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ABSTRACT 

A mathematical framework has been developed for describing the effects 

of inherent and induced anisotropy in clays. The structure of governing equations 

permits, in general, the modelling of the sensitivity of soil response to the rotation 

of principal stress axes. The framework employs a continuum measure of material 

fabric, which is defined as an implicit function of the spatial distribution of 

porosity /void ratio. The set of classical functions describing the state of the material 

is thus enriched by new tensorial functions reflecting the orientation of the fabric. 

Such a formulation is advantageous over a conventional plasticity approach. It 

remains physically descriptive, in a sense that, the material response is a function of 

the specific manifestations of the microstructure. 

The presented approach is general and its applicability extends to other 

geological materials, provided the proposed evolution law (Chapter 2) is 

appropriately modified and the material functions are adequately selected. In its 

present form, the formulation does not account for irreversibility of both the plastic 

flow and the evolution of microstructure ouring histories experiencing stress 

reversals. However, the mathematical structure of the constitutive relations, as 
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formulated in Chapter 3, is such that those effects can quite easily be incorporatr-d 

into the proposed framework. 

A key to full reliability of the proposed concept is a proper verification of 

the evolution law. The identification of the oriented fabric is not a simple matter 

and requires the use of complex experimental techniques. Some suggestions in that 

respect have been made in Chapter 2, where a general procedure for the estimation 

of the components of the porosi~ tensor from experimental observations has been 

proposed. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Remarks. 

Most of soils are, in general, softer than other construction materials. 

Therefore, in the geotechnical design the load must be limited to the value 

constrained by the allowable deformation, rather than the bearing capacity of soil 

(Casagrande, 1932). In addition, the excess of the pore water pressure, and thus 

the effective stresses are the function of the previous deformation history. 

Consequently, even in the design based on the shearing resistance .. the constitutive 

relation is required, unless it is assumed that shearing strength is independent or 

the deformation experienced by the material in the past. An attempt to predict the 

bearing capacity of piles or the stability analysis of slopes exemplify the most 

common situations, in which the application of overly simplified models that 

disregard the complex behaviour of soils, can seriously affect the foreseen results. 

Simultaneously, the advances in the testing techniques and instrumentation, as well 

as the rapid progress in computer technology and numerical methods, have created 

the opportunity for more rational geotechnical design. The assessment of the 

1 
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deformation of the soil mass can be obtained by the analysis of the proficiently 

defined boundary value problem of continuum mechanics. Such an analysis, 

regardless of numerical techniques employed, requires an appropriate constitutive 

relation. The mathematical sophistication of a constitutive model is the price to be 

paid for any endeavour to represent the reality more precisely. Thus, the 

applicability of the constitutive relation employed is always evaluated by an engineer 

and it calls for his personal professional judgment and experience. 

The research presented here is concerned with the introduction of a new 

tensorial measure for the soil fabric. This measure is subsequently incorporated 

into the framework of plasticity, in order to arrive at a more realistic and rational 

description of geomaterials. While the applicability of the proposed concept extends 

to various geological media, the present research focuses mainly on mechanical 

behaviour of clays. Before proceeding to the details of such formulation it is 

necessary to concentrate, for a moment, on some aspects related to the description 

of internal structure of clays. Such a discussion may be instructive in the context of 

subsequent mathematical deliberations. For geni;ral considerations it is worthwhile 

to examine clays if they were a specific type of rock. Such a viewpoint-is beneficial 

in the sense that the conclusions drawn can be applicable to the mathematical 

modelling of other geological materials. Consequently, the term 'rock' is used in its 

broadest sense, meaning any substance of the Earth crust interacting with an 

engineering structure. 



1.2 Phenomenological Considerations on the Internal Structure of 
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Rocks are conveniently classified into three main groups according to the 

method of formation (e.g. Attewell and Farmer, 1976; Blyth and De Freitas, 1984): 

igneous, sedimentary and metamorphic. Igneous rocks are formed by cooling of 

molten rock magma. Sedimentary rocks, like clays and sands, consist of mineral 

particles derived by weathering of a rock mass or/ and particles formed by growth 

activities of animals and plants. The sediments are sorted during a process of 

transport, and after their settling become hardened owing to the action of the 

gravity forces and cementation processes. Finally, the metamorphic rocks are 

generated by alteration of an existing rock mass caused by variation in 

environmental conditions, mainly: temperature, pressure and chemical composition. 

Such a generally accepted classification creates an impression that the rock-forming 

process has been completed, whereas Bowen (1922), after his resear~h on reaction 

series, pointed out that," ... there is nothing tinal about rock forming. After, so 

called complete consolidation of rock many changes may occur between minerals, 

which are ordinarily termed as metamorphism and digenesis; new minerals may be 

formed and new structure may be imposed during these processes .... " Owing to the 

disturbance in environmental conditions, often generated by engineering activities 

( e.g.: reduction or increase in a geostatic stress field, temperature changes, 

variations in a chemical composition of pore water and water content by itself), the 

processes similar to the metamorphism and digenesis may proceed in a vicinity of 
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an engineering structure. If so, the rock structure may be significantly altered and 

this will undoubtedly influence its mechanical performance, as observed on a 

macroscale. 

The atoms in both the minerals and rock forming elements, i.e., mineral 

grains and particles, are fitted together by the structural forces developed during 

the forming processes. It is generally accepted, that engineering properties of rocks 

principally depend on the character of these forces and the space composition of 

the rock forming elements; collectively called as internal structure, or briefly 

structure of a rock ( cf. Grabowska-Olszewska and Siergiejew, 1977). In hard rocks 

bonding is produced predominantly by the overlaying wave functions of the valence 

electrons (known as chemical bonding). Depending on the configuration of the 

electrons in atoms, three types of chemical bonding can be identified: ionic, 

covalent, and metallic ( cf. Grabowska-Olszewska and Siergiejew, 1977). The 

chemical bonding is typical for rocks with crystalline structure and is created when 

interactive atoms are close to each other, i.e., the distance between them is in the 

range of 0.5 to 3.5 A•. When the distance becomes larger the energy of bonding 

rapidly decreases. In loose sediments the distance between particles is usually not 

small enough to produce chemical bonding. Such structure is held together by the 

inter-particle forces (primarily of the hydrogen and van der Waal's type), a number 

of secondary forces arising from electric and magnetic fields surrounding clay 

particles and the forces generated by the presence of ions and water adjacent to the 

surface of clay particles. The energy of this type of bonding is much smaller than 
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that of a chemical bond. On the other hand, however, the inter-particle forces can 

operate over far larger distances and are often strong enough to determine the final 

arrangement of the sediment particles. In clays, the predominant role in the 

creation of structure is played by platy clay minerals. Clay plate aggregates and 

clusters build connectors between the larger grains of silt and sand. The whole 

internal structure of a clay may be quite spacious, as in normally consolidated clays 

(with large void ratio) and, at the same time, a clay may posses some amount of 

tensional strength, known as a cohesion. 

Before inspecting deformation characteristics on the macro level, it might 

be instructive to distinguish two types of solid structure, i.e., a 'compact' and an 

'open' one. In compact structure, typical for metals, each atom has close neighbours 

and the arrangement of atoms is usually quite regular (at least in crystalline solids). 

In solids with open structure, like rocks, atoms within each particle are arranged in 

the same way as in 'compact' solids, but the particles themselves are connected 

together in an irregular manner, and often at rather far distances on an atomic scale 

(Chalmers, 1982). On macroscopic level, the open structure manifests itself 

primarily in the difference between the density of soil phase and the density of the 

bulk mass of forming elements. In addition, the material properties are sensitive to 

the confining pressure. 

Atoms in crystals have a specific separation at which the interatomic forces 

are in equilibrium. An action of an external load perturbs this equilibrium and 
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atoms move apart in order to reach the new balance of interatomic forces. When 

the load is released atoms move back to their original state, hence the observed 

macroscopic behaviour is elastic. Unfortunately, this mechanism of deformation is 

purely speculative, since materials like perfect crystal are very rare, if they really 

exist at all. Most of the engineering materials contain a certain amount of 

imperfections, such as: dislocations, pores, fissures, etc., which are considered to be 

the source of irreversible deformations. In the compact policrystaline materials, 

such as metals, it is believed that dislocation movement and its growth is a major 

mechanism of irreversible deformation, unless the extent of dislocations reaches the 

saturation level and the material becomes brittle (Chalmers, 1982). In materials 

with open structure, such as rocks, although the deformation process of rock 

forming minerals might be similar to that in metals, the overall mechanism is much 

different owing to the presence of weaker bonding and larger porosity. From an 

early stage, the deformation process is influenced by the nucleation of fissures and 

the evolution of voids, which results in splitting of grains and clusters. The 

irreversible deformations are generated mainly by the relative sliding, rolling and 

lifting of particles (Mitchell, 1976; Rowe, 1962), since the structural forces between 

them may be broken much easier than the interatomic forces of mineral crystals. 

Hence, the hardening process of these materials is a result of a modification in 

granulation and an increase in grain compaction (an average contact force between 

grains decreases with the number of grains and the load required to continue the 

progressive deformation increases with wedging of particles). One can expect that, 

the evolution of internal structure of the solid plays a significant role in the 
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deformation process. On the macroscopic level the rock structure manifest~ itself 

by the directional dependence of both the strength and the deformation 

characteristics. The experimental findings on the internal structure of soils and iL~ 

relation to the anisotropy in the mechanical properties are discussed in the following 

section. 

13 Review of eXJ>erimental data pertaining to anisotropy in clays 

Deviations from isotropy (loosely defined as directional dependence of 

deformation characteristics) in natural soil deposits and rocks are already well 

documented in the literature (e.g. Mitchell, 1972; Ochiai and Lade, 1983; Ingles and 

Lee, 1971; Douglass and Voight, 1969). The following review of experimental 

observations is mainly devoted to clays, because their behaviour is of a primary 

objective. However, some auxiliary comments on anisotropic effects in sands are 

also given, in the light of certain analogies in the micro and the macro mechanical 

performance of both types of soils. 

In order to investigate the anisotropic strength-deformation characteristic 

of a material one must allow for the rotation of principal stress directions, relative 

to the axes of material symmetry (see Figure 1.1 ). In the early experiments 

pertaining to the anisotropy of clays behaviour (Khera and Krizek, 1968; Mitchell, 
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1972), the rotation of principal axes of stress was achieved by cutting the specimens 

of apparently homogeneous soil at different inclinations to the major consolidation 

stress, or the direction of the deposition, and subsequently compressing it in a 

conventional triaxial cell. Mitchell (1972) completed a number of drained and 

undrained triaxial compression tests on vertical and horizontal specimens trimmed 

from a one-dimensionally consolidated block of kaolin. Prior to the uniaxial 

compression, the specimens were isotropicly reconsolidated by the confining 

pressures both less and grater than the vertical pressure used in preparing the block 

sample. Tb~ fully drained tests exhibited no significant difference in shear strength 

between vertical and horizontal specimens, whereas in some of the undrained tests 

on overconsolidated specimens deviations from isotropy were detected. The vertical 

and the horizontal specimens rebounded above the original consolidation pressure 

exhibited behaviour very similar to specimens tested after the initial isotropic 

consolidation. Typical deformation characteristics and stress paths obtained by 

Mitchell (1972), are reproduced in Figure 1.2. Another, quite extensive study 

concerning the effects of various stress histories on the undrained response of the 

inclined specimens of an illite clay was reported by Khera and Krizek (1968). 

Specimens trimmed parallel (V series) and normal (H series) to the direction of the 

one-dimensional consolidation (up to 80 kPa) were subjected to: (1) isotropic 

consolidation, and (2,3) anisotropic consolidation under nominal principal stress 

ratios of 1.5 and 2.0, respectively. The major principal reconsolidation stress was 

always applied parallel to the axis of triaxial specimen, whereas the mean effective 

stress achieved was of the order of 100 kPa. All specimens were subsequently failed 
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by increasing the axial load, while maintaining the cell pressure constant and 

prohibiting drainage. The results reproduced in Figure 1.3, clearly indicate that the 

undrained strength is highest in vertical specimens. At the same time, the stiffness 

moduli prior to failure show a strong directional dependence. The reconsolidation 

process influences the strength as well as the deformation characteristics of the both 

series. However, its effect is more pronounced when the direction of minor 

principal stress coincides with the direction of the previous Ko-consolidation. 

Although, the anisotropy in the behaviour of both normally consolidated 

and overconsolidated clays is quite evident, the quantitative conclusions drawn from 

these results (i.e. Figure 1.2 and 1.3) are speculative (Saada and Bianchini, 1975). 

The major concern is the necessity of the removal of the initial stress system under 

which the clay was originally formed, in order to be able to trim the inclined 

specimens (structure of clay can evolve during unloading and a specimen can not be 

reconsolidated to exactly the same depositional conditions). In addition to that, the 

bending moments and shearing forces are generated at the top and the bottom of 

a recompressed specimen owing to the presence of anisotropy, which may obliterate 

the true anisotropic response (Saada and Bianchini, 1977). In order to overcome 

these deficiencies new testing equipment has been gradually developed, such as the 

hollow cylinder cell, and the directional shear cell. Some limited studies have also 

been successfully completed using the true triaxial apparatus. Although, in the latter 

case only the normal and parallel orientation of the major loading stress relative to 

the axes of primary consolidation can be achieved. 
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In the hollow cylinder cell a specimen is subjected to a combination of an 

axial and a torsional stress in a constant ratio. As a result, the inclination of the 

major principal stress is also kept constant during a test. The influence of the end 

effects, associated with the use of inclined specimens, is partially eliminated by 

selecting the specimen of appropriate height (Saada and Townsend, 1981). Similarly 

like in a triaxial cell, the intermediate principal stress is always radial and equal to 

the chamber pressure. A comprehensive study on the behaviour of undisturbed and 

Ko-consolidated clay specimens, employing the described device, have been reported 

by Saada and Bianchini (1971). The specimens were tested under the undrained 

condition and the prime objective was to investigate the influence of the orientation 

of the principal stress axes on the form of the failure criterion and on the pattern 

of effective stress paths. The analysis of 130 tests indicates that every orientation 

of the principal stress system results in a different effective stress path (Figure 1.4), 

i.e., clays with the same water content but different degree of anisotropy respond 

differently to the same stress histories. Moreover, a substantial scatter in the angle 

of internal friction, in terms of effective stresses, was obtained as indicated in Table 

1.1 (cited after Saada and Bianchini, 1975), which suggests an influence of inherent 

and induced anisotropy on the failure criterion. The adoption of the hollow cylinder 

cell, and its modified version which allows for the application of the unequal inner 

and outer pressures on the hollow specimen sides (Symes, Gens and Hight, 1984), 

offers some improvements in the testing technique. However, the repeatability of 

experiments and the influence of non-uniformities in the strain and the stress field 

on the quality of the results are still of concern to investigators (Jamiolkowski, 
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Ladd, Germaine and l.ancellotta, 1985). 

Future advances in experimental technique pertaining to soil anisotropy are 

foreseen in recently developed directional shear apparatus. In this apparatus the 

direction of the major principal stress is controlled by varying the normal and shear 

stress acting on four faces of a cubical sample placed between the rigid end platens. 

During a test, the detailed information about strain distribution is provided by 

recording either the surface displacement field or the radiographic-photographic 

tracing of the shot displacements embedded in a specimen. Figure 1.5 and 1.6 show 

the results of a series of directional shear test performed on loose sand and 

resedimented clay (Jamiolkowski et. al, 1985). The results clearly indicate the 

sensitivity of elasto-plastic behaviour and the shear resistance to the inclination of 

the directions of the principal stress system relative to the symmetry axis of 

specimen tested. Another interesting experiment illustrating the influence of the 

strain induced anisotropy was completed by Wong and Arthur (1985). The drained 

test was run on the specimen of a loose sand, initially prestrained in shearing with 

a fixed major principal stress direction. Subsequently, the specimen was unloaded 

and repeatedly sheared with major principal stress at a different direction. Figure 

1.7 shows the results of the described loading programme. The strain induced 

anisotropy results in much stiffer response at the small rotation angles and much 

softer one at the more advanced rotation. Furthermore, it should be noted that 

inherent anisotropy generates a continuous degradation in stiffness as the direction 

of major principal stress rotates from o· to 90° (Figures 1.5 and 1.6). On the 
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other hand, the strain induced anisotropy reduces stiffness to a minimum at the 

rotation of about 70°, and then it results in progressive increase (Figures 1.7). The 

similar effects were also observed in experiments on dense sands (Arthur, Chua and 

Dustan, 1977; Arthur, Bekenstein, Germaine and Ladd, 1982) 

Anisotropy in the mechanical response of clays, as observed on a 

macroscale, is a manifestation of internal soil structure. An alignment of soil 

particles has been detected in various natural clay and sand deposits ( e.g.Delage and 

Lefebvre, 1984; Duncan and Seed, 1966; McConnachi, 1974; Mitchell, 1972), and it 

appears to · be induced by both depositiom ' and environmental conditions. 

Microscopic evidence suggests that the preferred orientation in soil particles can 

also be achieved during the one-dimensional Ko-consolidation process (Delage and 

Lefebvre, 1984; McConnachi, 1974). Therefore, the problem of anisotropy entails 

identification of the initial soil structure, as linked to the inherent anisotropy, and 

its evolution owing to imposed deformation and environmental disturbances, as 

associated with the induced anisotropy. 

A large number of investigations on correlation between· microscopic 

observations and the mechanical performance of soils have been performed since 

the electron-microscopy was developed ( e.g. Barden, 1972; Delage and Lefebrve, 

1984; McConnachi, 1974; Mitchell, 1972). It has been speculated that 

micromechanical processes in clays and sands might be considered as to be similar 

(Barden, 1972). Commonly adopted single plate clay structure has been questioned. 
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It become evident that such a structure :s only relevant to dilute colloidal 

suspensions, whereas in natural clay deposits multiplied unit ( cluster) structure is 

usually observed (Barden, 1972; Pusch, 1970). Therefore, the macroscopically 

detected anisotropy in shear strength of clays can be attributed to the size and bias 

in the orientation and the shape of clay clusters. This observation can partially 

explain the dual behaviour of some clays, i.e., an anisotropic deformation mode and 

the isotropy in th(; failure criterion. One can speculate that, the anisotropy in shear 

strength of clay, as described by the failure criterion in terms of effective Mresses, 

can be associated with the cluster size. On the other hand, the deformation 

characteristics can be solely affected by the arrangement of clay plates. 

The main problem in correlating the soil structure with its macroscopically 

observed performance is the lack of the commonly accepted measure of the 

structure. Based on the existing experimental evidence, it seems logical to relate 

the directional dependence of the soil and rock behaviour to the distribution of 

pores and fissures (e.g. Delage and Lefebvre, 1984; Ingles and Lee, 1971; Douglass 

and Voight, 1969). This suggests that the spatial distribution of voids can be 

adopted as an implicit measure of soil fabric. In the scalar form the phase 

distribution in geomaterials is defined through porosity or void ratio. Consequently, 

in the subsequent development the concept of 'directional' porosity or the 

'directional' void ratio is introduced. This quantity is defined in proper 

mathematical terms and it is proposed as an implicit measure of soil structure. 
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1.4 Scope and Objectives of the Present Research. 

The presence of a non-random fabric, perceived as a no_nhomogeneity of 

the material, creates the anisotropy in the mechanical response of soils. Depending 

on the scale of the problem, there are essentially two different appro:.chi:s for the 

modelling of nonhomogeneous soils. In the case of a wide spacing, as compared to 

a problem studied, the soil mass can be modeled by an assemblage of building 

blocks (mega-elements), formed by intersections of discontinuities in the soil mass. 

The presences of fissures and joints, packed by a gouge material, is accounted for 

hy introducing the isolated discrete joint elements or the thin layer elements 

(Goodman, Taylor and Brekke, 1968; Pantle and Sharma, 1977; Desai, 1985). 

Usually, only a few large scale discontinuities intersect the soil ma:;s and the number 

of the elements can he kept within the reasonable limit. The key question of the 

analysis is to calculate the modes of the block movement and to find the most 

hazardous zones in the soil mass, when subjected to the external loads. When 

discontinuities are present in a very large number, and their spacing is close, the 

individual modelling of their influence on the entire soil mass is impractical. 

Therefore, an alternative approach of an 'equivalent continuum' may be adopted 

either via empirical relations (Amadei and Goodman, 1981), or by assuming that 

plastic flow is localized along the planes of discontinuities (Pietruszczak and Stolle, 

1986). In the latter case, the mechanical response of soil element is affected by the 

mechanical properties of both the intact material and the faults, as well as by the 

geometrical aspects of the discontinuities, i.e. the spacing and the scattering in 
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discontinuity orientations about the mean direction. 

The objective of this thesis is to develop a rational plasticity formulation 

for anisotropic particulate media, which is capable of describing the effects of 

inherent and induced anisotropy in clays. The formulation employs the concept of 

an 'equivalent continuum' and introduces a new measure of material fabric. Thus, 

the set of classical functions representing the state of the material is enriched by a 

new tensorial function. Such a formulation is advantageous over a conventional 

plasticity approach since it remains physically descriptive, i.e., the material response 

is an implicit function of the microstructure of the material. 

In Chapter 2 the concept of fabric tensor is first introduced. Next, the 

measure of spatial distribution of the porosity is defined in the form of the surface 

integral of a vector field over a representative volume. The mathematical details 

concerning the 'porosity tensor' are followed by the discussion of the evolution law 

for its components. Finally, a procedure for the estimation of the components of 

the porosity tensor from experimental observation is proposed, and illustrated by an 

example based on the available measurements. 

Chapter 3 pertains to plasticity formulation for anisotropic soil. The 

chapter begins with the review of the previous attempts of describing anisotropy of 

plastic flow. Subsequently, the concept of fabric tensor, assumed as an implicit 

function of 'directional porosity', is incorporated into the plasticity framework. 
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Various possible forms of the anisotropic elasto-plastic constitutive relation are 

derived and examined. The correspondence of the developed relations with the 

non-associated plasticity and the kinematic hardening model is discussed. 

Chapter 4 is concerned with numerical verification of the proposed 

framework. First, the form of yield surface is specified in the invariant stress 

reference frame. Subsequently, the numerical simulations pertaining to normally 

consolidated and lightly overconsolidated clays are presented and examined against 

the experimental data. This chapter includes also the description of the procedure 

developed for numerical integration of the elasto-plastic constitutive relation. 

In Chapter 5 the effect of rotation of the principal stress system on the 

resulting displacement filed is discussed. It is demonstrated that most well 

established plasticity models do not account for this influence. Ultimately, the 

capability of the proposed constitutive relations to model the sensitivity of soil 

response to the rotation of principal stress axes is examined and illustrated by some 

numerical examples. 

Finally, in Chapter 6 the basic conclusions from the presented research are 

recapitulated and some recommendations for future investigation are made. 
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Table 1 Results of undrained shear test on Florida-1 Clay 

Test Type of test a q1=(a1-a3)/2 
number 

degree psi 

1 DC 0. 39.8 

2 GC 0. 41.0 

3 DCR 15. 49.9 

4 GCR 15. 51.6 

5 DCR 31.75 49.1 

6 GCR 31.75 50.5 

7 R 45. 46.2 

8 DTR 58.25 40.5 

9 GTR 58.25 39.4 

10 DTR 75. 36.3 

11 GTR 75. 37.3 

12 DT 90. 34.2 

13 GT 90. 32.4 

Consolidation cell pressure = 80 psi 

Ko = 0.48; w = 35.23 %, wL = 62.5%, wP = 39.0 % 
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CHAPTER2 

DIRECITONAL POROSITY AS AN IMPLICIT MEASURE 

OF INHERENT AND INDUCED SOIL ANISOTROPY 

2.1 Introduction. 

In principle, the term "soil structure" refers collectively to dimension, shape, 

quality of outer surface and relative composition of soil forming elements, i.e. 

mineral grains, aggregates, cementation substances, as well as to the nature of the 

bonding between these elements (cf. Grabowska-Olszewska and Siergiejew, 1977; 

Mitchell, 1976). As noted by Mitchell (1976) " ... the term 'structure' is often used 

interchangeably with the term 'fabric' ... , however the former ... has the broader 

meaning since the fabric usually refers to the arrangement of the forming elements 

and pore spaces in a soil ... ". It should also be noted that, the geometrical (or 

spatial) composition of the soil structure is defined by some authors as the soil 

"texture" (Grabowska-Olszewska, 1977). 

In the context of the above definitions soil can be regarded as an abstract 

quantity, 'body', discerned as a set of noncountable material elements, i.e. particles 

24 
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in the physical space. The particles interact with one another and are placed in a 

field of external influence. In order to obtain a constitutive equation the inevitable 

assumptions have to be made, viz.,: 

the physical space is identified with three dimensional Euclidian space E:J; 

the particles are assumed to be distributed continuously in the physical 

space, this means that the material always exists, even in an infinitesimally 

small region of space; 

time is the absolute monotonically increasing scalar measure between 

events; 

the i,1teraction between particles and current thermoJynamical state of 

material can be represented in a form of tensorial functions and functionals 

specified on the particles; thus, the relation between the mechanical 

agencies and a mechanical response of a material must remain indifferent 

to the material orientation in the space. 

Although, strict homogeneity and continuity are never achieved in soils, it seems 

sensible for engineering purpose to consider soil as a homogeneous continuum, at 

least in a statistical sense, and to describe the effects of structural arrangement by 

means of some appropriate continuous measures. Thus, the set of classical functions 

reflecting the state of the material has to be enriched by a new tensorial function 

or functions which is or are capable of representing the soil fabric and its evolution. 

The multiplicity of the measures of the internal structure were employed 

in the past; the review of some of them is provided by Krajcinovic and 
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Lemaitre (1987). Most of these concepts were introduced intuitively, like 

Kachanov's 'damage tensor' (Vakulenko and Kachanow, 1971), which describes the 

evolution and the distribution of microcracks, or Oda's (1972) measure of the 

number of contacts between sand grains. The drawback of most concepts is the 

lack of the direct connection with the experimentally available stereological 

measurements used in geology and geophysics. In further considerations, an indirect 

measure of soil structure is introduced which can be estimated from the microscopic 

observation of soil (Pietruszczak and Krucinski, 1989). The proposed measure is 

continuous and non-singular, therefore, it can be easily incorporated into the 

mathematical framework of the theory of plasticity. Since, volume-phase 

composition is a well established and widely used characteristic of soil, an attempt 

is made to describe anisotropy of soil structure in terms of anisotropy of its phase 

distribution. As an implicit measure of the internal structure of soil, a 'directional 

porosity' is employed, whit:h could be recognized as the generalized, direction­

dependent counterpart of 'porosity',i.e., the scalar valued quantity defining the 

fraction of the void space. The 'directional porosity' is constructed as the average, 

continuous and non-singular measure in the form of an integral over a 

representative volume, and it is mathematically expressed in terms of the 

generalized Fourier series. Its values can be estimated directly from experiment by 

means of quantitative microscopy, in particular by the lineal analysis, as illustrated 

in paragraph 2.3. 
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Let us isolate in the vicinity of a material point P the unit sphere S(I'), i.e., 

R = 1 being the radius of the sphere, which limits a representative volume of the 

material v*. Consider now a test line of length Lr = 2R which is within the sphere, 

and which orientation in three dimensions is defined by spherical coordinates 4> and 

a, with respect to the Cartesian coordinate system fixed in the material, Fig. 2.1 . 

From the point of view of statistics, the sample space for this experiment consists 

of continuum of points on the surface of the sphere. Consider some small range of 

orientations specified by varying 4> and a by amounts dt and de, see Fig. 2.1 . If 

the test orientations are distributed uniformly over the sphere S(P), the fraction 

which lies within the range 4> to d4> and a to de is equal, in the limit, to the fraction 

of the sphere which is occupied by the spherical image of the orientation range, dS 

= R2sin4>d9d4>. The spherical image of the whole range of orientations is 4irR2
, 

hence the probability that an orientati,m selected at random lies within the range 

4> to d4> and e to de, i.e., the combined frequency function for 4> and,e, is: 

f( 4>,9)d9d4> = 
sin4>d9d4> 

4ir 
(2.1) 



28 

Let 

l(t,e) = ~ l;(t,e) (2.2a) 
\ 

be the total length of interceptions of the test line Lr = 2R at the position (t,e) 

with soil pores. The fraction of this test line occupied by pores is then defined as, 

L(t,e) = l(t,e)/Lr (2.2b) 

The mean value of quantity L(t,e) averaged over the domain S(P), i.e. in all 

directions oftest lines, is the expected value of the random variable L(t,e) and, for 

continuous function of the variables t and e, is expressed by formula, cf. (Hilard, 

1 %8), 

(2.3) 

where f( t,e) is the joint probability of finding a test line within the range ~ to 

t + dt and e to e + de . For uniformly distributed test lines, the substitution of 

equation (2.1) into equation (2.3) gives, 

l IJ2. L,v = - L(~.e) sine de,_:~ 
4,r O O 

(2.4) 

The last integral can be recognized as the surface integral of vector field 

L(~) .a L( ·~.e) over the unit sphere,i.e, 



Lav = ~ J L(y) dS(y) 
4,r 

S(P) 
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(2.5) 

Here y is the unit vector normal to the surface of the sphere S(P). It is well known 

from vector analysis that the above integral can be calculated as the sum of integrals 

over the projection of S(P) on three perpendicular planes defined by the coordinate 

system. Thus, in view of equation (2.2) the integral (2.4) can be expressed as, 

Lav = :,r ( J J lxdydz 
Syz 

+ JJ lydzdx + JJ lzdxdy) 

Szx Sxy 

(2.(,) 

The quantities l.dydz, lydzdx, lzdxdy are the volumes of pores contained within the 

bars of soil whose bases have area dydz, dzdx, dxdy and whose average altitudes arc 

Ix, ly, lz accordingly. Therefore, the integral (2.6) is equivalent to six times the total 

volume of pores space Vvo enclosed by unit sphere S(P). Moreover, since the term 

Sir represents the volume of the unit sphere multiplied by six, the integral (2.5) is 

the measure of average porosity n0 in the neighborhood of the point P. 

Accordingly, the lineal fraction occupied by pores is an unbiased estimator of the 

volume fraction of voids, i.e., 

n(y) "'L(y) (2.7) 
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The scalar valued function n( +,a) can be approximated by the generalized 

double Fourier series, (cf. Gelfand et al., 1963), 

n(+,a)"' :!:: :!:: Crvn +""(+,a) (2.8) 

If a set +"'(+,a) was selected as the system of orthogonal spherical harmonics, then 

the expansion (2.8) is prone to be the expansion of the type, 

"" 1 
n(+,a)"' n0 (1 + :!::' {- ano Pn(cosa) + 

n=2 2 

(2.9) 
n 

:i:: pnm (cose) (a"' cos(m+) + brvn sin(m~))}] 
m=l 

where the expansion coefficients are as follows, 

2•. 
ra"'J = 2(n+l) (n+m)! I I 
~,.... 4irn0 (n-m)! 

L(~.a) pnm (cosa) . sinadad+ 
[
cosm~J 

smm~ 
(2.10) 

Here, l\(cose) is the n-th Legendre polynomial, p"m(cosa) is the associated 

Legendre function, and 'J! indicates summation with respect to even indices only. 

Odd terms do not appear because l(y) is "symmetric" with respect to the origin at 

the point P, i.e., l(y) = 1(-y) or l(~.a) = l(~+ir,ir-a). The desired "best fit" 

approximation can be established by the "Least Square Method" and leads to 
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representation in terms of three-dimensional Cartesian tensor (after Kanatani, in 

1984 and 1985; also used by Onat, in 1984 to describe the density of distribution of 

penny-shaped voids), 

(2.1 \) 

Here, nii, niikl• ... are symmetric traceless tensor whose components arc 

combinations of the spherical expansion coefficients a...,, b...,, m = 1, 2, ... , n. In 

particular for n = 2, there is, 

12b22 

In terms of n(y) equation(2.12) becomes, 

ni1'''in = 
2n+l 

2" n 
0 

( 2nn) N{i1 •.• In) 

where Nc;i ... in> is the n-th "moment" tensor of L(y), i.e., 

(2.12) 

(2.13) 



NCil ... in} = I vi, ... Vin L(y) dS(y) 

SCP) 
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(2.14) 

and { } designates the deviatoric part of a symmetric tensor. In particular for n =2, 

Nii is related to n0 and nii by, 

(2.15a) 

15 5 
=--N .. --s .. 

8 
IJ 

2 
IJ 

7rno 
(2.15b) 

where 6 i j is the Kronecker delta. 

For isotropic distribution of pores nii vanishes, thus nii may be accepted 

m the "first approximation" as the measure of deviation from isotropy. The 

components of the higher ranks traceless tensor, i.e., niikl• niikt···rrn describe the 

higher order fluctuations of the void space distribution. The statistical analysis of 

their influences on the fitness of approximation was discussed by Kanatani (1984). 

It should be noted that, in view of equation (2.6), the approximation (2.11) directly 

describes the distribution of the volumetric fraction of voids 

(2.16) 
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Thus, the same representation can also be used in the context of 'directional void 

ratio', the latter being defined as 

e(y) = V .(Y) /Vs (2.17) 

with Vs representing the volume fraction of solids in v·. 

If the approximation of pores distribution is limited to the first two terms 

of the expansion (2.16), i.e., 

(2.18) 

and if the eigenvalues of g are distinct, then n(y) can reflect smooth orthogonal 

anisotropy. The symmetry axes of the orthogonal anisotropy are coincident with 

the principal axis of g. If two eigenvalues of g are equal then n(y) describes the 

transverse isotropy. 

In order to incorporate the proposed measure of internal structure of soil 

continuum into a phenomenological description, the form of the evolution law of the 

components of g needs to be specified. Assuming that the deformation of the 

continuum is time-independent it is possible, on the basis of some experiments ( cf. 

Duncan and Seed, 1966; McConnachi, 1974; Attewell and Farmer, 1976), to express 

the rate of change of g as an isotropic tensor-valued function of the rate of strain 
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deviator i;, the current value of fl and the average porosity ( or void ratio), i.e., 

(2.19) 

It should be noted that, the above assumption has some correspondence with a 

theoretical model, developed by Rice and Tracey (1969), for the growth of a 

spherical void in a non-hardening plastic solid. The most general form of the linear 

relationship between tensors fl and ~ can be written, after Cowin (1985), as 

(2.20) 

where the coefficients a; (i = 1, 8) are functions of n0 and the three basic invariants 

of n , i.e., trn, trn 2, trn 3• The linearization of the dependence of fl on n may be 

obtained by retaining the second order terms nii in equation (2.20). Such 

representation, which preserves the orthotropic material symmetry was proposed by 

Cowin (1985) and takes the form 



Here, fs are function of n0 and three basic invariants of n. i.e., 

where, 

f,(no• lzn, 130) = g,(no) 

f2(no, lzn, 130) = gz(no) 

f3(no, lzn, 130) = gino) 

f4(no, lzn, 130) = gJno) + gs(no)Izn 

f5(no, lzn, 130) = g6(no) 

f6(no, Izn, 130) = g,(no) 
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(2.21) 

(2.22) 

(2.23) 

The experimental evidence pertaining to clays indicates that the principal axis of D 

might be considered as coaxial with the principle axis of strain rate dcviator 

(cf.Duncan and Seed, 1966; McConnachi, 1974; Delage and Lef!,!bvrc, 1984; 

Kanatani, 1984). The above assumptions leads to a significant simplification of 

equation (2.21), since all function off except f4 may be set to zero. Thus, 

(2.24) 
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where functions g4(n
0

) and g5(n
0

) should reflect the basic experimental trends in 

the evolution of the soil fabric, i.e., 

the non-uniform distribution of voids space could not be reached in a very loose 

soil, i.e., soil domains are apart from one another, 

for a very compact soil structure, the fabric changes reach their saturation level, 

nonuniform soil structure, i.e. 120 + 0, has its pronounced effects in a certarn 

range of voids volume. 

The constraints mentioned above are satisfied by assuming the following forms for 

(2.25a) 

and, 

(2.25b) 

where A and I3 arc the material constants and In represents the porosity index 

defined by 

I = n (2.25) 

Herc, •\ and ns arc porosities corresponding to the liquid and the shrinkage limits, 

respectively. 
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If the approximation of voids distribution is confined to the representation 

(2.18) 

in which spherical harmonics of degree higher than two are disregarded, and if, 

according to equation (2.7a) 

n(y) = L(y) 

then, the components of tensor .!l can be estimated from the observation of L(v) on 

a limited number of cross-sections. In what follows, the procedure for the 

stereological estimation of the directional porosity distribution, given by equation 

(2.18), is outlined (after general recommendations given by Kanatani, 1985). The 

presented sample calculations are completed by using the results of an experimental 

study of the structure of the Champlain clay and its evolution during a standard one 

dimensional consolidation, as reported by Delage and Lefebvre (1984). 

Consider a cross-section of soil sample in a plane ,r(y) with unit normal 

y = { u,. u2, u3} r, with respect to an orthogonal Cartesian coordinate system fixed 
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in the material. Place a bunch of sampling lines laying in the plane ,r(y), having 

directions y and emanating from a common point P, being the point of intersection 

of a cross-sectional plane with a line U(y) orthogonal to the plane ,r(y). Then, the 

'zero' moment and the 'second' skew-symmetric moment of quantity L(y) in the 

plane ,r(y) with regard to a pole P are, 

M (!!) = I L(y) ds(y) 

C(!!) 

Mii(l!) = J vivi L(y) ds(y) 

C(!!) 

(2.26) 

(2.27) 

Herc, C(.!!) is the unit circle rounding the U(y) line perpendicularly and ds(y) is the 

arc length measure of C(.!!) normalized with respect to 2,r, as sketch schematically 

in Fig. 2.2. Substituting the approximations given by equations (2.18) and (2.7a) in 

equations (2.26) and (2.27) the moments of L(y) can be expressed in terms of ni i 

(cf. Kanatani, 1985), 

where parentheses ( ) desig:iate the symmetrized indices. 
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Assume that the experimental observations are made on three 

perpendicular planes with unit normals parallel to the base vectors 

~, = {l, 0, O}l, ~2 = {O, 1, O}l, ~ = {O, 0, 1}1
• In this case, the components of 

tensor n are given by the following expressions, 

= 2 -
M(~,) 

(2.30a) o,, 
,r no 

Ozz = 2 -
M(~) 

(2.30b) 
,r no 

033 = 2 -
M(~) 

(2.30c) 
,r no 

012 = 2 -
2 M12(~) 

(2.30d) 
,r no 

023=2-
2 Mz3(~,) 

(2.30c) 
,r no 

= 2 -
2 M3,(~z) 

(2.30f) 031 
,r no 

According to equations (2.30) and the definition (2.26) the diagonal terms of n arc 

proportional to average porosities measured on planes perpendicular to base 

vectors, whereas, the off-diagonal terms describe the deviation of principal directions 

of n relative to the referential coordinate system. The integrals M(~k) and M; i (~k) 

can be calculated using the trapezoidal integration scheme 
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(2.31) 

(2.32) 

Here, L(~k.am) is the fraction of the test line (occupied by voids), whose orientation, 

in a plane with unit normal ~k' is described in terms of an angle a, i.e. 

am = mir /N (m = 0, 1, 2, ... , N - 1). 

The above estimates for the components of fl, in terms of the moments of 

L(y) were employed to evaluate the porosity distribution and its evolution induced 

by K0consolidation process. In particular, the experimental data reported by 

Delage and Lefebvre (1984) were used. According to Delage and Lefebvre (1984), 

the undisturbed samples of the Champlain clay were consolidated in a standard 

ocdomcter with 1.5 load increment ratio applied every 24 h to 23 kPa, 124 kPa, 

421 kPa and 1452 kPa, respectively. The load was then released in several stages 

and samples were left 24 h under the load of 4 kPa. Specimens, for microscopic 

structure identification, were trimmed in a form of small sticks with. a thin wire, 

quick frozen in Freon 22, cooled by liquid nitrogen, freeze-fractured, and 

sublimated. The observations of the clay cross-sections were performed using 

JEOL 25 scanning electron microscope. A graphical representations of porosity, in 

a horizontai and a vertical plane, at two different levels of the consolidation process, 

arc presented in Figure 2.3, after Delage and Lefebvre, 1984. 
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For a purpose of lineal analysis a discus part of the cross-sections 

present~d in Fig. 2.3 was considered. The set of eighteen probe lines was drawn 

(N = 18), with orientations am= (m-1),r/N (m = 1, ... , 18), as sketched in Fig. 2.4. 

Then, the total length of the intersections of each test line with pores was 

measured and, subsequently, the length of the intersections per unit length of the 

test line L(~, am) was evaluated. The results of measurements and calculations arc 

summarized in Table 2.1 for the intact sample, and in Table 2.2 for the sample 

consolidated under the pressure 421 kPa. 

During the 0ne dimensional consolidation, both under in situ conditions 

and in oedometer, an axisymmetric deformation mode is imposed. Therefore, the 

evolution of the porosity distribution was restricted to one vertical plane only 

(Delage and Lefebvre. 1984). In calculating the components of tensor !] it was 

assumed that, 

(2.33) 
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Table 2.1. Calculations of porosity distribution for the intact sample 

Direction Horizontal plane Vertical plane 

(m) °'m Llk(~,am) L(~,am) Llk(~l'°'m) L(~l'°'m) 

(1) o· 95.5 mm 0.530 48.0 mm 0.267 

(2) JO• 109.5 mm 0.608 42.5 mm 0.236 

(3) 20· 99.0 mm 0.550 24.0 mm 0.133 

(4) 30• 122.5 mm 0.680 29.0 mm 0.161 
,~· 40• 92.0 mm 0.511 20.0 mm 0.111 \:,) 

(6) so· 97.0 mm 0.539 32.0 mm 0.178 

(7) 60• 100.5 mm 0.558 47.0 mm 0.261 

(8) 70• 92.0 mm 0.511 30.0 mm 0.167 

(9) 80° 108.0 mm 0.600 27.0 mm 0.150 

( 10) 90• 111.0 mm 0.616 13.5 mm 0.075 

( 11) JO()• 110.5 mm 0.614 22.0 mm 0.122 

( 12) 110· 110.0 mm 0.611 50.5 mm 0.280 

( 13) 120· 86.0 mm 0.478 47.5 mm 0.264 

( 14) 130° 86.0 mm 0.478 58.0 mm 0.322 

( 15) 14()• 96.0 mm 0.533 31.0 mm 0.172 

(16) 15()• 67.5 mm 0.375 26.5 mm 0.147 

(17) 160• 67.0 mm 0.372 21.0 mm 0.117 

( 18) no· 101.5 mm 0.564 53.0 mm 0.294 

M (~) = 3.39 M (~,) = 1.21 

M, 2 (£J) = 0.0240 M23 (~,) = - 0.00258 
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Table 2.2. Calculations of porosity distribution for the consolidated :;am11k 

Direction Horizontal plane Vertical plane 

(m) °'m Llk(C:i,°'nJ L(C:i,°'m) Llk(c,.am) L(c1,a .. ) 

(1) o· 47.2 mm 0.262 50.0 mm 0.278 

(2) 10· 55.0 mm 0.305 33.0 mm 0.183 

(3) 20· 50.0 mm 0.228 43.5 mm 0.242 

(4) 30° 58.5 mm 0.325 36.0 mm 0.200 

(5) 40° 33.0 mm 0.183 28.5 mm 0.158 

(6) so· 40.0 mm 0.222 30.0 mm 0.167 

(7) 60° 55.5 mm 0.308 22.0 mm 0.122 

(8) 70° 94.0 mm 0.522 15.0 mm 0.083 

(9) so· 53.0 mm 0.294 12.5 mm (J.069 

(10) 90° 33.0 mm 0.183 4.0 mm 0.022 

(11) 100· 0.0 mm 0.0 7.0 mm 0.039 

(12) 110· 12.0 mm 0.067 5.0 mm 0.278 

(13) 120· 14.0 mm 0.078 29.0 mm 0.161 

(14) 130° 29.5 mm 0.164 23.0 mm 0.128 

(15) 140° 27.0 mm 0.150 23.5 mm 0.130 

(16) 150° 57.5 mm 0.319 15.5 mm 0.086 

(17) 160• 35.0 mm 0.194 30.0 mm 0.167 

(18) 170° 51.2 mm 0.286 29.5 mm 0.164 

M (e;i) = 1.45 M (c1) = 0.847 

M12 (e;i) = 0.0416 M23 (c1) = - 0.00224 
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The results using expressions (2.33a) to (2.33f) and values given in Table 2.1 
• 

and Tahle 2.2., are presented below. 

Intact sample 

n0 = 0.308 , e0 = 0.445 

0 11 = 0.745 , 0 22 = 0.745 , 0 33 = - 1.508 

0 12 = 0.0 , 0 23 = -0.00532 , 0 13 = - 0.00532 

the principal values of oii are, 

0 11 = 0.754 , 0 22 = 0.754 , 0 33 = - 1.508, 9 = 0° 

Consolidated sample 

n0 = 0.167 , e0 = 0.200 

0 11 = 0.381 , 0 22 = 0.381 , 0 33 = - 0.762 

0 12 = 0.0 , 0 23 = 0.00858 , 0 13 = 0.00858 

the principal values are, 

0 11 = 0.381 , 0 22 = 0.381 , 0 33 = - 0.762 , a = o· 
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The porosity profiles, for both intact and consolidated sample, are presented in 

graphical form in Fig. 2.5. It should be noted that the average porosities n0 , as 

estimated by the described stereological procedure, are in agreement with values 

reported by Delage and Lefebvre (1984). 
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CHAPTER3 

PLASTICITY FORMULATION FOR ANISOTROPIC PARTICULATE MEDIA 

3.1 Introduction: yield criteria for anisotropic media. 

Historically, the first attempt to introduce the dependence of plastic flow 

on inherent anisotropy was made by Hill (1950). He suggested that anisotropic 

deformation of a metal sheet, where orthotropic symmetry is expected (with 

symmetry axis perpendicular to the plane of the sheet, and parallel and 

perpendicular to the rolling direction), can be described by an associated flow rule 

with a yield function in the form of a generalized von Misses yield criterion, i.e., 

(3.1) 

In expression (3.1) the stress tensor!!. is referred to the principal axes of anisotropy 

and F, G, H, L, M, N are material constants, whose values can be determined 

from pure shear and simple tension experiments (Johnson, Sowerby and Ventor, 
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1982). A frame-indifferent generali7.ation of the yield function (3.1) can be written 

as follows 

(3.2) 

Here, a fourth order tensor C; Jkl characterizes material symmetry and k is the yield 

stress in pure shear. In the case of isotropy C; Jkl is identified with a fourth order 

isotropic tensor, i.e., 

(3.3a) 

When, the scalar coefficients C; (i = 1, 2, 3) are selected as 

(3.3b) 

equation (3.2) reduces to the von Misses yield criterion, i.e., 

f = S-. S-. - 2k2 = Q 
1 J 1 J 

(3.3c) 

If some specific constrains are imposed on the coupling between stress and strain 

tensor (cf. Johnson, Sowerby and Ventor, 1982), then for a case of an orthotropic 

incompressible material the number of the independent components of C1Jkl can be 
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reduced to six. In addition, these six independent components can be related to the 

empirical constants appearing in equation (3.1), as demonstrated by Sowerby (1988). 

A generalized version of Hill's model, accounting for an evolution of the 

anisotropy tensor C1 Jkl with progressing deformation, found certain practical 

applications in the analysis of a rolled-sheet forming process (Johnson, Sowerby 

and Ventor, 1982). However, equation (3.2) can only describe an isotropic 

hardening process. Thus, Hill's formulation is not capable of modellir.;; such 

important phenomena as the Bauschinger effect and induced anisotropy. One way 

of describing these effects is by means of a plasticity formulation incorporating a 

kinematic hardening. Several such formulations have already been proposed in the 

literature (e.g. Prevost, 1978; Pietruszczak and Mroz, 1983; Anandarajah and 

Dafalias, 1986). An alternative formulation may be derived by employing a more 

general concept of the anisotropic hardening rule, as primarily proposed for 

pressure non-sensitive materials by Shrivastava, Mroz and Dubey (1973) or, recently 

defined in a more versatile form by Bohler (1987). Following the discussior, 

presented by Shrivastava, Mroz and Dubey (1973), the yield condition can be 

assumed in the following form 

f = f(s;;, a;;, re) = 0 (3.4) 
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where g denotes a tensorial hardening parameter, ill is a scalar function tracing 

history of irreversible deformation, and tensor li defines the stre.s deviator. 

Employing theorems of representation for a scalar-valued function of a tensor, the 

yield criterion (3.4) can be represented by a polynomial in the integrity basis of 

tensors li and g . Further assumptions concerning the specification of the 

coefficients entering the polynomial expansion of equation (3.4 ), results in the 

following tensorial form of an anisotropic yield criterion ( cf. Shrivastava, Mroz and 

Dubey, 1973) 

(3.5a) 

where, 

(3.Sb) 

(3.Sc) 

and A and p are material constants. In geometrical terms the surface described by 

equation (3.5) can deform, rotate as well as translate in stress space owing to the 

evolution of the tensorial hardening parameter g. In particular, if the components 

of g are assumed to be proportional to the plastic strain tensor, i.e., 
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c = canst. (3.Sd) 

then some of the formerly proposed anisotropic yield criteria for plastic solid (e.g. 

Ziegler, 1959; Baltov and Sawczuk, 1965) can be obtained, as extensively discussed 

by Shrivastava, Mroz and Dubey (1973). 

A systematic generalization of the various hardening rules for anisotropic 

plastic solids can be obtained by relating the description of hardening process to the 

isotropic or anisotropic transformation of stress tensor. Such a broad and consistent 

concept was proposed by Bohler (1987) and is shortly outlined below. Let the 

functional form of an anisotropic yield function, defined in stress space, be identified 

with a scalar function of tensor arguments!!, g<i>, £P, i.e., 

(3.6a) 

According to the Cayley-Hamilton Theorem one can write the function (3.6a) in 

f
. . f (i) p . terms o mvanants o tensors Q., g , £., 1.e., 

Herc, 11,,, 12.,, 1
30 

are invariants r · 0::;5 tensor Q. and Jk stands for an irreducible 

set of mixed invariants of Q., g Once again g<; > denotes a set of tensors 
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representing material symmetry. Ultimately, a general concept of the hardening 

rule is based on the assumption that the evolution of function (3.6) with progressing 

deformation is taken into account by the specific transformation of stress tensor ( cf. 

Bohler, 1987), i.e., 

(3.7) 

The transformation indicated by equation (3.7) modifies the yield function (3.6) to 

the form 

(3.8) 

The effects of both inherent and induced anisotropy as well as coupling between 

them, are embodied by the mixed invariants Jk of tensors g_, g<i> and ~P . 

Therefore, in view of equations (3.6) to (3.8) the modelling of anisotropy is reduced 

to the specification of stress tensor transformation (3.7). Examples of a such 

transformation for a number of selected anisotropic yield functions arc given by 

Bohler ( 1987). 

The main deficiency of most of the existing formulations is the formal 

dependence of the anisotropic hardening function g on the plastic strain tensor ~P. 

without any correlation to the material structure. In what follows, an alternative 
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description will be proposed, incorporating the scalar valued function n(J£) which 

defines, through the components of!], the ~p~tial distribution of porosity /void ratio 

within the sample. 

32 Plasticity framework for materials with inherently anisotropic 

fabric. 

The spatial distribution of porosity /void ratio can be accepted as an 

implicit measure of internal structure of the material. Obviously, the components 

of!] cannot be strictly identified with the fabric tensor, since the latter is supposed 

to describe directly the geometry of microstructure, i.e., size and geometrical 

arrangement of particles. However, one can define the fabric tensor g as an 

isotropic tensor-valued function of tensor !] . The function g = g(!]) has a 

polynomial representation of the form 

(3.11) 

where a
0

• a, and a2 are scalar functions of the basic invariants of!]. The tensor g 

is a symmetric second orde; tensor which describes, by means of the vectorial form, 

";/j a fabric ellipsoid. The ellipsoid with three unequal axes (associated with the 
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material orthotropy) corresponds to three distinct eigenvalues of g , whereas three 

equal eigenvalues describe a sphere associated with the isotropy of fabric. It should 

be noted that when a0 = a, = canst. and a2 = 0 the representation (3.1) reduces 

to 

(3.12) 

In this case the directional distribution of porosity /void ratio describes by itself the 

geometric anisotropy in the fabric of the material. 

If the local geometric arrangement of the microstructure of porous media 

displays a significant bias in the distribution, this will inevitably affect the elastic 

properties of the material as well as the functional form of the failure/yield locus. 

Assume that in the elastic range the stress tensor is an isotropic tensor-valued 

function of both strain tensor f. and the fabric tensor g 

(3.13) 

The most general representation of the elasticity tensor Diikl in terms of the fabric 

tensor, consistent with the isotropy requirement imposed on the function (3.13), ha~ 

been derived by Cowin ( 1985). The form is analogous to representation (2.20), i.e., 
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(3.14) 

It has been shown (Cowin, 1985) that orthotropy is the least material symmetry 

described by the representation (3.14) and it corresponds to the case when the 

eigenvalues of g are distinct. Transverse isotropy is described by two distinct 

eigenvalues of g and the case when components aii are proportional to Ii ii 

represents material isotropy. The coefficients a
0 

through ~ are functions of the 

three basic invariants of g and their specification has been explained in detail by 

Cowin ( 1985). 

In order to specify the form of the failure criterion in the' presence of 

fabric anisotropy, one should write 

(3.15) 
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Since F must be an isotropic function of g and g_ , it can only depend on ten 

functionally independent invariants of both tensors. Thus, 

where 

(3.17) 

The proper representation can be obtained by expanding (3.16) in a polynomial of 

its components, i.e. the above basic and simultaneous invariants of g and g_ • 

Cowin (1986) developed a quadratic approximation by retaining only linear terms 

and terms of order two, which leads to 

(3.18) 
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where 

(3.19) 

and the representation for Flikl in terms of a 1 i is identical with the representation 

for D1ikl in terms of a 1i' as given by equation (3.14). The identification of function 

(3.18) reduces to determination of coefficients g, ,g2 ,g3 and a1 through~ which are 

function of the basic invariants of g . Obviously, other approximations could be 

employed, as discussed for example by Rowlands (1985). 

By inspecting representation (3.11), it appears that an approximation 

employing a0 = I and a2 = 0, i.e. 

(3.20) 

may he a reasonable compromise between the accuracy and the complexity of the 

description of fabric. In samples with inherent isotropy the components of n are of 

the order of accumulated deviatoric strain, as implied by equation (2.24 ). 

Therefore, it seems reasonable to speculate that in most cases the deformation 

process will have a negligible effect on material fabric, i.e. 

- (3.21) 
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where n; (i = 1, 2, 3) represent the eigenvalues of fl. This may also apply to 

materials displaying inherent anisotropy. As the failure criterion is approached thL' 

plastic strain associated with the rebuilding of the microstructurc may obliterate the 

effect of inherent anisotropy, in which case aii :::: 6 ii' 

The above conclusions are widely supported by experimental evidence. 

Over the last three decades a large number of tests were performed on isotropically 

and K
0
-consolidated clay samples prepared from a slurry (e.g. l lcnkcl and Sowa, 

1963; Skempton and Sowa, 1963; Ladd, 1965; Lee and Morrison, 1970; Kirkpatric 

and Rennie, 1972). The results indicated that there was no inOuence of deformation 

history on the failure criterion in terms of effective stress. At the same time. the 

tests on samples of undisturbed London clay (Barden, 1972), artificially prepared 

kaolin with oriented particles (Morgenstern and Tachlenko, l %7) or vertically and 

horizontally cut samples of overconsolidated kaolin (Duncan and Seed, 1%(,) 

showed no inOuence of inherent anisotropy on the functional form of the failure 

criterion. It appears that in materials with small grain size (clay, silt, etc.) the fabric 

remains essentially isotropic, i.e. aii " 6 ii' On the other hand, the fabric anisotropy 

manifest itself strongly in media with relatively large grain size. There is some 

evidence that the inherent anisotropy affects both the failure criterion and the 

elastic response in materials like gravel with Oat grains (I lavlicck and Mysliv<.:c, 

1965), sand with elongated grains (Oda, 1972), etc. 
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33 Description of anisotropy of plastic flow in materials with sman grain size 

Let us concentrate now on the influence of material anisotropy on the 

irreversible deformation process (under a 1J"' 61i)· In such media, the bias in the 

spatial distribution of porosity, as defined by Il , will inevitably affect the plastic 

flow. The idea of incorporating the tensor n into constitutive framework is not 

unique. One way of formulating the problem is to assume that Il affects directly the 

functional form of the yield criterion. Then, 

af • p 
€ ij = ). (3.22) 

(3.23) 

i.e., f = 0 depends on the deformation history (recorded by <E) and ten (in general) 

functionally independent invariants of both tensors !l. and n. It is interesting to 

note that, since the components of Il are derived from the total deviatroic strain~. 

the yield surface f = 0 will undergo progressive evolution not only during an active 

loading process, but also for histories satisfying f < 0. Consequently, such a 

formulation will account for the influence of the rotation of the axes of principal 

stress, which invariably takes place in many practical geotechnical problems. 
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An alternative approach, pursued in the subsequent development, may be 

based on resolving the plastic strain rate into components governing a pseudo· 

isotropic response and divergence from it. It can be assumed, for this purpose, that 

as long as the material remains isotropic the deformation process can be described 

by a plasticity formulation incorporating the isotropic hardening rule, and that the 

deviations from isotropy are accounted for through 

• p • 
€ ij = "' 

af 
(3.24) 

f = f(a;;, .e) = 0 (3.25) 

In equation(3.24) the first term in the flow rule represents the plastic strain rates 

generated in a fictitious isotropic medium, whereas Q is a symmetric second order 

tensor whose components are function of Il and the deformation history .e 

(3.26) 

One of the simplest formulations of all will be obtained by taking 

(3.27) 

and 



µ. = ). 

where h is a scalar valued function of deformation history. 

Substituting equation (3.27) and (3.28) into equation (3.24) yields 

•P 
€ i j 

af 
=). (-

aaij 
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(3.28) 

(3.29) 

The above now rule is analogous to a non-associated law and has, to some extent, 

similar numerical consequences to those of implementing a kinematic hardening. 

Namely, the deviations from isotropy result in a progressive deviation of the 

direction of the plastic now from that specified by the gradient tensor af/aaii' 

In order tu derive the constitutive relation assume that the parameter ii:! is 

identified with EP;; ,i.e. plastic volumetric strain generated in a fictitious isotropic 

medium. Thus, 

r = f(aii' EP;;) = 0 (3.30) 

af • p 
= !p = ). (3.31) ( ii € ii 

aa;; 

It should be noted that the relations (3.30) and (3.31) correspond to the well 

established Critical State concept. Writing the consistency condition 



• af 
f = --(7 .. 

1 J 
aa;i 

. af 
+ >.---

-P 8t ;; 

af 
= 0 

and substituting the elasticity relationship 

yields 

1 af 
). = ----

where 

af af af af 
H = -- DiJ'kt ( --- + hnkl ) - --- ---

a a -P 
aa;i akl E ;; aakk 
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(3.32) 

(3.33) 

(3.34) 

(3.35) 

Substitution of equation (3.34) back into equation (3.33) leads, after some algebraic 

manipulations, to the constitutive relation 

where 

af 
+ h npq) --- D,skl 

a ors 

(3.36) 

(3.37) 

The constitutive matrix defined by equation (3.37) has a similar form to that 

obtained using a non-associated flow rule. The deviation from normality, described 
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in terms of .!] , allows for a simple and quite effective description of the effects of 

both inherent and induced anisotropy, as discussed in subsequent chapter. At the 

same time, the analysis is diversified by providing, through the function n(y), an 

insight into a deformation pattern on a microscale. The mathematical formulation 

incorporates one additional material function h, which can be identified from 

conventional "triaxial" tests. Details concerning specification of the yield function 

(3.32) are given in chapter 4. 

Before leaving this section, an alternative approach can be briefly outlined 

by admitting a coupling between both terms in equation (3.24 ), instead of deviation 

from normality. Such a flow rule will be analogous to that derived in multi-yield 

loci theories, implying that the direction of plastic strain rate will be sensitive to the 

direction of stress rate. 

Assume that the components of G , equation (3.26), are determined from 

a potential function 

g = g(n) = const. (3.38) 

(3.39) 

where D is defined in such a manner that equation (2.18) becomes 
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Let the tensor Q be defined through the potential g(ij), i.e., 

ag(fi) 
(3.40) 

where Ciikt represents the elastic compliance tensor and h is again a scalar valued 

function of deformation history. Introduce a family of loading surfaces, i.e., 

f1 = f1 (fl) = const. (3.41) 

defining the 'neutral' states for structural rearrangement as, 

µ. = 
af,(fl) 

(3.42) 

Then, according to equation (3.24), for µ. > 0 there is 

•p 
€ ij = 

af ag(f!) af1(f!) 
>- -- + h cijkl ( --- ----) i\,q 

aa;i ankt anpq 
(3.43) 
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It should be noted that in the above flow rule, the plastic strain rates i' 11 = µ. GIJ, 

equation (3.24 ), can be interpreted as being derived from residual stress rates a\ l' 

•, C • R 
E ; J = ; Jkt a kt 

ag(Il) 
(3.44) 

Such an approach is analogous to strain-space plasticity formulation. 

In order to derive the constitutive relation, Jet us express the evolution law 

for the components of fi in the form 

(3.45) 

where 13iJkt is defined as 

(3.46) 

and 

(3.47) 
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Substituting equ:i.tion(3.45) into consistency condition (3.32) yields 

f = 
af af af1(fi) • 

D;Jkl { Ekl - 1-- - ( n,.)akl } 
aaii aakt an,. 

(3.48) 

. af af 
+ ). = 0 

-p 
8€ ii aakk 

Thus, after some transformations, the plastic multiplier >. is given by the following 

relation 

1 af 
). = H -- ( Dijkl - sijkl) c\l (3.49) 

aa; 1 

where, 

af af af af 
H = DiJkt -- (3.50) 

-P aa; 1 aakt 8€ Ii aakk 

and 

sijkl = h 
ag(fi) af1(n) 

Bpqkt (3.51) 
afi;1 anpq 

Finally, following the same procedure to th:it used for deriving equation (3.37) one 

obtains 
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(3.52) 

It should be noted that the first term in equation (3.52) multiplied by Dpqkl 

represents a conventional elastoplastic constitutive matrix and that the anisotropy 

effects enter through the components of Spqkl' 

The proposed constitutive relations, equations (3.37) and (3.52) are capable 

of describing the innuence of inherent and induced anisotropy on the deformation 

process. In the subsequent chapter the performance of simplest description, i.e. 

defined hy equation (3.37), is discussed and verified against the existing experimental 

data. 



CHAPTER4 

NUMERICAL SIMUlATIONS OF ANISOTROPY EFFECl'S IN NORMALLY 

AND LIGHTLY OVER.CONSOLIDATED CI A YS 

4.1 Introduction 

The framework described in the previous chapter is now illustrated by 

some numerical examples pertaining to normally consolidated and lightly 

overconsolidated clays. The simulations are based on the flow rule represented by 

equation (3.29) and the evolution law given by equation (2.24 ). In the subsequent 

section, 4.2, the typical invariant measures of the effective stress state arc briefly 

reviewed, followed by the mathematical details concerning the specification of the 

functional form of the yield surface, f = 0 (section 4.3). Section 4.4 refers lo the 

applied numerical scheme for the integration of the elasto-plastic constitutive law. 

The developed numerical code allows to intesirate the stress-strain relation along 

prescribed stress or strain paths, and covers two extreme cases of soil behaviour, i.e. 

fully drained and undrained response. In section 4.6 the results of the numerkal 

simulations are presented and examined against the experimental data reported by 

71 
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Skempton and Sowa (1963), and Calladine (1971). The soil is assumed to be 

initially isotropic. The sets of parameters describing the material are specified in 

section 4.5. 

4.2 Preliminary Definitions: Invariant Measures of the Effective 

Stress State. 

In the developed constitutive framework the rate of irreversible 

deformation, equation (3.24 ), has been resolved into components governing the 

pseudo-isotropic response and the divergency part. The direction of the plastic 

now in a fictitious isotropic medium has been identified with the direction of the 

gradient vector of an isotropic yield function, symbolically denoted by equation 

(3.JO). This function depends on the effective stress tensor Q and a single internal 

variable .c , which accounts for the past loading history. 

According to the theorem of the representation of tensor functions, an 

isotropic scalar-valued function of a symmetric second order tensor is uniquely 

defined as a function of its basic invariants. The selection of a particular set of 

invariants is not unique, in a sense that any invariant measure (which is a function 

of basic invariants) may be employed. In the geotechnical practice, most 

experiments arc completed in the 'triaxial' stress configuration (triaxial apparatus) 
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or are referred to this configuration. A set of stress invariants which is compatible 

with static values measured in a triaxial cell and, at the same time, remains 

convenient for graphical representation was introduced by Nayak and Zicnkicwicz 

(1972). These invariants are used in the subsequent development. 

The first invariant is the mean effective stress 1 I, i.e., 

(4.1) 

(Note: the compressive stresses and strains are considered negative). 

The second invariant a and the angular measure of the third invariant e , arc 

derived from the stress deviator li , i.e., 

and 

e = 
1 

3 

3J2 
arcsin [ - --

2 

with the limits imposed on e angle, - 1r /6;,; e ;,; 1r /6. 

In the above definitions, J3 is the third invariant of li , i.e., 

(4.3) 

1 in the subsequent definitions tensor !!. indicates the effective stress tensor. 
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In the principal stress space e represents an angle defined in the deviatoric plane 

(,r), i.e., a plane which is perpendicular to the hydrostatic axis (a1 = a 2 = a3}. 

Hence, in the ,r-plane the first invariant I remains constant and a yield function 

represents a locus of points whose distances from the hydrostatic axis have the 

magnitude of J2a. In addition, the ,r-plane section of an isotropic yield surface 

forms six symmetric sectors and the limits imposed on e represent the span of these 

sectors. 

If a yield function is written in terms of the effective stress invariants (I, 

a, e), i.e., 

f = f(I, a, e, .e) = o (4.6) 

then its gradient is defined by 

af af al af aa af ae 
( 4.7a) -- =----- + ----- + -----

The above expression can be also written in a vectorial form, more suitable for 

numerical applications, i.e., 

af 
(4.Tu) 
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where C11 C2, <; are scalar arguments and h,, h2, ~ are interpreted as vectors in 

a six-dimensional effective stress space. The specification of these measures, for the 

yield function introduced in section 4.3, is discussed in Appendix A. 

Finally, the efiective principal stresses are related to the stress invariants 

by, 

2,r 
a, sin (e + -) I 

3 
za 

Uz = sine + I (4.5) 
J3 

4,r 
U3 sin (e + -) I 

3 

where a 1 > a2 > U3. 

43 Specification of the yield function. 

As pointed out by Drucker (1966), the selection of the specific functional 

form of the yield surface is to a large extent wide-open. The choice depends 

primarily on the convenience in the experimental verification and in the subsequent 

numerical implementation. The forms of the yield function advocated in literature 

are usually associated with the assumption about both the character of the pla~tic 
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flow and the plastic hardening rule. The onset of the plastic flow is defined either, 

as a combination of yield points identified from experimental stress-strain plots, or 

on the base of reasoning about the character of the dissipation work equation (e.g.: 

Burland, 1965; Podgorski, 1985; Lade and Kim, 1988). 

In the stress reference frame I, a, e , an isotropic yield surface can be 

completely defined by specifying its cross-sectional contour in the deviatoric plane 

(ir-plane) and its meridian section in the I· a subspace. The shape of the contour 

in the dcviatoric plane can be described through the function g( e ). This function 

is defined as the ratio of the yielding point distances, i.e., 

a(e) 
g(0) = (4.8) 

Here 0(8) is proportional to the current distance of the yield locus from the 

hydrostatic axis, whereas a c is a maximum distance measured in 'triaxial' 

compression (8 = ,r /6); both distances are evaluated at a constant confining 

pressure I. 

The influence of the shape of the deviatoric cross-section on the 

computational results pertaining to the bearing capacity problem, w:u, examined by 

Zienkiewicz and Pande (1977). Recently, the issu~ of the convexity of various 
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71"-plane idealizations has been addressed by Jiang and Pietruszczak ( 1988). The 

latter work demonstrates that, in the context of an isotropic plastic solid, the convex 

shape of the deviatoric contour is a physical rather than a mathematical 

requirement. Indeed, in the case of an associated plastic flow, the criterion of the 

positive rate of the energy dissipation does not require convexity of the yield surface 

in the octahedral plane, i.e., the irreversibility condition docs not depend on e. 

Thus, the convexity requirement seems to be more critical in the context of the limit 

state analysis, where it is indispensable in proving the limit theorems. On the other 

hand however, the concave shape of the deviatoric cross-section has not yet been 

detected by experimentalist. Therefore, Jiang and Pietruszczak ( 1988) propose a 

novel and less complicated idealization of the g(e) function. This idealization, 

which provides a convex shape of the 71"-plane section, has been used in the 

subsequent development. 

It can be assumed that the yield locus in deviatoric 71"-plane can be 

represented by the following function 

g(e) = 
K (ff +a - ff-a) 

(4.9a) 
K )I+a - ff-a + (1-K) ff-a sin 3e 

The function g(e) is defined in such a manner that g(7r /6) = 1 and g(-71" /6) = K. 

The parameter K denotes the ratio of deviatoric stress intensities in 'triaxial' 
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extension and compression, as illustrated in Figure 4.1., and is related to the angle 

of internal friction ~ by the expression 

K = (3 - sin ~)/(3 + sin~) (4.9b) 

The function g(a), equation (4.9a), describes a noncircular convex cross-section in 

the deviatoric plane. The sensitivity of the function g(a) to the confining pressure 

can be accounted for by assuming K = K(l). For the value of K close to i, the rr-

plane cross-section degenerates into a curvelinear triangle and resumes a nearly 

circular shape for the K's approaching 1, as illustrated in Figure 4.2. It should be 

noted that for a = 1 the derivative ag/aa is singular, however this deficiency can 

he controlled by selecting a - 1 . 

In order to complete the description of the yield surface its meridional 

section must be specified. Assume that in the meridional plane (! - a /g(e)) the 

yield function is asymmetric and consists of two parts; i.e. the segment of a 

parabola, represented by 

f = a + p 

ryg( a) (1
0 

- I.) 
[ (I - Ix)2 - I\] = 0 ( 4.lOa) 
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and an elliptical cap 

f. = cl + 172 g2 (e) [(I- lx)2 - (lo - lx)2] = 0 (4. !0h) 

Such a concept is similar to that proposed by Sandler, DiMagio and 13aladi ( 197<,) 

and permits a considerable leeway in the modelling of the plastic !low of geological 

materials. The elliptical cap may expand or contract owing to the increase or 

decrease in the parameter 1
0

, i.e., 

ePO - eP 

lo = locoi exp ( ---- ) (4.11) 
.), - "' 

where, eP = (1 + e0) iP;; and >., "' arc material constants identified frn111 

hydrostatic compression test. The cap's curvature is controlled hy the parameter tJ. 

The merging point of both surfaces travels along the critical state line 

11 1 = g(e) [(6sin 1';)/(3 - sin!';)] ( 4.12) 

,1.e., the line defining the state of soil at which the progressing shearing is 

accompanied by no irreversible volume change (cf. Schofield and Worth; 1%8). 

The requirement of the continuous coalescence of both segments results in the 

subsequent relation for the position of the merging point 

( 4.13) 
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It should be noted that, equation ( 4.10) is relevant only to cohesionless 

soils. In order to incorporate cohesion effects the following transformation of the 

stress tensor !!. can be introduced (cf. Lade and Kim, 1988), 

(4.14) 

This transformation is equivalent to the translation of the apex (O') of the surface 

along the hydrostatic axis by the quantity I.. The differentiation of the yield 

function written in terms of!!. , and the use of the transformation ( 4.14) results in 

the following consistency equation 

af 
r = -- aij + 

aaii 

af al. 
(--

al. ai 

af al0 • 
+ --)ill=O 

al0 ai 
(4.15) 

I lcrc, the quantity I. is further assumed to depend on the deformation history 

experienced by soil, i.e., 

I, = !,(ill) (4.16) 

From equation ( 4.15) one can observe that, the general form of the flow rule (3.26) 

remains valid, although the derivatives should now be defined in terms of translated 

stresses. Similarly, the expression for the hardening modulus HP ought to be 

modified consistently with the assumption ( 4.16). Appendix A provides the 
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appropriate expressions for the derivatives, as well as HP' assuming that the 

parameter .e is identified with EP11 , i.e. the plastic volumetric strain generated in a 

fictitious isotropic medium. 

Figure 4.2 shows the meridional cross-section of the yield surface, equation 

( 4.10). This surface is convex and smooth, with the exception of the point O' where 

the discontinuity in af/ al exists. Thus, the proposed form overcomes the singular 

nature of the Cam-Clay yield functio11 (at I = I0 ) and at the same time provides a 

similar accuracy for describing soil response during undrained deformation programs. 

In addition, for the plastic flow at confining pressures less then I, the yield function 

defined by equation (4.10) provides the decrease of the dilatancy angle as the critical 

state is approached. 

43 Numerical procedure for the integration of constitutive relation. 

The constitutive relations developed in Chapter 3 are nonlinear, i.e. both 

stiffness and compliance tensors depend on the current state of stress, the fabric 

tensor as well as the deformation history experienced by the material. In general, 

the solution to a boundary value problem, employing a non-linear stress-strain law, 

is of an approximate nature; loads are applied in finite increments and usually the 
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set of the governing differential equations is satisfied within a certain limit of error. 

Several techniques for the solution of non-linear problems of plastic solids have 

been developed in the past two decades (Snyder and Bathe, 1981), and arc 

commonly classified as: tangential stiffness, initial strain/stress method (Nayak and 

Zienkiewicz, 1972) or the pseudo visco-plastic approach (Zienkiewicz and Cormou, 

1974). The contributions aimed at improving the efficiency of the.se methods arc 

still of interest to researchers (DeBorst and Vermeer, 1984; Runesson, 1987; Stolle 

and Higgins, 1989). 

In order to carry out the numerical simulations, a simple code has been 

developed, allowing to integrate the proposed elasto-plastic constitutive law, at a 

material point, along a specified stress or strain path. The code has been based 

on the most straightforward numerical scheme for solving a set of nonlinear 

equations, known as the Euler Method. By expanding an unknown function in a 

truncated Taylor series, the values of the function after each load increment arc 

foreseen using the values at the end of the previous loading step. Both the accuracy 

and the stability of the achieved solution are affected by the size of the load step, 

which must be kept appropriately small. The sequence of the computational steps, 

during a representative load increment, is provided on the flow chart in Figure 4.4. 

The presented procedure enables one to analyze the two extreme cases of 

soil behaviour: the fully drained (long lasting load) and the undrained (rapid load) 

case. In the fully drained process the seepage of the pore fluid is unconstrained, 
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thus the excess of pore pressure is dissipated and the applied load is fully 

transmitted to the soil skeleton. Numerically, this type of the load program can 

easily be handled by both the stress and the strain controlled version of the 

developed code. In the undrained process the permeability of soil is not sufficient, 

as compared to the velocity of the loading, to allow the dissipation of the excess of 

pore pressure, in which case the soil skeleton and the pore fluid deform together. 

Although, the numerical integration of this process along the specified strain path 

is unambiguous, the solution for the prescribed total stress history confronts some 

difficulties, as the increment of the pore pressure must be estimated at the 

beginning of each load increment. This difficulty however can be overcome by the 

following reasoning. 

Owing to the Mass Conservation Equation, the rate of the pore pressure 

build-up is related to the volumetric part of the strain rate by the equation, 

(4.17) 

where, K denotes the bulk modulus of soil skeleton. By equating the sum of the 

volumetric strain in the fluid and the solid phase to the total change in the 

volumetric strain, the bulk modulus K can be expressed as a function of: soil 

porosity n0 , the bulk moduli of soil particles K
5 

and pore fluid Kf ,i.e., 

1-n 
0 

Ks 
(4.18) 
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Further, assuming that, the deformation of the soil skeleton is described by the 

'rate-independent' plasticity formulation and soil grains are incompressible, the rate 

of pore pressure generation can be related to the rate of total stresses by the 

following equation ( cf. Pande and Pietruszczak, 1989), 

• T 
a ij (4.19) 

Here, C •p is an elasto-plastic compliance tensor whose components are function 

of effective stresses. For example, in a case of the flow rule described by equation 

(3.31) the constitutive tensor relating the strain rate to the rate of effective stresses 

has the form, 

1 af af af 
C epiikl = C \ikl + - [-- (--) + h (--) nii] 

HP aa; i aakl aakl 
(4.20) 

Thus, using equation (4.19) together with equation (4.20) an estimate of the pore 

pressure build-up due to the total stress increase can be obtained at tlie beginning 

of each load step. It should be noted that in most cases the pore fluid can be 

assumed as incompressible, Kf - co , which results in further simplification of 

equation (4.19). 
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In the explicit integration scheme the effective stresses have to be 

corrected after each load increment in order to satisfy the consistency condition. 

Since there is no inherent information in the plasticity fonnu!ation suggesting how 

the correction process should be performed, various strategies are possible. In the 

developed code, the approach analogous to that suggested by Nayak and 

Zienkiewicz (1972) has been employed, as briefly described below. 

Assume that the direction of the stress correction is normal to the yield 

surface, i.e. the stress state satisfying the instantaneous yield locus can be written 

symbolically as, 

l!cn+1 l = !!0 

(n+1 l + 
af 

a(-) 
aQ 

(4.21) 

Here, Q 0 cn+i l = l!n + 6J!n and a denotes the unknown yet magnitude of the 

correction. Now, using the truncated Taylor expansion, the successive estimates of 

a can be calculated from the following formula 

f(a;. 1) 

cri = ai-1 - -----
af(a;.1)/aa 

(4.22) 

where, the derivative af(a;.,)/aa is equal to 



af af(a;. 1) 
= 

aa ag; 

ag; 

aa 
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(4.23) 

In order to avoid an excessive drift of stress state from the instantaneous yield 

surface, a number of successive iterations has to be completed until the prescribed 

tolerance is reached, i.e., 

if(a;) - f(a;. 1) I < tolerance (4.24) 

4.4 Identification of material parameters. 

Implementation of equation (3.39) in a numerical code requires 

specification of material functions involved. Thus, in addition to parameters 

associated with isotropic hardening, both the evolution law O; 1 = O; i (okl• ekl' n0 ) 

and the material function h, equation (4.21), must be identified. The evolution law, 

equation (2.24), should be specified a priori based on an appropriate experimental 

program. The procedure suggested for this purpose has been briefly outlined in 

Chapter 2. Once the equation (2.24) has been quantified, the function h can be 

selected from conventional 'triaxial' tests. In what follows, constitutive relation 

(3.39) has been applied to simulate the response of saturated Weald clay and 
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(3.39) has been applied to simulate the response of saturated Weald clay and 

Spestone kaolin. 

At this stage, the existing experimental evidence is insufficient to identify, 

in a unique manner, the parameters entering the evolution law (2.24). Therefore, 

for both clays the values of these parameters have been selected on purely intuitive 

basis. This, somewhat arbitrary choice, may lead to errors in the spatial distribution 

of the void ratio. On the other hand however, the overall performance of the model 

may not be significantly affected, as both parameters A and B are chosen prior 

to the identification of the function h , equation (3.29). Finally, the function h has 

been assumed in the form, 

h = h
0 

[1 - (-
0
-) 1'] 

g(e)I 
(4.25) 

where 1, a and e represent the stress invariants defined in section 4.2. The 

constants h
0 

and -y may be identified from conventional 'triaxial' tests (trial and 

error procedure). For example, K
0
-consolidation and drained uniaxial.compression 

may he suitable for this purpose. The estimates of ho and for the numerical 

simulations discussed in section 4.5 are given in section 4.4.1 and 4.4.2, respectively. 
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4.4.1 Weald clay. 

The experimental data pertaining to this clay are provided by Skempton 

and Sowa (1963). The material parameters corresponding to the Critical State 

concept (see section 4.2) have been chosen as: " = 0.03, v = 0.27, .>. = 0.091, 

4> = 26°, e0 = 0.95 (at initial hydrostatic pressure of 50 kPa). Moreover, the void 

ratios corresponding to liquid and shrinkage limits were estimated as el = 1.25, 

e
5 

= 0.10, respectively. The values of the parameters entering the evolution law 

have been selected as, A = 3.0 and B = 1.0. Subsequently, the constants 

h0 = -6.0 and -, = 0.35 have been estimated by a trial and error procedure from 

the Ko-consolidation and the drained uniaxial compression test. 

4.42 Spestone kaolin. 

The physical and mechanical properties of this clay has been described by 

Roscoe and Poorooshasb (1963), and subsequently cited by Calladine (1971). The 

set of the parameters corresponding to Critical State concept have been selected as: 

" = 0.06, v = 0.30, .>. = 0.30, 4> = 23°, e0 = 1.40 (at initial hydrostatic pressure 

of 100 kPa). The void ratios defining the porosity index, equation (2.25), have 

been recalculated as el = 1.83, e
5 

= 0.21, respectively. The values of the 
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parameters defining the evolution law (2.24) have been chosen as, A = 3.0 and 

B = 1.0, whereas the constants h0 = 6.0 and .., = 0.35 have been estimated by the 

procedure similar to that described in section 4.4.1. 

45 Numerical simulations: anisotropy induced by the K0-consolidation process. 

Restricting the attention to an inherently isotropic m:ilerial, it can be 

assumed that the deformation process has a negligible effect on the material fabric, 

i.e. °';j = li;j in equation (3.1), and that the influence of induc.::d anisotropy is 

described by constitutive relation (3.39). The results of numerical simulations are 

presented in rigurcs 4.5 to 4.9. The study concentrates on 'triaxial' stress programs 

following K0-consolidation. The behaviour during K0-consolidation is of a special 

interest, since most natural soils are originally deposited under these conditions. 

Figure 4.5 shows the effective stress paths describing the one-dimensional 

co:1solidation followed by the undrained compression. The numerical simulations 

correspond to the original Critical State model and were completed for two different 

isotropic yield functions, defined by equations (B.1) and (8.2) in Appendix B. It is 

evident that the values of K0 are significantly overpredicted and the associated 

errors intlucncc subsequent material behaviour under undrained constraint. 
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Figure 4.6 presents the simulations based on the proposed constitutive law 

(3.39), employing the yield function (4.10). Here, the parameters quantifying the: 

material function h, equation ( 4.25), have been selected to provide an accurate 

representation of the stress path, as shown in Figure 4.6a. Figure 4.6b shows a 

progressive evolution of th.: spatial distribution of void ratio during Ko-consolidation. 

As mentioned before, the results are quite intuitive as no experimental information 

is available. As reported by Skempton and Sowa (1963), the average void ratio at 

the end of consolidation process was approx. 0.57, which agrees quite reasonably 

with the distribution in Figure 4.6b. 

The Ko - consolidation process results in an induced anisotropy which is 

displayed through a significant bias in the directional distribution of void ratio. This 

anisotropy, which is of the nature of a cross-anisotropy, will influence subsequent 

material behaviour, as illustrated in figures below. Figure 4.7 shows a hypothetical 

response during hydrostatic loading which follows Ko-consolidation and undrained 

unloading (sampling procedure). The strain rate field within the sample is no longer 

hydrostatic as the generation of deviatoric strains takes place. Strain rates in the 

radial direction are higher than those in the axial direction, which seems 

qualitatively correct (see Khera and Krizek, 1968). 

Figure 4.8 shows a hypothetical undrained response of specimens trimmed 

at different orientations relative to the direction of the major consolidating stress. 

The undrained process follows Ko-consolidation and unloading to a hydrostatic 
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stress state. The simulations for the reloading process have been completed by 

employing the framework of bounding surface plasticity as described by Dafalias and 

Herman (1982) with the interpolation function, for the field of hardening moduli, 

identical to that used by Pietruszczak and Mroz (1982); Hpo = 3.0xl05 kPa and 

r = 4.0 . The anisotropy in the material microstructure, as induced during 

K0-consolidation, results in noncoincidence of effective stress paths for vertical and 

horizontal specimens, Figure 4.8b. The response of the vertical specimen is stiffer, 

Figure 4.8a, and its undrained strength is marginally higher than that of the 

horizontal one. The predicted trends are in qualitative agreement with the existing 

experimental data ( e.g. Khera and Krizek, 1968; Mitchell, 1972). 

Finally, Figure 4.9 shows the simulations of a stress probe experiment. 

The state of stress is brought to a common point following three different 

deformation histories, i.e., Ko-consolidation, drained uniaxial compression and 

undrained compression. The stress probes, which are extensions of the previous 

histories, results in different orientations of the direction of the plastic flow. The 

results are consistent with those reported by Calladine (1971) and cannot be 

predicted by any isotropic-hardening theory. 
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4.6 Conclusions 

The numerical results, although still fragmentary, clearly demonstrate the 

ability of the described framework to model some typical effects of strain induced 

anisotropy in particulate media. The employed continuous measure of fabric, which 

is identified with the spatial distribution of porosity /void ratio, offers substantial 

improvements in the phenomenological description of soils. At the same time, the 

formulation remains physically descriptive, i.e., the material response is an implicit 

function of the specific manifestation of the microstructure. 
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CHAPIER5 

CONSIDERATIONS ON SOIL RESPONSE TO TIIB ROTATION 

OF PRINCIPAL STRESS DIRECTIONS 

5.1 Introduction. 

In many practical geotechnical situations, the principal stress directions, in 

the vicinity of an engineering structure, deviate from those imposed by the 

depositional conditions. This may have a pronounced effect on the resulting 

displacement field. In recent years a number of researchers (Miura, 1986; Ishihara, 

198:1) performed material tests which invariably indicate the sensitivity of soil 

response to the rotation of principal stress axes. Although the experimental 

information is still fragmentary, the evidence gathered so far is very convincing (at 

least in a qualitative sense) and should not be ignored when formulating appropriate 

constitutive relations. 

Over the last two decades a large number of phenomenological models 

for geomaterials have been proposed (Desai and Siriwardane, 1984; Pietruszczak 

and Pantle, eds., 1989). These models are mostly cast in the framework of theory 
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of plasticity and they do not, in general, account for the influence of the rotation of 

principal stress axes. In order to demonstrate this, let us examine briefly the 

mathematical structure of the existing, well established formulations. 

52 Theoretical considerations. 

Consider an arbitrary loading history confined to pure rotation of the 

principal stress system. In other words, assume that a sample, under initial stress 

a0
; i' is subjected to the stress increment 

(5.1) 

Here, t,.a ii and a0 ii are referred to the same Cartesian coordinate system fixed 

within the material and Tii is the usual transformation tensor. The trajectory (5.1), 

when imposed on a sample, results in the deviation of principal stress axes from 

those corresponding to a0
; i' while the principal values of a0 

Ii are preserved. 

Suppose at first, that the material is isotropic, linearly elastic. In this case, the 

Hooke's law takes the form 

(5.2) 
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where slJ and e 11 represent the deviatoric parts of the stress and strain tensor and 

K, G are the elastic constants (i.e. the bulk and the shear modulus, respectively). 

The orthogonality conditions imposed on the direction cosines T 11, i.e., 

(5.3) 

constrain the stress path (5.1) to satisfy 

l'.G;; = Q (5.4) 

so that, according to equations (5.2) 

!'.€;; = 0 (5.5) 

Thus, the imposed path results in generation of deviatoric strain eii , while the 

volume change remains zero. It should be noted now, that the existing experimental 

evidence (Miura, 1986; Ishihara and Towhata, 1983) clearly indic~tes that the 

trajectories (5.1) induce not only irreversible but also permanent deformation of 

both distortional as well as volumetric nature. 

Let us examine now, in a similar context, the formulations derived from 

the theory of plasticity. The simplest of all, are the descriptions admitting isotropic 
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hardening. In the most common approach, the evolution of the yield surface, f=O, 

is linked to generation of irreversible volumetric strain, i;P11 , so that 

. af 
f(cr;j, i;P;;) = 0 

,p 
(5.6) € IJ = ). 

aa iJ 

In such case, the consistency condition 

af af 
f = -- ciij + 

• p 
= 0 (5.7) 

p € kk 
aa; J 8€ ;; 

results in 

1 af af af 
). = -(--ci;j) H = - (5.8) 

p 
H acr;J a i; ;1 acrkk 

Since f=O is an isotropic function of cr;J , then for all stress histories restricted to 

pure rotation of principal stress axes, equation (5.1 ), there is 

af 
--O"ij = 0 -
aa ii 

. ). = 0 (5.9) 

i.e. the loading process is a 'neutral' one and does not produce any plastic 

deformations. 

The same conclusion can also be reached when employing multi-yield loci 

theories of soil deformation. In this case, the associated flow rule reads 



•P 
€ ij 

afn 
= I: >.n--­

n 
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(5.10) 

where the summation includes only those terms which correspond to f" = 0 and 

fn = 0. Let fmC fn (n = 1,2 ... N) be expressed in a form 

where 

i/ = (eP .. eP .. )v. 
1 J 1 J 

•p •P •P e . . = E · • - 1/3 6 · · € kk 1 J 1 J 1 J 

The consistency condition for any fm = 0 takes the form 

. af 
f=--a 1i 

aa1i 
+ i:\[ 

n 

afn afm afn afn 
--(--- ---)'] = 0 

p 
ae aa<li> aa<li> 

where af/aa<,i> designates the deviatoric part of the gradient tensor. 

(5.lla) 

(5.llb) 

(5.12) 

Denoting (afJaaii) a1i by An and the term contained in square brackets by 

µnn, a set of simultaneous equations (5.8) can be rewritten in the form 

(5.13) 
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It is obvious that if {A.,} = {O} then, for arbitrary(µ nnl• there must be{\} = 0. 

In typical formulations employing kinematic hardening. the yield surface 

undergoes translation guided by a tensorial argument ex tJ , i.e. 

(5.14) 

where cxi i = cxi i ( €P kl), i.e. the evolution of the yield surface is implied by 

generation of plastic deformations. According to equation (5.14) the consistency 

condition becomes 

. af 
f = -- ci-ij 

acr ii 

af acxii 
+----p 

aaii a€ kl 

•p 
€ kl + 

and results in a similar functional form to that of equation (5.8), i.e. 

1 af 
>. =-(- O"ij ) 

H acrii 

af af af aai i af 
H - -

p 
B€ ii acrkk aai i 

p 
B€ kl acrkl 

(5.15) 

(5.16a) 

(5.16b) 

In this case again, pure rotation of principal stress directions describes a 'neutral' 

process, for which ~ = 0 and thus iPi i • 0. 
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Finally, another common description is that of 'bounding surface plasticity' 

(Dafalias, 1986; Pietruszczak and Mroz, 1983). Here, for stress hi~tories penetrating 

the interior of the bounding surface, the deformation process is described in terms 

of evolution of an inner loading surface 

(5.17) 

The kinematics of this surface (i.e. direction of translation) is guided by a 

'conjugate' st1 ess tensor ac ij located on the bounding surface. A typical form of the 

evolution law for the components of aij is 

(5.18) 

where µ is a scalar parameter, determined via consistency condition 

fl 
afl af1 

£ij µ. 0 = --aij + = 
aa .i aaii 

(5.19) 

According to equation (5.19), for (afl/aaii) aii there is µ. = 0 and the surface 

fl= 0 remains stationary. Therefore, once again, the formulation does not respond 

to the rotation of principal stress directions. 
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It is evident from the above considerations, that none of the existing 

frameworks, based on classical concepts of isotropic/kinematic hardening, is capable 

of taking into account the sensitivity of plastic flow to the rotation of principal stress 

axes. Indeed, if the evolution of the yield surface (regardless of its form) results 

exclusively from the generation of plastic deformations, then these effects can never 

be properly embraced. 

There are several ways of enhancing the plasticity framework so that it 

responds to a change in orientation of the principal stress system. This has been 

accomplished, for example, in formulation proposed by Pantle and Sharma (1983), 

(see also Pietruszczak and Pantle; 1987) wherery the macroscopic behaviour of a 

sample has been deduced from deformation pattern along an infinite number of 

randomly oriented planes, by using an appropriate averaging procedure. An 

alternative approach is that derived in Chapter 3, which incorporates new tensorial 

function(s) capable of representing the soil fabric and its evolution. In what follows, 

the framework outlined in Chapter 3 is reviewed in the context of its ability to 

describe the sensitivity of soil response to the rotation of principal stress axes. 

Examine first the formulation defined by the equations (3.22) and (3.23), 

which assumes that ni i affects directly the functional form of the yield criterion, i.e., 

(5.20) 
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In such circumstance, f = 0 depends on the deformation history (recorded by aa) 

and, in general, ten functionally independent invariants of both ten~ors Q and Il, 

Now, it is interesting to note that the yield surface, defined by equation (5.20), will 

undergo progressive evolution not only during an active loading process, but for all 

histories (including those for which f < 0 ) associated with the rebuilding of 

material microstructure. Consequently, such a formulation will account for the 

influence of the rotation of principal stress axes. In order to demonstrate this, let 

us assume again aa = €P;; and write the consistency condition in the form 

. af af 
f = -- crij + ---nij + 

aaij anij 
(5.21) 

Utilizing the evolution law (2.24) for the components of nij• i.e. 

'P + 11. e ij 
I , , af 

= -- s.. + 11, ). --
20 

lJ 
aa <iD 

(5.22) 

and substituting the above representation back in equation (5.21), one obtains 

1 af 11, af 
). =-(- + ) ci-ij 

H aaii 20 an;j 
(5.23) 

af af af af 
H - -

p 
aakk an;j aa <ij> a€ ii 

(5.24) 
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It is evident from equations (5.23) and (5.24) that for (af/aa,i)a 11 = 0 there is 

& af af • p • 
€ ii = cijkl akl c,Jkl = -------

2GH aa, 1 ankl 
(5.25) 

which implies that for histories experiencing pure rotation of principal stress axes, 

the progressive generation of plastic strain takes place, provided that 

As pointed out in section 3.3, a simpler description than that based on 

equation (5.20} may be obtained by resolving the plastic strain rate into components 

governing a pseudo-isotropic response and refraction from it. Such a flow rule is 

expressed by equations (3.24 ), i.e., 

af(g:, re) •p = , ____ _ 
€ ;j A 

(5.26} 

In particular, as discussed in section 3.3, one may simply take 

•p 
€ ;j 

(5.27) 

Although the formulation (5.27) is very attractive, in the sense of its numerical 

simplicity and performance, it does not respond to the rota,lon of principal stress 
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axes. Indeed, when ai is identified with ePu, i.e. plastic volumetric strain generated 

in a fictitious isotropic medium, then the consistency condition (3.32) results in a 

similar functional form to that of equation (5.7) 

. 
>, = 

1 af 
-(--aij) 
H aa;i 

af af 
(5.28) H = ----

It appears that the only rational way of enhancing the representation (5.27), is to 

define the condition of the neutral state relative to the actual direction of plastic 

flow, i.e., 

. 1 af 
>, = - (-- + h nij) aij 

H aaii 
(5.29) 

In the latter case, it is evident that the stress trajectories resulting from pure 

rotation of principal stress axes will generate thta plastic strain rates 

(5.30) 

provided that nij a; i > 0. 

Finally, let us examine the formulation given by equation (5.27), i.e. that 

obtained by admitting a coupling between both terms in equation (5.26), 
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• P • af ag(fi) af,(n) 
e ii = >. -- + h C;Jkl ( _ _ ) ripq (3.31) 

acr;i ank1 anpq 

By inspecting equation (5.31), it is again obvious that this framework is capable of 

responding to pure rotation of the principal stress system. Under (af/acrfJ)a 11 =0, 

one obtains the contribution from the second term in equation (5.31). Hence, the 

stress trajectories resulting from pure rotation of principal stress axes will generate 

the plastic strain rates 

•p 
€ ij 

provided that, 

µ. = 

ag(Q) 
= h c•ijkl ( --­

ank1 

af1(n) 
n;J > 0 

an;j 

(5.32) 

(5.33) 



53 Numerical simulations of tests with the rotation of principal stress 

directions. 
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The ability of the proposed plasticity formulation to model the influence 

of the rotation of principal stress axes is now illustrated by some numerical 

examples. The simulations are based on equation (5.27) with the condition of 

neutral state defined by equation (5.29). The yield criterion is again specified by 

the functional form ( 4.10). The quantitative aspects are, at this stage, rather 

speculative, as no experimental information pertaining to clays is available. All 

simulations relate to normally consolidated clays, under Ko-condition. The material 

is assumed to be initially isotropic and is described by the set of material 

parameters specified in section 4.4.1. 

The results shown in Figure 5.1 correspond to a specimen which has been 

consolidated, under Ko condition, to a', = 1040 kPa and subsequently subjected to 

a progressive rotation of principal stress directions, from o· to 180° . Figure 5.la 

shows the history of the components of elastic strain. In the elastic range the 

response is governed by equation (5.2), thus the imposed stress trajectory results in 

generation of reversible deviatoric strain only. At the same time, the plastic flow 

contributes to both distortional as well as to volumetric strain, as clearly indicated 

in Figure 5.lb. It should be mentioned that the only experimental information 

available, for a similar load configuration, is that pertaining to sand e.g. Miura and 

Shosuke (1986). The predicted deformation historJ seem to be in qualitative 
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agreement with reported results and can not be predicted by most of plasticity 

models for geomaterials. Figure 5.2 complements Figure 5.1 and shows the 

evolution of the spatial distribution of void ratio during both Ko-consolidation and 

subsequent rotation of principal stress axes. The induced anisotropy is displayed 

throughout a significant bias in the spatial distribution of voids. 

Figure 5.3. presents a hypothetical response of Ko-consolidated sample 

during undrained uniaxial compression combined with a continuous rotation of 

principal stress axes. It is evident that the evolution of material structure, which 

is induced by different rates of rotation, results in the non-coincidence of effective 

stress paths. Consequently, the ultimate strength of the material is reached at 

different levels of effective stresses. The evolution of the spatial distribution of void 

ratio 2.ssociated with the entire loading programme, is shown in Figure 5.3.b. The 

rotation of the principal stress directions, results in the deviation of principal axes 

of tensor g from the coordinate system fixed in the sample. 

Finally, Figure 5.4 presents the influence of the rate of the rotation of 

principal stress axes on the deviatoric characteristics. The loading process results 

in progressive reduction in ultimate strength as the amount of rotation increases. 
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5.4 Concluding remarks. 

Concluding, the proposed constitutive relations are capable of describing 

the influence of the inherent as well as induced anisotropy on the deformation 

process. Their mathematical structure permits, in general, the modelling of the 

sensitivity of soil response to the rotation of principal stress axes. The possibility of 

modelling of these effects is essential from the view point of practical engineering 

applications. 
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Figure 5.2 Evolution of spatial distribution of void ratio 
under pure rotation of the principal stress system. 
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Figure 5.3 Uniaxial undrained compression of Ko-consolidated 
specimens with diffrent rates of the rotation of principal 
stress axes; (a) stress paths, (b) evolution of spatial 
distribution of void ratio al the rate of 0.2° /kPa. 



·-·-·---·___. ·-·---.-·--·-~-·-·-·-·-· ~--··-··-·-,.- ,. ....... 
:;.,-.... -"'-.-

::l 400 -., 
b ., 
" .... ... 
.S 200 ., 
·t ., 
A 

1be rate of st.reu rotation -...... --.---+--...... 0° /kPa _____ ..__ ........ ____ 0.2° /kPa 
_ _.,__....__....,__~- 0.4°/kP~ 

O L....L....J....J_.LJl......L_L..l.-l-J.....J....J_J......L....J....J_.L....1....J.....l-.L..JL..-1.--L.....l-L...l....J....L.J 

0.0 1.0 2.0 3.0 
Equivalent strain 

4.0 
E 

5.0 
( % ) 

6.0 

Figure 5.4 Stress-strain response during undrained 
compression combined with a continous rotation of 
principal stress axes. 

121 



CHAPTER6 

FINAL REMARKS AND RECOMMENDATIONS 

6.1 Summmy and Conclusions 

In recent years. the research in geotechnical area has been mainly focused 

on advances in the testing techniques and instrumentation, as well as on the 

development of new constitutive relations. The modelling of gee :·echnical problems 

usually involves the use of complex approaches of modern physics and applied 

mathematics, as soils are multi-phase materials with strong nonlinear and 

history-dependent mechanical behaviour. On the other hand, the practising 

geotechnical engineer is often in the situation where, in a limited period of time, 

he is expected to provide a solution to a real structural problem with the specified 

amount of confidence. It is natural that in his endeavour to predict the unknown, 

he is often conservative in his judgment and sceptical about theoretical solutions 

which are not confirmed by case histories. Such a view point is rational, as in most 

cases the excessive costs due to a conservative design are still incomparably smaller 

than those resulting from a necessity of improving an erected structure which was 

improperly designed. 
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The engineering design can be characterized as the process of progressive 

data reduction; the data from both the field and laboratory investigations are 

processed with the help of continuum mechanics and applied mathematics. In such 

a process the understanding of physical behaviour of soil under anticipated loads 

and conditions is essential. Thus, the fundamental investigations, aimed at 

mathematical description of soil deformation, are very meritorious. On one band, 

they serve the purpose of an improved and economized design, on the other one 

they eventually allow to approach complex structural problems which can not be 

solved by conventional design procedures. 

In this thesis an attempt has been made to bridge the gap between the 

knowledge accumulated in the areas of constitutive modelling and soil physics. The 

developed framework incorporates some aspects of soil physics, investigated at 

micro-level, by introducing the concept of fabric tensor. Such an approach leads to 

constitutive relations which are capable to model the effects of inherent and induced 

anisotropy in particulate media. In the proposed formulation the fabric has been 

implicitly described by some continuous measures reflecting the spatial distribution 

of phase composition of the material. It is clear from numerical· simulations 

presented in Chapters 4 and 5 that such a formulation is advantageous over a 

conventionai plasticity approach. The incorporation of the proposed modifications 

into the framework of Critical State Theory results in a constitutive law that can 

describe, at least in a qualitative manner, various manifestations of clay anis'>tropy. 

It should be emphasised that this goal was achieved without deliberate geometrical 
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assumptions concerning the yield function or the plastic potential, and using a quite 

unsophisticated model, i.e., the density hardening model. 

The presented mathematical framework is general and can be extended to 

other geological materials. In order to achieve this, the evolution law, equation 

(2.24), as well as the selected the material functions ought to be consistently 

modified for each specific material. The identification of the oriented fabric is not 

a simple matter and it calls for new experimental techniques. In its present 

version, the model does not take into account the irreversibility of plastic flow and 

the evolution microstructure during stress reversals. However, the mathematical 

structure of governing equations allows to include these effects in future 

developments. 

62 Recommendations for Future Research. 

Despite a significant amount of interest devoted to the· microscopic 

studies of soils and the development of phenomonological models with structure, 

until now no consistent programme has been developed combining the experimental 

research with analytical efforts. For future research activities it is recommended to 

design an experimental programme in which both the macroscopic mechanical 

behaviour and the evolution of phase distribution due to microstructural changes 
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could be correlated. This would improve the understanding of the physical aspects 

of the problem and permit a proper identification of the evolution law for the fabric 

tensor in a wide range of loading domains. Hopefully, such a programm would also 

allow to define the minimum number of tests for selection of employed parameters 

in the domain of applicability of the model. 

In the subsequent analytical development, additional studies are 

required in order to embody the effects of cycling loading. Moreover, the attention 

should also be paid to sensitivity of the model with respect to variations of the 

material parameters. Finally, as the process of fabric changes is time-dependent, 

the extension of the proposed concept to visco-plasticity can offer further 

improvements in mathematical descriptions of clay behaviour. 



APPENDIX A 

DETERMINATION OF GRADIENT TENSOR 

In order to implement the constitutive relations (3.39) and (3.55) the 

appropriate gradient tensors of the yield function ( 4.10) should be specified. In the 

stress reference frame I, ii, e, the gradient of the yield function can be written in 

the following from ( cf. section 4.2) 

(A.I) 

Three scalars C1, C2, C;i appearing in the above equation depend on the form of 

the yield function. For the function described by equation ( 4.10), these scalars are 

specified as follows: 

for the parabolic segment of function, i.e., ( 0 < I :5 Ix ); 

c, = 
2rJ g(e) (10 - I.)(I - I.) 

I 2 
x 
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(A.2a) 

(A.2b) 



c; = -
.fJ a 
g(a) 

ag(a) 

aa 

for the elliptic segment of the function, i.e , ( Ix s I s 10 ); 

where, 

C1 = 2(1 - I.) 

6 a 
c =----

2 (Tl g(a))z 

ag(a) 
c; = - -,,2-g-3(-a )- aa 

ag(a) 3a (1-K) g2(a) cos3a 
---= 
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(A3c) 

(A.3a) 

(A.3b) 

(A.3c) 

(A4) 

Moreover, if the deformation history of soil is recorded by ,P; ;, i.e., plastic 

volumetric strain generated in a fictitious isotropic medium, then 

_a_r_ = - _(_l_+_e_o) __ ,, _,,_f - (-1-)2 
a,P;; (>- - 1t) (Tl + 1'11) Ix 

(AS) 

The derivatives (.b1, h2, ~) are intrpreted as vectors in a six-dimensional 

effective stress space and are defined by the following expressions: 

al 
h =-­-1 

8Q 

aa 
h2 =--

8Q 
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aa ae 13 
~=-h + (A.6) - 2 aJ3 aa ag_ 

where 

aa 3J3 J3 
= 

aa 2 a4 cos3a 

(A.7) 

aa J3 
--=-

aJ3 2a3 cos3a 



APPENDIX B 

ISOTROPIC YIELD FUNCI10NS FOR 1HE ORIGINAL CRITICAL STATE 

CONCEPT 

The numerical simulation presented in Figure 4.5 were completed assuming 

the following functional forms of the yield criteria: 

Cam-Clay model 

f = ./Ja + m g(o) I [ ln(I/Io) - 1 ] = o 

Modified Cam-Clay model 

3 a 2 

f = (I - a)2 + ----­
m 2 g \o) 

(B.1) 

(B.2) 

where I, a, and o are the stress invariants defined in section 4.2, and the function 

g(o) describes the deviatoric cross-section of the yield locus. In the equations (B.l) 

and (B.2) the following definitions apply 
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m= 
6 sin w 

3 - sin w 
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where w is the angle of internal friction and >., " are material constants identified 

from hydrostatic compression test. The results of numerical simulations presented 

in Figure 4.5 pertain to o = "/ 6 . 
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