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A. theory daveloped by Toupin, Tiersten, Brown and
Halcher employing finite strains and angular momantum
invariants is applied to ferromagnets which have hexagonal-
close-packéd or cubic symmetky A ﬁamiltonian is writien
down which includes Heiuanborg-exchanqe, magnetic aniaotropy,
maqnaéngistic torms and the Zeeman term and which is
invariant under canbined rotations of the magnetic and -
.elastic ayltems. When the approximations of small—strainr
theory are. subsequently carried out, there appear new terms
originating in the magnatic anisotropy that are linear in
tge "antisymbhetric strains ®ov and correspond to rotations
of the elastic medium. The coupling éf‘trannv.rle acoustic
waves to the magnetic system is studied and expressions are |
QQrivad for the dependence of the measured elastic constants
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on an applied magnetic field in the ferromagnetic phase.
. k:‘ ..
Using available data on magnetic anisotropy and magneto-
v ’ .
striction, estimates are given for the size of the effects

that may be expected to be found in the rare-earth metals.
(G4, Tb, Dy, Ho and Er) and in some of the rare-earth-iron

compounds RFe., (R = Tb, Dy, Ho, Er and T™m). Fractional

2
changes in the elastic constants as large as 1072 are
predicted in fields 6f about 50 kOe. Calculations ;re also
performed for . the field-&ependéht changes in cil and €44
~for iqngitudinal waves in the paramagnetic region for Dy

‘and Ho.
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‘INTRODUCTION

-

“1.1 Magnetic Interactions

The magnetic épmen;s on atoms in solids mnay interact
with each other’in a number of w&ys. However, the-simplest
model of Qagnetlsm is one in which electrons in well-
localized magnetic d— or f-shells interact with one another
- via an’ exchange mechanism having the Heisenberqg form

% Jij §i'§j' Here_si represents;thq totai spin angular,

i<3 -
momentum of the ith atom and Jij denotes the exchange

integral which depends up&n'thg separatidn distance of the
a@bp?. The low enérgy‘extiations of spin syste;s cogpled‘
by‘exéhange interactions are yave—fike and are called spin
waves. In a spin wave, a small sinusoidally varying devia-
tion of the momenis from the c6mp1e;aly ordered state-
travels through the lattice. The enérgy of a spi; wave is
quantized and these quantized excitations are referred to as*
magnons. The axcitation of a lipgle magnon reduces the )
ordered moment of the ‘system by one Bohr magndton. If the
intaractionn betwean magnons are neqlected then they have a
well defined energy Bg and momentun hq. Cla:lically, these

excitations‘correahond to a precession of the individual

1



magnetic rmoments about the ordered moment direction and the o
phase of one moment relative to another is determined by the
wavevecteor q. Exchange forces are mainly responsible for

determining the dispersion relation Eq vﬁ q and hence a

-~

determination of the dispersion curve by neutron inelastic
scattering techniques will give informntion\about the exchange’

interactions. '- ‘ ) 1

o
The exchange forces, however, éo not give fise to an;

preferred orientatlon of the ordered moment with respect to

the crystallaxes. In a ferromagnetic crystal it is generally
found thar the directior of the ordered moment coincides with
certﬁin‘defipite crystallographic axes. These axes are
réferre@ to as directions of easy magnerization or maénrtically
ersy directions. All other symmetry directions are called
magnetically hard directiOns. We can say. that there are
effectiva internal magnetic fields in tnf crystal which tend
to' orient the magnetic moments along certain preferred axes.
The'energf'of the magpetic spin system depehda on the
oriﬁntation of the magnetization with respect to the crystal

axes and we refer to this energy as the magnetocrystalline.

anisotropy energy. ' 4 -

Since the int;ractionu between the magnetic moments
on atoms in crystals depend 'upon the interatomic spacings,
the magnetic spin system is direétly coupled to the atomic

-
_ displacements. This coupling of the magnetic and elastic

systems is called magnetoelastic coupling and it is comprised -

]




of both a static and a dynamic part. 1In a ferromagnetic
crystal the static part of ﬁﬁ??’coupling results in a shift
of the equilibfihm positions o% atoms from ﬁgose they would
occupy if there were no coupling.' The crystai symmetry is
slightly distorted compared to the paramagnetic state and the
distortion depends upon the direction of the spontaneous
magnetization. This static effect is usually referred to as
magnetostfiction and:it‘contributes to the effective
anisotropy field in éetermining the equilibrium direction of
the ordered moment. ihe dynanic part of the magnetocelastic
interaction couples together the oscillations of both the
magnetic moments and the elastic displacements about the
equilibrium configuration of the combined system. These
oscillations in the magnetic and elastic degrees of freedom
are usually described in terms of magnons and phonons
respactively. Phonons describe the quantized lattice h
vibrations in the same way that magnons-describe the quantized
spin deviations. The low energy excitations of the combined
magnetic and elastic system are only adequately described in
terms of these purely magnetic and purelx/elastic normal
modes if the coupling between them is ségficiently weak. If
the dynamic interaction is not weak, then the correct normal
modes of the system possess both magnon and phonon
characteristics and should be referred to as magnetoelastic

modes.



Iﬁ certain materials, magnetoelastic interactions
strongly influence both the equilibrium and nonequilibriumn
maéneﬁic prope;ties. As mentioned prewviously, the static
magnetoelastic coupiing contributes to the effective
_anisotropy field in thé:crystal. In addition to affecting
the equilibrium moment direction, the contributions to this’
effective anisotropy field also influence the magnetic
excitations or spin waves. These effects may be investigated
experimentally using ferromagnetic resonance techniques.

In a ferromagnetic resonance absorption experiment,

a static magnetic field is apélied in the magnetization
direction and a small oscillaﬁing magnetic field is applied -
perpendicularly to this static field. The static field
strength, together with the effective anisotropy fiéld,
determine the precession frequency of the mﬁqnetic moments.
When this precession frequency matches the frequency of the
oscillatiné field, an absorption of energy from the field can
be observed. By measuring the value of the static field
required for resonanée as a function of temperature, informaQ-
tion about the effective anisotropy field may be obtaiped.

In addition to having a strong influence.on the
static magnetic properties, the magnetoelastic codﬁiing also
has interesting effects on*thg measurement of the dynamic
elastic properties. In pa;ticular, the measured elastic
constant, or equivalently the sound velocity, depends on the

presence of magnetic order and also upon the application of

LY



" a magnetic field. - ﬁeasurements of this type have been used
to obtain information a;out the magnetoelastic coupling
constaﬁts (ieCraw and Kasuya 1963). These values may-then
be.compared with\those obtained in magnetostriction

measurements using standard strain-gauge techniques.

1.2 Earlier Treatments of Dynamic Magnetoelastic Coupling

The earliest treatmqpts of dynamic magnetoelastic
éoupling (Rittel 1958: Akhiezer et al. 1961} are formulate&

in the continuum limit where the wavelengths of both the

spin waveg and the elastic waves are long compared to the
interatomic spacings. Macroscopic Qariables describing the ¢
magnetic and elastic degreeq of freadom are defined and'th;
"laws of continuum physics are applied to obtain tho\classical
equations which govern the behaviour of the system. 1In
addition, an energy density is formed to describe the magnetic
and eiastic eneigies as well as the mngnatog%rictive eneiqy.
Bo#evar, this :ﬁnction is formed under the assumption that the
results of classical ;lnsticity theory remain valid in the
coupled- magnetoelastic medium. Both Tiersten (1964) and
Brown {1964) have demonstrated that this assumption leads to
"a violation of the law of conservation of total angular

_momentum in the madium.

e



In the usuai theory of elastiéity (see, for example,
Love 1944), the laws of conservation of mass, linear |
momentum, angular momentum and energy are applied to an
elastic medium. The conservation of mass\and linear'momeﬁtum
leads directly to the usual equations of motion for th;

elastic digplacements

,“\.

f -

where p is the density of the medium and £ is the volume
force density. This forcé is usually expressed as the

gradient of the mechanical stress tensor tij as follows

. . j

ot '
ASS . ,
[102] fi = tijpj = x (j-' ‘1' 2' 3)

where repeated indices are to be aummeé over. Moreover, a

Boocke's law relation is usually assumed to exist betweean

stress #nd strain in the medium. T@e application of the law .
of conservation of energy allows the stress tensor to be
expressed as the gradient of an elastic enexgy‘deﬁsity with

respect to the infinitesimal strain tensor €gy 28 follows

L)
o~ ‘

ar(o)

(1.3} tij - 3?13— .

\\

The elastic energy density r(‘) is usually written as



o

(@) .1 .
[1.4] F 2 cijk& Eijeklk

I
where, as usual, summation over repeated indices is implied

and the number of independent elastic constants c is

13ke
determined by the point group symmetry_of the medium,
Combining [1.2] and 11.3], the equations cof notion for the -

elastic displacements may be rewritten in the form

32p(e)

[1-5] Dai - m (1 ",‘ 1, 2, 3)

The usual theory of elasticity also applies the law

of conservation of angular momentum to the elastic medium

and obtains the result that the mechanical stress tensor is

symmaetric. This fact has already been assumed in eq.‘[1.3]”

(e)

since the elastic energy denhity F only involves the

symmaetric strain components Cij; Thus, the form of thé

equations of motion for the elastic dilp{gcements [{1.5] is

~

valid provided the energy density dependh‘Sth on the

. AN
symmatric strains e, .. N

In a magnetically ordered material, the magneto-
itrictivé energy density is usually written in the following
form (Becker and Ddring 1939; Kittel 1958)

y

(me)
.[1.6] P = bijkl uiaj 3V ,

where 01(1 =1, 2, 3) ail fhn direction cosines of the

/



spontdnebus magnetization. As in the case of the elastic
constants,‘;he number of independent magnetoelastlc coupllng
constants bijkl is. determined by the point group syrwetry.
Additional terms involving higher powers of the direction
- cosinesiui may a;so be included. This form of the magnepo-
Btr;Ctive energy describes the static coupling of the
magnetic and élastic systams, As mentioned.ﬁreviously, -
several authors have used the same form of the magnetostricti;e
enerqgy to examine the dynamic ﬁagne;oelastic coupling.
Tiersten (1964) and Brown (1964) havé argued that this
approach corresponds to applying the law of éonservation of
angular momentum to the magnetic and elistic systems separ-
ately.

It is a well known fact that a magnetic moment
possesSes angular momentum and that a magnetic fileld acting
on a magnetic moment produces a couple equal to MxH. Such
couples are taken to be zero in the usual treaﬁmentg of
elanticity theory. The application -of the laﬁ of consﬁrvation
of angular momentum to the magnetic system alone yielhs the
usual torque equatioq@ - . h

dM

n.n g = vt

)

4 . .
where Y is the gyromagnetic ratio. This equation assumes

that the magnitude of the magnetic moment remains constant



and that only its direction may change. The effective

. N eff N o
magnetic field H acting on the magnetic moment may’be)
expressed in terms of a magnetic energy density using thé
law of conservation of energy in the magnetic system. We

have (Akhiezer et al. 1961)

~

| (m)
(1.8) Weff o o
: 'where the enerqgy density F( ) includes the effects of
exchange, magnetic anjisotropy and magnetic dipole interactione4
This energy,density F( m) may be expanded  in a power series
) o - <

involving even powers of the direction cosines o, as follows

<

[1.9]' F‘m) - Kijaiuj + Fijklaiujékul + ...

The coeff%cients Kij and Kijkl are called mngnetic
anisotropy coefficlients and the poin® group symmetry
-determines the number of independeht coafficients that are
required. Combining [1.7} and [1.8], the equations of
motion for tpe magnetifation components may be written as

o
dM 3P (m)

.10 gE = v x (- g .

The standard treatmenta of dynamic magnetoelastic
coupling correspond to taking the total energy density P for

the nngnotoclastic medium to be the sum of the energy "

/) . - RS ‘
. . : 1
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.as follows (Helchér'1971)

- 10

densities in-[l.4], [1.6] and [1.9). The equations of
motion [1.5] and [L:IO] for the elastic displacements and
the components of magnetization respectively‘are then
written down with both re) and_P(m) replaced by F. :The.

[ - -
solutions of these| coupled equations involwve the various

coupling constants defined in F(E) F(me) and F(m) and,

consequently, depend strongly on the actual form chosen for
the total energy.densxty. ‘However, as nentioned previously,

this approach corresponds to the application of the law of

conservation of angular momentum to the. two %gstems

‘'separately. If the couples which are taken to be zerc in

thé‘uéual ;heor@ea of elasticity are included, then the
application of the law of conservation of total (spin plus

lattice) angular momentum in the combined magnetic and

_elastic system yields the result that the stress tensor is

no longer symmetric”\[n fact, the antisyr.-atric portion of

the stress tensor is ra;%ﬁga to the total energy density F
ahiN : o

’ aP_. )3 :
. [1.11] tij - tji = Hi m— - “j sﬁ;.- -

3

The construction of a total enargy density to describe the

cohbinod magnetic and elastic lyltnnsA-nst.be consistent

with [1.11], otherwise such a function clearly violates the

~ law of conservation of angular momentum.

'3
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One method of ensuring that this law is-not violated
is to construct the energy functlon, or Hamiltonian, such
that it is invariant with respect to arbitrary rotations of
the combined magnetoelastic medxum. This concept of

rotational invariance was first introduced by Toupin {1956}

in his-treatment of the elastic dielectric. Tiersten (1964)

and Brown (1966) later applieamthe same iaea to a magneto-

elastic medium. However, a clear understanding of this

. concept requires certain of the ideas of finite strain

theory and-these arc discussed in detail in the next chapter.
We shall see later that the standard treatments of
dynamic magnetoelastic coupling in magn@tically anisotropic
media are incorrect. jThese treatments neglect an additiOnal
linear magnetoelast;clcoupling involving the antisymmetric
u;rqinifunctions Wiy This coupling has its origin'in the

mdqnetic aniaotroPy and, consequencly, no new couplipg

conltants are required. The importance of these new terms
/

has -been cIearly demonstrated in the anhigerromagnetic phase

of Hnrz by Melcher (1370). He was able to account for e

differences in the elastic constant c,, measured as a func-

“tion cf-aﬂ applied magnetic field for transverse elastic

_waves propagating along the [001] and [110] directions. 1In

contrast, the standard theory predicts that the results

should be identical in both casegi

"
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1.3 Scope'of Thesis

In the-present work a rotatiocnally invariant theory
of magnetoelastic interactionovin ferromaénets is presented.
It is shown that ultrasonxc measurements of the fractional
changes in elastic constant for transverse waves as a
function of an\applxed nmagnetic field may be used to obtain
values for the anisotropy constants as well as the |

magnetoelastic constants. As in the case ofxqéhtron-
diffraction and ferromagnetic resonance experi??nta, a
caroful analysis of the measurements as a function of the
applied field strength and temperature is required.

‘ The concept of rotational invnriance is discussed in
detail in Chapter 2 and cagtain important ideas of finite
strain theory are outlined. In particular, the finite
strain nnd'rotation tensorg are defineé and the relétionship
- of these tensors to the usﬁal symmetric and antisymmetric
strain tensors are'detived. In Chapter 3, the methods of
constructing a rotationally invariant Baniltonian in terms
of microacopic quantities .are outlined. It is also shown
how both the static and dynamic effects of magnetoelastic
coupling may be invastigatod using the same Hamiltonian. -

’*“J,Chaptar 4 describes the methods employed to obtain
the energies of the magnotoelaatic normal modes. Both. the

cases of weak and strong dynamic coupling are considered. |

In the case of weak coupling, expressions are obtained for
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the f;;ctignal changes in elastic constant as a function of
>4
an applied magnetic field.i\

The expressions for transverse

elastic waves, which are either .propagating or polarized

et

- along the direction of spontaneous magnetization, are written

in tefms.of macroscopic quantities. In this way the values
obtained for the various coupl;ng constants may be easily'
compared with the results of the static measu?émenta such as
magnetostriction gxperlments or magnetic torgque experiments.
In Chapter 5 the requirement of rotational invariance
is applied to ferromagnetic phases of the rare-earth metals
of hcp structure. Expressions are given for the change in
elastic constants as fungtion of applied field for impressed
sound waves propagatinq along different crystal axes. The
size of the fractional changes Ac/c which can ba expected are
estimated for Gd, Tb, Dy, Ho and Er using available data on
magnetocrystalline anisotropy and magnetostriction. ‘
angitudinal sound waves in the Qaramaqnet}c region arxe also
d;scusﬁed. | -
Chapter 6 applies the same rotationaily invariant

theory to the heavy rare earth- iron cubic Laves phase

compounds Rfe,. The expressions for the fractional change in

elastic constant appropriate for cubic symmetry ‘are obtained

and estimates for the size of effects that may be expected to
be observed in the compounds RFe, (R = Tb, Dy, Ho, Er and Tm)

are given.



CHAPTER 2
FINITE STRAIN THECRY AND RO’I‘ATIONAL‘INVARIANCE

A correct treatmént of magnetoelastic interactions
in ofdgred magnetic cfystals must ensure that'the total
. angular momentum kspin plus lattice) of Eﬁe combined
m;gnetic and elastic systemg is conserved. Toupin (1956),
Tiersten (1964), Brown (1966) and Melcher (1970) have shown
‘that this requiremént is satisfied if the Hamiltonian is
congtructed using certain.inyariant quantities. ‘The most .
convenient ones for a microscopic theory invoive the finite
straih tensor Euu and the finitg rotation tensor kuv' For
this reason.some important concepts of finite strain ﬁheory

are given }n the following section (see for example

Murnaghan 1951; Truesdell and Toupin 1960).

2.1 PFinite Strain Theory

Consider an elastic medium which experiences a
deformation. In the initial or undeformed state, the

coordinates of a tﬁpical particle of the medium with respect

ol

to any convenient rectangular cartesian reference frame are
‘ -

denoted by X (K =1, 2, 3). Similarly in the final or

14
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deformed state; the coordinates of the same particle with
respect to any other convenient refefence frame are denoted
by x, (k - 1, 2, 3). The deformation of a point is thus
described by the relation of the coordinates of the-sama‘
material point in the undeformed and the deforméd states.

This may be written as

. {2.1a]

i1 ¥

= x(X) . J ' te

or -

[2.1b] X = X(x) .

‘ The xx are éalled the haterial or L&qrandian coordinates and
a material description usas.theae ;; the ingependent
vari;bles._ A spatial description uses the ik as independenéﬂ
Qar;ables and these are re{yﬁred to as spatial ?r Eulerian/
coordinates. The deformation may be descrided using either
method, but a material descriﬁtion will be empioyed here
since the ﬁndeformed'state has certain known symmetry
properties. | | _ ‘

The term strain always refers to a chaﬁqe-in”the
relative positions of the material points in a body. If in
the initial state we have a particle at_Jxl. Xq0 x3) and a -
noiéhbourinq particle at (xl + dxl.~x2 + diz. Xa + de)’
Fhen the square of the initial dil;anc.‘b.tw.cn these

‘ | - J
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particles is

' ; 2

(2.2] dsy = AXpdXy

where summation.over repeated indices is implied here and in
the remainder of this chapter. Under the deformation
described by_eq. [2.1] the particle initially at (xl, Xoe x3)

_ moves to (xl, Xy x3) And the square of the final distance

to the neighbouring particle is

.E2-3l as? - dxkdxk’ .
, Y

Ve

Since we have chosen the X, as independent variables, the
d}fferentials dxk are given by the chain rule of differentia-
_ tion

»

R e
\fh‘BIO

9
[275] xk'x = 5;&

is called the deformation gradient. The finite strain tensor

Ey, is defined by the relationship of the final distance ]

squared to the initial distance squared as follows
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. 2 2 _
(2.6 ~ ds™ - dsgy = 2EKdede]

and may be expressed in terms of the deformation gradients
using [2.3] and [2.4]. We find

[2.7] -8, .1 .

E = 1 [x x
KL 2 ""k,K'k,L K,L

The finite strain tensor is a measure of strain in the sense
that, when EKL = (0, the initial and final distances between
neighbouring points in the medium are the same. - In this

case the deformation corresponds to a rigid body displacement

or rotation. Note that E,, is a symmetric tensor which,
because of its scalar-product form, does not depend on the
cholice of reference frame employed for the deformed state.
That is, the finite strain tensor is an invariant with
respect to transformations of the spatial coordinates Xx,.

Since Ep represents only six independent quantitiee..
whereas the deformation gradients--xk-'K represent nine
independent gquantities, the other three degrees of freedom
correspond to rotations of the final reference frama with
respect to the initial referenc; frame. These quantities
are described by the finite rotation tensor.

Tﬁe £inite rotation tensor is most easily defined
in terms of the Green's deformation tensor Cxr® This tensor
is also a measure of strain and is related to the finite

strain tensor as follows

!
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[2.8] CKL = GKI'.. + 2EKL = xk,ka,L .

Since Cpy is a.symmetric tensor, it may be brought to
diagonal form at any point in the mediun. This means that
{n both the undeformed and deformed states there exist
principal axes of strain. If the final state happens to‘be
the same as the initial state, then CKL is equal to the unit
tensor GKL' In general the final state is not the same and
CKL is no longer diagonal. In the principal axes, CKL is.a
diagonal tensor and we may denote the principal values as
Cyr €, and C5. In addition, denoting C as T in this set of

axes, we may construct a tensor ((-:')1/2 whose principal.-

1/2 1/2
2 and C3

respectively. It is easily verified that C = (5)1/2(5)1/2

values in this same set of axes are c}/Z,—c

and thus in our original set of axes we have

1

(2.9] C = ulu >t = s@Y2 vt u®t/2 ot - cl/2c1/2

where U represents the unitary transformation that diagonal-
jzes the tensor C. It is easily verified that c]'/2 is also
a symmetric tensor. The finite rotation tensor R, is then

defined by the following relation

(2.101 % g = €7D R
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-and it descfibes tﬁe rotation of the principal axes of
strain in the initial state to the principal axes in the
final état;. Hence eq. [2.10] decomposes the deformation
into a finite rotaﬁibn followed by a finite éléngatioq.

1

~This relation may be rewritten as

an,
MK

where C‘-l/2 is a tensor defined in the same manner as Cl/z.
Note that Ry, is not an invariant with respect to the
lpatiai Eoordinate; but transforms as a vector under changes
of the final refeifnce frame.

Another quantity of 1nteréat is the ratio of the

length dS in the deformed state to the length dS0 in the
‘undeformed state.l From eq. [2.6] we have

(2.12) as? = 1+ 2EKLsxan)as§

‘vhero B are the direction cosines of the line joining two

neighhouring particlel in the initial state and are given by.

dXx

(2.13) e‘f- 5, (K =1, 2, 3} .

-

Taking the square root on both sides of (2.12] we find
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(20161 E = 11+ 212
0

In the case where the finite strains can be assumed to be
small such that their sqguares can be neglected, we obtain’
the following expression

ds - &s

0 c
(2.15] &E, Exr8xfL

for the. change in relative length %} in the direction given
by BK(K =1, 2, 3). This expression may be used to analyze
the results of magnetostriction experiments. |

In both [2.7) and [2.11] the finite strain tensor
and the finite rotation tensor have been exﬁressed in terms
of the deformation gradients. In the following section
these expressions will be given in terms of the displacement
grgdientg uk,K which are more closely related to the usual

infinitesimal measures of strain and rotation.

2.2 Small Displacement Approximation

Under the deformation described by eq. [2.1]) the
displacement of the particle is defined as

(2.16) u=x-X .
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The displacement gradient u, g is related. to the deformation
L

gradient Xy K as follows

[2.17a] uk,K = xk,K - ék,K

where as in eq. [2.5]

3 - )
[2.17b} uy g = ‘a"% .

‘In the usual small-strain theory, the displacement gradient

is usually decomposed into its aymmetiic and antisymmetric

r

parts as follows

) [2-18] .uk'K - ekK + UkK . ) ! - -

where
j

[2.19a) € p ™ Exy ™ % o,k * U, x!
and . ! S
[2.19b] Wy = gy = %’ tu, x = Bg,x]

are the {nfinitesimal strain and rotation tensors respectively.

I
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. The glizfe strain tensor [2.7] may be rewritten
using eq. [2.17]ﬁ55

1 1
(2.20) Epy =3 lug o+ gl * 7 % ,x%,1

T

= expt

ni-

(eyx * “kr! xn ¥ o)

Thus the infinitesimal strain tensor €., is a measure of
strain only to first order in the displacement gradients
. and €xL ™ 0 Qoes not necessarily imply EKL = 0. A similar
expression for the finite rotation tensor may be obtained

using [2.1111and [2.17]. In the case of the finite strain

tensor the expression cbtained was exact. FPor the finite
rotation tensor, the following expansion must be used. ,

(Brown 1966) . ‘ N

b

-1/2, . 12 s e 3
12.21} (¢ )HK (1L + 2E)HK .\., éux Bn: 3 Emzm

where terms up to second order in the displacement gradients

have been retained. Upon substituting in eq. [2.11) we find

(N

. - _ 1 1 - -
(2.22]) "Ry = Sy = 9k ~ 7 YNtk T ¥ Sk

“WeMEix

The infinitesimal rotation tensor mij is thus a msasure of }

rotation only to £irst order in small quantitlel as would be



23
‘expected. It is easily shown that in the linear approximation,
where only the first term of [2.20] and the first and second
terms of [2.22] are retained, eq. [2.10] corresponds to the
usual decomposition of the displacement gradient into its
symﬁotric and antisyrmetric parts.

Brown t1966) has shown that within the approximations
‘of‘linear elasticity theory the distinction-between material
and spatialAcoordinates is unnecesaary. However, the linear
approximations must not be invoked at the beginning, but
instead must be applied in-a’ consistent manner which does not
viglate any of -the conservation laws of physics. In the
following ‘section we shall discuss the requiremant of
_rotational invariance and alsd how the rasults of the

. . oy .
customary elasticity theory violatg“tne law of conservation

of total anquiar momentum in a magnetoelastic medium.

2.3 Conservation of Total Angular Momentum

e

In section 2.1 it was shown that the finite strain
tensor EKL is independent of the porticular.choice of
raferonce frame for the déformed state but that the finite
rotation tensor Rnk transforms as a vector under changes in
the final state axos., The !inite strain tensor can be
conl;dared as a scalar product of the vectors Xy X and xk,L'

_in the spatial coordinate system. Ahother invariant with®

r



respect to the séatial éoordinates may be formed by taki;g
the scalar product of the finite rotation tensor and the
compodbntslsk(k = 1, 2, 3)-of spig‘angular momentun in the
deformed state. This quantity may be written as |

'{2.23] SE = Ry, Sy (x =1, 2, 3

and is invaiiant witﬂ respect to transformations of the final
.state_axes; Although other invariants such as (Toupin 1956;
Tié;ﬁpen 1964): |

[2.54]' ng = X ¢Sy (K =1, 2, 3)

‘can be formed using the deformation gradients in place of
tho‘finite rotation tensor, the Sy are more convenient for a
microscopic the&;y since they'preserve.the spin angular.
momentum commutatibn relations {Helcher 1971). ‘This follows
from tﬁa fact that ka is an orthogonal tensor.

If the Hamiltonian which dascribes the: magnetoelastic
medium is constructed using the finite strain tensor Eg, and
_the S§, then it will be jnvariant with respect to arbltrary
rotations of the final ltate coordinate axes, or equivalently
of the deformed medipm 1tself. Thil fact enlurel that the
'totnl anqular momnntun {spin plus lattice) og the coupled

system is conserved. rolloying-roupin (1956) the Hamiltonian

S
"
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is expanded as a power series in these invariants. Note that

these invariants do depend on the choice of reference frame

in the undeformed state. Thus the point group symmaetry of

the medium in the undeformed state deternines the fgrm of the

Hamiltonian. Having ensured complete rotational iﬁveiiance
the .usual linear approximations may be applied and the
distinction between material and spatial coordinates is 'no
longer necessary. In the case of magnetically anisotropic
media, the requirement of rotationnl invariance leads to the.
appearance of new terms in the linear magnetoelastic coupling
which originate in the magnetic anisotropy and involve Ebe
antisymmetric strain fﬁeetions By The_standard treaZﬁents
of magnetoelastickphenomena (Kietel 1958; Akhiezer et al.
1961) do not include these ;erﬁs because the results. of
linear elasticity theory are assumed from the beginning.

The assumption that the mecﬁenical stress tensor is symmetric

leads to magnetoelastic coupling via the symmehric strains

€yv only. This corresponds to apélying the law of conservation

. of angular momentum separately to the magnetic and elastic

sysfems and violates the conserﬁation of total angular

momentum in the coupiéd system.




_CHAPTER 3

STATIC AND DYNAMIC EFFECTS OF MAGNETOELASTIC COUPLING

3.1 Rotationally Invariant Hamiltonian

A rotationally invariant Ramiltonian which describes
the coupled magnetic and elastic systems may be constructed
using the following invariant quan;itiés {Brown 1966;
Melcher 1971)

[3.}&] Sgu = Ruvsjv

{3.1b] H; = RuvHQ

1 Buu Buv 1 2)\).)k Bux.
[3.10] EU\J - 7 (rxv + F——xu) + i s—xu s——xv \ 5 - \.

where as usual summation over repeatad‘indibes is implied
and S reprasents the total electronic angular moman tum
(spin plus orbital) of the jth atom. The Hamiltonian for
magnetic spiﬁ system is taken to cdnsilt of Heilehberg
exchange; a crystalline electric field of the appropriate
‘symmetry and the Zeeman term. In terms of the invariants

defined above we may express it as

26

Ny J
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.20 W= - B3y Spsy v et LSt ¢ BT B3]
The O are the spin- operator equivalents tabulated by
Buckmaster (1962) and the number of anisotropy constants E
that are required is determined by the point group symnetry
of the crystal. The exchange term is assumed to be isotropic
since in the limit of long wavelengths the effects of
anisotropic exchange may be included with the crystal field.
Following Callen and Callen (1965), the Hamiltonian B
which describes the coupling between the magnetic and
elastic degrees of freedom may be formed by taking products
of the symmetry strains and spin functions which transform
according to the same irreducible representation of the
peint group. Thése spin functions may involve spins on the
sahe atom or spins on,qiffarent atomg. However, we may
include the effects on the coupled modes of such two-ion
te;ms with those of single-ion origin in the limit of long
wavelengths. The‘aingle-ion magnetoelastic terms may be

writtan as

~

| 1
(3.3} '¥¥m‘ - -

1

r,s,s’ T,s r,r,s’
§ r tom o s Mim : By (004 T (29
’ ’

¥ _
where ' labels the irreducible representation of order n and

r labels tha basis functions (r =1, 2, «-0cy D). A1l point
groups axcept those in the cubic system have two sets of

basis functions for the totally symmetric representation and

v
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these‘are jabelled by s and 8'(s,s' = 1,2). The symmetry
strains EE'B are linear combinations of the usuél cartesian

components Euv and the number of independent magnetoelastic

r,s,s'
[ An]

point group. We shall find that the spin functions O

coupling constants M is dete:mined by the particular

r.r,s
im

are most easily expressed in terms of the following

combinatiohs of the Olm:

+ 1
[3-48} Olm = "2" [ozm + Of-_m]
- 1
[3.4b] OLm " H [Olm - O!.—m] .

-

Following Chow and'xéffer (1973) the strain functions
-Ei's(j) are to be interpreted as having both a static
homogeneous part and a dynamic inhomogeneous part. In this
way we may-generate both a static and dynamic magnetoelastic
coupling from the same Hamiltonian.

The Hamiltonian which deﬁcribas the elastic system
will be taken to have the following form |

I cppr I L ® ()l (9)

s' r

(3.5] ® = 7_%—

I L
ajrT

5
wvhere Ha {s the number of atoms per unit volume and the
symmetry elastic conatants c:'. are linsar combinations of

the usual cartesian elastic constants. As in eq. [3.3] the
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Ei's(j) represent the sum of a homogeneous strain portion
and an inhomogeneous portion. The homogeneous strains
describe the magnetostriction, the effect of honogeneous
deformations of the lattice, while the inhomogeneous strains,

or phonon modes, correséond to vibrations of the elastic

medium about the equilibrium configuration. As will be

e

discussed in section 3.3 these latter strains may be
expressed in terms of phonon normal coordinates.
The total magnétoelastic Hamlltonian is given by the

followihg sum

re

(3.6] =0 ﬂvl-:m + Y
R

J

Since we have ensured complete rotational invariance in the

coupled system through the use of the invariants in eq.
[3.1], we may now apply the usual approximations‘of.smnll-
strain theory. We shalllretaiq only the first term in

eq. {2.20) and the f;r;t and second terms in eq. [2.22] when
expressing the finite strain and rotation tensors  in terms
of the usual functions éuv'and muv of small-strain theory.

Thus we may rewrite the transformations in eq. {3.1) as .

follows

(3.7al sy, = Sy, " Jawsju
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* = - 4
[3.7b] Hu H_IJ uuvﬂv

[3.7c] Euv = euu .

when these transformations are substiﬁuted into‘eq. [3.6]
we obtain terms similar to those in egs. [3.2], [3.3] and B
(3.5] with §3 replaced by §j and Eu replaced by €, plgs

new terms.involving the antisymmetric rotation tensor w, .

These terms originate from the magnetic anisotropy and may

be expressed in the following form
T
[3.8a] W, = !{\:}n

* B . T, nlor
(o) Ay =TT B L0y

L4

where ' labels the ifroduciblé repre;entations accordingtxo
which the wy transform and r labels the basis functions of
these representations. Tha actunl form of these new linear
terms depends upon the point group symmctry of the medium
and, in general, the expressions are quitﬁ lengthy. In
Chapters 5 and 6 we shall give the expressions corresponding
to eqs. (3.2}, [3.3] and [3.5] for hexagonal-close-packed

" and cubic symmetry relpictivaly and we lhllI“obtain the
additional terms 1nvolv1ng‘the ®y" However, a limplifled

Hamiltonian may be used to illustrate the procedure.
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Consider as an example the following Hamiltonian

which describes a medium of uniaxial syrmetry,

B o= -
[3.9) > iEj JijS; .St + gug z §3 JHE 4+ B g 020(§3)

-i-——g ([By, (D17 + By (M)

Faf§§iﬁplicity, we have inqluded Only.the lowest order terms
in the‘ﬁpin-operator equivaients and restricted the
'magqgtoelahtic and elastic terms ﬁo the c¢-irreducible
representation only. ' The O,  are defined with respect to
the crystal axes (X,¥,2) and the elastic constant ct
corresponds to 4c“ in the usual notation for cubic and
hexagonal crystgls. In applying the tgnnsformationa of

eq. [3.1], it should be noted that Ruv is an orthogohal
tensor.and hence both the exchange and Zeeman terms have the
same form with respect to either the starred or unstarred

quantities. The spin functions oLm’ however, are anisotropic

functions. of the spin components and are not jdentical in

terms of the two sets of quantities. For instance, the spin

s function 0201§j) transforms as follows

* -

«
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_ ' 1/2
[3.10] 0,4(5%) = Og0(84) + (6)

+
20 loyg (3) 1305, (552

+ 0y, (3) 1105, (8)1)
where terms higher than first order in the displncemegt
gradients have been discarded; The spin operators 0;1(§3)
also yield additional terms involving the antisymmetric
strains wuv; but they are multiplied hy terms that are -
already linear in the strains €v and hence any new linea;
terms must originate inlthe magnetic anisotropy terms.
Neglecting terms which are quadratic in the infihiteaimal
strains, we find that the final Hamiltonian has the

following form

(3.11] Y= - T J,, 5.5+ r s B+ 800 (S
BT R B 820125

+ . -
MG T (eyy (3) 1051 (8 )] + gy (3) =405y (8401

]

-

' €
e (g (17 + leyg (M

+ (612 83 g (uyg (3) 1103, (85

+ mx,(j)l-ioglggj)l} .
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These latter terms are not incIUded in the usual treatments
of dynamic maqnefbelastic coupling in magnetically ordered
media (Kittel 1958; SchlBmann 1960; Jensen 1971; Vigren and
Liu 1972; Chow and Keffer 1973). As we shall discuss in the
following sections, these additional terms have no effect
upon static equilibrium‘properties_such as magnhetostriction,

bpt they are importhnt in the dynamic interaction between

magnons and phonons.

3.2 Equilibrium Properties

In the-digcusgion which follows, we ahﬁll restrict
ourselves to the case of magnetically safﬁrated ferromagnéts
in which both the magnetic moment distributidﬁ.and
magnetostrictive strains can be assumed to be uniform.

The total magnetoelastic Hamiltonian may be written
as the sum of an espenfially classical quantity plus terms
involving the magﬂon and phonon operators. This classical
quantity describes the total magnetoelastic energy associated
with the equilibrium configuration of the magnatic moments
and atomic displacements. In the oquilibrium state. tha
dAirections of the magnetic moments and the values of the
static strains due to the magnetic order are detarmined by

minimizing this clalaical ‘energy with respect to tho angles

-,



i
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. specifying the magnetization direction and with respect to
the homogeneous strain components.

Since we are considering only the homogeneoﬁs strains,
the three antisymmetric strain‘functions By correspond to
homogeneous rotations of the entire medium. Following Callen
and callen (1965) we shall assume that the medium is
constrained ih such a way that it may not rotate. Hence
these homogeneous rotations are zero agd only the six
symmetric ‘strain components €hv’ or equivalently, the six
symmetry combinations . er '3 are important.

To illustrate these ideas, consider the simplified
Hamiltonian in eqg. [3.11) which results from the application

of the transformations in eq. {3.1] to eq. [3.91. We shall

write the strain functions as the sum of a homogeneous

component and an inhomogeneous component as follows

{3.12a] cuv(j) =€y + euv(j)

(3.12b] o (3) = w ()

uv uv

-

wﬁare we have assumed that the homogeneous rotations are
;ero. The energy function which determines the equilibrium
properties is obtained by ova]_.uting <#> where the brackets
<> indicate a thermal average with respect to the

magnetically saturated statse. ¥We have at zero temperature
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Nas2 _
(3.131 <> = - —— g Jij - guBHaS{Hzcose + (chog¢
N -0 1.0
+ HYsin¢)sine} + BzNaS(S - E)Pz(cose)

R [ \‘

-1 H21 N S(S - i)sin26{eyzsin¢ + cxchs¢}

where all terms involving the inhomogeneous strain components
vanish in the equilibrium state. The polar angles 6 and ¢
specify the direction of magnetization, denoted by .z, with

respect to the crystal axes and the approximata ground state

of the magnetic spins is taken to have <sj> = - § at each
Site- ‘3 '

Carrying out the minimization procedure, ve cbtain

the following equilibrium values for the strain components,

(3.14a] Tyy = gTB‘ 21 N S(5 - i)sinl@coﬁd’
C

L 4

& M1

€

F3.14hl E&z‘ -13 -

N S(S - i)sinzesino .

1

C

similarly, the equilibrium values of 6 and ¢ are determined
. from the following conditions |
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e .

e’
~

-
~

[3.15a] E%%l = + tuNaS{stinB - (chos¢ + EYsin¢)cos§}

0 1. .
382 NaS(S - 5)91n6cose

/6

1, - - .
—-—H NaS(S i)cosze{cyzsin¢ + sxzcos¢}

21

[{3.15b] 1§§1 = guBNas{Hxsin¢ - HYcos¢}sine

‘1.

i
i

%F leNaS(S - —)sin28{chcos¢ - c sin¢}

/

/

. Note that the‘strains must be consideréd as indapendept
variabies‘when minimizing with respect to these angles; that
is, we do not differentiate the strains in eq. [3.13] with
respect to the angles 6 and ¢ that occur in [3.14]}. The

equilibrium configuration is described by the solutions to

the above equations.
The strains in eq. [3.14] are functions of the
direction cosines of the magnetization and ray be used in an

expression ﬁuch as eq. [2;15] to obtain the gractional change

in length of the medium in any direction. 1In this way,

 values of the various magnetoelastic coupling constants
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A

Hiés'st-maf be obtained experimentally bf analyzing ér"-both
as a function of the direction of magnetization and the
direction of observation. The expressions in eq. [3.15]
~3describe the torques oxorted on the magnetization ocmponenos
when they depart from‘the equilibrium direction. These
egoressions may be used in the analysis of magnetic torgque
measurements and magnetization measurements to obtain vgluos‘-
of the various magnetic anisotropy constants B? (Bozorth
1951) . It should be noted that the magnetoelastic constants
also enter into the.torque equations and make effectivo\
contfibu;ions to the anisotropy constants. The quantities
that are determined in theﬁg static measurements are.referred
to as the anisotropy constants at constant stress. jhose
constants differ from the usual constants BT which are
defined at‘zero strain. Hence in deducing values for the
BT, care must be taken to remove ‘the contributions of |
magnetostriction. This fact may be responsible. for the wide
scatter of values for the B in the heavy rare earth metals.
As we shall discuss in Appendix A; the contributions of the
magnetoelastic terms to. the effective anisotropy field are
different in the case of dynamic experiments gsuch as
ferromagnetic resonance. Thus, before the values obtained
for the B from these varioul methods may be compared. the
effects of maqnetoelastic terms must be correctly removed -

in each case. Brooks (1912) has shown that these affects
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- are extremely important in the interpretation of the planar
anisotropy constant Bg in Tb.

We conclude that the equilibrium pfoperties are not
affected by the hew linear terms which arise as a consequence
of the reqﬁiremenf”éf rotational invariance. However; when
we are considering non-equilibrium properties such as the
oscillations about the equilibrium confiéuration. these new
terms are very importaﬁt. In this case the strains are
inhémogenéous and the antisymmetric strains @y correspond to

local rotations of the elastic medium.

3.3 Dynamic Properties

Having determined the equilibrium configuration of
the magnetic moments and the atomic displacements, we Now
consider small oscillations of these qunntitias about this
equilibrium state. A Hamiltonian which dascribea tha
dynamic magnetoelastic coupling may be formed by trnnsforming
to magnon and phonon operators. The coupled—mode energies
may then be cbtained using the quantum equations of motion
for these operators. Thit nathod is equivalent in the limit
of long wavelengths to séig}nq the classical equations for
the components of magnetization and elastic displacements

described in section 1.2.
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The spin—wave'portion of the Hamiltonian is
obtained by standard methods which are equivalent to the’
transformations of Holstein and\Primakoff {1940). prever,

\

in addition to the usual magnetic terms contained -,

we must also include the terms in%ix which idggiie the
equlllbrxum strain components when describing the
unperturbed magnon modes. These terms represent the effect
of static distortions on the spin-wave excitations. The
foliowing Fourier—tfansformed opeiators are defined

-1/2

[3;16]. S -—Na

La i+

;53 oreaer)

whére the operators S; - é; : 1s§ represent spin deviations
from the equilibrihm direction. At zero temperatured, the
npproximate-ground state of the mggnet%c spin ;ysteﬁ is
taken to have <s;> = - S for each spin. Af finite tempera-
tures, the following expaniioh of S; is employed (Wortis
11963) |

(3.171 s} =-s+ (2571 883+

In what follows, we shall introduce tle effects of temperature
thro&gh the reduced magnatization, which is defined as




<I s§ o
= H(T) = l n, - 1 + -
{3.18] o m pe 2 " 1 ——x I <SjS > .
S] a0 2Na5 3 \
3 ;

Combining egs. [3.17] and [3.18] we find that at finite

temperatures we may express <S§> appréximately as follows
{3.19] <s§$ N - Sm .

Higher powers of S§ are treated using the following

expression

(3.20) (s;)n v oes) 4+ (25)70 ((1-5)" - (-5)“]3355

£l

which is obtained from eq. [3.17] using the commutation
relations for the spin operators. We shall assume that the
+ ' 3
operators S& obey the following commutation relation
(3.21] {S_ . S' 1 = 2sm &
9 92 9192

e
where we have replaced Sj by ‘the average value in eq. [3.19].

The unperturbed magnon anergias Bq are now cbtained
using the equations of motion tor the operators S9 and S_ -q
with the Hamiltonian which includos both}#i and the terms in
}iz‘ jnvolving the static strains. The equations have the
following formd(Brookl 1970; Goodings and Southern 1971)



+ +
3.22a S = -AS ~-B_S
( I 3.}¥] q q

-

Lo
&

-

- +
3.22b S 1 = B*S 4+ A_S
( _ ) _3.1}1 3 g

Kol
Y-

Hence the correct magnon operators are linear combinations

~

of S; and S:q and may be written as follows

| T + -
{ - a) ag u- q + vgs.\_s‘1
[3;23b] a_ = utS_ + vest L
9 g9 94 q -4
We now impose-the condition [a;,}ﬁl - - Equ; and we find that

the magnon energies are given by

’

(3.24] E2 =

L0

In addition, the spin operators S;-and SIS are related to the

magnon operators u; and o as follows -

" 25mE
+ - q ,1/2
[3.25a]) (Sg + S'S) = [x—-;‘ggl {(a_ + Q_S)

; 25mE
' + - q.,1/2 , t _
[3-25b} (Sg - S_g) - [g;-:*g;l (GS a_q) .



The final spin-wave part of the Hamiltonian has the form

LS 0 od

(3.261 | = L Eglagag + 3

'q ‘ S

-~ ! i

na -+

. where the magnon operators obey the following commutation

relations

In obtaining the exprassibns for Aq andJBq defined by the
equations of motion in eq. [3.22], the.following commutation

relations for the spin—opera:of'equivalents m&y be used

t——

-~

- (el 1-1, (£-1) (242)/2 ¢
[3.28a] (S_g. § Byqs4)1 = LD st S_g

| -
-

-

i} (2(L+1) (£51) (14201272
1)

[3.28b]) [S_g» § ozztgj)l

N 8(5§l)m(z-1)(t+2)/2 gt

q

where ' - !

(3.201 siizh = (s - he-n ... =

A
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These operator equlvalents are deflned with respect to the

equilibrium spin direction and hence the Hamiltonian must be

transformed to this coordinate system before using the

relations above.

The following commutators are alsoc non zero,

giving constant terms in the egquations of motion

- - 1/2 _2(+1)/2
[3.30] Ls_q,:j:ou(sj)l [ (41N, 17 ss (35hm

-

-

hﬂ

However, when all these constant terms are grouped together,

the magneiic stability conditions, eq. (3.15], cause them to

vanish.

The elastic part of the Hamiltonian 1s obtained by

expanding the inhomogeneous strains in terms of the phonon

normal coordinates. The unperturbed phonon modes may be

expressed as

(3:311 M, = : t“gl(sglsgl + 3

1-
where qu

[}

and qu are the phonon creation'hnd destruction

operators respectively and obey the following commutatibn

relation

' : +
13.32] [8 ¢ B 1 =4
SR URAR: FLP"

8
9392 M*2




&

44

The unperturbed phonon energy is denoted by'hm , where q

-
=

refers to the propagat;on direction and A refers to the

'polarizatlon direction. We shall assume that eq. [3 31}

describes the acoustic phonon branches only and in this case
the elastic constant, or‘equivﬁlently the sound velocity, is
related to the phonon frequency. In the limit of ldng

wavelengths, we have

2 2 2,2
(3.331 wgy = te/o) lal® = vylal
where p ia the density and v, is the sound velocity of the
phonon branch labelled by X.

The'terms which involve the coupling between the

magnons and phoqons are obtained from the linear magnetoelastic

terms by expanding both the spin functions and the inhomo-
qeneous gtrain components in terms of the magnon and phonon

operatoQors respectively. However, we must include the new

‘linear terms involving the Wiy as well as the usual terms

containad in\# Assuming that the elastic displacements

- may be axpressed as follows (Kittel 1963, Chapter 2)

4

o -1/2 ¢ ig.x4
(3.34) w(3y = q:l (2080g,) ox Bqa * M e

-~

where ;gl is a unit vector in the polarization direction, we

may write the inhomogeneqQus strain com ts in the

-
i
i
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following  form j

' : - ' iq.r
(3.352] €, () =3 L (2¢hugy) Y2 48T e T

B e
qXr ~ = kL
x [q ‘a4 g eny)
Ly R
1 _
) iq.r
. . i . -1/2 + -
(3.350) vy (9 =7 L (2ehog,) 71T (Bgy ¥ Boga)e
Al - ~Y)
:x [qvegA quegll .

N z . .
In the equilibrium magnetic coordinates, the only spin

functions which are linear in the nmagnon operators are

0,,7(8;) and these are linearized as follows

: | 1/2 '
S p § [e(a+1)]) (L-1) (242)/2 2

-

‘ ’ .
In terms of the combinations Oil defined in eq. [3.4] we

have -
L

| - - /2 (. i
[3.37a] [407,(51 % - s (b (LD RUSHECIOE S

- 1/2 .
- 1-1, [£(2+1)]) (£-1) (142)/2 gX
[3.37b] [-10p,(84)] ¥~ S{=37) - % = £ 85

When thele exprasaions for the inhomoganc strain

components and the spin functions are subutituud into the

-~



linear magnetoelastic coupling terms obtained from‘*iﬁ and

W*m' we find that the magnon-phonon coupliﬁa may be written

as {(Southern and Goodings 1973)

.

(3.38) 'H—mp = L [V ,a,(8 B-c_ql

1-
) + V*
gA cé l 1 03(8

+
q g
We have not included terms of ‘the type considered by Jensen
(1971) involving products of two magnon operators and one
phorion operator since these should be unimportant at low
temperatures. The expressions for the'_vqk are complicated

functions of both the direction of magnetization and the

applied magnetic field.

The total Hamiltonian describing the normal modes of

the coupled system is taken as

[3.39] '“,‘ -'“.&1 +‘*np +‘“.; o\ .

As we shall see in the next chapter, the coupled-mode energies
are easily obtained from'W' using an aquation of motion
technique for the magnon and phonon operators. The important
point ia that the new linear terms involving the antisyﬁmatric
strains By are included 1“‘*&9' These terms lead to quite
surprising predictions for the effect of sagnatoelastic
interactions on the measured sound velocities of a ferromagnetic

matarial.
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CHAPTER 4

MAGNETOELASTIC NORMAL MODES '

The Hamiltonian in eq. [3.39) deacribes the coupled
oscillations of the magnetic moments and elastic displacements
about their equilibrium configuration. These normal moder of
the coupled system may only be described in terms of the
unperturbed magnons and phonons when the dynamic interaction
is sufficiently weak._qu the dynamic interaction is not weak,
then these modes possaess bpth magnon and phonon characteris-
tics and should be referred to as magnatoelastic modes. The

most striking effects of this interaction are usually thought

to occur in the region where the unporturbed magnon and phonon
dispersion curves intersect. Howsver, Chow and Keffer (1973)
have recently demonstratad that undar'cortain conditions this
interaction may also be axtremely large 1n'rhe_regioﬂ of .
small wavevectors. 1In thil case,~the acoustic phonon branch
has a strong prgnon character and may possibly be exc%ted in
an experiment such as magnetic resanance. In tho-toliduing -
' section we_will outline tﬁe'mathods which are used to obtain
erprorsions for rho energies of th; magnetoelastic modes.

We shall also discuss both the case of weak coupling and the

. case of strong coupling in detail.

47
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4.1 Coupled-Mode Energies . ‘ |

The magnetoelastic-mode energles are easily obtained
using an equation of motion technique similar to that employed
in section 3.3 to obtain the energies Eq of the unpé;£urbed
maéndns. Using the Hamiltonian¥' in e;. [3.39) and the
commutation relations in egs. [3.27] aAd [3.32], we may write
down the equations of motion for the eight operators a;, a
B;l and 8 qk' whare A labels the three acoustic phonon 7
b;anches. Assuming that the normal mode operators T;G and
Y—qﬁ'(a =1, 2, 3, 4) are linear combinations;of the eight
op;rators above, we may impose the condition
[Y a6’ Py’ = € GY+6 to obtain the coupled mode ener@ies}

fSince we have one magnon, branch and three phondn branches,

there are four magnetoelastic modes and the energies are -

given by the four positive roots of the eight linear equations.
i In the general case where all three phonon branches

are coupled to the magnon bfanch withjcomparabie strength,

the solution to the eiqht linear equations is extxemely

complicated. However, a simple expression may be obtained

in the case when only one of the phonon branches is

significantly coupled to the magnon mode. In this case two

of the magnetoelastic modes are well represented by the two

unperturbed phonon branches, while the energies of the

-remaining magnetoelastic modes are determined by the solugions

of four linear equations. The roots gj/iLese equations™may

e
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be wriltten as

2 2 1, .2 _ 22,2
(4.11 (e + hlugy # F1(Eg - Blugy)

-

2
4

[

+ 165:» \E ‘qul 11/2 ’l |
where 1 labels the particular phonon branéh which is coupled
to thg magnons and the % signs refer to the two magnetoelastic
modés. In each case, the positive golution is to be taken.

J Note that the energies of the uniform.ﬁagnetoelastic modes
(i.e., g = 0) are simply the unperturbed magnon and phonon

N
.

energies. This follows from the fact that the dynamic

jnteraction vanishes at g =,0.
In order that we may characterize the strength of the
dynamic interaction between the magnons and ﬁhonons, we may

rewrite eq. [4.1] as followas (Chow and Keffer 1973))

-

St 1,.2 22 1,,.2 22 .2.
14.21 (cgl) - 3Eg * k U 7LEg * hfugy) i

- ‘hzuz 12]1/2

qr A
where the gquantity
o~ 2
% 4|Vq1|
(4.3] (B.A/E, - Eko
q9 q gl
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is a measure of the strength of the coupling. When

(E'A/E y2 & 1 the coupling is weak and the two magnetoelastic

modes will be similar to the unperturbed modes. At the

ey

opposxte extreme where (EqA/E ) << 1, the coupling is
extremely strong and the modes have both a magnetic and
eihstid character. These two limits will be considered in
the following sections add approximate expressions'for the
coupled-mode energies will be obtained in each case. _In
addition, we shall also consider the behaviour of. the

magnetoelastic modes in the reglon where the unperturbed

. modes intersect.

4.2 Weak Coupling Limit

In the case that the coupling may be considered to
' be weak, we may expand the square root term in eg. [4.1] in
terms of small quantities to obtain the folldhing approximate

expressions for the coupled¥mode energies

2 1

2 2
n -2-(3 - h*w

. b 5
(441 (egy) o)

2 22 1
12
v
‘Eéhmgll gll
S e 3 RUN
(5 - hu,,)
g- @
However, this result is only valid in the region far from the .

point where the unperturbed magnon and phonon branches
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intersect. If we restrict our considerations to the case of
long wavelength excitations and assume that the energy of
the uniform magnon mode E0 is finite, then we have

hqu << Eg. In this limit the coupled-mode energies above

become
5 .
+l'2 " o2 ‘ﬁwgllvgll
[4.sal (65,0 ¥ EG * =
- 7 — . g \\‘
. 2
‘ tho oy IV
(4.5b] (e-)2 & h2w?, - ——5—=
* 31 ~ wgl Eq * .

The upper mode E;A jg similar to the unperturbed magnon mode
and 'the lower mode e;i is similar to the unperturbed acoustic
phonon mode. ‘

1f we define an effective elastic constﬁﬁg c* in the .

1imit of long wavelengths for the lower mode as‘follows

- 2 -
(.61 (eg/m? = tet/m) 1l
\| .
then we may express eq. [4.5b] as (Southernm and Goodings
1973)

—

2
‘ph”gx|vgll !

[4.7] c* = ¢ - 1lim ) -
. q*0 Bglhgl
b
where ¢ is the elastic constant for the unperturbgd phonon
- . - ,1

-
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-

branch. This expression may be used to analyze measurements
of the relative change in elastic constant, or equivalently
the sound velocity,as‘a fu#ction of an applied magnetic field.
The dependence of the last term in eq. [4.7] on the aﬁplied
field arises predominantly from the magnon energy Eq.
However, both qu and Eq depend on the direction of maqnetiba—
tion and the applied field direction. 1In general, these
expressions are quite lengthy and complicated.

The expressions for V , and E_ are simplified, however,
when both the direction of ma;nbtizat;on and the applied
magnetic field coincide with one another and with one of tha

 crystal symmetry directions. In the case of transverse

elastic waves which are elther propagating or polarized in
the magnetization direction, the latter term in eq. [4.7) may.
be expressed in terms of macroscopic quantities which are
easily derived from a free energy expression for the magnetic
spin system. In particular, the uniform magnon-mode energy
Ey mA§ be obtain;haﬁsing the ﬁhenomenologic31 macroscopic
resonance theory developed by Smit and Belgers (1955) and
which is ézscribed in Appendix A. For these transverse waves

we may express eq. [4.7]) in the following form

2
| " My, * MH,]
(4.8)  cpiB) = & = —((H, + H)

A"
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where both the direction of magnetization M and the applied
field H coincide. The upper sign in eq. (4.8} refers to a
transverse wave propagating in thé magnetization direction
and the lower sign refers to a transverse wave polarizgd in
.this direction. Both HHE and Hy depend on the direction of
the magnetization and the plane defined by the propagation
and polarization directions of the elastic wave. In f#ct,
HA isnthe effective anisotropy field experienced by the spin
componénts in this plane when they depart from the easy
direction. A general method for obtaining both H, and H,.
from a free energy is outlined in Appendix A and Appendix B
regpectively. In Chapters 5 and 6 we shall give the
appropriate expressions of'HHE and MH, corresponding to
-hexagonal-close—packed and cublic symmetry respectively for
various directions of the mngqatization and for various types
of transverse waves. |

In order that the effects of domain aliénment do not
entexr the results, we shall assume that some minimum field
stréngth‘ﬂo is required to essantiaily achieve saturation of
" the magnetization. Hence the expreésibn which vill pe used
for the analysis of ultralpnic measurements of these elastic

constants will have the following form

2
W - Bo) (B ¢ B
(4.9] ch(@) - cpliy) = A S H (H, + By
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careful measurements of the variocus

shear wave elqstic constants as a function of the applied )

field strength and temperature may yield values for the

various magnetoelas

tic constants and anisotropy constants

that are nmore reliable than those cobtained by other mathods.

’

4.3 Strong Coupling Limit

Before we d
2
L]
(Egl/Eg) << 1, we

unperturbed magnon

cross-over point, we have E. = ﬁqu and the coupled-mode

tengrgiea in eq. [4.

r 2 2
- = E
[4.10) (63}) Eq

b

iscuss the case in which
shall consider firidt the region where the

and phonon branches intersect. At the

1] become

L]

s 25q|ng!' .

2

1f we assume that |Vq1|2 << Eq. then the energies may be

further app;oximate

+
[(,11] Eqk

-

= B +
9

and thus we have ga
cross-over region.

attenuated in this

a as follows

2

ps of magnitude 2lv 1| appearing in the
Both the magnona and phonens axo utrongly

region and the corroct normal modes of

[T Tee Y- |
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the systen involve combinations of spin deviations and lattice

displacements.

These enerdy 4gap3s have been obseryed oxperimentally
in ferromagnetic rare earth metals and alloys (MBller et al.
1967; Nielsen et al. 1976a: Jensen 1971). Expressions for
these gaps in terms of the various magnetoelastic coupling
constants have also been obtained by Jensen {(1971) and

\
Mackintosh and Mbller {1972). However, these authors did not’

include the terms which arioe'from the requirement of ‘
rotational invartance and they obtain the result that the gap
expressions are unchanged when the directions of propagation
and polarlzation of transverse phonons are interchanged;

The presence of the terms involving the antisymmetric straina
Wy leads to different results in these two cases. This
difference,. as in the case of the elastic conatants, may be
used to obtain values for the various magnetoolastic and
magnetic anisotropy constants.

‘In general the following rules may be used to
determine which acoustic phonon modes will be coupled to the
acoustic magnons and hence to determine which modes will have
non-zero gaps. For lonqitudinal acoustic waves whicH are
propagating parallel or perpendicular to the direction of
magnatization, the gaps will be :aro. In the case of
tranavarae acoustic waves, the gaps are non-zero only if

tha direction of propagation or polarization has a component
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parallel to the magnetization. These simple rules agree with
thg_conclusions obtained by Mackintosh and MBller (1972) and
Na&yar and Sherrington (1972) .

In regions far from the cross-over point, we may still
haﬁe extremely strong coupling between the magnon and phonon
branches. In this case we must have (E'l/E ) << 1 and the
~ approximate coupled-mode energles are obtained by expanding

eq. (4.2] in terms of small quantities as follows

+ 21,2 1,.2 2 2
(4.12) “'c_;x’ . -2-(133 + Bl q ) 2(ES +h mgl)
hzm 2
T gi ql_/
22 4 h’
El 4

The normal mode energies are {Chow and Keffer 1973).
4

2 2 2\ -
5 LA QX ql ’
[‘.13&] E;l :t (Eé + hzwél) /2 _ —T——.b—!—':——)m
2 2 - +
} o (Eg wgk
//‘
‘ C'ﬂ
[(4.13b] €, ~ hw .
gk ~ q (Ez + hz 31)‘) 1/%

Chow and Keffer have examined the form of this lower

/
magnatoelastic mode in easy- planefhaxaqonal ferromagnets
vhen a magnetic field is applied in the plane along a hard

5,

direction. They £ind that this mode ‘is magnon-like ‘having a ;
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quadratic dependence oﬁ wavevector near q = 0 and they also
examine the possibility of exciting these mddés by -
microwaves. The electromagnetic field interacts only with
the magnetic spins and thus the absofﬁtioﬁ due to these
podes depends on the amount of magnoﬁ‘character that they
possess; The upper mngnetoelasﬁic mode remiins magnon-like,
. but in the case of strong coupling, the unperturbed magnon
mode does not describe it a&equately because the spins aAd
thef\attice oscillate together.

* In.the following chapteis we shall investigate the

weak coupling case only. We shall apply the results of

section 4.2 to the heavy rare earth metals and some of thelr

compounds. The case of strong coupling is extremaly

- complicated and requires further investigation.
_ . e
I

+



CHAPTER 5

HEAVY RARE EARTH

METALS -

The heavy rare earth metals Tb, Dy, Ho, Exr and Tm

exhibit large magnetic anisotropy and extremely large

magnetostrictive strains at low temperatures and thus the

effects. of dynamic ﬁagﬁetoelasticrcoupling Rfa also expected

to be.appreciaﬁie. These metals
close-packed (h ) “structure and
experiments have revealed a rich
magnetic moment configurations:

momant arrangements. the moments

all have the hexagonal-
neutron—aiffraétion
variety of equilibrium
In each of the various

of ‘the ions lying in a

given hexagonal layer are paxallel. ﬁouevar. thg direction

of the moments may change from one layer to the next and

thia variation of the moment along the -hexagonal axis Tan be

described by a wavevector k, whose direction is parallel to -

this axis. Both the crystal fie

striction compete with exchange

14 anisotropy and magneto—

interactions to determine

the equilibrium magnetic moment configuration. Exchange

favours .a spiral spin arrangemon

t while axial anisotropy

terms defermine whather the arrangement is planar or conical.

Even when exchange favours a spi

dnisotropy terms and magnetostri

ral spin arrangement, planar

ction effects can overcome

this tendency and give ferromagnetism. A complete

‘58
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‘

description of the magnetic properties of Fhe'rare earth
metals is presenteé?in the review article by Cooper (1968b}
and in the.recent_book edited by Elliott 11972). 1In the
results that foilow, we shall only consider the ferromagnetic

phases of these metals and in this case the spiral wave%titor

EO ig zero. ‘ - \

“
'

5.1 The Hamiltonian for Hexagonal Symmet:i

The magnetic properties of the rare earth metﬁ}s of

4

hcp structure are well represented by the followingf/’

Hamiltonian

[5.11 % = - 15y 713 5§-83 * 9up § 3T

0 0 0
+ By L 0g(8) Ba § 040159 * Be

L O,~(sY)
3 j6°‘3

6 .
+ Bg I 10gg(SY) * 051 -

The first term is the usual Heisenberg exchange coupling
predicted by the theory of indirect exchange (see the review
article by Kittel 1368}. The terms involving the Bg describe
a crystal field with axial symmetry while the term in ﬁg

describes the hexagonalraninotropy.
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The single-ion magnetoelastic terms have the

following form (Goodings and Southern 1971, 1573)

K N
15.21 Wi = - 43¢ 5 s201 0,0(s4) - M3g7 1 BT Oyq(s3
3
€ € + x -
- Mg L (ES (103, (54)) + E5(-i03; (s3]
- M. I

¥y nt

- MY - gY
; MY, L (E] 009 - E 0‘4(53)1

w1

where terms.corresponding to L = 6 as well as certain terms
corresponding to g = 4 have been omitted for the sake of
simplicity. Iﬁ'[S.Z] the indices a, v and € refer to certain
combinations of tﬁa figite strain componenth Euv which .
transform according to particular irreducible'reprelentatiOns

- of the point group G/mmm Choosing a coordinate system (Eng)

coinciding with the a-, b- and c~axes of the crystal, we

define
N
a,l : . 3
r - + %
{5.3a] E™ 7 Beg * Emn Bt :
i 0'2 - o - 1l 001
K\[S.Bb] E ECC 3 E

(s.3c] EY = 3 (Egp = Eqp)




f
(&)

Y
[5.34} E, £n

[5.3e] E® = E

1l ntg J
[ = '
[S.?f] Ez EEC R

The couplino constants in [5.2] are related to those of

Callen and Callen {1965) by

{

a,l -1/2 4
| M0 (3)7° By, Mog- = (3) Ba2
{5.4] Lo £

Mg, = (G172 8f My, = B2 8T
\\‘.

The effect of two-ion magneﬁoelastio'terms will be

described briefly in section 5.3.

—

\ The elastic anergy associated with the homogeneous

T d
strain components has the folloﬁing form for haxagonal

symmetry

K

- 15.5] ]%Bﬁﬂ % ci(Eu.l)z N ciz Ea.lEa 2, + 1 cg(30.2)2

slenED? e @)+ 3 ErEH? + =ph .

-,

The cr's are ohe elaatfo stiffness constantsa‘which are

related to the five independent Cartesian e}astic constants by
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[5.6a] ci}= % f2cll + 2012 + fclj + c33)
[5.6b) cg = %'Kcll +cyy - 4c;3 + 2c
[5.6c] 2 = %
(5.6a] ¢ = 2(cy;~"

[5.6e] c = 4c44 . .

Having ensured complete rotational invariance_through
the use of the invariants in eq. [3.1], we can novw carry out
the transformatiagf to the usual spin operators and stra;n_
functions of small strain theory. In addition to terms
aimilar to those contained in (5.1}, [5.2] and [5.5] with S3
replaced by S, and E,, replaced by € . Ve obtain the

~

following terms linear in the u .z

/& 83 T (u](103,) + wp(-105)]

3

+ 2/5 Bg
ﬂ_f ¥ v3 sg

d + 23 Bg

3

€,:nt € ip-
»g [wltioel) + mz( 1061)]

€ rert y a o€ (10

D (oS (i0p,) + 6y (1001
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{s.77 -128

These extra terms, which have not been included in previous"
studies 6f the rare earth metals, involvellocal rotat%ons of
the elastic medium and will be found to have a differént
effect on shear ‘waves propagatlng in different directions.
Terms of sécond order in €hv OF W, ©an also be taken
into ‘account wlthout difflculty. For trahsverse waves
propagating along one of the crystal axes and polarized along -
another crystal axis (for which only one of the derivatives
auu/ax or Ju /axu is nonzero)-these terms contribute to the
effective elastic constants. However, these contributions
do not depend on the magnetic field in the ferromagnetic phase
and consequently do not affect our final results. On the
other hand in the paramagnetic reg;on quadratic terms of the
type eﬁu give rise to field-dependent changes %P the elastic
constants for longitudinal waves. resulting from the field-

" induced magnet;zation in this region. This will be discussed

in_section's.sz

-

5.2. Expressions for Fractional Changes in the Measured

Elastic Constants for Hexagonal Symmetry

N We now consider the coubling fetween the acoustic

phonons and the magnons, which have two branches in the hcp

Y S
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gtructure. This can be derived using the methooa outlined
in Chapter 3 and the Hamiloonian describing this coupling
will have the same form as in‘eq. {3.38]. The detailed
derivation (Jensen 1971) yields no coupling between the
acoustio phonons and the higher energy magnon mode, and
consequently we shall consider only the lower magnon branch.
The expressions'for the qu are very 1angthy even for the
incomplete Hamiltonian considered here and the full

2

expressions are given in Appendix C. e

\
N
Allowingcﬁgr differences fn notation our reaults
agred with those given by Nayyar and Sherrington {1972} and
Chow and Keffer (1973) except that there are additional
terms involving the anisotropy constants which arise from
eq. [5.7]. |
Since our Hamiltonian has the same form as [3. 38].
the results obtained in the case of weak coupling in section
4.2 may be used to investigate the effects of magnetoelaattc
interactions on the measured elastic constants of these
metals. An important asgumption of the results that follow
is that the magnetization has been brought into the direction
of the applied field, an and we denote by H a field large
enough both to overcome the effects of magnetoc;ystalline

anisotropy and to give, nearly complete alignment of domains.

1t appears from the recent paper by Palmer and Lee (1972) on

|

5
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o

the elastic constants of Dy Lnd Ho that hpénges in the

elastlc constants due to domain effects can be of the order

.

of 1% and consequently can mask the "intrinsic*® field
dependence with Whlch we are concerned. Another instance is
the dip ?n Cy3 a8 a function of temperature measured by Long,
Wazzan and Stern (1969) in Gd near 220°K. This has been
interpreted by Levinson and Shtrikman (1971) as essentially
arising from the alignment gf domains below about 5 kOe.
Thus it is important that H6 be large enough to achieve
complete saturation of the magnetization in the direction of
the applied field. The minimum value of Hj will also depend

on the demagnetizing fjelds in the sample. For example, in

a Gd crystal of rectangular Cross section Moran and Lfithi

(1970) found that the magnetization did not gaturate until
B = 10 kOe. )

Balow we give the results for the changes in elastic
constants as a function of magnetic field based on eq- [4.9]
of Chapter 4. The case in which the field is applied along
the.c-axis and the case in which it is applied along either
an ‘a- or b-axis will be considered separately. it is
_convenient: to introduce the following defini@ions, with N
the,. number of atoms per unit volume:

0o .1
(5.8a] b, = N, B SS(3)
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(5.80] b, = N_ 53 SS(3)

(s.8c) bg = N, BS SS(

[5.8d] by = Na[(231)1/2/16]Bg ss (3 {
[s.8e1 b5 = N (3 3)1/2 y& ss() = 3 cTH(0)

(5.8f] b = Na(2)1/2 MY, SS( ) = 2c7¢(0) .

70)1/2 MY ss( } = - 2¢TA(0)

Y =
(5.89] by = N_(y¢ a4

[5.8n] S(m) ='(S ~His -1 .. s -w

[5.81] h = N_ guy HS = M(0)H

(5.8)]1 hy = N, guy HyS = M(O)H, -

. .
-

The constants H(0), C(D) and A(0) ;ccuring in.[S;Be] - [5.84]

are the magnetostriction constantd of Mason (1954) at T = Q.
For the casa in which H is applied parallei to the

" c-axis of the sample, we find that c;,., €33 and essare not

affected by the applied field in the ferromagnetic region.

For the field dependence of c,, Ve find,

mn - by (g * )

[5.9a] ce 8 - cz‘(ﬂo’ = “q(E, + @) (5, + Hy)

=
o
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where

[5.9b] M(T)H, = - 3b2m3 - 10b4m10 - 215wt

_ ,€e_ 3 cfH(T
[5.9¢c]) M(T)HME = bzm = __TT#L .

Here m = M(T)/M(0) is the reduced magnetization. The upper
sign in [5.9a] is the result for a wave propagating along |
the c-axis and polarized along either the a- or b-directions,
while the lower sign is feor propagation along either the
a-axis or b -axis and polarized in the c-direction. The usual

' gmall-strain theory yields the same result for both types of

wave, the last factor in the numerator of [5.9a] being simply

2

HI{E:. ®

For H parallel to the a-axis or b-axis, ¢, and €44
are not affected by the applied field in the ferromagnetic.

region. The behaviour of c,, is again given by

-

N ;
W e

- 2
m{(h - h.)(H + H)
0 ME A
{5.10a) cz4(H) - cz‘(Ho)

4(HA + H)(HA + Ho)

/

where

{5.10b] M, = 3bm> - A5)p 210 + (295)p m
A 2Py =T

21 6
2 8 1 P6 6b

6coss¢m21

* lz(b;m3) + (blm 10,2 4 3pIm )(b1m1°)coss¢1/4c7

continued...
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3 _ .15 10 105 21 6 21
3b2m ( 2)b4m + (—§—Jb6m - 6b6cosﬁ¢m

+ o'[2c? + A% - 3ACcos69]

€
__ .e 3 _ _ cH(T)

[

Here ¢ is zero for H//a and n/2 for B//b. The upper sign in
‘[5.10a] 1is the result for a sound wave propagating along the
direction of H and polarized along thé c-axis. The lower

sign is for propagation along the c-axls and polarized along
the direction of H. Agaln the small strain theory gives the

same result for both types of wave, the last facto% in the

numerator of [5.10a) being simply HgE'
For transverse waves propagating in the a- or b~
directions and polarized in the basal plane, we find the

rasult,

m(h - hy) (B, * HA)?_
(5.11la] CBS(H) - cgglly) = a(H, + H) (H, + Hy)

where ) .

10,2
(5.11b) MH, = - 36bgc036¢m21 + [4(b§m3)2 + 4’

+ 10 (bfm3) (b= 0 cos6s1/4cT
2 4 8

- - 36bgc686¢m21 + ' fac? + 4n% - 10ACcos64]
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{5.11lc] MHME = + b;m3cos2¢ - blmlocos4¢

= + 2cY[Ccosz¢ +Acos4dé)
|

The upper sign in [5. 1la] is the result for propagatlon along
B and the lower slgn is for polarization along H. & is zero
for H//a and 1/2 for H//b. Small strain theory results in
the same expression for both types of wave, the last factor
in the numerator of {5.1la) being simply (HHE)z'for either
orientatioh of the applied field.

Although these results were obtained from4the
Hamiltonian in‘the form of eq. ([3.38], we have verified'that
the same results are cbtained by solving the maéroscopic
equations ([1.10] and {1.5] for.the transverse chponents of
magnetization aﬁd the elastic displacements respectively,
having first rewritten the Hamiltonian'of'eqs. [{5.1] and
{5.2] together with the elastic energy in terms of macro-
scopic quantities. In the case in which the spins are
aligned along the c-axis, the calcﬁlation for the-preaant
two- sublattice ferromaqnet is Only slightly different from
that carried out by Melcher (1971) for the two-sublattice

\
uniaxial antiferromagnet.

\

‘/ ~
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5.3 The Effect of Two-Ion Magnetoelastic Interactions

In addition to the one-ion magnetoelastic terms of
eq. [5.2) there occur two-ion magnetoelastic terms thch'come
primarily from the strain dependence of the exchange
interactions. In this gection we examine briefly how the
inclusion of these terms affects the results of the
preceding section.

To second order in the angular momentum invariants
S;u and first order in the finite strains E the two-ion
terms are (Callen and Callen 1965; Goodings and Southern
1971)

(5.12a1% 1T = 1¥II(1,3)
me i<]

(5.12b15 11 (5,3) = - 5 2%l £® 1 (v3/2)

R
1143 31-5% - D124

1l a | a,2
TR L0 U TR

a

- b, ij (/3/2)(5 s; 53)

Y rgY 1 .
By 4By 251653 $1n83n)

Yy 1l -
+ 32 I(slesgn + slns* }] Dij [31"2 s*

e'l '
+ 83,54, * B 308153 Y $1.53¢)) -
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J

-~
The main way in which these terms affect the results

of the preceding section is to cause the following

replacements wherever they occur in egs. [5.9].; [5.11]):
(5.13a] bim> » pYm> + d'm? -
(5.13b] bSm> + pSm> + a*m?

where ’

(5.13c) ¥ = 3 N §2 g By

(5.13d] dcfa_ I, 52 g D_ij )

In the latter definitions the sum over j is over all
neighbours of i, not just those on one sublattice.

In practice it will be difficult to separate tbesQ
one-ion and two-ion magnetoalastic contributions since their
temperature dependence is quite gsimilar. In the calculations
to be described in the next gsection we have regarded the two-
§m3 and b§m3,

“the size of’"h*ch igs unknown. However, since the strain

ion terms as making effactive contributions to b

dependence of éhe Heisenberg exchange terms leads only to
terms of a-symmetry in {5.12], the two—ion terms in a¥ and

4a% must have their origin in some higher-order coupling
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between the angular nomenta §i and Sj’ and thus there 1is

reason to believe that they will be much smaller than b;

and bg.

5.4 Estimates for Gd, Tb, Dy, Ho and Er

Measurements of the changes in elastic constants as
a function of the applied field can be analyzed using the
expre351ons of section 5.2 in order to obtain accurate values
of the various magnetoelastlc constants and, ig favourable
cases, of the anisotropy coustantsias well. In this section
we turn this process around and use the available data for
the epgnetoelastic constants and the anisotropy constants to
estimate the size of the effects which can be expected to be
measured experimentally. The discussion is restricted, of
. course, to temperature.rangas in which ferromagnetism occurs,
the temperature dependence baving been expressed through
powers of the reduced magnetizatioq in the last two sections.
In fact in making the estimates that follow we have replaced
“ﬁti&yIsz\by the (normalized) hyperbolic Bessel function
il+1/2(i.l(m)) in order to improve the results in the region
of higher ratures (Callen and Callen 1966) .
Throughout |(this gsection we shall be concerned with transverse

acoustic waves only. Longitudinal waves will be treated in

the following section.
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Estimates of the various anisotropy constants
obtained from torque measurements and magpetization curves
are given in Table 1 for Gd, Tb, Dy, Ho and Er. The values
used in the calculatiQné of Figs. 1 - 7 were those
determined from hagnetization éurves by Feron, Hug and
Pauthenet (1970). Tables 2 and 3 give estimates of bg, b

2
and bl based on the available magnetostrictive data.

Gadolinium
Fig. 1 shows the estimated fractional change in the
elastic constant C,, for a magnetic field along the a-axis.
The ordinate is [°24‘“) - cz4(H0)]/cz4 calculated from eq.
(5.10], it being immaterial what strength of H is used for
c:4 in the denominator. A value of Hy = 10 kOe was chosen,
which is probably large enough to saturate the magnetization
and sufficient to mask the undeq}fﬁile effect of nonuniform
demagnetizing fields in noneilipsoidal samples. The solid
curves are the results for transverse waves propagating
along the c?axis and polarized in the a-direction while the
dashed curves are for waves propagating along the a-axis and
polarized in the c~direction. Our calculations show that as
n decreases from 1.0 to 0.3, Ac“/c“ dacréaaes by about two
orders of magnitude. Thus the most accurate values of bg

will be obtained from measurements at low temperatures. A

datailed study of the temperature dependence -of the results
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Fig. 1: Ac44/c44 as a function of (H - HO)/HO for G4

: calculated from eq. [5.10a] for a magnetic field

£ 8

2
ergs/cm3 ang Caa = 0.226 x 1012 ergs/cm3. ‘Solid

18

along the a-axis. ‘HO = 10 kOe, b, = 0.54 x 10

curves are -for propagation aldng the c-axis and

dashed curves are;for'propagation along the

a-axig.—Curves are shown for values of the

¢ reduced magnetization m ranging from 0.85 to 0.5.
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2:

i - £
Acsﬁ/c66 as a function of (H HO)/H0 or G4
calculated from éq. {5.11la] for a magnetic field
along the a-axis. b} = 0.92 x 10° ergs/cm’ and

c = 0,229 x 1012 ergs/cmB. The dashed curves

66
are for Hy = 5 kOe while the solid curves are for
HO = 10 kOe. Curves are shown for values of m

ranging from 1.0 to 0.5.
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might also yield values of the anisotropy constants b2 and -

b, contained in the effective anisotropy field H,.

Estimates of the fractional change in Ceg based on
eq. [5.11] for a field H along the a-axis are shown in
Fig. 2. The results for transverse waves.propagatinglalong
the a- or b-axes and polarized in the plane are indistin-
guishable from each other. as a consequence of the wea};p
hexagonal anisotropy. To show the effect of choosing
d;fferent values for the minimum fie}d strquth HO' curves
have been plotted for Ho = 5 kDe and“HO = 10kOe with m
ranging from 1.0 down to 0.5. Again the greatest fractional
change is expected at low temperatures.

It is worth noting that measurements of Acse/c66 for"w
H//b when compared with the results. for H//a provide the
possibility of obtaining independent values for by And bY, ~

2
as may be seen from eq. [5.}1c] setting ¢ = n/2 and ¢ = 0 in

the two cases.
;

Terbium and Dysprosium

As the anisotropy constants and magnetoelastic
constants for T?‘and Dy are about two orders of magnitude
larger than for Gd, the f;gctional changeg in elastic
constants Ac/c are of the order 1073 to I§E?ﬁcompared with
about 107> to 107¢ in the case of Gd (Moran and LOthi 1970) .

Figs. 3 and 4 show calculations of Ac“/c“ for Tb and DYy
J ' g
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_Ac44/c44 as a function of (H - Ho)/Ho for Thb

calculated from eq. [5.10a) for a magnetic field

€ = 180 x 108

ergs/cm3. Selid

along the b-axis. Hy = 10 kOe, b
ergs/cm’ and c,, = 0.228 x 1022
curves are for propagation along the c-axis and
dashed curves are for propagation along the

direction of the magnetic field. Curwes are shown

for values of m ranging from 1.0 to 0.3.
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(H-H_)/H,



Fig. 4: Ac44/c44 as a function of (H - HO)/H0 for Dy
calculated from eg. [5.10a] for a magnetic field
along the a-axis. Hy = 10 kOe, b; = 56 x 10°

12

ergs/cm3 and ¢ = (0.257 x 10 ergs/cmB. Solid

44
curves are for propagation along the c-axis and
dashed curves are for propagation along the

direction of the magnetic field. Curves are shown

for values of m ranging from 1.0 to 0.7.
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respectively haSéd on eq. [5.10}. The magnetic field was
taken to be along the easy direction (b-axis for Tb, a-axis
for Dy} and HO was chosen to be 10 kOe in each case. The
solid curves are for waves propagating along the c-axis
and polarized in the easy direction, while the dashed curves
are for waves propagating along the easy direction and
polarized in the c-direction. In comparison with Gd, these
curves are much more nearly linear because the anisotropy
terms dominate the effect of the field in the denominator
of eq. [5.10a). For Tb the largest fractional changes occur
at low temperatures while for Dy therlargest changes occur
in the region of m = 0.85 as a result of a competition among
the various factors in the numerator and dendminator of
eg. [5.10a]. ‘

In Figs. 5 and 6 we have plotted cstimates of
Aces/c66 for Tb and Dy respectfvely based on eq. [5.11].
The magnetic field was taken to be along the easy direction
in each case and HO w#s chosenlto be 10 koé. The solid
curves are for polarization along the direction of H while
the dashed curves are for propagaﬁion~in this direction.
The sﬁall difference between these two sets of curves
results from the fact that the hexagonal anisotropy is at
least 20 times smaller than Hy. near T = 0. As H, falls
to zero with increasing temperature the two sats of curves
become indistinguishable. It can be seen from Pigs. 5 and

6 that the maximum changes in C.. occur -around m = 0.75.
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Fig.

Acss/c66 as a function of (H - HO)/H0 for Tb

calculated from eqg. [5.1lla] for a magnetic field

along the b-axis. Hy = 10 kOe, b; = 77 % 108

ergs/cmB, bI = =41 x 108 ergs/cm3 and

Ceg = 0.22 x 1012 ergs/cma. Solid curves are for

propagation along the a-axis and dashed curves

are for propagation along the b-axis. Curves are

shown for values of m ranging from 1.0 to 0.5.
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(H=H,)/ H,

20r



Fig. 6:

Acﬁs/gsé as a function of (H - H,)/H, for Dy

calculated from éh. [5.11a) for a magnetic field

"= 10 kOe, bY = §9 x 108

aloné the‘afaxis. H 2

0

ergs/cm3, bI = 0 and c = 0,263 x 1012 erga)cmB.

66
Solid curves are for_propagation along the b-axis

and dashed curves are for propagation alongfthe'

a-axis. Curves are shown for values of m ranging

- i

from 1.0 to 0.6. 7
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The fact that the largest changes do not occur at the
1lowest temperatures is due to the denominator of eq. (5. 11a]
decreasxng rapidly as m, decreases from 1.0 until, when n is
about 0.8, the function H, becomes comparable with H,. FTh;
curvature of the curves other than m = 1.0 is also -due to
the function HA'having‘fallen ﬁgarly to zero so th;t oh1y|
the magnetic fieid;term is appreciable in the denomigator

- of 5. llalj. . In the case of Tb the curve for m = 1.0 is
further depressed because the competition between bT and bl
produces a maximum in H,p near m = 0.92.. \

Holmium and Erbium

Since there is no magnetoelastic data from which to |
estimate bg for holmium and efbium it il.nat'possible to
predict the sitg of Ac4§/c“ for these metals. Heasurement# \\ )
of appropriate sound velocities should yield reliablé\ )
estimates of this coupling constant and perhaps qg the " )
anisotropy constants as well. Itrmay'be séen in Table 1 '
that there is a considerable difference batween the values
of b2 and b, ‘for Ho obtained from the vork of Feron et al. N
(1970) and from Bozorth et al. (1968). |

In Pig. 7 we have plott.d estimates of Acﬁslcss'for \

- p
Ho based on-eq. [5. 11] using b6 = 27 x 10 orgs/cn . the °

L]

value deduced by Feron et nl. (1910). !ho solié\qprvu-_are

for waves propagatinq along the a-dircction and polarized in -

™



Ac66/c66 as a function of (H - HO)/H0 for Ho

" calculated from eqg. [S5.lla) for a magnetic field

along the b-axis. H, 8
ergs/éma, bI = () and Cee ™ 0.308 x 10

= 10 kOe, b; = 31 x 10

12 ergs/cm3;

Sclidcurves are for propagation along the a-axis

and dashed curves are for propagatioﬁ along the .

b-axis. Curves are shown for values of m ranging
from 1.0 to 0.5. ' J .

-
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the b*direction, wﬁiie the dashed curves have these two

-directioné inperchanged. The magnetic field was taken‘to be
;loné the easy direction (b-~axis} and HO was chosen to be

10 kOe. As for Tb and Dy, the greatest change occurs in the
region m = 0.75 as a result of Hy falling rapidly to zerxo
with decreasxng m in eq. . [5.11b]. Rather sinmilar rasults ;

| are obtained for Er using the parameter values given in

‘Tables 1 and 3, but the'scale of_ the curves is increased by -

a factor ;f about 3.5. This is mainly due to the fact that

b; is about twice as large for Er compared with Ho.

If the-very much smaller value of b6 = 0.21 x 106

ergs/cm? for Ho due to deorth et al. (1968) is used in the
calculations, then the function H in [5-11b] is almost
Vnegligible and the denominator depends almost entirely on
the magnetic field terms H and Hy- The rasult @n_that the
greatest fractiona1 change'in‘c66 occurs for'm - 1.0, with |

a value about 3.5 times the maximum in Fig. 7. Thus the

-

magnitude of tha‘changq is rather sansitive to the value of _

b6 6

6° When b6 is small, it is alto sensitive to the cholce oﬁ

Ho- - o SN N

§.5 Longitudinal Wavei in the Paramagnetic Region

As discussed in Chapters 2 and 3, the requirement of AN

rotational invariance and th.-UIO of the finite strain
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A4

tensor led to additional magnetoelastic terms linear in the.

antisyrmetric strains duv" For the case of longitudinal

sound waves, there bccur other Egrms guadraﬁic.in the
infinitesimal strains tuu which arise entirely from the
definition of the_ﬁinite gstrains. From eq. [2.20] we.have

for a pure longitudinal wave,

2

(5.14] E =€  + (%) €2,

Uy WU

£

'When these are retained in the single- -ion magnetoelaatic

Hamiitonian [5.2], with the term in M“ neglected, and
-
thermal averages of spin operators are taken, we obtain the

4 : 5

following expressions for the changes in elastic constants:

Cq . 2,,8y50 . 1
(5.15a) Acyy = - [by *+ (5)b2192(cpss)<020>/[SS(5L1

a

(b - (%)bg?bg(coae)éb20>/[55(§)1-

[5.15b{ Acll =

+1

(T)bY 2in? cos2¢<020>/[sstf)] -

~
I
\

where bl and b arge definad by ' S
/ ; . : . /-

1
[5.16a] by = N M2° 85 (x)

(5.16b] bJ = n N3 ss(zp - e

.
LY - - .
~

N ; .
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In eq. [5.15b) tho upper sign is for propagation along the
afaxis and the lower sign for prdﬁaégtion along the b—é%is.
The]tﬁermal averages:<920> are to be taken‘withxgéspect\to
the gquilibrium spin'éi;eétion, which is specified by (8,¢).
In the ferromagnetic region at_low temperatures <020>/[SS§%)]
redyces to-m3 in the usu#l way (Goodings and Southern 1971).
However, in the pafamaghekic region when m{(T,H) << 1, one can
use the approximate relation (Callen and.Calleﬁ 1965; Moran
and LAthi 1970) | '

.

5171 <0, & thissth meran®

Introduélng‘the susceptibility x(T) through

»

i

[5.18) MI(T,H) - x (T)H

we have

(591 <O, & (s xm/miT=0 1w
N .

~

This is to be‘substitutod in egs. [S.lSa].and'ls.JSb] to

K tain, the gﬁ%nqon»&q33 and Ac,, in the paramagnetic region.
The effect of two-ion magnetoéla:tic terms may be

included by considering the Hamiltonian in eq. [5.;2] an# )

reptaining terms which arise trgh the quadratic terms in



90
(5.141. The changes in eiastié'COnstAnts become
. - | {: ‘ . |
i _ - ‘ .
(5.20a] d4cgy = (- (BT + G1b31p5 (cose) - 1df; + (5aj))
. L '

S+ (%{dgzng(cose)}[X(T)/H(T=0)]2H2

- [a

3, .0 i a0
[5.2le Acll‘ﬂ {- (§);b1 - ﬂg)bzle(cosB)

. a 1 5
- ld); - (314
; : < [diz\— (%)dgzng(bosB)

\

DRI | ,
: G udpl + d'1sin’e cos28} [x (T} /M(T=0)1%8%

where the folloﬁing definitiona'havé-been used . <
[s.21a] a}, = N s? 3 g 53143 ‘

[5.21b] a3, = N s? 3 g D314 '

oo o, -0 1 0%

(s.21a) a3, = n,8% 3 ; D321 /

N

and aY is defined in {5.1§c]. The summations in [5.21] are

AN
¥

over all neighbours of atom 1.

The changes in olaltic-conliantl in a wmagnetic field

for longitudinal sound waves have been measured for Dy and Ho
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in the paramagnetic region by Moran and LAthi. (1970). 1In
both cases. tbey found a quadratic dependence on field
outside the critical region which they attributed to terms
of second order in_the strains euu originating either in’ the
exchange coupling or‘in’single;ion terms and depending on a
second derivative of the corresponding coupling constant

with resPect to strain. The results obtained here from the ¢
requirement of finite straing likewise vary as Hz but

depend essentially on a first derivative with respect to

'strain.,

L d

An alternative explanation for the longitudinal _ |
elastic constants to that of Moran and L3thi was proposed by
Long et al. (1969). Theylconeider thenmagnetoela;tic
coupling as a perturbation carried to second order, within
the framework of the usual_jmall atrain formutation. ?his
gives results that depend on the square of the magnetoelastic
constants instaad ofplinearly as in eq. (5.20]1. Yo

From the data of Moran and Lﬂthi for Dy and Ho we Can
make a fairly accurate ostimata of "the combination in curly
brackets of eq. [5.20a] for g = 1/2. assuming that the presant'
oxplanation dominates other machanidms.. Using the experi-
mental'x(T) fitted bg a Curio-Weils iﬁw. .and making u-e of _

' the relation

"Ac Av - I . : |
(5.22] ra - —;; ) ) S N
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L)

~ -

where vb is -the sound velocity in zero field in the

. paramagnetic region,.we find the values .20 x 1012 ergs/cm3

for Dy and. 2.2 x‘lol2 érgs/cm3 for Ho. To cbtain these

results we used a value of c33 = ,787 x 1012 ergs/cm3 for
Dy measured by Flsher and Dever (1967) at 360K and a value
of Cyy = .755 x 1012,erga/¢m? for Ho from the data of Rosen
(1967) at 300K. The value of the two-ion magnetoelastic
coupling constant quoted by Pollina and Lfithi 61969) for Dy
(DS2 = 0.2 x 1012 e;;a/cm ) is of the right order of
magnitude'to account for the val&b deduced above, bug their

value for Ho (bs2 = .14 x 1012 ergs/cm3) is more than an

order of magnitude too small.
From eq. [5.20] it can be seen that it may be

possible to deduce separate values fok (%)bi +'diz,
63 + a3, aF;, 45y and (})b} + &Y 'by carrying out \

measurenents for severai different ?irections of the applied

! { L4 - | o
field. C . 7 .

¥




gHAPTER 6

HEAVY RARE EARTH-IRON COHPOUﬁbS RFez

The cubic rare earth-iron Laves phase compounds
present an interesting possibility for cbserving large
magnetoelastic effects on the measured elastic constants.
These compounds have the HgCuz—type structure with the rare‘
earth lons ;rranged on a diamond sublattice and the iron ions

on. a corner-sharing network of negular tetrahedra. Recent

measurements (Koon et al..1l971; Llark and Belson 1971&,-

1972b; Clark et al. 72) indigcate that_the magnetic aniso-
tropyland magnetostrtizibn, n these compounds'is the largest
ever observed at room temperature. The mﬁgnetic properties
of these compounds are wall described by a magnetic model in
which the rare earth and iron gublattices have their spins
hirected oppositely and in';hich-the dominant interaction is
the exchange term between the two sublattices (ﬁuschow and
Stapele 1970: Slanicka et al. 1971j Burzo 1971; Atzmony et al.
1972; Taylor and Darbyi1372). If one lpocializew'tho general
spin-wave theofy for a ferfimagnet (Reffer 1966, Sec. 48) to
the case where exchange {s predominantly between sublattices
'and where in addition the exchange enerqgy pqr'aton is large
compared with the anisotropyY onnrqy or leeman energy, ther

" there are two spin-wave modes, the lower of which has the

93




94

same form as in an ordinary ferromagnet and does hot dépend

7

on the exchange interactions in the 1imit of long wavelengths.

' If we also assume that the magnetostriction and magnetic

anisotropy of these compounds is due primarily to the rare

earth sublattice (Clark and Belson 1972a, 1972b; Atrmony et

al. 1973), then the results obtained invchapter 4 may be usecd

o predict the size of the effects that may be expected in

measurements of the e

1astic c0nstants as a function of an -

applied magnetic field. This follows from the fact that the

- Hamiltonian which describes the coupling of the acoustic

i

magnons to the acoustic phonous has the same form as in eq.

[3.38].

6.1 The Hamiltonian

for Cubic Symmetry

The Hamiltonian for the rare earth sublattice is

taken to consist of agrystalline electric field of cubic

symmetry and the Zeeman term:

R
AN

16.11 H -s I [0
4y

3

The exchange

has not besn included in [6.1] because it does not contribute -

/2
8;)1

0,1
WS + &P R

+ Bg L (0go(sy) - an/? sgy s + g § 85020 -

term, which is assumed to be isotroplc,

7
/
/

2
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to our.results in the long wavelength limit, 1In addition to‘
_the terms in the magnetic Hamiltonian in [6 1] we must also
include the Zeeman term for the iromn sublattice. )

Following Cdllen and Callen (1965), the single—ion
magnetoelastic Hamiltonian for the rare earth sublattice is
formed by taking products "of the symmetry atraina and spin
functions belonging to the pame irreducible reproaentation
of the cubic point group. In terms of the spin-operator

functions defined in eq. [3.4] it has the form (Southern
: N
1973) C_ \

(6.2a] H, = rj:'%e(j)

‘ 2
(6. 2b) -§>“—;e(j) - - u‘;E“ - ":Ealow(?}’ + (-179- 1/

fs3)l
- W (=)0, sy’ + @2 035 (3]

- nY{n7[0‘0(35) - 312 o‘ (s})l

..|‘_
0

. B ?-
. o + Byl

342 o sp 1)
- wS(ES 1403, (591 + B1-103, (39

t -
+ 53103, 891}

continu.d...

'
. - ) . o .
- .
B . . . £
.

if
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P L 1/2 et
° “4*51[1041(§3 (7 1043(§§)I

+ BS(-107, (s3) - (N2 103051

+ B0 (0% 01y L

only terms up to % = 4 have been included., The symmetry
strains are defined as follows '
{(6.3a) E° =E__+E_ +E

_ 1/2
(6.3b1 EY = (3 (2E__ - E

[6.3c] E!l == (E__ - )

N -
&
3

E
[6.3d] El - Eyz
- .
[6.3e] - Ex'z /_

(6.3f] ES = E ;

The elastic energy associated with the homogeneous

strain components may be written in the !ollowing_torn for

cub}c symma try



6.41 Yo = 3 CEM? + FelteD?+ hh

+ 3 cE[(EE) v 252+ 5

p i |
where the symmetry elastic constants cr are related to the

_ usual Cartesian elastic constants as follows

- j a 1 ,
LS.SaJ c =3 (c11 + 2c12)

-

[6.5b] <c' = 2(c,

1~ €12
- E i - 3 -
[6.5?] c 40’“ .
Having ensured that the total angular ‘momentum is ‘

conserved we can now' carry out the transformation to the
susual Bpiq operators §j‘and the functions €v and Yy of
sinall strain theory. We obtain the following new terms
. N
linear in Oyt \\\ .

- 1 \
6.61 (20022 8% : oy, LS5 + ? uogy) | \

| .
L (-105,) = (-,)1/2 (107,01 + ugl- (,)1/ 07,1}

\
+ uat/? 8] ; (ay, 11105y = 3172 (1023)
, Oya!
ALM2 (16511 + u,, 11-105) + /2 (-105,)

, & e
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Iﬂfaddition to these new linear terms there are also
terms quadratic inuﬁha displacement gradients. " However,
since their contributions to the elastic constants are
independent of magnetic field they do not contribute to the

results presented in the next section.

r

’

6.2 Expressions for Prnctibﬁal Changes -in the Measured

Elastic Constants for Cubic Symmetry .

Expressions for the chafhges in the elastic constants
due to magnetoelutic interactions are obtalned using the .
thods outlined 1n Chapters 3 and 4. Bouovor. when the
Zeeman texrm for the' iron sublnttice is included, the
- expression for the change in the naasured-olastic constAnt.
'at two different valunl of the applied field p’s a slightly

: ditferent form than in eq, [4.9). We have \

(8 - ) g = Mgyl

[6.7] c*(Hl‘- C‘(Ho) -
A g ks * Tt |

‘where HT‘il the total uaﬁno;i:ation and N is th.'tax, earth
lﬁblattipe n;qnctip;tion. .

In Table 4 tho~¢xpra-sion:‘!or Mo, and MH,
corresponding to the various directions of the magnetizaticn
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are given and, in each case, the elastic constant being

: :
measured is indicated. The effective anisotropy field MH,

is expressed in terms of the usual macroscopic cubic
anisotropy constants Kl and Kz. These are related to the
microécopic constants'défined in eg. [6.1) a; follows

1 & -
[6.8a] Kl - - f_[10b419/2 + 21b 113/2}

i
b .

[6.8b] K, = 3%l b £

6713/2 : [

>

where

o . 0 3
[6.8¢c] b, - B‘ N 53(5)

8 N ss(d .

[6.8d] by ¢ Na SS(3 .

The temperature de ndénca has been exﬁrosscd in the usual

way (Callen and Callen 1966): in terms of the (normalizcd)

hyporbolic Bessel function Il+1/2(i~1(=59) vhor..&_ ("R) is

the inverse Langevin function and mp "is the reduced

magnetization for thr’raro earth lublnrtico. The oxpr&sl?ons. |
Ator M H\p involve the mnqnetoolaltic constants of Kittel and E
Van Vlieck (1960) which are rolattd to those do!tnod in eq.

N

[6.2]) as £9110us :

- - HPN

(6.9a1 8, N, 1
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’ o 312
{6.9b) . 84 (3 qua ss(t 3) 15]2

- _ (3,1/2 € ll S
(6.9c] 8, () MoN, 55 (3) I5/2

. [6.9d) B

' 1/2
3
SMN_ ss(3) I

...9/2 - 1(3) ‘N ss (‘f) f . }f-

/ 2 - - . - ‘_’I
(6.9e] B8, = - 213%-—— MIN SS(%Y 9,2

- 1/2 .t 3, =
[6.9f] 85 (5) ._.M4Na 35(5) 19/2

i

where N, is the number Qf rare earggfzbns per unit volume.

" In deriving the axpr;ssions in Table 4 for M;EA; ve '
have not incfuded'tha cdhtributions of static'magneto:triétion ‘
to Ky and %2. At zero temperature these contributions are the
. order of 1% of K, and K, and we shall assume that they do not
| affect the results appreciably. | ‘

Inh each of the cases which we shull‘conlider, the}

magnetization direction is aliumod to-be along one’ ‘of the
cubic symmetry dircctions and the mn;notic field is applied
in this same direction. In order to minimize domain effects,
it is assumed that there il some minimun‘flcld -trcnqth Hy -
which essentially achieves sﬁturation. Only the results for,
tranlvérle elastic ?aviq which are either propagating or \
polarized iionq'tﬁi magnotizgtion.dir’ction are given. )

.
‘J/‘H
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> A

6.3 Estimates for the Compounds RFe2

(R = Tb, Dy, Ho, Er and Tm)

At the present time single crystal data for the

_ magnetostriction and magnetic anisotropy constants is
. !

_available only for ErFez. However, polycrystallind‘daéz\pay
be usEQ\to estimate the size of the effects to be expecﬁéd in
measurements of the elastic constants as a function of \_
applied field. In making our estimates we shall consid;>
oyly the lowest order magnetéelastic conitants 81 and 82 and—
when single érygtal data is not available we shall use the
polycrystalline results and make the rather crude appfbxtma-

tion of isotropic maqnetostriction.' In this case
“‘\

16.10] B, = B

NPT L

\

where u is the shear modulus of elasticity and l. is the

-

saturation magnetostriction. 1f single crystal data is

avaiiablé then Bl—and 82 mhy be determined from the following

relations:

N
.

[5.11&) B1 = - 3ul1°0

/4-——/- ’ i . ' ’
(6.11b] B, = - 3ukyyy
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hY

where 1100 and xlll are the usual magnetostriction conséants .

for cublc syrmmetry. \ -4‘

In Table 5 the values of the various constants
required to make our p:qﬁictions are given at 0°K. The
magnetic anisotropy constants b, and b6 have.béen cbtained
using (6.8] by comparing the MBssbauer data of Atzmony et al.
(1973) with the torque measurements of Clark et al. (19753
Qur values are approximately five times larger than Ehose
of Atzmony et al. (1973). Values of the shear modulus u: for
TbFe, and ErFe2 were taken from the room temperature data of
Clark and Belson (private communication) and the other values
were obtained bx interpolation based on the room temperature
values for the rare earth metals. The magnetoélastic
coupling constants 81 and 82 for all the RFe, compounds
except Erfe, were determined from the data of Clark and
Belson (1972a, 1972b) using eq. [6.10]. 1In tho case of ErFe2
the measurements of clark and Belson (private comnunication)
Qero used in eq. {6.11) assuming 4hat 1100 ~ (0.1)1111- The
saturation moments were taken in all cases from the data of
Burio {(1971). ) ‘

In Figs. 8 - 12 we have olotted [c*(8) - c*(Hg)1/c*
’ ‘al a !uncﬁion-o! the appliod,tiolaklnd the rare earth
qublattice reduced magnetization mp. The temperature ~
dependence has been introduced using the (normalized) .

nyperbolic Bessel function 545 /3¢ Flm)) ans it is assumed

\

\

!
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that the iron sublattice magnetization is independent of
perature, as appears to be a reasonable approximation
below room temperature (Clark and Belson 1972a; Bargouth and
Will 1971; Burzo, private communication). For each compound
it is assumed thaE“the applied field is aioné’the easy
direction and that a minimum field strength of 10 kOe is

sufficient to saturate the magnetization. In each case the
N

solid (dashed) curve corresponds to a transverse elastic h

wave propagating (polarized) alongtthe easy direction.
As can be easily seen from the figures, the

fractional change in elastic constant ac/c is of the order

- of 10 "2 at room temperature ‘for each compound. In addition,

.the difference in. Ac/c for the two types oﬁ tran-verse

wave is the oprder of 10 =3, Thus 1t should be possible to

obtain accurate values of the various magnatoalaltic

‘constants and anisotropy Eonstanta by carefully analy;ind

measurements of Ac/c as & !nnction of an applied field and

temperature using }6 .7] and available magnetization data.

V‘ .
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. Pig. 8: KAc/c as;P function of (H - HO)/HO for TbFe2 with-

the magnetic field along [111] and H, = 10 kOe.

0
50l1id (dashed) curves are for propagation

(polarization) along {111] and
- /1 ’ - e
¢ =y leg) ~ ey * ey

- .
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Pig. 9: 50‘4/c44 as a function of {(H - HO)/H0 for DyFe2
with the magnetic field along {001] and HO-- 10 kOe.
Solid (dashed) curves are for propagation

(polarization) along [001].
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lFig. 10:

Ac44/c44 as a function of (H - Ho)/H0 for HoFe2
with the magnetic field along [001] and

H. = 10 kOe. Solid {dashed) curves'are for

0
propagation (polarization) along [001].

-
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Fig. 11l:

Ac/c 'as a function of (H - HO)/HO for !:r:l?‘ca2 with
the magnetic field along [111] and Ho = 10 kOe.
Solid (dashed) curves are for prt;pagation '
(polarization) "alor_ig [111] ana

1
c= 3 ey = G2 * Caqd-
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Fig. 12:

Ac/c as a fungtién of iH - HO)/H0 for TﬁFez with

the magnetic field along [111] and Hy = 10 XOe.

' Solid (dashed) curves are for propagation

(polarization) along [111] and -

1
c = 3 .lcy) = G5 * Syl
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CHAPTER 7

SUMMARY

A rot&tionally invariant theory of magnetoelastic
coupling in ferrbmagnats has been preseated in this thesis.
Both the static and dynamic effects of this coupling have
"been discussed. The static coupling, or maghetostriction.
gives rise to static distortions of the crystal which depend
uypon the equilibrium moment direction. 1In addition, this
static coupling also contributes to the magnetic anisotropy

in determining the equilibrium moment tonfiguration. . The -

dynamic magnotoelastic coupling leads to couplod osclllatioas
in the magnetic and elastic degrees of freedon about the
equilibrium configuration. Pravious troatmonts of this
dynamic interaction in ferrop#gnatl ;gpeax to ba iﬁcorrgct.
In particular, they neglect ;n additional coupling which
originates in the magnetic anisotropy of the cryltai and
involves the antisymmetric strain functions w, . In the -
case of transverse elastic wav.l which are oithor
propnqqting or polarized along the direction o! naqnotization.
these new linear terms result in new effects similar to those
found by Melcher (1970) in MoF, from which it should be
possible to cbtain in diroct panner the values of co:tain
magnetoelastic constants and nnilotropy constants.

—~ i11

N
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Expressions for the change in the measured elastic
constant for transverse elastic waves Qt two different
values of an applied magnetic field have been derived. The
quantities appearing in these expressions have been -
described in terms of macroscopic anisotropy constangs and
magnetostriction constants for bqth haxagonal-clo;e-packed
ﬁnd cubic symmetry. Theﬁe expressioﬁa can be used in the
analysis of measurements of the changes in elastic conétant

as a function of the applied field strength and tegPorature.

Uaing available data for the mgnotoelutic constants \
and the gniaotropy constants, this process-has been turned
around to estimate the size of the effects which can be
expected to be maasured experimantai1§ in the case of the
heavy rare earth metals and some of their compounds.‘ it is
predicted t;at fractional changes in ﬁhe'nnasured elastic

“constants as'large as ILO"2 should be fognd for Tb, by, HO
nd Er in fields of about 50 kOe, while the maximum change

for G4 is predicted to be about 1074, sisilarly, the

‘fractioan change in elastic constant for the rarok:arth-
iron compounds RFe, (R = '!b Dy, Ho, Br and T™m) is predicted
to be as iargo a; 10 -2 at room temperature for each
compound. Thus it should be possible to cbtain accurate
values for the various Iaqnctoolllt1C'constantl and
ahilotropy constants by carctully annly:ing the measurements

as a. funqtion of an applied field and ta-p-xatuxo using the

appropriats gxp;.ccionl.
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Calculations.have also been performed for the
field-dependeni changes in C,4 and Cq3 for longitudinal
waves in the paramagnetic region. These changes result

from the fact that the finite strains E include terms of

2
wr”

linearly on the magnetcelastic conatants and vary as 82 in

the form £ The resulting changes in c11 and C33 depend
the paramagnetic region. Estimates of certain combinations
of these constants have been made from the experimental

measurements of Moran and Lfithi on Dy and, Ho.

/




APPENDIX A

ENERGY OF THE UNIFORM-MAGNON MODE IN THE PRESENCE OF )

i
HAGHETOELASTIC COUPLING '

The energy of the g =0, or uniform-magnon, modé in
a highly anisotropic ferromagnet m;y be cbtained using the
macroscoéic theory developed by Smit and Belgers (1955).
'Denoting the second derivatives of the macroscopic energy
gensity as ?08' they obtain the following expression for the

uniform—modp energy

1211/2

9up ’
A.1] Eq"'O = ®(Tysing [P86F¢¢'_‘ (FB

where the derivatives F o, are to be ovqluatod at the
"equilibrium values of the polar angles 9 and ¢ specifying the :
direction of’ apontaneous magnetization. The equilibrium '
valyes are determined from the conditions 3F/3a = 0 (u -8, ¢.
If the maqneti:ation ‘direction coincldes with a cryttal
symn-try direction, then re. vanishes and {A.l] may be -
written simply as

A.2] . Emo = TUp1H A11/’

- )

vhere
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o _- 1
Hy = M(ry Tee
[A.3) '

¢ } w3
H(T)sinie )

These latter quantities reprasent the effective anisotropy
fields acting on the spin components when they depart from
the equilibrium direction. In a dynamic experiment such as
ferromagnetic rosonance, the uhiform—magnon modo 15 excited

- and these effective fields can be measured. |

The effective anisotropy field measured in the static

torque aod magnetization experiments may be identified b}
comparing the energy dansity Piyith the potsntial energy of

a magnetization.vectorbg in a magneoic field H. In this case

(A.4] F = - M.E = - MH cO83
1

>
where a denotes the angle batween M and H. Evaluating ¥ .

at the equilibrium value a = 0, we have

[

(A.5] P = MH cosa w MH .
aa a=0

The effective anisotropy field may be identified as

o~

a )
[A.6] HA - “T!T ruu
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where F aa is to be evaluated at the equilibrium value of a.
Note that this equation agrees with [A.3) provided both the
magnetization and the effective anisotropy field are correctly
projected onto the plane in which the angle ¢ is measured.
The effective anisotropy field measured in the dyn;mic and
static experiments appear to be t@e same and may be expressed
in terms of macroscopic quantities using an expression such
as [A.6].

The above results are usually assumed to remain valiad
in systems where magnetoelastic interactions are present.
However, it has become apparent that the effective anisotropy
fields measured in the static and dynamic experiments are not
the same when magnetoelastic coupling is taken into account.
In the past several years, there has been a great deal of
theoretical and experimantai work performed to determine the
effect of magnetoelastic coupling on the uniform-magnon nodes
in several of the heavy rare earth matals. - Tuyrov and Shavrov
(1965) suggested that the correct way to f£ind the uniform-
mode energy is to regard the strain as frozen at its e
equilibrium position. Then, when a ﬁong-wavglenqth magnon is
aexcited, the lattice strain does not follow the precession of

'the spin components. Cooper (1968a), using this froxen
lattice model, Found &hat there is a liqniticant magneto~

elastic ‘contribution to the uniform-mode cnnrqy.
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Cooper also examined the case in which the lattice
strain can follow the spin precession and found that there
is also a magnetoelastic contribution in this case. This
so-called free-lattice model predicts a much smaller value
for the uniform-mode energy-. 'fﬁgérder to compare-the.
results predicted by these two models, the contributions of
magnetoelastic coupling to the magnetic anisotropy must be
properly extracted in each case.

" As an_example, considér the following form for the
energy density -

(A.7] P = K{(8,8) + b(0,8)E + % cFehy?

~

where the first term represents the usual naéneﬁic anisotropy
energy. The latter terms represent the magnetoelastic and’
elastic energies respectively for the irreducible representa-
tion labelled by.r. The equilibrium configuration is
determined by minimizing P with respect to 8, ¢ and Brz

(A.8a] 2y = b(o,0) + Tl =0
I
[A.8b] §§ -3, %%-xr -0 (a=8, ¢ .

rh.io equations must be solved simultansously to obtain the
equilibrium values 8,, ¢ and £,
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In a dynamic expériment‘such as ferromagnetic
regonance, the equilibrium momeﬁt direction is unchanged and
the strains remain frozen at their equii}brium values.' when
using an expression such as [A.6] to obtain the effective
anisotropy field, we do not differenti&te the strains Er
with respect to the angles 6 and ¢. The enercy density

becomes. ' ) | J
(.91 F = K(0,4) + b(e,9E (8g,00) + F o' (B (80,0017

and the effective anisotropy field is simply

- a1 .3% . 3% or ‘
(A.10] B} = g = + =3 E'] (a =6, 9 .
. A M 20 Ja '

On the other hand, in a static experiment such as
a magnetic torque measurement, the equilibrium moment
direction changcs under the 1n£1unnco of an externally
applied maqnotic field. The strains x !ollow the direction
of the moments and must be differentiated vith r‘sp1ct to
the angles © and ¢ uh.n evaluating the effective anisotropy
field. However, this is equivalent to lﬁbatitutinq the -
following expression for the strains directly into the energy

density:

(a.11a) BT = - b(e. /e’ -

o
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We obtain
(A.11b] F = K - b2/cl + b%/2¢" = x - b%/2c"

and the effective anisotropy field in this case is

. 2 2 :
a 1 37K b 3°b gh. 2, T
[a.12] HA = g [;‘;—f- - 3 " (15'5) /c ]
¢’ da
2 r
-1 {%2_;+Er-:—§-c“(§-§—)21 (@ =8, 8) .
a s ] .

Comparing [A.10) and [A.12], we see that the
//’effective anisotropy field menéqred in the static experiments

[/// is smaller than that measured in the dynamic experiments. '

{

The difference is given by

[A.13]) AH:-- Hi(dynamic axpt) - H:(static expt)

T r )
- C ) 2 Ny
w 50 - : -
In the case of hexggonal-close—packed symmetry, we ha@g for

_00 = w/2 and ¢ = ¢o:

€
(A.14a) 280 = § 2
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[A.1l4b] AHA = N A" + C + 2AC (2086(:!0]l
where the magnetoelastic coupling constants A, C and H are
those defined by Mason (1954). These results agree with

(..'
those obtained by Brooks (1972).

. A great deal of experimental work has been perfcrmed
+o determine whether the frozen-lattice or free-lattice
model is correct in describing the dynamic experiments.
Coopar was the firat to demonstrate that,. if a magnetic

field is applied along a mngnetically hard direction- in the .

basal plane of the hexagonal-close-packed structure, then ,
the two models yield quite different results. In the case

of the frozen-lattice model, the uniform-mode enerdy can 'be
reduced to a minimum nonzero value when the strength of the
applied field is equal to the effective planar anisotxropy
field. On the other hand, the £ree-1att1ce modal predicts
that the energy gap may be ‘raduced to zero at the sanme valua\
of theiapplied field. Using noutron-dif:ractiqn techniques,
Nielsen et al. (1910b) found that the observnd gap could not
be reduced to zero in the case of Tb and thoy concluded that
" the tr;:en-lattica model was valid. Other groups (Bagguley
and Liesegang 19677”Rossol and Jones 1366; 'gart and Stanford
1971) have studied this same effect using ferromagnetic
resonance techniques. ‘At nicrdwnvq fraquencies fn; below
the minimus spin-wave gap predicted by the frosen-lattice
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-

mgdel, they observe'a strong magnon absorptidn whlch is
clearly in;onsistent with the frozen-lattice model. In
contrast, investigatious of the temperntu%e dependence of
the resonance field at higher micrdc»mve frequenciés' {Wagner °
and Stanford 1969, 1972; Marsh and Sievers 1969) show

(o

agreement with the frozen-lattice model.

_ The experimental cbservations appear to be quite
contradictory and do not indicate which nodel is the correct
one. In general, thp results of neutron-diffraction and

high-frequancy resonance absorption experiments conclude that

the. frozen-lattfbe model is valid, whereas the 1ow-frequency
resonance absorption cannot be antisfactorily axplained
using this model.

% Vigren and Liu (1972) have nttelpt.d to unify the -
free-lattice and fro:en—lqtiice modils. Using a npﬁol in
vhich the rystal-strainl are locally couplaé to the spin,
thoy predict the free-lattice model behaviour at low
mic:owavo fraquancie- and the frozen-lattice nodal bchaviour
at high microuavn frequencies. An altermative explnnation

~for the magnetic absorption observed in the louffroqucncy

microwave experiments has been presented by Chow and Keffer

{1973) . Thaese autﬁors propose that the results of both

f.rrangnotic resonance and naut:o& acam:inq .xptri.-ntl

should be analy:od using the true -aqnatoollhtic modes of

the coupled system. All of the oxp.:iltnt- por!orl.d so far
P

b
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have been analyzed only in terms of either the free-lattice

or frozen-lattice models. Chow and Keffer have demonstrated

that under the conditions in which the regonance experiments
are performed, that is, with a magnetic field applied along
the hard planar directibn and equal to the effecfiva-élanaf
anisotropy field, neither of these models is adeqpaté for a
description of the normal modes of the system.’ The frozen~
jattice model correctly gives the energy of the uniform- -
magnon mode, but it doas not take account of thQ dyn&mic
coupling between magnons and phonons it finite\vavﬁvecto§a.
. If there exists a stroﬁé coupling between the unporturbod
magnon and phonon Qodes, then the correct normal modes ars
really magnetoelastic,modes and involve coupled spin dovia-
tiona and lattice displacements. In the case of transverse
acouatic phonons which are both propagating and polarixed
in the basal plane, tha dynamic magnetoelastic coupling-
causes these modes to have a stronq magnon character near

g = 0. In tact, the un.rqy of these modes varies as q in
this region in contrast to the usual linear dependence on q.
Since the electromagnetic field interacts only with the
spin, the contribution of these modes to the magnetio
absorption depends on the degree of spin contri.bution to
these modes. Chov and Keffer point out that this fact makes
the analysis of. t.h. absorption a co-pltcaud problem, but
they are ‘able to deduce some important tgatnn- of the
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expegtgd behaviour of the absorption as a function of the
applied dc magnetic field. Theyhconclude that the results
of the low-frequency exper;mants mentioned previously are
cons@stént yith the existence ofltrue‘maqnetoelastic modes
in thesefmgtqls. We believe thaé this explaﬁation of the -
resonance results is correct and that the so-called free-

lattice model should be abandoned. -

1
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APPENDIX B

EVALUATION OF EHE />
|

In Chapter 4 we obtained a s%ppi/ expressiOn for the

change in the measured elastic constant at two different
values of an applied magnetic field for. transverse elnstic
waves which are either propagating or polarized along the
direction of the magnetization. If o denotes the angle
.meaaured from the. direction of magnetization in the plane

defined by the propagation and polarization directions of

the particular trnnngrse elastic wave being considered,
then the quantity B, appearing in [4.9] may be obtpihed,_' !
using [A 6] This quantity is the affective anisotropy

fiqld measured in dynamic experiments such as !erromaqnetic

resonance. ’
A similar procedure may be used to obtain the

quantity Hﬁz appoarigg {n [4.9). ' If the slastic constant

_cr is being measured, then Buxfiu qivaq by

) cr azr

8.1 g = 5 5o

‘where the derivative is tolbd cvalunt.d at the equilibrium
valus of a and the utrain !unction ! is obtained by
-1ninisinq the naqn-toolastic and olnstic cnarqicl as in

.q. [A.8a).
124
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7 As an example, we have for the case of hexagonal-

close~-packed symmetry the following expressionﬁ for the
\

!

symnetry strains Er:

(B.2a] Ei - % sin26 siné

(B.2b] Ej = § sin2e cosé
(B.2c) E; = C sin28 sin2¢ + %-sin‘e sindé¢ .

In a measurement of c= = dcygr the angle a is described by 6 ’

and we have

{B.3] MH

ME ™ c® % cos26 F¢ = 0 or ;)

L ]
‘.in agreement with eqs. 15.9c]-and‘[;.10c]. In the case of
o' = 4cge, the angle a is described by 4 and we obtaln for
8 = /2
. ‘,/'

(B.4] Hﬂnﬁ = 2cT [C cos2é + A cosdd]

in agreement.with [5.1l1cl.



APPENDIX C

EXPRESSIONS FOR |V, | 2

In this appendix expressions are given for |vg%|2 in
terms of the various magnetoelastic and anisotropy constants
defined in Eqs. [5.8) and [5.16]. THe direction of
maéneﬁiiation‘ii spocifioalby the angles 9 and ¢. As is
implied by th; notation Vg} the first sublcr%pt gives the
direction of propagation of the sound wave while the second -

speéities its polari:ation.

2 . . ’
Bglal® [ (eb§m3-zb§n3-b’;(e) yain2012  [bY(0) sin6]’

- + -
aa‘ . 4pua1 16}13'35&&80) | Iu.ﬁho BOS

|v

2 ‘ ' ) - 2
, ety [(EpIm3-2b3n+b] (8))uin20]? (b (8)sind]
B M rowy — G SRgvBgT | W SR(AG-B)

2 _
lg9.|gl w l(3b‘;+2bg)n3 sin26)2

2
Vel = 'T_'p..aspt W IRIA,*B,)
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12
2 Eglaly, (bSm® cos28+£,(0)1% cos?y

. ] -
ca ‘pwgl m;g,mmo+ao)

[b§;3+f3(8) 12 cos®esin?y

+ P
‘ w.Sn(ixo-_-ho) | L )

2 | -
Bglalx [nSn® cos2e-£,(8)12 cos?s o

|© = .
ac doug,y TH _Sm (A ¥ )

v

(bSm3-£, (0)1% cososin’y|

+
W IR B

~

- . |
v lg Bﬂlal % [b§n3 co_sze+£2(0)12 sin2¢
- ’
‘'cb )ﬂpugl , m.ﬁ(a"‘o-rn'oi_""
- [b§-3+:3(e)12 cos20cos e
+
a 0 "0

- -

2 ‘ -
, gl {mge? cos20-£,(0)1% sin®y
|Vbc| ' ‘wgl “:5“0"30)7
< | \

[b§-3-:3 (8)]12 cos0cosPe

"“\/d-____m_my—ﬁ-\—_ : |
. \ a 00 | C v.
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1V,

[V ap!
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E I9.|2 Y 2
q [b (8)sin28) 2 [b1(8)+£3(6)] sin?e
f?ug} “TA +B ) ‘HAS“(AQ'B

o)

E lgl\‘\ lb*(e)-inze] [bz(e)j-fate)lz sinze
“p”g_l IGNaSn(A mnﬁnuo-au) ‘

0)

-

For sin6 ¥ Q,

N Sm(h
a

By) = -szm P) (cos8) - 20b‘n1°P°(cose)-izbsmzlpg(conG)

6

6221 g1n58cos64 (1-6cote)

-‘bsn

sin
\ +(h§m3)2 cos?e (6sin2e-1) /c*
+lad)? sin®e (3sin%0~2)/2¢"
| +(b*-?°)2 .1n‘e(5-1nze-f)/xc7
+(blm )(5* 1°)co-s¢-1n a(13-1§ 2p-10) /40"
+h m cost-h,m co820/81n8

/
= !2(o)+2hcn cosf-h = cos26/sin® .
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-

‘Bcosﬁ¢+(bcm3)2 cosza/ce

>

- - - 6_21

-

10 2

+(bY 3 2 sinze/ +{bY sin® 8/cY

+5(b zn )(bY 10 cossuin a/zc”m m/sind

13(0)+h1p/lln6 .

The latter two expressions serve to define f,(6) and 13(8),
The other quantities appearing in these equations are,
gecos(.

[E

v bL(e) = b§n3 co-zo-b{n1° sin

bY(e) = bY 3~sin2¢-b}n1° sinZesind¢

h, = n.qunﬂcs | . ) ) o
h, = ﬁ.qua(n.poso+nblin¢)8 .

When siné = 0 the expressions tor.!:(el‘and 13(0) are not

valid.: Both functions must then be replaced by th.ltunction

£ and the equations above become,

' L 10 1, o -
N samotao) - "':“’z‘ -10b‘ -21!:;” +h » fl"'hc‘ .
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