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SCOPE AND CONTENTS:

The energy levels of 117In populated in the beta decay

of ll7Cd and l17mCd have been studied with the aid of Ge(Li)

gamma ray detectors singly and in coincidence mode. A decay

scheme based on the present results is proposed and speculation

is made concerning a possible interpretation of some of the

levels as a rotational band based on the 1/2+[431] Nilsson

orbital.

The energy levels of l71LU populated by single particle

transfer reactions have been studied using an Enge spectrograph

and a number of Nilsson assignments are made. These results

have been complemented by a study of the gamma rays and conver

sion electrons following the reaction l69Tm(a,2~)l7lLU, using

Ge(Li) detectors and an on line Orange spectrometer. Assignments

were made to high spin for rotational bands based on five

Nilsson orbitals. In addition some interesting K forbidden

interband transitions were observed and discussed in terms of

Nilsson model branching ratio predictions.
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CHAPTER 1

THEORETICAL CONSIDERATIONS

1.1 Introduction

The nuclear physicist faces two basic problems1

he does not know the form of the nucleon-nucleon interac

tion and he can not handle the number of degrees of freedom

involved in a calculation of the nuclear wave function.

These two problems are inextricably linked in our use of

models as a means of simplification.

A model is a method of transferring some relation

ship or process from its actual setting to a setting where

it is more conveniently studied.

Mathematics is a model kit. There are pieces which

fit together according to certain rules. Using the standard

pieces one can represent a real life situation. Once the

transformation has been made the model is allowed to work

according to its own rules. If successful, its predictions

will be in agreement with experimental results.

There have been a great number of models proposed to

describe nuclear properties. Each is limited in scope.

Some are successful only for certain nuclear mass regions,

others describe only specific aspects of nuclear behaviour •

1
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One of the most widely used is the shell model which is

based on a quasi-atomic approach to the nuclear system.

Its surprising success is based on two basic properties of

nuclear matter. The first, saturation, describes the

observation that all nucleons have the same binding energy

and density. Nuclear matter theory shows that these

characteristics arise from the specifics of the strength

and shape of the nucleon-nucleon potential together with the

consequences of the exclusion principle. The second key

empirical fact is that the mean free path of a low energy

nucleon moving through nuclear matter is relatively long

compared to a nuclear radius. I~ appears that the nucleus

is a very cold Fermi system •. Most states below the Fermi

level are occupied, so that only a nucleon with initial energy

above the Fermi level can scatter from another nucleon.

The remainder of this chapter deals with specific

aspects of some nuclear models and roughly traces their

historical development.

1.2 The Nuclear Shell Model

The basic idea of the nuclear shell model is that

the interaction of anyone nucleon within the nucleus with

the remaining nucleons can be mainly represented by.a static

potential well whose shape and spatial extension is expected

to be similar to that of the nuclear density distribution.

In such a potential well there will be a series of single
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particle energy levels characterized by the quantum numbers

n, t, j~

In the atomic case a similar procedure successfully

predicts "closed shell" configurations characterized by a

lack of low-lying excited states. 'Physically these occur at

.the noble gases (Ne,. A, Kr, X). Such closed shell effects

exist in nuclei at the so called "magic nucleon numbers"

2, 8, 20, 28, 50, 82 and·126. However it was found that there

is no reasonable form for the central potential which leads

to these numbers. Thisimpasse was surmounted by Mayer (1949,

1950) and independently by Haxel, Jensen and Suess (1949, 1950)

by postulating a coupling between the spin of the nucleon and

its orbital angular momentum. It is necessary that this force

be about 20 times stronger and of opposite sign to the force

expected from a consideration of the magnetic spin-orbit

interaction experienced by an electron in an atom. Thus it

is due to nuclear forces, and not to electromagnetic phenomena

or small relativistic effects. Its effect is to raise those

states for which j -1 - ~ and depress those for which

j = t + ~, thus causing some high spin levels to be de

pressed into the next lowest shell. Figure 1.1 shows the

ordering of the shell model levels using a simple harmonic

oscillator potential with the t·s force. Each level is

labelled by n1j and may contain 2j+l neutrons or protons

corresponding to different values of the orientation of the
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Figure 1.1 Ordering of shell model levels arising
from a simple harmonic oscillator potential
plus a spin .orbit interaction.
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spin quantum number j. It appears also that pairs of par

ticles having equal and opposite values of this spin orien

tation quantum number find it energetically favourable to

couple, so that the resultant angular'momen~~ is zero. For

a nucleus containing even numbers of neutrons and protons,

all coupled pair wise, the total angular momentum is zero,

and since the pairs are symmetric under inversion the system

has positive parity. However, for an odd A nucleus, in the

last neutron or proton energy level to be filled there is

either an odd neutron or an odd proton which is unpaired. In

its simplest form, the shell model predicts that the spin and

parity of the nucleus will be that of the unpaired nucleon.

More sophisticated calculatiol1s consider all possible couplings

of the extra core nucleons, assuming some simple form for the

llresidual interaction".

Such procedures have been very successful for nuclei

with nucleon numbers close to the magic numbers, however there

is a large body of experimental evidence which suggests that in

certain mass regions (A ~ 20, 150 < A < 190, and A > 220) away

from closed shells nuclei have a non spherical stable shape.

This shape can be explained in terms of the quadrupole inter

action between nucleons. Pairing forces tend to produce a

spherical equilibrium shape whereas the quadrupole force gives

rise to a tendency for each nucleon to align its orbit with the

average field produced by all the other nucleons, thus pro

ducing a deformed equilibrium shape.


















































































































































































































































































































































