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INTRODUCT ION

B Locally m-convex algebras were introduced by Arens and Micﬁael in
3 .

order to extend the theoyy of Banach algebras to more general topological

[
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algebras. The fundamental theory may be found in [5] and [39] as well as
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in [57]. The prototype of these algebras is C(X), the algebra of all
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continuous complex~valued functions on a completely regular space X
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endowed with the topology of uniform convergence on the compact subsets

of X (the compact-open topology). The compact open topology is a natural

ks
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generalization of the uniform topology on C(X) for compact X. This na- .

Vo
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turalness is reflected in the intimate relationship between the topological '
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properties of X and the algebraic and topological properties of C(X).

Indeed, many authors have tried to obtain characterizations of C(X) é
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for a given topological property of X. Characterization theorems of this
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type have been obtained for hemicompact spaces [2], locally compact and
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paracompact spaces [5], realcompact _spaces [43] and [51); u-spaces [43]
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and [51], locally compact spaces [56] and [1], and hemicompact k-spaces [55].
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Additional theorems of this type may, be found in [55].

s i

One of the main results of this thesis is a characterization of
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completely regular k-spaces in terms of a certain open-mapping property of
C(X).
V. Ptak [46] introduced the notion of B—co&pléte and Br—complete

spaces in order to extend the classical open-mapping and closed graph theorems

to loeally convex spaces. It is implicit in his paper that if C(X) is
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B-complete then X is a normal k-space. Necessary and sufficient
conditions have not as yet been obtained. W.H) Summers [53] has obtained
a partial answer. He has considered CE(X), theé bounded continuous
functions on a locally compact space X endowed with the 'strict" topology,
and has obtained necessary and sufficient conditions on X for CE(X) to be

Br—complete. -

This approach is not followed in this thesis. Rather, C(X) is

studied as a locally m-convex mlgebra and a locally m-convex analogue of .

B-completeness is defined. This approach is motivated by T. Husain's

extensions of the notion of B-completeteness, primarily by his definition Kq
of Br(CL) and B((l) topological abelian groups [32]. The study of these ‘“

groups has been pursued by Baker [7], Sulley {52] and Grant [25].

Chapter 0 contains the basic definitions and the main known results
which will be used in‘subseguent chapters. In particular, it covers i

topological vector spaces, B-complete spaces, locally m-convex algebras, -

completely regular spaces, and basic notions of category theory. It should
be pointed out that some of the theorems are not stated in their greatest

generality.

In Chapter I the notions of Br(J:)’and (L) algebras are
introduced. These are analogues of Br—completeness and B-completeness for
locally m-convex algebras. Section one consists of definitions and elementary
properties. 1In section 2, a ve;y useful criterion of L.J. Sulley [52]}, which
was proved for Br(ClJ and B(QL) groups, 1s adapted for Br(ll) and B(Jl)
algebras. 1In section three, Br(J:) and B({l) algebras of the type C(X)‘are

investigated. Necessary and sufficient conditions on X are obtained for
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C(X) to be a Br(J:) and a B(J:) algebra, respectively. In section 4

A

several important counterexamples are constructed. In section 5, weaker

not ions of the Br(J:) and B(Jz) properties are considered by placing

restrictions on the codomain. 1In particular Br(Q:) and B(?;) algebras are

}gvestigated, ?; being the class of all m-barrvelled algebras. As a

/
consequence of a characterization theorem of this section it follows that

C(X) is a 3(27) algebra whenever X is pseudocompact.

In chapter 11, section 1, two classes of continuous maps are

introduced, full maps and CR-quotient maps. 7Properties of these maps are

v

used in subsequent sections to obtain certain counterexamples. In section

2 permanence properties of Br(J:) and B(J:) algebras are investigated.

Also, it is shown that local compactness and paracompactness of X are not

sufficient for C(X) to be Br—complete as a locally convex space. In section

3, closed graph theorems are obtalned for BF(JZ) algebras.

Chapter I11 is devoted to categorical investigations of the category
L of commutative locally m-convex algebras with identity and all continuous

unitary homomorphisms, and its relationship to the category CR~of all

completely regular spaces and "all continuous maps. The motivation comes

from the known adjoint situation between compact Hausdorff spaces and

commutative Banach algebras with identity.

In section 1, the functors M, C and Cp are discussed: In section 2,

it is shown that L is cocomplete, and a representation of coproducts i?r\

obtained. In section 3, the subcategory CL of L is investigated. The main

result being that CL is a coreflective and productive subcategory of L.




It is also shown that M(HAi) ZI%M(Ai)' In section four it is shown that

¢ P
the functor§ CR CL and CR > I are adjoint on the right. When
% T T W

restricted to sultable subcategories, the former yields a duality which
extends the known duality between compact Hausdorff spaces and B* algebras.

In gection 5 'g—injectivity and y—projectivity are discussed.
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CHAPTER 0

Most of the notaticen which is used is standard. The symbol C is

used in the broad sense, strict inclusion being written as 5; . All

vector spaces and algebras are over the field of complex numbers C.

Algebra homomorphism is written simply as homomorphism and isomorphism
means algebraic isomorphism as well as topological homeomorphism. The
letters f, g, h; ¢, ¥; a, B ; are continuous maps, homomorphism or linear
maps, and complex-valued homomorphisms or linear functionals, respectively.
For technical reasons, in Chapters 11 and III complex-valued continuous

functions are denoted by the letters r or s.

1. Topological vector spaces.

A topological vector space (TVS) is a pair (E, u) consisting of a
vector space E and a Hausdorff topology u on E such that addition is a
continuous map from E x E to E, and scalar multiplication {s a continuous
map from € x E to”™E. Henceforth, (E, u) will be written as Eu or simply

as E 1f no confusion 1s likely to arise.

For an element x ¢ E, 71(3, x) is the neighborhood filter of x

in E. When x is the zero element of E, 71(E,0) will be written as ﬁl(E).

1.1. Definition. A subset U of E is said to be absorbing if for

each x ¢ E there exists Xo ¢ € such that x ¢ A U whenever 'Xl zrlko].

U is sald to be circled if A U C U whenever |A] < 1. U is said to be

bounded if it is absorbed by every V in 'T\(E).

. T EISE
.4




The neighborhood filter qﬂ(ﬁ) has certain properties which will

be used frequently. In particular, a filter:;.on a vector space E is the

zero neighborhood filter for some Hausdorff topologv which is compatible

with the linear structure of E {ff :;’satisfies the following axioms:

(TVS 1) For each U ¢ 3” there exists a V , ysuch that
V+VCU.

(TVS 2) For each U ¢ ¥ there exists a circled and absorbing
Ve :}J such that V C U.

(TVS 3) /\ U = {0}.
UeJ

For a subset U of a TVS E, OZF(U) is the topological closure of U in E.
It is well known that cZFGU) =/W{ll+-v vV E’n(E)}. In particular, {if
U e 71(5) then OZE(U)(: U+ U, Hence, in view of the above axioms, ic

follows that for every TVS E, WI(E) has a basis consisting of closed

and circled sets.

1.2. Definitggg. A subset U of E is said to be convex if
(1 - M)x + Ay is in U whenever x and y are in U and 0 <X <1l. ATVSE
is said to be locallv convex {if q1(E) has a basis consisting of convex

sets.

For a locally convex space E, E' is the set of all continuous

linear functionals on E. E' is a vector space and is called the dual of E.

It may be endowed with several locally convex topologies. Of these the
only one used in this dissertation is the weak* (w*) topology which is

. - E
the relative product topology from €.
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1.3. Definition. (a) Let U be a subset of a locally convex space
E, and let H be a subset of E'. Then, U° = {a ¢ E' : l[ax)| <1 VY x¢e U}
and H® = {x ¢ E : lax)] <1 Y o ¢ H} are called the polars of U and H.

(b) A subset H of E' is said to be equicontinuous if for each

V ¢ '“(dl) there exists U gu '“(E) such that q(U) € V for each ¢ ¢ H.

1.4. Theorem. Let E be a locally convex space. k
v . o -\
(a) H CE'is equicontinuous iff H ¢ N(E) \\x

(b) Every w*-closed and equicontinuous subset of E' is w*-compact.

Proof: (a) follows directly from the definition. A proof of (b)

may be found in [49 ; Corollary 4.31.

1.5. Definition. (a) A subset U of a TVS E is said to be a barrel
if U 4s closed, circled, convex and absorbing. A locally convex space E
is said to be barrelled if each barrel is in TYUE).

(b) A locally convex space E is said to be bornological if every

circled and convex subset of E which absorbs every bounded set in E 1is in

ne.
¥

<

1.6. Theorem. Let E be a locally convex space. Then the following
statements are equivalent:
(a) E is barrelled.

(b) Every wk~bounded subset of E' is equicontinuous.

Proof: [31; Theorem 7, p. 30].
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Since each wX-compact subset of E' is wk-bounded, the following
is immediate.
1.7. Corollary. If E is barrelled then every w*-compact subset

of E' is equicontinuous.

2. Completeness, B-completeness, and B -completeness.
L

"A uniform space 1is a pair (X,QL) where X 1s a set and QL is a

filter on X x X which satisfies the following conditions:

(1) Each W ¢ U contains {(x,x) : x e X}.
(2) 1If W eU then wl e W, where wl = {(x,y) : (y,%x) € W},

(3) For each W e TL , there exists W' ¢ U such that W' o W'c W

where W' o W' = {(x,y) : (x,z) ¢ W' and (2,y) ¢ W' for some z ¢ X.}
The filter ’LL is known as a uniformity on X.

A filter 3f on a uniform space (X,1) is called a Cauchy filter
if for each W ¢ W there exists F ¢ 3»’ such that F x F C W; (X, ’u,) is

said to be complete if every Cauchy filter converges.

With each TVS E there is associated a mnatural uniformity which
arises from M(E). For each V ¢ N(E) let W, = {(x,y) : (x,y) e E xE
and x - y € V}. Then the collection {wv : Ve N(E)} formg a base for a

uniformity W on E. E is said to be complete if it is complete with

respect to this uniformity.

tqmm«?ﬁ*z;\ s LS
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2.1, Theorem. Let E be a TVS. Then E can be embedded as a
. :
dense subspace of a complete TVS %. E 1is unique up to isomorphism.
s
Moreover, {cZ% (V) : ve M)} is a basis for 7\(E).

Proof: [49; I, 1.5].

2.2. Definition. Let E be a locally convex space and let S be

a linear subspace of E'. Then S is said to be almost closed if VO(\ S is

w*-closed for each V ¢ 1\(E).

The following claracterization of completeness is due to

Grothendileck.

2.3. Theorem. Let E be a locally convex space. Then the
following statements are equivalent.
(1) E is complete

(2) Every almost closed maximal subspace of E' is w*-closed.

Proof: [49: IV, 6.2 Corollary 2].

2.4. Theorem. Let Eu be a complete locally convex space. Let
v be a second locally convex topology on E such that u ¢ v, i.e. v 1is

finer than u,and 71(EV\ has a basis consisting of u-closed sets.

Then Ev is complete.
Proof: [49; I, 1.6].

The following definitions and theorems are due to Ptak [46].

e
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2.5. Definition. A linear map f: E > F is said to be almost open

1f el (£(V)) e T(F) whenever V e N(E).
Every linear map from a locally convex space onto a barrelled

space is almost open.

2.6, Definition. A locally convex space E 15 said to be
B-complete if every continuous and almost open linear map onto any locally
convex space F is open; Er—comglete if every one-to-one linear map with
the above properties 1s open.

It is ;bvious that every B-complete space’is Br—comﬁiete. Every
complete metrizable locally convex space is B-complete. For examples of
non-metrizable B-complete spaces the reader 1is referred.to [49; p. 162]

or [31; chapter 4].
The following theorem is due to Ptak. -

2.7. Theorem. Let E be a locally convex space, then:

(a) E is a B-complete iff every almost closed linear subspace

of E' 1s w*-closed.

-

(b) E is Br—complete iff every dense and almost closed linear

subspace of R! is w*-closed, and hence coincides with E'.

-

Proof: [49; IV, Theorem 8.3].

In view of Theorem 2.3 the following 1s immediate.

-t




2.8. Corollary. Every Brucomplete space is complete.
The converse is not true. Ptak's original counterexample appears

in section I.4. A simpler example gppears in [31; p. 45, Prop. 1].

*

2 -3

E& | 2.9. Proposition. A closed subspace of a B-complete (Br—complete)
w53 ) )
ﬁg,i space is B-complete (Br—complete).

.
b .“'4.-‘
s

Proof: [31; Prop. 4, p. 41]. ;

2,10, _Proposition. Let E be a B-complete space and let M be a

closed linear subspace. Then E/M is B-complete.

Proof: - [31; Corollary 2, p. 48].

' 2.11. Definition. Let ¢ : E +» F be a linear map. ¢ 1s said

to be almost continuous if czE ¢:1(V) € 71(E) for each V ¢ 7\(F). ¢ 1is

said to have a closed graph if {(x, ¢(x)) : x ¢ E} is a closed subspace

LS

of E x F.
Every linear map from a barrelled space into any locally convex

space 1is almost continuous. . -

2.12. Theorem. Let E be a Br—complete and let ¢ : F o E be an

-

fﬁ' almost continuous linear map with closed graph where F is locally convex.

= : )

ey 3 i

3 Then ¢ 1is continuous. ) '
%

x !
5‘/%“:

Proof: [31; Theorem 6, p. 57]. -

X BT SRR
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In particular every linear map from a barrelled space to a Br—

v
R

complete space which has a closed graph 1s continuous.
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3. Locally m-convex algebras.

A topological algebra is an associative algebra A which is also

a toﬁological’vector space and such that multiplication is a continuous

function from A x A to A. (Scme authors require that multiplication be

separately continuous only.)

+

3.1. Definition. Let A be a topological algebra. .

(a) A subset V of A 1s said to be idempotent if V V C V; it is

sald to be m-convex if it is convex and idempotent.

(b) A is said to be locally m-convex (LMC) if 71(A) has a basis

consisting of m-convex and circled sets.

Equivalently, a topological algebra A is locally m-cenvex iff its
topology 1s generated by a set {pi}i e I of seminorms, each satisfying

pi(xy)_i pi(x) pi(y). Such seminorms are called submultiplicative. A

general treatment of locally m-convex algebras may be found id [39] or

[57].

5

W

é& 3.1. Proposition. (a) Every normed algebra is an LMC algebra.
g; (b) A subalgebra of an LMC algebra is an LMC algebra.

gi j (c) The cartesian product of LMC algebras is an LMC algebra.
gt‘; ~f)y If A is an LMC algebra and I is a closed ideal then A/I ;s
g% an LMC algebra.

G- Proof: [39; Proposition 2.4].

i e

furf, o
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3.2. Theorem. Let A be an LMC algebra,
(a) If A is a division algebra then A is isomorphic with C.
(b) If A is commutative and M is a closed regular maximal id}al,

then A/M is isomorphic to €.

Proof: (a) is a special case of [4; Theorem 1].

(b) follows immediately from (a).

For a locally m-convex algebra A, M(A) is the subset of A’
consisting of all nonzero continuous homomorphisms with the relative
w*topology. By Theorem 3.2(b) there exists a one-to-one correspondence

between M(A) and the maximal regular closed ideals of A.

The following proposition is well known for commutative Banach

algebras with identity.

3.3. Proposition. Let A be a commutative locally m-convex

algebra with identity. Then M(A) is not empty.

Proof: Let p be a continuous submultiplicative seminorm on A.
Then Ap = A/ker(p) is a commutative normed algebra with identity under
‘the norm induced by p, and so its completion Kp is a Banach algebra.
Let a ¢ M(Xp) + @ and let ¢ : A ~» Ap be the canonical homomorphism.

Since ¢ is continuous a o ¢ € M(A) $# @ .

In general, Proposition 3.3 fails for topological algebras.
In fact, in [3} there 1is an example of such a topological algebra A

which is also complete and metrizable.
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3.4. Theorem. Let A be a complete locally m-convex algebra.

»

Then A is isomorphic to a projective limit of Banach algebras.

P
Proof: [39; Theorem 5.1 ].

L

e e

3.5. Definition. Let A be an LMC algebra.

(a) R(A) = N ker(a) is called the strong radical of A.
aeM(A)
A 1s said to be semisimple 1f R(A) = {0}.

(b) A is said to be functionally continuous if every homo-

morphism a: A + € is continuous.

(c) A is said to be a.*-algebra if there exists a unary

operatiom a — a* satisfying the following conditions:

(1) (a*)* = a

(2) (A a+ Db)*x = Y a* + b* for each A ¢ C.

A(3) (ab)* = b* a*

~

(d) Let A and B be *-algeﬁras. A homomorgbism $: A - B is
said to be a *-homomorphism if ¢(a*) = ¢(a)*.
(e) A *-algebra A with identiy is said to be symmetric if

T1 o+ xx* has an inverse in A for each x € A.

4. Completely regular spaces and C(X)

A Hausdorff topological spaée X is said to be completely regular

if whenever F is a closed subset of X and x is a point in its complement

4

there exlists a continuous real-valued function f such that 0 < f < 1,
£(x) = 1 and f(F) = {0}. Henceforth all topological spaces are assumed

to be completely regular.
- 3
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For a topological space X, C(X) is the algebra of all eontinvous
complex-valued functions on X. C(X) may be endoved with several
topologies. Unless otherwise specified it is assumed that C(X) has the
compact-open topology which is also known as the topology of uniform
convergence on the compact subsets of X. A basis for the neighborhoods
of zero given by sets of the form N(K, &) = {f cJC(X) : [f(x)| < & for
all x £ K} where K varies over all the compact subsets of X and £ > 0.

Equivalently the compact open topology is generated by the submultipli-

cative seminorms {pK} K e X where Py (f) = sup |f(x)| , K varying over °
xeK

all compact subsets of X. It is clear that C(X) is a locally m-convex

algebra. )

4.1. Definition. (a) X is hemicompact if there exists a
countable set {Kn} ne of compact subsets of X such that every compact

subset of X is contained in some Kn'

(2? A complex homomorphism a : C(X) » € is said to be fixed if

a(f) = f(x) for some x ¢ X. X is said to be realcompact if every

complex homomorphism of C(X) is fixed.

\ -

(¢) A subset Y of X is said to be bounded if le is bounded for
each f ¢ C(X). X is said to be a y-space if each closed and bounded

subget of X is compact.

(d) A subset Y of X is said to-be k-closed if Y N K is closed
in X for each compact subset K of X. X is said to be a k-space if each

k-closed subset of X is closed.



(e) A function f : X » € is said to be k-continuous if f|[K 1is

continuous for each compact subset K of X. X is said to be a kR—space

if every k-continuous function f : X » € is’ continuous.

?

Since each homomorphism from C(X) to € maps real-valued functions
to real numbers, definition (b) is equivalent to the usual definition of
as realcompact space. The terminology of (c) is due to Buchwalter [16].
The term kR—space appears in [40) and [45]. These same spaces are -called
k'-spaces in [34]. '

The following are some of the existing theorgms which illustrate
the intricate relationship between X and C(X) with the compact open

topology. The first theorem is obvious in view of the fact that a TVS

is normable iff it has a bounded convex neighborhood of zero.

4.2. Theorem. C(X) is normable iff X is compact.
4.3. Theorem. C(X) is metrizable iff X is hemicompact.

Proof: [2; Theorems 7 and 8].

’ ’

4.4. Theorem. C(X) is complete and metrizable iff X is a hemi-
compact k-space.

Proof: [55; Theorem 2].

4.5. Theorem. C(X) is complete iff X is a kR—space.

Proof: [55; Theorem 1].

The following two theorems were proved independently by Nachbin

and Shirota in [43] and [51].
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L 4.6. ¢t Theorem. C(X) is bornological 1iff X is realcompact
%%' -
R 4.7. Theorem. C(X) is barrelled 1ff X is a u-space.
T
%g. Additional theorems of this type may be found in [55].
‘?kf. It should be pointed out that theorems 4.6 and 4.7 remain true

when the terms bornological and barrelled are replaced by their locally

m-convex analogues. The following definitions are due to Warner [54].

.
7

I e, £ Ty Y Iy 06

5

4.8, Definition. Let A be an LMC algebra.

L S
(a) A barrel V in A is an m-barrel if VWC V. A is said to be

-~
Ay I

m-barrelled if every m-barrel is in T(A).
‘\ -
(b) A subset V' of A is said to be i-bounded if AV 1is contained E

in a bounded idempotent subset of A for some X € €. A is said to be

i-bornological if everv circled, m-convex and absorbing subset of A

5 which absorbs every i-bounded subset of A is in ﬁQ(A).

(4.6)' Theorem. C(X) is i-bornological iff X is realcompact

Proof: [54; Theorem 5].
4 <

Since C(X) is m-barrelled iff it is barrelled the following is

immediate.
A

-

(4.7)' Theorem. C(X) 1s m-barrelled iff X is a u-space
[ od

EY

..
%
&
£
E
{
y
L

f g
;

The following has béen proved by Morris and Wulbert [42; Theorem 2.17.
/

i 4.9. Theorem. Every closed ideal of C(X) is of the form

I, = {f : f ¢ C(X) and f(F) ={0}} for some closed F C X.

et

TSy
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4.10. Corollary. Every maximal closed ideal of C(X) is of

the form 1 for some x ¢ X.
{x}

It is well kpown [35; Lemma 5, p. 116] that the evaluation
map £ : X »M[C(X)], defined by E(x) = a s is a homeomorphism into.
By Corollary 4.10 it follows that this map is onto, hence

X = M[C(X)] for each completely regular space X.

x

4.11. Proposition. Let K be a compact subset of X. Then every

continuous function f : K - € can be extended to a continuocus bounded
function f' : X + €. In particular the restriction map ¢ : C(X) - C(K)

is onto. ' -

.Proof: Since K is a closed subset of 8X, the Stone~Cech
compactification of X, f can be extended to a continuous function on BX by
the Tletze extension theorem. By restricting to X the desired function

is obtained.

4.12. Proposition. Let A be a *-subalgebra of C(X) which separates

the points of X and contains the constant functions. Then A is dense in
C(X) (with the compact open topology).

Proof: [39; Proposition 6.8].

4,13. Remark. In view of Theorem 4.5, kR—spaces form a very

important subclass of completely regular spaces. As is pointed out by

HuZek [34], to each completely regular space there is associated a kR—space
LN

in a certain unique way. Given a completely regular space X, let kX be

the k-space associated with X [35; p. 241 (K)] and let ka be the



o
e s,

19

complete regularization of kX [27; Satz 1.3.3]. Then kRX is a

°kR~space with the same underlying set as X and whose topology is the

weak topology generated by all the k-continuous complex valued functions
on 'X. Clearly, X and kRX have the same compact sets. Thus C(X) can be
embedded (topologically and algebraically) into C(kRX), the embedding
being dense by Proposition 4.12. Since C(kRX) is complete it follows

that C{X) = ClkpX) .

5. Categories.

The following two definitions are essentially those of [41;

pages 1 and 49].

5.1. Definition. A category C is a classé}f together "with a

classm which is a disjoint union of the form

CI= U e
(4,8« O @
e
where%gf;h {A,B] is a set. Furthermore, for each triple (A,B,C) of
members of‘é}there is a function from [A,B] x [B,C] to [A,C]. The image
of the pair (m,n) under the function is called the composition of m and

n, and is denoted by n o m. The composition functions are subject to
. . 1

two axioms!

(1) (mon) o2 =mol(n o &), whenever the compositions make

sense. <&

(2) For each A in éythete exists an element e, ¢ [A,A] such

A

that e,om=m and n o e, = m whenever the compositions make sense.

L R T oo A U T PN T T

R

ey

- b giat

o b
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The members of Ca,are called objects and the members of qYLare

l;ﬁ called morphisms. The statement "m ¢ [A,B]" is representeg symbolically

*n
2%
et

as m : A » B.

5.2. Definition. Let C and K be categories. A functor

F : C » K is an assignment of an object F(A) in K to each object A in C
(v

and a morphism F(m) : F(A) » F(B) in K to each morphismm : A ~ "B in c,

subject to the following conditions:

(1) If m o n is defined in C, then F(m o n) = F(m) o F(n)

(2) For each A in C, F(eA) = eF(A)'

1f F(m) : F(B) -» F(A) whenever m:A + B and F(m ¢ n) = F(n) o F(m),
then F 1s called a contravariant functor.
A category C is said to be small if its class of objects is

’ <
V4

actually a set. Small categories will be denoted by I and its objects by

o~
i'Y 3
> - |‘ ¥ i
s oo,
A e Y - R . )
5 ‘,w‘hnjﬁ(.aﬁh]-MNV‘#!"?”M:’a!WfWN‘MmM T . e

1,9.

s
e a o,

K3
Y

EORI 5.3. Definition. Let C be a category and let I be a small

category. An I-diagram aver C is a functor D : I+ C. A lower bound for

the diagram D is a pair (L, {f ) where L i3 an object of C and

i}isI

{fi : L » D(i)}1 is a set of morphisms in C such that for aay
€

1
o morphism m : i - j;in I, p(m) o fi = fj'
o
ﬁ{- g A lower bound (L, {fi})i c I said to be a limit of D, written as

1 lim D, if for any lower bound (L', {gi})i of D there exists a unique

¢l

& morphism £ : L' » L in C such ﬁhat f, o f =g, for each 1 in I.

i
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4

5.4. Definftion. A category C is said to be I-complete if
every I-diagram over C has a limit. C is said to be complete if it is

I-complete for every small category I.

Dually one defines an upper bound of a dfagram, colimit and

»

cocompleteness. A colimit of a diagram D is denoted by colim D.

-

When I is actually a down directed (up directed) partially

ordered set, then an I diagram D is called an inductive (projective)

system and colim D (1im D) is called an inductive {projective) limit,

and is denoted by colim D (lim D), respectively.
— O

N,
T
: “~» ' . * -
L «
I T R N

When I is discrete, i.e. when the only morphisms in I are the

identities then 1lim D (colim D) is called a product (coproduct) and is

denoted by 1’T D (1) (J_L D(i)), respectively.
1el iel

When I has exactly two objects i and j and exactly two

morphisms my and m, in [1,j] then 1lim D (colim D) is called an equalizer

(coequalizer), respectively.

PR T 3

5.5. Theorem. Let C be a category. The following.statements

are equivalent.

(1) C 1is complete

b (2) C has prodﬁcts and equalizers.

;;*'E;}~ Proof: [28; Theorem 23.8].

Dually, C is cocomplete iff C has coproducts. and coequalizers.
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G
5.6. Definition. Let C K be two functors. F is said to
retinirlot R
be a left adjoint of G, and G a right adjoint of F, if there exists a

~

natural set isomorphism

nA B - [FA, B] —— [A, GB] for each A in C and B in K.
, 5

If F and G are contravariant, then F and G are said to be adjoint -

on the right if there exists a natural set isomorphism

n B ¢ [A, GB] — [B, FA] for each A in C and B in K.

A,
5.7. Theorem. Let F be a left adjoint of G.
Then: (1) F preserves limits, |
(2) G preserves colimits.
Proof: [28; Theorem 27.7]
For contravariant functors the above theorem can be formulated as
follows:

5.8. Theorem. Let F and G be adjoint on the right. Then F

and G transform colimits into limits.

-

5.9. Definition. The categories C and K are said to be dualﬁi

F
m—
equivalent if there exist contravariant functors C K and natural
G

isomorphisms n, : A » GF(A), ep: B FG(B), for each A in C and B in K.

For example, the category of compact Hausdorff spaces and
continuous maps is dually equivalent to the category of commitative B*

algebras with identity and unitary algebra homomorphisms.

.
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5.10. Definition. Let C be a subcategory of K. Then- C is said
- hast -_ -

to be a coreflective (reflective) subcategory of K if the inclusion

functor Inc : C-—>K has a right adjoint (left adjoint), respectively.

Equivalently, C is a coreflective subcategory of K if to each

A ¢ K there exist A' ¢ C and f : A'— A in K having the following
property: given any B in C and g : B—A in K there exists a unique
h : B—A' in C such that g = £ o h. Dually for a reflective sub-

category.

For example the category of compact Hausdorff spaces and

continuous maps is a reflective subcategory of the category of completely

regular spaces and continuous maps. Whereas, k-spaces form a coreflective
subcategory of Hausdorff spaces. From Remark 4.13, it follows directly

that kR—spaces form a coreflective subcategory of completely regular

~

spaces.

Further examples of the concepts mentioned in this section may be

found in [28].
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CHAPTER I

B(oC) and Br(oc) Algebras

In this chapter an analogue of B-completeness 1s defined for LMC
algebras. The central result is a characterization of those completely

! .
regular spaces X for which C(X) is a Br(lj) and a B(L) algebra, respectively.

1. Definitions and Elementary Properties.

Let¢1: be the class of all commutative LMC algebras. The following

definition is analogous to the definitions of B(fz) spaces [31] and B(Cla

groups [32].

1.1. Definition. An algebra A in‘lz is said to be a B(L) algébra
if every continuous and almost open homomorphism from A onto any algebra B

in CC is open; a Br(oC) algebra if every one-to-one homomorphism with the

above properties 1s open.

From the definition it follows that every B(i:) algebra is a Br(Jl)
algebra. Also, every élgebra A hloc,which is B-complete (Br—complete) as

a locally convex space is a BQ{Z) algebra (Br(Jl) algebra). Thus the

"following is immediate.

1.2. Theorem. Every algebra in o[! which is complete and metrizable

is a B(aC) algebra. 1In particular every commutative Banach algebra is a

B (OC) algébra .

24




25

1.3. Examples. (a) ([0,1) is a commutative Banach algebra and

therefore a B(Jl) algebra.

{(b) C(R) is complete and metrizable by theorem 0; 4.4 and

therefore a B({) algebra.

5

»

(¢) For any set I, QI is B-complete as a locally .convex space

[49; p.162, Ex. 3] and therefore a B(J:) algebra. Whenever I 1is

o > [ <o, ) - 2
R e e O e 2

l~.

uncountable, GI is not metrizable.

PP A

1.4. Proposition. (a) Let A be a B(JL) algebra and let

$: A > B, B¢ Jj, be a continuous, onto and almost open homomorphism. Then

® B is also a B(L) algebra.

(b) Let A be a Br(J:) algebra and let ¢ be as above and one-to-one.

¥..« % Then B is a Br(ij) algebra.

& b
\ E Proof: (a) Let ¥ : B+C, C ¢ continuous, onto, and

\ almost open homomorphism. Since A is a B(J:) algebra it follows from

Fogs 3 the definition that ¢ is open, and hence ¥ o ¢ is continuous and almost
;# 1 open. Again, since A is a B(&l) algebra, ¥ o ¢ 1is open and since ¢ is
& 8 .

N open it follows that Y is also open. Thus B is a B(aC) algebra. The

::5 proof of (b) is similar.

1.5. Corollary. Let A be a B(L) algebra and let I be a closed

fdeal. Then A/I is a B(J:) algebra.

Proof: This is a particular case of (a) above.

el AL K S M e A AN !
A - N R R
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In section 3 a characterization is obtained of those completely
regular spaces X for which C(X) is a Br(J:) algebra and a B(L) algebra,
respectively. This characterization produces a large class of B(JL)

algebras which are not B-complete as locally convex spaces.

-

2. An adaptation of criterion of L.J. Sulley.

In [52] Sulley found criteria for dense subgroups of Abelian B(QL)

and BI(CL) groups to inherit the respective properties. 2.1 - 2.6 are

-~

adaptations of Sulley's criteria for B(OC) and Br(J:) algebras. Some of

these results will be used in section 3 for the proof of the main theorem.

2.1. Lemma. Let A be in <i: and let B be a dense subalgebra.

Let I be a closed ideal of A and let ¢: A > A/I be the quotient map. Then

»

the restriction of ¢, ¢_: B+ ¢(B), is continuous and almost open. Further-

B

more, ¢_ 1s open 1iff I N B is dense in I.

B
Proof: The continuity of ¢B follows from the continuity of ¢
To see that ¢B is almost open let V ¢ Wl(B). Since B is dense in A it

follows that cl, (V) e MN). Thus cl (b5 () = cZA/I(¢(V))'D¢>(cZA(V)),

AlL
the latter peing in 'n(A/I) since ¢ 1s open. Since ¢(CZA(V)) Nné+@®B C

cZA/I(¢B(V)) n‘¢(B) = cZ¢(B)(¢B(V)) it follows that ol )(¢B(V)) is 1in

(B
M (4 (B)) and hence ¢p is almost open.

Next suppose that ¢B is open. To show that I = cZA(I N B) it

suffices to show that I C (I N B) + U for each U in Y](A). Let U be in M(A).

P . TR e e e ) o e
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u

Then there exists V ¢ Y| (A) such that V = -V and V + V € U. Since dp

is open ¢, (VA B) = ¢ (VA B) is in M(¢(B)). This implies that there

v |4 EPRY Ry
ool y PR -
BEL RN TN LN s E-S N S Y

exists W ¢ "n (A/I) such that WN¢$(B)C ¢(V N B). By applying qb_l to

both sides the following is obtained:

v

W) W N B+ C (VAB) + 1,

Let x ¢ I. Since B is dense in A, there exists b ¢ B such that

bex+ (VAN ¢)'1(w)). This implies that

> N e N T ot e
AP, FasE e e T e

1

(i1) b-—xeVNg (W),

Also, b - x ¢ ¢'1(w) NB+IC (VAB) +1Iby (). Thus there exist

ceVABand y ¢ T such that b - x =c¢c +y. Nowx = (b - ¢c) - y where

b—c¢c¢ InBand‘—y=c— (b-x) egV-V=V+VU. Hence
x e (INB) +U. Since x and U were arbitrarity chosen it follows that

IC cZA(I N B). Thus I N B is dense in I.

Conversely, suppose that TN B is dense in I. Let U be in 'n(A),
Then there exist‘sVe’n‘(A) such that V = -V and V + V € U. DNow o

I=cZA(InB)C(InB) + V. It will be shown that VN (B + I) ¢ (UNB) + 1.

Let v eV n (B+ I). Thenv =">0+ x for somebeBander.\Since

. - PR e A A ’ . 5 -
. . Y N s
Y MR SR A A g P L VDRSS P el i, SONE RSB RPN T S T AT

X e (IAB) +V there exist y ¢ 1IN B and w ¢ V such that x = y + w.

A AN

Thus v =b +x=b + (y+w) = (b+y) +w. Noww=x-ye I, b+yeB

and b+ y=v-wegV-V=V+VCU. Thusv=1(b+y)+we (BNU +1

5 and since V was arbitrarily chosen it follows that VN (B + I) C (U N B) + I.
. Hence ¢(V)n¢(B)C ¢(U N B) = ¢B(U N B). Since every member of \(B)

& contains U N B for some U in 'Y\(A) it follows that ¢B is open.

O
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2.2. Theorem. Let A be a complete algebra in J: and let B be

a dense subalgebra. N\

(a) 1If A is a B(L) algebra and I N B is dense in I for each

. T . v 5.
Aaerr it iriminlon's Loy yu o BT

closed ideal I of A, then B is a B(L) algebra.

N
T,
Laats

(b) 1f A is a Br(J:) algebra and B has nonzero intersection with

every nonzero closed ideal of A, then B is a Br(Jl) algebra.

Proof: (a) Let ¢ : B> C, C € J:, be a continuous, onto and
almost open homomorphism. Since ¢ is uniformly continuous, it extends
N
to a continuous homomorphism ¢ : A -» 8, o being the completion of C.

Let U € M(A). Then cly $(2elxb(U A B) = clylel W N B)].

Since ¢.is almost open, cZC ¢(UNB) e Wl(C), hence its closure in ¢

is in 71(8). Thus 3 is almost open and since A is a B(&K ) algebra it

~ "\
follows that ¢ : A >~ ¢(A) is open.

ker (3) and let ¥ : A - A/I be the quotient map. By

]

Let 1
hypothesis, I N B is dense in I and so by Lemma 2.1, WB : B> ¥(B) is
open. Let ¥' : A/I » $(A) be the isomorphism such that Y'o ¥ = 3 .

Then ¢ = ¥' o WB is open onto ¥' o TB(B) = g(B) = C. Thus B is a B(J:)

algebra.

(b) Let ¢, C, 3 and ¢ be as in (a) with the additional assumption

Tt 2y
s

o
et
o

1]

that ¢ is one-to-one. It follows as in (a) that 3 T A $(A) is almost open.

ww,
‘

v o

P,
ST
M s
g
&)

A
: €
* ’*W%‘x’\,

}{ Now ker (¢) is a closed ideal and B /) ker (3) = ker (6) = {0}, By

. ) ",
hypothesis ker ($) = {0}. Since A is a Br(J:) algebra, ¢ is open; hence

¢ is open onto ¢(B) = C. Thus B is a Br(J:) algebra.
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2.3. Theorem. Let B be a dense subalgebra of‘A € 43.

(a) If B is a B(L) algebra, then I N B is dense in I for each
closed ideal I of A.
(b) If B is a Br(Jj) algebra, then B has nonzero intersection with

every closed nonzero ideal of A.

Proof: Let I be a closed ideal of A and let ¢ and ¢B Pe defined
as in Lemma 2.1. By this Lemma ¢B is continuous and al#ost open.

(a) If B is a B(L) algebra then ¢B is open and so by Lemma 2.1,
I f; B is dense in I.

(b) If I NB = {0} then ¢B is one-to-one and hence open since

B is a BrQ{:) algebra. Thus again by Lemma 2.1, {0} = I N B is dense in I.
But this implies that I = {0} since A is Hausdorff. Therefore, B has nén-

zero intersection with every closed nonzero ideal of A.

2.4. Theorem. Let B be a dense subalgebra of A ¢ J:.
. (a) 1If B is a_B(oC) algebra, then so is A.

(b) If B is a Br(dC) algebra, then so is A.

i

Proof: (a) Let ¢ : A =+ C be a continuous, onto and almost open
homomorphism. Let ¢B : B+ ¢(B) be the restriction of ¢ . It will first

\
be shown that ¢B is almost open.

Let V. be in q\(B). Then there exists U ¢ T(A) such that U is
open and UN B C V. Since U is open and B is dense, cZA(U N B) D U.
Thus cly $5(V) = ely $(V) D el, $(UNB) D $(c2,(UN B)) D (V). So

cZC ¢(U} C cZC ¢B(V), the former being in qq(c) since ¢ is almost open.
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5 i
i Thus cZC ¢B(V) £ fh(C) and consequently czcb(B) ® B V) = cZC ¢B(V)(\¢(B)
¢ :

%€ 'n(¢>(B)). Thus sz is almost open; and since B is a Br(OC) algebra,

4 .
-4 ¢y 1s open onto ¢(B).

3
e gh e

To show that ¢ is open, let U ¢ ’h(A). Then there exists

S ot

V € ')'](A) such that V + V C U. Since ¢)B is open there exists W ¢ 'Y[(C)
such that W is open and W N ¢(B) C an(V N B) C $(V). This implies that
¢'1(w) NnBcC ¢'1(¢(V)) and so cZA[¢‘1(W) N B] C ¢>'1(¢(v))+ V. Since

¢>_-1(W) is open in A and B is dense in A, it follows that

“.
b i BT e, 3 B

7L o G el 14750 N B1 € $71@(W)) + V. Since % 1s onto

WC (V) + ¢(V) C ¢$(U); hence ¢ is open. Thus, A is a B(L) algebra.

(b) The proof is identical with (a), with certain simplifications

-s8ince ¢ is one-to-one. .

.

2.5. Corollary: Let B be a dense subalgebra of A ¢ £
(a) If A is a B(&) algebra and I N B 1is dense in I for each closed

hd

ideal I of A, then B is a B(&) algebra. ’
(b) If A is a Br (L) algebra and B has nonzero intersection with

..
every closed nonzero ideal of A, then B is a Br(cf) algebra.

[}

Proof: (a) Let A be a B(J{) algebra. By Theorem 2.4 (a) it

T ————ead B W

follows that K_is also a B(‘f) algebra. Let I be a closed ideal of ?(

P
2

o S e
i "’
s

Then, by Theorem 2.3 (a) I N A is dense in I. By our hypothesis (I N A) N B

:
%
DR
e
N
i
.
Sy
&
3
NG
i
A
R
wgh ¥
Loh =
3
A

o
%
=

N %

g 3 .

& is dense in I N A. Consequently IN B = (IN A) N B is dense in I, and so by

g Theorem 2.2 (a) B is a B({L) algebra.

:'; (b) The proof is -analogous with (a).

e E
e i
Ei. The following theorem summarizes the preceding results. _
i\{_ =
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2.6. Theorem. Let B be a dense subalgebra of A ¢ J: .

(a) B is a B(L) algebra iff A is a B(L) algebra and I N B is
dense in I for each closed ideal T of A.

(b) B is a Br(J:) algebra iff A is a Br(il) algebra and B

has nonzero intersection with every nonzero closed ideal of A.

B¢yt -« g~y -

This section is concluded with some applications of the above

3

criterion.

2.7. Definition. Let X be a completely regular space. Then C*(X)

is the 7&g¢bra of all bounded continuous complex-valued functions on X with *

the ref&(izi/pompact—open topology from C(X); CP(X) is C(X) with the

topology of pointwise convergence.

2.8. Proposition (a) If C(X) is‘'a B(L) algebra, then so is C*(X). -

(b) If C(X) is a Br(J:) algebra, then so 1is C*(X).

Proof: (a) In view of Prop. 0; 4.12, it follows that C*(X) is
dense in C(X). Let I be a closed nonzero ideal of C(X). By Theorem O;

for some proper closed subset F of X. Let f € I, and let

4.9, I = F

IF
N(f,X, £) be a neighb6rhood of f. Let X\ = sup |£(x)]| and let
xeK

l’
W={xeX: |[f(x)] >1+1)}. Then W is closed and WN K = #. Since X {is
completely regular there exists g € C(X) such that 0 < g <1, g(K) = {1}

and g(W) = {0}. Then g-f ¢ C*X(X) N IF and g f ¢ N(f; X, §). Thus C*(X) N IF

is dense in I

P and so by Corollary 2.5 (a) C*(X) is a B(J:) algebra.
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(b) follows from Corollary 2.5 (b).
\ .
The converse of the above proposition follows from Theorem 2.4.

2.9. Proposition CP(X) is a Br(&:) algebra iff X is discrete.

4
Proof: 1If X is discrete then CP(X) = ¢X which is B-complete by

{49; p. 162, Ex. 3]. 1In particular Cp(X) is a Br(iz) algebra.
o Conversely let CP(X) be a Br(J:f algebra. Suppose X is not
discrete. Thén there exists an element x ¢ X such that § = f\\ {x} 1is

dense in X. It is well known that the completion of Cp(X) is ¢X. Let 1

be the set of all functions in ¢X which are zero on S. Then I is a nonzero

closed ideal of GX and Cp(X) NI = 1{0}. This is a contradiction, in view

of Theorem 2.3. Therefore X is discrete.

The following examples show that a B(L) algebra need not be

complete and that a normed algebra need not be a Br(J:) algebra. ,

2.10. Examples. (a) As was pointed out in Example 1.3 (b),
~
C(R) is a B(L) algebra. By Proposition 2.8, C*( R) with the compact-

open topology is a B(J) algebra which is not complete.

(b) The subalgebra P of all polynomials in C[0O,1] is a noxmed
algebra under the supremum norm which is not a B(L) algebra. To see

this, let I be the closed ideal of C[0,l] consisting of all functions

which are zero on the closed interval [%, 341. Then I NP = {0}.

Since P is dense in C[0,1] it follows by Theorem 2.3 that P is not a

Br(J:) algebra. .

Some further applications of Sulley's criterion occur in the

<

next section.
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3. Necessary and Sufficient conditions for C(X) to be a B(J:) algebra.

Theorem 3.2 and the first part of Theorem 3.5 were proved by Ptak

(46; Theorems 6.7 and 6.4]. The proofs are included for completeness and

]
b
'

also because the original paper is in Russian. Thanks are due to

Dr. M. Novotny for his indispensable help with the translation.

-
i

3.1. Defiﬁition. Let X>be a completely regular space and let F be

a closed‘subset. CF(X) is the subalgebra of C(F) consisting of all functions

\\

which are restrictions of members of C(X).. Unless otherwise specified, it

is assumed that CF(X) has the relative compact-open topology from C(F).

3.2. Theorem. Let F be a closed subspace of X. Then the restriction

map ¢ : C(X) » CF(X) is continuous and open.

Proof: The continuity of ¢ is clear. To show that ¢ is open,
let K be a compact subset of X and let £ > 0. Then N(K, £) = {f € C(X):
lf(X)If_E b’x e K} is _a basic closed neighborhood of zero in C(X).

Choose 0 < & < £ and let V= {f ¢ C(F) : [f(x)] <8V x ¢ KNF} nC(X).
Then V is a neighborhood of zero in CF(X). It will be shown that
VC $(N(K, &)).

Let f be in V. Then f = g|F for some g € C(X). Let H= {x e K:
lg(x)l 2 &}. Then H is a compact“subset of Xand HN F = §. Since X is
completely regular there exists h € C(X) such that O <h <1, h(F) = {1}
and h(H) = {0}. Let g' = gh ¢ C(X). Then, for each x € F,

g'(x) = g(x) h(x) = g(x); and so g'lF = glF = f, To show that g'e N(K, &),
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let x ¢ K. If x ¢ H, then [g(x)| < & and so lg' (x)] < &; if x ¢ H,
then h(x) = 0 and g'(x) = 0. Hence, g" ¢ N(K, £) and 4(g*) = g'|F = £.
Consequently, VC ¢(N(K, £)), thus showing that ¢ is open.

. “ =

It should be pointed out that CF(X) is isomorphic to C(X)/IF; i

and for compact K C X, CK(X) = C(K) by Theorem 0; 4.11.

3.3. Lemma. Let Au be in J: . Then the following are equivalent:

(a) A, is a Br(J:) algebra.
(b) For any Hausdorff locally m-convex topology v on A, if the

identity map i : Au > Av is continuous and almost open, then u = v.

-Proof: (a) = (b) follows from the definition of a Br(J:) algebra.
(b) =D (a) Let ¢ : Au + B, B ¢ J: be a continuous, ‘one-to-

one,onto and almost open homomorphism. Let v be the topology generated on
A by {¢—1(V) : Ve ’n(B)}. Then v is a Hausdorff léhally m-convex
topology such that v ¢ u. Let i: Au > Av be the identity map, and
o' Av + B the isomorphism which coincides with ¢ pointwisey it follows
that ¢' o0 1 = ¢. Since ¢ is almost open and ¢' ii/égggj i is almost open.
By the hypothesis, i is open and hence ¢ is open. Thus, A, 1s a Br(J:)

algebra. *

3.4. Lemma. Let the identity map 1 : C(X) - C(X)u be almost open.

If oy (evaluation at x) is u-continuous for each x ¢ X, then i is open.

Proof: Since oy is u-continuous for each x ¢ X, N({x}, £) is

u-closed for each x ¢ X and each ¢ > 0. Consequently N(K, &) = (\ N({x}, &)
xekK
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is u-closed for each compact K C X and each £ > 0. Since i is almost

open, N(K, &) = cZugi(N(K, £)) 1s a u-neighborhood of zero for each

compact K € X and each £ > 0; hence i is open.

3.5. Theorem. C(X) is a Br(J:) algebra iff every dense and

k-closed subget of X coincides with X.%

Proof: Suppose that C(X) is a Br(J:) algebra. Let S be a dense
and k-closed subset of X. It will be shown that § = X.

Define a topology u on C(X) by taking sets of the form N(KN S, &),
where K is a compact subset of X and § > 0, as a basis for the u-neighborhoods
of zero. Since S is dense u is Hausdorff; since each N(KN S, £) is m~convex,
u is m—convex. Consequently C(X)u is in Jc. Since N(K, E)CN(K N S, &),

tbe identify map i : C(X) ~» C(X)u is continuous. It will be shown that

i is almost open by showing that N(K NS, %) C cZU(N(K, £)).

To.prove the above inclusion it suffices to show that for each

E e

feNKANS, L£) and each u-neighborhood V of f, V A N(K, £) # 8. So,
" [

let f e N(K NS, %) and let N(f; HN S,8) be a basic u-neighborhood of £,

-&

H being a compact subset of X and 6§ > 0. Let L = {x: x € K and £ (x) | > £},
Tﬁen, L is a compact subset of Kand LN S = §. Since S is k-closed,
(HNn K) n S is compact; and since L N [MUK)N S} = P, there exists, by
t?e‘complete regularity of X, a function g ¢ C(X) such that 0 < g < 1,
g=0onL,and g =1on (HUK)NS. Let he=fgeCX). IfxeHNS,
then g(x) = 1 and so h(x) = f(x). Thus h ¢ N(f; HNS, 4.

It remains to show that.h € N(K, £). Let x € K; 1f x ¢ L, then

g(x) = 0 and hence h(x) = 0; if x & L then'lf(x)l < £ and hence Ih(x)l < E.

El
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Thus, h € N(K, £) A N(f, HN S, &), and since f, H and § vere arbitrarily

chosen it follows that N(K N S,%&) C'cZu N(K, £). This says that

i1 :C(X) ~» C(X)u is almost open. Since C(X) is a Br(ll) algebra, 1 is open.

Now it readily follows that S = X. For, let x ¢ X. Since i is

exist a compact KC X and £ > 0 such that N(K NS, &) € N({x}, 1). By
the complete regularity of X it immediately follows that x ¢ KNS CS§S,

Hence, S = X.

Conversely, suppose that every dense and k-closed subset of X

coincides with X. Let the identity map i : C(X) - C(X)u, C(X)u £ J: , be
continuous and almost open. In view of Lemma 3.4, to show that i is open %%\

suffices to show that a is u-continuous for each x ¢ X. It will be shown

that the set {x : x ¢ X and ax is u-continuous} is a dense and k~-closed

subset of X.

Since u is a locally m-convex topology, it is generated by a set

{pj] e of submultiplicative seminorms. Using the fact that i is

almost open we will first show that actually u is generated by a

subset of {pK} To see this, let p ¢ {pj} Since p is

KC X' jeJ’

continuous with respect to the compact-open topology there exist a

compact K € X and £ > O such that N(K,E) € N(p, 1) = {f ¢ C(X) : p(f) < 1}.

[Note: N(K, £) need not be a u-neighborhood of zero.] This implies that

IK(: ker (p) = I, say. Since I is a closed ideal in C(X);, it 1s also

closed in C(X), hence by Theorem 0; 4.9 I = Iy for some closed H C X.

I
oo
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Since IKC' I = it follows that H € K and so H is compact. To see that

IH’

Py is u-continuous, consider the following diagram:

i b4
C(X) ~— C(X)u—-> C(H)u

C(H)

where ¢ and ¥ are the quotient maps and i* is the unique continuous
homomorphism such that i* o ¢ = ¥ 0o 1. Since IH is u-closed,

C(H)u = C(X)u/IH is Hausdorff. By proposition O; '4.11 ¢ and ¥ are onto.
It follows that i* is continuous, one-to-one, onto and almost open since 1

is such and since ¢ and Y are open. Since C(H) is a Banach algebra it is

a B(¢C) algebra, hence i* is open. Consequently:

(a) Py is u~ continuous.

Also, since i* is continuous, it follows that i* o ¢(N(pH, £)) ¢ Y(N(p, 1))

for some £ > 0. Sincje IH = ker (pH) = ker(p) = ker (¢) = ker (¥) it

follows that .

(b) N(PH, £) € N(p, L.

Combining (a) and (b) and recalling that p was arbitrarily chosen, we can con-

clude that the topology u is generated by a subset {pH} of {px} KX

Let S = U{H ¢: HCX, H compact, and Py is u-continuous}

= U (H: HC X and N(H, 1) is a u-neighborhood of zero}.

e iR . o L]
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To see that S = {x : x ¢ X and a is u-continuous}, let x ¢ S. By
the definition of S there exists a compact subset H of/X such that

x ¢ H and N(H, 1) is a u-neighborhood of zero. Now N(H, 1) € N({x}, 1)
is u-neighborh?od of zero, hence a is u-continuous. Iﬁ/&x is u-

u-continuous then ctlearly x € S. Hence equality holds.

Let S = cl,(8) and suppose there exists x ¢ X\'S . By the
complete regularity of X there exists f € C(X) such that f(x) =1
and £(8) = {0}. Since u is a Hausdorff topology which is generated by
a subset of {pK} K Cx° there exists a compact H C X such that p, is
u-continuous and pH (f) # 0. But since pH is u-continuous H € § and

-
so pH(f) = 0. This contradiction shows that S = X.

To see that S i; k-closed, let K be a compact subset o% X.
Since 1 is almost open, cZu N(K, 1) is a u—neiéhborhood of 0. Since
a, i1s u-continuous for each x ¢ S N(K N S, 1) is u-closed. Thus
clu N(K, 1)C NKNsS, I) = N(KN S, 1), and so the latter is also a
u-neighborhood of 0. Hence, by the definition of s, KNS cs.
Since m C K, it follows that K NS = KA S is clos,ed“. Thus, S is a
dense and k-closed subset of X, and by the hypothesis § = X. ©So o is

u-continuous for each x ¢ X, hence by Lemma 3.4 1 is open.

In view of Lemma 3.3. it follows that C(X) is a Br(¢C) algebra.

From the above theorem it follows that if X 1s a k—spéce then C(X)

is a Br(A:) algebra. An example in section 4 shows that the converse is

false.

Ta¥
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In order to simplify the proof of the next theorem, the following

two lemmas are proved first. h =

3.6. Lemma. Let A ¢ £ . Then A is a B({ ) algebra iff A/I is

.
ey YIS
wd Tt

a Br(oC) algebra for each closed ideal I of A.

Proof: If A is a B(L) algebra, then A/I is a B({L) algebra, in

particular a Br(‘C) algebra, for each closed ideal I of A, by Corollary 1.5.

o Conversely, suppose that A/I is a Br(oC) algebra for each closed

ideal T of A. Let ¢ : A > B, B ¢ oC, be a continuous, onto, and almost

4
P
.‘?:(
3
d
&
3
a
%
%
R
§
.8
.}r N
Y
"5
h A
%
&

8 open homomorphism. Then I = ker (¢) is a closed ideal of A.

Y Let ¥ : A ~ A/I be the quotient map, and let ¢' : A/1 -~ B be the unique.

continucus, one-to-one and onto houTO‘nTo/rphism such that ¢ = ¢' o V¥,

s .
S, ",‘: BTN

Since ¥ is open and ¢ is almost open, it follows that ¢' is almost open.

By the hypothesis, ¢' is open. Hence, ¢ = ¢' o ¥ is open, and A is a

B(OC ) algebra.
. .

3.7, Lemma. Let F be a closed subset of X. Then C(F) is a

Br(oC) algebra iff CF(X) is a Br(‘f) algebra.

Proof: Suppose CF(X) is a Br<°C) algebra. In view of Theorem O;

4.12 CF(X) is dense in C(F), thus by Theorem 2.4 (b) it follows that

PR YA N ey b WA A AN AN
1 * T 4

C(F) is also a Br(‘£) algebra.

Conversely, suppose C(F) is a Br(°C) algebra. Let I be a closed

nonzero ideal of C(F). By Theorem 0; 4.9, I = IG for some closed subset

GC F. Let x ¢ P\G. Since X is completely regular there exists

£ € C(X) such that f£(x) = 1 and £(6) = {0}. Then 0 % f|F ¢ CF(X) N 1. '

CEY
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By Corollary 2.5 (b) it follows that CF(X) is a Br(JI) algebra.

3.8. Theorem. C(X) is a B(d) algebra iff X is a k-space.

Proof: Suppose C(X) is a B({) algebra. Let S be a k-closed
subset of X. Then S is dense and k-closed in S = cZX(S). By Theorem 3.2,
the restriction map ¢ : C(X)-’Cg(x) is continuous, open and onto.
Hence, by Proposition 1.4 (a), C§(X) is also a B(d) algebra, in particular

a Br(J:) algebra. By Lemma 3.7, it follows that C(S) is also a Br(J:)

algebra. Since S is a dense and k-closed subspace of S, by Theorem 3.5

S=75. Thus X is a k-space.

Conversely, suppose that X is a k-space. Let I be a closed ideal .
of C(X). By Theorem 0; 4.9, I = IF for some closed F € X. Since k-spaces
are closed hereditary, F is also a k-space; hence, by Tﬁeorem 3.5, C(¥F)
is a Br(J:) algebra. By Lemma 3.7, CF(X) is also a Br(J:) algebra.

Thus, C(X)/I = C(X)/IF = CF(X) is a Br(J:) algebra. Since I was
arbitrarily chosen, it follows by Lemma 3.6 that C(X) is a B(l:) algebra.

Theorems 3.5 and 3.8 give rise to large classes of Br(lj) and
B(J?) algebras, respectively. Moreover, from the following proposition
which 1is igplicit in Ptak's paper [46], it follows that there is an

abundance of complete B(L) algebras which are not B-complete as locally

convex spaces.

AN

3.9. Proposition. If C(X) is B-complete, then X is a normal k-space.

Proof: That X is a k-space follows directly from Theorem 3.8.
Let F be a closed subspace of X. Then, by Theorem 3.2, the restriction

map ¢ : C(X)-»CF(X) is continuous, open and onto. By Proposition 0; 2.10

o
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CF(X) is also B-complete, in particular complete. Since CF(X) is dense

in C(F), CF(X) = C(F). Hence, by Urysohn's lemma X is normal.

As an example of a complete\B(J:) algebra which is not
B~complete as a locally convex space, let X be a.k-space which is not
normal, in‘barticular let X be the Tychonoff plank. Then by Theorems
0; 4.5 and 3.8, C(X) is a complete B(&:) algebra; but, by Proposition 3.9,

C(X) is not B-complete. "

4. Counterexamples. .

In [46; Theorem 6.17] Ptak gave an example, credited to M. Katétov,

’
S

of a topological space X such that C(X) is complete but n?t Br-complete.
This also provides an example of a complete LMC algebra whgch is not a
Br(JZ) algebra. Since this space is used very frequently %or counter-
examples, a complete proof of its construction is given.

The following two lemmas are stated hut not proved in [46; Theorem

6.17]. The proof of Lemma 4.21is due to E. Michael [40; Lemma 2.1}.

4.1, Definition. A functiom f : Rz + IR (usual topology) is

said to be separately continuous if f|L is continuous for each vertical

.
or horizontal line L C IRZ.

4.2. Lemma. Let {(an, bn)}n . o be a strictly monotone sequence

in m? which converges to (a,b). Then there exists.a separately continuous
function f : mz + R such that f(a,b) = 0 and f(an, bn) = 1 for each
ne N.

2
Proof. Let Y = R \\{(a,b)}, and let A = {(an’ bn)}n e N

»



S CI
LS
-
A Y
i gt
2

Al

4 42 -

L
>

3
¥ £ ' :
5 B = {(x Y : x = a or =b}. Si =
L {(x,y) ¢ y } nce (an’ bn) b e N is strictly

& 3 -
’;ﬁ i monotone and (an, bn) —» (a,b), A and B are disjoint closed subsets of Y. :
PR 1
£ : Since Y is normal, there is a continuous function g : Y — R such that

g & -g(A) = {1} and g(B) = {0)}. Extend g to a function f : R2—> R by )
; ¥ letting f(a,b) = 0. Then f is separately continuous at (a,b) and '
&

?} ; continuous elsewhere; and f(an, bn) = 1 for all n, while f(a,b) = O. -
b In the following lemma [m,n] denotes the greatest common divisor

‘ i -

:2 3 of m and n.

¢ £

|
3

N

1 4.3, Lemma. There exists a countable dense subset S of R
having the property that L NS is finite (possibly empty) for each
vertical or horizontal line L C iRZ. '

3 - Proof: For each m ¢ I, let

AR TR R s SR Gt A g R
. .

i S, = {(;ilj , %2) e R : i,j e 2, [i,m) = [1,m] = 1, |1] _f_mz and |j| ima]’

;: Let S = U § - It is clear that SN L is finite for each vertical and X
b me N ]
5% - horizontal line L C Rz. . =

A s
. ot il
g
SE

2
To see that S is dense, let V be any open subset of R . Since S

is symmetrical, it may be assumed that V has nonempty intersection with

ERe A Akt AP IRN
'

the interior of the first quadrant. Choose p, q € Q and £ > 0 such that

o

p >0, ¢ >0 and N((p,q), E) C V. Let p = % in reduced form. Choose

0 # k ¢ N such that

' (1) blk
1 1
‘(2)-11—;-< min{%,;,a}.

A

1
5 By the division algorithm, there exists n ¢ N such that q = n(l;zi) + r,
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e

k+1 +
It will be shown that (a Tk , nizkzl) e SNN((p,q), ) C V. -

¢

First: since blk, [ak + 1, bk] = 1; and since a < k,

(k)2 = b2k? > a b%k > ak + 1. Also, [p - I - |22 _ L&

Second: again, since blk, [nk + 1, b2k?] = 1; and

nk + 1 n n 1 1 1 1 £ £
la - Szl = I gz vr - gz -8 Is7 v g7 Som tymes 2 =

¥

Moreover, since q < k and E§§g-< q < k, it follows that nk < k(bk)2 < ak(bk)zf

This implies that nk + 1 < ak(bk)® + (bk)? = (ak + 1) (bk)2"< (bk)*, since

ak + 1 < (bk)°.

i

Bf combining the last two paragraphs, it follows that

€

+
(akbk o n%b;)i £ SNNWp,q), &) CV;

consequently S 1s dense in Rz.

!

4,4, Theorem. There exists a é%mpletely regular space X such

‘

that:
(a) Every k-continuous f: X +*R is continuous (i.e., X is a kR—space).
(b) X contains a:proper dense and k-closed subset.

s .
Proof: Let Ri be R°with the usual Euclidean topology and let :F

be the set of all separately continuous functions f : R& + R. Let v be

the weakest topology which makes every member of :y’continuous. Then Ri

is homeomorphic to a subspace of .r1_ Rf, and hence Ri is completely

fe:¥

T
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regular. Also, -
(1) v is finer than u.
(2) v and u coincide on each vertical and

<

horizontal line.

2
To show that Rv is the required space, the first step is to

prove the following statement:

(1) A set KZC:Ri is compact 1ff K is contained in the union of
finitely many vertical and horizontal closed line segments.

The "only 1f" part follows from the fact that each closed vertical
and horizontal line gegment is compact in Rv, hence also finite unions
thereof.

Conversely, suppose that K is v-compact. Then K is also u-compact,
hence closed and bounded }n Ri. Suppose that K is not contained in the

union of finitely many horizontal and vertical closed line segments.

Then there exists (a,b) € K and a strictly monotone sequence {(an,bn)}
: A : ' . nebl
in K such that (a , b ) » (a,b) in R .

n n u

0
By Lemma 4.2 there exists a separately conti%rous function £ € 3f
such that f(a,b) = 0 and f(an, bn) = 1 for each n el{. Hence,

{(an, bn)} is a v—closed subset of K and therefore v-compact. It
ne N-: '
follows that {(an, bn)} is alsg u-compact; but this contradicts the
ne N

fact that (an, bn) + {(a,b) in Rﬁ. Thus K is contained in the union of
finitely many vertical and horizontal closed line segments.

In view of the form of the compact lsabsets of R%ﬂ it follows that

2

each k-continuous function f : R+ R is separately continuous with

-
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respect to Ri; hence v-continuous by the very definition of v.

Also, the subset S C Rz given by Lemma 4.3 is clearly k-closed i; Rﬁ.

v To complete the proof of the theorem it will be shown that S is dense in Ri.
;- — By Lemma 4.3, S is dense in Ri. It will be shown that S is also

;‘ -5 dense in Ri by showing that each v-open set contains a u-open set. Let V

° be a v-open set and let (a,b) € V. By the definition of v, there exists

R f e ggandii > 0 such that W = {(x,y) : If(x,y) - f(a,b)| <gYcC V.

Since f(a,y) 1s a continuous function of y, there exists ¢ - 0 such that

= ly - b| < 6 implies |f(a,y) - f(a,b)| <% . Let .
§+ ] Tn = {ye R: |y~ b‘i_é and |x - a i_%' imply |f(x,y) - f(a,b)|< 213
| 2 Claim: T = {J T =1[b-6, b+35],

s ] ne N

Let y ¢ [b -6, b+ é]. Then | £ (a, y,) - f(a,b)| = v < %¢ ,
Since f is separately continuous, there exists n € N such that |x - aI i_l/no

LY

implies

lf(x,yo) - f(a,yo)l < (s - v) .

Thus, If(x,yo) - £(a,b) | < |£dx,5) - £la,y )| * |£@,y,) - £(a,b)] < v

+ (€ - y) = %E ; hence y_e T  and so T = . Ej . T = (b=~ 6, b+ 8],
o

By the Baire category theorem, cZR (Tm) has nonempty interior for some
\ -8, b+ 6].
m € N. Thus [yl, y2] C cZR(Tm) C [b -5, 5]
It remains to show that

1 1
U = [8—;, 8+H] X,EYI,YZ] C W.

Indeed, fix x, such that [xl - al < i-. Consider the vertical segment

1

’ 2
L = {(xl,y) Py LY SY,C R”. The points (xl, yz with y € T  are u-dense

R
. B
oy e M.ulu;vMWw@ﬁW%'
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in L and satisfy the inequality

|f(xl9 Y) - f(a)b)l < !55;
Since f is separately continuous,

|f(x1,y) - f(a,b)| < %t < £ for all (xl,y) e L.

Thus L = ((xl,y) t Yy <y j_yz} C W. Since x, was arbitrarily chosen
1 1 1 1
in [a - L8t E], it follows that U = [a - =, a+ ;J x [yl,yzl cCWcV.
Since U contains a u-open set, it follows that every v-open set contalns
b ]

a u-open set. Consequently every u-dense subset of Rz is v-dense.

Thus the set S of Lemma 4.3. 1{s a countable dense and k-closed subset

In conclusion, Ri is a kR-space which has a countable dense

and k-closed subset.

In view of Theorems 0;}4.5 and 3.5, it follows that C{( Ri).is a
complete locally m-convex algebra, but not a Br(dC) algebra.
»
4.5: Example. There exists a completely regular space X such that
C(X) 18 a Br(oC) algebra but not a B(OC) algebra.
: Lketpe B [N\N. Then N U {p} 1is not discréte but every compact

subset is finite. To see this, let K be an infinite compact subset of

N U{p};and let {xn} be an infinite subset of K AN. Since K is
neglN ) .
compact, there exists a subsequence {xn } such that X, *P (necessarily).
/ i i .
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Define f : {xn } -+ [0,1] by
1 0 1if 1 1is odd

, By 1l 1if { is even.

Then there exists a continuous extension f : BN -+[0,1]. But clearly
f cannot be continuously extended to p. This contradiction shows that

every compact subset of N U {p} is finite.

Let Z = 8 NJ{(N U{p}), the disjoint topological union. Let X be
the quotient of Z obtained by identifying the element p € BN with the

-

¢lement p in N U {p} . Graphically, one has the following:

) ® — ()
B N

-

It is clear that X, with the quotient topology, is completely regular.

Since p 1s a 1limit point of N in X,~.B is not a closed subset of . X.

However, N 1is a k-closed subset of X since K /Y N is clearly finite for
each compact subset K of X (in view of the above paragraph). Thus, X is

not a k-space.

Let D be a dense and k-closed subspace of X. Since D is dense it

must contain all the isolated points of X. In particular,

.
- O
1

(1) WNcD .

(2) NcCcDNEBWN (since N is a discrete subset of g MN).

Since D i3 k~closed it follows that g N = clx N=DNEAKRN. Hence D = X,

and so every dense and k-closed subset of X coincides with X.
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By Theorem 3.5 it follows that C(X) is a Br(oC) algebra. Since X

is not a k-space, C(X) is not a B(L) algebra by Theorenm 3.8.

It should be noted that even though C(X) #s not a B(JL) algebra,
its completion CYX) is a B(OC) algebra. By Remark 0; 4.13, CYX) = C(kRX).
Since X is a hemicompact space , kRX = kX by [55; Lemma 1]. So by

Theorem 5.8, C?X) = C(kX) is a B(oC) algebra. (Note: for this particular

X, kX = BNHN,)

4.6. Example: There exists a completely regular space X SLiCh that

C(X) is a complete Br(ﬁc) algebra but not a B(J ) algebra. \;
~

The followi’né modification of the space R2 of Theorem 4.4 has

v
been constructed by E. Michael [40; section 3].

Let [Rzu be the plane with the usual topology and let A [RZ

be the x-axis. Let ?be the set of all f : RZU » R which are continuous
on {Rzu\A and separately continuous on A, and let w be the weakest
topology making every f ¢ gfcontinuous. Then u and w agree on both A and
RZ\A and on each vertiical or horizontal line; 3znd sz is a g-compact
lﬁl-space which is not a' k-space [40; section 3].

2
Let D be a dense and k-closed subset of sz. Since R w\A is open,

3 2 2
DN ( RZW\A) is dense and k-closed in R w\A. But since u = w on R w\pf’

2 2
sz\A is a k-space and so D N ( R w\A) Rw\A. Let (x,0) ¢ A. Then

IA

the vertical segment Bx = {(x,y) : -1 <y <1} 1is a compact subset of

Isz because u = w on each vertical or horizontal line.

Now Bx\{(x,O)} CcCbnN Bx’ the latter being closed since D is k-closed.
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E;} Hence (x,0) ¢ Czw(Bx\\\{(x,O)}) =D (\Bx. Since (x,0) was arbitrarily

o 2

3 chosen, ACD, and so D = Rw . By Theorems 0; 4.5 and 3.5, C( R2 ) is a

S v

é;f complete Br(J:) algebra. Since Rz is not a k-space, C( RZ ) is not a

;‘: ) if w W -
g B(J:) algebra.

L

Ry ; ~‘;' ,.d, -

5. EICY:) and B(®) algebras; -

In his paper [30], T. Husain introduced the notion of a B(?;)
\

locaIQy convex space . These are spaces which satisfy a weakened form of

the B-completeteness condition; namely : a locaily convex space F is said

to be a B(Z:) space if every continuous linear maé&from E onto any
barrelled space F is open. Husain obtained characterizétions of B(?f)\
spaces ané showed that they need not be B-complete, in fact not even
comp}ete. In subsequent papers, Husain introduced thé notion of ; B({Z)
space, %2 being a suitable subclass of locally convex spaces. A systematic

treatment of B(fg) spaces may be found in [31].

The purpose of this section is to invesgiga;e analogous weaker forms
of the B(J:) condition for LMC algebras. Thes%Jweaker notiéns are obtained
by imposing restrictions on the codomain.

Let‘Z:be the subclass of J:consisting of all m-barrelled algebras {
[Definition O; 4.8]}. - Clearly every barrelled LMC algebra is iIlZ;. An

example of an m-barrelled algebra which is not barrelled was constructed
S

T
*
]
x
-2
Ll
=
-
k]
.
<
®

by Warner [54, Example 5].
. .

Lemma 5.1. Let A ¢ J:, B ¢ 2: and let ¢ : A - B be a continuous,

onto homomorphism. Then ¢ is almost open. '

’

LoomuaA
-
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‘&

ii' Proof: Let U e M(A). Then there exists V ¢ N{A) which is

;%fé’ circled and m-convex and such that V€ U. Since 4(U) is circled and

?% £§ m-convex, it follows from [39; Lemma 1.4 (b)] that CZB¢(V) is circled

.éié and m-convex, hence an m-barrel. Since B is m-barrelled cZB¢(V) e MN(B).
}% é% Thus CZB¢(V) C cZB¢(U) € ’n(B) and so ¢ is almost open.

?§ _; .

;%{: 5.2. Definition. An algebra A ¢ Jj is said to be a B(?j)

f%-:?h algebra if every continuous homomorphism onto any algebra B ¢ 2f is open;
f%i a Br(zf) algebra;if every continuous ;nd one-to-one homomorphism onto

e any algebra B ¢ Zf is open.

T; In view of lemma 5.1 it follows that every B(J:) algebra 1is a

B(Zf) algebra. Subsequent results will show that the converse 1is not true.

T R T OOV O
ST ' "3“""35%\ ﬁu

P AT NS
25 7‘»’\»#,*‘5;

i

5.3. Lemma. Let U be a barrel in C(X). Then there exists a closed

ph
’

and bounded [Def. 0; 4.1 (c)] subset T of X such that N(T, £) ¢ U for some py

ET LR

e
}52‘?.‘ 'r‘s%‘i

i

£ > 0.

(982

Proof: This follows from {43, Theorem 1]. y

5ol d, T

5.4. Lemma. Let S be a dense and k-closed subset of X and let u

be the topology on C(X) as defined in the first part of theorem 3.5. Let

T be a closed subset of X such that T/ S is compact.
Then cZuN(T, £) = N(Tn S, &).

Proof: Clearly N(T, £) C N(T NS, &), the latter being u-closed.
In the first part of theorem 3.5 it was shown that for each compact K CX
N NS, &) C cZuN(K, £). An investigation of the proof shows that this

holds whenever T is a closed subset of X and T /A S is compact.

-~

_

’
?

V1L v |
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Also, %§ may be replaced by any 0 < § < £; hence N(TN'S, §) C cZuN(T, £)

8 . T = ;

for each 0 < & < £. Thus N(T NS, §) = el_ L/ N(K NS, §) C el N(T, £),
0 <68 <¢

and so equality holds.

5.5. Definition. A subset S of X is said to be free if TN S is

s

compact whenever T is a closed and bounded subset of X.

5.6. Proposition. C(X) is a BrCZfS algebra iff every dense,
k~closed and free subset of X coincides with X.

Proof: Suppose C(X) is a Br(ZS algebra. Let S be a dense,
k-closed and free subset of X, and let u be the topology on C(X) whose basic
neighborhoods of zero are of the form N(KA\S, £). As in Theorem 3.5, the'
identit; map i : C(X) ~» C(X)u is continuous and almost open. Let U be a
barrel in C(X)u. Then U is a barrel in C(X), and so by Lemma 5.3 there
exists a closed and bounded subset T of X and £ > 0 such that N(T,£) ¢ U.

By Lemma 5.4, N(TN S, £) = OZuN(T, E) C U. Since S is a free subset of X
T N S is compact, hence U is a neighborhood of 0 in C(X)u. Thus C(Xiu is'
m-barrelled. Since C(X) is a Br(?r) algebra, it follows that i is open;
consequently S = X as in Theorem 3.5.

éonversely, suppose that every dense, k-closed and free subset of X
coincides with X. Let 1 : C(X) - C(X)u, C(X)u Q%Zf, be continuous.
Let S = {x : x ¢ X and a_ is u-continuous}.

As in Theorem 3.5, S is a dense and k-closed subset of X and a basis
for the neighborhoods of zero, in C(X)u is given by all sets of the form

N(KNS, £). Let T be a closéq and bounded subset of X. Then N(T, 1)

is an m-barrel in C(X) and by ([39; Lemma 1.4 (b)] cZuN(T,l) {s an m-barrel
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in C(X)u. Since C(X)u € ?t’, cZuN(T,l) is a u-neighborhood of zero.

Thus there exists a compact K < X and £ > 0 such ;hat

N(K NS, &) C cZuN(T,l) C N(T N S,1). Since X is completely regular,

TNSCKNS; hence TNS = (TNK) NS is compact since S is k-closed.

Thus S is a dense k-closed and free subset of X. By hypothesis § = X

g ; ‘and by Lemma 3.4 i is open. In view of lemma 3.3, C(X) is a Br('C)

algebra.

It should be pointed out that not every completely regular space
satisfies the hypothesis of Proposition 5.5. For example let Y be the

space IN U {p} as in example 4.5. Since Y is countable, it is real~-

compact by [23; Theorem 8.2]. From [43] and [51] it follows that every

. 5

closed and bounded subset of a realcompact space is compact. Thus every,
closed and bounded subset of Y is compact, hence finite by Example 4.5.
So N is a proper dense, k-closed gnd free subset of Y, consequently C(Y)

is not a Br(zr)ﬂalgebra.
v

DS.7. Proposition. C(X) is a B(T) algebra 1iff every k-closed and
ki
free subset of X is closed.

Proof: Suppose C(X) 1is a B(T) algebra. Let S be a k-closed and

free subset of X. By Theorem 3.2, the restriction map ¢ : c(x)—,-c§(x) c c(S)

AWy |G e W L ke g

is continuous and open. Let u be the topology on cg(x) whose basic neigh-

borhoods of zero are of the form {f ¢ C§(X) s £ < gV xeKNSH K

T R R L LB

b;ing a compact subset of S and £ > 0. As in Theorem 3.5, the identity
v .

map 1 : C§(X) + C—S-(X)u is continuous and almd%t.open. Let U be a m-barrel

in C(X)u. Then ¢_1(U) is an m-kaArrel in C(X). By Lemma 5.3 there exists

L v

-1
a closed and bounded subset T of X such that N(T, £)C ¢ ~(U) for some § > O.
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From the proof of Theorem 3.2, it follows that OZC-(X) ¢ (N(T, £)) =
{f e Cz(x) : )| <& ¥ xeSNTY=w. By Lemxia 5.4,
el ) ={fecz( : [fM] ceVxeEanns=1ns) =v.°
'“Since S is a free subset of X; SN T is compact and consequently V is a’
<“ neighborhood of zerq\ in G§(X)u. Thus V = clu(w) = cZu ¢ (N(T,E) € U which
implies that U is a neighborhood of zero in Cg(X)u. Thus C-S-(X)u is
m-barrelled. Since C(X) is a B((3) algebrd it follows that ¢ o 1 is open.

Since ¢ is open, i1 is also open, hence S = S as in Theorem 3.5.

e
S

Conversely, suppose every k-closed and free subset of X is closed.

Let ¥ : C(X) + B, B ¢ zJ , be a continuous and onto homomorphism. By

Ay

Theorem 0; 4.9 ker (¢) = IF for gsome closed F C X, hence B = CF(X)u for

some barrelled locally m-convex topology u. Consider the following diagram.

b 4
c(X) —s CF (X)u
¢
i
P Ce x>

!
By Lemma 5.1, i is almost open. Let S = {x ¢ F : ax is u—coptinuous}.

= As in theorem 3.5, S is a dense and k-closed subset of F. Also, a basis
for the u-neighborhoods of zero is given by sets of the form

{f € CF(X) : e | < E V¥ x ¢ K NS}, K being a compact subset of F and

£ > 0. Let T be a closed and bounded subset of X. Then V = {f ¢ CF(X) :

|f(x)| <1 Vx e TN S} is a barrel in CF(X)u’ hence a u-neighborhood of
zero. It follows that there exists a compact KC F and £ > 0 such that ‘

{f ¢ CF(X) : £ ] <E YV x e KNSYC V. Since X is completely regular,
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TNSCKNS; hence TNS=(TNK)NS is compact since S is a k-closed
":;"4': subset of F. Thus S 18 a k-closed and free subset of X. By hypothesis n

S =85 = F, consequently i is open. By Theorem 3.2 ¢ 1s open, hence

¥ =10 ¢ 1s open. Thus C(X) is a B(L) algebra.

{g’f . 5.8. Corollary: If X is pseudocompact, then C(X) is a 8(C)
g{; algebra.

=3

“ ” Proof: .Every free subset of a.pseudocompact space is compact.
34 .

’?‘%4‘;1 From [45, Construction 2.3] it follows that every completely
5, T

3 1 regular space can be embedded as a closed subspace of a pseudocompact

B R T
AN i
IR
L,
L
-2
v

lgz-space. Hence a pseudocompact space need not be a k-space. From

\.\

0

Corollary 5.8 and Theorem 3.8, it fo(llows that a B(T) algebra need not be

a B({) algebra. However, the \following holds. RN

~

-

5.9. Proposition. Let A be a B(?j) algebra which is in’(\: .

Then A is a B(d) algebra.

Proof: Let ¢ ¢+ A=+ B, B e£, be a continuous, almost open, onto

s Y

»e
B

homomorphism. Let U be an m-barrel in B. Then ¢>‘1(U) is an m-barrelgin

S

A, hence ¢_1(U) € 'n(A) since A e’C . Since ¢ is almost open,

G

U = ¢(¢~1(U)) = clu ¢{¢_1(U)] e M (B). Thus B is m-barrelled and so ¢

By

1s open since A is a B(T) algebra.

5.10. Proposition. Let A be a complete metrizable algebra in oC

and let ¢ : C(X) » A be a continuous onto homomorphism. Then ¢ 1is open.
Proof: By Theorem 0; 4.9 ker (¢) = IF for some closed FC X
and consequently A = CF(X)u' Since C(X) is a symmetric algebra CF(X)

s also sy“m'metric. By [39; Theoren} 12.6] it follows that CF»(X).n is



R e
& A

¢

? <5 functionally continuous, hence a is u-continuous fgr each ® ¢ F.

W1k : i

g’ ; Since ¢ is almost open, it follows as in Lemma 3.4 that ¢ is open.
gs*ﬁ Proposition 5.10 need not hold if A is not complete.

T Let Y= N U {p!} be as in Example 4.5 and let u be the topology on C(Y)
of pointwise convergence on ®W. Since W is a dense and k-closed subset
of Y, 1 : C(Y) ~ C(Y)u 1s continuous and almost open. Moreover, u is

a metrizable topology, but 1 is not open.

The following proposition will not be proved.

-

o % e ”» 4 "-“ m NP 7, :...! s N I3 .»‘:’-"
L ey 206, o o gy W
.
L

Rogtr )

Let N be the class of all metrizable algebras in aC .

5.11. Proposition. (a) C(X)-is a Br(7n) algebra iff every dense, R

k-closed and hemicompact subset of X coincides with X.

(b) C(X) is a B(Wﬂ) algebra 1iff every k-closed and hemicompact

subget of X is closed. .

’

5.12. Remark. It has been pointed out by B. Banaschewski that
\\ér(Jz) algebras may be viewed as minimal [10] objects in a suitable category.
Let £ * be the category of all commutative LMC algebras and all continuous
and relatively almost open homomorphisms (¢ : A> B is relétively almost

///open 1f é: A + &(A) is almost open). An algebra A € L * is minimal if

whenever ¢ : A > B in JC* is one-to-one, then A = ¢$(A). It follows

immediately that the minimal objects in [ * are exactly the Br(J:) algebras.

S ] -
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CHAPTER 1II

Permanence Properties and Closed Graph Theorems

In this chapter certain permanence properties of Br(J:) and B(J{)

algebras are investigated and several closed graph theorems are obtained
for Br(<C) algebras. 1In the first section two special classes of
continuous maps are introduced. Properties of these maps are used in

subsequent sections.

-t

1. Full maps and CR - gquotient maps.

1.1. Definition. Let f : X > Y be a continuous map.

(a) f is said to be full if for each compact KC Y there exists
a compact HC X such that f(H) = K. Clearly every full map is onto.

(b) f is said to be perfect if f is closed and f_l(y) is compact

for each y ¢ Y.

(¢) f is said to be a quotient map if V is open in Y whenever

f‘l(V) is open in X.

Since perfect maps preserve compactness under inverse images

(11; 1, 10, Prop. 6], it follows that every perfect onto map is full. A full

.

map need not be perfect,a.Simple example being given by f : R + R/Z.

The importance of full maps is illustrated in Theorem 1l.4.

1.2. Example. A quotient map need not be full and a full map need

not be a quotient map.

56
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(a) Let H be the set of all compact and countable subsets of
[0,1], and let f : HJ_lb H — {0,1] be the map which maps each H identically
€
into [0,1). By [39; Example D.2], a subset of [0,1] is open iff its
intersection with every compact and countable subset is relatively open.

Hence f is a quotient map. Since [0,1] is not the image of any compact

subset of || H, f is not a full map.~
HeH

(b) Let X be a completely regular space which is not a kR—space;
in particular let X = N U {p}, where p ¢ 8 N\\\N. Then the identity

map 1 : kRX + X is full but not.a quotient map.

Henceforth, unless otherwise specified, all topological spaces

are assumed to be completely regular. Given a continuous map f : X —Y,
define C(f) *: C(Y) —C(X) by C{(f) [r] = r o f. Note that whenever £(X)

is dense in Y, C(f) is one~to-omne.

1.3. Lemma. If f : X > Y is continuous, then C(f) : c(Y) +JC(X)
is a continuous homomorphism.

Proof: That C(f) is a homomorphism is clear. Let U = N(K, &)
be a neighborhood of zero in C(X). Then V = N(f(K), &) is a neighborhood

of zero in C(Y), and since C(f) [V] C U it follows that C(f) is continuous.
~— .

Y

1.4. Theorem. Let f : X = Y be continuous. Then C(f) : c(Y) » c(X)
is an embedding iff £ is full.

Proof. Suppose f : X -+ Y 18 a full map. Since f is continuous
and onto, C(f) is a continuous, one-to-one homomorphism. Let V = N(K, E)

be a neighborhood of zero in C(Y¥). Since f is full there exists a compact

H C X such that £(H) = K. Now U = N(H, &) is a neighborhood of zero in C(X)
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i

1 UnCE) [CN]CclE) vl

g Hence C(f) is an embedding.

Conversely, suppose C(f) : C(Y) + C(X) is an embedding. Let K

g;< be a compact subset of Y. Then there exists a compact HC X and 0 < £ < 1

i - '

g N such that

N(H, £) NC(f) [c(N)T C c(f) [N(K,D)].

c

% :} Since Y is completely regular, it follows that K C f(H). Let H' = H N f_l(K).
¥ -

§'§ Then H', being a closed subset of H, is compact and f(H') = K. Thus f

o

VRN

?-; is full.

o

“,% Theorem 1.4 will not be used in full until the next chapter.

&

%»f It should be pointed out that the first part of the proof appears as a foot-
107 .
% note in [15; p. 247].

f g

{;':‘

1

a CR-quotient map if whenever g o f is continuous it follows that g is

continoous for any g : Y » Z. (Note: X,Y and Z are completely regular.)

1.6, Theorem. A map f : X - Y is continuous iff r o f ¢ C(X)

for each r ¢ C(Y).

Proof: A proof mav be found in [23; Theorem 3.8].

1.7, Proposition. Let £ : X > Y be a continuous onto map. Then

the follgwing statements are equivalent.
) £ is a CR-quotient map.

(b) r\ Y -+ € is continuous whenever r o f is continuous.
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- Proof: (a) :)(b)!follows from the definition.
(b) =>(a) Let the composition X £, Y &+ 7 be continuous. Then for
each r € C(Z)’r o g o f is continuous; and so by (b) it follows that r o g
is continuous for each r € C(Z). By Theorem 1.6, g is continuous, hence

f is a CR—quotient map.

Every quotient map between completely regular spaces is a CR-quotient
map. However, the converse is not true, as the example following the

proposition indicates.

{

1.8. Proposition. Every full map onto a kR—space is a CR-quotient

map.

Proof;: -Let £ : X > ¥ be a full map, where Y is a kR—space.

Suppose X f» Y '+ € is continuous. Let K be a compact subset of Y.

Since f is a full map, there exists a compact HC X such that f(H) = K.

K, r(K) is continuous. Since H and K are compact, f|H is

Now, H fIH+ K r
a quotient map, hence rlK is continuous. Thus, r is k-continuous and hence

continuous since Y 1s a -space. By Proposition 1.7, f is a CR-quotient map.
P Yy P

1.9. Example. A CR-quotient map need not be a quofient map. .

Let X be a kR—Sp;ce which is not a k-space, in particular let X = sz
of Theorem I; 4.4. Let K be the set of all compact subsets of X and let
f: }J1 K- X be the map which maps each K identically into X. By
PrOpzsitfon 1.8, f is a CR-quotient map. Since X is not a k-space, the

identity map i : X - kX is not continuous; however 1 o f is continuous.

Hence f is not a quotient map.’
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é 1.10. Proposition. Let f : X + Y be a CR-quotient map and let
* Xb - . hen Y - .
{ e a kR space. Then is also a kR space

Proof: Let r : Y > € be k~continuous. Then r o f is also
k-continuous and hence continuous, since X is a kR—space. Since f is

L- a CR-quotient map it follows that r is continuous. Thus, Y is a kR—space.
} Y
L

-

The properties of full maps and CR-quotient maps will be used in

the following two sections for constructing counterexamples.

2. Permanence properties of B(L) and B (L) algebras.
T L

By Coreollary I, 1.5, it follows that the quotient of a B(L) algebra
modulo a closed ideal is again a B(L) algebra. Ig other respects, however,
' [

e the permanence properties of Br(J:) and B(L) algebras are very poor, as

"3 the following examples illustrate.

2.1. Example. B(L) algebras are not closed hereditary. 1In
fact a closed subalgebra of a B(JL) algebra need not be a Br(JC) algebra.
Let X = Ri be the space as in Theorem I;4.4. Then C(X) is b
complete but not a‘Br(J:) algebra. Let ¥ be the set of all compact subsets

of X and let £ : 11 K + X be the natural map. Clearly f is a full map.
Kek
Thus by Theorem 1.4, C(f) : C(X) » C( 11 K) is an embedding. Since C(X)
K e X

is complete it follows that C(f)[C(X)] is a closed subalgebra of C( 11 5.
KeX

Since 1l K is locally compdct it is a k-space, hence C( 11l K) is a B(L)

KeKk KeKX
algebra by Theorem I; 3.8. However, Cc(f) [C(X)] = C(X) is not a Br(cC)

algebra.
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% 2.2. Example. The quotient of a Br(J:) algegra need not be a

Br(J:) algebra.

As in Example I; 4.5, let X be the quotient of BN 1) (N VU {p})

obtained by identifying the element p ¢ R N with the element p ¢ (N U {pl}). o

T

By Exdmple I; 4.5, C(X) is a BY(JC) algebra. Now N U {p} 1is a closed

subset of X and the restrictionmap ¢ : C(X) » C{ N U {p}) is onto since

s AmNEE e

X is hemicompact and therefore normal. By Theorem I; 3.2, ¢ is also

continuous and open. Since N is a proper dense and k-closed subset of

[

Ny {pl, C( WU {p}) is not a Br(J:) algebra by Theorem 1; 3.5. Thus

a quotient of a Br(J:) algebra need not be a Br(J:) algebra.

e

4 A result of a positive nature will now be proved.

2.3. Definition. Let A be in J:.

P (a) An ideal I of A is saild to be a retract of A if there exists

a continuous homomorphism ¢ : A » I such that ¢|I is the identity. ¢ is

then said to be a retraction.

(b) An ideal I of A is said to be a topological direct summand

of A if there exists an ideal J such that 1@ J is isomorphic to A via

the map (a,b) » a + b. ]

The following were prove® in [25] for topological groups. The lemma

is a known standard result about topological direct sums.




2.4. Lemma: Let I be an ideal of A. Then the following are
equivalent.
) 1

(a) I is a t'opological direct summand of A.

(b) I is a retract of A.

Proof: (a) —>(b) Let ¢ : A » 1 @ J be the inverse of the addition
map, and let p : T & J ~ I be the projection. Then p o ¢: A >~ 1 1s a

continuous hémomorphism and (p o ¢){ I is the identity. Hence I is a

retract of A.

(b) =>(a) Let ¢ : A+ I be a retraction. Then 1 @ ker (¢) is

algebraically isomorphic with A. Define E : A-> 18 ker (¢$) by

g(a) = (¢(a), a - ¢(a)). Since $ composed with each projection is
continuous, it foliows that E is continuous. Since the inclusions

I » A and ker (¢) - A are continuous, it follows that the addition map
:*:_1 : 1 ® ker (¢) > A is also continuous. Thus I @ ker (¢) is isomorphic

with A. Hence I is a.topological direet summand of A.

2.5. Theorem. Let A be a Br(J:) algebra. Then any retract of A

is also a BI(J:) algebra.

Proof: Let ¢ : A > I be a retraction and let J = ker (¢). As in

rLemma 2.4, $ : 1P J—A is an isomorphism. Let ¥ : I - B be a continuous,

one-to-one, onto and almost open homomorphism. Define ¥ : A + B® J by

?(a) = (y x idJ)(;-l(a)), so that the following diagram commutes:
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oot

4

I1®J 3

-
)
<1

‘l’xidJ
B&HJ

~
Clearly ¥ is continuous, one-tp-one and onto. Since ¥ is almost open
id ) is almost 21 =
vy x J) s almost open, because ¢ B @® J(‘{’ X idJ) (VI@ Vz) cZB @ J
~-1 ~ , ~-1
] \\(‘P(Vl) ® VZ) 2 [cZB‘}’(Vl)] & VZ. Since ¢ is open, ¥ = (¥ x 1dJ) o ¢
is almost open. Since A is a Br(cC) algebra, ¥ is open, and since '&)’—-l

is open it follows that ¥ x idJ is open. Hence ¥ is open, and so I is

a Br(oC) algebra.

2.6. Theorem. Let A be a B(oC) algebra. Then every retract of

A is a B(oC) algebra.

Proof: A retract 1s a special quotient, and so the Theorem

o

follows from Corollary I; 1.5.

N

Those completely regular spaces for which C(X) is a Br(oC) and

B(&) algebra, have been characterized in Theorems @43.5 and I; 3.8
respectively. However the anallogous problem for Br- and B-complete
1ocafly convex spages still remai.ns open.

This section ends with an application of Theorem 1.4 and Proposition

1.10 to obtain a certain property of the class l% consisting of all completely

regular spaces X for which C(X) is B-complete.

2.7. Definition. Lete be a class of completely regular spaces

and let ,Yn be a class of continuous mz;ps. (@ is said to be right fitting

-
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with respect to 771 if whenever X ¢ tg and £ : X > Y is inqqq ¢

completely regular, then Y 1is also in f; .

Let 63 be the clasg of all completely regular spaces X suc{ that
C(X) is B-complete. By Proposition I; 3.9, every member of 63 is a
normal k-space. By Proposition 0; 2.10, the quotient of a B-complete
space modulo a closed subspace is again B-complete, bence 63 is closed
hereditafy (if X ¢ &and F € X is closed then F e@). Let Q, be s

the class of all full CR-quotient maps. Then the following is obtained.

2.8. Proposition. The class 6% is right fitting with respect

to (4, .

Proof: Let X ¢ 6% and let £ : X > Y be in(l. Since f is a

CR-quotient map and X is a k-space, Y is a kR-spacelby Proposition 1.10.
So C(Y) is complete. Since f is a full map, C(f) : c(Y) » C(X) is an
embedding by Theorem 1.4. Thus Cc(Y), being complete, is isomorphic to
a closed subalgebra of C(X). By Proposition 0; 2.9, B-complete spaces

are closed hereditary; so C(Y) is B-complete, hence Y 66%.

By Proposition 0; 2.8, Br—complete spaces are complete, so if
' c{X) is Br—complete then X is a kR—space. Also, by Proposition 0; 2.9,
ij? Br—complete spaces are closed hereditary. Hence, Proposition 2.8 also

holds for the ClaSSG%r of all completely regular spaces X such that C(X)

is Br—complete.
Proposition 2.8 may be used to find conditions on X which are not

sufficient for C(X) to be B-complete or Br-complete.
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2.9. Example. There exists a normal k-space Y such that C(Y)
is not Br—complete.
‘ Let X be the space Rg constructed in Theorem I; 4.4. Then C(X)
is not Br—complete. By Example 2.1, C(X) is isomorphic to a closed

subalgebra of C( | | K), where K is the set of all compact subsets of X.

Ke X
Since Br—complete spaces are closed hereditary, it follows that C( NS
Ke KX
is not Br—complete. So Y= }] Kis the required space. ,
K e X 2,
L
Observe that the space Y in the above example, being the coproduct %%é:

of compact spaces, is both locally compact and paracompact. So not even

these stronger properties are sufficient for C(X) to be Br—complete.

Since every complete metrizable locally convex space is B-complete,

it follows from Theorem 0; 4.4 that the class 6% contains all hemicompact

k-spaces. By [49; p. 162, Ex. 3] 6% contains al]l the discrete spaces.
The ffollowing question is raised. If X is compact and D is“ﬁiscrete,is
g

""‘/

XD in @ or inmr? The author does not know the answer as yet.

3. Closed Graph Theorems.

In order to prove the main closed graph theorem for Br(Jl) algebras,
the following lemma is neede&. A proof may be found in [39; Lemma 1.4 (Q)].

3.1. Lemma. Let A be in éé?. If U is an m-convex subset of A,

then so are

- . .. fa) the image and inverse image of U under a homomorphism.

(b) cZA(U).
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The proof of the main closed graph theorem requires a technique
originally used by Husain {32; Theorem 5, p. 94] for B(CL) groups; namely

the construction of a new topology on the codomain.

Let Au and Bv be in lj, and let ¢ : BV - Au be a homomorphism

such that ¢(Bv) is dense in Au. For U ¢ Wl(Au), let

U* = cl ¢ (czv¢_1 (v))

and let w be the topology on A which has {U* : U ¢ qq(Au)} as a basis

for the neighborhoods of zero.

3.2. Lemma. w is a (not necessarily Hausdorff) locally m-convex

topology on A which is coarser than u.
Proof: Since ¢(Bv) is dense in Au it follows that
T * i
Intu(U)(: -nfu(U ) for each U ¢ 7\(Au), and so w is coarser tha? u.
That w is locally m-convex follows from the fact that VC U implies V¥ C U*

-

and that U* is m—epnvex whenever U is,'by Lemma 3.1.

|3
3.3. Lemma. If the graph of ¢ is closed, then w is a Hausdorff

A}

topology.

Proof: Suppose y ¢ /f\ U* and let G C Bv X Au be the graph
' e MG
of ¢ . It will be shown that (0,y) e G.

Let O be a neighborhood of (0,y) in Bv X Au. Then there exist
Ve q\(Bv) and U ¢ W\(Au) such that V x (y + U) € 0. Choose W ¢ q\(AU)
such that W is circled and W + W C U. By our assumption,

-1, -1 .
y e Wk = czu¢(clv¢ l(w))c: ¢(CZV¢ (W)) + W. Thus there exists an element
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1% "1
: X € clv¢ (W) such that y € ¢(x) + W, which implies that

1) ¢(x) ey -U=y+W

-0 -1 -1

- Since x € ch d (W) C ¢ (W) + V, there exists z ¢ V such
-1 -1

i that x € ¢ (W) + z. Thus, x — z ¢ ¢ (W), which implies that

:; d(x) - ¢$(z) € W. Since W is circled, ¢(z) € ¢$(x) + W. Hence by (i),

$(z) € (y + W) +WCy+U. Thus, (2, $(2)) e Vx (y +U)NGCONG.

Since O was an arbitrarily chosen neighborhood of (0,y), it follows

;5 that (0,y) € G = G by our hypothesis. Therefore y = ¢(0) = 0.

jﬂ

3 Thus /ﬁ\ U* = {0}, and so w is Hausdorff.

Ve Mt ‘ .

- 3.4. Theorem. Let Au be a Br(Jl) algebra. Let ¢ : Bv > AL
B Bv € A:P be an almost continuous homomorphism having a closed graph

<

and such that ¢(Bv) is dense in Au' Then ¢ 1s continuous.
Proof: Define the new topology w on A as before. By Lemmas
2 3.2 and 3.3 it follows that w is a Hausdorff locally m-convex topology

;Q and the identity map i : Au -+ Aw is continuous. Since ¢ is almost
"
]
. -1
: continuous, clv¢ ) ¢ W\(Bv) for each U ¢ 7\(Au). Thus, since

CZV¢-1(U) C ¢—1(i_1(U*)) for each U* ¢ ql(Aw) and since {U* : U ¢ 1\(Au)}
forms a basis of'n(A ), it follows that-1i o ¢: B_ > A is continuous.
w v W
-1 N .
Let U ¢ W\(Au). Then (i o ¢) [cZw i(U)] is closed in Bv
- -1
because i o ¢ is continuous. Since ¢ l(U)C (i o ¢) [cZw i1, it

_ _ -1
follows that I layye (o ¢)7t [el, 1(0)]. Thus i o ¢lel ¢ (W1 C

-1
* = (U), b e wcC u.
clwi(U), and so U i[cZu¢(ch¢ unlc clw (U), because w /
But U* ¢ ql(Aw), and so 1 : A~ A 1s almost open. Since A is a Br(J:)

algebra, 1 is open and so u = w; consequently ¢é is continuous since i 0 ¢

is continuous.
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3.5. Corollary. Let A be a Br(JZ) algebra and let B be an

m-barrelled algebra in JZ. Let ¢ : B > A be a homomorphism having a

=

closed graph and such that ¢ (B) is dense in A. Then ¢ is continuous.

- "‘,‘:‘1/’{ :"‘_-;I‘. LS

Proof: It suffices to show that ¢ is almost continuous.

Let Ue N(A). Since A e, there exists V e N (A) such that V is

m-convex, circled and VC U . By Lemma 3.1, cZB¢_1(V) is also m-convex.

I
R AL

Thus JZB¢—1(V) is closed, circled, m-convex and absorbing, hemte an

m~barrel. Since B is m-barrelled, CZB¢—1(V) € 71(B), and cofisequently ¢

is almost continuous.

-

3.6. Remarks. (a) 1In general the assumption thajt ¢§ is almost

“
“

continuous cannot be dropped.

Let C[0, Q) and C{0,02] be topologized with the compact open
topology. Then C[0O, Q] is a Banach algebra, hence a Br(JZ) algebra, and
the identity map 1 : C[0, Q] » C[0, Q) 1is continuous onto but not open.A
Hence i-l : C[0, @) > C[0, ?) is onto and has a closed graph, but it is
not almost continuous. ¢

(b) In general the assumption that ¢(B) is dense in A cannot be
dropped.

" .
Let X = R“v be the space constructed in Theorem I; 4.4, and let S

be its proper dense and k-closed subset. Let C(f) : C(¥) ~ c( 11 K) be '
KeKk

the embedding as in Example 2.1. Let u be the topology on C(X) generated

by sLts of the form N(K N S, &), where K varies over all compact subsets of

X and £ > 0. As in the proof of the first part of Theorem I; 3.5,

: HIE d alwost open.
C(X)u € JQ and the identity map i : C(X) + C(X)u is continuous ad 2 P
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-1
Thus i : C(X)u » C(X) 1is almost continuous, has closed graph, and is
not continuous. Since C(f) is an embedding, C(f) o 1_1 is almost

continuous, has a closed graph, and is not continuous. Thus, !

-1 .
C(f) o i : C(X)u > C( ]l K) is a homomorphism into a Br(JZ) algebra

K e K
which is almost continuous and has a closed graph, but which is not

cont inuous.

(¢) 1In general, the assumptioﬁ that A is a Br(J:) algebra

cannot be dropped.

Let C(X)u and C(X) be as in (b). Then the identity map

i C(X)u + C{X) is almost continuous, onto, has closed graph, but is not

e
continuous. : .

Under certain conditions, the graph of a homomorphism é: B + A

is automatically closed.

3.7. Lemma. Let B be functionally continuous and let A be semi-

simple . Then every homomorphism ¢: B - A has closed graph.

Proof: Suppose bi + b and ¢(bi) > a ./,Thgn for each a ¢ M(A4),

a o ¢(bi) + a(a). Since B is functionally continuous, a o ¢ € M(B) for

each a £ M(A); hence a o ¢(bi) +a o ¢(b) for each a & M(A). It follows

that a(¢(b) - a) = 0 for each a« € M(A), thus ¢(b) = a since A is semi-

simple. Therefore the graph of ¢ is closed.

~

3.8. Proposition. Let B ¢ J: be functionally continuous and let

A be a semisimple Br(J:) algebra. Then every almost continuous homomorphism

$: B + A such that ¢(B) is dense in A is continuous.
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Proof: By Lemma 3.7 the graph of ¢ is closed, hence by

Theorem 3.4, ¢ 1s continuous.

In proposition 3.8, if B is m-barrelled then ¢ is automatically

almost continuous.

For the special case when the codomain is Br(d:) alcebra of the
form C(X), there is another type of closed graph theorem. The proof

requires the following proposition which may be found in [31; p. 57,

Lemma 3].

3.9. Proposition. Let E and F be locally convex spaces and

let 4 : E » F be an almost continuocus linear map. Then {a € F' : a 0 ¢ €

is almost closed in F°'.

3.10. Theorem. Let C(X) be a Br(oC) algebra and let B e £ .
Let & : B > C(X) be an almost continucus homomorphism such that

{x e X : @ o ¢ € B'} is dense in X. Then ¢ is continuous.

JProof: Let S = {x ¢ X : a o ¢ e B'} and let D = {a € C(X)' :

a0 ¢ ¢ B'}). Since ¢ is almost continuous, D is almost closed by

Proposition 3.9. Thus N(K,1)°/1 D is wk-closed in C(X)' for each compact

subset K of X. By Corollary 0; 4.10, X can be w*-embedded into cx)!

Let‘Q denote the image of X under this embedding.

an

via the map x + a
A A A A A
Clearly S € D. For each compact KC X, KNS =KNnS=KND=KnN
(]
[N(K,l)ol\ D] which is w*-closed since K is w*-compact and N(K,1) N D

is wk~closed. Hence S is a dense and k-closed subset of X 'and since C(X)

is a BI(J:) algebra, S = X by Theorem I; 4.5. Thus, @, © ¢ £ B' for each

x € X, which implies that ¢’1[N({x}, £)] = 4>’l(mx—1 [-£,£]) is closed in



71

-1 -
B for each x ¢ X. Hence, ¢ [N(K, §)] = fﬁ\ é 1 [R({x}, £)] is closed
x € K
in B for each compact K C X and each § > 0. Since ¢ is almost continuous,

¢-l (N(K, £)] = cZB¢—l [(N(K, £)] ¢ M(B). Thus ¢ is continuous.

If B is m—barrelled, then the assumption that ¢ is almost
continuous 1is redundant. 1In general however, the hypotheses cannot be

weakened as Remarks 3.6, (a), (b), (c) illustrate.

Barrelled locally convex spaces have been characterized by the
following result due to M. Mahowald. A proof may be found in [49; Theorem

8.6, p. 166].

3.11. Theorem. A locally convex space E is barrelled iff for

each Banach space F, a linear map ¢ : E > F with closed graph is continuous.

The following analogous result characterizes m-barrelled IMC

algebras.
3.12. Theoren. An.algebra A€ cQ s m~barrelled 1ff for each
Banach algebra B, a homomorphism ¢ : A - B with closed graph is continuous.

Proof: Suppose A 1is m—?arrelled. Let B be a Banach algebra and

let ¢ : A > B be a homomorphism with closed graph. Since cZB¢(A) is a

Banach algebra, ¢ : A - cZB¢(A) is continuous by Corollary 3.5. Thus
$: A > B is continuous. ‘

For the converse, let D be an m-barrel in A and let Py be the
Minkowski functional associated with D. Since D is an m-barrel, P is a

submultiplicative seminorm, hence ker(pD) is an ideal of A.
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Thus Ay = A/ker (pD) becomes a normed algebra under the norm induced

by Pp3 hence its completion?’\/D is a Banach algebra.
Let ¢ : A XD be the canonical homomorphism. Since D 1is closed,
D= {x¢eA: pD(x) <1} ={xeA: ” ¢(x)‘l <1} = ¢—1(U), where U is

the closed unit ball of AD. In view of the hypothesis, to show that

oA T RIS SPTeT e At e S NS

el ¥

D ¢ 'n(A) it suffices to show that the graph of ¢ is closed in A x AD.

R

o
3

Let G be the graph of ¢ and let (a,b) é G. Then ¢(a) % b and

so there exists & > 0 such that o) - b || > 2. sSince ¢(A) 1is dense

~

in Ay, there exists ¢ ¢ ¢(A) such that hv - cll <&,

ONER TR LR <A
% g

and it follows

that || ¢(a) - c|l >&. The set H = {(xea:lle - c |l i;i} is

closed in A since it is a translate of § D; hence W = Q\H is open.

[ |‘y - C‘l < £}, it follows that Wx VNG = £

{y ¢ A

¢ W x V implies that !|¢(x) - cll > £ and “y - c'l

Letting V

< £ and

5' for (X9Y)

consequently &(x) % &. Since (a,b) e W x V it follows that G is closed.

-1
By hypothesis ¢ is continuous, hence D = ¢ ~(U) ¢ Q\(A)-
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CHAPTER III

CATEGORICAL CONSIDERATIONS

This chapter is devoted to a categorical treatment of LMC algebras

and their relationship to completely regular spaces.

1. The contravariant functors C, C and M.
L

Throughaqut this chapter L is the category of all commutative
LMC algebras with identity and all continuous unitary homomorphisms; .
CR is the category of all completely regular spaces and all continuous

maps. It should be noted that the algebra {0}, consisting of the zero

element only, is in L.
The contravariant functors to be considered are C : CR ~ L ,

C :CR~->L and M : L »CR which are defined as follows:

-

P
(a) For X e CR, C(X) is the algebra of all continuous complex

valued functions on X endowed with the compact open topology. For
f 1 X >Y in CR, C(f) : C(Y) » C(X) is defined by c(f) [r] = o f. C(f)
is a unitary homomorphism which is continuous by Lemma II, 1.3.

(b) For X ¢ CR, Cp(X) is C(X) -endowed with the topology of point-

wise convergence. For f : X » Y, Cp(f) : Cp(Y) > Cp(X) is defined in the

same manper as C(f). The continuity of Cp(f) is clear.

(¢) TFor A ¢ L, M(A) is the set of all nonzero continuous complex~

valued hoﬁomorphisms endowed with the relative w¥-topology from A'. Since

(A', w*) is a completely regular space, so is (M(A), w*). For ¢: A > B

73
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in L, M(¢) : M(B) ~ M(A) is defined by M(¢) [a] = a o ¢ y « 0 } being a -
centinuous unitary homomorphism since a and ¢ are. Since M(3) = @'IM(B),

where &' : B' » A' is the adjoint of ¢, and since the adjoint of a

continuous linear map is always w*-continuous, it follows that M($) is

continuous. -

2 7T A i T e e e S o7 o e g Ny £ A SEUPP e T 7

Since the conditions of Definition 0; 5.2 are trivial to verify,
it follows that C, Cp and M are contravariant functors. From now on they

will be called simply functors.

LA Wit T3 .
N AR T I

¥

i

1.1. Remark. If A ¢ L is not equal to {0}, then M(A) $ @& by

F AN

Proposition 0; 3.3.

Every A ¢ L can be algebraically mapped into CM(A) as follows:

define by * A CM(A) by ¢A(a) = 3, where 3( a) = a(a)for aeM(A). Recalling
that M(A) € A' C ¢t and that the w* topology is the relative product

topology from CA; it follows that 2 , being the restriction of the

projection at a, is continuous on M(A). It can be easily verified thdt

ba is a unitary homomorphism. In general it is neither continuous with
respect to the compact open topology on CM(A), nor one-to-one, nor onto.

It is known that N is one-to-one iff A is semisimple. ;

1.2. Definition. The homomorphism ¢A : A > CM(A) (compact open
topology) is called the Gelfand map of A, and 2 is called the Gelfand

transform of a . .

The subcatecory of L consisting of all algebras whose Gelfand map
£ is continuous turns out to be very important, and it is studied in section 3.
i It should be pointed out that the map ¢, : A > CpM(A) is always

continuous. Also, the evaluation map EX : X » MC(X) is always a homeo-

e 5
\
- \
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morphism by Corollary 0; 4.10 and [35; Lemma 5, p. 116].

The relationship between M and C, and between M and C is
|%
-

investigated in section 4.

T AR R
-

2. Categorical properties of L.

1
From Proposition 0; 3.1, it follows that whenever A ¢ L, then

any (unitary) subalgebra and any quotient modulo a closed ideal are

T

again in L. Also, given any subset {Ai}i e 1 of algebras in L, their

cartesian product with the product topology is again in L.

vy

be a subset of L. Then the categorical

e

2.1, Lemma. Fet {Ai}i e 1

product (HAi, f¢i}) is the cartesian product with the product topology

together with the projections; Hence L has products.

o
S Proof: The proof is obvious and will be omitted.

x 2.2. Lemma. L has equalizers.

: ¢
1

5 Proof: Given A * B in L, let C = {a e A : ¢l(a) = ¢2(a)}

by — ¢2 > .

: C»> A is

with the relative topology. Clearly the natural embedding i

in L and ¢ © = ¢, © i. Suppose there exists ¥: D + A in L such that

By the definition of C, it follows that Y(D) C C.

S R A

$) 0¥ = ¢, 08

A; So there exists a unique ¥' : D - C in L, namely the corestriction of ¥,

such that ¥ = £ o ¥'. Thus i is the equalizer of the pair (¢1, ¢2) and

so L has equalizers.

2.3. Proposition. L is complete.

Proof: L has products and equalizers,hence L is complete by

Theorem 0; 5.5.
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2.4, Lemma. L has coequalizers.

¢
1
A T3 B, let I be the closure of the ideal generated

Proof: Given
%2

by {¢1(a) —‘bz(a) : ag A). Then the canonical quotient map Q : B - B/I
is in L and Q o b = Qo ¢2. Suppose there exists ¥ : B » D in L such
that v o P =Y 0 b, Since ¥ is continuous it follows that I € ker (v).

Hence there exists a unique ¥' : B/I > D in L such that ¥' o Q = ¢
L .

Thus Q is the coequalizer of the pair (¢1,¢2) and so L has coequalizers.

Next, it will be shown that L is coproductive. In view of Lemma 2.4.
and the dual of Theorem O; 5.5, it will then follow that L is cocomplete.
It turns out that finite coproducts in I coincide.with the tensor products
endowed with the projective tensor product topology as defined by
Grothendieck f26].

5

Let E and F be locally convex spaces and let’ﬂug F be their tensor

product. Given continuous seminorms p and q on E and F respectively,
n
define p ® q on E® F as follows: givenu = I x @y, ¢ E@F,
. i=1
n r
p®q (u) =inf I p(x) aly)),

i=1

the inf taken over all representations of u. Crothendieck [26, Proposition 1,
p. 28] proved that p ® q is a seminorm on E @ F, and that

P®q (a@b) = pla) qb).

The following theorem is a reformulatien of [26; Proposition 2, p.30].
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2.5, Theorem. Let E and F be Hausdorff locally convex spaces.
Then there exists a unique Hausdorff locally convex topology 1 on E® F
having the following universal property: given a continuous bilinear map
¢ : ExF ~ G, G locally convex, there exists a unique continuous linear
map ¢' : E® F + G such that $' oY =¢ , where ¥ : Ex F > E@®F 1is the

canonical map. Furthermore, if the seminorms {pi}i and {qj]

e I jeld

generate. the topology of E and F respectively, then the seminorms

{
\pi®qj} 1,3 generate T .

2.6. Proposition. Let A and B be unitary algebras over C.

Then A ® B can be given a well-defined algebra structure by defining
(al ® bl) (32 2] b2) = a,a, ® b1b2' Also, the maps iA :A>AD®B ;nd
iB : B + A @ B defined b_y iA(a) = a @ 1l and iB(b) =1@bDb are algt_abraic
embeddings.

Proof: A proof may be found in [12; Chapter III pp. 5 and 40].

2.7. Proposition. If A and B are in L, A® B is also in L.

Proof: In view of Theorem 2.5 and Prop;»osit:m 2.6, it suffices to
prove that if p and q are submultiplicative seminorms on A and B
respectively, then p @ q is submultiplicative on A © B.

Let x and y be in A @ B, and let cp =P ® qx), ¢, = p® aqly).

n .

Given 0 < £ < 1, there exist representations x = I ai®bi and
: i=1
y =

& ay ® bj such,&t_\gt: i

& .
~

tp gt B
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n
B X b, &
> L plag) qlb.) < p B qx) + AGETY )
é and
9 m :
- - I p(a,) q,) < p® o
o T 90 T PO ey
:, n m -
o Nowxy = (Z a,®b )(L. a,®b,)= ¢ aa ®b.b..
i=1 ' y=1 3 J i, 1 i}
32
Thus, since p and q are submultiplicative, p @ q(xy) < 5 p(aiaj) q(bibj)
n o 1,3
2 . 3 b.) =
i+ iifj pla)) plag) ald;) alby) (151 pla,) q(bi))(ji1 plag) a(b,))

RSN ::

< (POINP O +i + T o+

This holds for every 0 < £ < 1, hence p & q(xy) < (p ® q¢()) (p © q(y)).

*

Thus p ® q 1s submultiplicative.

So if the topology of A and B is generated by the submultiplicative
seminorms {pi}i e I and {qj}j e J respectively, then by Theorem 2.5 the

topology 1 is generated by the submultiplicative seminorms {pi (%] qj}

i,j
Consequently A @B is in L.
T
2.8. Corbllary. The embeddings i, t A~ A® B and ip : B+AQ@B
T . . T
are continuous.
Proof: Let } {p.} and {p, ® q,} -be as in the
B—— {_piiel’ P35 e 19357 4 5

theorem. The corollary follows directly from the fact that
' = =p, Q1 b). Th
P; @ qj(a_a 1) =p, (@) qj(l)_and pi®qj(1®b) p; (1) qj( ) us

(Pi® qj? o iA and (pi® qj) o'iB are continuous for each i ¢ I, j e J.

Since {pi (=4 qj} 4 1 generate T , it follows that 1, and 1 are continuous.

3
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2.9. Proposition. Let A and B be in L. Then (A® B, iA’ iB)
T
is the coproduct in L of A and B. /‘

Proof. Suppose there exist ¢ A > C and ¢y ¢ B+ C in L.
Define ¢: A x B » C by ¢ (a,b) = ¢l(a) ¢2(b). Then ¢ is continuous,
multiplicative and bilinear. Hence, by Theorem 2.5 there exists a
unique continuon'is linear map ¢' : A® B > C such that ¢$'(a® b) = ¢[(a,b)].
Clearly ¢ is also multiplicative and unitary, and ¢' o iA = ¢ , ‘
' o iB =¢o . Thus (AO® B, iA’ iB) is the coproduct in L of A and B.

T
2.10. Corollary. L has finite coproducts.

Proof. The proof follows immediately from the fact that

AQ@B)QC=-AQ (B ).

The proof of the existence of arbitrary set indexed copraducts in
L is a particular case of a theorem which is valid for certain categories
of universal algebras. To the best of the author's knowledge, the proof

is due to K. Golema.

2.11. Theorem. L is coproductive.

Proof: Let {Ai} i be a set of algebras in L. Let’\}/be the

e I
class of all algebras B¢ in L satisfying the following two properties:
(a) for each i ¢ I there exists ¢>1 : Ai > B in L.

(b) B¢ is generated (as an algebra) by iKEJI ¢ (Ai)'

By condition (b), the cardinality of each B¢ £ gjdepends on the

cardinality of the disjbint union, w Ai’ and on the cardinality of
iel
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of the operations which is three. Since A; is a set for each 1 e I,
and since 1 is a set, it follows that Card (UAi) = A for some

cardinal X . Thus for each B¢> € 3{ , Card (B¢)) <®t A
— o

Since the members of }'are of bounded cardinality, by the axiom
of choice, there exists a representative set § having the following

property: given B¢ € ; ,» there exist B'¢), € § and an isomorphism

Y o: B¢ - B'¢, which are unique with respect to the property that the
diagram
¢
i
—_—
A1 B¢
1
¢ i ¥
B'¢.

commutes for each 1 ¢ I.

By Proposition 0; 3.1, W B¢’ i{s in L. For each 1 ¢ I,
B¢ e
there is a continuous unitary homomorphism r]¢i : Ai +]_T B¢ defined by
B, ¢
s €8
- ted b
ﬂ¢>i(x) (‘bi(x))Bd> e@’ Let A be the subalgebra of | [ B, generated by
B¢e§
U (s, a0

1 eI

it is now easy to check that (A,{r'ldai}i . I) is the coproduct of
{a;} | . |+ For suppose there exist ¥t A>CinL for each 1 ¢ 1.
Let D be subalgebra of C generated by U ‘*’i(Ai). Then there exist B’E: @

iel

and an isomorphism Y :“D - be , which are unique with respect to the

= Y hiel. Let m: A >B -be the projection.
property t:hat“l’ o ¢i 1 for eﬁc b
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Then W—l own : A+ D inL is unique with respect to the property that
-1
v, o= (¥ " om)o r]¢i for each 1 € I. Thus (A, {r1¢i} ) 1s the
1 el
coproduct of {Ai}
1el
2.12. Theorem. L is cocomplete. /)

Proof: The theorem follows from Theorem 2.11, Lemma 2.4, and

the dual of Theorem 0; 5.5.

Theorem 2.11 shows that L has coproducts, however, inkgeneral they
cannot be realized in a concrete way. It will be shown now that if the
algebras in question are semisimple, then their coproduct can be represented
as a subalgebra of a certain function algebra.

Let {A,} be a set of semisimple algebras in L. Then for each

iel

1 ¢ I the Gelfand map ¢A : Ai -> CM(Ai) is one~to-one. Let LIRS M(Ai) -~ M(Ai)
i

be the projection, and let C(wi) : CM(Ai) > C(HM(Ai)) be the induced
homomorphism. Since T is onto, C(ni) is one-to-one for each i ¢ 1, hence
each Ai can be algebraically embedded into C(HM(Ai)) via the map

A
= . be th balgebra of
¢y C(ni) 0 ¢Ai, which maps a, to 3, om, Let A be the subalg

C(1 M(A,)) generated by (U 4, (A)).
i i i
icl iel

Define a topology +t on A as follows: a submultiplicative seminorm

p on A is continuous iff p o ¢i is continuous for each 1 ¢ 1.

Since ¢; 18, > C (n M(Ai)) (pointwise topology) is continuous for each

i
iel
1 e 1, it follows that the topology t is finer than the relative pointwise

topology from C ( |1 M(Ai))' Hence 1 is a Hausdorff locally m~convex
P

iel
topology on A making each @i continuous. It will be shown that

(Ar’{¢1} ) is the coproduct in L of the algebras {Ai} e i
iel
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From now on, ¢,(a,) = 2, o 5, will be written simply as %, .
i~ 4 i i i.
From the definition of A, it follows that an arbitrary element of A is

a finite sum of elements of the form 2, 2 ... 3 . Tt is clear that
Lh 12 i1
any such finite sum may be equivalently rewritten as a finite sum of the
m A A A
form s (a a ) ) where exactly the same indices i,,..., 1
” i i, i 1 n
j"l j j nj

appear in each term. This may be achieved by multiplying a given term

by suitable e , where e is the identity element of A In

b K Ly
particular, by fixing a Hamel basis;&%_for each Ai’ every element of A

may be written as

2.13. Lemma. For each iel 1et@) be a Hamel basis of A

1’
A /\)/ ~
Then for b, {§, , £ = G, B B dsourra =, ===
1 A i, i 1 %2 m
k jl Ty 2y n
& 3
. = = . = = 1 f = .
Proof: If Al kz .. Am. 0 then clearly 0
For the converse choose o, € M(A, ) such thata, (b, ) %0
i i i i
Ky k ky kg

for k = 1,2,..., n=1. This can be done since each A is semisimple and

each b is nonzero. Now for each (a,) in TT M(A )
i i
ky o 1el iel
f((a,) ) T X, l[a (b ) a, (b ) v..0 i (b1 Y] = 0. 1In particular,
Pier T LN M Py Yy o tn,
i A, )
DI W £ (b, Ya, (b, ) ...a (b, )] =0 for eacha, ¢ M(A[ ).
SRS PR SR S ¥ i inj n n
-l . [ (b )] = 0 for each a, € M(A, ).
Letu_ =TT ay (bi Y. Then I Aj pj oy i 1n in
k=1 kl kj: j=l n nj
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g Since A, 1is semisimple, it follows that £ X, u. b = 0; and since
o 1 P R | ’

5, n 3 =] n.

'§ 1
4 each bi € 63_ it follows that A, u, = 0 for j = 1,2,..., m. By the
2 n, *a 3]

£ J

E choice of ay » k=1,..., n-1, it follows that My + 0, hence Xl = 0.
% k

3l !

é Analogously, it can be shown that Xj =0 for j=2,..., m.

I

i 2.14. Proposition. (AT , {¢i} ) is the coproduct in L of

iel

PO

the algebras {Ai} .
iel

Proof: Suppose there exist ¥y ot Ai + B in L for each 1 ¢ I.

Define ¥ : A_ *+ B by

v (1 @, 4 2, )
a a eee A
- iy, 1 12 i i €
=t T " .N
m
= L [¥, (a, DY, (a, ) ...¥,(a, )},
j=1 1 ilj 19 izj in inj

From the Lemma 2.13 it follows that ¥ is well defined. It can easily be
verified that ¥ is a unitary homomorphism. The continuity of ¥ follows
directly from the definition of the topology t. Finally ¥ o ¢i = Wi

for each 1 ¢ 1, and ¥ is unique with respect to this property since AT

is generated algebraically by \,} ¢i(Ai). Thus (Ar’{¢i} ) is the /'
iel 1 el

coproduct in L of the algebras Ai .
So it has been shown that the coproduct of semisimple algebras

{Ai} can be identified algebraically with a subalgebra of C( 1 M(A)),
1 el - iel
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3. The subcategory CL.

In section 1 it was noted that, in general, the Gelfand map

$a : A > CM(A) is not continuous. The purpose of this section is to

investigate the subcategory CL consisting of all algebras in L whose

LI E L L TIUUN I LR LTI LT T

Gelfand map is continuous. It turns out that CL is a coreflective

subcategory of L and, as will be seen in the next section, is closely

related to CR.

.

3.1. Progosit;%h. Let A be in L. Then A is in CL iff every
compact subset of M(A) is equicontinuous. P
%

Proof: A proof may be found in [21; Prop. 1.4) or [38; Theorem 3.1}. ﬁ%

“o3.2. Corollary. CL contains all m-barrelled algebras; in particular
all Banach algebras and all complete metrizable LMC algebras.
Clearly, C(X) is in CL for every completely regular space X. The .

following are examples of algebras which are in L but not in CL.

3.3. Examples (a) Cp (R) is ian L but not in CL. 1In general,
Cp(X) is in CL iff every compact subset of X is finite.
(b) Let A = C[0,1] with the topology of uniform convergence on the

countable and compact subsets of [0,1]. Then A is in L and is complete,

but A is not in CL. The completeness follows from (39; Lemma D. S].

The following are two algebras which are in CL, but which are not

m—-barrelled.
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3.4. Examples (a) C*( R) 1is in CL but is not m-barrelled.
B={r ¢ Ck( R) : Ir(x)l < 1 for all x ¢ R} is an m-barrel which is not a
neighborhood of zero. In general, C*(X) is in CL but is not m-barrelled
unless X is compact.

(b) C{0, @) is in CL and is complete, but it is not m-barrelled.

3.5. Lemma: Let ¥ : A > B be in L and let ¢A and ¢B be the

¢, o Y.

respective Gelfand maps. Then CM(Y) o ¢A B

Proof: Consider the following diagram:

.

Let a ¢ A and let a ¢ M(B). Then

(CM(¥) o ¢, (a)}a] = {CM(¥) [8]1}a] = (3 o M) }Ha]l = 201 [a]) = B 0 ¥)
= a o ¥Y(a) = a(¥(a)) = QYZB[a] = {¢B(W(3))}[@] = {¢B o ¥(a)}la}. Since

this holds for every a € A and every a ¢ M(B), CM(¥) 0 ¢, = ¢p © Y.

3.6. Proposition.

Then A/I is in CL.

Proof: Consider the following diagram:

%A l 1 b1
cM(Y)

CM(A) ——— CM(A/T)

Let A be in CL and let 1 be a closed ideal of A.

I LT ]
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where Y is the canonical quotient map. By Lemma 3.5, CM(¥) o ¢A.= ¢A/I oV,
since CM(?) o ¢, 1s continuous, 941 © ¥ 1s also continuous. Since ¥ is

a quotient map it follows that ¢A/I is also bontinuous, hence A/I ¢ CL.

The following rather obvious lemma is needed to prove the next

proposition.

3.7. Lemma. Let {Ai}i . be a set of algebras in L and let :
(A, {Wi}i . I) be their coproduct. Let ¢ : A - B be a unitary homo-
mopphism. If ¢ o Wi is continuous for each i ¢ I, then ¢ is continuous.

Proof: Since $ o Wi : Ai +~ B is in L for each i1 ¢ 1, there exists
a unique ¢' : A > B in L such that ¢' o ?i = ¢ 0 Wi. In view of Theorem
2.11, A is generated algebraically by t}l ¥, (A)); it follows that
é = ¢', and so ¢ is continuous since ¢% is.

3.8. Proposition. Let {Ai}1 . be a set of algebras in CL
and let (4, {Wi} ) be their coprodict in L. Then A is in CL.

iel he
Proof: Since each Ai is in CL, ¢A : Ai > CM(Ai) is continuous

i
for each 1 ¢ 1. Consider the following diagram:

l*’ £
A, ——— A

i

¢ ¢
A A

) ~———> CM(A)

CM(Wi)

CM(Ai

By Lemma 3.5, ¢A o Wi = Cm(wi) o ¢Ai, hence ¢A o] Wi is continuousafor each

1 eI. By Lemma 3.7, is continuous; consequently A is in CL.

N
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Propositions 3.6 and 3.8 can be combined to obtain the following

theoren.

3.9. Theorem. CL is cocomplete and the inclusion functor

Inc : CL-— L preserves colimits.
Next, it will be shown that CL is closed under cartesian products.

First, the following lemma is proved.

.

3.10. Lemma. Let {Ai} be a’ set of algebras in L and let
iel

(n A, ,{n} ) be their product. Then every a € M( I A.) is of the

i i i
iel iel iel
form a; 0 My for some (necessarily unique) a, € M(Ai)'

Proof: Let ¢ ¢ M{(q A,). Define ¢i : Ai + 1 Ai by:

e . 11
x if 1 = j
n 0¢i(X)=
3 0 otherwise

(The fact that &. is not unitary is of no consequence in this case.)
i
Since ﬁj o ¢, is continuous for each projection T it follows that 3. is

continuous for each i ¢ I.

'éuppose @« o ¢, =0 for each i ¢ I. Then ker (a) contains the weak

product which is dense in I A,. Since o is continuous this would imply
iel

that ker(a) =iﬂ A.. This contradicts the fact that a 34 0. Soao ¢i + 0

l o]

el
for some 1 ¢ 1. Since o is an algebra homomorphism io is necessarily
o

unique and ¢ = (¢ © ¢4 ) o g where a 0 ¢, € M(Ai ).
o o o o
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3.11. Corollary. Every closed maximal ideal of I Ai is of
iel

the form Mi X( T A,) for some unique closed maximal ideal Mi of A,.
i

143
Proof: By Theorem 0; 3.2 (b) for every A ¢ L there exists

a one-to-one correspondence between closed maximal ideals of A and the

elements of M(A). Hence the corollary follows immediately from Lemma 3.10.

SR
ke
o

)
f"‘ 3.12. Propositien. Let (Ai} be in L. Then M( I Ai) ~ 11 M(Ai)
i iel iel

3 iel

(disjoint topological union).
¢ T

) Proof: For each i ¢ I consider the map Ai—1—> r Ai-—» Ai’ where
3 iel

% ¢, 1s defined as in Lemma 3.10, As in section 1, definition (c¢), the
%? M(ﬂi) M(¢i)
T map M(Ai) — M( 1 Ai) — M(Ai) U {0} 1is continuous and

'f‘( ‘{A ieI

b i)
paalich

>

- . te: . . . ) . ¢
M(¢i) o M(ni) idM(Ai) {Note Since bi is not unitary the image o

Mooty

M(¢i) is M(Ai) U i0}.] Since Ay has an identity, O is an isolated point of

1) -
§% M(Ai) UV {0}, hence M(ﬁi) [M(Ai)] = M(¢i) ! [M(Ai)] is an open-closed subset
%j of H(‘H Ai).
2 iel
¥
B - Define f : L1 M(A,) > M( T A,) by
e i . i
i;: iegl icl
‘ £(a.) = = MCr ), ]
(Gi) - Cli o Tri - 'ﬁi O.i .

By Lemma 3.10 f 1is onto. Since M(ni) is one-to-one for each i ¢ T,

it follows that f is one-to-one. Since M(“i)[v(Ai)] is open-closed in

M( Ai) for each i € 1, it follows that f is a homeomorphism.
iel
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3.13. Corollary. Let (P) be a topological property which is

preserved under coproducts. Then M(HAi) has (P) whenever each M(A,) has(P)
l »

In particular if each M(Ai) is locally compact, paracompact, normal,

k-space, or locally connected, then so is M(ﬂAi),,respecLively.

3.14. Theorem. Let {Ai} be a subset of CL.
- iel
Then T A, is also in CL.
i L
ieT

Proof: Let K be a compact subset of M( 1 A ). Since

ie
M(CTT A)) =3IM(A.), K is the disjoint topological union of H, , ..., H.
i i i
fel iel 1 n
where H is a compact subset of M(A, ) for k = 1,..., n. Since each A,
ik 1k lk e
is in CL, it follows by Proposition 3.1 that each H, is equicontinuous. fii‘
k
Y
Hence H® (the polar taken in A, ) is a neighborhood of zero in A, . Thus %
i i i
k k . k
U = HS x H:X...XH;) x( 1 A
! 2 no 14
8k=1,...,n

is a neighborhood of 0 in 1 A,. Since Ko, the polar of K taken in T Ai’
jer ' iel
is exactly equal to U, it follows that K is equicontimwous. Thus every

compact subset of M(HAi) is equicontinuous. By Proposition 3.1 it follows

that T A is in CL.
iel

It should be pointed out that CL is not closed hereditary.
Otherwise, every complete algebra in L, being a closed subalgebra of a
product of Banach algebras by Theorem 0; 3.4, would be in CL. But the algebra

in Example 3.3 (b) is complete and is not in CL.




For an algebra A ¢ L, let R(A) be the radical of A [Def. 0; 3.5 (a)]

It is known that AR = A/R(A) is scemisimple.

o A e v acr i

3.15. Lemma. Let A be inl . Then M(A) ~ M(AR).

oy
vl

R

M(4)
» M(A)

Freof: Let ¢: A > AR be the quotient map. Then M(AR)
i~ continuous and one-to~one. Since every a in M(A) can be factored

through A M($) is also onto. It remains to show that M(3) is open.

R’
Let V. = (1", ¢(a), %) be a neightorhood in M(AR). Then U = N(@' o ¢, a, &)

oz g7 A e AT STTA 2R

s ey

is a neighborhood in M(A). For B ¢ U, R = £' o ¢ feor some &' in M(AR) and

\m

57 la" o 4(a) - B(a)] < &

_,,?Z" : = |’ o $(a) - ' 0 ¢(a)| < &
&
; = B8' 1is in V.

Thus 8 = £' o ¢= M(¢)(B') € M) (V). Hence UC M(¢)[V], implying that

M($) is open. Therefore M(A) = M(AR).

3.16. Proposition. Let A be in L. Then A is in CL 1ff A_ is in 9&.7

R
Proof: 1If A is in CL, then AR is in CL by Proposition 3.6.

Conversely, suppose A, is in CL. Then by Lemma 3.15 M(¢) : M(AR) r M

R
is a homeomorphism. Thus CM($) : CM(A) ~ CM(AR) is an isomorphism. Byn

AR

Thus A 1is in CL.

Lenma 3.5, ¢, o ¢ = CM(9) o ¢A’ hence = CM(d,‘»)—.l o ¢

¢A A.Ro ¢ is continuous. i

R ~ P g
3.17. Proposition. Let A be in L and let A be its completion.

~

If A is in CL then so is A.
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Proof: Let ¢ : A € K be the canonical embeading. Then
M(¢) : M(X) -~ M(A) is continuous, one-to-one and onto. Let K be a compact A
subset of M(X). Then H = M(¢)[K] is a compact subset of M(A), and since %
[a) ~
A is in CL it follows that H® is in Wl(A). Let K~ be the polar of K in A. %>
o ) : o o ’ o, i
Then ¢(H ) C K and so clx ¢ )C K, since K~ is closed. By Theorem 0; £
: (o] ~ %
2.1, it follows that CZK ¢(H) ¢ q\(A), hence K is equicontinuous. Thus 3

- ~
every compact subset of M(A) is equicontinuous. By Proposition 3.1,

s

~ ) . K

A is in CL. %
The following counterexample shows that the converse of

Propositinn 3.16 does not hold. ’ ;
3.18. Example. The algebra A = Cp( R) of Example 3.3 (a) is E

not in CL. It is known that A= C R, the algebra of all complex-valued %

functions on IR with the topology of pointwise convergence. ’ i

Now C R . C( Rd), where R, is R with the discrete topology. Since C( Rd)

d
is in CL it follows that & is in CL, but A is not in CL.

< “

3.19. Definition. For an algebra A e L, Ml (A) is the set of
all nonzero, complex-valued homomorphisms on A, with the relative w* topOIOé?é
from the élgebraic dual A%,

M(A) 1is a topological subspace of MlkA), in general, the containmenré

being proper. For example, if X is.a completely regular space, then

M[C(X)] = X and Ml[C(X)] = vX, the realcompactification of X. )

The following theorem shows that there is a close relationshiﬁ )

between L and CL.
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3.20. Theorem. CL is a coreflective sub-category of L. 3

Proof: Let (A, {pi} ) be in L. Proceediby transfinite {
o 1el i
induction on the class of ordinals as féllows: *%
A = (A ,(p,) )

© T ier ;

b

. H

A, .= (A ,{p,} U {py} ) ¢

i

! Yaer Frewa) !

: ;

- i

where {p }'/ are the submultiplicative seminorms determined by i
K k :

C M(A) :

<0 . i

the compact subsets of M(Ao) and defined by'pK(a)'= sup_'g(a)l, 2 being :

‘ . aekK
the Gelfand transform of a. Given Ax.for all X' < y, define: 2
r 4, {p,} Uip,} Y 4f u = A +1
. 1el KM@
. A =
u
(A, {p } U{p, } )
Yger K ke Una,)

A<
if u is a limit ordinal.

Since each MtAX) is a topological subspace of Ml(A), L} M(AX) is understood
. A<u ’ ]
to be the unign taken in Ml(A). '

Clearly, AA isign L and the identity map 1 : AA + A is continuous

-

for each » . Since M(AA) is a subset of Ml(A) for each A, by a simple

cardinality argument it follows M(AA) = M(A,,,) whenever Card (A) > Card (Mi(A

A+l

Let ko be the first ordinal for which M(AA Y = M(A
(o]

Ao+1). Then the Gelfand

map ¢o : Axo+f—*'CM(A ) = CM(AX ) is continuous by the very definition

A +1
o o
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of the topology on AA +1° Hence AA°+1 is in CL and the identity map
o)

RN

it A + A is continuous. The following lemma shows that the map

A+l
o

+ A is actually a coreflection.

La g
(o]

<

3.21. Lemma. Let B be in CL and let ¢ : B >~ A be a continuous

Y
3RS ot BBl T T S

unitary homomorphism. Then ¢ : B - AX +1 is continuous. ]
o : .

Proof: Clearly ¢ : B >~ A, is continuous since for any compact

1
subset K of M(A) and b ¢ B, (pK o ¢)(b) = sup‘$?;3(a)|= suPla o ¢(b)1‘
: uekK aekK
= sup M(¢) [a] ()=  sup, |8<b>|= P (b); hence pyo ¢ "= Py (4 [x]

aeK 85M(¢)€K] M(¢) [K]

is continuous since B € CL. ’ |
¢ ‘ ;

A

case is when v 1is a limit ordinal. Sincé $: B » AA is continuous for

all X < u, M() maps M(A,) into M(B). Thus M(s)[ UM(A,)] = U M) )]
- t A<y A<y
C M(B). So ‘for any compact subset K of {JM(A.), p, 0 & = p is
| , \ o ) PR M(4) (K]

Suppose ¢ : B > A is continuous for all X < y. The nontrivial

continuous on B since B € CL. Thus, by the definition of the topology on

A
for each ), ia particular for A = Xo + 1. Thus 1 : Ak +1 + A is a
o

coreflection of A In CL. Therefore CL is a coreflective subcategory of L.

Au, it follows that ¢ : B + Au is continuous. Hence ¢ : B -+ A, is continuous

It should be pointed out that PrOposftions 3.6 and 3.8 can be
obtaineﬁ as corollaries of Theorem 3.20, since coreflections preserve
coequalizers amd coproducts. 7

This section ends with a \description of the not-necessarily continuou

complex-valued homomorphism on a prdduct of LMC algebras.
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é 3.22. Definition. A set S is said to be measurable if there E

‘% ‘ exists a {0,1} -valued measuue u on the subsets of S such that u(S) = 1, ;
@ .

and p({x}) =0 for each x ¢ S. S is called nonmeasurable otherwise.

gL
sy

Y

3.23. Theorem. Let S be a discrete set. Then S is nonmeasurable

[N N ¥ T 3

iff S is real compact.

Proof: [23; Theorem 12.3]. a

e R S
-

e
=

; 3.24. Proposition. Let {Ai} be a subset of L. Suppose that 1}:
; iel ;
% is a nommeasurable set. Then every a € Ml( I Ai) is of the form ai o wi b K
o3 iel ;

for some (necessarily unique) a, € M, (Ai)'

Proof: Let o be in Ml (n Ai) and let ¢ : T € - 1 Ai be the
iel iel iel

canonical embedding defined by ¢[(X,) ] = (h,e,) where e, 1s the
Pien Ty e 1o

identity of A Now I € = C(I) and since I is nonmeasurable,l 1is realcompa:

1 1el

hence ¢ 0 ¢ is fixed. Thus there exists io ¢ T such that:

ao ¢l 1=y .

As in Lemma 3.10 it follows that a = a o
iel o .

i i

’
for some unique g

, ' M(Ai).
o

o}

Proposition 3.24 may also be obtained as a corollary of [58; Theorem 1

3.25. Corollary. Let I and {Ai} be as above. Then every o
1el
g ,
§ maximal ideal of I Ai which is the kernel of a complex homomorphism
L iel
£
i is of the form M, x( T A, ) where M, 1s the kernel of some a € M, (A,).
| I ey 1 3 173
H
- H
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%

3.26. Corollary. Let I be a nonmeasurable set and let

&
{a} be a subset of L consisting of functionally continuous algebras. g
1 iel ?
Then I Ai is also functionally continuous. ‘
iel . .

3.27, 'Progositioﬁ. Let T and {Ai} be as in Proposition 3.24.
. _ \
Then M, ( 1 A)"_LLM(Ai) .

- 1el iel 5 .

Proof: In view of Proposition 3.24, the proof EE“éxaétly the same ©

as in Propositién 3.12, replacing M by Ml. K

-

et an B Braid by pdd, B

In general, in Proposition 3.24; the assumption that I is non-

measurable cannot be dropped. By Theorem 3.23, if I is measurable, then I

is not realcompact, hence N € = C(I) has a nonfixed complex homomorphism.
iel

It should be noted that in Lemma 3.10 the assumption that I is nonmeasurable

mnmuwﬂh‘ﬁﬁ"w i LR

is not required.

N .

4. The adjoint situation between CR and CL, CR and L.

_— e Xl

1t is known that the functors Comp Haus Ban A are adjoint on

“~

the right; Comp Haus being the category of compact Hausdorff spaces and

ol 6w W ey

3 continuous maps and Ban A being the category of commutative Banach algebras
3 with identity and continuous unitary homomorphisms. This adjoint situation
a

extends to CR and CL. Herein lies one of the main reasons for studying CL.

For X, Y ¢ CR and A, B ¢ CL, [X,Y] and [A,B] are the set of all

. -

continuous functions £ : X + Y and the set of all continuous unitary

homomorphisms ¢: A -+ B, respectively. Also, E_ : X + MC(X) is the evaluation

X

i ¢
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.= M[C(f) o ¢A](ux)}(a)

96
map and ¢A : A » CM(A) is the Gelfand map.
C
4.1. Theorem. The functors Q§.<__:.§L_are adjoint on the right.
M,
Proof: Given X € CR and A ¢ CL, define
.___T_l_-" )
n
(1) n(f) = C(f) o ¢A : A > CM(A) » C(X)
(2 u() = .

M($) o Ep i X > MC(X) ~ M(A) .

!

is coﬁtinuous, hence n(f) e [A, C(X)]; since E, is

Since A is in CL, ¢ X

A
a homeomorphism u(¢) ¢ [X, M(A)]:

To prove that C and M are adjoint on the‘right, it will be shown
that n is a natural set isomorphism.
(a) non(f) =¢

Let x € X and let a € A. Then:

(v o n(O] (@) = WC(E o 4,160} (@) = (AIC(D) o 9,] 0 E) ()] (a)

I

Il

= @of) =2 = [FG)I@).

——-

Since this holds for each x ¢ X and each a ¢ A, it follows that u o n(f) =

o
(b) n o u(e) = ¢

-

Let a g A and let x ¢ X. Then:

~

{Inow (NI@IX) = {[InM($) o EX)](a)}(xs = {[CM($) o Ep) o ¢,1(a)}(x)

[

= (CIM(p) 0 EJ (A} = [ 0 M(p) 0 EIC) = [ 0 M($)](a) = Bla, © ¢)

[
[¢(a)](x). Since this holds for each a ¢ A.and

it

=0, 0 4@ = o [s(@)]

J
L) e e ey | Wimosdn 1K1 Y

[a, 0 C(f) 0 §,1(a) = [a o C(£)]1(8): = ax(a o f)

f.
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each x € X, it follows that n o u($) = ¢.
Thus 0 is a set isomorphism. It remains to show that n {is
natural.
(c) n 4s natural.
Let £ 1 X > Y be in CR. It must be shown that the following
diagram commutes: )
X,A '
(X, M(a)] > [A, C(X))
L C(E) o (=)
(-) of
Y,A
[y, M(A)] > [A, (D]
Given g ¢ [Y, M(A)], ¢ (g 0o f) = [C(g o )] o d)-
X,A
On the other hamd, C(f) o [y (g)] = Cc(f) o [C(g) o ¢A] = [C(f) o C(g)] o 8
Y,A ) .~

= [C(g o f)] o ¢y Hence the diagram commuted. !

Let ¢ : A+ B be in CL. It must be shown that the following diagram

»

commutes? ) ¥ ) ' W..‘
hX,A . ‘
(X, MQA)] —> [A;, C(X)]
1 M($) o () (=) o ¢
"X,B t
(X, . M(B)] ~» [B, C(X)]

v
A

A iy b ey e

Toz - w dns

&
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Given g ¢ [X, M(B)] it must be shown that ”x,A[“(d’) o gl ”x,B(g) o ¢,

23 ot?bequivalenflly that C{M(¢) o g] o N o [C(g) o ¢B] o ¢.

Let a ¢ A and let x € X. Then: ‘ |

i

[3 o M(¢) o gl

{(C[M'(;t») o gl 0 ¢,)(a)}(x) = {C[M(¢) o-g] (8) }(x)

= [2 o M($)](g(x)) = B[g(x) 0 %] = [g(x) o ¢](a) = g(x) [¢(a)], (L)

On the other hand, {{C(g) o ¢p © ¢l @) X(x) = {c(g) o ¢B(¢(a))}(x)

N\ . Py
- @@ = §@ 0 gl = FD ()] = g 8(a)], (1D
Since (i) = (ii) for each a € A and each x € X, it follows that

~ ’
the diagram commutes. Hence n is a natural set isomorphism for each

a

X ¢ CR and each A € CL. By Definition 0; 5.6 it f/)llows that the functors
*

C
CR - CL are adjoint on the right.
M
In view of Theorem 0; 5.8 the following is immediate.

’ 4.2. Corollary (a) Let (A,{Cbi} ) be the colimit of the I-diagr:
/ ( 2 iel '
[}

D over CL. Theén Mm@, { M(d)i)} " ) is the limit of the I-diagram M o D
1 el
over CR.
(b) Let (X, {fi}’ ) be the colimit of the I-diagram D over CR.
i\ € -
. =
Then (cD, {Q‘(fi‘)] ) is the limit of the I diagram C o D over CL.
1 €T - —
In particular, C( ] { Xi) = I C(Xi) and M( |} Ai) = I M(,Ai).
. iel ieX 1el i€l
4.3. Corollary. Let (A, {¢i} ) be the colimit of the
ie1r 7

I-diagram D over CL. Suppose that D(i) is a normed algebra for 2ach ie I.

Then M(A) is compact. ) L4
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Proof: By Corollary 4.2, (M), {M(¢i)} " ) is the limit

‘2 iel
of the I-diagram M o D. Since D(i) is{a normed algebra, M o D(i) is a

compact spaée for each 1 € I. Since the limit of M o D is pbtained as a

suitable closed subspace of 1 M o D(i), it follows that M(A) is compact.

iel
CP
4.4. Theorem. The functors CR e [, are adjoint on the right.
M

Proof: As was noted in Section 1, the map ¢A : A~ Cp M(A) 1is
3
continuous for each A € L. The diagrams and the proof are exactly the
same as in Theorem 4.1,

4.5. Corollary. Let (A,{¢i} ) be the colimit of the
iel -

I-diagram D over L. Then M), (M($.)} 7 ) is the limit of the I-di gram
I L BRLICN I-dip

" el
M o D over CR:

The adjoint: situation between CR and CL becomes a duality when

restricted to suitable subcategories. This. duality provides an

extension of.the known Gelfand duality between compact Hausdorff spaces and

commutative B* algebras with identity.

4.6. Definition. Av algebra A in L is said to be a b*-algebra

if A is a complete *-algebra whose topology is generated by a set {pi}
: ie

of submultiplicative seminorms, each satisfying: Py t&x*) = pi(x)z.

If, in addition, A islin CL,. then A is called a Cb* algebra.

The term b* algebra comes from [1]. Clearly, C(Xi is a Cb* algebra

for every kR-space X, the completeness following from Theorem 0; 4.5l

ol S T BB P s | ,

o
PP

i
i
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However, not every b* algebra is Cb* algebra,as Example 3.3 (b) shows. ;
In fact, if X is any firsé countable space in CR which has an uncountable
compact subset, then C(X) with the topoloéy of uniform cgnvergence on the
countable compact subsets of X is a b* algebra but not a Cb* algebra.

The completeness follows from [39; Lemma D. 5].

Let Kk and Cb* be the full subcategories of CR and CL consisting
of kR—spaces and Cb* algebras, respectively. Using the follpwing

important theorem, due to Morris and Wulbert, we will show that the

categories ER and Cb* are dually equivalent.

4.7. Theorem. Let A be a b* algebra. Then ¢, P A CM(A)TO is
a topological *-isomorphism, where T, is the topology of uniform convergence

on the closed equicontinuous subsets of M(A).

Proof: [42; Theorem 5.2 and Corollary 5.3].

v v

4.8. Corollary. Let A be a Cb* algebra. Then A = CM(A)

X

(compact-open topology).

Proof: Since A ¢ CL, every compact subseéxbf M(A) is equicontinuous,

i

hence rois equal to the compact-open topology.

4.9. Corollary. If A is a Cb* algebra then M(A) is a kR—space-

Proof: By the above corollary, A = CM(A) is complete. By

Theorem 0; 4.5, M(A) is a kR—Spacé.

By combining the above regplts with Theorem 0;4.5, we ?ﬁfain

the following theorem.
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C

4.10. Theorem. The functors Ko “——~ Cb* give rise to a
M

dual equivalence.

Proof: By Corollary 0 4.10, the evaluation map EX : X > MC(X) is

a homeomorphism for each X ¢ ER' By Theorem 4.7 and its corollaries, the
Gelfand map by A ~ CM(A) is a topological isomorphism for each A ¢ Cb*.
The naturglness conditions follow from Theorem 4.1. So by Definition 0;

5.9, ER and QQ% are dually equivalent.

-

4.11. Corollary. The category of commutative B* algebras with

identity is dually equivalent to the category of compact Hausdorff spaces.

2

4.12. Corollary. The category of metrizably Cb* "algebras is dually

equivalent to the category of hemicompact k-spaces.
( *
Proof: By Theorem 0; 4.4,

]

4.13. Corollary. The category of bornological Cb* algebras is

dually equivalent to the category of realcompactukR—spaces.

<
Proof: By Theorem 0; 4.6.

4.14. Corollary. The category of B(J:) Cb* algebras js dually
equivalent to the categ&ty of completely regular k-spaces.

Proof: By Theorem I} 3.8. X '

»

The fo&lowing proposition is a direct consequence of Theorem 4.10.

-

4,15 Proposition. Let X and Y be kR-spaces. Then the function

n: [X,Y] & [C(Y), C(X)] defined by n(f)- = Cif) is one-to-one and onto.

~ .

{
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Proof: A proof may be found in [28: Theorem 14.11].

4.16. Corollary. Every continuous unitary homomorphism between a8

.
Cb* algebras is a *-homomorphism. ;

Proof: Let ¢ : A » B be in Cb*. Since A and B are topologically -

rs

*_{somorphic to CM(A) and CM(B), respectively, without loss of generality

T A [

we may suppose that ¢ : C(Y) » C(X) where Y and X are kR-spaces. By

Propostion 4.15, ¢ = C(f) for some continuous f : X —+ Y. Since C(f) is

-

a *-homomorphism so 1s ¢ . ¢

Actually, Proposition 4.15 is valid whenever X and Y are in CR.

The proof is amalogous to the proof of [23; Theorem 10.6]. !

4.17. Proposition: Let X and Y be in CR. Then every ¢: C(Y)+ C(X)

in L is of the form C(f) for some f : X + Y in CR.

t

|

!

¥

$

i

i

Proof: Let x be in X. Since ¢ is unitary, a o ¢ 1is nonzero and %
|

1

hence in M C(Y). By Corollary 0;7%.10, a, o $ = ay for some (necessarily

;
unique) y € Y. (1) }

Define f : X + Y by f(x) = y, where y is uniquely determined by (i).

For r ¢ C(Y),n%(r)[XT = ux[¢(r)] a o $(x) = uy(r) = r(y) = r[f(x)]

=r o £(x) = (CE)[rNx). Thus ¢(r) = C(f)[r] for each r ¢ c({Y), and

consequently ¢ = C(f). Now, for each r € C(Y), r o £ = C{f){r] = ¢(r) ¢ CX)]

Thus by Theorem I1; 1.6, f is continuous.

4.18 Corollary. Every ¢ : C(Y) » C(X) in L in a *-homomorphism.
This section ends-with the following:

4.19. Proposition.

If A is a b* algebra, then M(A) is a RR—SPBCQ-
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} Proof: By Theorem 4.7, A = CM(A)T . Now for every compact . >
¥ o]
4
? subset K of M(ﬁ), N(K, ) = {8 : Ia(u)l <k V a ¢ K} 1is closed in
‘ —
% the topology of pointwise convergence and therefore closed in the T, B
¢ g -
% topology. Since these sets form a basis for the compact-open topology on :
. i
3 CM(A), it follows by Theorem 0; 2.4 that CM(A) is complete. Thus, by :
§ =
; Theorem 0; 4.5, M(A) is a kR—space. i
:
g It can easily be seen that Cb* algebras form a coreflective :
S :
% subeategory of b* algebras. With each b* algebra A assocfate the algebra :
! i
¥ AC consisting of A with the induced compact-open topology from CM(A). H
! . H
} Then Acﬁis a Cb* algebra and the identity map 1 : AC + A is a coreflection. :
A \-é\@'*
3 S

5. Projectivity in K.  and Injectivity in Cb*. ‘ng

¢

Lrht o VR Mk

5.1. Definition. Let C be a category and LQt@ be a class ofr

e il

morphisms in C. An object A of C is said to be 53-projective if for

any morphism f : A > B in C and for,any g : D ~ B in 53 there exists a

morphism h : A + D in C such that g o h = f.

LR A rg

Dually, if '8 is a class of morphisms in C, an object A of §_1§

2D

said to be'g - injective if for any morphism £ : B » A in C and for any

PRyl

g : B>D in f there exists a morphism h : D + A in C such that £ = h o g.

e

©

The purpose of this section is to study EF —prqigctiv%;y in CR,

TRV

Erbeing the class of all full maps.. In view of Theorem IIL; 1.4, full maps

arise in a very natural way. So it is natural to ask what the 33 -projective " .
¥,

!

spaces are in CR, . ¢
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Projectivity with respect to onto maps was fir§t studied by
Gleason [24] in Comp Haus the category of compact Ha;sdorff spaces and
continuous maps. Subsequéntly, projectivity with respect to perfect onto
®aps (E’— projectivity) was studied for larger categories of Hausdorff

spaces. B. Banaschewski [9] has developed a systematic theory of

Ua—projectivity for the category Haus and subcategories thereof.

5.2. Definition. A topological space X is said to be extremally

disconnected 1if every open set has open closure.

The following has been proved by B. Banaschewski [9].

5.3. Theorem. In Haus, the 6>— projective gpaces are exactly the
extremally disconnected spaces. The same holds for any full subcategory

of Haus which is productive and closed hereditary.

5.4. Corollary. In CR and in Comp Haus, the 63— projective
spaces are exactly the extremally disconnedted spaces.

Proof: CR and Comp Haus are closed hereditayy and productive

-5

.subcategories of Haus.
¥

" 5.5. Corollary. In CR, every ? - projective space is extremally

discofpected. -
Proof: 'Since ’5 9'\6') , every 3”,— projective is @—- projective

and hence extremally disconpected.

5.6. Lemma. Every compact extremally disconnected space is

:r -projective.
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Proof: Let X be a compact extremally disconnected space. Let
f : X *YbeinCRand g : Z > Y in(Gr .
Since f is continuous f(X) is compact; thus since g ¢ GF there

exists a compact subset H of Z such that g(H) = £(X). Consider the following

diagram:
rd X
h ,,’ .
7 f
L Bl
H—— £ (X) }
n N

g
7 —— Y : .

Since ng is onto and H and f(X) are compact, it follows that gIH is in 6).

X, being extremally disconnected, is 5)—projective; hence there exists

h : X+ H is CR such that g o h = f. Thus X is 3g-projective.

5.7. Corollary: Let X be the coproduct (disjoint topological union)

of {Ki}i e 17 where each Ki is compact and extremally disconnected. Then

X is ? ~projective.

Proof:: Let f : X+ Y be in CR and let g : Z + Y be in EF . For

each 1 ¢ I let fi : Ki + X be the ngtural embedding into the coproduct.
By Lemma 5.6 eagh Ki is 3£—projective, thus for each i ¢ I there exists
hi : Ki + Z such that g o hi =f o fi' By the c?product property, there
exists a unique h : X + Z such that h1 = h o fi' Thus g © ho fi =‘g o hi

= f o fi for each 1 ¢ I. Hence g o h = £ and so X 1is 3’—projectiye.

5.8. Lemma. Extremally disconnected spaces are open hereditary..

Proof: Let X be an extremally disconnected space and let Y be an

-

s




P
“

AT,
PRt

-
AC

i

[ .
I IR

[P & L DA

M

sty

Sog oo~
T, P

T

N, TS (A W R 5, A e R ST TN e L Rl e i B
et . : 3%

AR e, SR Qi SRS, ¢ Sg%r Lol
.

106

open subset. Let V be an open subset of Y. Then V is open in X, hence
CZXV is open in X. Thus cZYV = cZXV NY is open in Y. Therefore Y is

extremally disconnected. ) i

5.9. Proposition: X is :y -~projective in CR iff X is the
coproduct of compact extremally disconnected spaces.

Proof: The "only if" part follows from Corollary 5.7.

Conversely, suppose that X is :}I—projective. Then ﬁy Corollary 5.5

X 1is extremally disconnected. Consider the following diagram:

&
..L.L Ki X .
KIC: X

where 11 Ki is the coproduct of all the compact subsetg of X and f 1is
Ki<: X :
the cananical map. Trivially f ¢ G; , hence there exists' g : X » 1 Ki
K, C X
i

such that f o g = idx. Now for each Ki’ g_l(Ki) is open-closed in X and
so by Lemma 5.8, g;l(Ki) is éxtremall*#ﬁisconnected. Also,

g-l(Ki) = f o g(g—l(Ki)) C}f(Ki) = Ki, hence g-%(Ki) is compact (possibly

empty), So {g-l(Ki)} is a decomposition of X into disjoint, compact,
- EiC: X . .
.o N -1 -
open—closed subsets of X. Thus X = 1l g (Ki) where g (Ki) is compact
K, C X - .

and extremally dichnnectéd.

So in CR théi;{-projectives are exactly those spaces which are

copfoducts of compact extremally disconnected spaces. It will be shown that

the same holds in the sﬁbcategory ER' \
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5.10. Lemma. Let X be an extremally disconnected space and let
.Y be a dense subspace. Then Y is alsa extremally disconnected.
°- . Proof: Let V be an open subset of Y. Then V = U NY where U
is an dpen subset of X. Since Y is dense and U is open in X,
cZX(U NnNYy) = cZX(U) is open in X. Thus cZY(V) = cZX(V) N ? = cZX(U nNyY)ny

is open in Y. Therefore Y is extremaily disconnected.

5.11. Lemma. If X is 6)-projective in ER then X is extremally
disconnected.

Proof: Suppose X is G’—projective in 5#' It will-be shown that

8X, the Stone-Cech compactification of X, is &)~projective in Comp Haus.

Suppose f : 8X + Y is in Comp Haus and let g : Z » Y be in 6)(2 compact).

Since X is §>—projective in ER’ there exists a continuous map h : X » Z
such that g o h = £ o { where £ : X -+ BX is the natural embedding. By

the extension property of the Scone—éech compactification there exists a

-

1

~ ' ~
unique continucus map h : gX » Z J;Fh that h = h o 1. Thus
~ N - ~ '
gohoi=goh=foi, and since 1(X) 1s dense, g o h = f. Therefore
BX is 6)—projentive in Comp Haus, hence extremally disconnected by

Corollary 5.4. By Lemma 5.10°it follows that X is also extremally

disconnected.'

'5.12. Proposition. X 15‘3‘—prpjective in Eé 1ff X is the coproduct

of compact extremally disconnected spaces.
Proof: 1In view of Lemma 5.11, 1f X is gf-projective in ER then X is

extremally disconnected. The rest of the proof is exactly the same as in 5.9.
’ B

r
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Using Theorem I1I; 1.4 and the dgdl equivalence BR‘___J.QEf,
1 v M
we can dualize Proposition 5.12 1in terms of'g -injectivity in gg},'e

being the class of all embeddings in Cb*.

S™3. Proposition. A isfg -injective in Cb* iff M(A) is the

coproduct of compact extremally disconnected spaces.

72
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