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SCOPE AND CONTENTS:

A karst area in the S.E. part of West Virginia was chosen to

assess the usefulness of speleothems. the calcareous stalagmite and

stalactite deposits found in caves. for dating by the methods of

Uranium Series Disequilibrium. The criteria for accurate age analysis

are discussed and the suitability of these deposits is noted. Analyses

of speleothems from four different karst areas are used to demonstrate
the general applicability of the Th230/U234 dating method.

An attempt is made to reconstruct Late Pleistocene climate

changes by measuring variations in the ratio of 0181016 and Cl3/Cl2

in the CaC03• Equilibrium ~actionation of the oxygen isotopes between

water and calcite • a pre-requisite for paleoclimate analysis. is

demonstrated. Variations in the oxygen isotope ratio in West Virginia

speleothems are interpreted in terms of regional temperature changes.

The problems of interpretation are discussed in detail.The DIH ratio

of fluid inclusions trapped within the speleothems is used to help

with this interpretation and to calculate approximate temperatures of
deposition.

The inferred Late Pleistocene climate changes are compared with

other published paleoclima~e data. derived mostly from the study of
deep-sea sediments and raised coral r~efs.
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ABSTRACT

The Th230/u234 and U234/U238 ratios of speleothems (calcareous

deposits) from caves developed in limestones of the Greenbrier Series,

S.E. West Virginia, was measured by alpha-particle spectrometry to

assess the deficient Th230 (ionium) and excess U234 dating methods

respectively. Pure, non-porous, very coarsely crystalline deposits

showing no signs of submersion or re-solution were found to be suitable

for Th230/U234 dating. This method was used to date deposits between

about 2000 and 300,000 years old. The decay of excess u234 , which in

principle can be used to date deposits 50,~00 to 1,500,000 years old,

could not be used as a routine method because the initial excess of

U234 could not be reliably determined. Concordant Pa231/Th230 and Th230/

U234 ages were measured for two samples from West Virginia.

Norman-Bone Cave and Grapevine Cave, both in Greenbrier Co.,

were studied in detail. Norman-Bone Cave contains speleothems at least

300,000 years old. Based on the decay of U234 , one stalagmite appeared to

have been deposited between about 760,000 years and 1,250,000 years B.P.

Speleothem ag~s from caves in the Crowsnest Pass area of Alberta, the

Nahanni region of the North West Territories and the Ciudad Valles area

of Mexico were also obtained. With the exception of the single Mexican

sample, deposition appears to stop during prolonged periods of cold

climate; therefore a continuous record of CaCo3 deposition is not preserved

in the northern caves. Based on the gaps in the recota, the coldest periods

of the Wisconsin, Illinoian and Kansan (1) glacial ages occur between

20-35,000, 135-160,000 and 240-270,000 years B.P. respectively. The inter-
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vening periods are times of cool to warm, moist climate which favour

speleothem deposition.

The ratio 018/016 (6~t) and c l3/C lt (6~t) in young and fossil

speleothems deposited in isotopic equilibrium with parent waters was

measured in an attempt to construct detailed climate curves for the

Late Pleistocene. Five young speleothems all appeared to be deposited

in isotopic equilibrium: an isotopic temperature of 8.6tl.60C was

calculated, 2.30 C lower than the present mean annual surface air temper­

ature. The discrepancy could be real, for cave temperatures are often

slightly lower than mean annual surface air temperatures.

Variations in6~t and 6~t in two dated stalagmites from Norman­

Bone Cave (NB4 and NBlO) and a flowstone deposit from Grapevine Cave

(GV2) are commonly uncorrelated within individual depositional layers,

satisfying Hendy's criteria for caC03 deposition in oxygen isotopic

equilibrium with water. Parts of NB4 and GV2, which were deposited

contemporaneously about 100,000 years ago record the same temperature

maximum.

Cyclic secular variations i"!l 6~t cannot be interpreted in terms

of climat change without knowledge of variations in 60 of waters depos-w

iting the CaC03• An attempt was made to measu~e these variations directly

by extracting water from fluid inclusions in the fossil deposits. The DIH

(6~) ratio of the water was measured and the Craig-Dansgaard relationship

Do. 0 0(6. = 86. + 10) appl1ed to calculate 6. (=6 ). Absolute temperatures1 1 1 W

calculated from 6~ and 6~t are, in general too low but with further refine-

ments the method may become a valuable tool for paleoclimatologists.

In general, 6~t is found to increase in calcite deposited at lower
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temperatures. This is attributed to the deposition of caC03 from waters.
of relatively constant isotopic composition. so that changes in 6~t are

deter~ined by the effect of te~erature on the CaCOS-"20 fractionation

factor. (0.240
/00 increase per iCC temperature drop). ~

The relative constancy of 6:.values of cave drip-waters is

attributed to seasonal caC03 deposition from waters whose isotopic comp­

osition is biassed toward mean summer values. As mean annual temperatures

decrease. CaC03 deposition is from waters which are progressively biassed

in isotopic composition toward the mean July value.

Temperature maxima are recorded in GV2 at 80.000*3000 years B.P.

and 100.000*4000 years B.P.; a lower maximum is recorded at 60.000*3000

years B.P. Temperature maxima in NBlO are recorded at 163.000*6800.

170.000*7000 and l80;000t9700 years B.P. An intensely cold period is

recorded between 180.000 and 170.000 years B.P. which was inferred to

be colder than any event recorded in GV2 between 100.000 and 60.000

years B.P.

6~t also increases as regional temperatures decrease. probably

as a result of the decreased rate of plant respiration. microbial activity

and CO2 production in the soil during cold periods. The 6~t variations are

not well enough defined to be used as a reliable indicator of cliMate change.

Good correlation is observed with the time-temperature curve for

Wisconsin glaciation and the Sangamom interglacial. as obtained from deep-

sea cores and raised coral reefs. Correlation with the penultimate (Ill­

inoian) glaciation and preceding (Yarmouth) interglacial is unclear.
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