use of particular properties of ak's and Bk's. The objective
is to provide criteria which are less conservative than the other
methods. They should not only be computationally feasible, but also

straight forward to apply.

In order to avoid checking the stability of an infinite number of
polynomials in equations 4-8 and 4-9, Rouche's Theorem (Rosenbrock and
Storey (1970)) is used. This theorem provides a comparison technique to
count the number of zeros of an analytic function in a certain domain.
For this problem, the domain of interest is the unit disk centered at
the origin. Three criteria will be derived in the following sectlons.

They are all based on the Rouche’s Theorem.

Given the interval polynomial, F(z) in equations 4-8 and 4-9, it

can be written as :
Flz) = #(z) + 2(z) (4-12)
where the certain portien is:

¢(z) = z +o 2 I alz1 + a (4-13)

Z=(z) = B .z . + 8121 + B {4-14)
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with symmetric bounds on the value of the perturbations

™I
Iv
o

B s B = E and {4-15)

for k

]
o
—
i
iy

4.2.2.1 Theorem 1 -

The discrete interval polynomial, F(z), in equations 4-12 and 4-15

is stable if :

(i) the nominal polynomial, &(z) is stable

(11)  Jee?™T)| > w(E(e™x) (4-16)

v w 0 =x = N-1

Proof:

The proof is a consequence of the Rouche’s Theorem. The sufficient

condition for stability by Rouche’s Theorem is :

If fa) ¢(z) is Schur (i.e., }Ak| <1 )
and

(b} |@(2)] > {E(2)] vz onfl

Then the polynomials, &(z) and ¢(z)+Z{(z)} have the same number of zeros

inside the disk, ‘z| < 1. In other words, if ¢(z) is stable, then
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¢(z)+2(z) is also stable. Unfortunately, Rouche’s Theorem requires the
polynomial coefficients in Z{z) to have fixed values. The tfick in
using Rouche’'s Theorem for an interval polynomial system 1is to modifly
the calculation of |E(z){. Then the same Rouche’s Theorem can be

applied to check the stability of interval polynomial system.

Condition (i) in Theorem 1 corresponds to conditicn (a) in Rouche's
Theorem. Since condition (a) involves only one polynomial, it can be
checked explicitly by either a roect finding routine or by Jury Test
{Jury 1964); and it poses no problem. To satisfy condition (b) for an
interval polynomial system, one must use a magnitude condition.

The Z-transform of EZ(z) can be calculated by substituting e’ for

z in equation 4-14 (Neff 1984)

n-1
=(e’%N= ¢ BlejwkT (4-17)
1=0

and the magnitude of E(z} can be evaluated through

12e?T)] = ( 2(e?%T) =e?%T) )12 (4-18)
v e 0 <k < N-1

The RHS of equation 4-18 can be expanded as

n-1 n-1 (1eD)® T 172
=[{T I Blﬁlej k' }) (4-19a)
1=0 1i=0
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Using the trigonometry equality, eJB=cos(B) + j sin(8), equation 4-19a

can be rewritten as :

n-1 n-1 1/2
=[ {( £ =& Bl Bl cos((l-xlwkr ] (4-19b)
1=0 i=0
n-1 n-1 1/2
+J{ £ Z B, Bl sin((bd)wkT 13
1=0 i=0

Since the magnitude of Z{z) is a scalar gquantity :
i.e.,

12(e?T)| = a+bj
and

b=0.
the imaginary part in equation 4-19b must be zero. Thus the RHS of
equation 4-18 becomes:

n-1 n-i 12

= { £ Z Bi Bl cos((l-l)wkr }] {4-20)
1=0 i=0

The trick to get around the infinite possibilities arising from an
interval polynomial system is to find the maximum magnitude of Z(z} at

each discrete frequency, Wy -

n~-1 n-1 1/2
12(e?%T) | = [max { 2 I B £ cos(li-1)w 1)} (4-21)
1=0 i=0
n-1 n-1 _ _ 172
= [z = B B| cos(l-tloT | ] (4-22a)
1=0 i=0



where Ei and 51 are the symmetric bounds on the uncertainties.

Defining ¥#(2(e’®k’)) as the RHS of equation 4-22a yields:

| 2™ = wEE™T)  vzonT (4-22b)

(z = &%)
Equation 4-22b implies that condition (b} of Rouche’s Theorem

| #z) | > | 2(2) | ¥zonTl
if

18(e?%™)| > ¥(E(e™’)) Vzonr
Therefore conditions (i) and (ii) in Theorem 1 extend the conditions (a)
and (b) in Rouche’'s Theorem to an interval polynomial system. Thus the
interval polynomial, F(z) in equation 4-12, is stakle if conditions (i)
and (ii) are satisfied.

Proved
In order to satisfy condition (ii) in Theorem 1, one needs to check

all discrete frequencies on the unit circle. To simplify the criteria,

a frequency independent criteria is developed in Corollary 1.
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4,2.2.2 Corollary 1 -

Corollary 1 :

Given the discrete interval polynomial, F(z), described in

equations 4-12,4-13,4-14 and 4-15.

The interval polynomial, F(z) in equation 4-12, 4-13 is stable if:

(i) the nominal polynomial, ®(z) is stable

(11) min(|e(e?%
wk

1) > e(E(z) (4-23)

Proof :

The RHS of equation 4-22a defines @(E(ejw{r)), setting the cosine

term to its maximum value, 1, and noting that

n-1 n-1 _ _ n-1 _ n-1 _ n-1 _ =z

&z B B, = E B E B - (z Bi) (a-24)
i=0 1= i=0 1=0 i=0

yields
w T n-1 _
v(Ee™)) = £ |8 | (4-25)
1=0
YV w 0=k < N-1
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The RHS of equation 4-25 defines the supremal gain, ¢{(Z(z2}), of the
uncertain polynomial in equation 4-14.

Since, by definition,

kaT]l z min |(®(e

w
k

|@(e kaTJI

Vwk 0 = k < N-1
and equation 4-25 defines,

c(E(z)) = ¥E(e%N)

v w, 0 =k < N-1
then if condition (ii) of Corollary 1 is true, the following is also true
|¢(ejwkT)[) > ¥(Ee™)) v w, 0 =k = N-1

Conditions (i) and (ii) of Corollary 1 imply the conditions in Theorem

1. This proves Corollary 1.

Corollary 1 is a simpler criteria than Theorem 1. It requires the
checking of condition. (ii) at a frequency which correspors s to the
minimum magnitude of |¢(z)|. A further simplification to Corollary 1 is
to find the lower bound of |#(z)|. A criteria using this simplification

is developed in Corollary 2.
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4,2.2.3 Corollary 2 -
Corollary 2 :

Given the discrete interval polynomial, F(z), described in
equations 4-12, 4-13, 4-14 and 4-15. The interval polynomial, F(z) in

equations 4-8, 4-9 is stable if :

(i) the nominal polynomial, &(z) is stable

(ii) 1/p(D(z)) > o(E2(2)) (D(z) = 1/%(=2)) (4-26}

Proof :

Since, by definition,

|o(z) | = min(|®(2)])

and from equation C-9 in Appendix C, the magnitude of a polynomial can

be bounded below by the inverse spectral gain, then

le(z)| z 1/u(D(z)) (4-27)

Now if condition (ii) of Corollary 2 is true, then the following is true

|6(z) | z o(E(2))

From equation C-5 and C-3 in Appendix C, the supremal gain of a
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polynomial is always greater than the magnitude of the polynomial:
|@(2) | = [Z2(2)] YzonT (4-28)

Therefore conditions (i) and (ii) in Corollary 2 imply the conditions

(a) and (b) in Rouche’s Theorem. This completes the proof.

Corollary 2 requires that the polynomial ¢(z) be inverted ({see
equation 4-26). This may seem a little clumsy for practical
computation. However, in the analysis of uncertain systems (see Wong et
al.1987b), the characteristic polynomial usually comes in a form similar

to equation 4-29 because of the feedback effect.

1 + E(z) ¢(z)=0 (4-29)

or F(z) = =(z) + 1/ (#(z)) =0 and D(z} = ¢{z)

One can then directly apply Corollary 2 in equation 4-26 without the
need of an inversion. Flilgure 4.1 illustrates the relationship between
Thecrem 1, Corollary 1 and Corollary 2. It plots the magnitudes of

19(2) ], min(&(z)), 1/(u(1/2(2))), c(¥(z)) and Y(E(2)) against normalized
w T

discrete frequencies ( }. The significance of this plot is that
it gives a graphical representation of the criteria just derived. The
higher the magnitude of |®(z)| over the frequency range, the higher the
tolerance to model uncertainty. From the control point of view, the

known portion, ®(z), relates to the nominal process model as well as the

controller. Therefore for a given nominal process model, cne can always
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design a controller which provides a large tolerance to model

uncertainty.

4.2.2.4 Examples

Three examples are given in this section to illustrate theorem 1
and its corollaries. Example 1 compares the conservativeness of the
criteria developed in this chapter by graduclly increasing the
uncertainty in the interval polynomial; the criteria are applied to the
polynomial and the results are compared. Example 2 shows how closed
loop control system stability can be ‘formulated as an interval
polynomial. A Dahlin controller (Dahlin (1968)) was used as the
controller in this example. The third example uses the distillation
control loop simulation described in Appendix B to illustrate the

stability criteria.

Example 1:

Consider the interval polynomial below which corresponds to

equations 4-8 and 4-9:

$(z) = 22 + 0.2z + 0.1

o

1§
gV ]
34

"
o
AN
|

. is specified between 0.5 and 0.76

a = 0.1 Bo = 0.1

132



L bl W

The roots of &{z) are -0.1+0.6j and -0.1-0.6j. Since the roots are
inside the unit circle, the nominal system is stable. Table 4-1 shows

the effect of the gradual increase of the second uncertain coefflclent,

B1‘ on the proposed stability criteria.
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Table 4-1:

Comparison of the proposed stability criteria for the

discrete interval polynomial in Example 1 at different
levels of uncertainty

Criteria (i1)-(iv) correspond to equation 4-11, 4-26, 4-23 and 4-16

w |

Case 1 :

(i) Root location method

(i) Corollary 2
(iii) Corollary 1

(iv) Theorem 1

Wi

Case 2 :

(1) Root location method

(ii) Corollary 2
(1ii) Corollary 1

{iv) Theorem 1

Case 3 :

(i) Root location method

(i1) Corollary 2
{iii) Corollary 1

(iv) Theorem 1

c(2(2}) = 0.6

criteria = 0.90

1/7u{D(z})= 0.78

(eq 4-11) Stable

(eq 4-26) Stable

min(|®(w)|)= 0.85 (eq 4-23) Stable

satisfied

oc(2(z)) = 0.7

criteria = 1.00
1/u(D(z))= 0.78
min(|®(w)|)=0.85

satisfied
c(=(z)) = 0.8

criteria = 1.10

1/u(D{(z))= 0.78

min{|&(w)|)= 0.85

satisfied
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4-11)
4-26)
4-23)

4-16)

4-11)
4-26)
4-23)

4-16)

(eq 4-16) Stable

-

Stable

Stable

Stable

Stable

Stable



Case 4 :

wl
[ ]

=0.7; ¢(2(z)) = 0.86

(1) Root location method «criteria = 1.16 (eq 4-11) *
(ii) Corollary 2 1/u(D(2))= 0.78 (eq 4-26) *
(iii) Corollary 1 (N=30)  min(|®(w)|)=0.85 (eq 4-23) *

(iv) Theorem 1 (N=30) satisfied {eq 4-16) Stable

* -~ Inconclusive : Since the Theorem is a necessary but not sufficlent
condition, violating the criteria does not imply that the polynomial is

unstable.

From the table, the root location method fails to predict a stable
polynomial at a much earlier point than the proposed methods. This shows

that the proposed criteria are less conservative than the root location

criteria.
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Example 2:

Consider the characteristic equation of a discrete closed loop

control system :

1 + Ge(z) ( Gm(z) +Un(z) ) =0 (4-30)

Dividing the equation 4-30 by Gc(z):

1
(— )+ ( Gm(2) + Unf(z) ) =0 (4-31)
Gel(z)

If a Dahlin controller is used (Dahlin 1968),

1 K(z)
Gelz) = . (4-32)
Gm(z) 1 - X(=z)

where K(z) is the desired closed loop response in Dahlin

Controller.

Equation 4-31 becomes :

Gm(z)
+ Un(z) =0 (4-33)
K(z)

If Gm(z)/K(z2) defines the polynomial &{z) in example 1, then the
stability results in Example 1 apply directly to this control example.

Furthermore, equation 4-33 implies that the tolerable uncertainty is
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determined by —%%é%l . Depending on the tuning of the controller, K{z),

the term Gm(z)/K(z) will take on different characteristics as shown in
Figure 4-2. For a slowly tuned K(z), the magnitude of Gm(z)/K{z] is
high over the frequency range. From equation 4-33 this implies that the
uncertainty tolerance is high. Comparing with Figure 4-1, it is clear
that the higher the magnitude of Gm(z)}/K(z) over the frequency range,
the higher the uncertainty tolerance. This interesting }esult on
controller robustness corresponds closely with the intuitive way of
tuning Dahlin controller - increase the closed loop time constant in

K(z) in order to increase robustness.

Example 3:

In this example, the top composition control loop in the extractive
distillation tower simulation (see Appendix B-2) is used to illustrated
the applicability of the theorem and corellaries developed in this
chapter. The process model between the acetone composition and the

reflux rate is:

2 3

+ 0.2635 z
1

0.9059z

Gp,, (z) = -
1 1 - 0.627 z

If a Dahlin controller is used, the characteristic equation would

be similar to equation 4-33 :
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Gplltz) )
+ Un(z) =0 (4-34)
_K(z)

Case A: closed loop dynamics was tuned to be slower than the open loop

0.3z 2
K{Z) = '--'--—_1—“— (4-35)
1-0.7z
Equation 4-34 becomes :
0.9059z 2+ 0.265z ° 1-0.72" ¢
( ) . = } +Un(z) =0 (4-36)
1 - 0.627z 0.3z

Case B: closed loop dynamics was tuned to be faster than the open loop

0.52_2
K(Z) = —-—-—_1—"‘ [4‘37)
1-0.5z

Equation 4-34 becomes :

0.9059z %+ 0.2652 > 1-0.52 1

{ - . = } + Un{z) =0 (4-38)
1 - 0.6272 u.5z

Both cases will be considered in the stability analysis.

In a control syctem containing fast and slow dynamics, one tends to
model the system as a slow first order system. In this case, the
unmodelled fast dynamics would only affect the first few coefficients in

the process model. The uncertainty, Un(z), in this case is:
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Un(z) = B,z + B3z (4-39)
where —525 BZ = BZ = 0.2
and 83 = 0.2

The stability criteria are applied to both systems, equations 4-36 with
4-39 and equations 4-37 with 4-39. The results are collected in Tables
4-2 and 4-3. In the slow tuning case (see Table 4-3), the table shows
that when BZ increvases to 1.6, root location criteria failed. The
criteria developed in this werk shows that BZ can be increased further
to 2.0 before the criteria becomes inconclusive. In the fast tuning
case {séc'Table 4-2), the 82 tolerable uncertainty for root location
criteria and Theorem 1 are 0.3 and 1.0 respectively. These values are
lower than the slow tuning case. This agrees with the fact that
detuning can tolerate more uncertainty. In general, the proposed

criteria perform much better than the root leccation criteria.
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Table 4-2: Comparison of the proposed stability criteria for
the closed loop system in Example 2 at different levels
of uncertainty (Case A) - Fast Tuning

Criteria (i)-(iv) correspond to equation 4-11, 4-26, 4-23 and 4-16

Case 1 : B =0.2 c(2(z)) = 0.4

(i) Root location method criteria = 0.931 (egq 4-11) Stable
(ii) Corollary 2 1/p(D(z})= 1.206 (eq 4-26) Stable
(1ii) Corollary 1 (N=30) min({®(w)|)= 1.209 (eq 4-23) Stable

{iv) Theorem 1 (N=30) satisfied (eq 4-16) Stable

Case 2 : B =0.3 #(Z(z)) = 0.5

{i) Root location method criteria = 1.002 (eq 4-11) =

(ii) Corollary 2 1/u(D(z))= 0.723 (eq 4-26) Stable

(1i1) Corollary t (N=30) min(|®(w)|)=0.739 (eq 4-23) Stable

{iv) Theorem 1 {N=30) satisfied (eq 4~16) Stable
Case 3 : Ez = 1.0 c(E(2)) = 1.2

(i) Root location method criteria = 1.37 {eq 4-11) *

(ii) Corollary 2 1/p(D(z) )= 1.206 (eq 4-26) *

(111) Corollary 1 (N=30) min(|®(w)|)= 1.209 (eq 4-23) *

{iv) Theorem 1 {N=20} not satisfied (eq 4-16) *
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Table 4-3:

Comparison of the proposed stability criteria for

fhe closed loop system in Example 3 at different levels
of uncertainty (Case B) - Slow Tuning

Criteria (i)-(iv) correspond to equation 4-11,

=]

Case 1 :

(i) Root location method

(ii) Corollary 2
{1ii) Corollary 1

(iv) Theorem 1

Wl

Case 2 :

(i) Root location method

(ii) Corollary 2
(iii) Corollary 1

(iv) Theorem 1

Wl

Case 3 :

{i) Root location method

(ii} Corollary 2
(1ii) Corollary 1

{(iv) Theorem 1

c{E(2)) = 0.4

criteria 0.533

I

1/p(D(z))= 2.178
min(|¢(w)|)= 2.22

satisfied

c(=(z)) = 1.8

criteria = 1.000
1/pu(D(z))= 2.178
min(|@(w)|)=2.22

satisfied
el(2(z)) = 2.2

criteria = 1.13

1/u(D(z))= 2.178

min(|¢(w)|)= 2.22

not satisfied

141

4-26,

4-23 and 4-16

{eq 4-11) Stable

(eq 4-26) Stable

{eq 4-23) Stable

(eq 4-16) Stable

(eq
(eq
(eq

(eq

{eg
(eq
(eq

(eq

4-11)
4~26)
4-23}

4-16)

4-11)
4-26)
4-23)

4-16)

-

Stable

Stable

Stable



4.3 Discussion

In this chapter, three straight forward sufficient conditions for
the stability of a discrete interval polynomial are presented. They are
all based on the Rouche's Theorem. It 1is interesting to compare this
approach with that of Bartlett et al. (1987). They presented an
extension of the work of Huang et al. (1987); they are, in fact, the
same researchers. They solve for the location of the roots of the
characteristic polynomial when the family of all such polynomials-is
polytopic in the coefficient space. Using the theory of polytopic sets,
they show that the root location of the entire family is determined by
examining the roots of the polynomials defining the exposed edges of the
polytope. This is a very useful result when it is possible to define
the process uncertainty in a polytopic way. Physical examples might be:
changes in the operating point of distillation column (McDonald et al.
(1987)), or changes in the concentration of an impurity in the feed to a
polymer reactor (Kozub and MacGregor (1990)). In these cases, the
changes (uncertainty) in a few variables causes corresponding changes in
many  of the coefficients of the characteristic polynomial.
Unfortunately, this approach requires the definition of the "vertex
polynomials” which describe the multidimensional polytope. In
McDonald’s work (1587), she found the family of physically realizable
operating points by exhaustive simulation with a model which is only an
approximation to the true process. Kozub and MacGregor (1990) used a
complex mechanistic model of a polymer reactor to investigate the effect

of impurity concentration on the polymer properties. This type of
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investigation is quite expensive (requiring approximately 2-3 man years
of engineering effort to develop the model and establish the physical
property data) but there appears to be no other ways of gathering the
information require& to define the polytopic set for complex
physico-chemical processes and still have some confidence that the set
is realistic. Simpler processes might be modeled in the least sguares
fitted sense by low order transfer functions. In this case, a variation
in one parameter (say, time constant) will produce a family of
polynomials which are polytopic. Unfortunately, experience 1in the
processing industries suggests that the uncertainty often comes from
multiple sources and that the transfer functiens fitted to plant data
show independent variation in many parameters, including the time delay.
For a process modeled in this way, the flat faced polytope used by
Bartlett et al. (1987) would need to be quite large (and therefore
conservative) if it is to encompass the whole family of polynomials, or
it would have to be quite complex (and therefore time consuming to
define). The advantage of interval polynomlals lis th;t they can be
easily defined from historical operating records via impulse responses
or fitted transfer functions and operational experience. The
conservatism that they introduce into the analysis is a serious problem
and the work of Bartlett et al. (1987) is an impertant theoretical
contribution when a realistic polytope can hbe defined. There are,
however, a large number of systems in the processing industries which
are either so complex, or so understaffed, that the effort to define the
polytope is hard to justify. For these systems, interval polynomials
are usable, though far from satisfactory. Although the current approach

is conservative in nature, this is only an artifice of the mathematics.
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The concept of an interval polyncmial is a good description of a real
control system. If better mathematical tools were available, the

conservatism can be further reduced.

4.4 Conclusion

Three criteria have been derived to provide the sufficient
conditions for the stability of discrete interval polynomials. They
provide stability criteria that are "tighter" than the root location
criteria. They can be easily implemented oh a digital computer to
predict the stability of a characteristic polynomials of the interval
type. These criteria can be used in a wide variety of processing
industry applications to predict the stability of an uncertain control

systen,.
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4.5 Nomenclature

Fl{z) : interval polynomial

$(z) : certain portion of F(z)

2(z) : uncertaln portion of F(z)

D(z) : inverse of &(z) (1/¢(z2))

N ' : total number of discrete frequency

n : order of F(z)

P(z) : Polytope of polynomials

T : sampling time

w : discrete frequency

wk : discrete frequency at frequency 2mnk/NT

@, : coefficient i of $(z) correspoending to 2!

Bl coefficient i of 2(z) corresponding to z'

El upper bound of Bi

-El lower bound of Bi

Ai : complex eigenvalue i

r : closed path, a unit circle centering at the
origin, on the complex plane ; z=ejwkT :
= -1

¥(G(el%)) : maximum magnitude of G(z) at W,

n-1 n-1 _ _ 1/2
= { z =z Bl B1 ]cos((-1+l)ukT]| }
i=0 1=0

o (G(z)) : supremal gain of G(z)
n-1
—1=0lakl
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p(G(z)) : spectral gain of G(z)

n n-1 1/2
= {z |Z g g |}
i=-n jso '*4
min(®(z)) : minimum magnitude of %(z) over T
{f| : magnitude. of complex function, f or absolute

value of scalar, f

Gm(z) : nominal process model

Un(z) : process model uncertainty

Gelz) : discrete controller

K(z) : desired closed loop servo response
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CHAPTER 5

RoBUSTNESS - PERFORMANCE OF AN UNCERTAIN CONTROL SYSTEM

S5.1. Introduction

The overall effectiveness of a contreol system depends on 2 factors
- stability and transient performance. Stability dictates the ultimate
behavior of a control system while transient performance measures the
cleoseness of the process v%riables to their targets. One has to resolve
the stability 1issue before one achieves good transient performance.
Chapter 4 provides a methodology to measure the stability of an
uncertain control system. The next question 1s how to assess the
“transient performance" of an uncertain control system. Here, the same
problem is encountered as in the stability case. Since the actual
process 1s neot exactly the same as the process model, the exact closed
loop transient behavior canncot be predicted. Being able to predict the
closed loop behavior of an uncertain control system can enhance one’s
confidence in the controller. Therefore, the problem becomes one of
how to predict the closed loop behavior of ci uncertain control system.
This issue is generally categorized as the "performance robustness”
aspect of the "Model Mismatch Problem” in the control literature. The
work of Wong et al. (1987a) and Kusuma and Elliott (1984) demonstrates
that the model mismatch problem is an important Iissue not only in
simulations but also in experimental and industrial applications.
Although advanced control theory promises significant performance
improvement over classical techniques, the improvement cannot be

guaranteed if the process model 1is rot "adequate”. This chapter
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provides a systematic way to analyze the performance of an uncertain

process control system.

There have been many studies on the robustness and performance of
control system. The pioneer in this area is Horowitz. His approach
(Horowitz 1982, Horowitz et al. {1972)) is mainly based on the
manipulations of the loop transfer functions on the Nicheol’s Chart.
Ti.is approach, though powerful, has not been well received in chemical
process control. Doyle and Stein (1981), Palazoglu and Arkun (1986),
Skogestad and Lundstrom (1990) advocated the Structured Singular Value
(8SV) approach to analyze and design control systems, This is an
extension of the Single Input Single Qutput (SIS0} loop gain concept to
Multi Input Multi Cutput (MIMO) systems and it relies heavily on the
mathematical properties of Singular Values. Teo apply this technique,
one requires a solid background in advanced mathematical skills such as
functional analysis and complex analysis.  Leitmann and Barmish (1982)
proposed the method of ultimate boundedness of a control system. The
process uncertainty is specified through the coefficient uncertainty in
the transition and input matrices in a state-space formulation. As a
result, they have an interval matrix instead of an interval polynomial.

Lunze (1982,1984) developed a time domain bounding method for

continuous~time uncertain systems. The wuncertainty is specified
through a bound in the impulse response of the process. The method
mainly deals with continuous system. All these different approaches

provide a set of tools to analyze the performance robustness of control
systems. The current study was inspired by Lunze's work. This chapter

presents a formal appreoach to the robustness problem by explicitly
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separating the output uncertainty from the lumped closed loop output
response and extends Lunze's method to handle discrete time invariant
system. The closed loop response uncertainty band produced in this
work 1is less conservative than that in Lunze’'s work. The major
contribution of this work is to provide a methodology to look at the
transient behavior of an uncertain control system. The key teo this
appreoach 1s to use a nominal process model, a process controller and an
open loop process uncertainty specification to calculate an envelope
(uncertainty band) for the closed loop cutput response. With the
predicted cutput envelope, one can assess the performance robustness of
an uncertain control system by examining the size of the uncertainty
band. A model based contreller for an uncertain control system can
then be tuned from this uncertainty band. Furthermore, the robustness

of different types of controllers can be compared based on the size of

these bands.

This chapter is organized into 8 sections. Section 5.2 explains the
rationale for developing the Error Band Method (EBM), details of which
are given 1in Section 5.3. Examples are described in Section 5.4 to
demonstrate the proposed robustness evaluation procedure. Section 5.5
illustrates two potential applications of EBM - to tune a controller and
to compare the robustness of controilers. Conclusions and remarks are

given in Sections 5.6 and 5.7, The nomenclature for this chapter is

collected in Section 5.8.

5.2. Rationale for the Error Band Method
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There are many complaints about the performance of model based
digital controllers in industrial applications {(Kestenbaum et al. 1976).
The criticism is mainly focused on the sensitivity of the process output
to the process model used in the controller design. The classical
safeguard against the “model mismatch problem" 1is to detune the
controller. However, this detuning is contrary to the purpose of high
performance, model based, digital contreollers. A gross estimation of
the process model uncertainty can be obtained from day to day operations
or from repeated empirical testing. This information about model
uncertainty is part of the process knowledge which sheould be
incorporated into the controller design procedure so that a more
"robust" controller can be designed. Although the frequency domain is
a very popular approach in analyzing process uncertainty, it 1is felt
that some information cannot be easily recovered from the frequency
domain approach, namely the transient behavior of closed loop output
response ( see Krishnan and Cruickshanks (1977)). Furthermere, data
from chemical processes often comes in the form of realtime signals and
one needs to convert these signals into a frequency domain uncertainty
through a transform (see Laughlin et al. (1986)) in order f{for the
problem definition to fit inte the framework of the frequency domain
method. If one is not careful with the transformation, conservativeness
may be induced because of this mathematical translation process ( see
Laughlin et al. {(1986)). The criteria (e.g., bandwidth, maximum
amplification, etc.) obtained from the frequency technique are not
intuitive to many chemical engineers. These are the reasons behind the

development of the alternate approﬂ‘. \ ?ented here. It is meant as a
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direct time domain criterion for robustness evaluation. This method

should complement the powerful frequency domain methods.

The development of the Error Band Method (EBM) consists of four
parts :
1) separating closed loop uncertainty from the closed loop output
equation
2) specifying open loop process uncertainty
3) predicting the closed loop stability

4) prediciing the closed loop performance

5.3. Error Band Method (EEM)

Uncertainty in the EBM is specified non-parametrically in terms of
a band in the impulse response. Figure 5-1 gives an overview of the
EBM. Notice that the impulse weight is expressed as a “range" at every
time lag rather than a f{ixed value. The collection of the maximal
values at each time lag gives the maximal process transfer function,
Gpmax(z)} while the minimal values give the minimal process transfer
function, Gpmin(z). The model based contreoller, Gcl(z), can be designed
based on some nominal process transfer function, Gpnom(z). Given the
open loop uncertainty, Gpmax(z) and Gpmin(z), and the controller, Gec(z),
the main result of the EBM is to generate a closed loop uncertainty band
which bounds all the possible closed loop output step responses; see
Figure 5-1. This is a very straight forward criterion for an engineer.

The bigger the band, the worse the robustness. From the controller
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design point of view, the goal is to design a controller such that the
size of the uncertainty band is reduced and the speed of the closed loop
response increased. Of course, the stability issue has to be resolved
before the performance can be addressed. The stability of the uncertain
system can be assessed through the stability criteria developed in

Chapter 4.

The proposed EBM consists of:

a) Separating Closed Loop Uncertainty
b) Describing Open Loop Uncertainty
c¢) Assessing Closed Loop Stability

d) Assessing Closed Loop Performance

These four elements are discussed in detail in the following sections.

5.3.1 Separating closed loop uncertainty

The classical way of analyzing a control loeop is through the
control block diagram shown in Figure 5-2a. Notice that the uncertainty
Gerr(i) is in an "additive" form. If there 1s no uncertainty, i.e.
Gerr(z)=0, the nominal closed loop response can be calculated from the
process model, Gpnom{z), and the process controller, Gclz), using

equation 5-1la :
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Gel(z)( Gp{z) + Gerr(z) ) (R{z}-N(z))
Y(iz)= (5-1a)

1 + Ge(2) ( Gp(z) + Gerrl(2) )

D(z)
+
1 + Ge(z) ( Gp(z) + Gerr(z) )
Ge{z) Gp(2) (R{z]j--N(z)) D{z)
Y(z)= + {5-1b)
1 + Ge(z) Gpl2) (1+G(z} Gp(z))
Ge(2Z) Gerr(2) Gyr(z) (R{(z)-N(z)-D(z))
-+

{1+Gc(2) Gp(2))(1-Gerr(z)Gur(z})

However, 1if uncertalnty exists, the closed loop response calculation is
not so straight forward. If the problem is stated in terms of
parametric uncertainty, ( e.g., Berg et al. (1980}, Dumont ({1981) } the
closed loop responses can be expressed in terms of process gain, time
constant or dead time. However, as the process order increases, so does
the number of parameters and the calculations become intractable. There
is a definite need for a methodology that is not limited by the order of
the process and can be applied to parametric as well as non-parametric
control systems. By manipulating the control block diagram in Figure
5-2a, it is possible to separate the closed loop output into two parts
(see equation 5-1b) : one due to the nominal process response and the
other due to the process uncertainty. One can show mathematically that
the block diagram in Figure 5-2a (equation 5-l1a) is equivalent to that

in Figure 5-2b (equation 5-1b}. (See Appendix D-7). The implication of
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this separation is that one can now investigate a closed loop control

system based on the uncertain part in equation 5-1b.

Physically, Figure 5-2b can be Iinterpreted as follows. A step
change in the set point of the control system would generate a neminal
control sequence, Unom(iT), which passes through the uncertainty block,
Gerr(z), to generate an uncertain disturbance, F(iT). This disturbance,
F(it), feeds back through the feedback loop, Guf(z), and generates
additional control actions and hence more disturbances, F(iT). This
additional disturbance causes further deviations from the nominal closed
loop output response. The advantage of Figure 5-2b is that the overall
closed loop response is separated into two parts: the uncertain part,
Ydev(iT), and the nominal part, Ynom(iT). Since the process model and
the controller are known in the nominal part, the closed lcop response
calculation, Ynom{iT), is fairly straight forward. The issue here is how
to calculate the uncertainty part, Ydev(iT), since it is a function of
the open loop uncertainty, Gerr(z). Notice that there is no limitation

imposed on Gerr(z) yet. If Gerr(z) is a parametric gain uncertainty :

where Gerr(z) = a Gpnom(z). @, = o = «

then Ydev({iT) would be a function of ay and o, only. However, Gerr(z)
can be of a non-parametric nature, similar to the open loop uncertainty
shown in Figure 5-1, In that case, Ydev(iT) would be a function of
Gerr(i), where Gerr(i) is the maximum open lcop model error at lag i.

Therefore, Figure S-2b is a flexible way of investigating closed loop
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system uncertainty. By finding a bound for Ydev(iT), one can then
establish the possible deviations from the nominal closed loop response.
Therefore, one can focuéh‘he robustness analysis on this part of the
closed loop response. It‘ should be pointed out that the entire
"uncertainty portien" in Figure 5-2b is driven by the nominal control
actions, Unom(iT). This makes the analysis relatively simple because
servo and regulatory disturbances can be investigated under the same

framework.

After this reconfiguration of the problem, the Input/Output
properties of an uncertain system can be obtained from the uncertain
portion of Figure 5-2b. Note that the analysis is not restricted to the
SISO case. It is extendible tc the MIMO system. However, in order to
lay the ground for further study, this work will focus on SISO system.
In the subsequent sections, a method will be devzloped to assess the

stability and performance of an uncertain contrel system.

5.3.2 Describing open loop process uncertainty

All processes are basically nonlinear. However, in many occasions,
a linear process model is an adequate description of the behavior of a
non-linear process within a local region. Even as a nonlinear process
moves across its operating region, it 1is possible to describe the
process with a set of linear process models, w(Gp(z)), {(Latosinsky
1988). The type of process uncertainty investigated in this work either

comes from process nonlinearity over the operating region or changes in
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the process parameters over time. Under these conditions, it is not
possible to find one linear process medel to adequately describe the
process. A more realistic description would be a set of linear process

mod~ls n{Gp(z)).

A linear process model can be described in parametric (e.g.,
Laplace domain transfer function) or non-parametric form (e.g.,
Frequency or Impulse response). There have been many studies ( Dumont
{1981), Berg and Edgar (1980) ) of process model uncertainty based on
the parametric form. A major disadvantage for this approach is the
validity of the results for systems of differing structures (i.e.,
different orders of the parametric model). The extrapolation of
robustness results based on low order systems to high order systems has
never been demonstrated to be adequate in general. In contrast, the use
of a non-parametric model form frees one from the structural restriction
inherent to a parametric model. Thus the results of a robustness
analysis based upon non-parametric models apply to a wider class of
uncertain systems. Of course, if one knows that the process is of fixed
order, the parametric metheds are more appropriate for a robustness
analysis, {Bartlett ~t al. 1987}, The non-parzmetric form (impulse
response model) is used here to represent a process so that structural
as well as parametric uncertainty can be tackled under the same

me thodology.

Consider a process, Gplz), which 1s fuzzy and can be adequately
described by the linear process set, n(Gp({z}), the impulse responses of

the set aro distributed within the bound Gpmax{(z) and Gpmin{z) (see
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Figure 5-1 and equation 5-2). In fact, the bounds can be obtained
either from engineer’s experience with the process, froem repeated
empirical identification or from the confidence interval of impulse

weight identification (MacGregor et al. (1986])).
Gpmin(i) = Gp(i) = Gpmax(i) v i=0,1... N (5-2)

One way to map out the open loop uncertainty is to perform open loop
tests at the extremal operating conditions or to collect Iimpulse
responses as the process parameters change with time. The impulse
weights are coilected from all these experiments and Gpmin{z} and
Gpmax(z) can be obtained by choosing the extremes of the impulse weights
at different lags. It is assumed that the process is, for all practical
purposes, time invariant. This implies that, in practice, the changes
are so slow that the process appears fixed during the time taken to
reject disturbances. This time invariant assumption is crucial in the

development of a tight bound for the uncertain closed loop response.

Once the upper and lower bounds of the impulse weights (Gpmax(z)
and Gpmin{z)) are obtained, the nominal process model, Gpnom{(z), and the

open loop model uncertainty bound, Gerr{z), can be redefined as :

il

Gpnom{z) ( Gpmax{(z) + Gpmin{z)} / 2.0 (5-3)

Gerr(z)

It

( Gpmau{z) = Gpmin{z}) 7 2.0 (5-4)
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Hotice that with this redefinition, the model uncertainty is
symmetrical about the nominal process. In Appendix D-1, it is shown
that using a symmetric model error band, Gerr(i), can reduce the size of
the output band. However, the drawback is that this approach requires
the resulting output bound be symmetric about a nominal response.
Bartlett (1990) and the Monte-Carlo simulation in this study show that
the true upper and lower bounds of a closed loop uncertainty system are
not necessarily symmetric about the nominal closed loop response.
Therefore, certain degree of conservatism is intreduced as a result of
using symmetric model uncertainty. Fortunately, this work also shows
that this conservatism 1s prominent only in certain class of control
system { i.e., in tightly tuned control system). Asymmetric error bound
has been investigated in this work but with no promising results. This
missing part is the bounding procedure which can take the asymmetric
error band and produce a tight closed loop uncertainty band. It was

decided that symmetric error bound should be used in this study.

5.3.3 Assessing closed leoop stability and performance

If the open loop impulse response can be bounded by upper and
lower impulse responses, one can find the upper and lower bounds for the
closed loop response (see Figure 5-1}. This is the principle behind the
EBEM. Robustness is evaluated through the predicted closed loop output
uncertainty band and "robust" controller design can be achieved by

tuning the digital controller so as to obtain a small band.
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A Triangular Inequality procedure is used to bound the output from

the impulse response block. A set of lemmas concerning the bounding of

the closed loop process output has been derived and collected in

Appendix D.

Lemma D-1:

Lemmas D-2

The highlights of these lemmas are:

provides the basis for bounding the output f-om an open loop
uncertain process. It is shown in this lemma that
symmetric open loop uncertainty can produce a "tight"
bound. The key point in the bounding procedure is to locate
the source of the uncertainty, i.e., whether the uncertainty
is in the process or In the input. If the uncertainty is in
the 1inputs or in the "open loop" process, the bounding
procedure shown in Lemma D-1 can be used. However, if the
uncertainty is in a "feedback" process as in Lemma D-2, the
bounding procedure has to be modified to incorporate the

effect of feedback.

and D-3: provide the procedure to generate the output
uncertainty band for different locations of uncertainty. If
the uncertainty is in the input, R(iT), one can view the

system as an "open" loop system with _Gilz) as the

1+ Gi{z)

process transfer function and R{iT) as the inputs (see Lemma
D~-3 in Appendix D). The output bound generated would be
tighter than the output bound from Lemma D-2 (see Appendix
D) where the uncertainty 1is in a "“feedback" process.
Because of the feedback effect.  wuncertainty will be

accumulated in the bounding procedure and hence a bigger

161



bound as a result. This is why the location of source of

uncertainty is crucial in the bounding procedure.

Lemmas D-4 and D-5: provide a method to calculate a tighier bound for

Lemma D-6:

a, practically, time-invariant process. The key lies on the
fact that the sequence of convolution is immaterial for a
time invariant system. One can group all the process blocks
with no uncertainty in front of the blocks with uncertainty.
In the case of a closed loop control system, the Gyf(z)
block was moved c¢losed te the Unoem(iT), l.e., in front of
the Gerr(i) block (see Figure 5-2b). Since both Unom(iT)
and Gyf{z)} have no uncertainty, an exact output can be
calculated. With this rearrangemesnt, the accumulation of
uncertainty in (he early stage can be avoided till later
stage. This results in a tighter output bound for the

uncertain system.

Based on the proofs in Lemmas D-4 and D-5, the calculation

procedure for the closed loop uncertainty bound was
derived. The results are summarized in equations 5-5 to
5-9.

The actual process output from an uncertain control system is:

Y(iT) = Ynom(iT) + Ydev(iT) (5-5)

The nominal closed loop input. response, Unom(iT), and nominal closed
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loop output response, Ynom(iT) can ‘be calculated from the nominal

process model and the controller as follows (see Figure 5-2b):

Ge{2)Gpnom(z) (R(2)-N(2)) D(z)
Ynom(z)= ( + )| (5-6a)
1 + Ge{z)Gpnom(2Z) 1 + Ge(2)Gpnomiz)
Ge(z) (R(z)-N(z)) -Ge(2)D(2)
Unom(2z}= + ) (5-6b)
1 + Gel(z)Gpnon(z) 1 + Gs(z)Gpnom(2z)

The deviation, Ydev(iT)}, from the nominal output response due to
model uncertainty, Gerr(i), can be calcuiated using a convolution sum

(see Figure 5-2b):

1
Gye(z) = {S-7a)
1 + Gel(z) Gpnom(z)
- Ge(2)
Gur(z) = (5-7b)
1 + Gel2z) Gpnom(Z)
N
Yaev(iT) = J§0 Gyr(j) . FliT - 371) (5-8)

and
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N N N

F(|T)T§oGerr(J)Unom(1T—jT] +J§oGerrfj]1§0Guf(1)F[[i-j-l)T] (5-9)
where F((1T) in equation 3-9 1is the disturbance due to model
uncertainty.

If we know the exact value of Gerr(z), then Ydev(iT) and F{iT) can
be exactly caiculated from equations (5-8,5-9). However, the Gerr(z)} is
known only to the extent of a bound |Euv(i)[. Therefore, only a bound,
Yaev(1T) on  Ydev(iT) can be calculated under these circumstances.
Based on Lemmas D-1, D-2, D-3, D-4 and D-5, a procedure has been derived
(see Appendix D) to bound the closed loop output of an uncertain
feedback control system. The bounds for a linear, practically,

time-variant closed loop control system are summarized as follows.

Time-Tnvariant system:
the closed loop output is independent of the sequence of
convolution and a bound for the uncertainty is:( see Lemmas

D-4 and D-5 in Appendix D)

N
Umod (iT) = Z Gyf(j) Unoem(iT- jT) (5-10)
)=0

— N —
Ydev(1T) = Z |Gerr(j)]||Umod(11-)T) | {(5-11)
j=0
N _ N _
+ ZIGcrr(j)l z IGuf‘(l) Ydev(lT-jT—lTJ‘I
§=0 1=0
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A comment for equations 5-10 and 5-11 1s that the key to calculating a
tight bound is to be able to isolate the cause of the uncertainty as
much as pessible. If Gerr(z) only has gain uncertainty, « Gpnom(z), then

a tighter bound for this case is:

- N
Ydev(11) = || £ [Gpnom(}) Umod (11-)T} | (5-12)
j=o0
N N -
+ la] Z |Z Gpnom(1) Gur{y-1)||Ydev(11-31-1T)|
j=0 1=0
where o1 < a < @2

The stability for the time-invariant systems (equations 5-10 and 5-11)
can be checked by evaluating the criteria developed in Chapter 4. These

criteria are:

Characteristic equation of equation 5-11:

1 + Gerr(z) Guf(z) =0 (5-13)
or

1/Guf (2} + Gerr(z) =0 (5-14)

F(z) = ¢(z) + 2(z) =0 (5-15)
vhere

¢(z) = 1/Guf (z) (5-16)
and

Z(z) - Gerr(z) {5-17)
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The interval polynomial, F(z) in equation 5-15 is stable if:

Theorem 1:
{i) the nominal polynomial, ¢(z) is stable
o T

W T

(11)  Jae?®Ty| > wEe) - (4-16)

v w 0 =%x = N-1
Corollary 1:
{i1) the nominal polynomial, ¢(z) is stable

(i1) amin(|e(edN ) > o(E(2) (4-23)

W
K

Corollary 2:
{i) the nominal polynomial, ®(z) is stable

(ii)  17p(D(2)) > o(2(z)) {D(z) = 1/9(z))= Guf(z) {(4-26)
Since Corollary 2 is simple ard does not involve extensive frequency
calculation, it was used exclusively in the subsequent analysis as a
quick stability check.

5.4 FEvaluation of the Reobustness of Uncertain Control Systems
Having derived the EBM, the robustness of an uncertain control

system can be analyzed by the following procedure:
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1) Specify the nominal process model f{equations 5-2, 5-3)

2) Specify the open loop model uncertainty {equations
5-2,5-3,5-4)

3) Select a tuning factor and design a digital controlier
{equations 5-6a,b;5-7a,b)

4) Evaluate the properties of ciosed loop uncertain system {for a
set point change. (Ydev{1iT) from equations
5-6a,b, 5~7a,b, 5-10 and 5-11)

S) Repeat (3) and (4) until the perfermance specification is
satisfied or the stability criteria fail. If the stability
criteria fail, it implies that the uncertainty is too great
for the controller.

To illustrate this procedure, a Dahlin controller was chosen as the
model based controller for the simulation examples. Four cases were

simulated:

Case A: f{irst order process with 30% uncertainty (servo)

Cage B: first order process with 30% uncertainty (regulatory)

Case C: first order plus dead time process with 30% uncertainty (servo)
Case D: first order plus dead time process with 304 uncertainty and

fractional delay uncertainty (serve)

Closed loop step servo responses were generated in all cases except Case

B, where a step disturbance was generated.

Case A: First order process with 30% uncertainty (Servo])
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The process is a first order time-invariant process with a control

interval (T) of 1 minute, and it is controlled by a Dahlin Controller,

Gel{zZ).

0.1813 2+
(5-18)

Gpl(z) = i

1 - 0.8187 z

The continuous equivalent of Gp{z}) in equation 5-18 has a time constant

{r) of 5 minutes and a dead time(tda} of 0.0 minutes

a) assune that the open loop uncertainty is within 304 of the

nominzl process impulse response; i.e., lamw(l)| is 304 of

|Gpnmﬂ1}| {see Figure 5-3a).

0.1813 2 |

Gpnom(z) = o
1 - 0.8187 z

{5-19)

{Gerr(1)]= 0.3 {Gpnom(1) | ¥ 1=0,1,...,N (5-20)

b) design a Dahlin controller, Ge{(z), with the desired closed

loop time constant, Adesired, the same as the open loop time

constant, Aopen,

Aopen = 5.0 ; Adesired = 5.0

-1
1.000 0.8187z (5-21)

1 - 27!

Gelz) =
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c) Gur(z) and Gyf(z) are calculated (equations 5-7a,b}

Gur{z) -1.0 {5-22)

1 - z_1

i - 0.8187 z

Gye(z)

[}

1 {5-23)

d) use -equations (5-10, S-11) to generate the Ydev(iT)
uncertainty band with a 10 unit set point change at time 2

minute.

The uncertalinty band of the closed .ocop step response for this case is
shown in Figure 5-3b. Depending on the designer’'s preference, the
design can stop at this point and the controller, Gecl{z), implemented on
the actual process or the DPahlin tuning (A) can be changed and procedure

repeated.

Case B: First order process with 30% uncertainty {(Regulatory)

This case is the same as Case A except that the Unom{iT) is
different from the previous case. The disturbance is injected at D{iT)
instead of R(iT). The size of the "step" disturbance is 10 unit and
occurs at time 2 minute. Equations 5-10 and 5-11 were used to generate
the envelope for Ydev(iT) for a step disturbance change. The
uncertainty band is shown in Figure 5-3c. The band generated in this

case is similar in shape to that for the set point change case because z
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step disturbance was used for the band generation. If the disturbance
has low order dynamics, the band should be different from the set point

case,

Case C: First order plus dead time process with 30Z% uncertainty (Servo)

The process for this case is a time-invartant, first order plus

dead time process with a control interval (T) of 1 minute,

Gplz) = (5-24)

The process in equation 5-24 has a time ceonstant (t) of 5 minutes and a
dead time (td) of 1 minute. The dead time to time constant ratio (
td/t) in this case is 0.2. This represents a relatively easy control

preblem. The process is again contrcolled by a Dahlin Controller, Ge(z).

a) assume that the open loop uncertainty is within 30% of the
nominal process impulse response; i.e., [Eerr(t)| is 30% of

|Gpnom(1}| (see Figure 5-4a).

-2
0.18153 z ©

Gpnom(z) = = (5-25)
1 - 0.8187 z

|Gerr(1)]= 0.3 |Gpnom{1)] ¥ 1=0,1,...,N (5-26)
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b) design a Dahlin controller, Ge(z), with the desired closed

loop time constant, Adesired, same as the open loop time

constant, Aopen,

Acpen = 5.0 ; Adesired = 5.0

1.000 - 0.81872""

Gelz) = — - (5-27)
1.00 - 0.8187z -0.1813z
c) Gur(z) and Gyr(z) are calculated (equations 5-7a,b)
Gue{z) = -1.0 (5-28)
1 -0.8187 z * +0.1813 2 %
Gyr(z) = I (5-29)
1 - 0.8187 z

d} Use eguations 5-10 and 5-11 to generate the Ydev(iT)
uncertainty band with a 10 unit set point change occurring at

time 2 minute. The resulting band is shown in Figure 5-4b.

Case D: First order plus dead time process with 30% uncertainty and

fractional dead time uncertainty (Servo)

In Case C, it was assumed that there was no uncertainty in the

process dead time. In this case, the dead time uncertainty is
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defined by the Iimpulse weight at lag 2. It 1s between
Gpmax{2) and Gpmin(2) while later the impulse weights are 30%

of the nominal process impulse response:

Gpmax(2)=2.0 Cpmin(2) = 0.0 (5-30)
and

Gerr(i) = 0.3| Gpnom(1i)| ¥ i=3,4...N {5-31)

If the actual dead time is less than the nominal dead time,
there would be significant value in the second lag in the
impulse weight. This is the scenario simulated in Case D.
Figure 5-5a shows the open loop uncertainty for this case. The
contreller was a Dahlin controller with the same tuning as Case
C. The closed loop uncertainty band for this case is shown in

Figure 5-5b.

Cases A,B,C and D cover a wide <c¢lass of commonly occurring
processes and process uncertainties. Notice that the uncertainty is
chosen to be a percentage of the nominal process response in this study.
This is mainly for comparison purposes. In order to have a meaningful
robustness comparison, it has to be based on the same amount of
uncertainty. Using a percentage of the nominal process response as the
open loop uncertainty provides a convenient way of quantifying
uncertainty. The EBM uncertainty characterization works very well for
percentage uncertainty and fractional delay uncertainty. However, if

there is pure delay uncertainty, one has to assign Gerr(i)’'s throughout
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the uncertain delay periods. As a result,  'he uncertainty may become
toco large for EBM. The characterization of delay uncertainty is an area

needed to be improved in the future work.

The closed loop uncertainty band generated in these cases are
supposed to include all the possible closed loop responses. The wider
the band, the less robust the controller. To quantify the size of the
closed loop uncertainty band, a robustness index. [AE {Integral Absolute

Error) is defined here as:

L.
IAE = £ |max(Ydev(iT)}| + |min(Ydev(iT}| (5-32)
i=0
where L is the simulation time
(100 minutes in this study)
Since IAE 1s the absolute sum of the range of Ydev{iT) over time, the

larger the value of IAE, the bigger the deviations from the nominal
response. In the subsequent analysis, this index will be used as an

indicator of control system robustness.

In addition to the ¥Ymax and Ymin from EBM, the Monte-Carlo
Simulation bounds were also calculated for comparison (see Figures
5-6a,b,c). The band for the Monte-Carlo simulation was generated by
running a Monte-Carlo simulation on Gerr. Each Gerr(i)'s was chosen
randomly to be either side of the corresponding bound values, Eerr(i).
Since the Gerr(i)'s were then known, the closed loop responses, Y(iT),

could be calculated wusing equation 5-~1la. In each Monte-Carle
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simulation, 100 sets oi randomly chosen uncertainties were simulated for
each case. The Monte=Carlo btounds represent the maximum and minimum

Y(iT}'s at each time step i over all 100 simulatioens.

5.5. Applications of the EBM

The procedure of getting a closed loop uncertainty band for the
process output was given in section 5.4. This section goes on to
explore the applicability of the EBM. Two applications have been
studied; one in the tuning of digital controllers and the other in the

comparison of the robustness of digital coentrollers.

5.5.1 Tuning of digital controllers

One can improve the robust performance of an uncertain control
system by tuning the controller. To illustrate this procedure, Case A
was repeated with the Dahlin tuning parameter set to A=2.5 min. A=53.0
min and A=10.0 min. The closed loop uncertainty band calculation was
repented and the results were shown in Fligure 5-6a, 5-6b and 5-6¢C
together with the Monte-Carlo simulation bands. The combined band
results are plotted in Figure 5-7 to illustrate the effect orf tuning on
the closed loop uncertainty band. Figure 5-8 shows the uncertizinty band
index (IAE) versus the Dahlin tuning. Gradvally decreasing the desired
closed loop time constant will also gradually decrease the size of the

envelope until a minimum is reached. This indicates that there is a
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tuning which is guaranteed stable and provides the best closed loop
performance for the specified open loop uncertainty. One can then use
this as an initial tuning for the real process. Notice the general
shape of the curve in Figure 5-8. The closed loop uncertainty can be
reduced with high gain feedback (Fast Dahlin tuning). However, an
excessively high gain pushes the control system towards instability and
hence the uncertainty band starts to increase after the oplimal tuning

value.

Figures 5-6a and 5-6b show that the bounds predicted by the EBM and
those found by Monte-Carle simulation bounds are quite ciose.
Theoretically, the EEM bounds should always include the Monte-Carlo
bounds because the EBEM should include all possible <closed loop
responses. Flgure 5-6c¢, which cerresponds to a Dahiin tuning of A=2.5
minutes, shows that the Honte-Carlc bounds not onily lie within the EEM
bounds, but the Monte-Carlo bounds are alsc much smaller than the EEM
bounds. The difference between Figures 5-6a, 5-6b and 5-6c¢ is that the
former two cases have a Dahlin tuning slower or equal to the nominal
open loop time constant while the latter case is tuned twice as fast as
the nominal open loop time constant. A Dahlin controller, which Iis
tuned slower than the nominal copen loop time constant, 1s referred to
here as a non-amplifying controller. Conversely, a controller with a
faster tuning than the nominal open loop time constant is referred to as
an amplifying controller. Notice that the Monte-Carloc simulation used
the bound values of Gerr{i). The reasoning behind this choice was that
the worst Y{(iT) would correspend to the bound values of the uncertainty

descripticn. The results shown in Flig 5-6c seem to contradict this
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assumption. It seems to correspond to the fact that the stability of
intefval polynomial cannot in general be checked by the vertex
polynomial (Huang et al. 1987). This phenomenon was also observed in
Bartlett (1990) in which he suggests that "the vital statistics of the
transient response of a stable discrete-time uncertainty system cannot
be completely determined from Lhe response of the vertex description”.
A sequence of work was initiated as a result of this finding on the

bound.

One attempt was to redesign the Monte-Carlo experiment so that the

Gerr{(i) did not necessarily take on either the upper and lower bound

values., The randomization was designed such that Gerr(i) can take on
one of 10 values evenly spaced between the upper and lower bounds. The
Monte-Carlo experiments were repeated. However, even with these

changes, there is no obvious increase in the size of Monte-Carlo bound
in the case of the amplifying controller. This suggests that either the
Monte-Carlo simulation does not happen to include the worst case or the
Monte-Carlo simulation bounds are correct and the EBM simply does not
produce a tight band for an amplifying contreoller. To further explore
this issue, an effort was made to verify the tightness of EBM bounds.
An optimization was set "'p to find the worst Y(iT)} at each time step.

The problem is formulated as follows:

Minimize Ydev(iT) 15-33)

Gerr(i},ieR

Subject to equations .-1a,5-2,5-3,5-4
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At each time step i, tne optimization was performed to find the minimum
of Ydev(iT). The maximization of Ydev(iT)} car. “e obtained by changing
the objective to minimize -Ydev(iT) instead. [he optimization package
used was NPSOL from Stanford University. During the optimization, it is
observed that the solution sometimes converges to local minima. This
implies that the resulting optimized bounds may not be global optimum
and hence may not include all the possible closed loop responses.
However, the optimization result which is plotted in Figure 5-9 can
still shed some light on the tightness of the EBM bounds. As noted 1in
Figure 5-9, the Optimization bound is wider than the Monte Carlo
simulation bounds but not to a large extent. The IAE's for the Monte
Carlo bounds, EBM bounds and Optimization bounds are: 23.5, 86.9 and
32.3 respectively. The EEM bounds are still far from the optimized
bounds. This implies that the EBM does rot produce a tight bound for an
amplifying controller. Although an extensive effort was made to find a
tighter bound for an amplifying controller, the issue still has not

been resolved., The problem lies on equation 5-11.

— N —
Ydev(1T) = Z |Gerr{J)||Umod(11-)T) | (5-11)
j=0

N

|Eerr(J)| z |Gu£‘(l) ?dev(iT-JT-lT”
o] 1=0 '

+

1 ™ =

]

The uncertainty portion, Gerr(i), cannot be further isolated in
equation 5-11. Therefore, the uncertainty in Ydev(iT) in the early
stages of the response will start to accumulate over time and make
Ydev(iT) much- larger than it should be, This is particularly true for

an amplifying controller, where Guf{i) can take on mixed '+’ and '-'
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cigns. However, for a non-amplifying controller, Guf{i), is either all

+ or all *-'. This explains why the EBM bounds are tight for =a
non-amplifying controller. This provides grounds for further research
to explore the bounding procedure for an amplifying controller so that
the EBM approach can become more complete. Although the EBM bounds were
not tight for amplifying controllers, this should not hinder the
progress of the EBM because robust designs produce non-amplifying
controller in many instances. Before a complete solution for the EBM is
available, one has to be cautious when dealing with amplifying

controllers because the EBM bounds for amplifying controllers are

conservative.

In Figure S5-10a, the IAE is plotted as a function of the Dahlin
tuning parameter and the open lcop uncertainty. The process in Case C
is used in this analysis. The zd/t ratic 1is 0.2 which is an easy
control problem. To explore the effect of a more difficult contrel

problem, two new cases are created.

Case E :

The process (see equation 5-34) for this case has a time constant
(r) of 1 minute and a deadtime (vd) of 2 minutes. Therefore the Td/v
ratio is 2.0 which i1s a more difficult process to be controlled.

0.632 2z 2

Gp(z) = (5-34)

1-0.368 2 "}

The uncertainty is specified as a percentage of the nominal process.
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Case F:

The process is the same as that in Case E. However, the
uncertainty contains fractional delay wuncertainty and percentage

uncertainty. Similar to Case D, the fractional delay uncertainty is :

Gpmax (3) 0.316 Gpmin(3) = 0.0 (5-35)

and

|Gerr(i}|= « |Gpnom(i)]| Vi=4,5...N . (5-36)

The design procedures for Cases C were repeated for these new cases.
The IAE's were again calculated for different levels of uncertainties
and different wvalues of A. The results were plotted in Figures 5-10b
and 5-10c. Note that the regions in the upper left corner of Figures
5-10a,b,c are the unstable regions according to the stability criteria
in Chapter 4. Figures 5-10a,b,c suggest that for open loop uncertainty
less than 100% of the nominal process impulse response, there is always
a minimum in the IAE. A more interesting observation is that ail the
minimum points lie to the left of the open loop time constant : 1in
Figure 5-10a, the minimum lies to the left of A=5.0 minutes, which is
the open loop time constant for processes in Cases A,B,C and D and in
Figure 5~10b. the minimum peoints lie to the left of the open loop time
constant (A = 1.0 minute! of the process in Case E. However, the
minimum points are not to the left of A in Figure 5-10c which is the

case with fractional delay uncertainty. This observation suggests that,
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as far as the performance is concerned, for process with no delay
uncertainty and the uncertainties less than 100% of the nominal process
there is no point.in detuning a Dahlin controller more than the open
loop time constant. There will be no gain in stability and periormance
will be 1lost due to the detuning. This observation has also bééﬁA
confirmed by some Dahlin controller practiticners who found that
setting the tuning factor to the open loop time constant is a very

robust starting point for tuning.

5.5.2 Comparing the robustness of different controlliers

In Figures 5-10a,b,¢, there is a minimum IAE assocliated with each
level of open loop uncertainty. Min IAE refers to this minimum IAE
value. The value shows the minimum IAE that can be achieved by the
tuning procedure described in Section 5.5. Figure 5-11 displays the Min
IAE as a function of the level of uncertainty. This curve 1is a
characteristic of a digital controller. Therefore, by comparing the Min
IAE at different levels of open loop uncertainty, one is in effect
comparing the robustness characteristics of different digital

controllers.

In this application study, the process in Case C was used. From
Figures 5-10a, if one Jjoins all the points which correspond to the
minimum IAE at different levels of uncertainty in Figure 5-10a, one
obtains Dahlin Min JAE curve in Figure 5-11. This curve indicates the

robustness characteristic of a Dahlin controller. The PI controller Min
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IAE curve can be obtained bty using the same type of analysis used for
the Dahlin controller, except that in this case, a PI controller is used
in the analysis. This Pl controller is designed based on Dahlin Design
approach. A quarter of the process dead time is added to the process
time constant. This modified t{ime constant together with the process
model gain are used in the normal Dahlin Design procedure. For a first
order process with no dead time, the Dahlin Design procedure always
results in a PI controller with the appropriace tuning parameters for

the specified closed loop response.

As shown in Figure 5-12, the PI Min IAE curve is slightly higher
than the Dahlin Min IAE curve at all levels of uncertainty. This
suggests that a Dahlin controller can always guarantee a lower IAE than
a Pl controller. In another word, in face of the "worst case" process,
the performance of a Dahlin controller is slightly better than that of a
PI contreller. It is only slightly better because the PI structure is
nearly optimal for this process; the dead time to time constant ratio
being only 0.2. The same analysis in Figure 5-12 is performed for the
process in Case E. In this case, the tvd/t ratio 1s 2.0 which represents
a more difficult control problem. It is expected that a Dahlin
controller should perform much better than a “under-structure" PI
controller. Figure 5-13 shows that the IAE for a PI controller is much
higher than that for a Dahlin controller, hence confirming the fact that
Dahlin controller is better than a PI contrecller. This observation is
not a big surprise. It is expected that an advanced digital controller,
with enough structure and properly tured, should perform better than an

"under-structure" controller {PID) (Laughlin et al. 1986). This is the
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essence of robust controller design : to preserve the optimality of
model based controller while stiil maintaining comparable stabllity

characteristic as a simple PID contreller.

5.6. Conclusion

The development of a time domain closed loop uncertainty analysis
method, the Error Band Method (EBM), has been presented in this
chapter. The closed loop uncertainty band is a very intuitive criterion
and it gives a visual indication of the consequence of the open loop
uncertainty. The stability criterion is simple; only two gain terms
need to be evaluated. The performance is assessed through the closed
loop servo output unce:tainty band. This uncertalinty band is calculated
from simple difference equations. The robust performance of the Dahlin
Controller has been studied using the EBM. The simulation results show
that the EBM gives tight bounds for a non-amplifying controller but not
for an amplifying controller. This implies that the EBM glves a
conservative result for amplifying controllers. A method for tuning
digital controllers has been developed from the generated uncertainty
band. Based on the EBM, it was found that for a system with no delay
uncertainty and the uncertainty less than 100% of the nominal process
impulse response, there is no pcint in detuning mere than the open loop
time constant of the process. Furthermore, it was found that a model
based digital contrsller, if properly tuned, can possess a more robust
performance than a simple PID controller. As indicated in Section 5.4,

EBM works very well for fractional delay uncertainty. However, for
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systems with integral aelay uncertainty, the current uncertainty
characterization is not adequate. This warrants future research which
should focus on tightening the closzd loop uncertainty bands and better

characterizing integral delay uncertainty.

5.7. Remarks on Robustness

As a closing comment, it should be emphasized that all “guaranteed”
types of robustness analysis are basically "worst case" analyses. I+
may happen that one may sacrifice the entire analysis for one single
“worst case" which may be highly improbable. Therefore, the robustness
analysis or design should be treated not as a rule that one must
religiously follow but rather as a guideline. Furthermore, should the
robustness criteria fail, the controller design, the performance
criteria and even the process configuration should be jointly considered

in the subsequent analysis and redesign.
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5.8. Nomenclature

: Sampling Interval

: Length of impulse vector

: Dahlin tuning factor {Desired Closed Loop Time

Constant

: Simulation time

Impulse weights -

Gpp(i)
Gpmax(i):
Gpmin(i):
Guf (i)
Gyf (1)
Gerr(i)

Gerr (i)

Signals -

R(1T)
BiT)
Uit}
Y(T)
Fut)

Ydev(iT)

Unom(iT)
Ynom(iT)

Operator -

IGur(z) |

nominal impulse weight at lag i

maximum impulse weight at lag i

minimum impulse weight at lag 1

nominal process impulse weight at lag i from
uncertainty disturbance to controller output
nominal process impulse weight at lag i from
uncertainty disturbance to process output
error bound weight at lag i

max error bound welght at lag i

set point input at time iT

process disturbance at time iT

nominal controller output at time 1T

nominal process output at time iT

uncertainty disturbance generated by nominal
control input U{1T) at time 1T

output deviation generated by uncertainty
disturbance at time iT

nominal input closed loop response at time iT
neminal output closed loop response at time iT

a "-" on top of signal means the maximum bcund of
the signal

take absolute value of all weights in the impulse
response
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¢(Gur(z}) : this denotes ‘he supremal gain of Gur{z)

c(Gur(2)) = sup (Gur(z)) = £ |Gur(j]|

Izl:l j=0
|Gur(i}{ : take absolute value of impulse weight Gus(i)
u(G(z)) : spectral gain of G(z)
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Figure 5-1: Overview of Error Band Method (EBM)
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CHAPTER 8

RECOMMENDATIONS AND CONCLUSIONS

6.1 GENERAL REMARKS

Automatic control was introduced to the processing industry some
forty years age with the advent of the PID controller. Alter more than
a decade of intense activity on computer process contyol, and many
attempts to introduce model based controilers. the PID is still the
dominant, if not exclusive, controller. Model based controllers have
nat been well accepted as the basic control bleock in the processing
industry because of their sensitivity to model mismatch and other
implementation issues. This thesis has addressed some of these
implementation issues and the tuning aspects of model based controllers.
A properly tuned and implemented model based controller has been shown
to be as robust as the PID controller and capable of providing higher
performance thia PID. Hopefully, this research will have an impact on

the wider acceptance of model based controller.

6.2 RECOMMENDATIONS

It has not been possible to explore all the research opportunities
resulting from this work. The following section identifies some of the

potential research areas.

208



6.2.1 Implementation Scheme

The moving window idea used in explaining the optimality of long
horizon controllers is an interesting concept and worthy of further
research. The implementation scheme developed in this vork allows a
rational model basedrcontroller to operate in a moving window fashion.

The optimality of the current execution is not affected by previous

sub-optimality. This separation is a key element in executing
asynchronous contrel - executing a controller at unequal time
intervals. St~tistic Process Control (SPC) preaches that control is
required only when disturbances enter the process. This requires an

efficient disturbance detection scheme and a model based control which
can be executed on a demand basis. Extending the concept of the moving
window to this area would provide an important bridge for the. gap

between SPC and automatic control groups.

6.2.2 Error Band Method (EEM)

The EBM offers a methodology to investigate control system
rebustness in the time domain. As noted in Chapter 5, the performance
evaluation aspect of the EBM is conservative in some cases. This
indicates that there are opportunities for future work in improving the
EBM. Furthermore, the focus of this work uLas been on the development of
the EBM. One extension of this work could be the exploration of the
relationship between the EBM and the frequency domain approach advocated

by Doyle et al. (1981). This would provide a bridge between the two
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different approaches.
6.2.2.1 Interval Polynomial System

The stability criteria developed for interval polynomial
systems provides a simple method to study the stability of time domain
uncertain control system. The natural extension in this area is to
develop stability criteria for MIMO system. The Rouche Thé;rem, from
which the SISO stability criteria are derived, is generally applicable
to SISO and MIMO systems. This work laid the ground work for the

development of MIMO stability criteria.

Cn the theoretical side, it is interesting to note the rectangular
nature of interval polynomial systems and the linear nature of polytopic
polyncmial systems. Interval polynomial systems encompass more
uncertainty than polytopic polynomial systems and hence the former
stability result tends to be conservative. If the uncertainty can be
defined as a polytopic polynomial, it would only be proper to develop a
new procedure for the closed loop uncertainty band for polytopic
polynomial systems. Therefore, one extension of this work is to provide

a bounding procedure for polytopic polynomial systems.
6.2.2.2 Bapd Generation Technique

The conservative nature of the EBM for an amplifying controller is
an lissue which should not be ignored. Although there have been many

attempts to tackle the band generation problem using different
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techniques, the EBM band is the least conservative result so far. The
generation of tighter bounds for all possible closed loop responses
remains an issue for future work on the EBM. Furthermore, it was
observed that the bounds for the possible closed loop responses are not
necessarily symmetric about the nominal responses. If the YdevmaﬁiT]
and YdevmiqiT) can be generated separately, the conservative nature of

EBM can be further improved.

6.2.2.3 Integral Delay Characterization

As indicated in Chapter 5, EBM is not adequate in handling integral
delay uncertainty. EBM requires that Gerr(i)’'s be assigned for all
uncertainty delay intervals. If one samples fast enough, the Gerr(i)'s
for delay uncertain system would be so large that EBM will not produce
any useful result. Of course, one can change the sampling time so that
the delay uncertainty is always fractional. However, this is not a
solution because sampling time can be dictated by other factors such as
disturbances. Future research can examine the uncertainty
characterization in the fregquency domain (Morari et al. (1986)) to see
if parallels can be drawn to better characterize integral delay
uncertainty in the time domain. Another alternative is to investigate
if step response should be used in characterizing uncertainty instead of
the impulse response, Hopefully, the improved EBM can cover a wide

class of uncertain processes.

6.3 CONCLUSIONS
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Two problems affecting model based contreol have been extensively
studied in this work - implementation and robustness. For the
implementation problem, four new anti-reset windup algorithms have been
developed. Simulations and experiments were performed and the results
indicate that these new algorithms perform much better than the
conventional anti-reset windup algorithms. The research on the last
algorithm, QIMC, led to the more general implementation problem in
raticnal model based controllers. This general problem ls related to
saturation, operator override and temporary actuator failure. This work
explains why performance is lost in the implementation of rational model
based contrellers. It also shows the 1link between rational and
irrational model based controllers in terms of their performance during
saturation and override. Remedies were developed which enable a
rational model based controller perform as well as an irrational model
based controller. These remedies work for SISO system and MIMO systems.
Simulations were performed and the results show that while the solution
is simple to use, the performance improvement is dramatic, especially

for MIMO systems.

For the robustness problem, a time domain approach was used to
study the effect of model uncertainty. Uncertainty was expressed in
terms of the time domain impulse response. A theorem and corollaries
were developed to predict the stability of a type of interval polynomial
which is closely related to the stability of uncertain control systems
when the problem is viewed in the time domain. These stablllity criteria
were shown to be less conservative than the root location criterla.

Examples were given to demonstrate the applicability of the newly
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developed criteria. This time domain approach was carried further te
study the performance of the same uncertain closed loop control systems.
The Error Band Method (EBM) was developed as a procedure to analyze this
uncertain control system. Given an open loop uncertainty and a precess

controller, the EBM produces a closed loop step response uncertainty

band. This band contains all possible closed loop responses.
Therefore, the criteria is very simple: the wider the band, the less
robust the controller. One can use the band as an aid in tuning a

controller which must accommodate a specific open loop uncertainty. A
procedure was established to design a robust model based controller and
examples were given to 1illustrate this procedure. The methed was
further extended to compare the robustness of a Dahlin controller and a
PI controller. Although all the results show that the EBM 1s a sound
approach for analyzing control system robustness, the EBM is not without
its limitations. From Monte-Carlo simulations, it was found that the
closed loop uncertainty band generated by the EBM is tight only for
non-amplifying controllers. For amplifying controllers, the EBM bound
is conservative. However, this should not be a major setback for the
EBM, since most robust controllers are likely to be non-amplifying. The
development of EBM in this study laid the groundwork for {uture
opportunities in perfecting the EBM. Furthermore, the EBM offers a
totally different perspective to the robustness problem irom the
frequency domain approach favored by many researchers. Hopefully, a
combined time domain and frequency domain approach can be developed in

the future,
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APPENDIX A: SAMPLE FORTRAN CODING

APPENDIX A.1: FORTRAN CODING FOR ANTI-RESET WINDUP ALGORITHM

O G O oo

aaao

(S NS

a0

aOaoonoa

(VELOCITY FORM - ADAPTED FROM SEGALL AND TAYLOR

Following equation 5, E(i) is the current error

We need U(i), th= new control action

Define Error vector E and control action vector U

E vector: E(i), E(i+1), ..., E(i+4)

U vector: U(i), U(i+1), ..., U{i+NB+1)

U(1) is thus the actual control action applied to the
Process

CALCULATE THE CONTRIBUTION FROM DEAD-TIME COMPENSATION
DEAD = 0.0
DO I=1, NB
DEAD = B(I)*(U(I+1) - U(I+2)) + DEAD
ENDDO

CALCULATE THE PROPORTIONAL AND DERIVATIVE CONTRIBUTIONS

ASSUMING NA=4

(1986))

SUM5 = K(5)*(E(1) - 4.0"E(2) + 6.0"E(3) -~
4.0*E(4) + E(5))

SUM4 = K(4)*(E(1) - 3.0*E{2) + 3.0*E(3) -
E(4))

SUM3 = K(3)*(E(1) - 2.0*E(2) + E(3))

SUM1 = K(1) * (E(1} - E(2) )

ADD THE PROPORTIONAL, DERIVATIVES AND DEAD-TIME
COMFPENSATION

CONTRIBUTION TO THE PAST CONTROL ACTION

UPD = UPAST + SUMS + SUM4 + SUM3 + SUM1 + DEAD

CALCULATE INTEGRAL CONTRIBUTION
DELUI = K(2) * E(1)

SuM TO COMPUTE THE TOTAL CONTROL ACTION
UPID = UPD + DELUI

TEST FOR QUTPUT LIMITS
CLAMP UPID ONLY WHEN SATURATION CAUSED BY INTEGRATION

IF (((UPD.GE.UMAX).AND. (UPID.GE.UMAX)) THEN

U(1) = UMAX
ELSEIF (((UPD.LE.UMIN}.AND. (UPID.LE.UMIN)) THEN
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OO0

Uf{1) = UMIN
ELSEIF (((UPD.LT.UMAX).AND. (UPID.GE.UMAX)) THEN

UPID = UMAX
U({1l) = UMAX
ELSEIF (((UPD.GT.UMIN).AND. (UPID.LT.UMIN)}) THEN
UPID = UMIN
U(1} = UMIN
ELSE
u{1) = UPID
ENDIF

UPDATE THE UPAST
UPAST = UPID

Now call a Subroutine to Shuffle backwards the E and U
vectors ready for the next control interval
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APPENDIX A.2: FORTRAN CODING FOR HEURISTC ALGORITHM

aOaooaonn

aan

U(i) FROM ANY ADVANCED DIGITAL ALGORITHM
THE EXCESS CONTROL ACTION FROM
THE PREVIOUS INTERVAL IS COMP

IF CONTROL ACTION ALREADY SATURATED; DON'T ADD THE
COMPENSATION
IF (U.LT.HILIM .AND. U.GT.LOLIM) U = U + COMP

SET THE COMPENSATION IF CONTROL ACTION AT UPPER LIMIT
IF (U.GT.HILIM) THEN
COMP = U - HILIM
U =10 - COMP

SET THE COMPENSATION IF CONTROL ACTION AT LOWER LIMIT
ELSEIF (U.LT.LOLIM) THEN
coMP = U - LOLIM

U =U - COMP
SET THE COMPENSATION IF CONTROL ACTION NOT SATURATED
ELSE
CoMP = 0.0
ENDIF
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Appendix B : Extractive Distillation Column Models

Appendix B-1  Process/Disturbance Models

For details on the derivation of the model forecast, interested

readers are referred to Box and Jenkins (1970).

Process HModel :

w(z)z P 8(z)
Y(i) = —— U(i) + ————— a(i) (B-1)
3(z) Pp(z)IV

b-Step ahead Process Forecast :

w(z)

Y(i+b) = —m— U(i) + N(i+b) (B-2)
Disturbance Model:
.y 8(z) ,
NCI) = W_ a(i) (3'3)

b-Step ahead Noise Model Forecast :

T(z)

a(z) (i) (8-4)

N(i+b) =

Where T(z) can be obtained from the following equation:

e(z) T(z) z-b

B(z)V =¥z —w (B-5)

and the feedback enters through the estimates N(i), which iIs related to

the measurement, Ym(I) :
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b

Sy Sy w(z)z .
N(i) = Ym(l) —B(T Uil (B-6)
Setpoint Trajectory Model:
K (2)z2""
Ysp(l) = Kd(—Z) R(i) {(B-7)

b-Step ahead Setpoint Trajectory Forecast :

K (z)

. _ n , _
Ysp(1+b) = __E;?Ej_ R(i) (B-8)
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Appendix B-2 Extractive Distillation Column (EDC)

This is a pilot scale unit in the Chemical Engineering Department
at McMaster University. The process performs the separation of the
azeotropic mixture of acetone and methanol with the addition of water as
the solvent. A sequence of research works can be found in Langille
(1983), Mayer (1986), Latosinsky (1988) and Kumar (1987). Step tests
were performed (Latosinsky, 1988). A continuous first order plus
deadtime model was found to be an adequate linear fit of the process
data. The continuous model was then discretized with a sampling time of

28 minutes to give the following discrete process model:

Acetone Conc. Gp11 Gp Solvent Flow
= 1.0E-3 12 (B-9)
Methanol Conc. G C Steam Flow
P21 “Pa2
Concentrations deviate in mole percent
Flow rate deviate in ml/min
0.5059z % + 0.26352 >
Gp = —1 {B-10a)
11 1 - 0.627 =z
-0.8544z ! - 0.48342° 2
Gp = — {B-10b)
12 1 - 0.5712z
~0.64872 ' -0.82862 % -0.03139z >
Gp = - — (B-10c)
21 1 + 00,4471z + 0.4082z
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1 2

2.533 z © + 2.768 z

Gp = —~ (B-10d)
22 1 - 0.6703z

The outputs of the process model are the acetone and methanol
concentration deviate (moleX) and the inputs are the solvent and steam
flow rate deviate {ml/min)}. The upper and lower limits for the solvent
and steam flow rate deviates are *13.5 ml/min and % 20 ml/min
respectively. The control interval was chosen to be 28 minutes in this
work. One of the process disturbances comes from the feed flow rate. The
disturbance is deliberately modeled as a stochastic disturbance
rather than a deterministic disturbance for the sake of stochastic

controller design. An Integrated Auto-Regressive (IAR)} noise model is

an adequate description of the disturbance.

N(i) =

L ) (B-11)
(1. - 0.488z ~ )V
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Appendix B-3 Equivalence of Optimal Selution

The following section shows that the optimal controller solution in

equation 3-9 can be degenerated to a Dahlin or a MVC controller.

Dahlin Contreller :

The difference equation for a Dahlin controller is (Smith (1972))

Ulz)  a(2) K, (2

E(z) - w(z)

— (B-12)
Kd(z) - K (z)z
n

The general optimal solution of a model based controller is shown in
equation 3-9. For a Dahlin controller, there is no penalty on the

control moves (B = 0.0), hence the equation becomes :

K (z)
Kd(z)

T(z)
g(z)

wiz)
a(z)

R(i) - Uiy - N{i) 0.0 (B-13)

Since Dahlin controller is based on a servo design, the optimal filter,

T(z) Kn(Z)

Tz)-, s W (see Harris et

which is equivalent to a servo design, i

al. (1982)). Substituting the N(i) relationship in B-6, equation B-13

becomes :
K (z) K (z) -b
R w(z) (y - 0 Ly L w(z)z 1 - _
ke "W T e VY Tk [Ym[l) “S’(TU(”] 0 (B-14)
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Grouping the R({i) and Ym(i) terms together in equation B-14 :

K (z) -
n . . _ w(z) _n z .
R (2) [R(l’ 'melj] - 5?27‘[ TR b] i)

Rearranging equation B-15 :

U(z) U(z) _ a(z) K (z)

R(i)—Ym(iJ T TE(z2) - w(z)

) -b
Kd(z) - Kn(z)z

(B-15)

(B-16)

Equation B~16 is the same as the Dahlin controller in equation B-12.
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MVC Controller :

The difference equation for a MVC controller is (see MacGregor et al.

(1986))

.. 8(z) T(z) 1 . .
u(i) = o(z) ~ P2 ¢f[2] Ym(l) (B-17)

Again, for minimum variance control, the control moves are not

penalized (8 = 0.0), hence equation 3-9 is :

K (z)

. w(z) oy - L(z) . _ ~
K (z) R(1) - 25— UML) - -5 N(1) = 0.0 (B-18)

MVC is a regulatory design, the servo trajectery 1is therefore,

Kn(z)/Kd(z) = 0,0. Substituting equation B-6 into equation B-18,

one
obtains :
w(z) T{z) w(z)z_b
'—3-("7 Ui} = - 8(z) I:Ym(l) - —W U(l)] (B-19)
Rearranging equation B-19 gives :
w(z) T(z)2 "> T(z)
_(3—(-2_)—[ 1 - T(:'Z_)—_ ] U{l) == W Ym(l) (B'ZO)

Using the relationship in equation B-5, equation B-20 becomes :
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U (2)V ¢(z)
w(z) £ iy - I{=z) ;
ulz) [ . ] uti) == TELy () (B-21)
Rearranging equation B-21 produces:
o 8(z) T(z) .
uli) = o(z) Ymtl) (8-22)

wf(z)V o(z)

Equation B-22 is the same as the MVC in equation B-17.
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APPENDIX C: UPPER AND LOWER BOUND ON THE MAGNITUDE OF A DISCRETE
TRANSFER FUNCTION

Given a polynomial, A(z) , with z within the unit disk, ]z| <1

To prove that : |A(2) ] = p(Aa(z);

(i.e., the magnitude is always bounded above by the spectral gain)

Proof:

The magnitude can be written as the square root of the power

spectrum
| Az) | = ( Alz) Az )2 (c-1)

Write the z-transformed expression as a convolution sum
1/2

n n
={Zz ¥ a _a } (C-2}
=-n =

Since the maximum magnitude of an analytic function must occur at

the boundary {z|=1, the follow.ng inequality holds :

n n 172
| Alz) | = |z a ~a | =uplAlz) {C-3)
i=-n j=o0 %4 )

Therefore, the magnitude of A{(z} within the unit disk is always

bounded by the spectral gain.
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To prove that: c(A(z)) = p(A{z))

(i.e., the supremal gain is always greater than the spectral gain )

Proof:

The inequality of o{(A{z)) =z un(A(z)) can be established from

eguation C-3 using Triangular Inequality

n n
pla(z)) = [ £ = la _ |]a |'? (C-4)
: e I+} J
i=—n j=
Equation C-4 can be simplified as :
n n 12
plalz)) = [ Z ‘a1| z |a,| ] = ¢(A(z)} (C-5)

i=0 j=0

Thus, the supremal gain, o, must be greater or equal to the

spectral gain, p.
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To prove that: 1 = min(|A(2)}}])

p(1/A(2))

(i.e., the magnitude of a polynomial is bounded below by the spectral
gain of the inverse polynomial)

Proof:

Since |Alz)]| = 1/(|1/A(2)]) (C-6)
min{|A(z)|) = min(1/(]j1/A(z])]}) (C-7)
= 1/ (max(|1/A(2)]) (C-8)

Since the maximum magnitude is bounded above by spectral gain

= 1/( p(1/Aa(z))) (C-9)

Therefore, the minimum magnitude of A(z) can be bounded below by

the inverse of the spectral gain, 1/pu.

Example :

Alz) =25 + 3z - 1

the supremal gain, o(A{z))}) = 5 { from C-5)

the spectral gain, p(A(z)) = 3.6 { from C-3)

the maximum gain of A(z) = 4.4 (equation
4-19; N=20)
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This demonstrates that the spectral gain is a tighter bound than

the supiemal gain.
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Appendix D : Bounding the Output from a Pulse Response Block

In order to bound the ocutput of a pulse response block, some
lemmata have been developed to aid the bounding process. The key lies in
identifying the source of the uncertainty [(e.g., uncertainty in input
sequence or pulse response block) and the nature of the uncertainty
(e.g., time-invariant). It should also be pointed out that there is no
unique way to bound the ocutput and the difference between the various

methods is in the tightness of the bounds obtained.

Lemma D-1: To bound the ocutput of an open loop uncertainty process
Gi1(z)
R{iT) Y(i1)
— G1(Z)
Given :
max min

If Gl{t) and Gt[l) are the upper and lower bound of the process

impulse pulse response at time 1i:

min max

G1 (1) = Gl(l) = G1 (1) Y i=10,1,...,N {(D-1)

239



e B

and

Y(OiT) = G1 * R(1T) * : Convolution
and
max min
Gerr (1) = (Glfi) - GI(i) ) /7 2
max min
Gpnom[i) = (Gl(i) - Gl(i) Yy /2
Y i=0,1
Then two bounds, Y(iT) and Y(iT), for Y(iT) are :
, max min
YU | =Y G1) = Emax (|G (D], [G ;)] }. |RGT=y1) |
j=0
and
N
|Y(1T)| = Y{it) = £ Gprnom(]j) ROiT—)T)
J=0
N
+ Z |Gerr(j) R(lT—jT.||
j=0

and ?{iT] is a less conservative bound. Therefore,
|Y(iT)| = Y(11) = Y (i1)

Proocf :
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From the convolution equation in D-2, equation D-5 can be
established by invoking the Triangular Inequality (see Jury (1964)).
Equation D-5 denotes the convolution of the absolute values of the
extremal impulse response weights of G1(Z) with the absclute values of
input sequence, R(iT)’'s. This bound on Y(z} can be reduced by
transforming the uncertainty in G1(Z) into Gpnom(z) and a symmetric
error band, Gerr(z), as given in equations D-3 and D-4. The open loop

uncertainiy specified in D-1 can be rewritten as :

Gpnom(1) — Gerr(1) = Gl(l) = Gpnom{1) + Gerr(1) (D-8)

From D-1, a bound for Y{:i1), or G1(1) * R(iT), can be written as :

(Gprom (i) - Gerr(i)) * Ra1) = GI(Z] * R(itT)

= (Gpnom{i} + Gerr(i) ) * R{i7) (D-9)

Since the uncertainty is only in Gerr(i), not in Gpnom{i) or R(iT),

the term G1(i) * R{11) or Y(iT) c¢can be bounded above and below by :

[Y(1T)| = Gpnom * R(17) + {Gerr(i}| * |R(17)| (D-10)

where the term |Gerr(i}| * |R(1T)| indicates the bound about the nominal
response Gpnom{i} * R{iT). Since {Gerr(i)| is always less than or equal
to max(|G (1}],|G,(1)]) for all i, the bound from D-10 is smaller than
that from D-5 and hence

Y1) | s YOr) = Y (1) (D-11)
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Lemma D-2 : To bound the output of a FEEDBACK uncertain process {with
uncertainty in Gerr(z)

R(1T) Y(1iT)

(@]

~

> Gerr{z)

Given :

If Gerr{i) is bounded symmetrically about zero by [Eerr(l)l

—|Eerr(i)| s Gerr(1) = Iacrr(l‘JI (D-12)

Then the bound is :

Y(11) = YUT) = [Gerr(2)|*|RUIT)| + |Gerr(2)|® Y(iT) (D-13)

Proof :
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Gerr(z) 1s a pulse transfer function with the impulse weights
bounded by IEer(zll and -|a§rr(z)] symmetrically about =zero. The
process block diagram above can be written as a convolution sum of R(iT)

and Gerr(i) as follows.

YUT) = Gerr(i) * (R(11) - Y(i1)) (D-14)

By Triangular Inequality, the output magnitude of Y(iT) can be bounded

by :

[yit)| = Y(11) = |Gerri * |RUT)| + [Gerr| * Y(ir) (D-15)

or 1in Z-transform space :

|Gerr(2) | |R(Z) |
viz) = (D-16)

1 - IEerr(Z)I

Equations D-15 and D-16 provide two ways to calculate the bound on
Y(iT), either through a convolution sum (D-15) or through a z-transform

(D-16}.
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Lemma D-3 : To bound the output of a FEEDBACK uncertain process with
uncertainty in R{iT)

R(1T) Y(iT)
+
T 00— Gltz) > >
Given :
-[RGT)| = RGT) = |ROT)| Vv 1=0,1... N (D-17)
Then
- G1(Z) _
|Y{2)]| = Y(2) = | I . |R(2)] (D-18)
1 +G (2)
1
Proof :

R{iT) is the input to the block diagram. The uncertainty occurs
only in the input sequence, R({iT)'s, where the magnitude of the R(iT)'s
are bounded by |R(IT)]. Since there is no wuncertainty inside the

feedback loop, the loop transfer from point 1 to point 2 is :

G1(Z)
Y(z) = ( ——— 1) Rf{z) {D-19)
1+ G1(2)
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As far as the bounding is concerned, this problem is similar to
bounding an open loop uncertain process. Therefore Lemma D-1 can be

invoked.

Gltz]

e ]§(2)| {D-20)
1 + Gi(z}

|Y(z)| = Y(2) = |

Note the difference between equations D~20 and D-16 in terms of the
bounds. The bounds from equation D-20 are always smaller than those in
equation D-16. This suggests that one has to be careful in bounding the
closed loop output. The key is to pinpoint the location of uncertainty.
Failure to do so will result in an unnecessarily large bound on the

output.
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Lemna D-4 : Implication of Time Invariance to Bounding

UliT) Yl(iT)
G a3 G — Yz(n")

If the processes, Gl(i) and GZ(i]. are Time Invariant,

Then

= ] L] = - -
thxT) G2(1) Gltl) uliT) Gl(i) G2(1) = UliT) (D-21}

Proof -

If a process, G{(z}, is time invariant, impulse weight, G(j) of Gl(z)
at lag j 1s not a function of time i. The output, Yz(lT), in the block

diagram can be expressed as a convolution of pulse train as shown in

equation D-22.

Y (it} = G_(1) * G_ (1) = UliT) (D-22)
2 2 1
or
¥ N
Yz(lT) =X Ga(j) = Glik) Ul{{1-x-3)T) {D-23)
j=0 k=0

‘Interchanging the sequence of summation
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N
kgo Gz(J) Glfk} U{(1-x-3)T) (D-24)

M =

Y (iT) =
2

J=0

Since G1(k) is not a function of the time indices {1 or j },

N N
Y (1T) = Z Gi(k] z Ga(J] U((1-k-3)1) (D-25)
¢ k=0 Jj=0

Another way tec write D-25 is
Y. Git) = G (1) * G_(1) * UliT) (D-26)
2 1 2

Combining D-22 and D-26, we give the result in D-21. In ancther
word, Lemma D-4 implies that the sequence of <convolution can be

exchanged for time invariant systems.

Proved.
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Lemma D-5 : IMPLICATION OF Lemma D-4 TO THE BOUNDING PROCEDURE
Given the block diagram in Lemma D-4 :
Assumed that U(iT), G2 have no uncertainty
The uncertainty in G1 is specified by symmetric bounds :
G1 : —|G1(1)] = Gl(t) = |G1(1)| v i=0.... N (D~27)
The convolution sum for the output is :

thlr) = Gz(x) » Gl[i) * UiT) (D-28)

If the processes, GI(i] and Gz(i], are Time Invariant

Then
N N
Y,un) [ =2 [G ()] Z |G (k) Ull1-)-k)T) |

j=0 k=0

and
N N

= 2 (G (D2 G, (k) Ul(t-3=k)T) | (D~29)
J=0 k=0
Proof:

By Lemma D-1, the output, Ya(ir), in the block diagram can be
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bounded by :

N _
|G, ()] Z |G1(k)||U((1—r%lT)| {D-30)

]Y2(1T]| =
0 k=0

J

n M=

By the time invariant criteria in Lemma D-4, the pulse transfer
function block can be swapped. Since there are no uncertainty in Gz(i)

and U(1T), a tighter bound on YZ(IT) can be obtained.

- N
|y, 0| =z |G, (1)] | £ G, (k) U({i-j~k))T]| (D-31)
j=0 k=0

N —
=z |G, (] T ]G k)] |U((1-)-%)T) |
]=0 k=0

The second expression in the RHS of D-31 1s always greater than or
equal to the first expression. Therefore, by applying the time invariant

criteria, one can get a tighter bound on the output.



Lemma D-6 : Bounding the close loop output response deviation

UliT)+ F{iT) Ydev(iT)

> O 3 Gerr Gyr ——
+

,[ sulit)

T

Gur

Given :

If

FUT) = Gerr{1) * UliT) + Gerr(i} * Gur(i) * F(i1) (D-32)
and

Yaev(iT) = Gyr(i) * FluiT) (D-33)
and

-|Gerr(1)| = Gerr(i) = |Gerr(i)| ¥ i=0,1,...,N (D-34)

Then the Time-Invariant bound for Ydev(iT) is :

Gerr (2)
Yaev(iT) = Gys(2) U(iT) (D-35)°
1~ Gerr(2)}Gur({z)
Umod (1T) = Gyr(i) * U{1T) {D-36)

Yaev(i1) =|Gerr(i)|*|Unod (11) |

+|Gerr (1) ]*|Gur (1) | *Ydev (1T) (D-37)

Proof :
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For the Time-Invariant case, by Lemma D-4, one can write equations

D-32 and D-33 as :

Ydev (1T)=Gerr (1 )* {Gyr(1}*U(17) ) + Gerr{i)*Gur(i)}*Ydev(iT) (D-38)

Since there is no uncertainty in Gye{(i)*U(iT), the convolution can
be normally operated to obtain Umod(iT) as shown Iin equation D-36.

Applying Lemma D-2 to equation D-10 yields :

|Ydev(iT}‘ = ?dev(iT) =|6err(i)|’lum0d(l1‘)1 (D-39)
+iaerr(i)|'|Guf‘(i)|’§dev(l'r)

Proved
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Appendix D-7 : Equivalence of Block Diagrams in Figures 5-2a and 5-2b

The z~transformed output in Figures 5-2a and 5-2b can be written as

equations D-40 and D-41 :

Gelz) ( Gplz) + Gerr(z) )(R(z) ~ N(z))
Y(z) = (D-40}
1 + Ge(z) ( Gp(z) + Gerr(z)})

D(z)

1 + Gel(z) ( Gplz) + Gerr(z))

Gelz) Gplz)(R(z)- N{z))} D(z) \
Y(z)}= + {D-41)
1 + Ge{z) Gp(z) 1 + Ge(z) Gplz)

Ge(z) Gerr(z) Gyf{z) (R(z)-N(z)-D(z))

(1+Ge(z) Gpl(z)}(1-Gerr{z) Guf(z))

where
Gel(z2)
Guf(z) = - (D-42)
i + Ge(z)Gp(z)
1
Gyf(z) = (D-43)

1 + Gelz)Gpl(z)

The section followed will show the equivalence between equations D-40

and D-41. Substitute Guf(z) and Gyf{z) in D-42, D-43 into D-41:
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Gefl{z) Gpl(z)}(R(z)- N(z)) D(z)
Y{zl= + (D-44)
1 + Ge(z) Gp(z) 1 + Ge(z) Gp(z)

1

Ge(z) Gerr(z) (R(z)=N(z)-D{z)} (1+Gec(z2)Gp{z))
Gel(z)
1 + Ge(2)Gplz)

(1+Ge(z) Gpl(z)) (1+Gerr(z) )

Simplify equation D-44,

Ge{z) Gp(z)(R(z)- N(z2)) D(z)
Y(z)= + (D-45)
1 + Gelz) Gpl(z) 1 + Gelz) Gp(z)

Gelz) Gerr{z) (R(z)-N{z}-D(z))

(1+Ge(z) Gpl(z))}(1+Ge(z)Gp(z)+Ge(z)Gerr(z))

Group terms in equation D-45 into servo response and disturbance

responses :

{{Gc(z)Gp(z) (1+Ge(z)Gp(z)+Gerr(z)Ge(z) )+Ge(z)}Gerr(z) } (R(2)-N(z))
¥(z) =

(1+Gel(z) Gp(2)) ( 1+ Ge(z)Gp{z) + Geclz)Gerr(z))

{ 1+Ge(z)Gpl(z)) D(z)
+ (D"QG )
(1+4Gc(z)Gp(z)) (1+Ge(z)Gp(z)+Ge(z)Gerr(z)))

Simplify equation D-46,
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(1+Gc(z)pré)) (Ge(z)Gp(z2)+Ge(2)Gerr(z)) {(R(z}-N(2z))

Y(z) =
{14Gc(z) Gp(2))( 1+ Gec(z)Gp(z) + Gecl(zlGerr(z))
D{z)
-+ (D"47)
1 + Gec{z)Gp(z) + Gc(z)Gerr{(z)]
Further simplify equation D-47,
Ge(z) { Gp(z) + Gerr(z) ){(R(z) - N{z))
Y(z} = (D-48)

1 + Ge(z) ( Gp(z) + Gerr(z))
D(z)

1 + Ge(2) ( Gpl(z) + Gerr(z))

After the rearrangements and simplifications, eqguation D-40 becomes

exactly the same as equation D-43. Thus Figure 5-2a and Figure 5-3b are

equivalent mathematically.
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