

ad the

HYDRAZINIUM COMPOUNDS

DIFFRACTION STUDIES OF HYDRAZINIUM COMPOUNDS

Бу

MARTIN ROUSSELANGE ANDERSON, B.Sc.

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements

> for the Degree Doctor of Philosophy

McMaster University

July, 1973

(C)

DOCTOR OF PHILOSOPHY (1973), (Physics)

McMASTER UNIVERSITY, Hamilton, Ontario.

TITLE: Diffraction Studies of Hydrazinium Compounds AUTHOR: Martin Rousselange Anderson, B.Sc. (Hull University) SUPERVISOR: Dr. I. D. Brown NUMBER OF PAGES: xiii, 194 SCOPE AND CONTENTS:

A neutron diffractometer has been designed and used to investigate the mechanism of the supposed ferroelectric switching in Li $(N_2H_5)SO_4$. This was done by studying the effect of the anomalous scattering of neutrons from ⁶Li on the structure factors of Bijvoet pairs. The absence of any observable change confirms that Li $(N_2H_5)SO_4$ is not ferroelectric.

The crystal structures of Li $(N_2H_5)BeF_4$, Li $(NH_3OH)SO_4$ and $(N_2H_6)BeF_4$ have been determined, and an accurate redetermination of the crystal structure of Li $(N_2H_5)SO_4$ has been made: all by X-ray diffraction. The structure of Li $(N_2H_5)BeF_4$ has also been studied by neutron diffraction. In the crystal structure determinations, all hydrogen atoms were located and hydrogen bonding schemes proposed; these were verified by the method of bond-strength summations.

ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. I. D. Brown for his encouragement and many valuable discussions throughout this research. I am also indebted to the other members of the crystallography group, especially Dr. C. Calvo and Dr. H. D. Grundy for their friendly assistance.

Finally, I wish to thank Donna MacDonald for typing this thesis.

TABLE OF CONTENTS

Page(

1

9

9

13

15

20

26

29

34

34

56

61

GENERAL INTRODUCTION

DIFFRACTION THEORY AND ITS APPLICATION TO CRYSTAL STRUCTURE ANALYSIS

Diffraction by a Crystal

X-ray Scattering Neutron Scattering Crystal Structure Determination Refinement of the Structure Corrections to the Observed Intensities METHODS OF INTENSITY MEASUREMENT AND A DESCRIPTION OF THE MCMASTER NEUTRON DIFFRACTOMETER X-ray Methods

Neutron Diffraction 35 The McMaster Neutron Diffractometer 39 The Mechanical Design 43 45 Detection and Counting Electronics Control Electronics 46 50 The Scan Control Paper Tape ANOMALOUS NEUTRON SCATTERING AND THE QUESTION 52 OF FERROELECTRICITY IN LITHIUM HYDRAZINIUM SULPHATE

iv

Theory

Experimental

IV

I.

II

Results and Discussion

AN ACCURATE REDETERMINATION OF THE CRYSTAL STRUCTURE OF LITHIUM HYDRAZINIUM SULPHATE BY X-RAY DIFFRACTION

Experimental Refinement of the Structure Description of the Structure

Page

62

65

65

68

69

80

8Q

81

81

84

87

88

·97

97.

99

99

110

111

114

DETERMINATION OF THE CRYSTAL STRUCTURE OF LITHIUM HYDRAZINIUM FLUOROBERYLLATE BY X-RAY AND NEUTRON DIFFRACTION

Preparation of the Crystals

Experimental (X-ray)

Experimental (Neutron)

Solution and Refinement of the Structure (X-ray)

Refinement of the Structure (Neutron)-

Description of the Structure

THE CRYSTAL STRUCTURE OF LITHIUM HYDROXYLAMMONIUM SULPHATE

> Experimental Solution and Refinement of the Structure

Description of the Structure

THE CRYSTAL STRUCTURE OF HYDRAZONIUM 110 FLUOROBERYLLATE

Experimental

Solution and Refinement of the Structure Description of the Structure

VI

VIII

1 i	.4	•	
		Page	• •
IX	ON THE CRYSTAL STRUCTURES OF Li $(N_2H_5)SO_4$ AND Li $(N_2H_5)BeF_4$	122	
	Comparison of X-ray and Neutron Diffraction Results	126	
	A Comparison of the Crystal Structure of $Li(N_2H_5)SO_4$ as Determined by X-ray) 129 ~	1
•	Diffraction with that of Li $(N_2D_5)SO_4$ as Determined by Neutron Diffraction • (Ross; 1970)		
	A Comparison of the Crystal Structures of Li (N_2H_5) BeF ₄ Determined by X-ray and Neutron Diffraction	134	
X	ON THE CONFIGURATION AND HYDROGEN BONDING OF $N_2H_6^{2+}$, $N_2H_5^+$ AND NH_3OH^+ IONS	139	
	The Characterisation of a Hydrogen Bond	139	
	The Configuration of the $N_2H_6^{2+}$, $N_2H_5^{+}$ and NH_3OH^+ Ions	142	
	The Hydrogen Bonding of the $N_2H_6^{2+}$, $N_2H_5^{+}$ and NH_3OH^+ lons	146	•
XI,	SUMMARY	158	
.	APPENDIX A TABLES OF OBSERVED AND CALCULATED STRUCTURE	161	
÷.,	FACTORS AND CALCULATED PHASES	\mathbf{X}	,
	APPENDIX B COMPUTER PROGRAMMES USED IN THIS WORK	190	
	REFERENCES	191	ц. Г
· .			

}

INDEX OF TABLES

•		Page
3-1.	Table of characters recognized by the control unit logic and their functions	49
4-1.	The observed and calculated values of the ratio of the structure factors	. 63
4-2.	The values of χ^2 and probability for each model	63
5-1.	Crystallographic data for Li(N2H5)SO4	66
5-2. £	Reflections used in the least-squares refinement of the lattice parameters of Li(N_2H_5)SO ₄	67 、
5-3.	Parameters derived from the final least-squares refinement of X-ray data for Li(N ₂ H ₅)SO ₄	70
5 5−4. ∘	Bond distances and angles in Li $(N_2H_5)SO_4$ as determined by X-ray diffraction compared with those in Li $(N_2D_5)SO_4$ as determined by neutron diffraction (Ross, 1970)	73
5-5.	Hydrogen bond lengths and angles in Li $(N_2H_5) \underset{\alpha}{SO}_4$	75
5-6.	Dihedral angles of the (N_2H_5) ion (X-ray), compared with those of the (N_2D_5) ion (neutron)	76
5-7.	Bond-strengths in $Li(N_2H_5)SO_4$ calculated from bond lengths determined by X-ray diffraction	77
5-8.	Bond-strengths in Li(N ₂ D ₅)SO ₄ calculated for the bond lengths determined from the neutron diffraction results of Ross (1970)	79
6-1.	Crystallographic data for Li (N2H5)BeF4	82
6-2.	Reflections used in the least-squares refinement of the lattice parameters of Li(N_2H_5) BeF _A	83

•			
		•	
1		Page	•
n e ar ar ar Star na st			•
6-3.	Parameters derived from the final	86	
	Li (N_2H_5) BeF _A		
			•
-0-4.	least-squares refinement of neutron	89	
	diffraction data for Li(N2H5)BeF4		1 - 2 - 2 - 1 1
6-5	Bond distances and angles for Li (N H) BeF	63	
0-5.	bond distances and angles for hi (N2"5) ber 4	35	
6-6.	Hydrogen bond lengths and angles in	95	•
<u>∽</u>	$L_1(N_2H_5)BeF_4$		
6-7.	Dihedral angles of the (N_2H_5) ion	96	-
7_1	Cructallographic data for Ti(NH OH)'CO	0.0	м. н.
· · · ·	crystariographic data for hi (Migon) 304	50	
7-2.	Reflections used in the least-squares	100	Č.
	refinement of the lattice parameters of		X
	11 (x····3017)504		· .
7-3.	Parameters derived from the final	101	-
	least-squares refinement		· `
7-4.	Bond distances and angles for Li(NH ₂ OH)SO ₄	105	· · · ·
7 6	Wednesses hand leasther and seclose of the	106	
/-3.	(NH_OH) ion	100	
	3		
7-6.	Dihedral angles of the (NH ₃ OH) ion	108	
7-7.	Bond-strengths in Li (NH ₂ OH) SO	、109 ·	
		110	.v
8-T.	Crystallographic data for (N2H6) Ber 4	112	
8-2.	Reflections used in the least-squares	113	
· · · · · ·	refinement of the lattice parameters of		
	(N2 ^H 6) ^{Ber} 4		2
8-3.	Parameters derived from the final	115	
	least-squares refinement		
8-4.	Bond distances and angles for $(N_2H_c)BeF_A$	119	
	- 4 6 4	100	· ·
8-5.	Hydrogen bond lengths and angles of the (N.H.) ion	120	н 1 1
•	~~2~~6 , * ~~~		

F

+

••, *

.

5

	9	
•		Page
8-6.	Dihedral angles of the (N_2H_6) ion	121
9-1.	Bond angle distortions from the ideal values in the space group Icmm	123
9-2.	Space groups, cell volumes and cation ionic radii of stuffed tetrahedral framework compounds and Li(NH ₃ OH)SO ₄	125
9-3.	A comparison between the X-ray and neutron root-mean-square displacements along the principal axes of the thermal ellipsoids in Li $(N_2H_5)SO_4$	132
9-4.	A comparison between the X-ray and neutron root-mean-square displacements along the principal axes of the thermal ellipsoids in $\text{Li}(N_2^{H_5})\text{BeF}_4$	137
10-1.	The root-mean-square displacements along the principal axes of the thermal ellipsoids of the hydrogen atoms in $\text{Li}(N_2H_5)\text{BeF}_4$ and the angles these axes make with the cell axes	147
10-2.	Bond-strengths in Li (N_2H_5) BeF ₄ calculated from bond lengths determined by X-ray diffraction	151
, 10-3.	Bond-strengths in Li(N ₂ H ₅)BeF _A calculated from bond/lengths determined by neutron diffraction	152
10-4.	Bond-strengths in (N2H6)BeF4	153
A-1.	Observed and calculated structure factors and calculated phases for the X-ray measurements on Li $(N_2H_5)SO_4$	162
A-2.	Observed and calculated structure factors and calculated phases for the X-ray measurements on Li $(N_2H_5)BeF_4$	168 ~
A-3.	Observed and calculated structure factors and calculated phases for the neutron measurements on Li (N_2H_5)BeF ₄	173

i

o

e P

1

ġ.

ix

:

	4	Page
A-4.	Observed and calculated structure factors and calculated phases for the X-ray	177
	measurements on Li (NH ₃ OH) SO ₄	t
A-5.	Observed and calculated structure factors	185

and calculated phases for the X-ray measurements on $(N_2^H 6)^{BeF} 4$

INDEX OF ILLUSTRATIONS

Plates

The four-circle goniostat of the neutron diffractometer.

3-1.

3-2.

1-1.

-2

2-1.

2-2.

3-1,

3-2.

3-3.

4-1.

5-1.

5-2.

A general view of the neutron diffractometer.

Page

41

42

18

72 (

Figures

The configuration of the six-membered rings in the tridymite and tridymite-derivative frameworks.

The two possible configurations of hydrogen 6 bonded chains of hydrazinium ions.

A comparison of the X-ray and neutron scattering lengths as a function of scattering angle.

The dependence of the scattering lengths on 19 atomic number.

A perspective drawing of a four-circle 36 goniostat in the equatorial geometry.

The experimental configuration of the neutron 38 diffractometer at beam-port #6 of the MeMaster nuclear reactor.

A block diagram of the counting electronics 47 and the control electronics.

A possible ferroelectric switching mechanism 55 in $\text{Li}(N_2H_5)SO_4$.

The crystal structure of Li (N2H5)SO4 viewed 71 along the a direction.

The crystal structure of $\text{Li}(N_2H_5)SO_4$ viewed along the <u>c</u> direction.

`xi

		- Tinin	
		Page	
6-1.	The crystal structure of $Li(N_2H_5)BeF_4$ viewed along the <u>a</u> direction.	90	
€2.	The crystal structure of $\text{Li}(N_2H_5)\text{BeF}_4$ viewed along the <u>c</u> direction.	.91	•
7-1.	The crystal structure of Li(NH ₃ OH)SO ₄ viewed along the <u>a</u> direction.	102	•.
.7-2.	The crystal structure of Li(NH ₃ OH)SO ₄ viewed along the <u>c</u> direction.	,103	
8-1.	The crystal structure of $(N_2H_6)BeF_4$ viewed along the <u>a</u> direction.	116	•
8-2.	The crystal structure of $(N_2H_6)BeF_4$ viewed along the <u>b</u> direction.	-117	- Aller
9-1. ,	The plane containing the nitrogen atoms of an X-N difference synthesis for $Li(N_2H_5)SO_4$.	131 0	Y
'9-2 .	The plane containing the lithium and sulphur atoms of an X-N difference synthesis for Li $(N_2H_5) SO_4$.	133	. · ,
9-3.	The plane containing the nitrogen atoms of an X-N difference synthesis for $\text{Li}(N_2H_5)\text{BeF}_4$.	135	
9-4.	The plane containing the lithium and beryllium atoms of an X-N difference synthesis for $Li(N_2H_5)BeF_4$.	136	•
. 10-1.	Newman projections of the $N_2H_5^+$, NH_3OH^+ and $N_2H_6^{2+}$ ions.	143	
10-2.	A thermal ellipsoid drawing of the $N_2H_5^+$ ion from the neutron diffraction investigation of Li (N_2H_5) BeF ₄ .	148	2
10-3.	*Bond-strength - bond-length curves for H-F bonds determined by X-ray or neutron diffraction.	150	-
10-4.	A diagram showing the correlation between the hydrogen bond angle and the donor-acceptor distance.	'155	•

xii

.

. .

4

. . .

. .

 ∇

• :

9) • • •

:.

10-5. A diagram showing the correlation between the hydrogen bond angle and the hydrogen-acceptor distance. Page

156

4

ŝ

CHAPTER I GENERAL INTRODUCTION

This work is an investigation by X-ray and neutron diffraction of the crystal structures of sulphate and fluoroberyllate compounds containing: hydrazinium, $N_2H_5^+$; hydroxylammonium, NH_3OH^+ ; and hydrazonium, $N_2H_6^{2+}$. There are many reasons why these compounds are of interest to crystallographers, solid state physicists and chemists.

The compound lithium hydrazinium sulphate, $\text{Li}(N_2H_5)SO_4$, was first prepared by Sommer and Weise (1916). Pepinsky, Vedam, Okaya & Hoshino (1958) reported that it was a room temperature ferroelectric, likening it to the other ferroelectric sulphates: ammonium hydrogen sulphate, $(NH_4)HSO_4$ (Pepinsky et al., 1958a) and ammonium sulphate, $(NH_4)_2SO_4$ (Matthias and Remeika, 1956). They also correctly reported the space group and lattice parameters. Subsequently, $\text{Li}(N_2H_5)SO_4$ was extensively investigated crystallographically, spectroscopically and dielectrically (cf. Chapter IV); but no further evidence was found of ferroelectric phase change, nor as to what the possible switching mechanism would be. Neutron diffraction has played an important part in the understanding of hydrogen

1

bonded ferroelectrics. The small shifts in atomic positions, and especially those which are involved in the hydrogen bonding, can be studied by comparing the crystal structures of the ferroelectric and paraelectric phases. From these shifts, the nature of the phase transition is determined. Examples of such studies are the order-disorder phase transitions in potassium dihydrogen phosphate, KH, PO, (Bacon & Pease, 1955); and colemanite; $CaB_{3}O_{4}(OH)_{3}$. $H_{2}O$ (Hainsworth & Petch, 1965); and the phase transition in ammonium sulphate (Schlemper and Hamilton, 1966) in which the hydrogen bonding configuration is stronger in the ferroelectric This method is impossible with $\text{Li}(N_2H_5)SO_4$ as no phase. paraelectric phase has been found between 77°K and the decomposition temperature of 560°K. Our approach was to investigate the ferroelectric switching mechanism whereby the direction of spontaneous polarisation is reversed by the application of a suitable electric field. This was to be accomplished by designing and constructing a neutron diffractometer (Chapter III) and by studying the anomalous neutron scattering from a single crystal of ${}^{6}Li(N_{2}H_{5})SO_{4}$ (Chapter IV).

Compounds of the form EiMSO_4 and LiMBeF_4 , where M is a monovalent cation, show interesting structural configurations. LiSO_4^- and LiBeF_4^- often form three-dimensional frameworks of corner-sharing oxygen or

fluorine tetrahedra which are distorted forms of either the

tridymite (space group P6₃/mmc) or tridymite-derivative structure (space group Icmm). These structures are characterised by a six-member ring of alternating LiO_A , SO_A or LiF_A, BeF_A tetrahedra. In the former space group, alternate members of the ring point in opposite directions from the plane of the ring; and in the latter, three adjoining tetrahedra point above the plane, while the remaining three point below the plane; these are shown in their ideal symmetry form in Figure 1-1. It can be seen that large cavities are formed between the layers made up of the six-membered rings, and these cavities contain the cations. With potassium as the cation (ionic radius 1.33 Å), both LiKSO4 (Bradley, 1925) and LiKBeF4 (Le Roy and Aléonard, 1972) take on a distorted form of the tridymite structure with space group P63. The introduction of rubidium (ionic radius 1.47 Å) does not affect the fluoroberyllate structure which retains the pseudo-tridymite space group P6,, but the sulphate changes to $P2_1/n$, a distorted form of the Icmm space group (Hahn, Lohre & Chung, 1969). The space group P21cn occurs with the ammonium ion compounds (ionic radius 1.43 Å): $Li(NH_4)SO_4$ (Dollase, 1969) and $Li(NH_4)BeF_4$ (Chung & Hahn, 1972). The caesium compounds (ionic radius 1.67 Å) $LiCsSO_4$ (Wells, 1954) and LiCsBeF4 (Chung & Hahn, 1972) have the

The source of the quoted ionic radii is the Handbook of Chemistry and Physics (1970).

Figure 1-1.

The configuration of the six-membered rings in

a) tridymite framework, P63/mmc, and

b) tridymite-derivative framework, Icmm.

space groups $P2_1$ cn and $P2_1/n$ respectively. Thus, the introduction of progressively larger monovalent cations modifies the structure from tridymite to tridymite-derivative, the transition occurring between LiRbBeF₄ and LiRbSO₄; and this would indicate that Li (N_2H_5) BeF₄ would be isostructural to the corresponding sulphate which has a distorted form of the lCmm space group Pna2₁. We wished to confirm this prediction by determining the crystal structure of Li (N_2H_5) BeB₄ and wished also to investigate that of Li (NH_3OH) SO₄ to see if the hydroxylammonium cation would create a distortion of the Icmm space group or whether a completely different structure would result.

If Li (N_2H_5) BeF₄ and Li (N_2H_5) SO₄ sproved to be isostructural, then they would be the only two known structures with chains of hydrazinium ions where the $-NH_2$ group was both the donor and acceptor of the hydrogen bonds forming the chain. The alternative type of chain is one in which a hydrogen bond donated by the $-NH_3^+$ group is accepted by the $-NH_2$ group; these two possible configurations are shown in Figure 1-2. A number of compounds form chains of the second type: $(N_2H_5)Cl; (N_2H_5)Br$ (Sakurai & Tomiie, 1952); $(N_2H_5)Ac$ (Liminga, 1968); $(N_2H_5)H_2PO_4$ (Liminga, 1965); and $(N_2H_5)HC_2O_4$ (Ahmed, Liminga & Olovsson, 1968). There are also hydrazinium compounds which do not form chains; examples of this type are $(N_2H_5)_2SO_4$ (Liminga & Lundgren, 1965) and $(N_2H_5)ClO_4 \cdot H_2O$ (Liminga, 1967).

Figure 1-2.

The two possible configurations of hydrogen bonded chains of hydrazinium ions: a) $-NH_2$ as both donor and acceptor; b) $-NH_3^+$ as donor and $-NH_2$ as acceptor.

Another aspect of the crystallography of this type of compound that we wished to investigate was the conformation and hydrogen bonding networks of the hydrazinium, hydroxylammonium and hydrazonium ions. We have pointed out above that the hydrazinium ion can act as both donor and acceptor of hydrogen bonds; when such a chain of hydrazinium ions is formed, there are four remaining hydrogen atoms which form bonds to fluorine or oxygen atoms of the tetrahedral frameworks. In general, there will be more than four potential acceptors competing for these bonds. In such a situation, complex hydrogen bonding networks arise with the occurrence not only of single but of bifurcated and trifurcated hydrogen bonds. To study these systems properly, accurate structure determinations are needed, either by X-ray diffraction in which the hydrogen atoms are correctly located or, preferably, by neutron diffraction with its higher resolution of the hydrogen atoms. For this reason, the structure of $Li(N_2H_5)BeF_4$ was examined by both methods, and these of $Li(N_2H_5)SO_4$, $Li(NH_3OH)SO_4$ and $(N_2H_6)BeF_4$ were determined from accurate X-ray diffraction measurements made on a diffractometer.

If the positions of the hydrogen atoms are not known, it is still possible to predict their positions. Baur (1965) proposed a method where a simple point-charge model is used to predict the hydrogen bonds from the water molecules of inorganic hydrates by searching for hydrogen positions giving a minimum in electrostatic energy. He has also extensively studied the bond geometries of several species of hydrogen bond and uses this to calculate the best position for probable hydrogen bonds (Baur, 1972). These methods are quite useful in compounds with few active hydrogen atoms but are of little value in our case. Recently, Brown and Shannon (1973) have shown that the existence of a hydrogen bond can be predicted from the sum of bond-strengths around oxygen atoms. This is very useful when bifurcated and trifurcated bonds exist as it indicates the relative amount of bonding received by each of the acceptors. Brown (1973) has extended this scheme for bond-strength sums around fluorine but, as very few accurate H-F bonds have been reported has not yet refined an H-F bond-strength curve. It was hoped that with the two fluoroberyllate structures, $Li(N_2H_5)BeF_A$ and $(N_2H_6)BeF_A$, an H-F bond-strength curve could now be refined.

CHAPTER II DIFFRACTION THEORY AND ITS APPLICATION TO CRYSTAL STRUCTURE ANALYSIS

In this chapter a brief outline of the diffraction processes in crystals will be given along with a discussion of the methods of structure analysis used in subsequent chapters. Attention will be drawn to the differences and relative merits of X-ray and neutron diffraction; these will be exemplary, not exhaustive; a more thorough account of this and other aspects of crystallography is given in the many texts available (e.g. Stout & Jensen, 1968; Bacon, 1962; Woolfson, 1961).

Diffraction by a Crystal

A crystal lattice can be defined as a regular array of points in a crystal such that the atomic arrangement around each point is identical. The fundamental translation vectors, \underline{a} , \underline{b} and \underline{c} , are such that if \underline{r} ' is the position vector of a lattice point, then all other lattice points, \underline{r} , are given by:

 $\underline{\mathbf{r}} = \underline{\mathbf{r}}' + \underline{\mathbf{n}}_{1\underline{\mathbf{a}}} + \underline{\mathbf{n}}_{2\underline{\mathbf{b}}} + \underline{\mathbf{n}}_{3\underline{\mathbf{c}}}$ (2-1)

where n_1 , n_2 and n_3 are integers. If <u>a</u>, <u>b</u> and <u>c</u> are chosen

9

such that the volume $\underline{a} \times \underline{b} \cdot \underline{c}$ is a minimum, then \underline{a} , \underline{b} and \underline{c} are said to be primitive. The parallelopiped formed by \underline{a} , \underline{b} and \underline{c} is called the unit cell which is often, but is not always, chosen to be primitive.

Symmetry operations exist which when applied to the lattice leave it unaltered. The translation operators:

$$\mathbf{\bar{T}} = \mathbf{n}_{1}\mathbf{a} + \mathbf{n}_{2}\mathbf{b} + \mathbf{n}_{3}\mathbf{c}$$
 (2-2)

where n_1 , n_2 and n_3 are integers, are one set of such symmetry operators. At each lattice point there can exist a number of other symmetry operations which leave the atomic arrangement unaltered; these define the lattice point group and can include operations such as rotations, mirror planes, inversions, screw rotations and glide planes. There are fourteen basic kinds of lattice (the Bravais lattices) based on the seven distinct crystal systems. When these are combined with the 32 possible lattice point groups, one gets the 230 distinct space groups (International Tables for X-ray Crystallography, Vol. I, 1952).

Diffraction of a beam of X-rays or neutrons by a crystal occurs because the scattered radiation from the atoms of the crystal have a well-defined phase difference and hence interfere with each other. The incident beam can be considered as a plane wave, of wavevector \underline{k} ($|\underline{k}| = 1/\lambda$), and the diffracted beam, with wavevector \underline{k}' , far outside the crystal is given by:

$$\underline{\mathbf{F}}(\underline{\mathbf{k}}'-\underline{\mathbf{k}}) = \int_{\rho} (\underline{\mathbf{r}}) e^{2\pi \mathbf{i} (\underline{\mathbf{k}}'-\underline{\mathbf{k}}) \cdot \underline{\mathbf{r}}} d\underline{\mathbf{r}}$$
(2-3)
crystal

where $\rho(\underline{r})$ is the scattering density at a point \underline{r} in the unit cell. We define the scattering vector \underline{s} to be $\underline{k}'-\underline{k}$:

$$\underline{\underline{k}}^{\underline{k}} = \underline{\underline{k}}^{\underline{k}} - \underline{\underline{k}}^{\underline{k}}$$

where θ is called the Bragg angle.

It can be shown that a diffraction peak will only occur when the scattering vector, \underline{s} , is equal to a reciprocal lattice vector \underline{G} defined by:

$$\underline{\mathbf{G}} = \mathbf{m}_{1}\underline{\mathbf{A}} + \mathbf{m}_{2}\underline{\mathbf{B}} + \mathbf{m}_{3}\underline{\mathbf{C}}$$
(2-4)

where m_1 , m_2 and m_3 are integers and

$$\underline{\mathbf{A}} = \frac{\underline{\mathbf{b}} \times \underline{\mathbf{c}}}{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \times \underline{\mathbf{c}}} \qquad \underline{\mathbf{B}} = \frac{\underline{\mathbf{c}} \times \underline{\mathbf{a}}}{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \times \underline{\mathbf{c}}} \qquad \underline{\mathbf{C}} = \frac{\underline{\mathbf{a}} \times \underline{\mathbf{b}}}{\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} \times \underline{\mathbf{c}}}, \qquad (2-5)$$

The vectors <u>A</u>, <u>B</u> and <u>C</u> are the basis vectors of the set of reciprocal lattice points {<u>G</u>}. The vector <u>G</u> is perpendicular to lattice planes in the real cell and its magnitude is inversely proportional to the inter-planer spacing in the real cell denoted by d_{hkl} , where hkl are the Miller indices of the plane. Thus for elastic scattering, $|\underline{k}| = |\underline{k}^{\prime}|$, the magnitude of the scattering vector is:

$$\underline{s} = 2|\underline{k}|\sin\theta = |\underline{G}|$$
$$= \frac{2}{\lambda}\sin\theta = \frac{1}{d_{hkl}}$$

therefore

$$2d_{hk} \sin\theta = \lambda$$

which is Bragg's law.

The intensity of a diffraction peak (often called a Bragg reflection) is given by:

$$I(\underline{G}) = C(\underline{G}) \underline{F}(\underline{G}) \cdot \underline{F}^{*}(\underline{G})$$
(2-7)

where $C(\underline{G})$ is a constant involving various known fundamental quantities which depend on the scattered radiation and the scattering mechanism, $\underline{F}(\underline{G})$ is the amplitude of the diffracted beam (the structure factor) and $\underline{F}^*(\underline{G})$ its complex conjugate. From equation (2-3) and the diffraction condition $(k'-k \equiv s = G)$, F(G) is given by:

$$\underline{F}(\underline{G}) = \int_{\rho} \frac{2\pi i \underline{G} \cdot \underline{r}}{cell} d\underline{r}.$$
(2-8)

The scattering density of the cell is usually expressed in terms of the individual contributions of the atoms in the cell. We define an atomic form factor by:

$$f_{i}(\underline{G}) = \int_{a_{i}}^{2\pi i \underline{G} \cdot \underline{r}_{i}} d\underline{r}_{j}$$

12

(2-6)

(2-9)

where $\rho_i(\underline{r})$ is the scattering density of the $i_{\underline{k}}^{th}$ atom at rest at the origin. Because of thermal motion, the atoms are not at rest and we define a temperature factor, $T_i(\underline{G})$ (the Debye-Waller factor), to account for the difference between the scattering density at rest and that due to thermal motion. Various models of thermal motion can be used, the simplest being isotropic harmonic motion where $T_i(\underline{G})$ is given by:

$$-8\pi^{2}U_{i}(\sin\theta/\lambda)^{2}$$

T_i(G) = e (2-10)

where U_i is the mean square amplitude of the vibration. The structure factor (2-8) can now be written as:

$$\underline{F}(\underline{G}) = \sum_{i=1}^{N} f_{i}(\underline{G}) T_{i}(\underline{G}) e$$
(2-11)

where N is the number of atoms in the cell and \underline{r}_i is the position of the ith atom in the cell.

We have now expressed the intensity of a Bragg reflection $I(\underline{G})$ in terms of the atomic positions, the atomic form factors and the temperature factors. In the next sections we shall develop the relationships between the fundamental scattering processes of X-rays and neutrons and the atomic scattering factors.

X-ray Scattering

X-rays, being electromagnetic radiation, are

scattered by charged particles. Classically, the fraction of the incident radiation, I_0 , scattered by a free charge is given by:

$$I_{\text{scattered}} = \left(\frac{\mu_0}{4\pi}\right)^2 \frac{e^2}{m^2} I_0\left(\frac{1+\cos^2 2\theta}{2}\right) \qquad (2-12)$$

where e and m are the charge and mass of the scatterer and 2θ is the scattering angle. The presence of the m² term in the denominatior of equation (2-12) allows us to neglect scattering by the nucleus and consider only scattering by atomic electrons. The above expression is the Thomson formula and accounts for the radiation emitted by an accelerating charge in the driving field of the incident radiation. It involves no transfer of energy or momentum to the charge; thus, the incident and scattered radiation are of the same wavelength.

In crystals where the electrons are bound to the nuclei, the intensity of the coherent scattering, I_c , from a single atom is given by:

 $I_c = I_{scattered} f^2$ (2-13)

where f is the electronic form factor (cf. equation 2-9). For an atom, i, with n electrons the atomic form factor, $f_i(\underline{G})$, can be expressed in terms of the individual electron wave functions ψ ; and equation (2-9) becomes:

$$f_{i}(\underline{G}) = \sum_{j=1}^{n} \int_{y_{j}\psi_{j}e}^{\psi_{j}i\underline{G}} d\underline{r}_{i} d\underline{r}_{i} d\underline{r}_{i} d\underline{r}_{i}$$
(2-14)

Thus, we have shown that the atomic form factors, $f_i(\underline{G})$, involved in the structure factor expression, equation (2-11), can be calculated from the electron wave functions for the case of X-ray scattering. The values of $f_i(\underline{G})$ can be calculated by Hartree or Self-Consistent Field methods (Cromer & Mann, 1968).

Neutron Scattering

The neutron, having zero charge, is not scattered by the Coulomb potential of the electrons or nucleus but is scattered by the nuclear potential. The neutron does interact weakly with the electrons by way of their magnetic moments, but this aspect of neutron scattering will not be discussed since it can only be observed for unpaired electrons which were not present in this work.

In crystal structure analysis, wavelengths of the order of 1^{A} are used. At this wavelength the scattering of the neutrons by the nucleus is purely s wave; that is, the neutron wavelength is large compared with the nuclear size parameter. This effective hard sphere potential would suggest that the scattering should vary as $A^{1/3}$, where A is the atomic mass number of the nucleus, but there are resonance effects caused by both nuclear size and neutron capture excitation levels. The size resonance produces a

15

small change in the scattering cross-section and the absorption re-emission, via virtual energy levels, introduces large deviations from the hard sphere values.

The coherent scattering will also be affected by both spin and isotope incoherence. If the spin of the scatterer is non-zero, then there are two spin states, I±½, available for the compound nucleus, their probabilities being:

$$g = \frac{I+1}{2I+1}$$
 I+½ state

 $1-g = \frac{I}{2I+1}^{i} \qquad I-\frac{1}{2} \text{ state.}$ (2-15)

As the two states may have different resonance levels and widths, the coherent scattering will be altered. It is also evident that as different isotopes will have different scattering lengths, these must be summed according to their isotopic abundances, $P_{\rm p}$.

For a nucleus with a single resonance level, E_r , of width Γ , the coherent scattering length is given by the Breit-Wigner formula:

$$b = \frac{gP\chi_{r}\Gamma_{n}/2(E-E_{r})}{(E-E_{r})^{2}+\Gamma^{2}/4} - \frac{igP\chi_{r}\Gamma_{n}/2\Gamma/2}{(E-E_{r})^{2}+\Gamma^{2}/4} + \left[\frac{gP\chi_{r}\Gamma_{n}/2}{(E-E_{r})+i\Gamma/2} + R\right]$$

16.

(2-16)

where Γ_n is the width for neutron emission of the resonance level, E is the energy at which the measurement is made, χ_r is the resonant wavelength divided by 2π and R is the mean nuclear radius. The summation is over the various nuclides of the species. Thus at a particular wavelength for a specific isotope, the coherent neutron scattering length can be expressed as a complex number:

$$b = b' + ib''$$
.

It should be pointed out that the b_i 's which take the place of the $f_i(\underline{G})$'s in the structure factor, equation (2-11), and independent of \underline{G} and hence of the scattering angle. Figure 2-1 shows a comparison of the effective neutron and X-ray scattering lengths as a function of $\sin \theta/\lambda$ for two elements, and Figure 2-2 shows the dependence of the X-ray scattering length on A for two scattering angles and the non-systematic behaviour of the neutron scattering length with A.

The decrease in the X-ray atomic form factor with scattering angle arises because the X-ray wavelength is of the same order as the spatial extent of the electrons and interference occurs between scattering from different parts of the atom. The neutron wavelength is very long compared with the nuclear radii so that the nucleus can be considered as a point scatterer.

17

(2-17)

st.

A comparison of the X-ray and neutron scattering lengths as a function of scattering angle.

The non-systematic variation of the neutron scattering length with A can be of advantage in locating light elements in crystal structures and for distinguishing between atoms of adjacent atomic number; but for most purposes, X-rays remain the preferred radiation because of the availability of inexpensive high flux X-ray sources.

Crystal Structure Determination

It was stated at the beginning of this chapter that a crystal lattice, whose lattice spacings are comparable to the wavelength of an X-ray or neutron béam, will form a diffraction pattern whose intensities, $\{I(\underline{G})\}$, can be measured. It was also stated that the amplitude and phase of the structure factors are related, by their Fourier transform, to the atomic positions in the unit cell (cf. equations 2-9 and 2-11). It is also clear from equation (2-7) that as we measure the intensities, $\{I(\underline{G})\}$, we can only obtain the magnitudes of $\underline{F}(\underline{G})$ since:

$$I(\underline{G}) \propto \underline{F}(\underline{G}) \cdot \underline{F}^{*}(\underline{G}) = |\underline{F}(\underline{G})|^{2} \qquad (2-18)$$

and the phase information is lost. Thus it is impossible to obtain the atomic positions directly from the intensities; this is called the phase problem in crystallography.

One method of overcoming this problem was suggested by Patterson (1934). He showed that the convolution of the scattering density, $P(\underline{u})$, (the Patterson function) was

independent of the phases. The Patterson function is defined as:

$$P(\underline{u}) = V \int \rho(\underline{r}) \rho(\underline{r} + \underline{u}) d\underline{r}$$
(2-19)

cell

The scattering density, $\rho(\underline{r})$, is periodic with a volume interval of the unit cell and can be written as a Fourier series:

$$\rho(\underline{\mathbf{r}}) = \mathbf{v}^{-1} \Sigma \underline{\mathbf{r}} (\underline{\mathbf{G}}) e^{-2\pi \mathbf{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}}}$$

all $\underline{\mathbf{G}}$

Substituting for $\rho(\underline{r})$ in equation (2-19) we have:

$$P(\underline{u}) = \frac{1}{V} \int_{\underline{G}}^{\underline{Cell}} \underbrace{\sum F(\underline{G})e}_{\underline{G}} \underbrace{F(\underline{G})e}_{\underline{G}} \underbrace{-2\pi i \underline{G} \cdot \underline{r}}_{\underline{F}(\underline{G}')e} -2\pi i \underline{G}' \cdot \underline{r} - 2\pi i \underline{G}' \cdot \underline{u}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} -2\pi i \underline{G}' \cdot \underline{r} - 2\pi i \underline{G}' \cdot \underline{u}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} -2\pi i \underline{G}' \cdot \underline{r} - 2\pi i \underline{G}' \cdot \underline{u}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} -2\pi i \underline{G}' \cdot \underline{r} - 2\pi i \underline{G}' \cdot \underline{u}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} -2\pi i \underline{G}' \cdot \underline{r} - 2\pi i \underline{G}' \cdot \underline{u}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} -2\pi i \underline{G}' \cdot \underline{r}}_{\underline{G}} \underbrace{-2\pi i \underline{G}' \cdot \underline{G}' \underline{G$$

$$= \frac{1}{\nabla} \frac{\Sigma F(\underline{G}) \cdot F(-\underline{G}) e}{\underline{G}}$$

$$= \frac{1}{\overline{\mathbf{V}}} \sum_{\substack{\boldsymbol{\Sigma} \\ \mathbf{a} \\ \mathbf{I} \\ \mathbf{G}}} \frac{2 \ 2\pi \mathbf{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{u}}}{\mathbf{e}} .$$
(2-21)

All the quantities in the R.H.S. of equation (2-21) are measurable, and the function $P(\underline{u})$ will have peaks at all points \underline{u} where the vectors \underline{u} correspond to interatomic vectors in the crystal. Furthermore, the value of P at such a peak will be proportional to the product of the scattering factors of the two atoms. If there are N atoms in the unit

(2-20)

cell, the Patterson function will in general have N^2 peaks N of which are superposed at the origin; and so it is usual to locate only those interatomic vectors between heavy scatterers. Sometimes when all the atoms are approximately the same size, it is not possible to locate any vectors with certainty because of the high amount of overlap.

The peaks of the Patterson function are intrinsically much broader than those of the scattering density function; this accentuates the problem of overlapping of peaks and to avoid this, the Patterson is sharpened and the large superposition of peaks at the origin removed. To sharpen the Patterson, the structure factors are multiplied by a factor which changes the diffraction pattern to that expected from a set of point scatterers:

$$\frac{\underline{F}_{\text{point}}(\underline{G})}{e} = \frac{\underbrace{\lim_{i=1}^{N} Z_{i}}_{i=1}}{-U(\underbrace{\frac{\sin\theta}{\lambda}})^{2}} \underbrace{\underbrace{F}(\underline{G})}_{i=1} (2-22)$$

where Z is the atomic number and U is the overall temperature factor. True point scatterers with no spatial extent would require an infinite number of data, and use of the limited set of measurable intensities can cause the peaks to be surrounded by large ripples; and in practice U is chosen such that a compromise is obtained between the broad overlapping peaks and the occurrence of large ripples. The large origin peak is removed using:

$$I(\underline{G}) = \underline{F}(\underline{G})^{2} - e^{-U\left(\frac{\sin\theta}{\lambda}\right)^{2}} \underbrace{\sum_{i=1}^{N} f_{i}^{2}(\underline{G})}_{i=1} . \qquad (2-23)$$

If a trial structure is not known or cannot be obtained from the Patterson function, it is possible to obtain a set of trial phases, and hence a trial structure, from the intensities alone. The methods for determining the phases of a Bragg reflection in terms of its intensity and those of the other reflections are known as direct methods.

In direct methods it is assumed that the total scattering density is the sum of the contributions from separate atomic density distributions and that it is always positive. The latter assumption is not always true in neutron diffraction. If these conditions are true, it has been shown. (Sayre, 1952) that the structure factor, $\underline{F}(\underline{G})$, is related to the sum of all product pairs of structure factors, $F(\underline{G}')..F(\underline{G}'')$, where $\underline{G}'+\underline{G}'' = \underline{G}$:

$$\underline{\mathbf{F}}(\mathbf{G}) = \mathbf{K}(\underline{\mathbf{G}}) \Sigma \underline{\mathbf{F}}(\underline{\mathbf{G}}^{\mathsf{T}}) \cdot \underline{\mathbf{F}}(\underline{\mathbf{G}}^{\mathsf{T}}) \qquad (2-24)$$

all $\mathbf{G}^{\mathsf{T}} + \mathbf{G}^{\mathsf{T}} = \mathbf{G}$

where $K(\underline{G})$ is a scaling term. If we limit ourselves to crystals whose space groups are centro-symmetric, that is, the phase factor of a reflection is either +1 or -1, we can see that if $|\underline{F}(\underline{G})|$ is large then the terms of the series must be either mostly positive or mostly negative. Thus, if a

particular product pair has large \underline{F} 's, then the signs, S, of the reflections are given by the relation:

 $S(\underline{F}(\underline{G})) \sim S(\underline{F}(\underline{G}')) \cdot S(\underline{F}(\underline{G}'))$

$$S(\underline{F}(\underline{G})).S(\underline{F}(\underline{G}')).S(\underline{F}(\underline{G}')) \sim +1$$
 (2-25)

where \sim indicates probably equal to.

کر or

In X-ray scattering the sharp fall off in intensities with scattering angle precludes us from extracting information \bullet from any reflections but those at low angles. To overcome this, instead of using the structure factors, <u>F</u>, unitary structure factors, <u>U</u>, or normalized structure factors, E, are used; these are defined as follows:

$$\underline{I}(\underline{G}) = \frac{\underline{F}_{\text{point}}(\underline{G})}{\underline{F}(0)}$$
$$= \frac{\underline{F}(\underline{G})}{e^{-U}(\frac{\sin\theta}{\lambda})^2 \sum_{\substack{\Sigma \\ i=1}}^{N} f_i(0)} (2-26)$$

the {U(G)} have the same phase as the $\{\underline{F}(\underline{G})\}$ and $0 \leq |U(\underline{G})| \leq 1$,

$$E^{2}(\underline{G}) = \underbrace{\underline{F}(\underline{G}) \cdot \underline{F}(\underline{G})}_{N \quad 2}$$

$$\varepsilon \underbrace{\Sigma}_{i=1} f_{i} \quad (\underline{G}) \quad (2-27)$$

where ε is an integer which reduces all classes of Bragg

reflections to the same basis. The distribution of the E values is theoretically independent of the size, shape or contents of the unit cell but takes a different form for a non-centro-symmetric space group.

By defining an origin for the unit cell, the phases of three reflections are fixed and these are used to generate a set of probable phases using equation (2-25). The probabilities of the correctness of these phases is tested by using:

$$S(\underline{F}(\underline{G})) \sim \Sigma S(\underline{F}(\underline{G}')) \cdot S(\underline{F}(\underline{G}'))$$

all $\underline{G}' + \underline{G}'' = \underline{G}$ (2-28)

and are given by:

$$P_{+}(\underline{U}(\underline{G})) = \frac{1}{2} + \frac{1}{2} \tanh \left\{ \frac{\sigma_{3}}{\sigma_{2}^{3}} | \underline{U}(\underline{G}) | \Sigma \underline{U}(\underline{G}') \cdot \underline{U}(\underline{G}'') \right\}$$

$$all \underline{G}' + \underline{G}'' = \underline{G}$$
(2-29)

where
$$\sigma_3 = \left| \sum_{i=1}^{N} n_i^3 \right|, \sigma_2 = \sum_{i=1}^{N} n_i^2 \text{ and } n_i = \frac{f_i(\underline{G})}{\sum_{j=1}^{N} f_j(\underline{G})}$$

Usually not only the probabilities are calculated, but also the occurrence of any inconsistent phases within the trial set is noted.

With the Patterson method the positions of the heavy scatterers are determined, and a set of calculated structure factors, $\{\underline{F}_{c}\}$, using these atoms can be computed. The phases of the \underline{F}_{c} 's can be used with the observed magnitudes, $\{\underline{F}_{o}\}$, to calculate the scattering density from which the other atoms can be located. In direct methods a limited set of trial phases is determined which enable us to compute a scattering density map using a subset of the observed structure factors and thus locate the atoms.

Refinement of the Structure

Once we have determined the position of the heavy scatterers by either of the above methods, it is then necessary to locate the remaining atoms and find the best value for all the atomic positions and temperature factors. This process is called refinement.

The light, scatterers can be located by using a difference synthesis, $\Delta \rho(\underline{r})$, where the phase factors, $\phi(\underline{G})$, calculated from the heavy scatterers are used with the . difference in magnitudes of the observed and calculated structure factors:

 $\Delta \rho (\underline{\mathbf{r}}) = \frac{1}{\mathbf{V}} \sum_{\mathbf{G}} \left(\left| \mathbf{F}_{\mathbf{O}}(\underline{\mathbf{G}}) \right| - \left| \mathbf{F}_{\mathbf{C}}(\underline{\mathbf{G}}) \right| \right) \phi (\underline{\mathbf{G}}) e^{-2\pi \mathbf{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}}} .$ (2-30)

Here we have subtracted the contribution to the scattering density of the heavy scatterer, and the peaks correspond to those atoms not located.

To test the correctness of the deduced atomic parameters, it is usual to compare the calculated and observed structure factors. This is done by computing a residual index (R factor):

$$R = \frac{\frac{\Sigma}{G} |\Delta F|}{\frac{\Sigma}{G} |F_0|} = \frac{\frac{\Sigma}{G} |F_0| - |F_c||}{\frac{\Sigma}{G} |F_0|} . \qquad (2-31)$$

Thus as the model parameters are improved, the value of R is reduced. If some of the observations are known with greater certainty than others, it is usual to introduce a weighting scheme, $\{w(\underline{G})\}$, which gives a greater weight to the better known reflections. Thus we define a weighted residual index:

$$R_{w} = \begin{pmatrix} \sum_{i} w(|F_{o}| - |F_{c}|)^{2} \\ \frac{G}{2} \\ \frac{\sum_{i} w|F_{o}|^{2}}{G} \end{pmatrix}^{\frac{1}{2}}.$$

The weights, $\{w(\underline{G})\}$, are equal to the inverse square of the estimated standard deviation of the observations, $\{\sigma(\underline{G})\}$.

Having found a set of atomic parameters which gives a reasonable agreement between the observed and calculated structure factors, it is usual to obtain the best set of parameters by the method of least-squares. That is, we attempt to find a set of parameters, $\{p_i\}$, which gives values of $F_c(\underline{G}, \{p_i\})$ such that the function:

$$D = \sum_{\mathbf{G}} w(\underline{\mathbf{G}}) (|\mathbf{F}_{\mathbf{O}}(\underline{\mathbf{G}})| - |\mathbf{F}_{\mathbf{C}}(\underline{\mathbf{G}}, {\mathbf{p}_{\mathbf{i}}})|)^{2}$$
(2-33)

(2-32)

(2 - 38)

will be a minimum. If a better set of p_i exist, say $\{p'_i\}$, then we have to find the set of Δp_i where:

$$p'_{i} = p_{i}^{+\Delta}p_{i}$$
 (2-34)

Assuming that:

$$\Delta \mathbf{F}(\underline{\mathbf{G}}) = |\mathbf{F}_{\mathbf{O}}(\underline{\mathbf{G}})| - |\mathbf{F}_{\mathbf{C}}(\underline{\mathbf{G}}, \{\mathbf{p}_{\mathbf{i}}\})| \qquad (2-35)$$

and that the Δp_i are all small, then:

$$\Delta F(\underline{G}) = \sum_{i} \frac{\partial F(\underline{G})}{\partial p_{i}} \Delta p_{i}$$
 (2-36)

and it can be shown (Hamilton, 1964) that if we have many more observations, $\{F_{O}(\underline{G})\}$, than parameters, $\{p_{j}\}$, then the set of n parameters, which will minimise the function D of equation (2-33), is given by the solution of the n independent normal equation:

$$\sum_{i=1}^{n} \sum_{j=1,\ldots,m} j=1,\ldots,m$$
 (2-37)

where there are m observations and a_j and b_{jj} are given by:

$$a_{j} = \sum_{\underline{G}} w(\underline{G}) \left(\frac{\partial \underline{F}(\underline{G})}{\partial p_{j}} \right) \Delta F(\underline{G})$$

and

$$\mathbf{p}_{ij} = \sum_{\underline{G}} w(\underline{G}) \left(\frac{\partial \underline{F}(\underline{G})}{\partial \mathbf{p}_{i}} \right) \left(\frac{\partial \underline{F}(\underline{G})}{\partial \mathbf{p}_{j}} \right) .$$

To make the normal equations (2-37) linear in Δp_i and hence solvable, we expanded the structure factor as a Taylor series and neglected all powers of Δp_i higher than the first (equation 2-36). This approximation is good as long as the $\{\Delta p_i'\}$ are small, although it may now take several cycles of the least-squares process to achieve the best set of p_i' s. We can also obtain the estimated standard deviation, $\{\sigma(p_i)\}$, from the diagonal elements of the inverse of the

matrix formed from the elements b_{ij}, or more simply, the conditional estimated standard deviation given by:

$$\sigma^{2}(\mathbf{p}_{i}) = \mathbf{b}_{ii}^{-1} = \begin{vmatrix} \Sigma & w(\underline{G}) \left(\frac{\partial \mathbf{F}(\underline{G})}{\partial \mathbf{p}_{i}} \right)^{2} \\ \underline{G} & w(\underline{G}) \left(\frac{\partial \mathbf{F}(\underline{G})}{\partial \mathbf{p}_{i}} \right)^{2} \end{vmatrix} .$$
 (2-39)

Thus, the method of least-squares provides us with not only the best set of parameters but a measure of the reliability of these and, consequently, is widely used for crystallographic refinement.

Corrections to the Observed Intensities

What we measure in X-ray and neutron crystallography is that fraction of the energy, $E(\underline{G})$, scattered into a counter as the crystal, which is bathed in a uniform incident beam of intensity I_0 , is rotated at a uniform angular velocity ω . This is related to the integrated intensity $J(\underline{G})$ by:

$$J(\underline{G}) = \frac{E(\underline{G})\omega}{I_0}.$$

To obtain the structure factors from the integrated intensities, it is necessary to make a number of corrections for experimental effects; the most important of these are discussed below.

a) Absorption

The principal attenuation of the X-ray beam is the excitation of electrons to higher energy levels within the atom. The energy lost from the beam by this process is greater than that from scattering; especially for heavy atoms, since the cross-section for this process increases with atomic number. With neutrons, absorption is not generally as large as the cross-section for the absorption processes; radiative capture, fission, (n,T) reactions, do not dominate over the scattering cross-section. The absorption, $A(\underline{G})$, for either radiation is calculated by:

$$A(\underline{G}) = V \int_{e}^{-\mu (p+q)} d\underline{r} \qquad (2-41)$$

crystal

where p and q are the incident and diffracted path lengths, and μ is the linear absorption coefficient for the particular radiation used. In our work, the linear absorption coefficients were so small that the effect of absorption was negligible.

(2-40)

b) Extinction

Ŧ.

Extinction is the attenuation of the incident beam by scattering. A normal crystal can be considered to consist of a large number of small, perfect crystallites all aligned within a small angle to each other; this small spread of angles is called the mosaic spread. Attenuation within the perfect crystallite is termed primary extinction; and the reduced scattering due to the attenuated beam at another crystallite further into the crystal, and perfectly aligned with the former, is termed secondary extinction. The correction for extinction effects used in subsequent chapters was suggested by Larson(1967) where corrected values of the calculated structure factor are given by:

$$F_{c}^{*} = KF_{c} (1+g\beta(2\theta)F_{c}^{2})^{-\frac{1}{2}}$$
(2-42)

where K is a scale constant, g is a variable parameter in the least-squares refinement and $\beta(2\theta)$ is a calculable angular function.

Extinction is usually more of a problem in neutron diffraction as large crystals have to be used to overcome the slow counting rates resulting from the low incident flux.

c) Geometrical Corrections

There are two corrections which may have to be applied that depend upon the geometry of the experiment. The first is the Lorentz correction which accounts for the differing times individual planes may spend in the diffracting position. The second, which only applies to X-ray diffraction; is the polarisation of the X-ray beam by Bragg reflection. Both these effects can be corrected for by means of simple analytical expressions, namely:

<u>i. Lorentz</u>. For an Eulerian cradle diffractometer in the equatorial setting, the integrated intensities are multiplied by L^{-1} where L is given by:

$$L = \frac{1}{\sin 2\theta} \quad .$$

<u>ii. Polarisation</u>. The polarisation correction is independent of the method of data collection (but is only applied for X-rays), and the integrated intensities are multiplied by P^{-1} where P is given by:

$$P = \frac{1 + \cos^2 2\theta}{2}$$

In the previous sections we have shown that diffraction of both X-rays and neutrons will occur in crystals, and that from the intensity of the diffraction peaks it is possible to obtain a model of the crystal structure in terms of the atomic positional parameters and temperature factors. In the next chapter a short review of the methods of measuring the intensities will be given along with a

(2-43)

(2 - 44)

detailed discussion of the neutron diffractometer which

ستي ستي was designed and constructed by us at McMaster University.

- 1

CHAPTER III

METHODS OF INTENSITY MEASUREMENT AND A DESCRIPTION OF THE MCMASTER NEUTRON DIFFRACTOMETER

In crystal structure analysis, it is necessary to be able to measure the intensity of a large number of Bragg reflections on a single crystal sample. There are two main methods of doing this: film methods and diffractometer methods, the former being limited to X-ray diffraction.

X-ray Methods

X-rays are generated by bombarding a target material, which in our case was either copper or molybdenum, with electrons. The emitted X-ray spectrum has several characteristic lines, and one of these (Ka) is selected either by using a suitable filter or by Bragg reflecting a collimated beam with a single crystal set at the appropriate Bragg angle. The angular divergence and cross-section of the beam are governed by an exit collimator.

With film techniques the sample crystal, bathed in the the X-ray beam, and a photographic film are moved in such a manner that the diffraction peaks are individually recorded on the film, the amount of blackening of the film being proportional to the intensity of the peak. The two main types

of X-ray cameras used in crystal structure analysis are the Weissenberg camera and the Buerger Precession camera; both produce a photograph of the lattice points of a particular reciprocal lattice plane.

For the measurement of X-ray intensities, diffractometers have recently supplanted film methods. A diffractometer consists of a goniostat which can rotate the crystal so that a particular reciprocal lattice vector is in the diffracting position and also rotate an X-ray detector to measure the intensity of the diffraction peak. The diffractometers used in this work were both of the four-circle type, a three-circle Eulerian cradle goniostat with a fourth circle carrying a detector in the normal-beam equatorial geometry; this is schematically illustrated in Figure 3-1. Although each diffraction peak is observed individually, the exposure times can be extremely short as the X-ray detector efficiency is very high. In our case the X-ray diffractometer, a Syntex, was controlled by an on-line computer to make efficient use of the high counting rates.

Neutron Diffraction

Diffractometers are universally used in neutron diffraction; they are quite similar to X-ray diffractometers, differing only in the radiation source and the type of detector.

The core of a nuclear reactor is the source of neutrons

Figure 3-1.

A perspective drawing of a four-circle goniostat in the ______equatorial geometry.

which when in equilibrium with the reactor moderator have a Maxwellian spectrum. For a moderator temperature of 293°K, the peak neutron flux is at a wavelength of 1.14 Å. A white beam of neutrons from the core passes through the reactor's biological shield in a beam tube which forms the primary collimator. A monochromatic beam is produced by Bragg reflection of the white beam from a single crystal The monochromator selects a single wavelength monochromator. at a particular angle defined by a second collimating beam The angular divergence of the beam and its small tube. wavelength spread depend upon the mosaic spread of the crystal monochromator and the angular acceptance of the two A diagram of the experimental arrangement used collimators. at beam port #6 of the McMaster nuclear reactor is shown in Figure 3-2. The crystal monochromator in this case was a single aluminium crystal set in the transmission geometry for Bragg reflection from the (220) plane, the Bragg angle being 21.8° and the wavelength being 1.062 Å.

The neutron flux available at the sample is of the order of 10^6 neutrons cm⁻²s⁻¹ which is several orders of magnitude less than that of a typical X-ray beam ($(10^{10} \text{ X-ray quanta cm}^{-2}\text{s}^{-1})$; thus, larger cross-section beams and large samples are used in neutron diffraction. It is essential to have as efficient a detector as possible and the Helium-3 type, whose efficiencies can be very high, is now widely used; even so, the rate of observing the

- **37**

Figure 3-2.

The experimental configuration of the neutron diffractometer at beam-port #6 of the McMaster nuclear reactor.

diffraction peaks is considerably slower than with an X-ray diffractometer.

A detailed description of the neutron diffractometer designed and built by us at McMaster will be given in the next section.

The McMaster Neutron Diffractometer

This neutron diffractometer is a four-circle equatorial geometry instrument (cf. Figure 3-1), and in its design there were several criteria which had to be met.

The cost was not to exceed \$15,000 and, in fact, the final cost was approximately \$11,000. It would have to be both compact and portable as the crystallography group did not have the exclusive use of a beam port at the reactor; and not only was the space limited at the shared beam ports, but the diffractometer had to be able to be used at any of these beam ports. The need to run the diffractometer 24 hours a day made some form of automatic control essential and, as a large number of measurements would be made, it was necessary that the ouput format be compatible with the university computing centre's.CDC 6400 computer.

The cost criterion ruled out the use of a small digital computer to control the diffractometer as it would have added a further \$7,000 to the cost; instead, a hard-wired logic controller which cost \$1,000 was designed. Cost also made the use of a commercial four-circle goniostat impossible,

and a much cheaper one was built by ourselves (Plate 3-1). All commercial diffractometer goniostats are primarily designed for X-ray diffraction which uses very narrow beams and small crystals; this requires their mechanical tolerances to be very small. Such precision is not required with neutron diffraction, and our low cost goniostat has been highly successful. The choice, on the basis of cost, of paper tape as a control and output medium was not as successful. At the time the diffractometer was designed, it was understood that the CDC 6400 computer would be capable both of producing punched paper control tapes and reading the In fact, after a considerable delay only a output tapes. paper tape reader was installed. This meant that the control tapes have to be punched on another computer, a situation which is somewhat tedious. Also, most of the diffractometer's breakdowns have occurred in the input/output Teletype, although it is only fair to comment that the Teletype is by far the cheapest such device available, costing about \$900.

To make the diffractometer as compact and portable as possible, a modular form of construction was used. The three main sections (Plate 3-2) are stacked on top of one another, the lowest section having castors for easy movement. The diffractometer has been used at two of the reactor's six beam ports (#5 and #6), and no major problems were encountered in the move between these ports. The design was kept compact by the use throughout of solid state electronics and by using

- Motor stepper and power supply. ο.

- Sample crystal.
- N.

- M. Goniometer head.
- Fission chamber pre-amplifier. L.
- He³ detector and its shielding. **ĸ.**
- He³ detector pre-amplifier. J.
- ω circle. H.
- 2θ circle. G.
- χ[°]circle. Ε. F. & circle.
- D.
- ω motor.
- G. 20 motor.
- χ motor. Α. o motor. B.
- The four-circle goniostat of the neutron diffractometer.
- Plate 3-1.

Plate 3-2.

A general view of the neutron diffractometer.

A. Control electronics.

B. High voltage power supplies.

C. Detector amplifiers.

D. Ratemeter.

E. Scaler.

F. Pre-set scaler.

G. Data scanner.

H. Beam stop.

J. Goniostat.

K. Tape reader (Teletype).

E. Teletype.

M. Motor slewing and jogging controls.

a Helium-3 (³He) counter rather than the then conventional Boron trifluoride ($^{10}BF_3$) counter which requires a large amount of shielding.

The overall performance of the diffractometer has been very good, although experience has shown that a different method of control tape input would have been advisable. A detailed description of the design is given in the next sections.

The Mechanical Design

The frame of the diffractometer is made up of three sections: an interchangeable base section, a centre section containing the goniostat and a top section housing the control logic and counting electronics. All three sections can be separated from one another. The base section can be replaced by one of a different size if the height of the goniostat has to be changed, and it is fitted with castors for portability and jacks for levelling.

The goniostat is mounted on an inverted U section steel girder in the centre section of the frame. The girder and its associated structure while being rather heavy (approximately 30 kg) provide adequate stiffness to maintain the goniostat in correct alignment and provide support for the driving motors, limit switches and ancillary electrical equipment. On the mounting feet of the girder, adjustment is provided for lateral movement of the girder with respect to the frame; this in conjunction with the jacks provides full three-dimensional adjustment.

Two nine-inch Troyke engineering rotary tables mounted, coaxially on the girder, one above the other, form the basis of the ω and 2θ circles of the goniostat. These tables are readily available at low cost; they also have the necessary setting accuracy (within 1' over 360° rotation of The upper table (2 θ) has an aluminium bracket the table). holding the detector tube, its shielding and the detector pre-amplifier; the bracket has provision for small adjustment (± 2.5 cm) of both height and of the radius at which the counter is situated. A nominal sample to detector radius of 28 cm is used which with a 1 cm² aperture at the detector gives an adequate angular acceptance (approximately 2°) with all modes of scanning. A shaft passing through the centre hole of the 2θ table is attached at its lower end to the ω table by means of a tapered shank and plate; this allows it to be removed and recentred if required. Attached to the top end of the shaft is a 10 cm diameter disk onto which an Electronics and Alloys's χ and ϕ circles are bolted.

The motors driving the 20 and ω circles are Slo-Syn stepping motors of 45 oz-in torque rating; each step being 5⁰ which, driving through the 90:1 worm reduction gear of the tables, results in a rotation of 1/18⁰ per step about these axes. The χ and ϕ motors which are similar to the 20 and ω motors, but with a reduced torque rating of 25 oz-in, are

mounted on their respective circles. They drive through gear trains resulting in the same degree of rotation per step as those of ω and 20. A motor is made to step by applying an electrical pulse to a translator board (manufactured by Slo-Syn) consisting of an electronic switch tail ring counter providing a series of pulses which drive the motor through one step. These translator cards, one for each motor, are mounted on a motor power supply chassis which also has circuitry for slewing and jogging the motors during setting-up procedures. This chassis is bolted to the centre section frame.

A fission counter used for monitoring the incident beam and its associated pre-amplifier are mounted on a bracket which can be bolted onto either side of the frame so that incident neutron beams in either direction can be used. The counting and control electronics are mounted in the top section of the frame which may be removed and placed away from the goniostat so that cryostats, etc., can be mounted around the sample.

Detection and Counting Electronics

A beam monitor counter is used to control the diffracted beam counter. This is an A.E.C.L. type 5 fission counter on loan from A.E.C.L. It contains fissionable ^{235}U in the form of uranium oxide (90% ^{235}U) coated on a central 25 mm diameter portion of the two 0.5 mm thick aluminium

7 -

windows. The output signal is amplified by a Canberra Industries (C.I.) type 806 pre-amplifier and a type 816 amplifier; bias voltage for the detector is provided by a Hewlett-Packard 6516A high voltage power supply. A Texas-Nuclear Texlium Helium-3 detector tube is used for the diffracted beam detector. This detector contains ³He at four atmospheres pressure and krypton, for quenching, at one atmosphere. The bias supply, pre-amplifier and amplifier are the same as for the monitor counter.

The amplifier output of the ³He counter feeds both a linear ratemeter (C.I. type 1480) and a printing scaler (C.I. type 1473). Output of the fission counter amplifier feeds a printing timer/scaler (C.I. type 1492). The latter module operates in its master mode slaving the 1473 scaler. The scalers are scanned by a data scanner (C.I. type 1488) which prints out the contents of both scalers on a modified model A.S.R. 33 Teletype.

The Canberra electronics units are mounted in a standard bin and power supply unit (C.I. type 1400), the two Hewlett-Packard high voltage power supplies being mounted directly above this unit in the top frame section. A block diagram of the counting electronics and the control electronics is in Figure 3-3.

Control Electronics

The control instructions are read from punched paper

Figure 3-3.

A block diagram of the counting electronics and the control electronics.

tape on the tape reader of the teletype. The output data is
written on punched tape and the page printer of the same
teletype which is used in the duplex mode (cf. Figure 3-3).
 Characters are read from the input tape, and each
character when decoded moves one of the motors one step,
either forward or backward , or at the end of a sequence of
motor moves will start the count cycle. When the count cycle
starts, the reader is automatically switched off, and the
teletype is left ready to print the results accumulated by
the data scanner. After printing the results of the count
cycle, the teletype automatically starts to read the input
tape again; this process continues until the end of the tape
is reached where the tape sensor on the teletype switches the
system off.

The reader output signal is electro-mechanically converted from parallel to serial format within the teletype. This serial output is decoded by a hard-wired logic unit which is built up with Digital Equipment Corporation's flip-chip modules. The logic unit electronically, reconverts the serial signal to parallel format and then decodes it from a five-bit binary form to a 32 valued decimal form. Only nine of the possible 32 brary characters are used; these correspond to forward and reverse of each motor and the start of the count cycle signal (Table 3-1). The electronic control for gating the teletype reader and printer is also built of flip-chip modules and is mounted on the same panel. characters recognized by the control unit logic and their functions Ч О Table Table 3-1.

Y

Function	Teletype character	8-bit ASCII code	5-bit binary character
Increase 20 by 1/18 ⁰	return	10001-101	11000
Decrease 2θ by $1/18^{0}$	H	11010-100	10101
Increase w by 1/18 ⁰	delete		
Decrease w by 1/18 ⁰	••	/11101-011	τιοιο
Therease Y by 1/18 ⁰	4-	11011-110	10111
nerrease v bv 1/18 ⁰	¢۰.	, wiii-111	01111
Therease ¢ bv 1/18 ⁰	23	10100-110	10010
hecrease ¢ bv 1/18 ⁰		10101-111	01011
Start count cycle	A	100-0010	00001
No action	blank	0000-000	00000
The Scan Control Paper Tape

From the cell dimensions, lattice type, principal axes orientation and wavelength, the setting angles of the four circles for the Bragg reflections are calculated. This is done using the programme DIFSET of the XRAY 71 programme The programme DIFPCH is used to punch out a set of library. cards, one for each reflection, containing the Miller indices and the setting angles. A group of about 20 of these cards is chosen and, using the FORTRAN programme MACDIF, the sequence of commands needed to set the angles on the goniostat and to scan the reflections is written on a magnetic tape. This tape is read by either the PDP 9 or PDP 15 computer in the Tandem Van de Graaff Accelerator Laboratory using the MACRO programme ASTIG, and the commands are punched out on a paper tape which can be read by the diffractometer Teletype. The conversion from cards to paper tape via magnetic tape is necessary as the University Computing Centre's CDC 6400 computer does not have a paper tape punch, and magnetic tape is the only compatible transfer medium between the CDC 6400 and the PDP 9/15 for large quantities of information.

The paper tape is prepared for an ω step scan mode; that is, the 20, χ and ϕ values are set, and the crystal is then rotated in steps (1/18°) through a small angle about its ω value. After each step of ω , a count of the diffracted beam is recorded and punched onto a paper tape. This diffractometer output paper tape is read by the CDC 6400

computer using the FORTRAN programme DIFDAT. The values of the diffracted beam count are summed for each reflection, and those counts due to background are subtracted; thus, the integrated intensities of the reflections are obtained.

51

In the previous sections we have described how the integrated intensities of the Bragg reflections can be measured. In our work to be described in the following chapters, all the intensity measurements were made using diffractometers, both X-ray and neutron. X-ray film methods were confined to space group analysis and the alignment of crystals used for the neutron diffraction experiments.

CHAPTER IV

ANOMALOUS NEUTRON SCATTERING AND THE QUESTION OF FERROELECTRICITY IN LITHIUM HYDRAZINIUM SULPHATE

The apparent ferroelectric nature of lithium hydrazinium sulphate, Li(N_2H_5)SO₄, was reported by Pepinsky, Vedam, Okaya and Hoshino (1958). Their measurements were made using a ferroelectric hysteresis bridge, and they observed weld-formed hysteresis loops from about 258°K up to 353°K from which they concluded that the crystal was ferroelectric. Above 353°K, high electrical conductivity which increases with temperature prevented good measurements and below 258°K, the loops became distorted and difficult to saturate. They found no evidence of a phase transition either from dielectric measurements in the range 77°K to 313°K or from specific-heat measurements in the range 153°K to 478°K. At room temperature they reported a value of 0.30μ Ccm⁻² for the spontaneous polarisation and 320Vcm⁻¹ for the coercive field.

The crystal structure has been investigated several times. Three X-ray determinations were published in 1964: Niizeki & Koizumi, 1964; Brown, 1964; and Van den Hende & Boutin, 1964. The former was only a projection, and neither the lithium nor the hydrogen positions were located. Of the

latter two, which were based on three-dimensional measurements, neither located the hydrogen positions, but Brown correctly located the lithium position. In the next chapter of this work, an X-ray redetermination of the structure in which all the hydrogen atoms were located is given. A neutron diffraction determination of a normal sample based on measurements of three orthogonal projections was made by Padmanabhan & Balasubramanian (1967), and a recent more complete determination using a deuterated sample was made by Ross (1970). The crystals are orthorhombic, space group p_{na2} (c_{2y}^9), with lattice parameters <u>a</u> = 9.929(5), $\underline{b} = 8.973(3)$, $\underline{c} = 5.181(2)$ Å and four molecules in the unit The permanent dipole lies along the <u>c</u> direction. The cell. structure is composed of an LiSO4 framework of corner-sharing oxygen tetrahedra with channels which run along the c direction and contain the hydrazinium ions (cf. Figures 5-1 and 5-2). The NH, group of the hydrazinium ion forms hydrogen bonds to the framework, and the NH2 group forms one hydrogen bond to the framework and one to the NH2 group related by the <u>c</u> screw axis to give an ordered N-H....N-H chain directed along the negative <u>c</u> direction (cf. Figure 4-1).

Several nuclear magnetic resonance studies (Cuthbert & Petch, 1963; MacClement, Pintar & Petch, 1967; Knispel & Petch, 1970; Parker & Schmidt, 1971; and Howell & Schmidt, 1969) of both normal and deuterated material have explained the motion of the hydrazinium ion. These are reviewed in a paper on the nuclear quadrupole resonance of 14 N in the NH₂ group by Hastings & Oja (1972). The conclusion of these works is that below 50°K there is some oscillation of the NH₂ group about the N-N axis; this oscillation increases linearly with temperature. There is also some oscillation of the NH₃ group below 100°K, but above this temperature the group begins hindered rotation. At about 150°K, proton exchange in the N-H-N plane of the NH₂ group begins, and this also increases linearly with temperature to around 320°K where both the proton exchange and the oscillation around the N-N axis increase rapidly with temperature, the exchange process dominating. Above 480°K, the point which Cuthbert and Petch ascribed to a second order structural phase transition, motion of the whole N₂H₅ ion is observed.

Vanderkooy, Cuthbert & Petch (1964) showed that the D.C. conductivity was anisotropic, the conductivity in the <u>c</u> direction being more than two orders of magnitude greater than in the <u>a</u> or <u>b</u> direction, and that the current in the <u>c</u> direction was carried by protons.

The supposed ferroelectric switching in $\text{Li}(N_2H_5)SO_4$ was thought to result from one of two mechanisms. The first involves only the reorientation of the hydrogen bonds from the negative to the positive <u>c</u> direction (Figure 4-1). Such a realignment would produce a change in polarisation of the right order of magnitude. As the LiSO₄ framework is

Figure 4-1.

A possible ferroelectric switching mechanism in Li(N_2H_5)SO₄ whereby the direction of spontaneous polarisation is governed by the direction of the hydrogen bonds which link the hydrazinium ions into chains.

non-centro-symmetric, oppositely switched domains would have crystallographically distinct structures. In the second mechanism the hydrogen bonds reorient, and in addition the framework changes from a right-handed to a left-handed form. The resulting structure is the enantiomorph of the original structure, but the two are otherwise crystallographically equivalent. Using a crystal made with ⁶Li, which is an anomalous scatterer of neutrons, we hoped to distinguish between these two mechanisms by examining the changes which would occur in the neutron structure factors of Bijvoet pairs during ferroelectric switching.

Theory

In X-ray diffraction the breakdown of Friedel's law, which states that $I(\underline{G}) \equiv I(-\underline{G})$, is well known in non-centro-symmetric crystals containing atoms with complex scattering amplitudes (Coster, Knol & Prims, 1930). A similar effect occurs in neutron diffraction when an atom has a high absorption and hence a complex scattering amplitude. We can write the neutron scattering amplitude, b, for such an atom as a complex number:

$$b = b' + ib'' \qquad (4-1)$$

where b' and b" are the real and imaginary components. Using the relation for a complex number:

 $re^{i\theta} = rcos\theta + irsin\theta$

56

(4-2)

we can rewrite the structure factor expression(equation 2-11) as:

$$\underline{F}(\underline{G}) = \underbrace{\sum_{i=1}^{N} b_{i} T_{i}}_{i=1} \underbrace{(\underline{G}) \cos 2\pi (\underline{G}, \underline{r}_{i}) + i \sum_{i=1}^{N} b_{i} T_{i} (\underline{G}) \sin 2\pi (\underline{G}, \underline{r}_{i})}_{i=1}}_{(4-3)}$$

Substituting equation (4-1) in equation (4-3) and separating those terms arising from the real and imaginary parts of b, we have:

$$\underline{F}(\underline{G}) = \sum_{i=1}^{N} b' i^{T}_{i} (\underline{G}) \cos 2\pi (\underline{G}, \underline{r}_{i}) + i \sum_{i=1}^{N} b' i^{T}_{i} (\underline{G}) \sin 2\pi (\underline{G}, \underline{r}_{i})$$
$$- \sum_{i=1}^{N} b'' i^{T}_{i} (\underline{G}) \sin 2\pi (\underline{G}, \underline{r}_{i}) + i \sum_{i=1}^{N} b'' i^{T}_{i} (\underline{G}) \cos 2\pi (\underline{G}, \underline{r}_{i})$$

or more simply:

$$\underline{F}(\underline{G}) = A + iB - C + iD$$

$$= (A-C)+i(B+D)$$

where $A = \sum_{i=1}^{N} b'_{i} T_{i} (\underline{G}) \cos 2\pi (\underline{G} \cdot \underline{r}_{i})$

$$B = \sum_{i=1}^{N} b'_{i} T'_{i} (\underline{G}) \sin 2\pi (\underline{G} \cdot \underline{r}_{i})$$

$$C = \sum_{i=1}^{N} b^{*} T_{i} (\underline{G}) \sin 2\pi (\underline{G}, \underline{r}_{i})$$

(4-4)

(4-5)

<u>.</u>

Å

$$D = \sum_{i=1}^{N} b''_{i} T_{i} (\underline{G}) \cos 2\pi (\underline{G} \cdot \underline{r}_{i})^{\prime}.$$

Similarly, we can write $\underline{F}(-\underline{G})$ using equation (4-4) and the relationships $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$:

$$\underline{F}(-\underline{G}) = A - iB + C + iD$$

= (A+C)+i(D-B) . (4-6)

Now $I(\underline{G}) \propto \underline{F}(\underline{G}) \cdot \underline{F}^{*}(\underline{G}) = [(A-C)+i(B+D)] \cdot [(A-C)-i(B+D)]$

 $= (A-C)^{2}+(B+D)^{2}$

and similarly

$$I(-\underline{G}) \propto \underline{F}(-\underline{G}) \cdot \underline{F}^{*}(-\underline{G}) = [(A+C)+i(D-B)] \cdot [(A+C)-i(D+B)]$$
$$= (A+C)^{2} + (D-B)^{2} \cdot (4-8)$$

Therefore: $I(\underline{G}) \neq I_{*}(-\underline{G})$

(4-9)

(4-7)

when there are atoms present which scatter anomalously. It should be noted that in a centro-symmetric space group--that is, if there is an atom at \underline{r} , there will be an atom of the same type at $-\underline{r}$ --a closer examination of equation (4-4) is needed. The terms which are summations of the sine terms are zero as for every term, $b_i T_i (\underline{G}) \sin 2\pi (\underline{G} \cdot \underline{r}_i)$, there is a term, $b_i T_i (\underline{G}) \sin 2\pi (\underline{G} \cdot -\underline{r}_i) \equiv -b_i T_i (\underline{G}) \sin 2\pi (\underline{G} \cdot \underline{r}_i)$. Thus, the F's reduce to: $\underline{F}(\underline{G}) = A + iD$ $\underline{F}(-\underline{G}) = A + iD$

hence in a centro-symmetric space group:

and

$$I(\underline{G}) = I(-\underline{G})$$

whether or not anomalous scatterers are present. It is only in a non-centro-symmetric structure with anomalous scatterers present that Friedel's law breaks down, that is:

$$I(\underline{G}) \neq I(-\underline{G})$$

This effect can be used in Li $(N_2H_5)SO_4$ since the structure is non-centro-symmetric and ⁶Li has a comparatively high neutron absorption cross-section and hence a complex scattering length. In this experiment we compared the ratio, $I(\underline{G})/I(-\underline{G}) = (x/y)$ of a set of reflections with the ratio for these reflections when the crystal had been poled in the opposite sense. After poling, the ratio would be y/x if the structure inverts. If poling only reorients the hydrogen bond, then a different structure results and the individual intensities will change to give a ratio in general different from either y/x or x/y.

The verb "pole" is used to indicate the process by which the crystal is placed for a short period in an electric field greater than the coercive field. Such a field should be sufficient to produce a single domain in the crystal if it is ferroelectric. Although the predicted effect is small and would normally be masked by experimental errors arising from absorption and extinction, it is possible to measure the ratio to much higher accuracy by making the measurements on the same reflection both before and after domain reversal. The ratio of the structure factors is:

$$0 = \frac{|\mathbf{F}|}{|\mathbf{F}'|}$$
(4-10)

where (\underline{F}) and $(\underline{F'})$ are the structure factors before and after the application of a reversing field. The constant of proportionality relating $\underline{F} \cdot \underline{F}^*$ to I is identical for both measurements since both are made on the same reflection under identical conditions. Hence:

$$R_0 = \left(\frac{I}{I'}\right)^{\frac{1}{2}} \cdot c \qquad (4-11)$$

If the structure inverts on switching by a reversal of the <u>c</u> direction, the reflection (<u>G</u>), which we shall now denote by its Miller indices hkl, becomes the hkl reflection; and since $|F_{hk\bar{l}}| \equiv |F_{\bar{h}\bar{k}\bar{l}}|$ in the space group Pna2₁ even with the presence of anomalous scatterers:

$$R_0^2 = \frac{I}{I} = \frac{I_{hkl}}{I_{hk\bar{l}}} \equiv \frac{I_{hkl}}{I_{h\bar{k}\bar{l}}} \equiv \frac{I_{hkl}}{I_{\bar{h}\bar{k}\bar{l}}}$$
(4-12)

The values of x/y (= $R_c^2(b)$) and y/x (= $R_c^2(c)$) can be calculated from the known structure and compared with the observed values R_o^2 . Values of R_c^2 can also be calculated for a mechanism in which only the hydrogen atoms move along the chain by calculating values of I from the coordinates of Padmanabhan & Balasubramanian (1967) and values of I' from a similar model in which H(2) is moved to the opposite end of its hydrogen bond. A third possibility is that no change occurs in the crystal, and in this case $R_c^2(a) \equiv 1$ for all reflections.

Experimental

 ${}^{6}_{\text{Li}(N_2H_5)}SO_4$ single crystals were prepared by evaporation from an aqueous solution of isotope separated ${}^{6}_{\text{LiCO}_3}$ (atomic 8 ${}^{6}_{\text{Li}}$ 95.54) and $({}^{N}_2H_6)SO_4$. The crystal used for the final experiment measured approximately 4 × 7 × 8 mm and was mounted on a goniometer head with poling electrodes on its (001) faces. This crystal was coated with per-fluoro-kerosene to prevent slow decomposition in the very humid atmosphere around the reactor, the fluorine compound being used to prevent a high background caused by incoherent scattering from the hydrogen in conventional oils and spray-on plastic films. Intensity measurements were made on the McMaster neutron diffractometer at beam-port #6 using an ω scan at a wavelength of 1.062 Å. The reflections observed had 20 values in the range $20^{\circ}<20<40^{\circ}$ and there were 27 steps $(1/18^{\circ})$ in each scan. The first and last three steps of each scan were used to estimate the background level. The approximate duration of an individual step was thirty minutes at a reactor power of 1.5 MW and was timed by a count of 10⁵ on the fission counter which monitored the main beam.

Values of $F_{c}(\underline{G})$ and $F_{c}(-\underline{G})$ were calculated using the scattering lengths given by the Néutron Diffraction Commission (1969) (b'=0.18, b"=0.025×10⁻¹² cm) and the coordinates of Padmanabhan & Balasubramanian (1967). From these a set of reflections was chosen which showed significant Friedel inequalities. The crystal was poled by applying a field (630Vcm⁻¹) in excess of the coercive field (320Vcm⁻¹) and the intensity of the Bragg reflection, I, measured. The crystal was then poled in the opposite sense and the new intensity, I', measured. This was repeated on a set of ten reflections. From these intensities, the ratios $R_{o}(= F_{o}/F_{o}) = (I/I')^{\frac{1}{2}}$ were calculated.

Results and Discussion

The ratio R_0 of the observed structure factors and the error σ in R_0 arising from counting statistics are shown in Table 4-1. Also shown are calculated values of the ratio R_c for several cases: a) no structural change; b) inversion of the cell, hkl to hkl; c) inversion of the cell, hkl to hkl; d) reorientation of the hydrogen bond from -<u>c</u> to +<u>c</u>;

	Tab	le 4-1.	<u>The obse</u>	rved and	l_calcula	ted valu	les of th	<u>le ratio</u>
		•	of	the stru	icture fa	ctors		
	hkl	Ro	σ	R _c (a)	R _c (b)	$R_{c}(c)$	R _c (d)	R _c (e)
>	031	1.015	0.025	1.000	1.062	0.942	1.376	1.396
	031	0.980	[%] 0.033	1.000	1.062	0.942	1.376	1.396
	151	0.976	0.024	1.000	0.959	1.043	1.064	1.065
	151	0.981	0.027	1.000	0.959	1.043	1.064	1.065
	151	1.021	0.025	1.000	0.959	1.043	1.064	1.065
	151	1.040	0.030	1.000	0.959	1.043	1.064	1.065
	113	1.010	0.062	1.000	1.051	0.952	0.985	0.984
	113	1.088	0.046	1.000	1.051	0.952	0.985	0.984
-	113	0.997	0.044	1.000	1.051	0.952	0.985	0.984
	113	0.962	0.038	1.000	1.051	0.952	0.985	0.984
	ī 13	1.060	0.063	1.000	1.051	0.952	0.985	0.984
	īī3	1.002	0.053	1.000	1.051	0.952	0.985	0.984
	113	0.909	0.071	1.000	1.051	0.952	0.985	0.984
								· · · · ·

The values of χ^2 and probability for each model Table 4-2. x² Probability Model (a) 11.19 598 < 1% 36.53 (b) < 1% 37.67 (c) 376.73 << 1% (d) 414.72 << 1% (e)

e) reorientation of the hydrogen bond from $+\underline{c}$ to $-\underline{c}$. The correctness of each model was tested using a

 x^2 test:

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left[\frac{R_{o_{i}} - R_{c_{i}}}{\sigma^{2}}\right]^{2}}{\sigma^{2}}$$
(4-13)

where the sum was performed over the 13 independent measurements. Table 4-2 shows the values of χ^2 and the probability that a second experiment would have a larger value of χ^2 if the model is correct.

It is evident that model <u>a</u> is overwhelmingly more probable and that no structural change occurs on reversal of the poling field. Schmidt, Drumheller & Howell (1971) have extensively investigated the dielectric properties of Li $(N_2H_5)SO_4$ and have proposed a model in which the protonic conduction along the <u>c</u> direction is partially blocked by extrinsic barriers along the N-H....N-H chain. Using this model they can predict the dielectric properties quite well and conclude that Li $(N_2H_5)SO_4$ is not ferroelectric. Our failure to observe any permanent alteration in the molecular structure of the crystal as a result of poling is in agreement with their results and confirms the fact that it is impossible to reverse the permanent dipole moment of Li $(N_2H_5)SO_4$.

A paper on the work described in this chapter has been published by Anderson and Brown(1972).

CHAPTER V

AN ACCURATE REDETERMINATION OF THE CRYSTAL STRUCTURE OF

There have been several X-ray investigations of the crystal structure of lithium hydrazinium sulphate, $\text{Li}(N_2H_5)SO_4$. None of those yet published gives all the atomic positions to. a suitable accuracy for a study of the hydrogen bonding system as there are large discrepancies in the sulphur-oxygen ' bond lengths. This work is an accurate refinement of the structure, and comparison is made with the recent neutron diffraction redetermination (Ross, 1970) using a deuterated sample, $\text{Li}(N_2D_5)SO_4$.

Experimental

Single crystals of Li $(N_2H_5)SO_4$ were prepared by evaporation from an aqueous solution of LiCO₃ and $(N_2H_6)SO_4$. All diffraction measurements were made at room temperature on a crystal with dimensions $0.2 \times 0.2 \times 0.3$ mm on the Syntex four-circle X-ray diffractometer using MoKa radiation

 $(\lambda=0.71069 \text{ Å})$ monochromated by reflection from a graphite crystal. The lattice parameters are given in Table 5-1 and were refined by the method of least-squares from the 20 settings of fifteen reflections (Table 5-2). Intensities of

	· · ·
Crystal system	Orthorhombic
Space group	$Pna2_1 (C_{2v}^9)$
<u>a</u> (Å)	9.929(5)*
<u>b</u> (Å)	8.973(3).
<u>c</u> (Å)	5.181(2)
2	4
Cell volume (A ³)	461.6(3)
D_{calc} (g/cm ³)	1.958
Absorption coefficient for MoKa (mm^{-1})	0.603
Crystal size (mm)	$0.2 \times 0.2 \times 0.3$
Wavelength MoK α (Å)	0.71069 "
Systematic absences	$\begin{array}{rll} 0k\ell & k+\ell &=& 2n+1\\ h0\ell & h &=& 2n+1 \end{array}$
	12 · · · · · · · · · · · · · · · · · · ·

Table 5-1. Crystallographic data for Li(N2H5)SO4

Throughout this work, the estimated standard deviations are enclosed in parentheses.

Table 5-2. Reflect	tions used in the le	ast-squares refinement
of the la	attice parameters of	Li(N ₂ H ₅)SO ₄
Reflection	^{2θ} obs	^{2θ} calc
h k L	(⁸)	(⁸)
120	9.96	9.97
1 3 0	14.26	14.25
121	- 12.70	12.71
0 0 2	15.77	15.77
0 1 1	9.07	9.08
-2 3 -1	17.82	17.81
1 1 0	6.09	6.12
-1 2 1	12.71	12.71
-1 3 1	16.30	16. 30
2 4 1	21.54	21.54
3 1 2	20.58	20.58
-3 1 0	13.16	13.14
2 0 1	11.37	11.38
2 3 0	15.95	15.94
-1 1 0	6.12	6.12

6.7

911 independent reflections with $\sin\theta/\lambda < 0.76$ were measured and corrected for Lorentz and polarisation effects. No correction was made for absorption as this was considered to be negligible ($\mu=0.603$ mm⁻¹).

Refinement of the Structure

The non-hydrogen atomic positions of Brown (1964) were used as a basis for the refinement. After initial refinement of the positional and isotropic thermal parameters of these atoms with the full matrix least-squares programme CRYLSQ of the XRAY 71 programme library system, all the hydrogen atoms were located with a three-dimensional difference electron density map. Further refinement with anisotropic temperature factors for all non-hydrogen atoms and isotropic temperature factors for the hydrogen atoms gave a residual index, R (cf. equation 2-31), of 0.022. During the latter cycles of refinement, the temperature factor of H(3) refined to a negative, and hence unphysical value, and was set at a typical value of 0.04 and not refined further. The final

cycles included an extinction correction where the corrected values of F_c , given by:

$$F_{c}^{*} = KF_{c} [1+0.94 \times 10^{-3} \times \beta (2\theta) F_{c}^{2}]^{-\frac{1}{2}}, \qquad (5-1)$$

and a Cruickshank weighting scheme with weights given by:

$$w = (0.250 - 0.032 |F_0| + 0.0016 |F_0|^2)^{-1}$$

were used. This gave a final weighted residual index, R_w (cf. equation 2-32), of 0.027. The final atomic positions and temperature factors are given in Table 5-3.

Description of the Structure

Views of the structure along the <u>a</u> and <u>c</u> directions are given in Figures 5-1 and 5-2. The framework of LiO_4 and SO₄ tetrahedra has average Li-**0** and S-O distances of 1.937(18) Å and 1.473(9) Å respectively. The S-O(1) distance is 1.487(2) Å, almost midway between the previously reported X-ray diffraction values of 1.45(3) Å (Brown, 1964) and 1.557 Å (Van den Hende & Boutin, 1964) and agrees well with the recent neutron diffraction value of 1.484 Å. Bond lengths and angles are given in Table 5-4.

Table 5-5 gives details of the hydrogen bonds. N(1), the nitrogen atom of the $-NH_2$ group, is involved in three single hydrogen bonds, twice as a donor and once as an acceptor. The $-NH_3^+$ group forms three hydrogen bonds, one of which (H(5)) is bifurcated: A staggered configuration exists between the $-NH_3^+$ group and the $-NH_2$ group and its lone pair; the dihedral angles are given in Table 5-6.

A bond-strength summation using the method of Brown and Shannon (1973) was calculated (Table 5-7). The cation

5 - 2)

• • •

.

E.	י הות היה היו	3 Parameters	s derived from	n the final	least-squa	ures refi	nement of	X-ray d	ata for I	<u>ci (N₂H₅)5</u>	<u></u>
קן קו	Atom	Posit	cional coordin	nates ≪		Temp	erature f	actors*	-	· ·	
		×	А	8	U or U _{ll}	U22	, u ₃₃	Ul2	U ₁₃	-U ₂₃	
	ŗ	0.3312(3)	0.4333(3)	0.2533(12) 21(1)	19(1)	18(1)	-1(1)	-1(2)	-2(2)	
:	ر م	0.1580(1)	0.1285(1)	0.2500(†)	11.0(I)	12.4(1)	11.7(1)	-1.4(1)	-0.9(2)	0.1(2)	
	(1) 0	0.1909(2)	0.1052(2)	0.5271(3)	26.6(7)	24.3(7)	12.7(6)	÷2.5(5)	-5.3(5)	2.2(5)	۲
·. ·.	0 (2)	(1) (1) (1) (1)	0.1540(2)	0.2282 (5)	11.5(4)	31.7(7)	28.1(8)	-0.5(4)	-1:3(7)	6.1(8)	
	0 (3)	0.2299(1)	0.2593 (2)	0.1533(4)	21.9(6)	20.2(7)	24.2(7)	-8.9 (5)	2.2(6)	3.9(6)	
*	0(4)	0.3040 (2)	0.4957(2)	0.6023(3)	32.0(7)	19.4(7)	22.0(7)	-6.2(6)	4.8(6)	-8.7(6)	
•	(T) N	0.0235 (2)	0.4157(2)	0.7488(7)	30.8(8)	27.6(8)	35.3 (9)	-8.6(6)	-1.0(13)	3.5(13)	
1	N (2)	0.4400(2)	0.2136(2)	0.7381(6)	22.1(6)	23.5(6)	21.8(7)	1.6(5)	1.5(10)	-0.1(10)	
	(T)H	0.103(4)	0.392(4)	0:776(9)	16(9)	•		· ⁴ *	~ '		
	Н (2)	0.026(7)	0.445(6)	0.582(15)	65 (20)		0	, , , ,		, •	
	H (3)	0.358(4)	0.192(6)	0.680(11)	40 (5)						
.	H(4)	0.446(6)	0.234(8)	0.895(17)	69 (26)	•		•	;	•	
•	Н (5)	0.462 (3)	0.282(4)	0.616(8)	. 8 (8)	•				~	
	* Expr	essions used 1	for the tempe	rature facto	rs are:	•	•	·	•	10	
, 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$r_{p} [-2\pi^{2} \times 10^{-1}]$	3 -{U1, h ² a* ² +	$u_{2,2}k^{2}b^{+2} +$	U33 k ² C* ²	+ 2U ₁₂ hka	*b* + 2 ⁰ 1	3hla*c*	+ 2023k2	b*c*)] a	nd
	e N	^{cp} [-2π ² × 10 ⁻	$3 u\left(\frac{2 \sin \theta}{\lambda \cdot \theta}\right)^2$	•••			•	· ,			
	†This	s parameter wa	s used to def	ine the orig	rin and wa	s not ref	ined.	•	١		*
	§Not	refined.		-0				ц ,	• •		
			•	: ·						7	

						•							-			73 <u>°</u>
		Neutron	() 112.2	115.2	109.3 97.3	107.4	114.7		Neutron (°)	108.6	110.1	. 109.I.	109.2	109.9	109.9	
as determinêd	<u>in</u> (Ross, 1970)	X-řay ,o,	112.3 <u>(</u> 2)	114.9(3)	·/ 108.7(2) 97.8(2)	108.0(3)	114.7(2)		x-‡ay (⁰)	108.2(1)	109.7(1)	109.5(1)	109.3(1)	109.8(1)	110.4(1)	
andles in 1.1 (N H_) SO	n compared with those neutron diffraction		0(1) - L1 - 0(2)	0(1) - Li - 0(3)	O(1) - Li - O(4) O(2) - Li - O(3)	0(2) - Li - 0(4)	0(3) - Li - 0(4)			0(1) - S - 0(2)	0(1) - S - 0(3)	0(1) - S - 0(4)	0(2) - S - 0(3)	0(2) - S - 0(4)	0(3) - 5 - 0(4)	
nd distances and "	X-ray diffraction as determined by	Neutron 0.	(A) 1.940	1.976	· 1.940 1.914				Neutron, (Å)	1.480	1.472	1.463	1.473			
Таһ1е 5-4. Во	<u>Li (N</u> 2D5) SO4	dron X-ray , 2,	(A) 1.950(5)	1.959 (3)	1.928(4) 1.912(6)		-	ron	X-ray (Å)	1.487(2)	1.477(1)	1.462(2)	1.465 (2)			
~		ji04 tetrahe	Li - 0(1)	Li - 0(2)	Li - 0(3) fi - 0(4)		- - -	SO4 tetrahed		S - 0(1)	S - 0(2)	S - 0(3)	S - 0(4)	•		

.

j.

)		
ਸੂਰ ਹਿ	ble 5-4. Bond	d distances and	angles in Li (N2H5) SO4 as	determined	-
	λq	X-ray diffracti	on compared with those in	0701 (Continued)	
	12 <u>05/504 as de</u>	rerminea by neu	LTON ULLITACTION (NOSS/ T		· (
(N ₂ H ₅) ion		•			Ļ
	Х-гау	Neutron		Х-гау	Neutron
	(Å)	(Å)	•	、 (₀)	(₀)
N(T) - N(2)	1.427(3)	1.421	N(2) - N(1) - H(1)	111(2)	107
N(1) - H(1)	0.83(4) 🕺	1.011	N(2) - N(1) - H(2)	102(4)	106
N(1) - H(2)	0.91(8)	1. 025	N(2) - N(1) - H(2')	111(2)	itt
N(I) - H(2')	2.18(7)	2.034	H(1) - N(1) - H(2)	102(5)	107
			H(1) - N(1) - H(2')	. 103(4)	* 105
			H(2) - N(1) - H(2')	126(4)	121
					-
		-			
•	Х-гау	Neutron		X-ray	Neutron
	(Å)	(Å)		(₀)	(°)
N(2) – H(3)	0.89(5)	1.011	N(1) - N(2) - H(3)	111(4)	0II
N(2) - H(4)	0.84(9)	1.020	N(1) - N(2) - H(4)	96 (5)	108
N(2) - H(5)	0.91(4)	1.019	N(1) - N(2) - H(5)	116(2)	114
		j,	H(3) - N(2) - H(4)	116 (6)	οττ.
			H(3) - N(2) - H(5)	98(4)	106
	~		H(4) - N(2) - H(5)	121 (6)	109

Throughout this work, an atom which is primed is related by symmetry to the equivalent atom in the asymmetric unit.

4		Ĵ Ĵ	Ross (1970) in	the second.		•
•	р-нА	•	H-Q	НА	D-A	K − H − C > ,
			(Å)	(Å)	(Å)	(°).
~	H (1)	0(4)	0.83(4) 1.011	2.38(4) 2.300	2.975(3) 2.980	129 (3) 124
~	H (2)	(.T)N	0.91(8) 1.025	2.18(7) 2.034	3.043 (3) 3.040	156 (5) 166
· · · · · · · · · · · · · · · · · · ·	H (3)	0(1)	0.89(5) 1.011	2.00(7) 1.891	2.874 (3) 2.882	169(5) 166
	H(4)	0(2)	0.84(9) 1.020	2.10(8) 1.922	2.892(4) 2.896	158(7) 159
<u> </u>	H(5)	0(2)	(7) (6) (7)	2.15(5) 2.060	2.982(4) 2.978	153(3) 149
-	H(5)	0 (4)	1.019	Z,48(4) 2.473	2.954(3) 2.956	113(3) 108

	comp	ared w	ith those	of the	(N ₂ D ₅)	ion (neu	utron)	
9 			•				<u>_</u> .	
Plane	e defin	ned by	v Plane	e defin	ed by	Dihe	edral angle	2
4	atoms		•	atoms		X-ra	ay Neutro	n
	•, •,			· · ·	•	(°.) (⁰)	
N(1)	N(2)	H(1)	N(1)	N(2)	H(2)	J0	8 114	•
N(1)	N(2)	H(1)	N(1)	N(2)	H(2')	-11	4 -114	
N(1)	N (2)	H(1)	N(1)	N(2)	H(3)	17	0 172	-
N(1)	N(2)	H(3)	N(1)	N(2)	H(4)	12	1 120	
N(1)	N(2)	Н(З)	N(1)	N(2)	H(5)	-11	1 -119	

Table 5-6. Dihedral angles of the (N_2H_5) ion (X-ray)

ths (s)	Table 5-7. Bond-strengths in Li (N_2H_5) SO4 calculated frombond lengths determined by X-ray diffractionbond lengths in Valence units and bond lengths in \hat{A} (in brackets) for bondsbetween 0 and Li, S and H.LiSH(1)H(3)H(4)H(5)Sums around	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.06	ths (s) are calculated from the expression $s = (R/R_0)^{-N}$ where R is the bond length and H-0 Li-0 S-0	R ₀ 0.86 1.378 1.622 N 2.17 4.065 4.290
---------	---	--	--	-------------	---	---

77

. **0**°.

sums were satisfactory, but the anion sums at O(1) and O(3) dre significantly low at 1.86(1) and 1.82(1) valence units respectively. Both O(1) and O(3) are bonded to one sulphur atom and one lithium atom, and O(1) accepts one hydrogen bond; there are no other possible hydrogen bonds to either oxygen atom. Use of the X-ray determined hydrogen positions would tend to underestimate the hydrogen bond strengths, and the calculation was repeated using the neutron positions of Ross (Table 5-8). There was some improvement of the sum at O(1), but the non-hydrogen bonded O(3) was even lower at 1.81(1) valence units.

ths.		bonds	Sums around anions	1.91	2.07	1.81	1.99			bond length and	່ວ		•
W D) SO calculated for the bond leno	1 diffraction results of Ross (1970)	nd bond lengths in A (in brackets) for D and Li, S and D.	D(1) D(1) D(4) D(5)	0.18 (1.891)	0.18 0.15 (1:922) (2.060)		0.12 (2.300) (2.473)			expression $g = (R/R_0)^{-N}$ where R is the	0 Li-0 S-0	6 . 1.378 1.622	7 4.065 4.290
	determined from the neutrol	strengths in valence units a between	Li	0.25 1.48 @(1.940) (1.480)	0.23 1.52 (1.976) (1.472)	(1.940) (1.463)	(1.473) (1.473)	0.99 6.07		(s) are calculated from the	– –	R0 0.8	N 2.1
		Bond-		o (1) »,	0 (2)	o(3)	õ (4)	Sums around cations	•	ond-strengths			

o

.

.

79

۲.,

CHAPTER VI

DETERMINATION OF THE CRYSTAL STRUCTURE OF LITHIUM HYDRAZINIUM FLUOROBERYLLATE BY X-RAY AND NEUTRON DIFFRACTION

The crystal structures of several hydrazinium compounds have been determined, but only one (Li(N_2H_5)SO₄) has been found with chains of hydrogen bonded hydrazinium ions where the donor and acceptor of the hydrogen bonds is the $-NH_2$ group. This investigation was to determine whether the hydrazinium ions in Li(N_2H_5)BeF₄ also formed this type of chain and to obtain accurate details of all the hydrogen bonds in the structure.

Preparation of the Crystals

Lithium hydrazinium fluoroberyllate, Li $(N_2^{H_5})BeF_4$, was prepared by the reaction of lithium carbonate and hydrazonium fluoroberyllate in aqueous solution:

 $Li_2CO_3 + 2(N_2H_6)BeF_4 + 2Li(N_2H_5)BeF_4 + H_2O + CO_2$ (6-1)

using the method of Tédenac et al. (1971). The very small $(3.4 \times 10^{-3} \text{mm}^3)$ single crystal used for the X-ray work was easily grown by evaporation from an aqueous solution of $\text{Li}(N_2H_5)\text{BeF}_4$. The large single crystals (56mm³) for the

neutron work were grown from a small seed crystal by slow evaporation of a saturated aqueous solution.

Experimental (X-ray)

X-ray diffraction measurements were made at room temperature on a single crystal with dimensions $0.13 \times 0.13 \times 0.2$ mm using the Syntex diffractometer. Graphite monochromated MoKa radiation was used, $\lambda = 0.71069$ Å. The lattice parameters (Table 6-1) were refined by a least-squares analysis of the 20 settings of fifteen reflections (Table 6-2). The space group, Pna2₁ (C⁹_{2V}), was confirmed from systematic absences observed on precession camera photographs and the successful refinement of the structure in a non-centro-symmetric cell. The intensities of 700 independent reflections with $\sin\theta/\lambda < 0.704$ Å⁻¹ were measured and corrected for Lorentz and polarisation effects but not for absorption which was snegligible (μ =0.25 mm⁻¹).

Experimental (Neutron)

A single crystal with dimensions $2.5 \times 2.5 \times 9.0$ mm was used for the neutron diffraction measurements. The singleness of the crystal was checked by comparing several $\frac{1}{2}$ X-ray precession photographs of different parts of the crystal. Precession photographs were also used to align the <u>c</u> axis of the crystal coincident with the goniometer head

Table 6-2. Reflecti	ons used in the]	east-squares refinement
of the latt	ice parameters of	Li (N ₂ H ₅) BeF ₄
Reflection	20 obs	2 ⁸ calc
h k l	(°)	(°)
3 -1 0	13.30	13.30
4.00	16.67	16.66 -
1 -2 1	12.86	12.84
1 -1 0	6.20	6.19
-1 -3 -1	L6.48	16.47
·-1 -2 1	12.83	<u>s</u> 12.84
5 -2. 1	24.19	24.21
2 0 2 -	. 17.94 .	171.96
1 -2 -1	12.82	12.84
2 -1 0	9.50	9.49
2 0 -2	17.99	17.96
5 -1 0	21.38	21.38
0 -3 -1 .	15.92	15.93
4 -1 0	17.30	17.29
3 -2 1	17.43	17.44
		+1

axis. To avoid possible decomposition caused by the high humidity around the reactor, the crystal was coated with per-fluoro-kerosene.

The diffraction measurements were made using the neutron diffractometer described in Chapter III at beam port #5 of the McMaster nuclear reactor. The neutron beam, monochromated by reflection from the (111) plane of a single copper crystal, had a wavelength of 1.091 Å. The intensities of 470 independent reflections with $\sin\theta/\lambda < 0.65$ were measured using the ω step scanning technique. The number of steps in the scan varied from 27, for reflections whose 2θ value-was < 20°, to 45 steps, for those reflections in the -2θ range $80^{\circ} \le 2\theta < 100^{\circ}$, each step being $1/18^{\circ}$. The first 1/9th and last 1/9th of the steps in each scan were used to determine the background. The duration of each step was controlled by a fission counter which monitored the main A monitor count of 10⁴ for each step was used, and beam. the approximate time for a step was one minute at a reactor power of 5 MW. The measured intensities were corrected for Lorentz effects using the FORTRAN programme DIFDAT.

Solution and Refinement of the Structure (X-ray)

Lithium hydrazinium fluoroberyllate was assumed to be isostructural with lithium hydrazinium sulphate, and the coordinates of Padmanabhan & Balasubramanian (1967) were used as a basis for the refinement. Initial refinement of the positions and isotropic temperature factors of the heavy atoms, using the X-ray measurements with the full matrix least-squares programme ORFLS of the XRAY 67 programme library system, gave a residual index, R_x (cf. equation 2-31), of 0.076. A three-dimensional difference electron density map was used to locate the hydrogen atoms and, after further refinement with isotropic temperature factors for the hydrogen atoms and anisotropic temperatures for all other atoms, R_x was reduced to 0.040. Three reflections showed significant effects of extinction, and the final cycles of refinement of the X-ray data used the local least-squares programme CUDLS in which extinction corrected values of F_c , given by:

$$F_{c}^{*} = K_{x}F_{c}[1+0.88 \times 10^{-6} \times \beta_{x}(2\theta)F_{c}^{2}]^{-\frac{1}{2}}$$
(6-2)

were used (cf. equation 2-42). The final weighted residual index, R_{WX} (cf. equation 2-32), was 0.039 where the weights were given by:

$$= (0.26 - 0.018 | F_0| + 0.00059 | F_0|^2)^{-1}$$
 (6-3)

and unobserved reflections were given zero weight if $|F_c| < |F_o|$. The final atomic parameters and temperature factors are given in Table 6-3. The observed and calculated

Atom	Positi	ional coordin	ates	•	Temp	berature	factors	•	•	
	×	7	N	u or U _{ll}	U22	n ³³	U12	U13	U23	
न्	0.322(1)	0.436(1)	0.251(2)	(Z) 6I.	23(3)	21(3)	1 (2)	-4(3)	-2 (3)	
(1)	0.0225(4)	0.4116(4)	0.7455(†)	33 (2)	28(2)	34 (2)	-7(1)	0 (2)	4 (2)	
(2)	0.4422(3)	0.2228(4)	0.742(1)	27(1)	26(1)	26(2)	7 (1)	1 (2)	4 (2)	
Ð	0.1584(4)	0.1270(5)	0.248(1)	15(1)	20 (2)	16(2)	-1(1)	-2 (2)	-1(2)	:
רז). יר	0.1958(2)	0.1051(2)	0.540(1)	35(1)	25(1)	18(1)	-3(1)	-4(1)	2 (1)	- -
(2)	0.0002(2)	0.1433(3)	0.231(1)	16(1)	40(1)	31(1)	ਜੂ 3 (1)	-1(1)	6 (1)	•
(3)	0.2249(2)	0.2701(2)	0.141(1)	29(I)	23(1)	26(1)	-10(1)	0(1)	3 (1)	
(4)	0.2983(2)	0.4881(2)	0.591(1)	36(1)	25(1)	22(1)	-6(1)	4(1)	-8(1)	
(1)	· 0.097 (6) Shee	0.389 (6)	0.803(17)	49(19)		-	-	4	· · · ·	
1(2)	0.011(5)	0.463(5)	0.598(11)	13 (12)	· ·		. ** . * :			•
I (3)	0.362(4)	0.192(5)	0.690(12)	18 (13)	•		-			
(4)	0.450(7)	0.259(8)	0.908(15)	33 (20)			•••	•	-	
1(5)	0.472(6)	0.296(7)	0.614(16)	25 (19)		. *	•			• •
Expres	stons used fo	or the temper	ature facto	rs are:				•		. •
exp	$F_{-2\pi^2} \times 10^{-3}$	(U ₁ ,h ² a* ² +	$u_{22}k^{2}b^{*2} + 1$	U33 R ² C* ² +	2U ₁₂ hké	a*b* + 2	U ₁₃ h&a*c⁴	$1 + 20_{23}$	k&b*c*)]	a
exp	$[-2\pi^2 \times 10^{-3}]$	$u\left(\frac{2 \operatorname{sin} \theta}{2}\right)^2$					•		-	
י ד ן		1902 of Poor.	ntro otto	ים היה היה הים הים	50t 10t	ri nod	•	•		

X-ray structure factors are given in Appendix A.

Refinement of the Structure (Neutron)

The atomic positions of the X-ray work were used for the initial refinement of the structure with the neutron measurements. The coherent neutron scattering lengths. reported by Bacon (1972) were used (Li, -0.214; N, 0.94; H, -0.374; Be, 0.774; F, 0.56×10⁻¹² cm). Refinement of the atomic positions and isotropic temperature factors of all atoms, using the full matrix least-squares programme CRYLSQ of the XRAY 71 programme library system, gave a residual index, R_N , of 0.122. Further refinement with anisotropic temperature factors reduced the residual index, although the temperature factor for the lithium atom refined to a non-positive definite value and had to be refined isotropically. Several of the strong reflections showed evidence of extinction effects, and an isotropic extinction parameter was included in the refinement. The corrected values of F, were given by:

$$F_{c}^{*} = K_{N}F_{c}[1+0.46 \times 10^{-2} \times \beta_{N}(2\theta)F_{c}^{2}]^{-\frac{1}{2}} . \qquad (6-4)$$

The final stages of the least-squares refinement used the local programme CUDLS. The temperature factor of the lithium atom still could not be refined anisotropically. A refinement of the scattering length of lithium changed its value from -0.214×10^{-12} cm to -0.195×10^{-12} cm indicating that there could be a higher percentage of ⁶Li (scattering length 0.18×10^{-12} cm) in this sample than the 7.42% ⁶Li in naturally occurring lithium. Even so, this did not enable an anisotropic temperature factor to be used for this atom, and in the subsequent stages of the refinement the scattering length was reset to its original value of -0.214×10^{-12} cm, and an isotropic temperature factor was used. A weighting scheme was used during the final cycles of least-squares refinement, the weights being given by:

$$=\frac{1}{\sigma_{\rm F}^2}$$

where σ_{F_0} is the standard deviation of F_0 estimated from the counting statistics of the measurements. The final weighted residual index, R_{WN} , was 0.044, and the final atomic parameters and temperature factors are given in Table 6-4. The observed and calculated neutron structure factors are given in Appendix A.

Description of the Structure

Li $(N_2H_5)BeF_4$ is isostructural with Li $(N_2H_5)SO_4$ (cf. Chapter V) but with differences in the hydrogen bonding arrangement. Views of the structure along the <u>a</u> and <u>c</u> directions are given in Figures 6-1 and 6-2.

(6-5)

						2 54	•			
Atom	Posit	ional coordin	lates		Tem	perature	factors	•		144 17 - 4
	×	Y	n	or U _{ll}	U22	U ₃₃	U ₁₂	, U13	.U23	
펄	0.3213(18)	0.4353(20)	0.2766 (86)	33 (5)			e .		•	
(ד) א	0.0228(6)	0.4107(7)	0.7455(†)	31(3)	36 (3)	61(9)	-7 (2)	2 (6)	0 (5)	
N (2)	0.4418(6)	0.2219(6)	0.7397(39)	26 (3)	31(3)	48(6)	2 (2)	2 (6)	-6 (6)	
Be	0.1585(4)	0.1260(5)	, 0.2468 (36)	15(2)	23(2)	31(5)	-1(2)	-1(5)	(2) 6	
F(1)	0.1963(8)	0.1058(9)	0.5505 (37)	31(4)	25 (4)	49 (9)	-5(3)	-7 (5)	10 (5)	
F (2)	0.0001(6)	0.1416(8)	0.2305(41)	14(2)	38 (3)	36 (6)	-4(2)	4 (6)	-12(7)	
ғ (З)	0.2263(7)	0.2704(7)	0.1447 (30)	28 (3)	26 (4)	32 (9)	-8(3)	-2 (4)	5(4)	
E (4)	0.2985(8)	0.4877(8)	0.5980 (37)	30 (4)	28(4)	53(8)	-7(3)	-3 (5)	-17(5)	· · ·
H(1)	0.116(1)	0.384(2)	0.791(7)	33(7)	84(10)	86 (25)	-15(8)	-13(16)	-13(17)	
H (2)	0.019(2)	0.451(3)	0.572(7)	88 (16)	69 (15)	28(21)	-28 (12)	12 (16)	1(12)	۰.
Н (3)	0.347(1)	0.195(2)	0.710(9)	30 (7)	84(11)	145 (29)	10(8).	-25(15)	14(19)	
H (4)	0.445 (3)	0.275(3)	0.926(8)	89 (20)	68 (13)	83 (29)	48(14)	11 (18)	-15(15)	•
H (5)	0.472(2)	0.292(4)	0.613(6)	50(10)	111 (11)	14(14)	7 (12)	13 (10)	24(13)	

w.,

 $\exp \left[-2\pi^2 \times 10^{-3} \left(u_{11}h^2 a^{*2} + u_{22}k^2 b^{*2} + u_{33}k^2 c^{*2} + 2u_{12}hka^{*}b^{*} + 2u_{13}h^{*}a^{*}c^{*} + 2u_{23}k^{*}b^{*}c^{*} \right) \right] \text{ and } exp \left[-2\pi^2 \times 10^{-3} u \left(\frac{2 \sin \theta}{\lambda} \right)^2 \right].$

tNot refined.

Figure 6-1.

The crystal structure of $Li(N_2H_5)BeF_4$ viewed along the <u>a</u> direction.

Table 6-5 gives the bond lengths and angles. The BeF₄ and LiF₄ tetrahedra are nearly regular with mean Be-F and Li-F bond lengths of 1.546(13) Å and 1.853(20) Å respectively. The N-N distance is 1.431(5) Å, and the N-H bonds of the neutron diffraction work are systematically longer with a mean length of 0.98(3) Å compared to the X-ray diffraction value of 0.89(4) Å. Table 6-6 gives details of the hydrogen bonding, and Table 6-7 gives the dihedral angles of the (N_2H_5) ion. The hydrogen bond formed by H(1) is bifurcated and that of H(5) is trifurcated, although the arrangement is similar to that in Li $(N_2H_5)SO_4$.

A fuller discussion of the comparison between the X-ray and neutron diffraction results, the hydrazinium ion and the hydrogen bonding of this and other structures will be given in Chapters IX and X.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		<u>Tablé 6-</u>	5. Bond distan	ces and angles for Li (N_2H)	<u>15) BeF</u> 4	•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	iF4 tetrahe	sdron					÷
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Х-гау	Neutron		X-ray	Neutron	y -
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(Å)	(Å)		(₀)	(₀)	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i - F(l)	1,861(8)	1.917 (33)	F(1) - Li - F(2)	110.8(4)	107 (2)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 – F(2)	1.886 (6)	1.897 (20)	F(1) - Li - F(3)	114.8(5)	111(2)	•
$ I = F(4) I \cdot 825(10) I \cdot 730(46) F(2) = Li = F(4) 105.5(4) 110(2) \\ F(2) = Li = F(4) 105.5(4) 110(2) \\ F(3) = Li = F(4) 115.6(4) 120(2) \\ F(3) = K_4 x - ray Neutron \\ (A) (A) (B) \\ (A) (B) (C) (C) (C) \\ (A) (B) (C) (C) \\ (A) (C) (C) (C) (C) \\ (A) (C) (C) (C) (C) \\ (A) (C) (C) (C) (C) (C) (C) \\ (A) (C) (C) (C) (C) (C) (C) (C) (C) \\ (A) (C) $	1 – F(3)	1.842(7)	1.863(25)	F(1) - Li - F(4)	109.8(4)	111(1)	0
eF(2) = Li = F(4) 105.5(4) 110(2) F(3) = Li = F(4) 115.6(4) 120(2) F(3) = Li = F(4) 115.6(4) 120(2) R = F(1) 1.557(9) (Å) (Å) (Å) (Å) (Å) (Å) (Å) (Å)	1 – F (4)	1.825(10)	1.730 (46)	F(2) - Li - F(3)	99.6(3)	98 (I)	
F(3) = Li = F(4) 115.6(4) 120(2) eF ₄ tetrahedron (A) (A)	•			F(2) - Li - F(4)	105.5(4)	110(2)	
eF ₄ tetrahedron (a) (b) (c) (c) (c) (c) (c) (b) (c)			•	F(3) - Li - F(4)	115.6(4)	. 120 (2)	
eF ₄ tetrahedron (A) (A) (A) (A) (B) (A) (C) $($	•					, ,	•
X-rayNeutronX-rayNeutron(0)(0)(0)(0)(0)(0)1.557 (9)1.614 (26)F(1)Be = F(2)107.6 (4)106.9 (12)101.561 (4)1.563 (7)F(1)Be = F(3)110.5 (4)108.9 (9)10- F(3)1.532 (5)1.533 (1)F(1)Be = F(4)109.9 (3)109.6 (9)10- F(4)1.534 (6)1.508 (16)F(2)Be = F(4)109.0 (3)109.8 (7)11.11- F(4)1.534 (6)- F(3)- Be = F(4)108.6 (3)109.8 (7)11.11- F(4)1.11.1 (4)111.2.7 (11)F(3)- Be = F(4)111.1 (4)11.11- Be = F(4)1.11.1 (4)1112.7 (11)F(3)108.6 (3)108.9 (8)	eF, tetrahe	adron			•		1
F(1) 1.557(9) 1.614(26) F(1) - Be - F(2) 107.6(4) 106.9(12) $= -F(2) 1.561(4) 1.563(7) F(1) - Be - F(3) 110.5(4) 108.9(9)$ $= -F(3) 1.532(5) 1.537(11) F(1) - Be - F(4) 109.9(3) 109.6(9)$ $= -F(4) 1.534(6) 1.508(16) F(2) - Be - F(4) 109.0(3) 109.8(7)$ $F(2) - Be - F(4) 108.6(3) 108.9(8)$ $F(3) - Be - F(4) 111.1(4) 112.7(11)$		X-ray ,0	Neutron ,0,		X-ray ,o,	Neutron , ⁰ ,	
		(A)	(A)	271 20 1 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	106 0/12)	~ 5
$e = F(2) \qquad 1.551(4) \qquad 1.503(7) \qquad F(1) = Be = F(4) \qquad 109.9(3) \qquad 109.6(9) \\ e = F(4) \qquad 1.532(5) \qquad 1.534(6) \qquad F(2) = Be = F(4) \qquad 109.0(3) \qquad 109.8(7) \\ F(2) = Be = F(4) \qquad 108.6(3) \qquad 108.9(8) \\ F(3) = Be = F(4) \qquad 111.1(4) \qquad 112.7(11) \\ F(3) = Be = F(4) \qquad 112.1(4) \qquad 112.7(11) \\ F(3) = Be = F(4) \qquad 112.1(4) \qquad 112.1(4) \qquad 112.7(11) \\ F(3) = Be = F(4) \qquad 112.1(4) \qquad 112.1($	(T) 	(6)/cc.T	(07) 5TQ			(77) 0 001	/
$\mathbf{F} (4) \mathbf{I} \cdot 5 \cdot 3 + 5 \cdot 1 \mathbf{I} \cdot 5 \cdot 3 + 5 \cdot 1 \mathbf{I} \cdot 5 \cdot 3 + 5 \cdot 1 1 \cdot 5 \cdot 3 + 5 \cdot 5 \cdot 5 1 1 \cdot 5 \cdot 5 \cdot 5 5 5 \cdot 5 5$	6 = F(2) 5 = 7(2)	(4)TOC.T '	1,500.1 1,537(11)	F(1) - Be - F(3) F(1) - Be - F(4)	(E) 6 60T	109.6(9)	•
F(2) - Be - F(4) 108.6(3) F(3) - Be - F(4) 111.1(4) 112.7(11) F(3) - F(4) 111.1(4)	10 H H (1)	1.534(6)	1.508 (16)	F(2) - Be - F(3)	109.0(3)	109.8(7)	
F(3) - Be - F(4) 112.7(11)				F(2) - Be' - F(4)	108.6(3)	108.9(8)	•
93				F(3) - Be - F(4)	111.1(4)	, 112.7(11)	
93			₩				•
93							
			•	-		93	

• • •

*		
м	Neutron (°) 108(1) 105(2) 112(1) 110(3) 97(2)	120(2) Neutron (°) 109(1) 106(3) 112(2) 110(3) 108(3)
(Continued)	X-ray (°) 107(4) 111(1) 123(6) 92(6)	115(4) X-ray (°) (°) 104(3) 114(4) 118(6) 118(6) 118(6) 112(6)
ngles for L1(N ₂ H ₅)BeF ₄	N(2) - N(1) - H(1) $N(2) - N(1) - H(2)$ $N(2) - N(1) - H(2)$ $H(1) - N(1) - H(2)$ $H(1) - N(1) - H(2)$	H(2) - N(1) - H(2') N(1) - N(2) - H(3) N(1) - N(2) - H(3) N(1) - N(2) - H(4) H(3) - N(2) - H(4) H(3) - N(2) - H(5) H(4) - N(2) - H(5)
sond distances and a	Neutron (Å) 1.421(8) 0.97(2) 0.96(3) 2.12(3)	Neutron (Å) 0.97(2) 1.07(4) 0.95(3)
*** able 6-5. F	X-ray (Å) (A) 1.431(5) 0.81(6) 0.89(5) 2.15(5)	<pre>X-ray X-ray (A) (A) 0.87(5) 0.91(8) 0.97(7)</pre>
	M_2H_5 , ion (1) - N(2) (1) - H(1) (1) - H(2) (1) - H(2')	 (2) - H (3) (2) - H (4) (2) - H (5)
0	C ZZZZ	. ZZZ,

-

: جنبر

Hydrogen bond lengths and angles in L1 (N₂H₅)BeF Table 6-6. in the second. 119 (6) 123 (2) 172 (6) 158 (3) L48 (6) L37 (2) 163 (5) 163 (2) 168 (5) 165 (3) 107(4) 106(2) 150 (6) 152 (3) 129 (5) 128 (2) <D-H. the neutron result 2.832(5), 2.794(13) 2.941 (8) 2.939 (26) 2.902(5) 2.892(11) 2.834(8) 2.856(26) 2.855(5) 2.842(12) 3.099 (5) 3.086 (12) (Å) 3.103(5) 3.122(13) 3.044(3) 3.052(5) N-D first line and 2.41(6) 2.43(3) 1.93(7) 1.81(4) 2.06(8) 2.07(4) 2.40(6) 2.41(3) 2.15(5) 2.12(3) 1.96(5) 1.87(3) 34 (3) 2.42(6 Н....А 39 (<u>6</u> 2.25% ۍ ۲ For each bond, the X-ray result is given in the 0.81(6) 0.91(8) 1.07(4) 0.97(7) 0.95(3) 0.89(5) 0.96(3) 0.87(5) 0.97(2) H-O (A) (T) N F (4) F (3) F (2) F (4) F(2) E (1) F (1) р-н...А H (5.) H (5) H (5) H (2) H(3) H (4) H(1) H (1) N (2) N (2) N (2) N (2) (T) N N (1) N (2) (T) N

95

ş

<u>Table 6-7.</u> Dihedral, angles of the (N_2H_5) ion

	Plane	defin	ed by	Plane	e defir	ned by	Dihedr	al angle
		atoms	•	4°	atoms		X-ray (⁰)	Neutron (⁰)
•	N(1)	N(2)	H(1)	N(1)	N(2)	Н(2)	136	119
•,	N(1)	N(2)	H(1)	N (1)	N (2)	H(2')	-94	-108
	N(1)	N(2)	H(1)	N (1)	N(2)	Н(3)	176	186
	N(1)	Ń(2)	H(3)	N (1)	N(2)	H(4)	125	116
•	N(1)	N(2)	Н(3)	N(1)	N (2)	-н(5)	-114	-124

CHAPTER VII

THE CRYSTAL STRUCTURE OF LITHIUM HYDROXYLAMMONIUM SULPHATE

This work describes the solution and refinement of the crystal structure of lithium hydroxylammonium sulphate, $Li(NH_3OH)SO_4$, from X-ray diffraction measurements. The positions of all atoms were accurately determined and their correctness confirmed by a bond-strength summation.

Experimental

Single crystals of Li(NH_3OH)SO₄ were grown by slow evaporation from an aqueous solution of $(NH_3OH)_2SO_4$ and Li_2SO_4 in stoichiometric quantities. Very thin hexagonal crystals were formed, but recrystallisation improved the thickness to a size suitable for X-ray work.

The space group, Pbca (D_{2h}^{15}) , was deduced from systematic absences on Weissenberg photographs. For accurate measurement of the lattice parameters and determination of the structure, a single crystal measuring $0.1 \times 0.1 \times 0.4$ mm was selected. All of these measurements were made at room temperature on a Syntex four-circle X-ray diffractometer using MoKa radiation ($\lambda = 0.71069$ Å) monochromated by reflection from a graphite crystal. The lattice parameters (Table 7-1) were refined by a least-squares

Crystal system	Orthorhombic
Space group	Pbca (D ¹⁵ _{2h})
<u>a</u> (Å)	18.461(5)
<u></u>	7.267 (3)
<u>c</u> (Å)	6.695(2)
Ζ	8
Cell volume (Å ³)	898.2(5)
D _{calc} (g/cm ³)	2.027
Absorption coefficient for MoKa (mm ⁻¹)	, 0.63
Crystal size (mm)	$0.1 \times 0.1 \times 0.4$
Wavelength MoKa(Å)	0.71069
Systematic absences	Okl $k' = 2n + 1$ hOl $l = 2n + 1$ hkO $h = 2n + 1$

Table 7-1. Crystallographic data for Li(NH3OH)SO4

98

analysis of the 20 settings of fifteen reflections (Table 7-2). Intensities of 1574 independent reflections with sin $\theta/\lambda < 0.705$ were measured and corrected for Lorentz and polarisation effects but not for absorption which was negligible $(\mu = 0.63 \text{ mm}^{-1}).$

Solution and Refinement of the Structure

The structure was solved from a three-dimensional Patterson synthesis. The hydrogen atom positions were found from a three-dimensional difference electron density map. The atomic parameters and temperature factors were refined by the full matrix least-squares programme CRYLSQ of the XRAY 71 programme library system. With anisotropic temperature factors for all_non-hydrogen atoms, the residual index, R (cf. equation 2-31), was 0.034. The final weighted residual index, R_w (cf. equation 2-32), was 0.027, where the weights were given by:

 $w = (0.1146 - 0.0044 |F_0| + 0.00004 |F_0|^2)^{-1}.$ (7-1)

Final atomic positions and temperature factors are given in Table 7-3. The observed and calculated structure factors are given in Appendix A.

Description of the Structure.

Views of the structure projected along the <u>a</u> and <u>c</u> directions are shown in Figures 7-1 and 7-2.

Table 7-2. Reflec	tions used in the least	-squares refin	ement
of the 1	attice parameters of Li	(NH ₃ OH) SO ₄	
Reflection	20 _{gbs}	20 Çalc	
h k l	(°)	(``)	
2 -1 1	9.40	9.39	
-1 -2 3	21.67	21.68	
-3 -1 1	10.61	10.62	•. (
-4 -1 1	12.12	12.13	
2 -1 1	9.39	9.39	
3 -1 1	10.62	10.61	
-8 0 0	17.71	17.72	5
3 -1 2	14.99	14.99	
-2 -1 2	14.14	14.15	
-3 2 1	14.38	14.39	
4-1 1	12.13	12,12	
2 1 1	9.38	9.30	
1 -2 1	12.98	12.30	
-4 -1 -1		14.42	
	14.42		-

xYzuuuu0.2612(2)0.2535(8)0.4122(8) $24(2)$ $21($ 0.1559(1)0.0520(1)0.1577(1) $12.7(2)$ $12.$ 0.3348(1)0.4390(3)0.3394(3) $22(1)$ $25($ 0.3289(1)0.0586(3)0.4777(3) $25(1)$ $24($ 0.2076(1)0.2075(2)0.1649(3) $24(1)$ $20($	2) U ₃₃ U 2) 20(2) -2 3(2) 13.8(2) 0	12 U ₁₃ (3) 0(2)	U23
0.2612(2) 0.2535(8) 0.4122(8) 24(2) 21(0.1559(1) 0.0520(1) 0.1577(1) 12.7(2) 12. 0.3348(1) 0.4390(3) 0.3394(3) 22(1) 25(0.3289(1) 0.0586(3) 0.4777(3) 25(1) 24(0.2076(1) 0.2075(2) 0.1649(3) 24(1) 20(2) 20(2) -2 3(2) 13.8(2) 0	(3) 0 (2) 0 (3) 0 3 (3)	
0.1559(1) 0.0520(1) 0.1577(1) 12.7(2) 12. 0.3348(1) 0.4390(3) 0.3394(3) 22(1) 25(0.3289(1) 0.0586(3) 0.4777(3) 25(1) 24(0.2075(2) 0.1649(3) 24(1) 20(3(2) 13.8(2) 0	131 0 3 (3)	4 (2)
 0.3348 (1) 0.4390 (3) 0.3394 (3) 22 (1) 25 (0.3289 (1) 0.0586 (3) 0.4777 (3) 25 (1) 24 (24 (1) 20 (0.5(3
) 0.3289(1) 0.058 6(3) 0.4777(3) 25(1) 24() 0.2076(1) 0.2075(2) 0.1649(3) 24(1) 20(l) 21(1) -4	(1) -2(1)	(T) TT
) 0.2076(1) 0.2075(2) 0.1649(3) 24(1) 20(1) 18(1) 5	(1) 1(1)	7(1)
	1) 20(1) (-9	(1) -2(1)	2 (I)
) 0.0810(1) 0.1213(3) 0.1458(4) 15(1) 21(1) 29(1) 5	(1) 2(1)	2 (I)
) 0.4468(1) 0.1444(3) 0.0716(3) 34(1) 34(1) 36(1) -1	(1) - 1(1)	6 (T)
0.4446(1) 0.0037(4) 0.2142(4) 31(1) 28(1) 28(1) -3	(1) 6(1)	-0(1)
) 0.404(2) 0.017(5) 0.326(6) 11(9)	5		
) 0.429(2) -0.109(5) 0.146(5) 12(9)		2	· · ·
) 0.493(2) 0.005(7) 0.263(7) 25(11)			•
) 0.400(3) 0.085(9) 0.001(10) 87(20)			

101

D.

 $[-2\pi^{4} \times 10^{-3}]$

exp

Figure 7-1.

The crystal structure of Li(NH₃OH)SO₄ viewed along the <u>a</u> direction.

Crystals of Li(NH₃OH)SO₄ are composed of sheets of LiSO₄ which are held together by hydrogen bonds from the hydroxylammonium ions. This structure is quite different from the stuffed tetrahedral framework structures of the isoelectronic Li(N₂H₅)SO₄ and Li(N₂H₅)BeF₄ or the compounds of the form LiMSO₄ and LiMBeF₄ (M = K, Rb, Cs, NH₄) discussed by Chung and Hahn (1972).

The bond lengths and bond angles are given in Table 7-4.

The lithium and sulphur atoms are at the centres of oxygen tetrahedra which share corners to form the LiSO_4 sheets normal to the <u>a</u> direction. Effectively, there are three layers within the sheets, a layer of LiO_4 tetrahedra at $\frac{2n + 1}{4}$ and two layers of SO₄ tetrahedra at $\frac{4n + 1}{8}$ and $\frac{4n + 3}{8}$ (cf. Figure 7-2). The average Li-0 and S-0 bond lengths are 1.963(15)Å and 1.477(2)Å respectively, compared to 1.937(17)Å and 1.473(9)Å for these bonds in Li(N₂H₅)SO₄. The hydroxylammonium ions are not midway between the

sheets but lie in hollows in the surface SO_4 layers (cf. Figure 7-1). The -NH₃ group of the (NH₃OH) ion forms a single hydrogen bond (H(2)) and a bifurcated hydrogen bond (H(1)) to oxygen atoms of the nearest sheet. The -OH group also forms a single hydrogen bond to this sheet. H(3) of the NH₃ group^o forms a single hydrogen bond—in an oxygen atom (O(4)) of the SO₄ tetrahedron pointing out of the next sheet. Details of the hydrogen bonds are given in Table 7-5.

Table 7-4. Bond distances and angles for Li(NH,OH)SO,

SO, tetrahedron	•		
4	(Å)	Sr .	(°)
s - 0(1)	1.478(2)	O(1) - S - O(2)	110.3(1)
S - 0(2)	1.476(2)	0(1) = S - O(3)	108.8(1)
s - 0(3)	1.480(2)	$0(1) = S - 0(4)^{2}$	110.1(1)
S - 0(4)	1.473(2)	0(2) - 5 - 0(3)	108.6(1)
"		-0(2) - S - 0(4)	108.7(1)
		O(3) - S - O(4)	110.2(1)

LiO ₄ tetrahedr	on (8)			(⁰)
Li - 0(1)	1,975(5)	0(1) - Li	- 0(2)	96.4(2)
Li - 0(2)	1.939(6)	0(1) - Li	- 0(3)	104.8(3)
Li - O(3)	1.957(5)	0(1) - Li	- 0(3')	117.2(3)
Li - 0(3')	1.981(5)	0(2) - Li	- 0(3)	113.1(3)
¢		0(2) - Li	- 0(3')	103.5(3)
		0(3) - Li	- 0(3')	119.7(2)

NH ₃ OH ion	.0		•				,°,
	(Ă)					•	116(2)
N - O(5)	1.400(4)	C)(5)	- N	- H(1)		107(2)
N - H(1)	1.06(3))(5)	N	- E(2)		-107(2)
N - H(2)	0.98(4)	ر ب	J(3) 7/1/	- N	- <u>п</u> ()		102 (3)
N - H(3)	0.96(4)	L L	1(L) 1(L)	- N	- H(3)		115 (3)
O(5) - H(4)	1.08(6)	I	H(2)	- N	- H(3)	•	116 (3)
			v - v	0(5)	- H(4)		89 (3)

<р-н. ... А (°) 170 (3) 121 (2) 149 (3) 155 (4) 158 (6) Hydrogen bond lengths and angles of the (NH₂OH) ion 2.799(3) 3.066(4) 2.856(3) 2.820(3) р-д (Å) 1.93(4) 1.62(6) н....А (Å) 1.75(3) 2.38(4) 1.97(4) 1.06(3) р-н (8) Table 7-5. D-H...A H (1)

0.98(4) 0.96(4) 1.08(6) 0(2) 0(4) 0(4) 0(1) H(1) H(2) H(3) H(4)

2.656(3)

106

0 (5)

The O-N distance of the ion is 1.400(4) and the average N-H distance is 1.00(4) and O-H distance is 1.08(6) Å. The O-H bond is staggered with respect to H(1) and H(2) of the -NH₂ group, and the dihedral angles are given in Table 7-6.

The strengths of the bonds formed by the oxygen atoms, calculated from the bond lengths using the method of Brown and Shannon (1973), are given in Table 7-7. Each oxygen atom of the sheet forms one strong bond (1.5 valence units) with a sulphur atom. The equivalence of the Li-O and H...O bonds in terms of their strengths is seen in the way O(1) and O(2) complete threefold coordination by forming one bond to each Li and H while O(3) forms two bonds to Li and, O(4) accepts three rather weak hydrogen bonds. The R.M.S. deviation of the sums of the bond-strengths from the valence is 0.04 valence units.

Plane defined by	Plane defined by	Dih	edral~angle
atoms	atoms	•	(⁰)
0(5) - N - H(1)	O(5) - N - H(2)		-112
O(5) - N - H(1)	O(5) - N - 2H(3)		125
O(5) - N - H(1)	O(5) - N - H(4)		-76

Table 7-6. Dihedral angles of the (NH₃OH) ion

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1) 0.23 1.49 0.25^* 1.97 1) (1.975) (1.476) 0.21^* 1.96 1) 0.25 1.50 0.21^* 1.96 1) 0.24 0.23 1.48 0.11^* 0.17^* 1) 0.24 0.23 1.480 0.21^* 1.95 1) 0.24 0.23 1.480 0.11^* 0.17^* 1.95 1) 0.26 0.21^* 0.17^* 0.17^* 1.96 10 0.95 5.98 0.11^* 0.17^* 0.17^* 1.95 1008 0.95 5.98 0.91^* 0.17^* 0.17^* 1.93 11 1.473 (2.38) (1.97) (1.93) 1.96 11 1.51 0.11^* 0.17^* 0.17^* 1.96 11 1.51 0.11^* 0.17^* 0.17^* 1.96 11 1.51 0.11^* 0.17^* 0.17^* 1.96 11 1.97 (1.97) (1.97) (1.93) 1.96 11 1.78 0.17^* 0.17^* 0.17^* 1.96 11 1.79 0.95 5.98 0.17^* 0.17^* 0.17^* 11 0.95 5.98 0.97^* 0.17^* 0.17^* 0.17^* 11 0.95 5.98 0.96^* 0.17^* 0.17^* 0.17^* 11 0.95 5.98 0.96^* 0.96^* 0.96^* 0.96^* 11 0.96^* 0.96^* 0.96^*	0.23 (1.975) (1.939) (1.939)	1.49 (1.478) (1.476) (1.476) (1.480) (1.480)	0.21* (1.75)	0.25* (1.62)	analons
() 0.25 1.50 0.21^{*} (1.75) (1.939) (1.476) (1.75) (1.75) (1.957) (1.981) (1.480) 1.48 1.48 1.48 (1.957) (1.981) (1.480) 1.51 0.17^{*} 0.17^{*} 0.17^{*} 1.96 1.96 1.51 0.11^{*} 0.17^{*} (1.97) (1.93) (1.93) (1.93) (1.93)	() $\begin{pmatrix} 0.25 \\ (1.939) \\ (1.939) \\ (1.939) \\ (1.939) \\ (1.931) \\ (1.981) \\ (1.981) \\ (1.473) \\ (1.473) \\ (1.473) \\ (2.38) \\ (1.97) \\ (1.97) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.97) \\ (1.97) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.97) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.97) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.95) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.95) \\ (1.93) \\ (1.95)$	(1.939) (1.939)	1.50 (1.476) 1.48 (1.480)	0.21* (1.75)		1.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.48 (1.480)			1.96
() 1.51 0.17 [*] 0.17 [*] 1.96 (1.473) (2.38) (1.97) (1.93) und 0.95 5.98 5.98	1) 1.51 0.11^* 0.17^* 0.17^* 1.96 Ims (1.473) (2.38) (1.97) (1.93) 1.96 Ims 0.95 5.98 (2.38) (1.97) (1.93) 1.96 ind 0.95 5.98 (2.38) $(1.97)^{-1}$ $(1.93)^{-1}$ $(1.93)^{-1}$ ind 0.95 5.98 $(2.38)^{-1}$ $(1.97)^{-1}$ $(1.93)^{-1}$ 1.96 strengths (s) are calculated from the expression $s = (R/R_0)^{-N}$ where R is the bond length and	(1.957) (1.981)		*		1, 95
und 2.98 :ions	interprise 0.95 5.98 c. $(R/R_0)^{-N}$ where R is the bond length and the output the transform $B = (R/R_0)^{-N}$ where R is the bond length and	•	1.51 (1.473)	0.11 0.17 (2.38) (1.97)	0.17 [*] (1.93)	1. 96
	strengths (s) are calculated from the expression $B = (R/R_0)^{-N}$ where R is the bond length and	ada 0.95 D18	8 5 2 2			

CHAPTER VIII

THE CRYSTAL STRUCTURE OF HYDRAZONIUM FLUOROBERYLLATE

This work involves the solution and refinement of the crystal structure of hydrazonium fluoroberyllate, $(N_2H_6)BeF_4$, by X-ray diffraction methods. The compound was first reported and studied by Tédenac et al. (1971) who reported only the lattice parameters and space group. In this work we determined all the atomic positions and were able to determine the hydrogen bonding scheme.

Experimental

Crystals of hydrazonium fluoroberyllate, $(N_2H_6)BeF_4$, were prepared by the action of hydrofluoric acid on a mixture of N_2H_4 . H_2O and Be(OH)₂ in aqueous solution (Tédenac et al., 1971):

 $N_2H_4 H_2O + 4HF + Be(OH)_2 (N_2H_6)BeF_4 + 3H_2O$ (8-1)

The crystals were washed with water and dried by warming under vacuum before sealing in dried quartz capillaries. This was necessary since previous attempts to make measurements on unsealed crystals were unsuccessful as they underwent severe surface decomposition. The space group, $P2_1/c$ (C_{2h}^5), was confirmed from the systematic absences observed on precession photographs. All X-ray diffraction measurements were made at room temperature on the Syntex four-circle diffractometer using MoK α radiation ($\lambda = 0.71069$ Å) monochromated by reflection from a graphite crystal. The lattice parameters (Table 8-1) were refined by a least-squares analysis of the 20 measurements of fifteen reflections (Table 8-2). The intensities of 770 independent reflections with sin $\theta/\lambda < 0.60$ were measured and corrected for Lorentz and polarisation effects. No absorption correction was made, the maximum error in F introduced by its neglect being much less than one per cent.

Solution and Refinement of the Structure

Attempts to solve the structure from a three-dimensional Patterson synthesis failed. Sharpening the Patterson did not reduce the overlapping of peaks sufficiently for a solution to be found, and direct methods had to be used.

The normalised structure factors (cf. equation 2-27) were calculated, and all triple-products of the phase factors were calculated (cf. equation 2-28) for the 100 reflection's with the highest E values. Three reflections ((235), (510) and (252)) were chosen to define the origin, and the phases of eighteen further reflections were assigned from the triple-product relationships where probability of correctness was ≥ 0.98 . These eighteen phases were then checked against a larger group of 73 products, and no discrepancies were

Table 8-1. Crystallographic Data f	Eor (N ₂ H ₆)BeF ₄
Crystal system	Monoclinic
Space group	$P2_{1}/c$ (C_{2h}^{5})
<u>a</u> (Å)	5.568 (2)
<u>ь</u> (Å)	7.305(2)
<u>c</u> (Å)	9.910(4)
β(⁰)	98.25(3)
Z	4
Cell volume (A ³)	398.9(2)
$_{\circ}^{\rm D}_{\rm calc} (g/cm^3)$	1.983
Absorption coefficient for MoKa (mm ⁻¹)	0.28
Crystal size (mm)	$0.1 \times 0.1 \times 0.15$
Wavelength MoKa (Å)	0.71069
Systematic absences	$\gamma h0\ell \ell = 2n+1$ 0k0 k = 2n+1

Table 8-2.	Reflections u	used in the l	least_şqu	ares rei	Einement
	of the lattice	parameters	of (N2H6) BeF ₄	
Reflection h k l		^{2θ} obs (°)		²⁰ calc (⁰)	•
0 2 0		11.17		11.17	
. 1. 2. 1		14.35		14.35	
0 2 - 3		16.77		16.79	
-2 1 1		15.84	· · · · ·	15.84	
2 1 -1		15.83		15.83	• a
0 0 -4		16.68		16.67	•
-1 3 1		18.57		18.59	
-1 2 -1		14.34	1 7	14.36	
-2 1 -2		18.90		18.90	
-1 0 -2		11.92		11.90	
-1 0 2		10.31		10.31	
131		19.06		19.06	· · · · ·
0 3 -1		17.29		17.30	
2 1 2		18.89		18.89	•
-1 0 -4		19.21		19.21	с. ⁵ .
			• •		
found. This process was repeated, and 69 more phases were determined. The programmes used were NORMSF, SINGEN and PHASE of the XRAY 71 programme library system.

A three-dimensional electron density synthesis using these 90 phased reflections was made, and all non-hydrogen atoms were located. After a least-squares refinement of the positional and anisotropic thermal parameters of these atoms, using the programme CRYLSQ, all hydrogen atoms were located from difference electron density maps. In the refinement of the hydrogen atom temperature factors two of them, H(5) and H(6), refined to negative values; these were reset to typical values (0.025) and not refined further. Further refinement led to a residual index, R (cf. equation 2-31), of 0.044. There was no apparent extinction, and a final refinement gave a weighted residual index, R_W (cf. equation 2-32), of 0.043 where the weights, w, were given by:

$$w = (1.14 - 0.073 |F_0| + 0.0014 |F_0|^2)^{-1}$$
. (8-2)

Final atomic positions and temperature factors are given in Table 8-3, and the table of observed and calculated structure factors is given in Appendix A.

Description of the Structure

Views of the structure projected down the <u>a</u> and <u>b</u> directions are given in Figures 8-1 and 8-2.

Atom	Posit	ional coordinates	1 4 		Temp	erature	factors	÷	
	*	7	N	U or U _{ll}	U22	U ₃₃	U12	U ₁₃	U23
Be	0.7545(11)	0.2993(8) 0.06	634 (6)	16(3)	1 9 (3)	Ĩ18 (3)	2 (3)	5 (2)	2 (3)
F(1)	0.5276(4)	0.1835(4) 0.08	835 (3)	25(1)	27(2)	25 (2)	-9(1)	4 (T)	-1(1)
F (2)	-0.0182(5)	0.1752(4) 0.05	943 (3)	31(2)	23 (2)	21(1)	8 (1)	3 (1)	2(1)
F (3)	0.7825(5)	0.4541(3) 0.17	701(3)	29(1)	17(1)	29 (2)	1(1)	(1)0	-3(1)
F(4)	0.7247 (5)	0.1372(4) 0.41	137 (3)	27(1)	34 (2)	23(1)	1(1)	2(1)	-7(1)
N (1)	0.3593(9)	0.3602(7) 0.25	982 (5)	26(2)	32 (3)	29 (3)	7 (2)	12 (2)	10(2)
N (2)	0.1510(8)	0.3097(7) 0.35	566 (5)	21(2)	25(2)	(2) (30, (2)	3 (2)	8 (2)	8 (2)
H(1)	0.419(11)	0.483(10) 0.3	30 (7)	24(19)	•	•			•
H(2)	0.486(11)	0.300(8) 0.3	24 (6)	13 (16)				-	•
Н(3)	0.294(11)	0.374 (9) 0.2(06(7)	28(18)			•		•
H(4)	0.032(11)	0.360(9) 0.3.	15(6)	17 (18)				•	
H (5)	0.142(11)	0.187(10) 0.3	50(7)	25†		<i>ل</i> ر د.			
Н (6)	(11) 611.0	0.332(9) 0.4	43.(7)	25†	•	· · · · ·		4 - - -	
* Expre	ssions used f	for the temperature	factor	s are:				••	
exp	, [-2# ² × 10 ⁻³	³ (U, h ² a* ² + U ₂ k ²)	b* ² + U	33 ^{k²c+²}	- 20 ₁₂ hka	a*b* + 21	13h&a*c*	+ 2U ₂₃ }	[(*o*d%)]
	L			-	• • •	-	•	•	

 $\exp \left[-2\pi^2 \times 10^{-3} \mathrm{U}\right]$ +Not refined.

sin

and

Figure 8-1.

The crystal structure of $(N_2H_6)BeF_4$ viewed along the <u>a</u> direction.

Figure 8-2.

The crystal structure of $(N_2H_6)BeF_4$ viewed along the <u>b</u>

direction.

The crystal_contains nearly regular BeF, 2tetrahedra and $N_2 H_6^{2+}$ ions held together by a three-dimensional system of hydrogen bonds. Table 8-4 gives the bond lengths and angles, and Table 8-5 gives details of the hydrogen bonds. The -N(1)H, group of the hydrazonium ion forms two strong single hydrogen bonds (H(1) and H(2)) and a weak trifurcated hydrogen bond (H(3)). The five fluorine atoms which are the acceptors of these bonds are all on different tetrahedra. The -N(2)H, group forms two strong single hydrogen bonds (H(4) and H(5)) and one bifurcated hydrogen bond (H(6)). These bonds are also to fluorine atoms on different tetrahedra. Thus, three fluorine atoms (F(2), F(3) and F(4)) are involved in two hydrogen bonds and one bond to Be (Average Be-F = 1.544(5)^A) and one (F(1)) in three hydrogen bonds and a rather longer bond to Be $(Be-F(1) = 1.557(8)^{\circ}A)$. The overall average Be-F bond length is 1.547(7) & compared to 1.546(13) & for the Be-F bonds in Li (N₂H₅) BeF₄.

The $N_2H_6^{2+}$ ion has a staggered configuration; the dihedral angles are give in Table 8-6. The N-N distance is 1.417(16)Å, and the average N-H distance is 0.89(6)Å.

Bond distances and angles for (N₂H₆)BeF Table 8-4.

119

BeF ₄ tetrahed	ron je statistica i statistica je statistica i se		
	(Å)		. (°)
Be - F(1)	1.557(8)	F(1) - Be - F(2)	108.1(4)
Be - F(2)	1.552(10)	F(1) - Be - F(3)	108.4(4)
Be – F(3)	1.540(7)	F(1) - Be - F(4)	108.0(4)
Be - F(4)	1.540(8)	F(2) - Be - F(3)	107.1(4)
-		F(2) - Be - F(4)	109.8(4)
••••••••••••••••••••••••••••••••••••••	. a	F(3) - Be - F(4)	115.3(4)

N'H	ion	
z n	1. A.	

	(Å)			(°)
N(1) - N(2)	1.417(16)	N(2) -	N(1) - H(1)	111 (4)
N(1) - H(1)	1.00(7)	N(2) -	N(1) - H(2)	116 (4)
N(1) - H(2)	0.84(6)	N(2) -	N(1) - H(3)	102(4)
N(1) - H(3)	0.94(7)	H(1) -	N(1) - H(2)	98 (5)
		́н(1) –	N(1) - H(3)	· \$Q6 (5)
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	H(2) -	N(1) - H(3)	123 (6)

N(2) - H(4)0.81(6) N(1) - N(2) - H(4)109 (5) N(2) - H(5) 0.90(7) N(1) - N(2) - H(5)106(4) 108(4) N(1) - N(2) - H(6) N(2) - H(6) 0.86(7) 112(6) H(4) - N(2) - H(5)H(4) - N(2) - H(6)116 (5) 105(6) H(5) - N(2) - H(6)

0	n an s An an an S A			
	<р-на	165(6) 165(6) 106(5) 122(5)	164(6) 164(6) 163(6) 135(6)	12ó
1e (N ₂ H ₆) ion	р-а (Å)	2.67(1) 2.73(3) 2.77(2) 3.02(4)	2.77(4) 2.64(1) 2.66(3) 2.66(3)	
and angles of th	на (8)	1.70(7) 1.91(6) 2.35(7) 2.41(7)	$\left\{\begin{array}{c} 1.97(7) \\ 1.77(7) \\ 1.77(7) \\ 2.23(7) \\ 1.98(8) \end{array}\right\}$	
bond lengths	D-н (Å)	1 (00 (7) 0 (84 (6) 0.94 (7)	0.81(6) 0.90(7) 0.86(7)	
-5. Hydrogen		F (1) F (2) F (2) F (2)	F (4) F (3) F (2) F (2)	
Table 8	р-нА	H(1) H(2) H(3) H(3)	H(3) H(4) H(5) H(6) H(6)	5
		(1) N (1) N (1) N	N (1) N (2) N (2) N (2)	

	Tant	<u>e o-o.</u>	Diffediat	angre	3 01 UI		• .
· · · · ·			k	• • •		2	
Plane	defin	ed by	Plane	defin	ed by	Dihedral	angle
•***	atoms	· · · · ·		atoms		(⁰)	
N(1)	N(2)	H(1)	N(1)	N(2)	H(2)	-112	•
N(1)	N(2)	H(1)	N(1)	N(2)	H(3)	113	•
N(1)	N(2)	H(1)	N(1)	N(2)	H(5)	201	
N(1)	N(2)	H(4)	N-(1)	N(2)	H(5)	. 121	
N(1)	N(2)	H(4)	N(1)	N(2)	Н(б)	-127	

a

CHAPTER, IX

ON THE CRYSTAL STRUCTURES OF Li (N2H5) SO4 AND Li (N2H5) BeF4

 $\text{Li}(N_2H_5)SO_4$ and $\text{Li}(N_2H_5)BeF_4$ are isostructural, both having the space group Pna2. This is a distortion of the six-membered ring tridymite-derivative structure which has the ideal space group Icmm (cf. Figure 1-1). The configuration of the six-membered rings can easily be seen in Figures 5-1 To obtain a measure of the distortion of the ring, and 6-1. it is necessary to compare the angle subtended at the anion by the lithium and beryllium or sulphur atoms with the similar compounds of $LiCsBeF_4$, $Li(NH_4)BeF_4$, $Li(NH_4)SO_4$ and those expected in the ideal space group (Table 9-1). The bridging angles at X(1), X(3) and X(4) (X = 0 or F) are those within the ring and are all in the ranges 125-133°, 140-153° and 125-133° compared with the respective ideal values of 140°, 180° and 140° . The bridging angles at X(2), which is the bridging anion between the planes of rings, are very low in the hydrazinium compounds at $152.0(3)^{\circ}$ and $146.4(1)^{\circ}$ for $Li(N_2H_5)BeF_4$ and $Li(N_2H_5)SO_4$ respectively. The other compounds are in the range 173-179°, close to the ideal value of 180⁰.

The replacement of the hydrazinium ion with the hydroxylammonium ion in the sulphate produces a radically

	ин ₄ SO ₄	29 (1) 73 (2) 12 (1)	(1)	123
	Lin Li	ਜੋ ਜੋ ਜੋ	7	
	space grou n. Tl (M) T2X, LiNH4 BeF	125(1) 177(1) 140(1)/	126 (1)	
	values in the NH4 or N2H5 i LiCsBeF4	133(1) 179(1) 153(1)	130 (1)	
	<pre>from the ideal r 0 and M = Cs, Li (N2H5) S04 (0)</pre>	131.8(2) 146.4(1) 144.3(2)	134.1(1)	
5	<pre>ingle distortions = Be or S, X = F o Li(N2H5)BeF4 </pre>	129.7(3) 152.0(3) 140.6(5)	132.4(4)	
	Bond a Li, T2 = Icmm	140 180 180	140	
	ble 9-1. T1 = ween	Т2 Т2 Т2	Ċ E	
	<u>Ta</u> gle bet atoms	X (1) X (2) L - X (3)	L X (4)	

•

different structure (cf. Chapter VII). This raises the question that if the distortion is a result of the cation size, why should the structure of Li (NH, OH) SO, not be of the tridymite-derivative form as at first sight the NH₂OH⁺ ion would appear smaller than the $N_2H_5^+$ ion? A possible explanation of this is that by hydrogen bonding the effective radius of the ion is reduced as two atoms which are hydrogen bonded can approach each other more closely than the sum of their ionic radii. The hydrazinium ions are hydrogen bonded into chains which run between the planes of six-membered rings. Each hydrazinium ion, takes part in six hydrogen bonds, five as a donor and one as an acceptor. This sixfold coordination of the hydrazinium ion by its hydrogen bonds reduces its effective size considerably. If we compare this with the hydroxylammonium ions we see that although the -NH3⁺ groups will be equivalent, the four coordinated -NH2 groups of the hydrazinium ion chain are likely to be smaller than the two coordinated hydroxyl groups, even though the ionic radius of nitrogen (1.71 Å) is greater than that of oxygen (1.32 Å).

Table 9-2 shows the space groups, unit cell volume and cation radius for the whole series of compounds. There appears to be an anomaly in the case of the NH_4^+ compounds whose ionic radius would place them with the tridymite-like (P6₃) compounds. This is probably caused by an underestimation of the ionic radius when the ion is highly coordinated and loosely bound; the coordination number of the ion is nine in Li(NH_4) BeF₄ and

Tab	le 9-2. Space groups	, CELL VOLUMES AND CALICII LUILLE LAUL	
	stuffed tetrahedral	framework compounds and Li (NH ₃ OH) SO ₄	
Compound	Space group	Cell volume Cation ionic radius	Idéal space group
		(Å ³) (Å)	•
LiKBeF.	P6,	372.3 1.33 J	
LiKSO.	P6,	395.5	P63/mmc
LirbBer4	P63	407.4	
Lirbso.	P2,/n	420.3	
LI (NH,) BeF,	Pc2,n	411.5	•
L1 (NH,) SO,	Pc2 ₁ n	423.1	
LiCsBer _A	P217n	436.5	Icmn
LICSSOA	Pc2 ₁ n	453.5	
Li (N ₂ H _g) Bei	\mathbf{A} Pna 2_{1}	447.7	:
$L1 (N_2H_5) SO_4$	Pna21	461.6	
L1 (NH,OH) SC	D, Pbca	2×449.1	

eight in Li(NH_4)SO₄ with mean N-F and N-O bond lengths of 3.05 Å and 3.12 Å respectively.

Comparison of X-ray and Neutron Diffraction Results

Before making any comparisons among our results, it is very important to re-examine the differences between X-ray and neutron diffraction and what differences we would expect between crystal structures determined by both methods.

First of all, let us state briefly what we do in a crystal structure determination. We measure a set of structure factors $\{|\underline{F}|\}$, \underline{F} being the Fourier transform of the scattering density contained by a unit cell (cf. equation (2-8)). Then we try to obtain agreement between our measured set and a calculated set, which represents the expected set of values $\{\underline{F}\}$ for a model which is the sum of the contributions for each atom in the cell (cf. equation (2-11)).

It can be seen from equation (2-11) that the model is described in terms of: $f_i(\underline{G})$, the Fourier transform of the scattering density of the atom at rest; $T_i(\underline{G})$, the Fourier transform of the probability density function of the centroid of the scattering density around its mean position; and \underline{r}_i , the set of coordinates describing the mean atomic positions. The fundamental difference between X-ray and neutron diffraction is that in the former it is the atomic electrons which are the scatterers while for the latter the nuclei are the scatterers. Thus in the X-ray case, $f_i(\underline{G})$ (cf. equation (2-14)) is a spherically symmetric function based on the free atom electron wave function; while in the neutron case, $f_i(\underline{G})$ is the Fourier transform of the nuclear scattering density which is taken to be a point scatterer in real space; hence, its Fourier transform in reciprocal space is a constant, b_i . The temperature factor in both cases is either spherically symmetric (isotropic) as in equation (2-10) or, more generally, the centro-symmetric ellipsoidal (anisotropic) probability distribution function given by:

$$\frac{(G)}{i} = \exp\left[-2\pi^{2} (U_{11}h^{2}a^{*2}+U_{22}k^{2}b^{*2}+U_{33}\ell^{2}c^{*2} + 2U_{12}hka^{*}b^{*}+2U_{13}h\ell a^{*}c^{*}+2U_{23}k\ell b^{*}c^{*})\right]$$

where U_{ij} are the components of the symmetric thermal tensor of the ith atom.

It is relevant to ask how well the above representations of the scattering density and temperature factors agree with reality. The spherically symmetric form of the electron scattering density makes no allowance for distortion of the outer valence electrons by bonding effects. This distortion of the electron density into the bonding region will be about 0.5 electrons/ \mathbb{A}^3 compared to a total density of greater than 10^2 electrons/ \mathbb{A}^3 for first row atoms undergoing thermal motion or 10^3 electrons/ \mathbb{A}^3 for these atoms at rest (Lipscomb 1972). Clearly, one would only expect to see any sizeable effect of the bonding electron density on the mean atomic position in the case of hydrogen. In this case, the centroid of the electron density is displaced by 0.1-0.2 Å into the bond as determined from the nuclear positions. With the heavier atoms the effect of bonding electrons on their positional parameters is negligible, although it may show up as a distortion to the true thermal motion of the atoms.

To observe this latter effect, a difference synthesis is computed where $\{\underline{F}_{c}\}$ are calculated using neutron positional and thermal parameters with X-ray form factors, and $\{F_{o}\}$ are the observed X-ray diffraction structure factors. Coppens (1970) has pointed out that this is of use mainly in centro-symmetric structures where there are no changes in phase factors (±1) between F_{X} and F_{N} , but must be used with caution in a non-centro-symmetric structure where a difference in phase angles between F_{X} and F_{N} may exist.

Not only bonding effects but other inadequacies of the free atom form factor will be reflected in the X-ray temperature factors. Typically, one finds that the X-ray diffraction temperature factors will be systematically larger than those determined by neutron diffraction.

We have discussed what the effect will be of inadequacies of the X-ray form factors on the positional parameters and temperature factors where the temperature factors themselves are a harmonic approximation to the true motions of the atoms. This approximation is very good, although corrections are sometimes applied to bond lengths to account for anharmonic thermal motion, and several workers (Dawson, 1970; Willis, 1970; Johnson, 1970) have described the use of anharmonic temperature factors in structure analysis. In this work we have not considered any anharmonic effects.

A Comparison of the Crystal Structure of $\text{Li}(N_2H_5)SO_4$ as Determined by X-ray Diffraction with that of $\text{Li}(N_2D_5)SO_4$ as Determined by Neutron Diffraction (Ross, 1970)

The crystal structure of $Li(N_2H_5)SO_4$ was described in Chapter IV, and the X-ray and neutron diffraction experimental results are given in Chapter V.

As expected, there are no significant shifts in the atomic positions of the heavy atoms. The SO₄ tetrahedron is regular with a mean S-O bond distance of 1.473(9) Å and mean tetrahedral angle of 109.5(5)^o. There is a slight distortion of the LiO₄ tetrahedron which has a mean Li-O bond distance of 1.937(17) Å, the bonds to O(2) being significantly larger than the mean and that to O(4) being shorter (cf. Table 5-4). The bond lengths and angular distortions are similar in both works with a mean tetrahedral angle of 109(5)^o and the greatest angular distortion being that of O(2)-Li-O(3) at 97.8(2)^o. The N-N bond length in the hydrazinium ion is 1.427(3) Å which is typical for this ion.

There is a significant shift in the atomic positions

of the hydrogen atoms; as expected, the effect of bonding electrons has reduced the X-ray N-H bond distance by 0.15 Å compared to the neutron bond distance; these bond distances are 0.87(4) Å and 1.022(4) Å respectively. This can be clearly seen in Figure 9-1 which is a plane of an X-N difference map containing both nitrogen atoms. H(1) is just above the plane, and H(3) below; other atoms are shown in projection. There is a pronounced shift in the electron density into the bonding regions and into the lone pair position at N(1).

130

The heavy atom temperature factors are systematically larger in the X-ray work, an expected result caused by inadequacy of the free atom form factor. This dan be seen (Table 9-3) in the comparison of the R.M.S. displacements on the principal axes of the thermal ellipsoids. Figure 9-2 is the plane of the X-N difference map containing the lithium and sulphur atoms; O(2) is just beneath the plane; as before, the other atoms are shown in projection. Both the lithium and sulphur atoms are at the centre of highly negative regions surrounded by a positive ripple. What is remarkable is that the positive ripple is greatest in the regions of the Li-O and S-O bonds. The oxygen atoms also have a positive ripple, but it is not as large or as well defined as that around lithium and sulphur.

Figure 9-1.

The plane containing the nitrogen atoms of an X-N difference synthesis for $Li(N_2H_5)SO_4$. The interval between contours is .043 electrons/ A^3 . Positive contours indicated as -Negative contours indicated as ------

Zero contour indicated as

<u>Table 9-3</u>	. A comparis	on between the X-	ray and neutron
<u> </u>	t-mean-square	displacements al	.ong the
principal	axes of the t	hermal ellipsoids	in Li (N ₂ H ₅)SO ₄
The X-r	ay results ar the neutron r	e given in the fi esults in the sec	rst line and cond.
Atom	R.M.S.d.	R.M.S.d.	R.M.S.d. (
	axis(1)	axis(2)	axis(3)
	(Å)	(Å)	(Å)
S =	.098	.116	.109
	.062	.105	.093
Li	.127	.146	.142
	.132	.111	.061
N(1)	.142	.200	.183
	.144	.188	\$.172
N (2)	.141	.157	.151 @
	.127	.149	.154
0(1) 🖘 🔍	.104	.173 .170	.151° .141
0(2)3	.107	.191	•• <u>153</u>
	.100	.145	•171
0(3)	.104	.174	.159
	.099	.171	.142
0(4)	.196	.152 ° .	.108 .104

_

Figure 9-2.

The plane containing the lithium and sulphur atoms of an X-N difference synthesis for $\text{Li}(N_2H_5)SO_4$. The interval between contours is .043 electrons/ A^3 .

Positive contours indicated as -

Negative contours indicated as ------

A Comparison of the Crystal Structures of $\text{Li}(N_2H_5)\text{BeF}_4$ Determined by X-ray and Neutron Diffraction

As with the isostructural sulphate, there are no significant shifts in the heavy atom positions. The BeF₄ tetrahedron was regular: mean Be-F distance 1.546(13) Å and mean tetrahedral angle $110(1)^{\circ}$. The LiF₄ tetrahedron showed a similar distortion to that in the LiO₄ tetrahedron, F(2) and F(4) being significantly longer and shorter respectively than the mean Li-F distance of 1.854(20) Å, and the F(2)-Li-F(3) angle being low at 99.6(3)[°] compared to a mean of 109(5)[°] (cf. Table 6-5). The N-N distance was 1.431(5) Å.

The systematic shortening of the N-H bonds by 0.11 Å occurred between the X-ray and neutron mean N-H bond lengths, these being 0.89(4) and 0.98(3) respectively; this again is typical of the 0.1-0.2 Å contraction found by other workers (Hamilton & Ibers, 1968). Figure 9-3 shows that the X-N difference map in the plane of the nitrogen atoms and H(1) has similar features to that of the sulphate. Figure 9-4 shows the corresponding map for a plane containing the lithium and beryllium atoms. Both atoms are in positive regions which are not sharply defined; this is probably caused by anomalously high temperature factors in the neutron diffraction work. There is no systematic difference between the X-ray and neutron temperature factors (Table 9-4); those in the neutron diffraction are thought to be affected by

Figure 9-3.

The plane containing the nitrogen atoms of an X-N difference synthesis for Li $(N_2H_5)BeF_4$. The interval between contours is .045 electrons/A³. Positive contours indicated as _______ Negative contours indicated as _______ Zero contour indicated as ______

Figure 9-4.

The plane containing the lithium and beryllium atoms of an X-N difference synthesis for $\text{Li}(N_2H_5)\text{BeF}_4$. The interval between contours is .045 electrons/ \mathbb{A}^3 . Positive contours indicated as ______ Negative contours indicated as ______ Zero contour indicated as ______

	e X-ray results the neutron	are given in the results in the	e first line and second.
Atom	R.M.S.d.	R.M.S.d.	R.M.S.d.
	axis(l)	axis(2)	axis(3)
	(Å)	(Å)	, (Å)
Be	.142	.133	.113
	.193 .	.133	.120
i	.159 (.181)	.147	.128
1(1)	.198	.184	.147
	.247	.202	.160
1(2)	.178	.161	.148
	.224	.175	.157
' (1)	.192	.157	.'129
	.235	.169	.143
"(2)	.210	.169	.125
	.225	• .155	.113
·	.194	.163	.124
(3)	.196	.172	.136
F(4)	.204	.162	.125

Table 9-4. A comparison between the X-ray and neutro

absorption and anisotropic extinction caused by the large incoherent scattering of the hydrogen atoms.

CHAPTER X

ON THE CONFIGURATION AND HYDROGEN BONDING OF $N_2H_6^{2+}$, $N_2H_5^+$ AND NH_3OH^+ IONS

Very few of the published X-ray structures of hydrazinium and hydrazonium compounds have reported accurate hydrogen positions, and only the compounds $(N_2H_5)HC_2O_4$ (Nilsson, Liminga & Olovsson, 1968), $(N_2H_6)SO_4$ (Jönsson & Hamilton, 1970) and Li $(N_2H_5)SO_4$ have been investigated by neutron diffraction. Location of the hydrogen atoms is essential if the hydrogen bonding is to be described accurately, especially if weak hydrogen bonds are present. This is the situation in the compounds we have studied where the ions tend to form single, bifurcated and trifurcated hydrogen bonds to the abundance of surrounding acceptor ions. Let us first consider the nature of a hydrogen bond.

The Characterisation of a Hydrogen Bond

Pauling (1960) states that as hydrogen has only one stable orbital (1s), it can hence form only one covalent bond. If, however, hydrogen is coordinated in a bonding situation with more than one atom, then the atom to which it is covalently bonded is called the donor atom of a hydrogen bond and the other atoms are called acceptors of the hydrogen

The hydrogen atom forms the strong covalent bond with bond. electronegative atoms; this causes the hydrogen to be acidic, and it forms bonds which are ionic in character to other electronegative atoms. The bond can be described schematically by: $D - H^+ \dots A^-$. This is the type of hydrogen bond that we shall be discussing although there is one other main group of hydrogen bonds, symmetric hydrogen bonds, and two small groups, bridge bonds (boron hydrides) and metal-metal hydrogen bonds. The first row elements, fluorine, oxygen, nitrogen, make good donor atoms, also carbon when the group C-H is positive. Other possible donor elements are chlorine, sulphur and phosphorous. The acceptor must also be electronegative or especially have lone pair electrons, and typical good acceptors are fluorine, oxygen and nitrogen, and even better are F, Cl, Br and I. Sulphur and phosphorous can act as acceptors, but no case of carbon as an acceptor has been reported.

Above, we have set out the chemical characteristics of a hydrogen bond, but an operational definition is more useful to a crystallographer; that is, a strong hydrogen bond is said to exist when the interatomic distance of the donor and acceptor atoms is less than the sum of their van der Waals' radii. Hamilton & Ibers (1968) have pointed out that for weak hydrogen bonds, a better criterion is that the hydrogen-acceptor atom inter-nuclear distance should be less than the sum of their van der Waals' radii. Furthermore, Baur (1972) states that even where no hydrogen-bonding contact is made, the hydrogen atom will tend to be positioned as close as possible to potential hydrogen bond acceptors, and that the hydrogen bond must be viewed in its complete environment: $(M)_n - D - H...A - (X)_m$ where the M - D and the A - X bond lengths will be influenced by the hydrogen bonding. This is exactly how the empirical bond-strength method of Brown & Shannon (1973) detects the effects of hydrogen bonds. In this work, we have assigned hydrogen bonds using the definitions of Hamilton & Ibers and have checked these by bond-strength summation.

Of course, when a bond exists there must be an energy associated with it; hydrogen bonds have formation energies of 2-10 Kcal/mole; thus, spectroscopy could be used to detect hydrogen bonding. The stretching mode frequency of an unbonded O-H group is typically > 3600 cm⁻¹ with a width of 10 cm⁻¹; and on formation of a hydrogen bond, the antisymmetric stretch frequency lowers to $3600-1700 \text{ cm}^{-1}$, the frequency being related to the length of the bond, and its width increases to about 100 cm⁻¹. The bending mode frequency increases on formation of the bond. In the compounds we have investigated, it would be very difficult to resolve individual components of the spectra or to assign any one component to a particular bond.

Neutron diffraction is the best method of determining the position of the hydrogen atoms in a structure and, hence, for studying the geometrical aspects of the hydrogen bonds. The electron density of the hydrogen atom in a structure is about 0.5 electrons/ \mathbb{A}^3 , and so X-ray diffraction is useful only when the compound is composed of reasonably light atoms. This certainly applies to the compounds we have studied, where sulphur was the heaviest atom, and no difficulty was found in locating the hydrogen atom.

The Configuration of the N₂H₆²⁺, N₂H₅⁺ and NH₃OH⁺, Ions

In those hydrazinium and hydrazonium compounds where the hydrogen atoms have been located, the ions have a staggered configuration. Lundgren, Liminga & Olovsson (1968) have calculated the sum of the electrostatic energy and the van der Waals' energy for the rotation of the $-NH_3^+$ group about the N-N axis in Li (N2H5)SO4. This shows that although there is a broad minima at the staggered position, the barrier against rotation into the eclipsed position is only 6 Kcal/mole. If such a small barrier is typical, then it is somewhat surprising that all the $N_2H_5^+$ and $N_2H_6^{2+}$ ions have a staggered configuration. The hydrogen atom of the hydroxyl group in the NH,OH ion is also staggered with respect to the -NH3 group. Figure 10-1 shows Newman projections of these ions; also shown in the diagram are the mean values of the tetrahedral angles of the $-NH_3^+$ groups and that of the $-NH_2^+$ group and the symmetry related H(2') of the hydrogen bonded chain. It is apparent that not only is the staggered

Figure 10-1.

Newman projections of the $N_2H_5^+$, NH_3OH^+ and $N_2H_6^{2+}$ ions. The projections are viewed down the N(1)-N(2) or N-O direction. The mean values of the tetrahedral angle at N(1) or N are given by X and that at N(2) by Y. a) The $N_2H_5^+$ ion in Li(N_2H_5)SO₄ from the X-ray work. b) The $N_2D_5^+$ ion in Li(N_2D_5)SO₄ from the neutron work. c) The $N_2H_5^+$ ion in Li(N_2H_5)BeF₄ from the X-ray work. d) The $N_2H_5^+$ ion in Li(N_2H_5)BeF₄ from the X-ray work. e) The $N_1H_5^+$ ion in Li(N_2H_5)BeF₄ from the neutron work. f) The $N_2H_6^{2+}$ ion in Li(N_2H_6)BeF₄.

configuration almost perfect, but also the tetrahedral geometry of these groups.

Hydrogen atom temperature factors refined from X-ray diffraction measurements are notoriously inaccurate and in some cases cannot be refined (cf. Tables 5-3 and 8-3). Those for neutron diffraction are more easily refined, although the thermal motion of these atoms may be very anharmonic which would lead to an over-estimation of these parameters. The R.M.S. displacements along the principal axes of the thermal ellipsoids for the hydrogen atoms of $Li(N_2H_5)BeF_4$ are given in Table 10-1, and they show that the ellipsoids approximate oblate spheroids with their short axes lying almost along the N-H bonds (Figure 10-2). The hydrogen atoms of the -NH, group have slightly larger temperature factors than those of the -NH, group with their Margest axes approximately in the plane of the hydrogen atoms.

The Hydrogen Bonding of the N₂H₆²⁺, N₂H₅⁺ and NH₃OH⁺ Ions In Chapters V and VII, we have used bond-strength summations to verify the assigned N-H...O hydrogen bonding scheme and have found excellent agreement with the expected ideal values except in the case of O(3) in Li(N₂H₅)SO₄. Using the structural determinations of NH₄F (Adrian & Feil, 1969), HF (Habuda & Gagarinsky, 1971), Li(N₂H₅)BeF₄ and (N₂H₆)BeF₄, bond-strength - bond-length curves were refined for H-F bonds determined by X-ray and neutron diffraction:

the p	rincipal axes c	of the therma	l ellipsoids	of the
	hydrogen atom	ns in Li(N ₂ H ₅)BeF ₄ and th	<u>e</u>
	angles these a	axes make wit	h the cell a	xes
Atom	R.M.S.d.	* Axis- <u>a</u>	Axis-b	Axis- <u>c</u>
	(Å) 0.157	(⁰) - 22.8	(⁰) 73.0	(⁰) 75.4
H(1)	0.284	67.3	131.4	130.2
. د	0.313	88.8	133.8	43.8
	0.330	33.5	124.7	83.2
Н(2)	0.225	121.1	143.4	107.5
	0.157	105.5	100.5	18.8
	0.148	162.9	78.4	102.5
Н(3)	0.390	79.6	100.2	165.4
	0.291	76.5	15.6	97.6
	0.155	53.5	138.4	107.1
H(4)	0.356	- 38.9	51.1°	91.1
•	0.298	101.5	77.5	162.9
	0.075	104.0	101.5	18.2
H(5)	0.226	16.4	101.4	78.4
	0.344	98.5	163.8	103.8
	1 J.			

.

Figure 10-2.

A thermal ellipsoid drawing of the $N_2H_5^+$ ion from the neutron diffraction investigation of Li(N_2H_5) BeF₄. The thermal ellipsoids include 50% probability.

The functional form of the curves was:

$$s = (R/R_0)^{-N}$$

where s is the bond-strength, R is the bond length and R_{n} and N were parameters refined by a least-squares fit of the anion sums using the FORTRAN programme BOST. For the X-ray curve, four structures with a total of 22 H-F bonds were used giving an R.M.S. relative deviation of 8.7% while for the neutron curve, three structures with 13 H-F bonds gave an R.M.S. relative deviation of 7.6%. The parameters Ro and N refined to respective values of 0.74 and 1.59 for the X-ray curve and 0.84 and 2.03 for the neutron curve; both curves are shown in Figure 10-3. Both the X-ray and the neutron curves should coalesce in the region of symmetric F-H-F bonds whose angles are 180°. This provides a useful check as, for such bonds, the bond-strength must be 0.5 valence units. The reported bond lengths for such bonds are 1.13 Å in both KHF₂ (Ibers, 1964) and NaHF₂ (McGaw & Ibers, 1963), and are in close agreement with the values predicted by the bond-strength curve.

Bond-strength summations for Li $(N_2H_5)BeF_4$ and $(N_2H_6)BeF_4$ are given in Tables 10-2, 10-3 and 10-4. For both these structures, the cation sums are very close to their ideal values. The anion sums, however, are not as good; F(3) in Li $(N_2H_5)BeF_4$, like O(3) in the sulphate, shows marked

(10-1)

Figure 10-3:

Bond-strength - bond-length curves for H-F bonds determined by X-ray or neutron diffraction.

•	q	 . ,		and		151
	arour ons	08 11	91	ngth		
, F	ums a anic	л• (d. Je	~	
	anod transference			q	•	
· · · · ·	ғоr 5)	15 40) 20	41)	the	, · · . . · · .	
from	ets) H(90 90	60	ਲ •ਜ ਲ		•
on	rack		, , , , , , , , , , , , , , , , , , ,	ere		
lcula racti	(in b H (4)	0.23		1× ×		
4 cal	м сн			/R ₀).		
)BeF ray (hs i and H(3)	0.21		н- г (R	0.74 1.59	
X X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	engt Be			່ ^າ ຫ ແ	8	
ned b	Did J.Li, L)		16 39) 15 42)	a b b b c c c c c c c c c c c c c c c c	1. 26	
hs in ermin	nd bo F ano H (.		50 90	expr F	/ 8 8 0	
engt det(ts a een		~ ~	the Li-	н. 3.9 2.9	
l-str Igths	, ùni betw Be	. 48 . 557 . 47 . 561	531 532	96.	о щ и	•
Bonô 1 <u>ler</u>	lence *		0 <u>0</u> 0 <u>0</u>	U U U U U U U U U U U U U U U U U U U	г. Г.	ş
0-2-0	n val			cula ·		
- Те 	ie ie ie ie	24 861) 23 886)	25 842) 26 825)	97 cal	an an an Ariana an Ariana An Angalan an Angalan an Angalan Angalan an Angalan an A	
Tab	engt L	0.1.0.1	о <u></u>	0. 20 20		
· · · · · · · · · · · · · · · · · · ·	l-str 			.		
•	Bond	1		ngth ngth		
· · · · · · · · · · · · · · · · · · ·		2)	3)	ums - cound tion stre	4	
e •			<u>्</u> मि मि	Bond - Car S		

able 10-3. Bond-strengths in $\mu_1(N_2H_5)$ Dectared from bond lengths determined by neutron diffraction gths in valence units and bond lengths in \mathbb{R} (in brackets) for between F and ii, Be and H. H(4) H(5) 1.917) H(4) H(5) (1.81) H(5) (1.81) 0.21 1.917) 0.42 0.47 (1.563) 0.20 0.20 (1.563) 0.20 0.21 (1.87) 0.12 0.16 (1.81) 0.12 0.16 (1.81) 0.22 1.937) 0.47 0.47 0.56 (1.563) 0.14 (1.81) 0.12 0.16 (1.81) 0.12 0.16 (1.81) 0.23 1.937) 0.50 0.14 0.12 (1.533) 0.20 0.14 0.21 0.16 (1.81) 0.12 0.16 0.32 1.730) 0.50 0.12 0.14 (1.581) 0.21 0.21 (1.583) 0.12 0.14 0.12 0.16 0.99 1.93 1.93 0.1288 0.24 0.20 0.12 (1.588) 0.12 0.24 0.99 1.93 1.93 0.1288 0.20 0.20 0.24 0.20 0.12 0.24	Table 10-3. Bond-strengths in walking determined by neutron diffraction Bond-strengths in A (in brackets) for between F and Li, Be and H. H(4) H(5) Li Be H(1) H(3) H(4) H(5) Li Be H(1) H(3) H(4) H(5) Li Be H(1) H(3) H(4) H(5) Li Be H(1) H(3) H(4) H(5) (1.917) (1.614) 0.20 0.21 0.12 (1.241) (1.997) 0.21 (1.614) 0.21 (1.614) 0.21 (1.997) 0.21 (1.863) 0.42 (1.614) 0.21 (1.997) 0.21 (1.87) 0.21 (2.43) (1.993) 0.14 0.225 (1.631) (2.43) (1.730) 0.14 0.225 (2.24) 0.12 (1.730) 0.13 (1.730) (1.537) 0.225 0.24 0.99 1.91 0.99 1.91 0.12 0.12 0.99 1.91 0.14 0.12 0.12 0.14		bonds	Sums around anions	0.94	1.06	0.88	1.11	•	bond length and	•	152	•
able 10-3. Bond-strengths in $Li(N_2H_5)BeF_4$ calcula bond lengths determined by neutron diffract bond lengths in R (in b Li between F and Li, Be and H. H(4) Li $M(1)$ Li $M(2)$ Doil 1.614 0.21 0.47 1.917 (1.614) 0.22 0.47 1.917 (1.614) 0.22 0.20 1.917 (1.614) 0.22 0.47 1.917 (1.614) 0.22 (1.614) 0.23 (1.614) 0.24 0.20 1.897 0.21 0.24 0.20 1.863 (1.614) 0.24 0.14 0.24 0.14 0.24 0.14 0.25 (1.537) 0.54 0.14 0.53 (1.538) 0.99 1.93 0.99 1.93 0.90 2.03 0.90 2.03 0.90 2.03	Table 10-3. Bond-Strengths in Li(x_2H_5) BeF ₄ calcula bond lengths in Li(x_2H_5) BeF ₄ calcula bond lengths in & (in b between F and Li, Be and H. Li Li x_1 $Be ween F$ and Li, Be and H. $H(4)$ Li x_2 $Be ween F$ and Li, Be and H. $H(4)$ $H(4)$ Li x_2 $Be ween F$ and Li, Be and H. $H(4)$ $D(21)$ 0.47 $Be were F$ and Li, Be and H. $H(4)$ $D(21)$ $D(21)$ $D(20)$ $D(20)$ $D(22)$ $D(21)$ $D(20)$ $D(21)$ $D(23)$ $D(23)$ $D(24)$ $D(21)$ $D(23)$ $D(23)$ $D(24)$ $D(21)$ $D(23)$ $D(23)$ $D(24)$ $D(21)$ $D(23)$ $D(24)$ $D(24)$ $D(21)$ $D(23)$ $D(23)$ $D(24)$ $D(21)$ $D(23)$ $D(23)$ $D(24)$ $D(20)$ $D(23)$ $D(23)$ $D(24)$ $D(24)$ $D(23)$ $D(24)$ $D(24)$ $D(24)$ $D(23)$ $D(23)$ $D(24)$ <	ted from	rackets) for	H (5)	0.12 (2.41)	0.16 (2.07)	•	0.12 (2.43)	ð	re R is the	- 2		
able 10-3. Bond-strengths in L1 (N ₂ H ₅) bond lengths determined by neu gths in valence units and bond length Li between F and L1, Be Li N 0.21 0.42 1.917 (1.614) 0.22 0.47 1.917 (1.614) 0.22 0.47 1.937 0.50 1.917 0.534 0.24 0.14 1.537 (2.24) 0.32 0.54 0.99 1.93 0.99 1.93 0.99 1.93 0.99 1.93 0.99 1.93 0.99 1.93 0.99 1.93 0.99 1.93 0.90 3.90 N 3.90	Table 10-3. Bond strengths in Li(N ₂ H ₅ bond lengths determined by neu Bond-strengths in valence units and bond lengt Li Li Be hetween F and Li, Be (1.917) (1.614) (11) H (1.917) (1.614) (11) $(1)(1.917)$ (1.563) (1.54) $(2.24)(1.863)$ (1.553) (1.553) $(2.24)(1.863)$ (1.553) (1.537) $(2.24)(1.863)$ (1.508) $(2.24)(1.93)$ (2.25) $(1.508)(2.25)$ (1.508) $(2.25)msngths (s) are calculated from the expression sN$ 3.90 3.90) BeF ₄ calcula tron diffract	hs in Å (in b and H.	(3) H(4)	.20 .87)	0.21				(R/R ₀) ^{-N} whe H-F	0.84 2.03		
able 10-3. Bond lengths deter bond lengths deter gths in valence units an Li between F Li Be 0.21 0.47 1.917 (1.614) 0.22 0.47 1.917 (1.537) 1.917 0.42 1.917 0.47 1.917 0.47 0.22 0.47 1.917 0.47 1.917 0.47 1.917 0.47 1.918 0.47 1.917 0.50 1.93 0.50 1.93 0.54 0.99 1.93 0.99 1.93 0.99 1.28 N 3.90	Table 10-3. Bond-strength bond lengths deter bond-strengths in valence units an Li between F Li 0.47 (1.917) (1.614) 0.22 0.47 (1.897) (1.563) (1.863) (1.563) 0.32 0.50 (1.508) (1.508) ab 0.53 (1.730) (1.508) ab 0.54 ns 0.53 ns 0.50 ns 0.53 ns 0.54 ns 0.53 ns 0.54 <	s in Li (N ₂ H ₅) mined by neut	d bond length and Li, Be a	н (1) н	0 (1)		0.14 (2.24)	0.14 (2,25)		pression s = BerF	3.90 3.90		
able 10-3. B bond 1	Table 10-3. B Dond 1 Bond-strengths in vale bond 1 Li Li 1.917 0.22 (1.917) 0.22 (1.863) 0.24 (1.863) 0.22 ns 0.32 ns 0.99 ns 0.99	ond-strength ergths deter	nce units an between F	Be	P (1.614)	0.47 (1.563)	0.50 (1.537)	0.54 (1.508)	1.93	l from the ex L1-F	KO 1.28 N 3.90		
	Bond-stren dd (s) ar	<u>able 10-3. B</u> <u>bond 1</u>	gths in vale	ŗı	0.21 1.917)	0.22 1.897)	0.24 1.863)	0.32 1.730)	66.0	e calculated			

						,N		ŋ			-		•	
	•	° I		•		Ø - 1		u au			•	•	153	. •
		nđ						'ngtl					• •	1
	ູ ຜູ້	rou ns		<u>0</u>	9.	6	ar T	н П						, ,
	puoc	anic anic	ਹ । ਜ · (0	0	•	pond	· · ·		. v.		•	•
•	он Г	in s	· ·	-				the	•	· · ·			4	• •
<i>~</i>	ч Сп		3)	н 18			6	+ 8 7					•	
	kets ,	Н (6)	51	0.Z	<u>.</u>		•	<u>с</u>	-	A		, I , -	•••	
	or ac	•			•		e Alta e	here	•		•			
•	Ln h	2) 2			25		، پېرمە بېر	3 Z					•	. 11
· .	<u>х (1</u> 2011)) Н			0.1			во 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• •			
	H. ¹ H.	· - ·			<u> </u>		· · · ·	(R/			,	• •		•
	in Jths Ind	(Ý)			1.97		5 	ອ ຊີ້	4 4	5°.			į.	, f
'n	ths Leng Be	••••			ے ۔ ر		2	uo	цо 	н	\$	• • •	4	,
· ·	ond ond		16 35)	1)		17 25)	45	0 0 1 0	288 288	06			57	•
	d b c) H	0.	0.2	•	50		Jdx	а н	m.			•	
	Jond an			· · ·	· · ·		- 2	he	۰c	>	•			
	4. E bots	(2)				.22	•	ц Ц	ب	Z			ала 19	and a start of the
	10- 10-	H				٥Ç		0 위 위	4 13					a
•	ble lenc	~	۲ 0)			· · ·	ted						0
	Ta <	н (1	0.2	1-	•	1		cula	· · · ·		•		с.	
	9 1 1	· · · ·		<u>.</u>				cal			Q	· · · · · · · · · · · · · · · · · · ·	•	З с ,
	ig th		8 57)	52)	50) 540)	50 540)	96	аке		· · ·			<u> </u>	•
	trer	Å.	(1.5 (1.5	0.4	<u></u>	<u></u>		a		•		•	•	
ę.	8 1 10				<u> </u>	•) 9		•	er j			•
د ۰	A Bon	. 5.		~	~	~	ms und ions	ngt]					-C	
		 -	E (1	F (2	F (3	F (4	su aro cat	atre 3tre	•		- "i e		•	
		•		-				nd -		- Y.			•	
-					•	5,		A A A A A A A A A A A A A A A A A A A	(,	N				ана 1 1 1

deficiency for sums made with both the X-ray parameters and with the neutron parameters; and the sum at F(2) in $(N_2H_6)BeF_4$ is low. In the case of hydrogen bonds, two factors will greatly influence the accuracy of the bond-strength sums. First of all, we do not consider contributions from very weak bonds (van der Waals' contacts) where the indicated bond-strength for an H-F bond would be about 0.12-0.14 valence units; and secondly, the positional parameters of the hydrogen atoms are not as accurately known as those of the heavy atoms and, hence, the estimated error in the H-F bond lengths used in calculating the bond-strengths will be large. Although it can be argued that the predictive nature of the bond-strength summation method is not conclusive, the ability to account for bifurcated and trifurcated bonds makes it very useful.

In the type of structure we have investigated, any hydrogen positions based solely on the N-O or N-F contact distances would be incorrect as the fixed internal geometries of the hydrogen bonded cations make linear-hydrogen bonding impossible. There is no correlation of predictive value between the D-A distance and the hydrogen bond angle (Figure 10-4); however, there is a strong correlation between the H....A distance and the hydrogen bond angle for both H....F and H....O bonds (Figure 10-5). The range of hydrogen bond angles are from 106° to 172° for the N-H....F bonds and from 113° to 170° for the N-H....O

Figure 10-4.

A diagram showing the correlation between the hydrogen bond angle and the donor-acceptor distance. Li $(N_2H_5)BeF_4 + \bigcirc$ $(N_2H_6)BeF_4 + \bigcirc$ Li $(NH_3OH)SO_4 + \bigtriangleup$ Bifurcated bonds indicated by " Trifurcated bonds indicated by " N-H....N bonds indicated by § • O-H....O bond indicated by † All bonds are those determined by X-ray diffraction.

Figure 10-5.

A diagram showing the correlation between the hydrogen bond angle and the hydrogen-acceptor distance.

Li (N_2H_5) BeF₄ + (N_2H_6) BeF₄ + Li (NH_3OH) SO₄ + Li (N_2H_5) SO₄ + Bifurcated bonds indicated by. Trifurcated bonds indicated by - N-H....N bonds indicated by O-H....0 bond indicated by †

All bonds are those determined by X-ray diffraction.

bonds. With the exception of the N(1)-H(1)...Q(4) bond in Li $(N_2H_5)SO_4$, all the single hydrogen bonds had bond angles > 148°, and the bifurcated and trifurcated bonds with three exceptions were < 148°. There is a slight tendency for the neutron diffraction results to give a smaller angle; this is caused by the longer N-H distances. The hydrogen bond angles in Di $(NH_3OH)SO_4$ were consistently lower than those of the X-ray determination of Li $(N_2H_5)SO_4$ because of the anomalously long N-H and O-H distances in the former compound at 1.00(4). A and 1.08(6) A respectively. It is also of note that while all the N-N-H and O-N-H angles were close to the tetrahedral value of 109.5°, the N-O-H angle in Li $(NH_3OH)SO_4$ is quite low at 89(3)°.

CHAPTER XI

Although we have demonstrated that $\text{Li}(N_2H_5)SO_4$ is not a ferroelectric, it does have the very interesting property of an anisotropic electrical conductivity. The conductivity is highest in the <u>c</u> direction and is caused by proton transfer along the chains of hydrogen bonded hydrazinium ions. The same type of chain (cf. Figure 1-2a) is found in the isostructural compound Li(N_2H_5)BeF₄ and would indicate that similar electrical properties should exist in this compound.

The substitution of the monovalent cation NH_3OH^+ , for M in the LiMSO₄ series of framework structures produces a totally different type of structure. The size and shape of this cation are such that the framework type of structure is impossible; it should be pointed out that the oxygen atom, of an O-H group is not always a good acceptor of hydrogen bonds, and the possibility of hydrogen bonded chains of NH_3OH^+ ions was unlikely. The hydrogen positions in Li(NH_3OH)SO₄ were easily located in the X-ray work, as they were for the other compounds investigated by this method. It would appear that all hydrogen atoms can be located by X-ray methods when there are no very heavy atoms present, provided that a diffractometer is used and that sufficient care is taken in

the collection and correction of the measurements. Neutron diffraction will, of course, provide more accurate positions and temperature factors of the hydrogen atoms and will locate hydrogen atoms in a heavy atom environment.

The hydrogen bonding arrangements of the compounds were fully investigated and showed that single, bifurcated and trifurcated bonds existed. The hydrogen bonding did not appear to distort the almost perfect tetrahedral geometry of the $-NH_3^+$ and $-NH_2...H'$ groups or appreciably affect the staggered configuration of the $N_2H_5^+$ and $N_2H_6^{2+}$ ions.

Comparison of the X-ray and neutron diffraction structures of Li $(N_2H_5)SO_4$ and Li $(N_2H_5)BeF_4$ clearly showed the effects of both bonding electrons and of the problem of using the free atom atomic form factors for bonded atoms. The effect of systematically larger X-ray temperature factors of the heavy atoms was observed for the sulphate but not for the fluoroberyllate. Problems in the refinement of this structure, especially extinction, are thought to be caused by an underestimation of the absorption. High absorption could be caused by the large incoherent cross-section of the hydrogen atoms which are a high atomic percentage of this crystal. This would not only introduce absorption problems, but also the problem of anisotropic extinction. Such problems would not occur in $Li(N_2D_5)SO_4$ as deuterium has a negligible incoherent scattering cross-section. Although this problem has been noted by other workers, no satisfactory solution has been proposed; and (we would suggest that for neutron diffraction investigations of structures, deuterated crystals should always be used when there is a high atomic percentage of hydrogen present.

APPENDIX A

TABLES OF OBSERVED AND CALCULATED STRUCTURE

FACTORS AND CALCULATED PHASES

Table A-1.

 \mathcal{P}_{-}

Observed and calculated structure factors and calculated phases for the X-ray measurements on $Li(N_2H_5)SO_4$

 \hat{a}

Table A-2.

Observed and calculated structure factors and calculated phases for the X-ray measurements on $Li(N_2H_5)BeF_4$

Observed and calculated structure

factors and calculated phases for

Table A-3.

Table A-4.

Observed and calculated structure factors and calculated phases for the X-ray measurements on Li(NH₃OH)SO₄

the neutron measurements on Li (N2H5) BeF4

Table A-5.

Observed and calculated structure factors and calculated phases for the X-ray measurements on $(N_2H_6)BeF_4$

For the non-centro-symmetric structure (Tables A-1, A-2, A-3), the phase factor (α) is given in (α) is given in (Tables A-4, A-5), the centro-symmetric structures (Tables A-4, A-5), the phase factor (±1) is indicated by the sign of the calculated structure factor.

Reflections where $F_0 < 3\sigma_{FO}$ are regarded as unobserved@and are marked with an asterisk.

161

^E (Table A-3. If the integrated intensity of a reflection was negative, it was regarded as extinct, and the reflection was marked with an E.

		Table	A-1.	Observ	ed and	calcul	ated s	tructur	e ,	Ð	
		f	actors	and ca	lculate	ed phas	es for	the		162	, ,
-	•	-	X-ray	measure	ments c	on Li(N	<u>12^H5) SO</u>	4	_		
h	F _o	KF _C	a	h		KF _C	a	h	P _o	KF _c	α,
- ,	H,0,	0	can.	9	4122	122	.5ນ [12	7,9	79	0
4	213	204	500 0	9 1 B	52	25 83 115	500 8°	-	H, 9	90 	: 0
15.	116 114	114	500 500	11 12	163	162	500 500	23	172 213	175	500 500
$\frac{12}{14}$	165 47#	_47	Ŭ Ŭ	13	14*	18	500	4 5 6	117 73 56	119 73 48	9 0 0
·	Н,1,	0			Н,5	,0		78	107	52	500
12	271	245	0 5 ù 0	1 2	118 306	114 311	500	9 10	79 45*	77	50) 0
5~ 4 5	617 433	513 400 781	0 0 0	5 4 5	127	132	ь 500 560	11	44* U 1	. 41 n n	· 0 ·
5 6 7	84 109	77 110	500		65 43	64 39	500	· ~ ·	160	163	san
8 9	155	155 152	500 500	* 3 9	267	275	C D	23	84	7 82	500 500
1Ú 11	53	59+ 85	500	10	123	128	500	4 5	15 * 151	7 155	500
13	δ3 1.71	· 20 33	0 500	13	96	- 4 8	500	7	133	136	500 500
15 ·	29*	29	500	•	Н,6	, 3		9 10	-68 45∓	68 47	ร์บัง
	· H,2,	. U	500	1	356	362 · 63	0	.e		1,9	
1.	130 1466 154	435	500 500 500	5 4 5	57 315	65 819	500 500	1 2	73	76 75	500 500
3 4	32 134	138	5u0 500	67	92 193	92 191	Ŭ J	3	59 118	57 117	0
5	321 232	324	0	B (1)	17* 71	10 73	Ŭ	5	12*	52	0
8	240 98 58	238	500 500 500	16- 11	45': 138 25 7	43	500	3	166 66	67	500
10	101 173	1J1 171	ັນ 0	13	83	84	ŏ		. H.1	2,0	
12 13	25₹ 53 -	22	500 500		H,7	• 0		1 2	19 * 22 *	13	500
14	38 *	39	500	12	321 248	327 252		5 4 E	56 148 257	~ 54 ~ 149 18	ับ ฏ ธอก
. 1	л, э, 241	228	500	ン 4 5	115 223 173	225 183	500	67	88 22*		500
- 2 - 3	443 32	432 7	5čč		- 56 94	- 61 - 95	Õ		H.1	3,0'	. 0
45	25* 124	23 1 <u>1</u> 4	500 500	8.9	85 80	83 81	580	1	32*	31	500 4
30 .7 8.	338	345	500 500	10 11 12	48 12 4 444	43	500 500	2 = 3 4	- 57 + - 35	55 86	580
9 10	75	76	0	. 	Н.	,0			H,0	,1	
411 12	42 13#	40	500 560	1	18*	3	0	(2	493	506	996
18 14 	140 44¥	139	500 500	- 2 3	241 11₹	253	500 500	2 5 8	107 185 -	200 99 - 1 7 5	915 42
•Si	H,4	, 0`	0	5	00 4* 165	3 165	0	10	-84 162	82 151	116 967
1 2	54 158	61 152	0 500	7 8	0* 37+	2 35	500 500	14	142	143	972
3	226	230 238	Ō	9	109	105 101	500 500				

7678901123 10112314	12345	12 13 14	567 89 10 11	J 1234	$\overline{1}\overline{3}$ 14	23456789 10112	1	d 9 10 11 12 13 14	01234567	•	h	
284 16* 296 22* 97 22* 59 27* 146	H,4, 93 237 80 295 63	110 98 35₹	243 211 141 118 181 149 114	H,3, 333 277 250 152 340	180 50+	207 232 179 268 130 336 49 188 53 53 33*	H,2,	157 122 87 49 153 71 42	360 326 356 107 130 291 195	Н,1,	F ₀	
281 288 298 298 298 298 297 269 29 299 146	1 239 82 290	109 97 35	246 208 140 116 185 147 112	1 271 248 147 338	175	203 230 175 1266 337 1855 32 32 268 337 1855 32	1 577	167 125 86 150 49 150 41	335772723 12293 1293	1	kf _e	
1913 813 9655 9069 786 957 859 978	937 154 140 157	919 977 962	18 14 79 63 936 969 962	179 191 770 854 961	974 919	20 137 948 1000 970 46 134 134 150 911	10	914 990 951 959 939 939 955	8 1000 994 6 780 36 48 1	۹.	α	
9 10 11 12 0	5 6 7 8	1 2	7 8 9 10 11 12	8-12 3 4 5 G		3 4 5 6 7 8 9 10 11 12 13	12	8 9 10 11 12 13	0 1 2 3 4 5 5 7		- h	<u></u>
52 11* 69 H,9 288 104 33*	61 230 79 38* 73 173	H+8 30* 257	155 48 49 109 130 64	145 313 184 69 99 160 74	н,7	253 109 118 75 209 124 95 32 89 124	H,6 131 154	21* 152 80 127 103 17*	337 253 256 197 80 51 290 131	н. Н.,5	F _o	
51 51 13 67 13 67 106 32	60 238 77 36 70 171	29 261	157 50 50 109 134 68	145 324 190 62 97 156 73	·,1	255 108 121 77 211 126 34 18 88 125	124 151	19 134 81 126 104 13	342 257 191 86 293 133	, 1	kf _c	
974 973 974 974 808	887 979 873 209 56 28	176 990	969 212 112 953 32 978	30 353 152 40 9 131		32 807 29 847 989 930 244 800 902 979	18 902	103 900 21 950 956 17	29 1533 921 922 188 977 124	, ,	α	-
1 23 45 6 7	4 6 10 12 14	0 2	0 1 2 3	123456		0 12 3 4 5 6 7 8	8 9 10	234567	6 7 8 9 10 11	4 5	h	
H,1 117 140 220 172 160 128 243	205 310 93 233 191 57	H+0 746 406	H,1 107 59, 44* 15*	58 130* 55* 25* 44		H,1 66 71 46 35* 83 164 70 44* 18₹	45 145 52*	20* 150 18* 43 16* 95	172 71 40* 14* 105 66 H,1	38+		-
.,2 113 138 224 171 159 125 250	202 311 95 240 189 58	797 438	3,1 102 60 46 9	139 37 57 32 42	2,1	1,1 64 74 46 32 62 164 72 44 14	44 146 49	21 151 17 38 14 94	131 69 36 15 105 67	38	KF _C	163
A20 941 882 899 223 125 28	241 938 66 29 6 993	906 108	982 71 984 192	951 897 96 880 901	· - · - · ·	784 555 904 962 993 20 241	15 995 973	942 23 870 876 167 977	13 14 954 956 999	179	. α.	-
		•					•	١				

Table A-1 (Continued)

	· ·	•	•		J	· .				r .		
	_	,		Table	<u>A-1</u> (Continu	ed)			164	•	- •
h.	F ₀ .	KF _C	α	h	F _o	KF	a'~-	h	F _O ,	[KF _C]	.α. γ	
8 9 19 11 12 13 14	H,1, 207 135 65 41 34 149 103	2 211 133 66 37 147 166	38 862 759 943 969	7 9 10 11 12 13	214 152 83 41 74 104	229 150 85 43 107 6,2	961 931 945 101 972	123456789	152 77 32 137 .90 116 58 71	153 75 28 135 88 116 58	37 952 760 994 60 796 992	
0 12 3 4 5 6 7 8 9 10 12 3 14	H,2, 275 128 170 125 124 215 124 2126 979 155 83 203 203 203 203 203 465 204 29 46 29 46 40 40 40 40 40 40 40 40 40 40 40 40 40	2 272 138 29 163 118 214 1253 101 1567 202 466 30 2-	989 9521 9521 95929 89395 7727 3337 79437	01234567890 1112 123	8* 1 81 42 43 271 969 51 1 30 54 1 30 54 1 34 27* H, 247 118 68	7 180 39 40 268 900 42 268 900 479 1291 1325 7,2 255 119 680	19778 8690 1448 8691 1426 6634 9988 9988 9988	1234567 012345	H, 1 101 46 139 78 81 70 113 °H, 1 136 47 82 28 120 23 41	1,2 100 48 141 75 82 68 112 2,2 132 46 81 26 114 20 3	21 39 547 859 9540 58 9540 58 5920 58 5920 940 58 5920 940 58 5920 940 58 5920 940	
1 23 4 56 7 8 9 10 11 12 13 14	193 170 187 164 163 55 265 221 51 51 29 29 29 29 29	190 171 1592 1592 5655 2252 2552 2816 1292	10 9951 9556 91556 91556 91557 955932 955932 9681 9681 9681 9681 9681 9681 9681 9681	4 95 6 7 8 9 10 11 12 12 3	77 115 74 142 115 95 20* 72 H; 180, 87 128 35*	79 118 74 141 115 96 29 21 72 8,2 8,2 188 88 130 34	849 870 122 50 41 36 53 977 874 11 853 943	1 2 4 6 10 12	H+1 25* 79 H,0 315 182 193 239 117 110 H,1	28 82 ,3 31d 171 195 246 115 112 ,3	39 2 902 805 163 31 27 19	
0 1 2 3 4 5 6 7 8 9 10 11 12 13	H, ³ 4 349 180 220 116 164 39 328 140 76 31¥ 132 143 143 28¥	2 359 177 216 112 156 38 330 147 75 30 133 6 141 27	95 23 7946 910 970 970 970 972 970 972 970 972 9751	4 5 6 7 8 9 10 11 11 3 4 5	146 49 121 71 33* 49 143 43* 43* 43* 43* 43* 43* 143 143 143 143 143 143 143 145 145 145 146	146 50 123 63 32 48 143 43 9 2 43 184 136 54	69 91 1000 47 69 925 957 31 910 7 937	0 1 2 3 4 5 6 7 8 9 1 1 1 1 2 1 3	315 167 195 182 127 293 128 43 145 61 88 125 70 HJ	315 16J 192 117 181 123 305 131 44 147 62 87 125 70 2,3	8783770 97115771 9897759 9897759 99897759 9967	
1 2 3 4 5 6	H,5 78 255 187 125 68 55	73 252 184 125 64 53	24 1 29 40 900 937	. 6 7, 9, 10	41 103 116 60 71 H	40 101 116 59 72 10,2 104	16 27 951 71 25	1234567	424 170 222 37 243 109 (234	447 105 219 34 247 110 234	968 500 977 212 937 958	

· -			а. •	ι c				· .			•
h	F _o .	KF _c	ά	h	F _o	KF _C	ά	h	F _o	KF_	α
	Н,2	, 3		11 12	20* 31*	19 26	840 229	4	96	94	27
້ 8	62 181	59 180	97 .	•	н,7	3	-	•	⊳H•,I	194	.:
10 11 12 13	52 51 47 131 H,3	54 49 48 34 3	180 856 206 19	1210 45	145 140 144 103 136 143	149 141 150 101 134 142	848 950 865 20 52 29	0 2 4 5 8 10 12	419 155 320 87 142 134	443 141 152 326 87 143 136	997, 895 78 25 170 963 972
0 ≮ 1	324	331	994	6	97 91	96 ≭92	14 976	ر مىر	н.	L. 4	
2	190	192	56	8	51 85	50	930	1	95	.8.9	25
345678g	168 225 177 182 113	162 225 178 181 1152 60	941 9993 9822 895	10 11 1	72 150 H∍8 2J₹	71 150 ,3 22	28 12 952	234567	157 233 162 76 62 147	159 240 159 78 61 154	27 73 2 119 35 946
10 11 12 13	125 59 94 √ 70 H•4	122 59 95 71	54 39 11 950	234567	177 51 139 19* 96 80	178 49 139 15 97 79	969 168 936 94 83 963	8 9 10 11 12	189 114 59 23* 21*	191 112 62 17 22	9'' 21 143 59 45
1	53	48	930	8 9	1.96 s	195	21 853		, Н , 2	2•4	
2345	302 90 343 49	307 90 352 47	* 997 896 997 899	10 0	71 H:9 202	70 1,3 205	30 975	0 1 2 3 4	163 284 98 52 73	161 288 101 49 71	777 30 133 812 172
7 8 9 10 11 12 13	29 172 11¥ 80 18 ⁺ 65 41 [*]	33 176 10 82 21 69 35	208 960 226 931 54 148 964	1 2 3 4 5 6 7	72 16* 13* 77 135 152 52	74 17 11 76 137 149 55	952 21 791 87 966 28 896 28	5 67 89 10 111 12	207 22* 153 59 56 9* 131 13*	208 20 156 59 56 12 130	22 192 12 964 901 830 925
	. ่หุ๋,5	, 3	-	ğ,	44*	42	114		 	3•4	
0 1 2	310 272 96	- 320 284 97	8 954 7.96	* 1	H,1 81	0,3	996	1 1	157 224 219	159 237 213	976 22 15
34 56	56 39 78 194	25 37 75 195	93 825 24 940	3	178 ,40* 25*	174 40 22	13 119 118	5456	133 176 88	133 176 89	98 962 62
7 8 9 10	175 47 30# 96	174 47 30 94	975 107 172 51	- 6 7 8	62 43*	10 63 39	208 963 7	8 9 10	144 111 61 16 * 43	142 109 51 19 40	953 65 912 923
12	90	90	950	0	е п у . 64		68	12	∴ 5ŏŦ	49	- 9
	Н, 6	5,3		1	129	129	ŠĞ.	•	н,	494	
1 2 3 4	111 34* 229 79	111 34 232 77	948 169 966 888	· · · · · · · · · · · · · · · · · · ·	30* 52* 135 67	30 53 - 133 68	167 908 990 949	0 1 2 3	428 50 197 79 52	446, 46 205 79 51	11 943 51 965 15
5	119	123	878 822		H.	12,3 -		5	38	39 267	979 - 977
8 9 1,0	96 1064 54	97 1.07 51	928 32 46	1 2 3	35* 153 28*	37 151 28	2 5 196	, 7 8	60 14 *	61 17	923 98
	-		1					•		1	5 A. A. L.

Table A-1 (Continued)

٩.

.

S. S. S.

;

 \triangleright

. 16.5

· •,

- h	F _o	KF.	α	h	F ₀	кг _с	α	h. h	F ₀	KFc	α	
	Н,4,	4 E 1		7	1 17	112	919	11	78 H.4.	73 5.	63	
9 11 12 2	24 76 17∓ 97 H,5,	76 16 98 4	57 56 -	0 1 2 3 4	H,10 51 171 39* 35* 49*	,4 62 170 38 35 44	774 22 249 892 118	123456	48 152 9* 154 17* 74	49 152 155 22 73	866 992 775 785 775	•
2345	208 247 145 75	2J9 253 143 77	5 5 41 999	56	108 70 H,11	110 65 ,4	939 961	7 8 9 10	20+ 127 0+ 20+	125 3 22	973 935 985 62	•
6 7 8 9 10 11	14* 33▼ 135 139 36♥ 20≭	11 30 134 140 37 26	977 174 967 17 984 120	1 2 3 4	77 81 113 119 H,0,	74 80 110 114	976 39 986 19	0 1 2 3	H,5, 217 70 44 86	5 224 66 44 86	997 939 156 999	
0.123.	H,6, 47 182 58 14* 22*	4 49 1.85 59 18 23	927 12 803 817 152	2 4 5 8 10	159 116 114 138 83	155 117 114 136 82	49 219 937 970 33	4 5 7 8 9	202 529 623 645 87	24 56 101 54 41 66 87	148 47 977 374 359 14 18	
5 6 7 9 10 11	242- 52 117 89 73 35* 102	239 53 117 87 72 37 102	147 28 957 60 17	0 1 2 3 4 5	H+1 58 115 28* 70 145 84	55 120 32 68 143 84	39 149 203 876 31 25	12345	H,6 69 133 53 11*	5 69 132 54 10	22 30 40 66 3	
1234	H,7 155 126 43 87	+4 158 126 40 89	973 20 178 27	6 7 8 9 10 11	197 66 35 119 59 65	197 64 55 116 60 65	988 89 851 922 15 952	6 7 • 9	163 29* 80 H ₁ 7	163 29 88 5	975 924 35	
5 6 7 8 9 10	23 138 108 98 70 H+8	10 22 135 106 98 68 • 4	942 989 992 24 15 52	1 2 3 4 5 6 7	H,2 209 80 137 57 75 60 177	•5 210 31 142 58 74 60 179	981 877 84 137 18 790 971	0 1 2 3 4 5 6 7 8	44 125 18* 64 116 119 65 83 19*	43 128 16 62 112 118 67 85 21	787 29 246 927 989 36 58 13 13 194	
	32+ 38+ 29* 146 40+ 143 29+	30 40 29 148 40 143 143	227 61 164 25 906	89 10 11	73 122 44* 22* H ₁ 3	69 121 42 17	35 9 973 39	1234	H,8 10* 133 55 103	•5 .132 .55 102	259 40 946 65 849	
89	39* 59 H,9	-59 -59	209 998	0 1 2 - 3	182 130 107 29 [≢] 77	188 134 112 25 76	18 961 77 174 995	26 7	, 20 77 47 1 H, 9	72 46	928 991	
1 2 3 4 5 6	37 ▼ 132 119 89 55 59	38 134 115 88 55 58	763 939 43 997 203	5 6 7 8 9 10	151 55 86 7* 83 117	151 55 85 13 80 118	998 28 942 194 13 984	0 1 2 3	146 84 11+ 22=	145 83 5 25	961 124 945 161	

Table A-1 (Continued)

.

,

	2		Table	<u>A-1</u> . (Co	ontinue	ed)	. 7		167	
			· · · · ·	N .	:	. L 	•	•		· 、
h .	f _o Kf _o	α	h .	F _o	KFc	α.	h	Fol	KFc	α
	н,9,5	•	8	ž\$+.	33	38.	. •	H.D.	7	:
4 5	71 70 76 77	32 986 ⁻	. • /	Н,4	, b		- 2	187 133 26*	182. 134 25	983 9 802
•	Ή,10,5	٢	0 1	130.	185 64	917 50		 H,1	7	
1 2 3	63/ 51 43∓ 37 128 1∠7	977 877 1	2345	69 30+ 85 27+	67 31 85 27	875 806 74 832	0	106 137 70	105 138 69	21 975 52
0	H,0,6 266 269 52 50	976 824	. 7 8	137 50* 58	136 47 56	950 24 56	3 4 5 6	22* 77 85 140	18 78 87 136	835 998 955
4 . 6	106 1u9 208 205	16 973		· Hj5	•6			H,2	7	
8	34* 37 H,1,5	922	1 2 3	49 141 34	139	891 990 908	1	143 0* 151	139 5	965 130
12.	63 68 81 82 162 159	965 933 6	5 6 7	50 21∓ 77	61 27 73	12) 160 60	4 5 6	54 92 21*	-64 92 13	908 938 861
45	79 80 49 <i>0</i> 51	943		H,6	,6			H,3	7 -	
6 7 8 9	70 76 85 87 135 135 75 76	20 981 974 14	0.127	72 101 70	76 99 70 24	33 986 67	0 1 2	163 81 84 19*	163 80 82 14	943 1 950 -
N	H,2,6	a t	5 6	20- 34+ 163 17+	30 164 17	878 987 162	4 5	70 191	69 102	74 1
12	133 135	934 955	Ž	69	68	971		H,4	7	07.
34567	50 47 35* 33 139 139 16* 16 81 82	33 970 998 224 903	. 1 2 3	H,7 114 66 88	,5 113 64 87	972 973 69	1 2 3 4 5	21+ 115 20* 115 8*	117 25 118 16	634 992 846 971 988
- 8 9	22 ∓ 24 73 74	846 49	- 5	- 32+ 50+	48	23		H, 5	,7	~
	H,3,6	· .		H. 8	•6	-	01	147 75	144 72	958 984
234	117 118 85 84 46 47	934 957 834	0 1 2.	101 27* 54	98 27 54	14 107 49	Ž Z	26* 41*	28 38	960 960
567	69 66 53 51 130 131	807 248 995	3	0*	3	993 .	.1	H,6 58	•7 58	4

		<u>1</u>	able #	<u>2.</u>	055	serve	a and c	alcula	ted st	ructure	. ,		
			fac	tors	and	l cal	culated	phase	s for	the	`l	68	
		:	<u>x-</u>	-ray	<u>mea</u>	surem	ents on	<u>Li (N</u> 2	<u>H₅) BeF</u>	4	•		, •
•	h	F	KF _C	α		h	F _o	KF _C	α	h	F _o	KF _C	α
	2	. H,O	, 0 ^{~~}	500	. •	13-	9 *	22	0	89	18¥ 28*	5	500 500
•	ů,	617	62.9	· 0	Ϋ́,	-	1,2,	, U 	· -		H,10	,0	
	6 8 10 12	316 72 127 19*	314 77 12£ 21	.500 0		1234	145 155 30+	139 154 .31	500 0 510	123	13¥ 51 94	16 49 91	500 500
		H,1	,0 '			6		· · · · · · · · · · · · · · · · · · ·	590	45	20+ 26*	2 <u>1</u>	500 0
•	123	178 103 474	181 95 464	500 500		893 10	21 76 34₹ 98	55 78 36 94	0 0 500	6 7 8	1 (* 57 73	3 58 64	0 500 500
•	5	412	42.0	0	2	12	23*	12	0	• • •	H, 11	,0	
	6 7 8 9	124 66 82 18*	129 59 77 23	500 500 0 0		Q	H,6, 162	162	500	1 2 3 4	15* 24* 68 37*	15 25 65 35	500 ⁽ 500 500
•	10 12 13	80 19* 0*	87 2 6	5.00 500 0	•	1234	286 53 214 44	290 59 213 48	0 0 500 500	5	18+ 0+	18	500
•	ter en en	Н,2	, 0			5	85	88	500	n	በ ም	7	n
	0123	87 186 183 68	97 183 191 65	500 500 500	•	7 8 9	64 38* 56 51*	63 - 37 - 47 - 49	500	123	40* 23* 65	40 4 58	500 500 0
	4 5	178	104	1500		11	15*	27	Ď		Н,О,	1	
	6	209	209	0 5 00	·		H.7	. N		2	229	231	977
•	8 9 10	87 56 90	88 59 95	500	•	л 2	237 153	243 157	0 D	6 8 10	136 113 64	133 117 54	916 894 761
*	17 13	14*	24	שע פי 0	· .	54	179	182	500	12	114	114	949
•		Н,3	,0		· . ·	6	125	101	0	~	ر ۲ و ۲ م م م	1 440	000
-	12	111	117	500		, 8 9	29+ 0+ 72	13	500	12	83 260	81 253	993
	3	319 195	311 191	500		10 11	10 * 20*	22 10	500	34	226	34 227	70 928
•	26	39 94	82	500	-	•	, н,8	,0		6	152	152	912 98
•	8	138	264 137	500	-,	Ō	223	213	Q	8	40	173	19 924 087
	10	15+	26	500	•	5.2	101	99	500	10	68 77	68	61
•	13	53+	58	500		्य <u>्</u> यः 	19 73 97#	23	0. 500	15	22*	13	59
	•••	Н,4	,0			6		23	.0 0		Н,2	1	
•	0	0 * 36	- 35	500	21	. 8	0* 74		500	1 2	529	513 190	20 25
•	23	339 194	335	⁶ 500		10	20 *	11	0	34	426	433	896 950
	45	21* 0*	19	Ō	•	•	`ዝ,9	,0		5	251 134	254	118
· .	6 7	285 91	296 90	· 500	11 - 11-11-11	12	39* 13*	37	500	7 8	245	17	126
<u>,</u>	, 8 9 40	29¥	8E 23	500		541	89 17 #	94 4 2	<u>פטכ</u>	10	27 *	13 35 48	851
,	10 11 12	58 8≠ 84	53 19 81	500 500 500		567	45* 57 8*	35 56 15	0 0 0	12 13	70	67	935

h		KF	α	h	- <u>-</u> 2 (CON		, ,	h		169	 یک هو ه
	1-01	,C,	,		1-01	!" c'	. .	11		κ ^μ c	α
0123	424 390 391 202	3,1 421 397 399 203	7 82 830 845 819	7 - 1 9 10 11	43* 41* 41* 52*	40 43 43 21 41	950 837 898 816 109	123,456	130 146 221 151 208 148	129 144 222 151 203 149	183 106 160 764 190 154
45678002	210 1094 598 58	209 119 68 88 61 57	8972 9724 7555 8553 868 921	123456	H,8, 43 84 52 71 72 45	1 43 83 51 70 72 49	84 985 855 950 865 918	7 89 10 11 12 13	171 82 73 61 62 67	177 87 30 66 50 20 61	64 179 130 874 895 230 48
13.	37+	43	915	. 7-8	42*	39 34 71	151		H,2	32. 297	2
4	۲, 47	4,1	871	10	30*	21	754	12	176	180	26
2345678	281 96 288 76 304 8* 127	279 991 291 305 18 129	853 162 756 131 880 215 859	12345	H,9, 55 71 35 72 72	53 70 30 70 70 70	782 8 765 951 981	3456789	107 112 56 112 87 96 50	104 106 59 112 82 47	975 882 902 826 55 166
9 10	59 14*	18	856 934	- 6 7	47 # 32 # .	48 30 68	45 35 957	10	43* 80 23*	46	236 1 92
12	27*	<u>* 20</u> 3	226	ġ,	07)¥	14	868	13	Č,	16	្រទ័បិ
、 <i>•</i>	н,	5,1		0	H,10	0,1	· · · · ·		Н,3	5,2 (7)	
0123456789	194 219 330 157 88 198 145 42* 109	193 215 325 155 108 148 48 49 119	39 233 960 886 953 946 208 874	12345678	16* 22* 61 29* 79 13* 53 0*	23 12 62 27 75 19 48 16	107 195 839 112 889 837 857 12	1 3 4 5 6 7 8 9 10	104 117 194 275 157 163 1208 57 163	103 192 192 192 192 192 192 192 192 192 192	17 200 835 971 101 802 889 911 552 172
10	29#	31 47 70	905 819	0	81	82	852	11 12	47+	72 44	143
. . .	H	5-1- 5-1-		23	51 28 #	48	803 773	_	H,4	,2 ~~ [*]	
1	74	72	998	4	33 * 76	28 75	893 956 212	0 1 2	~217 144 282	217	1/2 71 855
634	127	21 21 131	033 246 835	Ø	H.1	2,1	a na shi k a	34	83 126	84 125	868 132 ¢
56	123 80	126 82	984 807	1	37+	42	942	5 6 7	44 177 97	177 28	926 976
7 8 9	76 48 85	69 46 80	16 65 942	23	45 * 30 *	30 29	245	8	123	120	988 32
10 11	14* 0*	18 19	800		Η,Ο	,2	075	10	26 * 31*	29 10 66	174
•	. Н,	7,1	2 2	02	731 664 323	655	. 035 92 842	16	оо Н,	5,2	ف سا في -
0 1	10*	11 233	95 900	6 8	161 123	161 123	967 54	1	29*	- 26	848 981
~	·: 116	118	13	10	95	91	43	3	287	25	<u>977</u>

									· · .		• .		
ł	r F	l	KF _C	α t		h	F _	KF _c	α.	> ^h	F	KF _c	α
-	н	,5,2					H,11	,?	•		Н,4,	3	
	6 190 67 00 99 358 90 58 10 47	* * *	18 137 469 138	786 859 895 888 919 147		12345	38+ 0+ 47+ 1+ 76 H,12	41 9 44 13 75	34 121 202 71 88	1234567	128 117 267 117 267 84 72 44*	9 125 115 270 81 68 41	34 987 923 991 896 31 761
	н	,6,2	•		• .	0. 1 -	.20 *	24	57 161	8 9 10	27*	27	155 773
1	0 54 1 150		59 161	967 225				3		11	ŽĨ ∓ °	ŽŽ	77
11	2 3 3 3 3 3 3 3 3 3 3 3 3 3	₩ ₩ ₩ ₩	4019324858	190 795 840 102 102 102 102 102 102 102 102 102 10		24680	160 206 172 98 88 46* H,1,	162 202 176 98 78 49 3	760 168 161 152 52 975	01234567	H,5, 166 225 139 67 101 42 75 114	3 167 222 139 68 100 46 71 112	11 903 902 335 889 839 969
	, , F	ĭ, 7, 2				0	249	248 120	781	8	67 34*	63	30 859 221
	/ 1 172 2 75		172	946	•••••	222	103 85 135	165 88 135	93 243	10	29 *	.33	888
	5 141 4 195	, ;	145	² 73 174	•	5.6	182 182	14 185	783		Н,6,	3	
1	5 114 6 91 7 81 8 70 9 51 0 19	+ - - ~ - ~	114 88 65 43 23	821 174 131 95 801 897		7 8 9 10 11 12	46 38* 76 79 34* 45*	51 40 75 76 24 54	784 929 76 924 197 4	1234567	57 555 557 110 88	59 55 53 77 112 67 182	839 889 198 876 812 864 55
••	1	1,8,2	2	n an	•	L	H,2,	3		8	58 50	58	888 815
	1 77 111 2 111 66 56 7 8 9 20 1 1	7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	71 167 63 59 42 81	16 141 955 231 179 979 146 235	%	1234567890112	359 141 10* 11* 274 109 68 44* 16* 56 66 53*	358 141 8 15 273 198 69 44 16 48 66 35	958 977 228 882 946 941 969 166 885 144 918 195	10 1 2 3 4 5 6 7 8 9	33+ H,7, 60 94 92 76 44 28+ 23+ 0+	29 3 58 96 89 74 43 25 19 18 9	104 173 818 54 104 102 42 851 17
	2 40	* * *	43	70 140	•	•	H 3 3 1	3 74 M	007	•	H,8,	3	
	75 70 67 71 8	} } } } + • 10	74 17 64 8	42 804 993 31		0123456	227 176 135 -50 62 81	231 173 138 50 61 83	-22 61 19 182 944 838	123456	45 43 31 20 * 12 * 14	45 42 21 33 30	975 930 216 784 855 145
,	1 7	+	73	168		7	69 94	68 91	966 931	7 8	54 58	49 63	986 41
	2 5 3 6 4 1	5 4 0 #	56 66 22	75 863 978		9 10 11) 22 * 31*	29 27	785 997		H, 9,	3	• •
	5 3	7+ · · · · · · · · · · · · · · · · · · ·	22	226 71		12	0+	17	960	12	39* 50	35 54	42 944

Table A-2 (Continued)

170

. •

-	. ,		Table 7	-2 (Co			-		• •	
•	0		Table F	<u>1-2</u> (CO)	acinue	20)		•	171	
h	F _o KE	cΙα	ત્વ	[Fo]	KFc	α	h .	F _o	KF _C	α
34567	*H,9,3 3°0* 32 37* 36 49* 49 63 63 43* 31	69 902 912 18 845	7 8 9 10 11	37* 22* 58 45* 22*	28 31 63 40 33	946 207 931 16 922	2345	29* 67 34* 60 H,11	27 63 41 59),4	892 129 925 208
	H,10,3		0	271	264	1000	0	40* 90	53	225
123	44 41 187 19 58 52	981 775 81	123.45	- 39 - 114 31* 113	37 115 37 115	963 82 938 962	23	38∓ 0≠ H,0,	41 15 5	206 146
50	37* 31 0* 19 H,11,3	89 170	5 6 7 8 9	46 100 31* 50 13*	44 101 32 45 22	25 955 918 891	24	52 139 109	55 137 104	0 830 883 890
0	19* 38	0	10	54	54	945	10	.58	42	935
23	45* 45 60 53	161 971 91	4	H,5,	,4	052		+ + + + 1 1	5	
	- H,0,4		23	68 93	68 92	43 22	234	81 57 55	79 52 56	910 823 ·
0 2 4 6 8	211 219 297 297 29* 31 160 162 89 91	61 906 823 22 239	4 56 7 8 9	50 34 30 * 26 * 28 * 49 *	45 31 36 32 19 50	146 964 107 928 784 68	56789	13* 85* 29* 58 67	17 88 27 55 61	19 937 832 938 902
10	50+ 38 H-4-6	777	10	20*	10	901 »		Н,2,	5	,
123456789	$\begin{array}{c} 1, 1, 4\\ 40, 36\\ 41, 38\\ 153, 155\\ 42, 49\\ 103, 102\\ 61, 57\\ 98, 101\\ 56, 69\\ 0*, 6\end{array}$	134 809 198 59 192 974 829 21 916	012345678	H, b, 64 46 26 11 22 39 39 22 4 39 22 4 39 4 39 4 39 4 39	67 41 29 3 22 91 39 36 70	960 793 240 172 133 14 103 185	234 567 89	51 82 70 40* 42 78 53 18* H,3,	54 84 72 43 42 81 57 12 5	840 919 106 905 756 941 34 768
10	38* 26 0* 28	171 991	9	37*	25	798	23	23* 38*	22 40	55
01234	H,2,4 170 171 143 139 138 141 66 68 73 71	241 105 129 139 158	123456	H; () 81 45 117 55 19* 43*	86 39 117 53 17 32	959 176 948 224 5 797	4 5 7 8 9	12* 38* 18* 25* 0* 39*	19 32 28 20 10 31	762 992 12 204 825 107
5	347 30 117 9	34 982	7	69 43*	76	962 955	12	33*	. 35	121
* 8 9 10	3/* 31 53 55 31* 39 0* 29	202 907 121 242	1.	H,8, 74	4	162	3456	15* 55 15*	15 54 19 67	157 819 971 73
11	21+ 30 H-3-4	891	23	70 43 72×	, 69 44 20	863 201	· 7 · · ·	39* 28*	38 21	998 235
123,456	86 84 121 125 52 52 85 83 144 142 127 129	946 57 35 207 949 53	75 67 7	31* 33* 42* H,9,	33 30 22 4 43	1 23 851 878	2345	H,5, 48 104 65 17*	5 46 100 66 16	903 937 919
V.		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		анана 1917 ж ана		n (1 , 1)			у 11 1_24 с 1	4. 1 1

		Tal	ble A-	<u>-2</u> (Cont	inueö	ť) .			
						•	,	172	
h	F ₀ KF _c	α	r.	F _o	KFC	2 Q .	h	F _o KF _c	α
	. H,5,5		4	23 *	24 94 -	950 913	•	H,5,6	• `
678	9* 8 77* 21 46* 45	910 819 910		Н,1,	6		1 2 3	25* 25 45* 50 15* 27	238 973 215
	H,6,5	۱ ب	234	* 21* 83 26*	14 78 25	90 973 848	4 5	23* 30 55 57	969 94 -
234	50 46 59 62 69 72	43 869 37	5 6 7.	62 39 <i>4</i> 21 *	40 5	900 2 92,9	0	$H_{1}O_{1}O_{1}$ 32^{+} 23 40^{+} 17	48
56 7	65 56 98 92	929 929		H,2, 70	6 7 n	779	234	52 50 0+ 11 36+ 24	27 977 900
<i>ነ</i> 1	H,7,5	922	234	92. 42* 33*	94 34 35	926 218 886		H,0,7	
123	-36* - 49 43 - 46 41* - 42	144 848 872	5.67	12* 41* . 37*	23 25 29	939 115 216	2	62 62 \ H ,1,7	995%
4 5 6	59 55° 21* 23 24* 4	948 999 148	.1	H,3, 35*	6 [°] 728	805	0 1 2	327 41 66 63 497 55 747 29	134 946 120 897
1	H,8,5 0* 20	68	234	28 * 67	59 33 67 53	035 97 164 244	.	H,2,7	551
2 3 4	32# 34 30≠ 27	881 212	б	75 `H,4,	68 6	811	1° 2°	66 67 8₹ 14	-944 227
•	H, 9, 5		. .	4.86	105	. 773		H , 3 , (
0 1	65 37 + (59	878 134	123	57 52 10*	51 51 13	46 182 250	0 \. 1	53* 63 27* 15	921 196
	H,0,6	887	456	57 34* 48*	51 25 50	768 903 906		•	
۲.	21 29	oor .	Υ.				and the second		1

			neutr	on meas	urement	s on L	<u>i (N₂H₅</u>)BeF ₄		*173 ·	- 1
'n·		KF _C	α	, h	F	KF _C	α	h	F	KF _C	- α
	н,0	0	•		H,5	,0		34	361 45E	343 58	50 ŋ
2 4 5 10	130 513 287 220 - 50	125 539 285 235 90	500 0 500 0	12345	222 190 131 55* 102	239 191 177 16 104	500 0 500	5 5 1 1	68E 79* H,1	13 28 1,0	0
12	69E H.1	95 1	. 0	6 7 3	48∓ 221 235	27 225 235	0 0 0	1 23	71 87 158	72 53	500 500 500
1 2	· 153 285	149 288	0 500	9 10 - 11	179 249 82	181 257 80	500 0	<u> </u>	- 61÷. H+∂	100 •1	0
3 .	485 473 229	473	560		H,6	,0		2	410	494	995
267 890 101	1989 2559 491 120	196 266 34 196 155	500 500 500	0 1 2 3 4 5	292 413 145 339 223 548	274 416 138 395 257 544	500 500 500 500 500	6 8 10 12	233 157 249 277 364 H,1	231 155 236 272 396	776 917 25 952
12	- 53- H,2	. 49. •Đ	500	2. 5	79 71	15 79 19	500 500	0	262 240	267 244	985
- C 12 23	43 367 66 139	8 374 70 135	500 500 500 500	9 . 10	77 177 H,7	48 171 ,0	500 0	23456	396 55 177 145 346	309 59 187 101 340	963 149 950 993
4567890 10112	73 294 342 135 466 255 1662 1	73 239 348 131 40 175 202 225	500 0 500 0 0 0 0 0 0 0	123456783	644 252 94 279 426 286 56* 137	634 254 80 275 439 307 23 80 25	0 0 500 500 500	7 8 9 10 11 12	377 482 172 122 61+ 257 H ₁ 2	380 470 168 97 27 263 • 1	28 938 19 149 7 982
	H, 3	,0	200	10	107	66	- U	1	451 45	465	20
1234567890 112	52 261 323 43¥ 504 526 423 221 228 119	37 262 324 33 37 315 544 419 205 229 75	500 500 500 500 500 500 500 500	0 1 2 3 4 5 6 7 8 9	H,8 576 109 268 150 35E 103 312 119 135 263	575 132 251 158 82 62 312 143 110 285	500 500 0 500 500 500	3 4 5 7 8 9 10 11 12	451 338 400 256 401 83 73 81 72 184 H,3	468 342 403 253 405 103 110 55 78 206 1	952 971 81 947 805 11 33 920
•	H,4	,0			H,9 200	\ 0 1 R 1	500	0 1 1 2	208 239 354	206 237 355	808 804 817
01234567	294 153 343 944 404 637 216	292 162 344 357 391 634 224	500 500 500 500 500	2345678	42E 468 91 97 221 154 23E	466 33 131 210 163 28	500 0 0 0 0 0	- 3 5 5 7 9 10	1927 3887 1397 1397 139 1459 239	193 389 385 117 113 128 259 236	237 905 982 982 982 982 982 982 982 982 982 982
8 9 10	200 175 91	196	ี่ รังงัก รักกั	ົ້. ຄ	H,1 211	0,0	n	11 12	235 105	240 153	920 909
11 12	27E 314	36 354	500	1	89 36E	68 59	500			•	

: 1

			٠			· · · ·	. *	• •			
h	$ \mathbf{F}_{O} $	KF _c	α	h	F _o	KF _c	α	h , `	F _o	KF _C	α
12345678	H,4 223 272 70 371 158 601 177 282	1 202 277 70 345 153 198 282	901 221 849 126 994 874	012345 07	3 66 1 06 98 55* 174 253 255 55*	377 117 185 110 172 238 235 55	500 886 4 164 910 0 4 940	3 4 56 7 8 9 10 11	199 408 291 335 4499 129 129 120 150	172 395 277 330 4467 121 172 156	56 970 88 53 947 992 148 795 955
9 15	177	153 165	18 973	. 1 :	165	179	46	•	H . 4	,2	•
·11	109 H,5 499 280 286 298 102	107 ,1 270 293 307 106	868 25 157 970 943 774	2 3 4 5 6 *	74 122 16* 223 92 H,1	64 101 3 180 81 1,1	895 166 66 862 918 750	0 1 2 3 4 5 6 7 8	207 117 248 118 214 318 547 308	180 944 201 126 317 529 179	135 207 783 972 165 11 943 955
5	372	355 798	954 2	1 2	-50E	97 102	872	, 9 10	38E	67 53	116
7 8	415 \	395	7 Č 7 8 6	3	-69¥	-9 Ō	108	īĭ	ŚĞE	72	957
9 10	, 325 ··· 77	315 28	\9899 \77	r ·	,H₊0	,2		۰. ز	Н,5	,2	
11 123456	94 H,6 97 51* 258 232 391 119	161 ,1 122 63 290 225 381 129	880 871 179 755 99	0 2 4 6 8 10 12	636 622 453 295 196 356 223 H,1	615 656 454 280 194 348 248	917 75 964 68 157 101 30	1 2 3 4 5 6 7 8 9	57* 224 171 152 577 140 135 140	43 206 104 236 236 29 34 145 145 200	982 906 938 937 44 883 911 924 971
7 8 9 1 C	355 147 13* 167 H ,7	367 125 101 131	991 192 890 29	1 2 3 4 5 6 7	222 65 272 427 412 262	226 119 266 427 396 226 292	120 205 909 932 129 70 46	0 1 2 3	H,6 282 238 298 298	268 258 276 219	931 807 36 813
<u> </u>	168 323 312 117 222 163 119	149 340 356 150 206 170 65	248 904 967 105 935 794	8 9 10 11 12	298 61* 156 67E 88	231 42 201 72 61	42 996 913 795 77	4 5 7 8 9	156 340 84 112 65 225 154	155 369 103 83 69 225 184	993 829 113 20 78 905
. 7 8	95	84 85	957 834		328	343	983		- H,7	,2 ,	
9 10	76* 43E H ₁ 8	102 74	887 775	1 2 3 4	157 66 143 112	135 -69 141 120 360	25 761 13 773	123	476 76 188 162	496 117 167 214	983 220 63 245
12345678	289 2201 2201 452 209 1452 209	305 241 270 131 84 47 152 178	8 974 960 957 778 217 123 66	2 6 7 8 9 10 11 12	370 318 150 352 11E 130 329 51E	307 307 169 338 124 359 107	886 129 49 822 839 113	75 6 7 8 9	246 164 186 177 183 H,8	297 164 194 221 164	877 201 118 54 172
9	279	2,55	961		H,3	,2		01	369 104	358	844 60
	. H, 9	,1		1	241	243	71	2	99	126	245

2

Ζ

q

Table A-3 (Continued)
				Table	<u>e A-3</u> (Contin	led)	•		175	
h	F _o	KF _c	α	h	F _o	KF _c	α	h	F _o	kf _c	α
an a	Н,8	,2		• 5	H,3,	,3		45	73* 53*	53 104	801 825
34561	175 140 80 180	157 140 116 175	973 105 177 29	0 1 2 3	428 332 168 190	424 301 140 174 174	36 13 58 885	67	129 158 H,9	106 168 •3'	128 970
7 . 8 [°]	27E	39 ,2	750 -) 567	223 123 180	223 218 123 123 180 207		0 1 2	373 66* 133	333 62 141	33 27 935
1.2	138	134 97	965 123 881	8 9 10	236 32* 104	264 11 113	894 137 997	3 4 5	86 85 158	95 88 179	51 895 898
5 4 ร	154 9¥	178	34	• •	H,4	,3	•	· · · ·	H,1	0.,3	
67	107 252	105 278	926 14	123	135 206 166	150 213 228	9 49 138	123	219 85E 245	187 51 223	0 200 44
	H, 1	0,2	4.4.2	5	224	227	.993 974 043		Н,0	, 4	•
0123	133 245 143 233 24*	117 176 145 228	113 87 929	0 7 8 9	130 126 53* 78* 71F	152 112 62 112	60 158 990 847	0 2 4	575 640 204	559 639 207	953 940 889
·5	47*	78	250	. 10	H•5	• 3		•••	H, 1	•4	
	H +1	1,2	•	0	639	619	_1	1	124 113	139	775
1	126	134	23	1	416 318	379 314	931 913	2.3	33+	20	11
	Η,0	1,3	0.04	34	129	172	.977	* 4	207 H-2	<u> </u>	
2463	237 271 309	200 234 289	198 214 139	7 6 7	137 277 346 55 *	264 361 42	933 982 115 ×	0 1 2	195 298 202	207 324 245	92 A 90 95
10	322 H.1	. 364	200	10	59E	104	104	3	ĨŠŌ	65	54
Û	3.63	350	137		Н,6	,3			Н,3	,4	01.0
1234	218 429 155 344	193 427 111 361	709 952 20 99	1 2 3 4	125 192 245 135	125 176 239 155	954 914 883 918	1 1 2 3	178 178 266 127	224 370 165	948 948 100
5	113 385	57 383	881 969	5	5 224 260 938 6 121 112 873		938 873	•	H • 4	9 4	
7 8 9 10	328 216 196, 123	329 225 227 174 7n	937 35 966	89	307 111 57* H.7	148 127	968 182	0 1 2 3	368 53E 145 74*	391 20 207 118	17 171 44 947
∓ ∓. 	, 25 	2.3	140	Û	162	124	795		H,9	5,4	•
123	504 252 124	515 259 118	946 '996 92 <u>0</u>	1234	123 228 192 162	198 200 175 162	209 844 54 68	1 2 3	72* 59E 144	40 138 224	994 998 992
45	573	370 435	960	567	167 60F	179 179 38	8		H,	5,4	
7 8 9	205 158 78∓	223 131 80	953 113 153	8	38E 'H+1	53 8 , 3	198	0 1 2 3	149 41E 15E 82	170 17 140 44	869 809 57 151
11	134	150	877	1 2 3	165 198 111	142 185 106	959 949 143				•

11 m.	Table A-	4. Obse	rved and	l calcu	lated s	tructu	re		
	fact	ors and	calculat	ted pha	ses for	the		177	\mathbf{i}
	<u>X-r</u>	ay measu	rements	on Li(NH3OH) S	<u>0</u> 4	2	•	
•	h F _o	KF _C	h	F	KFc	h		^{KF} c	·.
	H, U, 2 461 4 937 6 769 8 1398 10 1046 12 812 14 272 16 533 18 496 20 299 22 380 24 220 26 127 H, 1,	0 -423 -1021 792 -1382 -1065 777 287 -534 409 283 -382 216 149	14 16 122 24 68 102 60 22 24 68 102 60 22	27* 51* 124 153 109 H,5,0 184 19* 102 444 113 3555 1322 285	-47 -36 158 -122 -175 -122 -175 -441 -113 -125 -278	1234456789012345	H,1,1 236 9993 12309 122399 5735 2073 5555 209 3420 3555 2084 2740 3731 208	2499 10174 10277127 1225377977288402 	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-309 382 21 554 -11 -29 -124 -493 263 -66 79 142	0 24 6 8 10 12 14 16 18 20	H,6,0 253 407 239 369 103 127 349 28 209 47 47	-272 404 234 -376 -92 131 -364 207 -6 11	11789012345	145 197 343 70 205 113 63* 78 346 141 H,2,1	+151 -204 3 48 -203 -106 -69 327 142	
	$\begin{array}{c} H, 2 \\ 0 & 1370 \\ 2 & 130 \\ 4 & 1141 \\ 6 & 1133 \\ 8 & 370 \\ 10 & 993 \\ 12 & 756 \\ 14 & 99 \\ 16 & 372 \\ 20 & 128 \\ 22 & 193 \\ 24 & 0 \end{array}$	0 1479 144 -1129 1138 -374 -870 735 -361 114 -209 -1	2 6 8 10 12 14 16 18	H,7,0 126 295 132 242 126 247 183 44 44 256, H,8,0	-127 293 118 -245 -137 238 -183 -183 254	0 HN34567 8901234	1078 543 613 203 209 131 258 103 285 126 166 287	-10570 -6113952493915 -231745249391189 -1291895	
2	H,3 2 0 4 453 6 524 8 34 10 40 12 422 14 437 16 207 18 185	• 0 • -32 -421 521 • -22 • -25 424 -437 -227 185	0 2 4 6 8 10 12 14 16	315 370 304 647 224 230 55* 328 H,9,0	-321 374 308 -635 -11 229 -226 -39 336	116789123345	205 227 110 49 91 150 139 70 24 * 14	-206 230 118 39 -145 121 -45 25	
	20 22 176 24 315 24 315 4,4 0 165 2 503 4 135 6 388 8 118 10 147 12 47	* 53 -175 307 ,0 170 -495 157 381 134 -137 * -71	2 6 8 10 12 0 2 4	49* 36* 163 104 95 5* H,10,0 313 134 234	-55 38 156 -105 108 -13 -312 140 238	123456789	H,3,3 237 0 85 440 93 426 270 642 395	248 - 28 - 96 4 39 - 64 4 27 258 - 613 - 393	

h	F _o	^{KF} c	- h	F ₀ .	KF _C	h	F _o	^{KF} c
25 0123456789	H, 1, 2 0* 194 H, 2, 2 354 8* 399 285 86 167 112 114 15* 471	-21 -175 -375 -389 -38695 1795 -479 -479	89011234567890123 11111111122223	204 123 181 118 158 97 48 66 33 136 131 36 47 189 54 49 49	2135 -1176 -1264 -550 -1264 -550 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1287 -1285 -12	34567890112345678 1112345678	387 181 173 59 341 155 238 71 17* 168 77 155 0* 94 96	3894 -1844 -3874 -1442 -3540 -1442 -3540 -1686 -1953 -83
10 112 145 1567 190 1234 22234	470 513 82 44* 78 199 640 107 110 174 212 79 6* 72 H, 3, 2	469 -586 -1967 -1967 -1967 -1967 -1064 -2716 -160	123456789011123415	H, 5, 2 443 198 687 418 344 101 451 216 561 69 179 361 212 290	-434 203 6926 -426 -339 -443 210 5787 -360 208 296	0 1234567 890112311 11231	H,8,2 59 173 103 132 45* 252 100 31* 81 223 90 98 0* 41* 86	689995 17995 -1-294 2097 2009 1-297 2009 12220 2009 12220
12345678901234567	571 579 742 529 5429 6371 63371 6051 5681 3114 189	-567 73647 -5831 -5839 -533953 -22886 -5175 -5175 -5175 -189	16 17 18 19 20 22 20 22 0 12 34 567	36# 64 82 387 66# 58# 0# H,6,2 55 34# 23* 0# 84 227 90# 33#	-34 -577 -369 412 -422 -5422 -285 -285 -285 -285 -285 -285 -285 -2	15 123 56 7 8 9 10 11	180 H,9,2 0* 77* 63* 29* 48* 48* 47* 76, 0* 62* 56* H,10,2	169 -12 -37 40 256 -162 2253 -21
18 190 201 223 24 01 234 567	66 213 47 99 47 47 47 47 47 47 47 47 47 47 53 295 272 32 32 32 32 32 32 55 75	-64 -210 66 153 -9 110 -35 -323 -323 -323 -323 -208 274 -44 386 -19	899 101 1123 115 117 116 117 119 20 12	35* 15* 31* 36* 18* 22* 58 142 71 27* 54* 62* 0* H,7,2 101	35 7 -12 -14 25 250 157 -79 3 -31 -67 39 -107 126	0 1 1234567 890 1112	34* 95 H,1,3 196 133 154 111 271 44 130 4 4 80 28* 166 102	-222 -130 183 -101 2660 -138 -106 -138 -106 -138 -109

Table A-4 (Continued)

1.78

e h	F _o	KF _c	h	JF_	KF	h	F_	L/9 KF
a , ' -	H .7.4	•.				_	(``	. (
10	76	78	Q	H,0,1	-716	8	200	-196
11 12	140 143	-137 122	12	177	-175 319	10	- 99 - 45 -	-95 -31
13 14 15	269 136	-267	5 4 5	174	176	12	197 197	-194
16	123	139		394	-399 -71	0	, 10,1 91	-86
18	132 148 110	134 × 149 ~107	8. 9. 11	56 189 83	-41 -187	12	34× 0*	-38 -13
21 22	-43 * 83	-85	12 13	45 + . 0 *	32	4	38+ 0*	-29
23 24	. 85 . 163	-86 150	14	155	-165	•	H,0,2	
4	H,4,1		17	145	157	U 1 2	930 40	=>64 ≠976 =28
015	101	-97	19 20	59* 252	-234	34	910 162	-910
3	131" 402	-130		H,7,1	•		374 18* 330	-326
5	372 267	-27.3	1 2	194	-193 391	8	188 188	47 182
89	176 270	-164	3 4 5	191 242 131	189 -251 -146	10	83 342 n*	347
10 11	426 298	417 287	6 7	. 101 46+	104	13	432 328	453 -331
12	313 57 110	-319 -67 -107	8 9 1 ft	303 201 67	300 209	15	523 242 208	-533 248 201
15 16	251 238	-259	11 12	92 218	-220	18 19	24 *	213
17	128 30 *	130 -23	13	54 * 68	-49 67	20	193	-193
20 21	168 169	-167	16 17	53+ 1+	-49	23	153	152 -16
22	153 53*	153	18	215	-217	25	112	. 113
	H,5,1		0	142	-127	1. 1.	405	-400
1	75 21 <u>4</u>	-74	1 2	50 4 - 444	-46	, <mark>2</mark> , 3	525 901	518 . 878
	349	341 149	· 4 · 5	126 67	138	56	295 331	-283
6 7	58 404	-63	7	125	-126	7 8 8	165 8*	154
9 10	- <u>89</u> - 221	109	9	98 215	-101 221	10	71 153	-67 -152
11	74	-119	11	.138	132	12	117 368	-115
14	1112 90 34+	85 39	13 14 15	31* 31*	-29 ·	15	99 19*	-11
16 17	53* 50*	-64		H,9,1		17	224 67	234
19	72 77	74 -22	12	72 253	-70 250	20	57 101	
· 21 22	0* 31*	-5 13	- 3 4	195 176	188	22 23	26* 50*	9 49

		•		-	- I-qui a Sinta angle ang	* * 1		•		۱
		>	-Tab	le A-4	(Contin	ued)			180	•
· · · · ·		-		- ;					· · · ·	
	h		KF C	h	IE ₀ I	KF _C	h	F _o	KF c	
, • , ·		H,1,3			H,4,3			H,7,3	-	÷
, , ,	111111122234 01234	454 75 26* 79 468 48* 237* 237* 262 * 262 * 253* H, 2, 3 536 1029 207 172 67	-450 -77 -74 475 -229 -239 -253 -253 -5995 -200 -535 -200 -535 -200 -5995 -200 -5995 -200 -5995 -200 -5995 -200 -200 -200 -200 -200 -200 -200 -20	012345678901134556789	70 640 149 252 107 862 156 529 345 345 345 345 345 345 345 345 345 345	-61 636 1207 -15595 -1553425 -1553425 -1553425 -1553425 -15535 -15535 -15535 -15535 -15535 -15535 -15535 -158887 -15772 -17777 -17777 -17777 -17777 -17777 -177777 -177777777	1234567 89011234567 11111157	69 21* 149 44* 102 23* 78 27* 27* 45* 184 59* 82 0* 71 25* 162 H,8,3	$ \begin{array}{r} 63 \\ 10 \\ -146 \\ -9 \\ 194 \\ -64 \\ 41 \\ -17 \\ 29 \\ -189 \\ -39 \\ 84 \\ -1 \\ 70 \\ -161 \end{array} $	
	456789012345678901234	610 78 412 260 81 187 506 33* 237* 414 199 265 414 29 257* 125* 257*	-591 -591 -591 -591 -591 -591 -591 -591	190 212 234 567 890 111 123 145	80 0 223 18 47 47 231 58 293 95 47 231 58 293 95 49 49 75 118 32 47 58 293 95 49 5 49 5 75 33 4 78 33	-53 248 -49 -297 -96 -40 -78 -128 -128 -128 -128 -128 -128 -128 -12	0 123456789011234 23	82 79 13* 89 185 185 18* 82 29* 148 60* 199 80 46* H,9,3 15* 115	-71 82 -8 68 1 -192 -16 77 22 138 57 -198 91 11	
	12345	H,3,3 240 207 40* 291 67	239 -217 79 -291 82	16 17 18 19 20 21	83 36* 31* 86 36* 55* H,6,3	78 46 19 -96 -41 65	5 6 7 8 9	74 34* 56* 243 61* 143 H,D,4	-87 -24 -72 250 35 -148	
	67890112345678901223 1112345678901223	239 565 207 1327 137 157 152 1335 115 1111 83 121 89 20 30 223	-239 -565 -208 109 192 -174 153 115 142 115 -180 -107 203	0 1234 567 891124 1124 1124 1124 1124 1124 1124 1124	52 611 133 100 66 548 172 461 58 211 27* 312 46* 46* 190 78 350 * 35*	$\begin{array}{r} 42\\ 606\\ 135\\ -107\\ -547\\ -547\\ -547\\ -63\\ 20\\ 20\\ -310\\ -310\\ -310\\ -310\\ -310\\ -310\\ -310\\ -310\\ -320\\ -320\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -20\\ -$	012345678901234567	743 688 248 89 252 93 107 33* 107 252 93 107 33* 293 104 244 297 297 348 364 123	-745 691 255 -108 -250 -250 -81 100 -85 -258 -298 -2598 -2598 -2598 -2598 -2598 -2598 -2598 -2598 -2558 -2558 -2558 -2558 -2558 -2558 -2558 -2558 -2558 -2558 -2557 -257	

.

6.

Table A-4 (Continued)

181

	·						I	N
h	F _O	ĸŗc	h	F ₀	^{KF} c	h	F	^{KF} c
18 19 20 21 22 23	H, 0, 4 56 196 142 194 247 159 H, 1, 6	43 -93 -151 203 237 -150	9011234567	381 221 96 206 400 313 230 36* 61	-372 -239 -90 -204 398 310 -231 -70	7 89 11 12 14 5	13* 59 80 134 74 72 40* 37* 42*	-7 9 -71 -128 76 56 -28 -28 -44
12356780	425 330 235 111 36* 158 28*	415 325 -221 112 39 -163 -49	19 20 21 22	164 50* 21* 23* H,4,4	160 45 -7 23	17 17 1 2 4 5 6	0* H,7,4 80 125 210 87 50*	77 123 -220 83
10123 1456780	146 58 24 58 99 83 133 149 117	-1453 -322 1063 141 -1547	234 567 890	277 04 16 98 206 199 155 111 36 *	289 -15 108 -231 -152 -152 115 -155	7 89 10 112 12 14 15	160 164 79 18* 93 109 167 107 95	159 159 -88 19 -101 -106 160 107 -99
20 21 23 0 1 2	68 57* 0 * H,2,4 26 * 73 55	60 -57 -14 15 78 54	123 145 156 17 189 20	135 89 82 122 50 73	-135 -33 -91 79 -110 -46 -70	0 1 2 3 4 5 6	H,8,4 156 145 66 13* 106 213 205	153 -142 -65 12 -98 214 207
3 4 5 6 7 8 9 10 11	40235039954 235039954	401 3769 -3228 -1298 -1298 -1298 -395	21 1 2 3 4 5	162 H,5,4 63 285 429 277 126	159 60 279 -434 -282 1 <u>2</u> 2	8 9 10 11	125 0∓ 117 184 77 H,9,4	-129 9 -99 -184 80 41
12 13 14 15 16 17 18 19 20	249 17* 110 77 261 177 36* 5* 84	-253 -105 73 264 -171 -24 10 -91	67 89 10 11 12 13 14	82 409 366 194 92 29≠ 139 238 126	- 145 370 - 196 - 191 - 146 245 123	121	47* 22* 54* H,1,5 20* 938	30 36 -68 39 928
21 22 23 1 2 3	146 142 0 H, 3, 4 352 444 294	147 152 16 333 426 -273	19 16 17 18 19	123 41 * 209 175 228 H,6,4 152	-120 -35 -206 -187 236	545678900 10112	402 126 151 583 416 416 350	-395 133 153 590 -76 -460 -352
4 5 6 7 8	75 126 289 254	-86 -123 288 242	13456	13* 38* 58 39*	19 -38 51 21	13 14 15	80 412 89	67 431 -112

À.

h	F _o	KF _c	h	F _o	KF _C	h	F	KF c
16 17 18 20	H,1,5 82 60* 296 26* 265	-76 -41 -291 46 253	12 13 14 15 16 17 18	158 30* 167 38* 208 42* 38*	165 24 159 -46 -212 57	5 6 7 8	48 * 100 92 H,0,6	31 116 29 82
21	54* H,2,5	-35	19	41* H,5,5	34	0 1 2	766 202 407	764 198 -417
0123456789011234567 111234567	271 359 1093 1366 386 405 454 454 157 459 2092 2092 2092	241 -1083 -178 175 -462 -158 -158 -158 -158 -158 -158 -158 -158	12345678912345678	46* 70 63 87 48* 113 11* 74 103 42* 4* 34* 137 0* 81 13*	-447 -67 -984 117 -984 117 -985 336 -1310 -1310 -50	3456790 1134567 11134567 890	10* 508 297 622 35* 180 126 176 192 234 467 0* 107 82 H,1,6	-9 -301 -301 -326 -326 -1831 -1832 -1932 -
18 19 20	139	-121	ñ	H,6,5	256	1 2 3	105 239 12*	18-8 -238 -0
21	56+ H-3-5	-66	123	92 153 14*	-84 -154 -32	5 5 6	36* 38* 162	23 -53 -170
123456789 10112	103 189 142 315 12* 207 210 468 32* 119 124 117	-120 1951 -3210 -215 215 -215 -132 -132 -132 -115	4567890 1112345	98 15 2 31 50 4 54 4 52 4 55 8 8 171 54 7 54 7 54	-85 239 -37 48 -15 -237 -54 74 168 -77	7 89 11 12 14 5 6 7 89 11 12 3 4 5 6 7 89 11 12 3 4 5 16 7 89	55 69 6* 41* 18* 167 74 22* 26* 87 55 55 126 43*	-60 81 -37 -38 -211 156 -23 126 -23 126 126 11
13 14 15 16 17 18 20	83 231 87 129 69 99 60* % 118	90 231 -103 -139 -55 -1055 122	1234567	H, /, 2 77 248 101 404 69 93 -0*	-69 -245 102 399 -59 745	0 1 2 3 4 6	H,2,6 444 137 176 57 321- 370	456 122 -165 -60 -322 373
0	H,4,5 140	128	10 11	73 68 0*	59 74 -1	8 10	28 * 440	21 -446
123	72 100	2 81 -104	12 13	86 19#	-32	11 12 13 14	84 415 117 0*	-07 412 117 -18
4 5 7 8 9 10 11	206 42* 117 123 369 125	-200 -13 121 -122 -367 126	0 1 2 3 4	40* 47* 0* 29* 117	19 20 -14 -11 -122	15 16 17 18 19	106 231 25* 145 37*	96 -228 -44 144 -13

Table-A-4 (Continued)

· .		•				- 5		•
•		<u>Table</u>	A-4	(Contin	ued)		•	183
'n ĺ	F _o	^{KF} c	h	F _o	^{КЕ} с	h	F.	KF c
123	1,3,6 17 168 - 40+	122 169 -25	9 10 11 12 13	0* 173 101 113 0*	-5 161 92 -107 19	11 12 13 14 15	74 80- 94 95 59*	-62 83 86 -94 -57
5	92 • 73	-77 201		`H,7,6			H,4,7	
9 10 11 12	238 85 87 43*	-230 -82 78 -36 212	123456	0+ 126 78 150 49+ 91	3 -143 -75 139 33 70	0 1 2 3 4 5	158 201 8* 115 167 261	-164 -200 27 -111 167 251
13 14 16 17 18	105 161 194 83 187	121 -156 -99 -86 179	7 8 9	93 191 52* H,1,7	98 -186 -38	6 7 8 9 10 11	184 134 33 170 199 285	-189 -141 -178 203 285
0 1	H,4,6 63 24*	74 +27	1234	333 219 224 153	341 -211 -225 156	12 13 14	168 47* 60*	-164 -55 3
23456789	28* 89 49* 104 168 57 54*	-38 -92 -52 -115 171 -65 69	5 67 8 9 10 11 12	38* 84 69 191 310 58 103 159	-0 84 68 -196 -306 32 -93 169	123456	H,5,7 35* 12* 26* 34* 65* 86	-6 3 21 16 57 -84
10 11 12 13 14 15 16	55* 62 74* 37* 41* 54*	-55 44 -76 17 39 -47	13 14 15 16 17	230 172 71 55* 70 H,2,7	239 -169 -56 -34 -93	7 8 9 10 11 12	44* 73 0* 44* 84 0*	-49 69 26 -52 -82 -11
17	0* H-5-6	-42	10	213	-205	0	235	-234
1234567	14* 151 84 235 29* 145 130	-145 -145 -187 242 151 129	23456789	*93 29* 79 207 117 44* 31* 21*	-42 -42 79 200 -114 -19 36 -8	12345678	216 137 48* 93 228 179 176 39*	-214 139 11 227 -179 -179 41
8 9 10 11 12 13 14 15	275 41* 27* 86 191 93 176 20 *	-193 -35 -52 -70 193 -176 -31	10 11 12 13 14 15 16	83 145 55 15 15 47 92 H-3,7	150 -59 -61 -55 -241 99	012345	H;0,8 68* 261 0* 35* 34* 187	
D 1 2 3 4 5	H, 6, 6 254 73 0* 88 163 0*	-245 -77 15 -80 159	1234567	53 66 108 12* 0* 106 201 460	32 -48 -110 25 17 109 187 -158	67 89 111 12 13	0* 68 0* 109 52* 124 81 0*	3 45 26 -105 52 130 69 32
5 6 7 8	228 89 106	-219 -85 116	8 9 10	160 133 42*	-158 -136 26			

٠,

. .

- 23

'n	۱ ^۴ .0	^{КР} с	h		КF с	h	Fol	KFc
1 2	H,1,8 168 32*	-165 -14	12	H,3,8 231 0+	-240	3 4 5	401 40* 147	396 -140
34567890	199 106 81 27* 60* 114*	196 -97 -72 -9 -8 122	3 4 5 6 7 8 9	351 70 37.* 24 ₹ 252 30 ₹ 315 0 *	350 -555 -45 -40 -249 47 323 0	123456	H,1,9 122 140 146 0* 39* 14*	-129 -137 148 -13 -7 26
11 12 13	33* 29* 103	-23 -92	îĭ	0+ H,4,8	-24	7	98 H,2,9	-100
0123	H,2,8 56* 26* 46* 109	41 9 -49 -95	U 12345	21+ 57+ 37+ 113 0+ 90	-67 25 108 3 90	1234 6	229 50* 53* 86 77	225 53 40 89 -68
456780	30* 247 0* 0*	33 238 -17 -18	6 7 8 9	26* 49* 9* 79 H.5.8	-11 -86	1 2	H,3,9 105 0*	-89 -31
10 11 12	158 10+		12	179 70*	-176 67			

Table A-4 (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
and calculated phases for the measurements on $(N_2H_6)BeF_4$ ℓ $ ^Fo $ KF_c ℓ $ ^Fo $ KF_c 5 187 -181 8 36* -25 6 67 -59 9 11* -22 7 29* -29 10 13* 10 8 49 -51 11 48* 34 9 25* 45 1,2,L 0.66,L 1.2,L 0.66,L -11 0* 23 77 78 76 110 100 -9 0* 15 28 75 -8 92 -98 1319 307 -10 49 37 15 23 67 70 -7 78 76 1319 144 -42 229 233 161 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165 165
calculated phases for the rements on $(N_2H_6)BeF_4$ F_0 KF_c l F_0 KF_c 187 -181 8 36* -25 67 -59 9 11* -22 29* -29 10 19* 10 49 -51 11 48* 34 25* 45 1,2,L 0.6,L 1.2,L 0,6,L -11 0* 23 37 110 100 -9 0* 15 82 75 -8 92 -98 67 70 -7 78 76 141 -137 -6 34* -26 69 -65 -5 23* 16 139 -144 -4 229 233 59 63 -3 161 165 16* -10 -2 27* 36 139 -144 -4 229 233 516* -10 2 27*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{\text{Ses for the}}{\text{H}_{6}) \text{BeF}_{4}}$ $\frac{\mu}{4} \begin{bmatrix} F_{0} \end{bmatrix} KF_{c}$ $\frac{\pi}{9} \begin{bmatrix} F_{0} \end{bmatrix} KF_{c}$ $\frac{\pi}{9} \begin{bmatrix} F_{0} \end{bmatrix} KF_{c}$ $\frac{\pi}{9} \begin{bmatrix} F_{0} \end{bmatrix} KF_{c}$ $\frac{\pi}{2} \begin{bmatrix} F_{0} \end{bmatrix} KF_{c}$ $\frac{\pi}$
the $ F_0 $ KF _c $36^{*} - 25$ $11^{*} - 22$ $15^{*} 10$ $48^{*} 34$ 1, 2, L $0^{*} 23$ 49 37 $0^{*} 15$ 92 - 98 78 - 76 $34^{*} - 26$ $23^{*} 16$ 229 233 161 165 $0^{*} -13$ 380 - 383 $0^{*} -5$ 436 - 435 $27^{*} 36$ 436 - 435 $27^{*} 36$ 364 359 103 - 97 $18^{*} 13$ $19^{*} -22$ 107 95 $32^{*} -20$ 71 67 $23^{*} -29$ 1, 3, L $0^{*} -1$ 54 -37 81 -84 $14^{*} -10$ 93 -94
KFC -2204 375866663533597325079 -38097325079 -38097325079 -38097 -38097 -292679 -38097 -3800 -380

Table A-5 (Continued)

7

L.	F _o	KFc.	_ &	F	KF _C	L	F _o	KF c
23456789	1,4,L 99 33 ⁺ 126 101 47* 42* 40* 0 ⁺	100 24 115 -99 -5 -47 -29 14		1,8,L 61 80 147 21# 51# 39# 90 57	56 71 140 -3 -50 -37 -86 53	6 7 8 9 10 -10 -9 -8	67 100 29* 73 59 2,3,L 41* 32* 64	64 -99 13 79 -70 -70
-9 -8 -7 -5 -4	1,5,L 21* 23* 73 171 101 29*	-35 25 76 173 92 10	-10 -8 -6 -4 -2	30+ 2,0,L 99 0* 68 61 23*	112 -11 -62 764 -23	- 7 - 7 - 7 - 5 - 4 - 3 2 - 10	257 137 254 113 7n 205 389 172 368	-70 261 109 258 108 -67 -200 -399 1555 -376
-32 -10 12345	0* 202 37* 92 19* 153 96 54 56	-19 -209 14 89 -14 -152 -93 40 -73	U 2 4 6 8 10	148 380 4* 315 146 67 2,1,L	-135 389 -12 -311 140 68	123456789	244 131 167 444 65 196 33 122	-122 -122 -151 451 48 198 21 -126
6789 - 8 - 7	188 25* 94 70 1,6,L 25*	185 20 -83 73 34	-11 -10 -9 -8 -7 -6 -5 -4 -3	<pre>* 108 33* 129 286 62 99 142 525 270</pre>	107 -124 -283 -51 -95 -143 545 -253	-10 -9 -8 -7 -6 -5	2+4+L 33* 71 44* 177 128 232	31 56 -11 180 -131 -229
	25* 48 16* 74 17* 108 27* 42* 40* 82 54 73	-1005 -39 -42 -105 -39 -42 -404 -104 -104 -104 -17 -50 -50 -70	-2 -1 1 2 3 4 5 6 7 8 9	342 150 246 188 178 121 151 151 155	361 647 -108 243 -573 -170 -181 -119 126 -13/ 155 14	-4 -3 -1 12 34 5678	126 271 33₹ 22* 92 88 273 122 95 45* 724	115 -274 -26 -21 90 61 270 -195 -20 -84 13
6 7 8	0* 32* 41*	-42 34	10	2,2,L	•	ğ	74 2,5,1	-76
	1,7,L 21* 91 33* 47 26* 68 61 118 41* 81 10* 19* 27*	$ \begin{array}{r} 18\\ -86\\ -19\\ -19\\ -19\\ -19\\ -79\\ 118\\ -14\\ 82\\ -4\\ 33 \end{array} $	-11 -10 -87 -54 -54 -10 123	26* 25* 12* 72 106 57 43 174 142 65 236 231 * 119 119	15 -32 65 -107 -51 170 140 51 2316 -2336 -235 -117 118 55	-9876543210123456	39* 82 108 34* 67 127 72 269 100 46* 218 324 51 139 * 139	-25 82 -191 23 -59 -127 -11 -259 97 44 213 325 8 -13 -144 -9

186

.,

۰.

£	F ₀	KF c	r	F _o	KF _c	L	F _o	КF _с
7 8	2,5,L 65 62 2,6,L	-69 -52	-4 -3 -2 -1 0 1 2	13* 64 44 168 178 165 21*	-0 -81 35 -172 -172 162 21	-1012345	90 164 98 129 39* 0* 97	-86 -171 -92 -127 -36 -17 97
	20+ 28+ 21+ 21+ 61 277 45+ 86 90	-43 -8 -69 279 15 82 94	3 4 5 6 7 8 9	132 46 23* 91 76 23* 16*	-132 44 13 91 78 -1 -16	6 7 8 -8 -7 -6	0* 79 3,5,1 29* 0* 0*	-9 35 86 -39 -8
1234567	243 79 71 42* 30* 94 0*	-252 59 -71 -33 -34 -100 1	-10 -9 -8 -7 -6 -5 -4	73 42* 16* 171 72 277 97	-70 15 -166 -61 -275 -97		555 42* 84 24* 96 44* 30* 54	-62 -85 -100 -48 40 56
-6-5-4-3-21-0	2,7,L 42 65 119 29 29 36 5 10	-49 -53 121 3 42 44 -20	-3 -2 -1 0 1 2 3 4 5	1/1 221 320 0 196 103 160 60 90	164 225 326 -192 -155 -155 -155 -155 -155 -155 -155 -15	3 45 6 7 -7	152 37+ 0* 83 27+ 3,6,L 39*	152 5 26 -95 -30
12345	49* 34* 26* 66 18* 2,8,L	-51 -50 19 -69 -39	-10	0* 42* 8* 44* 3,3,1	-17 -47 9 -38	-6 -5 -4 -3 -1 -1	32* 0* 29* 89 104 111 36* 47*	-8 -21 -18 -98 -106 116 23 -51
-3 -2 -1 1 2	27* 38* 47* 45* 50* 81	-15 -12 47 -48 -35 -100	-9 -8 -7 -5 -4 -7 -7	81 18*- 9*- 37* 33* 142 0* 75	-87 15 37 -27 7 142 3 -78	2 3 4 5 -5	80 0* 32* 135 3,7,L 23*	69 -4 34 131 37
-10 -8 -6 -4 -2 0 2 4	140 167 84 88 207 44 179 236 174	136 168 -90 -203 -46 185 -234 -167	-1 0 1 2 3 4 5 6 7 8	103 145 97 156 82 47* 99 0* 52 48*	101 -142 89 159 -82 -36 -103 -103 61 48	-4 -3 -2 -1 0 1 2 3	0* 0* 47* 44* 30* 21* 16* 72 4,0,L	13 32 6n 46 -13 -24 14 -76
8 -11 -10 -9 -8 -7 -6 -5	139 3,1,L 20* 79 24 * 137 101 162 213	-145 39 80 5 140 -98 -163 215	-9 -8 -7 -6 -5 -4 -3 -2	3,4,L 91 23* 171 40* 192 88 183 209	-73 -12 176 37 195 85 -18J 213	-10 -8 -6 -4 -2 0 2 4 6	39 [∓] 74 280 140 427 314 41 [∓] 155 168	-18 -76 -273 -137 421 316 -11 -150 -157

Table A-5 (Continued)

Table A-5 (Continued)

.

ъ

	· •		2		· V	-i	•		
L		КF с	L	F _o	KF c	L	F	KF _C	, .
8 -	4,0,L 100 4,1,L	-97	-6 -5 -4 -3 -2	89 81 30* 150 66	86 82 -23 -149 -72	-8 -7 -6	5,2,L 91 32* 71	-90 -28 67	
-10 -9 -8 -7 -6 -5	47* 90 27* 33* 32*	-49 84 -26 -56	-1 0 1 2 3 4	130 5* 189 73 .79 100 19#	-131 -1 191 -63 71 100	-5 -4 -3 -2 -1	0* 107 94 41* 33* 60	4 106 -100 -35 -36 61	
-4 -3 -2 -1	55 110 282 175	-31 109 283 -168 (6	22+ 4,5+L	49	- - - - - - - - - - - - - - - - - - -	35¥ 16≠ 105 26¥	-19 -15 -116 5	
1 2 3 4	51 46∓ 191 109 90	-191 -191 -32 -32 -32	116 115 154 154 154	39*** 71 755 46*	-26 -26 -59 50 44	-7 -6	5,3,1 66 16*	-62	
5 6 7 8	86 38* 45* 62	-85 -23 26 61	<u>ب</u> 10 12	75 85 27₹ 27₹	-3 -79 -75 11 1	-5 -4 -3 -2 -1	47* 33* 164 15* 51	54 14 161 18 -59	े इ.स. च
-9 -8 -7	4,2,L 131 62 15*	-126 60 -10	3 4 5	39* 60 30*	-35 65 -48	0 1 2 3 4	26* 73 74 45*	14 -65 -80 -31 3	
-6 -5 -3	206 96 65 128	211 86 -58 123	-5 -4 -3	16* 13* 24*	-3 -15 -51	5	17*\ 5,4,L	-8	
-2 -1 0 1 2	144 133 66 182 125	-143 130 -63 -179 -131	-2 -1 0 1 2	100 0+ 72 92 41+	95 2 61 91 38	-54-32-21	70 24* 114 39*	-3 111 -33	
3 4 5 6 7	195 91 18* 133 148	-197 86 5 128 151	5 ()8	78 5309L 12#	-72 14	-1 0 1 2 3	19* 19* 46* 54	-109 31 -26 50 67	
-9	4,3,L 50	-53	-4	71 126 99 42* 31*	-131 -97 43 -42	-5	52 5,5,L 16*	-31	
-7 -6 -5 -4	40* 65 132 146	-40 -54 130 -143	4 6	65 88 5,1,L	73 88	-4 -3 -2 -1	52 0+ 36+ 22+ 100	-43 23 -18 -6 -97	
-3 -2 -1 0 1	21# 66 48# 0#	-13 7 -46 -35 3	-8 -7 -6 -5	93 34* 115 114	-83 37 -115 -114	1 2	28+ 24+ 6.0.L	-41	c
23456	115 18* 134 9* 100	115 135 -2 -89	-4 -3 -2 -1 0	79 39¥ 104 44¥ 284	-85 -45 101 53 287	-6 -4 -20 0	57+ 0* 91 49*	-38 1 -96 46	
- A	21∓ 4,4,4,L	- n	12346	39* 14* 110 113 0*	-26 -17 108 -113 -1	2	•	34	
- 7	30*	11	6	66	-49	•			

188

¥.

οŬ

•

ſ

APPENDIX B

COMPUTER PROGRAMMES USED IN THIS WORK

All calculations were carried out on the CDC 6400 computer at the University's computer centre. The punched paper control tapes for the neutron diffractometer were made on the PDP 9 and PDP 15 computers in the University's Tandem van der Graaff Accelerator Laboratory by kind permission of its director.

The FORTRAN programmes MACDIF and DIFDAT, used in the running of the neutron diffractometer, were written by us; and the MACRO programme ASTIG, for punching the paper tape, was written by Dr. L. Hughes and modified by Dr. J. C. Tippett. For the crystallographic calculations, extensive use was made of the University of Maryland's (1967, 1971) computing system XRAY 67 and XRAY 71. In addition, the local crystallographic least-squares programme CUDLS, written by Dr. J. S. Stephens, was used for refinements involving extinction. Some of the molecular geometry calculations and the thermal ellipsoid plot were made using ORTEP, the Oak Ridge National Laboratory's (1965) thermal ellipsoid plotting programme. The bond-strength summation programme BOST was written in FORTRAN by Dr. I. D. Brown.

REFERENCES

Anderson, M.R. and Brown, I.D. (1972) Acta Cryst. A28, 663. Adrian, H. W. W. & Feil, D. (1969). Acta Cryst. A25, 438. Ahmed, N. A. K., Liminga, R. & Olovsson, I. (1968). Acta Chem. Scand. 22, 88. Bacon, G. E. (1962). Neutron Diffraction., Second Edition. Oxford University Press, London. Bacon, G. E. & Pease, R. S.' (1955). Proc. Roy. Soc. London. A230, 359. Baur, W. H. (1965). Acta Cryst. 19, 909. Baur, W. H. (1972). Acta Cryst. B28, 1456. Bradley, A. J. (1925). Phil. Mag. 49, 1225. Brown, I. D. (1964). Acta Cryst. 17, 654. Brown, I. D. (1973). Private communication. Brown, I. D. & Shannon, R. D. (1973). Acta Cryst. A29, 266 Chung, S. J. & Hahn, Th. (1972). Mat. Res. Bull. 7 1209. Coppens, P. (1970). Thermal Neutron Diffraction (Willis, B. T. M., Editor). Oxford University Press, London. Coster, D., Knol, K. S. & Prims, J. A. (1930). Z. Phys. 63, 345. Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321. Cuthbert, J. D. & Petch, H. E. (1963). Can. J. Phys. 41, 1629. Dawson, B. (1970). Thermal Neutron Diffraction (Willis, B. T. M., Editor). Oxford University Press, London.

Dollase, W. A. (1969). Acta Cryst. <u>B25</u>, 2298.

Habuda, S. P. & Gagarinsky, Yu. V. (1971). Acta Cryst. <u>B27</u>, 1677.

Hahn, Th., Lohre, G. & Chung, S. J. (1969). Naturwissenschaften. 56, 459.

Hainsworth, F. N. & Petch, H. E. (1965). Solid State Comm. 3, 315.

Hamilton, W. C. (1964). <u>Statistics in Physical Science</u>. Ronald Press, New York.

Hamilton, W. C. & Ibers, J. A. (1968). <u>Hydrogen Bonding in</u> <u>Solids. W. A. Benjamin, New York.</u>

Hastings, R. N. & Oja, T. (1972) J. Chem. Phys. 57, 2139.

Howell, F. L. & Schmidt, V. H. (1969). J. Chem. Phys. 51, 1983.

Ibers, J. A. (1964). J. Chem. Phys. 40, 402.

International Tables for X-ray Crystallography (1952). Vol. I. Kynoch Press, Birmingham.

Johnson, C. K. (1970). <u>Thermal Neutron Diffraction</u> (Willis, B. T. M., Editor). Oxford University Press, London.

Jönsson, P.-G. & Hamilton, W. C. (1970). Acta Cryst. <u>B26</u> 536.

Knispel, R. R. & Petch, H. E. (1970). Can. J. Phys. <u>49</u>, 870.

Larson, A. C. (1967). Acta Cryst. 23, 664.

LeRoy, J. & Aleonard, S. (1972). Acta Cryst. B28, 1383.

Liminga, R. (1965). Acta Chem. Scand. 19, 1629.

Liminga, R. (1967). Acta Chem. Scand. 21, 1217.

Liminga, R. (1968). Arkiv Kemi. 28, 483.

Liminga, R. & Lundgren, J.-O. (1965). Acta Chem. Scand. 19, 1612.

Lipscomb, W. N. (1972). Trans. Am. Cryst. Assoc. 8, 79.

street 4

Lundgren, J.-O., Liminga, R. & Olovsson, I. (1968). Arkiv Kemi. 30, 81. MacClement, W. D., Pintar, M. & Petch, H. E. (1967). Can. J. Phys. 45, 3257. McGaw, B. L. & Ibers, J. A. (1963). J. Chem. Phys. 39, 2677. Matthias, B. T. & Remeika, J. P. (1956). Phys. Rev. 103, 262. Neutron Diffraction Commission (G. E. Bacon, Chairman). (1969). Acta Cryst. A25, 391. Neutron Diffraction Commission (G. E. Bacon, Chairman). (1972). Acta Eryst. A28, 357. Niizeki, N. & Koizumi, H. (1964). J. Phys. Soc. Japan. 19, 132. Nilsson, A., Liminga, R. & Olovsson, I. (1968). Acta Chem. Scand. 22, 719. Oak Ridge National Laboratory. (1965). Report. No. ORNL-1794. Johnson, C. K. Fadmanabhan, V. M. & Balasubramanian, R. (1967). Acta Cryst. 22 532. Parker, R. S. & Schmidt, V. H. (1971). Bull. Am. Phys. Soc. <u>16, 94.</u> Patterson, A. L. (1934). Phys. Rev. 46, 372. Pauling, L. (1960). The Nature of the Chemical Bond., Third Edition. Cornell University Press, Ithica. Pepinsky, R., Vedam, K., Okaya, Y. & Hoshino, S. (1958). Phys. Rev. 111, 1467. Pepinsky, R., Vedam, K., Okaya, Y. & Hoshino, S. (1958a). Phys. Rev. 111, 1508. Ross, F. (1970). Private communication. Sakurai, K. & Tomiie, Y. (1952). Acta Cryst. 5, 289. Sayre, D. (1952). Acta Cryst. 5, 60. Schlemper, E. O. & Hamilton, W. C. (1966). J. Chem. Phys. 44, 4498.

Schmidt, V. H., Drumheller, J. E. & Howell, F. L. (1971). Phys. Rev. <u>B4</u>, 4582.

Sommer, F. & Weise, K. (1916). Z. anorg. Chem. <u>94</u>, 51.

- Stout, G. H. & Jensen, L. H. (1968). X-ray Structure Determination. The Macmillan Co., London.
- Tédenac, J.AC., Vilminot, S., Cot, L., Norbert, A. & Maurin, M. (1971). Mat. Res. Bull. 6, 183.
- University of Maryland. (1967). University of Maryland's Crystallographic Computing System. Kundell, F. A., Chastain, R. V. & Stewart, J. M., Editors.
- University of Maryland. (1971). University of Maryland's Crystallographic Computing System. Stewart, J. M., Kruger, G. J., Kundell, F. A. & Baldwin, J. C., Editors.
- Van den Hende, J. H., & Boutin, H. P. (1964). Acta Cryst. <u>17</u>, 660.
- Vanderkooy, J., Cuthbert, J. D. & Petch, H. E. (1964). Can. J. Phys. 42, 1871.

Wells, A. F. (1954). Acta Cryst. 7, 545.

Willis, B. T. M. (1970). <u>Thermal Neutron Diffraction</u> (Willis, B. T. M., Editor). Oxford University Press, London.

Woolfson, M. M. (1961). Direct Methods in Crystallography. Oxford University Press, New York.