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g-derivatives and Jacobians on differentiable,maDifo~ds.,

Also some general propert.1es of Gauss structures o~ manifolds

impo~tant for "our problems are discussed here. The connection

between g-derivatives and~Jacobians is given ~y stU4ying.. ~

the following problem: Given two differentiable manifolds
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INTRODUV

Tpis thesis studies the problem of how g-derivatives

\ (i.e.,1J.eriva~iv~s in topological s'paces, used in

non-deterministic analypis)' are r?lated to Jacobi~ns when ~

c
j one is dealing with differentiable manifolds. This wilt

be a generalization 0\ V. Buo~omanols result,in his Ph.D.

thesis whidh deals spedifiCallY with the Euclidean spaces.

Theorems 6.5 and 6.7 shaw th~t the correspondence is an

~heor~ of simplicial complexes,' and finally in Chapter 3,

the,thpory of difforentiable ma~ifolds for later use.

Analogously in Chapter 2 ,we collect elements from the,

. ' .
References are provided for ~he non-proved statements.

In Chapter.l, we collect the main resultS-from
, '

7
Every proof given in tpe thesis is my own.

•
acceptable one.

/
, .

we review briefly the fUbdamenta,l ideas of non-deterministic,-
'l,

analys,is relevant to this work. . \~\

. ;~. "\

Chapters 1· 5 and 6 represent the core of this

•

work. 'in' 't'lie last two ehapters we deal with our main prl;lblem.

(See page 40)

,
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By non-deterministic analysis (N.D.A.) we mean

a mathematical system in which the usual concepts of
" .

analysis (continuity, differentiability, etc.) are

expressed in a non-dete'>miniStiC way;: name~y:le 'take -as
... • -. • • j r •

fundamental objects open 'sets inste~d Of' points'.

. ""Functions ~hen operate on open sets rather than

on points. ~ (We .c!\li this kind of '~uriction a ge~ral1Zed

functIon, or more specifically, a g-fbnction;ct. 3.1.)

, philosophical

We shall .now discuss th~ intuitive and

tiackgrouna of this system as an introduction
•

•

to our work. The remainder of this. section is taken t~om

Sections. 1.2 ~ 1.5 in reference (8).
" .;

• Let us consider some fundamental concepts of

mathematics such as function, continuity and derivative.

, • When we'hav'e a.functiol1 f":.X + Y, where'X and y....
are topological spaces., we always adopt a det~rministic

posi,tion relative to X aIAl Y, in the sense 'that we.,say...

•
•

that for ea~ x e: X. f has a wf!ll-defined value.. f (x) £ Y:
\ '

A non-deterministic posieion would sound like this: if x is

in some open set in X we can guarantee that f(x) is in som\ ",;,

well-defined open set in Y.' This is precisely what a ' )

PhY5i~ist USUally-a~sumes when he is, for instance, obserVing

the motion of a point; because in~general th~ ~st he can

«

. ,
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guarant?e is that in a certain small interval of time
, ,

the poln~ is in some open s~t of space, perhaps very sma~l,

depending on the accuracy of tbe experiment.

Consider the concept of· continuous function

.f: X.+ Y. As everyone knows this means that if y is very

close to x then fey) is very close to f(x). In terms of

,

open sets ~t should be reasonable to formulate a non-deterministic

concept 'like this: if Ac:. B are open sets in X then f is

continuous 1n a non-deterministic sense if we can guarantee

that f(A) c: f,(B).

Therefore, if we want to formalize these- n9n- ,

deterministic concepts.of function and continuity. we have
I
to begin to think about functions defined on domains whose

elements consist of open sets 'and not of points. The idea
.

of derivative nowadays is 'always associated with Borne linear

map. since to define derivative we need a certain linear

structure. Because of this it is impossible to define a

derivative on a general topOlogical space without freeing
•

the~erivative from linearity .

. Immediately, it occurs to us that perhaps we could

make it possible ,to speak about derivatives in a topological

space X by introducing into ,X a new kind of st~ucture. This

sounds reasonable because, in a few words, topological

structures were invented to make it possible to generalize .
•

the idea of continuity.

1. To clarify these statements let us begin by

"
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•
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,.

discussing the idea of movement. At' first glance the,

•
~oncept .of movement seems quitt;t. clear to everyone; it

l' .
simply means the changes ofpo&1. tions of bodies in. space.

But if we begin to ,think more caref~lly about it, we realize

that the concept is not so easy to graf)'p. The diff,iculty

4 " '

.
with this idea arises from the fact that very' deep and.'

,
fundamental 'notions'are involved here. like space, co~tinuity

and so op. ,~deed. when we say th~ somethin~ is moving, it

is always understood that it moves from'one place to another,,
and this presupposes the idea of space; and when'we think

about a continuous movement, namely sometping that is going
\

~oothly without sudden stops and starts; ~his, of course,

involves the idea of con~inuity. Moreover, the idea of

measurement 'is present,
•

because usually we are concerned

about how far an object moves from us, and also how'quickly

it moves, so that the idea 'of speed a'nd consequently, the
,

idea· of time appears as a~'important element to be taken. .
into consideration.

Therefore; a deep study,of the.concept of.movement,

necessarily will take us ~ight into the core of funqamen~al

'and basic ideas of our 'intuition of the wor~d. Now mathematics

is a form of expression also ~nvolving these fundamental

concept$: geometry is tra~tionally attached to the

concept of space; algebra with computations and measurements;

analysis with continuity, and so on. In t~is line of thought



mechan'!cs, which primarily is supposed to stuqy movement,

must have a distinguished place in the theory of· knowledge.
., ,

In this way, trying to generalize the idea of
'.

movement, we were n~turally led to generalize and chan~,
such fund amen tal concepts as . con tinuo"us f,unct ions and

. derivatives due to their'close relationship wi~h the idea'

of continuous movement and speed. This is nothing new'

beca~se, for instance, Newton was mainly"concerried W~;h't:,
, "-

,. the idea of movement 'when he i'ntioduced the concept of

5

•

•

•

o
fluxion, and~we are going to follow ·his steps here. Indeed,. "
w~ hav.e done nothing else but' to generaliz~ his ideas."

So we begin, as Newton does, by trying to compare the movements,

of ~WQ bodies. More prec:l.~ely, he was interested':in

( '. . I
determining how far the speed of one of them was' gre~ter

\ .~ . '

than that of the other, as the reader can see in his wo~k

on fluxions.

Iii analytic language.-if we have a func,tion y = f(x),
".

'graphed in the Cartesian plane, the derivative of [(x)

at'x can be interpreted as the relatiQn between the speed
/" .

,of.a point y along the y-axis and the'speed of a point x
'"

at~ng the,x-axis, wh~rex and y satisfy the
Q '

equation y - f(x). We try now to~do the same thing in a

more general situation.
"
Suppose X and Y are topological spaces and

f: X + ~ is a function from X into Y. ~s x changes in

..



X in Koneral. (supposo'fiR not constant) y

,lIow can we pos.ibly know how muah tho. speed

than that of x?

o
in. Y.

greater\)

To' do this we must havo Bomo way to. measure how
Co'

tar x has moved from ono Ki~en initial pouition to anothor

and abo in whll,t di·r~~i.c:m: To

us analYZO tho simple (case when

.
~olve this quostio~ lot

X is the rqal line. In
. ~"'

this caso, ono says: lot us· simply ~so"the oong,opt of

." distanco giv'on by tho roal 'numbers .. Indeod,. that is what

'we do, but l~t us, look at this s~tuation from a slightly. ,
""

different point of view .. Consider in X the Bot of intervals

daUned by tho integers, nlUllely all' i~tervals ot the form

[n, n+l). ~owif we want to know the position of a point

x after a certain time trom the mom~t it has. started from

zero, let us' say i.n tho positive direction of X, we simply

count how many intervals~thas dosc~ibed. it we neodto
of J~.

improve the accuracy of our experiment,we deUno a now

family of intorvals ot l~ngth 1/2,and so on. ThUs, by

considering intervals of length l/n·tor arbitrarily largo

n,we are able to improve"the accuracy of our mtlasuroments
~I '.'

as much as we want. Let us romark that this situation is

exactly the one a physicist i~ most or~en concerned with .
•

Now it we h~~o a paper with'a millimeter not printed on it;

• we

by

can observe and measur~ the movement of.a point P on it

simply counting the little squares described by P. In

•
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X ip general, (suppose f is not constant) y changes in Y.

:H~w can ~e ~ossibly'know how much the speed of y is greater

6

toan that of x1 ..
,. To do this we must have Bome way ~o measure how

fa'r x has moved from' one given init'ial,. position to another,

and also in what ,direction,. To solve this' .question let- ,
us lin'alyze t~e' simp'le case when X is the real line. In

.'

this case, one says: let us simply use,the concept of'

distance given by the real numbers. Indeed, that'is what

we do, but let us look at'tpis situation from a slig~tly

different point of view. Consider in x., the set of intervJlls

'defined b~ the integers, 'namely all intervJlls of the form..
[n, n+l]. Now if we want to know the position of 'a point

,

x after & cer~ain'time from the moment it has started from

zero, let us say, in the Positive direction of X, we simply

count how many intervals'it has described. If we need to

improve the accuracy of our experiment,we define a new

Jamily of intervals of'length 1/2,and so on. Thus, by

considering intervals of length lIn for arbitrarily large

n,we are a?le to i~prove the accuracy of our measurem.nts
,

as much as'we want. 'Let us remark th~t this situation is

exactly the one a physicist is most often concerned with.
I

Now if we have a paper with a millimeter net printed on it,

we can ~bserve and measure the movement of a pOin~ P on it

I

.
by simply counting the little squares described by P. In

"

...-'



•
these experiments if we

d~fined by tbe m~vement

7

consider the time t as a paramenter

of a point t ~n a line, the average

speed of it in X is notbing else but the number of Intef-vals

described by x divided by the number of intervals described

by t.

Analyzing the situation described in the examples
•

above we.conclude that:

(i) The position of the moving point can be

given with the accuracy we want, lif we define !b advance

in X ( a line or a plane) a family F of collections of subsets

(intervals or squares) witb the following properties: -

(a)
.-

If a is a collection or F. then ~ i~

made up of sets which are closures of

open sets of X, namely, G ~ a + i . G,.,
wbere A is open in X. We see this clearly

I

if we think of a as a collection of intervals,

[n,. n+ll in tbe line for n'~ integer.

(b) For any GI , G2 ~ ,a we have in~(Gl) (\ in,t (G 2 ) - O.

For instance, we see this for [n, n+l]



\
(d)

\

of length lin for n suff idently large.

Given any point x E X, ~here is a

neighbourhood of x which intersects only
'.

8

conception of space as an intuition "a priori" which

.. a f ini te nuniber ot" sets of a, for any a in

F. In the lin~ this is true for our,

previous collection of idtervals.'

(ii) If we consider tpe quest ion of measuring'
•

the position of a moving point as a question of "counting

sets", we inunediately r~.alize that no question of "homogeneity

of space" is involved, and at this pc;>int we believe -that

since Kant, through Riemann until 'B. Russell there has, .
, . '

been a continuous mistake in trying to'put at the very

b~ginning of t\e pos~ibility of measure in geome.~ry, 'the

homogeneity ot space: ~e think this was due to the Kantian
( -

seemed to carry with it, for some unexplained reason, the

r

idea of homogeneity of space and, therefore, the idea of

mea&ure based on it. We cannot, understand why the concept '

0f space, as an intuition "a priori", has to imply the
, ,

concept of homogeneity. ,By accept·ing ,the space as a pure

intui tion there is no reason to infer..
, -
the statement "the

because even in a common

space' is homogeneous", as a synthetic judgment· "a priori".

Neither .cali we' . maintain that statement as "a posteriori",

and eVerYda~ experiment of measuring

land .with a chain, it is an ideal conception to suppose that,






















































































































































