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is open. A characterization is obtained of those completely regular

In this thesis an analogue of B-completeness

is defined for locally m-convex algebras. Namely, a commutative locally

m-convex algebra A is said to be a B(£) algebra if every continuous

SCOPE AND CONT~~TS:

and almost open homomorphism from A onto any locally m-Convex algebra

spaces X for which C(X) with the compact-open topology is a B(£) algebra.

Permanence properties of B(.£) a 1gebras are investigated. and extensions

of the closed graph theorem are obtained. In addition, a categorical

treatment of commutative locally m-convex algebras and their relationship

with completely regular spaces is given.
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One of the main results of this thesis is a characterization of

INTRODUCTION

is reflected 1n the intimate relationship between the topological

Indeed, many authors have tried to obtain characterizations of C(X)

I

Locally m-conve~ algebras were introduced by Arens and Michael in'

in [57]. The prototype of these algebras is C(X), the algebra of all

properties of X and the algebraic and topological properties of C(X).

endowed with the topology of uniform convergence on the compact subsets

type have been obtained for hemicompact spaces [2], locally compact and
r

paracompact spaces [5], realcompact. spaces [43] and [51]; ~-spaces [43]

Additional theorems of this type may, be found in [55].

algebras. The fupdame~tal theory may be found in [5] and [39] as well as

generalization of the uniform topology on C(X) for compact X. This na-

order to extend the theo~y of Banach algebras to more general topological

for a given topological property of X. Characterization theorems of this

continuous complex-valued functions on a completely regular space X

of X (the compact-open topology). The com~act open topoLogy is a natural

completely regular k-spaces in terms of a certain open-mapping property of

and [51], locally compact spaces [56] and [1], and hemicompact k-spaces [55].

turalness

C(X).

v. Ptak [46] introduced the notion of B-cp~plete and B -complete
r

spaces in order to extend the classical open-mapping and closed graph theorems

to loeally convex spaces. It is implicit in his paper that if C(X) is

r
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This approach is not followed in this thesis. Rather, C(X) is

B-complete then X is a normal k-space. Necessary and sufficient

[53] has obtained

continuous

B-cornpleteness is defined. This approach is motivated by T. Hus~in's

extensions of the notion of B-completeteness, primarily by his definition

studied as a locally m-convex algebra and a locally m-convex analogue of ,',

of B CCL) and BCD.) topological ahelian groups [32]. The study of theser

conditions have not as yet been obtained.

dnd has obtained necessary and sufficient conditions on X for Cs(X) to be

B -complete.
r

\o".Ii) Summers

d partial answer. lie has considered C"B(X), thl bounded

functions on a locally compact space X endowed with the "strict" topology,

groups has been pursued by Baker [7], Sulley [52] ~nd Grant [25].

Chapter 0 contains the basic definitions and the main known results

which will be used in sub$~quent chapters. In particular, it covers

topological vector spaces, B-complete spaces, locally m-convex algebras,

completely regular spaces, and basic notions of category theory. It should

be pointed out that some of the theorems are not stated in their greatest

generality.

In Chapter I the notions of B C£.r' and Beet) algebras are
r

introduced. These are analogues of B -completeness and B-completeness for
r

locally m-convex algebras. Section one consists of definitions and elementary
,

properties. In section 2, a very useful 'criterion of L.J. Sulley [52], which

was proved for B Ca) and BC(1) groups, is adapted for B ct) and B(£,)
r r

algebras. In section three, B CJ:.) and BCJ::) algebras of the type CCX) are
r

investigated. Necessary and sufficient conditions on X are obtained for
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c(X) to be a B (cC) and a B(£") algebra, respectively. In section 4
r

\

several important counterexamples are constructed. 'In section 5, weaker

notions of the B (cC) and B(JC) properties are considered by placing
r

restrictions on the codomain. In particular B (0) and B(6) algebras are
r

investigated, (j being the class of all m-bar~elled algebras. As a
r-
;
(

consequence of a characterization theorem of this section it follows that

e(x) is a B({;) algebra whenever X is pseudocompact.

In chapter II, section 1, two classes of continuous maps are

i~troduced, full maps and CR-quotient maps. ~roperties of these maps are

used in subsequent sections to obtain certain counterexamples. In section

2 permanence properties of B (dC) and B(~) algebras are investigated.
r

Also, it is shown that local compactness and paracompactness of X are not

sufficient for C(X) to be B -complete as a locally convex space. In section
r

3, closed graph theorems are optained for B (oC) algebras.
r

Chapter III is devoted to categorical investigations of the category

L of commutative locally m-convex algebras with identity a~d all continuous

unitary homomorphisms, and its relationship to the category CR-of all

completely regular spaces and-all continuous maps. The motivation comes

from the known adjoint situation between compact Hausdorff spaces and

commutative Banach algebras ~~th identity.

In section 1, the functors M, C and C are discussed. In section 2,
p

it is shown that L is cocomplete, and a represen,tation of coproducts ir'

obtained. In section 3, the subcategory CL of ~ is investigated. The main

result being that CL is a coref1ective and productive subcategory of L.

'I-
. .

~~,
"

!; -
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It is also shown that M(l1A i ) ~ llM(A
i
). In section four it is shown that

C C
~ -. p

the functors CR ~ CL and CR ~ ~ are adjoint on the right. ~)en

M M

restricted to suitable subca tegories, the former yields a dual ity whicll

extends the known duality between compact Hausdorff spaces and B* algebras.

In section 5 t -injectivlty and :r -projectivity are discussed.

r)

I .



l1(E,O) will be written as ll(E).

(E, u) will be written as E or simply
11

Henceforth,

in E. When x is the zero element of E,

Most of the notation which is used is standard. The'svmbol C is

For an element x E E, l1(E, x) is the neighborhood filter of x

CHAPTER 0

vector spaces and algebras are over the field of complex numhers C.

A topological vector space (TVS) is a pair (E, u) consisting of a

continuous Map from E x E to E, and scalar multiplication is a continuous

functions are denoted by the letters r or s.

Algebra homomorphism is written simply as homomorphism and isomorphism

vector space E and a Hausdorff topology u on E such that addition is a

map from ( x E to·~.

as E if no confuston is likely to arise.

For techn~cal reasons, in Chapters II and III complex-valued continuous

i
means algebraic isomorphi5m as well as topological homeomorphism. The ~

letters f, g, h; ~, 'l'; il, B ; are cant inuous maps, homomorphism or linear "'\ \\'

d I 1 J} h · I' f . I I \\ ", _".maps, an comp ex-v~ ue 10momorp 15ms or 1neJr unct10na s, respective y. '"

used in the broad s~nse, strict inclusion being written as ~ All

1. Topological vector spaces.

1.1. Definition. A subse~ U of E is said to be absorbing if for

I
.L

each x c E there exists A
o

C ( such that x C A U whenever IAI ~ IAol.

U is said to be circled if X U C U whenever IAI ~ 1. U is said to be

bounded if it is absorbed by every V in 1\(E) .

5
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The neighborhood filter 'neE) h:ls certain properties which will

be used frequently. In particular, a filterJr on a vector space E is the

zero neighborhood filter for some lI:lusdorff topology which is compatible

with the linear structure of E iff '5 satisfies the following axioms:

(TVS 1) For each U E l' there exists a V • Y such thtlt

v + V C u.

(TVS 2) For each U (: :t there exists a circled and absorbing

V (: 'Y such that V C tl.

(TVS 3) n U = {O1­
U c 3'

For a subset U of a TVS E, L,>ZE(U) is the topological closure of U in E.

It is well known that C!lE(,.J) =n{ll + V : V C'n(E)}. In particular, if

U c 11<E) then c-ZE(U) C U + u.
)

Hence, in view of the above axioms, it

follows that for every TVS E, /1(E) has a basis consisting of closed

and circled sets.

1.2. Definition. A subset U of E is said to be convex if

(1 - A)X + Ay is in U whenever x and yare in U and 0 < X < 1. A TVS E

is said to be locallv convex if 11(£) has a basis consisting of convex

sets.

For a locally convex space E, E' is the set of all continuous
'"

linear functionals on E. E' is a vector space and is called the dual of E.

It may be endowed with several locally convex topologies. Of these the

only one used in this dissertation is the weak* (w*) topology which is

th~ relative product topology from (E.



1.5. Definition. (a) A subset U of a TVS E is said to be a barrel

Proof: (a) follows directly from the definition. A proof of (b)

(b) A locally convex space E is said to be bornologica1 if every

7

,~

'i~"-

~
"

is w*-compact. '.
" "

la(x)! < I Va € H} are called the po lars of U and H.

1.4. Theorem. Let E be a locally convex space.

(b) Every w*-closed and equicontinuous subset of E r

(a) H C E' is equ1continuous iff H
O

E: 1'\(E)

.'n(E) •

if U is closed, circled, convex and absorbing. A locally convex space E

is said to be barrelled if each barrel is in 1'1(E).

circled and convex subset of E which absorbs every bounded set in E is 1n\

(b) A subset H of E' is said to be equicontinuous if [or each

V E: 'h<G:) there exists D (:,) I\(E) such that a (D) C V for each a E: H.

may be found in [49 ; Corollary 4.3}.

1.3. Definition. (a) Let U be a subset of a locally convex space

E, and let H be a subset of E r
• Then, U

O = {a E: E r
: la(x) I .::.. I V x e: U}

o
and H = {x e: E

(a) E is ba~relled.

statem~nts are equivalent:

(b) Every w*-bounded subset of E r is equicont1nuous.

1.6. Theorem. Let E be a locally convex space. Then the following

[31; Theorem 7, p. 30J.Proof:

..
~ ,

C., '
":;;.
f~'
~,

~
i· •
I'
~.

f'

I
I
J

~;-;'. ~------------------------------~--------------------
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Since each w*-compact subset of E' is w*-bounded, the following

is immediate.

1.7. Corollary. If E is barrelled then every w*-cornpact subset

of E' is equicontinuous.

2. Completeness, B-completeness, and B -completeness.
I

A uniform space is a pair (X,1t) where X is a set and 1L is a

filter on X x X which satisfies the following conditions:

(1) Each W E 11, contains {(x,x) : x E: X}.

(2) If W E: 'U, then w- l (; U , where W- l = {(x,y) : (y,x) E: W}.

(3) For each W E: ~ , there exists W' E: ~ such that W' 0 W'C W

..

With each TVS E there is associated a natural uniformity which

said to be complete if every Cauchy filter converges.

The filter 'U. is known as a uniformity on X.

Wi 0 W' = {(x,y) : (x,z) E: W' and (z,y) E: W' for some z £ X.}

A filter ~ on a uniform space (X,1L) is called a Cauchy filter

if for each W (; 'U there exists F (; Y such that F x FeW; (X, U) is

where

.
arises from 'h(E). For each V E: ~(E) let Wv = (x,y) : (x,y) e: E )( E

and x - y e V}. Then the collection {WV : V £~(E)} form~,a base for a

uniformity 'U. on E. E is said to be complete if it is complete with

respect to this uniformity.



Grothendieck.

9

'V'n(E) .

Let E be a locally convex space and let S be

{eZi (V) : V c 'Yl (E)} is a basis for

2.2. Definition.

Proof: [49; T. 1.5].

(2) Every ~lmost closed maximal subspace of E' is w*-closed.

(1) E is complete

Proof: [49; I. l.~].

2.3. Theorem. Let E be a locally convex space. Then the

The following craracterization of completeness is due to

The following definitions and theorems are due to Ptak [46].

2.1. Theorem. Let E be a TVS. Then E can be embedded as a

,
\

2.4. Theorem. Let E be a complete locally convex space. Let
u

Proof: [49: IV. 6.2 Corollary 2].

finer than u,and l1(E
v

) has a basis consisting of u-closed sets.

Then E is complete.
v

v be a second locally convex topology on E such that u C v. i.e. v is

following statements are equivalent.

w*-closed for each V E 1'\.(E).

a linear subspace of E ' . Then S is said to be almost closed if v°t) S is

Moreover.

"" N
dense subspace of a complete TVS E. E is unique up to isomorphism.

r~.,
















































































































































































































