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Abstract 

Safe navigation of vessels though ice-infested waters in the Canadian Arctic and along the 

East and West Coasts .>f Canada is of vital importance to the exploration and development 

of natural resources. Current marine radar technology performs poorly in distinguishing 

first year ice from multiyear ice and in detecting small ice fragments ( called growlers) in 

open water. 

Previous studies by the Communications Research Laboratory, McMaster Univer­

sity have been successful in developing improved classification techniques for first year and 

multiyear ice using an X-band radar. This thesis aims to provide improved detection tech­

niques of small ice targets in open water. With the recent go ahead of the Hibernia Project 

(a large oil-drilling project off of the coast of Newfoundland}, the problem of reliable detec­

tion of growlers with a ship-based radar has become even more critical. 

In this thesis, improved growler detection capabilities are presented. These results 

are based upon a detailed study of sea clutter and growler data obtained with the use of 

a dual-polarized, pulse-Doppler, X-band radar known as IPIX. Several contributions have 

resulted from the collection and analysis of real radar returns from growlers and the sea. 

We show that the amplitude statistics of sea clutter are K-distributed, and we quantify the 

poor performance that results in this non-Rayleigh clutter. Furthermore, we show that sig­

nificant performance improvements can be obtained by exploiting the time-varying Doppler 

signatures of growlers in sea clutter. Several medium dwell-time coherent detectors are de­

signed and their performances evaluated and presented in the form of receiver operating 

iii 



characteristics (ROC). Finally, the comparati\"e advantages and tradeoffs of these detectors 

are considered in detail. 
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Chapter 1 

The Growler in Sea Clutter 

Detection Problem 

1.1 Introduction 

Oil and other natural resources are of vital importance to the economic and social well being 

of Canadians. Particularly in times of world tension among oil-exporting nations, and in 

times of shortages in the world supply of these commodities, domestic production of these 

vital resources is essential. 

Exploration and development of resources in the Canadian Arctic has provided 

Canadians with a valuable supply of energy sources, and is in part responsible for economic 

growth in Canada. Transportation of these resources from the Arctic fields to the large 

metropolitan centres is provided in a large part by the shipping industry. Large cargo­

carrying ships must make their way safely and reliably up through the Arctic and back to 

the centres where their cargo is needed. 

Solid ice floes and pack ice, and a large variety of icebergs of different shapes and 

sizes are a trademark of the Canadian Arctic. Although they are considered beautiful and 

majestic to tourists, they are viewed quite differently from ships which have to navigate 

1 
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through them. Two distinct problems challenge vessel navigation in ice-infested waters. 

The first problem occurs when ice-breaking vessels navigating in full ice cover need to 

distinguish between first-year sea ice, which is comparatively easy to break, and multiyear 

sea ice and icebergs, which are significant obstacles that are hazardous to shipping. The 

second problem concerns the reliable detection of icebergs and iceberg fragments in open 

water. In heavy seas, these fragments are very difficult to detect and pose a real danger to 

navigating vessels. 

Most vessels rely on their marine radar systems to detect these dangerous obstacles 

in a localized fashion, so that they can establish a safe path for navigation through ice 

infested waters. However, current marine radars perform poorly in both situations described 

above. Although airborne synthetic aperture surveillance radars can provide much of the 

required ice classification capability, they are not economically feasible in many applications, 

and furthermore, they cannot be flown continuously or in severe weather. Ship captains are 

therefore forced to rely on their marine radar as their primary sensor. Hence, an improved 

ship-based radar is of vital importance to safe navigation in ice-infested waters! 

One reason for the poor performance of conventional marine radars is that they are 

capable of measuring only the amplitude of the return echoes, in order to make a decision. In 

the early 1980's, The Communications Research Laboratory (CRL), McMaster University, 

embarked on a program to investigate potential improvements in marine radar that could 

overcome this shortcoming. Experimentd programs involving the CRL in 1983 [l] and 

1984 [2] using a land-based site in the Canadian Arctic clearly showed that the use of dual 

linear polarization significantly improved the ability to detect and classify multiyear ice and 

icebergs. Using an X-band radar, a 6 to 7 dB improvement in target-to-clutter ratio was 

obtained using the cross-polarized returns. The icebergs and multiyear ice were the desired 

targets and first year ice was considered to be the undesired target. This improvement 

occurs as a result of the different dielectric properties of first year and multiyear ice. First 

year ice has a. high salt content and thus permits little penetra.tion of the ra.da.r signal and 
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therefore little depolarization of the reflected signal. Multiyear ice and icebergs, on the 

other hand, have a low salt content and thus are low-loss dielectrics permitting the radar 

wave to penetrate the ice. Discontinuities within the ice cause reflection and depolarization 

of the radar wave, scattering some of the energy into the cross-pclarization orientation. 

In a 1986 experiment [3], a dual-polarized radar was used to investigate the value of 

polarization in the detection of icebergs in open water. Although it was found that the sea 

depolarized the radar returns to a similar degree as did the iceberg targets, indicating that no 

significant improvement in signal-to-clutter ratio could be expected using the cross-polarized 

returns, it was noted that the like- and cross-polarized returns scintillated independently, 

suggesting possible improvements in the joint detection probability using both polarization 

channels. 

The experiments described above provided important results that are useful for 

improving marine radar capabilities in full ice cover and open water conditions. Although 

for the open water problem, improvements obtainable with dual-polarization are not as 

promissing as in the case of full ice cover, both experiments were useful as they provided 

invaluable experience in designing and carrying out radar experiments for research purposes. 

In the next section, we outline specifically the problem addressed by this thesis. 

1.2 Problem Description 

The previous section outlined the two problems that challenge ship navigation in ice-infested 

waters. The problem of navigating in full ice cover was dealt with thoroughly by the 1984 

experiments conducted by the CRL, and the results are described in depth in [4]. In this 

thesis, we are concerned with the latter problem; that is, the detection of ice targets in open 

water. More specifically, we are interested in detecting small ice fragments, as opposed to 

larger fragments and icebergs. These small ice fragments called growlers can weigh up to 

about 100 metric tonnes and if struck by a vessel, can cause considerable damage. They are 
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particularly difficult to detect with ship-based radars because they protrude only about a 

metre or so above the waterline. In calm seas, the radar echo from a growler has to compete 

with the echoes from the waves in the same resolution cell as the growler. These wave echoes 

are called sea clutter. Since the growler can be considered a point target for typical marine 

radar resolution cell sizes, the distributed sea clutter masks the growler return, malcing the 

growler difficult to detect. In rougher seas, the problem is even more severe, as the waves 

visually cover or shadow the growlers a large percentage of the time. 

During the spring thaw, large icebergs and ice floes migrate from the Canadian 

Arctic southwards along the east coast of Canada. They reach as far as Newfoundland 

in late Spring, and are very hazardous to shipping in the region. During the melt, the 

large icebergs break into fragments, producing growlers and bergy bits. (Bergy bits are ice 

fragments that are larger than growlers and thus are more easily detected with radar). Thus, 

in the Atlantic region off Canada's East Coast, there is particular interest in improving the 

detectability of these growlers with radar. 

Recently, the Hibernia project was given the go ahead by the Canadian federal 

government. This project involves developing new oil reserves off of Canada's East Coast 

by a consortium of Canadian oil companies. Oil drilling platforms will be built about 200 km 

offshore for the purpose of bringing oil reserves from the sea bottom to the surface. This oil 

will then be shipped to shore by several large tankers. Due to the damage that could result 

from a. collision with an oil tanker and growlers, the need to improve growler detection with 

radar is more pressing than ever. In fact, the oil consortium responsible for the Hibernia. 

project is presently seeking the development of new marine radars capable of detecting 

these growlers with high probability! In the next section, the goals of this research will 

be described, along with the approach that was taken in order to realize improved growler 

detection using a. ship-based radar. 
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1.3 Research Goals and Approach Taken 

The ultimate goal of this research is to develop techniques which are capable of providing 

improved detection performance of growlers in the sea, using a ship-based radar. More 

specifically, we wish to aim for the following goals: 

1. To provide real measurements on both sea clutter and growler backscatter in order to 

enhance dat.:. reported in the literature. 

2. To provide statistical descriptions capable of describing the data and useful for un­

derstanding the underlying processes. 

3. To investigate a variety of potential solutions each with its own merit, performance, 

and associated costs, in order to provide a realistic comparison. 

4. To provide a recommended solution •,hat is modular in that future enhancements are 

easily accomodated and can be built on top of the solution. 

5. To indicate where future research should be focussed. 

In order to achieve the above goals, it was imperative to develop a well defined 

research plan. Clearly, an integral part of that plan would include field trials in order to 

obtain real measurements of sea clutter and growlers. The experiences obtained from the 

full ice cover experiments provided a lot of guidance in designing this research program. 

The experiments described above were performed with noncoherent radars, that is, radars 

capable of measuring only the amplitude of the return signal. Clearly, this is not sufficient 

for developing improved detection capabilities. 

Along with polarization diversity, coherence is essential. A coherent radar is capable 

of measuring the phase changes in the return signal, as well as the amplitude. Visual obser­

vations of the ice/water interaction indicate that motion characteristics such as splashing, 

bobbing and translation may distinguish floating ice from its surroundings. This suggests 
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that Doppler processing, which computes target velocity by operating on the phase of the 

returned signal, could enhance the probability of detecting such targets. Although the addi­

tion of coherence seems obvious for this problem, no quantitative measurements of detection 

improvement using a coherent radar are known to have been published to date! There are 

however reports of the use of coherent radar in iceberg detection applications [5]. 

The ice research described earlier was performed using commercially available radar 

systems which had been adapted for research use. These modified radars were not ideal 

for conducting research experiments, as they rarely offered a full set of radar features that 

could easily be varied at will. For example, changing the polarization of the transmitted 

signal often required mechanical alterations, making the system unsuitable for making po­

larization scattering matrix measurements. furthermore, most of these systems had CRT's 

as the output device, making data collection and storage very difficult. Issues such as Sensi­

tivity Time Control (STC) were often manually adjusted by the operator, making accurate 

measurements very difficult to obtain. Commercial radars are designed with a particular 

end in mind, and it was determined that they are unsuitable for research use as they limit 

the range of experiments that can be performed, as well as the quality of the measurements. 

The previous experiments conducted by the CRL indicated the need for an in­

strumentation-quality radar system that is designed specifically for research use. The re­

quirements for such a system were formulated by considering the radar parameters to be 

investigated, as well as the ease with which those parameters needed to be varied. Fur­

thermore, particular emphasis was given to the data collection effort, designed to facilitate 

further analysis of the data. With funding from the Natural Sciences and Engineering Re­

search Council of Canada, development of the system began in 1984 and a prototype was 

tested in 1986. The system has matured since that time and is known as the !PIX (for 

Intelligent PIXel-processing) radar. Details of !PIX are found in Chapter 3. 

With the development of the !PIX radar, the research plan unfolded. It was de­

cided that a land-based site was most suitable for carrying out research experiments. The 
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requirements for the site were quite stringent. The site would have to provide a larg.a sector 

oi sea coverage, and would have to be on a cliff-top that simulated the height the radar 

would be mounted on a large vessel. Furthermore, the sea would have to drop in depth very 

quickly to simulate deep sea conditions. A wide variety of weather conditions were required, 

as well as a wide variety of sea states. Finally, and most importantly, the site would have 

to be along ice migration paths, so that the radar could view a large variety of ice targets. 

Such a site was located at Cape Bonavista, Newfoundland. 

The research plan consisted of making several field trips in order to collect data from 

various ice targets, and from the sea itself. These measurements would then be examined 

to provide the basis for improved detector designs. Between May 1988 and June 1989, four 

such field trips were carried out providing us with a large library of data. Following the 

experimental effort, the data. was analyzed at the CRL in order to determine which radar 

features are most useful for detecting growlers in sea clutter. It is the results of this study 

that are reported here. An overview of these results is given in the next section, followed 

by a. summary of the research contributions. The final section of this chapter describes 

the organization of the remainder of this thesis, and indicates where details of the various 

results can be found. 

1.4 Overview of Results 

The analysis of sea. clutter and growler data. can be divided into two areas, noncoherent 

analysis and coherent analysis. In order to give some perspective on the difficulty of the 

problem and on the kind of performance that can be expectP,\ using conventional marine 

radars, the noncoherent results will be reviewed here first. 

It was discoveretl that the compound K-distribution developed by Ward [6) modelled 

the sea. clutter amplitude statistics very well. Sea. clutter data was collected for several pulse 

widths, look-directions, and sea. conditions. Both linear horizontal and vertical polarizations 
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were used on transmit and receive, allowing for measurements of the full scattering matrix. 

Thus, like-polarized ( HH and VV) and cross-polarized (HV and VH) measurements were 

ma.de. In all cases, the K-distribution provided an accurate description of the amplitude 

statistics of like-polarized data. The cross-polarized amplitude statistics did not fit the 

K-distribution very well though. In the cross-polarized channels, the system receiver noise 

is much more predominant in the data since the cross-polarized echoes are typically 10 dB 

below the like-polarized echoes. Thus, by using a K-plus-noise distribution for the data, a 

much better fit was achieved! 

The Rayleigh distribution is a special case of the K-distribution, and has often 

been used as the basis for detector design in clutter environments. The performance of 

these detectors in sea clutter has been much worse than that predicted by the Rayleigh 

model. That is, actual false alarm rates are much higher than predicted. This is due to the 

fact that a larger number of large clutter returns ( called spikes) are received than predicted 

by the Rayleigh model. The term spiky is often used to describe clutter returns that behave 

in this manner. The K-distribution is capable of describing the spil:iness of clutter with its 

shape parameter. The shape parameter and scale parameter are the two parameters that 

define the family of probability density functions known as K-distributions. 

Fitting emperical amplitude statistics with a particular family of probability dis­

tributions is rather ad hoc in that often more than one family of distributions will describe 

the data. The particular significance of the K-distribution to our problem is due to the 

compound nature of the distribution. It is shown in Chapter 4 that the K-distribution can 

be broken down into two components. The first component represented by a root-Gamma 

distribution describes the underlying mean level of the data and has with it its own corre­

lation time. The second component described by a Rayleigh distribution models the local 

speckle, and again has its own correlation time associated with it. Our measurements of 

sea. clutter data. support this compound model very closely. From a. given patch on the 

sea. surface, an overall tilt can be used to describe the mean sea. height distribution and 
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this tilt is responsible for the mean level of backscatter. The tilt is partially attributed to 

the underlying sea swell and thus varies quite slowly (on the order of a second). On the 

otherhand, small capilliary waves are continously influenced by local winds and thus induce 

a Rayleigh component that has a much shorter correlation time (about 10 ms). 

Using the compound K-distribution to describe the amplitude statistics of sea clut­

ter is ideal because it models the nature of the sea clutter returns accurately. This compound 

modeling allows realistic performance prediction to be made when considering the improve­

ments of integration and CFAR type processing. These aspects will be dealt with in more 

detail later. 

Amplitude statistics for growlers in sea clutter were also studied and compared with 

the statistics from nearby sea clutter resolution cells. For the challenging growlers examined, 

the mean amplitude was very similar to that of the nearby clutter, malting detection based 

solely upon the size of the reflected echo impractical. Also, the cross-polarized channels 

were examined to see whether there was more separation between growlers and sea clutter 

than in the like-polarized channels. It was determined, however, that when using only long­

term amplit'lde statistics, the cross-polarized channels offered no advantage. With the poor 

performance resulting from the use of amplitude by itself, coherent data were examined in 

order to see what improvements could be gained. 

During our field trials, we discovered a time-varying Doppler signature characteristic 

of returns from growlers in the sea. This signature was first observed while watching the 

inphase or quadrature signal with the radar fixed along a particular azimuth containing 

a growler. The inphase or quadrature channel was displayed on an oscilloscope and at 

the range position where the growler was located, the signal appeared to wink at various 

rates. The winking would occur slowly at first, and then speed up gradually, only to reach 

a maximum rate and slow down again. This pattern would repeat itself at intervals on 

the order of several seconds. We have called this discovery the winking phenomenon in the 

literature [7, 8]. The explanation of this discovery lies with particle and fluid dynamics. For 
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growlers that are small compared to the wavelength of the underlying sea swell (typically 

100-150 m ), the growler behaves like water particles in motion. As a wave crest passes 

through the growler, the growler rises and is accelerated forward. As the crest falls, the 

growler decelerates. The wave troughs cause th.e reverse effect. Therefore the growler 

actually has a cyclical motion whose period is controlled by the underlying wave period 

(5-12 seconds typically). 

As alluded to earlier, these visual observations of growlers in the sea indicated to 

us that Doppler analysis could provide significant improvements in detection performance, 

because of its ability to characterize motion. Indeed, this hunch was correct! Analysis of 

this data using Doppler techniques confirmed the presence of the winking phenomenon that 

we had observed in the field. 

Traditionally, marine radars operate in a scanning mode to provide 360 degree 

coverage, with a scanning rate of about 30 revolutions per minute. With typical pulse 

repetition frequencies (PRF) (1-2 kHz) and azimuthal beamwidths (1-2 degrees), a dwell 

time of 5-10 ms on a particular radar resolution cell might be typical. This translates to 

about 10-20 pulses that may be integrated in order to make a detection. We call scanning 

approaches like these short dweil-time approaches. Recalling that the winking phenomenon 

is physically related to the underlying wave mechanics, detection techniques which are 

designed to detect this phenomenon will require several seconds of data from each resolution 

cell, just to observe a complete cycle of the time-varying Doppler signature. These methods 

we call long dwell-time approaches. Clearly, data storage, computational complexity, and 

the minimum update time are going to be critical issues for any long dwell-time detector. 

As a result of the discovery of the winking phenomenon, a large research effort 

has just begun at the CRL in order to develop long dwell-time techniques to exploit these 

time-varying Doppler signatures. 

The research approach that is taken in this thesis differs from both the short dt..•ell­

time and long dwell-time approaches described above. Although the study described herein 
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is also concerned with exploiting the winking phenomenon, it will take a middle ground 

and look at medium dwell-time techniques. By medium dwell-times, we mean techniques 

that will base a decision on the coherent integration of data over a period of a fraction of a 

second. It is felt that an approach like this will serve many purposes: 

1. It will provide faster detections which translate to faster updates. 

2. It will offer improved growler detection performance over short dwell-time approaches. 

3. It will be able to provide meaningful results based on the current data-base. 

4. It will require less computation and less memory than long dwell-time approaches 

which translates to cost savings. 

5. !t will indicate the kind of performance improvements that can be expected from long 

dwell-time methods. 

6. It will be modular in design in that it will provide the necessary features needed by a 

long dwell-time system. 

In order for medium dwell-time techniques to be successful, coherent integration of 

sea. clutter data. and growler data. over a. fraction of a. second must be noticeably different. 

Indeed, spectrum analysis has shown that there are differences between clutter and growler 

spectra.. The clutter spectra. can be described as being Gaussian-like in shape, having a 

mean velocity shift that can range between O and 5 knots. At X-band, this translates to 

a frequency shift between O and 150 Hz. Furthermore, the velocity spread for sea clutter, 

or frequency spectral width is typically a.bout 20-30 Hz. The g=owler too has a spectrum 

that is Gaussian-like in shape, and although it occupies roughly the same range of mean 

frequency shifts as the clutter, it has a. predominantly smaller spectral width, typically 

a.bout 6 Hz. 

In order to quantify the usefulness of spectral width in classifying sea. clutter and 

growler returns, spectral width statistics were calculated. For sea. clutter, a. Gaussian model 
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was fitted to the estimated sea clutter spectra, in order to estimate the spectral width. 

A two-component Gaussian model ( one Gaussian component for the clutter and another 

Gaussian component for the growler) was fitted to the estimated growler-in-clutter spectra, 

in order to determine growler spectral width statistics. As expected, a considerable sepa­

ration resulted, indicating the usefulness of spectral width as a discriminant to distinguish 

between clutter resolution cells, and growler-in-clutter cells. 

The GSW (Gaussian Spectral Width) detector was designed and its performance 

evaluated. The GSW detector performs the following operations. First, a spectrum estimate 

is computed using 0.5 seconds of data for each estimate. Then, a single Gaussian model and 

a double Gaussian model are fitted to the data. Each Gaussian has three free parameters 

that describe it, namely the center frequency, the amplitude, and the spectral width. These 

parameters are optimized with respect to the data in a minimum Least Squares Error 

sense. The model that provides the best fit to the data is chosen. If a single Gaussian 

model is chosen, then its spectral width is used as the sufficient statistic. Otherwise, for the 

double Gaussian model, the smaller spectral width is used. The sufficient statistic is then 

compared to a threshold. If the threshold is exceeded, the data set is said to be from sea 

clutter; otherwise the data set is said to be from a growler. 

This detector is evaluated against a large testbed of real sea clutter and growler 

data for several different thresholds. Thus, performance curves are generated showing the 

probability of detection versus the probability of false alarm for this detector. 

A second detector, called the ARLPM (AutoRegressive Largest Pole Magnitude) 

detector was also developed for comparison, and evaluated with the same data.base. This 

detector also makes use of the spectral differences between clutter and growler returns and 

works as follows. For each data. sequence of 0.5 seconds in length, a. sixth order Autoregres­

sive model is evaluated and the six poles of the model are determined as described in [9]. 

Ea.ch pole is contained within the unit circle. If a. growler is present in the data., one of the 

poles tends to cluster very close to the unit circle since the growler spectra. is narrowband. 
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If no growler is present, then all the poles tend to lie further inside the unit circle. Therefore 

the largest pole magnitude is calculated and compared to a threshold. If this magnitude 

exceeds the threshold, a growler is declared; otherwise clutter is declared. 

Finally, in order to quantify the performance improvements achieved by the two 

coherent detectors described above, a simple noncoherent detector, called the IA (Integrated 

Amplitude) detector, was also evaluated. This detector operates on the same 0.5 second data 

sequences by noncoherently integrating the samples and comparing the sum to a threshold. 

Again, if the threshold is exceeded, a growler is declared; otherwise, clutter is declared. 

The performances of the three detectors are now described. The ARLPM and 

GSW detectors are shown to be far superior to the IA detector. With some careful analysis, 

the GSW detector is shown to be far more robust to changes in the growler-to-clutter 

ratio (GCR) than the ARLPM detector. Therefore, it is the preferred detector for growler 

detection. Since the IA detector is representative of the kind of performance one can expect 

from current marine radars, the performance improvement indicated by the GSW detector 

is very significant. For example, with a probability of false alarm (PFA) of 5 %, the IA 

detector offers a probability of detection (PD) of only 60 %, while the GSW detector offers 

a PD of 96 %. Furthermore, it is shown that if five consecutive GSW detection decisions 

are made, and a three out of five rule is used to establish the validity of growler detections, 

then the performance improves even more. For this case, a PD of 98 % is realized for a 

PFA of only 0.1 %, which is a remarkable improvement in performance! 

1.5 Summary of Research Contributions 

In the previous section, a brief description of the results of our research was provided. The 

contributions of this research are summarized as follows: 

1. Real, coherent, dual-polarized, X-band sea clutter and growler-in-sea clutter radar 

backscatter data. have been collected a.nd organized into a. data.base. This data.base 
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has been described in great detail in the thesis. The associated radar parameters, 

along with extensive surface truthing data have been provided. Furthermore, descrip­

tive data such as GCR, growler radar cross section (RCS), and sea clutter u0 data 

are also given. Such a complete description of data is rarely found in the literature, 

and will provided other researchers with valuable measurements for further analy­

sis. Furthermore, this database represents very low grazing angle X-band sea clutter 

measurements along with growler measurements, that are very scarce in the literature. 

2. The applicability of the K-dis1ribution for modeling the amplitude statistics of very 

low grazing angle sea clutter h;..s been verified. Furthermore, its use in performance 

prediction has been shown. 

3. The discovery of the winking phenomenon associated with growler radar returns has 

been described. This discovery is essential to the understanding of growler dynamics 

and has been exploited in the development of improved growler detectors. 

4. The time-varying Doppler spectra of sea clutter and growler data have been studied 

and spectral width is identified as a sufficient detection statistic. 

5. Two detection algorithms have bee,1 developed that offer substantial improvements 

ove1· conventional noncoherent techniques. These are the AutoRegressive Largest 

Pole Magnitude detector and the Gaussian Spectral Width detector. In particular, 

the GSW detector offers performance, robustness, and modularity giving the system 

designer maximum freedom. Furthermore, the timeliness and scope of this study suit 

well the needs of the recent Canadian effort in the development of the Hibernia oil 

fields. 

6. Calibration, data. validation, data handling, and analytical scftware has been devel­

oped for the radar system computer. The software is designed to operate on the data., 

in place, as they are collected. This library will be very helpful to graduate researchers 
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who are working on the !PIX project. 

7. Several conference papers and journal papers have been published that report on the 

!PIX radar, the data collection effort, and results obtained [8, 10, 11, 12, i, 13, 14, 15]. 

These results should have a significant impact on the commercial development of 

improved marine radars, capable of detecting growlers in sea clutter. Furthermore, they 

provide a sound basis for future studies and experimental efforts. 

1.6 Survey of Chapters 

In this chapter, the growler detection problem was described along with the experimental 

plan that was carried out in order to increase our understanding of the problem. A sum­

mary of the results of this research was also presented including the detection performance 

improvements achieved. Details of the results described in this chapter can be found else­

where in the thesis. Although each chapter is an important part of this thesis as a whole, 

some effort has been made to keep each chapter self-contained. Hopefully, this will help the 

reader who is interested in just a particular section. We will now proceed to describe the 

contents of the remainding chapters. 

Chapter 2 looks at the theory behind the detection of targets in clutter. We begin 

by proposing a model of a general detector receiver. Then, the chapter focusses on several 

detection and estimation theories to provide the component stages of the general receiver 

model. Matched filtering is examined and its applicability in cases where the clutter is 

non-additive is discussed. Then, classical Bayesian detection theory is reviewed. In radar 

problems, it is often difficult to design suitable cost functions as are required by Bayesian 

detectors. Therefore, Neyman-Pearson detectors are discussed. The chapter concludes by 

looking at several constant false alarm rate (CFAR) detection techniques which are suitable 

in nonstationary clutter environments. 

In Chapter 3, the IPIX radar is discussed in depth. The system features and 
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capabilities are described in detail. Then, the field trials that were performed and the 

ground truthing that was available are described. Finally, we look at issues such as data 

calibration and translation of digitized data to real received power. 

Details of the noncoherent analysis of sea clutter and growler data are given in 

Chapter 4. First, we look at the forms of the radar equation that are suitable to this problem. 

Then we present some measurements indicating the range power law of distributed sea 

clutter. Radar cross-section calculations are then described. Following this, the amplitude 

statistics of sea clutter and growlers are given, and the K-distribution and its description of 

these statistics are described. The chapter finishes by examining the temporal and spatial 

correlations of sea clutter. 

In Chapter 5, the coherent analysis of sea clutter and growler data is given. The 

chapter begins by discussing the Doppler effect and spectrum estimation. Then the phase 

statistics of sea clutter are examined and shown to be uniformly distributed. Next, the 

time-varying nature of sea clutter and growler spectra are studied and parameterized using 

several different spectral models. Estimators are derived for the spectral moments of clutter 

and growler signals, and the differences in their spectral width statistics are examined in 

detail. Finally, growler to clutter ratios are evaluated along with radar cross sections for 

clutter an<! growlers. 

Detector philosophies and designs are described in Chapter 6. Three different de­

tectors are described. These include an integrated-amplitude detector, an autoregressive 

detector which is based on the largest pole magnitude, and a Gaussian spectral width de­

tector. Other detector designs such as scan-to-scan and traditional CFAR det.;ttors are also 

discussed. 

In Chapter 7, the performance evaluations of the three detectors described in Chap­

ter 6 are given, the testbed of data on which these evaluations are based is described, and 

finally practical considerations for each of the detectors are presented. 

Finally, Chapter 8 concludes by summarizing the results and contributions of this 
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research, indicating future directi,.,ns that can be taken. 



Chapter 2 

The Detection of Targets in 

Clutter 

2.1 Introduction 

As indicated in the first chapter, we are interested in improving detectors capable of detect­

ing growlers in a sea clutter environment. Before proceeding then, a review of basic detection 

and estimation theory is in order. We begin by discussing Matched Filtering, which is basic 

to most detection systems today. Then, we will take a more general look at classical detec­

tion and estimation theory 1,:: considering Bayesian detection, Neyman-Pearson detection, 

and Maximum Likelihood detection theories. Following these, we consider CFAR detectors 

which are used when the received signal processes are nonstationary in space or time. These 

theories will be examined in the context of detection of targets in clutter, for use in later 

chapters. 

The goal of every detection system is to make a decision out of a ,·,,untable set 

of possible decisions, in some optimal fashion. In order to satisfy the optimality criterion 

for a given system, the minimization of a cost function usually results, the solution of 

which provides the basis for the detector design. The cost functions that describe the 
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Figure 2.1: General detector receiver. The receiving antenna feeds the front-end filter. The 
feature extractor operates on the output of the front-end filter, and supplies the input to 
the threshold detector. 

decision criteria vary considerably from system to system. The function may be as simple 

as describing the output signal to noise ratio of the signal processor, where only signal 

energies ud noise powers are involved, or it may be probabilistic in nature. For example, 

it may describe the probability of making an error in the decision making process, based 

on some knowledge of the statistics of the signals and noise received. It may also include a 

priori information about the signal and noise processes. 

In any case, binary detection, which involves only two decision classes (Ho : noise 

present, and H1 : signal and noise present), results with a single test-statistic (the sufficient 

statistic) that is compared to a threshold in order to decide between the two classes. This 

is the typ~ of detection system we are interested in. 

Detection systems can be described as consisting of several stages in series, each 

performing a particular function on the output signal of the previous stage, and the final 

stage producing the decision. Consider the general receiver described in Figure 2.1. The 

first stage is a front-end filter that is tailored to the signals received by the antenna. This 
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stage is followed by a feature-extractor stage which extracts features of the received data 

upon which a decis'·;n can be based. Finally, that last stage is a threshold device that selects 

between Ho and H 1 • 

In the next section, we begin by examining the applicability of Matched-Filter theory 

to our detection problem. In particular, we consider the applicability of matched filtering 

in the design of the front-end filter. 

2.2 Matched Filtering in Clutter 

Often, the stage at the front-end of the receiver is common to a variety of detector designs. 

We are interested in designing a front-end filter that will operate on the data, and whose 

output will be suitable for a variety of dP.tectors that will follow. 

An X-band radar is employed that transmits pulses that are separated by the pulse 

repetition period, PRT. The receiver is coherent in that it measures both the amplitude 

and phase of the return signal. Consider the case where a. pulse with duration T seconds 

is used at some pulse repetition frequency (PRF) (Hz). The pulse is transmitted along a. 

particular azimuth and the returned pulse is received. The sampling frequency is /, (Hz). 

The pulse has a. range ambiguity of cT/2 metres where c is the speed of light (3 x 108 m/s) 

and it is assumed that in general, the sampling frequency is such that there are N samples 

per pulse length T. 

If a. growler is present at a. particular range ( considered a. point target), it will reflect 

some of the pulse's energy back to the receiver, and the reflected pulse length will also be 

T. For a. distributed target such as sea. clutter, the reflected pulse length will in general be 

larger than T, due to the extended nature of clutter scatterers. We consider this in more 

depth in the section on homomorphic signal models. 

In all cases, ;;.dditive, zero-mean, white Gaussian noise (AWGN) is assumed to be 

present at the receiver front-end, and to have a. bandwidth far greater than that of either 
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the target or clutter processes. \Ve are interested in designing a filter that will combine the 

N samples per pulse in such a way that the following ~onditions will be satisfied: 

a) the filter can be used as a pre-processor for many different detector schemes. 

b) the filter offers a growler/clutter integration gain greater than unity. 

c) the filter still applies to cases where more than a single pulse is transmitted, 

allowing for Doppler processing. 

A matched filter, matched to the transmitted signal is the classical solution that is 

applicable for pulsed-carrier target signals in additive noise. We discuss its applicability to 

our problem. 

2.2.1 Matched Filter Theory 

Classical filters that provide optimal signal visibility in a noise background date back to the 

pioneering work of North [16] in 1960, although it was originally published as a military­

classified report in 1943. This work still forms the basis of matched-filter theory today, 

although it has been generalized by Turin [17] and Middleton [18] among others. 

North was interested in determining what transfer characteristic between the an­

tenna and the detector would provide a maximum output, when a pulsed-carrier input 

signal was received in additive white noise. Excluding a delay term, North showed that this 

filter had a transfer characteristic that was the conjugate of the spectrum of the echo at the 

antenna; hence, the conjugate or matched filter. Since ranging was also required along with 

detection, the receiver required range-gating hardware in order to isolate the return from a 

particular range bin. The matched filter was also shown to be equivalent to correlating the 

input signal with an image of itself. For a rectangular pulse of length T, the output signal 

is triangular with length 2r and peak output occuring at the center. Finally, this filter has 

the property of maximizing the output signal energy to rms noise power (SNR); and this 

maximum value is independent of the signal shape! 
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The case of nonwhite additive noise leads to a very similar structure (17]. For an 

input signal with a spectrum S(j2ir /) and a noise power spectral density N(j2ir /), the 

resulting optimum filter in the maximum output SNR sense is given by 

kS*(j2ir !)e-i2~1, 

IN(i2ir 1)12 
(2.1) 

where * denotes complex conjugation. This can easily be seen to be the cascade of a noise 

whitening filter followed by a filter matched to the whitened signal. Ideally, one would like 

to get a large impulse out of the optimal filter when a target signal is present. We have seen 

instead that the matched filter leads to an output which is not an impulse. Clearly, one 

could obtain an impulse simply by using an inverse filter, rather than the conjugate filter! 

Closer examination reveals the apparent paradox. Any physical signal has a spectrum that 

approaches zero for frequencies that approach infinity. Since the noise spectrum is assumed 

to be much wider in frequency than the signal spectrum, an inverse filter would have the 

effect of applying very large weights to regions of noise outside of the signal bandwidth. 

Therefore the matched filter is a comprumise that weighs the signal more strongly in bands 

where it is large compared to the noise. Strictly speaking, the filter described in Equation 2.1 

is matched to the input signal. This filter is actually made up of a bank of filters, each one 

tuned (matched) to a different expected Doppler frequency. In practice, a single matched 

filter is employed that is matci1ed to the transmitted signal, rather than the received signal. 

This filter is then followed by a Doppler processor. This combination has approximately 

the same effect as the bank of frequency-tuned matched filters. 

The matched filter descriptions given above were the result of considering mean­

square or maximum SNR criteria. These criteria are useful since they only require knowledge 

of the second order statistics of the data. Since performance ratings of detection systems are 

usually characterized by paramaters such as probability of detection, PD, and probability of 

false alarm, PFA, it is preferable to use criteria directly related to these performance param­

eters. (These criteria will be considered in more depth in Section 2.3.1 and Section 2.3.2). 
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We are now forced to call upon statistical detection and estimation theory. These theories 

lead to the formulation of a likelihood ratio test that determines which of two hypotheses 

is true, Ha or Hi : 

accept Hi if ~l~J ~ ,\ } . 
accept Ha if ~!~! < ,\ 

(2.2) 

The probability density functions under Ho and Hi are po(:i:) and Pi(x) respectively, and 

,\ is the detection threshold. It is shown [17] that when the additive noise is white and has 

a probability distribution function that is Gaussian, the same North matched filter arises. 

When the receiver is coherent, the matched filter is followed by a sampler and a threshold 

comparator. If only the envelope is available, then under the assumption that the carrier 

phase is uniformly distributed, the North filter still arises, only in this case it is followed by 

an envelope detector and then the sampler! 

The fact that the same matched filter arises when several different detection crite­

ria are used lends justification to its broad use in most detection systems today [19, 20]. 

Therefore, we will now consider how to digitally implement this matched filter at baseband, 

before we proceed further. 

In the !PIX radar, a pulsed-carrier transmit signal is employed, but on receive, the 

signal is demodulated down to baseband with a coherent carrier, resulting with inphase 

and quadrature baseband signals, I and Q. These waveforms are then sampled at the 

sampling frequency, /, and stored as 8-bit words. Therefore any filtering operation must be 

performed on these digital signals. As descibed above, the basic filter operation is equivalent 

to correlating the received signal with a replica of itself. The correlation operation is 

equivalent to a multiplication of the received signal with its image, and then integrating the 

result over the duration of the signal. The transmit signal is given by 

s( t) = p( t)sin(2ir f 0 t) (2.3) 

and the received signal given by 

r(t) = p(t)sin(2ir(/d + f 0 )t + 9), (2.4) 
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where the phase 9 is assumed to be zero without loss of generality, and p(t) is the pulse 

envelope function. The demodulation process is usually performed in quadrature in order 

to preserve the sign of the doppler frequency Id· That is, r(t) is multiplied by both cos 2r. let 

and sin 2r. let and the products are each lowpass filtered, resulting in the I and Q compo­

nents, respectively. Clearly, all that is required to complete the matched filtering operation 

(in range) is to integrate the I and Q components over the length of the pulse p(t). As 

mentioned earlier, I and Q are both sampled such that N samples are obtained per pulse 

length r. The integration operation thus becomes a summation. The matched filtering is 

then described as 

(2.5) 

Qm = Ef:1 Q; 

assuming that the pulse envelope function p(t) is rectangular. It should be emphasized that 

this matched filter operation simply takes care of the necessary range matching. A bank 

of Doppler filters for example would then follow, matched to the set of expected Doppler 

frequencies in the received signal! 

In this section, we have examined classical matched filter theory as it applies to 

signals in additive noise. Our problem concerns a signal in additive noise, but there is also 

an additive clutter component. Therefore, in order to design a. proper matched filter, the 

clutter spectrum needs to be accurately modelled. In our problem, this is quite difficult 

because clutter characteristics vary as a function of time. Instead, we assess the benefits 

of simply using a filter matched to the transmitted waveform rather than the received 

waveform. 

2.2.2 Applicability of Signal-Matched Filters 

Recall that our ma.in objective is to design a front-end filter that will satisfy the requirements 

described earlier. It ic not necessary to provide optimal separation between the clutter and 



25 

target processes at this early stage. 

Although from a theoretical viewpoint, filters matched to the transmit signal may 

not provide optimal reception of a desired signal in the presence of additive clutter, they 

are still used in most communication and detection systems today. The reason is that they 

seem to perform well, even in a cluttered environment. Turin [17] states the following: 

No matter what formalism is used to view a given communication or detection 

situation, Gaussian noise statistics lead usually to some form of correlation or 

matched filtering as a part of the set of operations that will perform the desired 

function most efficiently. This appears to be true even when in addition to the 

noise there are other perturbing factors present, such as randomly varying mul­

tipath, uncertainties in signal delay or Doppler shift, Doppler or delay smearing, 

or unwanted clutter. 

Intuitively, applying a filter matched to the transmitted signal should provide some 

improvement in SNR. since the clutter will only be integrated in the region where there is 

signal energy. Furthermore, if the clutter has considerable spatial variance, integration over 

the pulse length may help reduce the average contribution from the clutter. 

Westerfield et al. take a more quantitative look at the processing gains provided 

by matched filters against clutter [21]. They consider clutter to be composed of several 

overlapping echoes arising from the extended scatterers. The scatterers are considered 

to be randomly distributed in range and velocity and the distribution of the velocities 

is considered to be Gaussian. The signal power spectrum is also assumed to be Gaussian 

distributed. By making use of Woodward's ambiguity function, which is simply the squared 

magnitude of the cross-correlation between s(t) and a delayed and Doppler shifted version 

of itself [22], the processing gain of the simple matched filter against clutter is evaluated. 

It is shown that large processing gains can be achieved when the ratio of the transmitted 

signal bandwidth to the spread of Doppler shifts in the clutter is either large or small. These 

results are intuitively satisfying. For large signal bandwidths, the improved range resolution 
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is responsible for the processing gain. On the other hand, for very long transmitted pulses, 

the resolution in the frequency domain is improved, narrowing the ambiguity function along 

the frequency axis. 

In conclusion, applying the traditional matched filter to the transmitted pulse is a 

practical way of achieving the goals described earlier. Even though this matched filter is 

derived for additive signal and noise processes, it appears to offer some advantage even in 

cases with additive clutter. With the front-end filter designed, the next step is to design the 

feature-extractor and threshold device stages. For these stages, we call on classical decision 

and estimation theories. 

2.3 Classical Detection and Estimation Theory 

As described in the introduction, the detection of growlers in sea clutter is a binary hypoth­

esis testing problem. The hypothesis Ho is the case when no target (growler) is present, 

and the hypothesis H1 is the case when a target is present. The problem we face is simply 

to design a 'rule' which can operate on the received measurement data in order to decide 

between Ho and H1. The treatment given here will follow very closely that given by Van 

Trees in [23]. 

Any binary detection problem can be described very simply by the model given 

in Figure 2.2. The 'Source' represents the statistical model that generates the Ho and H 1 

events. In our case, the 'Source' represents the a priori probability that a growler will 

be located in the radar resolution cell under examination. The 'Probabilistic transition 

mechanism' describes the manner in which the two hypotheses are mapped into the 'Ob­

servation space'. The 'Observation space' represents the measurements or observables that 

are available to the detector. In our problem, the 'Observation space' represents the space 

spanned by the radar features (amplitude, phase, and polarization) and the 'Probabilistic 

transition mechanism' describes the statistical distributions which govern these features. 
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The 'Decision rule' refers to the receiver/detector that is used to operate on the measured 

data and the 'Decision' is the output of the receiver and indicates whether we have decided 

in favour of Ho or H1. 

Clearly, any 'Decision rule' is dependant on the stages that precede it. A good 

description of the 'Source' and 'Probabilistic transition mechanism' will allow for the optima.I 

receiver design. As we shall see though, a complete description of all of these stages is not 

always available; this fa.ct will clearly influence the kinds of decision rules that will work 

best. Since our measurements consist of a set of discrete measurements or samples, the 

observation spacP. is finite-dimensional. This class of problems is referred to as classical 

because it has been studied for many decades by statisticians. 

Let r denote a vector in the N-dimensional observation space: 

r= (2.6) 

rN 

and let R be an observed realization of this random vector. Furthermore, let the two condi­

tional probability densities PriHo(RIHo) and PriH, (RIH1) define the 'Probabilistic transition 
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mechansim'. If these two probability density functions are known completely, then the 'De­

cision rule' is said to be a Simple Binary Hypothesis Test. We shall see in this case that the 

'Decision rule' is in the form of a likelihood ratio test (LRT). If on the other hand, only the 

functional form of the two densities is known, and there is a vector of unknown parameters, 

then these parameters will need to be estimated first, before detection can proceed. This 

type of problem is called a Composite Hypothesis Test and leads to the formulation of a 

generalized likelihood ratio test (GLRT). 

In any event, the detector design will be influenced by the detection criteria chosen. 

For example, the detector may be optimized to minimize the probability of an error, or it 

might be optimized to minimize the probability of a false alarm. We will examine two criteria 

that are important to our problem. They are the Bayes criterion and the Neyman-Pearson 

criterion. These are presented in Section 2.3.1 and Section 2.3.2 respectively, where only the 

Simple Binary Hypothesis Test is considered. In Section 2.3.3, the ML method is considered 

for the estimation of unknown parameters. These ideas are then used in Section 2.3.4 to 

develop the GLRT. 

2.3.1 Bayesian Detectors 

The function of the detector is simply to operate on the received data vector R and to 

choose either Ho or H1 as the guess to which R belongs. Since R does in fact belong to Ho 

or Hi, there are four possible input/output combinations each time the receiver operates 

on a data vector. Detection criteria place a relative importance or weight on each of the 

four courses of action. 

The Bayes criterion is based on two assumptions: 

1. It is assumed that the 'Source' outputs are governed by a priori probabilities. For 

our problem, the chance of having a growler and clutter in a radar resolution cell 

is denoted by the probability P1, and the chance of having only clutter in a radar 

resolution cell is denoted by the probability Po, Clearly, Po+ P1 = 1. 
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2. Costs are assigned to each of the four possible courses of action. These costs are 

denoted by Coo, Cai, C10, and C11 • The first subscript indicates the hypothesis 

chosen by the detector, and the second subscript indicates the hypothesis that was 

actually true. 

Every time a decision is made by the detector, a certain cost will be incurred. The Bayes 

criterion is designed to minimize the average cost incurred by the detector. The average 

cost or risk is denoted by 'R, and is expressed as: 

'R, = CooPoProb(say HalHo is true)+ 

C1aPoProb(say H1IH0 is true)+ 

Ca1P1Prob(say HalH1 is true)+ 

C11P1Prob(say H1IH1 is true). (2.7) 

Notice that we are averaging over two different probabilities in the evaluation of the average 

cost n. 
It is convenient to view detector design as a division of the observation space defined 

by the received vector r. If we denote the total observation space by Z, then we must divide 

the observation space into two regions, Zo and Z1. When an observation R falls into Zo we 

choose Ho, and when R falls into Z1 we choose Hi. The risk function can now be rewritten 

in terms of the transition probabilities: 

n = CooPo f PrlHo(RIHa)dR+ Jz. 
C10Po f PrlHo(RIHa)dR+ Jz, 
Ca1P1 f PrlH, (RIH1)dR + Jz. 
C11P1 f PrlH, (RIH1)dR. Jz, (2.8) 

Note that these integrals are N-dimensional. The Bayes test reduces to solving for the 

decision regions Zo and Z1, Recalling that Z = Zo + Z1 and assuming that the cost of 
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making an error is greater than the cost of making a correct decision, minimization of 

Equation 2.8 reduces to 

H1 
PrlH,(RIH1) > 
Pr1H0 (RIH0) < 

Ho 

Po(C10 - Coo) 
P1(Co1 - Cu). 

(2.9) 

The quantity on the left hand side is called the likelihood ratio and is denoted by A(R) and 

the quantity on the right hand side is the threshold of the test and is denoted by T/· Thus 

the Bayes criterion results with a likelihood ratio test given by 

H1 
> 

A(R) < T/· 

Ho 

(2.10) 

Often, because of the mathematical form of the transition probability distributions, 

it is convenient to use the log likelihood ratio test (LLRT) given by 

H1 
> 

In A(R) < In T/· 

Ho 

This is justified because the natural logarithm is a monotonic function. 

(2.11) 

Let's i!Xamine the Bayes LRT more closely. Only the threshold T/ is dependent 

on the a priori probabilities and the cost assignments. Therefore the processor ( feature­

extractor) which operates on the data to form the likelihood ratio A(R) can be designed 

independently. Recall in Figure 2.1 that only the final stage of the general detector receiver 

requires f/• This property is significant from a practical standpoint since often the costs and 

a priori probabilities are not known or are mere guesses. The form of the Bayes LRT is 

intuitively satisfying. For example, if the a priori probabilities are equal, the cost of both 

errors are equal, and the cost of both correct decisions are the same, then T/ = 1. This 

implies that the test simply chooses the hypothesis that most likely produced the observed 

data vector R! Other Bayes tests arise simply by using different cost assignments or a priori 
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probabilites. For example, let the costs associated with making an error have a value of 1, 

and let the costs associated with making a correct decision have a value of 0. In this way, 

minimizing the ,isk is equivalent to minimizing the probability of error. It can be shown 

that this test in fact maximizes the ratio of the a posteriori probabilities. We will see in the 

next section what happens when cost assignments and a priori probabilities are unknown. 

2.3.2 Neyman-Pearson Detectors 

In many real problems, it is difficult if not impossible to assign realistic costs or a priori 

probabilities. Furthermore, even when the costs and a priori probabilities are known, the 

GCR and growler to noise ratio ( GNR) are usually not known. In situations like these, an 

alternative method for setting the threshold in the LRT defined in Equation 2.9 must be 

sought. The Neyman-Pearson criterion is a simple way of dealing with cases like this, and 

as a result, it has found wide use in radar problems. The performance of radar systems are 

often described by the probability of false alarm rate and the probability of detection. These 

can be defined in terms of the transition probabilities and are given by 

Pp = f PrJH0 (RIHo)dR, lz, 
PD = f PrJH,(RIH1)dR. lz, (2.12) 

Ideally, we would like to make PF as small as possible and PD as large as possible, but 

these are usually confilcting requirements. Alternatively, we could constrain PF to some 

tolerable value and maximize PD subject to the constraint. This type of requirement is 

solvable using Lagrange multipliers. 

The Neyman-Pearson criterion is stated as follows. Constrain PF = a 1 :5 a and 

design a processor that will maximize PD subject to this constraint. Solving this problem 



with Lagrange multipliers gives the following LRT: 

H1 
> A(R) < .\. 

Ho 

Satisfying the constraint so that PF = a' is equivalent to requiring that 
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(2.13) 

(2.14) 

In this equation, PAIHo(AIHo) is the density of A when Ho is true. Solving Equation 2.14 for 

.\ gives the theshold required for the Neyman-Pearson test. Notice that as thP. threshold .\ 

decreases, Po increases. Therefore, .\ is decreased in Equation 2.14 until we get the largest 

possible a' !, a. 

For both the Bayes and Neyman-Pearson criteria, the same likelihood ratio results; 

only the threshold is different. This should come as no surprise since the Neyman-Pearson 

criterion is really a special case of the Bayes formulation. Many other LRT detectors are 

possible by defining new criteria and constraints. 

Up to this point, we have only been concerned with detection. In the next section, 

we will review some classical estimation theory which will provide the basis for estimating 

unknown parameters in the received data vector R. For example, in our problem, we might 

be interested in estimating the velocity of the growler. 

2.3.3 Maximum Likelihood Estimation 

In the previous two sections, we were concerned with the detection problem. In this section, 

we are interested in a closely related problem. The 'Source' in Figure 2.2 now generates a 

parameter in the 'Parameter space' as is shown in Figure 2.3. This parameter gets mapped 

onto the 'Observation space' by the 'Probabilistic mapping'. Then an 'Estimation rule' is 

used to obtain an estimate of the parameter value. Parameters of interest fall into two 

classes: random, or unknown and not random. In the random parameter case, a Bayes 
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Estimate 

formulation similar to the detection problem can be derived where the cost function is 

minimized over both the parameter density functions as well as the 'Probabilistic mapping' 

functions. Since in oar work, we are more interested in the unknown parameter problem, 

we do not review the random parameter case here. It is described in detail in [23]. 

Assume that based on an observation vector, R, we wish to estimate the value of an 

unknown parameter a whose actual value happens to be A, and let's denote this estimate 

by c(R). In order to come up with an estimation rule, some measure of quality must be 

defined. The Bayes criterion is not applicable in this case. One quality measure of value is 

that the estimator be unbiased. That is, 

1
+00 

E[a(R)] 6. _
00 

a(R)Pr!a(RIA)dR = A (2.15) 

where E is the statistical expectation operator. Even an unbiased estimate can perform 

poorly on a given realization if the variance of the estimate is large. The variance of an 

unbiased estimate is given by: 

Var[a(R)] = E{[a(R) - A]2}. (2.16) 

Therefore, we would like to find an unbiased estimator with a small variance. Unfortunately, 

a straight-forward procedure for finding .i. minimum-variance, unbiased estimator does not 



34 

exist. We will have to be content with trying various procedures and then seeing how well 

they perform. 

The Mazimum Likelihood Estimator is one of the most famous and best-performing 

estimation procedures known. The criterion is to choose as the estimate the value that 

most likely caused the observation R to occur. We begin by defining the likelihood function 

Pr!a(RIA), viewed as a function of A since the observation vector R is not variable once it 

has been observed. As with the LRT, it is often convenient to work with the log likelihood 

function. The maximum likelihood estimate of a is the value of A that causes the likelihood 

function to be maximum. This estimate is denoted by iim1(R). Assuming that the maximum 

is interior to the range of A, and the log likelihood has a continuous first derivative, a 

necessary condition on iim1(R) is given by: 

8lnPrJ~RIA)I . = o. (2.17) 
A=•m1(R) 

This equation is called the likelihood equation and its solution is the maximum likelihood 

estimate of a. 

The effectiveness of the ML procedure can be appreciated by looking at its mean 

and variance. In many cases, it is difficult to compute the mean and variance of an estimator 

directly. It is often , ':u;ier to look at the asymptotic properties. Before doing so, we will 

describe a lower bound on the variance of any unbiased estimator. This will give us a 

measure against which we can compare the performance of the ML estimator. 

Theorem 2.3.1 If ii(R) is any unbiased estimate of A, then 

Va,{ii(R)] ~ (E { [BlnPrJ~RIA)r} )-1 (2.18) 

provided that 8Pr1a(RIA)/8A exists and is absolutely integroble. This result is known as the 

Cromer-Rao (CR) bound [24, 25, 26, 27}. 

We call any estimate that satisfies the bound with an equality an efficient estimate. 

It can be shown [23] that if an efficient estimate exists, it is the maximum likelihood estimate 
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a,,.1(R). This is the reason why the ML estimator is so popular. It is important though to 

note the following: 

1. If the ML estimate is biased, then the CR bound does not apply, and the asymptotic 

performance of the estimate is unknown. 

2. If an efficient estimate does not exist, again the performance of the ML estimate or 

any other is not known. For an efficient estimate a(R) to exist, the following equation 

must be satisfied: 

for all R and A. 

81nPrla(R\A) = [a(R) _ A]k(A) 
8A 

(2.19) 

In the next section, we combine maximum likelihood estimation and the likelihood 

ratio test in order to derive a generalized likelihood ratio test for binary hypothesis testing 

problems with unknown parameters. 

2.3.4 Composite Hypothesis Testing 

In this section, we are interested in performing composite hypothesis testing. A composite 

hypothesis is one where the form of the transition probability density function is known, 

but there are one or more parameters in the pdf that are not known. As in the last section, 

we are interested in the case where the unknown parameters are nonrandom. Again the 

Bayesian formulation does not apply since there are no a priori pdfs to average over, so we 

consider only Neyman-Pearson tests. 

As in the last section, we must have a definition of the quality of the test. Consider 

first what is known as the perfect measurement bound. No test that we could design would 

be better than a receiver that could first measure the unknown parameters perfectly, and 

then design the optimum likelihood ratio test. Thus, this fictitious test can serve to bound 

the performance of any other test. Such bounds are usually formulated in the Neyman­

Pearson sense. That is, for a given PF, a curve is calculated which gives the Po of the 
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perfect measurement bound as a function of the possible range of parameter values. 

A test that meets the bound for the whole range of parameter values, having fixed 

the Pp is said to be a unifomily most powerful {UMP) test. Stated differently, for a given 

Pp a UMP test has a PD greater than or equal to that of any other test, for the whole 

range of possible parameter values. It can be shown that a l'MP test exists if and only if 

the likelihood ratio test including the threshold can be completely defined for all possible 

parameter values, without knowledge of the parameter values. Clearly, whenever a UMP 

test exists, it should be used as it performs just as well as if the unknown parameters were 

known perfectly. However, for many problems of practical interest, a UMP test does not 

exist. The perfect measurement bound suggests that we might first estimate the unknown 

parameters assuming each of the hypotheses is true, and then forming a likelihood ratio test 

as though the estimated values were the true values. Because of the excellent properties of 

the ML estimator, we use ML estimates in this procedure. The generalized likelihood ratio 

test can be written as: 

H1 
Ag(R) = maxe, Pr1e,(RIE>1) ~ "'( 

maxe0 Pr1e0 (RIE>a) 
Ha 

(2.20) 

where the parameter Yalues 0 1 vary over the permissible range of the parameter vector 

e in hypothesis Hi, and the parameter values E>a vary over the permissible range of the 

parameter vector e in hypothesis Ha. The numerator in Equation 2.20 is equivalent to 

making a ML estimate of 0 1 assuming that H1 is true and then calculating the likelihood 

using this estimate. In a similar manner, the denominator is evaluated. The threshold "I is 

the result of solving the Neyman-Pearson constraint equation as described in Section 2.3.2. 

2.3.5 Sufficient Statistic 

By incorporating detection and estimation theory, we have derived the generalized likelihood 

ratio test for a composite binary hypothesis problem. As we have seen, the transition 
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probabilities of the received data vector are central to the formation of the likelihood ratio. 

In many cases, one finds that the likelihood ratio A9(R) depends explicitly on a particular 

function of the received data vector l(R). The function l(R) is called a sufficient statistic 

because knowing it is equivalent to knowing R in so far as the detector design is concerned. 

The point of a sufficient statistic is perhaps missed if it is merely stumbled across in the 

formation of a likelihood ratio. If l(R) is recognized directly though, the problem can be 

simplified greatly. 

The vector r is a point in the N-dimensional space described by the coordinates 

ri, r2, ••. , TN. The likelihood ratio in the form that we have described makes use of this 

coordinate system. There may indeed be a better coordinate system to work in for the 

purpose of evaluating A9(R). A sufficient statistic simply describes a single coordinate in 

this new coordinate system, and in fact, by its definition, it is the only coordinate that has 

any effect on the decision. Let I denote the sufficient statistic, and let the remaining N - 1 

coordinates which do not affect the decision be denoted by the vector y. Therefore 

Ag(R) = A(L, Y) = Pl,ylH1 (L, YIH1). 
Pl,ylHo(L, YIHo) 

(2.21) 

Since I is a sufficient statistic, this reduces to 

A (R) = A(L) = PIIH1 (LIH1) • 
9 PIIHo(LIHo) 

(2.22) 

The simplification resultinr.; from the recognition of a sufficient statistic is now 

apparent. Only the probability density functions of I under both hypotheses are necessary to 

form the optimum processor. This simplification b significant when closed form expressions 

are not available for the transition probability densities and an empirical evaluation of the 

performance of a detector is required. We make use of this concept in Chapter 6. 

In the next section, we look at alternative detector designs when the transition 

probability density functions vary spatially and temporally. 
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2.4 Constant False Alarm Rate Detectors 

The theory presented in Section 2.3 are generally applicable to all forms of targets and 

clutter. However, in cases like ours where the clutter is spatially nonstationary, the detector 

performance becomes spatially (and hence temporally) dependent. This spatial variation 

can be handled in general by the composite hypothesis test; but an accurate description of 

the spatial variation of clutter is required. Since this description is usually not a.va.ilable in 

practice, other techniques must be sought which more easily account for the spatial variation 

of the clutter. 

In this section, we examine techniques tha.t are useful in maintaining constant false 

alarm ra.tes (CFAR) in radar detection. Our primary interest concerns the detection of small 

targets in a. marine environment, where the nonhomogeneous and nonsta.tionary properties 

of sea clutter offer a. particular challenge. After discussing the CFAR techniques tha.t are 

in use toda.y, we determine the most useful ones for our problem. Both noncoherent and 

coherent CFAR processors are considered, and use is ma.de of our findings that sea. clutter 

amplitude statistics are K-distributed (13, 14, 28). 

2.4.1 Understanding CFAR Processors 

There is no shortage of CFAR processors described in the literature. A wide range of 

CFAR detectors have been proposed for many different a.pplica.tions. Rather than giving an 

extensive review of all CFA R designs currently in use, we develop basic CFAR principles tha.t 

are a.ppropria.te to our problem. In this way, we quickly obtain the understanding needed to 

apply CFAR principles to our problem. For a. detailed look a.t individual CFAR designs, the 

interested reader is referred to (5, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44). 

Due to the large number of CFAR designs that have been proposed, developing a 

general understanding of the basic principles is essential. Therefore, our discussion begins 

with a common framework by which all CFAR processors can be described. This discussion 
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closely follows that given by Farina and Studer [29]. 

CFAR detectors are either noncoherent or coherent processors. The noncoherent 

CFAR schemes all involve adaptively setting the decision threshold in some manner. These 

processors can be subdivided into two groups, those that use spatial processing, and those 

that use temporal processing. The spatial CFAR's involve using the returns from neigh­

bouring cells to determine the required detection threshold for a given probability of false 

alarm (PFA). On the other hand, the temporal methods use scan to scan processing at 

each resolution cell in order to determine the threshold. Clutter maps, two dimensional 

maps (azimuth vs range) where the mean amplitude in each cell is determined by successive 

scans, are used for comparison to each test cell. This method is particularly susceptible to 

self-masking by targets in the radar cell, and therefore the clutter map cell size is generally 

larger than the radar resolution cell size. Drawbacks result from making the clutter map 

cells too large as well. Other noncoherent methods include nonlinear receivers, an example 

of which is the binary integrator. 

Coherent CFAR techniques are also divided into two main categories: coherent 

clutter maps and spectral methods; however, only the spectral methods are applicable for 

sea clutter ( due to the uniform phase distribution). Therefore, coherent clutter maps are 

not considered any further. The spectral methods operate as follows. For each of several 

range cells, the spectrum is computed using either Doppler filter banks ( FFT) or other 

spectrum estimators. Then each Doppler bin for the test range cell is compared with the 

Doppler bins at neighbouring range cells in order to determine whether or not a target is 

present. In this way, CFAR is achieved by setting the adaptive threshold for the test cell 

based upon the corresponding Doppler bins of neighbouring cells. Not only is a decision 

made, but also the Doppler frequency of the target is determined. 

CFAR processors attempt to account for varying clutter fields by forming local 

estimates of the clutter statistics in the vicinity of the resolution cell under test. This is 

done by sliding a window through range (range CFAR's) or time (clutter map CFAR's). 
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We consider only range CFAR processors in the sequel, because the clutter map approach 

is more susceptible to target self-masking. Usually, the center cell in the CFAR window is 

the cell under test, and the neighbouring cells are used to estimate the local clutter power. 

The estimate of the local clutter power is then used to select a threshold for the test cell. 

The cells in the CFAR window that are used to estimate the clutter power in the test cell 

can be combined in several different ways. For example, they might be averaged, or the 

largest clutter value might be used in setting the local threshold. The critical assumption 

common to these approaches is that the clutter statistics in the test cell are the same as the 

statistics in the other cells in the CFAR window. Therefore, the CFAR window size must 

be picked with care. 

An excellent paper by Rohling discusses several ways in which these local clutter 

power estimates can be made from the cells in a CFAR window (34]. He introduces the 

familiar CA-CFAR (Cell Averaging CFAR) in which a window in range oflength N around 

the test cell is used to predict the average clutter power (Rayleigh envelope assumed). 

It is also assumed that there is a guard cell on either side of the test cell, in order to 

limit target leakage. He then introduces CAGO-CFAR (Cell Averaging Greatest of CFAR) 

where the clutter power is estimated independently on both sides of the test cell, and the 

greatest clutter power is used to determine the threshold. These methods are shown to be 

disappointing when there is a clutter field with edges within the CFAR window as shown in 

Figure 2.4. Both correlated and uncorrelated clutter fields are considered. Also, multiple 

target cases are considered and these techniques are shown to mask at least one of the 

targets. These shortcomings motivated the development of the order-statistic CFAR (OS­

CFAR), which is a true CFAR in that it is independent of the clutter power, but which 

also works well under the situations described above, as well as being superior under the 

homogeneous clutter case. This scheme amounts to setting the threshold S according to the 

equation 

(2.23) 
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Figure 2.4: A CFAR window spanning two clutter fields. 
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(2.24) 

is the k1h order statistic (ie. the k1h largest sample in the CFAR window) and Tis a constant 

that controls ( along with Z) the PFA. The Rayleigh envelope or Negative Exponential power 

distribution i~ considered for uniform clutter, and it is shown that indeed the PFA expression 

is independent of the clutter power para.meter µ in 

1 
p(u) = -exp(-u/µ) 

µ 
(2.25) 

where p(u) is the negative exponential density function which describes the clutter power. 

This processor is shown to be superior to both the CA-CFAR and CAGO-CFAR processors 

in multiple target situations and with jamming or clutter edges. Furthermore, no guard 

cells a.re required for this processor. It should be emphasized that the OS-CFAR processor 

makes full use of the underlying distribution of the clutter process. This is not a rank-order 



42 

method that only makes use of the order, and neglects the sample value at a given order! 

It is shown that for N = 24 and N = 32, a suitable value for k is in the range 

N < k < 3N_ 
2 - - 4 (2.26) 

A different approach to CFAR design is taken by Bucciarelli in [38]. Rather than 

designing a detector that works reasonably well for a number of probability density func­

tions (pdfs), he uses the moments of the sample data to distinguish between a Weibull 

or lognormal pdf ( the principle can work for any pdf) and the threshold is then selected 

accordingly. He uses the first three moments to govern his threshold selection. A window 

in range or azimuth is used rather than a clutter map. He does not, however, consider the 

problems of target self-masking and nonhomogeneous clutter fields. His concern is primarily 

a CFAR selection of the detection threshold, based on the identified distribution. 

The detectors described by Rohling and Buciarelli are noncoherent CFAR detectors. 

The most promising coherent CFAR detectors for detection of growlers in sea clutter are 

of the spectral type, since growler motion is considerably different than the motion of the 

sea. Larsson el al. describe such a CFAR detector that they use with the ICERAD Radar 

[5]. A range/Doppler map forms the basis of their CFAR detector. Their processor collects 

512 temporal hits for 32 consecutive range cells, and performs a 512-point FFT for each 

range bin. Then each FFT bin is compared with its neighbours. They make use of an 

order statistic detector; the test cell must exceed the Mth order statistic for a target to be 

declared. However, rather than ordering their data in each CFAR window, they make use 

of a clever comparison scheme which requires only N comparisons rather than N * log(N) 

for sorting. 

The CFAR detectors just described are representative of the kinds of CFAR detec­

tors that have been proposed in the literature. Each of these methods fall into the general 

framework of CFAR processors referred to by Farina el al [29]. In the next section, the 

applicability of these CFAR designs to the growler detection problem is considered. 
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2.4.2 CFAR Processors for Sea Clutter 

Our investigations (see Chapter 4) indicate that sea clutter amplitude statistics are de­

scribed well by the K-distribution. The K-distribution is given by 

p(x) = r~:)(cx)"Kv-i(2cx) (2.27) 

where 11 2!: 0 and O :,; x :,; oo. We can also write this distribution as a conditional probability 

density function (pdf) modulated by a mean level term y. That is, 

p(x) = fo00 

p(y)p(xly)dy (2.28) 

where 
2b2V 

p(y) = -y2•-l exp(-b2y2) 0 < y < 00 
r(11) ' 

(2.29) 

l!"X ,r:,:2 
p(xly) = 

2
Y2 exp(-

4
y2 ), 0 < x < oo (2.30) 

and c = ../irf4b. The pdf p(y) represents the mean or local level of the sea clutter amplitude 

and p(xly) represents the speckle component, which is Rayleigh distributed with a mean 

value of y. This decomposition indicates that if CFAR processing is done over a small 

enough region so that the mean level component y is relatively unchanged, then the local 

statistics will be Rayleigh, allowing the use of all of the CFAR processors considered in the 

previous section. 

For noncoherent processing of the return amplitudes, the OS-CFAR processor de­

scribed by Rohling [34] is the most suitable. It is the most robust against target masking 

problems and clutter edges. Furthermore, it makes full use of the underlying statistics of 

the da.ta.. It can also be implemented very easily. If range samples are used in the CFAR 

block, the size of the block must be &mall enough to keep a. relatively constant mean level, 

so tha.t the resulting statistics will be almost Rayleigh. Azimuthal samples may also be 

used to estimate the clutter power in the CFAR block. Time samples are not recommended 

since targets in the ra.da.r resolution cells will ca.use problems. At any ra.te, the OS-CFAR 
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should be more robust than any of the other methods described, One alternative would be 

to consider an approach such as that used by Bucciarelli et al. [38] where the scale and 

shape parameters of the K-distributed clutter are estimated from the CFAR block, and then 

an appropriate threshold is selected from table lookup, for a prescribed PFA. Although this 

type of approach would track slew changes in the overall clutter statistics, it is not sensitive 

to tracking the local chang& in the underlying mean level component of the sea clutter 

returns. 

For coherent CFAR processors, the method described by Larsson et al. [5] looks 

promising. A window of range bins would be analyzed simultaneously, surrounding the 

test cell. A DFT operation would be done at each range bin (implying multiple hits) 

and then the corresponding Doppler bins from each range cell would make up the CFAR 

block. An OS-CFAR would then be applied to the amplitudes of the corresponding Doppler 

bins in order to decide whether a target is present in the test cell, as indicated by a large 

component in any test cell Doppler bin, relative to the corresponding surrounding bins. In 

this way, the processor determines whether or not a target is present, as well as providing 

the target's velocity. An alternative procedure to the OS operation would be to empirically 

or theoretically derive the statistics of the Doppler bin amplitudes, and then apply a CFAR 

operation custom designed to those statistics. 

2.5 Summary 

In this chapter, we reviewed basic detection and estimation theories that are applicable to 

our problem. We began by considering the general receiver structure shown in Figure 2.1. 

Then, we called on Matched Filter theory in order to design a front-end filter for our detec­

tor. The benefits that could be achieved in nonadditive clutter environments were discussed. 

With the front-end filter designed, theories suitable for the design of the feature-extractor 

were considered. We began by reviewing classical detection and estimation theory. In 
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particular, the Ba.yes and Neyman-Pearson criteria. were derived for the simple binary hy­

pothesis test. In order to derive the generalized binary hypothesis test, maximum likelihood 

estimation procedures were examined. We concluded by describing the benefits afforded by 

sufficient statistics. In the la.st section, we surveyed CFAR methods that are in use today 

when the clutter or target processes are nonsta.tionary. We concluded by recommen<ilng 

CFAR designs that seem to be most suitable to our problem of detection of growlers in sea. 

clutter. The theory described in this chapter will serve as the basis for the methods that 

are described in the remainder of this thesis. 



Chapter 3 

Field Experiments and the IPIX 

Radar 

3.1 Introduction 

As described in Chapter 1, a key element in our research plan is the development of the 

IPIX radar. This radar has enabled us to make real measurements of growler and sea 

backscatter at X-band. Since the results of this research are based on the data collected 

with the IPIX radar, and since the contribution of the data library itself is significant, a 

detailed description of IPIX is in order. Although details of the IPIX radar are available in 

the literature [10, 11, 12], a summary will be given here for completeness. This chapter is 

devoted to describing the IPIX radar along with the experiments that were performed with 

this instrument. 

3.2 The IPIX Radar 

As a result of other studies [l, 2, 3], in 1983 the CRL identified the need for an instru­

mentation-quality radar system designed specifically for research use. At that time, several 

46 
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system requirements wer,· identified by considering the problem of research as well as the 

interaction between the end user and the radar. It was decided that the radar should have: 

1. Dual-Polarization 

2. Coherent Transmission/Reception 

3. Pulse Compression 

4. X-band Transmission 

5. Digital Data Acquisition 

6. Built-In Calibration 

7. Flexible Operation and Modifications 

8. Computer Control 

System development began in 1984 with funding from the Natural Sciences and 

Engineering Research Council of Canada. In the summer of 1986, a prototype was tested 

and the present system known as the IPIX (for Intelligent PIXel-processing) radar emerged. 

3.2.1 System Features and Capabilities 

All of the design criteria were met with the IPIX radar. Each system requirement enumer­

ated above will be dealt with here in detail. 

Dual Polarization: The IPIX radar is dual-polarized. It has two identical re­

ceivers; one is connected to the vertical polarized antenna feed and the other to the hori­

zontal polai.ized antenna feed. Therefore, both polarizations are always received. A high 

speed ferrite waveguide switch having 50 dB of isolation between channels is used to route 

the transmitted signal through either the horizontal or vertical channel. To achieve this 

kind of isolation, a combination of three ferrite devices are actually used in the switch. The 

switch can change state at a continuous rate of up to 2 kHz. Therefore the radar is capable 
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of near simultaneous trausmission of both orthogonal polarizations, which is necessary for 

measuring the full polarization scattering matrix of a target. 

Due to the high channel-to-channel isolation of the ferrite switch, the antenna is the 

primary determining factor in the horizontal to vertical channel isolation figure. Currently, 

a 2.2 degree paroboHc dish antenna is used with about 25 dB isolation between channels. 

This anten:ia is mr;untP.<i on an antenna positioner unit that is operated under computer 

control. The two-a.'tis pedastal is capable of repeating absolute fixed positions in azimuth 

and elevation to better than 0.1 degree accuracy. It is capable of spin rates ofup to 30 RPM. 

Coherent Transmission/Reception: The IPIX radar is a coherent radar al­

lowing for accurate measurements of the phase of the returned radar echo. A high-stability 

5 MHz crystal oscillator is used as the master reference clock for the entire system. Both IF 

(150 MHz) and RF (9.24 GHz) sources are phase-locked to the master clock and are used 

to generate the transmitted 9.39 GHz signal as well as to downconvert and demodulate 

the received signals. When pulse compression is in operation, the SAW pulse expander is 

syncronized with the IF clock. Quadrature demodulators in each receiver channel provide 

the inphase (I) and quadrature (Q) video outputs for subsequent processing. 

Pulse Compression: The IPIX radar has a pulse compression subsystem consist­

ing of a SAW pulse expander and matched SAW compressors in each of the two receivers. 

The expander generates a nonlinear FM coded pulse 5 microseconds wide with a bandwidth 

of about 50 MHz. The compressed pulse has an effective width of 32 nanoseconds. The 

importance of pulse compression in IPIX is twofold. First, it makes IPIX a high resolution 

radar with a range resolution of 4.8 metres, allowing for improved visibility of small targets. 

Second, higher average power is delivered to the targets increasing the maximum range at 

which a given target can be detected. Since we have no control of the location of targets of 

opportunity with respect to the radar, this increase in usable range is significant. 

X-band Transmit Signal: The IPIX radar is an X-band radar that transmits a 

peak power of 8 kW at 9.39 GHz. The wavelength of the transmitted signal is approximately 
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3 cm. This wavelength couples well with the small capillary waves on the ocean surface, 

allowing for useful sea clutter measurements. Furthermore, at this wavelength, a target 

velocity of 1 knot causes a Doppler shift of about 3-1 Hz. At our maidmum PRF of 2 kHz, 

this allows for unaliased velocity measurements of up to 30 knots, which is a reasonable 

limit for the targets that we will study. 

Digital Data Acquisition: The data acquisition system is probably the most 

important aspect governing the utility of a radar for research use. Much effort was put into 

the design of this system in IPLX. Digital data acquisition in radar is challenging because 

of the high data sampling rates and volume of data involved. Although high sampling rates 

are feasible with current technology, data storage is still of vital concern, especially with 

regard to offline processing and data retrieval. High-speed analog or digital tape recorders 

are capable of handling the continuous streams of data; however, they are not very suitable 

for offline recovery of a particular window of data that may be of interest. The IPL'( 

radar produces data at a peak rate of 120 Megabytes per second and can sustain a rate of 

16 Megabytes per second. The !PIX sampling system is programmed to only store data 

in a user-specified window defined in azimuth and range. Thus, the storage facilities only 

need to handle the data that is of interest to the user. 

The !PIX data acquisition system operates as follows: After each pulse is trl\ns­

mitted, the selected range interval is digitized at a rate of 30 MHz into the sweep buffer. 

Each range sample consists of the four receiver channels: horizontal I (HI) and Q (HQ) and 

vertical I (VI) and Q (VQ). Before the next pulse is transmitted, the sweep buffer is written 

via a high-speed VMEbus DMA channel directly into the memory space (16 Megabytes 

currently) of a 68020-based computer system (now upgraded to 68040 system). Each sweep 

is stored sequentially in memory. The most significant benefit of this approach is that the 

data are available for processing immediately, and are addressable by a simple pointer to 

memory. A high-capacity digital tape drive is used to store large numbers of data sets 

inexpensively, either in raw form, or after processing. 
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Built-in Calibration: The !PIX radar has built-in calibration equipment (BICE) 

consisting of a computer controlled frequency-agile IF source that can be routed to the 

transmitter's upconverter to produce an RF signal. This source, along with a digitally 

controlled attenuator, can then be used to inject known signals into the receiver, in order 

to produce an input/output characteristic. Sensitivity time control (STC) is also available 

to ensure that the received signal falls within the linear range of the receiver. 

Flexible Operation and Modification: The !PIX radar has been designed 

so that it is flexible and modifiable. For flexible operation, remote-controlled coaxial 

switches are used throughout the system to allow computer control of the RF signal path. 

These switches make it a simple matter to configure the system for normal operation, self­

calibration and testing. Furthermore, hardware circuits monitor the state of these switches 

in order to ensure that they are in a safe configuration. The system is also easily modified. 

This is due to its modular design. For example, multi-frequency enhancements are now 

being made to the system, as well as sampling system upgrades without affecting any other 

part of the system. All modules are also rack-mounted and easily accessible to allow for 

in-the-field modifications and repairs. 

Computer Control: Virtually all aspects of the IPIX radar are changeable by 

computer control. These include: 

• The mode of operation which is affected by coaxial switches. 

• The transmit signal characteristics that include pulse width, PRF, and polarization. 

• The sampling system that specifies the azimuth and range windows required and the 

number of sweeps to store. 

• The antenna. positioner unit that controls the position and scan rate of the antenna.. 

• The data. storage fa.cility, and the generation of!og files for ea.ch experiment. 

The computer interface for most of the control operations is a. simple parallel bus 
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tha.t uses TTL signals and can be implemented with four 8-bit para.Ile! ports. The control 

software is written in the C programming language for portability. Any computer with 32 

bits of para.Ile! I/0 and a. C compiler can serve as the control computer. 

3.3 Field Experiments 

With the !PIX radar developed, the experimental program began. A suitable site for con­

ductin, experiments with the !PIX radar was identified at Cape Bona.vista, Newfoundland 

and is shown in F ,gure 3.1. A coast guard building there was used to house the radar and 

support equipment. A concrete pad immediately in front of the building was poured a.s 

the platform for the antenna positioner unit and the antenna.. The platform was on a. cliff 

edge overlooking the Atlantic ocean at a height of 22 metres a.hove sea level. This height 

simulates the height of a ship-based antenna. The antenna. had a viewing area. tha.t spa.ns 

from a bearing of 20 degrees to 150 degrees, with north at O degrees. The ocea.n floor fell 

off quickly to a. depth of about 300 feet so tha.t deep seas were experienced. 

The first field trials were conducted in Ma.y 1988 at the Cape Bonavicta site. Several 

very large icebergs and a variety of bergy bits and growlers were sampled at this time, and 

the system was tested thoroughly. Many improvements were identified and the !PIX tea.m 

returned to the CRL to implement them. Over the next year two other field trials w~re 

conducted at the site as the system matured. Finally, in June of 1989, our fourth and most 

successful field trip was conducted. A large database of sea. clutter and growler measure­

ments were made, along with measurements of fishing boa.ts and life rafts. Furthermore, 

a 2 metre RCS (radar cross-section) spar reflector was moored on a. nonreflective buoy for 

some man-made target measurements. The data fil:s that are analyzed in this thesis were 

all collected during the June 19!lQ field trip. The radar paramet;lrs associated with each of 

these data. files will now be described. 
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Figure 3.1: The map shows the island of Newfoundland on the East Coast of Canada. The 
IPIX radar test site is located at Cape Bonavista on the eastern shore of the island. 
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3.3.1 The Data Base 

A variety of data files were collected during the la.st field trip conducted with !PIX between 

June 02, 1989 and June 14, 1989. Ea.ch data file consisted of 16 Mega.bytes of data, repre­

senting 4 Mega.samples where ea.ch sample consists of an 8-bit HI, HQ, VI, and VQ cha.m,el 

measurement. Although scan data was collected, a.II of the data described here were col­

lected with the antenna. staring along a particular azimuth direction. Data were collected 

between a range start gate and a range stop gate that were specified in the sampling system. 

The sampling clock ran at 30 MHz so that a sample in range was ma.de every 5 metres. For 

a given data file, consecutive samples were stored until the 16 Mega.bytes of memory were 

filled. The data were then transferred to tape, as another experiment was prepared. By 

keeping the antenna. fixed, we were able to collect a large volume of data from a particular 

target or from a small patch of sea clutter. This mode of operation is useful for gathering 

statistics on target and clutter processes. 

Ea.ch experiment is associated with an experimental identification number. Experi­

ment ID's for the June 1989 trials started with BO and ran consecutively to 8400. That is, 

there were 401 individual experiments performed, ea.ch resulting with a 16 Mega.byte data 

file. In this thesis, two sets of experiments a.re described. The first set of experiments was 

selected to gather amplitude statistics a.bout sea clutter and growler targets. The second 

set of experiments was selected to make measurements of growle1, and neighboring sea 

clutter for the purpose of Doppler analysis. Thus, for ea.ch set, certain radar para.meters 

were appropriate. 

The para.meters for the first set of experiments a.re given in Table 3.1 and Table 3.2. 

Table 3.1 gives the experiment ID associated with ea.ch file, the date the experiment was 

conducted, the target type, h ansmitted polarization, PRF, pulse width, the starting range 

position and range swath, and the azimuth position of the antenna. Table 3.2 gives the 

wind speed, wind bearing and the significant wave height at the time of collection. 

The low PRF in these experiments allowed for the continuous collection of data for 
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ID DATE TYPE POL PRF PULSE RS TART RSWATH AZ 
m/d/y c/g h/v (Hz) (ns) (m) (m) (deg) 

8100 6/7/89 g h 200 200 6030 200 116.0 
8122 6/7/89 g v 200 200 4440 160 67.0 
8195 6/9/89 c h 200 200 6000 160 30.0 
8196 6/9/89 c h 200 200 6000 160 75.0 
8197 6/9/89 c h 200 200 6000 160 120.0 
8198 6/9/89 c v 200 200 6000 160 120.0 
8199 6/9/89 c v 200 200 6000 160 30.0 
8200 6/9/89 c v 200 200 6000 160 75.0 
8202 6/9/89 c h 200 1000 8400 160 30.0 
8203 6/9/89 c h 200 1000 8400 160 75.0 
8204 6/9/89 c h 200 1000 8400 160 120.0 
8205 6/9/89 c v 200 1000 7050 160 120.0 
8206 6/9/89 c v 200 1000 7050 160 30.0 
8207 6/9/89 c v 200 1000 7050 160 75.0 
8208 6/9/89 c h 200 30 6000 80 30.0 
8209 6/9/89 c h 200 30 6000 80 75.0 
8210 6/9/89 c h 200 30 6000 80 120.0 
8211 6/9/89 c v 200 30 6000 80 120.0 
8212 6/9/89 c v 200 30 6000 80 30.0 
8213 6/9/89 c v 200 30 6000 80 75.0 

Table 3.1: Radar par~.meters associatEd with experiments performed for noncoherent anal­
ysis of sea clutter and growler returns. Under TYPE, c = clutter and g = growler. PULSE 
refers to the pulse width, RSTART refers to the distance from the radar to the first sample 
collected, and RSWATH refers to the length of the range window that was sampled. POL 
refers to the transmit polarization. h or v, and AZ is the azimuth angle in degrees. 
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ID WIND SPEED WIND DIRECTION WAVE HEIGHT 
(knots) (degrees) (metres) 

BlOO 8 240 2.04 
B122 21 170 1.50 
B195 23 10 2.70 
B196 3.20 
B197 22 350 3.61 
B198 3.10 
B199 2.67 
B200 2.89 
B202 26 350 2.93 
B203 2.70 
B204 2.60 
B205 3.08 
B206 
B207 26 350 
B208 2.40 
B209 25 350 
B210 3.09 
B211 2.87 
B212 2.73 
B213 19 340 2.35 

Ta.hie 3.2: Weather and significant wa.veheight da.ta. associated with experiments performed 
for noncoherent analysis of sea. clutter and growler returns. The weather da.ta. was pro­
vided by the Atmospheric Environment Service and the wa.veheight da.ta. was provided by 
a. nondirectiona.l wa.verider. 
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ID DATE TYPE POL PRF PULSE RSTART RSWATH AZ 
m/d/y c/g h/v (Hz) (ns) (m) (m) (deg) 

B97 6/7/89 g h 2000 200 6570 200 118.5 
B98 6/7/89 g h/v 2000 200 6420 200 119.0 
B99 6/7/89 g v 2000 200 6300 200 118.0 
BllO 6/7/89 g h 2000 200 4170 200 86.0 
Blll 6/7/89 g v 2000 200 4140 200 85.0 
B112 6/7/89 g h/v 2000 200 4080 200 81.0 
B113 6/7/89 g h 2000 200 4020 200 71.0 
B114 6/7/89 g v 2000 200 4050 200 69.5 
B115 6/7/89 g h/v 2000 200 4080 200 67.0 
Bl23 6/7/89 g h 1000 200 4500 150 63.5 
Bl24 6/7/89 g v 2000 200 4530 150 61.5 
Bl25 6/7/89 g h/v 2000 200 4530 150 59.5 

Table 3.3: Radar parameters associated with experiments performed for coherent analysis 
of sea clutter and growler returns. Under TYPE, g = growler. PULSE refers to the pulse 
width, RSTART refers to the distance from the radar to the first sample collected, and 
RSWATH refers to the length of the range window that was sampled. POL refers to the 
transmit polarization, h or v, while AZ is the azimuth angle in degrees. 

periods of about seven minutes at a time. Since amplitude statistics of sea clutter were 

sought from this data, the low PRF provided a maximum number of independent samples 

to be collected. The analysis of this data will be described in detail in Chapter 4. 

Tables 3.3 and 3.4 provide similar data for the experiments that were performed 

with coherent analysis in mind. For these experiments, the pulse width was kept at 200 ns 

which was the smallest real pulse we had available. Furthermore, a PRF of at least 1 kHz 

in each of the polarization channels was used to allow for accurate estimation of sea clutter 

and growler spectra. The results of this analysis are given in Chapter 5. 
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ID WIND SPEED WIND DIRECTION WAVE HEIGHT 
(knots) (degrees) (metres) 

B97 8 240 
B98 1.40 
B99 1.80 
BllO 20 160 1.57 
Blll 1.57 
B112 18 170 1.46 -· i:1113 1.38 
B114 
B115 1.50 
B123 
B124 
B125 20 170 1.50 

Table 3.4: Weather and significant waveheight data associated with experiments performed 
for coherent analysis of sea clutter and growler returns. The weather data was provided 
by the AES and the waveheight data was provided by a nondirectional waverider. Note: 
the wind speed and direction recorded for BllO and B125 were actually measured shortly 
before and after their respective experiments. 
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3.3.2 Surface Truthing 

Surface truthing for each of the experiments was provided in a variety of forms. Weather 

reports were provided from the Atmospheric Environment Service's weather office in Cape 

Bonavista. These reports include wind speed and bearing measurements, gusts, temper­

ature, pressure, visibility charts etc. Profiles of these measurements throughout the June 

1989 field trip can be found in Appendix A. The entries given in Table 3.2 hlld Table 3.4 

were taken from these AES weather charts. AES makes measurements peric,jjcally through­

out the day, and for this reason, some fields in the tables are empty. In addition to AES's 

weather records, a local weather station installed at the radar site was used to provide 

instantaneous measurements. These were particularly useful when experiments ;vere being 

conducted through the night. 

Wave height information is important for correlating changes in sea clutter statistics 

with wave development. A nondirectional waverider was moored 6. i5 km off the coastline at 

a bearing of 72 degrees in order to provide wave height and wave period measurements. The 

waverider sampled the sea height at a rate of 2.56 Hz and relayed the information back to a 

local receiving station at the site. Instantaneous wave height, wave period and fit:ctuation 

spectra were available. An example of the reports generated from the waverider system is 

shown in Figure 3.2. The measurements given in Tables 3.2 and 3.4 were extracted from 

these reports. 

Along with weather and wave reports, photographic recordings were also made of 

the experimental setup and the targets that were sampled. Live video was taken of the 

ocean several times each day, as well as still photographs. Photographs were also taken of 

ice targets so their approximate sizes could be determined. The I and Q channels were also 

displayed on an oscilloscope and recorded. Finally, PPI images of the local scene were also 

videotaped. 

Finally, with each experiment performed, a computer-generated log file was stored 

along with the data. The log file has all of the radar parameter and switch settings stored, 
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Figure 3.2: Wa.verider wave height measurements a.nd wa.ve fiuctua.tion spectrum. Height 
is given in metres a.nd time is given in seconds. Winds were 20-40 knots. 
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so that the complete state of the radar at the time .:>f data collection can be determined. 

Also, the sampling system writes along with each sweep of data, a header that indicates the 

experimental ID, the antenna position and polarization, the range swath, :;.nu an absolute 

reference clock that can be used to derive timing information. Since the header is part of 

the data, this information can never be scrambled or lost. 

3.4 Calibration 

The purpose of a research radar is to make quantatative measurements on targets and the 

sl!rrounding environment. It is important therefore that the measurements describe the 

characteristics of the targets being examined, free from contaminations from the receiver 

itself. The I and Q output signals that are collected by the IPIX radar must be mapped 

back to the input signals that were actually received from the target. This process we 

refer to as calibration. Clearly, any conclusions that can be drawn about the illuminated 

targets must take into account the input/output characteristics of the receiver performing 

the measurements. 

We have divided the calibration process for the !PIX radar into two stages. The 

first stage describes the corrections that must be made to the I and Q signals themselves, so 

that they are balanced and orthogonal as they should be. These corrections are particularly 

important for spectral processing. Procedures for performing these I and Q corrections are 

given in Appendix B. The second stage of calibration then involves mapping the output 

power described by the corrected I and Q signal components to the proper input power 

level actually received. This procedure requires an input/output power characteristic for 

the receiver and is also described in Appendix B. 
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3.5 Summary 

In this chapter, we have taken a detailed look at the !PIX radar that was used to collect 

sea clutter and growler data for our study. We described the features of IPIX that provide 

multiparameter measurements of the targets of interest, in a way that is appropriate for 

research. We then summarized the radar parameters associated with the experiments de­

scribed in this thesis. The experiments were divided into two sets: one set for noncoherent 

analysis and the other for coherent analysis. The results of these experiments are described 

in Chapter 4 and Chapter 5, respectively. The various forms of surface truthing were also 

discussed. These include weather and waverider data, photography and video, along with 

computer-based logs to retain the state of the radar at the time an experiment is conducted. 

Finally we discussed the data calibration problem in the context of the !PIX radar. These 

calibrations are essential to remove radar system related effects from the recorded data. 



Chapter 4 

N oncoherent Analysis of Sea 

Clutter and Growler Data 

4.1 Introduction 

In this chapter, we begin our analysis of real IPIX data by looking at the properties of the 

amplitude of the return radar echoes for sea clutter and growlers. The amplitu<l~ is formed 

by taking the square root of the sum of the squares of I and Q. We begin by examining the 

radar equation as it ?.pplies to point targets such as growlers, and to distributed targets 

such as clutter, in order to develop power law relationships. The power law describes how 

the power returned. from the target varies as a function of range to the target. We then 

use these laws to estimate the radar cross-section of some of the sea clutter and growlers 

that we studied. Then, we look at the amplitude statistics of sea clutter. In particular, 

we examine the usefulness of the compound K-distribution in describing these amplitude 

statist:cs. Next, we consider amplitude statistics of growlers in sea clutter. Finally, we 

look at temporal and spatial correlations of sea clutter data. This will provide the insight 

necessary to predict the performance of various noncoherent detection algorithms. 

62 
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4.2 The Radar Equation 

The radar equation is fundamental to our understanding of radar. It relates the received 

signal power to the transmitter, antenna, target and environmental characteristics. Its 

derivation is given in [20]. The simple form of the radar equation ( this form doesu 't explicitly 

model system losses, target cross section variability and meteorological conditions) is given 

by 

(-1.1) 

where Pg is the received echo signal power in Watts, G is the antenna gain factor, ,I, is the 

effective area of the receiving antenna in square meters, u is the radar cross section of the 

target in square meters, and R is the range to the target in meters. If the same antenna is 

used for transmission and reception, then G and A, are related by 

G = -1:rA, 
""°12" (4.2) 

where >. is the operational wavelength. 

For a given set of radar parameters, Equation 4.1 can be used to determine the 

maximum range of the radar, the minimimum detectable :!gnal strength, the power law 

relating received signal power to range, and target cross section models. In the next two 

sections, we investigate the latter two. 

4.2.1 Power Law 

As described earlier, the two classes of targets that we are interested in are growlers and sea 

clutter. Growlers can be considered as point targets, and sea clutter as distributed targets. 

In order to make our measurements independent of the range of the target from the radar, 

the power law as a function of range needs to be determined. This allows for correction of 

the received power, and in many radar systems, this correction is implemented by means of 

Sensitivity Time Control (STC). Although the IPIX radar has STC capabilities, STC was 

not used in the data described in this thesis. 
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The radar equation given in Equation 4.1 was derived for a point target with cross 

section u, a distance R from the radar. Therefore the received power from the point target, 

P, is inversely related to the fourth power of range. This power law relationship is suitable 

for describing the received power from a growler sampled with the IPL'{ radar. 

For distributed targets such as sea clutter however, the power law is a little more 

complicated. For a radar pulse of duration T seconds, the range resolution of the pulse is 

cr/2 radial meters (ie. in the direction of the ,adar pulse) where c is the speed of light (3e8 

m/s). Therefore, the radar is not capable of resolving two point targets that are separated 

by less th..n cT /2 radial meters when sampling the matched filter output every T seconds. 

Stated in another way, a receiver output at a particular time 10 and hence a particular range 

R
0 

is actually the result of the superposition of echoes from all scatterers within a radial 

distance of cr/2 of R0 • Since the target is distributed in azimuth as well as range, a similar 

effect results in angle. The return echo at a given time is the result of the superposition of 

all the scatterers within the antenna bearnwidth 9B. Clearly, the target cross section u in 

Equation 4.1 can now be seen to be a function of both the pulse width T and the antenna 

bearnwidth 9B. 

Consider a cliff-top radar such as the IPIX radar, that illuminates the sea. surface 

with a. depression angle of</, radians. The depression angle is the angle between the horizon­

tal and the line of sight of the ra.<lar. Then, for a. pulse width of T seconds, the ra.dial range 

resolution is cr/2 meters. Thus, the ra.nge resolution along the s~a. surface is cr/2sec</, 

meters. In azimuth, the surface extent of the scatterers tha.t contribute to the received 

signal a.t a. given time is R9B. Therefore, the clutter pa.tch area. or resolution cell size is 

given a.pproxima.tely by 

Ac = R9B(cr/2) sec</,. (4.3) 

Since for distributed surface targets such as sea. clutter, the received signal power is a. 

function of the resolution cell size given by Ac, a. target cross section density would be more 

descriptive than u. Therefore, we define u• = u / Ac a.s the ra.dar target cross section density 
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for surface clutter targets. Substitution of u into Equation 4.1 gives the surface clutter 

radar equation: 
P. _ P,G . .J..u"tlB(cr/2) seco 

• - (4;r)2RJ . (4.4) 

where Pc is the received clutter power. \Ve see from Equation 4.4 that the clutter received 

power now varies inversely as the third power of range as predicted by the radar equation. 

In order to test the power versus range law described above for s~a clutter, we 

evaluated this law empirically. A 2.5 km patch of the sea surface was illuminated using a 

pulse width of 200 ns. fhe seas were choppy with winds gusting from 20-35 knots. The 

transmit polarization was horizontal so HH and HV were collected. The receive<! power was 

calculated at each range cell and averaged over a period of 0.5 s. Then, the best fit power 

law relationship was determined from the data using a least square regression. The resu!ts 

are given in Figure 4.1 for both the HH and HV channels. The curves indicate a power 

versus range law with an exponent of about -3.5, somewhere between the point target law 

predicted in Equation 4.1 and the surface clutter law predicted in Equation 4.4. Also note 

the separation of about 10 dB between the like-polarized and cross-polarized channels. The 

range law exponent of -3.5 suggests the presence of scatterer bunching in this instance. The 

grazing angle varies only by about 0.1 degrees over the 2.5 km range and hence should not 

affect the measured u 0 or the power versus range law. 

4.2.2 Radar Cross-Section 

In the previous section, we derived the radar equations that are appro~,riate for point targets 

such as growlers, and for distributed targets such as sea clutter. Now we isolate the radar 

cross section u and the radar cross section density u 0 for point targets and distributed 

targets respectively. This will be useful for describing the target size. 

Isolating u from Equation 4.1 and making use of Equation 4.2, we get 

u = (4.5) 
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Figure 4.1: This figure describes the power versus range variation of sea clutter data. The 
data marked with 'o' is from the HH channel and the data marked with 'x' is from the HV 
channel. The range scale represents 2.5 km. The pulse width was 200 ns and PRF was 
2 kHz. Each point represents 1000 averages. 
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for a. point target's radar cross section. Similarly, using Equation 4.4, we get 

O 
Pc(4;r)3 R3 cos¢ 

q = P,G2).28scr/2 
(4.6) 

for a. distributed target's radar cross section density. 

The IPIX radar ha.s the following fixed para.meter values: 

• Pea.k Power P, = 8 kW 

• Antenna. Ga.in G = 35 dB 

• Opera.tiona.1 Wavelength >. = 3.19 cm 

• Azimuthal Bea.mwidth BR = 2.2 degrees 

These para.meters will be used in Equation 4.5 and Equation 4.6 a.long with the pulse width 

Tin order to estimate ra.t!,:r cross sections for growlers a.nd sea. clutter, respectively. It is 

necessary to estimate the growler received power P9 and the clutter received power Pc in 

order to use these equations. These estimates must be determined from the received data. 

a.nd will be dealt with in deta.il in Chapter 5. 

4.3 Amplitude Statistics 

In this section, we investigate the use of the K-distribution to describe the amplitude statis­

tics of sea. clutter da.ta. collected with the !PIX radar. We show tha.t the K-distribution 

is suitable for modeling the amplitude statistics of both like-polarized a.nd cross-polarized 

configurations. The amplitude statistics of small ice targets (growlers) in spiky clutter a.re 

a.lso examined, a.nd our results indicate tha.t using only long-term amplitude statistics is not 

sufficient for the reliable detection of such targets in the presence of sea. clutter. Further­

more, we show tha.t the cross-polarized channel does not offer a.ny added benefit to small 

target detection, when considering only long-term amplitude statistics. 
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4.3.1 The Compound K-Distribution Model 

Many ad hoc distributions have be2n proposed in the literature to model the amplitude 

statistics of spiky sea clutter. Although some of these models can be adequately fitted to 

the empirical amplitude statistics, they do not describe the temporal or spatial correlation 

in the data. As a result, it is difficult to accurately predict the detection probabilities when 

integration or CFAR processing is used. This problem is overcome with the K-distribution 

[45], defined as 

(4.7) 

where r is the Gamma function, and K •-• is the second order modified Bessel function. 

Equation 4.7 describes the statistics of the radar cross section of clutter, u. In this thesis, 

we deal with amplitude statistics, and therefore adopt the form of the K-distribution given 

in [46, 47, 48]. This form, 

p(:t) = r~:)(c:t)"Kv-1(2c:t) (4.8) 

is related to Equation 4. 7 by the transformation :t = ,Iii /2; it describes the statistics of 

the clutter amplitude, :t. In both cases, v is the so called shape parameter, and b and 

c respresent an identical scale parameter (ie. b = c). The K-distribution is therefore a 

two-parameter distribution whose nth amplitude moments are given by 

= E[ n] = f(v + n/2)f(n/2 + 1) 
m,. :t cnf(v) (4.9) 

where E is the expectation operator. The nth normalized amplitude moments are given by 

( 4.10) 

The K-distribution is based on an underlying physical model that treats the re­

ceived signal as a superposition of returns from a number of independent patches or scat­

terers illuminated by the radar beam. The effective number of scatterers along with their 

relative bunching are critical in determining the overall statistics of the received data. By 

the Central Limit Theorem, as the number of scatterers becomes large, the complex clutter 
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process approaches a Gaussian form, and ?.mplitude statistics therefore become increasingly 

Rayleigh. On the other hand, as the effective number of scatterers decreases and bunching 

among scatterers occur, the statistics become less Rayleigh-like. The amplitude statistics 

of sea clutter behave in a similar manner. As the radar resolution increases and the illumi­

nated area becomes smaller (fewer scatterers), the sea clutter amplitude statistics become 

increasingly non-Rayleigh. 

Figure 4.2 shows several K-distributions with the same shape parameter, v = 1.2, 

and scale parameter c that takes on values 0.1 to 1.1 in 0.2 increments. As the name implies, 

the parameter c scales the distribution. Figure 4.3 shows another set of K-distributions 

where the scale parameter c is the same for all of the curves, c = 1.0, but the shape 

parameter v varies from 0.6 to 5.6 in unit increments. If each K-distribution is normalized to 

its mean as is done for example in [45], then Figure 4.4 and Figure 4.5 result from Figure 4.2 

and Figure 4.3, respectively. This normalization procedure allows various distributions to 

be compared, based only on their shape parameter v. In Figure 4.4, the curves redrawn 

from Figure 4.2 appear identical since these curves all have the same shape parameter v. 

In Figure 4.5, the effect of reducing the shape parameter is evident: the distributions have 

longer tails. It is easy to show that when the shape parameter v is equal to infinity, the 

K-distribution reduces to a Rayleigh distribution, and when v approaches zero, the tails of 

the K-distribution grow increasingly longer. Traditionally, Rayleigh distributions have been 

used to model speckle-like clutter and lognormal distributions have been used for modeling 

spiky (long tails) clutter. High resolution sea clutter is generally observed to have a shape 

parameter that lies in the region 0.1 :, v :, oo , where very spiky clutter has v ~ 0.1 

(49]. Amplitude histogram data presented in this thesis make use of the normalization 

procedure descriiied ,,hove; only they will be plotted on a semilogarithmic scale as shown 

in Figure 4.6. Figure 4.6 shows a set of normalized K-distributions with a different shape 

parameters plotted in this fashion. 

Perhaps the most important characteristic of the K-distribution is its ability to 
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K Distribution Functions Versus Scalel'mametcr 

Amplitudc(x) 

Figure 4.2: Various K-distributions for shape parameter 11 = 1.2 and scale parameter c = 
O.l,0.3,0.5,0.7,0.9 and 1,1, The curve with the largest peak has c = 1.1. 
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Figure 4.3: Various K-distributions for scale para.meter c = 1.0 and shape para.meter v = 
0.6, 1.6, 2.6, 3.6, 4.6 and 5.6. The curve with the largest peak has v = 0.6. 
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Figure 4.4: Various K-distributions for shape parameter v = 1.2 and scale parameter c = 
0.1,0.3,0.5,0.7,0.9 and 1.1. Each curve is normalized to its mean. All curves are identical. 
This is why c is called a scale parameter. 
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Ncmnalizcd K Distribution Functions Versus Shape Pmamcier 
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Figure 4.5: Various K-distributions for scale parameter c = 1.0 and shape parameter v = 
0.6, 1.6, 2.6, 3.6, 4.6 and 5.6. Eacb curve is normalized to its mean. The curve with the 
longest tail has v = 0.6. 
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Figure 4.6: A family ofK-distributions with shape parameters varying from v = 0.20, ••. , oo. 
Each curve is normalized to its mean. The probality a.xis is logarithmic to accomodate the 
large dynamic range of probalities encountered. The curves with shape parameters 0.2, 1.0, 
and oo are labelled. Note: there is a singularity at the origin for v < 0.5. 
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take ii::\o ac~ount the correlation properties of sea echos. This ability is a result of the fact 

that the K-iistribution is a compound distribution, made up of a Rayleigh, speckle-like 

component p(xly), whose mean value y is the result of a modulating underlying (swell) 

component that has a root-Gamma distribution. That is, 

p(xly) = 
1t'X ,rz2 
2y2 exp( - 4y2) (4.11) 

and 
2b2•y2v-l 

p(y) = r(v) -exp(-b2y2), ( 4.12) 

where both x and y are bounded by O:,; x,y:,; oo. Now the amplitude distribution, p(x) as 

described in Equation 4.8 is derived from Equation 4.11 and Equation 4.12 by the relation, 

p(x) = la"" p(xly)p(y)dy. (4.13) 

The correlation properties are accounted for because each component can have a differ­

ent decorrelation time. For examp~e, the Rayleigh component of X-band sea clutter typ­

ically decorrelates in about lOms, whereas the underlying modulating component that is 

attributed to the underlying sea swell can have decorrelation times on the ord~r of several 

seconds. Watts [46, 47] evaluates the predicted radar detection performance under several 

target models, and compares these to the performance obtained when the correlation prop­

erties of sea clutter are ignored. The effect of ignoring the clutter correlatic,n properties is 

significant. In the next section, we consider real sea clutter measurements made with the 

IPIX radar. 

4.3.2 Sea Clutter Empirical Amplitude Distributions 

It is well known that the K-distribution introduced b; Jakeman and Pusey [45, 50] and 

the compound form of the K-distribution developed by Ward [6] provide a good model 

for the amplitude statistics of sea clutter. This distribution has been successfully applied 

to real, high resolution radar data for linear polarization [6, 49, 46, 51, 52]. However, 
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no experimental results appear to have been reported for the cross-polarized channel. In 

thls section, amplitude statistics of sea clutter for both the like-polarized (HH and VV) 

and cross-polarized (HV and VH) channels are presented. Furthermore, we show that the 

K-distribution provides an accurate mathematical description of our measurements. 

The data presented in thls section were obtained during field trials conducted with 

the IPIX radar at a site located in Cape Bonavista, Newfoundland in June 1989. The 

parameters for most of the data sets are described in Tabie 3.1 and Table 3.2. Some data 

that we present in thls section are not described in Table 3.1 and Table 3.2 and so their 

parameters will be given where appropriate. We begin by first examining the compound 

nature of our clutter data; then we analyze the amplitude statistics under a variety of 

,onditions. 

The data sets that we have analyzed indicate a compound clutter model such as 

the model the K-distribution provides, and we now present some typical results. The data 

set that is presented was collected with a PRF of 2kHz and a pulse width of 200 ns. The 

transmit polarization was horizontal, and a range window of 160 m (33 samples) was used. 

There were gale conditions with winds of 30 knots from a bearing of 120 degrees and the 

swell was from the same direction. The significant wave height was about 3 m and the 

wave period was about 7 s, as reported from the waverider. The antenna was fixed at 

120 degrees so the aspect was upswell. About 6dB of RF attenuation was applied to the 

horizontal receive channel to avoid significant saturation, while maintaining sensitivity for 

the cross-polarized HV channel. Analysis has indicated the underlying swell component 

to be strongly correlated over a period of 0.25s. Therefore amplitude histograms were 

performed at several range positions over the 33-sample range window. For each range 

position 500 sweeps (0.25 seconds at 2kHz PRF) were taken to calculate the amplitude 

histo~Tam. The mean, and normalized mements M2 , M3 , and M4 were calculated for each 

range position; the results are presented in Table 4.1. Both like-polarized HH and cross­

polarized HV data are presented. The theoretical normalized amplitude moments for a 
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File Mean M2 = 1.27 M3 = 1.91 M4 = 3.24 
HH HV HH HV HH HV HH HV 

B347rl8.dat 12.10 11.57 1.28 1.25 1.93 1.83 3.32 3.02 

B347r21.dat 8.42 10.99 1.27 1.26 1.92 1.84 3.25 2.99 

B347r24.dat 26.06 19.43 1.33 1.31 2.15 2.03 4.00 3.57 

B347r27.dat 23.91 18.23 1.33 1.28 2.18 1.94 4.12 3.27 

B34 7r30.dat 13.34 11.72 1.30 1.28 2.04 1.95 3.67 3.36 
B347r33.dat 6.28 9.05 1.35 1.28 2.24 1.94 4.36 3.27 
B347r37.dat 10.58 11.99 1.28 1.31 1.97 2.10 3.43 4.02 

B34 7r40.dat 38.66 30.24 1.27 1.33 1.89 2.17 3.18 4.09 

Table 4.1: Table of mean amplitude values and normalized amplitude moments calculated 
from sea clutter data by including only 0.25 seconds worth of data. These moments are 
calculated for 8 different range positions spanning a distance of about 110 m. This data 
set serves to expose the Rayleigh speckle component of sea clutter that is present at every 
range position, but the mean of the distribution varies as a function of range. Theoretical 
values for Rayleigh moments are indicated in the Table for comparison. 

Rayleigh distribution are also shown for reference. The results indicate that the speckle 

component is indeed Rayleigh distributed, and that the underlying component, indicated 

by the mean, varies with range. 

For the same data set, the underlyin~ component was calculated following the pro­

cedure given in [52]. A window of 500 sweeps were averaged in amplitude to give an estimate 

of the underlying component. This procedure was continued throughout the data set, re­

sulting in 160 averaged sweeps of the underlying component. This represents a duration 

of 40 s. The resulting like- and cross-polarized images are presented in Figure 4.7. The 

strongly correlated temporal/spatial swell structure of the ocean surface is evident. The 

data are scaled to span the grey-scale code (0-255). The image indicates a wave period of 

about 7.5 seconds which is in agreement with that reported from the nondirectional wa­

verider that was deployed. The white areas of the image indicate regions of high radar 

reflectivity, while the black areas indicate regions of little or no reflectivity. 

It is worth while mentioning tha.t the sea. surface is not always as structured as 
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Figure 4.7: The underlying, mean, sea clutter backscatter of file B347. The figures show 
the well devoloped swell structure of the sea. (a) The HH polarization returns. (b) The 
HV polarization returns. 



indicated in Figure 4.i. The structured sea surface shown in Figure 4.i is the result of 

strong winds persisting for many hours over a long fetch of the ocean. The sea surface is 

often confused, and the well developed crests and troughs are not apparent. For example, 

consider the data shown in Figure 4.8. These images were created in an identical fashion 

to those in Figure 4.7, from another sea clutter data set. The point to be aware ofis that 

although there is no well developed structure visible here, the clutter is still correlated in 

time for periods on the order of seconds. 

These images emphasize the point that temporal and spatial correlations must 

be taken into account in order to properly determine the performance of a given signal 

processor. Now that the compound nature of sea clutter backscatter has been verified with 

this data, a detailed look at the overall statistical behaviour of the clutter amplitudes is in 

order. These results are now presented. 

We consider amplitude statistics of sea clutter as a function of polarization, pulse 

width and look-direction. As a reference for the measurements taken, data sets were col­

lected with the tra,·elling-wave tube (TWT) amplifier disabled. In this way, the statistics of 

front-end receiver noise can be characterized separately from sea clutter and target returns. 

These noise-only files allow for an accurate measurement of receiver noise levels, which can 

be used to correct for noise contaminating sea clutter dat:3- sets. The amplitude distribution 

of a noise-only data set is shown in Figure 4.9. The statistics are distinctively Rayleigh, 

indicating the Gaussian nature of receiver noise in both the inphase and quadrature chan­

nels. 

To characterize sea clutter, measurements pertaining to three different pulse widths, 

namely 32ns, 200ns and lOOOns, at bearings of 30, 75, and 120 degrees were taken and the 

PRF was fixed at 200Hz. For each case, vertical and horizontal polarizations were transmit­

ted separately, while both vertical and horizontal polarizations were received simultaneously. 

In this way, data were collected for both like (HH and VV) and cross (HV and VH) polar­

izations. The sea clutter data described herein was collected at a range of 6 km, in 2.5 to 
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Figure 4.8: The underlying, mean, sea clutter backstatter of file B319. The figures show 
a choppy structure of the sea surface. (a) The HH polarization returns. (b) The HY 
polarization returns. 
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3 metre seas. The wind was typically 2-t to 26 knots from the north (0 degrees) and the 

swell direction was at approximately 110-120 degrees. This set of experiments results in 2-t 

like-polarized and 24 cross-polarized combinations; the data sets are described in detail in 

Tables 3.1 and 3.2. 

Figure 4.10 shows the empirical distributions of one of these data sets. Rather 

than showing the empirical distributions associated with the other combinations described 

above, we take a more rigorous approach here by doing a moment analysis of the data in 

each data set. This is the same procedure done in [14] and similar to that done in [51]. If 

desired, the empirical distributions for each data set can be found in [13]. A treatment cf 

the confidence on the empirical distributions that we derive is given in Appendix C. 

The data sets are subdivided into two groups, those that are like-polarized and 

those that are cross-polarized. Receiver noise contaminates all data. The like-polarized 

data have a typical CNR (clutter to noise ratio) of about 12 dB. The cross-polarized data 

have a much lower CNR. A typical value is 6dB. Although the like-polarized data have 

reasonably high CNR, the cross-polarized data are contaminated substantially by noise 

due to the reduced clutter level. For each like-polarized data set, we compute the second, 

third, and fourth normalized moments, ,Ul,MJ and M4 , as given in Equation 4.10. The 

third and fourth normalized moments are shown in Figure 4.11, plotted against the second 

normalized moment. Theoretical third and fourth normalized K moments are also given 

for comparison, along with the theoretical lognormal moments. The leftmost data moment 

pair with a second nurmalized moment of 1.27 corresponds to the data. from the noise file 

in Figure 4.9. Therefore, this data moment pair corresponds to the normalized Rayleigh 

moments (v = oo). The spikier the clutter, the further along the second moment axis the 

data. moment pairs (third and fourth normalized moments) will fall. The lognorma.1 curves 

are given for reference since !ognormal probability density functions have been used in the 

literature to describe spiky sea. clutter. The like-polarized data. sets show good agreement 

with the K-distribution. 
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Figure 4.10: A typical empirical amplitude distribution of sea. clutter. Pola.riza.tions VV 
a.nd VH a.re ahown. The VV da.ta. a.re indicated with a.n •x• a.nd the VH da.ta. a.re indicated 
with a.n 'o'. 
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3.5 

Figure 4.11: Third and fourth normalized amplitude moments for sea. clutter da.ta. plotted 
a.ga.inat the second normalized moment. All da.ta. on this graph a.re for HH and VV polar­
izations. The theoretical noiseless K-moments and lognormal moments a.re also shown for 
reference. Third da.ta. moments a.re indicated with an 'x' and fourth moments a.re indicated 
with an 'o'. 
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The normalized cross-polarized moments are shown in Figure 4.12. For this case, 

the sixth normalized amplitude moments are also given. The effect of receiver noise contam­

ination is evident due to the low CNR.. As described in reference [51], low CNR measure­

ments result with the moments given by Equation 4.10 falling between the K and lognormal 

curves. In [46], Watts derives the K plus noise distribution, and also provides the following 

unnormalized moments for this case: 

m2 = 2 4v (4.14) 21T + b2 ,r 

m4 = 8 4 321T2v 32v(v+ 1) 
( 4.15) IT+~+ -2b4 

,r " 

48 6 2881T4v 5i61TZv(v+l) 384v(v+l)(v+2) 
(4.16) ms = IT + b2 + 2b4 + 3b6 ii' ;r 1r 

These equations can ba manipulated to give the following: 

v = 18( m4 - 2m~)3 (4.17) 

and 

,r( m 2 - 21T2)" 
b2 = 4v 

(4.18) 

The cross-polarized data moments m2 , m4, and ms are calculated. Then the K plus noise 

shape parameter vis calculated according to Equation 4.17, along with the scale parameter 

b from Equation 4.18. The noise-only file described earlier was used to estimate the noise 

power level 21T2, where 1T2 is the noise power level in each of the inphase and quadrature 

channels. Finally, the theoretical moment m6 is calculated according to Equation 4.16 

and compared to the moment ms determined from the data. These values are plotted in 

Figure 4.13; they indicate that the cross-polarized measurements agree reasonably well with 

a K plus noise clutter model. 

In order to determine relationships with respect to pulse width, look direction and 

polarization, the shape parameter is calculated for both the like and cross-polarized data 

sets according to Equation 4.17. These shape parameters are listed in Table 4.2. 



86 

Normalized amp Ii rude moments of K-distnoutions 
!06~~~~~.--~~~---,.--~~~~~~~~~~~~~~ 

10' 

104 
K-6lh 

!03 

102 

101 

.......... ~:?111-· .... 
. "i • 

K-3rd 

The second nonnalized momen1 

Figure 4.12: Third and fourth and sixth normalized amplitude moments for sea clutter 
data plotted against the second normalized moment. All :lata on this graph are for HV and 
VH polarizations. The theoretical noiseless K-moments and lognormal moments are also 
shown for reference. Third data moments are indicated with an 'x', the fourth moments 
are indicated with an 'o', and the sixth moments are indicated with a'*'. 
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File Pulse Azimuth Shape Parameters Mean Amplitude 
Hrx, Vrx Width ns degrees HH vv HV VH HI! vv 
B210, B211 32 30 0.31 0.40 0.12 0.09 17.16 18.57 
B208, B212 32 i5 0.29 0.45 0.09 0.09 15.84 18.95 
B209, B213 32 120 0.18 0.37 0.03 0.01 12.23 16.63 
Bl95, Bl99 200 30 1.06 1.00 0.37 0.36 29.15 28.21 
Bl96, B200 200 15 1.05 0.98 0.67 0.33 28.12 26.78 
Bl97 , Bl!i8 200 120 0.42 0.67 0.78 0.30 18.61 21.30 
B202, B206 1000 30 1.74 2.34 0.61 0.66 :32.62 36.81 
B203, B207 1000 i5 1.53 3.39 0.88 1.20 29.75 36.90 
B204, B205 1000 120 0.59 2.01 0.38 0.70 20.58 30.63 

Table 4.2: This Table presents a summary of the sea clutter shape parameters that were 
determined, and the radn.r parameters corresponding to each. The pulse width, look direc­
tion and polarization configurations for each data set are indicated in the table, along with 
the mean amplitude of the radar return clutter. 

Relationships between the shape parameter v, and the various radar parametera 

such as polarization, pulse width and look direction, are easily seen by studying the results 

in Table 4.2. First, our results indicate that the HH channel is spikier than the VV channel 

as seen by the smaller values for :, in the HH channel. This result is in agreement with 

previous results reported in [20]. Second, our measurements indicate that as the pulse width 

is reduced, the backscatter becomes spikier in nature. Again, this agrees with previously 

published data. Third, the cross-polarized channels HV and VH have similar values of 

shape parameter v as expected by antenna reciprocity, and they tend in general to be 

spikier than the like-polarized data, w!., .. corrected for noise contamination. We point 

out that noise correction was not taken into account for the data sets in [13]. Finally, 

our sea clutter measurements indicate that the backscatter statistics vary as a function of 

the look-direction. Both the local wind direction (0 degrees) and the swell direction (110-

120 degrees) play an imporatant role here. Our strongest returns occur at 30 degrees which 

correspond most closely to an upwind direction. Our spikiest returns occur at 120 degrees 

which correspond most closely to the upswell direction. Again, these results are in agreement 
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with that reported in references [51, 20]. 

It is instructive to compare the database described here (CRL database) with the 

database reported on by Ward, Watts, and Baker (Royal Signals and Radar Establish­

ment,RSRE database) in references [46, 49, 6, 51]. The data published by these researchers, 

as well as the data reported here, support the compound K-distribution model as an accu­

rate representation of sea clutter statistics. Understanding the similarities and differences 

between these two databases allows for a better appreciation of the general applicability of 

the K-distribution for sea clutter data. Perhaps the most notable difference between the 

RSRE and the CRL data.bases is that they represent different sea clutter measurements. 

The databases complement each ,other because they were collected at different times and in 

different locations. Therefore they represent two indeper.dent data.bases of clutter measure­

ments. Furthermore, the manner in which the data were collected is unique. The RSRE 

database were collected using both an airborne and cliff-top, noncoherent radar, whereas 

the CRL database were collected using a cliff-top coherent radar. On the other hand, both 

databases used a. similar operating frequency (9.3 to 10 GHz). 

The radar parameters describing the RSRE and CRL databases are also diverse. For 

example, the RSRE data.base employed a 30 ns pulse width, whereas the CRL measurements 

were obtained using 32 ns, 200 ns and 1001} ns pulse widths. Furthermore, HH, HY, VH and 

VY polarization measurements were included :n both data.bases, although the RSRE cross­

polarized measurements do not appear to have been reported. The antenna. bea.mwidths 

also differ between the two data.bases. RSRE used a 1.2 degree bea.mwidth, while CRL used 

a 2.2 degree beamwidth antenna.. 

Finally, the look-directions, grazing angles and sea states represented in the RSRE 

and CRL data.bases represent a wide range of conditions. The RSRE data.base contains a 

full set of look-directions (360 degree coverage) with respect to wind and swell conditions. 

Also, a large range of grazing angles (0.14 degrees to 10 degrees) are represented. The CRL 

data.base on the other hand is limited to a 130 degree viewing area, and has grazings angles 
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ranging from about 0.1 degrees to 3 degrees. Both databases are representative of a large 

range oi sea states (sea state O to sea state 6). 

It is evident that the two databases described represent a large number of inde­

pendent sea clutter measurements, under a wide range of operating conditions. The K­

distribution has been shown to provide an accurate description of the amplitude statis­

tics of both the RSRE and CRL databases, supporting Lhe general applicability of the 

K-distribution to sea clutter modeling. 

4.3.3 Growler in Clutter Empirical Amplitude Distributions 

In the previous section, we examined sea clutter amplitude statistics and found that the 

K-distribution provides an accurate description of these statistics. In this section, we exam­

ine growler-in-clutter amplitude statistics. In particular, we are interested in determining 

whether the growler-in-clutter statistics are sufficiently different from the sea clutter statis­

tics that reliable detection of growlers in sea clutter would be possible by thresholding the 

returned signal amplitude. 

We begin by examining an amplitude image that contains both a growler and sea 

clutter alone. Consider the images shown in Figure 4.14. The HH, VV, HV, and VH 

amplitudes are shown as a function of time. The growler is located at a range of about 

6.52 km in each image. Most of the time, it is difficult to distinguish the growler amplitude 

from the neighbouring clutter. Figure 4.14 was generated from file B98 and the associated 

radar parameters are given in Table 3.3 and Table 3.4. For identification purposes, we call 

this growler 'Growler-!'. Growler-! was determined to be about 1-2 m high (above the 

water) and about 10 m across. 

The amplitude statistics for Growler-! and neighbouring sea clutter were determined 

empirically in the same manner as was done for the sea clutter data in the last section. For 

these amplitude statistic calculations though, the Growler-! was resampled with a different 

set of radar parameters given by file BlOO in Table 3.1 and Table 3.2. The Growler-! 
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Figure 4.14: Amplitude images (HH, VV, HV, VH) of Growler-1 and sea clutter (B98). 
Growler-1 is located at a range of about 6.52 km. Notice that the strength of the clutter 
returns is comparably strong making the growler difficult to recognize most of the time. 
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amplitude statistics are presented in Figure 4.15 and Figure 4.16. Figure 4.15 gives the 

amplitude statistics for sea clutter near Growler-1, and Figure 4.16 shows the statistics for 

Growler-1 plus sea clutter. 

A second growler was also studied, and we call this growler Growler-2. Growler-2 

was sampled using a vertical polarized transmit wave (VY and VH collected) at a range 

of 4.4km and a bearing of 6i degrees. The winds for this case were from the south at 

20 knots. Growler-2 was determined to be about 2 m high and about 20 m ac:·oss. The 

amplitude statistics for this growler and neighbouring sea clutter are given in Figure 4.17 

and Figure 4.18. The radar parameters associated with Growler-2 are found in Table 3.1 

and Table 3.2 under file 8122. Figure 4.li corresponds to sea clutter data near Growler-2, 

while Figure 4.18 corresponds to the data for Growler-2 plus sea clutter. In both cases, the 

sea had an average height of,1.5 to 2 metres. 

The Growler-1 and Growler-2 data sets serve to illustrate the nature of amplitude 

statistics from growlers. Some discussion is in order. It is important to determine how 

significantly the amplitude statistics change in a sea clutter cell when a growler drifts 

in. It is the difference between the growler statistics and the nearby clutter statistics 

that differentiate the two. Although Growler-1 and Growler-2 have mean amplitudes large 

enough to distinguish them from their sea clutter surroundings, the tails of the amplitude 

distributions of the growlers and those of the sea clutter surroundings are very similar, 

making high false alarm rates probable. To illustrate the point, the probability density 

curves for Growler-1 and Growler-2 are redrawn on linear a.xes in Figure 4.19 and Figure 4.20 

respectively. The cumulative distribution functions are also given in order to show the 

type of performance that can be expected from single-pulse amplitude thresholding in K­

distributed sea clutter. 

For example, the cumulative distribution functions for Growler-1 and its neighbour­

ing clutter shown in Figure 4.19 indicate that while suffering a false a!arm rate of 20 %, a 

detection probability of only 60 % can be achieved in the HH channel. The HV channel 
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Figure 4.15: Amplitude statisitcs (HH a.nd HV) of sea clutter near Growler-1 (BlOO). The 
HH channel is indicate by 'o' a.nd the HV channel is indicated by 'x'. The Rayleigh curve 
(solid) a.nd a K-curve with 11 = 0.25 (dashed) a.re also shown for reference. 
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Figure 4.16: Amplitude statistics (HH a.nd HV) of Growler-1 in sea. clutter (BlOO). The 
HH channel is indicate by 'o' a.nd the HV channel is indicated by 'x'. The Rayleigh curve 
(solid) a.nd a. K-curve with v = 0.25 ( dashed) a.re a.lso shown for reference. 
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Figure 4.17: Amplitude sta.tisitca (VY a.nd VH) of sea. clutter near Growler-2 (Bl22). The 
VH channel is indicate by 'o' a.nd the VY channel is indicated by 'x'. The Rayleigh curve 
(solid) a.nd a. K-curve with v = 0.25 ( dashed) are also shown for reference. 
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Figure 4.18: Amplitude statistics (VV anu VH) of Growler-2 in sea clutter (Bl22}. The 
VH channel is indicate by 'o' and the VV channel is indicated by 'x'. The Rayleigh curve 
(solid} and a K-curve with 11 = 0.25 ( dashed) are also sh.:iwn for reference. 
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Figure 4.19: Amplitude statistics (HH and HV) of Growler-! and neighbouring sea clutter. 
The probability density functions (PDF) as well as the corresponding cumulative density 
functions (CDF) are shown for each channel. The clutter distributions are indicated by 
solid curves and the growler distributions are indicated by dashed curves. The HH channel 
offers greater separation between the growler and sea clutter statistics. (BlOO). 
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Figure 4.20: Amplitude statistics (VV and VH) of Growler-2 and neighbouring sea clutter. 
The probability density functions (PDF) as well as the corresponding cumulative density 
functions (CDF) a.re shown for ea.ch channel. The clutter distributions a.re indicated by 
solid curves and the growler distributions a.re indicated by dashed curves. The VV channel 
offers greater separation between the growler and sea clutter statistics. (B122). 
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performance is far worse. Similar performances are seen for Growler-2 in Figure 4.20. These 

results demonstrate the fact that in spiky clutter such as thls with the presence of low lying 

targets like Growler-I and Growler-2, using a single-pulse amplitude threshold detector re­

sult in hlgh false alarm rates, or alternatively, a desensitized detector. Furthermore, these 

results also indicate that there is no advantage in using the cross-polarized channels for 

small ice tar~-:t detection. In fact, the growlers stand out much more in the like-polarized 

channels than they do in the cross-polarized channels, at least when using only long-term 

amplitude statistics for each channel. 

4.4 Temporal and Spatial Correlations 

Knowledge of the amplitude statistics under 1I0 and H 1 is very important in the evaluation 

of the performance of noncoherent detection strategies. Equally important, however, are 

the spatial and temporal correlations of the data. Knowledge of these second order statistics 

improves our understanding of detector performance, and often provides the basis for new 

detector designs. Correlation properties of sea clutter, for example, allow us to determine 

the frequency of occurence of threshold crossings. If sea clutter was completely uncorrelated 

from sample to sample, t!ien we would not expect a false alarm at a given instant of time 

to be followed by other false alarms in the next few sample times. However, correlated 

sea clutter result in several threshold crossings occuring together. Clearly, correlation in 

space results in false alarm rates that are not independent of position. In situations like 

thls, CFAR processors excel as they try to estimate the local characteristics of the clutter 

in order to adaptively set a threshold. 

Rec,ill in Section 4.3.1, the compound nature of the K-distribution was described. 

In particular, we saw that the two-component densities given in Equation 4.11 and Equa­

tion 4.12 were said to have correlation times that were different. We said that the speckle 

component given by Equation 4.11 typically decorrelates in about 10 ms at X-band. The 
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mean level component described by Equation 4.12 could take several seconds to decorre­

late. We look at sea clutter data collected with the !PIX radar in order to see how well 

our measurements agree with those reported in the literature. We also examine spatial 

correlations of sea clutter, since both spatial and temporal correlations are important for 

CFAR processors. 

Consider the plots given in Figure 4.21. In this figure, we show calculations of the 

temporal and spatial correlations of sea clutter data given in file 8195. The radar parameters 

associated with this file can be found in Table 3.1 and Table 3.2. The correlation estimates 

shown in Figure 4.21 were determined by averaging over the first 10 s of data. The entire 

range swath of 160 m was used for range correlation estimates. 

Figure 4.21 supports the compound clutter model for sea clutter. Two distinct 

correlation times are evident. The fast speckle component described in Equation 4.11 is 

determined to have a correlation time of about 10 ms. This agrees with the results reported 

in [45). Furthermore, the much longer correlation tiir.e of the second component is also 

observed. For a lag of 1 s, this component is still very correlated. This is due to the 

fact that the mean level of the sea is strongly correlated over a period of 1 s. The range 

correlations shown in Figure 4.21 are also interesting. Over a distance of only 30 m (the 

pulse-length), the spatial correlation has dropped to less than 60 %. This indicates that the 

mean level component varies much more quickly in range, than it does in time. 

In Figure 4.22, 60 s of data were averaged in order to estimate temporal lags out 

to 10 s. The temporal lag spacing was chosen to be 50 ms since we are only interested in 

determining the time constant associated with the mea.n level component from this figure. 

From this figure, we see that the correlation of the mea.n level component is very strong 

a.nd persists for several seconds. 

The temporal a.nd spatial correlation results of sea. clutter described here will have 

considerable infiuence on our detection strategies. These will be discussed in detail in 

Chapter 6. 
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Figure 4.21: This figure gives estimates of the temporal and spatial correlation properties 
of sea. clutter (B195). In (a), an onhographic view of the two-dimensional time/range 
correlation of the sea. clutter data is given. In (b ), just the range correlation is shown and 
in (c), just the temporal correlation is shown. 
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Figure 4.22: Thie figure gives estimates of the temporal and spatial correlation properties 
of sea clutter (Bl95). In (a), an orthographic view of the two-dimensional time/range 
correlation of the sea clutter data is given. In (b ), just the range correlation is shown and in 
(c), just the temporal correlation is shown. This figure is intended to emphasize the mean 
level component. Therefore time lags which are large compared to the time constant of the 
speckle component are used. 
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4.5 Summary 

In this chapter, a noncoherent analysis of sea clutter data collected with the !PIX n dar 

was described. We began by considering the radar equation for point targets like growlers 

and dis:ributed targets like sea clutter. This led to the determination of power versus range 

laws and radar cross section calculations, for both target models. Next, we introduced the 

K-distribution as a model suitable for describing the amplitude statistics of sea clutter and 

growler returns. The results on amplitude statistics of sea clutter and growlers may be 

summarized as follows: 

1. The K-distribution is a good model for the amplitude statistics of sea clutter, for both 

the like-polarized and cross-polarized configurations. 

2. The measurements on small ice targets indicate that amplitude alone does not pro­

vide an adequate discriminant for detection in spiky sea clutter, when considering 

only single pulse, fixed threshold processing. Furthermore, the long-term amplitude 

statistics in the cross-polarized channels do not offer any advantage for the detection 

of small ice targets. The like-polarized channels perform much better. 

Finally, the temporal and spatial properties of sea clutter were examined. Again, 

these results support the compound model of sea clutter described by the K-distribution, 

and influence detector design. 

The noncoherent measurements described in this chapter emphasize the chall~nge 

that faces a radar designer when considering the detection of targets whose radar cross 

section is small relative to that of the surrounding clutter, making their presence in a 

radar resolution cell difficult to detect. Although single pulse, fixed threshold amplitude 

detectors are not suitable for the reliable detection of challenging growlers s•1ch as Growler-1 

and Growler-2, other multiple pulse, scan-to-scan type processors may perform better, since 

the sea variation is usually greater than the target variations. These and other processing 

structures such as CFAR processors deserve attention as they may provide a benchmark for 
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comparison to higher dimensional radar signal processors. Higher dimensional radar signal 

processors are considered in the next chapter. 



Chapter 5 

Coherent Analysis of Sea Clutter 

and Growler Data 

5.1 Introduction 

In the last chapter, we focussed on the noncoherent properties of sea clutter and growler 

data. in both the like-polarized and cross-polarized channels. We sa.w that the cross-polarized 

channels did not offer any increased separation between growler and sea. clutter amplitude 

statistics. Studies presently being done a.t the CRL indicate that when it comes to polariza­

tion processing, the like-polarized channels offer significantly more discrimination between 

growlers and sea. clutter than do the cross-polarized channels. In this chapter, we will fo­

cus on the coherent properties of sea. clutter and growler data.. Because the like-polarized 

channels have shown to be better suited for growler detection in sea. clutter, we will limit 

our coherent processing to the like-polarized channels HH and VY. We are interested in 

determining whether the phase of the received signal in these channels offers improvements 

for the detection of growlers in sea. clutter. As opposed to the one-dimensional processing 

that was described in Chapter 4, in this chapter we will be performing three-dimensional 

processing. The three dimensions we make use of are the I and Q or amplitude and phase 

105 
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dimensions, as well as the polarization dimension. 

A natural place to begin a coherent analysis is with the characterization of the 

phase statistics. We saw in the last chapter that the amplitude statistics of sea clutter 

are K-distributed. We shall see that the pha!?e statistics are uniformly distributed. Then 

we will proceed by examining the time-varying spectra of growlers in sea clutter. We will 

describe our discovery of the winking phenomenon which has already been reported in the 

literature [7, 8]. Then we will examine in some detail characteristics of Doppler spectra of 

sea clutter and growlers based upon the processing of a fraction of a second of data. This 

type of analysis is performed in order to develop medium dwell-time Doppler techniques 

for improved growler detection that will satisfy the six goals outlined on page 11. We 

will develop a couple of different ways to parameterize these Doppler spectra. Finally, we 

will consider ways to use Doppler spectral parameters to estimate growler to clutter ratios 

(GCR) and growler to noise ratios (GNR), as well as radar cross sections (RCS). 

5.2 Phase Statistics of Sea Clutter 

In this section, we are interested in analyzing the phase statistics of sea clutter data, that is, 

the distribution of arctan Q /I. It is generally accepted that the phase statistics of sea clutter 

are uniform, although we have seen no verification of this fact with real measurements in the 

literature. The uniformity of sea clutter statistics seems correct because phase is associated 

with the absolute distance to the sea clutter scatterers from the radar, modulo 1r/>. where 

>. is the operational wavelength. It is reasonable to expect that nature does not favour one 

location for sea clutter scatterers over another, with respect to the radar. However, if care 

is not taken in the estimation of the phase statistics from digital I and Q samples, strange 

looking results can occur. In fact, it is not difficult to end up with a Gaussian looking 

distribution for the phase statistics! 
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Since analog/digital (A/D) converters are used to quantize the I and Q video out­

puts of the radar in order to get the digital I and Q samples, care must be taken that some 

phases are not preferred over others, as a result of the quantization process. For example, 

any de offsets on the I and Q video signals will force the point (0,0) to fall away from the 

center of the square A/D quantization grid causing certain phases to be favoured. A simple 

example will demonstrate the point. Consider the case where the I video signal has a zero 

de offset but the Q video signal has a positive de offset. A pure complex sinusoid with an 

amplitude that just falls short of saturating the I channel A/D converter will necessarily 

cause saturation of the Q channel A/D converter, but only for positive values of the Q video 

signal. If the Q axis is taken as a phase of 90 degrees, then there will be a band of phases 

about 90 degrees that will be impossible to achieve! Thus, the phase statistics will not be 

uniform. Other problems arise due to the quantization effect. Since the quantization of 

the A/D converters is independent of the amplitude of the I or Q video signals, smaller 

amplitudes will result with large quantizations in phase whereas larger amplitudes will have 

a much finer phase quantization. Therefore, it is important to limit the I and Q samples 

that will be used for phase statistic calculations to lie within a circle that is completely 

contained within the square A/D converter quantization grid. 

In Figure 5.1, we show a typical phase distribution obtained from the sea clutter file 

with file ID BlOO. The radar parameters for this data are found in Table 3.1 and Table 3.2. 

Indeed, the phase statistics are uniform. Any deterministic-looking variations in the phase 

statistics are a result of the quantization effects of phase measurements on a square A/D 

converter measurement grid. 

5.3 Time-Varying Spectra of Growlers in Sea Clutter 

During the !PIX field trials, we discovered that the I and Q video returns from growlers 

were distinctively different than those of sea clutter. We have coined the term winking 
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Figure 5.1: Typical phase statistics of sea. clutter da.ta. (BlOO). Both the HH and HV channel 
statistics a.re shown. The HH channel is indicated by 'o' and the HV channel is indicated 
by 'x'. 
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phenomenon to describe this characteristic of growler returns because the I and Q traces 

displayed on an oscilloscope appeared to wink at the location of a growler. That is, the rate 

at which zero crossings would occur in either the I or Q signal varied as a function of time. 

The zero crossing rate would start off slowly at first, increase to a maximum, decrease to 

a minimum rate and then return back to its starting rate. This pattern seemed to repeat 

itself in a somewhat regular pattern, and the period of the cylce was on the order of several 

seconds ( 5-lOs ). The winking phenomenon was also observed for other small floating targets 

and some of these analyses are reported in (7, 8]. 

Recall that a point target moving with a radial velocity of Vr knots (where Vr is 

assumed positive) away from the radar results in a negative Doppler frequency shift on the 

RF carrier. U the target was moving toward the radar so that the velocity is -vr knots, 

a positive frequency shift would result on the RF carrier. This is known as the Doppler 

effect, and the frequency shift is called the Doppler shift. The amount of Doppler shift for 

velocity vr knots is derived in (20] and is given by: 

(5.1) 

where /d is the Doppler shift in Hz. and ,\ is the operational wavelength in metres. The 

wavelength ,\ used in the !PIX radar is 3.19 cm so that a velocity of 1 knot results in a 

Doppler shift of 32.2 Hz. We would expect that sea clutter returns would have a band of 

Doppler shifts due to the fact that ocean waves advance with varying speeds depending 

on their wavelength, and there is a spectrum of wavelengths of ocean waves. We might 

expect the growler on the otherhand to have a smaller band of Doppler shifts due to the 

fact that it is like a point target, and it is rigid. Applying spectrum estimation techniques 

to sea clutter or growler baseband time series would therefore characterize the distribution 

of Doppler shifts. As a. result, a. spectrum estimate formed from a. baseband radar signal 

is often referred to as the Doppler spectrum. Technically speaking, Doppler spectra should 

be refered to as either Doppler Frequency spectra or Doppler Velocity spectra. so that no 
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confusion arises as to which direction the target is moving from the spectra. However, this 

practice is often not used in the literature so that confusion does arise. In order to avoid 

any confusion in this thesis, we will use the convention that negative Doppler frequencies 

and negative Doppler velocities correspond to a target approaching the radar, and positive 

Doppler frequencies and positive Doppler velocities correspond to targets moving away from 

the radar. In this way, any Doppler spectrum can have its a.xis relabelled easily as either 

frequency or velocity without reflecting the spectrum about zero. 

Doppler spectrum analysis should be able to validate the winking phenomenon that 

was observed during the IPIX field trips. However, since the spectrum of the growler returns 

varies in almost a cyclical pattern in a period on the order of 5-10 s, a temporal/spectral 

representation of the growler data is required in order to characterize the data properly. 

Temporal/spectral representations were studied by Nohara and Haykin in (15], and it was 

determined that the spectogram (53] was best suited to characterize radar returns from 

growlers. 

By performing spectograms, time-varying Doppler images are formed from growler 

and sea clutter data. A typical set of images are given in Figure 5.2, Figure 5.3, Figure 5.4, 

and Figure 5.5. The first two images are the result of spectogram processing on file B98, at 

the range cell containing the growler. Recall that the corresponding amplitude image of file 

B98, for the entire range swath, is given in Figure 4.14. Figure 5.4, and Figure 5.5 are the 

result of spectogram processing at a sea clutter range cell in front of ( closer in range than) 

the growler location. The radar parameters associated with file B98 are given in Table 3.3 

and Table 3.4. 

The spectogram images show the first 26 s of data in file B98. Each frequency 

raster was calculated by perforuuug a hamming-windowed FFT (Fast Fourier Transform) 

on 512 time samples. Since the effective PRF for each polarization channel is 1 KHz, each 

frequency raster is determined by processing 0.512 s of data. Adjacent frequency rasters are 

calculated by sliding the 512-point window 50 time samples through the data. The images 
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Growler in Clutter HH Time-Frequency Plot 

~OOHz Frequency +SOOHz 

Figure 5.2: This image shows the time-varying Doppler spectrum of a growler in sea clutter. 
The dark, narrow, continuous line represents the changing growler Doppler shift as a func­
tion of time. The remaining spectral contributions are due to the sea clutter in the growler 
range cell as well as reclliver noise. Black represents large intensity and white represents 
small intensity. A logarithmic scale is used to code the Doppler spectrum value at each 
frequency bin onto the greyscale. This image is from the HH channel in file B98. 
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Growler in Cluuer VV Time-Frequency Plot 

... 
-<500 Hz Frequency +!500Hz 

Figure 5.3: This image shows a typical time-varying Doppler spectrum of a growler in sea 
clutter. The dark, narrow, continuous line represents the changing growler Doppler shift 
as a function of time. The remaining spectral contributions are due to the sea clutter in 
the growler range cell as well as receiver noise. Black represents large intensity and white 
represents small intensity. A logarithmic scale is used to code the Doppler spectrum value 
at each frequency bin onto the greyscale. This image is from the VV channel in file B98. 
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Sea Clutter HH Ti.me-Frequency Plot 

-500Hz Frequency +500Hz 

Figure 5.4: This image shows a typical time-varying Doppler spectrum of sea clutter. The 
darker regions correspond to the significant band of Doppler frequencies associated with 
sea clutter returns. The remaining spectral contributions are due to receiver noise. Bia.ck 
represents large intensity and white represents small intensity. A logarithmic scale is used 
to code the Doppler spectrum value at each frequency bin onto the greyscale. This image 
is from the HH channel in file B98. 
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Sea Clutter VV Time-Frequency Plot 

Frequency +500Hz 

Figure 5.5: This image shows a typical time-varying Doppler spectrum of sea clutter. The 
darker regions correspond to the significant band of Doppler frequencies associated with 
sea clutter returns. The remaining spectral contributions a.re due to receiver noise. Black 
represents large intensity and white represents small intensity. A logarithmic scale is used 
to code the Doppler spectrum value at each frequency bin onto the greyscale. This image 
is from the VV channel in file B98. 
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are greyscale coded logarithmically with respect to the magnitude of each FFT bin. The 

darker the color is, the larger the magnitude is. 

By comparing Figure 5.2 and Figure 5.3 with Figure 5.4 and Figure 5.5 respectively, 

one can immediately see that the winking phenomenon has been captured by these images. 

The sea clutter Doppler spectra are fairly wideband in the sense that there is significant 

clutter power across a frequency band of about 100 Hz which for this data set is centered 

at about -100 Hz. The result of a growler in the sea clutter cell is quite dramatic as shown 

by the dark, narrow, snakelike line that runs down the images in Figure 5.2 and Figure 5.3, 

centered at approximately -30 Hz. This snakelike contribution from the growler returns 

represents the winking phenomenon. The growler is moving at mean translational velocity 

of about 1 knot towards the radar, however its velocity accelerates and decelerates in a 

cyclical fashion, causing a. cyclical variation in the instantaneous Doppler frequency. It was 

this cyclical behaviour in the instantaneous velocity of the growler that ca.used the I and Q 

video signals to wink as described above. 

One thing that is obvious in comparing the Doppler spectra. images shown here with 

the corresponding amplitude images given in Figure 4.14, is the much larger separation that 

exists between the growler data. and clutter data. when spectrogram processing is used. This 

improvement is a. direct result of the winking phenomenon and has prompted the study of 

long dwell-time Doppler techniques a.t the CRL, as described in Chapter 1. In the next 

section, we will examine the underlying physics responsible for the winking phenomenon. 

5.3.1 Dynamic Modeling of Growler Motion 

The winking phenomenon described in the last section is very important for improving the 

detection performance of growlers in sea. clutter. Most of our effort concerns the exploitation 

of this phenomenon. It is critical that we a.re able to justify the presence of the winking 

phenomenon because our measurements represent only a. subset of the possible sea. state 

and growler combinations. In this section, we will examine the ·~derlying dynamics of the 
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problem in order to explain the winking phenomenon. Since Doppler processing describes 

the radial motion of a target under examination, we will develop the equations that describe 

the motion of a floating target in the ocean. Clearly this will involve the developement of 

wave and particle dynamic models. 

Many wave theories exist as a result of assumptions made in the solution of funda­

mental differential equations that govern the motion of water particles and hence, waves. 

We begin by examining the basics that are fundamental to any wave theory, and then we 

describe simplifications that C'in be made which are suitable for our problem. Our develop­

ment follows those given in (54, 55]. Most wave theories are based on a few basic parameters: 

water depth d, peak to peak wave height H, and wave period T. A flat bottom is assumed. 

If the wavelength of the wave is .\, and the perfod T is the time for the crest of the wave to 

travel a distance of.\, then the wave velocity is given by Cph = .\/T. The wave velocity is 

often called the phase velocity or celerity. Now, assuming that the water is incompressible, 

the conservation of volume results in a continuity differential equation given by 

(5.2) 

where u, v, and w are the three components of a fluid particle velocity in the rectangular 

Cartesian coordinate system spanned by (x, y, z). The origin of the coordinate system is at 

the still water level, the x direction is the direction of wave propagation, and the y direction 

represents the height of the flui<I. particle. Wave theories usually assume a wave model in 

the two dimensions x and y. It is assumed that the wave height is independent of the z 

direction. Assuming a sinusoidal waveshape, a single wave is therefore described by the 

equation 

h(x, t) = Acos(kx -wt), (5.3) 

where h(x, t) is the height of the wave at position x and time t, k = 2ir / .\ is the spatial 

wavenumber, and w = 2ir /Tis the temporal frequency of the wave. 

If the water particles are purely translational (no rotation), then a velocity potential 
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function can be shown to exist (54] which satisfies the relation, 

v = -v4? (5.4) 

where V is the velocity vector and 41 is the velocity potential function. Substitution of 

Equation 5.4 into Equation 5.2 results in a new continuity equation given by 

(5.5) 

This equation is known as Laplace's equation and its solution describes the kinematics of 

wave particles (velocity and acceleration). 

As well as the kinematics, the kinetics (pressure and force) of wave particles are 

also required. Beginning with the unsteady Navier-Stokes equation for irrotational flow, 

the Bernoulli equation is derived and is given by 

(5.6) 

where p is the pressure, g is the acceleration due to gravity, p is the mass density of the 

wave, y is the vertical coordinate, and C is a constant. 

Wave theories are derived by solving the Laplace and Bernoulli equations for par­

ticular boundary conditions and simplifying assumptions. Two boundary conditions of 

particular importance assume that a particle of water lying on the surface at some time will 

continue to remain there, and that the atmospheric pressure outside the fluid is constant. 

These boundary conditions constrain the Bernoulli equation and are called the free surface 

boundary conditions. The Bernoulli equation is nonlinear and therefore satisfying the free 

surface boundary conditions is difficult, since the surface is continually changing. An ap­

proximation to this problem is achieved by linearizing the free surface boundary conditions 

so that they are satisfied only at the mean water level. In order for this linearization to be 

valid, it is assumed that the wave height is small with respect to >. or d. 

The wave theory that results from this assumption and simplification is appropri­

ately called the Small Amplitude Wave Theory or the Linear Airy Wave Theory ( also called 
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Sinusoidal Wave Theory) and it is perhaps the most useful theory available today. It gives 

solutions to the Laplace and Bernoulli equations fo, . he wave model described in Equa­

tion 5.3. These solutions describe the horizontal and vertical velocities, u and v, in the z 

and y directions respectively. With the deep water assumption and position z = O, these 

equations simplify to: 

u(t) = Aw cos(wt) 

v(t) = -Awsin(wt). (5.i) 

Furthermore, the Linear Airy Wave Theory gives a relationship between the temporal fre­

quency w and the spatial wavenumber k. That is, 

w2 = gk. (5.8) 

This equation is known as the Dispersion Relation. 

Equation 5. 7 describes the velocity of a water particle at a particular range, as 

a function of time. These equations describe a cyclical pattern that the water particle 

follows as the energy of a wave passes through the particle. Tank studies have verified this 

cyclical motion that water particles undergo. Furthermore, tank st'ldies have shown that 

floating ice targets such as growlers undergo the same particle motions, so long as their 

size is sma.11 ( < ..\/13) compared to the wavelength of the driving wave [56]. Therefore, 

Equation 5. 7 is suitable for describing the kinematics of growlers in the ocean for a single 

wave as described in Equation 5.3. If the sea could be described by a single wave, Doppler 

processing would therefore show a sinusoidal frequency variation as a function of time, for 

a growler floating on a wave that is travelling in the direction of the radar. For sma.11 

grazing angles, the frequency variation would follow u(t) in Equation 5.7. The period of 

this frequency variation is therefore controlled by the wave period T. In a very coarse sense, 

the development that we have described thus far, models the winking phenomenon. The 

dynamic model of the growler motion can be improved upon significantly by :,sing a more 

realistic wave model. 
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The wave model given in Equation 5.3 is for a single wave description of the sea. 

In reality, the sea surface is made up of a continuum of waves of various wavelengths. 

Assuming a linear medium, the growler motion will be the result of a superposition of the 

motion induced by each wave. Therefore, accurate modeling of growler motion requires a 

good model for the distribution of waves present in the sea. A maximum wavelength can 

be supported in a given sea, beyond which breaking waves ,·esult. In addition, a continuum 

of smaller and smaller waves exist and their relative power typically drops off at a rate of 

w-5 with respect to their frequency w. 

Many mathematical models have been proposed in order to describe the wave spec­

trum of the sea. These models are usually based on fetch, wind and wave height parameters. 

The most common single-parameter spectrum in use today is the Pierson-Moskowitz (PM) 

model which is based on wave height [57). This model is given by 

(5.9) 

where the peak of the spectrum occurs at w0 and a = 0.0081. The frequency w0 is related 

to the significant wave height H, by 

w~ = 0.16lg / H,. 

Now, extending our wave model to include M wave scales, we have 

M 

h(x, t) = I: A;cos(k;x - w;t + 9;) 
i=l 

(5.10) 

(5.11) 

where k; and w; are the wavenumber and frequency of the i1h wave in our model, and A; 

and 9; are the amplitude and phase of the i1h wave. By the principle of superposition ( valid 

for linear wave model), the horizontal velocity of this model at x = 0 is given by 

M 
u(t) = I:; A;w; cos(w;t + 9;). (5.12) 

i=l 

We should emphasize that A; and 9; are random variables since the sea surface itself is 

random. The PM spectrum given in Equation 5.9 can be used to specify the expected value 
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of A; for each w;. In order to create a typical sample function of u(t), the PM spectrum 

is discretized into M frequency bins centered on frequencies w;. The area under S(w) in 

each of these bins specifies the expectation of the power, P;, associated with each of the M 

waves in Equation 5.11 and Equation 5.12. A sample value for A; is obtained by drawing an 

independent sample, p;, from a zero-mean Gaussian process with variance P; an assigning 

A; = p;. The random variables 9; are selected independently from a uniform distribution 

on 2ir. Realizations of u(t) determined by the procedure just described result in time­

varying velocity functions that are very similar to the time-varying Doppler characteristics 

of growlers that we have measured. 

In this section, we have shown that the win!..-ing phenomenon is the result of the 

kinematics associated with small floating bodies in water waves. This is very exciting 

for a couple of reasons. First, it validates our measurements of the time-varying Doppler 

signatures of growlers in sea clutter, allowing for realistic conclusions to be made based 

on the measured data. Second, it allows us to model and simulate growler returns under 

conditions for which there is a lack of real measurements. 

5.4 Doppler Spectrum Estimates of Sea Clutter Returns 

In Section 5.3, we saw that the winking phenomenon associated with the growler returns was 

captured by spectrogram processing of the data. Having spectogram images like those given 

in Figure 5.2,Figure 5.3, Figure 5.4 and Figure 5.5 made it quite easy to distinguish be(ween 

clutter cells and growler cells. However, we are concerned in this thesis in distinguishing 

between the two using only a fraction of a second of data. This amounts to making a decision 

based upon a single raster in the spectrogram images. Each of these rasters corresponds to 

a. medium dwell-time Doppler spectrum estimate. In this section, we examine sea. clutter 

Doppler spectra. in detail and develop models to describe a typical clutter spectrum estimate. 

These models allow us to cha.ra.cterize the medium dwell-time Doppler spectra of sea clutter 
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returns with just a few parameters. 

5.4.1 Nonparametric Spectrum Estimators 

Sea clutter data collected with the !PIX radar have been analyzed in the Doppler domain. 

The data files that were used for Doppler processing are described in Table 3.3 and Table 3.4. 

Typical Doppler spectra of sea clutter data are shown in Figure 5.6. There are three different 

types of spectra that are typical of sea clutter returns. The first and most common spectrum 

is bell-shaped and fairly broadband with the base spanning several tens of Hz. The second 

case occurs less frequently, but still is common. In this case, the spectrum looks bell-shaped 

as well but much narrower in width (less than 10 Hz). Finally, there often appears to be 

little or no return from the clutter. The Doppler spectrum estimate seems to model just 

the receiver noise with a small amount of additive dutter. 

The spectrum estimates shown in Figure 5.6 are nonparametric in that no model is 

assumed for the spectrum. Although this type of analysis is useful to study the data with, 

it does not help in reducing the dimensionality of the detection problem, or in describing 

the features of the spectra that may be of interest. For example, it is often of interest to 

determine the mean velocity and the spectral spread of the velocities of clutter. In fact, these 

parameters may be of direct value to oceanographers and meteorologists. We too are very 

interested in these parameters because they describe the motion of clutter which is quite 

different from the characteristic motion of growlers described by the winking phenomenon. 

Therefore, we might expect these parameters to provide the basis for improved detection 

performance. 

We consider a few different approaches in order to estimate parameters such as 

mean Doppler frequency (velocity) and Doppler spectral spread from clutter data. In the 

first method, we borrow classical results from probability theory. The mean frequency and 

spectral spread parameters mathematically correspond to the first and second normalized 

moments oi the Doppler spectrum function. If m,. is the n1h moment of the Doppler 
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Figure 5.6: This figure shows typical Doppler spectrum estimates of sea clutter based on 
Fourier analysis of about 0.5 s of data. Most of the time, clutter spectra appear like that 
in (a), bell-shaped with a. fairly broad base (tens of Hz). Often, clutter spectra. can look 
like the estimate given in (b) which is much more narrowband than the spectrum estimate 
shown in (a.). Often, the CNR is so small that the clutter spectral estimate is hurried in 
noise as shown in ( c). This is usually due to shadowing. The data shown here is from file 
B98. Note: all spectra. have been normalized to a. maximum value of 10. 
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spectrum S(f), then 

ffin = J rsu) dl. ( 5.13) 

Therefore, the mean frequency le is simply given by m1/mo. In a similar manner, the 

central moment definition can be used to calculate the Doppler spectral spread (width) a,: 

2 f(f - lc)2S(f) dl u, = . 
mo 

(5.14) 

In practice, we have to estimate S(f) and therefore Equation 5.13 and Equation 5.14 can be 

used only to estimate the values of le and u J. It has been shown that this direct classical 

approach is inefficient and suffers from noise bias problems [58). We do not use these 

estimators here. 

5.4.2 Pulse Pair Estimators 

Other methods have been prc:oosed that work on the autocorrelation function of the data 

rather than on the spectrum and hence have been called covariance type estimators. Prob­

ably the oldest and most widely used of these methods are the pulse pair estimators intro­

duced by Rummler in 1968 [59, 60, 61]. These estimators have been used widely in pulse 

Doppler weather radars and have been studied and modified by many other researchers 

[58, 62, 63, 64, 65, 66]. The pulse pair estimators were derived by exploiting the rela­

tionship between the probability density function and the moment generating function or 

characteristic function. Applying this relationship gives the following: 

(5.15) 

where mn is the same as defined in Equation 5.13 and R[nl(O) is the n1h derivative of the 

autocorrelation function at lag zero. In order to derive the pulse pair estimators ( as well 

as other poly-pulse type estimators), the autocorrelation function is written in terms of a 

magnitude and phase function and each of these are expanded as a McLauren series. Then 

Equation 5.15 is used to replace the derivatives of the autocorrelation function in each of 
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the series. Finally, the series is truncated and the pulse pair estimators result. The pulse 

pair estimators for mean frequency and spectral width of sample data a.re given by 

' = (2r.T J-1 arctan [lm~(T,)] ,c • ReR(T,) 

uj = (V2r.T J-1(1- J~(T,)J(l + SNR-1)1112• 
• R(O) 

( 5.16) 

The units for ic and ifJ a.re Hz, R(T,) is an estimate of the autocorrelation function of the 

sample data at lag T, seconds where T, is the sampling period, and SNR is the signal to 

noise ratio. The SNR can be estimated as (.R(O) - Pn)/ Pn where the noise power Pn must 

be provided or estimated independently. Autocorrelation estimates are calculated from the 

N data samples zk, k = 1, ... , N by using the formula. 

N-m 
R(mT,) = (N - mJ-1 L zizk+m, (5.17) 

k=I 

where only the la.gs m = 0 and m = 1 a.re required to evaluate the pulse pair estimates. 

If the pulse pair estimates are applied to the typical clutter spectra. given in Fig­

ure 5.6, Figure 5. 7 results. Figure 5. 7 indicates that the pulse pair mean frequency estima­

tor is quite good. The spectral width estimator however seems to overestimate the spectral 

width when the clutter is narrowband. The dependence of the accuracy of the pulse pair 

spectral width estimator on the actual spectral width is discussed in (62]. In order to over­

come this dependence, different poly-pulse estimators should be used for different ranges of 

spectral widths. 

5.4.3 Autoregressive Spectrum Estimators 

The next method that we describe for estimating Doppler spectra. and spectral moments 

involves the use of parameter spectrum estimation techniques. The Autoregressive (AR) 

Model provides the basis for a parametric spectrum estimator that has been used success· 

fully in the past (67] for radar detection and classification. Ha.ykin (9] also describes the 

wide use of the AR. model as a. tool for fitting real time series data. in fields other than 
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Figure 5. 7: This figure shows the results of applying pulse pair estimators on typical sea 
clutter data. The estimated Doppler spectra are shown as well as the pulse pair estimates 
in order to demonstrate the performance of pulse pair estimators. A 'T' bar is drawn on 
each spectrum to indicate the pulse pair mean frequency estimate as well as the spectral 
width estimate. The height of the 'T' bar is arbitrarily set to one third of the maximum 
height. 



126 

radar. We examine the usefulness of this model here for both estimating and modeling the 

Doppler spectra, as well as providing spectral moment estimates. A time series, u(n), is 

said to arise from an AR process of order M if it satisfies the following difference equation: 

u(n) + aiu(n - 1) + · · · + a;.1u(n - M) = v(n) (5.18) 

where ai, a2, .•• , a;,1 are the AR parameters and v( n) is a white noise process with zero 

mean and variance u;. 
Examination of the AR difference equation indicates that an AR process is generated 

by driving white noise through an all-pole filter. The filter imposes correlation on the output 

samples. Therefore, fitting time series data to an AR model is equivalent to designing the 

best all-pole filter of a given order that models the spectrum of the data most closely. The 

derivation of this optimization is described in [9]. The solution of the AR parameters is 

given by the matrix equation 

where the AR parameters are given by 

aH = [ai,a;, ... ,aM), 

the correlation matrix R is given by 

R= 

r(O) 

r(-1) 

r(l) 

r(O) 

r(M -1) 

r(M - 2) 

r(-M+l) r(-M+2) r(O) 

and the correlation vector r is given by 

rT = [r(-l),r(-2),···,r(-M)]. 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

These equations are known as the Yule-Walker equations and are used extensively in time 

series analysis. In practice, the autocorrelation function values r( k) are not known and need 
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to be estimated for lags 0, 1, ... , M. These estimates can be made using Equation 5.17. The 

negative lags can be calculated by r(-k) = r"(k). 

Once the AR parameters have been calculated by Equation 5.19, the AR spectrum 

estimate can be computed using the following equation: 

where -ir :5 w :5 ,r, and 

S(w) = 
a2 v 

M 

(5.23) 

a; = r(O) + L akr(k). (5.24) 
k=l 

We will now apply AR spectrum estimation to the typical sea clutter data already 

presented in Figure 5.6. We use the Yule-Walker equations to calculate the parameters of 

an AR model of order six, for each of the time series that were used in th.i: generation of 

Figure 5.6. (A sixth order AR model was determined to be suitable empirically). Then 

the AR spectrum estimates are evaluated and displayed along with the Fourier spectrum 

estimates. These spectra are shown in Figure 5.8. Figure 5.8 shows that the AR model is 

capable of tracking the variations in clutter spectra that are indicated by the nonparametric 

Fourier estimates. 

In order to use the AR model to provide spectral moment estimates, the denom­

inator in Equation 5.23 needs to be factorized to solve for the M poles that govern the 

AR all-pole transfer function. These M poles can then be plotted within the unit circle 

in the z-plane (we assume stability). It is easy to show that the AR spectrum described 

by Equation 5.23 has a geometric intrepretation with respect to its poles in the z-plane. 

The unit circle in the z-plane represents the complex frequency axis where one revolution 

around the circle corresponds to w going from -,r to ,r. The AR spectrum is evaluated 

by setting z on the unit circle, and letting it make a single revolution. At each frequency, 

the spectrum is equal to the square of the inverse of the product of the distances from z to 

each pole, normalizing a; to unity. The closer a pole is to the unit circle then, the larger 

will be the peak of the spectrum at the frequency determined by the phase of the pole, and 
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the narrower in width that peak will be. In other words each pole will cause a peak in the 

AR spectrum at the frequency specified by the argument of the pole and with a height and 

width controlled by the magnitude of the pole. In Figure 5.9, we show the AR poles that 

correspond to the spectral plots given in Figure 5.8. 

The argument of the pole with the largest magnitude serves as the mean frequency 

estimate of the clutter Doppler spectra. If we denote the pole closest to the unit circle as 

pei<• where pis the magnitude of the pole, and ef, is the argument of the pole, then the mean 

frequency estimate is given by 

. "' !AR = 2irT, Hz. (5.25) 

An estimate of the spectral spread about the mean frequency can be derived if we assume 

that the other poles are negligible in their contribution to the spectrum near the mean 

frequency. From the geometric arguments given above, S(ef,) o:, 1/(1 - p)2• If we define 

the spectral width as the separation in frequency between the points on either side of the 

maximum, where S(ef,) falls to one half of its maximum value, these points will occur along 

the unit circle a distance 2( 1 - p )2 from the pole. A triangle is formed with indices at the 

origin, the pole, and the each half-power frequency on the unit circle, and all three lengths 

are known ( the third length is of course unity). The angle between the two sides originating 

at the origin represents one half of the spectral width. It can be solved for simply by using 

the Cosine Rule from trigonometry. The solution for this spectral width estimate denoted 

by<iARiS 

2 (4p - (1 + p2
)) 

u AR = 2irT, arccos 2p Hz, (5.26) 

and T. is the sampling period. This relationship is plotted in Figure 5.10. Evaluating 

Equation 5.26 for the limiting case of p = 1 gives a spectral width of O Hz for a 1 kHz 

sampling rate. Equation 5.26 gives a spectral width of 1 kHz (the sampling rate) for 

p = 0.1716. For p < 0.1716, Equation 5.26 no longer provides meaningful estimates as the 

sampling rate is exceeded and the argument of the arccos function has a magnitude greater 

than one. The AR mean frequency and spectral width estimators defined in Equation 5.25 
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Figure 5.9: This figure shows the AR. ( order=6) poles associa.ted with typical sea clutter 
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AR Spectral Width E.ltimal!r versus Pole Magnitude 
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rate or PRF is assumed to be 1 kHz. 
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and Equation 5.26 are used to estimate mean frequency and spectral width for the typical 

clutter spectra given in Figure 5.6. These estimates are indicated in Figure 5.8 by a 'T' 

drawn with a height of 50 % of the peak spectral value. 

5.4.4 Gaussian Spectrum Modeling 

The final method that we consider for modeling the Doppler spectra as well as providing 

spectral moment estimators takes a more direct approach. Since we are after modeling the 

clutter Doppler spectra, as well as making spectral moment estimates, a spectral model 

which incorporates these parameters directly would seem ideal. The Gaussian model is 

parameterized appropriately for our needs as the mean frequency and spectral width are 

two of parameters that define the model. Furthermore, a Gaussian spectral model is jus, ified 

from the form of the typical clutter spectra presented in Figure 5.6. Therefore, we propose 

to model typical sea clutter spectra as having a Gaussian spectral component plus a flat 

component which models the white noise floor of the receiver. The noise floor is estimated 

independently from the data or is provided, and it is denoted by N 0 • Therefore, our problem 

reduces to fitting a one-Gaussian (lG) spectrum model to the data. Let 5(0) denote 

the Gaussian spectrum model vector, which is an N-vector evaluated a.t the N discrete 

frequencies f = [/1,h, ... ,JNJT· The parameter vector e is given bye= [a1,/1,a1JT 
where 01, /1, and a1 are the amplitude, mean frequency and spectral width respectively of 

the model. Thus, 
-(f1g-J1 )2 

S(®k) = a1e 2-f + N0 (5.27) 

where S(E>k) is the k1h element of S(E>) and fk is the k'h element off, k = 1, ... , N. We 

will assume tha.t we have an estimate of the clutter Doppler spectrum given by S( f), and 

evaluated a.t the same set of discrete frequencies defined a.hove. The squared error between 

our model and the spectrum estimate is 

.(e) = IS(f)- s(e)l2. (5.28) 
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The minimization of Equation 5.28 with respect to the parameter vector El yields 

the parameter estimates. This is a nonlinear, least squares optimization problem and the 

solution is treated in Appendix D. We have applied this optimization to the typical clutter 

data presented in Figure 5.6, and the results are shown in Figure 5.11. The lG spectrum 

model provides a good fit to the clutter spectra, and thus provides good spectral moment 

estimates as well. 

In this section, we have seen that the Gaussian spectral model outperforms the AR 

spectrum model and the pulse-pair model in providing the best estimates of the clutter 

spectral moments. This should not come as a great surprise as the Gaussian model has as 

two of its parameters, the first and second spectral moments. In the next section, we will 

perform a similar analysis on growler spectra. • 

5.5 Doppler Spectrum Estimates of Growler Returns 

In the last section, we exantlned medium dwell-time Doppler spectrum estimates of sea. 

clutter. As well as performing spectrum estimation, we also developed several spectral 

moment estimators. We follow a. very similar procedure in this section, only we focus on 

radar resolution cells that contain growlers. 

Consider the typical growler in sea. clutter Doppler spectrum estimates shown in 

Figure 5.12. Just like sea. clutter, growler spectra. have a. few common forms. The first 

and most common growlet spectrum contains two components, one from the sea. clutter in 

the radar cell, a..1d the other from the growler. We have already seen various forms of the 

clutter component, and these are described in Figure 5.6. The growler component on the 

other hand has a. very narrow spectral width of only a. few Hz ( 4-6). For most of the data. 

sets that we have examined, the amplitude of the clutter component is considerably smaller 

than the amplitude of the growler component, although as we shall see later, the growler 

to clutter ratio is not very large. There are several occasions however when the clutter 
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Figure 5.12: This figure shows typical Doppler spectrum estimates of a. growler in sea. clutter 
based on Fourier analysis of a.bout 0.5 s of da.ta.. Most of the time, growler spectra. a.ppea.r 
like tha.t in (a.), with a. wider bell-shaped component due to the sea. clutter, a.nd a. taller 
narrower bell-shaped component due to the growler. Sometimes, the pea.k of the clutter 
component is larger tha.n tha.t of the growler as shown in (b ). On other occasions, a. growler 
component ma.y not be present a.t all due to shadowing or submersion of the growler as 
shown in pa.rt ( c ). Finally, sometimes the clutter component ca.n be nonexistent as shown 
in ( d). The da.ta. shown here a.re from file B98. 
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component overpowers the growler component, or the growler component vanishes entirely 

due to shadowing or submersion. All of these cases are described in the nonparametric 

spectra presented in Figure 5.12. 

5.5.1 Pulse Pair Estimators 

We apply the same pulse pair estimates described in Equation 5.16 to the typical growler 

spectra given in Figure 5.12. The results of these estimates are shown in Figure 5.13. 

Figure 5.13 indicates the poor performance of the pulse pair estimators in the presence of 

growlers. When both a clutter and growler component are present in the spectra, the pulse 

pair mean frequency estimator tends to give a value somewhere midway between the mean 

values of each of the components. The spectral width estimator tends to overestimate the 

spectral width of either component due to the extended width of the two components. The 

poor performance of the pulse pair estimators is to be expected here because they were 

derived for unimodal spectra. Clearly, we must look at other spectral moment estimators 

for the growler in sea clutter case. 

5.5.2 Autoregressive Spectrum Estimators 

Now we discuss the application of the AR spectra and spectral moment estimates that 

were derived in Section 5.4.3, to the growler in clutter case. For this case, the same Yule. 

Walker equations described in Equation 5.19 are used. Then, the spectrum estimate is 

evaluated by substituting the Ail coefficients into Equation 5.23. Again, by using a sixth 

order AR model, AR spectra are romputed for each of the time series that were used in the 

generation of Figure 5.12. These spectrum estimates are displayed in Figure 5.14, along with 

the nonparametric Fourier spectrum estimates that were given in Figure 5.12. Figure 5.14 

shows that the AR model is capable of tracking the variations in growler spectra that are 

indicated by the nonparametric Fourier estimates. 

In order to use the AR model to provide spectral moment estimates, we fa.ctorize 
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Figure 5.14: This figure shows both AR ( order=6) Doppler spectrum estimates and Fourier 
Doppler spectrum estimates for typical growler data. The Fourier estimates are indicated 
by 'o' and the AR estimates by solid lines. Also shown are AR mean frequency and spectral 
width estimates indicated by a 'T'. The 'T' is drawn at the mean frequency estimate and 
the width of the 'T' is the half-power spectral width estimate. Since in general there are 
two components in the growler spectra, the mean frequency and spectral width estimates 
for both components are shown. 
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the denominator in Equation 5.23, as we did for the clutter-only case, and solve for the M 

poles that govern the AR all-pole transfer function. In Figure 5.15, we show the AR poles 

that correspond to the spectral plots given in Figure 5.14. 

These M poles are plotted within the urut circle in the z-plane. As we saw in 

Section 5.4.3, the closer a pole is to the unit circle, the larger will be the peak of the 

spectrum at the frequency determined by the phase of the pole, and the narrower in width 

that peak will be. Therefore, we identify the pole closest to the unit circle as the growler 

pole, and the pole that is the second closest as the clutter pole. Here we are assuming that 

both a clutter and growler component are present in the spectra. 

Once a clutter pole and growler pole have been identified, the same equations de­

rived in Section 5.4.3 for spectral moment estimation are used with each pole. The AR 

mean frequency and spectral width estimators defined in Equation 5.25 and Equation 5.26 

are used to estimate mean frequency and spectral width for the typical growler spectra 

given in Figure 5.12. These estimates are indicated in Figure 5.14 by a 'T' drawn with a 

height of 50 % of the maximum spectral value. 

5.5.3 Gaussian Spectrum Modeling 

The Gaussian model approach that was described in Section 5.4.4 for modeling sea clutter 

spectra and giving spectral moment estimates can be extended to the growler in sea clutter 

case. Since, for this case, a typical spectra has two bell-shaped components, a two-Gaussian 

(2G) model is used to model the growler-in-clutter spectra. 

Let S(E>) denote the Gaussian spectrum model vector, which is an N-vector evalu­

ated at the N discrete frequencies f = [/1, h, ... , !NJT. The parameter vector 0 is given by 

0 = (ai, /1, 0'1, a2, /2, 0'2JT where a1 and a2, /1 and /2, and 0'1 and 0'2 are the amplitudes, 

mean frequencies and spectral widths respectively of the 2G model. Thus, 

::<f,-,,>,, -cr,-,,>2 
S(E>k) = a1e •-t + a2e •-1 + N. (5.29) 
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Figure 5.15: This figure shows the AR ( order=6) poles associated with typical growler in sea 
clutter data. The pole closest to the unit circle is models the growler spectral component 
and the second closet pole to the unit circle models the clutter spectral components, while 
the other poles a.re mostly modeling noise. 
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where S( ek) is the klh element of S( e) and fk is the k1h element of f, k = 1, ... , N. Like 

before, we assume that we have an estimate of the clutter Doppler spectrum given by S(f), 

and evaluated at the same set of discrete frequencies defined above. The squared error 

between our model and the spectrum estimate is 

e(e) = IS(f) - sceJ1 2
• (5.30) 

The minimization of Equation 5.30 with respect to the parameter vector e yields 

the parameter estimates. Thls is a nonlinear, least squares optimization problem and the 

solution is treater. in Appendix D. We have applied thls optimization to the typical growler 

data presented in Figure 5.12, and the results are shown in Figure 5.16. The Gaussian 

spectrum model provides a good fit to the growler in sea clutter spectra, and thus provides 

good spectral moment estimates as well. 

5.6 Spectral Moment Data for Sea Clutter and Growler 

In Section 5.4 and Section 5.5 several estimators were derived for evaluating sea clutter 

and growler Doppler spectra, as well as their spectral moments. The pulse pair estimates, 

although they work reasonably well for mean-frequency estimation in clutter-only, they 

do not perform well for spectral width estimation or for growler in sea clutter data. The 

AR mean frequency and spectral width estimators work reasonably well in hlgh growler to 

clutter ratio environments; however, they lose track easily when the growler component is 

weak. Thls is easily seen by way of an example. If the AR model is used to parameterize the 

spectra shown in the spectrogram image in Figure 5.2 on a raster by raster basis, then the 

AR mean frequency and spectral width estimates can be plotted for each raster as shown 

in Figure 5.17. Examination of Figure 5.17 shows that the AR estimator loses the growler 

track several times. Thls is due to the coupling between power and spectral width in the 

AR spectral width estimator. When the growler component is small relative to the clutter 

spectral component, the AR estimator tracks the clutter instead of the growler. Comparing 
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Figure 5.16: This figure shows Gaussian spectrum models fitted to the Fourier Doppler 
spectrum estimates for typical growler in sea cluttar data. The Fourier estimates are indi­
cated by 'o' and the fitted Gaussian models by solid lines. The first and second spectral 
moments are given by the mean and standard deviation parameters of the Gaussian models. 
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Figure 5.17: This figure shows the AR mean frequency and spectral width estimates for 
the growler spectogram shown in Figure 5.2. The upper graph shows the mean frequency 
estimates as a function of time and the lower curve gives the corresponding spectral width 
estimates. The AR mean frequency estimator loses track when the growler spectral com­
ponent is small relative to the clutter. At these times, the clutter pole is closer to the unit 
circle and hence the frequency and spectral width of the clutter component is tracked by 
the estimator, rather than those of the growler. 



Figure 5.17 with the growler to clutter ratios shown in Figure 5.22 confirm that the AR 

estimators lose track whenever the growler to clutter ratio is small. 

The Gaussian models on the otherhand perform very well in both clutter-only and 

growler in sea clutter cells. The lG model is used for the clutter-only case and the 2G 

model is used for a growler cell. Clearly, the lG model is just a special case of the 2G 

model, where one of the Gaussian amplitudes is zero. In this section, we will use the 2G 

model to study the spectral moments of growlers and sea clutter in some depth. 

Reconsider the growler call spectrograms shown for the HH and VV channels in 

Figure 5.2 and Figure 5.3 respectively. For the most part, these images show both a clutter 

component as well as growler componei.t in the radar cell. We will use the 2G spectrum 

model to evaluate the spectral moments for each raster shown in the images. Therefore, we 

should be able to quantify and track the variations in mean frequency and spectral width 

of the growler and clutter as a function of time, for both polarizations HH and VV. 

If Figure 5.18 and Figure 5.19, we present the clutter mean frequency and spectral 

width estimates for the HH and VV channel respectively. Figure 5.20 and Figure 5.21 

give the corresponding growler moments. (Note: The 2G model measures amplitude as 

well as mean frequency and spectral width. Sometimes, the growler or clutter component 

is virtually nonexistent in the data due to shadowing and/or submersion. Therefore, if 

the estimated amplitude of either the growler or clutter component is comparable to the 

estimated noise level, the 2G algorithm disregards the estimates. This explains the gaps of 

data points that are seen in Figure 5.18 to Figure 5.21.) 

Several comments are in order. First, we see that the 2G model is capable of pro­

viding good estimates of spectral moments of growler in sea clutter data. Both growler 

components and clutter components are modelled well. Second, the 2G model has success­

fully tracked the mean frequency variation of the growler that describes the winking phe­

nomenon. Third, the small spectral widths of the growler component contrast the larger 

spectral widths associated with the clutter component. This spectral width difference is 
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Figure 5.18: This figure shows mean Doppler frequency and spectral width estimates for 
sea. clutter as a. function of time. A 2G spectrum model was fit to Fourier spectral estimates 
in order to estimate the spectral moments. The upper graph shows the mean frequency 
estimate as a function of time, and the lower graph shows the corresponding spectral width 
estimates. These estimates a.re determined from the HH channel of file B98. 
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Figure 5.19: This figure shows mean Doppler frequency and spectral width estimates for 
sea clutter as a function of time. A 2G spectrum model was fit to Fourier spectral estimates 
in order to estimate the spectral moments. The upper graph shows the mean frequency 
estimate as a function of time, and the lower graph shows the corresponding spectral width 
estimat,?S. These estimates are determined from the VV channel of file 898. 
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Figure 5.20: This figure shows mean Doppler frequency and spectral width estimates for a 
growler as a function of time. A 2G spectrum model was fit to Fourier spectral estimates 
in order to estimate the spectral moments. The upper graph shows the mean frequency 
estimate as a function of time, and the lower graph shows the corresponding spectral width 
estimates. These estimates are determined from the HH channel of file B98. 
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Figure 5.21: This figure shows IDP~n Doppler frequency and spectral width estimates for a 
growler as a function of time. A '.2G spectrum model was fit to Fourier spectral estimates 
in order to estimate the spectral moments. The upper graph shows the mean frequency 
estimate as a function of time, and the lower graph shows the corresponding spectral width 
estimates. These estimates a.re determined from the VV channel of file B98. 
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easily seen in the Figure 5.2 and Figure 5.3. Fourth, the variation in the mean frequency 

estimate of the clutter component is much greater and less deterministic looking than the 

corresponding variation in the mean frequency estimate of the growler component. This 

difference is related to the winking phen.:>menon. Finally, in comparing the HH and VV 

spectral moments of sea clutter given in Figure 5.20 and Figure 5.21, a few relationships 

seem apparent. First, the mean frequency shift in the VV channel is smaller than the cor­

responding shift in the HH channel. Second, the spectral widths associated with the clutter 

component in the VV channel seem to be larger that those in the HH channel. That is, 

although the mean translational velocity of the sea appears to be smaller in the VV chan­

nel, the sea appears to be more confused implying a broader spectral width. These results 

agree with those described in (68]. In Table 5.1, the mean clutter frequency shifts and mean 

clutter spectral widths are given for each of the files that we have analyzed. For all of these 

files, the spectral width estimated in the VV chai,nel exceeds the spectral width estimated 

in the HH channel. However, it is difficult to see a general relationship between the mean 

frequency shifts in the two channels. 

5. 7 Growler and Sea Clutter Power Ratios 

Power ratios of growlers and sea clutter are very important for characterizing the relative 

size of target and clutter. In this section, we calculate these quantities and we provide a 

means to determine absolute powers. 

Three different ratios are important for characterizing the relative power levels of 

target and clutter signals. We consider the growler return to be the desired signal. We 

call the ratio of average growler power to noise power the growler to noise ratio (GNR). 

The ratio of the average clutter power to noise power is called the clutter to noise ratio 

(CNR). Finally, the ratio of the average growler power to average clutter power is called 

the growler to clutter ratio (GCR). We are interested in providing estimates for all of these 
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ID POL CLUTTER MEAN CLUTTER MEAN SPECTRAL 
(h,v) FREQUENCY (Hz) WIDTH (Hz) 

B97 h -100.3 31.5 
B98 h,v -107.1, -79.9 26.1, 37.4 
B99 v -77.6 34.i 
BllO h -86.9 25.4 
Blll v -76.3 30.5 
Bll2 h,v -20.l, -61. 7 21.5, 32.8 
Bll3 h -50.6 21.6 
Bll4 v -38.2 23.5 
Bll5 h,v -14.7, -24.3 13.3, 23.4 
Bl23 h 2.4 9.8 
Bl24 v -3.5 14.9 
Bl25 h,v 5.0, -1. 7 8.9, 14.3 

Table 5.1: This table shows the mean clutter frequency and spectral width estimates for 
eacb of the files that were used in the coherent analysis of sea clutter and growler returns. 
These estimates were calculated from the parameters of a 2G model that was applied to 
estimated spectra of the data. 
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ratios. Clearly, this involves estimating the growler and clutter powers. 

In this chapter, we have examined ways to model the spectra of clutter and growlers 

in sea clutter. One of the benefits of Doppler spectra estimation and modeling is the 

separation of growler and clutter components in the received signal. We have seen that the 

2G model accurately models the growler-in-clutter spectra, and that a separate Gaussian 

component in the model is used to characterize the growler and clutter portions of the 

spectra. If the first Gaussian component is identified with the clutter and its parameters 

are a1, /1, and u1, then the clutter power is given by the area under the Gaussian curve 

which is easily shown to be a1 v'2iru1. Similarly, the growler power is given by a2v'2iru2. If 

the average white noise level is N 0 , and the pulse repetition frequency is denoted as PRF, 

then the following power ratios result: 

CNR 
a1v2'ru1 (5.31) = N0 PRF 

GNR 
a2v2'ru2 (5.32) = N0 PRF 

GCR 
a2u2 (5.33) = a1u1 

Using the 2G model, each raster shown in Figure 5.2 is parameterized and Equa­

tion 5.33 is used to estimate the GCR. These GCR estimates are shown plotted in Fig­

ure 5.22. The histogram of these GCR estimates is also shown in the figure. The average 

GCR is computed to be 7.3 dB for this growler. Similar calculations were carried out for 

each of the files specified in Table 3.3. The GCR for each of these files is given in Table 5.2. 

By malting use of the power ratio calculations described above, it is possible to 

estimate the RCS of growlers and sea clutter. Since the data that we describe in this thesis 

were collected while operating in the linear region of the receiver, we can use the simple 

procedure described in Appendix B, Section B.2, to map the output powers onto the input 

powers. We use an input noise power at the antenna of -92 dBm, as given in Section B.2. 

Therefore, adding the output CNR and GNR to this noise level gives the input clutter 
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Figure 5.22: This figure shows GCR estimates a.s a function of time, ca.Iculated from the 
para.meters of a 2G model applied to growler-in-clutter Fourier spectra.I estimates. In the 
upper graph, the GCR estimate is given a.s a function of time, a.nd in the lower graph, the 
corresponding histogram of the estimates a.re given. These estimates a.re determined from 
the HH channel of file B98. 
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ID GCR POL GROWLER RCS CLUTTER RCS GRAZING ANGLE 
(dB) (h,v) (m2) (dB-m2/m2) (degrees) 

B97 8.9 h 7.05 -41.6 0.188 
B98 7.3,8.8 h,v 6.52.5.40 -38.8,-41.9 0.193 
B99 14.7 v i.i5 -45.9 0.196 

BllO 3.6 h 1.25 -38.0 0.295 
Blll 2.7 v 0.14 -45.5 0.296 
Bll2 18.1,3.9 h,v 2.85,0.17 -45.1,-45.4 0.298,0.300 
Bll3 i.l h 0.36 -45.0 0.304 
Bll-l 14.3 v 1.63 -48.0 0.302 
Bll5 17.2,9.9 h,v 4.92,0.71 -40.3,-4 7 .4 0.301 
Bl23 20.5 h 9.77 -39.6 0.275 
Bl24 10.0 v 0.67 -47.5 0.274 
Bl25 11.9,6.8 h,v 4.72,0.35 -36.4,-46.9 0.272 

Table 5.2: This table shows the GCR, growler RCS, and sea clutter RCS estimates for each 
of the files that were used in the coherent analysis of sea clutter and growler returns. The 
estimates were calculated from the parameters of a 2G model that was applied to estimated 
spectra of the data. 
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power and growler power, respectively. Then Equation 4.6 and Equation 4.5 can be used to 

determine the clutter RCS and growler RCS, respectively. This procedure has been carried 

out with each of the files listed in Table 3.3. The corresponding RCS estimates are given 

in Table 5.2. These data will be called upon in Chapter i when the performan~~ of several 

detectors on these data files are compared. 

5.8 Summary 

In this chapter, we have examined some multidimensional characteristics of sea clutter and 

growler data. In particular, we have focussed on the coherent properties of sea clutter and 

growler radar data received from the HH and VV like-polarized channels. We began by 

examining the time-varying Doppler characteristics of growlers in sea clutter, and were able 

to verify the discovery of the winking phenomenon by generating time-frequency maps of 

the growler return signal. An analysis of the hydrodynamics of a floating growler in the 

sea showed that the winking phenomenon is the result of the cyclical motion patterns of 

water iiuid particles in waves. Floating bodies that are much smaller than the wavelength 

of the underlying waves, were shown to behave in the same manner as water particles, thus 

explaining the time-varying Doppler signatures that our coherent measurements indicate. 

We proceeded by examining the characteristics of sea clutter and growler spectra 

estimated from a fraction of a second of data, with the goal of developing medium dwell-time 

Doppler detection techniques. Several Doppler spectrum estimation and moment estimation 

techniques were considered in order to parameterize the spectral data. Both an AR based 

technique and a Gaussian modeling technique were shown to represent well the second order 

characteristics of sea clutter and growler data. These techniques were used to parameterize 

the data. and the parameters were used to estima.te the mean frequency and spectral width 

of the data. spectra., as a. function of time. The very small spectral widths associated with 

the growler spectra., and the larger spectral widths associated with the clutter data. offer the 
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potential of reliably classifying received data as being either clutter or growler-in-clutter. 

Detection techniques based on exploiting the spectral width differences between sea clutter 

and growler returns will be dealt with in the next chapter. 

Finally, we used the spectral modeling described above to separate the energy asso­

ciated with growlers and sea clutter returns from the same radar resolution cell. Equations 

were developed that allowed GCR, GNR, CNR and RCS estimates to be made from the 

spectral parameters associated with the data. These estimates allow different radar data 

files to be compared by virtue of the relative and absolute strengths of growler and clutter, 

and will be important in evaluating the performance of a detector on a given file. 



Chapter 6 

Detector Philosophy and Design 

6.1 Introduction 

In the last two chapters, we studied the noncoherent and coherent properties of radar returns 

from growlers in sea clutter and sea clutter alone. We are now ready to consider the design 

of growler detectors. These detectors fall into two basic categories, noncoherent detectors 

and coherent detectors. The noncoherent detectors operate on the amplitude of the radar 

echo signal from a given radar resolution cell, and decide whether the received signal is most 

likely due to clutter or growler plus clutter. The coherent detectors operate jointly on the 

I and Q samples in order to decide whether or not a growler is present. We will make use 

of the detection and estimation theory presented :n Chapter 2 in our development of the 

various detectors. 

As we saw in Chapter 5, the growlers are more visible in the Doppler domain 

than they are in the amplitude domain. This should come as no surprise since we expect 

improved growler detection with coherent detectors. However, to say that coherent detectors 

are better for detecting growlers is a bit naive. It is important to understand the engineering 

tradeoffs that are associated with the detector designs that are proposed. Clearly, the most 

obvious tradeoff in using coherent detectors is the increase in cost and complexity of the 
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radar transmitter and receiver/processor. Whether or not this added cost is justified will 

depend on the application at hand and on the added performance that results from the 

increased cost and complexity. In Chapter 7, we examine in detail the growler detection 

performance that results from each of the uetector designs proposed in this chapter. 

Recall that we are committed to developing medium dwell-time techniques that 

offer improved detection over conventional noncoherent detectors. Therefore, our processors 

will operate on a fraction of a second of data before making a decision. In Chapter 5, we 

integrated about 0.5 s of data for each coherent Doppler spectrum estimate. This integration 

time was no accident. As we have seen, typical growler spectral widths are about 4-6 Hz. 

With a PRF of l kHz which is typical of our measurements, 0.5 s of integration results 

in a frequency resolution of about 2 Hz per FFT frequency bin. Therefore the growler 

spectral component will span over a few frequency bins. We can in fact get away with an 

integration time of about 1/8 s but Doppler spectral estimates will have higher variances. 

Using integration times of about 0.5 s is a reasonable compromise that is still considered to 

be medium dwell-time. 

In order to compare the performance of different detectors, it is necessary to compare 

them on an equal basis. This can be difficult because of the number of different factors that 

any comparison can be based upon. We have decided that the fairest basis for comparison 

is the amount of information that the detector processes before making a decision. For 

example, information can be gathered from a given resolution cell by collecting several 

consecutive radar pulses ( dwelling) and then stepping the antenna to the next azimuth 

position, or equally by scanning the entire region of interest and processing pulses from 

a given range cell on a scan-to-scan basis. Assuming the same PRF in either case, the 

total number of pulses integrated from a given radar resolution cell will then determine the 

amount of information processed. Therefore the detectors developed in this chapter will 

all use the same number of pulses for each detection. With this common basis established, 

several noncoherent and coherent detector designs will now be considered. 
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6.2 N oncoherent Detectors 

Although we expect noncoherent detectors to perform considerably worse than coherent 

detectors, they are still very useful to exa.ntlne. They will allow us to quantify conventional 

marine radar performance in detecting growlers and they will provide us with a benchmark 

with which to compare the improved performance of coherent detectors. Before rushing 

into the design of noncoherent detectors that operate on the amplitude (or power) of the 

radar echo signal, we should develop a basic understanding of their operation. 

Fundamentally, noncoherent detectors are based on a very simple premise: the 

received radar echo from a given resolution cell is the sum of the returns from the clutter 

in the cell and the target in the cell. The clutter power signal (we discuss power since 

powers add by superposition) by itself can be thought of being composed of a mean clutter 

level mc1 and a varying component vc1. Similarly, the growler echo can be thought of being 

composed of a mean growler power level mgr and a varying component Vgr· Therefore, the 

radar echo from a sea clutter cell containing a growler has a mean level of mc1 + mgr and 

the varying component is vc1 + Vgr• A noncoherent detector forms an estimate of the mean 

signal level and decides whether the estimate is closer to mc1 or mc1 + mgr· Uthe estimate 

is closer to mc1, then clutter is declared; otherwise a growler is declared. 

The performance of noncoherent detectors is solely a fur.ction of how close the 

estimate of the mean signal level is to the true value. U we could make perfect estimates of 

the mean signal level, then regardless how small the growler return mgr is, we could pick 

a threshold between mc1 and mc1 + mgr and perfect detection would result. In practice, 

we cannot make perfect estimates unless we have an infinite amount of data. Therefore, 

noncoherent detection performance is limited by the accuracy of the mean signal level 

(power or amplitude) estimates. The accuracy of these estimates can be described by the 

estimate bias and variance. These, in turn, are functions of the statistical distributions 

that govern 11c1 and v9r and the manner in which the processor performs its mean level 



159 

estimation. Better estimates are always formed when more samples are integrated by the 

detector (so long as the underlying statistical processes haven't changed), independent of 

the detector design. Furthermore, depending on the behaviour of the varying terms vc1 

and v
9
., one strategy for combining the received samples may be superk>r to another. It is 

therefore natural to consider different ways in which the received samples can be integrated 

or combined for noncoherent detection. 

6.2.1 Amplitude Detectors 

The simplest form of noncoherent detection uses the amplitude information of a single echo 

pulse to compute an estimate of the mean amplitude level. If the size of the varying terms 

vc1 and v9• are small relative to the mean level components, the performance of single-pulse 

amplitude detectors is quite good. The noncoherent analysis of sea clutter data given in 

Chapter 4 showed that sea clutter is K-distributed. We saw that the K-distribution models 

the spiky nature of sea clutter backscatter. That is, very large values of sea clutter returns 

are common, relative to the mean amplitude levti. ln fact, examination cf Figure 4.15 

reveals that sea clutter samples that are greater than five times the mean amplitude level 

are common. It is these large sea clutter levels that cause conventional marine radars 

to perform poorly in detecting growlers. Furthermore, the compound nature of the K­

distribution implies that the clutter varying term vc1 is actually composed of two varying 

terms, each with a different correlation time: a fast speckle component and a 1tuch slower 

underlying local mean level component. 

Consider the radar amplitude echos shown in Figure 6.1 and Figure 6.2. Figure 6.1 

shows the received amplitude level as a. function of time from a. range gate in file B98 (see 

Table 3.3 and Table 3.4 for radar para.meters). The spiky nature of sea. clutter returns is 

clearly visibile. The mean amplitude level of the clutter return is much less than 20 while 

bpiky bursts persist for several seconds throughout the record, with amplitudes exceeding 

100. In Figure 6.2, a. similar description is given of the growler returns from file B98. 
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Figure 6.1: This figure shows the amplitude of the radar echo as a function of time, from a 
clutter cell in file B98. The upper graph shows the time history of the received clutter am­
plitude. The spiky nature of the sea clutter returns is immediately visible. The lower graph 
shows the histogram of am)Jlitude data given in the upper graph. The clutter amplitude 
statistics are K-distributed. 
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Figure 6.2: This figure shows the amplitude of the radar echo as a function of time, from 
the growler cell in file B98. The upper graph shows the time history of the received growler 
amplitude. The lower graph shows the histogram of amplitude data given in the upper 
graph. 
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The mean amplitude level from the growler cell is only about 35, implying that amplitude 

thresholding will result in high false alarm rates. By varying an amplitude threshold from 

zero to the maximum received amplitude, a receiver operating characteristic ( ROC) can 

be calculated which quantifies the detection performance that would be achieved with this 

data. The ROC calculated from the data presented in Figure 6.1 and Figure 6.2 is shown 

in Figure 6.3. The poor performance that results using single pulse amplitude detection is 

evident. For example, to achieve a probability of detection of about 90 %, a false alarm rate 

of 50 % must be endured. That is, one out of every two clutter cells will be misclassified as 

a growler! This kind of performance is completely unacceptable for any practical problem 

such as ship navigation in ice infested waters. 

S,, ce our coherent processors will be given about 0.5 s of data upon which to base a 

decision, we now examine the improvement afforded by the integration of amplitude pulses 

over a similar period. As discussed above, integration of amplitude pulses should reduce the 

variance of the mean amplitude level estimates and therefore improve detection performance. 

If 512 (0.512 s at 1 kHz PRF) consecutive pulses are integrated (averaged) to form mean 

level estimate$ from the amplitude data presented in Figure 6.1, then Figure 6.4 results. 

Recall our discussion in Chapter 4 of the compound nature of K-distributed sea clutter. It 

is clear from the integrated amplitude plot in Figure 6.4 that we have only averaged out 

the speckle component of the clutter signal, but the underlying component with the longer 

correlation time still persists. The overall variance of the clutter amplitudes relative to the 

mean amplitude level is reduced, so some improvement in detection performance can be 

expected. 

The integrated amplitudes for the growler data shown in Figure 6.2 are presented fo 

Figure 6.5. Here too, the variance in the amplitude of the growler return has been reduced. 

In Figure 6.6, the ROC curve is given for the integrated ar...plitude data shown in Figure 6.4 

and Figure 6.5. The ROC curve from Figure 6.3 is also redrawn here for comparison. The 

integrated amplitude ROC is given by the dashed line and the single pulse amplitude ROC 
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Figure 6.3: This figure shows the single pulse clutter and growler amplitude statistics for 
the file B98. Also, the ROC for this data is given. The probability of detection PD is shown 
plotted against the probability of false alarm PFA. 
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Figure 6.4: This figure shows the 512-pulse integrated amplitude of the radar echo as a 
function of time, from a clutter cell in file B98 (HH). The upper graph shows the time 
history of the integrated clutter amplitude. The local underlying mean level component 
described by the compound K-distribution is clearly visible. The lower graph shows the 
histogram of amplitude data given in the upper graph. 
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Figure 6.5: This figure shows the 512-pulse integrated amplitude of the radar echo as 
a function of time, from the growler cell in file B98 (HH). The upper graph shows the 
time history of the integrated growler amplitude. The lower graph shows the histogram of 
amplitude data given in the upper graph. 



166 

by the solid line in Figure 6.6. A modest improvement in the probability of detection can be 

observed for a probability of false alarm greater than about 4 %. For smaller probabilities 

of false alarm, the probality of detection estimates are not statistically significant due to 

the small number (130 for the clutter and 130 for the growler) of integrated amplitude 

measurements that were used in the calculation. We call this detector the IA (Integrated 

Amplitude) detector since it simply integrates amplitude pulses and compares the sum to 

a threshold. 

The modest improvement afforded by the IA detector is a result of the reduction of 

the speckle component of the sea clutter amplitude echo. Since the speckle component has 
' 

a decorrelation time of about 10 ms, integrating over 0.512 s reduces the speckle compo­

nent significantly since many independent samples (approximately 50) are involved in the 

integration. The underlying local mean level component is not reduced though. This .is 

because the underlying component has a correlation time on the order of several seconds 

(see Chapter 4). As discussed briefly above, the nature of the varying component vc1 will 

have a strong effect on the detection performance possible with a given detector. In order 

to achieve further gains in noncoherent detection performance, it is necessary to reduce 

the variance of vc1 further. Since the speckle component of vc1 has already been reduced, 

further reduction in the variance of Vcl can come about only by reducing the variance of 

the undei-lying local mean level component. It seems reasonable then that further improve­

ments can be made by integrating amplitude pulses whose underlying local mean levels are 

independent. 

A detector that uses scan-to-scan integration seems ideal for reducing the underlying 

local mean level of sea clutter backscatter. For example, if the scan rate of the antenna is 

30 rpm, then each radar resolution cell would be revisited every 2 s. Integration of amplitude 

samples separated 2 sin time should reduce the variance caused by the underlying local mean 

level component of vc1 since the correlation between consecutive samples would be smaller. 

Furthermore, within each scan of the antenna, about 10 pulses will illuminate each radar 
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B98H Integrated versus Noniruegrated Amplitude Detection 

PFA 

Figure 6.6: This figure shows the ROC for integrated amplitudes of clutter and growler 
data. The ROC was determined from the growler and clutter data in file B98 (HH) by 
integrating 512 amplitude pulses to form each test statistic. The solid curve corresponds 
to the single pulse amplitude ROC, and the dashed curve corresponds to the integrated 
amplitude ROC. 
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resolution cell assuming a PRF of 1 kHz and an antenna beam width of 2 degrees. These 10 

pulses can be noncoherently integrated to reduce the speckle component of vc1. Therefore 

a scan-to-scan integrating amplitude detector should be capable of reducing the v,1 term 

significantly. Unfortunately, our data base on growlers is limited and integration over tens 

of seconds to form a single test statistic results in a small number of test statistics. These 

tr.st statistics are too few in number to make reasonable estimates of detection performance 

for small probabilities of false alarm. Although at this time we a.re unable to test a detector 

such as this empirically, we can make some comments on the order of improvements that 

one could expect with scan-to-scan type processors, by looking at the long term temporal 

correlation properties of sea clutter and growlers. 

The temporal correlation for a sea clutter and growler cell from file BlOO have been 

evaluated and are shown in Figure 6. 7. The graphs plot the temporai correlation of the 

growler and clutter returns over time la.gs up to 60 s. These plots show several relationships 

between mc1, m 9., v,1, and v9,. The speckle component and the underlying local mean level 

component in v,1 are both visibile in clutter correlation plot. After a fraction of a second in 

time, the clutter correlation has been reduced significantly, largely due to the decorrelation 

of the speckle component. Although there continues to be a reduction in the correlation as 

the temporal lag increases, the rate of correlation reduction is small. This indicates that 

scan-to-scan integration will provide bett~r estimates of the clutter mean level, but the 

improvement will be small with increased scan time. The growler correlation plot shows a 

similar two component behavior. The correlation is characterized by a steep reduction over 

a period of a fraction of a second, which is lar6ely due to the correlation reduction of the 

clutter in the same resolution cell as the growler. For longer lag times, the correlation of the 

growler return continues to fall but at a very slow rate. Again, these characteristics indicate 

that improvements afforded by scan-to-scan integration over periods of tens of seconds will 

offer some additional improvement, but the improvement will not be drastic with increased 

integration time. 
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Figure 6. 7: This figure shows the temporal correlation of a growler plus clutter return 
and a clutter return from file BlOO. The polarization channel i~ HH. The correlations are 
calculated up to a temporal lag of 60 s. The growler plus clutter correlation at lag zero 
is about 5600 units, while for the clutter, the correlation at lag zero is about 1600 units. 
Therefore the GCR is about 3.5 in this case. 
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If scan-to-scan strategies are to be used, Figure 6. i deserves further mention. The 

growler correlation is seen to be periodic with lag time. This period is controlled by the 

period of the dominant sea waves. Figure 6. i indicates a period of about 10 s which agrees 

with the peak period reported by the nondirectional waverider, during the collection of 

file BlOO. This periodicity occurs as a result of the dynamics of a floating growler (see 

Section 5.3.1). When a large wave lifts and drops the growler, scintillation and shadowing 

results. Therefore, scan-to-scan strategies should incorporate the effects of beating with the 

wave period when trying to detect floating targets. 

6.2.2 CFAR Detectors 

In Section 6.2.1, we examined a few noncoherent integration strategies. Our goal was to 

provide good estimates of mc1 and m9r, the mean signal level of sea clutter and growler 

returns respectively, so that a detection threshold could be set accordingly. These levels 

are the mean levels observed over long periods of time. The actual signal level observed 

over short periods of time will vary above and below the mean level. Figure 6.4 and 

Figure 6.5 show these local variations as a function of time for a sea clutter and growler 

cell, respectively. During times when the local clutter level is small compared to the mean 

level, low probabilities of false alarm will be observed; when local clutter levels are large 

with respect to the mean, high probabilities of false alarm will be observed. Therefore, the 

PFA rate will vary as a function of range and time. In Section 2.4, we examined constant 

false alarm rate processors that might be suitable for growler detection in a sea clutter 

environment. We take a closer look at these CFAR processors now. 

The purpose of a noncoherent CFAR processor is to track the local variation in 

sea clutter so that a threshold can be set relative to the local clutter amplitude (or power) 

level, as opposed to the long term, mean amplitude level. In this way, the false alarm rate 

will not vary as a function of range and time. Recall that the local level of sea clutter in a 

test cell is estimated by averaging the local levels from neighbouring cells. The compound 
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K-distribution described in Chapter 4 provides the key for setting the local threshold, once 

the local clutter level estimate is obtained. If the CFAR processor estimates the local 

underlying mean amplitude level y for the cell under test, then Equation 4.11 can be used 

to set the local threshold with a prescribed false alarm rate. This approach should give 

CFAR operation providing that all of the cells in the CFAR window have the same local 

statistics as the cell under test. 

To gain some insight ir.to the detection performance of a CFAR processor in K­

distributed sea clutter, the underlying mean levels of the growler cell given in Figure 6.5 

and a neighbouring sea clutter cell given in Figure 6.4 are shown replotted together in 

Figure 6.8. The solid curve corresponds to the growler cell returns, and the dotted curve 

corresponds to the clutter cell returns. For the moment, consider the growler cell to be the 

cell under test; the clutter cell represents the other cells in the CFAR window that are used 

to estimate the local clutter level. The local detection threshold is typically set higher than 

the estimated clutter level to achieve a prescribed PFA. Therefore, Figure 6.8 indicates that 

the growler will not be detected around the 2 s, 10 s, and 30 s mark, due to the spiky clutter 

at these times. 

The probability of false alarm perfoqnance of a noncoherent CFAR processor in 

K-distributed clutter can be demonstrated by considering a CFAR window that contains 

only clutter cells. Assume that the sea clutter curve shown in Figure 6.8 represents the 

returns from the test cell. Another neighbouring clutter cell (within the CFAR window) 

is required to represent the mean level of clutter in the neighbourhood of the test cell. In 

Figure 6.9, the test cell returns (dotted curve) and the returns from a neighbouring clutter 

cell (solid curve) are plotted as a function of time. The two cells are separated in range by 

only five resolution cells and would most certainly be contained in the same CFAR window. 

The detection threshold for the test cell is set relative to the clutter level measured from 

the reference cells in the CFAR window. Thus, the data presented in Figure 6.9 indicate 

that false alarms will occur in the test cell around the 2 s, 10 s, 22 s, and 30 s mark, due to 
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Figure 6.8: This figure shows the 512-pulse integrated amplitude signal from the growler 
cell and a neighbouring clutter cell in file B98 (HH). These are the same curves drawn in 
Figure 6.5 and Figure 6.4 respectively. The solid curve corresponds to the growler cell return, 
and the dotted curve corresponds to the clutter cell return. A spatial CFAR processor sets 
the test cell detection threshold according to the mean level in the neighbouring clutter 
cells. These data indicate that missed detections will occur around the 2 s, 10 s, and 30 s 
mark due to ~he spiky clutter returns at these times. 
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Figure 6.9: This figure shows the 512-pulse integrated amplitude signals from two clutter 
cells in file B98 (HH), separated in range by five radar resolution cells. The dotted curve 
represents a clutter cell under test, and the solid curve corresponds to neighbouring clutter 
data that are used by a CFAR processor to estimate the clutter level in the test cell. These 
data indicate that false alarms will occur around the 2 s, 10 s, 22 s, and 30 s mark. 
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the relatively low clutter levels that are found in the clutter reference cell at these times. 

The surprisingly poor behaviour of a CFAR approach for the data presented above 

can be explained I- ,,. ,idering the range correlation of sea clutter. Let's reexamine Fig­

ure 4.22 which silows ;,atial (range) and temporal correlations of sea clutter data. The 

spatial correlation curve shows that sea clutter echo from a given cell is less than 6(1 % 

correlated with sea clutter echo 30 m in range away. Since the pulse length associated with 

our data offers a range resolution of 30 m, the spatial correlation results imply that the cor­

relation between sea clutter in adjacent radar resolution cells is not great. The small sptial 

correlation is explained by the K-distribution. The underlying mean level y is understood 

to be associated with the overall tilt of a patch of clutter, in response to the sea swell. Since 

the swell wavelength is typically between 100-150 m, adjacent 30 m pulses sample the wave 

at approximately quarter-wave intervals. Therefore, the underlying mean level component 

y can be expected to chang<: considerabiy from range cell to range cell. Figure 4. 7 and 

Table 4.1 show the large variability of mean clutter levels as a function of range. 

A CFAR window combines measurements from adjacent range cells under the as­

sumption that all of the cells Ii.ave the same clutter statistics. We have seen however, that 

the statistics in adjacent cll!tter cells are in fact quite different, due to the variation in 

the underlying mean level component y described in the K-distribution. Therefore, CFAR 

processors will perform poorly in K-distributed sea clutter unless the pulse width is reduced 

~ubstantially, allowing for a large CFAR window of similarly distributed clutter variates. 

Although the analysis described above is for noncoherent CFAR processors, the 

same conclusions are drawn for coherent CFAR processors. The Doppler CFAR method 

of Larsson et al. [5] will not perform well on our data because of insufficient, similarly 

distributed clutter cells surrounding the test cell. Our growler data base at present does 

not offer the CFAR window lengths and range resolution necessary to provide meaningful 

performance estimates of traditional CFAR methods, applied to our problem. Therefore, 

these techniques are not considered further in Chapter 7. 
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6.3 Coherent Detectors 

In Section 6.2, we discussed noncoherent detection strategies that are useful for detecting 

growlers in sea clutter. The IA detector is analyzed in the next chapter to quantify the 

performance of noncoherent detectors and to provide a benchmark with which to measure 

the performance of coherent detectors. In this section, we use the analysis carried out in 

Chapter 5 to desir,i two medium dwell-time coherent detectors that satisfy the requirements 

enumerated on page 11. We are interested in designing detectors that offer improved growler 

detection. Since the detector performances are evaluated empirically from !PIX data, it is 

important that the detectors we design exploit characteristics that are representative of 

growler and clutter returns in general, and not simply of our data base of measurements. 

For example, in most of our data files, the growler Doppler velocity is limited to a small 

band of frequencies. Therefore, using Doppler frequency as a discriminant between growler 

and clutter data will improve the detection performance on our data base; however, these 

results will be of no general use because the range of growler frequencies encountered in 

practice is variable. Furthermore, our data base represents a finite range of growl~r and 

clutter radar cross sections. As " result, the sensitivity of proposed detectors to changes in 

GCR is also considered. 

In Chapter 5, we saw that improved growler visibility in a sea clutter background 

could be realized by the difference in their spectral width statistics. Spectral width is 

independent of mean frequency and GCR, and is therefore an ideal statistic upon which to 

base a detector, as it can be generalized to cases beyond our data base of measurements. 

Furthermore, for medium dwell-time coherent processing, spectral width seems to be the 

only characteristic of the Doppler spectrum that uniquely distinguishes between clutter 

and growler spectra. Therefore, following the discussion given in Section 2.3.5, we call the 

spectral width a sufficient statistic. We now describe two different detectors that make use 

of the spectral width of the radar echo signal in order to detect growlers in sea clutter. 
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6.3.1 Autoregressive Largest Pole Magnitude Detector 

In Chapter 5, we saw that AR parameters were suitable for modelin;; the Doppler spectra 

of growler and clutter returns. The AR poles, which model the second order statistics 

of the radar data, provide a useful discriminant between clutter returns and growler-in­

clutter returns. In particular, the AR poles lie within the unit circle in the z-plane, and the 

magnitude of the pole closest to the unit circle can be associated with the most narrowband 

component in the radar signal ( see Equation 5.26). In Figure 6.10, a scatter plot of the poles 

from a 5th order AR model of radar returns from a growler-in-clutter cell is shown. Since 

the growler returns are in general more narrowband than the clutter returns, the cluster 

of poles nearest the unit circle are associated with the growler component; and the next 

closest cluster of poles to the unit circle is associated with the sea clutter component of the 

radar returns. 

As shown earlier, the magnitude of the pole closest to the unit circle is related to 

the spectral width of the most narrowband component in the data, and can be used as a 

statistic for detection. The detector can be summarized as follows: 

1. The AR parameters (we use a 5th order model) are calculated according to Equa­

tion 5.19. 

2. The denominator of Equation 5.23 is factorized giving the AR poles. 

3. The pole with th~ largest magnitude is selected. 

4. This magnitude is compared to a threshold. If the threshold is exceeded, a growler is 

declared; otherwise clutter is declared. 

5. If desired, Equation 5.25 is evaluated to give a mean frequency estimate and Equa­

tion 5.26 is evaluated to give a spectral width estimate, based on the pole with the 

largest magnitude. 
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Figure 6.10: This figure shows a scatter plot of the poles from a 5th order AR parameteriza­
tion of growler-in-clutter data in file B98 (VV). The cluster of poles closest to the unit circle 
model the narrowband growler component of the radar returns. The next closest cluster 
of poles to the unit circle model the wideband sea clutter component of the radar returns. 
Finally, the remaining four pole clusters model the receiver noise in the data. 
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Since this detector uses the largest pole magnitude for detection, we call it the ARLPM 

(AutoRegressive Largest Pole Magnitude) detector. The performance of this detector is 

analyzed in detail in the Chapter 7. 

6.3.2 Gaussian Model Spectral Width Det,~ctor 

A more direct approach to estimating the spectral width(s) associated wit.h growler and 

clutter radar data involves the use of a lG or 2G spectrum mod.al as d.<!Scribed in Sec­

tion 5.4.4 and Section 5.5.3. As we saw in Section 5.4.4, fitting a lG model to a sea clutter 

spectra provides good mean frequency and spectral width estimates. In a similar manner, 

Section 5.5.3 showed that good mean frequency and spectral width estim~tes of both the 

growler and clutter components result by fitting a 2G model to estimated growler-in-clutter 

data. Knowing whether to use a lG or 2G spectral model is simple if you know in ad­

vance whether your test data is from a clutter cell or a growler-in-clutter cell. In practice 

though, it is the detector that must determine whether a given test cell contains a growler. 

Therefore, some procedure must be available in order to decide which model (lG or 2G) to 

use. 

It might seem Uke a good ider. to always use the 2G model. After all, the lG model 

is just a specia! case of the 2G model. The error in this Une of thinking is easily seen by an 

example. Imagine that the current test cell is a clutter-only cell and a 2G model is going 

to be fitted to the estin:ated spectrum. A 2G model will always provide a better fit than 

a lG model since the extra degrees of freedom can be used to model some of the error 

associated with using just a lG model. This over-modeling can cause a lot of problems to a 

spectral width detector, because the second Gaussian component can easily end up having 

a very narrow spectral width. Since the clutter peak typically spans tens of Hz and the 

estimate of the spectrum may be noisy, a single clutter spectral component can actually be 

over-modeled as two components, one of them being very narrow in spectral width. This 

kind of over-modeling can confuse the detector into thinking a growler is present. 



li9 

A solution to the problem of selecting the appropriate model order, lG or 2G, can be 

found by considering the generalized likelihood ratio test ( GLRT) described by Equation 2.20. 

The GLRT applied to our problem of model order selection can be stated as follows: 

Assume that the 2G model is the correct model and make an ML estimate of 

the 2G parameter vector described by Equation 5.29. Then evaluate the 2G 

likelihood using this ML estimate. In a similar manner, assume that the l G 

model is the true model and evaluate the ML estimate of the 1 G parameter 

vector described by Equation 5.27. The lG likelihood is evaluated using this 

ML estimate. Finally, the correct r.;.oclel (2G or lG) and associated parameters 

are selected by comparing the ratio of th•, 2G likelihood and the l G likelihood 

to a threshold. 

In our problem, maximizing the likelihood for the 2G and lG models is equivalent 

to minimizing the modeling error described by Equation 5.30 and Equation 5.28, respec­

tively. The residual modeling errors are analogous to the likelihoods associated with the 

optimum parameter vectors. The ratio of the residual modeling errors for the 2G and l G 

optimizations is compai~ to a threshold to select the mor.el that most likely fits the data. 

Comparing the ratio of the residual modeling errors to a threshold is equivalent to saying 

that the 2G model must reduce the residual modeling error by a certain percentage over the 

lG residual modeling error, in order for it t!l be considered valid, and not just over-modding 

the data. Once the model order has been selected, its corresponding parameters are then 

considered to be representative of the data. The operations that we have just described 

pertain to the feature eztractor stage of Figure 2.1. The feature (parameter) vector is then 

passed on to the threshold detector. At this stage, we recognize that the spectral width (the 

smaller of the two if the 2G model is used) is the sufficient statistic and the threshold device 

simply compares the spectral width to a threshold. Since the detector we have described 

makes use of a Gaussian spectrum model to describe the tlata, we .:.ill this detect,,r the GSW 

(Gaussian Spectral Width) detecto:. The operations performed by the GSW dett>etor are 
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now summarized: 

1. A Fourier spectrum estimate is formed from 512 (0.512 s) complex samples of time 

series data from a given test cell. 

2. The 2G model specified by Equation 5.2!1 is applied to the spectrum estimate and 

Equation 5.30 is minimized using the nonlinear optimization procedure outlined in 

Appendix D. The 2G least squares modeling error is calculated. 

3. The lG model specified by Equation 5.27 is applied to the spectrum estimate and 

Equation 5.28 is minimized using the nonlinear optimization procedure outlined in 

Appendix D. The lG least squares modeling error is calculated. 

4. The ratio of the 2G and lG modeling errors (2G/1G) is formed and compared to a 

threshold ( empirically determined to be 0.4 ). If the ratio exceeds the threshold, the 

lG model is selected; otherwise, the 2G model is used. 

5. The spectral width from the chosen model is selected. If the 2G model is used, the 

smaller spectral width is selected. 

6. Compare the spectral width to a threshold. If the threshold is exceeded, sea clutter 

is declared; otherwi::e, a growler is declared. 

This detector is also evaluated i:i detail in Chapter 7. In the next section, we consider some 

of the practical requirements associated with the IA, ARLPM and GSW detectors. 

6.4 Practical Considerations 

In order to appreciate the performance evaluations of the IA, ARLPM, and GSW detectors 

given in Chapter 7, it is important to understand the costs associated with each detector. 

The radar hardware requirements associated with coherent radars are significantly more 

demanding than those of noncoherent radars. For example, the inexpensive and efficient 
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magnetron used in noncoherent radars must be replaced with a stable klystron or TWT 

(Travelling \Vave Tube) amplifier in order to make coherent measurements of the receive 

signal. Furthermore, stable global system clocks and parallel I and Q receivers are required 

by the coherent radar whereas local clocks and a single receiver path are required by the 

noncoherent radar. These hardware requirements translate to increased cost. Clearly, the 

IA detector has a large cost advantage over the ARLPM detector and the GSW detector! 

Putting radar hardware cost requirements aside, it is important to compare the 

relative signal processing requirements of the three detectors. A fundamental requiren.ent 

of the radar is real time operation which places constraints on the types of operations that 

can be performed with available technology, and the type of processors required to do the 

job. With real time operation in mind, we examine the computing requirements associated 

with each of the three detectors identified above. We assume that calibrated I and Q 

digital samples are available to the signal processor (detector). Since we are concerned with 

medium dwell-time techniques, we assume that the radar operates in a stare-and-step mode. 

That is, it will stare along a given radial and collect 512 pulses (0.512 s at l kHz PRF) 

and then step to the next azimuth position. Therefore, each radial needs to be completely 

processed in 0.512 s. This type of operation places minimal storage requirements on the 

signal processor. Whether a single processor is used, or an array of processors (one for each 

range cell), 512 data samples place only a modest storage requirement on the processor. 

With the inexpensive price of memory today, the difference in storage requirements between 

the IA, ARLPM, and GSW detectors can be neglected. Assuming a 200 ns pulse (30 m) and 

a range coverage of 6 km, 200 radar resolution cells span each radial. Therefore, a single 

processor must process each resolution cell in 2.56 ms, whereas an array of 200 processors 

has 0.512 s to process each cell of data. If a 90 degree azimuth cover is required and the 

antenna. has a. 1 degree beamwidth, the full scan update time will be a.bout 46 s. We now 

consider the computational complexity of each of the three detectors. 
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6.4.1 IA Detectol" Complexity 

The IA detector simply sums the 512 samples to form a test Jtatistic that is compared to 

a threshold. Therefore, only 511 addition operations are required. With a single processor, 

the 511 additions must be computed in 2.56 ms. Therefore, a single processor capable of 

0.2 Mflops is required. A personal computer would be capable of handling this job in real 

time! 

6.4.2 ARLPM Detectol" Complexity 

The ARLPM detector requires the following operations: the evaluation of autocorrelation 

estimates specified in Equation 5.17, the evaluation of the Yule-Walker equations given 

in Equation 5.19, and the solution to the roots of the polynomial in the denominator 

of Equation 5.23. The autocorrelation estimates require about MN complex operations 

(CO's) (ie. complex multiply and adds) where M = 6 is the AR order and N = 512 

is the number of data samples. The evaluation of the Yule-Walker equations requires on 

the order of M3 + M 2 CO's. The number of operations required to solve for the roots 

of the polynomial in the denominator of Equation 5.23 is difficult to specify, because the 

computation is performed using iterative techniques such as Laguerre's Method [69]. The 

convergence properties of t!iese methods are highly sensitive to the nature of the roots 

of the polynomial. Furthermore, once roots are found, they can be polished in several 

different ways to improve their accuracy. As a result, it is difficult to quantify the number 

of operations that are required. 

In order to get a realistic measure of the computational complexity of the ARLPM 

detector, it was coded in Matlab [70] and run on 100 different windows, 0.512 sin length, of 

real radar data. The average number of floating point operations ( additions or multiplica­

tions) required by Matlab was reported to be 460000. If these operations are to be performed 

on a single processor, then a processor capable of 180 Mflops is required, otherwise, parallel 

processors each capable of 0.9 Mflops are required. 
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6.4.3 GSW Detector Complexity 

The GSW detector requires the following operations. First, a Fourier spectrum estimate is 

performed requiring N log N CO's. Then a nonlinear least squares optimization is performed 

for each of the lG and 2G models. Each optimization is described in AppendLx D and 

requires the following operations for each of I iterations. A Jacobian matrix is formed 

requiring approximately lON CO's and N TFE's (transcende!ltal function evaluations) 

for the lG model and twice that for the 2G model. A psuedo-inverse operation is then 

performed. If the calculation is performed according to Equation D.12, then the parameter 

vector update requires approximately L3 +2L2N +LN CO's where L = 3 for the lG model 

and L = 6 for the 2G model. The model evaluations required by Equation D.3 require 

an additional 2N CO's for the lG model and 3N CO's for the 2G model. Therefore, for 

N = 512, each lG iteration requires about 42N CO's and N TFE's; each 2G iteration 

requires about llON CO's and 2N TFE's. Our analysis has indicated that convergence is 

usually achieved within 20 iterations. If the number of iterations is fixed at 20, the GSW 

detector would then require on the order of 3040N CO's and 60N TFE's. Assuming that 

the TFE's can be neglected (available from table lookup), a single processor would need to 

be capable of performing on the order of 1556480 CO's in 2.56 ms or 608 million CO's per 

second. O~ the other hand, a parallel bank of processors would each need to be capable of 

3.04 million CO's per second. Although these processing requirements are very demanding, 

they can be reduced substantially. For example, since the amplitude parameters in the lG 

and 2G models appear linearly, the nonlinear optimiz;,.tion can be rewritten to exploit this 

property. This results in a significant reduction in computational expense. (Details are 

given in Appendix D). Furthermore, rather than evaluating Equation D.12 directly, the 

SVD solution described in Appendix D can be used and even implemented using a systolic 

architecture. This however will require specialized hardware. 

In order to make a realistic comparison between the n-:imber of computations re­

quired by the GSW detector, as compared to the ARLPM detector, the GSW detector was 
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also evaluated in Matlab. The average number of operations reported by Matlab from 100 

independent runs of the GSW algorithm on real !PIX data was 1.12 million. Therefore, a 

single processor wo,ud need to be capable of 438 Mflops whereas a parallel bank of proces­

sors would require 2.10 Mftops. These Matlab figures compare quite well with the predicted 

requirements considering that the Matlab implementation used an SVD operation to cal­

culate the psuedo-inverse, and that the number of iterations actually re,iuired was usually 

less than the maximum number of iterations set at 20. 

6.5 Summary 

In this chapter, we described three different detectors that will be evaluated in Chapter 7. 

The IA detector noncoherently integrates 0.512 s of data in order to come up with a test 

statistic. This detector will be representative of the performance that can be expected from 

noncoherent marini! radars in use today, and can be implemented very inexpensively in 

real time. Two coherent dPtectors have been designed to take advantage of the different 

spectral width characteristics of clutter and growle,· returns. The ARLPM detector fits 

an autoregressive model to the received data and uses the poles of this model to classify 

growler and clutter returns. This detector requires significantly more computation than 

the IA detector but is still implementable in real time with currently available technology. 

Finally, the second and most computationally expensive coherent detector is the GSW 

detector. This detector uses a nonlinear least squares optimization to decide between a 

lG or 2G spectrum model. Once the model and its associated parameters are solved for, 

the spectral width parameter is past on to the threshold device for detection. The GSW 

detector has a very large computational cost associated with it. It requires more than twice 

the computing capabilities that the ARLPM detector requires. Although its processing 

requirements can be met with currently available computing hardware, it remains to be 

seen whether or not the added compuu,tional expense is justified. 



Chapter 7 

Detector Performances 

7.1 Introduction 

In this chapter, the three detectors developed in Chapter 6 are tested on real IPIX radar 

data, and their performances evaluated. These three detectors are the Integrated Amplitude 

detector, the AutoRegressive Largest Pole Magnitude detector, and the Gaus&ian Spectral 

Width detector. We begin in Section 7 .2 by describing the data files that are used in the 

performance evaluations, along with the manner in which the detector testing is carried 

out. We refer to this selection of !PIX growler ard clutter data files as the d:ita testbed. 

In Section 7.3, each file specified in the data testbed is operated on by the IA, 

ARLPM, and GSW detectors, and performance curves are generated for each file. Further­

more, composite performance curves are also generated that are based on the analysis of 

the entire data testbed. Since each file in the data testbed has different radar parameters 

associated with it, and each file was collected at different times, the composite performance 

curves are representative of the kind of performance that could be expected over the entire 

viewing area seen by a marine radar. The composite ptrformance curves will also show the 

performance advantages, if any, of using one linear polarization configuratioi;, say HH, over 

the other, VV. 
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Finally, in Section 7.4, the performances of the IA, ARLPM, and GSW detectors 

are compared in detail. In particular, the basis for the performance of the ARLPM and 

GSW detectors is re-examined so that realistic predictions of their performances can be 

ma.de in cases where the GCR is smaller than that represented by the data. testbed. 

7.2 Data Testbed 

The data. testbed h composed of selected data. from the files specified in Ta.hie 3.3. (The 

associated wea.the: and wa.veheight data. a.r,, :,iven in Ta.hie 3.4 and Appendix A). In order 

to identify which range cells contain only sea. clutter returns and which range cells contain 

growlers, a. time-frequency ma.p was performed for ea.ch range cell in a. given file as described 

in Section 5.3. Once ea.ch range cell in the file was la.belled as being either growler or 

clutter, the growler cell a.long with a. few clutter cells were matched filtered and extracted 

for analysis. The matched filtering was carried out according to Equation 2.5 in Section 2.2. 

Since the range swath of ea.ch file in Ta.hie 3.3 is a.bout 200 m a.nd the range resolution of 

the 200 ns pulse is 30 m, there are only a.bout six independent range cells in ea.ch file. 

Depending on the range position of the growler(s) in the file, the number of independent 

clutter-only cells selected from ea.ch file varied. Typically, a. matched filtered growler cell 

along with three or four matched filtered clutter cells were extracted from ea.ch file in 

Ta.hie 3.3. These extracted clutter and growler data. form the data. testbed used to test ea.ch 

of the IA, ARLPM, and GSW detectors. 

Since ea.ch original data. file was collected under different conditions, the extracted 

cells are referred to by the name of the original data. files from which they were extracted. 

Whenever we refer to a data file name in this chapter, it is to be understood that we are 

actually referring to the extracted growler cell data and clutter cell data from the named file. 

The performance evaluations are first carried out on the extracted cells for ea.ch file. In this 

way, the relative performance of a given detector, from file to file, can be compared against 
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the power and radar cross section estimates associated with each data file. These estimates 

are given in Table 5.2. Following the performance evaluations on a file by file basis, all 

of the extracted cell data in the data testbed are used to generate composite performance 

curves. These performance curves are representative of the expect"d performance over the 

entire viewing area covered by the marine radar, since many different aspect angles are 

represented by the data testbed. 

The data testbed provided labelled range cells of clutter and growler radar data 

against which the L\, ARLPM, and GSW detectors could be tested. Each extracted range 

cell of data, (clutter or growler), contained 34,000 samples (pulses) of data with 0.001 s 

between each sample. (Nc-te: if required, original data was undersampled so that an effective 

PRF of 1 kHz was obtained for each file). The detector performances were evaluated in 

the following manner. Each range cell of data was divided into windows of 512 (0.512 s) 

consecutive pulses, with an inter-window spacing of 256 pulses (0.256 s). Each range cell 

therefore provided 130 windows of data, with 50 % overlap between adjacent windows. Since 

Hamming weighting was applied to each window of data before processing, the data overlap 

was approximately zero between windows. Each detector operated on the 130 windows for 

each range cell of data, and made 130 independent detection decisions. Since the data were 

labelled as clutter or growler, the detector decisions were tabulated as being correct or in 

error, and the performance of each detector was thus evaluated. 

As described above, three or four clutter cells along with a growler cell were ex­

tracted from a given IPIX data file. Therefore, each file offered approximately 500 clutter 

windows and 130 growler windows for testing. False alarms occur when a clutter cell is 

mistakenly detected as a growler. Since each file offers about 500 different clutter windows, 

estimates of probabilities of false alarm smaller than 2 % will have high variances and thus 

are not meaningful. Similarly, estimates of probabilities of detection greater than 90 % will 

have high variances. However, when performances are evaluated on the entire data testbed, 

each polarization channel (HH and VV) offers about 4000 clutter windows and 1000 growler 
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windows. Therefore, probabilities of false alarm as low as 0.003 and probabilities of detec­

tion as high as 0.99 can be estimated with reasonable confidence! 

In the next section, we describe the file by file performances as well as the composite 

performances of the La\., ARLPM, and GSW detectors. 

7.3 Detector Performances 

7.3.1 Performance on a File by File Es.sis 

In this section, we examine the detector performance of the IA, ARLPM, and GSW detectors 

for each of the files that make up the data testbed. For each data file, the clutter and growler 

data windows are operated on by each of the detectors, as described in the last section. As 

described in Chapter 6, each detector operates by first performing a feature extraction 

operation, followed by a threshold comparison of the test statistic. The feature used by 

the IA detector is the integrated amplitude of the windowed data. The ARLPM detector 

uses the largest AR pole magnitude determined from the windowed data as its feature. The 

GSW detector uses the spectral width of the windowed data as its feature. The performance 

of these detectors depends solely on the statistical separation of the test features under the 

clutter-only hypothesis, and the growler-in-clutter hypothesis. Therefore, for each file that 

we analyze, the histograms of the test features will be given for both hypotheses. 

Detector performance is quantified as follows. A feature threshold is set to divide 

up the featute space into two decision regions corresponding to the two hypotheses. Then, 

the PFA and the PD for the given threshold are estimated from the clutter and growler 

histogram data respectively. Varying the decision threshold causes the PFA and PD to 

vary in a corresponding way. Since it is impossible to determine in advance the operational 

requirements (and hence the appropriate threshold), the threshold is varied over the range 

of the feature space, and the PFA and PD are estimated for each threshold. A plot of the 

PD versus the PFA is referred to as the ROC [23] and is given for each file along with the 
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FILE ID FIGURE NUMBER 
B97 HH 7.1 
B98 HH 7.2 
B98VV 7.3 
B99 VV 7.4 
BllO HH 7.5 
Blll VV 7.6 
Bll2 HH 7.7 
Bll2 VV 7.8 
Bll3 HH 7.9 
Bll4 VV 7.10 
Bll5 HH 7.11 
Bll5 VV 7.12 
Bl23 HH 7.13 
Bl24 VV 7.14 
Bl25 HH 7.15 
Bl25 VV 7.16 

Table 7.1: This table lists the data. files and polarization channels that make up the data. 
testbed. For ea.ch file, the figure number is given where the performance results of the IA, 
ARLPM, and GSW detectors can be found. 

histograms of the test features. 

For ea.ch of the files in the da.ta. testbed, the performances of the IA, ARLPM, a.nd 

GSW detectors a.re presented. For files tha.t contain both HH and VV da.ta. (see Ta.hie 3.3), 

performance eva.lua.tions a.re done for ea.ch of the two pola.riza.tion channels. Thus, there a.re 

eight different performance evaluations for the HH channel, and eight more performance 

evaluations for the VV channel. These detector performances a.re given in Figure 7 .1-

Figure 7.16. Ea.ch figure indicates the file and polarization cha.nnel in the data. testbed on 

which the results a.re ba.sed. Table 7.1 indicates which da.ta. file in the da.ta. testbed ea.ch 

figure is ba.sed upon. 
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Figure 7.1: This figure gives the detector performance curves generated from file B97 (HH). 
(a) The IA detector performance: the clutter and growler integrated amplitude histograms 
a.re shown along with the corresponding ROC curve. (b) The ARLPM detector perfor­
mance: the clutter and growler largest pole magnitude histogra.trs a.re shown along with 
the corresponding ROC curve. ( c) The GSW detector performance: the clutter and growler 
spectral width histograms a.re shown along with the corresponding ROC curve. 
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Figure 7.2: This figure gives the detector performance curves generated from file B98 (HH). 
(a.) The IA detector performance: the clutter and growler integrated amplitude histograms 
a.re shown along with the corresponding ROC curve. (b) The ARLPM detector perfor­
mance: the clutter and growler largest pole magnitude histograms a.re shown along with 
the corresponding ROC curve. (c) The GSW detector performance: the clutter and growler 
spectral width histograms a.re shown along with the corresponding ROC curve. 
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Figure 7 .3: This figure gives the detector performance curves generated from file B98 (VV). 
( a) The IA detector performance: the clutter and growler integrated amplitude histograms 
a.re shown along with the corresponding ROC curve. (b) The ARLPM detector perfor­
mance: the clutter and growler largest pole magnitude histograms a.re shown along with 
the corresponding ROC curve. ( c) The GSW detector performance: the clutter and growler 
spectral width histograms a.re shown along with the corresponding ROC curve. 
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Figure 7 .4: This figure gives the detector performance curves generated from file B99 (VV). 
(a.) The IA detector performance: the clutter and growler integrated amplitude histograms 
are shown a.long with the corresponding ROC curve. (b) The ARLPM detector perfor­
mance: the clutter and growler largest pole magnitude histograms are shown a.long with 
the corresponding ROC curve. ( c) The GSW detector performance: the clutter and growler 
spectra.I width histograms are shown a.long with the corresponding ROC curve. 
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Figure 7.5: This figure gives the detector performance curves generated from file BllO 
(HH). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. (c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.6: This figure gives the detector performance curves generated from file Blll 
(VV). ( a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along wiih the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.7: This figure gives the detector performa.nce curves generated from file Bll2 
(HH). (a) The IA detector perlurma.nce: the clutter a.nd growler integrated amplitude 
histograms a.re shown a.long with the corresponding ROC curve. (b) The ARLPM detector 
pe.forma.nce: the clutter a.nd growler la.rgest pole ma.gnitude histograms a.re shown a.long 
with the corresponding ROC curve. ( c) The GSW detector performa.nce: the clutter a.nd 
growler spectra.I width histograms a.re shown a.long with the corresponding ROG curve. 
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Figure 7.8: This figure gives the detector performance curves generated from file Bl12 
(VV). (a.} The IA detector performance: the clutter and growler integrated amplitude 
histograms a.re shown a.long with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms a.re shown a.!ong 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectra.I width histograms a.re shown a.long with the corresponding ROC curve. 
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Figure 7.9: This figure gives the detector performance curves generated from file Bll3 
(HH). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. (b} The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 



199 

°"'"' ..... bl14w Amp1ltlade Put'ormmCI Onu .. I On)wk!r Am UIWOS 

! .., ! 6 

} } • "' 
00 .. 100 '"' 1"1 

AzAplmade am 

2S Cbl.tta' AR Paki 
blt4v AR(6) PuformcicoOUYa .., On:iwte, AR Pole u•-•mt. 

le ! "' ! OA "' " IU 

} l "' 00 
10 

o.5 

' ! 10 
PPA . .I 

(a) i:. i:. 0.7 ... ••• 
Mainm.ad• Blll 

AR PDvrnua naA 

o.a 
(b) 

Q.6 
le 

OA 

IU 

00 o.5 
PPA 

bll4vSpK1nlWld&bPcformuceen-

" 80 O-'crF1i...s-1Wldlha 

! 10 ! ... 
I I 

.., 

"' 
00 20 .., .. ·---) • 

o.a 
(c) 

Q.6 
Ii! 

OA 

IU 

00 o.5 
PPA 

Figure 7.10: This figure gives the detector performance (.arves generated from file Bll4 
(VV). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms a.re shown a.long with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms a.re shown a.long 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectra.I width histograms a.re shown a.long with the corresponding ROC curve. 
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The relative performance of the IA, ARLPM, and GSW detectors varies from file to 

file as shown in Figure 7.1-Figure 7.16. Detectors like these, that are designed to separate 

growler returns from clutter returns, are expected to detect better in an environment whe:e 

the GCR is larger. Table 5.2 provides GCR estimates for each of the data files described here. 

By comparing the detector performances in Figure 7.1-Figure 7.16 with the corresponding 

GCR entries in Table 5.2, several observations can been made and are now described. 

Generally speaking, the IA detector has better detection performance with larger 

GCR. The trend is not as simple though when it comes to false alarm rate performance. This 

is because GCR represents an average quantity. For a fixed GCR, the nature of the clutter 

amplitude variation can be quite different. When clutter amplitudes are characterized by a 

small variance about their mean value, the false alarm performance is good; however, when 

the clutter amplitudes are characterized by a larger variance about their mean value, the 

false alarm rate performance is worse. 

The ARLPM detector shows definite improvements as the GCR increases. These 

improvements are accentuated by the fact that the ARLPM detector performs coherent 

integration on the data. As a result, the detector operates with a larger effective GCR due 

to the integration gain of the coherent processing. 

The GSW detector also shows detection performance improvements as the GCR 

increases. That is, the PD reaches 1.0 for a smaller value of PFA. The improvement in 

detection performance of the GSW detector, though, is not as drastic as the improve111ent 

shown by the ARLPM detector. The reasons behind this are twofold. First, the GSW 

detector has better detection performance than the ARLPM detector to begin with, so 

the maximum possible improvement that the GSW detector can make is smaller than the 

corresponding improvement of the ARLPM detector. Second, the GSW detector does not 

explicitly use amplitude information, whereas the ARLPM detector does (see Section 7.4). 

Therefore, the ARLPM detector has direct gains due to increased GCR. 
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Figure 7.11: This figure gives the detector performance curves generated from file Bll5 
(HH). (a.) The IA detector performance: the clutter and growler integrated amplitude 
histograms a.re shown along with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter a.nd growler largest pole magnitude histograms a.re shown along 
with the corresponding ROC curve. (c) The GSW detector performance: the clutter and 
growler spectral width histograms a.re shown along with the corresponding ROC curve. 
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Figure 7.12: This figure gives the detector performance curves generated from file Bl15 
(VV). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.13: This figure gives the detector performance curves generated from file Bl23 
(HH). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.14: This figure gives the detector performance curves generated from file Bl24 
(VV). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. ( c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.15: This figure gives the detector performance curves generated from file Bl25 
(HH). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown along with the corresponding ROC curve. {b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. (c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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Figure 7.16: This figure gives the detector performance curves generated from file Bl25 
(VV). (a) The IA detector performance: the clutter and growler integrated amplitude 
histograms are shown alo11g, with the corresponding ROC curve. (b) The ARLPM detector 
performance: the clutter and growler largest pole magnitude histograms are shown along 
with the corresponding ROC curve. (c) The GSW detector performance: the clutter and 
growler spectral width histograms are shown along with the corresponding ROC curve. 
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The performance evaluations given in this section demonstrate the individu:i.l abil­

ities of the IA, ARLPM, and GSW detectors on a file by file basis. We have seen tha.t 

detection performance improves with CCR as we expect. However, we ha.ve not ma.de any 

comments on the relative performan~~ of the three detectors with respect to each other. In 

the next section, the data presented here on a. file by file basis will be combined so tha.t 

composite performance evaluations over the entire data testbed can be ma.de. These com­

posite evaluations will allow us to better compare the relative merits of each of the three 

detectors. 

7.3.2 Detector Performance Summary 

We now examine the overall performances of the IA, ARLPM, a.nd GSW detectors. In order 

to do this, we combine all of the HH channel da.ta. in the da.ta. testbed (all of the HH files 

in Ta.hie 7.1) into one da.ta. set, and all of the VV channel da.ta. in the data testbed into 

another da.ta set. These composite da.ta sets will be used to measure the composite detector 

performances in the HH and VV channels, respectively. Since ea.ch of the da.ta. files tha.t ma.ke 

up the two composite data sets have different aspect angles or look directions associated 

with them, and since they were collected under compa.ra.ble conditions (see Ta.hie 3.3 and 

Ta.hie 3.4 for details), the composite files a.re representative of the ra.da.r returns over the 

region of coverage of a typical navigation marine rada.r. Performance evaluations based on 

the composite da.ta sets will not only provide more independent windows of da.ta. for detector 

testing, which allow for finer measurements in detection and false a.la.rm probabilities, but 

they will also 1'e more representative of the kind of detector performance tha.t would be 

observed in a. real operational scenario. 

In Figure 7 .17 and Figure 7 .18, the composite performance of the IA detector is 

given for the HH and VV channels, respectively. Following an identical format to the 

performance curves given on a. file by file basis in the last section, the integrated amplitude 

histograms of the la.belled clutter and growler data. a.re given, along with the ROC, for both 
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Figure 7,17: This figure gives the composite detector performance curves for the IA detector 
in the HH channel. The composite clutter and growler integrated amplitude histograms are 
shown along with the corresponding ROC curve. These composite statistics are based on 
the entire data. testbed. 

the HH and VV channels. The PFA data. are plotted on a. logarithmic scale so that small 

values of PFA are easily visible. 

In Figure 7.19 and Figure 7.20, the corresponding performance curves are given for 

the ARLPM tl.etector. Again, these curves are based on the composite data. sets that are 

described above. The clutter and growler histograms of the largest AR pole magnitude are 

given for ea.ch of the HH and VV channels, along with the corresponding ROC curves. The 

PFA data. is plotted on a. logarithmic scale for the same reasons described above. 

Finally, the performance curves for the GSW detector are given in Figure 7.21 and 

Figure 7 .22. The clutter and growler spectral width histograms are given along with the 
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Figure 7 .18: This figure gives the composite detector performance curves for the IA detector 
in the VV channel. The composite clutter and growler integrated amplitude histograms are 
shown along with the corresponding ROC curve. These composite statistics are based on 
the entire data testbed. 
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Figure 7.19: This figure gives the composite detector performance curves for the ARLPM 
detector in the HH channel. The composite clutter and growler largest pole magnitude 
histograms are shown along with the corresponding ROC curve. These composite statistics 
are based on the entire data testbed. 
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Figure 7 .20: This figure gives the composite detector performance curves for the ARLPM 
detector in the VV channel. The composite clutter and growler largest pole magnitude 
histograms are shown along with the corresponding ROC curve. These composite statistics 
are based on the entire data test bed. 
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Figure 7.21: This figure gives the composite detector performance curves for the GSW 
detector in the HH channel. The composite clutter and growler spectral width histograms 
are shown along with the corresponding ROC curve. These composite statistics are based 
on the entire data testbed. 

resulting ROC for the HH and VV channels, respectively. Here too, we have chosen to plot 

the PFA data on a logarithmic scale in order to accentuate the small values of false alarm 

rates. 

In order to compru:e the ROC's of the three detectors for the HH polarization chan­

nel, the IA, ARLPM, and GSW ROC's shown in Figure 7.17, Figure 7.19, and Figure 7.21, 

respectively, have been replotted together in Figure 7.23. Similarly, the corresponding VV 

RO C's are replotted together in Figure 7 .24. 

In the next section, the performance curves of the IA, ARLPM, and GSW detectors 

are compared, and the reasons behind their relative performances are discussed. 



300 auner-VGSW 

§ 
8 200 

! 
g 

~ 

100 200 300 

Bin Width (Hz) 

1 

o.s . .lJ.Hii\t_J..U.H!!i. . ..l :.il.llli ... .l..LUWl 

~ o.
6 

·+I \11111 +11111;" i-l llll~ .... 1·1111111 
OA ··1 .. 1·t·!!t:!"'···1··1·t1., .~-"'!"tto1m .. ··!·0 '!''!':'!! •. 

0
·: 11111111 l; ;111~ 11111111 11111111 
l~ 10.J 10-2 10·1 100 

PFA 

213 

1000 Growler-V GSW . 

§ 800 -
8 600 
~ 
"' 400 g 

. 

~ 

:;: 200 

0 
0 100 200 300 

Bin Width (Hz) 

Figure 7 .22: This figure gives the composite detector performance curves for the GSW 
detector in the VY channel. The composite clutter and growler spectral width histograms 
are shown along with the corresponding ROC curve. These composite statistics are based 
on the entire data. testbed. 
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Figure 7 .23: This figure shows the composite ROC for the IA, ARLPM a.nd GSW detectors, 
all on the same graph for comparison. These ROC curves are based on processing of the 
HH channel in the entire data testbed. 
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Figure 7 ,24: This figure shows the composite ROC for the IA, ARLPM and GSW detectors, 
all on the same graph for comparison. These ROC curves are based on processing of the 
VV channel in the entire data testbed. 
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7 .4 Detector Performance Comparisons 

Examination of Figure 7 .23 and Figure 7 .24 leads to the following observations: 

1. The ARLPM and GSW detectors perform equally well in both the HH and VV chan­

nels. However, the IA detector definitely performs better in the HH channel. It is 

no wonder that currently available noncoherent marine radars operate using the HH 

polarization. The IA detector performs better in the HH channel because the growler 

to clutter ratio is larger in the HH channel than it is in the VV channel. 

2. The IA detector performs worse than both the ARLPM and GSW detectors. This 

should come as no s•irprise since the IA detector is noncoherent, whereas the ARLPM 

and GSW detectors are both coherent detectors. 

3. For probabilities of false alarm less than about 2.5 %, the ARLPM detector performs 

better than the GSW detector. That is, the ARLPM detector offers a higher PD for 

each PFA less than 2.5 %. The trend reverses though for probabilities of false alarm 

great€.t than about 2.5 %. In this region, the GSW detector has larger probabilities 

of detection. 

It appears as though the ARLPM and GSW detectors each have their own region of 

superior performance, and one method would be chosen over the other simply on the basis of 

the required PFA. However, this simple approach neglects other important considerations. 

For example, the computational cost associated with the ARLPM and GSW detectors 

should be considered as described in Chapter 6. Furthermore, the relative performance 

of the two detectors in an environment different from that described by the data testbed 

should also influence the choice of which detector to use. After all, our evaluations have 

been based on a finite amount of data, over a limited range of conditions. Clearly, some 

care must be taken in drawing far reaching conclusions on the relative performante of the 

detectors in general. 
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As discussed in Section 7.3.1, the GCR has a tremendous effect on the performance 

of the ARLPM and GSW detectors. Under different weather and sea conditions, the GCR 

can be expected to be quite different from the average GCR represented in the data testbed 

used here. Therefore, in order to properly characterize the performance of the ARLPM and 

GSW detectors in general, their sensitivity to the GCR should be examined more closely. 

Since the GSW detector bases its decision solely on the spectral width of the test data, 

and it makes no use of the amplitudes of the fitted G;.ussian spectral components, it is 

expected that its performance will not degrade quickly with small reductions in the GCR. 

The ARLPM detector, on the other hand, does make explicit use of the relative amplitudes 

of the clutter and growler spectral components and hence depends directly on the GCR. 

This dependence is due to the coupling that exists between the magnitude of an AR spectral 

peak, and the spectral width associated with that peak. This coupling is explicitly indicated 

in Equation 5.26. As a result of this dependence, we expect the ARLPM detector to be 

very sensitive to changes in GCR. That is, if the average GCR were to drop considerably 

lower than the average GCR that is representative of our data testbed, we would expect the 

performance of the ARLPM detector to degrade more than the performance of the GSW 

detector. 

In order to test the validity of these performance expectations as the GCR drops, 

we performed a simple test using a little bit of reverse logic. Since our expectations suggest 

that a. drop in GCR would affect the ARLPM detector more severely than the GSW detec­

tor, then clearly a rise in GCR would cause a larger improvement in the ARLPM detector 

performance over the GSW detector. Stated a little differently, if the GCR is reasonably 

large, the relative amplitude information between growler and clutter can be used to im­

prove the performance of a detector not already using the amplitude information. That is, 

the GSW detector performance could be improved if amplitude information were used in 

addition to the spectral width information. 
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In Flgure 7.25, a. scatter plot is shown of the joint amplitude a.nd spectra.I width 

para.meters for growler da.ta. and clutter da.ta. ta.ken from file B98 (HH). These para.meters 

were determined by the feature extractor stage of the GSW detector, a.pp lied to the growler 

and clutter da.i:i.. The growler para.meters a.re indicated by 'x' and the clutter para.meters 

by 'o' in Figure 7.25. This scatter plot indicates tha.t the amplitude para.meter as well as the 

spectra.I width para.meter a.re useful for sepa.ra.ting growler and clutter da.ta.. For example, 

the simple decision region ( although not the optima.I decision region) shown by the box in 

Figcre 7.25 would result in improved growler detection over the standard GSW detector. 

That is, specifying tha.t the spectra.I width para.meter must be less tha.n a. specified threshold 

and the amplitude must be greater than a. specified threshold before a. growler is declared 

will provide improved growler detection when the GCR is reasonably large. We will call 

the detector tha.t operates in this manner the GSW / A detector (the 'A' is for amplitude). 

The performance of the GSW / A detector on the da.ta. used in Figure 7 .25 is indicated in 

Figure 7.26 by the solid line. The performance of the standard GSW detector on the same 

da.ta. is indicated by the dashed line in the same figure. The increase in performance by 

using amplitude information is very clear, supporting our expectation tha.t the ARLPM 

detector will suffer more than the GSW detector in lower GCR environments. Figure 7.26 

also shows the detection loss tha.t results for PFA's greater tha.n 1 %. This loss is due to 

the fact the amplitude threshold discards as clutter a.ny growler returns with amplitudes 

smaller than the threshold. This loss can be reduced somewhat by choosing an optima.I 

decision region in the amplitude-spectra.I width space. 

The analysis just given explains why the ARLPM detector had better performance 

than the GSW detector for small FFA's, and poorer performance (more detection loss) for 

larger PFA's. The ARLPM detector to~k advantage of the reasonably large GCR in our data. 

testbed by explicitly using amplitude information as pa.rt of its decision ma.king process. 

However, by the arguments just given, the ARLPM detector will not be as robust to GCR 

variations as will the GSW detector. It is for this reason tha.t the GSW detettor was designed 
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Figure 7.25: This figure shows a scatter plot of the amplitude a.nd spectral width pa.ra.mters 
determined by the GSW detector on file B98 (HH). The growler amplitude/spectral width 
pairs a.re indicated by 'x' a.nd the clutter amplitude/spectral width pairs a.re indicated by 
a.n 'o'. This scatter plot shows that there is information in the joint amplitude/spectral 
width statistics that is useful for classifying the growler a.nd clutter cells in file B98. A 
simple (not optimal) decision boundary is shown a.s a box in the figure. Simply stated, 
a growler is declared if its amplitude/spectral width para.meters fall inside of the boxed 
region. Otherwise, clutter is declared. 
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Figure 7 .26: This figure shows the detector performance of the GSW and GSW / A detectors 
on the HH channel of file B98. The GSW detector performance is indicated by the dashed 
line, and the GSW / A detector performance by the solid line. The GSW bases its detection 
solely on the spectral width. If the spectral width is less than the specified threshold, 
a. growler is declared; otherwise, clutter is declared. The GSW / A detector uses both an 
amplitude and spectral width threshold comparison as the basis for its operation. The 
amplitude and spectral width thresholds specified by the boxed region in Figure 7 .25 are 
used here. Growlers are declared if the spectral width is smaller than the spectral width 
threshold and the amplitude is greater than the amplitude threshold; otherwise, clutter is 
declared. 
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to use spectral width as its sufficient statistic! When the GCR is expected to be quite small 

at times, or vary over a large range, the GSW detector is preferred as its performance will 

be more robust with respect to the GCR. It is expected that in situations where detection 

of very small growlers (smaller than Growler-! and Growler-2) is required, or when the 

significant waveheight of the sea is larger than for our measurements (see Table 3.4), the 

GSW detector will be the detector of choice. If however the operational conditions are quite 

moderate as represented by our data testbed, then the ARLPM detector is still a contender 

if low PFA rate performance is essential. (The GSW / A detector would perform as well, 

however the computational cost is about double that of the ARLPM detector). 

7 .5 Meeting The Goals 

In the previous section, we looked at composite detection performance curves in order to 

compare the relative performance of the IA, ARLPM, and GSW detectors. In this section, 

we reconsider the requirements of a medium dwell-time detector that we defined on page 11 

of the opening chapter. Since our analysis has indicated that the GSW detector is the best 

performing detector under the most general conditions, we will check to see if it meets all 

of our stated requirements. These requirements are restated below for convenience and will 

be treated one at a time. The detector will: 

1. provide faster detections which translate to faster updates. 

2. offer improved growler detection performance over short dwell-time approaches. 

3. be able to provide meaningful results based on the current data-base. 

4. require less computation and less memory than long dwell-time approaches which 

translates to cost savings. 

5. indicate the kind of performance improvements that can be expected from long dwell­

time methods. 
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6. be modular in design in tha.t it will provide the necessary features needed by a. long 

dwell-time system. 

The first requirement refers to long dwell-time techniques. This requirement is 

satisfied by definition since the GSW detector makes a. de~ection decision every 0.512 s. As 

described in Chapter 1, long dwell time techniques coherent'.y process da.ta. for durations on 

the order of the pea.k wa.ve period (5-12 s). Rather than requiring several seconds before a. 

detection decision is ma.de, the GSW detector decides in a. fraction of a. second, resulting in 

faster update times. 

The second requirement specifies that the GSW detector must provide improved 

growler detection over short dwell-time approaches. Conventional marine radars are short 

dwell-time processors, and they make a decision by simply comparing the received signal 

amplitude (or power) to a. threshold. These noncoherent detectors ha.ve performance curves 

that are no better than the ROC of the IA detector which noncoherently integrates over 

0.512 s. Clearly, Figure 7.23 and Figure 7.24 show the superior performance offered by the 

GSW detector for the detection of growlers. For example, Figure 7 .23 indicates tha.t for a. 

PFA of 5 %, the IA detector offers a. PD of 60 %, while the GSW detector offers a. PD of 

96 %! 

The third requirement states tha.t the detector should be such tha.t meaningful 

results can be derived from the current !PIX da.ta. base. The emphasis here is on using 

real measurements to va.lida.te detector performance. The summary of empirical results and 

discussion given in Section 7.4, and indeed throug".out this chapter, are testimony to the 

fa.ct tha.t meaningful and expla.ina.ble results ha.ve been obtained from the !PIX da.ta. base, 

in characterizing the performance of the GSW (as well as the IA a.nd ARLPM) detector. 

The fourth requirement states tha.t the GSW ( a.nd the IA and ARLPM detectors 

as well) detector should require less memory and computational requirements than long 

dwell-time detection techniques. The memory requirements are certainly less tha.n long 

dwell-time techniques because only 0.512 s of data. (512 samples) need to be stored a.nd 
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operated on for each resolution cell with the GS\V detector, whereas several seconds of data 

(several thousand samples) need to be stored and coherently operated on for long dwell-time 

techniques. As far as computation goes, without knowing the kind of processing that would 

be used for long dwell-time detection, a comparison of the computational complexity cannot 

be made. However, we certainly can say that if the long dwell-time detector uses sophis­

tocated processing techniques such as those used by the GSW detector, the computational 

expense will be much higher. 

The fifth requirements states that the GSW detector should be able to provide 

an indication of the amount of performance improvement that can be expected by long 

dwell-time Doppler methods. Whereas the GSW detector focusses on the spectral width 

characteristics associated with a fraction of a second of clutter and growler radar returns, 

long dwell-time processors would track the winking phenomenon by coherently processing 

many seconds of data.. An indication of the kind of performance that can be expected by 

such a. method is given by noncoherently integrating consecutive GSW detections. Although 

noncoherent integration may result in a loss with respect to coherent integration, it will cer­

tainly provide a lower bound on the performance of long dwell- time Doppler processors. In 

order to simplify the performance prediction procedure, we use a. dual binary integration 

technique that is common for noncoherent processors. We simply perform five consecutive 

detections with the GSW detector, where ea.ch detection is based on 0.512 s of data.. There­

fore, with a 50 % overlap between windows, 1.536 s of data. is processed. The final decision 

is based on a. majority rule of the five individual GSW detections. That is, if at least three 

out of five of the GSW decisions say a. growler is present, then we say a. growler indeed is 

present; otherwise, clutter is present. We ca.11 this detector the DBI-GSW detector (Dua.I 

Binary Integra.tion-GSW). Clearly, since the DBI-GSW detector processes much less data. 

than a true long dwell-time detector, and since its uses noncoherent integration of even 

sma.ller windows of data, it can only provide a. lower bound to the performance of optima.I 

long dwell-time Doppler detectors. 
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In Figure 7.27, the ROC for the DBI-GSW detector is given, based on processing 

the entire data testbed for the HH channel. The composite GSW ROC is also shown 

for comparison. The performance improvement achieved simply by using a 3/5 rule on 

the GSW detector outputs is remarkable! For PFA's as small as 0.001, the PD is almost 

perfect! Similarly, the ROC for the DBI-GSW detector applied to the VV channel is given 

in Figure 7.28. Again, the improvements are incredible. As these figures clearly show, 

the GSW detector has satisfied the requirement of providing an indication of the kind of 

performance that can be expected from long dwell-time Doppler techniques. 

Before leaving the DBI-GSW detector and going on to the sixth and final require­

ment, a few more comments will bring light to the significance of these results. Although the 

DBI-GSW ROC's were generated by processing 1.536 s of data, only durations of 0.512 s 

were processed coherently. Furthermore, the duration of 1.536 s was a contiguous time seg­

ment. At least the same performance would result if the five 0.512 s windows were staggered 

in time. This is because the time difference between windows would be larger, removing 

what little correlation that may have existed between consecutive windows. Therefore, the 

five GSW detections for a given range cell could be obtained from five consecutive scans of 

the radar; one GSW detection per range cell per scan. Hence, with a five-bit shift register 

to store the five GSW detection decisions (one from each scan) for ea.ch radar resolution 

cell, the DBI-GSW detector could be implemented. Furthermore, excluding the five initial 

scans that a.re required to initialize the decision shift register for each resolution cell, de­

cisions can be updated every scan, simply by shifting out the oldest decision and shifting 

in the GSW detector decision from the current scan. As far as the time for updating goes 

then, the DBI-GSW detector behaves just like the GSW detector; the scan to scan time 

and update time are the same, as well as the computational requirements. In any case, 

the DBI-GSW detector still requires a longer time interval between independent output de­

tection decisions. Therefore, it is approaching a long dwell-time Doppler technique. From 

Figure 7 .27, we have been able to achieve a probability of detection of a.bout 98 %, while 
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Figure 7.27: This figure shows the composite GSW detector ROC curve for the HH chan­
nel, along with the corresponding DBI-GSW ROC curve. The DBI-GSW detector shown 
here uses a. dual binary integration procedure to improve growler classification. First, five 
consecutive GSW detector decisions a.re made. It then uses a majority rule on these five 
decisions. If three (or more) out of the five decisions sa.y 'growler', then .:. growler is de­
clared; otherwise clutter is declared. The improvement gained by a procedure such as this 
is substantial. 
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Figure 7,28: This figure shows the composite GSW detector ROC curve for the VY chan­
nel, along with the corresponding DBI-GSW ROC curve. The DBI-GSW det~ctor shown 
here uses a dual binary integration procedure to improve growler classification. First, five 
consecutive GSW detector decisions are made, It then uses a majority rule on these five 
decisions. If three (or more) out of the five decisions say 'growler', then a growler is de­
clared; otherwise clutter is declared. The improvement gained by a procedure such as this 
is substantial. 
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maintaining a false alarm rate of 0.1 %. Compare this detection performance to the 16 % 

probability of detection achieved by the IA detector (see Figure 7.23), for the same PFA. 

This indicates the remarkable improvement obtained over the performance of conventional 

marine radars! 

Finally, the sixth requirement states that the GSW detector should be modular 

in design. That is, it should provide the necessary parameters required by a long dwell­

time Doppler processor. Indeed, the GSW detector does satisfy this requirement as well. 

The parameters provided by the GSW detector: namely, the spectral width, the mean 

frequency, and the spectral amplitude, can all be passed on the a tracking operator in 

order to test for the presence of the winking phenomenon as described in Chapter 5. The 

combined GSW detector front-end and tracker backend can be viewed as a long dwell­

time Doppler processor. We have already demonstrated this tracking ability as shown in 

Figure 5.20, where the time-varying mean frequency of the growler signal is being tracked 

by the parameters of the GSW detector. 

In this section, we have demonstrated the superior properties of the GSW detector. 

We have shown that this detector satisfies all of the requirements that were specified for a 

medium dwell-time detector at the beginning of this section. Furthermore, the performance 

improvement of this detector over traditional noncoherent detectors is truly outstanding. 

7.6 Summary 

In this chapter, we have evaluated the detection performances of the IA, ARLPM, and 

GSW detectors that were developed in Chapter 6. We began by defining the IPIX data 

testbed upon which our analysis was based. In Section 7.3.1, the performance of the three 

detectors was shown to have a strong dependence on the GCR. The performance of the 

detectors improved with increasing GCR, as is expected from detection theory. In Sec­

tion 7 .4, the GSW and ARLPM detectors were shown to be far superior to the IA detector, 
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demonstrating the performance improvements that result from coherent processing. These 

performance evaluations were based on the entire data testbed, so they are considered to 

be representative of the average performance one could expect, from a given look direction. 

It was also shown that the ARLPM detector was more sensitive at very low PFA's, while 

the GSW detector was more sensitive at higher PFA's. This difference was shown to be the 

result of the fact that the GCR was reasonably large for the data testbed, and the ARLPM 

took advantage of this fact. It was also shown though that the GSW detector would per­

form equally well (in fact better) for small PFA 's, if it too took advantage of the large 

GCR. However, as the GCR falls, the ARLPM performance is expected to degrade much 

more quickly than the GSW detector. Therefore, the GSW detector was singled out as the 

best performing and most robust of the three detectors. Finally, in Section 7.5, the GSW 

detector was checked in order to see that it satisfied the six goals originally outlined for a 

medium dwell-time detector. Indeed, all six goals were satisfied by the GSW detector. In 

fact, in evaluating one of the goals, the DBI-GSW detector was introduced to indicate the 

performance improvements that would result by processing more data. The improvement 

attained is incredible! The DBI-GSW detector, operating in a scanning mode, was shown to 

provide a PD of 98 %, while maintaining a PFA of only 0.1 %. Compare this performance 

to the IA detector which is representative of current marine radar technology. The PD of 

the IA detector was only 16 %, for the same PFA. 



Chapter 8 

Summary and Recommendations 

8.1 Summary of Results 

In this thesis, we have investigated techniques for the improved detection of growlers in 

sea clutter. This investigation was based on the analysis of real radar data collected with 

the IPIX radar, at a radar site at Cape Bonavista, Newfoundland. Our study of improved 

growler detectors began with a detailed characterization of the noncoh~rent and coherent 

properties of sea clutter and growler radar returns. 

Several results emerg~d from the noncoherent analysis of growler and clutter radar 

returns. First and foremost, we showed from a statistical point of view that the sea clutter 

amplitude statistics are K-distributed. One of the key properties of the K-distribution is its 

ability to model spiky clutter. As confirmed by our analysis, sea clutter amplitude returns 

often appear as target-like spikes that persist for several seconds. This causes great confusion 

for conventional radars that assume Rayleigh distributed clutter statistics which are known 

to have a very small probability of observing large amplitudes, and which are expected to be 

fast-varying so that integration offers considerable clutter rejection. The K-distribution is a 

compound model that has a fast-varying Rayleigh speckle component; but this component 

is modulated by a slow-varying root-Gamma component which models the underlying mean 

229 
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level of the sea clutter backscatter. It is this slow-varying clutter component that ca.uses 

ha.voe to conventional marine radars, producing target-like spiky returns. Furthermore, it 

explains the spatial dependence on the performance of fixed threshold detectors. Since the 

slow-varying component is partia.lly associated with the mean tilt of the ocean surface which 

is controlled by the underlying sea. swell, the mean level has a spatial dependence. (Tilt 

contributes to .he modulation, but is not the whole story; this area is the subject of active 

research a.t the moment.) Therefore, fixed threshold detectors will have false alarm rates 

that very spa.tia.lly. 

The a.mpliti:de statistics of growlers were also e.xarnined and were shown to be 

quite similar to clutter amplitude statistics, indicating the poor performance of noncoherent 

growler detectors. Furthermore, both the like-polarized and cross-polarized channels were 

studied to see whether there was improved growler/clutter separation in the cross-polarized 

channels. No improvements were evident. Due to the undesirable spatial variation of false 

alarms associated with fixed threshold detections, CFAR methods were examined. Temporal 

CFAR detectors were ruled out because of target masking problems associated with those 

methods. A spatial correlation analysis of sea clutter data was done in order to determine 

the potential of spatial CFAR processors. However, our analysis indicated that the spatial 

correlation of sea. clutter dropped offsubstantia.lly over just a few radar resolution cells. This 

was due to the fa.ct the radar resolution cell was 30 m in range. Typical swell wavelengths 

are between 100 m and 150 m. Therefore, ea.ch clutter cell was significantly displaced a.long 

the swell wavelength resulting in a different underlying mean level component from cell 

to cell. As a result, the sea clutter cells spanning a. CFAR window did not have similar 

sta.tistieo, ma.king traditional CFAR methods unusable with our data.. 

Turning to the task of quantitatively evaluating noncoherent detection performance 

of growlers, a. medium dwell-time detector ca.lled the IA detector was devised and tested on 

the !PIX data. testbed. The IA detector based its decision on a.bout 0.5 s of data., by simply 

integrating the amplitude returns over this period. It was determined that the HH channel 
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offered better performance over the VV channel, as the clutter was shown to vary less in 

the HH channel. Nevertheless, the detection performance was shown to be quite poor. For 

example, with a PFA of 5 %, the IA detector offered a PD of only 60 %. 

The coherent studies were just as fruitful as the noncoherent studies. Our analysis 

verified the presence of the so called winking phenomenon that we discovered during our field 

trials with the IPIX radar. The Doppler returns from a floating growler were characterized 

by an almost periodic variation in center frequency with time. As further study showed, the 

growler motion can be modeled by the hydrodynamics associated with ocean waves. This 

discovery laid the foundations for improved Doppler detection of growlers in sea clutter. 

In order to develop medium dwell-time Doppler detectors that process a fraction of a 

second of data before making a decision, the Doppler spectra of sea clutter and growlers were 

examined in detail. It was determined that a Gaussian-shaped (lG) spectrum model closely 

matches the estimated spectra from sea clutter data. Also, a two-Gaussian (2G) model is a 

good fit to the growler-in-clutter spectra, where one of the Gaussians is associated with the 

clutter returns, and the other Gaussian is associated with the growler returns. Our studies 

indicate that the sufficient statistic that distinguishes the growler and clutter spectra is the 

spectral width associated with the Gaussian components. Growlers have spectral widths 

that are typically less than 6 Hz, while sea clutter tends to have much larger spectral widths. 

With the basis for a Doppler detector decided upon, two different detectors were designed to 

exploit the spectral width differences between growler and clutter data. The first detector 

is based on comparing the largest pole magnitude from an AR modeling of the data to a 

threshold. The closer the pole is to the unit circle, the more likely it is due to a growler. 

This detector is called the AutoRegressive Largest Pole Magnitude detector. The second 

coherent detector is based directly on the spectral width sufficient statistic. A spectrum 

estimate is formed from the data, and a lG and 2G spectrum model are both fitted to 

the spectrum estimate in the nonlinear least squares sense. The model with the best fit is 

chosen as the spectrum model, and its parameters (amplitude, mean frequency, and spectral 



232 

width) are passed on to the detector. If a Gaussian component in the model has a spectral 

width less than a preselected threshold, a growler is declared; otherwise, clutter is declared. 

This detector is known as the Gaussian Spectral Width detector. 

Both the ARLPM and GSW detectors were evaluated on tre !PIX data testbed. 

Both detectors performed equally well in the HH and VV channels. Although both the 

ARLPM and GSW detectors are far superior to the IA detector, the GSW detector is the 

more robust of the two. The GSW detector is recommended in low GCR environments. For 

the GSW detector, a PD of 96 % was realized for a PFA of 5 % (The ARLPM detector had 

a PD of 87 %). It was also shown that the PFA could be reduced drastically by performing 

several GSW detections consecutively, and only declaring a growler if the majority of the 

detections indicated a growler. For example, if a growler was declared only when three or 

more out of five consecutive GSW decisions indicated the presence of a growler, a PD of 

98 % was achieved while suffering a PFA of only 0.1 %! Compare this performance with 

the 16 % PD for the IA detector when the PFA equals O.i %. There is no doubt about the 

performance improvements that we have made with the GSW detector. 

A few more comments are noteworthy on the GSW detector. Although the GSW 

detector as defined in Chapter 6, ma:tes use of only the spectral width parameter, the 

amplitude and mean frequency parameters are also available if required. For example, we 

have shown the amplitude and spectral width parameters to be perfectly suited for making 

GCR, GNR, CNR, RCS, and absolute power measurements which allow estimates of growler 

RCS and clutter u0 • Also, all of these parameters could be passed on to a tracking system 

which could track the mean frequency variation in order to identify the target based on 

its dynamics. The combination of the GSW stage and the tracking stage may be viewed 

together as a long dwell-time Doppler detector. Data reduction has also been achieved 

since in our case, 512 samples have been reduced to three or six parameters. Thus, the 

GSW detector can be considered to be very modular and versatile, and although it is 

computationally an expensive operator, many added benefits are bundled /or free. 
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8.2 Contributions of this Research 

The contributions of this research may be summarized as follows: 

1. The collection of real, coherent, dual-polarized, X-band sea clutter and growler-in-sea 

clutter radar backscatter data. Thls database has been catalogued and summarized 

in the thesis. Associated radar parameters are indicated, along with extensive surface 

truthing data. Furthermore, supplemental calculated data such as GCR, growler 

RCS, and sea. clutter u0 data. are also given. As well, a. complete chapter is devoted to 

the experimental effort so that all of the pertinent information is put together in an 

organized fashion. Thls arrangement is valuable to other researchers who may wish 

to build on the results presented herein; especially since data and extensive ground­

truthing information are rarely found together in the literature. Furthermore, there 

is ver) little low grazing angle X-band sea. clutter data published in the literature, let 

alone growler data.. 

2. Verification of the applicability of the K-distribution for modeling the amplitude sta.tis-

tics of very low grazing angle sea. clutter, and its use in performance prediction. 

3. Discovery of the winking phenomenon associated with growler radar returns. 

4. Cha.ra.cteriza.tion of the time-varying Doppler spectra of sea. clutter and growler data. 

and identification of spectral width as a sufficient detection statistic. 

5. Development of two detection algorithms and ROC curves based on the !PIX data. 

base, that offer substantial improvements over conventional noncoherent techniques. 

These a.re the AutoRegressive Largest Pole Magnitude detector and the Gaussian 

Spectra.I Width detector. In particular, the GSW detector offers performance, robust­

ness, and modularity giving the system designer maximum freedom. Furthermore, 

the timeliness and scope of thls study suit well the needs of the recent Canadian effort 

for the Hibernia development. 
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6. Development of calibration, data validation, data handling, and analytical software 

library that is portable and runs directly on the radar system computer. The software 

is designed to operate on the data, in place, as they are collected. This library will 

be very helpful to graduate researchers who are working on the IPIX radar project. 

7. Publication of several conference papers and journal papers which report on the IPIX 

radar, the data collection effort, and results obtained (7, 8, 10, 11, 12, 13, 14, 15]. 

8.3 Conclusions 

In the last two sections, highlights of the results of our study on the detection of growlers in 

sea clutter, along with the contributions to research that resulted from this work were pre­

sented. As always, any attempt to steer a study along all possible paths, while at the same 

time exhausting all courses of action is futile, especially with limited time and resources. It 

is important therefore, to focus on a few issues, with enough depth that meaningful results 

emerge, leaving all the other issues for another time, or another researcher. This approach 

has been taken in this thesis. At this time, it is appropriate to discuss the conclusions that 

we have arrived at, as a result of this work. These in turn will point to some of the areas 

in the growler detection problem that still require investigation. 

Our results indicate that improved growler detection is achievable using the coher­

ent properties of growler and clutter radar returns. Although medium dwell-time Doppler 

detectors such as the GSW detector offer a very significant improvement in growler detec­

tion performance over conventional techniques, it is necessary to integrate larger amounts 

of data to reduce the probability of false alarm rate even further. Fortunately, our research 

indicates that by integrating GSW detections on a scan-to-scan basis (like the DBI-GSW de­

tector), the performance continues to improve. Indeed, our results show that Jong dwell-time 

Doppler techniques (such as the DBI-GSW detector with many scan-to-scan integrations) 

are required to meet stringent operational rec;.uirements. This author feels that a continued 
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effort to exploit the Doppler characteristics identified in this thesis will be fruitful, resulting 

in the development of a modern marine radar capable of reliable growler detection in sea 

clutter. This conclusion justifys a continued effort in the development of long dwell-time 

Doppler methods. 

Our studies were limited largely to Doppler processing. Although we made use 

of independent polarization channels, polarimetric processing based on scattering matrix 

measurements has not been considered here, as it requires a very large effort for it to be 

treated properly. Preliminary polarimetric studies at the CRL have indicated that there 

is additional discrimination between growler and clutter returns, supporting polarimetric 

studies as an area of future research. 

Other radar discriminants such as multi-frequency illumination offer the potential 

to distinguish rigid targets (e.g. growlers) from fluid targets (e.g. sea). IPIX is in fact 

in the process of bein!!: 11pgraded to multi-frequency operation (one fixed, one agile). The 

addition of multi-frequ.,ucy measurements offer the promise of further improvements to 

growler detectability in sea clutter. 

Another open area for future research concerns the manner in which various dis­

criminators should be combined in an overall detection system. From a theoretical as well 

as practical standpoint, the joint processing of all radar variables is optimal, and would be 

highly desirable. There is a lot of room for the development of strategies for combining 

various measurements in a fashion that will be practically achievable, while at the same 

time offering large performance gains. 

Finally, the last area for future research involves expanding the database upon 

which the results presented herein are based. It is important to have growler and clutter 

measurements under a wide variety of environmental conditions in order that conclusions 

are realio~ic. Although our database covers a limited range of growlers, sea conditions, and 

wind conditions, efforts were made to make our results as generally applicable as possible. 

We have indeed been able to achieve a remarkable improvement in growler detection using 
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medium dwell-time Doppler techniques. However, more data. a.re required to adequately 

evaluate the performance of long dwell-time Doppler techniques. Our analysis began in the 

field where the problem lives, with an experimental effort to collect data.. Following data. 

collection, the analysis phase took centre stage, closing with recommendations. However, 

it is only after we come full circle, and our methods a.re validated in the field, that we may 

be invited to take a bow. 



Appendix A 

Weather and Wave Height 

Records 

Thls appendix contains weather and wave height records that cover the period of the !PIX 

field trials, between the dates of June 2, 1989 and June 14, 1989. This data is presented 

in the form of graphs. The weather information plotted on the graphs was obtained from 

the AES Weather Office in Cape Bonavista, Newfoundland, and the wave height and wave 

period information were recorded by a nondirectional waverider that was moored 6.75 km 

offshore at a bearing of 72 degrees. The data from these two sources was then compiled by 

Brian Currie and are plotted here in the form of graphs. 

A.1 Weather Records 

We begin with a plot of the Experimental ID for each collected data file, versus the date 

and time the data file was collected. Thls plot is given in Figure A.l and will enable the 

matching of a particular data file with the recorded weather and wave conditions. Thls 

information is then followed by wind speed, wind direction, visibility, temperature, and 

pressure data plotted in Figure A.2, Figure A.3, Figure A.4, Figure A.5, and Figure A.6 
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EXPERIMENT ID NUMBER VERSUS DAY NUMBER 

f z 

Day Nwnber (!=May 29/89) 

Figure A.l: This figure shows the date and time that each experiment was performed. The 
experiments are identified by an Experiment ID, and this is plotted against the correspond­
ing date and time. The date May 29, 1989 at 12:01 am is normalized to day 1. 
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respectively. For simplicity of notation, a day number is plotted instead of a date and a 

time label. Day 1 corresponds to May 29, 1989 at 12:01 am. For example, a day number of 

2.5 corresponds to May 30, 1989 at 12:00 noon. 

A.2 Wave Height Records 

In this section, wave height and wave period information is presented. Figure A.7 shows 

the significant and maximum wave height measurements recorded during our field trials 

with !PIX. This is followed in Figure A.8 with a plot of the wave period as compared to 

the significant wave height data. In Figure A.9, we plot a comparison of the wind speed 

data given in Figure A.2 and the significant wave height data given in Figure A.7. The 

significant wave height represents that height exceeded by 30 % of the wave crests, while 

the maximum wave height is simply the maximum measured waveheight reported by the 

waverider during each observation interval. 
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WIND SPEED VERSUS TIME 

. : ; i i __ +----
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6 8 10 12 14 16 18 

Day Number (!=May 29/89) 

Figure A.2: This figure shows the wind speed in knots as a. function of time during the 
period Ma.y 29, 1989 to June 13, 1989 as measured by the AES Weather Office a.t Ca.pe 
Bona.vista., Newfoundla.11.d. 
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Figure A.3: This figure shows the wind direction in degrees as a. function of time during 
the period Ma.y 29, 1989 to June 13, 1989 as measured by the AES Weather Office a.t Ca.pe 
Bona.vista., Newfoundland. A bearing of O degrees is north. 
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Figure A.4: This figure shows the visibility in miles as a function of time during the period 
May 29, 1989 to June 13, 1989 as measured by the AES Weather Office at Cape Bonavista, 
Newfoundland. 



l 
! 

TEMPERATURE VERSUS TIME 20.--~--,-~~~,~~~~--,~~~l,-,-~-~ .. ~~.---~--,-~~ 
. . . .. ; .............. -~ ....... , ..... , .. +·· .... , ...... . 
. . -~ ................. t·-··· .. ,-..................... . 

14 ....... . --·· ... ~ ................. ; ................. ~ ............. . 

,,_ -~------·- ----- ___ JV-... gf ___ _ 
2 ---·-·····t.···--·---· 1. -·--·--·· !-·---·---:·-· ···-······ \.·-··········-\ ·--···--·-~ ·······-···-: ············ 

: : 
0o 2 4 6 8 10 12 14 16 18 

Day Nmnber (l=May 29/89) 

2-13 

Figure A.5: This figure shows the temperature in degrees C as a function of time during 
the period May 29, 1989 to June 13, 1989 as measured by the AES Weather Office at Cape 
Bonavista, Newfoundland. 
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Figure A.6: This figure shows the sea-level pressure in kPa as a function of time during the 
period May 29, 1989 to June 13, 1989 as measured by the AES Weather Office at Cape 
Bonavista, Newfoundland. 



245 

SIGNIFICANT WA VE HE!GIIT AND MAXIMUM WA VE HE!GIIT 

. 
= I _ = : i : I 

l i \ l l li \i; ~ ~i l 
3 ---·--··-r··--·---·-r-·--··--·r··-···---r·--····Tir .. ···-··u ·· -···-t:···~i··i? ··········· , , , , , f I " ,,.1 •• , 

2 ---·1 ···-~···--·---·-~-----· . ·t ~. -· ! ·--!·-··--··-· j f- ~---·· !i ····--·-·· ! ..i~·· ·····: -·········· 

" 

: 'l":'r..:·_ ·~ : : t;~ .I , . ! ! -~: )':,. I I ! .,,, .. fli:, 11.t !: • 
•'- ! I : ! .. : iii ! • :• Ii'! i 
tr,!i··~,.c·t lY: i · '-', I l 

1 ---·· ... ,w!-.~·i°"~' -···: ..... --··t···· ...... · . ·--· ·-······· ···--·-····-r·-···---· 
. I : 

1 I 
2 4 6 8 10 12 14 16 18 

Day Nwnbcr (!=May 29/89) 

Figure A. 7: This figure shows the significant and maximum waveheight in metres, plotted 
as a function of time during the period May 29, 1989 to June 13,1989. This data was 
measured by a nondirectional waverider. 
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WAVE PERIOD (sec) AND SIGNIFICANT WA VE HEIGIIT (m) 
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Figure A.8: This figure shows the wa.ve period in seconds along with the significant wa.ve 
height in metres, plotted a.s a. function of time during the period Ma.y 29, 1989 to June 
13,1989. This da.ta. wa.s measured by a. nondirectional wa.verider. 
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WIND SPEED (kt) AND SIGNIFICANT WAVE HEIGIIT (m) 
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Figure A.9: This figure shows the significant wa.veheight in metres along with the wind 
speed in knots, plotted as a. function of time during the period Ma.y 29, 1989 to June 13, 
1989. This da.ta. was measured by a nondirectional wa.verider a.nd the AES Weather Office. 



Appendix B 

IPIX Calibrations 

In this appendix, the I and Q calibrations and the input/ouput calibrations are described. 

The I and Q calibration involves correcting amplitude and phase imbalances that arise from 

mismatches in the quadrature demodulator section of the IPIX receiver. The input/output 

calibration involves calculation and removal of the effective gain applied by the receiver to 

the input signal. 

B.1 I and Q Calibration 

In a coherent radar such as the IPIX radar, the received signal at RF is mixed down to IF 

and then is passed through a quadrature demodulator stage. The quadrature demodulator 

multiplies the IF signal with two coherent IF sources shifted in phase by 90 degrees (I 

and Q sources), and then lowpass filters the result. The effect of this operation is to mix 

the IF signals down to baseband, retaining only the difference frequency components. If 

the quadrature demodulator performs ideally, a pure baseband tone on the IF carrier would 

result with a complex exponential baseband signal at the baseband tone frequency. Plotting 

the resulting I and Q baseband signals against each other would result in a perfect circle. 

Quadrature demodulators in practice do not perform ideally. The coherent I and 
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Q sources are never perfectly orthogonal and gain imbalances between the two channels 

are common. The effect of the phase and amplitude imbalance on a pure baseband tone 

is to create an image component at the negative of the tone frequency, along with the 

normal baseband tone. The larger the imbalances, the larger is the magnitude of the image 

component. 

Along with the amplitude and phase imbalances, de offsets also result from various 

components in the receiver. The point of I and Q calibrations is to correct for the amplit•1de 

and phase imbalances as well as the de offsets that are found in the system. In this section, 

we consider two different approaches that provide these corrections. 

The first method that we consider is a generalization of the method described by 

Churchill et al. [71]. The output of the nonideal quadrature demodulator is given by 

I(t) = (l+E)Acoswt+d; 

Q(t) = Asin(wt+<!>)+dq (B.l) 

where £, </>, d,, dq are the amplitude imbalance, phase imbalance, and de offsets respectively, 

and w is the baseband frequency. The de offsets d, and dq are easily corrected by removing 

the average value of I(t) and Q(t) respectively. Therefore, correcting these in Equation B.1 

and dropping the time dependance for simplicity of notation, we get 

I = (1+£)Acoswt 

Q = Asin(wt+</>). (B.2) 

Ifl and Qare viewed as components of a 2-dimensional vector, then a rotation and 

scaling operation will correct for the phase and amplitude imbalances. Such a correction 

can be written in matrix form as 

(B.3) 
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where / 0 and Q0 are the corrected I and Q components and E and P are given by 

E 
cos <I> 

= (1 + f) 
p sin c/> = (1 + f)° 

(B.4) 

In order to make use of Equation B.3, we need to determine the values of E and P for 

our system. One way to do this is to inject a known test signal into the receiver and measure 

the image component that results from the imbalances in the system. For example, consider 

a sampling system that samples the I and Q components with a frequency J •. Furthermore, 

assume that N samples of the test tone are collected, and that the test tone frequency is 

given by w = 2,r J. u/ N, where u is an integer between 1 and N /2 so that the baseband test 

tone and its image both fall on a DFT (Discrete Fourier Transform) bin. It is easy to show 

that in the absence of noise, E and P are exactly given by 

E = -Real [ 
2

FN-u ] + 1 
F':; + FN-u 

P Im [ 
2FN-u ] = - ag ' 

f':; + FN-u 
(B.5) 

where Fk represents the k1h point in an N-point DFT. In other words Fu is the DFT value 

at the tone frequency and FN-u is the DFT value at the image frequency. Therefore, any 

test tone can be used so long as its frequency falls on a valid DFT bin. Another way of 

saying this is that a full number of cycles of the tone must be processed by the DFT. This is 

a generalization of the method described by Churchill et al. in [71]. They derive equations 

for the case where the test tone has a single cycle processed by the DFT. 

The i-q correction procedure described above works very well when the frequency 

of the test tone can be controlled precisely. A test source such as this is often not available 

and so an alternate procedure is desirable. We have derived such a procedure based on 

maximum likelihood estimation theory. 

In cases where the test tone is not known accurately, a reasonable approach would 



251 

be to estimate this tone from the output data. Consider an imbalanced receiver with zero­

mean AWGN which is typical of IPIX (and other radar receivers). With a test tone as the 

input source, the digital output samples are modelled as: 

r(nT,) = s(nT,) + e(nT,) (B.6) 

where 

s(nT,) = a 1 exp(-jwnT,) + a2 exp(iwnT,) + d. (B.7' 

T, is the sampling period, w is the baseband frequency of the tone, d is the complex de 

offset (ie. the real part is the I channel de offset and the imaginary part is the Q channel de 

offset), and e(nT,) represents the complex AWGN. We recognize a1 as the DFT value at the 

image frequency and a2 as the DFT value at the tone frequency. Not knowing the baseband 

frequency w of the test tone, use of Equation B.3 requires estimation of a1, a2, d, and w, 

based on the received data r(nT,). Because of the excellent properties of ML estimates, 

we compute ML estimates of these unknown parameters. Since the noise model is zero­

mean AWGN, the ML estimates are equivalent to the minimum least squares estimates of 

the parameters [9, section 7.9]. In order to simplify the computational requirements of 

these estimates, we recognize that only the parameter w appears nonlinearly in the model 

described by Ecp1ation B.7. Since the parameters of a linear model can be solved for in a 

single step, we assume for the moment that an estimate of w given by w is available. If 

N is the number of samples of the received signal available, the signal model defined in 

Equation B. 7 can be rewritten in vector notation as 

s = Ma (B.8) 
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where the matrix M is given by 

exp[iw(N - 1)/2] exp(-jw(N - 1)/2] 1 

M= 1 1 1 (B.9) 

exp(-jw(N + 1)/2] exp(jw(N + 1)/2) 1 

and the parameter vector a is 

(B.10) 

The problem now is to solve for the minimum least square or ML estimates of the 

parameter vector a. If we define the error function as 

(B.1!) 

and the conditional parameter vector 0 0 as 

Oc = (alw), (B.12) 

then minimizing £2 with respect to 0 0 provides the ML estimates of a. It can be shown (9] 

that this minimization results with the solution: 

(B.13) 

Since the result given in Equation B.13 assumes that w is available, in practice, the 

optimization would be performed as follows: 

1. Pick a starting value for w. This should be easy since the test tone will be known 

approximately. 

2. Evaluate Equation B.13 to solve for the parameter vector OML· 

3. Evaluate the error function given by Equation B.11 using the current parameter esti­

mates. 
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4. Use the error function value and the current estimate of w along with the corresponding 

previous values to update the value of w. For example, use the Golden Section Method 

described in [69]. 

5. Repeat the last three steps until the error function defined in Equation B.11 is at a 

minimum within the required tolerance. 

A reduction in the computation of OML can be realized if N is odd. For this case, 

MHM reduces to a 3x3 real matrix given by 

N sin(WNT1) sin(C:,i'VT,/2) 
s1n(wt.) ain(wt./2) 

N (B.14) 

N 

where we have made use of the identity 

(N-1)/2 

L exp(j{JnT.) 
n=-(.V-1)/2 

sin({JNT./2) 
= sin({JT./2) · 

(B.15) 

We now give an example of this ML calibration procedure using real IPIX data. 

A test tone of approximately -1 MHz was injected into the !PIX receiver and the I and Q 

outputs were recorded. A sample of this data is shown plotted in Figure B.l. The phase 

imbalance is easily seen. The ML calibration procedure described above is applied to the 

data, and the data is corrected as described in Equation B.3. This corrected data is shown 

plotted in Figure B.2. 

B.2 Input/Output Calibration 

The input/output calibration allows us to map the digital I and Q samples at the output 

of the receiver onto the real powers that were received at the antenna. In the IPIX radar, 

the built-in calibration equipment (BICE) can be used to evaluate the input/output char­

acteristic automatically. By varying a known internal test source and a digitally controlled 
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Figure B.l: Uncalibrated I and Q test tone plotted as I versus Q. The test tone of approx­
imately -1 MHz in frequency was injected into the receiver, and sampled at 30 MHz. 
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Figure B.2: Calibrated I a.nd Q test tone plotted a.s I versus Q. The test tone of approxi­
mately -1 MHz in frequency wa.s injected into the receiver, a.nd sampled at 30 MHz. Then 
the amplitude a.nd pha.se imbalances were corrected using the ML calibration procedure. 
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attenuator, several different power levels can be injected into the receiver and the outputs 

measured. In order to determine the actual input power levels, a power meter is used at 

a convenient reference port. Then nominal losses are used for waveguide and directional 

couplers that precede the reference port. In this way, approximate input powers are derived. 

By adding the sum of the squares of the I and Q components at the output of the receiver, 

we arrive at the output power. Then a plot of the input/output power curve can be made. 

An alternative procedure is to use an external, variable, RF power source to inject 

known powers in to the IPIX receiver. In this way all losses in the system are included. 

Again output powers are calculated and the input/output characteristic is plotted. Us­

ing this procedure with the IPIX STC's in the maximum gain position, the input/output 

characteristic shown in Figure B.3 was produced. This characteristic is valid for all of the 

experiments described in this thesis. For the most part, the received data fell within the 

linear region of this characteristic. This allows for a simple mapping of output to input 

powers. That is, providing that we are operating in the linear region of the receiver, a 

doubling in the 011tput power implies a doubling in the inout power. Furthermore, if a 

convenient point such as the noise floor of the receiver w1,,.., known at the input, output 

signal powers could be mapped onto the input &imply by adding the output signal power to 

output noise power ratio to the noise power at the input of the receiver (the power units are 

in dB's). The input/output characteristics given in Figure B.3 did not take into account the 

waveguide losses between the receiver input and the antenna. These losses were measured 

to be 4 dB one way. From Figure B.3, the noise floor is seen to be around -96 dBm at the 

receiver input. This is therefore equivalent to -92 dBm at the antenna. This input noise 

level agrees well with that predicted in theory. The bandwidth of the IPIX receiver was 

determined to be approximately 25.1 MHz (3 dB). We will use this figure as the effective 

noise bandwidth B as described in [20]. The theoretical noise power at the receiver input 

is given by 

(B.16) 
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where N; is the input noise power in Watts, k is Boltman's constant equal to l.38e-23 

Watts/Hz, T0 is room temperature at 290 K, and NI is the noise figure of the receiver which 

is approximately 4.17 dB for IPIX. Substitution into Equation B.16 gives a theoretical input 

noise power of -95.8 dBm for IPIX. 
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Figure B.3: The input/output characteristic of the IPIX radar with the STC's at maximum 
gain. The horizontal channel is indicated by 'o' and the vertical channel by 'x'. This 
characteristic is valid for the experiments described in this thesis. 



Appendix C 

Confidence on Empirical 

Amplitude Statistics 

In this appendix, the question of confidence intc :vals on empirical estimates of amplitude 

statistics is addressed. The confidence intervals on the empirical estimates of the cumula­

tive distribution function Fx(:r) for the observable X will be solved, rather than for the 

probability density function of X, px(x ), due to simplicity. 

C.1 Cc.16.dence Limits 

Consider a set of independent, identically distributed variates X;, i = 1, ... , N with known 

cumulative distribution function Fx(:r). An empirical estimate Fx(x) of Fx(x) is to be 

determined from the variates X;. Suppose that we choose to determine Fx ( :r) at M equally 

spaced points :r = jb where i = 1, ... , Mand bis the bin size or sampling interval of F'x(:r). 

Now, imagine that it is known that the true distribution function Fx(:r) evaluated at the 

point :r = kb, where k is some constant, is given by 

c 
Fx(kb) = N 
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(C.l) 
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and c happens to be an integer. Further suppose that the estimate of this value based on 

N variates X, just happens to yield the same result. That is, 

. c 
Fx(kb) = ,v· (C.2) 

The question then arises, what confidence can be placed on the estimate Fx(kb)? Let's 

examine just how the estimate Fx(kb) is determined empirically. Clearly, this value is 

estimated by counting the number of X,'s .that were less than or equal to kb in value. The 

estimate of c/ N implies that c out of the N measured X,'s were less than or equal to kb. 

Stated in another way, this is just the probability of c successes in a set of N binary trials, 

where the probability of success is simply Fx(:r = kb), and is given by, 

Prob[.Fx(kb) = ,~] = ( : ) Fx(:r)°[l - Fx(:r)JN-c (C.3) 

where ( : ) is the number of different ways c items can be chosen out of a set of N. 

Equation C.3 is the desired result. However, we may generalize this result to an 

interval rather than a single value by writing 

r • s 
N ~ Fx(kb} < N (C.4) 

where r and s are integers. It is easily seen that the probability of measuriug Fx(kb) in 

the interval {r/N,s/N} is given by the summation of Equation C.3 over each point in the 

interval: 

•-1 ( N) Il(r,s,N,Fx(kb)) = J;, m Fx(:rr(1- Fx(:r)t-"'. (C.5} 

Now let us apply Equation C.5 to the data presented in this thesis. A question that 

we might ask is: What is the confidence in our measurements of the cumulative distributions 

(we present probability densities instead) for a cumulative probability of 0.999? The IPIX 

radar PRF was 200Hz, and an average of about 60000 samples was used for each amplitude 
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distribution curve. Using a lOms decorrelation time based only on the speckle component, 

there are about 30000 independent samples in each calculation. Using Equation C.5, error 

bars between 0.997 aud 0.9993 give a 95 % confidence for the 0.999 cumulative probability. 

H, on the other hand, we take into account the underlying component which can persist 

for a couple of seconds or more, we will have much fewer independent samples. Consider 

a decorrelation time of 1 second. Then 60000 samples give rise to only 300 independent 

samples. Now using Equation C.5, error bars between 0.96i and 0.983 give a confidence of 

only 47 % for the 0.98 cumulative probability. 



Appendix D 

Nonlinear Least Squares 

Spectrum Estimation 

In this appendix, the solution to a nonlinear least squares minimization is derived. The 

problem we consider is that of fitting a spectrum model to a spectrum estimate determined 

from some measured data. We will develop the optimization equations for a growler-in­

clutter spectrum. The spectrum model that we use to model a growler in sea clutter 

consists of two Gaussian components, each with unknown amplitude, mean frequency and 

spectral width. (A clutter-only model would just include a single Gaussian component). 

Also, there is another parameter, N 0 , which describes the receiver white noise level, and 

can be independently estimated to save computation. 

D.1 Nonlinear Least Squares Solution 

Let S(E>) denote the N-vector of the deterministic spectrum model evaluated at the N 

discrete frequencies f = [Ii, h, ... , !NJT Hz. The parameter vector of the model, E>, is 

a 6-vector (we have assumed that the white noise power,N0 • is provided by some other 

means) given by E> = [a1,J1,u1,a2,f2,u2JT where a1 and a2, !1 and 12, and 0'1 and u2 are 
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the amplitudes, mean frequencies and spectral widths, respectively, of the two Gaussian 

model. Thus, 
-<f.r.-lJ )2 -,r .. -,,12 

see.) = a1e '•t + a2e '•l + N0 (D.l) 

where see.) is the k'h element of see) and f. is the k'h element of f, k = 1, ... , N. 

We assume that we have an estimate of the clutter Doppler spectrum given by S(f), and 

evaluated at the sam~ set of discrete frequencies defined above. The squared er;or between 

our model and the spectrum estimate is 

.ee) = 1ser)- see)12
• eD.2) 

The minimization of Equation D.2 with respect to the parameter vector e yields 

the parameter estimates. This is a nonlinear, least squares optimization problem and its 

numerical solution is now described. The numerical solution that we derive is a Gauss-

Newton approach. It is described in more depth with other valid approaches in [72]. We 

begin by defining a residual function Ree) given by 

R(e) = see) - serJ. 

Therefore, the squared error that we wish to minimize can be written as 

1 ,(e) = -ReefRee) 
2 

eo.3) 

eo.4) 

where the factor of 1/2 is introduced for convenience. A linear expansion of Ree) around 

the point 0c can be written as 

Mcee) = Reec) + Jeec)ee - 0c), (D.5) 

where J(0c) is the Jacobian matrix of the model evaluated at 0c. The ijlh element of the 

Jacobian matrix is given by 

J(0) 8r;(0) 
= 88; ' 

(D.6) 
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where in general, the residual function R(9) is written as 

(D.7) 

and the parameter vector is written as 

(D.8) 

For the model specified in Equation D.l, the elements of the Jacobian matrix are given by: 

ag~~l = 
_<,;j,1l2 

e 2 , 

8r;(0) - C/;-/112 

= ~(!; - !1 )e 2.-f ~ a, 
~ ag~~l = a,([i-/1)2 e - 1 

..f (D.9) 

ag~~l = 
e _(b~ .. )2 

aa~~> = ~Hf; - !2)e _<1;~
12 

a, 
~ ad~~> = a1(/i3/2)2 e - 2 • 

a, 
It is easy to show that the gradient vector of the squared error fu?:~tion described in Equa­

tion D.2 is given by 

Ve(1:>) = J(efR(e). (D.10) 

Now, desiring at each step that the error Me(9) goes to zero, we get the linear 

model 

J(90)(9 - 9 0 ) = -R(9 0 ). (D.11) 

We would like to solve for the optimum weight vector e so that the squared error defined in 

Equation D.2 is minimized. The solution at each step, from linear system, theory, is given 

by [9]: 

(D.12) 

Recognizing the psuedo-inverse of the Jacc,bian matrix in Equation D.12, namely 

(D.13) 
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and isolating 9 in Equation D.12, we arrive at an update equation for the numerical solution 

of the nonlinear least squares problem: 

(D.1-l) 

where we have replaced 9 with 9+ to emphasize that this is an update equation. 

The psuedo-inverse given in Equation D.13 can be solved for efficiently by perform­

ing a singular value decomposition on the Jacobian matrix. The singular value decomposi­

tion can be written as 

UTJ(9)V = [:] (D.15) 

where U is the N xN matrix of left singular vectors, V is the 6x6 matrix of right singular 

vectors, and S is the 6x6 matrix of singular values. Then, it is easy to show that the 

psuedo-invetse is given by 

[ 
5-1 ] J(0.)# = v 

O 
uT. (D.16) 

Further simplifications result by recognizing that the amplitude parameters, o1 

and o2 occur linearly in the model. These can therefore be replaced with their functional 

solutions as described in [i3], resulting in fewer computations. 

The optimization procedure can be summarized as follows: 

1. Pick suitable starting values for the parameter vector 9 and denote these by 9 •. 

2. Then use Equation D.14 to solve for the next value of 9, 9+. 

3. Replace 8 0 with 9+ in Equation D.14 and solve for new parameter vector 9+. 

4. Repeat iitep 3 until required accuracy is achieved. 
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