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ABSTRACT

The crystallography and the interfacial structure of
interphase boundaries in a Zr-2.5 wt% Nb alloy have been
studied by transmission electron microscopy (TEM), and the
results compared with the predictions of a model developed in
this work. The a phase (HCP), when precipitated from B (BCC),
usually forms as intragranular plates. The habit plane of an
a plate is characterized by the regularly spaced dislocations,
parallel to the long axis of the a plate. These dislocations,
about 10nm apart, have a Burgers vector [0 1 0] with respect
to B phase. The orientation relationship between « and 8
phases was found to deviate slightly from the ideal Burgers
orientation relationship. Based on the O-lattice and invariant
line analysis a geometrical model has been further developed.
The cell structure of O-lattice, which is the key information
in predicting the configuration of the interfacial
dislocations, has been constructed by a simple calculation
made in reciprocal space of the O-lattice. This is expected to
improve the general application of the existing O-lattice
model. The plane of the least lattice mismatch, determined by

the O-lattice plane of the smallest spacing, is consistent
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with the observed habit plane. The optimum orientation
relationship suggested based on the analysis of mismatch in
the habit plane is shown to deviate slightly from the Burgers
orientation, which is supported by experimental evidence. The
analysis also indicated that the misfit in the habit plane
could be accommodated completely by a set of [0 1 0],
dislocations of ~10nm in spacing, lying along the invariant

line, in agreement with the experimental observations.
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CHAPTER 1

INTRODUCTION

The structure of interfaces formed by solid state
phase transformations is a subject of considerable
experimental and theoretical interest, for the ultimate goal
of this subject is a full understanding of the nature of phase
transformations and microstructure-property relationships. The
interfaces between precipitates and matrix have been of
particular interest, since they are the dominant interfaces in
many important engineering alloys and their formation
reactions can be controlled with relative ease. While a large
number of investigations has concerned interfaces between FCC
and BCC crystals because of the technological importance of
steels and brasses, interest has been recently extended to the
interfaces between HCP and BCC phases due to the emergence of
Ti and Zr based alloys as engineering materials. Recently,
some interesting structures of HCP/BCC boundaries were
observed in a Zr-2.5 wt%¥ Nb alloy {(Perovic and Weatherly,
1988) . The principal interfacial dislocations were shown to
lie aleng an invariant line. A comprehensive investigation was
felt essential to further rationalize these observations. For

this purpose, a 2r-2.5 wt% Nb alloy was chosen for study.
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The geometrical approach has been an essential step in

the analysis of the interfacial structure in terms of misfit
in a boundary. This has led to a measure of success in studies
of grain boundaries. Gleiter (1983) noted that geometrical
models were also applicable to interfaces between crystals of
different structure, but of the same type of bonding. The
interfaces in the present study belong to such a case.

Therefore, a geometrical approach was adopted in this work.

Among various geometrical models, the O-lattice theory
developed by Bollmann (1970) is the most general. The O-
lattice theory, together with other geometrical models, is
reviewed in Chapter 2. Essentially, the O-lattice procedure
predicts the possible configuration and Burgers vectors of
interfacial dislocations within an arbitrary boundary. It
therefore provides a very useful device for the investigation
of semicoherent boundaries. To predict the configuration of
dislocations it is necessary to construct the cell structure
in an O-lattice, since the lines of intersection between the
boundary and the cell walls are interpreted as dislocation

lines.

However, except for simple cases of grain boundaries
and a few cases of interphase boundaries (Bollmann, 1974a and
Solenthaler, 1988), cell structures have been widely adopted

in an oversimplified form, perhaps because there was no simple
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method available to solve for the cell structure. Thus, as
indicated by Ecob and Ralph (1981), the description of
interfacial dislocations becomes a function of the initial
choice of the crystal lattice unit cell. Nevertheless, the
true cell structure as defined by Bollmann (1970) should not
depend on such a choice. In order to describe dislocations
properly it is necessary to clarify the physical
representations of lines produced by different descriptions,
and to develop a simple method to solve the cell structure.

This is provided in Chapter 3, where the reciprocal space of

the O-lattice is explored.

Dahmen and Westmacott (1981) have noted the important
role of invariant lines in precipitation transformations.
Since then, invariant lines have been claimed to exist in many
precipitation systems including the alloy studied in the
present work (Perovic and Weatherly, 1988) . The concept of the
invariant line would be useful for understanding the
orientation relationship between precipitates and matrix, and
the direction of interfacial dislocation lines. When dealing
with the Burgers vectors of the dislocations and the habit
plane, additional concepts must be involved. Generally,
invariant 1lines are not equivalent to a line O-lattice (O-
line). Bollmann (1970) has suggested a projection translation
to deal with such a case. It was .realized in this work that a

certain amount of tolerance should be given in calculations
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due to the uncertainty or the true scattering in experimental
measurements. Specifically, the tolerance was applied in two
aspects in this study: firstly, to allow for small, physically
insignificant, departures from the true invariance, and
secondly, to let orientation relationship vary within a narrow
range. Corresponding to these two aspects, ideas of effective
invariant line and optimum orientation relationship are
proposed in Chapter 3. In addition, the properties of
invariant line strain are summarized, and on this basis the

interfacial misfit is analyzed.

Chapter 4 describes the experimental procedures.
Experimental observations are presented in Chapter 5. The
results are discussed in Chapter 6 together with the
predictions of the geometrical model. Agreements are reached
on the orientation relationship, the geometry of the habit
plane and the structure in the habit plane, inclﬁding the
direction, the spacing, and the Burgers vector of the
dislocations. The conclusions are presented in Chapter 7.
Further work is needed for a better understanding of the
interfacial structures in boundaries other than the habit

plane.



CHAPTER 2

LITERATURE REVIEW

Geometrical Approaches

to Interface Structures

Two crystals meeting at a boundary can have
differences in orientation, structure, composition, and types
of bonding. Geometrical models of interfacial structure only
take into account the differences in orientation and
structure, and assume that the interfacial configuration
having the lowest free energy is represented by that having
the "best" geometrical fit. The predictive power of
geometrical models is therefore limited to cases in which the
interfacial energy varies monotonically with the degree of
geometrical fit. In a review on geometric criteria for low
interfacial energy, Sutton and Balluffi (1987) indicated that
various best-fit geometrical models could apply for certain
types of interfaces, but there is no general geometrical
criterion valid for all types of interfaces. Gleiter (1983)
noted that geometrical models were successful when applied to

interfaces between crystals of the same type of bonding, but
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controversial results were obtained for phase boundaries
between crystals of different types of bonding. For the former
cases, the best-fit geometrical criterion can then serve as a
useful gquide to understand the structure of the interphase

boundaries.

2.1 Dislocation Model for the Low Angle Grain Boundaries

A dislocation model for a "surface of mnisfit" was
introduced by Burgers (1939). For a symmetrical low angle tilt
boundary, the spacing of the dislocation lines in the boundary

is

h=— (2.1)

where © is the angle between the two grains, and b is the

Burgers vector.

The hypothesis of dislocations at low angle grain
boundaries has been confirmed by the lattice image though the
detailed description of the boundary structure could be more
complicated than that predicted by this simple model (for

example, see Krakow and Smith 1987).



2.2 Frank's Formula for the General Grain Boundaries

Using an extension of this simple grain boundary
model, Frank (1950) studied a pair of 1like 1lattices in
arbitrary orientation, by rotating through appropriate angles
a; and a, about axes 1, and 1, respectively. The expression
for total Burgers vector, b, of dislocations lying in the
boundary and crossed by any vector r in the boundary is given

by the following formula:

b =r x (1; sine; - 1, sinay) - r (cosa; — COSXy)
- 1; (1 ~ cosa,) (1, - )
+ 1, (1 - cosay) (1, - 1) (2.2)

2.3 Dislocation Theory of Interfaces

Bilby et al. {1964) further developed the analysis of
Frank and proposed a general theory of surface dislocations,
which they expressed in a matrix notation. The net Burgers
vector, b, of dislocations which are cut by an arbitrary

vector r in a general grain boundary separating the lattice

(+) and lattice (=) is
b= (R?!-Ir (2.3)

where R is a matrix of the rotation, by which the (+) lattice

is generated from the (-) reference lattice, and I is a (3 X
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3) unit matrix ( I will be taken to have the same meaning in
the rest of this thesis). Egquations (2.2) and (2.3) are

actually equivalent expressions.

For general boundaries the resultant Burgers vector

can be expressed as:
b= (a"! - I)r (2.4)

where A is the deformation which transforms the reference

lattice (+) from the lattice (-).

Expression (2.4) has become the basic formula for the
further study of the geometry of interfacial dislocations.
Knowles and Smith (1982) applied this formula to FCC/BCC
interfaces. Without considering the accommodation of misfit by
discrete dislocations, they were able to explain the preferred
FCC/BCC interfaces found in the Cu-Cr system (Hall, et al.
1972) on the basis of the minimum or near-minimum net Burgers-

vector contents.
2.4 Epitaxial Dislocations
Starting from the theory of surface dislocations,

Sargent and Purdy (1975) analyzed epitaxial interfaces with

the Burgers vectors specified as the lattice translation
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vectors of either the matrix or the particle. If the misfit at
the interface is accommodated by a network of several sets of

dislocations, expression (2.4) becomes:

b = B(N;'T)b; = (A"t - I)r, (2.5)

where b; is the Burgers vector of the ith set of dislocations
and N, is defined as a vector lying in the interface, normal

to the ith set of dislocation lines, given in the form
N =— (2.6)

where n is a unit vector normal to the boundary, é; and d; are
respectively the 1line vector and the spacing of the

dislocations with Burgers vector b;.

Knowles (1982) modified the above formulae by
introducing a reciprocal Burgers vector notation. In his
analysis the (+) lattice was chosen as the reference lattice,

and equation (2.5) was written in the form

b= Z(N x)by = (I - A Hr, (2.7)

where A is the deformation carrying the reference lattice (+)
into the (-) lattice. The boundaries were assumed to consist
of three sets of dislocations with non-coplanar Burgers

vectors, by, (i=1,2,3). With a matrixz T defined as:
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T =1I- A"l (2.8)

Knowles gave the following description of the dislocation
geometry of the interface. The spacing of dislocations with
Burgers vector b; is

1

d, = (2.9a)
Y jT™y" x 1

where bi* is a reciprocal Burgers vector defined by:

b, X by
b," = 2 , (2.9b)
bi' bj X bk

bj* and b,* can be defined in a similar way, the superscript
T denotes a transposition and will be taken to have the same
meaning in the rest of this thesis. The line vector of the

dislocations with Burgers vector b; becomes
§; / TTb" x n. (2.10)

With this method of calculation of the dislocation geometry,
Knowles (1982) attempted to predict the structure of the
jnterfaces of all orientations, instead of simply applying the
analysis to epitaxial interfaces of a particular orientation

as originally suggested by Sargent and Purdy (1975).
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2.5 O~Lattice Theory of Crystalline Interfaces

Bollmann (1970) developed a general theory of
interface dislocations by introducing the idea of an O-
lattice. The idea of O-lattice provides a very important
device for study of interfacial structures. On this basis,
periodic misfit instead of the net Burgers vector of total
dislocations can be analyzed. Due to its close relevance to
the present study, Bollmann's O-lattice theory will be
explained in somewhat more detail in the balance of this

Section.

2.5.1 O-lattice Concept

An O-lattice is a fictitious three dimensional

jattice. The lattice points (O-points) are the positions of

the best matching of two interpenetrating point lattices

(lattice 1 and lattice 2). (A two-dimension O-lattice is

provided in Figure 3.2a and c). It has been shown that each of
these O-points is an origin for transformation between
lattices 1 and 2, which is therefore called O(origin)-point.
At an O-point the lattices 1 and 2 have the same internal

coordinates, which can be expressed as:

Ax, =x, +b = X° (2.11)
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where X° is an O-lattice vector which defines an O-point, and
A is the transformation matrix, b; is a lattice translation
vector in the reference lattice 1, and x; can be any vector in
lattice 1. Eliminating x; from (2.11) gives the basic equation

for solving the O-lattice:

b, = (I - a71) x°, (2.12a)
or

b, = T X°, (2.12b)

where T is defined as

T =1 -at, (2.13)

The basic eguation for O-lattice calculations has a
form similar to that in the continuum theory of dislocations
(referred to equations (2.4) or (2.7)), but now the Burgers
vector is confined to be a lattice translation vector. The O-
vectors defined by equation (2.12) are not necessarily
relatively short lattice translation vectors in O-lattice. b,
and X° still keep the same meaning as in the continuum theory
of interfacial dislocations, i.e. b, 1is the displacement
between the lattices 1 and 2 in the distance from the origin

point to the O-point defined by x°:
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Equation (2.12) has three types of solutions,
depending on the rank of T. The solutions, or the 'O-elements'’
are O-points, O-lines, and O-planes respectively corresponding
to the rank = 3, 2, 1. Only the most general case, rank = 3,
will be reviewed in this Section; the case rank = 2 will be

reviewed Section 2.8.
2.5.2 The Construction of O-Lattice Cell S8tructure

In the O-lattice, the region where lattices 1 and 2
match badly forms a cell structure, in which each O-point is
enclosed by a cell. The cell wall can be defined in such a way
that the relative displacement within a given cell with
respect to the O-point inside the cell is smaller than it is
with respect to any other O-points. In the faces of cells,
i.e. the locations of the worst matching, the relative
displacement has the same value with respect to the two

closest O-points on the opposite sides of the cell wall.

Thus, the location of the cell wall should satisfy the

following condition

|2 - |b - by|2 =0 (2.14)
or

(b, 6 T)x - (1/2) (b;T G by) =0
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where G is the metric tensor, b, is the displacement between
the two closest O-points separated by the cell wall; b is the

displacement defined as

b=1x - alx, (2.15)

and X is a vector variable. The locus of points x defines the
surface of the cell wall corresponding to the displacement b,.
No simple method has been suggested to solve equation (2.14),
except for one particular solution given as x = 1/2 x°. 1In
general, the orientation of the cell wall depends on the

choice of the reference lattice.

2.5.3 The Dislocation Description of Interfacial

8tructures

If the O-lattice cell is significantly large compared
with the unit cell in the reference lattice, the intersections
of the boundary between the two lattices with the cell walls
are considered as the starting point for atomic relaxation.

Each line of the intersection can be interpreted as a

dislocation, intoc which the lattice misfits are concentrated.
The Burgers vector of the dislocation is the displacement
associated with the cell wall intersected by the boundary at

the dislocation.
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Given the information of the orientation relationship

between the lattices, the interfacial orientation, and the
lattice parameters c£ both lattices, a dislocation description
of interfacial structure can be predicted by this model. The
models reviewed in the 1last Section require additional
information, either the line directions or Burgers vectors of

the dislocations.

It is important to note that in applications of O-
lattice theory (Bollmann and Nissen, 1968), the cell structure
was not constructed as originally suggested. Instead, the cell
structure was simplified to be the unit cell of the O-lattice
which is defined by any three O-lattice vectors (defined in
(2.12)). Such a simplification has been followed in other
applications of O-lattice (see, for example, Hall et al.
1986). Although O-lattice «cell structures have been
illustrated in a few references (for example, see Bollmann
1974 (a), Solenthaler 1989), no details have been provided as

to how these structures were constructed.

2.5.4 The Choice of Low Energy Interface

Bollmann (1974 b) suggested that a boundary of low
energy should be oriented so as to pass through as many O-
elements as possible. Consequently, the possible boundaries

are considered to lie parallel to a face of the O-lattice unit
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cell. Provided the bad-matching cell walls take the shape of
the unit cell of the 0O-lattice, the boundary will be parallel
to one of the cell walls, and hence it will consist of two
sets of dislocations. In fact, this description in terms of a
simplified cell structure provides the same geometry of
interfacial dislocation as that suggested by Knowles' model

(1982), shown in equations (2.9, 2.10).

Starting from this configuration of dislocations at
the interface, Bollmann and Nissen (1968) introduced a

geometrical parameter, P:

P = (|by]/7d;)2 + (|by]/d;)2. (2.16)

where b, and b, are the Burgers vectors of the dislocations,

and d, is defined by:

a, = |x% x x%/[x%]| [, (2.17)

d, is given in similar form, and %°, and X%, are the O-lattice
vectors associated with b, and b, respectively. A small value
of P means good fit in the boundary, so it is assumed to be a
rough indication of the boundary energy. Hence, an interface

with minimum P is desired.
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This prediction, however, as Ecob and Ralph (1981)
pointed out, has considerable uncertainty as to the initial
choice of the crystal lattice unit cell. Hall et al. (1986)
further developed the above model by extending the choice of
the unit cell of the reference lattice, e.g. the FCC lattice.
O-lattice unit cells of different sizes and shapes were
generated by combinations of three non-coplanar FCC lattice
vectors of <1 1 0> family, and seven boundaries resulted from
the cross product of each pair of the six O-lattice vectors.
The most favoured interface was selected among the seven,

using the minimum P criterion defined in equation (2.16).

However, the interface with the minimum P may not
usually be the one containing the densest O-lattice points,
which is also a criterion for a low energy boundary as noted
in Section 2.5.4. Ecob and Ralph (1981) indicated that the
optimum incoherent boundary (without relaxation to a
dislocation structure), will pass through the maximum number
of O-elements, while the optimum semi-coherent boundary (with
dislocations taking up the misfit) will contain a minimum

density of lines of intersection with the cell walls.

2.5.5 The Selection of Transformation Matrix A

The transformation matrix A depends on the orientation

relationship of the two crystals. However, even for a given
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orientation, as noted by Bilby et al. (1964), two grains can
be generated by different rotations due to the symmetry of the
crystal structure. Bollmann (1970) suggested that the matrix
A in equation (2.12) should be selected as the transformation
by which the nearest neighbours in both lattices are related.
With such an A, the determinant |I - A~!|, corresponding to
the ratio of the volume of the unit cell of reference lattice

to the O-lattice unit cell, has the smallest value.

In addition to the above consideration, there are
other cases where the matrix A should be carefully selected,
due to the choices of orientation relationships. One is the
case of coincidence-site-lattice (cSL), which is to be
reviewed in the next Section. Another is the case of an
interphase boundary generated by a phase transformation or
vapour deposition in such a manner that there is a fixed, or
a narrow range of, orientation relationships between the
phases. Many attempts have been made to predict such a kind of
orientation relationship. For non-martensitic transformations,
the favourable orientation relationships could be selected as
the one with the minimum interfacial energy. In Bollmann and
Nissen's work (1968), the orientation relationship was
determined by the minimum value of the P parameter. Another
well accepted energetic criterion for adoption of an
orientation relationship is the presence of an invariant line

between the phases (Dahmen, 1982). It was found that
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conditions associated with the minimisation of geometrical
parameters P (or R, a parameter similar to P and proposed by
Ecob and Ralph (1981)), could be consistent with that

corresponding to the presence of an invariant lines (Ecob,

1985) .

2.6 C8L/D8C Lattice Model

A coincident site lattice (CSL) is constructed in a
similar way to the O-lattice. It is a special type of O-
lattice: each O-point is also a lattice point of both real
lattices. A general O-lattice may consist fully, partially, or

scarcely at all, of CSL points.

The boundary with the densest CSL before relaxation is
assumed to be of low energy, corresponding to the cusps in the
energy vs misorientation curve for the grain boundaries
(Balluffi, et al. 1982). The bad-matching regions with a
relatively short wavelength periodicity may not be pictured as
crystal lattice dislocations, or primary dislocations termed
by Bollmann (1970). The degree of fit for this periodic
coherent boundary is evaluated differently from that for the
semi-coherent boundaries, where the bad-matching regions are
concentrated on the core of the primary dislocations. In this
model, the regions of 'fit' are the patches where partial

lattice matching across the boundary is achieved (Balluffi et
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al., 1982). To conserve the pattern of 'fit', a network of
dislocations is suggested, formed to compensate for the
deviations from the high density CSL orientation. Such new
networks are denoted as networks of secondary dislocations.
The Burgers vectors of the secondary dislocations are defined
within the framework of the "complete pattern shift lattice"
or DSc-lattice® (Bollmann, 1970), since this lattice is
composed of all translation vectors of lattice 2 with respect
to lattice 1, which conserve the atomic pattern of the
interpenetrating lattices. The secondary dislocations are
related to the "o-lattice of second order" by a formula
analogous to equation (2.12) (Bollmann, 1970). The
transformation matrix in this formula depends on the deviation

of the real orientation from the CSL orientation.

A large body of experimental evidence has been
reported to confirm the secondary relaxations occurring at
high-angle grain boundaries near coincidence orientations
(see, for example, Mader et al., 1987). However, the two
grains joined at a boundary generally tend to translate
slightly with respect to each other, in order to allow the
boundary to relax to a true minimum energy configuration. It
has been shown by computer simulations of the atomic structure

of grain boundaries that, in general, atoms do not occupy

* p stands for displacement, S for shift, and C for

complete.



21
coincidence sites in the lowest energy structure (Pond and

Vitek, 1977).

The CSL/DSC model has also been applied to interphase
boundaries. An O-lattice rarely contains CSL points if the
lattices 1 and 2 have different crystal structures. Bonnet and
Durand (1975) introduced the concept of the near-coincidence
lattice. The lattice is formed by identifying a pair of cells
in the lattices 1 and 2, which almost match each other in
shape and size. This model is especially useful for studying
interfaces, where the lattice mismatch is so large that the
primary relaxation has no physical reality (see, for example,
Knowles and Goodhew, 1983). The model has been applied to
interfaces, for which the observed line defect structure
cannot be rationalized on the basis of dislocations with
lattice vectors of either adjoining lattice (see, for example,
Forwood and Clarebrough, 1989). Due to the lack of unigqueness
in defining the near-coincidence-lattice cells as the
reference state the predictions of this model can be ambiguous
even when taken in conjunction with the experimental results

(Forwood and Clarebrough, 1989).

2.7 Plane Matching Model

The plane matching model was introduced to explain the

line structures of grain boundaries with misorientations far
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from coincidence relationships (Pumphrey, 1972). It has been
suggested that the periodic lines observed in a grain boundary
result from the mismatch of the low index atom planes across
the boundary, provided at least one set of such planes in each
grain adjoining the boundary is nearly parallel. This
suggestion is supported by the systematic study of specially
prepared plane matching bicrystals with controlled
misorientations (Schindler et al., 1979). As pointed out by
Schindler et al. (1979), there is considerable evidence for a
one dimensional relaxation, i.e. the relaxation which improves

the degree of alignment of lattice planes.

The plane matching model has been used to study
interphase boundaries. The straight parallel lines observed in
FCC/BCC interphase boundaries in brass were interpreted as the
dislocations accommodating the mismatch of the {1 1 1} planes
of FCC lattice with their counterparts in the BCC lattice,
namely the {1 1 0} planes (Bdro and Gleiter, 1973). The same
approach has been applied by Luo and Weatherly (1988) in the
study of FCC/BCC interfaces in a Ni-Cr alloy. They found that
the contrast of the dislocations with various reflections and
their spacing could be better explained, if the Burgers vector
of the dislocation was chosen to be normal to the close-packed
conjugate planes and to have a magnitude equal to the plane
spacing, than if it is assumed to be a lattice translation

vector. Bollmann (1974 a) considered the plane matching model
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to be a one-dimensional approximation to a three-dimensional
problem. Using this approximation, Bollmann (1974 a) derived
the geometry of the line structure and showed that it was
equivalent to the result of the plane matching model

(Pumphrey, 1972).

2.8 Interfaces Containing Invariant Lines

Based on a literature survey on the orientation
relationships observed in many precipitation systems, Dahmen
(1982) hypothesized that the precipitate and matrix tend to be
related by an invariant line strain whereby the precipitate
dimensions tend to be inverse to the directional mismatch and
the habit plane of the precipitate contains the invariant
line. With this invariant line analysis, Dahmen (1982) was
able to rationalize the orientation relations and the

morphologies of precipitates in some BCC/FCC and BCC/HCP

systems.

The necessary condition for an invariant line strain
is that one principal strain should be either zero, or have
the opposite sign from the other two (Christian, 1975). Under
this condition, there will be a cone of vectors which remain
unchanged in length (unextended cone). Any vector in the cone

can be made an invariant line by adding a suitable rotation.
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There could be many ways of producing invariant lines

as well as many choices of invariant lines for the same
transformation system (Dahmen and Westmacott, 1981). A simple
way to obtain the invariant line is to consider it in two
dimensions; namely, through a small rotation around the normal
to the close-packed planes from the principal distortion
(Dahmen, 1982, and Aaronson et al., 1983). The magnitude of
the rotation depends on the lattice parameter ratio. For those
systems deviating from the parallelism of close-packed planes,
Dahmen (1982) suggested another rotation axis to be used,
which may lead to the smallest total rotation. Taking the loss
of coherency into account, Dahmen and Westmacott (1981)
postulated that the invariant line of a semicoherent
precipitate is determined by the intersection of the cone of

unextended lines with the slip planes of the matrix.

Luo and Weatherly (1987) noted that the observed
invariant line may not lie in the close-packed planes as would
be predicted by the two-dimensional model. They have developed
a method to solve the invariant 1line problem in three-
dimensions. The potential invariant lines can be obtained by
intersecting the initial cone of the unextended lines with the
final (or transformed) cone of unextended lines. The
intersection is determined from the rotation due to the
observed (or assumed) orientation relationship. A true

invariant line is obtained if the intersection line is also
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unrotated. The habit plane is determined by the invariant line
and an unrotated line as suggested by Ryder and Pitsch (1966).
This three-dimensional invariant line model was compared with
the O-lattice method further developed by Hall et al. (1986}.
The habit plane and the growth direction of precipitate
predicted by both theories were in good agreement with their
experimental observations (Luo and Weatherly, 1987), although
the principles for choosing the habit plane are different in
the two approaches. Despite the success of the invariant line
model from continuum approach in rationalizing several
observations, the model sheds no light on the nature of the
strain field associated with the discrete defect lines (Luo

and Weatherly, 1988).

A true invariant line can be a solution of the O-
lattice (equation 1.12), when the rank of (I - a~l) is two.
Bollmann (1970) has shown how to solve this two dimensional O-
lattice problem mathematically. It is known from linear
algebraic theory that we cannot always find solutions to
equation (2.12) if the rank of (I - A1) is two. In order to
solve the egquation, b; must be confined to a plane (b-
subspace) . Such b-subspace may not contain sufficient useful
Burgers vectors. Bollmann assumed the Burgers vectors in the
reference lattice to be projected onto the b-subspace. Finally
the O-lattice (O-lines) may be solved by a complicated non-

homogeneous transformation.
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2.9 structural Ledge Model

The idea of structural ledges was proposed by Hall et
al, (1972) to solve the problem of the poor lattice matching
of the two close packed planes from lattices 1 and 2, which
are in near parallel orientation. In this model, the two
planes are overlapped so as to build a two dimensional O-
lattice. Due to a shift of the lattice planes in the sequence
of both lattices 1 and 2, there is a relative shift with
respect to each O-lattice plane in three dimensions. The
boundary was supposed to be stepped so that it would pass
through as many good matching patches as possible. These steps
on the boundary were termed "structural ledges", and were
considered to be composed of one, two, or three layers of
atoms (Rigsbee and Aaronson, 1979). According to this model,
the boundary will contain dense O-points disregarding what
Burgers vectors may associated with the assumed line defects
separating the O-points; this aspect of the model has been

criticized by Ecob and Ralph (1981).

In his recent work, Furuhara (1989) further developed
the structural ledge model in a study of HCP/BCC interfaces.
A graphical technique was used to search for the near-coherent
patches not only on the single pair of parallel close=-packed
planes, but also on other parallel conjugate planes from the

two lattices. As suggested by Dahmen (1987), the structural
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ledges were chosen to step down along the invariant line, so
that another set of misfit dislocations at the interface can
be eliminated. In addition, the misfit dislocations in this
model were constructed according to the simplified O-lattice
model (Bollmann and Nissen, 1968) to avoid the drawback
discussed earlier in defining the Burgers vectors associated
with the defects. The broad interface predicted by the
modified structural ledge model has been shown to be close to

the experimental measurements in a Ti-Cr alloy.



CHAPTER 3

AN O-LATTICE CALCULATION FOR

INTERFACIAL STRUCTURES

The O-lattice concept suggested by Bollmann (1970) is
adopted to assess the three-dimensional mismatch between two
crystals. In this Chapter, a wmodel will be developed as
extension of the O-lattice procedure. The main meodification is

in the following aspects:

Firstly, a method for solving the O-lattice cell
structure will be provided. An analysis will also be made of
the physical representation of the planes corresponding to the
faces of the unit cell of the 0O-lattice, which has often been
taken as a simplified cell of "poor matching". The physical
difference between the faces of these unit cells and the real

cells will therefore be clarified.

Secondly, the habit plane is defined as the smallest-
spacing O-lattice plane which is related to a close-packed

plane of reference lattice. It will be shown that this plane

28
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is defined in reciprocal space by a simple form and can be

measured directly in diffraction patterns.

Thirdly, by introducing the idea of an effective
invariant line, the O-lattice theory can be applied, (with the
rank of T kept to three), to interfaces between two lattices
which are related by the invariant line strain. Based on the
analysis of the mismatch in the habit plane, it is found that
the plausible orientation relationships will correspond to the
existence of at least a one-dimensional O-lattice, i.e. an O-

line, in an invariant line strain transformation.

Finally, the criterion for the formation of the
dislocations corresponding to the lines of intersection of the
O-lattice cell wall with a boundary is judged by the spacing
of these lines rather than the ratio of the volume of the unit
cell of the O-lattice to that of the reference lattice as

suggested by Bollmann (1970).

3.1 Basic Ideas

According to the O-lattice model (Bollmann 1970), the
configuration of mismatch in an interface of any orientation
can be provided by the oO-lattice calculation. Such a
configuration is regarded as a starting point for analyzing

the interfacial structures. It is a purely geometrical
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approach, and has some limitations. The following assumptions

are implicit in the calculation:

(1) The orientation relationship between the precipitate and
the matrix is governed predominantly by minimizing the

interfacial energy in the system.

(2) The best match between the two lattices is realized in the
habit plane, which is the major part of the boundary
connecting the precipitate and the matrix. The habit plane
represents a minimum interfacial energy state and has a fixed

orientation.

(3) When the periodicity of the misfit strain in an interface
is considerably larger than the atomic spacing, the strain
will be highly localized and will be taken up by discrete

dislocations.

(4) The locations of the dislocations are centred at the
region of the poorest matching before relaxation. The misfit

dislocations may be associated with steps.

The precipitate system of interest in the present
study is a Zr-2.5 wt% Nb alloy (for reasons see Chapter 4). On
cooling from high temperatures, a HCP structured phase, a, is

precipitated from a B phase having a BCC structure. This
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transformation can be written as:

X, = AX, (3.1)

where X, and X, are any vectors in the HCP and BCC structures,
respectively. In fact the transformation of BCC into HCP
involves a change of lattice from BCC to simple hexagonal.
Take BCC as the reference lattice. Based on the O-lattice

theory, an O-point is defined by equation:

o
Il

g = (X -2 %, (3.2a)
or

b, =T X, (3.2b)

where T is defined as

T =TI - 24", (3.3)

Strictly speaking, X° is an O-lattice vector which defines an
O-point, and then b;, should be a BCC lattice translation
vector which is correlated to a translation vector in the
hexagonal lattice. However, according to this definition some
of b, (larger than Burgers vectors of BCC) are not the
primitive lattice vectors, due to the corresponding large
translation vectors in hexagonal lattice (refer to Figure

3.3). It is noted that the BCC structure tends to have a one-
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to-one atomic correspondence with respect to HCP structure,
for there are two atoms associated with each hexagonal lattice
point in the HCP structure. Since we are more interested in
the misfit between atoms than that between lattices, an
alternative choice is to define b, as a primitive translation
vector in BCC lattice. Then an X° defines a point of the best
atomic matching, but may not define the point of another
origin though we may still call it an O-point for
convenience®. With such a choice, X° is an O-lattice vector,
but it may not be an O-lattice translation vector. This is
because the vector, b , correlated to the b;, may not be a
translation vector in the hexagonal lattice. Generally, if
there is an atom in the origin, then 2b, will define another
atom, but b, may not define one. Due to the one-to-one
correspondence of atoms in the two structure, we could assume
that a small shift of atoms, which is possible in a interface,
may bring an atom to the position defined by b,. Consequently,
the oO-lattice (or pseudo-O-lattice) defined in (3.2) may
provide the periodicity of the misfit between a and B8.
Therefore, b, will be defined as the primitive vector. For
convenience, b, is given by one of the column vectors in the

following expression:™

* Because the same equation is used (3.2 vs 2.12), the
formulae developed in this Chapter do not 1lose their
generality.

" Each vector in (3.4) corresponds to a face of the
Wigner-Seitz cell of BCC lattice.
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11 1 1,4
2 2 2 2
1 1 1 1
[byy** +bgr] = a4 5 3 3 3 01 0], (3.4)
1 1 1 1
- - = Z 001
2 2 2 2

where a, is the lattice parameter of the BCC phase.

3.2 Mismatch of Lattice Points

Bollmann (1970) defined the regions of the poorest
matching as cell walls, due to the resemblance of these
regions around each O-point to a cell structure.” Such a cell
structure can be obtained by solving equation (2.14). However,
the cell structure obtained by solving this equation has not
been reported in the literature. As indicated by Bollmann,
these cells are related to the Wigner-Seitz cells of the
reference lattice by an imaging operation. (To distinguish the
cells of the poorest matching region from the Wigner-Seitz
cells, the former is here after termed the O-cell.) It will be
shown that the O-cell structure can be easily solved by such

an imaging operation.

* An example of formation of a cell structure in the two-
dimensional O-lattice by a rotation is given in Figure 3.2
(a), where two point lattices of the same structure, the (110)
plane of BCC lattice, are rotated with respect to each other
by 8°. The least-matching regions are defined as cell walls.
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It is convenient to conduct this operation in
reciprocal space, since the operation is related planes.

. provided T is invertible, the equation (3.2b) becomes:
xo = T-1 hs' (3'5)

The corresponding translation in reciprocal space is

(Christian, 1975):

0* _ paf "
" =7 p,
or

(X7 = (b)) T, (3.6)

where b,” and X are reciprocal vectors in the BCC lattice and

O-lattice, respectively.

The Wigner-Seitz cell for a BCC lattice is a
"truncated octahedron" (Ashcroft and Mermin, 1976) with six
square faces perpendicularly bisecting <1 0 0> type vectors
and eight regular hexagon faces perpendicularly bisectirng <1
1 1> type vectors. Therefore the reciprocal vectors, ﬂs;,
representing the face normals of the Wigner-Seitz cell will be
in the same directions as b, in (3.4), but with inverse
magnitude, as given in the form of a column vector in the

following expression:



35

(2 2 2 2
2 2 2 _2,,
5 3 3 3100
. - 112 2 2 2
DRI Y = e | = _— " — —0 .
(W8] - -W8J] 3 3735 3 10 (3.7)
2.2 2 24451
3 73 3 3

From (3.6), the reciprocal vectors, oc;, representing the O-

cell walls will be:

»

oc,” = T' w8, (3.8)

The direction of Oci' gives the normals to the 0-cell walls and
the inverse of the magnitude of oci* gives the spacings between
pairs of walls. Seven pairs of O-cell walls enveloping an O-
point form one cell; the whole cell structure of O-lattice can

be constructed by translating this O-cell repeatedly in the 0O-

lattice space.

Given a normal to an interface, the dislocations in
the interface are determined by the lines of intersection of
the cell walls with the boundary. Taking bdy' as a unit
reciprocal vector normal to a boundary, the directions of the

lines of intersection are determined by

D, = oc," x bay", (3.9)
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It can be seen from Figure 3.1 that the spacing of lines of

intersection, i.e. the spacing of dislocations is simply:

ds, = 1/|Dp;|=1/(}oc;"|sine). (3.10)

oc . *

Fig. 3.1 The spacing of
the lines of intersection
of the cell walls with a e
boundary. o

I— ! - N\ boundary
| oci*l sin(e)

cell wall

3.3 Mismatch of Lattice Planes and the Determination of the

Habit Plane

It has been reported that some defect lines observed
at interphase boundaries can be explained as the result of the
mismatch of low index planes. (For example, see Bdro and
Gleiter (1973), and Luo and Weatherly, (1988)). In these
studies, as well as in the plane matching model first
suggested by Pumphrey (1972), only one set of mismatching

planes was taken into account.
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Here, the three-dimensional mismatch of all planes,
especially low index planes, will be analyzed. As we know,
moiré fringes are formed by superposition of two grid
structures having a similar period. When two sets of planes
interpenetrate, there are regions of perfect match and regions
in which the planes match particularly badly. If we view the
pattern of interpenetrating planes along the zone axis of the
two sets of planes, we see the poorly matched regions as moiré
fringes, which, if extended to the viewing direction, are also
a set of planes. Such a situation is demonstrated in Figure
3.2b. In the right part of the Figure 3.2b the formation of
moiré fringes from two sets of slightly misoriented (8°) lines
is illustrated. When three pairs of misoriented lines are
plotted, three set of fringes are formed. The pattern shown in
the left-hand portion of Figure 3.2b is due to the three sets
of moiré fringes interweaving with each other. The lines in
Figure 3.2b have been drawn according to the lattice vectors
in Figure 3.2a. They could be considered as the lines of

intersection of {1 1 0} type of planes in (1 1 0).

Moiré fringes often form in the TEM due to double
diffraction of planes from two crystals. It has been shown by
Hirsch et al. (1977) that the moiré fringes in TEM image are

perpendicular to Ag, defined by:

Ag =g, - g, (3.11)
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where g, and g, are the reciprocal vectors representing the
planes, involved in the double diffraction from the two
crystals. The inverse magnitude of Ag gives the fringe
spacing. Equation (3.11) gives the general formula for the
geometry of the moiré pattern. Let by be the reciprocal
vector representing a set of low index planes in the reference
BCC lattice in the form of a column vector in the following

expression:

11 110 0200
(byye Bjyl = = |1 -1 001 1020 (3.12)
lo 0 -1211-10002

From the definition of equation (3.1) and the relationship
between the transformation in real and reciprocal space

(christian, 1975), planes transformed from planes bm' can be

given as:
(b")T = (by)T A, (3.13)

If we define

g, = (by)' (3.14, a)

and

n

g, = (b,)", (3.14, b)
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then the transpose of (3.11) can be written as

OP. =Db,. - Db, (3.15)

where OP," is the transpose of Ag. Just as b," and by’
represent planes in a and B lattices, OP; also represents a
set of planes in three dimensions, the planes of the most
poorly matching. Due to the similarity of these planes to the
two-dimensional moiré fringes, the term "moiré planes" will be

used to refer to these planes.

Besides defining the geometry of the plane of poorly
matching OP; also carries another important message for
interfacial study: A plane in the O-lattice containing at
least two O-lattice vectors defined by equation (3.2) can also
be defined by a vector DP;. By transposing the vectors in

(3.15) and combining with (3.13), we have:

(0R,")" = (b,)T - (b, A~
= (b,")T (I - A7)
= (B)T T (3.16)

because

T = (I-2a").

In fact the relationship in (3.16) is identical to that in

(3.6), and hence
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op.” = x%. (3.17)

Namely, OPi* represents a set of planes in the O-lattice. Since
the transformation in (3.5) is a homogeneous deformation of
space, lines which are originally coplanar, remain coplanar.

Consider a vector b," defined by

b, X by
b, = ] , (3.18)
by * by x by
where by, by; and b, are three non-coplanar lattice

translation vectors. By definition, by and b, are in a plane
determined by b,,". The plane in the O-lattice transformed from
b,*, i.e. OP;", will contain X’; and X% which are transformed
from bM and by, respectively. Therefore the following

relationship holds

OP;

0 Q
X xX b.: Xb
B A S —TT[ Bl — T8k ] (3.19)

x° . x‘; X X0 by; * bg; X by

1

Knowles (1982) has indicated that this expression can bhe

proved more rigorously by using tensor algebra.

Now it is clear that a face of an O-lattice unit cell,

which is usually defined by two O-lattice vectors’, is

* A unit cell of O-lattice can be determined by O-lattice
vectors transformed from any combination of three column
vectors in (3.4) except for the combination among three <1 0
0>.
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determined by an OP; vector. Such a plane may contain
relatively denser O-points than others. It is important to
realize that a boundary lying aleng cne of the faces can cut
at most three sets of cell walls, while others will cut more.”
We have assumed the lines of intersection of the O-cell walls
with the boundary to be the dislocation lines. Therefore, the
more O-cell walls a boundary may cut, the higher is the
density of the dislocations in the boundary. As a result, the
faces determined by OP;, transformed from the six close packed
planes, be (i=1...6) in (3.12), are considered to be the most
plausible candidates for the habit plane. The habit plane
should taken to be the one that contains a minimum density of
dislocations. It is assumed that the density of O-points gives
an indication of the density of dislocations, as each pair of
adjacent O-points in a habit plane is separated by a single
dislocation line. Therefore, the habit plane is selected among
the candidates to be the one that contains a minimum number of
O-points per unit area or has the smallest plane spacing,
corresponding to the largest magnitude of OPi'. Since the
energy of the interface cannot currently be predicted, this
method of determining habit planes serves as a useful

approximation.

* Any lines parallel to an O-lattice vector defined by
equation (3.2) will intersect only one set of O-cell walls,
while lines in other directions will cut more sets of O-cell
walls. This can be seen from the plot of the O-lattice in
Figure 3.2 (¢). Similarly, a plane containing more than one O-
lattice vectors will only cut the O-cell walls which are
bisected by the vectors at the plane.
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The faces of the 0O-lattice unit cell have been chosen

by searching for the lowest energy boundaries (Bollmann and
Nissen 1968). (For details see Section 2.5.4) The rationale
given here for choosing a habit plane is not the same as that
given by Bollmann and Nissen (1968), although a similar result
could be obtained using either method. In Bollmann and
Nissen's work, a particular unit cell was chosen and only
three faces were investigated. Hall et al. (1986) have
extended the choice of the unit cell of the O-lattice, but

followed the criterion suggested by Bollmann and Nissen

(1968).

3.4 A Comparison of Lines of Intersection of '"Moiré Planes"

with the Boundary and the "Mathematical" Dislocations

It has been shown in the last Section that "moiré
planes" are identical with the faces of the O-lattice unit
cell, among which one can be chosen as the habit plane. On the
other hand, the faces of the O-lattice unit cell have been
regarded as the simplified cell walls for a long time (for
example, see Hall et al. 1986). Here, the real meaning of the
lines of thc intersection of the faces with a boundary is
recognized: they are the leccations of the least plane mismatch
instead of the least point (atom) mismatch. It is the latter,
so called a "mathematical" dislocation, whose Burgers vector

can be clearly defined.
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Generally speaking, the configurations of these two

types of intersections are different. Given a boundary
parallel to a face of a O-lattice unit cell, the lines of
intersection of the cell walls with the boundary form a cell
structure in two dimensions, as illustrated in Figure 3.2c.
Usually each cell has three pairs of edges, and their geometry
can been obtained by using equation (3.9-10). It has been
indicated in Section 2.5.3 that the Burgers vector associated
with the line of intersection of an O-cell wall with the
boundary is simply the b, defining the O-lattice vector
bisected by the wall. Consequently, the Burgers vectors of the
dislocations in the boundary are contained in the plane from
which the plane in an O-lattice chosen as the boundary is

transformed.

When one face of a unit cell is intersected by the
boundary which is another face of the unit cell, the direction
of the line of intersection is just the zone axis of these two

faces:

u, = (OP,") x (OP,"), (3.20)

where u, gives the direction of the zone axis, OP; is defined
in (3.19) and OP;, chosen as the boundary, is defined
similarly by rotating the subscripts in (3.19). Because of the

property of the reciprocal lattice, fﬂ is defined as:
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op," x op,

x°, = " - . . (3.21)
op,’ (OB;" x OP;")

It is clear that X°, is parallel to u,. Thus, the lines of
intersection of the face of the O-lattice unit cell with the
boundary are simply parallel to the O-lattice vector.
Following a similar analysis which led to the result in

(3.10), the spacing of the lines is

1 1

mdsi==

= . (3.22)
|up;|  |oP;” x bdy'|

where

bay" = op,’/|oP;"| (3.23)

If we take the six {110} planes in the BCC lattice into
consideration, the configuration of the intersection of the
"moiré planes" with the boundary will normally be a weave of
three sets of lines, each of which is parallel to one of the
three O-lattice vectors in the boundary plane. This is shown
in Figure 3.2b as the three interweaving fringes; whereas the
locations of the fringes are more clearly indicated in Figure
3.2c where they are compared with the positions of the O-
lattice points and the 0O-cell walls. In fact, each line at the
same time can be the line of intersection of the boundary with
more than one set of "moiré planes". This is simply because an

O-lattice vector, along the line of the intersection, could be
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the zone axis of more than two sets of O-lattice planes
transformed from the close-packed BCC planes. Thus, it is very

ambiguous to assign a Burgers vector to these lines.

The same geometry describing these 1lines of
intersection has been presented elsewhere (For example, see
Knowles, 1982 and Hall et al. 1986). Nevertheless, only two of
the three sets of lines of intersection were taken into
consideration (as dislocation lines). Therefore, a

parallelogram configuration of the lines was obtained.

3.5 Effective Invariant Line Condition

A strict invariant line strain is characterized by the
existence of a line which is both unrotated and unextended
during a transformation. Such an invariant line is defined

mathematically by

AX = X. (3.24)

where A is a transformation matrix and x is a vector which

represents the direction of the invariant line.

An effective invariant line is defined by a direction
which undergoes so small a change during a transformation that

there is no physically significant difference in the
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direction. This direction is determined by the vector x in the

following equation:

Ax = KX, (3.25)

where

k=1+ ¢, (3.26)

and € can be chosen to be very small, depending on the
particularly physical requirement. For example, take a
precipitate, 100 um long, with its longest axis along x. If
its length is changed by 0.00001% (i.e. € = 0.0000001). then
the total change in length will be 0.01 nm, which is very
small compared to the atomic spacing and can be neglected in

the study of the interfacial structure.

There are three advantages for using an effective
invariant line instead of a mathematical one. Firstly, an
effective invariant line condition is more feasible than the
mathematical invariant line condition. In the vicinity of a
mathematical invariant line orientation, one can always find
a direction along which € is close but not equal to zero. Even
if a phase transfcrmation could be described exactly by an
invariant line strain defined by (3.24), the calculation from
the experimental data usually fails to satisfy the equality in

(3.24) due to the limitation of the accuracy in measurements.
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Secondly, for the true invariant line strain transformation,
the matrix T in (3.2b) becomes singular; while, if k is very
close but not equal to one, the calculation still can be
carried out in the regular and simple way. Thirdly, because
the effective invariant 1line is very close to the true
invariant line, the properties of a mathematical invariant

line are still applicable.

3.6 Properties of Invariant Line Strains

i. In any interface containing an invariant line, all
dislocations should lie in one direction parallel to the
invariant line. This can be easily proved by the dislocation
theory of interfaces reviewed in Section 2.3, and has been
demonstrated elsewhere (Dahmen, 1987). It should be emphasized
that the parallel dislocations usually belong to more than one
set; as this has not been widely recognized in the literature

(For example, see Dahmen and Westmacott, 1981).

ii. An invariant line is the zone axis of all OPf
defined by (3.15). If we transpose the vectors in (3.15) and
multiply them with the invariant line vector x, we get

(OB, )T'x = (b,;")T'x - (b,)''x (3.27)

Combining with equations (3.24 and 3.13), (3.27) becomes
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(0P.")"-x = (b,;")T-x - (b;")T a7 -Ax
= (b)) Tox = (Bg" )7 %

= 0. (3.28)

(3.28) indicates that the invariant line is the zone axis of
all "moiré planes". It can be shown that this property should
also applicable to other planes similarly defined as OP;. The
relation in (3.8) for defining the O-cell walls and the one in
(3.16) associated with "moiré plane" are essentially the same,
except for the difference in the vector variables. Therefore,
this property is applicable to ocf, namely, an invariant line

is also the zone axis of planes normal to OC,".

This property of the invariant line can be used in a
TEM study for testing the existence of an invariant line.
First, in the TEM studies, the moiré fringes due to the
reflections from any two sets of planes related to each other
by (3.13) should be parallel to the projection of the
invariant line which is parallel to the principal set of
dislocations in an interface containing the invariant line.
Second, if one can bring the electron beam normal to the
invariant line and also parallel to a low index zone axis, one
should be able to see, from the selected area diffraction
pattern, that the visible Ags are parallel to each other and
perpendicular to the basic set of defect lines in the habit

plane. This condition cannot always be realized, but one can
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usually arrive a case close to it and find all Ags nearly

parallel.

iii. Corresponding to an invariant line in real space,
there must exist an invariant line in reciprocal space, which
defines a plane having an invariant normal. It will be shown
that all displacements due to the invariant line strain are
contained in such a plane. Given a transformation in real
space (3.24), the corresponding transformation in reciprocal
space is:

(A% = x (3.29)

where x" is a reciprocal vector defining the invariant normal,
because both A and A°! have an eigenvalue equal to one. The
displacement of a vector due to the transformation can be
expressed as

Ax = AX - X (3.30)

where x is any vector. If we transpose both sides of (3.29)

and multiply by Ax, we find that

(x)7-Ax = x""(a)ax - (x")"x

and hence
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(x")7-Ax = 0. (3.31)

Therefore, displacements of all vectors lie necessarily in the

plane with the invariant normal.

As mentioned in Section 2.8, Bollmann has noted that
the deformation should be confined in a plane (b-subspace) if
the rank of T in (3.2b) is two. From the relationship in
(3.31), it is clear that this plane of b-subspace for an
invariant line strain transformation is characterized by an

invariant normal x.

iv. The displacements of all vectors lying in a given
interface containing the invariant line are in one direction.
For an interface determined by i, the direction of the
invariant 1line, and n, the direction normal to i, any

direction r in the interface can be written as:

r = ai + bn.

where a and b are any constants. The displacement in the r

direction is:

Ar - T

A(ai + bn) -~ (ai + bn)
= b(An - n), (3.32)

because
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ai - i = 0.

Therefore the displacement in the r direction is proportiocnal
to that in the n direction. If r is taken as a unit vector, it
is clear that the displacement is a maximum when b equals 1;
namely, the deformation along the n direction is the largest

in the interface.

This property and the previous one have been used in
the phenomenological martensitic transformation theory (Bowles

and Mackenzie 1954).

v. In reciprocal space there is a second property,
similar to the one described above. Provided r’ is any
reciprocal vector contained in a plane determined by the
reciprocal vector x", the invariant normal, and the reciprocal
vector u", normal to x", it can be shown that the displacement
of r' due to the transformation is always parallel to the

displacement of u'. We can write

r' = au" + bx"

where a and b are any constants. Following the same analysis

which led to (3.32) we can obtain:
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()T At - (29T
= a()" a' - (u)")
a(w)’ (a7 - 1)
-a(u’)’r (3.33)

I

because

(x)" At = (x")'.

Note that (u')’? is the reciprocal vector representing the
"moiré planes" related to the mismatch of planes u’ with the
corresponding planes in the other phase. Therefore, for any
planes in the same zone axis as the invariant normal, x", the
"moiré planes" must be parallel to each other. Because the
inverse magnitude of a(u’)'T gives the spacing of the "moiré
planes” related to r’, the smaller the value of a or the angle
between r" and x°, the larger the spacing of the "moiré planes"

will become.

The above properties are very useful in the analysis

of mismatch in the habit plane as will be discussed later.

3.7 Search for an Effective Invariant Line

The method developed here will be applied to a BCC/HCP
system, though it can be applicable to many other systems too.
The orientation relationship in Zr alloys is reported to be
the Burgers orientation relationship (Burgers, 1934), or near

it, and the phase transformation is characterized by an
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invariant line strain (Perovic and Weatherly 1988). The TEM
observations in the present work indicate that the orientation
relationship in the Zr-2.5 wt% Nb precipitation system is not
exactly the Burgers orientation relationship but is scattered

around it within ~1.5°.

The orientation relationships in a region within 1.5°
of the Burgers orientation relationship are searched to find
those that can satisfy the effective invariant line condition.

The procedure of calculation is:

1. Choose a value for ¢ in (3.26), say, €=0.0000001,

since the « precipitates are usually much shorter than 100um.

2. Choose a particular orientation relationship from
the variants of the Burgers orientation relationship (Burgers
(1934):

(0 001), 7 (110),

[11-20], 7 [1-11],

and select an orthogonal coordinate system, as shown in Figure

3.3.

3. Determine the transformation matrix A: Following the
procedure given by Bollmann (1974a), we first chose three non-

coplanar vectors from B, as the column vectors in matrix B,.
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N\[ouutl
i o}
e 0 {three-index) BCC Iattice
point
o (Four-index) HCP lattice
point
i D ) [,
Fig. 3.3 The coordinates 0 x —

for O-lattice calculation.

\ N L1z

/¢;
;100] /31'
P 0\\\\\\,, (11001 X
&/ /Dll..l”"’: -
: [1310y).

Then the corresponding vectors in & phase are determined so
that the nearest neighbours in both lattices are related.

These are given in each column in B,.

1 .5 0

B, = |1 -0.5 0 (3.34)
o .5 1
011

B,=/010 (3.35)
100

Vectors in B, are expressed in the three-index hexagonal

indexing system; they correspond to the column vectors in B,
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in the four-index system:

0 1 2
/¢ 1 -1
B_= = 3.36
@ 30 -2 -1 ( )
3 0 O

Corresponding to By and B, in lattice coordinates, the matrices

in orthogonal coordinates are 8, and 8 . They are defined by:

o o |2
N 3
5 3|, V3 |1 ( )
2 N3
V2 o o |
and
0O o J;ﬂ
2
B, = a 3.38
a ﬂoli ( )
2
lrca 0 O
where a, is the lattice parameter of the B phase and

rca = ¢,/a,, (3.39)
where a2 and c, are the lattice parameters of the hexagonal «

phase.

The column vectors in (3.37) are related to those in

(3.38) by the transformation A,, so that

8, = A, S,. (3.40)
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Therefore
z\b = sq (Bg)-1 (3.41)
. .—_4”
] 2
3 1) 0 -
0 0 ...‘/:
3 N3
= 1/rbh
/ o 1 1llo ¥3 |2
2 2 N3
lrca 0 O'LJ; o o |
where

rbh = a;/a

(3.42)

It can be seen from (3.41) that A, is independent of the
individual values of a,, a, and ¢,, but depends on the ratios
of a, to a, (rbh) and ¢, to a, (rca).” For the sample heat-
treated at 650°C, the rca and rbh as measured in TEM are
1.588+0.003 and 1.091%0.002, respectively. When the effect of
thermal expansion from room temperature to 650°C is taken into
account (see Appendix 1), the values become: rca = 1.589, rbh

= 1.094, as to be used in the calculation.

4, Rotate HCP a crystal until the effective invariant
line condition is satisfied. The rotation in the three-
dimensional space is divided into two steps. Firstly rotate «

along z axis by R,, so that

“This is an advantage for a TEM study, because the
determination ratios could be obtained free of errors due to
the uncertainty in the camera length and the accelerating
voltage.
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X, =RAX,, (3.43)

where R, is a rotation matrix:

cosy -siny ©
R, = [siny cosy 0O (3.44)
0 0 1

and y is an angle between -1.5° to 1.5°. The a crystal is then

rotated along an axis in x-y plane by R;:

cos¢g O sing
R; = (R} 0 1 0 [R (3.45)
-sing 0 cos¢

where

cosf -sinb 0
R, = [sin® cos® © (3.46)
0 0 1

is the matrix for locating the rotation axis in the x-y plane.
Due to the 2-fold symmetry in the (1 1 0},/(0 0 0 1), plane,
only positive values less than 1.5° are chosen for angle ¢,
while the angle 8 is varied between 0° and 180°. Consequently,
the transformation matrix which takes into account the

deviation from the exact Burgers orientation relationship is

A = RRA,. (3.47)
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5. Find suitable R, and R; in (3.47) so that A
satisfies the effective invariant line condition: Ax = KX,
where k should be equal to or slightly smaller than 1 + €. The
general method should be to solve for the eigenvalues of A and
choose the one which can satisfy the condition for k. However,
in practice one does not seek the eigenvalues of A. To

simplify the calculation, we define

Tt

I - A. (3.48)

It can be shown that if one of the eigenvalues of A is close
to one, then there is one of the eigenvalues of Tt close to
zero, and the determinant of Tt, |Tt|, will also be close to
zero. The results of this calculation indicate that for any
values of 0 and ¢ in the fixed range, |Tt| will change sign,
as y is varied from -1.5° to 1.5°. The zero point condition is
sought numerically by setting a critical value for |[Tt|
corresponding to the value of €. Angles ¢ and 6 are divided
into fine steps (for example A¢=0.05°,40=5°), while ¥ 1is
sought by the optimum method,” which provides a means for fast
searching. When |Tt| is smaller than the critical value, we

regard the condition to be correspond to the zerc point and

* In this method, we compare three |Tt| each time,

corresponding to three y values: al, a2 = (a3-al)*0.618 +al,
and a3, where al and a3 are the limits of range of search. The
range of search is narrowed by substituting a2 for al or a3
depending where |Tt| changes the sign. The calculation is
carried on until the critical value of |Tt| is reached; it
usually takes about 20 cycles.,
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then the eigenvalues of A are checked to see if one of them is
smaller than €. We can always find a suitable critical value
such that when |Pt| is smaller than it, the effective
invariant line condition is satisfied. It is found that the
smaller the € is, the more precisely the y is defined, namely,
there are more significant digits in the value of v, which can
be defined too precisely to be physically meaningful in

practice.

The results of the calculation show that for the
measured lattice parameter ratios in the Zr-Nb alloy, the
effective invariant line condition can be met in the whole
range of 6 (0°—180°). For any combination of 6 and ¢
(0°—1.5°) and hence R3, we can always find a value of ¥ (in
a range of =-1.1° < y < 0.38°) for R; such that one of
eigenvalues of A is closer to cne than Kk, namely, requirement
for an effective invariant line is met. However, at the exact
Burgers orientation, the effective invariant line condition

cannot be satisfied.
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3.8 A Hypothesis for the Optimum Orientation Relationship

The results of the previous Section indicate that, in
the vicinity of the Burgers orientation, there is an infinite
number of orientation relationships available which satisfy
the effective invariant line condition. From the TEM studies,
it was noted that 6 is not distributed over such a wide range
as the calculation suggested, although the orientation
relationship is not uniquely fixed. The gquestion is now to
determine which of +the numerous possible choices of
orientation relationship(s) is favoured by nature. It should
be emphasized that the interphase boundary that we are dealing
with is semicoherent in nature, for the misfit dislocations
have been consistently observed in the boundaries. A second
important observation is that only a single set of regularly
spaced dislocations is observed consistently in the habit
plane. In this Section we will attempt to choose appropriate
orientations for the semicoherent precipitates, based on an

analysis of the mismatch in the habit plane.

According to the method suggested in Section 3.3.2.,
the habit plane is predicted to be (®,", which is transformed
from (1 0 1),, because this vector always has the largest
magnitude. An example of the result of an O-lattice
calculation, when © = -2°, ¢ = 1.015°, y = -0.290° is shown in

Figure 3.4. The O-lattice points are projected in the habit
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Figure 3.4 (a) the projection of O-lattice
points in the habit plane; (b) the projection of
O~lattice points along the invariant line. (The
indices of the BCC lattice points corresponding to
the O-lattice points are indicated.)
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plane in Figure 3.4a, and projected along the invariant line
direction in Figure 3.4b. Note the enormous difference in the
scales along and normal to the invariant line. Actually, all
O-lattice vectors are lying nearly parallel to the invariant
line. The spacing of the lines of intersection of the 0O-cell
walls with the habit plane is significant larger than the
atomic spacing (for example, 90 vs 3.2 A). Therefore, it is
reasonable to assume that dislocations are formed
corresponding to these lines. The dislocation structure in the
habit plane, calculated using (3.9-10), consists of sets of
effectively parallel lines"; this is consistent with the first
property of the invariant line. However, the configuration of
the dislocations, i.e. their spacing and direction (always
parallel to the invariant line) for a particular orientation
relationship are always different from those for the other
orientation relationships. Also, the geometry of habit plane

changes for the different orientation relationships.

Generally, the O-lattice calculation predicts that
three sets of dislocations are needed to accommodate the
misfit in the habit plane. It will be shown below that, in

addition to the effective invariant line condition, the long

* There may be very small angles the between different
sets of dislocations, but they are usually much smaller than
1°. For example, the angles are 1.6 x 10°°, 0.8 x 107%°, 0.8
X 107°° respectively between the dislocations with Burgers
vectors [1 -1 =-1] and [1 1 -1]; [1 -1 -1] and [0 1 O]; and [1
1 -1] and [0 1 0] in the habit plane corresponding to the 0O-
lattice in figure (3.4).
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range misfit strain in habit plane could be further reduced if
only a single set of dislocations is required to accommodate
the misfit in the plane. It is hypothesized that the total
strain energy could be reduced if the strained regions are
concentrated rather than spread out in an interface. Based on
this hypothesis, the optimum orientation relationship can be

analyzed.

According to the second property of an invariant line
discussed earlier, the invariant line is the zone axis of all
"moiré planes". The line of intersection of any "moiré planes"
with the habit plane will be in the direction of the invariant
line, as the habit plane itself is one of the "moiré planes".
The intersection of a "moiré plane" with the habit plane
defines a line along which the a plane of reference lattice
matches poorly with the correlated plane in the other lattice.
Normally, each set of "moiré planes" intersects the habit
plane with a particular spacing, except for those related to
the planes in the reference lattice in the same zone axis as
(L 0 1),. The details of derivation for proof of this argument
are provided in Appendix 2. A general case of an intersection
of "moiré planes" with the habit plane is illustrated in
Figure 3.5a. In Figure 3.5 the diagrams are oriented such that
the invariant line is normal to the plane of paper, and the

projection of habit plane is along the horizontal axis.
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Figure 3.5 An illustration of "moiré planes"
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Each line radiating from the origin is defined by the vector
op,/|OP,|%, (OP, is defined by equation 3.15), and hence the
direction and the magnitude of the vector give the normal and
the spacing of a set of "moiré planes". Therefore, the line
perpendicular to a radiating line represents the projection of
a "moiré plane". Here, only one plane is drawn to represent a
set of "moiré planes". The spacing of the 1lines of
intersection of the set of "moiré plane" with the habit plane
is defined by the distance from the origin to the point where
the representative "moiré plane" intersects the habit plane.
In Figure 3.5a, two intersection points could be seen, but
there are other two points of intersection which are not shown
because they are outside of the scale of the diagram.
Supposing all "moiré planes" are plotted by repeating them at
their spacing, one could expect the points of the
intersection, i.e. the lines of the poorest plane matching, to
be fairly spread out in the habit plane. For some special
orientation relationships all "moiré planes" related to the
low index planes of the reference lattice would intersect the
habit plane either with the same spacing or with so large a
spacing that the "moiré planes" do not actually intersect the
habit plane’. This case is demonstrated in Figure 3.5b, where
the points of intersection of many "moiré planes" with the

habit plane are superimposed. Therefore the regions of poor

* As shown in Appendix 2, such "moiré planes" are shown
to be parallel to the habit plane.
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plane matching are concentrated in a small area in the habit
plane and repeated periodically before the atomic relaxation.
It is assumed that such a distribution of plane mismatch would

diminish the local misfit strain in the habit plane.

It can be shown (for detail see Appendix 2) that the
condition for the superposition of the lines of intersection
of "moiré planes" with the habit plane corresponds to a
single-set-dislocation configuration in the habit plane. The
derivation in Appendix 2 suggests the Burgers vector
associated with this set of dislocations to be [0 1 0],. In
addition, the locations of the dislocations are shown to
coincide with the positions of the superimposed intersection
lines. Generally speaking, with these specially selected
orientation relationships, there exists at least one by,
associated with the dislocations, 1lying in the plane
determined by the invariant normal. Then, according to the
third property of invariant lines, an O-vector can be solved
from equation (3.2), which defines a one-dimensional O-
lattice. On the basis of the analysis given in the Appendix 2,
the habit plane will contain both this one-dimensional O©O-
lattice and the invariant line. Therefore, the habit plane
suggested by the calculation is characterized by highly
localized and periodically distributed misfit strain. The
misfit in each period could be described by a well defined

Burgers vector. It is likely that after atomic relaxation the
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misfit could be completely accommodated by a single set of
dislocations in the habit plane, which might keep the same
geometry of the periodical strain. The orientation
relationship corresponding to this dislocation configuration
is defined as the optimum orientation relatiocnship. In other
words, for the optimum orientation relationship the simplest

dislocation configuration is obtained in the habit plane.

Among so many orientation relationships satisfying the
effective invariant line condition, available in the vicinity
of the Burgers orientation relationship, only a very small
number belongs to the optimum orientation relationships.
Figure 3.6 gives the angles 6, ¢ and |y| (y has a negative
value when 0 > - 26°) in the rotation matrices RL (3.44), R2
(3.46), and R3 (3.45), corresponding to the optimum
orientation relationships, and the total deviation angle p
from the Burgers orientation relationship. p is calculated by

the following formula:

p = arccos(cos¢ X cosy).

Even though the possible candidates for a favoured orientation

relationship are greatly reduced using this method, we still

have many choices for the orientation relationship.
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In order to further limit the choices of orientation
relationship, we can narrow the choices by considering the
following two factors. Firstly, we can find the orientation
relationship for which density of the dislocations in the
habit plane is lowest. Secondly, we may look for the optimum
orientation relationship with the smallest deviation angle p
from the Burgers orientation relationship. The dislocation
spacing (dsi) and the deviation angles (p) of the optimum
orientation relationships from the Burgers orientation are
plotted in Figure 3.7, where the orientation relationships
corresponding to the maximum dsi. and the minimum p are

indicated by arrows 1 and 2, respectively. The orientation
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relationship corresponding to the maximum dislocation spacing
is the one when 0 = 6°, ¢ = 1.005°, y = -0.381°; while that to
the minimum deviation angle from the Burgers orientation is

the one when 6 = -2°¢, ¢ = 1.015°, y = -0.290°,

For the first case the density of misfit dislocations
is reduced; while for the second case the best local atomic
match is probably achieved. By plotting the atomic positions
from both a and B phases at the habit plane, it can be shown
(see Appendix 3) that the habit plane is composed of stepped
slices of (1 -1 0 0), or (-1 1 2), planes. Conseguently, the
correlated close-packed directions [1 1 -2 0], and [1 -1 1];;

the ¢ direction in HCP, [0 0 0 1], and its counterpart in the
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BCC lattice, [1 1 0],, can all be found lying the habit plane
at the atomic scale. While the deviation of these two pairs of
directions from each other brings an invariant line between
the two lattices, there may be additional short range
distortions in the interface as an expense of greatly reducing
the average misfit. The favoured orientation relationship is
given by a balance of minimizing the dislocation density and

the short range misfit strain.

once the orientation relationship is selected, the
geometry of the habit plane and the line direction, Burgers
vectors, and spacing of the dislocations in the habit plane
can be calculated for the given lattice parameters. The
Burgers vector of the dislocations in the habit plane has been
determined to be [0 1 0],, and spacings of dislocations are
shown in Figure 3.7. Some results of the calculated habit
planes and the invariant lines for different orientation
relationships are plotted in the superimposed stereographic
projections of the BCC and HCP crystals in Figure 3.8,
referred to the BCC lattice. The orientation relationships
chosen are for 8 = -42°, -26°, -10°, -2°, 6°, 22°, 38°. The
corresponding values for the angles ¢ and y can be found in
Figure 3.6. Due to small rotations from the Burgers
orientation relationship, the geometry of the habit planes
varies slightly, while the directions of the invariant lines

change rapidly. When © goes from -42° to 38° the habit plane
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Figure 3.8 The habit planes and invariant lines for
different orientation relationships plotted in the
superimpesed stereographic projections of BcC ({1 1 0]) and

HCP ([0 0 0 1)), where the two lattices are oriented by the
Burgers orientation relationship.
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changes from near (2 -1 -2}, toward (1 -1 -1),, while the
invariant line varies from near [2 1 2], to near [-1 2 -2],.
Note that the geometry of the habit planes and the invariant
lines as well as the orientation relationships corresponding
+o0 the two cases for selecting the orientation relationship (8
= -2°, §°) are very close, so it is not easy to determine
experimentally which of the two factors is more important.
However, since they are so close, we may regard this swmall
range of orientation relationships as the orientation
relationship with which the interphase boundary will be in low

interfacial energy states and hence favoured by nature.

An example of detailed results of calculation is
given below. The orientation relationship 1is chosen to
correspond to the rotations defined by equations (3.44-3.47)
for = -2°, ¢ = 1,015°, y = -0.290° corresponding to the one
indicated by arrow 2 in Figure 3.7. Having obtained the
transformation matrix from equation 3.47, one could calculate
op," by inputting b, defined in (3.12), into equations (3.13)

and (3.15). Then the habit plane determined by the op,’ is
op," = (3 -2.1626 -3.0521),
referred to the BCC lattice, or

oP," = (-3 4.0543 -1.0543 0.7172),
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referred to the HCP structure. The direction of the
dislocation lines in the habit plane, i.e. the direction of

the invariant line is

w, = [2 -1.0247 2.6919],

referred to the BCC lattice, or

u, = (4 1.3709 -5.3709 1.0839],

referred to the HCP structure. This direction is obtained by
finding the eigenvector of the transformation matrix, which
corresponds to the eigenvalue almost equal to one. Since an
optimum orientation relationship is used, the habit plane
contains a single set of dislocations with [0 1 0], as the
Burgers vector. The spacing of the dislocations could be
obtained by applying relation (3.10) for i = 6. The spacing is
found to be 9.9 nm. The angle between the dislocation lines
and the Burgers vector is 73.0°; thus the dislocations will be
of mixed character. The angle between the Burgers vector and
the habit plane normal is 63.2°. Therefore the dislocations
may carry the strain outside of the habit plane. It should be
kept in mind that the O-lattice calculation takes the three-
dimensional lattice mismatch into account, while the mismatch
in a planar interface is mainly of two dimensicnal character.

Based on the assumptions given in Section 3.1, the gecmetric
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result presented here is less likely to be effected by the
relaxation of atoms near the boundary. However, it is not
clear how the atoms near the boundary react upon the release
of the constraint normal to the interface, which was assumed
to exist in the initial calculation. This may influence the

actual displacement field around the dislocations.



CHAPTER 4

EXPERIMENTAL STUDIES

4.1 Alloy Selection

In a recent study of a Zr-2.5 wti% Nb alloy, Perovic
and Weatherly (1988) observed some interesting structures in
the HCP/BCC (¢/f) interphase boundaries. While the orientation
relationship between the two phases and the Burgers vectors
associated with the dislocations were determined in their
work, the interpretation of the interfacial structures needs
further elucidation. To obtain a clear understanding of the
interfacial structures, an extensive study of the same alloy
was carried out in the present work; the experimental results
will be compared to the predictions of the model presented in

Chapter 3.

A sample of as-received Zr-2.5 wt¥ Nb alloy’ (the

major impurity is 90G-1300 ppm oxygen), about 2 x 1 x 1 e’ in

L]

The alloy was provided kindly by Dr. V. Perovic of
Oontario Hydro Research.
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size, was cut with a low-speed diamond saw into slices about

0.5 mm thick.

evacuated quartz capsules for further heat treatment.
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Figure 4.1 The Zr-Nb equilibrium diagram
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4.2 Heat Treatment

As can be seen from the Zr-Nb equilibrium diagram
(Figure 4.1, after Abriata and Bolcich, 1982), the pro-
monotectoid o phase forms when the B phase containing 2.5 wt%
Nb is cooled below the B/a+B solvus line. According to
Hehemann (1972), if the B phase contains more than 6 wt% Nb
martensite Fformation could be suppressed on gquenching. As
precipitation of a enriches the # in Nb, after a sufficient
fraction of a is precipitated, it is possible to retain at
room temperature the a/f interfaces <formed at high
temperature. In order to obtain a near-equilibrium o/B8
interface for this study, the basic heat treatment steps
should include a solution treatment in the B phase field, in-
situ cooling to give an isothermal transformation in the a +
# region, as suggested by Perovic and Weatherly (1988),

followed by fast cooling.

All specimens were solution treated for one hour at
temperature 1000° t 10° C at the B region, and then isothermal
reacted in the ¢ + B field at various temperatures in the
range of 650°C - 850°C., Some specimens were also treated
isothermally by two-temperature steps. The martensitic
transformation could be prevented by isothermal heat treatment
below 770°C followed by a quench. However, this quench did not

prevent the formation of the o phase. The metastable o phase
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is a product of a diffusionless transformation of alloys (of
critical Nb content) on gquenching from the B phase (Cometto,
et al. 1965). When small v phase particles are present, the
Kikuchi lines from the B phase regions are diffuse, and the
contrast from the B phase renders the investigation of the
structures at the /B boundaries very difficult. When the
volume fraction of o is very large, the Kikuchi lines of B
could be almost totally replaced by those from the o phase
(for example, in the 770°C isothermal treated specimens). In
order to obtain a clear TEM image of interfaces and to be able
to identify the B orientations during tilting the specimen by
following the BCC Kikuchi map, the effect of © should be
diminished as much as possible. The TEM diffraction patterns
in the present work have indicated that the lower the
isothermal transformation temperature (i.e. the greater the
enrichment of 8 in Nb), the lesser the influence of the o
phase. This observation is consistent with Chang and Sass's
(1976) work. In their study, the o domains were observed to
decrease in size as the Nb content increases. To minimize the
effect of © phase on the TEM interfacial study, the isothermal
transformation temperature must be low. For this reason, the
TEM study was concentrated on specihens isothermally
transformed at 650°C, or transformed by two steps, the second
of which was at 640°C. Any temperature change in a heat
treatment was accomplished by transporting the specimens

quickly from one furnace to an adjacent one. After the
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isothermal transformation specimens were quenched by breaking

the quartz capsule in iced water.

4.3 B8EM and TEM Specimen Prepuration

The specimens were initially chemically thinned using
a solution of 45 vol.% HNO;, 45 vol.% H,0, and 10 vol.% HF to
~0.15mm thickness. These specimens were examined in a SEM
(Philips 515). For TEM study, the chemically thinned specimens
were punched into 3 mm diameter discs. The discs were lightly
ground to 0.05-0.08 mm thickness with 600 grit emery paper to
reduce the uneven thickness between a and B phases left after
chemical thinning. The final thinning of the TEM specimens was
accomplished by electrochemical twin-jet polishing (with a
E.A.F.). The electrolyte used was a mixture of (70%)
perchloric acid 6 vol.%, butyl cellosolve 34 vol.%, and
methanol 60 vol.%. The viscous butyl cellosolve was added to
the conventional 10% perchloric acid solution in order to
lessen the preferential polishing of the a phase. The optimum
electropolishing conditions were achieved at a voltage of 7 £
0.5 v (corresponding to a current of 40 * 5 mA), at -40° £

5°C.
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4.4 TEM Analysis

A Philips CM12 TEM operating at 120 kV, equipped with
a double tilt holder was used in this study. It is stressed
that proper electron optical configuration were obtained each

time.

The rotation between the image and the diffraction
pattern was calibrated using MoO; crystal. Because of
variations in the high tension supply and other factors that
might occur to influence the path of the electron beam, the
rotation was also checked whenever needed by using an
overfocussed small spot size beam in the image mode”. Such an
operation brings to the screen the electron intensity
distribution above the Gaussian-image plane, which carries the
electron diffraction information. This method was consistent
with the one using MoO,, though the accuracy of the former
method (+2°) is not as good as the latter (*1°). However, the
uncertainty of 180° involved in the result given by the latter

method could be eliminated by the former method.

*The method was suggested by Dr. Y. Lin, Bell Northern
Research, Ottawa.
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4.4.1 Indexing Diffraction Patterns

The primary method used for indexing diffraction
patterns was Kikuchi maps. Fully-indexed Kikuchi maps for HCP
and BCC crystals were constructed according to the Kikuchi
patterns available in the literature (for example, in Edington
1974). With the aid of these Kikuchi maps, Kikuchi 1lines
observed in a convergent beam diffraction pattern could be
indexed without specifying the particular indices from
families of planes. The conventional method for indexing
diffraction patterns was also used, especially for selected
area diffraction patterns. The measured angles and the length
ratios between diffracting vectors were compared with the
standard patterns (Edington 1974). Since the data for HCP vary
with c/a ratio, a table of the ratios and angles for c/a=1.59
has been computed. Sometimes, the results obtained from the

Kikuchi line technique were also checked by this method.

Specific indices could be obtained by recognizing how
the planes and directions from the ¢ and 8 phase are related
with respect to the particular variant of orientation
relationship between them (Figure 3.8). Due to the two fold
symmetry of [0 O 0 1]./([1 1 0], axis (reﬁer to Figure 3.8),
there are two choices in indexing many planes and directions

including the geometry of the interface. However, once the
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reference for the interface is arbitrarily chosen”, other
indices may be consistently assigned. Hence, it is possible to
determine all indices uniquely with reference to the geometry

of the interface.

An example of indexing a specific set of planes
belonging to {1 -1 0 1}, is given below. There are six sets of
planes in the {1 -1 0 1}, family. The first three indices can
be fixed (except for their signs), from their relationships
with the corresponding planes in the B phase: (1 -1 0 *1), 6 are
nearly parallel to {1 1 0},, while (1 0 -1 #1), and (0 1 -1
+1), are loosely related to {1 1 0}, and {1 0 O}, respectively.
Provided the invariant line is close to [1 0 1], instead of [0
1 -1],, a (1 -1 0 + 1), spot must be indexed as (-1 1 0 1), (~F
(1 0 -1),)) if a set of regular defect lines {invariant line)
is seen to lie nearly in this plane; otherwise they should be

indexed as (1 =1 0 1) (~f(0 1 1),).

4.4.2 Determining the Orientation Relationship

The zone axis of interest to the orientation
relationship measurement is the [0 0 0 1], (~#{1 1 0],
because the centre of [0 0 0 1], zone axis was easier to

orient than the zone axes containing (0 0 0 1), (~7(1 1 0),).

* They were chosen related to the positive sign of the
angle ¢, or the range of 6 (0-180°) in Chapter 3, which were
also arbitrarily determined.
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Both convergent beam diffraction (CBD) patterns and selected
area diffraction (SAD) patterns were used to determine the
orientation relationship. In most cases a small beam spot size
spot (200 nm) was used for CBD patterns. The CBD patterns were
usually taken from both adjacent phases. Sometimes they were
also taken from the boundary itself to determine if two sets
of planes in the two phases were parallel. SAD patterns with
the selected area aperture, 10 gm in diameter, (corresponding
to a size of 0.24 um in the specimen) were mainly used to
determine the angles between two diffracting vectors. However,
caution must be taken in such analysis, because this angle is
usually so small that it could be of the same order of
magnitude as the error that might occur due to the elongation

of the diffraction spots.

4.4.3 Measuring the Geometry of the Interfaces

The habit plane between the o and B phases is the
preferentially oriented interface characterized by a set of
parallel dislocations. The measurement of the habit plane was
usually made on the flat portion of the broad face boundary,
which is oriented edge-on (refer to Figure 5.19, 5.20). The
edge-on habit plane was recorded at various oriehtations so
that the measurements could be made convincing on the basis of

many observations.
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The direction of a regular set of defect lines has

been measured using two methods. One method was applied when
the lines could be oriented edge on. In this case the line
direction was given by the beam direction recorded in the
diffraction pattern. The other method was the trace analysis
method (Edington, 1974). Various projections of the lines over
a large range of orientations were recorded together with the
diffraction patterns. The zone axis of all the planes, in
which the projections of the lines were 1lying, gave the
direction of the lines. The information obtained for the habit
plane helps in determination of the direction of defect line,

since the lines are contained in the habit plane.
4.4.4 Determining the Burgers Vectors

The most widely used method to determine Burgers
vectors is the so called g'b = 0 invisibility criterion. Here
g is the diffracting vector, b the Burgers vector; unless
otherwise specified this nomenclature will be used throughout
this thesis. For complete invisibility of a general
dislocation, the products g'b, g'b,, and g:bxu must all be
zero (Hirsch et al. 1977, Head, et al. 1973). Here b, is the
edge component of the Burgers vector, u is a unit vector in
the direction of the dislocation line. This method was applied
to the interfacial dislocation studiés by many researchers

(for examples, see review by Pond, 1984). Strictly speaking,
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these criteria are only valid in elastically isotropic
materials. According to the work of Fisher and Alfred (1968),
HCP Zr is nearly elastically isotropic at room temperature
(The data for BCC Zr is not available). It is reasonable to
assume that this elastic property of pure Zr could be applied
to the 2r-2.5 wt% Nb alloy, for the a phase contains very
little Nb. Therefore, the g:b = 0 invisibility criteria will
be used in the present work. Because usually only faint
residual contrast may occur when g-b=0, and g'b, and g-bxu are
#»0, the 'g'b=0 effective invisibility' criterion has been used
intensively by researchers. Here precaution will be taken in
analyzing the defect images so as to recognize ‘effective

invisibility’.

The imaging condition was carefully contreolled to
obtain simple diffraction conditions. Diffraction reflections
from both the a and £ phases were used for the contrast study.
The optimum contrast of the defects was usually obtained in a
dark field image, often when the two beam condition was
satisfied in the B phase. Usually, two working conditions were
set up for the contrast study on interfacial structure. In
both conditions, there was at least a two beam or systematic
diffraction condition established in one of the phases. At
some particular orientations, a pair of correlated planes in
both phases could be at the Bragg condition simultaneously.

The contrast effects in such a case would be close to that in
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a single crystal. The result of a g'b analysis is then
relatively reliable. However, this situation was not often
obtained. The other condition was met more frequently. In this
working condition, only one phase, either a or B, was allowed
to be in the two beam or systematic diffraction condition. The
diffraction in the other phase was controlled as far as
possible so that there was no strong reflection excited. Due
to foil bending, normally the deviation from the two beam
condition was not constant for one boundary. The image
condition was adjusted near the two beam condition so that the
structure in the boundary was best shown in dark field. At the
same time the diffraction condition corresponding to the final
adjustment was checked each time to ensure that the one of the
above working conditions was maintained. Only low index ¢
reflections were used in g-b analysis to avoid the confusion
in determining the effective invisibility which may be caused

by the weak image due to large index g reflections.

4.4.5 Obtaining Lattice Parameters

Two important factors 1limiting the accuracy of
electron diffraction measurements of lattice spacing are: the
difficulty in locating the centre of diffraction spots and the
variations in the diffraction constant, AL, namely, in the
high tension supply and the specimen position (Hirsch et al.

1977) . An attempt has been made in this study to diminish the
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errors due to these factors.

Sharp Kikuchi Lines of high index planes were taken,
so that the centre of the diffraction spots could be better
defined. The photographic plates were measured in a Vickers
Projection Microscope; the uncertainty in the readings was
small compared with the data obtained by using a magnifier
(0.01 mm vs. 0.1 mm). In addition, the effect of beam tilt
could be allowed for in the calculation, if the correct camera
length, L, is given. Fortunately, L could be self-calibrated
when a diffraction pattern contains two zone axes of known
intersecting angle. With this information, high accuracy could
be obtained in the ratios of the lattice parameters: c/a of
the HCP lattice and the ratio a,/a, from the BCC and HCP
lattices. This is important in the present work, because these
ratios are the main input in geometrical calculations. The
individual values of the lattice parameters, which require
additional information on the accelerating voltage, are only
used to determine the spacing of dislocations. The relative
uncertainty in measuring the dislocation spacing was about 5%,
while that in the accelerating voltage was about 2% in the TEM
used. Therefore, the total errors associated with in the
absolute value of the lattice parameters are acceptable for
the purpose of this work. An example of obtaining c/a for the

a phase is given in Appendix 1.



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Morphology of a Precipitates and General

Features of the a/8 Boundaries

5.1.1 SEM Study

The structure in all specimens observed using SEM is
dominated by intragranular needle-shaped a precipitates, known
as the Widmanst3tten structure. Generally a small number of
allotricmorphs exists at B grain boundaries. An example of an
@ precipitate structure is shown in the SEM micrographs
(Figure 5.1), where the darker phase is a and the lighter one
is B. Due to the particular heat treatment temperature
(650°C), the volume fraction of a precipitates was high,
resulting in the microstructure consisting of a precipitates
partly surrounded by the B matrix. Figure 5.l1a illustrates a
microstructure developed for 20 minutes at 650°C. A relatively

coarse structure was developed for 49 hours at 650°C * (Figure

* Many observations were made on specimens isothermally
treated for 49 hours at 650°C; unless otherwise specified, the
micrographs shown in this chapter are taken from this
specimen.
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5.1b; note the difference in magnification). After prolonged
isothermal heat treatment the Widmanstdtten structure is still

retained; this suggests a strong anisotropy of interface

energy.

However, since many interfaces in the specimen are ¢
grain boundaries, the effect of the a grain coarsening could
be confused with that of ¢ precipitate ripening. To avoid any
such confusion some specimens were treated by two steps: first
at a rather high temperature (845°C) for two days, to let «
precipitates grow while completely surrounded by B; then at
650°C for 20 minutes, to retain B phase to room temperature by
producing more o precipitates. Figure 5.2 shows large «
precipitates, grown at the higher temperature, together with
smaller «¢ crystals, precipitated at the lower temperature. The
evidence that large a precipitates retain their needle shape
viewed in two dimensions again implies the existence of low
energy interphase boundaries. In Figure 5.2 the broad faces of
both types of a are similarly oriented. This important fact
suggests that the morphology of a freshly precipitated from 8
may be also influenced by the anisotropic interfacial energy.
The assumptions made in section 3.1 were partly due to such

observations.
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5.1.2 TEM Study

In contrast to the two-dimensional information from
SEM, TEM provides a technique to obtain three-dimensicnal
information: interfaces could be viewed by being projected in
various directions. A TEM microstructure of a precipitates is
given in Figure 5.3, where the dark phase is £ and the light
one is e¢. Almost all a precipitates analyzed within a given
specimen were from a single B grain, since the usable region
in a TEM specimen was small compared to the size of B grains.
Because of the limitation of a thin foil, it was impossible to
study the interface continuously around a whole a precipitate,
which was much larger in size than the thickness of the foil.
However, it was still possible to study interphase boundaries
projected in various orientations within a specimen with the
aid of double tilt device, due to the & precipitates being
related to the B grain by many variants of orientation

relationship.

Based on the experimental observations, it could be
postulated that all a precipitates have a similar morphology.
The apparent difference in the shape of various a precipitates
would then be due to sectioning effects. This implies that all
of the interphase boundaries have developed according to a
similar ruie. With this postulation, we were able to deduce

the general features of the morphology of an a precipitate
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from the projections of many « particles taken from various

crystallographic orientations.

It was observed that interfaces of a particular
orientation tended to be much broader than others. An example
is given in Figure 5.4, where the interface apparently
preferred to lie at a certain orientation, indicating the
existence of a habit plane between o and B phases. However, a
large area of perfect habit plane could not exist. The broad
faces of a precipitates could be used for studying the habit
plane, since they are composed of the habit plane
predominantly. An example of the structure in a broad face
boundary is given in Figure 5.5. The interfacial structure is
dominated by a set of regularly-spaced parallel lines. Such a
feature has been observed in broad face boundaries using
various operating reflections, suggesting that the observed
lines are the structural elements of the boundaries, i.e. they
are interfacial dislocations’. Furthermore, this principal
dislocation array was the only line feature that could be seen
consistently from all broad face boundaries studied.
Consequently, this set of dislocations could be considered as
the characteristic feature of the habit plane. The spacing of
the principal dislocations was measured as 9.5~10 nm,

independent of the operating reflection. This spacing does not

_ "As already assumed early in section 3.1, interfacial
dislocations could be associated with steps.
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seem very sensitive to the heat treatment applied.

The appearance of the line features in an interface
was very responsive to the change of the local orientation of
the interface. When an interface slightly deviated from the
ideal habit plane, irregular 1line features developed. In
Figure 5.5, the irregular contrast variation intersecting the
parallel dislocations and the interaction of line features in
the centre part of the boundary are seen corresponding to the

variation of the interface orientation.

When an interface is tilted strongly away from the
habit plane, two typical features are found depending on the
particular orientation of the interface. If the interface is
rotated about the direction of the principal dislocations in
the broad face boundary, the interface will still contain
parallel lines along the rotation axis. Figure 5.6 shows a B
particle surrounded by a phase on three sides. Probably, the
B particle is bordered on each side with a different «a
precipitate, but these o precipitates have almost the same
orientation relationship with the 8 phase. The dislocations
visible within a in Figure 5.6b indicate slight misorientation
between a grains. The boundary surrounding the B consists of
two nearly parallel broad faces and one face at the edge of
the B (the edge face), inclined strongly to both of the broad

faces. In Figure 5.6a, we see similar structures in the two



Figure 5.3 TEM nmicrograph of a
precipitates.

v

TO0 [

Figure 5.4 An interface showing the
existence of the habit plane between
the a and B phases.
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broad face boundaries, including the principal and the
irregular dislocations. The contrast of the structure in the
edge face boundary is different from that in the broad face
boundaries. The structure in the edge face boundary was better
imaged in Figure 5.6b. Though the principal dislocations in
the broad face boundaries were invisible in this case, the
visible irregular line features in the broad face boundaries
serve as a helpful reference to show the directions of the
parallel lines in both the broad and edge face boundaries are
parallel. The parallelism relationship of lines in the two
types of boundaries has been obtained at various orientations
by using different operating reflections. This indicates that
the parallelism holds in three dimensions and that those
linear features in the edge face boundaries are also the
structure elements of the boundaries. Although both the broad
and edge face boundaries contain parallel lines, it was not
difficult to distinguish these two types of faces. Besides the
differences in the orientations of the boundary planes and the
contrasts of the interfacial dislocations, the difference in
projected width provided a fast way to distinguish them. The
projected width in the direction perpendicular to the
dislocations in the broad face boundary has been observed to
be consistently much larger than that in the edge face
boundary, especially in the specimens retaining relatively
larger B particles. However, since these o precipitates were

only partly bounded by B, it was difficult to estimate the
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actual ratio of the lengths in the two directions.

The structure in the edge face boundary is more
complicated than that in the broad face boundary. Besides the
structure shown in Figure 5.6b, lines of very fine spacing
(1.5 ~ 2 nm) were frequently observed in the edge face
boundary when a (0 1 -1 0),, or (1 0 -1 1), operating
reflection is excited. A typical feature of the very-finely-
spaced lines is shown on the right side of Figure 5.7. On one
hand, these lines could be interpreted as moiré fringes,
because the width and the spacing of these lines could be in
agreement with the periodic contrast and the geometry
developed in moiré fringes. ©On the other hand, some
observations indicated that these 1lines seemed to be
associated with the fine steps in the broad face boundary, as
can be seen in the centre part of Figure 5.7. Another example
of the finely spaced line features is given in Figure 5.8
where the edge face boundary is lying nearly parallel to the
foil. The fringes curve at the edge of the boundary (arrowed),

as if each fringe is associated with an interfacial step.

Generally, the edge face boundaries do not lie
perpendicular to the habit plane. This edge face boundary
seemed to have a preferential orientation. This is illustrated
in Figure 5.9 when the electron beam was approximately along

the parallel interfacial dislocations. The large steps, which
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Figure 5.7 Fine steps in a broad face
boundary and finely spaced lines in an
edge face boundary, ¢ = (0 1 -1 0) g
The specimen was treated 2 days at
770°C, followed by 1 hour at 640°cC,

'Figure 5.8 The curvature of fine lines
in anedge face boundary g=(1-10),;
the specimen was treated 20 min at
650°C.



Figure 5.9 An interface viewed along
the parallel interfacial dislocations
(dark field, g = (1 -2 1 2),); the
specimen was treated 20 min at 650°C.
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could represent the edge face boundary, were found to lie
nearly parallel to each other. However, facets of the broad
face boundary still remain flat or nearly flat, with
occasionally small perturbations, which could be explained as
either fine steps or contrast caused by the strain field
associated with the dislocations in the broad face boundary.
The smallest step observed in the broad face boundary was ~1.5

nm high.

Normal to the parallel linear features in either the
broad or the edge face boundaries, there exists another type
of boundary with very complicated dislocation network. The
upper part of the interface shown in Figure 5.10 is a broad
face boundary; while the lower part is a boundary nearly
normal to the characteristic dislocations in the habit plane.
The network appears to consist of tworéets of dislocations. If
one observed closely the network near the parallel
dislocations, one could see a honeycomb structure formed by
three sets of dislocations. Such a honeycomb structure can be
seen better in Figure 5.11. This type of boundary is normally
curved. Actually, a network would be developed wherever the
interface is deviated from the zone axis defined by the
direction of the dislocations in the habit plane, as already

seen in the centre part of Figure 5.5.
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Figure 5.10 A network of dislocations
at a boundary nearly perpendicular to
the principal dislocations in the
broad face boundary, g = (-1 1 2)g;
the specimen was treated 2 days at
770°C, followed by 1 hour at 640°C.

Figure 5.11 A honeycomb structure in
a boundary nearly perpendicular to
the principal dislocations in the
broad face boundary (g = (1 -2 1 0),).
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From the observations of different part of boundaries
projected in various orientations, a sketch of an «
precipitate could be drawn (Figure 5.12). Roughly speaking, an
@ precipitate can be described as a plate, or a lath, defined
by three pairs of faces: the broad faces, which are nearly
parallel to the habit plane; the edge faces, which represent
the boundaries rotated from the habit plane about the
direction of the principal dislocations in the broad face
boundary; and the end faces, which are parts of the boundary
covering the tips of the a plate. The dimensions of an «
precipitate evaluated along the parallel dislocations in the
broad face boundary appears much larger than that normal to
them. The ratio of dimensions was difficult to obtain due to
the impingement of ¢ grains.
The general features of
the interface and their
contrast effects do not
seem to vary corresponding
to the particular heat

treatment applied to the

specimen. However the size

of a precipitates, or the

particles of remains of the Figure 5.12 A sketch of an «
precipitate.

B phase may change due to

different heat treatments.
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Computer calculation further confirmed the observed
morpholegy. A plate surrounded by parallel lines along its
longest axis was plotted by using the measured geometry data
of the plate (the data are given in the later sections). Given
the normal, the thickness of the foil and the direction of
the electron beam, the projection of the boundary of an «
plate could be plotted. The comparisons were made on the
angles between the trace of the boundaries and the line
features, and the relative thicknesses of the broad and edge
faces showed good agreement between the experimental

observations and the computer simulations.

The interfacial dislocations were never seen to
terminate within a boundary, unless they met dislocations from
either the o or B crystal. Figure 5.13 shows that the
dislocations in the B phase continued in the interphase
boundary, as arrowed. In most cases, the dislocations formed
closed loops. However, usually the apparent loops visible by
using a particular operating reflection may consist of
segments of different types of dislocations. An example of
this is illustrated in Figure 5.14. The loops in Figure 5.14a
and b are from the same boundary, but they have different
appearances. In fact, they are the visible portion of the
dislocation network. We have labelled some of the dislocation
segments in Figure 5.14b based on the different contrast

effects of the dislocations. Therefore, the loops in Figure
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5.14a consist of segments of a, b, 4 and probably other(s);
the loops in Figure 5.14b consist of segments of b, c, 4, e

and other(s).

5.2 Crystallographic Studies

5.2.1 The Orientation Relationship Between o and 8

It was observed that all o plates have a similar
orientation relationship with respect to the £ phase,
regardless of the heat treatments. A close-packed plane and a
close-packed direction in each phase were closely related, as
could be described by the Burgers orientation relationship
(Burgers, 1934). A particular wvariant of the Burgers

orientation relationship used in this work is’

(0 001), 7 (11 0),

[11=-20], 7/ [1-11],.

However, when great care was taken in measurements, slight
deviations from the Burgers orientation relationship were

always detected.

These slight deviations have been obtained by various

* In this study, the specific indices assigned to the B8

phase were variable according to a plate of interest, with
respect with the particular variant.
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means. One way is to study the orientation relationship at [0
0 0 1], zone axis. An example is given in Figure 5.15 (The
index may carry 180° uncertainty) to show the deviation of [0
00 1), from [1 1 0],. In Figure 5.15a, the [0 0 0 1], axis in
a plate was oriented to be exactly parallel to the electron
beam. The diffraction pattern (Figure 5.15b), taken from the
# phase adjacent to the e, showed a slight deviation from the
exact [1 1 0], zone axis (When the foil tilting effect was
taken into account, the deviation still existed). It was not
possible to evaluate such a small deviation accurately. The
rotation angles were found to be in the order of 0.5°, and the
rotation axes were between [1 -1 0], and [1 -1 2], (The sign
of the rotation axis was tentatively assigned). In selected
area diffraction pattern taken from the boundary at [0 0 O
1],(~#{1 1 0],) zone axis the diffracting vector g ., g, Was
not exactly parallel to g .4 .z, @S can be seen from Figure
5.15c. The angle between A9 (= Fi300e ~ Jo1 -1 -298) @8N Fa2p
0)a is about 6°, and the angle between g ., ;0 8N4 F¢3 -1 -2 is
estimated to be about 0.2°. This implies that a slight
rotation also exists between (1 1 -2 0), and (1 -1 1),, because
they are perpendicular to (-2 2 0 0), and (1 -1 =2),
respectively. Therefore, the close-packed directions [1 1 =2
0], and [1 -1 1], are not parallel since the plane normal and

directions of these indices are in the same direction. It is

interesting to note that many of the Ags, including g, .y =

o1 -100ar Ft-1-208 ~ Fe2200mar Feoo-28 = Fe-z1100ar 209 Geoq g2y =
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2 0 2 Oar align approximately in one direction, 1i.e.

direction of g.3, .1y This diffraction pattern was taken from
the boundary shown at centre of Figure 5.15d. In this
orientation, the broad face boundary is almost at the edge-on
orientation; while the edge face boundary usually has a large
projected width. The dark region on the upper side of the
labelled B particle in Figure 5.15d is covered by the edge
face boundary. Due to the diffraction condition in near zone
axis, the defects in the edge face boundary are not clearly
visible. Only at the very end of the boundary some parallel
dislocations can be seen, which are enlarged and shown in the
insert of Figure 5.15c. In Figure 5.15c, we see the Ags are
approximately perpendicular to the dislocations. This

interesting observation will be discussed in the next Chapter.

The deviation of orientation relationship from the
Burgers orientation was confirmed by studying the orientation
relationship when the {0 0 0 1] (~/[1 1 0],) was lying normal
to the electron beam, i.e. when (0 0 0 1), (~/(1 1 0),
reflection was contained in diffraction patterns. At some
orientations, it could be seen that the Kikuchi bands related
to (0 00 1), and (1 1 0), were clearly separated in convergent
beam diffraction patterns taken from the interphase
boundaries, as arrowed in Figure 5.16. Usually the angles
separating the two bands were below 1°. This angle cannot

represent the rotation angle between the two sets of planes
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unless the rotation axis is known to be normal to the electron
beam. However, the rotation axis in this case could not be
determined precisely. One method of determining the rotation
axis is to find the orientation where the two Kikuchi bands
intersect with each other. The rotation axis was then defined
by the beam direction. Because the angle between the two bands
was very small and the bands were not sharp enough, the
uncertainty in the measurement was large. Generally, the
observed rotation axis was scattered between [1 -1 0], and [1
-1 2],. An attempt was also made to determine the rotation
angle between planes (1 1 0), and (0 0 O 1), using selected
area diffraction patterns when the two Kikuchi bands intersect
with each other. An example is provided in the insert in
Figure 5.16. A rotation between the diffracting vectors g,
1ya @NA G4 4 gy SN be clearly seen. The angle between the Ag (=
9ooone - J110) @nd Gy g gy is ~42°, and the rotation angle
between gy o ¢ 1) and G 4 gy 1S ~1.2°. Considering the
uncertainty in the measurements the rotation angle would not
exceed 1.5°. Such rotation has also been observed in
diffraction patterns taken at [1 -1 1], (~f[1 1 =2 0]) 2zone
axis. An example is shown in Figure 5.17 (The index may carry
180° uncertainty), where the diffraction pattern was taken at
an a/B boundary in the insert. It was very difficult to detect
the slight rotation between [1 1 -2 0], and [1 -1 1], when they
are nearly parallel to the beam, because the rotation angle

was of the same order of magnitude as the uncertainty in
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Figure 5.15 Diffraction patterns showing a deviation of
the orientation relationship from the exact Burgers
orientation relationship; (a) at the exact [0 0 © 1], zone
axis, (b) a slight deviation from the exact [1 1 0],, (c)
a selected area diffraction pattern and an enlarged part
of the boundary in (d) (insert), (d) the a/B boundary
(centre) from which the diffraction pattern in (c) was
taken.
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Figure 5.16 The separation of Kikuchi
bands between (0 0 0 2),and (11 0)p,
and the deviation of g 0 2)q from
91 1 0y8 (in the lnsert which was

taken from the specimen treated 20 min
at 650°C).

110

GO02

Figure 5.17 A Selected area
diffraction pattern from an «/8
boundary (insert) at the [1 1 -2 0],
(~//[1 -1 1]px) zone aXlS, the specimen
was treated at 20 min at 650°cC.
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defining the centre of the zone axes. In Figure 5.17, angles
between ge.j g 1)a aNd gy 9.1 aNd between gg .y g4 and g g 4y
are clearly seen, though they are very small. This observation
indicated the following parallelism of planes as required by
Potter relationship (1973), i.e.,

(-1101), 7 (10 ~1),, or
(L-101),7 (011), and
[11-20], 7 [1-11],

does not hold.

5.2.2 The Habit Plane of a Precipitates

The measured habit plane normals were scattered in a
region indicated in Figure 5.18. The most striking result was
that the habit plane was found consistently to be normal to
89, (=9 018 ~ F10-11¢) - An example of this observation is
given in Figure 5.1%a. The right part of the boundary on the
upper side of the B particle in Figure 5.1%a contains stepped
flat segments of edge-on interface, suggesting again that the
flat portion of interface is the preferential orientation of
the interface, i.e. the habit plane. The diffraction pattern
in the insert was taken from the boundary. It can be seen that
the A9, (=9 91 ~ F¢10-119a) 1S exactly perpendicular to the
habit plane. Mcoiré fringes due to the double diffraction of g,

o1ys @nd G4 9. 1), are seen in the left part of the boundary in
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Figure 5.18 The measured habit planes and the directions of
the parallel interfacial dislocations plotted in the
superimposed stereographic projections of BCC ([1 1 0]) and

HCP ([0 0 0 1]), where the two lattices are oriented by the
Burgers orientation relationship.
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Figure 5.19a. These fringes are perpendicular to the Ag,, as
predicted by the contrast theory (Hirsch, 1977). The trace of
the habit plane is exactly parallel to the moiré fringes,
which further confirms that Ag, is normal to the habit plane.
This evidence was taken by single exposure in one plate. As a
result, it does not carry the uncertainty in determining the
rotation between the image and the diffraction pattern, and

hence it is very convincing.

Strictly speaking, the index of Ag, is not rational
because there was no diffracting vector parallel to Ag, in the
orientation where it was obtained. Figure 5.19b shows the
convergent beam diffraction pattern taken from the boundary at
the same orientation as the selected area diffraction pattern
inserted in Figure 5.19a. The g, ,,, and the *g,,_,,,, Were
excited simultaneously near the {1 3 -1], (~/[~1 -1 2 3],) zone
axis. Along the beam direction the (1 0 1), planes and the (1
0 -1 1), planes intersect with each other. Due to the
elongation of diffraction spots, some of spots from [1 3 -1],
(~f[-1 -1 2 3],) zone axis other than Ge 0 1y @nd the g, o .44y
are visible in Figure 5.19b. It can be seen that three
diffraction spots: (2 0 2),, (2 0 -2 2)_, and (6 -5 -1 1) are
aligned in one direction as indicated by a 1line. This
direction is determined bY i .5.1 134 ~ 20220 = Fes -5 1 -1a
Therefore, at this orientation, Ag,, (72A9, = 9u 28 - Fe20 -2

2)a) ¢ is approximately parallel to (4 -5 1 -1),. However, a
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small rotation around [-1 0 -1], should be considered for the
true Ag, direction. The rotation angle is ~1.1°, (using a
right-hand rule for the sense of rotation) taking the Bragg
angle of (1 -1 0 0), as the reference. After taking the
rotation into consideration, Ag, «could be indexed
approximately to be (3.0 -3.8 0.8 -0.6), referred to the HCP

structure, and (-3.0 2.2 3.4), referred to the BCC lattice’.

Another important observation was that Ag, (=g gy ~
G0 1 -1 20) Was also normal to the habit plane. The diffraction
pattern in Figure 5.20b was taken from the a/B phase boundary
in Figure 5.20a, when both g, g and G4 - 23, Were excited
simultaneously. In the left part of the Figure 5.20a the broad
face on either the upper or the lower side of the £ is imaged
as a straight line. They could represent the edge-on habit
planes. Moiré fringes formed due to the double diffraction of
92 0 0y aNG g g .1 2y, are seen in the right part of Figure
5.20a, where the interface is deviated from the habit plane.
These moiré fringes, enlarged in the insert in Figure 5.20b,
are again parallel to the trace of habit plane, and
perpendicular to the Ag,. The beam direction was near the zone

axis [2 1 -3 -2],. The habit plane normal, determined by Ag,,

L

The translation of reference lattice from HCP to BCC
was carried out by assuming that the orientation relationship
is defined by the one given by the No. 2 orientation
relationship in Figure 3.7, i.e. for 6 = =2°, The same
orientation relationship will be used in the translations
hereafter.



Figure 5.19 The determination of the
habit plane using Ag,; (a) the edge-on
habit plane normal to Ag (insert), (b)
a convergent beam diffraction pattern
from the boundary in (a).
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Figure 5.20 The determination of the
habit plane using Ag,; (a) a near
edge-on habit plane on the left side,
and the moiré fringes in the boundary
deviated from the habit plane on the
right side , (b) the diffraction
pattern taken from the boundary and
the enlarged moiré fringes (insert).
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was closely parallel to (-8 11 -3 2)_, or (-3.0 4.1 -1.1 0.8),,

corresponding to (3.0 -2.2 -3.0), with respect to the B phase.

5.2.3 The Direction of the Parallel Dislocations in Either

the Broad or the Edge Face Boundaries

The direction of the parallel dislocations was
determined by the methods mentioned in section 4.3.3. An
example of the determination of the dislocation direction in
either the broad or the edge face boundaries is given below.
In Figure 5.2l1a, both the broad face on the left side and edge
face on the upper side of the 1labelled B particle were
oriented edge-on, as they are sharply imaged as lines. As a
result, the electron beam was aligned parallel to the 2zone
axis of the face boundaries, which is the direction of the
parallel dislocations in both faces. The boundaries on other
two sides of the B particle were not very sharp due to foil
bending or other random factors. On the lower side of the B
particle very short dislocation segments could be seen nearly
edge-on, indicating the direction of electron beam was very
close to the direction of the dislocation lines. This further
confirms the parallelism of the electron beam and the
dislocations on the edge-on sides. The dislocation direction,
given by the direction of the electron beam, was determined by
the diffraction pattern in Figure 5.21b. The beam direction

was nearly along the zone axis [10 4 -14 3], corresponding
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approximately to (2.0 =-1.0 2.5],. Compared with the
uncertainty in rotating the interface to the edge-on
orientation, which could be 2° at least, the small deviation
(<1°) of the beam direction from the exact zone axis was

neglected’.

The dislocation direction was very sensitive to the
actual orientation relationship between ¢ and B phases. A
slight rotation of 8 due to the existence of small angle
boundary would result in a significant change in the
dislocation direction. An example of such a case is given in
Figure 5.22, where the dislocations in the habit plane are
rotated about 15° due to the slight change in the B8
orientation. Therefore, besides the uncertainty in the
measurements, it is expected that the direction of the
parallel interfacial dislocations is truly scattered. The
measured dislocation directions have been shown to fall in the

region indicated in Figure 5.13.

*

The normal of the habit plane can also be measured
here, as approximately (3 -4 1 0), contained in [10 4 -14 3],
zone axis.
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5.3 Contrast Study and Burgers Vector Analysis of the

pDefects in the Broad Interfaces

It has been observed that the contrast of the
dislocation structure varied according to the operating
reflections for generating the TEM images. Generally, the
contrast was stronger using the operating reflections from 5
than using those from a. Most times, reflections from {1 1 0},
and {2 0 0}, planes were used. Sometimes, {1 1 2} planes were
used since the dislocation contrast by using them could be

fairly strong.

5.3.1 The Principal Dislocations in the Broad Face Boundaries

The contrast analysis was concentrated on the broad
face boundaries, where the structure of the habit plane could
be most readily studied. By using a particular operating
reflection, reproducible contrast was obtained from the
principal dislocations which are the characteristic feature of
the habit plane. These dislocations could be studied at
different orientations and imaged with many low index
operating refections, since their characteristic contrast may
be used to identify them. Some examples of the contrast study

of this set of dislocations are given below.
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The contrast of the fine structure in a broad face
boundary was studied using six operating reflections (g) to
form dark field images, as indicated in each micrograph in
Figure 5.23. The array of principal dislocations are seen as
the regularly spaced linear feature using one of the following
operating reflections (0 2 0), (~(0 -1 1 2) ), (1 -2 10), and
(L -10), (~(0 1 -10),) (Figure 5.23a,b,c). Several positions
with contrast effect different from that of the principal
dislocations c¢ould be noticed. These irregularly spaced
features are better shown using the operating reflection (0 1
-1)y (~(-1 0 1 1), (Figure 5.23d). The contrast of the
principal dislocations in Figure 5.23d is weaker compared with
those in Figure 5.23a,b,c. The principal dislocations are
totally invisible using the (1 0 -1), (~-#(-1 1 0 1),) and
nearly invisible using the (2 0 0), (~(0 1 -1 2),) operating
reflections, as shown respectively in Figure 5.23e and f. The
irregular defects exhibit sharp contrast when the (1 0 -1),
operating diffraction is used, while they are broad in the

image formed using the (2 0 0), operating diffraction.

Invisibility conditions for the principal dislocations
have been obtained repeatedly using the (1 0 ~-1), and (2 0 0),
operating reflections. This is demonstrated by another example
given in Figure 5.24. The principal dislocations are visible
using the (1 -1 0), and (0 1 -1), operating reflections (Figure

5.24a and b), and are again invisible when using the (1 0 -1},
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Figure 5.24 Dark field images generated by
(1 -1 O)B'

(a) g =
(b) g = (01 -1)s, (€} g= (10 -1)p, (d) g =
(2 0 0)p used to obtain 1nv151b111ty condltions for the
pr1nc1pa1 dislocations.
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and (2 0 0), operating reflections (Figure 5.24c and d).

When the specimen was oriented near the [1 -1 1],
(~f{1 1 -2 0],) 2zone axis, the (1 1 0);, and (0 1 1), operating
reflections could be used. The typical image of interfacial
structure using the (1 1 0), (~#(0 0 0 1),) operating
reflection is shown in Figure 5.25a, where sharp dislocation
lines are regularly arranged around the B particle. In this
boundary two types of linear defects are revealed by using the
(L -1 0 0), operating reflection (Figure b5.25b). Those
dislocations with weaker contrast in Figure 5.25b are the
principal dislocations in the broad face boundary. As usual,
they are invisible using the (1 0 -1), (~/(-1 1 0 1),)
operating reflection (Figure 5.25c). However a sharp image of
this set of dislocations has been obtained when the (0 1 1),

(~#(1 -1 0 1), operating reflection is used (Figure 5.25d).

If the Burgers vectors of dislocations are of pure a
or pure ¢ type as referred to HCP structure, the contract of
the dislocations must be the same or similar using the pair of
operating g vectors (1 -1 0 #1),. However, the distinctly
different contrasts of the principal dislocations have been
obtained by using this pair of (1 -1 0 *1), operating
reflections. This suggests that the Burgers vector associated
with the principal dislocations should not be either pure a or

pure ¢ type of dislocations.
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Assuming that the Burgers vector of the principal
dislocations is a lattice vector of the BCC lattice, it could
be either <1 1 1>, or <1 0 0>, type. The complete invisibility
of the principal dislocations suggests that the possible
Burgers vectors should be among [1 -1 1], {1 1 1], and [0 1
0],- Since the dislocations are clearly visible using the
operating reflections (1 1 0), (Figures 5.5, 5.22 5.25a) and
(0 1 1), (Figure 5.25d), the Burgers vector can not be [1 -1
1],. They are also visible using the operating reflections (0
1 ~1), (Figure 5.6a, 5.23d, 5.24b) and (1 -1 0), (Figures 5.23c
and 5.24a). Hence the Burgers vector can not be [1 1 1],
either. The dislocations are strongly visible using the (0 2
0), operating reflection (Figure 5.23a), indicating the
contrast from {2 0 0} operating reflections is strong enough
for the contrast analysis. The fact that dislocations are
hardly visible using the (2 0 0), operating reflection
(Figures 5.23e and 5.24d) suggests then that the Burgers

vector should be [0 1 0], (~[0 -1 1 1],/2).

S$.3.2 The Irregular Line Features in the Broad Face Boundaries

Usually irregular dislocations in the broad interface
are strongly visible by using the (1 0 -1), operating
reflection, (Figure 5.6b, 5.23e, 5.24c and 5.25c). However,
these irregular dislocations appear to present at local

boundaries which are deviated from the habit plane by a
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particular sense of rotation. As arrowed in Figure 5.25a,
there is a small curvature of the interface on the right side
of the boundary. Those irregular dislocations having broad
images in Figure 5.25b, or those clearly visible in Figure
5.25c, do not seem related to the curvature. Instead, the
dislocations associated with the part of curved boundary tend
to exhibit the same contrast as the principal dislocations in
the broad face boundaries. In Figure 5.26, two small B
particles were taken in the neighbourhood of the B particle in
Figure 5.25. On the right side of the labelled 8 particle, the
upper part of the boundary deviates gradually from the habit
plane in the lower part. The sense of the curvature from the
habit plane is opposite to that in Figure 5.25. When the (1 0
-1), operating reflection was used (Figure 5.26a), the
dislocations in the habit plane are again invisible. As the
boundary deviates from the habit plane many dislocations
become visible. In contrast to Figure 5.26a, the dislocations
are visible in the habit plane and are invisible in the upper
part of the boundary, if the (0 1 1), operating reflection is
used (Figure 5.26b). By carefully comparing the individual
spacing of the irregular dislocations in Figure 5.25b, ¢, with
Figure 5.25d, one could determine that the irregular
dislocations in the broad face boundary are also invisible

when using the (0 1 1), operating reflection.
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Figure 5.25 A contrast study of dislocations in a broad
face boundary recorded near the (1 -1 1], zone axis;

(a) bright field, g = (1 1 O0)p, (b) dark field, g =

(L -1 0 0),, (c) bright field, g = (1 0 -1)p,, (d) bright
field g = (0 1 1)q.
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The boundary of this B particle in Figure 5.26
(labelled) is a good example to show the complexity of the
irregular interfacial dislocations. Although they are all
invisible wusing the (0 1 1), operating reflection, the
dislocations in the boundary on the upper-right side of the 5
particle do not seem simply to belong to one set. In Figure
5.26a, the contrast of the visible dislocations in this part
of boundary is not even. This difference in contrast of the
dislocations is distinct in Figure 5.26c when (1 1 0),
operating diffraction was used though by using the same g in
Figure 5.25a a similar contrast was obtained for both the
principal dislocations and the irregular dislocations. This
observation indicates there likely exist at least three types
of parallel dislocations on the right side of the B particle,
arrowed by i— the principal dislocations, visible in Figure
5.26b and ¢, invisible in Figure 5.26 a; j— the irregular
dislocations, visible in Figure 5.26a and ¢, invisible in
Figure 5.26b; k— irregular dislocations visible in Figure
5.26a, barely visible in Figure 5.26¢, invisible in Figure
5.26b. For the most part, to distinguish one type of irregular

dislocations from another has been very difficult.

Another observation often obtained from the irregular
dislocations was that when the irregular dislocations
intersect with the principal dislocations, they were often

invisible using the (1 1 0), operating reflection (Figure
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5.5), and strongly visible using the (1 0 -1), and (0 1 -1),
(Figure 5.6) (More examples about this will be given in the

following Section).

5.3.3 The Relationship of the Irregular Dislocations in the

Broad Face Boundary and the Dislocations in Other

Interfaces

Usually the irregular dislocations in a broad face
boundary are associated with the dislocations in the
boundaries other than the broad face boundary. Less work has
been done on the dislocations in the interfaces other than the
broad face boundary. Here, only some preliminary results will

be presented.

The irregqular dislocations strongly visible using the
(1 0 -1), operating reflection in the broad face boundary, are
frequently observed to be associated with the regularly-spaced
dislocations in the edge face boundary. An example is given in
Figure 5.27a, where each irreqular dislocation in the broad
face boundary connects to a regularly spaced dislocation line,
which forms a parallel set in the edge face boundary . It is

interesting to note that the principal dislocations in the

* Here the broad face is narrower than the edge face due
to the sectioning reason. In this case the faces were
identified by their orientation and the typical interfacial
structures.
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broad face boundary connect to the curved dislocations in the
edge face boundary in the image formed by using the (1 0 1),
operating reflection (Figure 5.27b). Another interesting
observation concerns the presence of kinks along the irregular
dislocations, as can be seen in Figure 5.27a, suggesting that
there is an energetic tendency for the irregular dislocations
to lie parallel to the principal dislocations. These kinks are

often observed along the irregular dislocations.

One more example of the dislocations in the edge face
boundary is given in Figure 5.28 when the interface lies
nearly parallel to the foil. Figure 5.28a (g = {0 1 1),) shows
the coarsely spaced dislocations in the edge face boundary;
each of them appears to connect to a dislocation from the
broad face boundary, which was now nearly edge-on oriented at
the vertical edges of the B particle. In Figure 5.28b, almost
all features in this interface, including the very closely
spaced linear feature mentioned earlier, are visible when they
were imaged by using the (1 0 1), operation reflection. While
these finely spaced lines are still visible, the coarsely
spaced parallel dislocations can hardly be seen if the (1 -1
0), operating reflection is used (Figure 5.28c). This is the
typical image of the edge face boundary using this operating
reflection, as already shown in Figure 5.7 and 5.8. However,
the edge face boundaries should be studied with caution.

Sometimes, the edge face boundary was observed tc consist of
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Figure 5.27 The c¢orrespondence of
dislocations in a broad face boundary
and an edge face boundary (dark
field); (a) g = (10 -1)g, (b) g =
(1 0 1),.
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more than one facet plane. For example, there are two faces at
the lower edge of the labelled 8 particle in Figure 5.25b. The
traces of the two faces are labelled 'u' and 'v',
respectively. The structure in the facet with trace 'u' is
visible using the (0 1 1), operating reflection; while the

structure in the one with trace 'v' is invisible.

When the spacing of irregular dislocations
intersecting the parallel dislocations becomes smaller, the
interface orientation changes toward that of end face (refer
to Figure 5.12). A structure of this type of interface is
illustrated by a dark field

image of g = [0 2 0], in

Figure 5.29a. Roughly visible using F= (1 0 -1)
visible uing §= (0 1 1)
speaking, on the upper side w——— visible using F'= (11 0)g

of the boundary there is a
network of dislocations
consisting of cells having
three pairs of sides, as

illustrated in Figure 29e.

The lower part of the
interface is an edge face

boundary predominant by the

parallel dislocations Figure 5.29e Schematic diagram
of the network of dislocations
(coarse spacing) . The and the possible Burgers

vectors associated to then.
finely spaced lines in
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Figure 5.29 A network of interfacial defects in an end
face boundary; (a) g = (0 2 0)g, (b) g = (1 1 O)p, (c) g =
(12 -1)5, (d) g = (0 1 1),.
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Figure 5.28b and c could also be observed in both the edge
face and the end face boundaries in Figure 5.29a. The network
in the end face is likely to be described only in three
dimensions, because the interface is not flat. Three different
images of this interface obtained using the (1 1 0),, (1 0 -
1) (0 1 1), are presented in Figure 5.29b, ¢, 4,
respectively. The finely spaced lines visible in Figure 5.29a
are invisible in Figure 5.29b, ¢, d. In each of the three
micrographs only two sets of dislocations are visible in the
end face boundary, as demonstrated in Figure 5.29e. Provided
the Burgers vectors are from the lattice wvectors of BCC
lattice, possible Burgers vectors could be deduced from the
contrast analysis, as given in Figure 5.29e. Although local
consistency c¢an be satisfied in this case, further work is

needed for generalization of the observations.

The observation made in the boundary in Figure 5.29
indicated that curved dislocations often consist of segments
of dislocations of various types. Caution should be always
taken to study the structure in which the parallel
dislocations are intersected by another set of dislocations,
because an interface with such a structure might contain more
set(s) of dislocations than that it does apparently. Another
example of this case is presented in Figure 5.30. In Figure
5.30a the dark curved dislocation lines change direction

smoothly within the boundary; the other set of dislocatinns
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(shorter) has relatively weaker contrast. Figure 5.30b shows
a typical image of the dislocations by using-the (1 1 0),(~#(0
00 2),) operating reflection. In the left-lower corner, the
boundary is close to a habit plane, the defects across the
parallel dislocations are almost invisible. However, the
dislocations visible in the left-lower corner of Figure 5.30b
actually consist of the long segments of the principal
dislocations and short segments of dislocation located at the
intersection points of straight and curved dislocations
visible in Figure 5.30a. The length of the shorter segments of
dislocations increases in the centre of the Figure 5.30b,
which causes a zigzag feature clearly visible. Consequently,
this interface contains three sets of dislocations: one set
invisible, the other two sets visible by using the (1 1 0),

operating reflection.

Though many irregular defects in the broad face
boundaries could be the intrinsic interfacial dislocations
associated with a local deviation of the boundary from the
exact habit plane, some of them could be the extrinsic
dislocations inherited from the 8 crystal. The contrast of the
extrinsic interfacial dislocations was usually different from
that of the dislocations inside the crystal. For example, the
irregular interfacial dislocations are shown to be associated
with the dislocations inside the B crystal in Figure 5.31. In

Figure 5.31a both the lattice dislocations within the 8 phase
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Figure 5.30 The zigzag feature of the
apparently curved defects (dark
field); (a) g = (0 1 -1)p, (b) g =
(L1 0)g.
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Figure 5.31 1Image of extrinsic
interfacial dislocations; (a) g =
(10 =1)p, (b) g = (0 1 -1)g.
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and the irregular interfacial dislocations are visible. While
the dislocations inside the $ phase are invisible in Figure
5.31b, where the irregular interfacial dislocations are still
clearly visible. This suggests that some reactions might have
happened between the strain field of the interphase boundary
and the lattice dislocations, but the details are not yet
clear. Since the curvature was also associated with the
extrinsic interfacial dislocations, as can be seen in Figure
5.31, it is very difficult to distinguish the extrinsic and

the intrinsic irregular interfacial dislocations.



CHAPTER 6

DISCUSS8ION

It has been noted in Chapter 5 that parallel
dislocations are observed consistently at all broad face
boundaries studied. A few irregular defects have been seen as
well due to random effects. This evidence implies that these
dislocations likely lie along a strain free direction, or
along an invariant line. In this Chapter we will discuss the
experimental observations together with the results predicted

by the effective invariant line model presented in Chapter 3.

6.1 The Orientation Relationship Between a and B Phases

As noted in Section 5.2.1, a slight deviation of the
orientation relationship from the Burgers one was always
detected by various ways of measuring an orientation
relationship. The calculation in Chapter 3 indicates that an
effective invariant 1line can be obtained for numerous
orientation relationships close to the Burgers relationship,
but cannot be obtained when the a and B are related by the

exact Burgers orientation relationship. In spite of this,

143
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though there is a small scattering, the observed orientation
relationship appeared to correspond to more closely defined
angular ranges than those suggested by the calculations. This
implies that additional conditions might effect the
orientation relationship. A requirement for highly localized
mismatch in the habit plane could be one of the conditions.
Actually, in any interfacial dislocation model it is implied
that the formation of interfacial dislocations is driven by
the reduction of energy due to the concentration of mismatch
in the interface. By choosing the optimum orientation
relationship proposed in Section 3.8 on the basis of
localization of the mismatches in a habit plane, we may have
much narrowed choices of orientation relationships. For the
specimens treated at 650°C, the predicted range for rotation
angle y around (1 1 0], is between -1.1° ~ 0.3°, and that for
the angle ¢ around an axis in (1 1 0), is between 1° to 1.5°,
as shown in Figure 3.6. Furthermore, the two factors
demonstrated in Figure 3.7 make the orientation relationships
close to the Burgers one. They are for 6 = 6°, ¢ = 1.005°, ¥y
= =0.381° corresponding to the maximum dislocation spacing,
and for 8 = -2°, ¢ = 1.015°, y = ~0.290° corresponding to the

minimum deviation angle from the Burgers orientation.

It was not possible to measure both ¥ and ¢ using the
selected area diffraction patterns at the same time.

Considering the existence of true scattering of orientation
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relationship, we could not obtain a specific orientation
relationship for a specimen. Here we only make some general
comparisons. The measured angle y was usually smaller than ¢,
which agrees with the prediction given in Figure 3.7. The
angle y was observed to be small (for example y = =0.2°),
which was within the range of the predicted optimum
orientation relationships. The sign of y could be determined
because the direction for [0 0 0 1], could be fixed according
to the observed orientation relationship’. The y angle was
found always to have negative values, implying 6>-26°.
However, the measured angle ¢ was <1.2°; relatively smaller
compared with the range for the optimum orientation
relationships, though the large value of ¢ is within the
predicted range. The rotation axis at the (1 1 0), plane, was
measured with larger relative uncertainty. This was found to
correspond to ® = -20 ~ 35° ([1 -1 2], ~ [1 -1 0], ), which is
within the range of the predictions (-40 ~ 60°) for the
optimum orientation relationships and also consistent with the
conjecture from the ¥y measurement. Considering the larger
relative uncertainty carried by the angle measurements, the
agreement between the prediction and the experimental
observations is reasonable. Therefore the observed deviations

of the orientation relationship from the Burgers one were

‘an [0 0 O 1], zone axis is defined when the orientation
relationship was 51m11ar to the one given in Figure 3.3. If a
(L -1 0 0),(~//(-1 1 2),) spot was found by a 60° rotation
clockwise instead of count-clockwlse from the (0 1 -1 0),
(~(1 -1 0),;), then we defined the zone axis as [0 0 O -1]
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quite probably associated with the formation of an effective
invariant line. Some uncertainty also exists in the measured
lattice parameters. However, a small deviation from the exact
Burger orientation was always needed to satisfy the effective
invariant line condition when a certain amount of variation

was given to the lattice parameters.

Dahmen and Westmacott (1981) have noticed that, in the
Cu-Cr system, the invariant 1lines along which coherent
precipitates tend to lie are much more widely scattered than
those found after the precipitates lose coherency. They
believed that only those precipitates which had appropriate
orientations would survive and grow. The criterion for growth
of these precipitates was that the shear component should lie
along a Burgers vector, since process of gaining interfacial
dislocations was regarded to be relevant to a shear
deformation of the parent phase. Perovic and Weatherly (1988)
have also considered the parallel interfacial dislocations
observed in /8 boundaries in a Zr- 2.5 wt%¥ Nb to be
associated with a slip on the {1 -1 0 1} (/{1 0 =-1},) plane.
The present model derives from a purely geometrical point of
view, without dealing with either the formation of the
interfacial dislocations or the mechanism of interface
migration. The present model tends to support the view that
the range of orientation relationships for semicoherent

precipitates would be narrower than that for coherent
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precipitates. Being aware of the controversy existing in the
literature on precipitates with the Widmanst&@ten structure
being transformed either martensitically or by the jumping of
individual atoms across disordered transformation fronts
(Aaronson and Reynolds, 1988), we comment based on our
observations. Let us consider two cases: supposing a
transformation is a martensitic one, the dislocations in the
parent phase should be largely inherited in the daughter
phase; in contrast, if the transformation proceeds by atoms
jumping individually across disordered transformation fronts,
there is no reason for the dislocations from the parent phase
to leave traces without being destroyed at the disordered
transformation fronts. Now, our observation is that the
dislocations from B phase are neither inherited in «, nor
destroyed completely in the interfaces. They leave traces in
the boundaries in the process of reaction with the strain
field of the boundaries (Figure 5.13, 5.31). This implies the
existence of certain degree of coordinated movement of atoms

during the phase transformations.

6.2 The General Features of a/8 Boundaries and

the Morphology of a Precipitates

According to the first property of invariant lines
(Section 3.6), if a boundary contains an invariant line, the

interfacial dislocations should lie along it. The fact that
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parallel lines observed at both the broad and the edge faces
lie in one direction agrees with this property, supposing the
lines are in fact along the invariant line. Comparing the
measured line direction (Figure 5.18) with that from the
calculations (Figure 5.12), we have noted that the measured
data tend to agree with the prediction for small 6 (= -10 ~
5°). This result again suggests that the possible orientation
relationships are close to the Burgers one, because the
deviation angles p are small corresponding to 6 = -10 ~ 5¢
(refer to Figure 3.6). The line direction given by the
particular example is [2.0 -1.0 2.5],, in reasonable accord
with the prediction [2 =-1.0247 2.6919], for 6=-2°. This is

strong evidence that the parallel dislocations lie along an

invariant line.

Now we will interpret the general interfacial
structure according to the invariant line model.
Approximately, the broad face and the edge face of a «
precipitate lie in the zone axis of the invariant line, while
the end face is normal to the invariant line. According to the
second property of invariant lines, all O-cell walls, or the
planes of the poorest mismatching, should be in the zone axis
of the invariant line. Any boundary contained in the zone axis
of the invariant line, will intersect the walls at parallel
lines along the invariant 1line; otherwise the 1lines of

intersection form a network. This is in agreement with the
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schematic diagram in Figure 5.12 drawn on the basis of the
observation. When the interface is interpreted in the frame of
invariant line, there exists only a one-dimensional O-lattice
even in the case of the optimum orientation relationship.
Therefore, there are no periodic cell walls in two dimensions
available from the model. Hence, the relaxation of the atoms
in a boundary, intersected by many walls representing the
poorest mismatches of different planes or directions, could be
very complicated, especially when the boundary is nearly
perpendicular to the invariant line. Consequently, the habit
plane, which contains both the invariant line and the one-
dimensional O-lattice is better understood (to be discussed in
a later section). Though an example of Burgers vectors
analysis has been given to the network structure at an end
face (Figure 5.29), more work needs to be done before we can
fully understand the structure of the closed boundary between

@ and B.

The morphology of plate shaped a precipitates could be
understood in terms of an existence of the invariant line. For
the specimens treated for a long time (2 days), the interfaces
are likely to be closer to equilibrium. The morphology of «
precipitates may be determined largely by minimizing the total
interfacial energy. The part of a boundary having especially
low energy will, therefore, have the largest area, compared to

other parts. This will causes a precipitates to have the plate
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shape, with the habit plane parallel to the broadest face. The
other face containing the invariant line is likely to have
lower energy than the one normal to the invariant line, which
will cover the smallest area of the interface. Consequently,
the longest axis is parallel to the invariant line. In other
words, providing the data of the interfacial energies were
known, one would be able to deduce the shape of a plate for

the o precipitate according to the Wulff construction.

For specimens treated within short times (15 ~ 20
min), the Widmanstétten structure formed could be understood
with both dynamic and kinetic considerations. During the
transformation of B to «, the increase of the interfacial
energy and the local strain energy per mole is expected to be
smaller in the direction along the invariant line than in any
other directions. Therefore, the pure driving force for a to
grow, (or the probability of atoms jumping from £ to a) may be
the highest in the direction of the invariant line compared to
that in other directions. As a result, a might grow much
faster along the direction of the invariant line. Aaronson
(1962) noted that the rate of migration of a semicoherent
interphase boundary should be far 1less than that of a
disordered boundary. The interfacial structure observed in the
end face boundaries suggests that the boundary about the tip
of a precipitate plate (at least for «/f boundaries in Zr-Nb

alloy) should not be completely disordered. However, the
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degree of average mismatch could higher in the end face than
that in any interfaces containing the invariant line.
Following Aaronson's idea (1962), the mobility of interfaces
of different structure might vary depending on the degree of
atomic match achieved at the interfaces. As a result, the end
face, the interface of the worst atomic matching, could be the
most mobile interface. Hence the relative rates of migration
of end face boundary could be the highest. In addition, once
the tip of a plate is formed, the concentration gradient near
the tip (end face) of a precipitate is expected to be steeper
than those regions adjacent to other parts of interface. This
may cause a precipitate to grow more rapidly along the
invariant line. Consequently, all of the above arguments are
in favour of producing a Widmastdtten precipitate structure,
with the longest axis of each precipitate lying along an

invariant line.

It has been indicated in Section 5.1.2 that the edge
face tends to have a preferential (facet) orientation.
Moreover, the edge face consisting of two differently oriented
facets were occasionally observed. Each facet is characterized
by a particular structure, though both structures may be
parallel linear features. Examples can be found in Figure
5.26k. As the observed boundaries appear to surround B instead
of a particles, an enclosed interface could be related to

several a precipitates. Since the edge face seems to present
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preferential orientations, it is probable that other cusps of
interfacial energy exist besides the one corresponding to the
habit plane. However, the reason for preferential interfaces

other than the habit plane is not clear at present.
6.3 The Orientation of the Habit Plane and Ags

Based on the O-lattice theory (Bollmann, 1970), we
have determined the plane of the lowest lattice mismatch. This
plane was found to be the one with the smallest plane spacing
among the O-lattice planes related to the low index planes in
the reference lattice. By definition, the habit plane is
determined to be such a plane. The calculation in Chapter 3
indicated that the habit plane is determined by Ag, (= 9 g1y

91 0 -1 13a) - It has been shown in Section 5.2.2 that the
observed habit plane was indeed normal to A4g,, recorded
directly in the diffraction pattern (Figure 5.19). 1In
addition, the measured direction of Ag, is in reasonable
agreement with one predicted by the model (For example (3 -2.2

-3.4), vs. (3 -2.1626 -3.0521),).

According to the fifth property of invariant lines and
proposal given in Chapter 3 the following Ag's should be also
parallel to Ag,, i.e. normal to the habit plane. They are: Ag;
(= Fe0-1m ~ e-110n0) s 497 (= Fao0m = Fo1-1220) » 2Nd gy (= gy

028 = J2 -1 -1 0ya) + TO determine Ag correctly, it should be
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measured where the two gs intersect each other. g, 4.4 and g,
10 15¢ are nearly parallel, and so are the g¢ g3, and 9 -1 2"
It is difficult to define precisely the orientation at which
these nearly parallel related planes truly cross each other.
Therefore, only Ag, has been measured, and the result was
given in Figure 5.20. Again the habit plane was shown to be
perpendicular to Ag,, and the plane normal, (3.0 -2.2 -3.0),,
agrees very well with the predicted habit plane, (3 -2.1626 -
3.0521),, with respect to the particular orientation
relationship, i.e. for 6 = -2°. The fact that the habit plane
is determined by both Ag, and Ag; exhibits the property of
invariant 1lines, and supports the hypothesis of optimum

orientation relationship.

There are other ways of predicting habit planes. One
is to find the least deformed plane, i.e. the plane with the
minimum net content of Burgers vector (Knowles and Smith,
1982). Another is to obtain an unrotated plane determined by
the two eigenvectors corresponding to the eigenvalues which
are closer to 1.0 (Ryder and Pitsch, 1966, Luo and Weatherly

1988).

In this work, the habit plane defined by the first

method is determined as follows'. Recalling equation (3.5),

*Here, the idea suggested by Knowles and Smith (1982) is
followed, but a different method is used.
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we assume b, to be any vector variable of unit length; the
locus of points b, will define a sphere. The transformation in
(3.5) will then change the sphere into an ellipsoid. An x°
defines a distance in a direction, across which the
deformation is unity. Therefore, the plane of the least
deformation is the plane of the largest section area, which is
determined by the two longer axes of the ellipsoid. The
direction and the length of these axes are given by the

eigenvectors and eigenvalues of the matrix VT defined by:
ve = (77 * (THT)* (6.1)
The calculated result for the same orientation relationship

given as the example in Section (3.8), i.e. for 8 = -2°, is

listed in Table 1 (referred to BCC):

Table 1. Data for the least deformed plane

eigenvalues eigenvectors

J. :
2.848 % 10 (2.0 =1.0247 2.6919}
5.1958 [2.0 ~1.7675 -2.1588]

“ 31.1327 [2.0 2.7837 =0.4262)
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The least deformed plane, which is defined by the first and
the third eigenvectors, is (3.0 -2.6512 -3.2382),. For the
same orientation relationship the eigenvalues and eigenvectors
of the transformation matrix, A, are given in Table 2

(referred to BCC):

Table 2. Data for the unrotated plane

eigenvalues é;genvectors ]

1 - 9.2 x 108 [2.0 -1.0247 2.6919]
1.0055 [2.0 -0.9140 2.4788]
1.0463 (2.0 -2.4754 2.4795]

The unrotated plane determined by the first two eigenvectors

is (0.0334 2 0.7862),.

The first eigenvectors in Table 1 and 2 are the same;
both indicate an effective invariant line, which is also the
same as provided previously in Section 3.8. The first
eigenvalue in Table 1 gives a distance, over which the
deformation along the effective invariant line is a unit. Take
an atomic spacing (for example ~3.2 A) as a unit (roughly
equivalent to one dislocation). The distance, or the
dislocation spacing for this case is many orders of magnitude

higher than the atomic spacing. This indicates effective
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invariance, in the scale of our concern, lying along the
direction defined by the first eigenvector. The first
eigenvalue in Table 2 reveals the effective invariance from
another respect. This value is so close to one, that a line,
within the length of precipitates, along the first eigenvector

is effectively invariant after the transformation.

Let us compare the prediction from the present
calculation with the above result. It is found that the habit
planes predicted by the present model and the above two models
contain a common direction, i.e. the effective invariant line.
For the case of O = -2, the angle between the habit plane
determined by Ag, and the least deformed plane is 4.4°, while
the angle between the plane determined by Ag, and the
unrotated plane is 48.5°, Since the observed habit plane
agrees with the present prediction, it is unlikely that the
habit plane in this alloy is the unrotated plane, which is
strongly tilted away from the present prediction. However, the
least deformed plane is fairly close to the present
prediction. Had we only obtained the data of the habit plane
normal, it would have been difficult to decide which factors
influence more the formation of the habit plane due to the
experimental uncertainty. It has been noted that Ag, is
consistently observed normal to the habit plane, whose trace
is parallel to the moiré fringes perpendicular to Ag,. In this

case, if the habit plane were the least deformed plane, the



157
angle (for example 4.4°) between the moiré fringes and the
trace of the habit plane should be detectable. The comparison
tells us that though the plane of minimum mismatch given by
Ag, is close to the least deformed plane, the observations
tend to agree with the former. This evidence further supports
the idea that the low energy state of a semicoherent boundary

is influenced by the discreet nature of the crystals.

It is very interesting to note that the habit plane
observed in this investigation is fairly close to (within 10°
of) the habit plane for martensite, in pure Zr and some Zr-Nb
alloys which also has the Burgers orientation with respect to
the B phase (Gaunt and Christian, 1959, Banerjee, Krishnan,
1971). From trace analysis of the surface relief, Gaunt and
Christian (1959) found the habit plane of martensite in pure
zirconium to be near {3 3 4},. The habit plane of martensite
was found to be near (4 3 -3), for the particular orientation
relationship under study, and, corresponding to this
orientation relationship, the habit plane observed in the
present investigation (refer to section 5.2.2 (-3.0 2.2 3.4),)
will be (4 2.6 -3.6),. The {3 3 4}, habit plane of martensite
was also observed using TEM in a number of 2Zr-Nb alloys
(Banerjee and Krishnan, 1971). Both the lath boundary of the
massive martensite and the average interface of the twinned
martensite were reported to be of the {3 3 4}, type. For the

orientation relationship used, Banerjee, Krishnan (1971) noted
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that individual twin interfaces were found to lie along (4 -4
3), (the longer portion) and (-4 3 3), (the shorter portion)
planes, with the average habit plane of (-4 3 -3),.
Corresponding to this orientation relationship, the habit
plane observed in the present study (for example (-3.0 2.2
3.4),) will be (4 -3.5 2.6),. Therefore, the a precipitates
tend to have the habit plane similar to that of martensite.
Such a habit plane, as could be predicted by the purely
geometrical model proposed in Chapter 3, may also be
interpreted in terms og the phenomenological theory of the
martensitic transformations. If this is not a coincidence, a
possible explanation could be either that the interface
minimum mismatch is favoured by martensite or that there are
some aspects common to both the @ precipitation and

martensitic transformations.

We have seen that the message carried by Ags is very
useful for studying the habit plane. The geometry of
mismatches of planes of crystals, or the geometry of planes of
the O-lattice recorded directly in diffraction patterns
provides a possible way to measure the O-lattice planes
directly. However, Ags other than those related to (1 0 1},
(2 0 0),, and (1 1 C), planes have attracted less attention.
Here only two more points will be made about our Ag study.
First, it was interesting to note that almost all Ags appear

parallel to each other in the selected area diffraction
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pattern in Figure 5.15c¢c. They are approximately normal to the
defects in the boundary, while in Figure 5.17 Ags are in
different directions. It has been indicated by the second
property of invariant line that all Ags are in the plane with
the invariant line as its normal. Assuming the invariant line
is [-2 -1.0247 2.2919],, as predicted for 6 = -2°, the angle
between the invariant line and [1 1 0], and {1 -1 1], are about
79° and 20°, respectively. When the beam is alcng [1 1 0],
the plane normal to the invariant line is oriented steeply
with respect to the screen. Then the projections of any
directions in the plane should lie nearly parallel and normal
to the invariant line, in the direction of the parallel
interfacial dislocations. That is what we have seen in Figure
5.15c. If the beam is in the ([1 -1 1], direction, the
invariant line is close to the beam direction (that is why the
projections of the dislocations are very short at this
orientation). The plane determined by the invariant line is
inclined to the screen at a small angle. Therefore the
projections of Ags in the plane lie in different direction.
Although Ags observed at both 2one axes are only an
approximation, the tendency that the observations agree with
the invariant line property provides further support for the

effective invariant line model.



160

Another point we wish to mention here is that the
correspondences between directions in real space do not
necessarily hold in reciprocal space. Caution should be taken
in analysis dealing with correlated reciprocal lattice
vectors. For example, in real space [1 -1 1]/2, is related to
(1 1 -2 0}/3, as defined in Figure 3.3. Based on the same
orientation relationship, one could obtain the relationship in
reciprocal space: (2 -2 2), is correlated with (2 1 -3 0)_, and
(2 2 -4 0), is correlated with (3 -3 2), in reciprocal space.
If we extend the diffraction spots in Figure 5.15c, we would
find that only the Ag between the above correlated planes can
be nearly parallel to other Ags. In spite of the fact that (2
-2 2), is nearly parallel to (1 1 -2 0),, they are not the
correlated planes defined by the transformation. This
phenomenon is not simply due to the index system of HCP. As we
know, any direction in (0 0 0 1) plane is parallel to a plane
normal of the same index (in four indices system). It has been
shown in Chapter 3 that the cell walls in the O-lattice could
be expressed as a transformation of the faces of the Wigner-
Seitz cell. One of the face of the Wigner-Seitz cell is
determined by (1 -1 1]/2;. Although the [1 -1 1]/2;, and [1 1 -
2 0]/3, are closely related (as shown in Figure 3.3), the
locations of cell walls in O-lattice corresponding to the
displacements of [1 -1 1]/2, and (1 1 -2 0]/3, are different.
The example shown above clearly indicates that the cell walls

of O-lattice will be differently defined if the reference
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lattice is changed as already noted by Bollmann (1970), though
in practice the difference caused by the two definitions might

possibly be physically insignificant.

6.4 The Interfacial structures

6.4.1 The Broad Face Boundaries

It has been indicated in Chapter 3 that, when the «
and B have an optimum orientation relationship, the mismatches
in the habit plane could be completely accommodated by a
single set of dislocations with the Burgers vector [0 1 0],.
We have noted that only one set of principal dislocations has
been observed consistently at the broad face boundaries. This
array of dislocations was then considered as the
characteristic feature of the habit plane because the broad
face boundary is composed largely of the habit plane. The
contrast study suggested the Burgers vector of this set of
dislocations to be [0 1 0],, which is in accord with the
prediction. In addition, the spacing of the dislocations is
9.5~10 nm. Comparing this to the calculated results in Figure
3.7, we could see that the measurement agrees very well with
the calculations for 6=-20~30°. This is consistent with the
measurements of orientation relationship and the conjecture

made from the invariant line measurements.
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An O-lattice calculation takes the mismatches in
three-dimensions into account. During the formation of the
interface, the constraint normal to a boundary is likely to be
removed. However, it was shown in the above comparison that
both the observed contrast and the spacing of the principal
dislocations still support the prediction from the three-
dimensional calculation. The Burgers vector, [0 1 0],
referring to BCC is not one of the smallest lattice
translation vectors <1 1 1>. Since the <0 1 0> type of
dislocations have been observed frequently in BCC metals
(Amelinckx, 1979), it is possible that interfacial
dislocations have a Burgers vector of [0 1 0]3,. The
counterpart of [0 1 0], in the HCP crystal is [0 -1 1 1]./2,
which is not a basic lattice translation vector. However, due
to the structure of HCP lattice, there is an atom located at
either [0 -2 2 3],/6 or [0 -4 4 3],/6 point, which is very
close to [0 -1 11 ],/2 (with difference of [0 -1 1 0],/6). For
this reason, there would not be a problem regarding the atomic
correspondence, since a local shift of [0 -1 1 0)/6, is likely
to occur in a boundary. An [0 -1 1 1] /2 dislocation would be
defined as a partial dislocation with respect to the HCP
crystal, because it must be associated with stacking fault if
it is within the crystal. In HCP/BCC interface, we may assume
the lattice in HCP to be conserved along the boundary. The

displacement of [0 1 0], would not change the periodicity of
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BCC structure. Hence, the periodicity of interfacial structure

could be conserved.

It is difficult to interpret the details of the
contrast behaviour of the dislocations, without knowledge of
the relaxation of atoms near the boundary. It was interesting
to note a correspondence between the contrast of the principal
dislocations in the broad face boundaries and the component of
the mismatches of the planes used for operating reflection in
the habit plane. It has been observed that the contrast of the
principal dislocations is usually stronger using (1 1 0), and
(0 1 1), than using (1 1 0), and (0 1 -1), (For example, see
Figure 5.24a and b, 5.25a and 4), though the values of the g-b
are the same for all four gs: (1 1 0},, (1 =1 0),, (0 1 1),
and (0 1 -1),. Figure 3.5b illustrates the "moiré planes"
related to some low index planes intersecting the habit plane
for 8 = -2°. We see the angles relating to the (1 1 0),, (01
1), planes are considerably larger than those relating to (-1
1 0),, (0 1 -1), planes. As noted in Chapter 3, a set of "moiré
planes" represents the poorest matching regions of two sets of
planes. The intersecticn lines in a boundary would represent
the regions where the correlated planes deformed most
strongly. With the optimum orientation relationship, all
"moiré planes" related to low index BCC planes either
intersect the habit plane at the same lines as the [0 1 0],

dislocations or do not intersect it at all. Presumably, a
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relaxation could exist normal to the habit plane, the degree
of the local deformation of a pair of correlated planes in the
habit plane would be influenced by the inclination of the
"moiré planes" to the interface. For this reason, the contrast
of the dislocations might be related to the inclination of the
"moiré planes" (associated with the planes responsible for the
operating reflection) to the habit plane. In Figure 3.5b we
also see that the "moiré planes" relating to the (1 0 -1), and
(1 0 1), are parallel to the habit plane. Ideally, the
principal dislocations should be invisible using either the (1
0 ~1), or (1 0 1), operating reflections. Besides, for these
two gs the condition of g:b = 0 is also achieved. Hence the
dislocations should be invisible or nearly invisible according
to the g'b = 0 criterion. However, this is true only when (1
0 =-1), operating reflection is used (Figure 5.6b, 5.23e,
5.24c¢, 5.25¢c, 5.26a, 5.27a, 5.31a). In Figure 5.27b the
principal dislocations are visible using the (1 0 1),
operating reflection. This contrast was reproducible, though
generally it was not strong. In spite of this, the contrast
using all other {1 1 0}, is in reasonable agreement with the
predicted [0 1 0], Burgers vector. The reason for the
disagreement is not clear. It is possibly due to the details

of the relaxation of the atoms near the boundary.

The irregular features at the broad face boundary are

not well understood. Though many observations made on the
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irregular defects are reproducible, the contrast analysis of
the irregqular defects is far from complete. This is partly due
to the following difficulties. Firstly, the irregular defects
in the habit plane are recognized generally by their
configuration, i.e. the irregular spacing and the random
direction. Usually when they change direction the Burgers
vectors do not remain the same along the lines. The non-
parallel defects were seen to consist of segments of different
types of defects, though the zigzag feature in Figure 5.30
could not be always detected. It is not easy to identify
correctly either the segments of different types of
dislocations from smoothly curved defect lines, or the
irregularly spaced parallel defects from the principal
dislocations when the contrast of former is similar to or
weaker than the latter. Secondly, there could exist more than
one type of the parallel irregular defects, as in the example
given in Figure 5.26. By studying carefully and comparing
Figure 5.24a and b, one can also see two types of contrasts
associated with the irregular lines in the interface in Figure
5.24a: One type is darker, and the other is lighter than the
principal dislocations. It could be misleading to identify the
same type of irregular defects at different boundary simply by
their irregular feature though we have tried to generalize the
irregular defects in this way. In addition, some irregular
defects are extrinsic dislocations (Figure 5.13 and 5.31).

Little is known about the reactions between a boundary with
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the dislocations from the B phase. Because the boundaries in
TEM specimens are usually a small section of enclosed
interface it is impossible to know if +the irregular
dislocations of interest are connected to the dislocations
within the B phase somewhere separated from the present
specimen. Thirdly, the contrast study of the irregular defects
could be influenced by the steps usually associated with them.
An example is in Figure 5.24a, where the trace of the boundary
is perturbed slightly corresponding to the irregular defects
as arrowed, showing steps are possibly associated with the
arrowed defects. Finally, the irregular defects sometimes have
very wide images, as can be seen in Figure 5.23 4 and f,
5.25b. The images of these defects would have the width close
to the dislocation spacing, especially when they are parallel
to the array of principal dislocations. It is possible that
this contrast forms due to the effect other than a strain
field, though more details remain to be determined. This
effect would certainly influence a Burgers vector analysis

based on their strain contrast.

6.4.2 The Edge Face boundaries

Generally two types of lines are observed at an edge
face boundary. One type of lines is the coarsely spaced
dislocations, whose spacing is close to that of the principal

dislocations at the broad face boundary (Figure 5.27). Another
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type has very fine spacing; the contrast of these lines is
very similar to that of moiré fringes (Figure 5.28). Let us
first assume that the Burgers vectors associated with those
coarse defects are the basic lattice vectors of BCC, and the
fine spaced lines are simply due to moiré effect. Then it will
be difficult to interpret why the broad face boundary is so
much more favoured by nature now that the densities of the
dislocations in both broad and edge face boundaries are
similar. An alternative explanation is that those finely
spaced lines are the structure elements of the interface. The
Burgers vector associated with them could be [1 =1 1],
because they are invisible by using three gs in the [1 -1 1],
zone axis (Figure 5.29). Each finely spaced line could also
represent the unit layer of the habit plane. The minimum
spacing of these lines (-1.5 nm) agrees with the smallest
spacing of the "moiré planes" to which the habit plane is
parallel. The misfit patterns in the interface will be
conserved if the interfacial steps have the height egual to an
integral number of spacings. In such a way, an interface could
always lie along the O-lattice planes of the best lattice
matching. The smallest step observed was indeed about 1.5 nm,
in agreement with the above idea. However, in spite of these
interesting conjectures, the structure study of the edge face

boundary has yet to be completed.



168

6.5 A Comparison Between This Work and the Btudies

in Other HCP/BCC Boundaries

The studies of interfacial structures of HCP/BCC (a/B)
boundaries have been carried out mainly in Zr-Nb and Ti-Cr
alloys. In spite of the difference in the lattice parameters,
the orientation relationships in both systems are close, i.e.
near the Burgers orientation relationship (Perovic and
Weatherly, 1988, and Furuhara, 1989). In addition, invariant
lines are claimed to exist in both systems, although the
models for producing the invariant lines are different. In
spite of differences in details and in the points of view
about the observations, the experimental result in this work
is in agreement with their observations in the above two

aspects.

It is expected that due to the heat treatment
differences the interfacial structure should change, although,
based on the present observations, the interfacial structures
are essentially similar in specimens of various heat
treatments. In a Zr-2.5 wt% Nb alloy treated by furnace
cooling from B or a + B field, Perovic and Weatherly observed
a/f boundaries containing arrays of dislocations. In the flat
facet plane the structure is dominated by a single straight
array of dislocations. In addition to this array of principal

dislocations, one or more other arrays of dislocations were
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observed. The density and the configuration of the additional
dislocations vary in a systematic way as the orientation of
the boundary changes locally. The general interfacial
structure observed in this study tends to agree with the
experimental result of Perovic and Weatherly (1988) . Some more
specific comparisons are made in Table 3, where the Burgers
vectors and the dislocation (disl.) spacings are given with
respect to the principal dislocations at the broad face
boundaries. To make a better comparison, we have transformed
some geometry data from their work into those with respect to

the particular orientation relationship variant used in this

work.
Table 3. A comparison between the present work
and the work by Perovic and Weatherly
Refer to Habit Invariant Burgers Spacing
BCC plane line vector of disl.
Present (3 -2.2 3) [2 -1.0 2.5] [0 1 0] 10 nm
Perovic flat facet (2 -1 2] [1 3 1]/2 6 nm
[Weatherly plane
~{1 1 1}
|difference ge 6° 25° 4 nm

From Table 3, it can be seen that both the
orientations of the habit planes and the invariant lines in

the present work are in approximately agreement with their
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results. The Burgers vector analyzed by Perovic and Weatherly
was based on the dislocation contrast analysis by using mainly
operating reflections from the a phase (b = [1 -2 1 3]/3,(~7[1
3 11/2;). Actually, the contrast observed in this work could
be also interpreted reasonably well if the Burgers vector was
assumed to be [1 3 1]/,. The main disagreement is the
dislocation spacing. It has been pointed that, according to
the calculation in Chapter 3, the misfit in the habit plane
could be completely accommodated by a single set of [0 1 0],
of ~10 nm in spacing. On the other hand, if the Burgers vector
is (1 3 11/2,, there would be an additional set of
dislocations needed to take up the extra mismatch in the habit
plane. Though this additional set of dislocations has not been
observed, we have tried to calculate the spacing of the set of
{1 3 11/2, dislocations for the same orientation relationship
often taken as an example (6 = -2°). The result showed that
the spacing of the [1 3 1]/2, dislocations is 5.9 nm, which is
consistent with ©Perovic and Weatherly's measurement.
Presumably, a displacement of <1 3 1>/2, type could be a
lattice dislocation Burgers vector, since some of <1 3 1>/2,
are correlated to directions <1 -2 1 3>/3, in a« phase. Now, a
question will be raised about the Burgers vector not being the
[13 =1]/2,(~#[-1 -1 2 3]/3_}, lying not only approximately in
the habit plane, but alsc being nearly normal to the invariant
line. In such a case the dislocations may carry the misfit in

the habit plane effectively. The contrast analysis does not
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appear to support this case. However, due to the rather large
uncertainty inherent in the Burgers vectors analysis, the
result could be spread over a wide range of directions. In the
present study, the dislocations in the habit planes were
observed to show a very strong contrast when the (0 0 0 2),
cperating reflection was used. The same results were reported
in both 2Zr-Nb and Ti-Cr alloys (Perovic and Weatherly, 1988,
and Furuhara, 1989), while different Burgers vectors were
deduced: [0 1 0],— present work; [1 3 11/2,(~f[1 -2 1
3)/3,)—Perovic and Weatherly's work; ([1 1 0}/2,(/(0 O O

1]/2)—Furuhara's work in a Ti-Cr alloy.

We have also attempted to apply the present model to
the boundaries between 'normal a' precipitates and B in a Ti-
6.62 at%¥ Cr alloy by using the data provided by Furuhara
(1989). Among the many optimum orientation relationships
predicted, the one related to the largest dislocation spacing
is chosen (06 = 10°, ¢ = 0.805°, y = =0.4781.°). The
interfacial structure corresponding to this orientation
relationship is given in Table 4 along with Furuhara's
calculation for comparison. The results are given for the
particular variant of orientation relationship applied in
Furuhara's work. It has been shown by Furuhara (1989) that the
observed habit plane and invariant line were scattered around
those of his prediction. Therefore, the present predictions

are also consistent with his observations, since the
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differences between the predictions of the habit plane and the

invariant line are small.

Table 4. A comparison of the predictions of the
present model and Furuhara's model

Refer to Habit Invariant Burgers Spacing
BCC plane line vector of disl.
Present (-13 9.6 12) {5 2.7 3.2] [0 1 0] 11.8 nm

Furuhara (-13 11 11) [3 3 3] [0 -1 1]/2 11.15 nm

idifference 50 3o 45¢° 0.65 nm

Initially, Furuhara's model predicted that the dislocation had
[0 -1 1], (#[0 0 0 1], Burgers vector with spacing of 22.3 nm.
The observed dislocation spacing was 12 nm in his work. Thus
the actual Burger vector was deduced to be {0 -1 1},/2. The
dislocation spacing predicted by the present model is
consistent with Furuhara's measurement. The Burgers vector
analysis based on the contrast study is subject to large
uncertainty, and may need further testing. Nevertheless, apart
from the Burgers vector, the present prediction and Furuhara's
observations are in very good agreement. Consequently, the
structure at the broad HCP/BCC interface in the Ti-Cr alloy
could be also interpreted in the light of the minimum lattice

mismatch principle based on the O-lattice theory.
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O-lattice analyses have been conducted by Menon and
Aaronson (1981) in the same Ti-Cr alloy used by Furuhara. As
indicated by Furuhara (1989) the agreement between the O-
lattice calculation and the observations was not particularly
good. The O-lattice calculations in the present work and the
one in Menon and Aarcnson's (MA) work are different mainly in
two aspects: firstly, MA used the simplified O-lattice cells.
We have introduced a method for calculating the O-lattice
cells without simplificatlon. The difference in these two
types of cells has been discussed in detail in Chapter 3.
Secondly, MA made the O-lattice in an exact Burgers
orientation relationship. We have allowed for a small
tolerance in the orientation relationship, which could be due
to either the uncertainty in measurements or the presence of
true scattering, so that an effective invariant line could be
obtained. As a result, in MA's theoretical prediction the
angles between dislocation lines (O-lattice vectors) could be
as small as 0.6°, When the angle between O-~lattice is so
small, an effective invariant line is likely to be obtained by
slightly varying either the orientation relationship or the
lattice parameters within the range of uncertainty or
scattering. Furuhara (1989) realized the possibility of the
existence of an invariant 1line. He further developed
structural ledge model and combined the invariant line idea in
his study of the Ti-Cr alloy (for details see Chapter 2). It

is shown in Appendix 3, that the habit plane predicted in the
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present study is also stepped on an atomic scale. This is not
surprising; steps should exist wherever a boundary is
irrational or of high index due to the discrete nature of
crystals. Based on the present study the habit plane appears
to be composed of (1 -1 0 0), (~7(-1 1 2),) facets, similar to
Furuhara's result (1989). Furuhara has shown terraces of (1 -1
0 0)(~#(-1 1 2),) of about four atomic spacings in width in
beautiful high resolution TEM micrographs. However these
terraces may be actually about two atomic spacings in width,
due to the existence of another layer of (1 -1 0 0), atomic
plane (see Appendix 3 for details). This second layer plane
could not be shown in the high resolution image of the

boundary, simply because the lattice image is not a projection

of atoms.

6.6 Concluding Remarks and Further Work

In this chapter, the experimental observations have
been compared with the results of the geometrical
calculations. The parallel dislocations observed in either the
broad face or the edge face were found to lie along the
invariant line (or the effective invariant line) in agreement
with the report by Perovic and Weatherly. The measured
orientation relationships tended to correspond to a
particularly defined angular range. The directions of the

parallel dislocations, which should be the function of the
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orientation relationship, appeared to scatter in a narrower
region than that required by effective invariant line
condition. These observations show support for the hypothesis
of optimum orientation relationships. 1In addition, the
experimental evidence that the habit plane is determined by
both Ag, and Ag,, and that only one set of [0 1 0],
dislocations was observed in the habit plane provide further
support for the hypothesis of optimum orientation
relationship. The observed structure (the direction, spacing,
and the Burgers vector of the interfacial dislocations) in the
habit plane could be well understood using the model developed

in Chapter 3.

Further work will focus on the following aspects:

a) For the better understanding of the development of
interface structure, a comprehensive investigation must be
made of the interfaces other than the habit plane. The ideal
microstructure for further investigation would consist of
small o precipitates completely surrounded by the B phase. To
obtain such a microstructure an alloy with higher Nb content

is desired.

b) Contrast of many interfacial dislocations, especially
the irregular dislocations in the broad face boundary still

remains unclear. It is suspected that the rather wide images
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corresponding to the irregular dislocations may be related to
a phase shift due to the strain field associated with the
dislocations not corresponding to translation vectors of the
HCP lattice. To better interpret the contrast of the
interfacial dislocations and increase the certainty in
determination of Burgers vectors, an in-depth study on

contrast analysis will be needed.

c) In order to obtain the information of the atomic
relaxation near the «/Bf boundary and provide fine details of
the interfaces which might elucidate the mechanism of the
phase transformation, the characterization of interfacial
structure at atomic scale by high resolution electron
microscopy would be important. An improved knowledge of
interfacial structure would also help in contrelling the

properties of interest in practical applications of 2r-Nb

alloy.

d) The method of construction of the cell structure in an
O-lattice is expected to be helpful for improving the general
applications of the O-~lattice model. Therefore, this method
should be applicable to otﬁer types of interfaces. To test the
generality of the ideas of the effective invariant line and
the optimum orientation relationship the model developed in
Chapter 3 should be exterded to other precipitation systems,

such as BCC/FCC.



CHAPTER 7

CONCLUSIONS

1. The O-lattice has been studied in reciprocal space.
This offers a simple method to obtain two important pieces of
information: the geometry of the cell structure of the 0O-
lattice and the habit plane defined as the plane of least

lattice mismatch.

2. The invariant line model has been further developed in
two aspects: firstly, the idea of an effective invariant line
was introduced so that the O-lattice calculation could be
carried out in three dimensions. Secondly, the properties of
invariant 1lines were summarized, and on this basis the

mismatch in a habit plane was analyzed.

3. It 1is proposed that, among the orientation
relationships satisfying the effective invariant 1line
condition, those corresponding to the simplest dislocation
configuration (single-set-dislocation structure, equivalent to
the existence of a one-dimensional O-lattice) would be the

optimum orientation relationship. 1In addition, large

177



178
dislocation spacing and small rotation between the close-
packed planes and between the close-packed directions could be
the factors which further narrow the choices of orientation

relationships.

4. The geometrical analysis based on minimum mismatch in
the habit plane was applied to a Zr-2.5 wt%¥ Nb alloy. The
habit plane was predicted to be determined by Ag, (=91 ¢ 1) -
d¢t o -1 13¢) for a general orientation relationship near the
Burgers relationship. More Ags will be parallel to Ag, when
there is a optimum orientation relationship between the a and
3 phases. In such a case, the Burdgers ve.tor of the single set

of dislocations in the habit plane is [0 1 0],.

5. The experimental observations tend to support the
predictions of the geometrical analysis. The general
interfacial structure in o/f boundaries is in accord with the
properties of invariant 1lines. The habit plane was
characterized by one set of dislocations. The geometry of the
habit plane and the direction, spacing, and the Burgers vector
of the dislocations in the habit plane are all in agreement

with the results of the model.

6. The interfacial structures in boundaries other than
the habit plane are less well understood. Normally, the

apparent dislocation loops imaged by a particular operating
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reflection would consist of segments of dislocations of

different Burgers vectors.
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APPENDIX 1
OBTAINING THE RATIOS OF LATTICE PARAMETERS

Figure Al. 1 is a Kikuchi pattern taken from an a
plate. The Kikuchi line pairs of interest in Fiqgure Al.1 are
come from (0 0 0 8), (a-a pair), (-4 1 3 0), (b-b pair), and
(-5 1 4 0), (c-c pair). If the Bragg angle corresponding to
each pair of lines is known, then the c/a of the HCP lattice

could be calculated easily from standard crystalliographic

Figure Al.1 A Kikuchi pattern taken
from the a phase.
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formulae. The details of this calculation will not be given
here. However, the method to obtain the Bragg angles with a
correction for the effect in beam tilt will be provided

briefly.

The main zone axes in the Figure Al.1 are indexed as
(<=2 7 -5 0 ], (Oy) and [-1 3 -2 0]  (O,). The angle between
them (3.0045°), independent of c/a, can be used to calibrate
the camera length of TEM. A ray diagram is given in Figure
Al.2, where different sets of lines are used to show the
corresponding features in the plate. The following equations
could be obtained from the trigonometric relationships between

lines and angles:

1?2 + a2 = (a + b)%sin?B/sina,

1?2 + b2 = (a + b)%sin®(B + a)/sin‘a. (Al.1)

R Kikuchi lines
’/""\_ Zone axis centers

E tncident beanm

Figure Al.2 An illustration

of the trigonometric
relationship between lines
and angles used in

evaluating the beam tilt
effect on the Bragg angle
calculation.

plate
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In the above equations the values of a, b, i, and j could be
measured directly from the plate, and a = 3.0045°. The two
unknowns, L and 8, could be solved from the equations. Then

the Bragg angle, 6, is obtained from relation:

8 = (arctan(j/L) - arctan(i/L)}/2 (A1.2)

Three photographic plates, each from different
regions of the @ phase, have been taken. Two values of a and
one value of ¢ could be obtained from each plate. The

parameter of the BCC phase is acquired in a similar way. The

results are:

c/a = 1.588 * 0.003,

a;/a, = 1.091 * 0.002,

and assuming a high tension of 120kV is applied,

f
i

B 0.3528 * 0.0004 nn,

o
it

. = 0.3233 % 0.0002 nm.

In order to study the orientation relationship and the
geometry of the interface formed during the phase
transformation, the lattice parameters at the transformation
temperature (650°C) must be used in any calculation. These

parameters are obtained by considering the thermal expansion
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effect. Because the a phase contains very low Nb, the thermal
expansion data for pure Zr are used. They are 5.65um/(m.K) in
the direction of the a-axis, and 6.96um/(m.K) in the direction
of the c-axis. The B phase ccntains about 15%Nb, and this
composition effect is also taken into account. The thermal

expansion coefficient for BCC Nb is

Al/1 = 6.892%10°% T + 8.17 *107'% T2 (/°K),

where T is temperature, Al/1 is the relative linear change.
The thermal expansion coefficient for BCC Zr (8 phase) is 9.7

x 106 (/°C). After correction for the effect of thermal
expansion the ratios to be used in further calculation are:
c/a = 1.589, ajfa, = 1.094. The value of a,, without thermal
effect correction, is still used in calculation of dislocation

spacing.

All data are from Metals Handbook (1979) 9th ed. v.2,
except the one for BCC Zr, which is from 'Zirconium'-

Metallurgy of the Rarer Metals 2 by G. L. Miller (London,
1957).



APPENRDIX 2

RELATIONSHIP BETWEEN THE SUPERPOSITION OF
MOIRE FRINGES AND

THE BINGLE-S8ET-DISLOCATION CONFIGURATION

The properties of the invariant lines presented in
section 3.6 can be used to understand the relationship between
the superposition of moiré fringes and the single-set-
dislocation configuration. As menticned Section 3.8, the habit
plane is OP,", which is related to the (1 0 1), lattice plane.
The spacing of the lines of intersection of the habit plane,
op,", with a set of planes determined by oP," is: (refer to

Figure 3.1))

ints; = 1/|oP," x op,"/|oR,"||
or

1/ints; = |oP" x op,"/|0R|| (A2.1)

Since all OPi' are coplanar (the second property of invariant
lines), all of vectors determined by OP;" x oP,/|0OP| are
either parallel or anti-parallel. If OP;" x OP,'/|OPR,"| and OB,

x OP,'/|OR,"| are parallel, the following relation holds:
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|op;” x ?P,,'/|01:4'|| - |op,” x o'P,.'/|op*,.*|| .
= |(op;” x Op,’/|OR,|) - (OP  x OP,/[OP,|)
(A2.2)

If they are anti-parallel then the minus sign in the right
side of (A2.2) should be replaced by a plus sign. Hence the

condition for
1/intsJ = 1/ints,, (A2.3)

is that one side of (A2.2) should be equal to zero. This

condition can be guaranteed if
or,” /7 (0p;" +/- OP,). (RA2.4)

From the definition in (3.12) we know

and

by," = by," + by, (A2.5)

and these linear relationships still hold after the
transformation defined by (3.16). Therefore the following
relations always hold:

op," = op,” - op,’

]

oP,

op," + oP;", (A2.6)

s0 we have
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1/ints,

1l/ints,,

1/ints, 1/ints,.
This explains why the points of intersection planes OP; and
OP,” with the habit plane, and those of planes OP," and OPR; in

both Figures 3.4 (a) and (b) are common.

It is also possible to bring the intersection points
of planes OP," and OP," with the habit plane coincident with

each other. This requires

op,” / op,, (32.7)
where

*

op," = op," + op,, (A2.8)

and OP," is transformed from (2 0 0),. The plus sign in (A2.8)
is used because the calculations show that OP,” x OP, /|OP|
and OP," x OP,"/|OP,"| are antiparallel. According to the fifth
property of the invariant lines, (A2.7) will hold if b, and
bwf are in the same zone axis as the invariant normal x". The
zone axis of these planes can be written as: (refer to

equations (3.4) and (3.7))

* *

by, X by

- , (A2.9)

*
by, X by

which is [0 1 0];. In other woxds, in order to meet the
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condition of (A2.7), by must lie in the plane with invariant
normal x'. Remember that b, , b, are also contained in zone
axis by,. The moiré planes corresponding to them should be also
parallel to OP,". Given that this is true, it can be shown that
the intersection points of planes OP,", OP,, and OP,," with the
habit plane must also coincide. The result in Figure (3.4, b)

is thus explained.

The relationship between b, and x" indicates that by
is the displacement vector of all vectors in a plane
containing the invariant line, because of the third property

of the invariant lines. Therefore, the equation

T X% = b, (A2.10)

is solvable when the rank of T is two. If we multiply (A2.10)

with (b,")" and use the relationship (3.16), we get

(bsA‘)T * by = (l:’rst.m)T T xob
= (op,)" - X%
= o0, (A2.11)

because by, is in the plane b,’. Thus, at least one solution of
(A2.10), X%, lies in the habit plane, OP,"'. The displacement
along the X% direction is in the by = [0 1 0], direction. We
know from the fourth property of the invariant lines that the
displacements of all vectors in an interface containing the

invariant line are in one direction. It follows that the
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displacement in the habit plane is in the b, direction as the
plane contains the invariant line. This is important because
the mismatch in the plane can be completely accommodated by a

single set of dislocations with the Burgers vector [0 1 0],-

The spacing of the dislocations is determined by using

formulae (3.9-10)

ds, = 1/|D4|
or

1/ds, = |oc," x op/jor|| (A2.12)

It can be shown that due to all the vectors oc; are contained
in a plane with an invariant 1line as its normal, the
relationship (A2.2) is also applicable to 0C,". Because

WS, = by, /2 = (b," - b,")/2 (A2.13)
and

1/ints, - 1/ints,

= |op," x op,'/|op*|| - |oP,” x op,"/|0R,||

L] u » * |
= | (op," x oB,"/|OR,"|) + (OB," x OR,"/|OR,"|) |
= 0’

the spacing of the dislocations ds, will be

ds, = 1/|opa*/*z x opﬁ"/|op,.'|*| .
=2/|(0p,.-092) "Q94/|°P4|L .

2/ (op, X OP, {lop,. L) - (0P, x op//|op,"|)]

2/(2|op," x op/|0R,|)

ints,, _ (A2.14)
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which is the same as the spacing of the lines of intersection
of many '"moiré planes"™ with the habit plane. As a result, the
mismatch in the habit plane is highly localized around the

dislocation lines.



APPENDIX 3
HABIT PLANE ATOMIC STRUCTURE PLOTTING

The calculated habit plane corresponding to the
orientation relationship denoted by the arrow 2 in Figure 3.7
is

oP," = (3 -2.1626 -3.0521)
referred to the BCC lattice, or
oP,' = (-3 4.0543 -1.0543 0.7172)

referred to the HCP lattice. The atomic structure in the habit
plane is generated by the following method. It is possible to
plot the atomic positions in a crystal with di3000 graphic
software (installed in the VAX on campus). A slice of crystal,
slightly thinner than the diameter of an atom, is cut out with
the broad face of the slice parallel to the habit plane. This
slice is then projected in the direction normal to the habit
plane and plotted as shown in Figure A3.la. Due to resolution
of the plotter, the atomic positions in the plots of Figure

A3.la cannot be precisely located. However, the plots serve as
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a useful demonstration of the atomic structure of a habit

plane.

It may be seen from the indices of the habit plane
that the habit plane is very close to the rational plane (3 -2
-3), in the BCC lattice, or (-3 4 -1 1), in the HCP lattice.
Three vectors: [1 3 =~1],/2, [-3 3 -5),/2, and [-1 0 -1],, in
the (3 -2 -3), plane are indexed in Figure A3.1 a. If one
connects the atomic positions by repeating these vectors, one
would be able to define a large area of (3 -2 -3), plane,
Other layers of (3 -2 -3), could be found in a similar way. As
a result, the habit plane consists of layers of (3 -2 -3),.
The stacking of these layers can be constructed based on the
BCC structure. The (3 -2 -3), plane is oriented nearly edge-on
in Figure A3.1b, which shows the atomic structure projected in
the [1 1 0], direction. Due to the structure of the BCC
lattice, there is another atomic plane parallel to the (3 -2 -
3), plane lying between each pair of (3 -2 -3), planes. The
actual plane index should be 2 x (3 -2 -3), = (6 -4 «6),, as
shown by the parallel lines in Figure A3.1b. It can be seen
that the close packed direction [-1 1 -1], actually lies in
the habit plane on an atomic scale. Because [-1 1 -1], and [1
3 -1), define the (1 -1 -2), plane, the habit plane is composed
of steps of (1 -1 =2), planes. A narrow region (about four
atomic spacings in width) of (1 -1 -2), planes has been

determined by structure analysis. For example, any atoms
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defined with the same symbol should not lie in the same (3 -2
-3), plane. A few of these planes is indicated with different
symbols in Figure A3.l1a. There are steps between different
layers of (1 -1 =-2), as is demonstrated in Figure A3.1lc. This
result is also consistent with the stacking of (3 -2 -3),
planes shown in Figure A3.1b. The same argument can be applied
using the HCP lattice as a reference. Corresponding to the
vectors: [1 3 -1},/2, [-3 3 -5],/2, and [-1 0 -1],, in the BCC
(3 -2 -3), plane, the vectors with reference to the HCP
lattice are [-1 -1 2 3],/3, [-5 -2 7 0],/3, and [~4 -1 5 -3] /6
in (=3 4 -1 1), respectively. The habit plane consists of many
layers of (-3 4 -1 1), planes over a large area. On the atomic
scale it contains (-1 -1 2 0],/3, and is hence composed of
steps along (-1 1 0 0), planes, also about four atomic
spacings in width. It should be emphasized that the actual
step face (terrace) is not four atomic spacings in width.
There is a in-plane shift between a pair of (1 -1 -2), or (-2
2 0 0),, as can be seen in Figure A3.la (between the triangles
and the circles or the squares). Due to the position of this
layer, as displayed in Figure A3.1b, the step face could be

only about two atomic spacings in width.
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Figure A3.1 (a) The atomic structures in the habit
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