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Some results are giqen_coeﬁecting the coecepte'of

g-derivatives and Jecobiens on di;rerentiable,manirohds.h
Aldo some general properties of Gauss structhree on manifolds
important for’ouf problems are discussed Pere. The connection
‘between g-derivatives and'Jacebiana is given by studying

the following problem‘ Given two differentia;ae manifolds.
H and l' and a differentiable map ¢: l -+ !6 w;;h
IJU,U'¢(x)|-> O+ for each x € “n’ find 8 g-!ﬁnction f and
'familiea ot coverings (V,V') such that 1: (ln,V) + (H&,.V')
.ge;erates ¢, and for sgitable Gauss structures F, E' thea_'I
g-derivative DF geﬂerates a continuous fynction ¢, such teat

for all x e lﬁ:'v(x) - IJU‘U,Q(x)l for:eonvenient local

eharte u,ur.

A

P

* Iy, U.¢(x) means Jacobian of ¢ for local charts U, U‘ with

X € U and ¢(x) € U'
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- IN’H%ODU%ON

f This theais studles the problem of how g- -derivatives

(1.e.,§erivativés in topological spaces, used in

“non-deterministic analypis)‘are related to Jacobiens when . -

. . P
one is dealing with differentiable manifolds. This will

be a goeneralization O&EV. Buonomano's result in his Ph.D.
thesis which deals specifically with the Euclidean spaces.

Theorems 6.5 and 6.7 shaw fhgt the correspondence is an

i’ . (51
o )

acceptable one. . > 1

Every proof given in the thesis is my own.

Réterences'are proiided for;the‘non—proved statements.

In Chapfer.l, we collect the main resuitg‘from

" the .theory of differentiable mapifoldsefor later use.

Analogouslylin Chapter 2, we collect elements from the,

theory. of simplicial complexes, and finally in Chapter 3,

we review brierly the rundamentql ideas of non—deterministic

analysis relevant to this work ‘ )
‘~ ™

Chaptere 4, 5 and 6 represent the core of this

work In ‘thé last two &hapters we deal with our main problem‘

[

(See page 40) : : ' .



ﬁy non-deterministic analyeie (N.D.A.) we mean
a mathematical system in which the ueual concepts of
: analysie (continuity, dirferentiability, etc.) are
. expresseg in a non—dete:Einistic way;:na@elyf e take as
fundamental objects open 'sets instead of¢ points. K T
‘Functions then-Operate on ooen\Eets rather than
on pointe. (We call this kind of fuiction a ge&iralized

function, or more specifically, a g-function, cf

Il

3.1.)

b

We shall now discuss the-intuitive and - ]
. 4

:philosophical background of this system as an introduction

to our work. The remainder of this. aection is taken ffom )

Sections I. 2 - I.5 in reference (8).

 Let us consider some Iundamentnl concepts ot
™~

Vmathematics such as function, continuity ‘and derivative

‘When we ‘have &.- functiond £:.X + Y, where X nnd Y-
are'topological spaceeh we alwnys a@opt a deterministic
position {elative to X ad% Y, in the eense‘that we. say
that for eacn xeX, f has a wpll-defined vnlue.f(x) e Y.

o A
A non-deterministic position would sound like this: 1if x is

in some open set in X we can guarantee that f(x) is in som .

well-defined Qpen set in Y. - This is precisely what a

'physicist usually ;§eumes when he is, for instance, observing

4
the motion of a point; because in general thelyént he can

.gg o _ . - o :
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_ guarantee is that in a certain small interval of time
¥

_the point is 1n some open Bet of space, perhaps very smal}

-

-,depending on the accuracy of the experiment

Consider the concept of: continuOus function

£: xa+ Y. As everyone‘knoﬁs this heans that 1f & is Qery
close to x then f(y) is'very close to £{x). In terms of
open sets }t should be reasonable to toroulate a non—deterministio
' concept 1like this: 1if Ac B are open sets in X then f is.
continuous in a non-deterministic senee_if we can guarantee
that f(A)C f(B). |

| Therefore, if we.wgnf;to formalize these non- -
deterministic cohcepts‘of :unciion ano contiou;ty, we have -
io begin to think about functions defined on domains whose
elements consist of oben sets'and.not‘of points. The {dea
ot derlvative'noiadays is always associated with some linear
map, since to def;ne derivative we need a certain lineér.
structure. Because of this it is 1mposoib1e to define a
derivetive on a generai topologioal Sppoe‘without freeing
the derivative from lipearity. '

- ‘ Immediafely, it occurs to us that perhaps we could -
make it possible to speak about derivatives in a topological
space X by 1ntroduc1ng 1nto,x a new kind ot.stqucture. This
sounds reasonable because, in a few words, topological .
structures were 1nyented to make it poseiole to generaiize.

the idea of éontinuity.

1. To clarify these statements let us begin by



,qiecdseing the idea of movement. At first glance the .
concept of movement_seems quitg,clegr to everyone: it
simpl;rmeans the chhnges of positions of bodies in space.

But if we begin’to;think more carefully about it, Qé reafize
that the concept is not so easy to gfasp. The difficulty
with this idea arises ‘from the fact that very deep and
fundamental notions are involved here, like space, continuity

and so op. EEpeed when we say tp&t eomething is moving, it

is always understood that it moves from’'one place to another,

"and this presupposes the idea of space; and when- we think .
about a continuous movement, namely something that is éoing

| . N |
smoothly without sudden stops and starts; this, of course,

involves the idea of continuity. Moreover, the idea of

measurement is present, because usually we are concerned

about how far an object moves from us, and also how'quickly - L

. it moves, so that the idea -of speed and consequently. the

t
-

ioea-of time appears as agu- important element to be taken

-,

into consideration. 2 =

Therefore, =a deep study.of the concept of movement,
necesserily will take us right into the core of fundamen;al
"and basic ideas of our'intuition‘of the wor%d. Now mathematics
is a form of expreSSion also.involving these fundaQEnthl‘
copcepts: geometry is tradditionally atteohed to the - ' ' -
concept of space; algebra with computations and measurements;

analysis with continuitf, and so on. In this line of thought



. N -
mechanics, wnicn pﬁimarily is supposed'to_study'ﬁevement,
must'hnve A diettnguished place'in the theory'of-kneslédge:

“ In:this way, trydng to genernliee‘tne idea of
moVement, we were naturally led to.generalize and changb .
such fundamental concepts as.continuous functions and
dderivatives due to their:close relationship'with the idea

:of’eontinuons movement and speed. This is nothing‘new'
becanse,‘fer instence, Newton was mainly;concerned'w%:h

the idea of moveeent';hen he introduced the concept of
fluxion, andwwe are goingqto follow ‘his steps here Indeed,

we have done nothing else but to generalize'his ideas
So we beginf as Newton does, by trying to compare the ‘movements
of two bodies. More preciselm he was interested®in
determining how far ‘the speed of one of them was greater
than that of the_other, as the reader»enn see in hlS work
" on fluxions. o |
Inh analytic 1anguage it we have a tunetion y = f(x).

'graphed in the Cartesian plane, the dlrivative of f£(x) |
at x can be interpreted as the relatiqn between the speed .
.of.a point y along the y—axls and the speed of a p01nt x
aleng the, x-ax1s, where x and y satisfy the
equatlon y = f(x). We try now téado the same thing in a
more general situetion.

‘ Suppese X.and Y are topological spaces and

f: X - ¥ is a function from X into Y. As x changes in .

”»~



"X in goncrul (-upposo'f'ia nét constant) § cha in_Y.
,How can we poasibly know how much theo. apeod of y 13 grentor%
than that of x? ‘

' To do this wo mus t have somo way to. moasuro how
far x has moved from ono givon initial position to nnothhf
and llao”in.whgf giggggggﬂl To solve this qdestion,lut
us ﬁhnlyzo|thp nimpleﬁcuae'wﬁon X 15 the roal line. In
this case, one says: lu.t us;- aimpfy .u_.;;(':” the congept of

" »distance given by the runl\numbers - Indeod, that 1is what
‘we do, ‘but lot us. look at this aituation from a alightly
dit?orent point of view . Consider in x ‘tha sot of intorvals
dofined by the integers, nnmely n11 intervals of the form

[n, n+l]. ﬂNow 11 we want to know the position of a po{n;

x after a certain time from the momggt it has étufted from

zero, let us sgy in the positive direction of X, we simply

‘ couht how mhny intervals sit ‘has doscribed. 17 we noed. to
. 1 J‘l
improve the accuracy of our exporiment wo dotinu a new

family of intervals of 1ength 1/2, and so on. Thus, by
cénsidgriﬁg intervals of length'1/n~for arbifrnrily large

n,we are able to improve the accuracy of our measurcments
U \

as much as we wnnt. Lat us remark - that thia situation is

exactly the onc a physicist igs most often concerned with.

Now if we have a paper with a millimetofKnet printed on 1it,

twe can obserbe and measure the movement of a. point P on 1t

by simply counting the 11ttle squares described by P. In

~

- . >



5 ) .
X in general, (suppose f is not constant) y changes in Y.

: How can we possibly know how much the speed of y is greater

L3

than that of x? e &
- " To do this we must have some ng pd:measuré how
ggi x has moved from one glven initialﬂpositioﬁ to another.
and also 1ﬁ what direction. ' To solve tﬁig'question,let
ué_ddalyze th:simpie case when X is the real }1ﬂe. In
this casé, one says: let us simply'use,the concept 61' .
distance given by the real numbers. fndeed, that is what
we do, but let us.look at ‘this situation from a slightly
different point of view. -Considef‘in X the set of intervnls
"defined bg the 1ntegefs;’namely dll intervals of the fqrﬁ
[n, n;l].' Now if we want to know the position of a point
x after a‘certnin't;me from the momeﬁt it haé_starte& Iroﬁ‘
zero, let us say in the pogltive diréction-oflx, we simplé
céunt how ﬁany intervals it has described.' If we need to
iﬁprove the accuracy of our experimght;wé define a new
.iamily of intervals of lemgth 1/2, and so on. Thus, by
consiQeriné intervals 61 length 1ip for arbitrarily large
n}wé are able to imbrove the accufacy of our measuremgnts
as muéh as’ we want:"Let us‘remark that this situation is
exactly the one a physicisg_is most often concerned:with.
Now if Qe ha?e a paper with a millimeter net printed on 1it,

i _ ‘ _ o
we can observe and measure the movement of a point P om it

by simply counting the little sduafea‘described by é. In

1
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these experiments 1f we consider the time t as R paramenter
_detined by the ;gwement of a point t in a 11ne, the average
speed of x in X is nothing else but the number of intefvals
described by x divided by the number 6f intervals described
by t. -
Analyzing the situation described in the examples
above we conclude that: B | .
(1) The position of the moving point can be

given with the accuracy we want,/if.we define %h advance
i

in X ( a line or a planes a family F of collections of subsets
(1ntervgls'or gqunres)'with'the fplloiing properties:
(a) If ;iis A cdlleétion of P, then a is8
¢ made up of sets which are closures of

open sets of X, namely, Ge¢ a - A = G,.
A .

where A is open in X. We see this clearly

if we think of a a8 & collection of 1ntervaia _
{n, n+l} 1n the iine for n ‘an integer.
(b) For any Gl' G, € a we have 1nt0G )I\ 1nt(G ) = 0.

For instance, we see this for [n, n+1]

L] £}

and [m, m+l], with m ¥ n.

-
(c) Given any open set A of X, there is a
' “collection a € P such that some G € a is
‘/,/ contained in A. In the line it suffices

to take a as the collection of intervals

'



//,. _ of length'l/n for n sufficiently large.
(d) Givqn any point x ¢ X, ‘there is a
| neighbourhood of X which intergects only
- a2 finite number of‘séta of a, for any a in
F. 1In fﬁé'ling this is true for our.
previous collection of iftervals. i
L (1i) {?.we consider the question of measuring
) tﬁe position of a moving point a8 a question of "counting R
sets", we immediately ;éalize fhnt ho &uestién of "homogeneify
of ahace" is involved, and at this point we believe -that
éincerKant, through Riemann until 'B. Russell there has
been a continuous mistake in trying to put at tﬁe very
beginning of tHe ﬁosgibility-of measure in geometry, the

homogeneity of space. We think this was due to the Kantian

conception of space a8 an intuition "a priori" which r-
seemed torcn;ry with it, for some uﬁexplained reagon, the
idea'of homogeneity of_sp#ce and,.thefefore, the idea of
measure bgsed on it. We c;nnot.understand why the con;ept .8
of space, as an intuition "a prio;i", hés to imply the

.concept of hémogeneity. By acbepidnglthe Space AS A pure
intuition there is no reason to infer. the statement "the

. space is homogeﬁeous",.ns a synthetic judgment- "a priori".

Neitherfcan we ' maintain that statement as "a poéteriori",

because even in a common and everydaglexperiment of meiaﬁring

1and-w1th a chain, it is an ideal conception to suppose that
_ - . / ‘



the chain is always of the same size. ~ It 1is not, for many
reasons: changq(in tempér#ture, change in the Btrengéh
we apply to it, etc. Theretdre,hwa don't see any reason
why the péFsibil}tyof measurements in geoméﬁry has to start
with homogeneity assumptions.
“ - To*gdvance a further step towards the gene;al
case, we now discuss more-fully the concepf of movement.
Letlﬁs 506 whaﬁ 2 physicist really doei/ghen he obaéhuag‘
the movement of a point: First of aii'he needs a scale for
measuring time. Let us suppose, to fix ideas, that time
is running from O to 1 and 80 t is8 a real vnriablelinithe
interval [0,1]. NOW,.thﬁ movément of P in gpice (for the
-moﬁentfsupposed to be the usual euclidean space R3) is gi_ven=
analyticadly by a function f: [0,1] + R, But?Ehis is an
ideal situation, of course, in the spirit of classical
chﬂanics, because first of all we‘can ngver have precisely
.an instant t_ané!secondly we cannot find an exact pogifion
for ?" Sé really-what the physicist does is to-subdivide
[0,1] into a finite number of 1qt;fvals and then to assert
that in the 1nterva1_fti. t1+1] the poiny 1s‘in a certain
open set 1n Rs.(We_uae open sets to‘prepare fo; the ideas
we have to introduce 1atér.) In a few wofds, our experiment
suggests a 'study of a correspondence betwéen open sets 1n'

[0,1] and open sets in Rs. If our physicist wants to

1mpro§e the precision of his experiment,

Ta




10
all he has to do is to consider finer subdivisions of

[0,1]. . . '

1

“n

In the present casef at least theoretically, by

usidg finer and finer subdivisions of [0,1], we could get

-

‘the position of P as gctcurately as we want, because all
i

points of R3 are of .countable type. A compleéely different

situation would arise if we consider maps f: [0,1] -+ X,
where X may have points of arbitrarily large transfinite

type.i Let us discusg this question further.

Suppose X, is a point of X of tra@sfinite type -
a > XD, ‘with Xo the first infinite cardinal number, nnme{y
-xoihas a base of neighborhoods whose power is equal to a.

Now suppose we know that in the interval of time [ti, t1+1]

-

[

of {0,1] the moving point x ig in a certain neighborhood

V(xo) of Xq- In this c‘se. even if we reéfine more and more
s

"the intervals in [0,1] we have, theoretically, always an

imprecision in the position of x around X, because we canpot

have a countable number of neighborhoods of xoilet us say

. .
™~ '

Vi(xg), V‘z’ozo?. ce,Vo(xg), oo

such that ' T -

-- | -"0 - [31 Valxg).



hY

A

Therefore, the non-deterministic character of tﬁe~.

position of x-around X4 is due to a geometrical properti

of space and nothing else. .We call attqption.to this point
due to its relation with many situations in modern bhysics.

’ 3. The gxamples above suggest thﬁt_ir we want to
éktend the concept of continuous‘movemént to general
topological spaces, we have to change fﬁndamentaliy our usual
conceptions of continuous functions. Also, as we show
later, the concept of deriva?ive has to be completely
changed if we want to infroduce the concept of speed’into a top-
ologlical space. .0f course, besides ;hesq physical reasons, fﬁ
there are manj_mathematicnl reasons to suggest that we
should abandpon the usual concepts of continuitf o& functions.
This leads us to the concépt of generalized functions or

- N
g-functions and their continuity.

' At this point one could ask how the idea o£ speed can :
be introduced if the movement of a point is defined by ..
such a correspondence of open-~sets as above? o

To answer this questién we take‘again our example
of the movement of & point P in the plane. We suppose, as
'ﬁet;re,.that n ramily F of 9611éctions a of rectangular
seés is dgtined in it, made up of.sqﬁareé of smaller ghd
" smaller diameters, and let' D be a subdivision of I = [0,1)
qonsisting of intervals of thg_same leﬂkth which covers

I. So ﬁe can imagine "an ideal point" P in some open subset,
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»

A, of ihe'plqne in some time int?rval.lc: I. Now if we’
did this for each J ¢ I we would have the path of P. Bbut
instead let us fix a J Andﬂiés_corfesponding A. . -2
- Now suppose that to each subdivigion D of I we
associate a collection a e F such that tg a subdivision D' \
finer than D will correspond a cqllechion a' ¢ F finer than
a. So given, the sets J and A\let us call n(J,D) and n{ﬁ ,a)
the number of sets of D and a 1ntersect1ng J and A, respectively. §
Then we can say that an "average speed" of P in J is.

n(A,a) ‘ ’ . N
’D) LI '

Now if we consider finer subdivisions D and correspondingly"

finer collections a we can consider the "limits"

im n(A,a 1im n(A,a)
D n(3.D) 224 TP .n(d.D)

as possible bounds for-the average speed of P in thé'interval

i
1 . r - 1

J. |
This example sugéests how a possiple.generaiization
of tpe concept of derivative cqpld Le derined. All we havg
to do is to define precisély, in a general situdtion, the
several concepts sketched above.
So 1ooking back, we see that the study of the
movement of a point led us to the idea of generalizing

two fundaméntal notions in mathematics: cont?ﬂuity and
J
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difterentiability. - From now on, in a certain sense, we

can forifet about the physical motivations and start
& a . vatl

v

creating a '"generalized calculus” or a "non-deterministié
annlysis". In Chapter 3 this is doqe<rorma11y.;
| | 4. Before closiﬁg this section w9~want to }emark
that one so far has received the.imprgsaion that the coricept
_of‘a g-fﬁnction'was motivgtéd only by cez}éin-situations in .
physics._ This is not the case. ;The concept of a g;rungtion whs
motivatedralaobﬁ'pertain problems }n homotopy theory, which |
‘arise beéaase of the fact that, in g9nernl, one can't map
continuously a point of one trgnsfiﬁite type into a péint
of higher transfinite type. (

. After g-fundtipﬂ% were first applied-to ﬁomdtobyi
théory_and algebraic topology then it,Qas thought that |

g-functions might be a more 'natural"” way to éxpress paths,

‘etc. This then led to the developient of the g-dérivdtivé

and other concepts in N.D.A.

-

- ' ‘ | ‘
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" CHAPTER 1

DIFFERENTIABLE MANIFOLDS

1.1 Definition: A C¥ - differentiable manifold

“of dihension n is a pair (M @) where M is a Hausdorff

and second countable space, aod $ is a collection of maps
such that the following conditions hold.
1) {dom ¢i]¢i €0 is an open covering of H

. 2) each ¢1 € ¢ is a homeomorphism onto an '

s ¢

ooen set in rRY. '
3) for each pair 9,, ¢3 € ¢ 3 (dom ¢,)/} (dom 04) 7 4,

the map {(4,(¢3 " (WF} (u e ¢,(dom ¢, /) dom )

| _ )

from ¢, (dom ¢, /) dom ¢,) into R is a &_map into R" (we will

.call it & smooth or differentiable C% map).(!x ¥
gy e is maximal relative to 2) and 3).

K may be 0, 1 "2. ®, w, where Co means contiououe ck

for k finite means all gartial ‘derivatives of order less -

% than or equal to k > 0 exist and are cantinuous. C means

Ck ¥ k. C® means real analytic. Theapair (Ui* ¢i), where '

Ui is the domain of ¢i' is called a- local chart. -¢1 is

4

3 called a local chart homeomorphism ‘or local coordinate

1 Sometimes-we will call U, a local chart in itself.

/1.2 Definition: Let ¢: M, + M, be a continuous function

(*) - For ‘brevity, we shall sometimes use (ipproperly!) the notation

o5 0 6,71 for ayce;7 W), u e ¢y (dom ¢, N dom 4y).

/. 5



from the differentixble manifold' M_ to’upu We say that
¢ is differenftable or Bmooth of class Ck if the function

given by {¢J(¢(¢1 (u))lrhu e 9, (U, 7 Vj) from ¢, (U N Vy)

into RP is differentiable of -claas C*, where (U, ¢;)
and (Vy, ¥ ) are coordinate neighbourhoods of M, and M., <

respectively.

[

1.3 Definition: If AC M , a function’

$: A+ Hp. is differentiagle if 4t can.be extended to a

differentiable function defined on the odpen submaqitold *
induced by M on a neighbourhood U of A.-

v . 1.4 Definition: ¢: u - up is a diffeomorphism

. 1f ¢ and ¢_ ure defined and ditterentiablo.-

| 1.5 Detinition: If ¢: “n -+ Hp thefgggg 9( ¢ at
x is, the rank of J(wJ-¢¢I1) at ¢, (x), where'(Ui. ’i) and
(VJ ,‘wj-) aré local charts arpund x'gnd ¢(x) respectively;
and J(g) represents the Jacobian'of g for any g:‘Rn -+ Rp.

. /
1.6 Definitioh:‘ The differentiable map

$: M Hp is an immersion if rank ¢ = n everywhere (n < p).
¢ is an imbedding 1f‘t€ is also a homeomorphism into.
1:7 Definition: A CMN is a differentiable . \

.submanifold of M_if i: A + M (the inclusion map) is an

. imbedding. ‘ ) f Q::/fﬁﬁ/
. * The local charts of U are {(U!, ¢i)} whefe {(Ui,¢ )}

ieA -
13 a coordinate neighbourhood system of l and U

i - LY nN=u

and ¢; is the restric;ion»or ¢, to Ui.'
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1.8 Proposition: If ¢: M+ M, is an imbedding '

“then ¢(M_) is a differentiable submanifold of Mp; cf. [1].
- ’ ° /

. Notation: ' It .x ¢ RS and x = (% < x,)

/ oy
[l x || = max | x; |, ’
c®(ry = (x| |[ x || <}

From now on our manifolds will be of class C for the sake
‘of convenience; this is.not a very drastic restniction in o
view of Whitney's result that on an n-mapifold un,'every

ditterentiable structure of class Ck?k > 0) contains a -

¥

' o
strupcture of class C . .
1.9 Theorem: " Let “n be a differentiable
. manifold, {U_} an open‘COVering of M .- There is a collection

(VJ, h,) of coordinate systems on M such that:

J
1)  {v,)}"is a locally finite refinement of {Uu}
P h, (V c® (3 ‘ '
) 3 ( J) ‘ (.) :
3) It “j n hJ
Proof : . See [9].

-1 (c™(1)) then {Mj} covers M

-~
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CHAPTER 2

SIMPLICIAL COMPLEXES

\

For the prools of all propositions in this section,
gsee [11]. '

2.1 ) Defini%iop: . t Rn be thd¢ euclidean vaector

space over R and let C be a subset of R". ¢ C ig convex if

cyi €q € C+tcy+ (1 - t) Cy € C¥ tel=[0,1].

1.-5-, Vk} Of *

points in R" is cgyvex independent or C-independent, if
/— .

2.2 Definition: A set {Vo, v

the set {Vl\— VO,}LZ - Vo""’ Vk - VO} i8 linearly

indepqndent.

4

- 2.3 Proposition: Suppose (Vo, A\ - Vk} is

lfL
a C-ihdependent set " Let C be the convex set generated by

{v "Vl""’ v }, that is, C is the smallest convex set
containing {Vo;' 1aee Vk}. Then C consists of all points
k : k k _
of the form [ a,V_  where a, 2> 0 Vi and ‘L a, = 1.
jop 14 i = (=0 1

Furthermore.”each VeClis pniquély expressfgle'in this

form.
%&

2.4 Definition: Let-Rn be the euclidean spadé.

' ' .
A convex set generated by C-independent vectors or points

o' vla-'-a

denoted by [V_, V

{v V } is called a .closed k- simplex and is

e "

yrecee Vk] rds the dimension of the

A




N ‘- L 18

simplex. If VeV, Vieeero Vil then the coefficients °
I . . . k _ . ,‘ ’ k i . . -
a,, withva > 0 and I &, = 1 such that V= [ a V,, are
1 1.2 4m0¥ _ oo M4 1

called the barycentric coordinates of V

2.5 Defin@gigg:' Let {V , Vl,..., Vk} be a

C-independeht\sétf" The set {V e [V ;..m, V, 1;
: N th
(V) >0 i =0,.. k1l (ai(V) is the {1 coetiicient of V)

is called an open simplex and 1is denoted by (V R 1,.._, Vk)_
we will also denote an open simplex by (8) and the
corresponding closed simplex by [8].

2.6 Definition. “Let [sj s [V, Viieeon V0

be a closed simplex The vertices of [8] are the points

" \

,Vb, Vl,..., Vk. the. closed faces of [8] are the closed

simplices [VJO. le,.j., Vdnj where‘{J Jl""' j } is

a non—empty\suhéet of {b '1 ..., k}. The open faces or

the simplex [S] are the Open simplices (V, . AP ' DI -
) 3o J1 Jgp .- 0

. 2.7 Definition' “6/Bimplicia1 complex K is 2

set of open Bimplices in some R such that

1) if (S) e K then nil open faces ot [S} € K;

2) ii (S ), (8y) € K and. (s RIANC YR AOT
then (85 ) = (S ). .
The dimension of K ig the maximum dlnension of the simplices °
of K-(topological dimension). . ) ‘
' Remarks If K is araimplicial complex,

let [K} denote the point set union of the open simplices '
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' * . - .
of K with weaak topology( ); Tpgn if K has only a finite

_number of simplices, it is compact and

L .. . )
kg1 = U = U (8] |
(8)eK (S)eK - |
. -

1t FS] is a closed simplex, the collection of its open

.faces~is a simplicial complex which ﬁe denote by S.

. 2.8 Definition: Let K be a ébmplex. Let r

-

-

be.an integer lessfthah-or‘equal to dim K. The r- skeleton

KX of K is the collection .

- )

, #

k¥ = ((5) ¢ K| diw S < r}.

2.9 Definition: let S be a k- simplex. The

" parycenter of S;denoted by b(8), 1s. the point in (8) with

. 1 : 1 ..
barycentric cqordinates (Exf""'{ E?T)f that'ia it
. . _ Tk
(8) (Vo, Vl,..;. Vk) then b(S) T3 150 Vi.

2.10 Definitidn: A -subdivision of a complex K

) i . * x . ™ .
is a simpliéial complex K such that: 1) (K] = (K]1;

L

2) if S ¢ Kf then‘(S) £ some open simplex of K. :

* 2. 11 Definition: 'Let K be a simplicial complex.

‘A partial ordering is defined on K by S, < 8, 3 5, is a

{*) Besides the weak topology it is also possible to : =
consider the ‘metric topology, but we do not discuss
this here because all complexes we shall use are locally
finite and -in this case both topologies coincide. /
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rgce of 82: The notation Sl < 82 weaAns Sl < 32 and “
8, f‘Sa. . _ |
2.12 'Proposition: Let K be a simplicial complex.
If S,,5;,...,5, ¢ K and 85 < 8; <...¢ 8y, then :
{b‘SO), b(Sl)....,b(Sk)} is C-indepenq.pt and | . -
1, . :
{<bFSO)""'b(sk)) | SO < 81 <,..% Sk, Sl' 82,....8k e K}
is a subdivision of K. Furthermore, for each 30. $1..,.,Sr e K O

with SO < S1 < UL < Sr’ (b(so).....b(s ))C:(S Y.. The
subdivision K(l) is callod the first bnrycentric subdivision i

of®K. .Iterating: K™ = (x(1))(1)y (1) 45 the uth.

‘barygqntric subdivision of K.

From now on, we are going to use the terminology smooth-

‘differentiable, interchangeably.

2.13 " Definition: A smoothly triangulated manifold
is a triple (M, K, h) where M  is a n-dimensional c®
manifold.fK is a Qimplicial complei and h: [K] + ¥4 1is
| a homeomorphism-such-thnt fo} each‘qimplex'é of K, the
-m;p h|[Sj : (8] « M ﬁis an extension hg to a neighbourhood
U of [S] in the linear space of [S] such that h : U - u is -
an imbedding (or h (U) is. a differentiable submnnitold)

Remark: " As dim M= n we only need to

. raquire that this last condition:bd.haiipfied for each
n-faimplex of K, since every simplex of K is a face of
ah’n— simplex,and since r§atr1ctions-or smoath maps tor
aubmanifolds.ure smooth. ! .
3 - . . .
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2 14 Proposition. Every compact differentiable

(smooth) manifold can be smoothly trirngulated Note
that smoothly finite triangulated manifolda are compact
because [K]fis compact for each (finite) simplicial

icomplex K. See [11]. )

L7

2.15 Definition: Let'B be the matrix whose ith

row is
‘ s .
Bi » (bil""' bin) (1 =1,...,n).

If 0 = (0,0,...,0), we call = |det B| the n-'aren of the
e

n- simplex (O, Bl' Bz,..;, B )

If the origin is not a vertex of the given n- simplex.

Y

we can transtorm it by a rigid motion in such.a way that
the origin will be a vertex of the transformed n- simplex.
~We then detine_the-n-'area of tge orig}nal n- si@plex to
be that of the new n- simplex. - \

: \
2.16 Definition: A simplex with faces of the

same k- dfhension (0 < k < p) all of the same k- area
shall be oalled a standard Euclidean p- simplex Ap or a
fundamental p- simplex. ' '

As well known such simplex can éb built in many

ways, for instance if x = (xo.' 1; x2..... x ) is a poiut

T

in RP'! the set

Ap - 'Kxo; xl,.;.. xp): xy > 0, I x, = 1}

~ o
is an example of -such simplex.
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2.17 Proposition: Each simplicial complex Kn
of dimension n can be realized as a aﬁbcomplex of the

fundamental simplex. ' _ i

Proof: " " The proof is analogous teo
that J; “the corresponding well known result‘ in the thqpry

of simplicial complexes,

2.18 Lemma: Let dp be a p- simplex; then

il

the barycentric subdivislons produce simplexes of the same

measure in each subdiviaion

Prootf: | It o, " (0, Bl' B B ),

ore

where 0 = (0, 0,..., 0) and B = (b 11}..., . (1 -1, n)

are the rows of the matrix B then the volume of Un is

given by T ' - ‘

u(c )= Idet B|.

A simplex in the first barycentric _subdivision will appear,

as: ,
a0, B, B 1 % 5,8 B )..
g v Brrerer Bylpr nEl e U Rt R
4 J=1 o
The measure of an n- face ai'pr“cp is
s(oty = 1 det (B B, ., -1t B, B B )
u(o ) H: et ( 1 i-~1’ n+1l J-l Jn {+1° ’ n
t n .
det (B,,..., B , £ B,,B yeesy B
@ ar (B, 1-10 L) ByrBin n
n
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Ve
B

»

B - G}Tﬂ-detﬂ (121, 2,..., 00

C

1f we replace 0 in (0, B),..7, B_) by b(o,) = barycentre

of g, We then rotate and translate d in such a way that .
: : )

some B1 coincides with 0. Then we proceed as’bq;bre,

it ' Y

4}
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CHAPTER 3

NON-DETERMINISTIC ANALYSIS

3.1 Definition: Let X and Y be two topological .
spaces and V, V' b | o ‘families of open covérings of X
and Y respectively._ |
' Sﬁppose that for each y € V we éan associate some
u' € V' such that each A ¢ p 1s associated with ?PRG A' € u'.

We will call this association a g-function and denote it bx
fr : (X, V) - (Y, V') or

fv : weV->puy eV (fv(U) =n')
and ‘
. ' ' - '
_fu : Aeu-+A' ey (fu(A) A').

Ay

In the special case where Y is the real line we allow

u' € V' to be a collection of open intervals and/or pﬁints.
.To differentiate between the two cases we call f

a special = g-function and denote it by £: (X, V) - [R, VR].

For .convenlience we will use the term g-function to include

~ the speciﬁl case too. |

3.2 Definition: The g-function f£: (X, V) ~ (Y, vy,

is continuous if for all u, A € V such that A > u and for



Aeu, Be X with BC A, then IA(B) F_Z,fu(A) (">'" means

"refines").

We know that .in order to talk about continuity

in a sbace we need a topological structure. We are'goihg

to see now that in order to talk about differentiation or

velocity in a topological space we shall need what we shall

call a Gauss structure or a standard family of coverings.

3.3

‘Definition: A stand&rd,tamiiy of coverings,

F in a topolog}cal space X is'a family of collections a,

of subsets of X such that: '

a)

b) -

c)
d)

e)

)

-3.4

Any set A of o € F is the closure of an open
set ot X.

Given a £ F and ‘two distinct sets Al. A2 £ @,

then int A, () 1nt A, = O (int = interior).

Any a € F is a covering of X. _

Givdn any paint x € X there is a neighborhood
N of x sich that any a has orly a-finite
number of sets’ interaecting N (each a ¢ F is

locally finite). -

Given any open set 0 of X there is a covering
a € F such that « has a set A CO.
Ordered by refinements, F is a directed set

DerinitiOn: We will also call a standard

family of coverings F a Gauss structure on X. .AAGausa space

is a topological space with a standard family of coverings.

Y
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Notation: ' If there is a Gauss

structure F on X we call (X, F) a Gauss space.

3.5 Proposition: Each space X satisfying the

T, axiom is a Gauss space ct. (11.

S\E\H'Proposition Each T2 paracompact topological
space 1is a Gauss space. cIT//i

3.7 Corollary:’ Each differentiable manifold
ia a Gauss space.

The reason ' for. the above nomenclature 1F~dﬂe to the
fact that a atandard family of coverings is a generalization
oI a system of Gauss ‘coordinates on a surface S.

‘ .
3.8 Definition: Let (X, F) and (Y, F') be tyo

Gauss spaces. A Gauss transformation is a functioH

) ) ‘ - ) )
G: F +§F' compatible with,the order of refinement of F and F',
i.e., if a, B € F, a < 8 then G(a) < G(B)..

3.9 Definitibn: A continuous g~function .

f: (X, V) - (Y, V') is called -dltrerentiable relative to
the Gauss iransformatiou |
G: F - F' and the standard family of coverings

"F, F' of X and Y, respectively,‘if for anf peV,acef, Acewu,
the number of sets of a which intersect A is finite and the saﬁe
holdsfor a' = G(a),u’' = fy(u), A’ = ru(g). We denote these
"numbers by n(A,a) and n(A', q'),respectivgly.

. 3.10 gggigig;gg: Let the g-function ‘
£:. (X, V) + (¥, V') be g-differentiable relative to F, F'

o
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and G. We define the g—derivitive of £ as a apécial

g-function.

Df: (X, V) -~ [R, VR]. T6 construct Df we must

ha;a the following: ] ' _ P

a) £f: (X, V) » (Y, V') is a continuous grfunption
or special g-function. J

b) fhe Gauss spaces, (X, F) and (Y, F').

c) The Gausg transformation G: (X, f)‘+ (Y, F').
Then the construction prqcedura is:

d) Let n (A, u, a) denote the-phmber'of sets of

| a that intersect the set A, whith is an

flement of u e V.

| o D(A', u', a')
a) Let Dfu (A, a) : oA, v ) where.

£y (W) = w', £ (A) = A and G(a) = o' .

1')7 Let ITfu (A) = Bim DL, (A, a),

aeF
£im . .

Df (A) acF DfuL(A. a) , where:
Tim | ‘
GeF ¢ upper limit over the net F (directed set)

iim ;
and SEF e lower limit.
g) So for each B € A and A € V we have two real

) _ .
_numbers i.e. ﬁfi (B) and Df, (B). Let us call

I, (A) the set of all such numbers for BC A,

with B e A and A > u,l.e.:

1}
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bt (A) = (DL; (B), Df, (B)

BC A Bed, A>u, Ae V)

h) : Finally we define Dfu (A) to be the-open
interval- or point in R: Dfu (A) =

(int Bf, (A), sup D, (A)) = A it the

R’
_inf and sup are equal Qe understand the
above ﬁo be the set consisting of that point.
_i) So for each A ¢ u wé.get a point or interval l
An R.. We denote thia‘collection Dtu (A) by uﬁ..

As p runs through V we get a family Vﬁ of
: W

such collections:
Vg = {“ﬁ}

which we call the g-derivative, Df of f.. We
note that by the_defin;tion of géderivative,

Df is always a continuous special g-function.

ct. [4]. -

3.11 Definition:  The g=~function f: (X, V) = (Y, V') .

"is called cofinal it the family {fu (A) | A e'u}ucv is
cofinal in cov Y?l in the sense tﬁit givén any a € Cov Y,
there exists p ¢ V such that for any A € u there 1§ aCea
with tu (A)gp. ¥We do not require {fu (AB | A e u} to

be a cover of Y. ' - , . i

3.12 Definition: . f: (X, V) (Y, V') is

N - 3

) Cov Y = family of all open coverings of Y.
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poihtwisq_pofinal if for any x e X and any a £ cov Y there
exists u € V .and A £ 4 such that x € A and ru EA) ccC
./for_some Ce d._ bbvioual§ a cofinal g-function is pointwise
- ,cofinél. / :J .

3.13 Definition: f: (X, V)~ (I,’V‘) generates
the map (continuous ;unction) ¢: X -~ Y iff: fof any x ¢ X .

any any neighborhood W of #(x), there exists y e V, A € u

"/

such that:

X e A, ¢(x) € T&iAS and fu(A) cw.

- [ ] * ." .
Clearly- it x,ia regular Tl’ then Definition 3,13 can'be
replaced by:

3.14 Definition: f: (X, V) » (Y, V') generates

_the map ¢: X + ¥ iff . for any x ¢ X and any neighborhood
W of ¢(x), tQQre‘bxists u'eV, A e such that X ¢ A e p

. and ¢(x) € :tu(Ai C W.

3.15 Proposition: If f: (X, V) » (Y, V') is P

pointwise cofinal, continuous and it V is cofinal, and

X, Y are regulgr'Tl, then there is a unique continuous map

-

¢: X - Y generated by f; cfv [ 7]. .

3.16 Definition: f£: (X, V) + (Y, V') is the |

g-function constructed from'¢: X +.Y (usual function). by
the image method if; forAewuelV, fv(u) = ', where

u' = {int ¢(A) |- A ¢ u} and'f;(a)‘f int (¢(A)). ¢ [J.
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' 3.17 Proposition: Let ¢: R® = R such that .
& ) ) .
J ¢ (= Jacobianm of ¢) has absolute value > 0 (|J¢| >‘0)f

N

Let V be'the‘gamily of all open coverings of R® such
that each set is bounded. Let V' be the faﬁily of open
sets consfructed by the image megﬁbd, f the g-function
- £: (R®, V) + (R®, V') built by the image method. Then f
.generates ¢, ef. [4]. |

3.18 Definition: The standard family of coverings

we will be using onlthe real line R will be denoted by

FR and called the Canonical standard family of coverings

on R. It is defined by::

Fp = lagdiay oy = {5k

I, = . LY =0, %1, |
Ly {x e R: S1-1 < x < i ,J=0, -1, -2, ... L

_This is simply the family of closed intervals of length

111 , starting from the origin, which have only their end

2
.points in . common. -

3.19 Definition: The Canonical standard family

of coverings on RT will be denoted by F; and:-

n S
n . . )
Fp = {{1:1 Ai" Ai €'a}l : a¢e€ FR}.

4

G; will denote the Canonical Gauss transformation which is

the identity Gauss transformation i.e., - | .

{f
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P : P« F® s.t: GP(ay) = a,.

3.20 befinitlgg: Let (X, F) be a Gauss space
and{:lfACX ItthesetF-{{AnB:Bea}':aeF}
is a standard tamily of- coverings on A with the relative
topology, we call (A, FA) a Gauss subspace of (X, F)..

3:211_Proposit10n:” Before completely stating this

important proposition iet us fix the following:
a) Q: R + R® is continuously differentiable and
|JQ(x)|>0Vx'eR“ |

'b) V is the family of all open coverings of R

-

such that any set A in any cover has a finite

Jordan measure. ‘
c) ?. is the g-function constructed from Q and V
2 ph .
A by the image method.

d) We speak ofefhe g-derivative of f relative
to the,canonical'Gﬁuss Bpace.(Rn, Fg) and its
| 1dentity Gauss transformation Ga: Fa - FR,
‘Then there exists a g-function f which generates Q such

@

that Df generates |JQ}. (f is the g—function defined in c)
. -
cf. [3].

3.22 Proposition: If U is a non-empty open subset

of X then (U, FU) is a Gauss subspace of (X,?F). If U is

not open this is not necessarily true, cf. [1], Example 1.
R . a8 : . -

1



3.23 befinition: If (X, F) is a Gauss space
and a, B ¢ F, with a < é let us define n (a, é) a8 ?he
Supremum pf the number of alqments of B“contaihed in some ~
element of a, and'n (a, B) aé the gpfimum of the numbér 6(' ‘
élements of 8 contained'in _some element of a. - 7 ‘

II these numbers are finitc we Bny the Gauss space
s of finite type. If moreover n (a B) = n {(a, 8) for -
any a, B €c F with a ¢ B we say. thnt the Gauss spnce is “
equitable and we use the notation n (a, 8) for either one
(::)of the numbers defined above. - h .
SN . o o _
Sometimes we will use n (A, a) = n (A, ¥, a) Ipr

Ac p eV whenever it is clear what the covering u is.




- CHAPTER 4
INDUCED. STRUCTURES IN N.D.A. ‘ e . !

4.1 Def{_i_}_g: Let ¢: X - Y be a homeomorphism,

13

and F be a Gauss structure in X. Ws-are going to define the

elements of a Gauss structure in Y, which we will call the
-) N . . '-‘ "

image of the Gaﬁgg structure F by ¢ or Gauss structure

ﬂ‘k‘o

induced by. ¢ in the tolidwingfway.
. Let A edeF and A= clos 0, 0 =open in X.
Then we build F' in Y by putting |
A' = ¢ (A) = ¢ (clos 0) = clos'¢ (0),
'-{A'-¢(A) | AeF},'F'_-{a | @ € F}.

It is trivial to check that the six éonditiona for a Gauss
. space in Y nre‘tulfilled by F' ' We.will write F' = ¢ (F)
or a' = ¢ (a) for a- covering a € F.

4 3 Deflnition : The image of a g-function by

a pair of homeomorphisms Let

b S (x V) - (Y V') be a g-function,

¢1:x+x [N
and

i SNy ' :
¢,y ¢ Y » Y 'a pair ofrhomeomorphigms (9,. $5)-

n R V. VY W
Let £ . (X, V) (Y, V')
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be the g-function defined as tollows:

+
\ 4" " 4" ‘

I£ A€ u eV then A = ¢1‘(A) for AepuelV,

~N 0y

ey
where | 18 the~image of u by ol in the canonical way.
We then define " ‘ '

A .
" " . . ) 1

% (A) def ¢, (f,(A)).

-

(A"

f is called the'g—runction induced by the pair. (¢;. ¢,)
L")

and G: ¢1 (F) - ¢2(F') defined in an obvious way is called

the Gauss transformation induced by the pair (Ql, ¢2) and

the transformation ’

" G: F -+ F':

N coL :
(G (4, (@)) = ¢, (G (a))).

LN

4.7 Lemma : Let f: (X, V) + (Y, V') be

‘a continuous g-function and let (¢1, ¢2) be a pair of

homeomorphisms
Ny
. ¢1: XX
a : ’ l"\.l
' P Y - Y.

Then for any o € V and any A‘c o we have

L
D LO(A) = DIty (4), |

4 . m !
where § = ¢1(o), A= (A) and the derivatives are taken’
. . ! 4" 4"

relative to G: F » F! and G: F « F',respectively

L
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N,

B ey B B o= (R

- Preof: - It is immediate from Def{nition 4.2,

4.4 Corollary: Dfu (A) is’pointwise cofinal -
NN -

o D{t(A) is8 pointwise cofinal.

4.5 Corollary: 1r generates ¢: X + Y
A , N N n 1
f generates ¢: X » Y, with ¢---¢2-¢-¢1 , whehaver this

compoéition is defined.

4.6 Definition: L.et F be a Gauss structure in

open set X cr" satisfying the following conditions:
- 1) P is countable and the coverings of F are
| such that oy <ap "t fm < ooe,
ii) For each ay all Fe ai?hre Jordan measurable

and have all the same measure.

’ .
i11) If |Iui| | is the maximum pf the diameters of
’ 4

the elements of‘ail then tim fluili = 0.
' . . e

A Gauss structure as above will' be referred to

as admissible.

4.7 Remarks: a)‘ At first glance it seems
that'(iiif~of definition above is a consequence of (1) .
and (ii). However -that is not the case as we c#ﬁ show
with the following example: Iet'x be the subset of the

plane detined as ' »



36

! ' .
X= {((x,¥y) 1t x>1, 0 <_x3y <1}

which 1s tQB figure bounded by the curve xzy'- 1, the

line x = 1 and the real axiq. Define a collection 8, of two sets
by considering a point (xl, o) such that the area of the

. subset of x‘lyihg between the lines X - 1 and x .= X1 is

equal to the area of the subset of X, given'by X > Xg-

?efine ﬁz'bﬁ considering a point (x,, o)'witﬁrl < Xy € xi

. #nd a point x, > x, such that the sets

| Ay = ((x, y)eX: 1 <xc<x,) . C -

2

A, = {(x, ¥y) € X : Xy £ X <X

A3 = {(x, y) e X : X, £x 2 xa}

4

4 = Ux, ;) eX: x 2 xa}

o>
[ ]

have all the same area. Proceeding in the-same way for

'83. 84,'43 Bn,--n we have a familj fBi} sa;iafying.(i)
and (1i). ‘

To define {ai} we start with 8, and consider
o subdivisipn of the two sets in'Bi'by a line paraliel
to the x axis for the-aet- .

{(x, ¥y} : 1 < x < x3}

such that the upper and lower part have the same area and

for the set

~

{(x, y) : x 2 x;}
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we copaidar a similar curve such that the upper and lower -
part have also the same area.  Define a, to be the colloctidn
of these four gets. In the same ﬁnﬁner wea ;etine Ay, “3;'."

As easily seen a, 80 dgtinéd'satistiea (1)
and (11) but not (iil). .
b) ‘Anothar important point to observe is that

in R® or in open sets of R" we cannot have admissible

- gtructures with more thin countable coverings, nnme{y )

where X is a nbn-countable ordina%, assuming of course

| that all a, are distinct.r Indeed, suppose the contrary
and take a point x ¢ RY together with a sequence of balls
Bi(x) with cen;er X and'radius 1/i, 1 > 1. . Inside Bi(x)

take AJ(;) E'ad(i) suclh that
AJ(~1)C B,(x) (1)

Ajay P Agao HEETE

and j(1) is the first index satisfying (1). This i%'possible

by condition (iii).

'
Now _ "
as a, refines all By01y due

to the way we select j(i), this implies that in each Bi(x)
there is some c, € a, and this clearly contradicts condition

d) of definition 3.3. ,
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'. Therefore, there is no loss of generality assuming
that we are always dealing with countable families of
coverings.

4.8 Lemma: Let A and A' be” two Jordan
measurable sets in R® with A having non-zero Jordan measure
u(A). -

Suppose (R®, F) and (R™, F') are Gauss spaces -
with F and F' ndmissgblg Gauss structures. Let 6: F +-F'
be a Gauss transformation such that 1f,u& ~ G(um).
an, € F, aé € F"theﬁ the common measure of the elements
of O is equal to.th? common moaéure of the elqﬁénts of aé.

In this case we have

F)

E OMAT e R e g

a €F n(A, d;j. an e F n(A, o) - w(A) -

Proof: ) Consider thq sequence

(n(A', &) . u

m}' where Mo is the common measure of phe &
t
elements of a. and an: |
By definition of Jordan measure: for any e > 0 we

"can choose an N such that for all m > N
- ] ] - ] € R
[n (a*, al) u - u(A") | <e¢

So Aim n{A’, ué) um = u(A')'wpich implies

n (A, o) u, = u(A').



In the same way we have the analogous result for A.

Then since:

Lim n(A', ') n(A', al) - .
- ('A““‘";" Im o im ...,.(__A.__Em._.‘.‘_m_ - w (A
hm n(A, o ) u, n{A, Gm) Mo u, (A)

| T eay I A, o) n(A', a')
Ay _tim PAAY ag) g o
e """"_W apeF AR, o) T é’:;a' a(k, o)

4.9 Corollary: 1f £: (R", V) -+ (R®, V') 18
a continuous g-function, for ¥ w ¢ V and any A ¢ w, Jordan

measurable such that A' = IN(A) is Jordan measurable, we have

A' .
ZRCRE NGRS = O s

" 4.10 Theorem: . Under the condition of
Proposition 3.21, except that we will now deal with our

new Gauss structures F, F' used in Definition 4.6, 1f

Q is a continuously difterentiablé function from R™ to R",
then Df generates |JQ|. - s ‘
Proof: . It 1s analogous to that of Theorem 1,

Section 4.2 in (4], where only the'canon;cni Gauss structure

is considered. _ “
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CHAPTER 5

THE MAIN PROBLEM

r

5.1 In this chapter we stgrt.the discussion of
the main problem of this work, namely:.
Given dirfgrentiable manifolds Mn and M& and a’
differentiable map '
o: M_ -+ M;
ywith

|3y, g (0] > o,

wherg JU,U'¢(x) is the value of the Jaéobian of ¢ at
a polnt x ¢ Mn‘for the local chartsg (U,h) in Fn and t;\h
(U',h') in Mﬁ, we want to finq a continuqus‘g-function
& (un,V) + (MA,V')

such that

(1) f generates ¢

"(f1) Df generates a function ¥: %9/+ R (reals)
su¢ch that I?r every x € Hn there exist local charts (U,h)
at x and (Uf.@‘) at ¢(x) such that

B TCO N P ST ] PR
In ?his work we solve this problem for the ‘case

where the manifolds involved have-triangulations which
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sntisfy cortain conditiona5 y specified. lowever
without any additional condition we are able to prove
the following theorom:
5.2 Theorem: The main problem has a solution

if instoad of condition (ii) we consider the weaker condition.
(11)'; DI genefhygs a function . (Mn - i) *-R-

whero H is & meagro(‘) sbt. such that toy every X ¢ Mn - I,

there exist local cparta (U, h) at x nn& (U', h') at ¢(x)

such that

Vo) = Ny el .

Proof: Withoqt loaé of generality
wo can assume that ¢ is surjoctive, because as the Jacobian
is never zero by hypothesis, ¢ 1is locally a diffeomorphism
and by thoe theorem of invariance of open sets for manifolds,
the image of local charts by ¢ are open and thoretore-their
union is a submanifold of N' with the induced differentiable
structure.

Let us begin by introducing the notations:

F C"(1) = Gauss structure in c"(1) defined by means

of intersecting the elements of the Canonical.Gauss structuro

in R® with C®(1); thus

F c™(1) = (8 (1) / 85 ¢ F ool

o
(*) A meagre seot is a set A ! A = [].
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Now we dofino a Gauss wtructure in M , cualled the Canonical
gggggﬂggggggggp‘on M. -
-ﬁo'auppoao our manifolds to be connocted without
losing gonerality,

It the‘mnnifold is not connoctod wo work in oach
componont. Then having built -the Gauss structure in oach
component we have it in tho whole manifold. We also suppose
in what follows, that Mn is not coverod by‘only one lqcal
chart, which case has already beun . considered by V. Buonomano.,
We can supposo that our manifold is covered by a countable
family and locally finite collection of local charts
Vi ¢1)icu.auch that

S ey (V) - c® (3) and

-1

D
3 .OJ (C(1))}

2) {u

are also local charts covering M a8 stated in Theorem 1.9.

We nre‘how going“to re-index our set of 1ocal charts:

Suppose we have the sequence of charts in some order. Then

wo index them in the following way: We call U1°the firs{
'locﬁl chart in the sequence, U2 will boe the first local chart
in the original sequence different from U1 such that

U, NU, ¥ O and U, - U1-¥ 0. U, will be the first different
from U; and U, that intersects U, and U,, and U, - Ule U, ¢ Cjﬂ

etc,
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This process might enﬁ in a finite number of steps /
or not. |
We can construct ; Gauss structure in the closure
of each o( these local charts in a canonical way, Take for
instance U;: we build the Gauss structure in Ul ta kg
' as members of it the image by means of homeomorphism of

1oca} charts ¢Il of the elements of the Gauss structure

F c™(1) in C"(1) (For each covering in F C"(1) we have a
covering in ﬁl.) As we sald, this can be done in every

local chart Ui'

This means that we have a Gauss structure in the
closure of each local chart, but they are superimposed
inside the intersections of--the different local charts,

\
We are going to avoid this in order to have a nice and

suitaPle Gauss structure in:the whole manifold. Let us
N '
denote by 8} = 8,() c®(1) the covering in C"(1) obtained

from‘B‘j e F n by intersecting the elements of B.j with C"(l)h
_ R _
The elements in ﬁi-which come from”Bj through qil are denoted.
BY Agye | - .

We denote also by ¢;1(F c™(1)) the Gauss structure

—

in,U1 obtained by taking the inverse images of the coverings
in F c®(1) by means of ¢Il.
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The elements in F CM(1) shalllbu.donoted by
LW "

AIJ' A

we will proceed in the following WAY .

2gree Now to build a Gauss structure in 0, U U,

We have the elc¢ments AlJ in Ul ?elonging to the

) ‘%auss structure in U,{/ U,. Then we pr?sefvo in U,
those eleﬁents of the Qauss étrucﬁure on it which do not
intersect Ul’ and then. we add the elements of the form

Ayy - ﬂi for any A,y belonging to the Gauss structure in

U, which intersect U,. -'We denote by ¢I§ (F c™(1)) the

1
family of coverings in Ui v U2 obtained in this way.

Claim: ¢Ié (F ¢™(1)) is a Gauss

structure in U, U U,. Indeed, 1if ¢I;’(Bj) denotes the covering

in ¢;é (F Cn(l)) which comes from Bﬁ‘in c"(1), it is composed

T J
of:

. " .
a) those wlements AlJ - ¢I1 (Alj) whiéh come

' 47
by means of ¢;1 from A1J € Bj.

r

b) those elements which are of the form

- — "
- - '
07 (Kpy) - Uy for Ay; € 65
Now we check all cohditions of a Gausa structure
"as defined in 3. 3. _
- S | n
a) ~ Any set A € 875 (B)) € ¢]5 (F C°(1)

.18 the closure of an open set.
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Indeed suppose the sot we are dealing with is
: . L A
- - ) \ n

of the f§rm Aij ¢1 (Alj) whgre Alj‘c BJ e FC(l) = 3

0 . u" . - ' . !
Gauss structure in Cn(l). Alj is the closure of an open

‘|

N ’ . . N 4" .
sot 4n C™(1). The same is true for A, = o7t (Ayy)

because ¢, is a homeomorphism. and the theorem of invariance
of open sets guaranteesvthat AIJ hns.Q?n—ompty interior in
o , .
Ul\j U,. .
The same gould be said about an element

Ayj D “an U, = CJ. The other kind of element we are

* N
dealing with is of the form ¢51 (AZJ) - Ui - AZJ ~- U

with AZJ/] U1 ¥ [OJ. We have té@prove now that any of these

clements is the closure of an open sepﬂ’

.- m‘ V

-1 ™ )
:ﬁ “¢2 (Azj) Azj is the closurg of an open set in

T

2)

is true because A - U, = A - El tA-;s open and U, 1is closed .

iL} U,. so Ay, = A. & is an open set in ﬁI\J U,. 'This

1 1
50 A - Ul is open).

—

b)  Given ¢;; (8}) e-¢;; F\c?(;) and two distinct

-1 . -

. 'y i A int A, = L.
sets A;, Ay€ &), (8§) then int . 1{1 nt A, = (]
(int A denotes the interior of A), We have

to deal with several cases: \
1 W :'—l 4
1) ' Suppose Al = 4, (Alj) and A2 - ¢1  (Alj)’
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" T . ¥ 0 )
1 t . 1 .
AlJ f,“lj’ Alj smd_ﬁtl:j € BJ € F C(1).
o R
. n ' L A -
As we know, in C (1), int Alj /1 int Aij = [,

so taking inverse images by QII, we have
1 4 ' ’ . 1 ") . ;o \
- 1int (¢1 (Alj))f1 iﬂt,(¢1 (Aij)) : !

=in? (Al)f\ int (A,) = {1 (¢, is homeomorphism).

. : N A
- - -1 '
i1) Suppose Ay = 671 (Ayy) and Ay = ¢ R

i

233 - Uy

_1In this case clearly int (A N int (4,) = .

—n—

n, ’ . ) .
-1 _
iii) Suppose A1 =“¢2 (Azj) - U1 and -
. 1 . ‘ S
N = i ' - .. Th n
Ay = 47 (A = 1 . The

H

- 4" - “ .
int (03} (Ayy) - Up) f1int (o3 (Ao T

= (ne (ayp) - T N Gnr (A3 = T)) =10,

¢)  Any 675 (B3 € ¢

i
o

;é F C?(1) is axcovering of
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fﬁl‘) 62. Take any point x ¢ ﬁlt} U,. 1f

x ¢ U, then ¢, (x) € C(1), and ]
4"
ljls.t.fwl(x) 3 Alj.whiqh obviously

>

-

| . "
implies that.x € ¢Il (Aij),

It x ¢ U, = U;, then ¢,(x) € C"(1) which

q‘ —
(Ag5) - U).

- N
+ ¢,(x) € Azj C c®(1) + X € ¢'£1

d) - We haﬁe to verify now that, given any point

X € 1[} 62’ there is & neighbourhood N.of 3

such that any ¢12 (BJ) has just a finite
number of sets intersecting N.
That is obvious, because for any ¢Ii (8))
L

there are a finite number of elements bglonging to °I2 (35) |

in ﬁl and ﬁ so any'neighborhood of x ¢ ﬁltj ﬁé\intefsects

a rinite number ot elements or ¢12 (BJ)
é'-) Gilv(en a‘.ny open set OC [i] UU2, there is
a covering ¢12 (BJ) € ¢12 (F o (1)) such_
that ¢12 (BJ) hag a set A;jo.
Take any 0;C ﬁi' ‘01. open '1{}1_51 v, fi.!}d
0, 0, &' = 1 or 2 (at-léa;é qpé ofl;hese

choices of i is possible).
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. Fa ' 18

Supposoe 1 = 2, and  take ¢2(0,,)-- (}éc c™(1):

Then as Cn(;) has a standard family
) R of coverings F Cn(l), there exists

r ' . LW

N .
Ayg € By D Ay £05. Then

T -1, .
05 A,,) C 657 (03) = 0, € 0i and 8o

1.V -
¢q (Agp» - Uy 0.

7
£) - Ordered by refinement ﬁg F (C™(1) is a
‘directed se;:. if §Ié(aj) and ¢I;(ai) ar?
members of ¢I;(F‘Cn(1)),;hen §here exists
. oT3(B) D e73(85) > #7y(8)) and

¢I§(B$) > ¢I§(Bi).wherq m>J3 and m > L.

Now we can construct a Gauss structure for’the

whole manifold by induction.

Suppose that the Gauss gtructure is already defined

9

for 'ﬁlU TJ-ZU"' Uﬁh. ¥o take ndw Uh+l_ such that . >

.- - -— — N r

O py =, (U U THU oo uiu, ¢ Q, v N (UIUUZU | UUh) § 1.
" If after Uh all the remaining UL are such that

‘ -: Ui - (UlLJUgU “\' Uuh) = D.
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‘then Ul' Upgreren Uh cover the whole manifold and: we don't
. 1 ' .
néed to go ahead with the construction. If this is not

the case, we continue our construction by induction in the

~

- v

following way:. '
.
We restrict the Gauss structurc, which we have

in Uh+1 to Uh+1 - (ﬁ'lu U2U >---' V B-h)' as we have done in

the stops of building the Gauss structure from ﬁl to
UlL} UB' and then all the steps of the proof are the same
as for Gl \jiﬂz. oxcept for some &hanges in notation; for

S
.

instance, we will have ¢"1 .. instead of @’i. Vo
: : 12...(h+l1) 12

call this Gauss Structure the canonical Gauss structure in M

F(M"); ¢;é3...h..(33) will donote the covering in F(n“)

which comes from B3»1n Cn(l).

As said above, we suppose that we are dealiny with

a function ¢: “n + “ﬁ which is onto and 80 we CAn agsume

that the locally finite covering by closad local charts

Uy - ¢'i“1 (C"(1)) is pairwise diffeomorphic to the

covering {ﬁi} we already have 1n dn’ ~So in the same-way

as we have a Gauss structure in un. we also have one 1in
] ‘ . .
“ﬁ " ¢(M“),using this family of pairwise diffeomorphic
local charts.
_Let us call Border of the Gauss Structure in M/ with

respect to {Ui} the meagre set X -

. -~
]
2 \ .
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. . *
a(es) = 3 U, (/ [0, - U1 J 0T, - (U, U U] “

1\J{3U4 “(Ulgj Uz(J US)] ‘e f

The sane sort of Bbt gan be dafined in Mﬁ:
' v

3(Gs') = AUy U [a0) - U311 U (a0 - (03U Ty)
ULaly - (U UV U510 -

‘Lot us now introduce the following Gauss
\\.

transformation Gl: h(Mn)"fr(Mn)‘

- -1 ‘l - 1*1 ’ \ l"1
Gy (073, . m...(B3)) = 01pl n.  (B3) (41 n..

-1
s N t .
plays thc same ro&c in Mn as ¢1.2..h... in Mn).

We are going now to define our family of opun
0 ¥ Vv - A ‘|
coverings in “n (“n). ,

Wo take as family V (V') of open coverings in
'un'(ué) the age built in the following way:

Let us consider a family VW [Cn(l)] of open coverings

of Cn(l)_unch of which is composed of open, finite

Jordan measurable sets, ‘and d; 0 o0 ¢Il is 1ﬁjact1ve

o ——— -

‘(*) (3 means topological border). o
3

rl
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’
.in each onc of these open sets in which this copposition

is defincd,for.&ll'pniré of local charts‘(Ui, ¢ )'(Ui'7¢i)

in M, and M, respectively. _hfter that we take the image

by each local chart homoémorphism ¢Il (¢i-1) of these

coverings and we obtain a family of éoveringa in Mn (Mﬁ)."
S Now the reqﬁired g-function f is defined by the

1ﬁgge‘methoq, fee., uru' = {int ¢(A) | A u) L (A) =

int (¢(A)) for A € u e V,and V is the family of open

coverings in Mn already defined.

Observe that, int (¢(A)) ¥ [ by the theorem of. ,
invariance of open sets because A is inside a local chart, and
4nt ($(A)) is the image by homeoﬁorphiam of local charts,

of an open, finite Jordan measurable set.

(If‘q'l(Al) - A, then ¢] o ¢ o ¢;1_is)a diffeomorphism,

and diffeomorphiéms preserve all these properties.) Obviously
f generates ¢. A

The Gauss structure we have now in M; - 3(GS)
(Mé - B(GS))is-the one obtained by restricting the canonical
Gauss structure in M (M!) to M, - 3(GS) (M} ~ 3 (G8')).

. We can plade this restriction on nn - 3 (GS) because
' this set is ibviously open. The family of open coverings

is the same as in M_(M)) but this time the open sets are

restricted to M_ - 3 (GS) (M} -3 (G§')).

RN S NPT _PL IR 2
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N

Then as ¢J1 [3(GS')] is meagre in Mn.considering
the pair ¥ - 3 (GS) - ¢_1 [3(GS')] an% M' - 3(GS'), we
canlappiy V. Buonomano's result; cf,f@], Theorem 15,
Chapter VI. _ -

‘ Our theorem is proved and so the Main Problem is

solved on Hn except for a set of first category or a meagre set

namely:
30, U (T - T U (a0, - [0, U T,000-+ U o7 aes ).

We finish this chapter by proving a lemma.which -

will be useful later.

r

5.3 Lemma : , The covering V (V')ldefined
in the manifold “n (yas is cof;nal. T ‘

Proof : ' ‘ ﬁet A be any covering of Mn.
‘We wish tolfind nevsu> A'(u refines 1).

Let us take the interséction of A with the local
charts, namely:

A AU )
ien

This is a réfinement-of A, each of whose elements 1s
contained in a local chart.

Next,K we take the images by homeomorphism of Iocal

charts of these open sets into the qube'Cn(l). In this cube

(). A AU} ={anu, | Ac A, Uy € {Ugl).
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. Qﬁ-rofinu the imuge of these opon seté by means of umall
cubes or spheroal thch are finite Jordan measurablau,
Besides theso prqpertiéa ¢i o ¢ o ¢I1 is ono.to ono in;
these cubes or aphoros‘fdf oach 1.

Aftorlthis,wo'tako the images of those cubes or
spheroes back tO‘Mn and with thoso imagos of cubes or spheres
we have our desired covering y which refines x (u > ).
Note: The same can be said when‘V1 is the family of
covarings V restrictod to Mn - ; (GS). Interchanging
Mn t Mﬁ, V by V‘u Vi by V!, we see that our resulf

_ - ) o
is also truo in (Mﬁ, V') aad (M& ~ 2(GS"), VY.

N
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CHAPTER 6

MAIN PROBLEM FOR MANIFOLDS WITH SMOOTH TRIANGULATIONS

L
i

6.1 Definition of a Parametric Manifold:

Let X be a subset of an euclidean space E of

‘dimension p.  We call an admissible parametric representation

of X of class Cr and diménaion n:

ca.map ¥: U + ¢ (U) of an open set U in R" into E

with the following properties:
| .- 1) v is a homeomorphism from U égto X of class CT.
2): rank of @ = n at eéch point of U. (¢ 1is an
immersion). “ T

A parametric manifold is a differentiable manifold

imbedded in RP where local charts have parametrig representations

éiveﬁ by the homeomorphisms attached to those charts. More
-1

precisely if (U,¢1) is a local chart of Hn/ then ¢, is

a parametric representation of U.

6.2 Measure in a parametric manifold Mn-

Let (V, ¢) be a local anrt in Hd detined in a parametric

way, ¥ U.+ #(U) = v, U open in R®. Let us define the

measure of V in Mn as its n-area given by

T
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_ . | *
S j/qm; - (uy | B g,
‘ AT 3

and in the same manner we define the measure of any subset
of V.which is image by ¢ of Jordan measurable sets in U,

According to[l0]} we have the following result:

v

6.3 Thoorem: Let Mn be a parametric manifold.

Thén there oﬁists on Mn a measure y, and only onc.sucﬁ that in'
in cach local chart‘(v,'w). p coincides with uw: this
mgnsuré is called "n-dimensional area".
| Proof : ' See [10].

6.4 In this section we solve the main problem
stated in 5.1 for the case where the manifolds involved
have trigngulations which satisfy a certain condition to
be specffied.‘ This is done in Theorem 6.7. First we solve
the ﬁain probiem for a particular case which is Theorem 6.5

and then, we obtain the main Theorem 6.7 by using Theorem 6.5.°

s

- p 9y, (u) -3y, (u)
ORI O I .

1 3 k=1 %%3 %y

where yp{u) = (wl {u), '°"wp ¢u))-



Y

‘are countable and that for m > n, a- - > an (ué >a')
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We believe that Theorem 6.7 18 a reasonable

~ solution of the main problem in The sense that it includes

many imporgnnt cases commonly found in the applications.
6.5 Theorem: The main problem has a
solution under the following two hypgtheses
1) There is an imbedding y: M + RP and Gauss
st}ucture F, such that for any a ¢ F all sets A ¢ a have

the same n-dimensional area. Similarly ton'uﬁ 9

we have an i@bedding w‘: HA - Rp', such that all sets

of any a' c-F' have fhe same n-areh. The dauss txansformation
G: F - F' takes a covering ay € F into andther ui e F'

such that the sets of a; have the same n-area as those of

a

Also we require that the standard family of coverings

i’ \

m n°"-

2) }or any x € Mn there is a local chart (U, h)
of the atlas of Mn such that h(x) belongs tv¥the closure

of an open set W'c;h(U) whose Gauss structure induced

"by h is admissible. The same for Mﬁ and local chart

. N
(U',-h'). Mo}eover if y = ¢(x) and G is the Gauss

traanormation induced byathe pair (h, h') then the sets

of & in W and those of G(a) in W'(:l1(U ) have all the

- same n-area. (Here, ¢ is the mapping of 5.1.)

Proof:

1) Required family of coverings (V, V')
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¥We will choose as tamilg of covaringh V.in u
(the same can be done 1n H ) the family of all coverings
such that each qpvering is formed of inverse 1mages,§y
local charts homeomorphisms of open, finite Jordan
measurable sets in Rn, exactly as considered in Theorem 5:2.

2) . Required g-function

The g-function f will be the one obtained from
$ by the image method: u + u', where u' = {¢(A)|A € u},
fu(ﬁ) = ¢(A), AeuelV. ' .
¢(A) is open because ]JU.U.¢(x)|f 0 for all x£M. °
exactly‘as iy Theorem 5.2, '
3) - Required Gauss structure pr stanqard famili
of coverings

We will take as Gauss strucfures_F in M and F' in

M! any of those satisfying hypotheses 1) and 2)-in M_, M!

respeétively; and the Gauss transformation is the one
satisfying hypothesis 1), as 1n‘the‘hypotﬂésis of the”
;heorem.; Now we progeed as Tollows: Suppose all the

- requirements 1) to 3) are fu111113d. Recall the definition

of measure as given in 6.2, i.e., . -

-1 ‘ ,
3 3¢, (u)
u(B) = ///det ‘ ¢i () | ai : y du, where
' Xy *k -

65 (B)
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B Ui is an open set in Mn (the same can be done in Mﬁ).

"1f

=1 ) '
9 9
k, j -axj Bxk 4

this function is > o, whenever u e Ui’ by the definition of
a parametric manifold. By the mean value theorem of integral

calculus:

u(B) = M(u) d u = M(P) u (B),

Py (B) N

where P ¢ B = $,(B), -and u(B), ts the measure ofB = ¢,(B).

-

ﬁe have to remember ;hat accordingltO'the waylthe family
of open ceverings in H is defined, we will not eeaL with
open sets B which are outside the local chart in question.

Now let B, B' be two open sets belonging to the
covcrings w eV, w' = fv(m) e V', in V V' of Mn and n;,
respectively.- Suppose B CU,, B' T U;; Uy, U;. local charts

in Mn'and Mé, respectively, -

Then:
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MU(Q) du
b(B) . B N S C) I I
J M)y du M) u(B)

B

P ' N
()

= i3 9 ’J B Q B Yo
;——%%% JUL' uy ¢ (Pﬂ. PeB PebB, Qe B'. Indeed,

=, oA ‘ . -t ‘ ’
i_igﬂl =13y U,¢($)‘by the mean value theorem of integral
w (B) ETR

caleculus in R%, B e ¢, (U) and ¢,, ¢, are imbeddings.
‘Now we havd, exactly as in 4.8,

By g B Sy BB o)
u (B) n(Bf um) amci n (B, um)

umeF
This implies that we have:

n (B', a')

m
n (B um

kim

; .5 ) L M@ iy
pf, (B = bt, B = ywy 7 ) JUE'Uﬁ‘IH

e e — Ty ™~
and ¥ (¥, B, @) --Lﬂll.lU g ¢ (P

M (D) Cjb/‘i
\\ .

continuous function from B X E ¥ B' + R in the variables

is a

Q, b, B, because M(P) § 0. Moreover as M, and M' are
locally compact,we can assumeé that F is uniformly continuous
in Bx B x B'.

) $=t'a§;¢", 0

t




60

]

Let us snow’ﬁow that given ¢ > 0 and x ¢ M" there.ls;
an open set A in M with x € A such that ¥ w ¢ V and
¥V Bew, BCA, we have diam [Df (B)] < g. Indeed select - |
A contained in some local chart (Ui’ ¢ ) at x sucq that
whenever we take points-P,“P € ¢; (A) and Q cm¢i ° ¢ (A)
with (Ui, ¢i) the correspoﬁding‘ehart at o{(x), we_have
¥ (B, B, @ - F (P, ", @) < e
- | | . e~
;for P', P'. e ¢y (A)'and Q' e ¢i- 0 ¢ (Ai,»as well ~This -
. is possible due to’ the uniform continuity of F in A, '; T

Therefore by the definition of’ g-derlvative for

any w € V and B € w wi;h B¢ A and any Y > w, y eV we' have
DTy (By) - _D_f_v.“(Bz-)I <€

for any Bl' B2 € v and Bl’ B2 « B. Sofby-pﬁe defiq}tioe of:

iy

~

g-derivative again, we have - - ) b
. B \ . - .
diam (Df_ (B)] < R

- Let us now show that Df is pointwise cofinal’,

-

According to what We;QUSt proved we have

B e w-+diam [wa(B)] < g, and so given any covering‘[jof
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the set R of real numbefs;'we féatrict it to the interval
b (B) = clos (DF (B)).. This interval is compact, and
" s0 we have a Lebesgue number for thé covering r‘rastricted
tb this interval. Let this number be denoted by €y
And now let us puf €' = min (c,cl). Then b& what

we have seen above, there exists B C B (B ey eV, v > w)

1

Xt Bl such that, by the continuity of Df, diam [Drv(ul)] < g o+ DEo(no
. Y

¢. ¢ far somo C ¢ [1f)(wa(§T).
Finally, we are golng to prove that DI generatos -

« function y which coincides with the Jacobian [Jy .y, ¢
’ . £ L
on each point x for suitable local charts

el

Ug(x), Uy (i:a_(x)).

As DI is poihtwise cofinﬁl. it generates a function

I Mn + R, as V i8 cofinal. When ¢1 takes x ¢ Ul into the

interior of a set in R" whose induced Gauss structure by
®q is ndmissibfe, then we can prove that Df generates |

|JU , U.'¢(x)| as in Theorem 3.21. Otheraise, by the hypothesis
£ L . :

of the theorem, the point x in question is such that ¢,(x) .
bélnngs to the boundary 6! a-set E, whose Gauss structure
(iu&ucvd by ¢£) in élos (E) is admissible. - Now Df geﬁerates

a unique continuous f&ncpion P Mn + R (Reals), and 1in Ui we

have that ¢ o ¢;1 and lJUl' u} p | o ¢;1 coincide iq all points
of the interior of E. As int EcC ¢, (Ug) and both ¢ o ¢E1 and

1
Uy

¢1(U£Yt) E, they also coincide in x € 3(?).-

. )
A e
e

Coygr ¢ | o ¢;1 coincide in int E, and are defined in
: .



)

Thorefore

-1 _
b by = |Ju£' uy ¢ o oy

N

in E N¢, (Uy), which implies
wix) = |Jdy » o OCX]
Uy" Uy

because X ¥ E Neo, (Ug).
This completes the proof of the theorem.

6.6 Before we prove the next theorem, let us

A

Let'M be a dif!erentiable manifold of dimension

dibcuss a fow questions

n and assume M_ has a triangulation T satisfying the

following property:

(a) for a convenient subdivision T' of T’thc
star St(a) of every vertex a of T' is simplicially equivalent to
an n-complex K in r" having all n-simplicea witb the same
n-area. .

Wwe call T a balanced triangulation if it has

prbperty (a).

Hélated to this” concept, we can prove the proposition
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which follows, whose statement depénds on the concept of

A

n-complex inscribed in the n-ball.” A n-complex K is

insceribed in the n-ball B® if one vertex of K is at the
center of B" and all the others lie on‘;he boundary sh-1
of B®. Now our proposition is: . 8
(8) | There exists for every n > 0 and every
k » n+ 1 an n-complex inscribed in the n-ball B" with k
vertices having'all h-simplices with the same n-area.
Proof: We proceed by induction on n.
It is true for n = 2 aﬁd k >3 as is easily checked. Supposc
the pfoposition is true for n - 1 > 2 and k > n. For n

and kK = n + 1 the proposition is true because we can take

as K an n-simplex with all edges of the same length. If

k >n + 1, consider k - 2 > n. Then by the induction hypothesis
_there‘is a (n-1) - complex inscribed in B";l with k-2
vertices. Consider "1 as the equatorial hyperplanc of
Bn;and put the remaining two points from those k points
%iven before at the north and south pole *of B respectively.

Now, joining the poles with all the k- 2 points in
Bn_{ we obtain the required n-complex.

6.7 Theorem: : Let Mn’ un and $: un - Mn_
ve as in the main problem and assume that both M_ and Mo

are compa ¥t and have smooth triangulations satlsfyxnh
,‘
condition &) stated above. Then the main problem has a

solut i.on .

- . ~
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Proof: . If we analysce the proof of
Theorem 6.5, we notice that its fundamontal Bteps aro!
| 1) Tho prodf that Df is pointwise cofinal and
thereforce gonerates a continuous function
v Mn + R, o
2) The proof that ¢ coincides with the absolutoe
value of the Jacobian for suitable 1local
charts.
So,Aroughly speaking, to prove OJ; theorem we
shqpld somehow obtain 1) and 2) above, and that is what wo
take as pulde for the proof of our theorem.

Let us analyse 1). The property of being holntwise'

cofinal at x is a local property, i.e., it depends only on
. C \‘

what is going on in tlie ﬁeighbdrhobd of x, and duc to
lbemﬁa 4.3 it is invariant under & homeomorphic traniformution,A
in the scnse of thnt lemma. Now as_Mn and Mﬁ have balanced
triangulations, by hypothesis, pfoperty a jus; says that

x ¢ M and ¢(x) € M have small neighborhoods which arc
homeomorﬁhic to the intertor of a certainrn—complux L ih U

R". . Now the sdt of bapycentric subdivisions of the n-complex -
L is clearly an admissible‘ﬁnuss structurc in. the sense

of 4.6 and so, 1océlly. ¢ induces a map $:IL + L which

is di rentiable with Jacobian different from zero. For

such 3 accordink to what we said before, and (4], we can find -

L
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b 4"

a g-function f generating $ where g-derivative DI generates
‘the absolute value of the Jacobian of 3. So all wp‘ﬁave
to do according to Lemma 4.6 is to provide for Mn'and ﬁ',
Gauss structures, having 1oca1-1magesrin L, which
arc precisely the barycentric subdivisions of L .

We proceed as follqws:

Reasoning with Mn.we havg a.homeomorphism
h: K Mn,where K is a n-complex, because M; is trinngulubic‘

and for eac? n-simplex 5y hlsi: sy Mn has‘nn extension
_ h5 to a neighhborhood Ui of 8y in R" {plane of Si) such that
i . :

h5 : Ui + Mn is an imbedding (i1.e. h_ (U,) 18 a smooth submanifold),

pecause the triangulation of Mn is smooth.

-1 -1

So (h (U,), h_”) are local charts; h

4 i 8 ‘ - s
i i : i

is differentiable because it is the inverse image of' an

imbedding(and hy (U;) is open, because ip the theorem of
i x .- ,
invariance of domain or open sets

-

e ———— -

(*) Brower's .theorem on the invariance of domain: Let
{
X be an arbitrary subset of k™ and h a homeomorphism of X

Lot

on asother subset h(X) of R®. If x is an intefior'i

point of X, then h (x) is an interior point of h (X)\ In | )
particular, if 4, B are homeomorphlc subsets in e and A 1is

open, thenkB is open.
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We also know that K is Bimplidiallf/;quivnlent
\ to a subcomplex of the fundamental simplex Hp, p > n,
Lot 1(°) =y,
p p
u(;) = the first barycentric subdivision of np,‘
u(ﬁ) = the m'D barycentric subdivision of Hp.und
- 80 on:
Call o the family of all simplices in Hp, '
1 (1) " " T tt " (1’) []
a H D
2 " " " L1} (2)
11 L1} _ ll ]
a b
(lm " " Lo " " H(m), . etc. a {
p
i

Then i£ is obvious that the family of all a : is a standard
family Q; coverings or a Gauss structure ianp. This
1implies that {h(ai)}, i i i, is a Gauss structure (staandard
family of coverings) in Mn. |

Therefore we can identify M# and Mﬁ with subcomplgxus
of Hp with structures of differentiabie manifolds induced

by M_ and M!. Now ¢: M- Mp will be regarded as a

r

Tve
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differentiablo map of a subset of up into another.

Now we are able to proﬁo step 1) referred to abovo,

i.e., Df i8 pointwlse cofinal and 80 generates a functio;
1N Mn + It.

Indood, lot x ¢ Mn be arbitrary and take n ustar
st(a) -¥ x € int St(a). Then according to a) we can supposo
that St(n) is simplicially equivalent to a complex L in
R" dofincd by some barycentric subdivision of an h-simplux
L. Aguiﬁ by Broﬁur'a invariance theorem, the open star

- A
(int St(a)) 1s taken 1Rto an open sct in Rn} the intertor

of the complex referred to above, which is a differentinble
manifold in Rn with differentiable structure induced by

the differentinble structure of int {St(a)]. This is an

easy consequence of the implicit function thoorem. We

. . ‘ g
do the same for Mﬁ obtaining a complex L' and a star St(a') )
» (x) e int (St (a')). :

Let h St(a) ~ L

-

hy St(a') + L' bo the corresponding palir

of homceomorphisms.

We have recduced the probiem to the intérior ot
St(a) because pointwise - cofinality is a local pfupcfty.
as said before. By Corollhry 4.4, (Df 1is pointwisé

a"

cofinal 7 Df is pointwise cofinal), the . N

pair of homeomorphisms hy. hy induce a g-function f E) bf

‘i.‘>
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{5 pointwiso cofinal, by restricting ourselvoa-to tho
interior of tho staf St(a) and 3t(a') as discussed abﬁvo.
Therofore, as D? is pointwise cofinal this implies that bDf
is nlso pointwibno cofinal,
Our soéind stop 1is to provo that ¢, Kencrated
by DI, éoincidus with the absolute value of the Jucobian of
¢. Again, analysing the proéf of Theorem 6.5, wo conclude
that this deponds nssontinily on condition 2 of that thuurum.
and S0 wo are going to show that this condition is nlsu‘
true in ﬁho present situation.
J.lnduéd; Jot X € Mn and ¢(x) ¢ H;. As the friungulutiun
of Mn is smooth,wé can tnke‘na local éhurt (Ul' hg) ntg
X. the npeﬁ‘het UL which contains the simplex B to which

X bolongs, and is in thd hyperplane defined by s,. We take

s h, the restriction of the homeomorphism h: K + M to

9%

p(x).

togother with its extcension to u,. We do tho samo for

o+ Bg) and (U, hy) satisfy condition

Clearly (U
< ..
2} of Theorem 6.5 where the W required in that theorem is
ziven by the interior of sl'in Uy -
This completes the proof of ;he theorem.
Remark : . Condition 2) is introduced

‘ n _
to obtain locally an imbedding in R . The more general

situation where we have a manifold u" homeomorphically
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imbeddod in R? and we want to know if 1t is also

diCfoomorphically imbedded in RP, is studied by B. Hajduk

in [(81.°
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APPENDIX

‘Wo want to finish our_work by pointing out
- severnl possibilities open‘£o ;urthdp rosearch suggestod
by what wo have done so far. We beliove this might
1ndicntoﬁ1hnt’dur {doas could produce new achiovaments in

non-deterministic mathematica in the future.
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Measuro Inducod by Gauss Structures

1. Thoe roador bprtainly noticod that froequently

71

we havo approached tho concopt of dorivation of g-functions

with tho concept of measure. This is clear, for instance
in tho prnof of Theorem 6.5. We beliove that it 1is
posstible to define a measure overy time we have n Gnuss
ghace satisfying curtain conditions, Tululyn want Lo

discuss brioflly at thsg polut.
Let (X, ¥) be a Gauss space. Call a figure

in X the union of a countable set (possibly finite) of
(J .

oloments of )ovorinus.of F (such that ﬁn;two of them have
common interior points). We emphasize that if H is a
‘figurc of X,the sets whose union is H are qot-nccossarily
taken from the same covering of F; they might pelong to

different coverings.

"

Let us assumo that F satisfies the following
conditions: . -

CI ) F has n céfinal, countab}c. well -ordered

set of coverings

a < 62<.I.< ui < aif]_( w's o

1

[y
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+ Crp) Thero is a monotone sequonce {m111>1 of
poasitive integors with l.im-m-1 = o guch
that the number of sets of W61 contninod
in one sot of a, is precisely m = n (ui, “1+1)'
We obsorve that F boing directed by rofinoments,

wo can drop the word "well-<ordered" from ¢ bocause 1t

Lg\{ consuequence of cofinal + countable; howover wo

believe it is good to have 1t oxplicitly stated.

fhe colloction {ay) ., of Cy will be called a
base for F.° . t>

We beliove F can generate a measure in X as
follows: first select as measure of any set in ay an

1
arbitrary number K > 0, called the guugeo of F. Then

K K

as measuro of each set in an tnkelﬁl - HT;ITj;:j.

and for nany set A 1in a, we take

L(A) = K 'l - AL, X y - n(a :_Y?fi- .
my, m, --i m1~l n(al. 02), n-(uz, aq {-1' %37

Clearly the measurc of each sat }n a, tends to zero ag.d - =,
S
Now let H = U A
1

N be a figure in X. We put
m(H) = I m (A,), which may be finite or infinite.
) -

9
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Finally if is anfarbitrary set in X we ‘define theo

E
exterior measure of E as the number

m-(E) = inf m (H). ‘H ﬁ figure in X = J
° 7 ECH . o

To have a measure in X we have onlg to}Lerify that mo(E)

so defined satisfies the requiremeh%s of an exﬁérfdr
measure in fhe_sense of Cﬁratheodory. Uhfortungtely by

the time this tHesis was written we did not check these
points, but what we have said‘is enough to show how a theory
or'measure can bé built in a‘Gauss space. Certainly ﬁnny
interesting connections with derivatives'musf exlst and there is
also the quéFtion of deciding if every open set 1is

measurable yhen X has a countable basis of open sets. We

plan to investigate all these questions in our future work.

2. Another question suggested to us by our work
connc¢tod with measure is the following' Suppose ¢ is a
function of R® into R which maps measurnble sets in R"
into measurable sets, taking @easure,for instance, in the
Jordan sense. Suppose there is a real continuous function
f defined in Rn such‘thdt for any measurﬁble set A there

R

is & point x € A such that

3 A) o S - 1y .
Hji%x% £ (x). . (1)
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We ask if ¢ is then necessarily_difrereqtiablg}.of if that
is not the case, what conditions we.ﬁgve to assume for ¢
such that f as above does exist. . T oo, © .
If ¢ is differentiable with Jacobian different
from zero,we,kndﬁ that a function like f does exist: ' ' N
precis?ly,f is thc-Jacobiansof ¢ and also relation (1)
is true.
‘If we can answef tﬁése'questions. othe; théoréms
similar to 6. 5and 6.7 can be established. So far, we do -
not know anything about them. The classical theorem of

Radon-Nikodym is connected with these questions but in

generél, ﬂ'the Radon-Nikodym derivative, is not contjnuous.
}
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Brownian Motion and N.D.A.

Just Fo mauke reforonces to pnsHibllitidh of
| ' :
applications ¢of g-dorivatives in physics, wo rocall thoe

work ol Wience Eabout tho B{uwninn motion of particles in
. - . o .
I

a fluid. \
i ' S
Rou hﬁy speaking.tho result is that the path

of such paCtﬁEles is muthematically represented by a
foo -0
counlinuous éurve without tangent at any point. Now,

Lluqqically thu spuod of a particle is always connected

with thv‘tnngent to the trnjectory. which in the prosont

case cannot be represented at all. Howovor, following
. » ‘ ' .
tne ideas discussed in this thosis, a rcasonable approach
‘ > B L
“to this problem could be as follows:

3 be the bnth of the particle

‘Lot ¢: [0, L] + R
1n the Brownian aotion. S0 ¢ {s.cbptinuous but nowhere
différcntiablc.‘ Our aim is thcn'to‘find a continuous
g-function

£ (v, 1], V) = (R, V)
whiuh uenuﬂnteb ¢ and whose g- duqﬁvative Df 13 polntwibc

'coixnul. If we can do this we can renard DY as the VLlO(lL)

of the particle,bécause under these pircumstnncea Df generates

3
-

r\-/‘
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a usual function wJ [0, 1] + R which is continuous. For

moro detalls gbout other applications of non-deterministic

, mathematics to physics, see V. Buonomano's Ph.D. thesis [3].
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¢
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Complexes Inscribed in the n-Ball

N

We wish to mako a few comments about property
a) used in Theorem 6. 7.

Let K be n‘h—complex 1nscribed in the ball B,
Consider the following stnto&ont: BY'K is8 always simplicially
.isoﬁgrphic to another n-complex L 1nscfibcd'1n ph
hnving'ull n-simplices with sume n;area".

So far we do not know any rigorOué proof of this
fact, even thoﬁgh we boliove‘it to be clearly true on
intuitive grounds, i.e., one might be able to “move"

1

the vertices of K lying on the boundary s"* ot Bn until

we et the deéirod result. As a matter of fact this is
evident for n = 2.
Assuming 8)

\
use it to prove property a).

be tryc, it is often helpful to

For instﬁnco, 1f a manifold

Mn has atriangulution.iuch‘that the star of cach vertex

i; simplicially isomorphic to a n-con ex,ins;ribed

in the_n-bal],thon it will satisfyralso:pr perty a).

Usually that is the situation we encounter in the applications
- .

and so it is ¢f some interest to investigate the property

B) above.
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] ‘ IV

_Extension of N.D.A. to Infinito Dimensions

[N

Another natural question is the oxtension-of
our rosults td infinite dimonsions.. More ﬁrocisely, lat
$: X+ Y
bo n differontiable map with X, Y Banﬁcﬂ_;bd66§:
- Wo ask 1if there is a g-function
£: (X, V) » (Y, V")
for convenient families'v, V' such that ¢ gonorates ¢ and
ité,dérivntive Df is pointwise cofinal. If such an f oxists,
Df generatos a real function ¢ defined in X. Theﬂ what 1is

theQneaning of y? More preclsely, when we deal with a finite

dimension, the derivative is connected with two things: a
linear map and a real function which is tho value of the
Jacobian at each G;int. Now, for infinite diménéions the
derivative is still aséociafed with linear maps, but what
replaces the Jacobian? | |

S0 fﬁr we do not know'ady reasonable answor to

this question, but it certatnly'deserves attention and the ' X

function y referred above might tell us something about it.



T8

v

Possible Intrinsic Htudy of Munifolds

Analysing Thoorems 6.8 and 6.7, we roalive that
they show how, in some cnnnu,thu Gnuss structure does, in
certain sense, rdproducu tho uahul difforuntinblc'atructuru.

Howevoer, we QQ not neud nugvuuurily to runtriot oursclvoes

to these cosgy;  wo mlpht Just start the study of manifolds

directly with g-functlons and ' Guuss structures,  More -

precisely, instead of lobkinu to the catepory D of diffcr~ ;
ontiable manifolds and difforoq?iﬁblu maps, wo look at
the category P of palrs (M, V) where M i8 & topological:
manifold with Gauss structure and the morphishs aro
tontinuous differontiuble g-functions.

From this point of view, our thuurems merely

state conditions under which objects and morphisms of P
can be identified with 6b30cts_§nd morphisms of .

The advantage of starting with P 1H'thnt most of
the conceﬁté defined will be topological invariants, due
to Lommas 4.3'and?4.4,und this avoids one of the serious
problems with manifolds, namely, cvery time we define

something using local charts it is not usually cvasy to
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vorify the topological tnvariance of tho concopt ‘ -
introducad. In few words, we thQ nlwnys to worry about

lntul charts which wore real’y introduced bngnusu wo dld

not hvaxgny othor wny of spoaaking about dnrivutivun

Now thut‘un jutrinsic thoory of dorivutivoes doos oxist,

i1 seoms to us that thu natural thing to do is to qu,Guﬁﬁﬁ__,;~ o
Jl:utturu inutend of local chartu.  Wo narGO'tﬁzfrif‘h;

poerhaps too unrly to docldn whluh philonophy to adopt, but

the Lden of rTeconstructing nll of dlftornntinl topology nnd
difforent tul guqmgxry 1n'tnrmu ol Gauss structure scoms to us

n fuuclnntfquﬂntérprlﬁe.

- ———— (o] -
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