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Atomic beam magnetic resonance has been used to study

the 14.6 min isomer and the 19.2 hr ground state in l42pr • For

the isomeric state the results are:

I = 5

J = 9/2: A = 245(10) MHz,

B = 100(450) MHz,

~ = 2.2(1) nuclear magnetons.

Re-interpretation of previous results for the ground state hyper­

fine structure, together with some new data, yield the following

interaction constants:

J = 9/2: A = 65.6(2) MHz,

B = 22(2) MHz.

The effect on ~ is of minor consequence but the quadrupole

moment is tripled in value. With the sign of the moment deter-

mined to be positive, the results are:

~ = 0.234(1) nuclear magnetons,

Q = 0.110(25) barns.

In addition, the combination of a high-resolution
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l4lpr (d,p) experiment and the analysis of singles and coin­

cidence gamma ray data has been used to reveal two new states

at 89.7 and 358.1 KeVi these are tentatively assigned spins

6- and 7- respectively.

The results have been interpreted in terms of configura-

tion-mixing between n2d5/2~2f7/2 and ~lg7/2~2f7/2: The resulting

wave functions for both the ground state and the isomeric state,

as determined from the (d,p) spectroscopic factors, are quite

different from those required to fit the measured magnetic moments.

In view of this discrepancy, a possible mixing of higher configu­

rations into the low-lying states cannot be ruled out.

Finally, a mixed-configuration shell model calculation

using Surface De1ta Interaction has been carried out, and its

predictions are compared with the experimental results.
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INTRODUCTION

Recently Kern et ale (1968) have carried out an exten­

sive study of the nuclear levels in l42pr , using a combination

of (d,p). reaction and thermal-neutron capture y-ray spectros­

copy. The low-lying states, up to ~ 200 keV, are interpreted

in terms of mixing between the two configurations: n2ds/ 2v2f7/ 2

and nlg7/2v2f7/2. In this way, not only were the spins of the

states deduced but also their wave functions. In particular,

the 14.6 min isomeriq state at 3.683 keV is predicted to have

spin and parity 5-. More recently, Mellema et ale (1970) have

1 d ' d h 1 1 1 ' f 142 b f 1a so stu 1e t e nuc ear eve sp1ns 0 Pr y means 0 nuc ear

orientation.

A similar study of the levels in 140La (which has only

two fewer protons than l42pr) has also been carried out (Kern

et al., 1967; Jurney et al., 1970). All the fourteen states

expected from the two configurations have been observed, and

their spins and parities assigned. Moreover, the (d,p) spectro­

scopic factors, Ml branching ratios and the ground state mag­

netic moment can all be explained in a consistent manner.

Nevertheless, it is obviously desirable to test the model

further. Since the knowledge of magnetic moments offers a
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critical test for the nuclear wave functions, the main object

of the present research project was to obtain that information,

for the case of l42pr •

Using atomic beam magnetic resonance, the nuclear spin

and the magnetic.dipole moment of the 14.6 min isomeric state

have been determined; the result for the spin is I=5, in

agreement with the" prediction of Kern et ale

Some years ago, Cabezas et ale (1962) made an atomic

beam investigation of l42pr ground state, and reported the

magnitude of the nuclear magnetic moment. Although the sign

of the moment was undetermined, neither sign fits the prediction

of Kern et al. for ~e ground state wave function. Using two

radio-frequency loops in a "flop-out on flop-in" atomic beam

experiment, the sign of the magnetic moment has been determined.

In the process, it was found that the original resonances of

Cabezas et al. had been misinterpreted; additional experimental

data to substantiate this claim have been obtained. The effect

of the new interpretation on the magnetic moment is of minor

consequence, but the quadrupole moment is tripled in value.

In an attempt to understand the magnetic moment results,

a search for the four missing states in l42pr was initiated.

A combination of high resolution (d,p) reaction and 'the analysis

of singles and coincidence y-ray data has been used to locate

two additional states in the low-energy level scheme of l42pr •

Tentative spin assignments for these states have been made.

Finally, a mixed-configuration shell model ,calculation
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for l42pr has been attempted, and its predictions are compared

with the experimental results.



CHAPTER I

NUCLEAR THEORY

1.1 The Shell Model

It is now apparent that the understanding of nuclear

structure is a complex and formidable task. Nevertheless,

physicists have approached the problem by resorting to rather

simple models and successive approximations, always aiming to

keep track of the physics involved. The historical development

of the nuclear shell model (see for example, Elliot and Lane,

1957) provides an excellent example of such an approach. The

present-day shell model calculations have come a long way from

the extreme single-particle model proposed in the late forties

(M. Goeppert Mayer, 1948,1949; Haxel, Jensen and Suess, 1948,

1949).

The description of a nucleus in terms of individual

particles moving independently in an effective central field

formed by all other particles is called a shell model. In con­

trast to the atomic case, however, there is no a priori reason to

believe that the shell model can be applied to the nuclear case.

In the first place, it is difficult to justify independent mo­

tion in the presence of strong nuclear forces. Secondly, there

is no physical object in the nucleus that can serve as the source
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for a strong central potential. Historically, therefore, it

was the remarkable success of explaining a large body of experi­

mental results that generated the initial faith and interest in

the model.

l.la Shell Model Hamiltonian

In the simplest form of the shell model, the single-particle

model, the effect of the internucleon interactions is appro~i­

mated by an average central potential, ui(ri ), in which the or­

bital angular momentum of a nucleon is a constant of motion. The

individual nucleons move in independent stationary orbits but it is

assumed that like nucleons pair off in such a way that many of

the nuclear properties are determined solely by the last unpaired

nucleon. The model takes no other account of correlations among

the nucleons (except through the Pauli exclusion principle) and

has no explicit reference to two-body forces. Such a simple

potential of any shape, however, fails to reproduce the experi­

mentally observed single-particle spectrum. A spin-dependent

term, ~(r.)!.·;., is therefore included in the Hamiltonian which
~ ~ ~

has the form
"A

HN = ~ T~ + U~ (r~) + ;(r.)! .• ; .•
i=l. • - ~. 1 1

The orbital angular momentum is, then, no longer a constant of

motion, and only J. (). = t. + ;.) and its z-component mi , are
1 ~ 1 1

good quantum numbers. A particle state is thus characterized

by four quantum numbers: n,t,] and m. By adjusting the strength

of the spin-orbit fo~ce, it is possible to reproduce the energy






































































































































































































































































