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ABSTRACT

We have examined within Ellashberg theery the effect of several pair-
breaking mechanisms on superconducting properties. Many predictions are
made. some of which have recently been confirmed experimentally.

First, we present the strong coupling theory of the thin film crit-
ical current. Predictions for the temperature dependence of this property
are made for the cases of strong inelastic scattering, spin fluctuations. and
magnetic and non-magnetic impurity scattering.

We next examine the recently proposed marginal Fermi Liquid the-
ory, which has been shown to account for the unusual normal state properties
of the high T. superconductors. Here we have calculated several supercon-
ducting properties in this model. The most important result arising from
this work is the effect of the gapping of the spectrum of fluctuations. This
produces a drop in the quasiparticle damping rate below T and 2 peak in
the low frequency temperature dependent conductivity. These predictions
have been recently confirmed by several experiments. Also, in the frequency
dependent optical conductivity, no absorption is predicted up until 4A in
the clean limit. The experimental observation of a lack of Holstein structure
in the ratio of the superconducting to normal state optical conductivity is
explained.

Several electromagnetic properties of superconductors are calculated
with the inclusion of spin fluctuations and paramagnetic impurities. Predic-
tions are made for the optical conductivity in the clean limit with magnetic
impurity scattering. In this latter case, the Holstein structure will be reduced
from the pure case and absorption will occur below 2A.

Finally, we have examined a model for a spin glass superconductor
which leads to a temperature dependent scattering rate. Within this model
several thermodynamic and electrodynamic properties have been examined,
giving results which might be confirmed by experiment. Reentrant behaviour
is predictéd for a certain choice of pa.rameters.-
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Chapter 1

Introduction

The field of superconductivity has had a rich and illustrions his-
tory. From the original discovery of a zero resistance state in mercury below
the temperature of 4.19 K in the laboratory of H.K. Onnes in 1911 [Onnes
(1911)], to the discovery of oxide superconductors by Bednorz and Miiller in
1986 [Bednorz and Muller (1986)], the study of superconductivity has pro-
duced one of the most exact theories in physics, many unusual phenomena,
novel technological applications, and several Nobel prizes have recorded the
achiévements of physicists in this area.

“Supermagnetivity” might have been another possible descriptive
name for this phenomenon, because a superconducting material that ex-
hibits zero resistance below a characteristic transition temperature T, also
expels all magnetic flux from its body as it is cooled below T, in a ;nagnetic
field. It becomes a perfect diamagnet. It is this phenomenon that results in

the popular demonstrations for the public of 2 magnet {or even a person on
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top of a magnet!) levitated above a superconductor. Meissner and Ochsenield
discovered this important characteristic of superconductors in 1933 [Meissner
and Ochsenfeld (1933)].

Early theoretical descriptions of superconductors were phenomeno-
logical theorics by several people [Gorter and Casimir (1934a,b); London
(1948,1950); Ginzburg and Landau (1950)]. Gorter and Casimir modelled
the superconductor by a two-component fluid, one of normal electrons and
one of superconducting electrons. These theories were reasonably success-
ful at describing some of the thermodynamic {Gorter and Casimir (1934a.b)]
and electromagnetic [London (1948,1950); Ginzburg and Landau (1950)] phe-
nomena but were rather unsatisfying as they provided no description of a mi-
croscopic mechanism. A clue to the underlying mechanisrn was found with
the discovery of what is now known as the isotope effect [Maxwell (1950);
Reynoids et al. (1950)]. This effect involves a change in transition tempera-
ture 7. upon changing the mass of the ions in the lattice through isotopic
replacement. This led to the realization that the lattice of lons was some-
how involved in the superconductivity. This was independently suggested
by Frohlich [Frahlich (1950)]. Shortly after this time, Cooper (1956) showed
that two electrons (normally repulsive t;> each other due to their like charges)
could form a bound state under a very weak attractive interaction in the pres-
eace of a filled Fermi sea. These electrons were later named Cooper pairs.
The major achicvement in the search for a microscopic theory came when
Bardeen, Cooper and Schrieffer (BCS) {1957) used a product wavefunction
of overlapping Cooper pairs to calculate many of the thermodynamic and

electrodynamic properties of superconductors.

i)
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Figure 1.1 A simple real space picture illustrating the effective attraction
between electrons in a superconductor. An electron (shown as the black dot}
polarizes the lattice of positively charged ions (shaded circles) off their equi-
librium positions (unshaded cireles). The electron quickly moves on. How-
ever, the ions respond slowly, remaining polarized as a region of net postive
charge, which attracts another electron (at the top of the diagram). This
forms an effective attraction between two electrons. '

The mechanism of pairing of the Cooper pair is now known to be the
Frohlich or electron-phonon interaction. This interaction is schematically de-
picted in real space in Fig. 1.1. To achieve attraction between two electrons
is very simple in this qualitative picture. A conduction electron in the metal
attracts the positively charged ions causing a polarization of the ion lattice
around the electron. The electron is moving very fast with the Fermi velocity
and the heavy, sluggish ions respond very slowly to th; electron’s preseuce.
Hence, by the time the polarization is complete and the ions displaced off
their equilibrium positions towards the electron’s apparent p;sition, the elec-

tron has moved away. In the mean time, another conduction electron “sees”
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this region of net positive charge and by virtue of the Coulomb potential,
is attracted towards this region. This forms an effective pairing between the
two electrons which may actuaily be separated by a distance of the order of
10* &. This is a simple qualitative picture. The pairing actually occurs in
momentum space as shown by the Feynman diagram of Fig. 1.2 where an
clectron interacts with a phonon (a quantum of lattice vibration) which in
turns couples to another electron, pairing an electron of momentum k and
spin | with an electron of momentum ~k and spin |. In real space the separa-
tion of the electrons can be quite large, as indicated above, and it is defined
as the coherence length &. As there are approximately 10 electrons/cm® in
a metal and this distaace is so large. this can only imply that in real space
the pairs overlap. This is what qualitatively gives the zero resistance. Normal
electrical resistance arises from individual electrons scattering off impurities
or defects in the metal and hence being lost from the net current. In the su-
perconducting state the electrons are all bound together in this complicated
overlapping manner and hence it is difficult to scatter by an impurity a single
clectron as it is tied to the rest through phase coherence of the wavefunction.
The result is that there is no degradation of the electrical current.

Another feature of the superconducting state is the energy gap. To
pluck an electron out of this many body condensate would cost an energy A,
where A is the energy gap between the ground state and the excitations of
the system. |

Zero resistance and flux expulsion are not the only characteristics of
superconductors; there are many changes in the thermodynamic and electro-
magnetic properties of 2 superconductor that can be found discussed in many
texts [Schreiffer (1964); Parks (1969); Rickhayzen (1965,1980); Tinkham
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Figure 1.2 A Feynman diagram for the scattering of two electrons (straight
lines) through the exchange of a phonon (wavy line).

(1975); Abrikosov, Gor'kov and Dzyaloshinski {1963); Fetter and Walecka
(1971); Mahan (1981); etc.], including elementary solid state textbooks [Kit-
tel (1986); Ashcroft and Mermin (1976)]. We will describe in this thesis only
those properties for which we explicitly perform calculations.

BCS calculated many of these properties and achieved qualitative
agreement with experiment. For this amazing feat, they received the Nobel
prize. However, although this theory captured the essence of the mechanism
of superconductivity, it gave only universal numbers for several properties,
i.e., all materials were predicted to have the same value for a particular
property. The agreement was excellent for a material like aluminum but
materials such as lead and mercury did not agree quantitatively with the
theory. ?

This led to the theories of Migdal (1958) and Eljashberg (1960) for
the normal state and superconducting state, respectively. The essential mod-

ification that they added to BCS theory was to include the response of the
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lattice correctly. In BCS theory, the interaction potential was treated as a
constant within a rim of 24w, around the Fermi surface and zero otherwise.
In Migdal-Eliashberg theory, the full details of the electron-p;.onon interac-
tion were included. This implies a frequency-dependent interaction, where
certain phonon frequencies could be more effective than others for pairing.
This interaction is entirely material-dependent. In addition. as long as the
interaction energy is less than the Fermi energy, then Migdal (1958) argued
that this theory is exact to all orders in the electron-phonon interaction.
From this theory, which is summarized in Appendix A, a complicated set of
non-linear equations arise that require numerical solution. They depend on
two parameters, Te, and o> F(w), the electron-phonon spectral density func-
tion. These two parameters are taken from experiment and the theory is used
to calculate all other properties. Excellent quantitative agreement is achieved
to within a few percent, for all conventional materials [Carbotte (1990)]. This
is probably the most exact theorywse have in condensed matter physics and
it is very impressive. This theory forms the basis for the investigations of
this thesis.

Only 2 brief, incomplete and qualitative outline of the history of su-
perconductivity and some of its theoretical developments has been sketched
here. No mention has been made of some of the more exotic forms of super-
conductivity, such as, organic superconductors, heavy fermion compounds,
etc. or of some of the brilliant theoretical achievements, such as the Joseph-
son effect (as predicted by Brian Josephson in 1962 [Josephson (1962,65)]

and who was subsequently awarded the Nobel prize).
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The scope of this thesis is quite broad. The topics range from critical
currents to spin glasses. These subjects will be introduced in the subse-
quent chapters. The main unifying theme of these rather different aspects
of theoretical superconductivity is that of ~pair-breaking™. As discussed. the
superconducting state is a superposition of paired electrons (Cooper pairs)
of (£ 1, =k ). The destruction of the superconducting state is very impor-
tant from an applications point of view and also from the information that
it can provide us on the stability of the superconducting state in the pres-
ence of magnetic fields, currents. or as clues to new exotic mechanisms in
unconventional materials. The breaking of Cooper pairs is the mechanism by
which the superconductivity is destroyed. This can occur by increasing the
temperature so that the electrons can be thermally excited out of the state,
but also by other pair-breaking mechanisms. For instance, the electrons are
paired by (7, 1) and a magnetic field that would tend to align the spins along
the direction of the field, (1, 1), say, would destroy the pairing. Magnetic
impurities tend to spin-flip scatter the electrons as do spin-density fluctu-
ations (paramagnons) and hence pairing is destroved. Other pair-breaking
effects can arise from an applied current which shifts the energies of the
electrons and hence, large enough currents can give enough energy to the
electrons to excite them out of the superconducting state. These are some of
the pair-breaking mechanisms examined in this thesis.

Chapter 2 examines the critical currents in thin flm superconduc-
tors — the last mechanism mentioned above, and presents results for strong-
coupling theory (Eliashberg theory) without impurities and with normal or

magnetic impurities. Chapters 3 and 4 discuss the novel marginal Fermi
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liquid theory which has been proposed as a theory of the new high temper-
ature superconductors. The pair-breaking mechanism in this case involves
spin density fuctuations but in a rather diferent ground state. Chapter 5
records some studies of the effect of paramagnetic impurities and param-
agnons, (static and dynamic pair-breaking, respectively) on several electro-
magnetic properties of superconductors. Chapter 6 is an extensive chapter
on thermodynamic and electromagretic properties of intrinsic spin glass su-
perconductors, where the essential feature is pair-breaking similar to that
of paramagnetic impurities but now the effective paramagnetic impurity is
temperature-dependent. Chapter 7 forms a conclusion to this thesis and the
appendices supplement the material in the chapters. Appendix A, in partic-

ular, contains the necessary mathematical introduction to Eliashberg theory.



Chapter 2

Critical Currents in
Thin Film Superconductors

2.1 INTRODUCTION

The critical current of a superconductor is the maximum current that
can be carried by the metal without it reverting to the normal state. Although
there are many mechanisms which limit the current-carrying capacity of a
superconductor, such as motion of the flux lattice, the theoretically highest
attainable current is limited finally by the pair-breaking of the supercon-
ducting state induced by the current itself. Usually, the upper limit on the
critical current of a type I superconductor, where no vortex lattice forms, is
given by the Silsbee current, i.e., the current that produces a magnetic field
at the surface of the material which is equal to the .‘ﬁermodynamic critical
magnetic field, H.. However, in a thin film, the energy associated with this
magnetic field is reduced in comparison to the kinetic energy associated with

the current itself, by a factor of the order of the sample’s cross-sectional arca
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Figure 2.1 A schematic representation of velocity-depairing. The top
shaded circle represents the quiescent superconducting condensate of Cooper
pairs with no applied current. The second picture shows the condensate
shifted in momentum space by an applied momentum §,. The third frame
shows, under increased 7,, the excitation of electrons out of the supercon-
ducting state by their increased kinetic energy exceeding that necessary to
bind them to the condensate.

divided by the square of the penetration depth [Tinkham (1975)]. Hence,
samples smaller in dimension than the penetration depth will have a criti-
cal current that is limited by the velocity-depairing of the superconducting
state.

A simple schematic picture to illustrate this velocity-depairing is
given in Fig. 2.1. First, we start with the superconducting condensate of
Cooper pairs in its ground state with no applied momentum. This is schemat-
ically represcnted by the shaded circle. Then in the second part of the pic-
ture, we apply a current with momentum g,. This skifts the condensate in

momentum space by an amount g, in the direction of g,. As the condensate
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Figure 2.2  The superfluid current deasity j, as a function of the applied
velocity v, = ¢,/m, iu arbitrary units, for T = 0.97.. The critical current
density j. is defined as the maximum in this curve, which occurs at a critieal
velocity v.. This curve was numerically calculated from BCS theory.

is formed of Cooper pairs of electrons (£ 1, =k |), where & is the momentum
and | represents the-clectron spin being +1/2,"ihe pairs become shifted to
(¥4 1, =k + @, 1). The quasiparticle energy now has a term proportional
to k-7, and a higher order term proportional to g2. This latter term can be
neglected for small ¢,. Hence, the net effect of the applied current is to shift
the quasiparticle energy by & - §,- When upon increasing g,, as shown in the
third part of Fig. 2.1, this term becomes of the order of the energy gap, A,
the binding energy of the electron to the condensate, the electrons begin to
depair and there is a rapid destruction of the superconducting state, with

the sample finally reverting to the normal phase.

P
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Figure 2.3 The order parameter squared normalized to its zero velocity
value as a function of the applied velocity v, = ¢,/m, in arbitrary units,
corresponding to Fig. 2.2.

The applied current density j, for the process is drawn in Fig. 2.2, as
a function of of the superfluid velocity v,, which is related to g, by v, = ¢;/m.
The current rises linearly with increasing velocity, as j, = nev,, where n is
the electron density and e is the charge, until depairing begins to set in and
then the slope decreases due to electrons being lost from the condensate.
The maximum in this curve is defined as the critical current density, j., the

_maximum attainable current. It occurs at a critical velocity ..

In Fig. 2.3, we show the corresponding order parameter A, normalized
by its value in the absence of the applied momentum, as a function of v,.
Here, we plot the squared quantity merely to make the correspondence to the
well-known Ginzburg-Landau result, where an expansion of the free energy

in the square of the order parameter occurs [Tinkham, (1975)].
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This pair-breaking current was first calculated by Ginzburg (1956)
who found the temperature-dependence of the critical current density, j..
near T. to be j. = jo(l = T/T.)*/*. where j, is an impurity-dependent coetfi-
cient later refined in Ginzburg-Landau theory {Gor'kov (1959, 1960)]. T is the
temperature and T, the critical temperature of a superconductor. Further
investigations of the pair-breaking current [Rogers (1960); Bardeen {1962):
Parameter (1962); Parameter and Berton (1964); Maki (1963, 1964)} were
carried out for j. as a function of temperature in the clean (I » &) and
dirty (! « &) limits finally culminating in a paper by Kupriyanov and Lu-
kichev (1980) where they numerically calculated j.(T) from the Eilenberger
equations [Eilenberger (1968)] for arbitrary elastic scattering. (The Eilen-
berger equations are a real-space formulation of Eliashberg-type equations,
useful for properties where the order parameter may vary in space.) Thus,
the temperature-dependence of the critical current with arbitrary normal
impurity scattering has been calculated for a BCS superconductor.

Experimental verification of the BCS theory has been shown in the
clean [Glover and Coffey (1964): Hunt (1966); Andratskii et al (1974); Skocpol
(1976)) and dirty [Romijn et al. (1982)] limits for Sn and Al thin films, respec-
tively. Measurements are quite difficult and must be performed on samples
with dimensions that are small compared with the electromagneti~ penetra-
tion depth X and the BCS coherence length &,. This is necessary to achieve
uniform current flow and to suppress the formation of vortices. Also, mea-
surements are difficult very far from 7. as many of these constraints break
down due to their temperature :‘.ependence. Romijn et al. (1982) have-given

a good discussion of these points.

-~
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More recent interest in inelastic scattering in the high temperature
superconductors resulted in an attempt by Lemberger and Coffey (1988) to
incorporate inclastic scattering in an approximate way in the usual BCS
theory for j.. They predicted that inelastic scattering would suppress j. near
T.. This motivated us to re-examine the problem within the formalism of
the Eliashberg theory of strong coupling superconductivity which naturally
incorporates inelastic scattering through the electron-boson spectral function
a’ F(w).

In Section 2.2, we present the strong coupling Green’s function in the
presence of 2 uniform current and use it to calculate the superfiuid current
density, 7,, and the accompanying equations for the order parameter. From
these equations we calculate the critical current as a function of tempera-
ture and impurity content for both non-magnetic and magnetic impurities,
and our results are presented in Section 2.3. Also in Section 2.3, we present
functional derivative calculations which confirm and give insight into our
previous results. In Section 2.4, we present 2 strong coupling correction for-
mula for j. near T, in the pure limit as a function of a sinsle parameter
and in Section 2.5, we examine the asymptotic limit of j., where the mass
renormalization parameter tends to infinity. We summarize our conclusions

. in Section 2.6.

2.2 THEORY

Under the application of a small momentum §, to the superconduct-
ing conden:ate in zero magnetic field, Rogers (1960) has shown that there

will be no appreciable change in the BCS ground state wavefunction and



2.2  Theory 15

that the superconducting condensate will simply be shifted from a conden-
sate of pairs of momentum £ [ and —% | to one of pairs of &£ + 7, | and
—k+47, ] and that the quasiparticle excitation energy will shift by 7-7, where
T = pfm = hk/m. Maki (1969) has given the BCS Green’s function for the
current carrying state as

GUn-a.a(ﬁ) = (iwﬂ -7- 63 + EP:; + Aplaz)‘-l . (2.1)

where £ = p*/2m — p, with g the chemical potential, A is the supercon-
ducting order parameter and w, are the finite temperature (7') Matsubara
frequencies, w, = #T(2n — 1), n = 0,%1.%2,.... The Green’s function here is
the Nambu-Gor’kov Green's function in four-by-four matrix notation sthere
the p; and o; are the Pauli matrices operating on the electron-hole and spin
spaces. respectively, and p, o, is a tensor product. In this notation, the equa-
tion for the BCS order parameter A is given as [Maki (1969}]

A=-vT 3 j ST 0GP (2:2)

n=—co

where V is the constant pairing potential and Tr is the trace of the matrix.
The supercurrent density j, induced in a thin film superconductor in zero

magnetic field is [Maki (1969)]

_ Z j(g )3Tr[PGWn (@] (2.3)

with e, the electron charge, and m, the electron mass. We generalize these
results to the case of strong coupling theory by using the strong coupling
Green’s function, as it is modified in the presence of a uniform current, in
the formula for the current above and in the standard Eliashberg equations

for the order parameter. Following the usual development of strong coupling
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theory [21llen and Mitrovié (1982): see also Appendix AJ. the Green's function
13

Gon gl P) = (%0 — T-§, + Ep3+ Bnp,0,)™! (2.4)
and the equation for the current is derived from Eq.(2.3) by performing the

trace and the energy integral:

7= 3eN =T i j 1 ds (Sp — 282)z i (2.5)
s = 5% ——0 =
2LF n=—c0 /1 (&n — isz)® + A:‘;

where s = v.q, = k¢,/m, §, is 2 unit vector in the direction of §,, iV, the elec-
tronic density and &,, the Fermi momentum. Likewise, the standard Eliash-
berg equations for the order parameter and renormalized frequencies of the

superconducting state are also modified and are given as

Ba=oT 3 [Mnmm) = g0 | )] [ O

m=—0c 2 \/(w —isz)2 + A2

taier o) [ £ (2:6)
1 2 \/ - 23“') + A2
and
Oy =twn + 75T Z A{n - m)/ de__ Gmoisz
m=—00 1/ (&om —is2) + A2,
+w(tt + - )/ e Wn—isz 2.7
\/(wn —isz)? 4 A2
Where,
— s o [T walF(v)
AMn=m) = Miwpn —twn) = ‘/0 Py E——— dv (2.8)

and &, = A(&) = Z(kwn)A(iwy) and &, = Z(iwn)wn. The normal impurity
scattering rate, tt, is defined as 1/(2x7,) and the paramagnetic impurity
aca.ttenng rate, t—, is defined as 1/(2=7,), where 7, is the spin-flip lifetime

and 7, is the normal impurity scattering time. Note that with s = 0 in

—
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Figure 2.4 The temperature dependence of the critical current density
on the clean limit for the materials indicated in the figure. Aluminum fol-
lowed the BCS curve and is not shown. Tin fell in between the BCS curve
and that for indium, and mercury also followed closely the curve for Pb.
These two curves are also not shown for the purposes of clarity. Indium is
representative of intermediate coupling and Pb, of strong coupling. Strong

inelastic scattering from the phonons is seen to always increase j. above the
BCS result.

Egs. (2.6) and (2.7) we recover trhe usual Eliashberg equations with impurity
scattering, 7

We numerically solve Egs. (2.5)-(2.7) self-consistently for a value of
gs which maximizes j,. This value of j, is then defined, in the usual manner,

to be the critical current density, j..

2.3 NUMERICAL RESULTS

In this section we present the results for numerical solution of the

equations just presented in the previous section using known o? F(w) spectra
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of type I superconductors derived from tunneling experiments. In Fig. 2.4,
we display (je/jo)**, in the clean limit (¢7 =t~ = 0}, versus the reduced
temperature, t = T/T, for the materials indicated. Indium is represeatative
of intermediate coupling and lead. of strong coupling. Aluminum is not shown
but the curve followed the universal BCS curve aimost exactly. The curve for
tin fell in between that for Al and In, and mercury fell almost on top of the
Pb curve, and hence we have omitted these curves for clarity. Here, jo is the
temperature-independent coefficient of the Ginzburg-Landau result near T.,
ie.., je = jo(1=1)3/?, where j, = SeN=T./(3mv,/T((3})). There is an increase in
the critical current over the BCS result for strong coupling superconductors
showing that inelastic scattering increases the critical current rather than
decreases it as previously proposed by Lemberger and Coffey (1988). We wail
discuss this result later on.

Bardeen (1962) has given two phenomenological forms for the tem-
perature dependence of je near T.. He gives j.{t) = f{(1 - £3)(1 + ¢*)]'/2 and
Fe(t) = Fo(1—2)32, When, as in Fig. 2.4, it is difficult to distinguish the curves
for different materials. it is common to define a deviation function, where a
phenomenological result is subtracted from the actual calculated quantity,
and this deviation is plotted as a function of t or 2. A plot of the deviation
function is useful for showing the fine details of how the curves for different
materials differ from one another and for comparing with the phenomenolog-
ical models. Such plots are shown in Fig. 2.5 for the two phenomenological
results of Bardeen, above. Notice that the numerical results are always below
these phenomenological forms and that there is some Tt:%.-;'oa‘,so'crer: between the

curves at low temperatures. But near T., where the phenomenoclogical forms
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Figure 2.5  Deviation functions for several materials as a function of 2.
Curves are drawn for Pb (— - —), Hg(— — —), In(---),Sn(----), and
BCS (solid Line). In (a), the phenomenological form is j.(t) = Fo[(L ~ £*)(1 +
12)]1/2, and in (b), it is 7.(¢) = jo(1 — £2)*/2.
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Figure 2.8  The temperature dependence of the critical current density in
Pb for various amounts of normal impurity scattering: t* = 100 meV (— —
—), 10 meV (- — =), 1 meV (- - - -) and the pure limit (solid line). Normal

impurities decrease the critical current until saturation is reached in the dirty
2/3

Limit (t* = 100 meV). Here, (7i"7)?R = —T. 8 |r..
have their greatest validity, the curves for the different materials increase in
magnitude towards zero in increasing order of their degree of strong coupling,.
In Fig. 2.6, we show the effect of normal impurities for a selected
material, Pb. In qualitative agreement with the BCS results [Kupriyanov
and Lickichev (1980)], as the impurity scattering rate is increased the critical
current decreases until, in the dirty Limit, it saturates. Note that in this
figure we have normalized all curves by (ji"?)* = —T.:%ihrc to remove the

material-dependent constants. Recall, that in the clean limit, we normalized

by ja which is equivalent to —Tc%:ln-
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The effect of paramagnetic impurities on Pb is shown in Fig. 2.7.
We have shown the curves in two ways as paramagnetic impurities cause a
reduction in T, as well. In Fig. 2.7(a), we display the curves as they start
from their effective reduced temperatures (75, is the 7. without any ¢~), nor-
malized by (7?)/3 = —Tﬁ‘-‘%a-li-_rc and in Fig. 2.7(b), we show curves where
t = T/T, and (7PY2PR = —Tmigilrc. We notice a surprising result: param-
agnetic impurity scattering causes an increase in the temperaturc-dependent
part of the critical current over the clean limit result as the temperature is
lowered.

To confirm these results, we calculate the functional derivatives which
give the differential change in the property (j./7,)*/® for an infinitesimal ad-
dition of weight at a frequency Q in the spectral function, o*F(w). This is
drawn schematically in Fig. 2.8, where the o®F(w) spectrum for Pb is shown
augmented by an infinitesimal delta function at a frequency Q. Formally, the
functional derivative is defined as

§Q . Qe*F(w) + eb(w - )] — Q[o*F(w)] .
SZF@) o € (29)

where Q in this case is (je/.)*/>. This was also calculated numerically and
we present results for the Pb spectrum only, as the results are similar for the
other materials.

In Fig. 2.9, we show the functional derivative for pure Pb for sev-
eral temperatures. There are several interesting things to notice. First, the
functional derivative is mostly positive, except at low frequencies, with a
maximum and then going to zero at higher frequencies. This illustrates that
moving weight from any region of the Qpectral function to the frequency of
the maximum in the functional derivative will increase the property. Adding
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Figure 2.7 The effect of paramagnetic impurities on the temperature
dependence of the critical current for the material, Pb. Shown are curves for
t= = 0.188 meV {(— — —), 0.102 meV (- — =), 0.042 meV (- - - -), and the
pure limit (solid line) corresponding to reduced T.’s of T./T,, = 0.5, 0.75, 0.9,
and 1, respectively. In (a), the critical current is plotted as a function of 7'/T.,

with (7P)R = ---fl"cin%{‘z 7., and in (b) it is plotted as a function of T/T.,,

. e o] - e = . .
with (Fi"P)R = —Twi‘%‘- 1., to exhibit, in the latter case, the reduction in
T. with Increasing paramagnetic impurity scattering.
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Figure 2.8 A schematic representation of the concept of a functional

derivative. The o® F(w), in this case, that for Pb, is augmented by an infinites-
;:uzrall?:lul del:g. function at w =  and the change that occurs in the property is
ated.

spectral weight at any frequency will enhance j. except at very low frequen-
cles where the functional derivative is negative. In this region, adding weight
decreases j. which is in perfect agreement with the results for normal im-
purities because low frequency phonons mimic static impurities and from
Fig. 2.6, we see that this should decrease j, as it does. Another point to no-
tice is that the overall magnitude of the functional derivative decreases with
temperature and this reflects the fact that absolute value of the slope of the
curves in Fig. 2.4 is decreasing as the temperature is lowered. This is simply
the inelastic scattering freezing out at lower temperatures. Recall that the

inelastic scattering here refers to electron-phonon scattering.
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6(je/10)*/°/ 60*F(w)

w/T.

Figure 2.9  The functional derivative of the critical current for pure Pb
versus w/T. for the reduced temperature ¢t = 0.9 (solid line), 0.75 (- - - -), 0.5
(- -=-),0.25 (— — —), and 0.1 (— - —-).

Finally, in Fig. 2.10, we display functional derivatives for different
impurity content. The upper frame shows the results for normal impurities.
Notice that the overall decrezse in magnitude of the curves with increasing
impurites is similar to the decreases in the curves of Fig. 2.6. The features
of the curves are the same as in Fig. 2.9 but now the negative tail at lower
frequencies is starting to shift inward towards the origin with increasing
impurity scattering and is finally non-existent in the dirty limit as the critical
current has saturated and no further impurity scattering can reduce the
current further. The second frame illustrating the effect of paramagnetic
impurities has similar features as the others. Again the increasing magnitude
of the curves with impurity content is similar to the increasing magnitude

of the curves in Fig. 2.7. The shape and negative low frequency tail follow
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Figure 2.10 (a) The functional derivative for Pb at T/T, = 0.75 versus
w/T, for several values of t*: 0 meV (solid line), 1 meV (----), 10 meV (——--)
and 100 meV (— — —). Notice that in the dirty limit (¢+ ~ 100 meV), there
remains no negative low frequency tail as the system has saturated and no
additional impurity scattering can cause a reduction in j.. (b) The functional
derivative for Pb in the case of added paramagnetic impurities: ¢t~ = 0.188
meV (solid line}, 0.102 meV (- - - -) and 0.042 meV (- - -).
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from the same discussion as the other curves and it is only the change in

magnitude that is of interest here.

2.4 STRONG COUPLING CORRECTION FORMULA

After the manner of Marsiglio and Carbotte (1986) and Marsiglio
(1988), we develop a formula giving the strong coupling correction to the
clean limit Ginzburg-Landau result near T, in terms of the strong coupling
parameter Te/ty, Where wr, is the characteristic Allen-Dynes frequency of

a® Flw) defined as [Allen and Dynes (1975)]:

9 reo 2
wln:exp[ijo dwZ i(w) Inw] . (2.10)

Performing the integrals over = and expanding in powers of Am/&m and s/&m,

as A, and s are small near T, Eqgs. (2.6) and (2.7) become:

- 2 [ dv2walF(v) An A2 162
An=sT Y j -5 -3 (2.11)

and

. o o 2 - A2
Z(n) = 1+%T- 3 / dvva’Fv) _Gm (1 ) . (212)

—tm
w2 Jo T Wm—wa [\ 203

where we have kept terms only to O(A2) and O(s®). We have set ¥ and ¢~
equal to zero for the clean limit and have taken p* = 0 for simplicity, realizing
that some of the effects of p* will already be included in 7. which is taken
from experiment. We now use a step function approximation [Marsiglic and

Carbotte (1986); Marsiglio (1988)] for A(wy,) and Z{w,) of the form:

Alwn) = {ﬁ:ﬁ’-")’ AN (2.13a)

Z(wa) = {13°('*:") o leml<wn (2.13b)

lwn. [>Wo y
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td

where w, is several times the maximum phonen frequency. We also assume
that T, € wyjp < w0, where wy, is the characteristic Allen-Dynes frequency

of a®F(w) given in Eq. (2.10). In this approximation Eqgs. (2.11) and (2.12)

become:
Jv' (=~ v 2 X il -
= dvdvaF(v) A, A1 ST ,
A, ==T j - - — - =2 - —— 214
mz—ZN.-}-l 0 ¥+ (Wm—=wa) | Dm ] ( 252 3&-‘,‘,‘) ( )
and
=T ®  dvdvelF(v) 1 A2
Zs(n) = 2, ("—)+— Z f = sgn(wm)( — ) . (2.15)
! m==Notl ve+ (a'm - "') 2""m

where N, = %% + £. Note that A, can be replaced by zero in Eq. (2.132) as
A can be shown to be proportional to u*, which we have taken to be zero.

These two equations can be written as:

° 2 Al 1,
Aozs(n) = fo wdva F(V).‘lo [Pl +Q1 - ?(Pg +Q2) - 33‘(P2 + Qg)] (2.16)

and

Z.(n)=Z (n)+ ]:o dv2vo* F(v) —%A";(Ul + W) (2.17)

where, by folding the sums to the domain [1, cc] and replacing N, by infinity

as the convergence is sufficiently rapid, we have extracted the following sums:

1
Ui = 4T Z el g (2.182)
m—l
dwiw?
V= 4TTmZ-1 T T eE L (2.18b)
'_2TTZ T o +w2 -7 (2.18¢)
m=1 %
dwiwi
Qi =2+T Z =l or ) (2.184)

m—l
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Ve have also used the notation 5 = s/Z. (i) = s/{1+ A). These sums can be
evaluated in terms of digamma functions and to (1/v%) they are, for small

n, in particular for n = 1,

=T)*
Ql — ( V.‘) . (2-193-)
_ 1o 13 (=3 113 1) 1(<T)? o
Pi=gher == (I“ kT 5) 5 s - (22%)
_T® 1 7.1 1 113w .
P. = =T 4(’(3):;“ T In kT (2.19¢)

2 113y 1
H b —— — — 2. d
Ui =3 (I“ T 2) ’ (2.194)
The rest, including Q2 and V3, are to higher order and are not kept as T « ».

Here, {(z) is the Riemann zeta function.

Substituting Eq. (2.17) into Eq. (2.16), we can arrive at the simple

form of
‘)
1= F(T)+ AG(T) + %Ts"'H(T) . (2.20)
where we define
_ A, L3, A-X (=T 4 oo
FD=rmh T 102 T =38 (2:212)
_ T3 A b 1 3a(T)
CI)=-3mrrisa T C(3’1-;-,\ sTextaTsx 0 (2P
and
= — ﬂ_'\_ ! 1 G(T)
2I)= (T)-1+A+S (31+A+21+A ’ (221¢)
with the following moments of a*F(v):
0 2.
o(T) = / o Fia)), 213;_‘,’ i (2.222)
0 B

00 6,2
b= f ety | (2.22b)
0 v
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dr (2.22¢)

B [ 2 I
A“‘/ 2ra I-'(z/)ln o 4 1
0

= r
v= v

i s/w Wl ), woty (2.22d)
4] v= [57%
and
® e Fv), 1.13v Ao o s
= (A= . 2.2
fo I er Aln LBT (=1 (2.23)

For we 3 v, A = 0. Note that F(T.) = 1 gives a T, equation with strong
coupling corrections.

Now examining Eq. (2.5) for the superfluid current density, we can
integrate by parts to find

3eN '*"A"
—u — 3 - 2.2‘
=T Z ] dz R +A]=’f”q (2.21)

n==00

Neglecting 3,> and A2 in the denominator relative to T

eN
=T, i 2.95
Z | PP ’

Using the step-function approximation,

eN 2

2— .
= A E 8<;(3)A . (2.26)

I =

Substituting A, from Eq. (2.20) into Eq. (2.26) yields

Lo 2 [ - E(T) _2H(T),

AL s'(a) AR AN

Taking dj,/ds = 0 gives the critical value of 3, 3., that maximizes j,:

2 1{1-FT)
-»3—2( T ) , (2.28)

and je = ja(3e) gives
. ii‘i 2 C( =i 2 [1-F@OP2
Te = vy (TP 8 3v2 C(TVH (Y

_; - FT)Pr?
°°G(Tc) ik (2.29)
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20 =
TC(3)eN/(6v2mu, (=T.)?).

where joo = 7¢
Now a(T.) and b can be evaluated to be [Marsiglio (1988)]

113
a(T.) = == Aln . (2.302)
o kel
b= 225 (2.30b)
“h

where o; and a- are constants compensating for averaging over the spectrum

using the mean value theorem of calculus. Using the fact that F(T.} =1

A T
FT) =1+ 553
A Ca (Tc :  11%um
—1']' 1+A(1—t)[11‘-« al a:h‘) In kBTC
_2 8 Tc 2 9
- (&1 -+ 3Q2) (hﬂn) } (....318.)

and
T3 A A lax A 3ar A, Ll
T, - ol

GTe) = 3( GTREI+A TS “3) “1+A 202 14 A 2uﬁ‘1+xl“ kpTe

(2.31b)
as A lay A 1.13w1,

= 1 2,

SR -s et L

O

H(T,
(Te) = S( =T 1+A wi 1+ A

where t = T/T.. Substituting Eq. (2.31) into Eq. (2.29) and expanding in

terms of the small parameter, T, /wi, leads to a form for j., near T, of

b4

(f.:)”“_ 1- F(T)

Jof [CTHTIN
8(zT.) .\ | e
= =73 T (1-1) [1+ (%) a;In ‘f?}'j] - (2.32)

=

or finally, .
die/ia YR _ T\, (o
) @) o) e
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where a; and a. are constants related to particular moments of the o F(w)
spectrum. T./wy, < 1. and jo = SeN=T,./(3mv,/7¢(3)).

As in previous work, due to the approximations made. we prefer to
fit this form (i.e., a1 and a2) to the calculated values for several materials to
obtain a correction formula in terms of 2 single parameter. We find that a

reasonable "t to the numerical data is given by

T, : “ln
— L1 % — 9
)t_l =1+21.2 (a. ) 1n(2.3T¢) . (2.31)

Here, we have used the slopes at T for the curves of several type I materials,

d(Ge/ o)
dt

some of which are shown in Fig. 2.4, and their known values of T, /w1, and we
have also used several Einstein spectra with different T./wr, values to aid in
fitting the function. Fig. 2.11 shows the slope at T for several type I materials
(solid dots) and Einstein spectra (open circles). The fit of Eq. (2.34) is shown
as the solid curve and represents the theoretical data well. Deviations from
a single curve will resuit due to the detailed shape of the o*F(w) spectrum
and the specific value of p*, which are not fully accounted for in Eq. (2.34),
but the general trend is well-described by a single parameter, T./w, using
this formula. Note, that the BCS result of 2 slope of 1 is recovered in the
limit of T /uyn — 0.

2.5 THE ASYMPTOTIC LIMIT NEAR 7. IN THE ONE-GAP
MODEL

To investigate whether strong coupling will always increase j. near T,

in the clean limit, we can examine the unphysical asymptotic limit of A — =
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Figure 2.11  The absolute value of the slope of (j./5,)*/® at T; in the
clean limit as a function of a single strong coupling parameter T;/w, for the
materials indicated in the figure. The open circles are Einstein spectra with
u* = 0. The curve corresponds to Eq. (2.34) of the text.

following the procedure of Marsiglio et al. . (1989, 1990) and Marsiglio and
Carbotte (1990). Substituting Eq. (2.12) into Eq. (2.11) yields

=T = W AZ
Ant o= > A(n-m)lwm](h%%)

Mm==00

= Am w13
=T % A(n—m)lwﬂl[(l—i”i—aw?n), (2.35)

ME—00

where &, = s/Z;(m). Separating out the » = m term explicitly,

=T w, A2 =T w. A2
Ant AN 2 (1- 22 |+ A S Ap—m) e [1- 2
n “()Iwal( %;)*un g; (n m)!wml( %2,

A Az 132 A, AZ 1%,

=xTM0) —|1- =2 -2 =T Ma=—m)—2 1= 22

“m:( %2 3w;)+ 2 m)iwml( 2%, 3«%)
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With the exception of the A(0) term coupled with 32, the other A(0) terms

cancel with the result:

N A(n..m)(a,,,-%n) [l_ll(l_)]
m#n (3 m -

1 A, 3 m 52
- =aTA0)7——% - ==T Aln - —=
3 mz#“ ( I I wh,

(2.37)

culv-

I Yn I Wa
For convenience, we will use a delta function for the spectral function.

o’ F(v) = Aé(v — w;), with position at the Einstein frequency, w,, and area.

A. With this choice, A(n — m) of Eq. (2.8) becomes

A(mw—n)= g . (2.38)

Wi+ (Wm —wn)?
And for n = m. A(0) = 24/w;.
As we are interested in the asymptotic imit of A — oo, when we
examine A(n — m) for n # m, as shown in Eq. (2.38), for A — o0, we can
neglect wy in the denominator (i.e., A = 24/w, and we fix A and let w, — 0)

provided » # m and w, < 2zT. So A(n ~ m) becomes:

2w A

Mo =) = R

(2.39)

We use Eq. (2.39) and take advantage of the symmetries of A(—n) = A(rn+1)
and w(—n) = ~w(n + 1) to fold the sums over to the [1,00] domain and find

that
— 2 1=bnpm = 1
Aﬂ = WTUSA mgl (2,'.(1‘)2{ [(m - n)z + (m g 1)2] Am
- [(m _ n)2 = (m +n— 1)2] Anw_n} [; - 5?] - 3FTA(O)A,‘“2

1—bnm 1 32,
wTuEAZ(zTT)z{[(m A 1)2]Am = (240)




34 2 Critical Currents

Now to obtain a rough approximation. we assume that A{n = 1) = A(T)

and that all other gaps are zero. This is known as the one-gap model. For

m=n=1l
1 axm] 1 A(T) i { .
(T)= a(’r)g_r ]F’T— e ] 3’ *TA(0)—— = :—-—.\(T)_“ Z (2.41)
or
w;-A 1 AXT) 1 li‘l 32 .
N T[ =T ("-T):’} e )( A ererE 0 9

Note that the sum to infinity of the A, term is zero for 1/w, term in the
square brackets as the terms cancel in pairs. Solving for A*(T):

(=T}
s

-

AXT) = (sT) - 25— [1-:- 20— +1"’E"‘ :"} _ (2.43)

(= T) 3(=T)"
We now substitute Eq. (2.43) into Eq. (2.25) for the superfluid current density
near T. to find

eN 1
muv, (TTC)

_eN 1 (-rT) 2 (=T)? wed .
mva“ (T‘Tc) [( T)z UJEA _3 wpd ( (0)+( T) ) 2]-‘-’1 .(2.44)

Applying dj,/ds; =0 to find the critical value of 5. gives

j; = A(T)bl

o _ wegd i (=T o
te = 2(xT)* A(0) +w A/ (=T [(WT)2 - 2'%—44] . (2.45)
And jc = ja(s.:) 1s
: =1)21%*
7T mvp 3 \/A(O) To A/(-rr,,)z [1 —5A ] : 2.46)

Using =T, = /(Awg/2), derived from Eq. (2.42) with A and s equal to zero,
we arrive at

eN 2 2

. o & & 2432
JC mvp 3'“‘3 A(O)"' )TTG(I t ) L)

eN 4 3/2 .
al—t =T, A(O) 33 ——1-1) . (2.47)
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Figure 2.12  The absolute value of the slope of (j./jo)*® at T. in the
clean limit as a function of the strong coupling parameter T, /uy, for Einstein
spectra with z* = 0. In the very strong coupling regime, the slope decreases
and falls below the BCS value of 1. At T/, ~ 4, this curves joins up with
our analytic asymptotic form.

Now as A = 24/w,, and kence =T, = vAw/2

. eN 22
Je 2 w1l -7, A—occ. (2.48)
F

I we write Eq. (247), as (jo/j.)*/3, where j, is defined at the end of Sec-
tion IV, then

s 1 \2/3 - /3
d(Jc/‘io) I) ~ (%.(3.).) :ilﬁ , A=— 00. (2.49)
=1

Thus, for. very strong coupling, the slope of (j./j.)>/ should reduce
and eventually fall below the BCS value. To verify this behaviour, we used
an Einstein spectrum to aumerically calculate the slope near T, for large
values of T./uy,. In Fig. 2.12, we display our results. For T./uw, < 1, the
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Figure 2.13  The temperature dependence of the critical current densiiy
for an Einstein spectrum with T./uy, = 2.0 and u” = 0 (dashed curve). Plot-
ted for comparison is the BCS resuit (solid line). Extremely strong inelastic
scattering can reduce the critical current.

curve agrees with the form found in Section IV. The slope then turns over
at a value of T.fuy, ~ 0.26 and begins to decrease, falling below BCS for
values of T./uy, > 0.6. We found that the numerical curve joined up with our
analytical asymptotic form (Eq. (2.49)) at a T./wy, ~ 4.

In Fig. 2.13, we display the temperature dependence of (5./7.)*/® in
the very strong coupling regime for T/w), = 2.0 (dashed curve). We notice
that the slope of the curve near T. is below the BCS curve (plotted as the
solid curve for comparison) and that the temperature dependence is nearly
linear down to low tempera.;:::res.r

The values of the inelastic scattering rate used by Lemberger and

Coffey (1988) correspond to values of T,/uwy, < 0.25 and this is in the regime
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Figure 2.14 Maximum slope at T. obtainable for different values of u*.

The curve drawn through the solid dots represents an upper bound on the
slope near T, obtainable in Eliashberg theory. The solid dots below this
curve are the results of numerical calculations for the real materials shown
in Fig. 2.11.

where j. is increased by inelastic scattering, coutrary to their results. How-
ever, they do capture the essence of very strong inelastic scattering when
with their approximate form they find a decrease in j.. This only occurs
for extreme strong coupling which is not in the parameter region that they
considered quantitatively. The shape of the temperature dependence that we
find is rather different from what they propose, as we observe a linear tem-
perature dependence for jo/° (see Fig. 2.13), whereas their curves exhibit an
upward curvature.

The maximum in the curve of Fig. 2.12 motivates us to place an upper

bound on the maximum slope near T, for the critical current, obtainable

from Eliashberg theory. This is shown as the solid curve in Fig. 2.14, where
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we have plotted the maximum value obtainable for the slope (the peak in
Fig. 2.12) for different values of p°, shown as solid dots on the curve. The
solid dots below the curve are the values for “i.e type I materials used in our
calculations. The real materials fall well below the theoretical maximum or

upper bound.

2.6 CONCLUSIONS

We have calculated the pair-breaking eritical current of a thin film
superconductor in zero magnetic field for several type I superconductors. It
is found that strong inelastic scattering increases j. contrary to a previous
suggestion [Lemberger and Coffey (1988)]. This result would at first seem to
be opposite to what one would expect, however, the inelastic scattering has
two aspects: one is the real processes which scatter electrons and decrease
the current and the other is the virtual processes which enter the pairing
equation and enhance the stability of the superconducting state. And in
this case, the virtual processes are enhancing the pairing. This is illustrated
and confirmed by the functional derivatives, as discussed in Section 2.3. We
have also calculated the effect of impurities, both magnetic and nonmagnetic,
on j. and have found an increase and a decrease in the critical current as
a function of temperature for each type of impurity, respectively. Finally,
we have presented a strong coupling correction formula as a funcsion of a
single parameter T./u1, and examined the very strong coupling regime where
the critical current finally begins to decrease and go below the BCS result,
confirming this with a calculation of j. in the asymptotic imit of A — co.
From this work we can place an upper bound on the slope of j;"ls near T,

within Eliashberg theory.
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We are unaware of any experiments for j(T) on strongly coupled
superconductors or on ones containing paramagnetic impurities. Thus, many

of our results await experimental verification.






Chapter 3

Marginal Fermi Liquid
Theory 1

Various Properties

In this chapter, we will discuss a novel theory, marginal Fermi liquid
theory, that has been proposed [Varma (1989); Varma et al. (1989)] as a pos-
sible explanation for the high temperature superconductivity in the copper
oxide compounds. It has been claimed [Varma (1989); Varma et al. (1989)]
that this theory adequately describes the unusual normal state propertics of
the copper oxides. We apply this theory here to calculate several supercon-
ducting properties to determine if there could be possible agreement between
theory and experiments performed on these materials. First, however, before
discussing the nature of 2 “marginal” Fermi liquid, it will be necessary to
introduce some of the concepts of Fermi liquid theory. After this introduc-
tion, we present the phenomenological marginal Fermi liquid model that we
use and describe results for the gap ratio, isotope effect, London penetration
depth, and dc Josephson current. In the next chapter, we present calculations

of the optical conductivity.

41
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n(k)

X k

Figure 3.1  Picture of a free Fermi gas of electrons at T = 0. On the left
we show the momentum states of the electrons in momentum space, with all
states occupied up to the radius of a sphere given as k.. On the right is the
corresponding momentum occupation function, n(k).

3.1 FERMI LIQUID THEORY

Fermi liquid theory has a long history with applications to the theory
of metals and He®. As several books and reviews exist on the topic jfor exam-
ple, Pines and Noziéres (1966); Wilkins (1980)}, we wish only to summarize
some of the essential features nccessary to understand what is meant by a
Fermi iquid and further discuss a “marginal® Fermi kquid.

At zcro temperature, if there were no interactions between electrons,
we would have a free Fermi gas of electrons, where all momentum states
below k&, {the Fermi momentum) would be occupied with electrons (1]) for
cach state and all states unoccupied above k.. This is schematically pictured
on the left in Fig. 3.1. On the right. we show the corresponding single spin
momentum occupation function n(k), which is unity up until. k. and zero
thereafter. The presence of this sharp discontinuity in the occupation number

at k. is then described as a Fermi surface. An elementary excitation of this
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n(k)

ky k

Figure 3.2  Picture of a interacting sea of electrons at T = 0. On the left
is the momentum states of the electrons in momentum space, where some
electrons occupy states outside the free Fermi sea leaving holes behind. On
the right is the corresponding momentum occupation function n(k), which is
smeared around the Fermi surface at k.

system is to promote an electron to 2 momentum k > k. and leave behind a
hole in the Fermi sea. This is referred to as a hole-particle pair.

For a normal metal, the electrons interact with each other via the
Coulomb potential and the situation is a very complicated many body prob-
lem. In general, though, because of the Coulomb interactions (or correlation
effects), electrons with momentum & < &, will spend some time outside the
Fermi sea with momentum k > k,, as exhibited schematically in Fig. 3.2. This
causes a smearing in the momentum occupation distribution with states just
above k. now occupied and some just below &, unoccupied (Fig. 3.2). How-
ever, there will still remain a finite jump at &, which we will denote as zi(w).
For the non-interacting free Fermi gas, zx(w) = 1 and dne to correlations
=x(w) < 1 and varies as (14 A)™!, where A is a measure of the strength of the
correlations in the system. It has been proven within perturbation theory

[Luttinger and Noziéres (19622,b)] that even in the limit of A — oo, 2 finite
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jump in the momentum occupation function at &, still exists and as long as
it exists, there is still 2 Fermi surface.

To describe the complicated interacting many-body system is a very
difficuit proolem, but fortunately, all that needs to be known for most proper-
ties of interest is information about the elementary excitations of the system.
This problem was first tackled by Landau (1956,1957) in his now-famous de-
seription of liquid He® as a liquid of fermions {and hence the name Fermi
liquid). In his theory, the ground state can be very complicated. but if an
extra particle is added of energy Ex with k > &k, just above the Fermi sur-
face, the excitation can be described in terms of the energy measured with
respect to the Fermi surface. Therefore, low-lying excited states of a compli-
cated ground strte can be mapped back to the elementary excitations of the
non-interacting system in one-to-one correspondence. The excitations of the
real system arc now called quasiparticles (or quasiholes, in the opposite case)
and can be described in terms of the plane wave states of the non-interacting
system, with an effective mass m™ = (1 + A)m. These quasiparticles still have
between them a residual interaction. If one were to decompose this quasi-
particle state, one would find that it is a superposition of all the clementary
bare electron-hole pair states of the non-interacting svstem. The net result
is that through this mapping we can revert back to describing the system in
terms of single particle states but with renormalized quantities, such as the
effective mass, above.

This is very important for the problem of superconductivity as the
correlation energies of a metal are of the order of eV, whereas, the conden-
sation energy of the superconducting state is of the order of meV. In this

case, one might wonder how the superconductivity will occur in the presence
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As
wm

of such an overwhelming correlation energy. The resolution to this problem
requires that one use Fermi liquid theory to fold the correlation cnergy into
the renormalized mass of the quasiparticles so that the superconductivity
occurs due to the weak attraction between long-lived quasiparticles in the
presence of 2 filled Fermi sea of quasiparticles [Schrieffer (1964)]. In the con-
ventional theory of superconductivity, the quasiparticles interact through a
residual Coulomb repulsion (not accounted for by Fermi liquid theory) and
the attractive exchange of virtual phonons.

Now we will discuss Fermi liquid theory in 2 more quantitative man-
ner and point out some of its predictions. Our discussion follows those of
Wilkins (1930) and Allen and Mitrovi¢ (1982). For the non-interacting sca
of electrons at T = 0, an added particle representing an excitation of mo-
mentum % has a well-defined energy E; and an infinite lifetime. In the fully
interacting system, on the other hand, the interactions can shift the single
particle energies €, which are measured with respect to the Fermi level, and
also cause scattering between quasiparticles. This causes the quasiparticle to
have a finite lifetime for occupation of 2 state (&, o). The shift in energy is

given in terms of the many-body self-energy T(E;)
Br=ea+S(E) BNCRY

where 3(E;) is a complex function. For the quasiparticle picture to remain
valid the damping must be small and hence the imaginary part must be small
with respect to the real part. If

o~
th

Ep = ReEp ~ ——
ke T o (Ew)

(3:2)
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Figure 3.3  Dyson’s cquation. The single straight line represents the non-
interacting Green'’s function and the double line, the fully interacting Green’s
function. The dashed line is a boson propagator, such as a phonon.

where 1/7(E};) is the damping rate. then = can be evaluated (in this assump-
tion) at the real value of E, i.e., if Ex = ReE; then 7(Er) = 7(Ek)- The choice
of sign here indicates that the state evolves in time as exp[—iExt] and thus
decays as 2 function of time.

Hence, we can write the excitation energy Ei = ReE; as

Ep = € + ReZ(k, Ep + iT%) (3.3)
and the lifetime as
h

3 =-—Te= ImI(K, Ex + il) = SmE(E, B + i0%) (3.4)
“Tk

in general.

Now to discuss the kink in the momentum distribution which indi-
cates the existence of a Fermi surface, we must define the spectral weight
zx{w). To do this we must examine how the single particle Green’s function
is changed in the presc:.ce of interactions. In a fully interacting system, the

single particle Green’s function is given by Dyson’s equation (Fig. 3.3)

Glk,w) = G°(k.w) + G°(k,w)E(k,w)G(k,w) (3.5)
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or
- Go(k.w)
Gik.2) = — = 3.6
) = T e (he) (3.6]
1

- — — (3.7)
Go= (k) — S(k.w)

where the sinsle particle Green's function in the noninteracting case. Gok.w)
is given as

1
w— e +10F

where single particle energies are located at the poles of the Green’s function,

G(k,w) = (3.8)

« = €. This non-interacting Green’s function Fourier transforms into an

undamped travelling wave in rcal space. Hence, the fully renormalized single
particle Green’s function is

1
w ~ € — S(k,w)

Now in this case the poles of the Green’s function occur at the quasiparticle

G(F,w) =

(3.9)

energies

E = Re{w} = ¢k + Re[S(K, Ex + iTx)] (3.10)
and are shifted away from the real axis into the imaginary plane by the
amount of the quasiparticle damping

Smiu} = % =SmE(k, Ex +il%) - (3.11)
Near the Fermi surface the damping is small and hence we can Taylor
expand the denominator of Eq. (3.9, [Allen and Mitrovié (1982)j. Letting
Re{S(F.w)} = Sy(k,w) and Im{T(F,w)} = Sy(k,w),

we— c,; - S(K,w) = w — € = D1 (F,w) — iS2(k,w)

. )
~w— g — [Sl(k,0)+w%

] —iSy(k,w) (3.12)

w=0

oz ~ "
o o (1 - ) = [ex + 1(k,0)] — iZa2(k,w) . (3.13)
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Then the pole occurs at w, given by

ih
We = E,'; - -2:;: . (3.14)

where .
Ex=|1- §-§-}- i [fk + Sl(E U)] (2.15)

duw ' :
wr=0
and .
h | \ .z
— s — — - ', - -16
w=0

For low temperatures in problems like the electron-phonon problem, T,(%,0)
is small but 9%, /0w can be large (~ 1). This latter quantity is called the

mass enhancement parameter Az,

v
AkE—E

o (3.17)

w=0

The quasiparticle “residue” or spectral weight is defined to be =z, where

-1 9%,
= (u=0)=1_3_w =14 A (3.18)

~+=0

and =(0) is a measure of the size of the discontinuity in the momentum
distribution at k.. The fac* that it is non-zero defines a Fermi surface and
ensures that Fermi liquid theory holds. Note also that z; is a measure of how
much plane wave mixture is left in the single particle Green’s function:

— 1 3& 3 h
Glk.w) = — = — 4 G0
(k-2) w— €~ S(kyw) w—Ee+ils

) (3.19)

where G refers to the incoherent part of the Green’s function.

Fermi liquid theory automatically predicts several things. One exam-
ple of this is the temperature dependence of thé _electrical resistivity. This
quantity depends on the scattering rate for electrons at the Fermi surface. At
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Figure 3.4  Schematic of the scattering between two electrons (black dots)
in Fermi liquid theory, leading to a T? resistivity.

zero temperature in the quasiparticle picture there will be a filled Fermi vol-
ume with all N electron states occupied and one single excited clectron with
E; > E,. Now, following the argument given by Ashcroft and Mermin (1976),
for there to be a scattering event, an electron with £2 < E, must scatter with
this excited particle, each scattering to energies E; and E, which must by
the Pauli exclusion principle be greater than E, (unoccupied states). But at
T=0, if E; = E,., energy conservation ( E; + £» = E3 + E;) can only occur for
Es = E3 = E; = E_ where there is no phase space for the process to occur.
Hence, the lifetime of the excited state is infinite at T = 0. At finite T, there
is now 2 smearing of the distribution about E, on the scale of k,T and the
choice of E; will be within the range of k,T. The final scattered E3 will also

very within &,T but E, will now be fixed by the conservation law and hence
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the scattering rate goes as (k,7)°. This is depicted schematically in Fig. 3.4.
Likewise, if the energies of the particles can vary within an energy shell of the
Fermi surface, similar arguments for £y > Ep will iead to frequency depen-
dence of the scattering rate varving as o, where w = E; — E, or in general
1/7 ~ aw® + bT?. There are other properties which also exaibit characteristic
behaviour in Fermi liquid theory but we have chosen to illustrate this one

here as it is central to our discussion in the following section.

3.2 MARGINAL FERMI LIQUID THEORY

As discussed, Fermi liquid theory gives definite predictions about the
behaviour of certain physical quantities. Most notable is that the resistivity
is predicted to vary with temperature as T2, One of the first obvious features
of the new high temperature superconducting copper oxide compounds was
that their temperature-dependent resistivity curves varied as T. In general,
the unusual normal state properties of these materials seem to point to a
scattering rate that is linear in frequency w and linear in temperature T.
Evidence like this strongly indicated that these materials could not be de-
scribed by the conventional Fermi liquid picture in which the conventional
electron-phonon theory of superconductivity is imbedded. This led to rather
exotic proposals for the mechanism of superconductivity in these systems,
such as, anyons [Laughlin (1988)], spin bags {Schrieffer et ol (1988)] resonat-
ing valence bonds [Anderson (1987)], etc. However, more recent data from
angle-resolved photoemission experiments [Arko et ol (1989); Campuzano
et al. (1990); Imer et al (1989)], which are capable of measuring the Fermi
surface of a material, showed that, indeed, these materials have a Fermi sur-

face. This at first appeared to be in conflict with other experiments which
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indicated that Fermi liquid-like properties were not evident. With mounting
evidence for a2 Fermi surface accumulating from photocmission experiments.
it appeared that the more exotic theories that provide for no such surface
had to be dispensed with and some alternative sought. This gave support to
the idea of 2 “marginal™ Fermi liquid. Essentially, this is a theory that yields
a Fermi surface in the weakest possible sense of the definition but otherwise
does not make the same predictions as Fermi liquid theory.

To quantify this idea, recall that the quasiparticle residue =;(w), which
characterizes the jump at k. and hence indicates the presence of a Fermi

surface when zx(w = 0) is non-zero. depends on the real part of the self-

energy. Now if

1 (Fw) ~ wln|— (3.20)
€
where w, is a high energy cutoff, then
v (R
OLilkw) _p1#liy (3.21)
Juw We
or
o
2| I £ 3.22)
Ow W,
w=E,
and hence,
ac E w
-1 1 k c
> -_— — — j—ar C Ap— -23
T 1 e In o ln | (3.23)
w=E)
or
! (3.24)

* TRl @/E)
Now when a quasiparticle is on the Fermi surface E;. =0 and = — 0. Hence,
the jump in the distribution tends to zero, but in a very weak way (i.e.,
logarithmically), and thus a Fermi surface just barely remains in the weakest

sense. However, from the self-energy of Eq. (3.20), all other properties of the
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Table 3.1
Fermi Licuid Theory Marginal Fermi Liquid Theory
Re ~w Rel ~ win{z/w.), with =z =max(|w|,T)
IME ~ u* ImT~z, with z=max(jw],T)
Flw—0)—o0o T(w—0)— o0
=1/(1+A)<1 e~ {law)l —0 as w—0

theory have non-Fermi liquid-like behaviour. This is one way of defining a
marginal Fermi liquid and presumably alternative definitions could be found.
The linear-T and linear-w scattering rate experimentally observed in the high

T, copper-oxide superconductors will arise if T, is equal to
_-}-- =%y xz, where z=|w| or T. (3.25)

In Table 3.1, we contrast some fundamental quantities of Fermi liquid theory
with those resulting from the particular marginal Fermi liquid defined here.
Note that there are still well-defined quasiparticles with an infinite lifetime
at the Fermi surface, but that the self-energy function is quite different and
will give résc to different physics.

U;fortunately, to develop an expression for such a self-energy from
a microscopic theory is a mere difficult task. Although a microscopic theory
has yet to be fully developed, several microscopic models have been proposed
which have some of the features of this phenomenological marginal Fermi
liquid {Anderson (1990); Nagaosa and Lee (1990); Schmitt-Rink et al. (1989);
Virosztek and Ruvalds (1990); Ruvalds and Virosztek (1991); Orenstein et
al. (1990)] and a scaling theory has been given [Zimanyi and Bedell (1991)].
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Figure 3.5 The Feynman diagram for the particle-hole susceptibility
x(7,w) (2) without vertex corrections and (b) with vertex corrections. The
form of the polanzability in Eq. (3.26) is postulated to arise from bound
states in the vertical particle-particle channel of the vertex function T.
(¢) The electron self-energy due to this susceptibility, where the dashed lines
represent a coupling g.

Rather than take such an approach, another possibility is to assume
a phenomenological model and should it work, then one would scarch for
a microscopic description of the phenomenology after the fact. This is the
approach taken by Varma et al. (1989) and by ourselves. Should the phe-
nomenological theory succeed, this would give impetus towards sctting this
theory on a microscopic foundation. But before such effort is expended it
would be useful to see if the phenomenological theory can stand the test of

experiment.

3.3 A PHENOMENOLOGICAL MARGINAL FERMI LIQUID
THEORY

Varma et al. (1989) postulated that in the copper-oxide system there
are charge and spin density fluctuations of the electronic system. These fluc-
tuations lead to a polarizability of the electronic medium that would renor-

malize the electron through the self-energy. Such a polarizability is drawn



54 3 Marginal Fermi Liquid Theory I

in terms of & Feynman diagram in Fig. 3.5. This is simply analogous to
the clectron-phonon interaction with the phonon line being replaced by the
polarizability (Fig. 3.5). Their proposal for this polarizability is as follows:

-N(Q)w/T , for|w|< T

3.26
-N(0)sgnw for|w|>T |, (3.26)

SmP(Fu) ~ {

where N(0) is the single particle density of states at the Fermi energy. The
form of this polarizability is postulated to come from the vertex corrections
in the particle-hole susceptibility shown in Fig. 3.5.
The self-energy that arises from applying the Feynman rules to Fig. 3.5
is given as
T(q,w) ~ ¢°N3(0) (wln 5 - i%a:) . (3.27)
where z = max(] w |,T). The parameter w, is taken to be some high energy
cutoff on the polarizability and g is a coupling constant at the vertex of the
electron interacting with the polarization bubble. As this has the form that

we have previously hinted at, we find that

1
™ WT/E (329
and the quasiparticle lifetime is still infinite at the Fermi surface, i.e.,
1 _7Tp, which
Dk w. as E;—0, m—oo . (3.29)

And as mentioned, this form of the scattering rate guarantees a scattering

rate 1/ which has the form:

Liwsir . (3.30)

From our qualitative arguments in section 3.1, it is difficult to see how this
dependence could arise. For instance, if the Fermi surface is smeared in tem-

perature by kT, it is not clear why there would be a restriction on #; or
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ka such that only one factor of T may come into the scattering rate. One
possibility occurs in the nested Fermi liquid theory of Virosztek and Ruvalds
(1990), where. due to the nesting of the two-dimensional Fermi surface, there
is only one factor of T and the other factor is the temperature-independent
bandwidth. However, it is the scattering rate dependence in Eq. (3.30) that
is manifested in the normal state properties of the copper oxades gaiving them
novel normal state behaviour.

As this proposed polarizability appears to be successful in describing
the normal state properties. it is worthwhile to examine its predictions for
the superconducting state to see if this theory could truly be a candidate for
the theory of the high temperature superconductors.

Kuroda and Varma initiated this effort by considering the properties
of an s-wave, spin singlet superconductor, where the equations are formally
similar to the Elashberg equations for phonons and paramagnons (sec Ap-

pendix A and Chapter 5). For numerical convenience, they model the polar-
izability of Eq. (3.26) by

- 2 ] (-
SmP(w) ~ { (0)tanh(w/2T) forjw|<w (3.31)
0 N for I W ‘) e
Hence, the Eliashberg equations are now given as
= ,.TZ A (m - ) ——— An + ottt ———e (3.32)
@2, + A2 \/
and
(3.33)

wn_.a,,+1rTZz\ (m—n)—m——=
1/ +A= \/ +A2

where w, = (2n + 1)7rT with n = 0,+1,%2,... and =t* = 1/(2r) with 7 the

residual scattering rate. In Egs. (3.32) and (3.33), we have neglected the
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Coulomb pseudopotential and AMn — m) is given in terms of the electron-
cxchange-boson spectral density a®F(w) for any boson exchange process of
interest,ie., phonons, plasmons, charge fluctuations ete.. by

2 a? F(L)

0?4 (i — W )2

/\+=A'=/\(n—m}=/m (3.34)
0

In the marginal Fermi liquid model, an essential feature is the cou-
pling to both charge and spin fluctuations as described by Kuroda and Varma
(1990). In this case the charge degrees of freedom, which are pair-creating,
couple to the superconducting electrons through a dimensionless coupling A,
while coupling to spin is described by A,. The modifications of Egs. (3.32)
and (3.33) are made by replacing A=(m—n) by (3, =A;)F(m—n) and A*(m—n)
by (A, + A;)F(m — n) where from the above approximation

Flm—n)= L [70 _2otamh(e) . (3.35)
T faarm v + (Wm — wn)?

Kuroda and Varma (1990) report results for T, 2A/k,T,, and AC/9T., and
Williams and Carbotte (1990) report results for AC/9T. and T.AC’/AC.
Recent work has been done on the de Haas-van Alphen effect by Wasserman
et al. (1991), and Littlewood and Varma (1991) have done calculations for
optical conductivity, tunnelling, NMR relaxation rate, thermal conductivity,
and photoemission -pectra.

In this theory, there are three parameters w,, A,, and A,. Choosing
T. determines A, and hence we are left with two parameters. We prefer to
work with a quantity ¢ defined as

A =Ao

= : 3.36
ITNT (3:36)

which is a measure of the amount of coupling to spin fluctuations in the

model. A value of g = 1 corresponds to no spin fluctuations.
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Notice, that in the spectral function a lower cutoff is applied at 25(T).
In the normal state A{T) = 0 and the integral is as usual, but in the super-
conducting state a gap opens up in the excitation spectrum and as. in this
case, the electrons that contribute to the polarizability are also those that
superconduct, a gap of 2A must also appear in the lower end of the spectral
function. This is because it would take an energy of 2A to liberate a pair of
bound electrons that could contribute to the fluctuations. This feature leads
to novel behaviour which will be reported in the next chapter.

Some of the unusual features of this spectrum compared twith that
of conventional electron-phonon theory are the self-consistent lower cutoff
in the superconducting state, the temperature dependence of the spectral
density and the flat featureless spectrum extending to very high frequencies.
It is the same spectrum (except for coupling strength) for both the charge
and spin fluctuations {unlike phonons and parmagnons where the two spectra
can be different). Note, that no theory has been derived for the momentum
dependence of the marginal Fermi liquid and this is assumed to be a smooth

function which causes no problems [Kuroda and Varma (1990))].

3.4 THE GAP RATIO

The solution of Eqs. (3.32) and (3.33) require numerical iteration for
A(iwn) and &(iwn). As the temperature-dependent gap A(T) must be solved
for self-consistently, a value of A(T') = 0 is initially assumed and for fixed T,
g, and w,, the equations are iterated to obtain Ag(iw,) and &(iwn). These
discrete quantities are then analytically continued by Padé approximants
[Vidberg and Serene (1977); Mitrovi¢ et al. (1984); Carbotte et al. (1986)]
to give the gap and renormalization function on the real frequency axis,
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Figure 3.6  The gap to critical temperature ratio 24, /&, T, as a function of

T./w. for four values of g = 0.4 (solid), 0.5 (short dashed), 0.6 (long dashed),
0.8 (dot-dashed).

A{w.T) and Z(ws,T), respectively. The gap edge A (T) is then defined to be
D(T) = ReA(w = Ay(T).T). With this new value of A (T), the equations
are iterated again for new solutions Aq(iwn) and G.\(i:an);"\ﬁiéh are again
analytically continued for the purposes of finding A,(T'), and this procedure is
continued until A,(T') stops changing to within a certain accuracy. We solved
the equations at a reduced temperature of T/T. = 0.1 which is sufficient for
obtaining zero-temperature results.

In this manner, we obtained the curves of Fig. 3.6, where 2A,/k, T,
is plotted as a function of T, /w, for several values of ¢ the pair-breaking pa-
rameter. For small values of g (larger pair-breaking), the gap ratio is found
to be quite large and for all g < 1, 2A,/k, T, > 3.53 (the BCS value). This is
mainly due to the self-onsistency of the solution for A(T). As the spectral
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Figure 3.7  The charge-fluctuation channel coupling X, as a function of
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0.S (dot-dashed).

function is gapped at the lower end, low frequency charge and spin fluctu-

ations are removed. However, the spin fluctuations which are pair-breaking

are more effective at low frequencies than the charge fluctuations, which are

pair-enhancing, hence the overall effect is to remove more pair-breaking ef-

fects in the system and hence increase the stability of the condensate which
is measured by the gap A,.

s The gap in a fully oxygenated single crystal of YBa:CusO+ has been
reported to be of the order of 2A,/k,T. = 8 [Schlesinger et al. (1987); Collins
et al. (1989);. Schutzmann et al (1989)] in fa:-iunfrared measurements. We sce
from our results that this value can be achieved for g = 0.4 with a cutoff

> 10000 K, while for ¢ = 0.6 it is > 2500 K. It is worth noting that similar
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arge vadues of 23,/k, T, are also indicated in photoemission experiments on
cuprate superconductor: [Manzke et al (1989): Imer et al (1989): Olsen et
al. (1989)).

Fig. 3.7 exhibits the coupling strength in the charge fuctuation chan-
nel. A,, as a funection of T, /w.. for comparison with Fig. 3.6. It can be seen
that as the gap ratio grows extremely large, the coupling to charge fluctu-
ations diverges quickly to extremely large values. This is usually taken to
be unphysical and one would not consider such a region of the model to be
vadid.

It should be pointed out that in our solution of the equations (in
light of the fact that there is no rnicroscopic theory and hence no defined
prescription for the lower cutoff on the integral in Eq. (3.35)), we have used
a sharp cutoff. Littlewood and Varma (1990,1991) in their calculations have
used a joint density of states to apply a lower cutoff at 2A,. We have found
that this does not change the net results significantly.

Solving for A(T) at T > 0 is more difficult as Padé approximants are
not reliable [Leavens and Ritchie (1935); Blaschke and Blocksdorf {1982)].
It was decided that the temperature dependence of A(T) would be taken

‘to be the BCS temperature dependence, because it is well-known for strong
coupling superconductors that the temperature dependence of the gap func-
tion does not deviate significantly from the BCS result. Assuming the Padé
continuation to be accurate at finite temperature, self-consistent iteration

produced a Ao(T) slightly above the BCS value with an instability in the
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iterative technique near T.. Hence. 1t was decided that for numernical con-
venience and with no significant change in the physics. that the BCS tem-
perature dependence scaled by the scif-consistert A{T = 0) was sufficient for

finite temperature calculations.

3.5 THE ISOTOPE EFFECT

As mentioned in Chapter 1, the isotope effect was the first indication
that the ion lattice is involved in the superconductivity. T is observed to shift
when the ions are replaced by an isotope. This points to the electron-phonon
interaction as the mechanism for pairing and indeed within BCS theory 7:

is easily seen to depend on the ion mass M;,, through the T, equation:

T. = 113w, exp [—%‘{l (3.3%)

1

“Hion

=<

(3.38)

The isotope effect coefficient 5 is then defined to be (assuming a monatomic
lattice):

dinT,

e P

(3.39)

From Eq. (3.38), 8 = 0.5 in BCS theory. However, within Eliashberg theory,
this coefficient may be less than 0.5 and even negative due to a competition
between the mass renormalization parameter A and the Coulomb pscudopo-
tential p~ which depends on the phonon frequency [Carbotte (1990)]. This is
in agreement with experiment. However, Eliashberg theory also makes one
definite statement about the isotope effect coefficient, which is the following:
to have only an electron-phonon mechanism for the pairing and to require

B to be very small (< 0.1), the corresponding 7. must only be 2 few Kelvins
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[Carbotte {1990): Carbotie and Nicol (1991)]. Thus. if the pairing in the high
temperature superconductors is to be ascribed o ti. electron-phonon inter-
action alone. the isotope effect cocficient show.d be observed to be about
0.5, and it is not.

The oxygen isotope effect in YBa,CuyO; has been measured by many
workers [Batlogg et al (19S7); Bourne et al. (19S7a); Leary et al (1987):
Morris et al. (1988); Benitez et al (1989); Yvon et ol (1989); Hoen et al
(19889); Franck et al. (1990)]. In all cases, it is found to be small and of the
order of 0.05 with some values as high as 0.1 {Franck et ol (1990)]. Bourne
et al. (1987b) find that the Ba and Cu isotope effect coefficient is essentially
zero as do scveral other groups [Quan et al. (1988); Vasiliev et al. (1988a,b):
Hidaka et ol (1988)]. Thus, the total isotope effect coefficdent 3 is small,
2 0.05. Small values for the isotope effect have also been found in the Tl
and Bi copper oxides as reviewed by Katavama-Yoshida et al (1988). These
results favour a non-phonon, electronic mechanism for the pairing in the high
T. oxides although other interpretations, such as inhomogeneities [Phillips
(1989.1991a,b)] and anharmonic phonons [Plakida (1991)], have been given.

More recently, new results by Crawford et al (1990) in La,_,Sr-CuO,
as a function of z and by Franck et al (1990b) in Y;...Pr:Ba;Cuz0O; have
revealed that the oxygen isotope coefficient .= = —dInT./dln M., with M,
the oxygen mass, can vary greatly with dopant z. By the time the critical
temperature has been reduced to 30K, 5,- is almost 0.5. This can be un-
derstood in terms of energy dependence of the electronic density of states
near the Fermi energy on a scale of importance for superconductivity. Tsuei
et al. (1990) use a van Hove singularity while Schachinger et al. (1990) em-

ploy a Lorentzian form for this energy dependence. For the specific case of
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Y,_-Pr-Ba.Cu;O- an alternative explanation has been given by Carbotte «f
al. (1991) in terms of the pair breaking effect of the Pr dopant. While it 1s not
vet well understood what changes occur in the electronic and spin structure
of YBa:CusOs when the vitrium is replaced by praseodymium [Ghamaty et
al. (1991)], there is some evidence that the Prions act as ordinary paramag-
netic impurities, strongly exchange-coupled to the holes in the CuO: planes.
Other evidence suggests filling of mobile holes in the conducting plane by
electrons donated by the substituted Pr. This would favour the energy de-
pendent density of states N(¢) model in which the chemical potential shifts
away from the peak in N(¢) with a corresponding increase in J.

In the marginal Fermi liquid model, the coupling between two clec-
trons is via charge (attractive) and spin (repulsive) fluctuations and so it does
not exhibit an isotope effect. To include this effect, an additional phonon con-
tribution must be introduced. It is interesting to investigate whether large
values and rapid variation of the isotope coefficient 3 can be incorporated into
this model without introducing a large phonon contribution. In this section,
we extend the model to include a phonon contribution and investigate what
limits are put on the electron-phonon mass renormalization by the constraint
8 = 0.05 in the stoichiometric YBas;Cuz0-. We also investigate how ;he iso-
tope effect increases when the critical temperature is reduced through an
increase in spin fluctuations or a decrease in the charge fluctuations keeping,
in all cases, the electron-phonon interaction fixed.

The Eliashberg equations [Egs. (3.32) and (3.33)], with t* = 0, reduce
at T. to

Aliwn)Z (i) = 7T ) _ A" (m - n)&(';’“’"‘) (3.40)

[ wm |
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wnZ(in) = win -;-:rTCZ,\‘*'(m—n)sgn(;.:m) X (3.41)

m

To add phonons to the marginal Fermi liquid model we need only to add to
each of A*(m = n) = (A, + As)F(n —m) and A~(m =n) = (A, — A, )F(r—m) a
phonon contribution of the form of Eq. (3.34) with o F(w) being the electron-
phonon spectral density. A feature of this extended marginal Fermi liquid
model which should be noted is that both spin and charge fluctuations are
determined by the same kernel F(n — m} while the phonons are different in
this respect. For the purpose of this work it will be sufficient to use a delta
function model for the electron-phonon spectral density at a single Einstein
CRCTEY WE, L.e..

-

o*F(w) = ‘“—"iiia(w ~wg) . (3.42)

Here, Ag is the electron-phonon mass enhancement factor. This parameter 1s
often taken to be a measure of the strength of the electron-phonon interac-
tion.
To start. let us consider a pure phonon model consisting of a number
of different modes wg; with associated mass enhancement factor A; where
i = 24;, <E: for a spectral weight model o®*F(w) = ¥; Aib(w — wgi). B we use
a square well model [Allen and Mitrovié (1982)] in Eqgs. (3.40) and (3.41) with
a constant gap value (a very rough approximation) we can get an interesting
result for T., namely,

T, = 1.13 [H(;.-E,-)f;‘,] [e'%“} , (3.43)

13
which is not expected to be accurate but which has a suggestive form. If

all the .:_:.-g.-'s are the same we recover the usual BCS result for T. which is
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Table 3.2
i wE A J; exact J; approx.
1 3 0.1 0.198 0.167
2 10 0.05 0.086 0.083
3 i3 0.15 0.216 0.250
total 0.3 0.5 0.5

T. = 1.13wpexp{—(1 + Awe}/Acoe] With Ao = 3, Ai. An interesting feature of
Eq. (3.43), however. is that the partial isotope effect is

dnT. _1X

3= - S5

{3.44)

where we have associated a different mass M; with each wg;. On summing
Eq. (3.41), we recover the well known result that 8, = ;8 = 1/2 for a
pure phonon model. While we do not expect Eq. (3.41) to be very accurate,
in Table 3.2 we show results for the 8;’s in 2 model with T, = 1K, A, = 0.1
(wgr = 5.0 meV), Ay = 0.05 (wgz = 10.0 meV), and A3 = 0.15 (wps = 15.0 meV).
On comparing results from complete numerical solutions of Egs. (3.40) and
(3.41) with results from Eq. (3.44) we see good but not exact agrecment. We
have found that as the );’s are increased. the agreement becomes much worse.
Nevertheless, we can use Eq. (3.44) to illustrate some important points in
the discussion of the our numerical results.

Suppose we now use an equation of the form of Eq. (3.43) for the
extended marginal Fermi liquid model which includes a phonon contribution
in addition to coupling in the pairing channel with charge (attractive) and

spin (repulsive) fuctuations. It is

_*.a‘ o 3 143p+da
Te = 1.13ug5" - SiETR e SRR (3.45)
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from which it follows that

AE

3= 1
S RE T (A = A VE(D) (3.46)
In Eq. (3.45), . = A~ F(0) and A+ = AT F(0), where F(0) is the m = = term of

Eq. (3.35) with T = T.. Because the spin fluctuation contribution, A,, enters
with a minus sign in the denominator of Eq. {3.46) it is clear that including
spin fluctuations will lead to an enhancement of the isotope effect over its
value when they are neglected. A similar result was first obtained by Williams
and Carbotte (1991) in a phonon-plus-paramagnon model, which corresponds
closely to setting A, = 0 in Eq. (3.46). In this case 8 > 1/2 is possible. As in
the work of Carbotte et el (1991) on paramagnetic impurities, the isotope
effect is affected 1;;.' the presence of magnetic fluctuations. This makes it very
interesting to investigate the effects of a small phonon contribution added to
a dominant charge and spia contribution in the marginal Fermi liquid model.

In our numerical work, we start by imposing two constraints on the
parameters of the theory, which are now A,. A, w., Ag, and wg. We will
insist that T, = 90K and § = 0.05. This is typical of the observed situation
in stoichiometric YBa,CuzOr. This leaves three free parameters. Results do
not depend much on w, and so we will fix this quantity at 200 meV. Further,
we introduce a parameter g = (A, = A¢)/(As + A;) which is a measure of the
admixture of charge to spin fluctuations in the marginal Fermi iquid model.
Results will then be presented as a function of g and we.

While it is not our aim here to present fits to experimental data, the
reader should keep in mind the experimental data for Y;__.Pr-Ba,Cus0s.
As the praseodymium concentration z is increased, the value of T, is ob-

served to drop steadily from 96K in the stoichiometric compound. At the
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Figure 3.8 The electron-phonon mass renormalization paramecter Ag as
a function of wg for different values of g, the admixture of charge and spin
fuctuations in the extended marginal Fermi liquid model. These curves were

calculated for w, = 200 meV, T, = 90K, and B = 0.05. g = 1.0 corresponds to
no spin fluctuations.

same time the oxygen isotope coefficient 8, increases from 0.05 to a value
around 0.43 at T, = 30K. The questions we ask are how much or how little
electron-phonon interaction is necessary in the extended marginal Fermi lig-
uid model to obtain 8 = 0.05 in the stoichiometric compound? And, can the
variation of 8 with a change in T, in Y;_ Pr.Ba;Cu30: be understood, at
least qualitatively, within this model?

In Fig. 3.8. we show values of the phonon mass renormalization pa-
rameter Ag as 2 function of the phonon energy wg for various values of ¢ for
the stoichiometric compound. In all cases, the value of Az required to achicve
B = 0.05 and T. = 90K is small when wg is large but grows substantially with

decreasing Einstein frequency. Also at fixed wg, the Ag value increases when
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g decreases, ie., when more spin fluctuations are introduced in the system.
This means that the introduction of spin fiuctuations allows for an increase
in phonon contribution at fixed T, and 8. Note that the difference between
some {g < 1) and no (g = 1) spin fluctuations increases with a decrease in wg
and can become very substantial. We can understand qualitatively this result
from our Eq. (3.46), where increasing A, at fixed A, must be compensated
by an increase in Ag to maintain 3 at 0.05.

While Ag may become large as wg is reduced, this does not imply that
phonons make an ever increasing contribution to the value of 7. In fact, in
all cases shown in Fig. 3.8, introducing phonons increases T. above its value
for the marginal Fermi liquid, acting alone, by no more than SK. According
to this measure the phonons are not very important. On the other hand, as
we have just seen, the corresponding values of Az can become quite large
and such values are coxsistent with a very small isotope effect. For modest
values of the spin fluctuation parameter ), this arises only when wg is very
small and of the order of 5 meV. Coupling to mainly 5 meV phonons seems
to us unlikely in oxide supercdnductors. for which the phonon spectrum can
extend up to 100 meV [Renker et ol (1987,1988)). In addition, large values
of Ag are inconsistent with resistivity data [Gurvitch and Fiory (1987)).

With respect to the experimental data for Y;_:Pr:Ba;CuaO-, it is
of some interest to change the parameters in our model so as to decrease
T. and see what effect this has on the corresponding 8 value. Of course, the
marginal Fermi liquid model is phenomenological and does not have, at the
moment, a foundation in microscopic theoryv. Thus, we do not know how
the three parameters A,, A, and v, might be changing with praseodymium
doping. In the absence of such guidance we will consider three very simple
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models for this change. In the first model we will keep A, fixed and decrease
T, by increasing the spin fluctuations. In a second, we simply reduce A, and
Ao together by the same percentage amount. In the third, we will fix A, and
reduce A,. In all cases. the phonon contribution is in no way changed. Note
that in the first and third models important charge and spin fluctuations.
respectively, remain even when T, becomes small and of the order of the value
it would have with phonons alone, while in the second model the marginal
Fermi liquid part of the interaction is gradually being phased out.

In Fig. 3.9(2). we show results for 3 as a function of T, for an ini-
tial model in which ¢ = 1 in the stoichiometric compound. i.c.. there are no
spin fluctuations. The value of the critical temperature is then reduced by
switching off A, leaving the phonon contribution constant. As this is done 3
increases towards a value of 0.5 which occurs exactly when the only contribu-
tion to the T, is from the phonons acting alone. One can see this behaviour in
a qualitative manner from Eq. (3.46), where in the limit of A, — 0 for A, = 0,
3 increases to 0.5. However, we stress that the crude approximations leading
to Eq. {3.46) do not make it quantitatively correct (especially for large T's
and large \'s). It is: important to be aware that as A, is decreased towards
zero, the phonons :with fixed wg and Ag make an increasing contribution to
T. in absolute terms, i.e., the effect of the phonons is non-linear and they are
more eﬁ';:tive in increasing T. the smaller the marginal Fermi liquid com-
ponent. In Fig. 3.9(b), we show a similar calculation for g = 0.6. Here, the
rise to 8 = 0.5 is much sharper mainly because of a larger electron-phonon
contribution. These curves reflect the trend in the experimental data in a
more quantitative manner but require A's that would violate those derived

experimentally from resistivity measurements [Gurvitch and Fiory (1987)].
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Figure 3.9  (a) The isotope coefficient, 8, as a function of 7. for various
phonon frequencdies: wg = 5.0 meV (solid dots), wg = 10.0 meV (open drcles),
wg = 15.0 meV (open triangles), and wg = 20.0 meV (solid triangles). In this
graph, ¢ = 1.0 and the parameters in the extended marginal Fermi liquid
model were chosen to give 8 = 0.05 at a T. of 90K, corresponding to the stoi-
chiometric compound. T, was reduced by allowing the marginal Fermi liquid
component to approach zero while keeping the phonon component fixed. 3
rises in this case to the BCS value of 0.5 where only the phonor component
remains. (b) Similar to (a) but with g = 0.6. Now the isotope coeficient 3
rises more sharply to § = 0.5 due to a stronger phonon contribution.
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Figure 3.10 B as a function of T, for various phonon frequencies: wg =
5.0 meV (solid dots), wg = 10.0 meV (open circles), wg = 15.0 meV (open
triangles), and wg = 20.0 meV (solid triangles). As in Fig. 2, marginal Fermi
liquid parameters are chosen to give 8 = 0.05 at T, = 90K. Here g = 1.0 but
curves for ¢ = 0.8 and 0.6 were not very different. The model used for the
reduction in T, was to fix A, and increase the amount of spin fluctuations,
Xo. This reduces 7. and also allows for the possibility of 8 exceeding the BCS
value of 0.5, as exhibited by the wg =5 meV curve.

Very similar trends for the variation of 3 with T value are found
when ), is left fixed and the amount of spin fluctuations A, is increased so
as to reduce T.. Results are shown in Fig. 3.10. The rise in 8 is more gradual
than for Fig. 3.9 but we note that at the lowest temperatures 8 can now
be larger than 0.5, although not by much in the curves shown. Tlns is not
surprising since the value of T, is depressed due to spin fluctuations and thus
the 7. becomes small even though the charge fluctuations and the electron-
phonon interaction remain large. Such a possibility is anticipated in the work

of Carbotte et al. {1991) and Williams and Carbotte (1991). Again, referring
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Figure 3.11 8 as a function of T, for ¢ = 0.6 and for various phonon
frequencies: wg = 5.0 meV (solid dots), wg = 10.0 meV (open circles), wg =
15.0 meV {open triangles), and wg = 20.0 meV (solid triangles). As in Fig. 2,
marginal Fermi liquid parameters are chosen to give 3 = 0.05 at T, = 90K.
The model used for the reduction in T, was to fix A, and decrease the amount
of charge fluctuations. A,. This reduces T, and also allows for the possibility
of 3 exceeding the BCS value of 0.5, as exhibited by the wg =5, 10, and 13

meV curves,

to Eq. {3.46) for B, it is clear that an isotope coeficient > 1/2 can be achieved
\\'h;;‘ Ao > A,

Finally, Fig. 3.11 displays resuits for our third model, that of fixing
A, and decreasing A,. The curves in this case fall in a region intermediate
to the other two models and also exhibit an isoz;ope effect coefficient that is
greater than 1/2 for the same reasons mentioned above.

In relation to the Y;_ Pr.Ba;CusOr experimental results, it is inter-
esting to note that a good part of the observed rise to 8 = 0.45 at T. = 30K

can be understood simply on the basis of our simple model. In reality, of
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course. something more complicated is at work. Two possible suggestions are
pair-breaking and an energy dependence in the electronic density of states.
In conclusion. we have calculated the isotope effect cocfficient i the
marginal Fermi Iiquid model with an additional phonon contribution. We
have found that a large value of T, with attendant small values of 3 (of order
0.03) is consistent with a small value of the electron-phonon mass renormal-
ization parameter Ag protided coupling is primarily to high energy phonons.
For coupling to low energies the corresponding Ag values can be much larger
although the total contribution to the enhancement in overall T. value is
never greater than about SK. Also as the amount of spin fluctuations in the
system is increased, the corresponding value for Ag increases. This effect is
small for large wg but can be very substantial for low values. Finally, we find
that. if 7. is reduced by either increasing the amount of spin fluctuations
with all other parameters fixed, decreasing uniformly A, and A, to zero, or
decreasing ), only, the isotope coefficient increases sharply towards a value
of 1/2 or even above. The increase in 3, however, is never large enough to
explain presently available resuits for Y;_-Pr:Ba:CusO- and, at the same

time, remain consistent with the dc resistivity determination of A.

3.6 THE LONDON PENETRATION DEPTH

The zero-frequency penetration depth is a measure of the distance
scale on which a static magnetic field will penetrate into the superconductor.
Although a superconductor has the property that it excludes all magnetic
flux, at the superconducting surface screening currents are produced to pro-
vide the diamagnetism and it is in the surface layer that the field may still

penetrate. For a semi-infinite plane the field B would decay into the surface
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from 1ts free space value B, as B = Bgexp{—z/A]. where A is the penetration
depti.

Caulculations for eleciromagnetic proper-ies, in general. are derived
from a calculation of the response function A(q,w) which is the linear re-
sponse in Fourter transform space for the induced current density 7(4.<)
due to a perturbing electromaguetic vector potential A(§.w) [Nam (1967a.b):

Scholten et «i (1977)):

Jal§w) = — R (§)A%(q<) . {3.47)

with the tensor notation referring to the three coordinate directions. More
will be said about this response function in the next chapter when we
treat finite frequency optical conductivity properties. The zero-frequency,
temperature-dependent penetration depth for specular reflection is then given
as {Nam (1967a,b)):

D=2 ("4 1
M=z, Y E+K(q,0)/ar

(3.48)

The high 7T, copper oxides are Tvype II superconductors in the clean limit
(ie., A > £(0), where £(0) is the zero-temperature coherence length). This is
called the London limit. In this limit, Nam (1967a.b) has evaluated K(g,0)
and obtained for the London penetration depth: )

-1/2

A (T) = %.—.N(o)e%f_rz ( Az (3.49)
n=1 "

7ot + 2D
Foilowing the numerical procedure outlined in Section 3.4 we have

calculated the penetration depth from Eq. (3.49). The zero-temperature gap
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(5]

., was iterated self-consistently but {or numerical convenicnce MT) was
taken to have the BCS temperature depeandence scaled by A,

Figs. 3.12 and 3.13 display results for g = 0.4 and 0.5. and ¢ = 0.6 and
0.8. respectively. Curves correspond to different values of T./w. as indicated
in the figures. Also shown are curves for the two-fluid model (A, (0}/A (T =
1 — t* (second lowest solid curve) and the curve for the weak coupling BCS
clean Limit (lowest solid curve). The solid dots correspond to careful data
from Pumpin et al. (1990) which follow the two-fluid curve. In general. mag-
netization experiments find a temperature dependence near the weak cou-
pling BCS curve and muon spin relaxation (#SR) experiments tend to agree
more with the two-fluid model. Sweeping T./w. from small to large values in
this theory increases the height of the curves. Curves falling on and above
the two-fluid result can also be achieved with ordinary strong coupling the-
ory, and it is essentially the strong coupling effects from the spin fluctuation
component that results in the behaviour seen here (sce Chapter 5). However,
no single curve describes the experimental data. Curves that give reasonably
good agreement still overestimate the data at high temperatures and under-
estimate the data at low temperatures. The most recent experimental results
by Anlage et al. (1991) indicate a temperature dependence conforming more
to the marginal Fermi liquid like behaviour.

The constraints put on the parameters to obtain overlap between
the experiment and our theory in these graphs would restrict the value of
20./k,Te to be greater than the BCS value of 3.53 but less than approxi-
mately 5. This is not as large as the suggested experimental value of 8 given
by Schlesinger et al. (1987); however, Timusk et ol (1989) have pointed out
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Figure 3.12 The dependence of the square of the normalized penetra-
tion depth AL{0)/A.(t) on reduced temperature ¢ for several values of T, /w..
namely, 0.0215 (solid line), 0.0144 (long dashed line), 0.0086 (dash-dotted
line), 0.0057 (long dash-dotted line) and 0.0029 (long dash-short dashed line).
Also shown are data (solid dots) and the two-fluid model results (solid line)
which represent the data very well. Finally, the lowest solid curve is the BCS
prediction shown for comparison. The top frame is for g = 0.5. The lower
frame is for ¢ = 0.4 with the T./w. values of 0.0108, 0.0086, 0.0057, and
0.0043. and 0.0029 for the upper five curves in descending order.
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Figure 3.13  Same as Fig. 3.12. The top frame is for g = 0.8 with T./w,
values (in descending order of the curves) of 0.0431 (short dashed curve),

0.0215, 0.0144, 0.0086, 0.0057, and 0.0029. The lower frame is for g = 0
with same parameters as in the top frame.
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Figure 3.14 The deviation of the zero-temperature London penetration
depth AL(0) from its BCS value as a function of T./w, for g = 0.4 (solid), 0.5
(short dashed), 0.6 (long dashed), 0.8 (dot-dashed).

that problems remain in the interpretation of the infrared data in terms of
a large gap edge value.

On the other hand in uSR experiments by Lichti et al. (1989) on
RBa;Cu3O; with R = Eu, Gd, and Er, a temperature dependence consider-
ably above that for the two-fluid model is observed. This is more consistent
with 24,/%,T. ~ &. It is, therefore, difficult at this time to draw firm conclu-
sions from the data. However, our model is not inconsistent with the data.

In Fig. 3.14, we show the deviation of the zero-temperature London
penetration depth ny, (0) from BCS as a function of T, /w, for the same values
of g previously considered. By definition,

A (0) = m, ABS(0) . (3.50)
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In Eq. (3.30). AP¥(0) is caleculated for a superconductor with T, = 116 K
and with a é-function spectral density placed at a frequency w, = 200 meV.
We sce from Fig. 3.14 that 7,.(0) is always greater than 1 in the range
considered and that it shows a very strong increase around 7./w. = 0.01 for
g = 0.4 and around 0.03 for g = 0.5. This reflects the unphysical increase in A,
in this range of parameters as shown in Fig. 3.7. The existence of this large
correction to A, (0) is hard to establish experimentally at this time because of

uncertainties in the other parameters that enter the formula (3.49) for A, (V).

3.7 THE dc JOSEPHSON CURRENT

It is of some interest to investigate the temperature dependence of
the dc Josephson effect as predicted by the marginal Fermi liquid model since
recent experiments by Mannhart et al. (1988) have reported anomalous be-
haviour for temperature dependence as well as absolute size of the intrinsic
intra grain Josephson current. While 2 convincing explanation of the ob-
served behaviour has, in fact, been put forward by Deutscher (1989) on the
basis of inhomogeneity in the order parameter near grain boundarics, due to
the short coherence leagth intrinsic to the CuQ, other possible explanations
are worth considering.

The critical de Josephson current associated with a superconductor-
insulator-superconductor tunnel junction is the limiting current that can flow
through the junction. This de¢ current occurs at zero voltage bias as a result
of the pair wavefunction “leaking™ across the insulator barrier, allowing pairs
of electrons to tunnel through the barrier. The ac Josephson current, which is
not discussed here, is the result of the wavefunction on one side of the barrier

having a different phase from that on the other side. Under a voltage bias, this



80 3  Marginal Fermi Liquid Theory I

produces interference between the uime evolution of the states on opposite
sides of the junction and -~sults in osciliations of the pair current across the
junction, producing an a. current typically at microwave frequencies.

The dc Josephson current, at any temperature, is related to the local
penctration depth A, This may be evaluated from Eq.: (3.48), in the case of

small q appropriate to a short mean free path !, to be [Nam (1967a,b)}:

G =
t...';,'_-:-.‘_\n

Q © A2 -1/2
= [g:r.'\f'(ﬂ)ezri‘.'_\.TE —_"—-] . (3.51)

n=1
We will present the de Josephson current normalized to its zero-temperature

value which is given by [Nam (19672.b); Akis and Carbotte (1990)]:

JAT) _ [Az(ﬂ)]z (3.52)

Jc(o) B ‘\I(T)

As before, we fix A, to obtain a T, = 100 K and plot results in terms of the
two remaining parameters, g the admixture of spin and charge fluctuations
and w. the upper cutoff in the fluctuation spectrum.

In Figs. 3.15 and 3.16 we show results for the temperature variation of
Je(T}/- -(0) as a function of reduced temperature t = T/T.. In the upper frame
of Fig. 3.135, g = 0.5 and in the lower frame it is 0.4 while the corresponding
numbers for Fig. 3.16 are 0.8 and 0.6, respectively. In Fig. 3.15 are, from top
to bottom, w, = 400 meV (solid curve), w. = 600 meV (long da.she& curve),
we = 1000 meV (dask-dotted curve), w, = 1500 meV (long dash-dotted curve),
and w. = 3000 meV (long dash-short dashed curve). The final solid curve is
the BCS result shown for comparison. For ¢ = 0.4, the corresponding alues
of w. are 800 meV, 1000 meV, 1500 meV, 2000 meV and 3000 meV. For
g =10.8 and g = 0.6, they are w, = 400 meV, 600 meV, 1000 meV, 1500 meV,
3000 meV, with the additional dotted curve corresponding to 200 meV.
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Figure 3.15 The reduced dc Josephson current J.(T)/J.(0) as 2 func-
tion of reduced temperature t for g = 0.4 (lower frame) and g = 0.5 (upper
frame). The various curves correspond to different values of the cutoff w, as

described in the text. The lower solid curve is the BCS variation, included
for comparison.
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Figure 3.16  Same as for Fig. 3.15 but the lower frame is for ¢ = 0.6 and
the upper frame is for ¢ = 0.8. -
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It is clear on examination of these figures that in all cases considered
the present model gives deviations from BCS behaviour which always fall
above that curve. The variation for ¢ = 0.6 and w. = 200 meV (short dashed
curve) is particularly striking and represents a dependence on reduced tem-
perature which remains near 1 for all reduced temperatures below < 0.8 and
then drops very rapidly towards zero as T, is approached. Such a variation 1s
opposite to that observed in the experiment of Mannhart et al (1988). Ac-
cording to Deutscher (1989). however. such data cannot be directly compared
with the results of the present calculzilon since it is necessary to account for
an inhomogeneous variation in the order paramcter as the junction bound-
ary is approached. When this is done. assuming a BCS superconductor, very
good agreement with experiment is found. Since our results do not deviate
very strongly from BCS they also should lead to good agrcement with the
experiment once inhomogeneities are accounted for, so that, present data are
consistent with a marginal Fermi liquid model.

Another quantity of interest is the value of the Josephson current at
zero temperature. This quantity depends, among other things, on the value
of the barrier resistance. It is customary to present results in terms of BCS
theory in which case J; « 1/A,. We then write J.(0) = 74,(0)JB¢5(0) and so
14.(0) is independent of the normal state material parameters of the junction.
This quantity is plotted in Fig. 3.17 for various values of g as a function
of T.fw,.. It is seen that J.(0) is reduced in our model from its BCS value
77.(0) < 1 but the reduction is far too small to explain on the basis of the
present theory alone the order of magnitude reduction in cuﬁent observed
by Mannhart. The discussion of Deutscher (1989) is presumably applicable

and inhomogeneous effects need to be introduced for comparison with data.
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Figure 3.17 The zero temperature de Josephson current divided by its
BCS value as a function of T, /w. for various values of ¢, namely, ¢ = 0.4 {solid
curve), g = 0.5 (short dashed curve), g = 0.6 (long dash curve) and ¢ = 0.8
(dash-dotted curve).

In conclusion, the temperature dependence of the dc Josephson cur-
rent has been calculated in the marginal Fermi liquid model and found to
deviate significantly from BCS with the current everywhere above the BCS
prediction. In some cases, the temperature variation of the normalized dc
curren: remains nearly 1 up to reduced temperature t < 0.8 and then drops
very rapidly to zero. For fixed junction parameters the absolute magnitude
of the current at T = 0 as found in our model is smaller than in BCS but
not by an order of magnitude as observed recently. To have agreement with
experiment it apyears to be nécessar_v to include the effect of the inhomo-
geneity in the order parameter around the junction boundary as described

by Deutscher, whose calculations are based on an intrinsic BCS model for
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o
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the intragrain superconductivity. We expect that using a marginal Fermi lig-
uid description instead will Iead to results equally consistent with present

experiments.



Chapter 4

Marginal Fermi Liquid
Theory 11

Optical Properties

Since the discovery of the high T. copper oxide materials, the nature
of the superconductivity Las remained a mystery. It is generally acknowl-
edged that the conventional electron-phonon mechanism for pairing cannot
alone be responsible for the high T. observed in these materials. Due to the
high value of 7. and the novel normal state properties of these compounds,
several other pairing theories have been proposed.

Experiments performed on the high T suﬁerconductors ha.w; also
been improving substantially due to: sample quality, availability of single
erystals, and more systematic investigations of the entire family of copper
oxides. In addition, the sophistication of the experiments is increasing, allow-
ing for more detailed information to be obtained about several theoretical
quantities. Thus, the situation is ripe for concrete tests of the various theo-
ries. On the theoretical side, it is important to investigate the consequences

of a theory that would produce experimental signatures differentiating it

87



38 4  Muarginal Fermi Liquid Theory II

‘rom other theories. In this way. one can eliminate unsuitable theories and
hopefully discover the correct one for these materials.

To this end. in this chapter, we will discuss the results of calcula-
tions pertaining to the finite-frequency and temperature-dependent optical
conductivity. With regard to the marginal Fermi liguid, very novel results
have been obtained that are a result of the fluctuation spectrum developing
a gap at low freque” ~ies in the superconducting state.

Before presenting these striking results, we will give a simple intro-
duction to optical absorption to illustrate the processes that we are con-
sidering and to aid in later discussions. We will follow this by some tech-
nical details about the calculation of optical conductivity illustrated by
conventional stzong - .upling calculations. We then present calculations :n
the marginal Fermi liquid model of Varma et al (1989) [see Chapter 3] of
the zero-temperature conductivity, the quasiparticle damping rate, and the
temperature-dependent conductivity, with emphasis, in the latter case, on

the microwave region of the frequency spectrum.

4.1 INTRODUCTION

The low frequency conductivity, such as measured by microwave and
far infrared experiments. has traditionally played an important role in the
investigations of the superconducting state. This is due to the possibility of
extracting, amongst other things, information about the erergy gap (in con-
ventional superconductors. such as Pb [Palmer and Tinkbam (1968)]), and
the quasiparticie damping rate. Infrared measurements on sup« conductors
can yield important information on the excitation spectrum of the system in

the energy range of a few times the energy gap A., and are therefore very
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important. Because of this. many experimental studies on the high 7, oxides
have now been published. These are too numerous to deseribe here and the
reade: is referred to the ncent review of Timusk and Tanner (1989) for ref-
erences and discussion. While there is. at present, a great deal of agreement
among the various researchers as to experimental results. their interpretation
remains controversial [Schlesinger et al. (1990): Kamards et al (1990)]. While
some authors argue for the existence of a large gap 2A./k, T ~ 8 [Schlesinger
et al. (1990)], others reason that a gap cannot be seen in the clean limit [Ka-
marés et al. (1990)]. At higher energies the exact nature of the mid-infrared
absorption is also not vet known [Kamards et al. (1990)).

Recently, Lee. Rainer and Zimmermann (1989) have given 2 real fre-
quency formulation of the optical conductivity, valid for any value of the
mean free path. They have studicd, within such a formalism, several possi-
ble models for the Eliashberg kernels which could possibly be applicable to
the high 7. oxides. They give results for pure phonon as well as combined
phonon-plus-exciton models with particular erephasis placed on the Holstein
effect. These processes refiect some of the deta.ils of the excitation spec-
trum involved. Complementary calculations using an imaginary frequency
axis (Matsubara) formulation of the theory with final analytic continuation
of the current-current correlation function using Padé approximants have
been performed by Bickers et al {1990). These conventional strong coupling
calculations predict‘large changes in the infrared spectrum in the Holstein
region when the materials become superconducting. There is general agree-
ment among experimentalists that such structures are not observed in the

infrared conductivity [Kamaras et ol (1990); Schlesinger et al. (1990)].
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Figure 4.1 A schematic diagram illustrating the absorption processes
considered in this thesis. In the first process (top), a photon of energy v is
incident on a Fermi sea of electrons in a metal (the shaded sphere), creating a
hole-particle pair. Energy and momentum are conserved by relaxing this pro-
cess with impurity scaticring, and hence, absorption occurs. This schematic
corresponds to the optical conductivity in Fig. 4.2. In the second process
{bottom), fluctuations, such as phonons, are avaiiable to relax the system
and conserve energy and momentum. This process corresponds to Fig. 4.3.

Before displaying our results for the marginal Fermi Equid model. we
will introduce the fon;xalism necessary for calculating optical conductivity
and reproduce the theoretical results of the two groups mentioned above to
axhibit results typical of conventional strong coupling calculations. The opti-
cal conductivity that we will consider here involves two processes: impurity-
assisted absorption and fluctuation-assisted absorption. These are illustrated
schematically in Fiz. 4.1. In the first . use of impurity-assisted absorption, a
photon of energy v (& = 1) and momentum ¢ = 0 is incident on the sea of

electrons in the metal (the shaded region here) and creates a hole-particle
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Figure 4.2  The rcal part of the optical conductivity o(w) due to impunty
scattering. On the left is the conductivity in the normal state and on the
right is the conductivity in the superconducting state. In the superconducting
state. no absorption occurs untile = 24, at which point the conductivity rises
up and eventually joins the normal state curve (dashed line). The missing
area between the two curves is to be found in a delta function at w = 0.

pair which has both energy and momentum. However, this process alone
does not conserve energy and momentum, and so impurities in the system
allow this process to happen by absorbing the extra momentum but with no
change in energy. Hence, absorption of light can occur in an impure system
at any frequency of the incident light. The result of the absorption process is
shown on the left in Fig. 4.2. This is simply the Drudl: conductivity given in
many elementary solid state textbooks for the viscous damping of clectrons

in an applied electric field:

ne‘r _ w§7‘
m(l+2272)  de(l +wir?)

o, (w)= (4.1)

where n is the density of electrons, m the clectron mass, and 7 the scat-
tering lifetime. [Note that the conductivity is a complex quantity but we
are interested in this thesis only in the real part o,(w).] In this curve,

o,(w = 0) = w3r/(4x), where w, = 4xne*/m is the plasma frequency, and the
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half-width at half-maxiznum s the scatterning rate 1/r. In the superconduct-
ing state, the creation of an electron-hole pair cannot occur until a Cooper
pair is liberated from the condensate and this places a threshold on the pro-
cess of 2A. Be::ce, absorption does not occur until 2A. whereupon absr ption
occurs and quickly rises up to meet the normal state conductivity, w- shown
in Fig. 4.2 on the right. There are two sum rules of some importance here.
The first sum rule states that the area under the curve shown on the left of

Fig. 4.2 is given as [Tirkham (1975)]:

)

=) .
wids= =2 | 2
[) o, (wi s (4.2)

The srcond sum rule stutes that this area is conserved in the superconducting

state [Ferrell and Glover ' 1958); Tinkham and Fecrell (1959)]:
.[0 fo,s(w) = 0y ()lde =0 (4.3)

and hence the area lost in the right side of Fig. 4.2 ends up in the zero-
frequency delta function shown in Fig. 4.2 for the de current associated with

the superconducting condensate:

"
et
2m

0,s(w=0)= 5(0) , (4.4)

where =, is the phenomenological two-fluid model density of superconducting
electrons. [Note that in the two-Suid model the penetration depth. which
is associated with the zero-frequency limit of the conductivity, is given as
A2 = mé* f(4=n,e%).]

Another process of interest here is that associated with fluctuations
(conventionally phonons). Again, light is incident vpon the system creating

an electron-hole pair. But now to conserve momentum, 2 fluctuation, such
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Figure 4.3  The optical conductivity in the normal (left) and supercon-
ducting (right) states, corresponding to the fluctuation-assisted absorption
process described in the text and shown in the bottom of Fig. 4.1. Notice
that the features associated with the fluctuation spectrum are shifted by 2a
in the superconducting state. where no absorption occurs until w = 2A. The
dashed curve on the right is the normal state conductivity for comparison.

as a phonon. is emitted (Fig. 4.1). This fluctuation conserves momentum but
also has an energy associated with it, requiring overall cnergy conservation.
Hence, this absorption process can only absorb at specific energies associated
with the fluctuations in the system. This process, when phonons are involved.
is also known as the Holstein process. Absorption from the spectrum for Pb
(shown in Fig. 2.8) is shown in Fig. 4.3 and. as mentioned above. mimics
the shape and weight of the fluctuation specirum. In the superconducting
state, again the absorption is gapped by 2A and absorption occurs at 24 +w,
where w is the frequency of the Huctuation. Hence, the features in the left
hand graph of Fig. 4.3 are shifted by 2A in the graph on the right. These are
the only two processes considered in this thesis.

These processes can be mathematically summarized in Fig. 4.4 by
the Feynman diagram for the current-current correlation function II(ivm)
[referred to as K(Fw) in Section 3.6], with the electron line renormalized
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(2) () ()

Figure 4.4 (a) The current-current correlation function II{ivn) for the
~urrent response to an applied ficld. A current at the vertex corresponding
1o the black dot creates a hole-particle pair which recombines producing a
current response at the other verrex. The electron lines are renormalized by
{b) impurity scattering., where x represents the impurity ard the dotted line
.. the Coulomb interaction. and by (c¢) fuctuations (dashed line). The circle
containing [ represents possible vertex corrections to (a).

by the fluctuations and impurities. This is given in terms of the Green's

functions [see Appendix A] as (Bickers et al. (1990))
Mivm) = 3 TG i + v (R )T ()
!

where the vertex function, that would contain higher order impurity and
. “tiuctuation ladder scattering processes, is taken in first order to be I =
ckz/m. This approximation is equivalent to the use of the usual ¢*F(w) and
quasiparticle scattering time 7 instead of using the corresponding transport
quantities, of. F(w) and 7 [Grimvall (1981)].

The conductivitir o(w) is related to the real frequency axis ana-
Iytic continuation of the curreat-current correlation fuﬂcr.ion {ivm) wkich
is known. within a Matsubara formalism, cnly at discrete boson frequencies

vm = 2m=T where m is integral and T is the :emperatﬁre; Speafically,

olw) = éll(ivﬂ, —w+ iﬁ'*') . (4.6)

/2
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Referring to Bickers et al. {1990) for details. M(iv.,) is given in terms of the

plasma frequency <p. the Matsubara gaps A, and repormalization factors &,

by
M{ivm) = = —Tvbm (4.7)

with

G o SalntSnem) + Anidn = Amsn)
mm RaPrm

_ '-:-'n-l.-m(":-"n--m + -n} k2 n-i-m(-)-n-q-m - A )

Rn+m Pn.m

for (m=£0.~2n-1}
=A3/R . for (m=0)
=1/R. . for (m=-2n-1). {1.8)

In equation (4.8), Ry = /&2 + A2 and Pojm = 35 - R, + 83 - A2 .A.and
&n are calculated from the Eliashberg equations given in Eqs. (3.32)-(3.34).

The model used by Bickers et al. (1990) for o F(w) is that of a single
truncated Lorentzian with peak position at w, and width T, and truncated

at I, i.e.

1
aF(:..)o:[(d_bo)__*_r 1‘3“‘3] . e —wol < T

0 LY lw _‘-D'°| > rc - (‘;.9)

The parameters are w, = 50 meV, [, = 5 meV and I, = 30, = 15 meV. In
Fig. 4.5 we show our results for the ratio of the real part of the conductivity in
the superconducting state divided by the normal state, (o,5(<)/, 4 (w))- The
same four impurity concentrations, tt = 1/(2x7) = 0.0 (dotted curve), 0.796

meV (dashed curve), 7.96 meV (dashed-dotted curve), and 79.6 meV (solid
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Figure <.5  The ratio of the real part of the conductivity in the supercon-
ducting state to that of the normal state as a function of frequency in units
of twice the energy gap N.. Four impurity concentrations are considered as
defined in the text. Excep: for the pure Bmit case +* - results are in excellent

agreement with those of Bickers et al. (1990} -btz 1 for the same phonon
model and using the same Matsubara ‘ormulation i the conductivity.

curve) as considered by Bickers et al. (1990) are illustrated. These resuits are
in excellent agreement with those of Bickers et al. (1990) except for the dotted
cﬁr\'e. In our case. the curve begins to rise at a value of twice the gap plus the
-ﬁrst excitation energy in the phonon spectrum. This must be so physically,
since we are in the clean limit. Bickers et al {1990) show only a pronounced
dip at this energy and then absorption down to 24, which cannot be correct
and is probably an artifact of their analytic continuation technique [Vidberg
and Serene (1977); Bickers (private_communication)] using Pac? approxi-

mants. Except for the problem just mentioned, there is excellent agreement

for the other values of t*. Notice that a conventional phonon model for the
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Figure 4.6 A comparison of the real part of the conductivity in the su-
perconducting state o,(~) in units of (2cm)™! as a function of frequency
w in meV. The solid curve was obtained in this thesis using the imaginary
frequency axis formulation for the conductivity, namely, Eqgs. (4.6) to (4.5).
The dashed curve shown for comparison is the result of Lee et al. (1989) for
their model C. defined in the text. which they obtained from a real frequency
axis formulation. The agreement between the two methods is very good.

fluctuations gives large Holstein structure in this ratio. This is not observed
experimentally in the high T oxides [Kamaris et ol (1990); Schlesinger et al.
(1990)]. :

It is of importance to compare the results obtained for. the conduc-
tivity o(w) using the imaginary axis formulation represented in Egs. (4.6) to
(4.8) with results of direct real axis calculations. Such a formulation, for ar-
bitrary impurity content t*, has been considered recently by Lee, Rainer and
Zimmermann (1989). It involves formulas for o{w) that are mathematically

very different from Eqs. (4.6) to (4.8) and makes use of the real frequency axis
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version of the Eliashbers equations [Scalapino (1969} instead of Egs. {3.32)-
{3.34). These zre much more complicated to so:ive numenically but no anal-tic
continuation [“idberg and Serene {1977)] is needed to obtain o(w) so that
Padé approximants can be avoided entirely. In Fig. 4.6 we compare results
obtained in this work (solid line} with the real axis resuits of Lee. Rainer and
Zimmermann (1939) (dashed line). The ncur exact agreement is impressive
and gives us confidence to proceed and consider a marginal Fermi liquid in
the next section. Note that the case considered :.. Fig. 4.6 is model C of Lee
et al. (1989). In this model a delta {function is used for the spectral density
a® F(w) with average phonon energy at 50 meV. the mass enhancement pa-
rameter A = 0.3, the plasma frequency is 820 meV and tke inverse scattering
time Is 1.05 meV -vith a T, value of 50KX and a corresponding gup to critical

temperature ratio. 2A,/k, T, of 3.9.

.22 FREQUENCY-DEPENDENT OPTICAL CONDUCTIVITY
AT T=0

As a prescription has already been given for including the polariz-
ability of Eq. (3.26) in the formalism for the Eliashberg equations [Kuroda
and Varma (1990); Nicol et al. (1990, 1991); Nicol and Carbotte (1991ab);
Littlewood and Varma (1990, 1991)], we proceed to present results for our
calculations of the optical conductivity in the marginal Fermi liquid model.
Tkese calculations were done by solving the imaginary axis gap equations
in Eliashberg theory [Daams et al. (1981); Baquero et ol (1981); Zarate and
Carbotte (1984); Daams and Carbotte (1981); Rainer and Bergmann (1974)]
given in Eqs. (3.32)-(3.34) with the kernel of Eq. (3.26), to obtain the Matsub- .

ara gaps and frequencies which were then used in the Matsubara formula for
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Figure 4.7  The ratio of superconducting to normal state value of the recal
part of the conductivity ¢,(w) as a function of frequency w in units of twice
the zero temperature energy gap Ao. The solid curve starting at 24, is the
BCS dirty limit and is shown for comparison. The curves all start at 44,
and apply to the clean limit (*+ = 0.0). The solid curve is for 2 cutoff w, of
3000 meV while the others ending with the short-dashed-long-deshed curve
are for . = 1500 meV, 600 meV, 400 meV, and 200 meV, respectively. Only
the last (short-dashed-long-dashed) curve, which corresponds to a gap ratio

of 28,/k, T = 8.2, shows significant deviations from BCS in the Holstein
region.

the current—curren; c;ndatio& function (Eqs.(4.7)-(4.8)). An analytic con-
tinuation of the current-cunen? ‘c:orrela.tion function was performed by Padé
approximants [Vidberg and Serene (1977)] to obtain the optical conductivity
given by Eq. (4.6). Our numerical calculations were performed for T = 0.1T,
which is essentially T = 0. Similar calculations have been performed by Lit-
tlewood and Varma (1990, 1991).

In all the results to be presented in this section, the critical tempera-

ture is fixed at 100K. The two remaining parameters are the upper cutoff on
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the Auctuation spectrum w. (Eq. (3.35)) and the relative admixture of the
coupling to charge and spin (g). First. we present a series of results for the
clean imit (t* = 0} with ¢ = 0.6 as a function of cutoff .. These are presented
in Fig. 4.7 where we have plotted the ratio of the real part of the conductivity
in the superconducting state to that of the normal state o, (<)/,(v) as a
function of frequency normalized to twice the zero temperature energy gap
Ao. Note that 2ll the curves start at «/24, = 2, i.e., at 44, except for the
BCS dirty limi: case [Mattis and Bardeen (1958)] which. of course. starts at
24, and is included only for comparison (solid curve starting at 24,). It is
important to realize that the gap is to be calculated self-consistently. For a
given value of A, the spectrum in Eq. (3.35) becomes gapped and this effect
is included by replacing the lower lmit for the integral on w in Eq. (3.35) by
24, rather than zero. After each run. the lower cutoff is re-adjusted until the
value of A, no ionger changes. The set of curves in Fig. 4.7 corresponds to a
cutoff of 3000 meV (solid curve), 1000 meV (dashed-dotted curve), 606 meV
(long dashed curve), 400 meV (short dashed curve), and 200 meV (long-
dashed-short-dashed curve), 2A,/k,7. values of 4.3, 4.7, 5.1. 5.7, and 3.2,
respectively, and A, of 0.3, 0.6. 0.9. 1.5. and 6.4.

The obs:rvation from the figure, that, in all cases, the absorption
in théclean limit starts at 4A, is consistent with the idea that absorption
can only cceur at 24, the energy required to break a Cooper pair plus the
lowest excitation encrgy Tfor charge or spin fluctuations which also occur at
2A, in our model. This is reflected in the lower cutoff which we have applied
self-consistently to uhe fluctuation spectrum. Note also that, even for 2 upper
cutoff of 400 meV, a A, = 1.54 with corresponding value of 2A,/k; T, = 5.7, the

structure is smeall compared with its strength in a typical conventional strong
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Figure 4.8 The ratio of the real part of the conductivity in the super-
conducting state to its value in the normal state as a function of frequency
in units of twice the zero temperature energy gap .. The solid curve is
for comparison and applies to the dirty BCS limit. The short dashed curve
is for 2A,/kgT. = 8.3, X, = 5.27, and w, = 400 meV with g = 0.5 while the

long dashed curve is for 280/k,T. = 4.5, A, = 1.25, and w, = 200 meV with
g = 0.8. These curves start at 44, since they apply to the clean limit and
show relatively small structure in the Holstein region when compared with
a conventional strong coupling superconductor.

coupling system such as Pb. The reason for this is that our effective spectral
density ltanh($) is spread out over a large range of frequencies up to we-
Also the relatively large value of 2A,/k, T, which accompanies this spectrum
is due, in part, to the application of a lower cutoff in (3.35) at w = 24,. This
entirely cuts out low-lying charge and spin fluctuations with the cffect that
24, is larger relative to 7. than would be expected otherwise. The final curve
(long-dashed-short-dashed) in Fig. 4.7 is included only to show that Holstein
processes can indeed become more visible when w. is made to be very low. In

this case, we = 200 meV and the curve behaves much more like a conventional
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strong coupling system. We cmphasize however that, when «w, is not too
small, the phenomenological marginal Fermi liquid model of Varma et al
(1989} can vield a large 23, /k,T. without large Holstein structure. Kamards
et al. (1990) and Schlesinger et al. (19902) have noted that this is an essential
feature of the data in YBa,CusOs_;s which cannot be explained within the
conventional formalism. This, along with the fact that the absorption starts
at 44, in the clean limit, is one of our important results, and so we emphasize
it further in Fig. 4.8. In this figure we show the real part of o(w) in the
superconducting state normalized to the normal state, g,4(w)/7,y(w), for the
case 28,/k,T. = 8.5, A, = 5.27, ¢ = 0.5 and w. = 400 meV (short dashed line).
1t shows little structure at higher frequencies and does not deviate much
in this cnergy range from the BCS dir:y limit (solid curvs). The second
case, for which 2A,/k, T, = 4.5. A, = 1.25, g = 0.8 and w. = 200 meV (long
dashed curve), shows ver "ass deviation from the solid curve in the Holstein
region although the gap ratio and A are not very different from the values
for Pb which shows large deviations. This agrees with the experimental data
[Kamaris et al. (1990); Schlesinger et al. (1990a)]. To end we note that for
both curves shown in Fig. 4.8 the structure around w/2A, ¢ 5 is due to our
upper cutoff of the excitation specirum and could presumably be smoothed
out if a gradual cutoff had been used.

‘ In Figs. 4.9a and 4.9b, we study the effect of ordinary impurities
(finite value of t* in Egs. (3.32) and (3.33)) on the ratio o, s(w)/o,y{w)- The
four impurity concentrations used zre t* = 0.1 meV (short dashed curve),
t* = 1.0 me’ (long dashed curve), t* = 10.0 meV (short dashed-dotted
curve} and t* = 100.0 meV (long dashed-dotted curve). The results are also

compared with the pure case (solid curve). The most striking feature of these



4.2  Frequency-dependent Optical Conductivity at I'=0 103

2.0

I ] ] |

1.5 -

GIS/UIN
e
(]
|

0.0

2.0

1.5 -

10 |-

0‘1s/Um

0.5 -

0.0

GJ/ZAO

Figure 4.9  The ratio of the real part of the conductivity in the supercon-
ducting state to its value in the normal state as a function of frequency in
units of twice the zero temperature energy gap A.. For the pure case (solid
curve) the absorption starts at 4A, while when impurities are added the on-
set occurs at 2A, instead. Curves (a) are for the charge fluctuation model
with 2A,/k,T. = 4.5 while curves (b) apply to the case 2A./k,T. = 8.5 with
other parameters defined in Fig. 4.8 and in the text.
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results is that as soon as impurities are introduced the absorption starts at
2A, rather than the 44, found to occur in the pure case. The momentum
can now he transferred o the impurity svstem. Some remnant of the 44,
threshold does, however. remain even in the t* = 10.0 meV curve which
represents a large amount of impurit! s but is still far from the dirty limit.
Iti ofinterest to consider the absolute value of the conductivity o, (<)
in the frequency range above the absorption edge. To do this the plasma fre-
quency is adjusted to correspond to a value of the de conductivity of 20,000
(Qem)~! 2t 100K in the normal state which is 2 typical vaive for experimental
samples. Since o, ;(w = 0) varies 2s 1/T in the marginat Fermi 1iquid, this cor-
responds to a de¢ conductivity at 10K of 200.000 (@ cm)~1. The normal state
conductivity o, . (w), as a function of frequency w. is shown in Figs. 4.10a and
4.10b (dashed curve) for two illustrative model sets of parameters, namely,
2W/k,T: = 4.5, A, = 1.25, ¢ = 0.8 and w. = 200 meV (Fig. 4.102) and
WNo/kpTe = 3.1, A, = 0.9, g = 0.6 and w. = 600 meV (Fig. 4.105). In the
first case. the width at half maximum comes out to be 1.27k,T and in the
second it is 1.0k, T which falls well within the range of experimental values
[Kamards et al. (1990)). Also shown for comparison are the corresponding
values for o, (w) in the superconducting state represented by the solid lines.
We see that in the region around 2000 cm™! the conductivity in one case
is slightly above 1000 (Qcm)~? and, in the other, sumewhat less than 500
(Qcm)~!. These values are smaller, but of the same order of magnitude, as
measured experimentally. Parameters could be varied to obtain better agree-
ment with exp~ -uent if one wished. We do not think this to be appropriate
at this time and in any case this is not our primary aim here. We believe that

before a definitive comparison with experiment can be made it is important
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Figure 4.10  The normal state (dashed curve) and superconducting state
(solid curve) conductivity at 10K for two sets of model parameters. The top
frame is for 2A./k,T. = 4.5, A, = 1.25, ¢ = 0.8, and w, = 200 meV. The
lower frame is for 2A,/k,T. = 5.1, A, = 0.9, g = 0.6, and w, = 600 meV.
The plasma frequency has been chosen in both cases to obtain a value of
0, (w = 0) = 20,000(Q em)™1.
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to calculate the complete tempernture dependence of the conductivity in the
superconducting state from 7. down to low T. In this way we could trace the
opening up of the gap. This has beer: done and is presented in Section 4.4.
This requires real frequency axis programs because Padé approximants are
not reliable at high T near T,. Unfortunately, problems still remain in the
interpretation of the experimental conductivity data in the infrared region.
precluding any useful comparison between theory and experiment at the
present time.

Nevertheless, we can make two statements about experiments. The
amount of absorption calculated in the mid-infrared region for the marginal
Fermi liquid model is of the same magnitude but smzller than the amount
observed and therefore leaves sonie rvom for extra absorption processes not
accounted for in the model. If this is the case. it might be very hard to
see a clear gap in such experiments particularly if one is in the clean iimit.
Undoubtedly some residual resistivity needs to be added according to sam-
ple quality but the amount is not unambiguously known at this point. A
very nice feature of the theory iz that the dc conductivity scales like 1/T
with coeficients in front of this variation dependent on the single remaining
parameter of the model for a given cutoff.

To conclude, we have studied the behaviour of ¢(w) for the marginal
Fermi liquid model and found several important results. First, in the pure
limit, a.bsorptioxi%a.n start only at 4A, which is the erergy required to form a
quasiparticle pair plus the lowest energ: in the fluctuation spectrum. When
impurities are added, momentum can go into the impurity system, and the’
absorption starts at 2A,. For low impurity concentrations a remnant of the

44, threshold remains prominent but ventually disappears when tt is large
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enough. Compared with a conventional clectron-phonon model. the marginal
Fermi Equid model can produce relatively large values for the gap to critical
temperature ratio with small associated Holstein structure as required in
the experimental data [[Namards ct al. {1990): Schlesinger ct al. (1990 )]. The
reason for this is two-fold. First. :he corresponding electron-boson spectral
density is spread out over a large frequency range when the value of the
cutoff in the fluctuation spectrumn (w) is large. Secondly, the fluctuations
become gapped at low frequencies quenching both spin and charge degrees
of freedom in this region. This has the net effect of increasing A, over the
value that would be expected if no low energy cutoff was applied.

Finally, when the absolute value of the conductivity is fixed to the
measured normal state value at w = 0 (20,000 (Qem)~! typically), with the
width at half maximum of ¢, () of the observed order, 1.0 to 1.5 kT, its
weight in the mid-infrared region is of the same order of magnitude as is
observed although, in all the cases considered, it is smaller. This leaves room
for some additional absorption process in this region which would add to the
direct electronic contribution calculated in this thesis. While we have not
attempted a close comparison with experiment, the model does reproduce

many of the observed features.

4.3 THE QUASIPARTICLE DAMPING RATE

In this section, we present a calculation of the quasiparticle damping
rate in both the normal and superconducting state for the phenomenolog-
ical marginal Fermi liquid model. This quantity shows novel behaviour in
this theory and several experiments are presently under way to measure its

temperature dependence below T..
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The quasiparticle scatzering rate is o fundamental clement underlying
several properties, such as the - ptical conductivity. It is giver n terms of
the imaginary p:.: of the electron self-czergy due to fiuctuati...s, such as
phonons in the conventional theory. More exactly, the poles of the single
particle Green's function ;ive the guasiparticle energy (real part) and the
lifetime (imaginary part) [see Section 3.1]. In the superconducting state the
quasiparticle damping I'(«, T'), related to the quasiparticle lifetime 7(w,T) by
[ = 1/(27). (note that we use a different sign convention for I here, than in

Secction 3.1) is given as [Scalapino (1969); Kaplan et ¢l (1976)]

_ Zg[.’.—'z -— A;"'] -— .’_\15221

L

Tw.T)

(4.10)

Here, Af{w) = Aj{w) + :Aa(w) is the complex and frequency-dependent gap
function in Eliashberg theory [Scalapino (1969)] and Z(w) = Zi(w)+iZ2(w) is
the corresponding renormalization function. In the normal state A = 0 and
we obtain

T(w.T)=wZs - (4.11)

In various limits of zero-temaperature or zero frequency, we obtain the well-

known limits. for the normal state [Grimvall (1981)],

[w.T=0)==xh ] ” o F(u')dw' (4.12)
0
and
whnax
Nw=0.T)=2=h / QS Fi) () + n(w)d’ (4.13)
0

where o® F() is the electron-phonon spectral density function of Eliashberg
theory, f(w) and n(w) are the Fermi and Bose factors, respectively, and wnax

is the upper frequency in the electron-phonon spectral function.
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Figure 4.11  The three scattering processes contributing to the damping
of a quasiparticle of frequency w. representing the three terms in Eq. {(4.14).
respectively: (2) scattering from « to w —Q (solid line) with the cmission of a
fluctuation of frequency Q (dashed line), (b)scattering from w to w + Q with
the absorption of a fluctuation of frequency Q. and (¢) recombination of two

quasiparticles of frequency - and @ —. with the emission of a fluctuation of
frequency .

A low frequency formula for Eq. (4.10) has been given by Kaplan et
al. (1976), who also give a very extensive work on quasiparticle lifetimes in
conventional superconductors. For frequencies that are small ¥ith respect to
typical phonon frequencies, they replace the frequency-dependent A,(w) by
the temperature dependent energy gap A(T') and write:

Ce D) ==y

wos 2 - __Az_ - -
[jo dQe* F(Q)N(w n)(l u(w_g))[n(n)+11[1 J{O )

* 2 AT(. - _A'-'_ - flw
+ /0 dQ o F(Q)N (w0 + Q) (1 prr Q)) n(Q)[1 - flw + Q)]

o )

2N | 14— -
+] e F(Q).\(Q-—..:)(l-rum_u))[n(ﬂ)-i-l]f(ﬂ w)].(4.14)
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where

N(w) = Re (—\f_-';.——;l—-) 1.13)

The beauwy of this formula is that one can physically sce the three ifferent
scaticring processes involved. The first term represents the scattering of a
quasiparticle from state o to w — Q with the emission oi a2 phonon. The
second process is the scattering of the quasiparticle from w to w +Q with the
absorption of a phonon. Ard the third process corresponds to reccmbination
of two quasiparticles of «* and Q — i with the emission of a phonon. These
orocesses are illustrated in Fig. 4.11. All these processes are weighted by: the
available density of states for the other quasiparticle state involved, the Fermi
(f(«)) and Bose (n(2)) factors which give the population of available states
according to temperature, the electron-phonon spectral density giving the
available phonon frequencies and, finally, very important coherence factors
that cause enhancement or de-cnhancement of processes depeading on how
the interaction affects time-reversal symmetry [Schrieffer (1964)]. The above
formula is good for low frequencies where Kaplan et el (1976) investigated a
simple Debye model and the realistic spectra of Pb and Hg.

We have calculated the quasiparticle dumping in the marginal Fermi
liquid model by first iterating the imaginary axis gap equations, given by
Egs. (3.32)-(3.35), for the Matsubara gaps and renormalized frequencies. We
then use the analytical continuation of Marsiglio et al (1988) :0 obtain the
rcal frequency complex gap function and renormalized energies, A(€) and

(€)= €Z(¢), respectivelv, given by the self-consistent solution of:

Pa= )
He)=e+ixT

wm
m=0 \/{:‘% - A?n

A€ = iwnm) = AT (e + )]
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T He=-2 "
imlA, + ,\,,)/ d:——-E—-—}———a'F{:)[.\'(:) + fiz - o).
-0

{1.16)

with a*F(--2) = —=a*F{z). and

- N
<oy A - —_— .
A) = ixT Y — === (€ = i) + A7 (€ F dim) = 27]
m=0'\/&‘;"‘+.’l§,

;-l(c- =)

__._—_——a:F(::)[N(:) + fl= =)
Ele=z2)=A%e-2)

+00
+ (A, = A,)/ d=
-c0

(4.17)

where

N . 2 dQa? F(Q
AE(e) = _().,,I.\,)] :sﬁ(io%

(1.18)
with o*F(w) defined in Eq. (3.35) for 2A(T) < w < we. In these cquations, N(z)
is the boson occupation N(z) = 1/(e% — 1) and f(=) the fcrmion occupation
f() = 1/(ef* + 1), with 3 = 1y and kp is the Boltzmann constant.

The damping rate was calculated from Eq. (4.10). In addition. as a
confirmation of our procedure, we also used the low frequency approximate
formula of Kaplan et al. (1976) to check our full numerical solutions. Excelient
agreement between both methods was obtained, except of course, at very high
frequencies where the approximations behind Eq. (4.14) break down.

Our results are shown in Fig. 4.12. For comparison we have also
calculated the scattering rate for the conventional superconductor Pb and
this is presented in Fig. 4.13. The diﬁ;erence in behaviour is quite striking.
For the marginal Fermi liquid model we have used the following parameters:
o = 200 mEV, g = (A = Ao)/(p + A) = 08, Te = 100 K, 2A4/k, T = 4.55,

A, = 19.6 meV, A ~ 1.3, and p~ = 0. [Note that we present the unrenormalized
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Figure 4.12  The quasiparticle damping rate I{w, T) in the marginal Fermi
Liquid model for several frequendies: w» = 0 (top left frame), w = 0.54, (top
right), « = A, (ceuter left), w = 134, (center right), w = 2A, (bottom
left), and w = 34, (bottom right), where A, = 19.6 meV. The dashed curve
is the normal state and the solid curve is the superconducting state. The
normal state exhibits linear T and w» behaviour and the superconducting

state exhibits a sharp drop in the scattering rate below T, due to the gap
developing in the fluctuation spectrum.
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Figure 4.13 The quasiparticle damping rate I'(w,T) for Pb for several
frequendies: w = 0 (top left frame), w = 0.5, (top right), w = A, (center
left), w = 1.5A, (center right), w = 2A, {bottom left), and w = 24, (bottom
right), where A, = 1.39 meV. The dashed curve is the normal state and
the solid curve is the superconducting state. The normal state exhibits the
characteristic 7% and «*® dependence. The superconducting state drops to
zero quickly due to the energy gup. However, a coherence peak remains at
low frequencies due to quasiparticle recombination.
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seattering rate: some authors prefer to present the renormalized quantity
[/7Z,(0) = I'/(1 + )] The characteristics of Pb are: T, = 7.19 K, 2A./k,T. =
149, Ao = 1.30 meV, A = 1.535, and ;{6 maz) = 0.139. In the figures, there arc
six frequencies plotted. « = 0 (top left frame), w = 0.5, (top right frame),
< = A, (center left frame), « = 1.52, (center right frame), w = 22, (bottom
left frame) and « = 34, (bottom right frame).

Typically for Pb (Fig. 4.13), the normal state damping rate decays
as T3 at «> = 0 as the phonon scattering contribution freezes out at low tem-
peratures. Above approximately T = w;,/10 the scattering rate takes on 2
linear dependence in temperature which occurs well above T.. The frequency
dependence at zero temperature increases as w3, For low frequencies in the
superconducting state near T there is a coherence peak due to the quasipar-
ticle recombination process being very strong (the temperature is large, the
gap is very small and a large number of quasiparticles are excited above the
gap). At higher frequencies the coherence peak eventually disappears as the
_ process moves out of the peak in the density of states. At zero temperature
and finite frequency there is scattering due to the process of scattering with
phonon emission.

In contrast. for the marginal Fermi liquid of Fig. 4.12, the rormal
state displays a linear T dependence and at finite frequency, a linear w de-
pendence ie., ['y = aw + bT. However, the superconducting state displays 2
sharp drop below T, with a small tail. This behaviour is due to the fluctuation
spectrum, the effective “o®F(w)” in Eq. (3.35). In the superconducting state
this spectrum is gapped by 2A and hence no fluctuati~us can be absorbed
or emitted until the frequency «w reaches 2A as it does in the bottom left

frame of Fig. 4.12 and then finally these processes requiring the availability
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of fluctuations can begin to occur and in Fig. 4.12 bottom right frame where
~ = 31, we see a similar scattering rate as for Pb at w = 33,. The small tail
below 7. that oceurs in all frames of Fig. 4.12 is due to the gap being nrarly
zero at T. and hence some population of the quasiparticle states can occur.
In our work we have used a BCS temperature dependence for the gap A(T)
for numerical convenience. Typically one solves for the gap self-consistently
(which we do at low T') but this does not deviate much from the BCS resuit.
A more constant temperature dependence of the gap merely reduces the tail
below T, further. In our work we have used a sharp cutoff at 2A(T) in the
fluctuation spectrum as there is no microscopic theory to explain cxactly
how the gap develops. As this is adhoc, the actual shape of the tail near 7.
should not be tzken as significant at this point, but rather the quick drop in
the scattering rate below T, to zero is the significant result.

In conclusion. we have calculated the quasiparticle damping rate be-
low T in both the normal and superconducting state for the marginal Fermi
liquid model and have compared it with similar calculations for Pb. We find
striking differences. The most notable prediction of the marginal Fermi lig-
uid theory is that the scattering rate should drop precipitously below T¢ in
the superconducting state. Experiments capable of measuring the frequency
dependence, as well as, the temperature dependence of the scattering rate
in the superconducting state would be ideal for testing this resuit. If over a
large range of frequencies. the scattering rate dropped sharply below T to
zero, then this would support this theory. In addition if finally at some fre-
quency, the scattering rate suddenly smeared from a sharp drop, this may be
a measure of 27, and hence a measure of the energy gap in these materials.

We believe this to be a definite prediction of marginal Fermi liquid theory
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and would encourage experiment:l investigations of this property. It should
be neted that Tanner et al. {1991) have recently exiracted the scatiering rate
from their opticzl data and observe such a drop in the rate just below T.
Impressive additional confirmation of these results has now been . btained
by Bonn et al (1991) and is shown in Fig. .18 of the next section.

4.4 THE TEMPERATURE DEPENDENCE OF THE LOW
FREQUENCY CONDUCTIVITY

Within BCS theory, the temperature-dependent low frequency con-
ductivizy has type II coherence factors as does the NMR relaxation rate and
hence would normally exhibit o coherence peak just below T, where the
superconducting state conductivity is enhanced above the normal state con-
ductivity {Schrieffer (1964)]. Recent work by Akis and Carbotte (1991b) and
Marsigiio (1991) has demonstrated that within the strong-coupling theory of
superconductivity, the cc -rence factor can be ..pressed: however, normal
impurity scattering is shown to enhance the peak. In addition, Akis and Caxr-
botte (1991a) and Allen and Rainer (1991) have shown that 2 suppression
of the coherence p:aIm the NAIR relaxation rate also occurs with increased
strong coupling and that the formulae for the NMR and the conductivity are

| essentially the same, such that the suppression of the peak in one quantity
would be accompanied by the suppression of the peak in the other quantity.
The observation of the absence of a coherence peak in the NMR experiments
[Barrett et al. (1990); Takigawa et al (1989)] on the high 7. superconduc-

tors can be taken as evidence for strong-coupling »fects [Alds and Carbotte

(1991a); Allen and Rainer (1991)], anisotropy [Statt (1990)], etc., but the
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essential point is that the coherence effects have been suppressed in some
manner and hence are likewise suppressed in the conductivity.

In this section, we present results of calculations of the low frequency
conductivity in the phenomenological marginal Fermi liquid theory of Varma
et al. (1989) and find 2 “coherence-type” peak that is not due to coherence
effects but due to the quasiparticle scattering rate. Similar results have been
obtained by P.B. Littlewood [Nuss et al (1991)] who has also calculated the
NMR rela.éation rate in this model and finds an absence of a peak in this
latter quantity [Nuss et al. (1990); Littlewood and Varma (1991)].

To calculate the optical conductivity, we first solve for the imaginary
axis gaps and frequencies and then use the analytic continuation of Marsiglio
et al. (1988) to obtain the real frequency complex gap function and renor-
malized energies, A(¢) and &¢) = ¢ Z(¢), respectively, given Egs. (4.16)-(4.18).
We then use these in ‘the formula for the conductivity derived by Lee et al

(1989) which is given as:

o(w.T) = YO0k / e [mh(ﬁ) M(c,u){g(c)g(c+w)+h(€)h(c+w)+7r2}

PSR —eo
—tanh (fﬂ) M'(e,w){g"(c)g"(e +w)+ A (e (et+w)+ 7.'2}
2kgT

+{tanh(%‘;;) — tanh (ﬁ?) }L(e,¢){g'(c)g(e +w) + h*(h{e+w)+ 7:2}] ,

(4.19)
where
ole) = ——2 (4.20)
\/'._\'-'(e) - &(¢)
—73(¢) (4.21)

h(e) = e,
A/ A%(e) = ()
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-1
Mle, o) = {\/;iﬁfc+_~,-z3(c+_:)-§- \/ﬁz(()—fg(c)-i-é} . (4.22})

and

-1
L{c,) = {\/.‘:\2(6 +w)— E(e+w)+ \/ﬁ'z(c) -+ :]:-} . (4.23)

In Eq. (4.19) N(0) is the single spin clectronic density of states at the Fermi
surface, e is the electron charge and vp is the Fermi velocity. The normal
impurity scattering time T enters Eqgs. (4.22) and (4.23). We quote values in
terms of t+ where t* = 1/(2=x7). The normal state conductivity is obtained
by sctting the gaps to zero i.. the above procedure.

In Fig. 4.14, we show the frequency-dependent conductivity for sev-

eral reduced temperatures t = 7 T.: t = 0.1 ‘solid curve), t = 0.6 (— - —),
t=07(—-—}t=08(----),t=09(---),t=095(— — —) and
t = 1.1 (- - - =). The marginal Fermi liquid parameters we have used are:

we = 200 meV, g = (A, = Ac)/(A, = As) = 0.8, and Tc = 100 K, with p" taken to
be zero. This results in 2A,/k,T: = 1.55. A, = 19.6 meV, and A ~ 1.3, where
A is taken from Z;(w = 0) = 1 + A. In the top frame the conductivity is shown

in the clean limit, (i.c., t¥ = 0). Notice, at zero temperature, no absorption

“occurs until w = 47y, As discussed in Section 4.2, this corresponds to 249 of

energy to create an electron-hole pair plus another 24, of energy to reach
the first frequency in the fluctuation spectrum (the creation of another pair),
the requirement for conserving both energy and momentum. The 44 resuit
has been obtained previously by ourselves and other authors [Nicol et al
(1991); Littlewood and Varma (1990,1991); Orenstein et al. (1990)]. In the
bottom frame of Fig. 4.14, ¢¥ = 1.0 meV. While 2 dip remains at 44 at

low temperatures, impurity-assisted absorption occurs at 2A,. Notice that
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Figure 4.14  The real part of the frequency-dependent conductivity o{w)
versus frequency w for several temperatures below T.. In terms of reduced
temperatures t = T/T. the curves are: ¢ = 0.1 (solid curve), t = 0.6 (— - —),
t=07(—-—),t=08(----),t=09(---), ¢t =095 (———), and
t=1.1 (- - - =). The upper frame corresponds to the clean limit (i.c., it =0)
and the lower frame corresponds to t* = 1 meV. The zero-temperature gap
A, 1s 19.6 meV.
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Figure 4.15  The low-frequency conductivity in the superconducting state
normalized by th~ normal state as a function of temperature. In the upper
frame, curves are for t..2 clean limit (¢* = 0) and are drawn for several
frequencies: w = 1 meV (solid curve), w = 2 meV (- — -}, w =5 meV (— —
—), and w = 10 meV (- - -). The lower frame shows the effect of normal
impurity scattering suppressing the peak. These curves are for w = 0.05 meV
and ¢+ = 0 meV (solid curve), t¥ = 0.1 meV (- - --), ¥ =02 meV (- - -),
tt =1 (— — —), and t+ = 100 meV (- — - —).
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Figure 4.16 Optical conductivity data of Nuss et al. {1991). The points
correspond to different frequencics: 0.5 THz (squares), 0.1 THz (triangles),
and 2.0 THz (circles). The solid curves are to guide the eye.

the 44, feature exhibits the temperature-dependence of the gap (taken as
BCS here [Nicol and Carbotte (1991a); Section 3.4]) while the dip before the
impurity peak fills in with the low frequency absorption due to quasiparticle
scattering.

In Fig. 4.15, we plot the low frequency conductivity. The top frame
shows the temperature-dependent conductivity for several frequencies: w =1
meV (solid curve), w =2 meV {- — -}, w =5meV (— — —),and w =10
meV (- — -). The striking feature is a peak in the conductivity which is
not suppressed until rather high frequencies. These curves are for t+ = 0
(the clean limit). Recent experiments have observed such a peak [Nuss et al.
(1991); Bonn et al. (1991); Holczer et al. (1991)] and in Fig. 4.16, we reproduce
the data of Nuss et ol (1991).
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Figure 4.17  The zero-frequency quasiparticle damping rate as a function
of temperature. The dashed curve corresponds to the normal state and the
solid cnurve to the superconduciing state. There is a sudden drop in the
damping rate just below T; int'. : superconducting state. due to 2 gap opening
up in the fluctuation spectru....

In the lower frame of Fig. 4.15, we exhibit the conductivity as a
function of impurity content, at a lower frequency of w = 0.05 meV, for: t+ =0
meV (solid curve), t+ = 0.1 meV (- ---), t* =02 meV (---),tF =1 (——
—), and t+ = 100 meV (- — - —). The last curve is essentially the dirty limit
and thus for the microwave frequency range, the peak is never suppressed
in the near-to-clean limit (the limit in which the high T. superconductors
are thought to be). Noze that the behaviour here is completely opposite to
what occurs in the conventional strong-coupling case, where increased normal
impurity scattering enhances the peak and ro peak is observed in the clean

limit [Akis and Carbotte (1991b): Marsiglio (1991)].
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Figure 4.18  Dataof Bonn et al. (1991) for the scattering rate in YBa:Cuy O-.
These data are extracted from microwave surface resistance data taken at

2.95 GHz. Due to the method of analysis the authors prefer to trust the data
shown here only for temperatures greater than 3315,

These surprising results are not due to coherence effects, which have
been suppressed by strong coupling, but rather, they are due to the novel
quasiparticle damping rate ['(w,T) which is shown in Fig. 4.17. {Nicol et al.
(1991c)] (see the previous section). Unlike the NMR relaxation rate, the
conductivity samples this scattering rate and it is this difference that can
produce 2 peak in the conduectivity but not in the NMR. The damping rate
depends on the availability of fluctuations for the quasiparticle to emit or ab-
sorb when making transitions between states. However, in the marginal Fermi
liquid model, such fluctuations are absent for low frequencies and tempera-
tures not near T, due to the gap of ‘2.;_\(1") in the fluctuation spectrum. It is

only very close to T, where 2A(T') is small, that the scattering processes can



124 4 Marginal Fermi Liquid Theory II

3.0 n . i i
= 20}
S’
=
b
X
e
5 1.0}
0.0 I = T 1
0.0 0.2 0.4 0.8 0.8 1.0

t=T/T,

Figure 4.19 A simulation of the low frequency conductivity using a simple
two-fluid model as described in the text. These curves are for illustrative
purposes only and are not to be taken as quantitatively correct. Curves are
drawn for — = 0 and ¢+ = 1.0 meV (solid curve), ¢t~ = 2.0 meV (- - -}, and
t+ = 100.0 meV (— — —).

occur. Behaviour, like that shown in Fig. 4.17, has been recently observed
experimentally [Tanner et ol (1991); Bonn et al {1991)]. In Fig. 4.18, we
reproduce the data of Bonn et al. (1991).

To aid in visualizing how the peak in the conductivity occurs and
how it decrcases with increasing impurity scattering, we use a very naive
and simplistic model. We take the simple form for the Drude conductivity

at zero frequency (as w = 0.05 meV is quite small relative to A,):

bl
nesT

= — 2
c — . (4.24)

and make this temperature-dependent by replacing the density of electrons n

by the two-fluid model temperature dependence [Schrieffer (1964)] for normal
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electrons a3 (T) (taking the quasiparticies to be a fiuid of normal electrons in
the superconducting state) and we also use the temperature dependence of
T given in Fig. 4.17. Hence.

ostT) _ mi(DIN(T) + =17 (4.25)
ox(Ty = [s(Ty+=es] 7 =

where we have included the effects of impurity scattering with =t+ = 1/(27).
In Fig. 4.19, we show the results of this simple picture and we sce the same
qualitative shape and behaviour as we find in the full numerical solutions.
The curves are drawn for: ¢+ = 1.0 meV (solid curve), t+ = 2.0 meV (- - =),
and t* = 100.0 meV (— — —). It is the drop in the scattering rate that is
causing the peak to appear in the conductivity. Of course, the position and
shape of the peak depends on the details of the how the gap iorms in the
fluctuation spectrum, for which there is no microscopic theory. The curves
in Fig. 4.19 are not quantitatively correct and are for illustraiive purposes
only.

In conclusion, we have calculated the low-frequency conduetivity
within marginal Fermi liquid theory. Due to the drop in the quasiparticle
damping rate, a peak occurs in the microwave conductivity whereas no such
peak occurs in the NMR relaxation rate [Nuss et al. (1991); Littlewood and
Varma (1991)]. With increasing impurity scattering the peak will be reduced.
Recent experiments have observed such a peak [Nuss et al. (1991); Bonn et al.
(1991); Holczer et al. (1991)] and this model provides a possible explanation
for the novel occurrence of a peak in the conductivity with an absence of the

same in the NMR relaxation rate.






Chapter 5

Paramagnons and
Paramagnetic Impurities

Mainly Optical Properties

Unlike the previous chapters on thin film critical currents and marginal
Fermi liquid theory, which presented ideas and formalism not well-established
in the literature, the subject of this chapter has been well developed. The
formalism for including paramagnons and paramagnetic impurities in Eliash-
berg theory has been developed and many results have already been obtained.
Our purpose here is merely to adopt this formalism and examine previously
uncalculated properties, such as the optical conductivity. Hence, as the back-
ground is well-established, we will be brief in our introduction and mainly
refer the reader to the lLiterature. 7
We would also like to point out that the model for paramagnons used
in this chapter is formally similar to the form of the Eliashberg equations
modified for the marginal Fermi liquid of the previous chapter. Therefore,
comparison between results of this chapter and the previous two chapters is

useful for illustrating those features of the marginal Fermi liquid model which

127
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arc due to the spin fluctuation part of the theory. Likewise. the portion of
this chapter dealing with Abrikosov-Gorkov paramagnetic impurities. which
can be seen to be the static limit of spin Auctuations, gives an appropri-
ate introduction to the next chapter on spin glass superconductivity where
the resulting equations are formally similar to those for the paramagnetic

impurity scattering but with a temperature-dependent scattering rate.

5.1 INTRODUCTION

Berk and Schrieffer (1966) have given a meodel for incorporating para-
magnetic spin density fluctuations (paramagnons) into Eliashberg theory. It
is based upon capturing the essence of how paramagnetic spin fluctuations
arc expected to affect spin-singlet pairing in a superconductor. Typicaily,
due to strong Coulomb interactions between electrons in very narrow energy
bands, ferromagnetic correlations (for example) may cause spin polgﬁza-
tion of the electron cloud (a fluctuation in the spin density), such that an
electron seeking to lower its energy by forming a Cooper pair in 2 spin-
singlet state with another electron through the electron-phonon interaction
(which is short range in real space), might actually be inhibited or repulsed
by this cloud of polarized electrons of the wrong spin [Berk and Schrieffer
(2866)). This forms a repulsive interaction. Allen and Mitrovié (1982) have
given a loose definition of paramagnons as “interacting electron-hole pairs of
spin 1”. Paramagnons are tvpically heavily damped excitations that cause
strong renormalization effects [Doniach and Engelsberg (1966); Brinkman
and Engelsberg (1968)]. They are more effective at certain frequencies which
ha.sbeex} exhibited by functional derivative calculations [Williams (1990)],

after the manner of similar calculations for phonons.
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In this model. a standard set of Eashberg equations for both phonons
and paramagnons can be written [Berk and Schrieffer (1966): Gladstone «t
al. (1969); Rietschel and Winter (1979); Daams et al. (1981); Baquero et ol
(1981); Mitrovi¢ and Carbotte (1952): Zarate and Carbotte (1987); Willams
and Carbotte (1991)]. The kernel in these equations is written in terms of the
spectral density, & F(w), for the coupling of the electrons to the phonons and
the analogous one for paramagnons, P(w). As paramagnons are pair-breaking
(or repulsive), they enter the equation for the gap parameter with a negative
sign relative to the pair-enhancing phonons. However, in the renormalization
equation, P(w) enters with a plus sign and hence accentuates strong-coupling
effects. The Eliashberg equations for the order parameter and renormalized

frequencies of the superconducting state are given as

- = Am
Apn==T [A=(n = m) = g™ (we— | W |)]—F—= (5.1)
m=z-oo \ /Gﬂm + A;zn
and
< S
Gpzun+3T 3 AH(n-m)——— , (5.2)
= Vi +

where

* 2ufa’ F(w) £ P(w)]
&7 = (fm — i)

and A, = A(iwn) = Z(iwn)A(iws) 20d &n = Z(iwn)wn With iwn = i7T(2n + 1),

2E(n - m) = Afwn = iwn) =

NG

n=0,£1,%2,..., T is the temperature, and x" is the Coulomb pseudopoten-
tial. The spin fluctuation spectral density is related to the spin fluctuation
propagator by [Allen and Mitrovié (1982); Gladstone et al. (1969), see Ap-
pendix Al:

P(w) = N(0) Z (—é&?mx“"(k,k',w + i0+)) 8(er)é(ex) / Z §(ex)(ew) (5.4a)

ki’

2kF dq
= N(0 _[ Y smT(qw) (5.45)

‘
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where ¢ is the momentum transferred and in Eq. (5.4b) we have assummed
a spherical Fermi surf ce. The spin fluctuation propagator is depicted in
Fig. 5.1. This is related to the particle-hole T-matrix through the Fourier
transform of the transverse susceptibility x+~(¢,u) given by [Doniach and

Engelsberg (1966); Doniach and Sondheimer (1974)}:
xt(z =2, t = ') = ib(t ~ 'Y {[o~(z,t), 0t (2", )] (5.5)

where the ¢* are written in terms of the Pauli spin matrices as 0= = (o- &
i@,)/2 and the effect of the product of ¢ operators is to flip a spin up, for
instance, at time ¢ and position z/, while flipping a spin down at a later
time ¢t and position z. Vertex corrections to the diagram in Fig. 5.1 are
not considered. Recently, Mitrovié and Longo (1988) have proven a Migdal’s
theorem (analogous to-the one for phonons) for the case of an almost full
band. This would justify the neglect of vertex corrections. We will not discuss
this susceptibility further [for which there exist RPA calculations. etc.] but
will refer the reader to textbook discussions [see for instance, Doniach and
Sondheimer {1974)]. Our starting point will be at an assumed form for P(w)
and hence details of the microscopic theory beyond this point are unnecessary
for our discussion.

The static imit of dynamic paramagnetic spin fluctuations are para-
magnetic impurities that spin-flip scatter the electron. These are described
in the dilute, non-interacting limit by the theory of Abrikosov and Gor’kov
(1961), where interaction between the moments on the magnetic atoms are
neglected and single scattering ev;rents are assumed such that multiple scatter-
ing and the corresponding 7-matrix approach need not be considered. Also,

the nature of the scattering is assumed to be weak and well described by
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Figure 5.1  The self-energy diagram with the spin fluctuation propagator

in the paramagnon model considered here. The spin fluctuation propagator

gor paramagnon) consists of an interacting electron-hole pair of spin 1. The
otted lines represent the Coulomb interaction.

the first order diagram in the Born approximation of perturbation theory, as
for normal elastic scattering from non-magnetic impurities [sec Appendix A].
The strong scattering limit (which allows for the possibility of bound states
being formed at the impurity sites) requires the theory of Shiba (1968,1973)
and Rusinov (1969), who solved the problem exactly without the use of
perturbation theory, but rather used the 7-matrix. Shiba-Rusinov theory re-
duces to Abrikosov-Gor'kov theory in the weak scattering limit. Here, we will
only consider Abrikosov-Gor’kov theory, which has been examined by many
authors [Ambegaockar and Griffin (1965); Skalski et al. (1964); Maki (1969);
Schachinger et al (1980)]. The case of interacting magnetic impurities will
be dealt with in the next chapter. Like paramagnons, as paramagnetic im-
purities are pair-breaking, they will cause a reduction in T,:: over the pure

case.
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The Eliashberg cquations for the Matsubara pairing energy Aliwn)
and renormalized frequencies (i, ), incorporating suck paramagnetic impu-

rity scattering are given as [Schachinger et al. (1980)}:

A A
—"'T An = m) = p 8 we— | wm | )} — 7t ——— 5.6

and

Dn = wn + ..T}:A(n m)———— \/T _:";A S %)
22 + A2

with the same notation as before. Here, t— is the magnetic impurity spin-fiip
scavtering rate related to the scattering time 7, for paramagnetic impurities
by t~ = 1/(2w7,). The function A(n — m) is related, in the usual manner, to

the electron-phonon spectral density o*F(Q) by

[ 2067F(Q) ]
An = m) = /0 e - (5.8)

Egs. (5.1) and (5.2) reduce in the static:limit to the above equations

for paramagnetic impurities by choosing for the form of P(w):
P{w) = Apwé(w) . (5.9)
We use this in the definition for A¥(n — =m):

[~ =]
+= = 49 WP(U)
XE =2 jo o e (5.10)

which for n = m gives

=204, f dws 2 26(“’) .

=4, . (5.11)
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and for n # m yields:

1 o D28(w)
AT =224 :
F P£ Uz'!'(wrx - wm)?
=0 {5.12)
So
A A,
—‘«TTZ ,\_,(n - m)—:——m— = —T-'TAP__'"-—"— . (513)
m A L& A2 4 &2
and
+:rTz Ap(n — m)_—*’m— = +=rT.Jl,,—_u“—— . (5.14)
m A +a2 Al +&3

which make Egs. (3.1) and (5.2) equivalent to Eqs. (5.6) and (5.7) for 4, =
t=/T, at finite T.

In this chapter we will present mainly calculations of the optical
conductivity for paramagnons and also for paramagnetic impurities. In See-
tion 5.2, we will calculate electromagnetic properties following the model and
choice of parameters already defined by Williams and Carbotte (1991) [sce
also the dissertation of Williams (1990)). In Section 5.3, we will select certain
results in 2 model of paramagnons and phonons to create a scenario for ex-
plaining some of the\;'t‘:served strong coupling features of the high 7. oxides.
Finally, in Section 5.4, we will present results for calculations of the optical
conductivity at finite frequency and temperature for materials containing
paramagnetic impurities. The next chapter on spin glasses, which will be es-
sentially an examination of a form of temperature-dependent paramagnetic
impurity scattering, displays results for paramagnetic impurity scattering for
several superconducting properties for comparative purposes. The reader is
referred to that chapter to see the influence of such impurity scattering on

other properties not shown here. We conclude briefly in Section 5.5.
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5.2 SOME ELECTROMAGNETIC PROPERTIES WITH
PARAMAGNONS

In this section, for simplicity, we used Einstein spectra for the form

of the spectral densities in Egs.(5.1)-(3.3). The o®F(w) spectrum is given as

a*Flw) = AF:'P §lw—wg) (3.15)

and the paramagnon spectral density is given as

Apwp
2

P(u) = Sw—wp) (5.16)

where A, , is the electron-phonon or paramagnon rass renormalization pa-
rameter, respectively, and w, , is the frequency of the corresponding exchange
boson. Also, keeping iz mind the high temperature superconductors, we fol-
low the choice of parameters given by Williams and Carbotte (1991). They
assumed that in the absence of the pair-breaking the material would have
an intrinsic T® of 200K. To achieve this we take w, to be at high energies
(BCS-like) such that T?/w, = 0.05. Then T¢ was reduced to Tc = 100K by the
addition of spin fluctuations at some characteristic frequency w,. Values that
we quote will be in terms of T?/w,, which is analogous to the strong cou-
pling parameter T./w, identified in Chapter 2. This parameter is a measure
of strong coupling effects arising from paramagnons.

Here, we will present results in this model for the London penetration
depth, the dc Josephson current, the thin film critical current, and the zero
temperature, finite frequency optical conductivity. Williams and Carbotte
(1991) have a.lreé.dy presented results for the gap ratio, the specific heat
jump, the slope of the specific he\at jump, the upper critical magnetic field,
and the isotope effect [Williams (1990)]. In the next section, we will show
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Figure 5.2 The inverse square of the London penetration depth normal-
ized to its zero temperature value as a function of the reduced temperature,
t = T/T.. The curves displayed correspond to T?/w, = 0.5 (solid curve}), 1.0
(dotted curve), 2.0 (short dashed curve), 3.0 (long dashed curve). The dot-

ged curve and the long dashed curves are almost on top of each other in this
gure.

how this model can be adjusted to provide @ possible explanation for the
strong coupling effects observed in the high T, oxides.

To calculate the London penetration depth, we solve Egs. (5.1)-(5.3)
for the model spectra just described (note that we take p= = 0 for simplic-
ity). After obtaining the Matsubara gaps and frequencies, we then employ
Eq. (3.49) to obtain the London penetration depth. Our results are presented
in Fig. 5.2 for several values of the strong coupling parameter T /uw,. Note
that in the weak coupling limit (i.e., T fw, — 0), this quantity is lower in
magnitude, but as the coupling is increased the curves shift upwards, and -

nally they stop increasing and begin to shift downwards again in the extreme
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Figure 5.3 The dc Josephson critical current normalized to its zero
temperature value as a function T/T.. The curves displayed correspond to

T°/w, = 0.5 (solid curve), 1.0 (dotted curve), 2.0 (short dashed curve), 3.0
(long dashed curve,.

strong coupling limit. This is analogous to what occurs when the exchange
boson is 2 phonon [Blezius et al. (1988)] and so we conclude that pair-breaking
effects from the gap-channel are not important for the temperature depen-
dence of this property, but rather the strong renormalization effects coming
from the renormalization channel are important.

The zero-temperature London penetration depth (not shown here},
however, is a victim of the pair-breaking effects in the gap equation and hence
decreases with increasing coupling strength. [Note that coupling strength
increases with reduced w, at fixed T?2.]

In Fig. 5.3, we show the d¢ Josephson critical current. This was calcu-
lated from Egs. (5.1)-(5.3) and Egs. (3.51)-(3.52). In this case, modest strong
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Figure 5.4  The thin film critical current density normalized to the slope

at T., (Jo)2P = --Tc‘-%{s- ., versus the reduced temperature t = T/T.. Curves
are drawn for the BCS limit (solid curve), T2 /w, = 0.5 (short dashed curve),
1.0 (long dashed curve), and 2.0 (da.shed-dottecf curve).

coupling strength increases the magnitude of the temperature dependence of
this quantity, whereupon, at a lower coupling strength than in the London
penetration depth, it reverses it trend and starts to decrease again in the
extreme strong coupling limit. This is again similar behaviour to the case
of phonons [Akis and Carbotte (1990)]. Note that, overall, deviations in the
temperature dependence are small in this quantity.

In Fig. 5.4, we show the thin film critical current, where we use
the formalism given in Egs. (2.5)-(2.8) modified for the kernel as given in
Eq. (5.3). It is seen that as in the case of phonons and paramagnetic im-

purities [Nicol and Carbotte (1991c); Chapter 2], strong coupling increases
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Figure 5.5  The ratio of the superconducting state to normal state optical
conductivity at zero temperature ve:sus the frequency normalized to twice
the zero temperature gap value for the model described in the text. Curves
are drawn for the strong coupling parameter 7?/w, = 0.5 (solid curve), 1.0
(dotted curve), 1.5 (short dashed curve), and 2.0 (long dashed curve).

the magnitude of the curves. as a function of temperature, over the weak
coupling limit. The largest value examined here was T fw, = 2.0.

Finally, we calculate the zero temperature optical conductivity in
the formalism of Bickers et el (1990) given in Egs. (4.6)-(4.8) but using
Egs. (5.1)-(5.3) for the Matsubara gaps and renormalization function. As
the choice of a delta function at w, to give T2 = 200K will produce unphysi-
cal and meaningless structure in this quantity, we have preferred to use here
a negative -, which in these equations mimics an electronic attractive inter-
action, chosen to achieve T2 = 200K with the phonon part set equal to zero.

This allows us to see the effects of the paramagnons alone.
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We have done our calculations in the clean limit (i.c.. t* = 0). which
should enhance any sirong coupling effects {Schlesinger ¢t ai. (1990)]. Our
results are presented in Fig. 5.5. where we have plotted the ratio of the
superconducting state conductivity to the normal state o (w)/o(w). First.
we note as in Chapter 4, that ro absorption occurs until 2A plus the first
fluctuation frequency, which is 2A + &, in the delta function model used
here. Note that the ratio is smooth and featurcless. This is in agreement
with experimental observations [Schlesinger et al. (1990); Nicol and Carbotte
(1991d)]. The minor structure occurring at the low frequency end of the curve
of T2 fw, = 0.5 is a result of the paramagnon spectral function in the form of
a delta function producing structure in the density of states at w > 22 and
therefore this is reflected here. This means that high frequency paramagnons
in the weak coupling limit will produce structure in the optical conductivity;
however, as the renormalization factor of 1 + A, is close to one in this limit,
the structure will not be greatly enhanced, contrary to what would normally
be expected from strong coupling effects in the clean limit.

In summary, we find the temperature dependence of many of the
electromagnetic properties to behave in the same manner whether the ex-
change boson is a paramagnon rather than a phonon. However, the ovcr:ﬂl
magnitude is reduced due to pair-breaking effects. The frequency dependent

optical conduectivity ratio is found to be featureless.

5.3 STRONG COUPLINGEFFECTS FROM PARAMAGNONS
IN HIGH T,

While it is acknowledged, from both theoretical and experimental

considerations, that the electron-phonon mechanism is not responsible for the
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superconductivity in the high-T. oxides, several experiments remain which
exhibit strong-coupling effects. This paradox can be resolved by considering a
mechanism for the high-7. oxides which is mainly electronic in origin but with
a small contribution from the electron-phonon interaction and a significant
contribution from dynamic spin fluctuations, paramagnons. In such 2 model,
strong coupling effects can arise from the paramagnons. Fixing the electron-
phonon contribution to achieve an isotope effect coefficient of 0.05 at a T,
of 96K, we have obtained 2 large gap ratio, 22, /k, T, a two-fluid model-like
temperature dependence for the penetration depth, and a featureless optical
conductivity, ¢/, in agreement with interpretation of experiment.

To achieve a high T, we assumed there is a high energy electronic
mechanism that would give the material a T2?° of 250K. This was modelled
by 2 negative u~, the Coulomb pseudopotential in the Eliashberg equations.
We then added paramagnons, at frequency w, and renormalization of A,
to reduce T, down to T® = 96K, the intrinsic T of the copper oxides. At
the same time, we included an electron-phonon contribution to T. through
o2 F(w). The addition of phonons was necessary to achieve an isotope effect,
which is experimentally observed in these materials to be small but nonzero.

In Fig. 5.6, we display curves for the London penetration depth,
A (T), as a function of ¢t = T/T. for the values of w, as indicated in the
figure. It is possible to obtein a two-fluid-like behaviour, ie., (1 - ¢¥) for
[A.(0)/A,(T)]*, for the parameters corresponding to the short-dashed curve,
the curve with the strongest coupling. A two-fluid-like temperature depen-
dence of the penetration depth is seen experimentally both in uSR [Pumpin
et al. (1990)] and magnetization [Wu and Sridhar (1990)] measurements. For

the parameters corresponding to the dashed curve of Fig. 5.6, we display, in
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Figure 5.6 The inverse square of the London penetration depth normal-
ized to its zero temperature value as a function of the reduced temperature,
t = T/T.. The curves displayed correspond to w, = 5 meV (- --) and w, =20
meV (- - =), with the other parameters given in Table 5.1. The solid fine is
the phenomenological two-fluid model, (1 - t*). Curves for w, = 10 meV and
wp = 15 meV fell between the other two curves and are not shown for the
purposes of clarity.

Fig. 5.7, the clean limit superconducting state optical conductivity normal-
ized to that in the normal state. Notice that the normalized conductivity
is completely featureless, in agreement with the experiments of all infrared
spectroscopists [Schlesinger et al (1990); Nicol and Carbotte (1991d)]. The
value of the gap ratio 2A,/k,T. can be quite large. This is recorded in Ta-
ble 5.1 for the parameters corresponding to the curves of Fig. 5.6 and two
other intermediate cases. No agreement has been reached experimentally on
the value of this ratio, but many reports suggest that it can be large, ﬁom 4

to 8 [Schlesinger et al (1990); Gurvitch et al. (1989)].
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Figure 5.7  The ratio of the supercorducting state to normal state con-
ductivity, in the clean limit, as a function of the frequency w, for the case of
wp =5 meV.

Table 5.1
wp Ap wp Ag 28,1k T,
5 0.298 20 0225 7.06
10 0.285 20 0.210 8.82
15 0.266 20 0.190 5.03
29 0.246 20 0.175 4.49

Finally, in Fig. 5.8, we display the isotope effect coefficient defined as
B = —dInT./dIn M, corresponding to the stoichiometric compound YBa,CuzO-
with 8 = 0.05 and T. = 96Ix. In this curve, we have increased the paramagnon
contribution (which is pair-breaking) to reduce T, and we find that § rises.

This is a possible scenario for similar behaviour observed in the Pr doped
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Figure 5.8 The isotope effect coefficient S8 as a function of the critical
temperature T., for the case of w, =5 meV.

Y1-zPr:Ba,CusO; [J.P. Franck et ol (1990)], where magnetic interactions
are expected to be important due to Pr.

It should be noted that in all cases reported here, the calculated
resistivity is linear with temperature and the corresponding A = A + A,
does not violate those derived from experimental meMmts [Gurvitch
and Fiory (1987)]. These calculations are shown in Fig. 5.9, where we have
modified Ziman’s resistivity formula [Grimvall (1981); Hayman and Carbotte
(1971a,b)]:

drm WP+ P)] (5.17)

AT)= a7 |, TeomiTl = 1HL - expl—a/Th

in which we have approximated the transport spectral densities by the ther-

modynamic ones. The linear dependence occurs when the temperature is
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Figure 5.9 The resistivity p normalized to 4zm/ne* versus the tempera-
ture in Kelvins. The quantity on the y-axds is actually 1/r. Curves are drawn
for w, = 20 meV and w, = 5 meV (solid curve), 10 meV (dotted curve), 15
meV (short dashed curve), and 20 meV (long dashed curve).

greater than about one fifth of the average boson frequeﬁc}' [Lee et al (1989)]
and due to the delta functions employed here the scattering is suppressed at
low temperatures.

In conclusion, we have calculated the effect of paramagnetic spin fluc-
tuations on the London penctration depth, gap ratio, opticalﬁ conductivity, de
resistivity, and isotope effect. In 2l cases, our calculations are either in good
agreement with present experiment or, at least, they do not violate present
experimental constraints on these properties. Thus, a theory of paramagnons
plus some high energy boson can explain the strong coupling effects observed
in high 7. oxides. The marginal Fermi liquid model which has 2 spin fluctu-

ation component will also exhibit this behaviour.
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5.4 EFFECT OF PARAMAGNETIC IMPURITIES
ON OPTICAL PROPERTIES

Nam (1967b) has calculated the finite frequency and temperature
optical conductivity within Eliashberg theory and has given numerical results
in the BCS limit when magnetic impurities are included in the model of
Abrikosov and Gor'kov (1961). This work was done in the dirty limit, for
which the mean free path ! is smaller than the cuherence length &. In the
high 7. oxides, it has been argued [Timusk and Tanner (1989); Kamaris et
al. (1990)] that the clean limit applies because of the very short coherence
length observed in these systems. The introduction of Pr substitution for
Y in YBa;CuzOr is known [Ghamaty et al (1991)] to reduce the critical
tempevzture. There is some evidence that this may be due to a reduction in
the number of holes in the CuQ planes while other evidence supports a strong
pair-breaking paramagnetic impurity exchange interaction betwecen the Pr
and the conduction holes of the CuO planes. While both mechanisms may
well be present it would be of interest to calculate the effect of paramagnetic
impurities on the finite frequency conductivity in the clean limit.

In this section, we use the Eliashberg formulation, valid at any tem-
perature and impurity concentration, to calculate the frequency and tem-
perature variation of the conductivity in the clean limit as a function of
paramagnetic impurity concentration. The results are also compared with
dirty limit resuits and are found to be very different. .

The analytic continuation of the imaginary axis Eliashberg equations
using the procedure of Marsiglio et al. (1988) was generalized by us to include
pair-breaking effects. The real frequency gap and renormalization function
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arc given as:
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where n(z) and f(z) are. respectively, the Bose and Ferm:i distribution func-

+ iwt™ (5.19)

tions, @® F{~z) = —a*F(s), and

_ [T dQaPF(Q)

The real frequency axis gap A(w)Z(w) = A(w) and the renormalization wZ{w) =
& enter directly into the formula of Lee et al. (1989) for the conductivity which
is given by Eqs. (4.19)-(4.23).

To show that these equations reproduce the results from the Eliash-
. berg equations along the real axis, we have calculated the tunneling density
of states of Pb at T = 0, which we show in Figs. 5.10 and 5.1%. This was done
using the tunneling derived o F{z:) spectrum for Pb in Egs. (5.6)-(5.8) and

relucing 7. from the pure case by the addition of paramagnetic impurities.
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Figure 5.10 The zero temperature tunneling density of states N(w) for
Pb normalized to the density of states at the Fermi level, as a function of
frequency normalized to the zero temperature gap in the pure case, which is
Aqo = 1.39 meV. Curves are drawn for different reduced T./T¢ corresponding
to different paramagnetic impurity content. In order of the top to bottom

curve on the right hand side of the figure, T./T? = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, and 0.2,

We have then used Egs. (5.18)~(5.20) to analytically continue the Matsubara
gaps and renormalization function to the real axis. The tunneling density of

states is then given as:

N{w) jw]

—r = Re{ —— . 5.21

N(0) e{ VF = A?-(w)} (5-21)
The curves in Fig. 5.10 have already been obtained in BCS theory by Am-
begaokar and Griffin (1965) and in particular for Pb by Daams et al. (1984).

These curves exactly reproduce the curves of Daams et al. (1984) which were
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Figure 5.11 The zero temperature tunneling density of states N(w) for
Pb normalized to the density of states at the Fermi level, as a function of
frequency shifted by the zero temperature gap in the pure case, whichis A =
1.39 meV, normalized to transverse phonon mode at w; = 4.4 meV. Curves
are drawn for different reduced T./T? corresponding to different paramagnetic
impurity content. In order of the top to bottom curve on the far left hand
side of the figure, T./T? = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.2.

calculated with the real axis Eliashberg equations. This is an accurate check
that our use of Eqs. (5.18)-(5.20) is correct.

Notice in Fig. 5.11 the phonon structure that appears after the sin-
gularity in the density of states at Aq,. This can not be reproduced by BCS
theory and necessitates the full Eliashberg calculations. There are two points
that we wish to make about these figures that we will return to in our dis-
cussion of the optical results. First, in Fig. 5.10, the density of states fills
in at low frequency with increasing paramagnetic impurity scattering and

eventually becomes gapless, and the square root singularity is completely
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climinated. In addition, in Fig. 5.11. the phonon structure is also reduced by
the addition of spin-flip scattering.

To calculate the optical conductivity with the inclusion of paramag-
netic spin-flip scattering, we need only to calculate the imaginary gaps and
frequencies from Egs. (3.6)-(5.8) and analytically continue these quantities to
the real frequency axis using the procedure just described. Then the formula
given by Lee et al. (1989) in Eqgs. (4.19)-(4.23) can be applied directly with no
further modification. All the necessary information about the paramagnectic
impurity scattering is contained in the Matsubara gaps and renormalization
function. Normal impurity scattering enters directly into the conductivity
formula as it is not included in Eqs. (5.6)-(5.8).

We have solved for the optical conductivity using the Lorentzian
spectral function given by Bickers et al (1990) and stated in Egs.(4.6)-(4.8).
For this model the pure T?? is equal to 67K and p* = 0, resulting in the zero
temperature gap Ao = 12 meV. As t~ is increased the critical temperature is
reduced and is denoted by T..

In Fig. 5.12, we show results for the frequency dependence of the ratio
of superconducting to normal state optical conductivity o (w)/o,(w) at low
temperature, namely, T'/T. = 0.1. This is sufficiently low for any given sample
that it is characteristic of zero temperature. The values of reduced critical
temperature used in this figure are T./T? = 1.0 (pure sample) (upper solid
curve), 0.9 (dotted curve), 0.8 (short dashed curve), 0.7 (long dashed curve),
0.6 (short dashed-dotted curve), 0.5 (long dashed-dotted curve), 0.4 (long
and short dashed curve), 0.3 (lower solid curve). The bottom frame contains
our results for th:e clean limit while the top frame is for comparison and

involves the dirty limit, where we define our terminology to be: clean Limit
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Figure 5.12  The ratio of the real part of the conductivity in the super-
conducting state to its value in the normal state oc(w)/oy(w) 2s a function
of frequency divided by the gap value of 2A(T,T) for various reduced tem-
peratures T,/T° = 1.0 (pure sample) (upper solid curve), 0.9 (dotted curve),
0.8 (short dashed curve), 0.7 (long dashed curve), 0.6 (short dashed-dctted
curve), 0.5 (long dashed-dotted curve), 0.4 (long and short dashed curve),
0.3 (lower solid curve). All curves are for a reduced temperature T/, = 0.1
which approximates well zero temperature. The top frame is the dirty limit
while the lower frame is for the clean limit.
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Figure 5.13  Same as for Fig. 5.12 but only the region up to w/2A(T,T) =
. 2.0 is shown for emphasis.



152 5 Paramagnons and Paramagnetic Impurities

referring to ¢+ = 0 and dirty limit referring to ¢t = 100 meV. The differences
between these curves is striking. First we note that absorption in the clean
limit with no paramagnetic impuritics starts at 2 frequency equal to twice
the gap A(T,T) = A(T = 0,7 = 0.1T¢), where T = 1/(27,), plus the energy of
the lowest excitation in our fluctuation spectrum a®F(w). In the dirty hmit,
by contrast, the absorption starts at 2A(T, T) because the normal impurities
now allow for conservation of energy and momentum simultaneously. When
magnetic impurities are added to the clean limit, absorption is now possible
at 2A(T.T) but this absorption eventuaily decreases with increasing w before
the absorption edge corresponding to the solid curve reappears at least for
the low ¢~ curves. As magnetic impurity content is increased further the
two peak absorption curve disappears and we arrive at the lower solid curve
which shows no structure and is now closer to, although still different from.
its dirty limit counterpart.

It is of interest to focus on the filling of the gap region that occurs
when ¢~ is increased from zero. This is shown more clearly in Fig. 5.13 where
we show the same results as in Fig. 5.12 but here the scale on «/2A(T,T)
extends only until 2.0. The optical absorption below w = 2A(T.T) is a con-
sequence of the filling of the gap in the density of states as was shown
in Fig. 5.10 for Pb. Note t.l}at the curve for the clean limit with no mag-
netic impurities does not riow appear because it is zero up to a value of
w/2A(T,T) = 2.5 while even for the equivalent case in the dirty limit the
absorption extends down to «/2A(T, T) = 1.0. While there is initially 2 larger
zero absorption region in the clean limit than in the dirty limit it is clear
that when T./T? = 0.3 (second solid curve) the amount of absorption near

« = 0 in what was originally the gap region is slightly larger for clean limit
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than for the dirty case. Of course as « is increased toward «/2A(T.T) = 0.5
and beyond. the dirty limit conductivity ratio is larger than the clean limit.
Also as the impurity content is reduced and T./T? is closer to one, there is
considerably less absorption in the gap region in clean as compared to dirty
limit.

In Fig. 5.14, we show our results for the frequency dependence of
the ratio of g (w)/o,(w) at various reduced temperatures for a sample with
reduced T./T° = 0.9. In Fig. 5.14, the reduced temperatures considered arc
T/T. = 0.9 (dotted curve), 0.75 (short dashed curve)}. 0.5 (long dashed curve).
0.25 (short dashed-dotted curve) and 0.1 (solid curve). This last curve is re-
produced from the dotted curves of Figs. 5.12 and 5.13. On comparison with
the clean (bottom frame) and dirty (top frame) imit results, it is clear that
the frequency and temperature variation predicted is completely different.
The pattern obtained for the clean limit is very much more complicated and
shows an impurity absorption peak at low frequencies before the main absorp-
tion at 2A(T, T) plus the phonon energies in our model & F(w). Similar curves
for a sample with a larger concentration of magnetic impurities (T./T7 = 0.5)
are shown in Fig. 5.15. Here only the reduced temperatures T/T, = 0.75 (short
dashed curve), 0.5 (long dashed curve), 0.25 (short dashed dotted curve}, and
0.1 (solid curve) are displayed. A similar pattern is observed with a rapid
filling of the gap region as T increases toward T.. The differences between
clean and dirty Emit are still clearly seen but are less prominent than in the
previous case. One notable consequence of the previously mentioned washing
out of structure in the density: of states with increasing paramagnetic impu-
rity content, is the decrease in structure observed in moving from Fig. 5.14

to Fig. 3.15.
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Figure 5.14  The ratio of the real part of the conductivity in the super-
conducting state to its value in the normal state o¢(w)/oy(w) as a function
of frequency divided by the gap value of 2A(T,T) for various reduced tem-
peratures T/T. = 0.9 (dotted curve), 0.75 (short dashed curve), 0.5 (long
dashed curve), 0.25 (short dashed-dotted curve), and 0.1 (solid curve). The
top frame applies to the dirty limit and the bottom to the clean limit. The re-
duce/d critical temperature (due to a finite magnetic impurity concentration)
is T./T2 = 0.9.
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Figure 5.15  Same as for Fig. 5.14 but now 7,./T7 = 0.5 and the reduced
temperatures are 0.75 (short dashed curve), 0.5 (long dashed curve), 0.25
(short dashed-dotted curve), and 0.1 (solid curve).
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In addition to examining the frequency dependent conductivity, we
can also look at the low frequency microwave region and examine the tem-
perature dependence at fixed frequency. For these calculations, we used the
spectrum of Pb to avoid numerical problems associated with a lack of fuc-
tuations in the low frequency region (which would be unphysical in the case
of a phonon spectrum, and hence the truncated Lorentzian spectrum was
unsuitable for this calculation).

In Fig. 5.16, we show the temperature dependence of the microwave
conductivity as a function of normal impurity content but without paramag-
netic impurity scattering, where once again we define our terminology to be:
clean limit referring to t¥ = 0 and dirty limit referring to t* = 100 meV. The
upper frame is for w = 0.05 meV and the lower one for w = 0.003 meV. Normal
impurities are secn to enhance the coherence peak while in the clean Lmit
no peak is obscrved at all. Also the curves quickly saturate towards the dirty
limit. By t+ = 1 meV, the curve is almost the same as the one for ¢* = 100
meV. The curves are higher in magnitude for the lower frequency as they are
sampling more of the “normal” quasiparticle fluid. The opposite behaviour
is seen in the clean limit as larger finite frequencies are needed to produce

more available phonons for quasiparticle scattering and hence absorption.

T

The nature of the plateau in the clean limit, which is more prominent for the
h:gher frequenc}, is not understood and could be an artifact of the numerical
calculation in the exact clean limit.

In Fig. 5.17, we display curves for w = 0.05 meV in the clean Limit
(upper frame) and the dirty limit (lower frame). Here, the curves show the
effect of adding paramagnetic impurities. Curves are drawn f;r TJT? =1,

0.S. and 0.6. Numerical difficulties prevented us from going further towards



5.4 Effect of Paramagnetic Impurities on Optical Properties 157

2.0

15~

1.0 -

0.5

0.0

as(T)/ on(T)

15

10+

0.5 -

0.0
0.0

Figure 5.16  The ratio of the real part of the conductivity in the super-
conducting state to its value in the normal state o4(T)/o(T) as 2 function
of T/T. in the pure limit (i.e.. Te/T? = 1) for several values of the normal im-
purity scattering rate: t* = 100.0meV (solid curve), 1.0 meV (dotted curve),
0.2 meV {short dashed curve), 0.1 meV (long dashed curve), and 0.0 (short
da;hed—dotted curve). The upper frame is for w = 0.05 and the lower frame
is for « = 0.005.
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Figure 5.17  The ratio of the real part of the conductivity in the super-
conducting state to its value in the normal state o4(T)/on(T) 2s a function
of T/T. for several values of the paramagnetic impurity scattering rate in
the clean and dirty limits: T./T° = 1.0 pure sample (solid curve), 0.8 (dotted
curve), and 0.6 (dashed curve). All curves are for w = 0.05 meV. The top
frame 1s the clean limit while the lower frame is for the dirty limit.
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the gapless region, which was unfortunate. However, the trend can be seen
clearly. The behaviour here is very different in the clean and dirty Hmits.
In the clean limit. adding paramagnetic impurities acts likes adding normal
impurities and serves to increase the magnitude of the curves. However. in
the dirty limit, the curves are reduced from the pure limit and the soherence
peak is washed out. This is probably due to the paramagnetic impurities
smeanng out the density of states and thus reducing the available states for
the quasiparticle recombination process [see Scction 4.3]. Also another no-
table feature is the lengthening of the absorption tail at lower temperatures,
This is a result of the filling in of the gap in the density of states allowing for
eventual gaplessness. The exponential function that controls this low tem-
perature bebaviour depends on the magnitude of this gap. If we.could have
reached the gapless regime with our numerical work, we speculate that we
would have seen absorption all the way down to zero temperature in these
curves. Also note that the T./T7 = 0.6 curves in both limits are almost the
same.

Finally, in Fig. 5.18. we show the effect of normal impuﬁtics on the
optical conductivity at different concentrations of paramagnetic impurities.
The upper frame is for T./T? = 0.8 and the lower frame is for 0.6. Curves
are drawn for t* = 100, 0.2, 0.1, and 0.0 meV. Again, we notice that the
dirty imit coherence peak is reduced with increasing paramagnetic impurity
concentration. In addition, the family of curves has tightened up implying
that there may eventually be a universal curve for a certain concentration
of spin-flip scatterers, with normal impurity scattering no longer having any

effect. :
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Figure 5.18  The ratio of the real part of the conduectivity in the super-
conducting state to ‘s value in the normal state o4(T)/o.(T) as 2 function
of T/T. at « = 0.05 meV for several values of the normal impurity scattering
rate: t+ = 100.0 meV (solid curve), 0.2 meV (short dashed curve), 0.1 meV
(long dashed curve), and 0.0 (short dashed-dotted curve). The upper frame
is for T./T? = 0.8 and the lower frame is for T, /T2 = 0.6.
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In summary, using the real frequency axis Eliashberg formulation of
the finite frequency optical conductivity valid for arbitrary impurity concen-
tration and generalized to include the pair-breaking effect of spin-flip scatter-
ing off magnetic impurities in the model of Abrikosov and Gor’kov, we have
caleulated the superconducting state conductivity as a function of frequency
and temperature for several magnetic impurity concentrations. Our numer-
ical results are expected to be accurate even near T. as no approximations
in the analytic continuation from Matsubara frequencies to the real axis are
used. Comparison of our results in the clean limit, which is expected to be
the relevant limit in the high T. copper oxides. with similar results in the
dirty, impurity-dominated limit reveals many important differences. As an
example, in the clean limit, with no paramagnetic impurities, absorption at
zero temperature starts only at an energy equal to twice the gap value plus
the lowest excitation epergy in the fluctuation spectrum involved in mediat-
ing the superconductivity. By contrast, in the dirty limit absorption starts at
twice the gap with a sharp absorption edge. When paramagnetic impuritics
are added smearing into the gap region is generally more severe for the dirty
limit than it is for the clean limit although for low values of 7./T? the reverse
can be true at low frequency i.e., o5(w)/o,(w) at w = 0 is larger in the clean
than in the dirty case. As temperature is increased towards T, the gap is
observed to fill but the details of this filling can be quite different in the clean
and dirty limit. For finite paramagnetic impurity concentrations there is an
appearal‘%_ of an impurity absorption edge and peak around the gap value
followed by a main absorption peak at higher energy when inelastic processes
involving the fluctuation spectra become possible. While these features arc

most pronounced at zero temperature, they are found to persist even at finite
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T near T.. Of course, right at 7. the ratio o4(w)/o,(w) must become flat and
take on a value of 1.0.

It is hoped that our detailed prediction can be checked against ex-
periments. The Y;_-Pr-Ba:CusOr alloy series may be an appropriate system
to investigate if it turns out that a description in terms of pair-breaking is
valid. An aiternate model for Y;_-Pr-Ba,CuzOs is the reduction of holes in
the CuO planes by the Pr. Optical absorption experiments should be able to

help differentiate among these two models.

5.5 CONCLUSIONS

To summarize. in this chapter, we have investigated the effect of para-
magnons and paramagne tic impurities on various electromagnetic properties,
in particular, the opticai conductivity. It is found that while paramagnons are
pair-breaking, strong couplir.g effects are observed due to strong renormal-
jzation through the Z-channel. This forms a plausible explanation for some
of the features observed in the high 7. superconductors and gives support to
the marginal Fermi liquid model, which is formally similar.

Paramagnetic impurities smear out phonon structure in the density
of states and fill in the gap. This behaviour is reflected in the low frequency
absorption below 2A in the finite frequency optical conductivity and also
in the reduced structure in the Holstein region. Dramatic differences are

predicted between the clean and dirty limits for the optical conductivity.



Chapter 6

Spin Glass
Superconductivity

In this chapter, we will present results of caleulations for supercon-
ductors which are also intrinsic spin glasses. This is related to the the work
on paramagnetic impurities previously discussed and will be formally similar,

the only change being a temperature-dependent scattering rate.

6.1 INTRODUCTION

In the previous chapter, we discussed paramagnetic impurities in the
model of Abrikosov and Gor’kov (1961) for dilute non-interacting impurities
that interact with the conduction electrons through spin-flip scattering in
the weak scattering limit. Although some matcrials can be described by such
a model, there is a large body of physics devoted to the understanding of
localized moments that interact with cach other and undergo ordering to

states such as ferromagnetism or antiferromagnetism.
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Anderson and Suhl {1959) have shown that the coexistence of these
ordered states with superconductivity depends on whether the ordered state
produces a macroscopic ficld on the scale of the coherence distance. In the
case of ferromagnetism such 2 net field ¢ ists and superconductivity is not
able to coexist due to the splitting of the spin-up and spin-down conduction
clectron bands by the magnetic field. On the other hand. antiferromagnetism
and superconductivity are well known to coexist [Maple and Fischer (1982)];
superconductivity is then uninhibited by the magnetic ordering as the net
magnetic ficld of the moments averages to zero.

Another possible magnetic state occurs in substitutionally disordered
allovs, where the localized magnetic moments are randomly distributed and
interact via the long-range Rudermiann-Kittel-Kasuya-Yosida (RKKY) in-
teraction mediated by the conduction electrons. This produces frustration in
the magne: :~ ordering as not 2ll magnetic moment. can be simultaneously
satisfied in their spin orientation with respect to the others. This leads to an
infinite number of random configurations that are degenerate in energy but
separated by large energy barriers so that one ground state cannot evolve
into another on the laboratory time scale. These materials are known as
spin glasses, of which Ag-Mn and Cu-Mn are examples of canonical metallic
spin glasses. Coexistence of superconductivity and spin glass ordering has
been observed by Davi-lov et al (1977) in Gd:Th;_-Ru,, Gd.Ce;_-Ru,, and
Gd.Lag...In. |

Associated with the spin glass state is 2 characteristic temperature
T, (the freezing temperature) below which the spins “freeze” into one of
these random configurations. Spin glasses are characterized by a cusp in the

magnetic susceptibility at Ty, no anomaly at Ty in the specific heat other
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than a broad maximum around Ty. and no Bragg peaks (which normally
indicate long range magnetic order) i neutron scattering experiments.

The first attempt to describe the spin glass phase was by Edwards
and Anderson (1973). As in all problems on phase transitions, one tries to
identify an appropriaie order parameter that will be non-zero in the phase
of interest and zero in the disordered phase. Edwards and Anderson (1975)

introduced an order parameter g defined as:
qg= hm < 5;(8)-5(0)> . (6.1)
I==00

which is related to the probability that a spin with a given direction at
t = 0 will have the same direction in the infinite time limit. This order
parameter reflects the “frozen™ nature of the spin glass state but has no
spatial correlations as would be found in other magnetic order paramecters.
We make use of the temperature dependence of the configuration average of
this order parameter in the spin glass model to be described here.

Several reviews and books exist on this topic [Binder and Young
(1986); Fischer (1983); Moorjani and Cocey (1934)]. Here we will be following
a particular model given by Nass et al. (1981) and used more recently by
Schachinger et al (1988), Stephan and Carbotte (1991), and Perez Gonzalez
et al. (1991). We will be presenting results which extend the work of Stephan
and Carbotte (1991) [see also the disscrtation of Stephan {1987}, which was
done in the context of BCS theory, to strong coupling theory. In addition,
we examine several propertics not previously investigated.

Before describing our calculations we will first summarize the neces-

sary theoretical background.

s A
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6.2 THE THEORETICAL MODEL

Nass et al (1981) [sce aiso Schachinge: et ol (1988) and Stephan
and Carbotte {1991)] have employed the standard for:a of the Eliashberg
equations formulated for paramagnons (see Chapter 5) and bave introduced
the spin glass nature of the system ti. sugh their choice of the spectral density
for the spin fluctuations P().

Following the example of Dzyaloshinskii and Volovik (1978), they
model the electron-spin spectral density by a dynamic contribution equiv-
alent to the hydrodynamic limit of a Heisenbers paramagnet [Bennett and
Martin (1963 ); Hnlperin and Hohenberg (1969); Forster (1975): Fischer (1979)]
and a static component in rhe form of a Dirac delta function at zero frequency
which represents spin freezing.

The eclectron-spin spectral density P(Q) that enters the Eliashberg

equations is related to the spin spectral density B(g, ) by

N 2hF d
PQ) = X (0)2 / 125.9) - (6.2)
o 2k

where N(0) is the single spin density of states at the Fermi momentum and
J is the electron magnetic impurity exchange constant, which couples the
superconducting electron to the magnetic impurity.

The spin spectral density that Nass et al. (1981) suggest is given as
B(q.w) = Ba(q.«) + Bs(g.w) (6.3)

where the dynamic part is given as

Dyxwq®
2+ (D - )

Balq.w) = (6.4)
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and the static part is given by
Byq.=) ==l = 2N . {6.5)

Here, D is the spin diffusion constant, ) is the static susceptibility, which
is taken to be independent of ¢, and 7 is a phenomenological magnetic re-
laxation time that is used as a cutoff in the sum rules that apply to this
spectral density [Nass et al. (1981); Stephan and Carbotte (1991); Bennett
and Martin (1965); Halperin and Hohenberg (1969)]. In Eq. (6.5). Q(T) is the
temperature-dependent Edwards-Anderson order parameter [Edwards and
Anderson (1975)]. Two models for the temperature dependence have been
suggested for this quantity. Edwards and Anderson (1973) have derived the

temperature dependence of this quantity from a mean field solution and find
Qy=5*1-9 . (6.6)

where 1 = T/T; and § is the impurity spin. Nass et al. (1981) have also

suggested the form

QD) =50-1 . {6.7)
If the spin glass paramecters x, D, and 7 afe allowed to vary arbitrarily,
unphysical results are found for the tunneling deasity of states [Nass et al.
(1981)] and in the transport properties [Fischer (1979)). Thercfore, two sum
rules are imposed on the spin spectral density B(q,.). The first is the stan-
dard f-sum rule [Forster (1975)]:

o0 ‘LJ y o
| Sepawr =27 (63)

-0
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where the x is the thermal conductivity and p, is the stiffness constant. The
left hand side of Ea. (6.8) can be -valuated using Egs. (6.3)-(6.5) to reduce
the above sum rule to

Dy =

4 by

~T (6.9

where Dy is taken to be independent of temperature. The second sum rule
comes from the definition of the structure factor [Nass et al (1981)] and is

given as:

j Pq [ do——Blg,w) = 255(S + 1) / fg . (6.10)
8z oo L=

where Nass et al. (1981) have used 2 spherical Brillouin zone (BZ) with a
radius of 2k,. We are not attempting to derive these results here but prefer
to refer the reader to the Lizerature [Nass et al (1981); Stephan and Carbotte
(1991)).

Keller (1981). in the case of a ferromagnet, and Nass et al (1981)
have found that the terms for A(n — m) where » # m in the dynamic part
of the Eliashberg equations are negligible compared to the the n = m term
A(0) and hence it is only necessary to keep the n = m term in the Matsubara
frequency sums. Thus, A¢(0) can be evaluated using the sum rules [Stephan
and Carbotte (1991)] to be

A(0) = N(O)P=x . (6.11)

It can be shown (as was done in Chapter 5) that the problem has now
been reduced from one of dynamic spin fluctuations to one of temperature-

dependent static impurity scattering where

1
3= =TX0)
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= T[Aa(0} + A, (0)]
= N(OW=[Ty +Q(D)] - (6.12)

Therefore. we are now solving the standard Eliashberg equations
modified for Abrikosov-Gor'kov impurities, & « 1/7,, but now a is temperature-

dependent (i.e., a — (T)) and is given by
a(T) < TA(0) (6.13)

and the effective scattering rate t* in the spin glass state is reduced from

the Abrikosov-Gor'kov scattering rate t27 by

tag = %9 Q(T)

- afTe) (6-14)

Finally, we need a model for the freezing temperature in terms of the
concentration of impurities. This is taken from the experimental observation

that Ty is proportional to the concentration of impurities:

Ty = ;:iRT: . (6.15)

c
where n; is the Abrikesov-Gor’kov impurity concentration and n. is the crit-
ical concentration of Abrikosov-Gor'kov impurities that reduce T to zcro.

T2 is the T, in the absence of impurities and Ris a dimensionless constant

between 0 and 1.

6.3 THERMODYNAMIC PROPERTIES

In what follows here, we will be using results previously obtained
by Walter Stephan [Stephen and Carbotte (1991); Stephan (1987)] for the

temperature-dependent scattering rate. Stephan solved for the temperature
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dependence of ofT) for several vidues cf the spin glass parameters 2. D, .
and either () = $3(1 - 1) or Q(F) = £3(1 - *). We have chosen only two
of these eases to illust-ate the two possible temperature-dependent scenarios
that are likely to occur in this inodei. For a knowledge of how these quaniitics
might vary with a chacge in one or the other of the spin glass parameters, the
reader should consult the work of Stephan [Stephan and Carbotte (1991);
Stephan (19S7)). Stephan used this scattering rate to solve for several su-
perconducting properties in BCS theory. Here, we use this scattering rate to
calculate superconducting properties in Eliashberg theory and, in addition.
to examine properties not previously investigated by Stephen (1987).

In Fig. 6.1, we show the ter1perature dependence of the dimensionless

 diffusion constant D(E) = D(2k,)?/T}. the dimc:.sionless susceptibitity (7) =

Tyx, and the scattering rate a(7) normalized to its infinite temperature limit
a(o0), for two sets of parameters, which we miﬁ'cdl Casc 1 (solid line) and
Case 2 (dashed curve). Here i = T/Ty. In C.se 1, D(1) =1, Q(0) = S*(1 - ),
R =0.1.and # = Tyr = 0.2. In Case 2, D(1) = 2. Q(f) = S*(1 - 1), R = 04,
and 7 = 0.2. These quantities are calculated from the sum rules of Egs. (6.8)-
(6.10) using a numerical subroutine provided by W. Stephan. These curves
and many more like them have already been presented by Stephan [Stepha.m_‘ :
and Carbotte (1991); Stephan (198%,].

In Fig. 6.1, as the diffusion constant is linear in temperature above
Ty and the product of Dy is temperature independent, this implies that the
behaviour of the susceptibility above T varies as the inverse of T, which
is just the Curie-Weiss Law. Notice tLut a cusp in the susceptibility occurs
at the freezing temperature T;. The scattering rate reduces from the high

temperature limit with significant reduction occurring below T;; as the spins
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Figure 6.1 The temperature dependence of the spin glass paramcters
used in the model in the text. The top frame shows the dependence of the
diffusion parameter D(f), the center frame displays the susceptibility ¥(¢) and
the bottom frame shows the scattering rate a(f) normalized to its infinite
temperature limit. The solid curves correspond to what we call Case 1 and
the dashed curves correspond to our notation, Case 2. In Case 1, D(1) = 1,
Q@) = 53(1 - R), R=0.1, and 7 = 0.2. In Case 2, D(1) =2, Q(T) = S*(1 -1),
R=04,and 7=02.
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Figure 6.2  T./T? versus 1..c magnetic scattering rate t_. The dotted curve
is the Abrikosov-Gor'kov result for the phonon model used in the text. The
solid curve corresponds to Case 1 in our spin glass model and the dashed
curve corresponds to Ca:e 2.

freeze into a random configuration and are unavailable to spin-flip scatter.
In Case 2. the rate dips and then recovers producing reentrant phenomena
as we will later discuss. The zcro temperature Limit of the scattering rate
is giveu proportional to §* whereas the high temperature limit proportional
to 5(S + 1), hence the ratio of a(f)/a(o0) approaches 5%/[S(§ + 1)] at zero
temperature. In this work. we have used § = 5/2 (keeping Ag-Mn in mind).
As a result. these curves approach a value of 0.71428 at = 0.

In Fig. 6.2, we show the 7. curves, for these models as a function
of impurity scattering . concen:ration t—, which resulted whe:?. we solved
the Eliashberg equations with the temperature-dependent scattering rate .

given in the bottom frame of Fig. 6.1. Again, the solid curve corresponds to
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Case 1 and the dashed curve to Case 2. The dotted curve is the Abrikosov-
Gor'kov curve that results for the same parameters but with no temperature
dependence in the impurity scattering (i.c.. a(T) = a{ee) in Eq. (6.14)). Here
we have used in the Eliashberg cquations a delta function for the electron
phonon spectral density a®F(<) = (wgdg/2)8(=—wg ) withw, = 0meV. p" =
0. T2 = 11.604K = 1 meV. which sets A = 0.9. One seces the famous Abrikosov-
Gor'kov result. that T, is reduced from its pure value 77 on addition of
reaguetic impurities. For small concentrations, the dependence of T, on t_ is
linear. There is also a critical concentration at which the superconductivity is
destroyed. In the case of the spin glass. the temperaturc-dependent scattering
rate is reduced from the corresponding Abrikosov-Gor’kov ratc as the spins
freeze. reducing the effectiveness of the impurity spin to break Cooper pairs
through spin-flip scattering. Thus, the spin glass material may sustan a
larger concentration of impurities for the same T.. The point at which the
critical concentration of spin glass impurities occurs is controlled by the
7 = 0 point in the bottom frame of Fig. 6.1 or the ratio S*/[S(S +1)], with
the critical t* equal to (5 + 1)/S times the critical t7%.

Note, that for Case 2 (dashed curve) we can expect reentrant phe-
nomena at the lower end of the T, curve where for the same concentration.
two values of T. exist with a region of superconductivity in between. [Note,
that if this diagram were alternatively labelled as a phase diagram with T
on the y-axis rather than T, then the area to the left of a curve would cor-
respond to the superconducting state and the area to the right the normal
state.] Reentrant superconductivity is the case where below 2 temperature
T., a material becomes superconducting but below an even lower tempera-

ture Te, (Te < T, ), the material reenters the normal phase again due to the
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Tabile 6.1

Case 1 Case 1 Cuse 2 Casc 2
TJT? t2 meV) ¥ (meV) Tp/T. t? (meV) T;/T. linctvpe

1.00 0.0000 0.0000 0.0000 0.0000 0..J00 solid line
0.95 0.0246 0.0247 0.0093 0.2:78 0.0195 ------
0.80 0.09435 0.0955 0.0:43  0.0976 00881 -----
0.58 0.1846 0.1393 0.1200  0.2003 0.2400 — — —
0.34 0.2620 0.2763 0.2005 03121 0.5810 -----
0.15 0.3021 0.3409 0.7392  0.4287 151883 —-—-

Parameters for the curves shown in Figs. 6.2-6.11. Case 1 refers to the spin
slass parameters D = 1. Q(f) = 5%(1 - 7) and R = 0.L Case 2 refers to

D=2 Q@) = (1 -1) and R = 0.4. Parameters used for the pure case are
T2 = 11.604K = I meV,w, = 10 meV, and p~ =0.

formation of magnetic order, such as ferromagnetism. which inhibits the su-
perconductivity. Examples of reentrant su;erconcuctors are ErRh B, [Fertig
et al. (1977)] and HoMoSs [Ishahawa and Fischer (1977)], where their reen-
trance is due to a ferromagnetic tr: .:sition occurring at Te,. In Case 2, it is
also possible for a spin glass superconductor to exhibit reentrant phenomena,
as has been observed in La;_Gd Ru. [Jones et al (1978))].

We will now present results for these two cases for the free energy
difference. the thermodynamic critical magnetic field. the deviation func-
tion. and the specific heat difference. Similar results have been presented by
étepha.n and Carbotte (1991) for the critical magnetic ficld and the deviation
function, however, our results will go further by extending the parameters
into the reentrant region of the model. In all graphs to be presented from
here on. we have plotted our results in thr-e-frame figures with the upper
frame displaying the Abrikosov-Gor'kov result, the middle frame showing the

analogous results for Case 1 and the bottom frame for Case 2. In addition,
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the curves in each figure are given for the same set of parnmeters: we have
listed these in Table 6.1. Curves will be presented for six cases: no magnetic
impurities T./T° = 1.00 (solid Lne), T,./T2 = 095 (- - - -} 0.3 (- - -). 0.58
(— — —). 0.34 (- - - -). and 0.15 (~— - — -}. The corresponding Abrikosov-
Gor’kov scattering rate t27 and spin glass scattering rate £ for each case are
given in Table 6.1. The freezing temperature Ty with respect to T, 1s also
given for the two spin glass cases.

With our parameters now defined. we will proceed to present results
for various thermodynamic quantities: the free energy difference. the ther-
modynamic critical magnetic field. the deviation function. and the electronic
specific heat difference. These results are based upon a calculation of the
free energy. The difference in free encrgy between the superconducting and

_dormal state (AF = F, - F,) is given in terms of the Matsubara gaps and
frequencies. which follow from the solution of the Eliashberg equations modi-

fied for the spin glass contribution. by the Bardeen-Stephen formula [Bardeen

and Stephen (1964)]:

[ &n |
AF-—_"\ 0 A-_ w“ n -é n—"""'"_'_' -
(6.16)
where N(0) is the single spi;i density of states at the Fermi momentum. From

this the thermodynamic critical magnetic field #(T'), which is related to the

condensation energy of the supcrconducting state, is given as
H(T) = [-8=aFP? . (6.17)

This quantity very closely follows a temperature dependence (1 - £?), where

t = T/T., and so to differentiate between curves, it is more common to present
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the deviation function D(t} defited os

Telt;

1£40)

D(t) = - 1=t . (6.18)

Also. the electronic specific Leat diffierence is given in terms of the free energy
difference by
dAF

AC(T) = -T—= - (6.19)

In Figs. 6.3 and 6.4, we plot the difference in free energy AF and the
thermodynamic critical magnetic field H(T). respectively. Ir both cases we
normalized these quantities to the zero temperature value in the pure case
(solid curve). This reduces the plot to dimensiounless quantities but permits
the reduction in free energy and the corresponding critical magnetic field due
to the magnetic impuritics to be scen with clarity. The parameters are given
in Table 6.1. Frame (a) shows the Abrikosov-Gor'kov results while frames
(b) and (c¢) show the results of Case 1 and Case 2, respectively, for the spin
glass model used here.

Aside from the overall depression in the magnitude of these quanti-
ties. we note that at low temperatures in Case 1. there is an upturn in the
temperature dependence, whercas, in Case 2 there is a downturn. The upturn
in Case 1 reflects the scattering rate steadily decreasing as the temperature
is lowered, thus, allowing the superconducting state to lower its energy and
become more stable.

On the other hand. in Case 2, the scattering rate begins to recover and
grow stronger at lower temperatures, thus, inhibiting the superconducting
péunng Eventually for large spin glass impurity scattering we see reentrant
behaviour (best exhibited in (¢) of Fig. 6.4), where the sample reverts to the

normal state at a reduced temperature around 0.35.
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Figure 6.3  The free energy difference AF normalized to the zero temper-
ature value in the pure case versus the reduced temperature ¢t = T/T.. (a)
Abrikosov-Gor'kov impurities. (b} Spin glass impurities for Case 1. (c) Spin
glass impurities for Case 2. Sce Table 6.1 for detail of the parameters.
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Figure 6.4  The thermodynamic critical magnetic field H.(T) normalized
to the zero temperature value in the pure case versus the reduced temperature
t = T/T.. (a) Abrikosov-Gor'kov impirities. (b) Spin glass impurities for
Case 1. (c) Spin glass impurities for Case 2. Sce Table 6.1 for detail of the
parameters.
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Figure 6.5  The thermodynamic critical magnetic field deviation function

D(t) versus the reduced temperature t = T/T..

Sa) Abrikosov-Gor’kov im-

purities. (b) Spin glass impurities for Case™l. (¢) Spin glass impurities for
Case 2. See Table 6.1 for detail of the parameters.
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To better itlustrate the difference in thie curvature of the critical mag-
netic feld curves, we plot the deviation function in Fig. 6.5. The curves (b)
for the spin glass modei corresponding to Cuse 1 are much deeper than in
the Abrikesov-Gor kov case and show a progressive shift of the minimum to
larger negative values and to higher temperatures with increasing impurity
content. The curves (¢) corresponding to Case 2 show a positive deviation
particularly at low temperatures with the maximum shifting to higher tem-
peratures and larger magnitudes with increasing impurity content. On these
plots, the features dissinguishing Case 1 and Case 2 are quite strong and.
in particular. Case 2 has a strong signature with regard to the ordinary
Abrikosov-Gor'kov case that should make it observable in experiments.
Finallv, in Fig. 6.6. -e display results for the calculation of the elec-
tronic specific heat difference nor:alized to the value at T.. Here the curves
exhibit a very strong and unusual temperature dependence. The Abnkosov-
Gor’kov curves show a shift upwards at higher temperatures with increasing
" impurity scattering. resulting in the slope of the jump just below T, decreas-
ing with increased scattering. Overall. the shift in area under the curves

reflects the entropy coustraint of:

T .
as= [ 2Xir=0 |, (6.20)
, T

where AS refers to the difference in entropy between the normal and super-
conducting states which of course must be zero at T (i.e., AS(T.) = 0).

For the two cases considered for the spin glass model there is con-
siderable deviation from the usual temperature dependence with a peak at
low temperatures for Case 1 and a dip for Case 2. Notice again ﬁe reentrant

behaviour in Case 2 where the curve returns to a value of 1 (the normal
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Figure 6.6  The electronic specific heat difference AC(T') normalized to its
value at T, versus the reduced temperature t = T/T.. () Abrikosov-Gor’kov
impurities. (b) Spin glass impuritics for Case 1. (¢) Spin glass impurities for
Case 2. Sze Table 6.1 for detail of the paramcters.
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state) at ¢ around 0.35. Also. note that the entropy sum rule above cannot
possibly be applied. This is due to the fuct that the specific heat presented
here is the electronic specific hieat. whereas. for the sum rule above all the
contributions to the specific heat must be included, which in this case would

include a large magnetic contribution.

6.4 ELECTROMAGNETIC PROPERTIES

In this section. we present calculations for several electromagnetic
properties. namely the London. local. and Pippard penetration depths, the
electromagnetic concrence length, and finally, the thin film criticai current.
The local penetration depth has been caleulated in this model by Stephan
{(1987) but is unpublished. Again the rcentrant region was never examined.

A discussion of the clectromagnctic penetration depth was given in
Section 3.6. There are three important limits to the reponse function given in
that section. There we discussed only the London limit and later we discussed
the local limit with regard to the dc Josephson current in Section 3.7. Here,
for completeness we will present all three.

In the case of a superconductor that is‘suﬁciently dirty such that
the mean free path 7 of the electron is short relative to the zero temperature
coherence length £(0) because of impurity scattering, the response of the
eloctrons to an external field is local and we have the local penetration depth

M [Nam (19672,b)]

1S oo a7
M= lgrr.\'(O)c't';_r‘_\.Tsz—_i_"Kz- : (6:21)
n n

n=l
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In Section 3.7. we have related this to the de Josephson critical current J.(7)

70 _ o)’ G92)
700 | M| =

For non-local effects {(as in the case of the clean limit where [ > §(0)). there

by [Nam (1967a.b)]

are two Hmits corresponding to cither extreme type I (A < &(0)) or extreme
type II (A > £(0)) superconductivity. The type I limit is called the Pippard
limit and the type I limit is called the London limit. The formulae for these

penetration depths are given in the literature as [Nam (1967a.b)]

4 = n = Al -
A, = — | 2= —E7T . 6.23
St o

for the Pippard penectration depth A., and

. —1/2
Aa
AT = [ *N(0) C'L'TZ AR +A-)3f"] . (6.21)

for the London penetration depth A,. The temperature-dependent clectro-

magnetic coherence length &(T) is given as [Nam (1967a,b)]

&§T) = Z yA n_'__\_)aln/'z:?_\—. : (6.25)

which can easily be seen to be related to the local and London penetration

depths by .
[ ADY .

where ! = v.7.

In Fig. 6.7, we show the inverse square of the London penctration
depth normalized to the value for the pure case at zero temperature. [Pleasc
refer to Table 6.1 for the identification of the line types.] Note that m Case 1,

(frame (b)), the magnitude of the curves is increased over the correspoz-lding
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In Section 3.7. we have related this to the de Josephson critical current J.(7)

by [Nam ({1967a.b)]

(() )))

JAT) _ {A:(o) :
70 N

For non-local effects (as in the case of the clean limit where I 3 £(0)). there
are two limits corresponding to either extreme type I () < £(0)) or extreme
type II (A > £(0)) superconductivity. The type I limit is called the Pippard
limit and the type II limit is called the London limit. The formulac for these

penetration depths are given in the literature as [Nam (19672.b))

4 fartn . = Az |7
Ap 3\/_[ e Tn:IZﬁA_ﬁ] (6.23)
for the Pippard penetration depth A, and
A2 -1/2
A = [-...w(me v TZ AT ),m] (6.24)

for the London penetration depth ),. The temperature-dependent clectro-

magnetic coherence length £(T) is given as [Nam (1967a,b)]

_ ey o
== n; Zn{w + A3 EYRE / > = wi +_\- ’ (6'3?)
which can easily be seen to be related to the local and London penctration
depths by ,
A(T)
Ty=1{ 28220 6.26
er=i(242) o

where ! = v,r.

In Fig. 6.7, we show the inverse square of the Loéldon penctration
depth normaiized to the value for the pure case at zero temperature. [Please
refer to Table 6.1 for the identification of the line types.] Note that in Case 1,
(frame (b)), the magnitude of the curves is increased over the corresponding
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Figure 6.7  The inverse square of London pernetration depth normalized
to the value for the pure case at zero temperature versus the reduced temper-
ature t = T/T,. (a) Abrikosov-Gor'kov impurities. (b} Spin glass impurities
for Case 1. (c) Spin glass impurities for Case 2. See Table 6.1 for detail of
the parameters.
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Abrikosov-Gor'kov case. again refiecting the decreased cffective scattering
rate. Also in Case 2 (frame (c¢)) the temperature dependence remains even
higher due to 2 more rapid drop in the scattering rate in this model. Note
again the reentrant behaviour of the highest concentration case 1n this figure.

As impurities are added to a system bringing it closer to the dirty
limit, the London penetration depth will approach the local limit penetration
depth, which already has implicit in it the dirty limit. This is seen upon
comparing the dot-long dashed curves in Figs. 6.7 and 6.8, which correspond
to the highest impurity concentration used in this model. One cannot sce
the exact equivalence here as one would in the case of normal impurities.
as the concentration of impurities required would be larger than the critical
concentration that destroys the superconductivity entirely.

In Fig. 6.8, we display the dc Josephson critical current J(T) nor-
malized to its pure limit value at zero temperature. This quantity is also the
inverse square of the local limit penctration depth. Again similar discussion
applies as in Fig. 6.7, with reentrant behaviour exhibited by Case 2.

In Fig. 6.9, we show the Pippard penetration depth for completeness.
Again, it is the inverse square of the penetration depth that is plotted nor-
malized to its zero temperature value in the pure imit. It is not surprising
that this figure closely resembles Fig. 6.8 as from Eqs. (6.21) and (6.23), one
can see that the formulae are similar with only a slightly different power law.
This particular penetration depth is only shown for completeness as it refers

to type I superconductors which are usually elemental superconductors such

as Al
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Figure 6.8 The dc Josephson critical it.':urrent Jo(T) normalized to the
value for the pure case at zero temperature versus the reduced temperature
t = T/T.. (a) Abrikosov-Gor'kov impurities. (b) Spin glass impurities for
Case 1. (¢) Spin glass impurities for Case 2. See Table 6.1 for detail of the
parameters.
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Figure 6.9  The inverse square of Pippard penetration depth normalized
to the value for the pure case at zero temperature versus the reduced temper-
ature t = T/T.. (a) Abrikosov-Gor'kov impuritics. (b) Spin glass impurities
for Case 1. (¢) Spin glass impurities for Case 2. See Table 6.1 for detail of
the narameters.
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Figure 6.11  The thin film critical current density normalized to the slope
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Abrikosov-Gor’kov impurities. (b) Spin glass impurities for Case 1. {¢) Spin
glass impurities for Case 2. See Table 6.1 for detail of the parameters.
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Fiz. .10 cxhibits the temperuiure-dependent electromagnetic coher-
ence length divided by the mean free path £7? normalized to the same quan-
tity at zero tex.perature in the pure Hmit. i, STW/E2(0)™7. In all cases.
magnetic impurity scaitering increases the magnitude of this quantity with
the temperature dependence once again refiecting the variation in the effec-
tive scattering rate. As the mean free path in the impure case will be smaller
than in the pure case. these curves would then indicate that the coherence
length itself is reduced by magretic scattering. This appears reasonable as
one would expect the colierence length to be smaller in the presence of pair-
breaking cffects and impurity scattering,.

Finally, we present in Fig. 6.11. the thin fiim critical current plotted
as described in Chapter 2. The formalism for caleulating this quantity with
the addition of paramagnetic impurities has already been given in Chapter 2
and we have merely incorporated the temperature-dependent scattering rate
into the procedure. One finds that the temperatare dependence in the model
for Case 1 is enhanced over the Abrikosov-Gor'kov resuit in (a) at low tem-

peratures. For Case 2, reentrant behaviour occurs as previously discussed.

6.5 CONCLUSIONS

In conclusion, we have calculated thermodynamic and electromag-
netic properties for an intrinsic spin glass superconductor in the spin glass
model of Nass et al (1981). We have extended the BCS calculations of
Stephan and Carbotte (1991) to strong coupling Eliashberg theory, so that
the theory is capable of providing quantitative rredictions. In addition, we

have considered properties not previously investigated within this model.
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In general, we find very distinctive bebaviour in the temperature
dependence of the superconducting properties. These should be observable
in experiment if this model has any relevance to spin glass superconductors.
In addition. reentrant behaviour is a possible signature of a spin glass state

corresponding to Case 2 of the model used here.






Chapter 7

Conclusions

As conclusions have been given in each of the preceding chapters. we
confine ourselves to a summary of the highlights of the work which has been
reported here.

While the mechanism governing the high 7. superconducting oxides
is as yet unknown, the results of our work recorded in Chapters 3 and 4
show that the marginal Fermi liquid theory is. at present. one of the most
promising candidates. The most exciting results of the thesis are to be found
in Figs. 4.15-4.18., where the predicticns of the marginal Fermi liquid theory
have been dramatically confirmed by experiment. For both the microwave
conductivity and the quasiparticle damping rate, our calculations were per-
formed independently of knowledge of experimental results. These appeared
shortly after our calculations, the predicted and observed behaviour being
completely novel. That a peak in the microwave conductivity can occur when

no such peak is observed in the NMR spin lattice relaxation rate, can, at

193
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present, oniy be explained by the gapping of the excitation spe .rum, as
occurs in marginal Fermi liquid theory, and not in competing theories. The
sudden drop which we found irn the quasiparticle damping rate below T is
also a reflection of this important clue. This work is currently motivating
additional efforts to discover other signatures of the gapping in independent
properties, and to undertake a sysiemaric comparison of the theory and ex-
periment.

In addition, it has been predicted that the finite frequency optical ab-
sorption in the clean limit should exhibit onset of absorption at 4A instead
of the traditional 2A. While sanples and interpretation of experimental re-
sults are still problematic in this area. confirmation of the unusual prediction
would be very exciting.

The strong coupling theory of thin film critical currents is presented
for the first time, in Chapter 2. This enables us to make quantitative predic-
tions, a luxury not afforded by BCS theory. Wa have made impor{ant predic-
tions which we hope will be experimentally verified. Excellent agreement has
been obtained in the past between BCS theory and BCS-type superconduc-
tors; therefore, we are confident that strong coupling effects, which enhance
the temperature dependence of the critical current, will be confirmed. We
have also provided the first predictions for the effect of paramagnetic impu-
Tities, paramagnons, and spin glass freezing on riis critical current.

Our work on paramagnons serves to add support to the marginal
Fermi liquid model which has a spin fluctuation component within its for-
mulation. Predictions for the iehaviour of the optical conductivity in the
presence of paramagnetic impurities have also been given and could be, in

principle, tested in both conventional and high T. superconductors. Reduced
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Holstein structure and absorption below 2A should be observed in the clean
limit in systems containing paramagnetic impurities.

Finally, we have calculated a series of thermodynamic and electro-
magnetic properties of spin glass superconductors, predicting unusual tem-
perature dependence and reentrant behaviour. Although experimental work
could search for this behaviour, 2 more promising avenue is to examine prox-
imity effect junctions between superconductors and spin glasses. In such a
junction, a thin layer of superconductor is sandwiched with a spin glass ma-
terial. Superconductivity is then induced in the spin glass material due the
Cooper pairs “leaking” across the junction. This would allow for a more sys-
tematic investigation of spin glass superconductors through induced super-
conductivity, as the number of intrinsic spin glass superconductors is small.
We are‘currently working on the theory for such a junction, using the spin
glass model presented here.

1t is expected that many of the results reported here will not only have
theoretical impact but will also provide the fundamental underpinning to
both experiments and applications. Knowledge of how different pair-breaking
mechanisms can affect superconducting properties allows one to isolate the
important processes at work in the materials. Designers of practical super-
conducting devices and applications can attempt to eliminate the detrimental
effects, or use the effects to advantage. The critical current calculated here
is the theoretical maximum attainable and hence an important quantity for
those interested in high current devices. The dramatic drop in the scatter-
ing rate predicted here and observed by Bonn et al. (1991), has important
implications for high T, microwave applications requiring very low surface

Tesistance.






Appendix A

Eliashberg Theory

A.l1 INTRODUCTION

In this appendix. we wish to show the basic derivation of the Eliash-
berg equations from the electron self-energy. Many bocks and reviews exist
on this topic [see for example, Schrieffer (1964); Allen and Mitrovié (1982);
Scalapino (1969)). Our aim here is to show the details of the derivation for
the standard equations only and then to show_‘:hgw this derivation is to be
modified {or several cases presented in this thesis: ;n'rents, normal and para-
magnetic impurities, and spin fluctuations. Hence, the references should be
consulted for a discussion of BCS theory, Green’s function formalism, and the
background description of the Hamiltonian. We will emphasis the mathemat-

ical derivation here for which details are not always present in the reviews.

The matenal in this introduction is a précis of similar material in the review

i
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of Allen and Mitrovié (1982) See-ions A.2 and A.3 are drawn from notes by
Dr. E. Schachinger with his permission.

In BCS theory, it is assumed there is an instantaneous interaction
for the pairing between electrons. with no reference 1o phonons, other than
a cutoff of v, on the pairing interaction. No frequency dependence or retar-
dation «ffects of the response of the phonon system are taken into account,
so that in BCS theory, one deals only with the electron Green’s functions.

The normal state electron Green’s funetion is defined as
G(R,7) = —(Tecg, (7)ek (1)) . (A1)

where T, is the Wick time ordering operator. It reorders the operators such
that the imaginary time = increases from right te left respecting anticommu-
tation relations. The c}a and ¢, are the creation and annihilation operzators,
respectively, in the Heisenberg represeniation. The thermodynamic average
is given as:

(4)= Te(e ) (4.2)

where 8 = 1/T with T the temperature. The real space version of this Green’s.
function can be seen physically as the propagation of an electron from time
. t=0at position z (created) to position z’ at time ¢ (annihilated) and hence it
is also called a propagator. Once this Green’s function is known, anything, in
principle, can be calculated about the system. The goal then is to calculate
the Green’s function.

For non-interacting electrons, the Green’s function is easily shown to

be given as
1

Golltin) = g
n =

. (4.3)
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Figure A.1 Dyson’s equations for the electron Green's function (top) and
the phonon Green'’s function (bottom).

where we are now using the Matsubara representation. In this case, the Mat-
subara Green’s function is the Fourier coefficient of the Fourier representation
of the Green’s function in terms of the Matsubara frequencies w, = =T(2n+3)
with = = 0,%1,%2,.... The Matsubara or thermodynamic Green'’s function
contains all the information necessary to calculate the thermodynamics of
the system and its analytic continuation to real frequencies allows for the

calculation of all transport properties.

For the electron-phonon problem one also needs knowledge of the

phonon propagator

Dap(§,7) = ~(Truga(v)u_g5(0)) (A44)

where ug is the bosonic displacement operator:

1/2
h . t
uz = ; (m) enlap +a_g) . (A5)

Our notation here corresponds to M, the ion mass, A, the branch index, 7,

the wave vector, &3, the polarization vector, and az, the boson annihilation
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operator. In terms of the Fourier representation, this phonon Green'’s function
can be written in terms of bosonic M subara frequencies v, = 2n=T. where
n =0,%1,%2..... For non-interacting phonons

: h 1 1
° 0.t = ——————— € -~ —
Daﬁ(q’ IV’:} - ; (2.”1&!(93_\) k-3 (ib’n -_— h}a il’n + Ua‘) : (A.G)

As we are interested in the fully interacting system, we require the fully
interacting Green’s functions which are given in terms of Feynman-Dyson

perturbation theory to be:
Gk, iy = GTHE, on) — S(K, iun) (A.D)

and
(DG, ivn)las = (DT iVa)les — Map(@ ivn) (A.8)

where - ow the problem is shifted to solving for the self-energies (. its,) and
Mas(§.iva). These Dyson equations are shown diagrammatical! in Fig. A.1.

Typically one can obtain the phonon self-energy through its spectral
representation which can be measured by inelastic neutron scattering or is
known through its coupling to electrons from tunneling experiments. This is
considered an input parameter and it is taken from experiment, and in this
instance, it will contain all the renormalization effects, 2nd hence we do not
need to solve Eq. (A.8) for the‘phonon propagator.

The Hamiltonian for the electron-phonon system is given by Frohlich’s
Hamiltonian:

H = Hel +Hf. + ng + Hc M (A.g)

where the free electron part of the Hamiltonian is given as:

Ha= exck g, (A.10)
%o
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with the quasiparticle band cnergies. ¢z, assumed to be available from band
structure calculations. The ion lattice Hamiltonian is given in terms of the

harmonic approximation as:

[y

H, Zﬁ ;'r(d;a +=) . {-1.11)
q

(8

with fwy coming from experiment. The electron-phonon Hamiltonian is given

as

Hep=D (k+q|VaV | k)ugack o (A.12)
k7

with V.V to be considered as the gradient of the screened electron-ion po-

tential. Finally, the Coulomb Hamiltonian is written as:

-L.c‘

where the Fourler transform of the charge density is given as:
Py = ) (K| eI kyebes . (A.14)
kE
Here, ¢' is a reciprocal lattice vector and q is the momentum transferred,
which is to be summed over the FBZ.
In the superconducting state, there are both normal Green’s functions
({Trep, ('r)c.. (0)}) and anomalous Green’s functions ((T,.c - (-r)c.. (0)}) for
the non-zero Cooper pair amplitude. Therefore, both types of fully inter-
acting Green’s functions must be found. The added complication of the
three-body operator appearing in the interaction term motivated Na;mbu

to introduce two-component spinor operators of the form:

e
w;: ( t’ ) and ‘F? (c-r,c £l ) . (A.15)
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Figure A.2 The clectron self-energy due to the electron-phonon inter-
action (the left diagram) and the Coulomb interaction (the right diagram).

with
{¥ ,‘I‘E,} =6y, {¥p,¥e}=0 . (A.16)
Then one can write the Hamiltonian in terms of one-body operators using

the Pauli matrices:

(39 A=) () (D)

(A.17)
So now
Ho= Z EE‘I'I-_‘T:, ‘I’E (A.IS)
3
Hep= 3 (K| VoV | ROLR Y o o, (A.19)

g
while H, remains as given in Eq. (A.13), but the charge density is changed

to be:

Py = D (K | Tyl mye (4.20)
by
The Green’s function is now a matrix:

G(F.7) = —(T- ¥ (7)¥K0)) (4.21)
(T?CET (T)CET(O)) (TTCET (r)c_El (0))

((Trcf_gl(f)CET(o)) (T_.cf_l:l(r)c_a (0)))
Now we are ready to proceed with a calculation of the self-energy.

(4:21)
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A.2 THE SELF-ENERGY

The electron self-energy is given diagrammatically in Fig. A.2 and is
written according to the Feynman rules as:
S(Riwy) = —= Z 7, G )T {Z | 9pp P Da(R =R duy = i)+ V(R = EN),

i
(A.22)

where the electron-phonon matrix element is defined as:

/2
h ¢ L)
Ieon= (m) (k&g -VV &) (A4.23)

with §= k=K' andw, = 2n+1)x/8;n = 0,£1.£2, ...and B = 1/T. The sccond
term of the self-energy is that due to the Coulomb interaction energy V as
a function of momentum transfer. The first term is for the clectron-phonon
interaction, where the phonon Green’s function can be written in terms of a

spectral representation as:

b 1 . 1
L } ) N
D.\(Qeu’n) ./0 dVB-\(q':”) [iUn—V iUﬂ-i-V] (A 1)
4'.20
j du(% —B\(7,7) (4.25)
2v
=- fo TG (4.26)

where v, = 2nx/8, n = 0,%1,%2,.... Substituting the spectral function in
Eq. (4.24) above, we have for the self-energy

- - 1 — . 0o — -
E(k,dw,) = "E’ z T G(K, k)T, {z | ) 473 2 /0 dvB\(k - ¥',v)
E’.n’ z A

1 1 I i
i [(f“n — i) —v (M-m)w} +V(k-k )}- (4.27)
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A.3 THE ELIASHBERG EQUATIONS ON THE IMAGINARY
AXIS

We wish to solve for the Green’s function for the superconductor as

given by the Dyson equation:
G~YE, twn) = GTUE, i) = Sk, iwn) (A.28)

with the matrix Green’s function of the non-interacting system:

1

WnT, — €Ty

Go(Ev z.‘-"-’1-:) =

Wy T, €27y

= Gl = ()

For the self-energy S(k.iw,) we use the following general ansatz, where we

(4.29)

write the self-cnergy in terms of an expansion using the r matrices wkich

form a complete set:
DR, iwn) = iwn[l = Z(R, iwn)]rs + X(R,iwn )7 + @K, i), + 0(F,im)ny, . (4.30)

The notation for the coefficients is historically rooted in the real-axis deriva-
tion, where y is the Hartree-Fock energy, ¢, the gap parameter, and Z the
renormalization function. Using an ansatz is the simplist approach; however,
such a form does arise automatically from a Fourier transform during the
course of the derivation in the generalized Hartree-Fock scheme fsee Schrief-

fer (1964)). From this ansatz we obtain for the Green’s function:

G-I(E,iu") = i‘:“z(E' i"‘"ﬂ)ro - [eﬁ? + X(E, ib-?n)]Ta - é(E'} iCIJn)T: - 5(5',50“)7‘,
(4.31)

Forming the inverse of this matrix, we obtain:

G(E i) = !.-‘-b‘nz(i:,fwn)fo + [EF + X(E.iwﬂ)]'ra + ¢(I-c-,"ir_.,',vﬂ)-,r‘1 + a(}?,iwn)rz
s beirny [I-:.;JnZ(Eq i&-’n)]z — [CE - Y(Einn)lz —_ é'.‘(i:,iwn) - 62(1:’ iﬂb‘n)
(4.32)
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Our procedure for determining Z. o. 0. and y, will be to substitute this
expression for the Green's function into the right hand side of Eq. (1.22) and
the ansatz for £ from Eq. (4.30) on the left. From this we will eventually
obtain two non-linear coupled equations for ¢ and Z.

We must now elucidate terms of the self-energy. First we start with
the phonon contribution. We use for this the result from the previous section:
SRR i) = =T 3 nG#. i)y Y | Ggp, P / ” d0B(F - F.0)

R A ¢

1 1 _
X [(I'-’.»'n S P Sk Q]- (1.33)

Putting #w,» = twy — iwye, We can write

- .Y I - - 20
EPh(Ryiwn) =T Y (R iwn—iwnn )y D 1521y I° / dQB,\(k—k’.Q)[z—: .
1L 0 un"_i_ﬂ..

(A34)

7 n A

We change now the summation over ¥’ into an integral over the energy; this
is done by 2 serics of approximations which greatly simplify the calculation:

(1) x, which arises from Coulomb scattering, can be shown to be
the Hartree-Fock energy which remains unchanged in the normal and super-
conducting states. Further, x is a slowly varying function of w on the real
frequency axs for w < 10w, so that it only depends on k. Therefore, y cssen-
tially results in an uninteresting shift of the energy ¢; and can be absorbed
into this quantity, redefined to be #; = ¢z + x(F).

2) Z and the ¢'s vary with & on a scale of order &, and so we can
put | ¥ |= k. in these quantities. Hence, the electron Green’s function in
Eq. (A.32) depends only on w, and the direction of k.

With these simplifications the integration can be carried out explic-

itly in terms of the phonon interaction energy.
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For an isotropic theory, we can introduce the spherically averaged

self-cnergy

S(E, i) = j JQ"‘(“ o) (A.35)

"

where the integration is over angular coordinates. We begin with the phonon

interaction energy terms:

TPk iwn) =T Y RGK,in — i)

& on

Qr 7
XZ/d E=K ]g;., \i / dQB,\(A fg' Q)[n,,_-?f!] (‘136)

It follows, therefore, that insofar as we are only interested in the
cnergies w ~ w, <€ Ej, the main contribution to the &' integral comes from
the states witn | g, |~ w,. Therefore we can replace &' by k. in Z and ¢.
This also holds for the last term. Here # acts only through the momentum
relation §= k- &, so the anisotropy will disapp. . We can therefore change
the sum over ¥ into an integral over €. ¢ =| £ — &' | and the azimuthal angle
¢. Therefore,

&3k 1
v, o - T2 o ! S = A37
S /{-z:r)?' = j Gyt sin k' dbd = oo )ax. /dez,qdqdqo , (A37)
where we have used:

- K2k 2K’ dk’ , mdeg,
_ S, w-ITTE (438)
with

sin9d6 ~ %’- . (A.39)

-~
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Since the dominant contribution of the ¢, integral comes from the

range | ¢, [« w,. we can extend the limits of integration for this variable to

infirity:

/ déz,"' G(L iy — ?...,,N)‘ / d(z, GU\ L-n - t.....,.,_u)f . (.‘1.40)

-t g

We introduce the function o*F(Q) defined as:

QPF(Q) = N(0) Y | gz, IF 8(Q —wpp )oe)élep) / 3 dep)lep)
FRA 33

N(0 2kp " .
= .—(.2) Zf‘mar/ qdq | gz I° BA(§ ) . (A.41)
S"LF ‘\ 0

where in the last line, we have assumed a spherical Fermi surface. Setting

n” = ' and letting &, = ¢"

ge N

TPA(k,dwn) = TZ' \,(0)

/ dQa 'F(Q) " -!:Q"TG(E Wy, - 'wu')ra

Tn' New) | demas

with V(e} = 3 8(¢; — ¢) and

T G((', tuiy — i‘-‘-’n')ra ’ (A.42)

Q

S
=2 2 ——
Mew)=2 | d00°FQ) e

(A43)

For the contribution of the Coulomb interaction potential, we have from
Eq. (4.22):

| - . - -
=¥k in) = -3 Z nGF, ) V(E-F) (A44)
k'’
To circumvent the problem of integration associated with the momen-
tum-dependent Coulomb potential, we introduce now the Coulomb pseuodopo-

tential g*. This development is most easily understood when carried out on

the real axis: in this case it restricts the range of the energy integration from
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{0. 2] to a new range [0..], where = is most often chosen to be 6w ,. A rather
long derivation on the re . axis is used to show tha: for high frequencies many
approximations can be made, such as, Z(k.w) — 1 and o(k.w) — &°(k) for
w 3 wp, since the phonon-electron interaction will be ineffective for w > w.
Furthermore. gw. = (1/T ). » 1 for temperatures at which the materials are
superconducting (T ~ 10K = 1 meV) and we can set tanh(3:./2) (which oc-
curs in the real axis version of £¢) to be = 1 for &’ > w.. With all this we can
simplify the integral from w; — oc. This results in an integral equation for
#", which can be solved for the self-energy in terms of u*. providing the en-
ergy dependence of 4” is negiected. The physical meaning of this parameter is
that it describes the contribution of the Coulomb interaction potential which
is outside the range [—we,we]. On the imaginary axis, analogous approxima-
tions are used: above the cutoff. é(k.iwn) & deo(k) and Z(k, i) = 1, and u~
1s similarly found to satisfy an integral equation, which can be solved for by
neglecting the frequency dependence. This quantity on the imaginary axis
does not analytically continue to a sharp cutoff on the real axis. Hence, the
" used here is to be considered as a parameter to be fit to the experimental
value of T.. |

‘We therefore can write:

Selien) = =T L el wm ) [ d %fﬁ"(eﬁwm)n . (A.45)

Here we will consider only the off diagonal (od) contribution as it will be
reasonable to assume that the diagonni contri® utions are identical for both
the normal and superconducting states and have already been absorbed into

the band structure. For ordinary superconductors we can set N(¢') = N(0).



Appendix A

The fully interacting Green's function is then given by:

G e, iwn)=G3 - T{Z Al = .'..:,,,)/ de'r,G(€ iz )T,
-0

m
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- ZF-(U‘:)G("-‘%- bom 1) - dc'T3G°d(€, iwm)‘ra}.(.‘ﬁ.-lﬁ)

or,
i Z(R, dn )7y — g7y = O(F, d0a)7, — S(F, iwa)r, =
= dwnT, — ETy — {Z,\(@,‘-wm)/ [mi_z::))
- S w e lon b [ de [’;:f‘ :3)] }
with
Pk, iwn) = twn Z(R, iwn )1y + &y + O(F, dwn)ry, — SR, iwn)T,
and

P“(E, twn) = ic.;uZ(E, iwn)r:d + E‘E‘l":d + qb(i:,iw,.)rfd - 5(f iw,,)r:d
and

H(k,iwn) = [onZ (R, 2n)f — G — 6*(F, i) — 32(E, i)

—{WiZ%(E, iwn) + G + (K, iwn) + %(Fyiwn)}-
From the properties of the spin matrices we have:

TN =7 MBNH =% HhHh=-% Ty =7

(A7)

(A.48)

(4.49)

(A.50)

(A.51)
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Therefore. by comparison we obtain:

ot Bm ) ="
i Zliwn) = g = T {z Mara ‘“”*)f T(Z:)_'} (4.52)
i) = {Z“ wn = Wm) = (e~ | om l)]/ dé'= TG w:))} (4.33)

T ‘3 W -

Ofiwn) = {T[’\("m —wm) = pb(we— | wm [)] d ! H((? ))} (A.34)

For 6 and ¢ identical defining equations are found. These functions
can only be distinguished from each other by a proportionality factor, there-

fore, any scaling of the kind that preserves ¢° + &° results in equally good

solutions. We therefore pronose to set 6 = 0 and obtain:

nZlEon) =Cn T{Z A = om) f_@ d"b&m(mji(ﬁm: & (irm) } (A.55)
é{h—n) TZ[:\(.;.“ -‘-'m) —-u H(Q‘c- l “m !)] d&" é(wm)

o w2 Z2%(fwm) + €° + 0*(3om)
(A.56)

with w, = =T(2n + 1), the usual Matsubara frequencies. The integral that

appears here can immediately be worked out:

j © de ! =7 1 __ (A7)
o WRZPH+FHE T " fT7E e .
We further introduce the symbols &, = w,2(#0,) and A, = é(iw,) and obtain
the usual form of the Eliashberg equations on the imaginary axis:

-

Ap==T ): [Awn = wm) = 7]

m=-N \/u:z + A2 ,

G =tin+ 7T '>“ Awn = wm) (A.58)

we=xT(2NV +1) (4.59)
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Figure A3 The electron self-energy due to impurity scattering,.

From these equations we can obtain the critical temperature T.. One makes
use of the fact that as T — T, the gap A goes to zero. We therefore have the

linearized equations for T.:

Sn=wp+=T Z AMwn — wm )signwm (A.60)
m
N A
An=3T 3 Mun—wm)=p =2 we=aT(2N+1)  (A.61)
m==N l Wm i

There are two input parameters for this theory: o*F(Q) and p°. One can
apply the data from inelastic neutron scattering to determine F(Q); further,
the TV characteristic of superconducting tunnelling experiments gives infor-
mation concerning o?F(f). On the imaginary axis, p* is chosen to give the
expermmentally observed T..

A.4 MODIFICATION FOR MAGNETIC AND NONMAGNETIC
IMPURITY SCATTERING

The self-energy diagram for normal impurity scattering is given in
Fig. A.3. In this case, perturbation theory is well-behaved and for a dilute
concentration of impurities, the concentration n; forms a small expansion

parameter. We can therefore treat the scattering in lowest order of the Born
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approximation. corresponding to Fig. A.3. The self-energy can be written for
this diagram as:
SV(Riwa) =0y (k] Vy [ K} P So(F ~ B)myG(R ion)my (A.62)
E.l'

where the structure factor is given as
Se(@)=) @R | (4.63)

with R, the impurity location and V,, the alteration of the crystal potential
due to the presence of the impurity. There is no time dependence associated
with impurity scattering and hence there is no frequency sum here.

The normal impurity scartering rate 1/r, is then given as

1 2z . "
== TN OV s (4.69)

where {(}} ;s denotes the averaging of the impurity potcatial o .r the Fermi
surface. Once the self-energy has been specified, we can redo the algebra of
Section A.3 with Eq. (4.62) added to Eq. (4.22).

The self-energy for paramagnetic impurities is also given by the di-
agram of Fig. A.3. However, the interaction now includes the impurity spin
which brings in another two degrees of freedom. It is therefore more natural
in this case to extend the Nambu notation from a 2 x 2 notation to a 4 x 4
notation. Pauli matrices are retained but there are two sets o; and p;, acting

on the spin and particle-hole spaces separately. In this notation, we have:

CFT

CEI

— t_ (4 - -
q’i = CT_EI a.nd ‘I’E = (czf’ci:l,c—kr’c—kl) . (A.GS)
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and tensor products are defined as

o, 0
po, = ( ) . {-1.66)
0 -o,

Hence,
i"";ﬂpo o + €5P3%,
() = (g

Golk.twy) = (A1.67)

and Eq. (A.30) is written as

S(K.in) = twa[l=Z(k, &g )P, o o't'\‘(L tn)p, 0, +o(k. kw )P, 0+ S K. iw, )p, 0,

(A.68)

The self-energy is then written as

= Ein) =0, T G151 B Vae@ i)z . (400)

with § the impurity spin, V. the alteration of the crystal potential due
to the presence of the impurity, and the vector matrix & defined by & =
(301, 002, paoa). There is no time dependence associated with impurity scat-
tering to this order in the perturbation expansion and hence again there is
no frequency sum here. The paramagnetic impurity scattering rate i/, is

defined as

== Zn S5+ ONO( Yy s - (A.70)

TN
Once again, we can repeat the procedure in Section A.3, in this expanded

notation. The final result is given in summary in Section A.T.

A.5 MODIFICATION FOR SPIN FLUCTUATIONS

For spin fluctuations, if one assumes an exchange coupling J between

the conduction electrons and the local moments (a quantity analogous to
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the clectron-phonon coupling g) then the seli-energy resembles the electron-
phonon sclf-energy, the only modification being the inclusion of the vector

matrix a. as in the case of paramagnetic impurities:

2 — - -
S (R i) = __':3_ S GG(F i) - ED(E = Ry — iom) - (A.71)
s

The spin fluctuation propagator has the spectral representation

* dQ 2Q

D(q.iv,) = — B(7.Q)————
Gim) = [ ZBER

B (A.72)

with the spectral density given, as usual. in terms of the Fourier transform

of the spm-spia correlation function:
1— R0 - .
B(3,Q) = ——[S(& Q) + =(S(@) - (5(-Dé(Q)] (A.73)

where 5(§) is the ¥ urier transform of the spin density operator [Doniach

and Sondheimer (1974)] and S(g, Q) is the spin-spin correlation function:
o 3 . -
S5(7.Q) = j dt j fV—Te'(“‘-"?’S(F,z) ,
= f dt ¢ [(5(3.)- 5(-5,0)) - (5(7,0)- 5(~-7.0))] . (A.74)

With this self-energy defined, the procedure of Section A.3 can be followed
to obtain the modified form of the Eliashberg equations, summarized in Sec-

tion A.7, written in tcrms of the paramagnon spectral density

B Zk:_- d
@)= N2 [T L2809 (4.75)
F
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A.6 MODIFICATION FOR CURRENTS

Likewise. under the application of an applied current there is a shift

in the energies due to a term - 7,. This enters the Green's function in the

tensor notation as:

™. (z-"n - E"-].J)Poao + c{-‘Pao'a
Golk.twy) = - — =
o( * ﬂ) (wn_c'q.s)'_(fjc")-

(A.76)
and
E(k.twn} = fnll = Z(F.i0n)]060s = T+ §spy0, + X(Fuitwn)py 0,
+ o(k, iwa)p, 0, + oK. g )p,0, (A7)

With these definitions, the derivation proceeds in the same fashion as before.

Note that in Chapter 2, our notation is to take p, = 1 and g, = 1.

A.7T GENERAL FORM OF THE ELIASHBERG EQUATIONS

Here we state the final form of the Eliashberg equations when all the

modifications mentioned in this appendix are included.

e m = - - ' d:__._a’“ )
A, = =T z AT (n—m) - p 8w~ | wm |)] 5y -
m=—co =12 (@ - is2)? + A2,
- -
+=(tt - t7) & — (A.78)

-1 2 f(@, —isz) + AZ

and

o 1 d'-' - _ 3 -
Gn =wp + 7T Z X*t(n —m) ?“__“’m_.‘i__
m==00 -1 V (&a-}m - '.".8:)2 + szn

1 4. 5 —isz
Fr(tt +17) j i—“—“"‘—”—- . (A.79)
-1

(@ —isz)? + Az
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Where,

AE(n = m) = A — ) = ]“’ 2o F(w) = P(w)]

0 = (o — )’

dw (A.80)
and A, = A(iw,) = Z(fwn)A(&) and & = Z(iwn)ws. The normal impurity
scattering rate, t+, is defined as 1/(2xr,) and the paramagnetic impurity
scattering rate, !, is defined as 1/(2x7,), where 7, is the spin-flip lifetime
and r, is the normal impurity scattering time. Here, s = v.q, where ¢, is the

magnitude of the applied momentum of the current. The electron-phonon

and paramagnon spectral densities are o®F(w) and P(w), respectively.
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je.c: Program
and Documentation

B.1 THEORETICAL EQUATIONS

In Chapter 2, we discussed resulis of calculations of the critical cur-
rent of a thin film, type I superconductor. Numerical solution of Egs. (2.5)-
(2.7) was required and, in this appendix, we discuss the realization of this
procedure in greater detail.

Restating the coupled equations we wish to solve, we have for the

superfluid current density j, [Eq. (2.5)]:

-  3eN 2 n (@ — is2)x
g R [ i g,
“rF n=—oo =1 v (G — is::)'-' + A2

where ¢ = v.q, = kpq,/m. @, is 2 unit vector in the direction of §,, N the
electronic density and k. the Fermi momentum. The Eliashberg equations

for the order parameter and renormalized frequencies of the superconducting

217
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state, modifind by the presence of the current, are given as [Egs. (2.6) and

(2.7)):

dz A
A, ==T A = m) = T B(we= | wm |)] =
m;w[ o g / J(Um-"ls‘) +.lq

ety [ & (B-2)
1 2 .\/( :

.--__,'::
S —1s2)° + Az

and

G =wn 7T T '\(n—m),[ 7‘:_“:'_”‘_.:1‘5__.

! - ) .
m=—e yV (@m — s2)% + A2,
b ds Ty — isz
et o) | ST (B-3)

-1 2 \/ (G — 182)° + A;-:

Where [Eq. (2.8)},

2vaFv)
VZ — (om — iwm)?

An - m) = Afy —twy) = /:° dv (B4)

and A, = A(iwy) = Z(iwn)A(fwy) and &, = Z(fwy)ws with fw, = =T (20 - 1),
n= 0,%1,%2,.... As before, the normal impurity scattering rate, t*, is defined
as 1/(2x7,) and the paramagnetic impurity scattering rate, t~, is defined as
1/(2=x7,), where 7, is the spin-flip lifetime and 7, is the normal impurity
scattering time.

We can further manipulate these equations into a form which is more
convenient for numerical solution. Performing the integrals over = and writing
A.=A./]&, | and $p, = s/ | @ |, we find that Eqs. (B.2) and (B.3) can be
written as

|ém | Ap = =T Z [A(m=n)=- ,u] arctan + (tF - z-)’z'n"u ta.n— (B.5)

mE—00
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and

Sp=aT{2n+1+ Z Am = n)sgn(-m]"“f{m]} + (T + t7)s gn(....,‘)‘mf[n]

M= -0
(B.6)
where we have defined the following notation:
Tom =1 =55, + A2 | (B.7)
Ypm = 28m (B.S)

imf{m] = /(pm = Tpm)/2 . (B.10)

ref[m] = \/(Pm +2Zm)f2 (B.11)
T =1+ reflm] (B.12)
Ym = Sm +imflm} . (B.13)

Using the symmetries of the gaps, A_, = A,_;, and w_p = —wy,_; to fold the

sums to the [0, 0] domain:

N
|Gn | Ap = =T Z[A(m— n)+Am+n+1)=2” ]——-a.rcta.ny—
m=0 Tm
+w(tt - t‘)g’-:’-arcta.ngi , (B.14)
Sn In
and
N imf m]
p=aT{2n+1+ Z[A(m n)=Am+n+ 1)] }
m=0
1mf[n]

+7(tt 4 17) . (B.15)
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These equations can casily be shown to reduce to the usual nonlinear Eliash-
berg equations in the limit of s — 0:

\
- - A

Sl A, ==T ,\(m—n)',\m+n+1)—2,u']—1-7

i m§=u[ + Trar

An

+a{tt -7y —=2_ B.16
{ ) it (B.16)
and
al 1
Cp=xT{2n+14+ Z[A(m -n)=-Am+n+ Dl—==}
m=0 + A;ﬂ
+m(tt + t‘)—l— (B.17)
In a similar manner, the ~urrent density can be shown to be:
oo 1 _
Js & Z ={Saref[n] + AZarctan¥n , (B.18)

n=0 "% Zn
where ¢ is the reduced temperature 7'/7T..

We now solve Egs. (B.14)-(B.15) and Eq. (B.18). The procedure is to
search for a value of s which maximizes Js. In section II, we summarize the
essential points of the subroutines in a non-rigorous fashion. The subrou-
tines are listed in the order in which they appear in the program; after the
main subroutine, this is alphabetical. Section III contains some general com-
ments about the program, particularly in the running of the code. Section IV

contains the program listing.
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(&
d
-

B.2 SUBROUTINES
(1) void main(argc,argv)

This is the main part of the program that primarily calls subroutines
that execute the real working code. Defined in /hon:z/physun/ewald/util.c
are Time() and Date() and these simply store the present time and date at
the beginning of the program in the character arrays datum and ttime, to be
printed in the output listing.

g-screen is a switch to be used externally when running the program.

It is set to one in the global variable List. In the statement
g-screen = stparglargc,argv,"-s") == (char =)NULL;

if there is a -s after the command to execute the program then g_screen =
0 and all print statements that start with if (g_screen) will not be printed.
That is, there will be no printing to the screen. Note that *stparg is also
defined in utii.c.

The next few statementsread the current logged directory from which
the program is being run and appends this to the listing file. The name of
the listing file will depend on whether the -1 option (programmed in these
statements) has been used, i.e., using -1test when executing the program
means that the listing file will be test.lst on the directory from which the
program was run. If this is not given, the default LISTE is used which in this
case is in the definitions as je.lst. The MakeFile command which attaches
the logged directory, listing filename and “lst” together is defined in util.c.

| The subroutine input() is called to read in any necessary input
para.m:;:.i;s. pagel(), page2(), page3() print output information to the

listing file.
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Next there is a loop with counter inrun that is a temperature loop.
For each jteration it sets the reduced temperature to be the one from the
array s_tcl[inrun] (which may cither be the standard temperature set or
specific temperatures read into the program - see input()).

In the call if(it_init(inrun)), the routine it_init is called to
initialize all the parameters that must be changed for the new temperature.
If something fails here, it returns a value of one and the program exits.

Then the call Titer(inrun) is executed which does the iterative
calculation for j. at the temperature g_t. The summary values of the tem-
perature t, (jo/7,)**, and j./jcr, where jor = chi() * (1 —t)%/2, are stored
in the array g_summ[1 (3.

If the input was not a delta function and functional derivatives have
been asked for (g_fder = 1) then the =:broutine funder() that calculates
the functional derivatives is called. The inrun oop finishes here.

jc0Q) is a subroutine to find the T = 0 value of (7¢/70)*2. je_end ()
prints the contents of jc_zec to a binary output file for use by another pro-
gram such as tunnel.c. g_save must be set to ore for this to occur. summé.ry()

lists the contents of the g_summ array in columns.
(ii) double bdelta (mn,cc)

This subroutine has been taken from foelow.c program to calculate
an 1nitial set of starting gaps and frequencies at 2 temperature T with no
applied momentum (ie. v = 0). This is the usual iteration of the nonlinear
Eliashberg cquations:

|G | B = 2T 3 [Am = n) + A(m 41+ 1) — 247]

_Bn
m=0 V1+A$u
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[&)
(&)
1 4]

P R (B.19)
and
N 1
Zn=7T{20+ 1+ D [Mm=—n)=A(m+n+ )]}
r.n._=:) 14+ A7

— . (B.20)
V31+AZ

where A, = A,/ | &, | In this piece of code, be is equal to P& | An/#T and

+m(tF +1¢7)

wvnw is &, /7T na is the gap index and cc is a factor multiplying A which is
used by the calling subroutine jeiter to iterate quickly for a self-consistent

solution (see jciter). jedelta is used by jciter to call bdelta.
(iif) double chi()
The impurity-dependent prefactor in the BCS Ginzburg-Landau the-

ory near T, is given as:

(o) = S i 1 1
@ =t Pt 1+0

: (B.21)

where p = (2z7,7)"! and ((3) is the Riemann zeta function (¢(3) = 1.202).
This routine calculates this prefactor. It is necessary for the normalization
of jc by jeL and can be called at the end of the subroutine Titer, but this

is not done in the present program listing of section IV.
(iv) double current(sbar)

This subroutine calculates the current j, from the formula

S
n=0 "

Js = CONSTx ¢ Z %{Enref[n] + &arctanz—"} . (B.22

where these quantities have been globally passed from jedelta. The subrou-
tine jedelta should be consulted for the definition of the above variables.
CONST is defined in the program Lsting.
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(v) veid fundexr()

This routine calculates the funciional derivatve of j. with respect to
o~ F(w) for a particular temperature ¢, The funciional derivative is given as:

05 e F ) + e = )] = P fa F()
FatE(Q) e -

(B.23)

One frequency bin in the a®F(w) spectrum at a fre uency § is acgumented
by a delta function of infinitesimal weight ¢ and the change in the property
Je is computed and analogous to the usual derivative. the difference between
the perturbed and unperiurbed j. divided by ¢ in thé limit of € going to zero
is the functional derivative. This derivative is a measure of which frequencies
enhance or de-enhance the superconducting property. 7

The routine is called by the main(} routine after j, for a particular
temperature, has been found and only if functional derivatives have been
requested, (i.e., if gfder = 1). Also, this can only be done for a real «*F(w)
spectrum and not a delta function spectrum. The first few lines request an
output filename for the functional derivative data and creates the file using
the MakeFile routine defined in util.c. The value of j. is stored in s_jc
and also g_full is stored and then set to zero so that there is no iteration
output (an entire calculation for j. is done for each frequency bin which
would increase the amount of useless output by a factor corresponding to the
number of bins in the a®F(w) spectrum). Next, a loop is run where, for each
iteration. one bin in the o F(w) is stored in savbin and a new bin is defined
at this frequency which is greater by five percen:. The ¢ in this case then is
‘the area of this added piece or eeps = 0.05*savbin*g.dw/tomeg. Note that
the 3 crec.a2f array is actually wa?F{w) and hence we have to divide by

the frequency here, which is tomega. The epplus[i] have to be recalculated



Appendix B 225

for the new a?F(=) spectrum. as is done in the it.init routine by calling
rlambda. norm() also is called again to recaleulate the exact normal state
w-channel. We are essentially reinitializing evervthing for the new modified
spectrum. Then Titer() is called to iterate for the new j. and the functional
derivative at that point is calculated as djdalifunc] = (g.jc-s_jc)/eeps.
The frequency is stored in the array omeg[] and the original value of the
moditied frequency bin is replaced into jc_rec.a2f. The step size starts with
one frequency bin at a time to carefully describe the shape of the derivative,
however, as the derivative levels off at higher frequencies fewer points are
necessary to describe the curve and so the next few lines simply increase the
step size to save time and unnecessary calculations. When the step size has
incremented to the number of bins available, the program jumps out of the
loop. Then there is the usual writing to the listing file of the arrays containing
the frequencies and derivatives. And these are also written in column form

into ocutput files for use in plotting. gfull is restored to its original value.
(vi) void input()

This routine asks a lot of ;questions. Sce the sample je.run file in
section III to see typical input values. First it reads input from the data file
(must be binary output from the ftcrit.c program and produced on the same
machine (i.e., MIPS/SPARC or physun); the two types are not compatible).
Note MakeFile is defined in util.c. The structure for the input file is Jerec,
which is defined in the global variable list. If binary output is required at the

end, a file is created.

This subrout‘ine uses ReadReal () and ReadChar() which are both
defined in util.c.
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(vii) it_init (inrun)

This subroutine 1s very similar to the same routine in fbelow.c and is
called by the main routine at the beginming of each temperature to initialize
the number of Matsubara gaps, frequenctes and A,.’s. This number v assigned
to jerec.jcpl. {For anyone who is familiar with the FORTRAN code for
fbelow.c, as the arrays in C start at zero, there is no need to add one to this
number as is done in the old FORTRAN version of fbelow.c. However, when
calculating the A.’s the for loop ends with 2*ng+1 to compensate for both
the loop starting at zero and the fact that ng is one less than the FORTRAN
version. )

The rlambd routine is called to calculate the A,’s and norm is called
to calculate the correction to the w-channel due to F. Marsiglio. Finally, if
the temperature is too small such that the redimensioning of the arrays is
greater than the dimension of the array, as defined in the global variable list,
then the routine prints an error message and returns a one instead of 2 zero

to the main routine and this causes main to exit the program.
(viii) doudle jedelta (mn,cc,sbar)

This subroutine is called by jciter() to calculate A, and &, for one
iteration of the Eliashberg equations. If sbar = 0 (note that s is called sbar
here), then the routine does this by calling the bdelta routine which is the
usual fbelow.c version. Here nn refers to the gap or frequency index n.

For nonzero sbar, the equations for the Matsubara gaps and frequen-

cies are used:

N -
| & | An ==T Z[A(m —-n)+Am+n+1) - 2p']:A'larctang-“3-
Sm

m=4 Zm
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12
£ ]
-1

+ w(tt — t')—_—_:arctani—n . (8.24)
and
Go==T{2n +1+ Z[\(m —n)=Am+n+ 1)]’mf[m]}
m=0 Sm
(et eyl (B.25)
Sn
where
Tom=1=355 +4A , (B.26)
Ypm = 25, (B.27)
Pm = \[Tin T Y30 » (B.28)
imf[m] = /(om — 2,m)/2 . (B.29)
ref[m] = \/(pm + 2,m)/2 . (B.30)
Tm =1+reffm] , (B.31)
Ym = Fm +imf[m] (B.32)

and A, = .’:\,./ | @n | and 3, = s/ | & |- In this piece of code, be is
equal to | &, | An/#T and wwmw is &, /=T. The norn() routine should be
cross-referenced here to understand the slight differences associated with the

w-channel that come about from summing from the cutoff o infinity using

the the normal state w-channel.

(ix) double jeder (x,y)

This routine calculates the derivative dj/dv by fitting a second order
polynomial a + bz + cz? to three points of j versus v passed in the arrays
v0 and x[J, respectively. The derivative b + 2¢x is evaluated at the middle
point z = x[1] and passed back to the calling routine Titer.
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(x) void jec.end()

Ifg.save = 1 (see input()), then a file is opened that has been given
a name in input() and jc_rec of the structure Jecrec is written to the file
in binary to he read by another program that uses the same structure, such

as tunnel.c.
(xi) void jciter (sbar,itsw)

This routine is adapted from the iteration routine of fbelow.c. It
is the control routine for iterating for a self-consistent set of Matsubara
frequencies and gaps for a particular velocity v (or sbar here). It is called
by Titer and calls jedelta which calculates the gaps and frequencies from
the nonlinear Eliashberg equations for v 7 0 or by in turn calling bdelta for
the case of v = 0. 7

Fornn = 0 and s = 0 2 gap is 1terated for using a fast iteration
where a guess for Ay is given as cAg and a AJF™¥ is calculated. Three of
these are found and a Newton iteration procedure is used to quickly find the
self-consistent solution.

Otherwise, for s # 0, a slow iteration occurs where the old gaps and
frequencies are used on the righthand side of the equations to calculate a

new set and the procedure repeated until self-consistency is achieved.
(xii) void je0(Q)

If reduced temperatures have been calculated that are less than or
equal to ¢t = 0.2, then jc_C uses the last four values of (j./7,)*/® and their

corresponding t's to fit a cubic polynomial using inv(x,y) defined in util.c,
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where
ylij = a + bzfi] + ez*[i] + d2[i] (B.33)

and the T = 0 value is simply a. After matrix inversion. this has been
returned in the array y(I, where a =y[0]. b =y[1], ¢ =y[2]. and d =y [3].

a is assigned to g_jc0.
(xiii) void jec_slope()

This subroutine calculates the slope djsfs /dT at T, by fitting a poly-
nomial. as described above in j¢_0(). to the four points around T, taking

the derivative of this polynomial and evaluating it at T..
(xiv) void norm()

This subroutine is called by it .init() and funder() after the cal-
culation of the epplus[1. The output global array wwmnerm[] is used in
bdelta() and jedelta(). This routine was added to the programs for hc2,
fbelow, and fterit by F. Marsiglio to sum the w-channel more accurately.
In this routine the exact normal state &, /=T is calculated and this is wwm-
norm[n]. This is given as:

_% =2n+14+X0)+2 Z A(m} (B.34)

" m_l

for w, = #T(2n+1). Thus, in the calculation of the w-channel for the super-
conducting state (done in bdelta and jcdelta), the sum is not to infinity
but to a cutoff and the rest of the sum from the cutoff to infinity is ap-
proximated not as zero {as in the old versions) but with the normal state

contribution. So if wemnorz= &F** and wem is T - — ON? °F then
N s Wy

Bs = BT + (@F - ) (B:33)



230 Appendix B

where &5 corresponds to the jexec.wwnw[] and N refers to normal state
and S refers to superconducting state. Here approz refers to it being summed
to a cutoff and ezgct refers to it being summed to infinity. One should cross

reference with bdelta and jcdelta to see this.
(xv) void page1(), void page2(), void page3()

These three subroutines print out input data, preprocessed data, and
output from the iteration procedure, respectively, to the listing file. The static
character lists exhibit clearly what is being printed. The input data is read in
by the input () subroutine. The preprocessed data is read in from the binary
file produced by the fterit.c program. This includes the latsubara gaps. Any
significant data of the system 1= srinted with pag ) and all three pages are
appended together in the output listing. If the full protocol switch, full.p,
is set to 1, then page3() also starts a new page with the fputc(’\£f’,pr)
command and the output from the iteration procedure is recorded.

W_C_String() for centering character strings and print_arr() for

printing arrays, are defined in util.c.
(xvi) double rlambd (b2,iel)

This routine is called by funder() and it_init() to calculate the
electron-phonon mass enhancement parameter given as

wa? Fw)

w® b w?

A=2 [ do . (B.36)

If the spectrum is a delta function, Awg/{wE +w?) is returned. Note that we,
ve2, ave, and dw are defined in the input subroutine. If it is a real spectrum,

the above formula is used and, as the o?F(w) bin at w = 0 is zero, the sum
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starts with the second bin. Please note that the o*F(w) spectrum is passed

irom the fterit.c program NOT as o F(«) but rather as «wa* Fw).
(xvil) void summary()

This prints to the listing file a tabulation of final results as stored in
the array g_summ (] []. The column headings are run, T/Te, je 2/3, and je.
At the end, the time and date are checked and printed again to have a feel
for the amount of time the program takes to run (it usually takes a lot!).
The listing file is closed and the LoggedDir is freed. Again, W.C_String is
defined in util.c.

(xviii) void Titer(inrun)

This is the main subroutine called by the main program to iterate u
to find j. at a fixed temperature ¢.

Because for each temperature the dimension of the arrays for the
gaps and frequencies changes, the malloc (memory allocation) and memcpy
(memory copy) C routines are used to create memory allowance as it is
required (consult a C manual).

In the first few lines, the amount of memory required for ten ar-
rays, needed further on, is allocated in the arrays del[i] and wwmw[il, i
=0,1,2,3,4.

Then if it is the beginning of a2 temperature iteration (i.e., inrun
== 0), jciter is called with sbar = 0 and itsw = 1 to iterate the usual
nonlinear Eliashberg equations using bdelta. This is necessary to have an
initial set of gaps and frequencies to start with as a first guess. The contents
of the jcrec.del0 and je_rec.wwmw arrays are copied into the arrays del

and wwnw for initial starting values.
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The ijk loop now iterates for u, and j.. Five values of u; are used,
four of which are slightly larger or smaller than the main value of u of interest.
These are assigned to the array x[i]. Then for each value of u;, jeiter is
called to iterate for a self-consistent set of gaps and frequencies for that value
of u; and current is called to calculate the corresponding j,- Now to find
the maximum of j, with respect to u, the jcder() routine is called three
times to get three values of dj,/du from which a Newtonian iteration is used
calling by corr() to correct for u until dj,/dux = 0. If the five values of u;
are taken in groups of three, ie. (ug, u1,: _), (u3,u2, u3), and (uz, uz, us), then
each set of three points with their corresponding sct of j,’s stored in y[i]
can be used to caleulate dj./du |u,, di,/du |.,, and dj,/du }.,, respectively,
and these three derivatives are used by the Newtonian procedure.

Note, that in the i loop the stored values in the array del[i] and
wwmw[i] are copied into the working arrays jerec.del® and jc_rec.wwmw
and after the iteration the working arrays are copied back into the storage
arrays to be used as an initial guess for the next iteration.

When u, is found, the storage arrays del[2] and wwmw[2] corre-
sponding to this value are copied into the working arrays to iterate one last
time for the gaps and frequencies and to calculate j.. The storage array

memory is {reed with the free command.

B.3 GENERAL COMMENTS

Several routines have been defined by Ewald Schachinger and are to
be found in a utility file /home/physun/ewald/util.c. This file is compiled
and linked to the program through the makef command which also compiles

the program. To compile the program, one would type
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/home/physun/evald/makef jc

The makef comxmand requires that a file called je.amak exists on the dircc-

tory. The jc.amak file contains the following:

jc.ann: jc.c /home/physun/ewald/util.a.o
cc jc.c /home/physun/ewald/util.a.o -o je.anm -lm -lcurses -
ltermlidb

/home/physun/ewald/util.a.o: /home/physun/ewald/util.c
cc -c /home/physun/ewald/util.c -o /home/physun/ewald/util.a.o

After the makef command has been successfully executed, the executable
code is now under the name of jc.ann. The program may now be run inter-
actively by typing jc.ann or it may be run with an input file that contains
all the required answers for the input subroutine. The typical command to

run the program in background with the screen switched off and requiring

the output listing file to be named jcpb.lst is

jc.ann -s -ljcpb.lst < jcpb.run &

where the jepb.run file contains the input values and is shown below:

jepb

none

18 /* number of temperatures */
y /* standard temperatures? */
0.0 /* inv. tau for normal imps. =/
600 /* max. no. iter. for gaps =/
25 /* max. no. iter. for u */
1.0e-8 /* iteration accuracy */
1.0e-6 /* iteration accuracy for u =/
0.002 /* gridsize for u */
£ /* full or minimum output x/
0.0 /* iteration damping for u */
0.0 /* iteration damping for gaps */
0.4 /* estimate for u */
a /* functional derivatives? */

Here, none indicates that no binary output file is required. jepb is the binary
file created by the /home/physun/ewald/fterit.c program.

Some general comment about the organization of the program:

o  Aside from the main routine, all the subroutines are in alphabetical order.
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All constants, ete. defined at the beginning of the program are in upper-
cas letters,

Most of the global variables have g_ in front of them to remind one that
they are global.

In C all arrays start at zero instead of one as in FORTRAN,

The ordering of the include statements is important for the program to
compile and run correctly on the MIPS machine.

The machines are not compatible. The program must be recompiled if
running on the SUN workstations, the physun, the MIPS or the SPARCs.
Also the fterit.c program, in most cases, must be run on the same ma-
chine, otherwise the binary output file from that program cannot be read
by jc.c.

The material aluminum is difficult to run. It requires some damping, an
increase of the grid :ize for the five values of u and a reduction in the
accuracy of korr. It will also take more than a week to run throgh
cighteen temperartures.
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B.4 JC.C: PROGRAM LISTING

Here follows the program listing and documentation for calculating
the critical current for a strong coupling superconductor. It was written in

the C programming language.

/* Crivical Current - Strong Coupling =/

#include <sys/param.h>

#include <memory.h>

#include <curses.h>

#include <ctype.h>

#include <string.h>

#include <math.h>

#include "/home/physun/ewald/utils.h"

#define STRE4 64
#define GAPDIM 2500
#define MAXBIN 170
#define LISTE “jec.lst"
#define CONST 3.26328
#define BOLTZ 11.605
#define DATEXT *“.dat"

#define NUL 0.0
#define ONE 1.0
#define TWO 2.0
#define THREE 3.0
#define TOL 1.0E-8
#dafine OUTR 1.0E-8

#define DDERV 1.Q0E-5
#define ACCUR 1.0E-§
#define OUTS = 1.0E-11
#define GRID 0.002
#define LENGTH 85
#define MAXTEMP 21
#define MAXIT 20
#define MAXFUND 50

#define SOR(x) ((x)=(x))

struct Jerac {

int jecpl,na,iel;

c¢har Comment {LENGTH];

double nw,tc00,tcd,ctau,ctaum,mu,wnax,a,lambda,sa,slambda,con acc,
. a2f [MAXBIN] delOEGAPDIH],uwmn(GAPDIHJ.gog,
};

struct Jerec je_rec;
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double g.t,g.consum,g_sdamp,g_summ[21][3],wtfac,g_jc0,g.jc,
epplus [GAPDIM»2+1] ,del1[GAPDIM],g uaccur,g_gridsiza,
ve,we2,ave,ves,wes2,g_dw,vc,g_out,mu2,saves,g_condif,
wwnnorm [GAPDIM] , imf [GAPDIM] ,ref [GAPDIM], invtan[GAPDIM],
tmav,tpi,g_damp,u,g_jcslope;

double s_te[d = {0.95,0.9,0.85,0.8,0.75,0.7,0.65,0.6,0.55,0.5,0.45,

0.4,0.35,0.3,0.25,0.2,0.15,0.1,0.05,0.01};

int g-nrun,g_scraeen=1,g_delta,g _niter,g full ,g_iter,g_fder=0,
g-save;

char LoggedDir[MAXPATHLEN];

char datumf{11],ttime[i1],ListFile[STR64],JcFila[STRE4],
OutFile [STRE4] ;

FILE =pr;

/t*‘l**t“*‘.***‘*****‘t.‘.ﬁ‘*t**‘*‘*‘***‘********'***tl‘***‘l*****/
void main(argc,argv)
/‘ti"!t‘l"l**tliﬁﬁ-‘t““#ﬁﬂ‘*ll**l****************‘**‘t**‘*“****/
int argc;

char »axrgv[]l;

int inrun;

char  =stparg(),»f;

void Time(),Date(),summary(),pagei(),page2(),page3(),
input(),jc_0Q) ,funder(},Titer(),jc_end(),jc_slopa();

Time(ttima);
Date(Qatum);
g.screen = stparg(arge,argv,"-s") == (char *)NULL;
if (getwd(LoggedDir) == NULL) {
perror{“pwd");
exit(1);
}
strcat(LoggedDir,"/");
if ((£ = stparg(argc,argv,”-1")) != (char *)NULL)
strcpy(ListFile,f);
else
strcpy(ListFile,LISIE);
MakeFile(ListFile,LoggedDir,".1st");
if ({pr = fopen(ListFile,"w")) == NULL) {
perror{ListFile);
oxit(1);

}

input();
pagel();
page20);
page3();

for (inrun=0; inrun<={g_nrun-ONE}; inrun++) {

g-t = s_telinrunl;
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}

if (g_screen)
printf("t= %1f, u= %1%, t+ = %1lf\n",g_T,u,jc_Tec.ctau);
if (it_init(inrun)) {
summaxry () ;
exit(0);
T
Titer(inrun);
g-summ [inrun] [0]
g-summ[inrun] [1]
g.summ[inTun] [2]
if (g.screen)
printf("e: N2f, je~2/3: %lf\n\n",g t,g.summ{inrun] [1]);
fprintf(pr,"t: A1f, jc~2/3: %1f\n\n",g.t,g.summfinrun][1]);
if (!g.delta &% g_fder) funder():
} /* end of inrun loop =/
je_00);
je_slope();
je.end();
summary();

g-t;
pow(g_jc,0.6666667);
g-jc/pow(ONE-g_t,1.5);

/*****-t*t#**t****tltt*l!t***i*t*tt‘tt****l*t**ﬂi**ti**#**ttti#tt‘*/
double bdelta (mn,cc) /x calculates the gaps without the currents/
/******“‘******ﬂ**tﬂ**t‘*t**t*t“t‘tttt*.“*“*tl**lﬁ‘!*****‘*‘*‘i/
int nn;

double cc;

{

double xx,wwm,bc,fac,delsq[GAPDIM];
static doubla cca;
int i,kis,k2s;

if ('nn) {
cca = cecxec;
for (i=0; i<=jc_rec.jepl; i++) {
xx = je_rec.delO[i];
delsq{i] = ONE/sqrt(ONE+ccasxxsxx);
}
}
xx = delsqlnnl;
WWm = g_consumsxx;
bc = g_condif*jec_rec.dellO[nn]*=xx;
for (i=0; i<=jc_rec.jcpi; i++) {

fac = i==jc_rec.jcpl ? wtfac : ONE;
kis = abs(mn-i); .
k2s = nn+i+l; &

xx = delsq[i];
vun += (epplus[kis]-epplus(k2s])=(xx~0ONE)*fac;
bc += (epplus([kis]+epplus[k2s]-mu2)*xx*jc_rac.delO[i]=fac;
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je_rec.uwnu[an] = wwm+wsmneram{nn];

raeturn(be);
/‘-‘-‘."-.‘t-l‘I#--t-l.*‘lﬁ‘--"“t“" t‘t*‘.t!*“‘*““t-'t*lt*****/
double ¢hi() /* impurity-depend~at prezactor in GL theory near Tc =/
/Utt--‘*".-‘.-.*"“-Itl‘“"“ﬁ-‘-t'-“t*lﬂlﬂ**t**********‘*'***‘**‘/

{
double diff,sum,sumold,wn;
int n;
if (je_rec.ctau <= 10.0) {
diff = ONE;
sum = NUL;
sumold = NUL;
for {n=0; diff>=TOL; n++){
sumold = sum:
*n = TWO*(douzle)n+0NE;
sum += ONE/wn/en/(wn+jc_rec.ctau/je_rec.tc);
diff = fabs((sum-sumold)/sum);
}
return (8.0%sum/7.0/1.202);
} else
roturn (M_PIxM_PIx(jc_rvec.teld/je_rec.cran/7.0/1.202));
} .
/l*!‘*t‘tltttt#!‘**“t**lt*ﬁ*!!i‘ttl*#*t‘t**‘!t**tt**Iit‘*t********/
double current{sbar) /% calcv.ates the current j =/

-/lt‘!ltttitttlt'*#tt!*t#tﬂt;#tttttttlt*t*t*t‘#i‘****tt********!*&m*/
double sbar;

{
double j,js,xx,yy,terml,term2,term3;
int i;
j = NUL;
for (i=0; i<=jc_rec.jcpl;i++){
xx = je_rec.delOfi];
vy = je_rec.wwmw(i]l;
terml = invtan[i]=*xx*xx;
term2 = =-sbarxref{i]/yy;
termd = imf{i];
j += (terml+term2+term3)=>yy»yy/sbar/sbar;
}
js = CONST»g_t=*j;
return (js);
}
PRI 2o T2 PRttt it I R L N T T R Tl p L Y
void funder() J* calcwlates functional derivativas »/
l‘-ll*t‘t*ﬂ*ﬂ‘ﬁ!-K*tttl‘it*tt'ttt.i“'.tt‘*tt"-********tttttt“tttl

{
' char rd,ReadChar(),fname[STR64];
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static int ifunc= -1,kstep=1;

int iadd,i_save,s_summp,i;

double x,s_jc¢,eeps,tomeg,rlambd(},y,savbin;
static double djda[MAXFUND],omeg[MAXFUND];
void prr_arr(),ncm();

FILE =fdaer;

static char

*t01 = "Number of frequencies ",
»t02 = "Save functicnal derivativas on file ",

xd = ’Y*;

do

if (g_screen)
printf("Do you want functional derivatives? (def.: y) > ");
vhile ((rd = ReadChar(rd)) != ’Y’ && xd !'= ’N’);
if (zd == ’Yy*) {
if (g_screen)
printf("Save functional derivatives on file
(def.: %s?777Us) > “,LoggedDir,DATEXT);
fgets(fname,STR64,stdin);
iname[strlen(fname)-1] = ’\0’;
if (!(i_save = strlen(fname)==0 || !strcmp(fname,"none"))) {
MakeFile(fname,LoggedDir ,DATEXT);
if ((fder = fopen(fname,"w")) == NULL) {
perror(fname);
exit(1);
¥
}
s_je=g_jc<;
s_summp = g full;
g-full = 0;
ifunc = -1;
kstep = 1;
while (ifunc < MAXFUND) {
fprintf(pr,"\nFreq. no.: %d\n\n",ifunc+1); -
if (g_screen) printf{"\nfreq. no.: ¥d\n\n",ifunc+1);
tomeg = g.dw*(double)kstep;
savbin = jc_rec.a2f[kstep];
jc_rec.a2f[kstep] = savbin=1.0S;
eeps = 0.05+savbin*g_dw/tomeg;
x = TWO*M_PIxtmav;
for (i=0; i<=2«jc_rec.jcpl+l; i++) {
y = x=(doubleli; .
epplus{i] = rlambd(y*y,jc_rec.iel);

norm() ;

Titer(1);

omeg[++ifunc] = tomeg;

djdafifunc] = (pow(g.jc,0.6666667)-pow(s_jc,0.6666667))/eaps;
je.rec.a2f [kstep] = savbin;
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3% ((tcmeg /= jec_rec.tcOd) > 40.0) break;
iadd = tomeg > 9.0 7 (int)(1.6=jc_rec.Tcl/g.da) :
tomeg > 1.0 ? (inz)(0.8*jc_rec.tcO/g._dw) : 1;
kstep += iadd ? iadd : %;
if (kstep > je_rec.na) break;
}
putc(’\£f’,pr);
W_C_String("Functional Derivatives",pr,80);
W_C_String(" ==== -.pr,80);
fprints(pr,"\nis\n\n",jc_rec.Commeni};
fprintf(pr,"Day and Time of Run: %s//%s\n\z\n\n",datum,ttime);

fprintf(pr,” %#s410d  ( ifune)\n*,t01,ifunc);
if (ti_save)
fprinti(pr,” #4sis\n\n",t02,fname);

fputs("\n\nFrequencies [meV]:\n\z2",pr);
prt_arr(pr,omeg,0,i ac,"412.61£",6,0);
for (iadd=0; iadd<=izunc; iadd++)

omegliadd] /= je_rec.tcO;
fputs("\n\nFrequencies/Tc:\n\n",pr);
prt_arr(pr,omeg,0,ifunc,"%12.61£",6,0);
fputs{"\n\nFunctional Derivative for added isotropic delta

Zunction:\n\n",pr);

prr_arr(pr,djca.0,ifune,"%12.61f",6,0);
if (li_save) {

for (i=0; i<=ifunc; i++)

fprintf (fder,"%12.7f %12.7f\2",omeg{i] ,djdalil);

fclose(ider);
}
g-full = s_summp;
}
/t*t*i*‘.-t**.‘**t*i“***"***t#t"it*t******‘***‘***3******‘*t****ﬁ*l
void input() /* queries Zor inmput values */
/t*.tt‘!tt*t**tl*‘*#!*l*i*ttt*-lttttttttl*‘*****‘**'.**tﬁ**’!**!***/
{
double ReadReal();
int i;
c¢har  rd,ReadChar();
FILE »fp:
do {
if (g_screen)
printf("Read the input data from file (def.: ¥s???2?%Ys) > ",

LoggedDir ,DATEXT) ;
fgets(JcFile,STR64,stdin);
JeFilelstrlen(JeFile)~1] = *\0*;

} while (!strlen(JcFile) || !strcmp(JcFile,"rome"));

MakeFile(JcFile,LoggedDir ,DATEXT);

if ({(fp = fopen(JcFile,"rb")) == NULL) {
perror{JcFile);
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exit(2);
¥
fread((char *)&jc_rec,sizeocf(struct Jerec),1,fp);
fclose (£p);
if (g_screen)
printf(“Save results for the gaps on file (def.: Ys??277Ys) > “,
LoggedDir ,DATEXT) ;
fgets(OutFile,STR64,stdin);
OutFile[strlen(OutFile)-1] = *\0’;
if (g_save = strlen(OutFile)!=0 && strcmp(OutFile,"none"))
MakeFile(OutFile,LoggedDix ,DATEXT);
g-nxun = MAXTEMP;
do
if (g_screen)
printf("Enter number of temperatures (def.: ¥a) > ",

g-nrun);
vhile ((g_nrun = ReadInt(g_nrun)) < 1 &t g_nrun > MAXTEMP);
rd = 'V
do

if (g_screen)
orintf("Do you want the standard temperatures? (def.:y) > ");
while((rd = ReadChax(rd)) != ’Y’ && rd != ’N*)
if (rd == N?)
for (i=0; i<g_nrun; i++)
do
if (g_screen)
printf("Enter ¥2d. value for T/Tc (def.: %6.31f) > »,
i+l,s_tc[il);
while ((s.tc[i] = ReadReal(s_tc[3i]))<=NUL && s_tc[i]>=0.99S);

do
if (g.screen)
printf("Enter value for ctau {(def.: ¥%6.1le) > ",
je.rec.ctau);
while ((jc_rec.ctau = ReadReal(jc_rec.ctau)) < NUL);
g-niter = MAXIT;
do
if (g_screen)
printf ("Enter max. number of iterations for gaps
(def.: %d) > ",g_niter);
while ((g._niter = ReadInt(g_niter)) <= 0);
g-iter = MAXIY;
do
if (g_screen)
printf("Enter max. mumber of iterations per temperature
(def.: %d) > “,g iter);
while ((g_iter = ReadInt(g_iter)) <= 0);
g-out = OQUTR;
do
if (g_screen)
printf("Enter iteration accuracy for gaps (def.: ¥%6.1le) >
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",g-out);
while ({g_out = ReadReal(g_out)) < NUL);
g_uaccur = ACCUR;
do
if (g_screen)
printf(“Enter iteration accuracy for u (def.: %6.1la) > ",
g.uazcur);
while ((g_uaccur = ReadReal(g waccur)) < NUL):
g-g-idsize = GRID;
do
if (g_screen)
printf("Enter gridsize for u (def.: %6.1le) > ",
g.gridsize);
while ((g_gridsize = ReadReal(g_gridsiza)) < NUL);
rd = *M*;
do
if (g.screen)
printf("Do you want £(ull) ocutput or m(inimum) output?
(deZ.:m) > ");
while ((rd = ReadChar(rd)) != 'F’ g& rd i= 'M’);
g-full = rd == *F’;
g.sdamp = NUL;
do
if (g_screen)
printf("Iteration damping for u loop {(def.:= %6.31f) > v,
g-sdamp);
while ((g_sdamp = ReadReal(g_sdamp)) < 0);
g_damp = NUL;
do
if (g_screen)
printf(“Iteration damping for gaps (def.:= %6.31f) > ",

g-camp);
while ((g_damp = ReadReal(g_damp)) < 0);
u = NUL;
do

if (g_screen) printf("Enter estimate for the velocity u > ");
while ((u = ReadReal(u)) <= NUL); |
rd = ’N?*;
do

if (g_screen)

printf("Do you want functional derivatives? (def.: n) > ");

vhile ((rd = ReadChar(rd)) != ’Y?’ && xrd != N2 )
g-fder = rd=='Y’;
mu2 = THO*jc_rec.xu;
g-delta = jec_rec.na == 0;
if (g_delta) {

we = TWO=jc_rec.a/je_rec.lambda;

wve2l = wakwe;

awe = TWO*jc_Tec.aswe;
} else
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g_dw = je_rec.wmax/{double) (je_rec.na-1);
%C = jc_Tec.nW=jc_Tec.umax;

/!IH.‘Ul!*‘l!*ll‘!‘ll‘.-l*‘t‘t*Olltttl*t....‘.*t‘-‘t-“‘..-l!-‘-..-/
it_init (inrvn) /* initializes parameters for new tamwperature =/

/It*l*"**‘U!t*!-llﬁtil‘!l!!!l!ll**tt*llttt.#-ttttt'*‘ttlt!l!t‘t"!/
int inrun;

double x,wcs,y,rlambd();

int ng,i,itin;

void norm();

itin = 0;
tmev = jc_rec.tcO=s_tclinrun];
x = TW0=M_PI*tmeav;
g-consum = (jc_rec.ctau+jc_rac.ctaum)/tmev;
g-condif = (jec_rec.ctau-jc_rac.ctaum)/Tmev;
tpl = M_PI*tmav;
ng = {int) (0.5+wc/x);
if (ng <= GAPDIM) {
wes = ((double)ng+0.5)=x;
wtfac = ONE+(wc-wcs}/x;
if (je.rec.tc00 == jc_rec.tc0) {
for (i=0; i<=ng; i++)
if (i <= jec_xrec.jcpl)
je_rec.delO[i] /= 15.0;
alse
je_rec.2elO[i]l = jc_rec.delO[je_rec.jepll;
} olse {
for (i=jc_rec.jcpi+l; i<s=ng; i++) {
je_rec.delofli] = je_rec.delO[jc_rec.jcpll;
je.rec.wwmw[i] = jc_rec.wwmwljc_rec.jcpil;

non

'}
je.rec.jcpl = ng;
je_rec.tcll = tmev;
for (i=0; i<=2=ng+l; i++) {
¥y = x=(double)i;
epplusfi] = rlambd(y*y,jc.rec.iel);

norm();
if (g.screen) {
printf("Beginning of the %2d. temperature = %10.61f K\n",
inrun+1,tmevsBOLTZ);
printf ("
\n\n");
printf("T/Tc = %10.61f number of matsubara frequencies =
%4d",s_tc[inrun] ,ng+l);
printf(" wtfac = %10.71f\n",wtfac);
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if (g_fall) {
if (inrun > 0)
fputs("\n\n",pr);
<printf(pr."Beginning of the }2d. temperature = %10.61f X\a",
inrun+1,tmev=BOLIZ};

fprintf(pr,"-- -
---\n\n");

forintf (pr,"T/Tc = 4i0.€.7 \n",s_tc[inrunl);

fprintf(pr,"Numter of matsubara fraquencies = %4d wtfac =
£10.61f\n" ,ng+1,wtiac);

}
} else {
itin = §;
fprintf(stderr,"Temperature too small ~> increase array

imensions! -- cancel\n®);

}

return(itin);
}
j‘tl.tt*t.iﬁ‘t‘t"i.i‘t‘*‘itttt‘ l!t“ttttl'!ittt*t*tll.*“.i‘.t‘lt*/
double jcdelta (mn,cc,sbar) /= calculate gaps with influence of v */
I‘t“ltl‘ttitlll‘*#ll‘t‘lt!*#*“.*ltlt'****t*‘*tt***#ll‘****l******/
int on;
double cc, sbar:
{

doudble xx,yy,wsm,bc,xp,yp.rho,x,y,fac,bdelta();

static double cca;

int i,kis,k2s;

if (sbar == NUL)
bc = bdeltalon,cc);
else {
if (ton) {
cca = ccxee;
for (i=0; i<=je_rec.jepl; i++) {

xx = je_rec.delO[i];

¥y = je_rec.wwmw[il;

xp = ONE-sbar=sbar/yy/yy+ccaxxx*xx;
yp = TWO=*sdbar/yy:

tho = sqrt(yp*yp+xp*xp);
imf[i] = sqrt{(rho-xp)/IW0};
ref[i] = sqrt((rho+xp)/IW0);
x = ONE + reflil;.
y = sbax/yy + imf[ils
) invranfi] = atan(y/x);
}
wvem = g_consum*imf [an]*jc_rec.wumw[nnj/sbar;
if (an == jec_rec.jcpl)
wwm -= TWO=(ONE-utfac);
bc = g_condif*jc_rec.dell[nn]*invtan[anl*jc_rec.wwmwlnn] /sbar;
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for (i=0; i<=je_rec.jepl; i++) {

fac = i==jc_rec.jcpl 7 wtfac : ONE;
kis = abs(on-i);
k25 = nn+i+1;

¥y = je_rec.wwmw[i];

wwa += (eppluslkis]-epplus [k2s])#(inf [i]*yy/sbar-ONE)sfac;

be += (epplus[kis]+epplus[k2s]-mu2)=jc_rec.dalO[il=
invtan[il=yy=fac/sbar:

}
je_rec.wwmwinn] = wvwm+wwmnorm[an];
}
returni(be) ;
}
/ttt*“‘*****II‘*““"t“tt.tt“**‘*********ﬁ*ttt*‘*t*‘*t"““‘!l
double jecder (x,y) /* calculates the derivative: dj/dv =/

l**itt*ttttttttt***tt*.tl**t*t*ttt*titt**‘**#‘t“**‘t#lt*l*lttt-*t/

double x{1,y0:
{

double s,x21,x31,y21,y31,x321,xq31,¢,b;

x21 = x[1]1-x[0];
x31 = x[2]-x[0];
y21 = y[1]-y[0];
y31 = y[21-v[0];

xq21 = x[1]#»x[1]-x[0]*x[0];
x331 = x[2]»x[2]-x[0]*x[0];

¢ = (y31*x21-y21*x31)/({xq31*x21~-xq21*x31);

b = (y21-c=xq21)/x21;

s = b+2.0%c»x[1];

return (s);
}
fﬁ*t#ttt!*******tt!********‘****tttt*##lttt**t*****#*‘***.‘*****‘*/
veid je_end() /* saves jc_rec on binary file =/

/t*‘*ﬁ‘#*llltNI**I*‘*UIU**t**ﬁtlttttllt“lt***t‘t‘*l*t.t‘l!ttttl*tl

{
FILE =fp;

it (g_save) {
if ((fp = fopen(OutFile,"wb")) == NULL) {

perror(OutFile);
exit(2);
}
furite({char *)Xjc_rec,sizeof(struct Jcrec),1,fp);
fclose(£p);
}
f*t*l***!**“*t‘*l‘t*“*t*ﬂt****‘ﬁ‘*.ttt‘#.‘.t‘***t#*i.*“‘#tti‘.“I
void jciter (sbar,itsw) /* control loop for gap itaration s/

ft*ttttttt#tttttttttt!tttttttittttlttt**ttll!tt#tlttttttttttttt-llt/
doubla sbar;
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int

{

¥

itswu;

double korr,cc,ddel,xx,yy.minus,c[3],bc[3],jcdeltal),corr();
int iter,i,olddif ,newdif,jtsw;

olddif = newdif = 1;

jtsw = itsw;

cc = ONE;

iter = 0;

while ((olddif || newdif) && (iter <= g_niter)) {
olddif = nawdif;

if (jesw) { /* start fast iteration moda %/
¢[0] = ONE-DDERV;
¢[1] = OXE;
c¢[2] = ONE+DDERV;

for (i=0; i<=2; i++)
be[il = jclelta(0,c(i],sdar)/je_rec.wenw[0]/jc.rec.del0{0];
xorr = corr(ONE,c,be);
¢c = ONE-korr:
cc = ONE+{cc-GNE)/ (ONE+g_damp);
}
for (i=0; i<=jc_rec.jecpl; i+-)
del1li] = jedel-a(i,cc,sbar)*cc/je_rec.wumwli];

ddel = NUL;
minus = deli[0] < NUL ? -ONE : O
for (i=0; i<=jec_rec.jcpl; i++) {
xx = minus*deli[i];
yy = je_rec.delOfil;
ddel += Fabs((xx-yy)/yy):
je_rec.delOli] = itsw ? xx : (xx+g_damp*jc_rec.delOli])/
(ONE+g_damp) ;
}

newdif = ddel > g_out;

itar++;

if (({ddel <= OUTS) || ‘'nmewdif) {
jtsw = 0;
cc = ONE;

}

NE;

if (g full) {
fprintf(pr,"After %6d iters change in gaps = %14.6le, delO[0]
= 714.7le\n",iter,ddel, jc_rec.del0[0]);

it (g.screen) {
printf{“After %6d iters change in gaps = %14.6le, delO[0]=
%#14.71le\n",iter,ddel, jc_rec.del0[0]);
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/i**ttt**‘i*tt"t*****l‘tt*!‘Wl“****tt!!t**‘tl*t!*l*it*t*‘l-*ttttif

void je_0Q) /= calculates the t=0 value of j¢~2/3 »/
/*H*#***It‘!l‘ttl.‘******‘lﬁ‘*.!*.‘l*******‘*t*“i‘t‘*““*‘-***!“/

double x[4],y[4];
int i,3;
void inv():

j = g.nrun-1;
if (g_summ[j]1[0] <= 0.2) { /* calculate jc(0) =/
for (i=0; i<4; i++) {

x[i] = g_summ{j-3+i][0];
yIil = g_summ[j-3+i][1];
inv(x,y);

g-jco = y[o0];
if (g_screen)
printf ("\n\njc(0) = %12.51f\n",g_jc0);

/t*l*******&ﬁ******it*t*‘***t*l***-**'*tt**t****tt*!“t***t#*“ﬁtti/
void je_slope() /* calculates the slope of jc~2/3 at Tc «/

/*tt‘**********‘******tt*t**t**'!****it8**********#****‘*U***tt*ltt/
double x[4],y[41;
int i,3;
void inv();

x[0]
yfol
for (i=
x[i]
y(i]
}
inv(x,y);
g-jcslope = y[1]+TWO*y[2]+THREE*y{3];
if (g_screen)
printf("\n\nslope at Tc = %12.51f\n",g_jcslopa);

_OKr

.0
.0
<g; i++) {

i
g-summ[i-1] [0];
g-summfi-1] [1];

J A S R o

void norm() /* Frank’s more accurate summing of the w-channal */
/t*ttt**t#tttttt*t**tt**ttl*t*ttttttlttttttt*t*ll*ttttt‘ltttttttttt/

{
double sum;
int n,m;

wwmnorm[0] = epplus[0]+ONE;

for (n=1; n<=jc_rac.jcpl; r*+) {
sum = NUL;
for (m=1; m<=n; m++)
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sum += epplusim];
wwmnorm[n] = wemnorm[0]+TWO*(sum+(doubleln);
}
¥
/‘ -“t*t'i‘*‘lll‘**iitt-i‘l‘*.‘H“‘**tlt‘l*‘t*&****K*‘tttttﬁ*.t*tﬁ*/
void pagel() /* a summary of input data */
F T L L T T 2y
{
static char
*t01l = "Critical Current for a Supercenductor',

w2 = Y'======= ============z==='!

»t03 = " Input data:\n",

»$04 = ¢ Nurber of temperatures ",
«z05 = ¢ Number of iterations per temperatura ",
*t06 = " Value of t+ (meV) ",
=07 = Initial estimate for u ",
“tQ8 = " Number of iterations per velocity ",
»tQ9 = " Accuracy for gaps ",
=ti0 = ¢ Functional derivatives (=Y yes/=N no) ",
»gil =" Read starting values from fila ",
*t12 = " Iteration damping for u (=0 / no damping) ",
*t13 = " Iteratie~ damping for gaps (=0 / no damping) .,
*t14 = Full pretocol (=M minimum/=F <ull) ",
*«tl5 = " Save results for tunneling om file ",
16 = " Accuracy for u ",
tl?7 = " Gridsize for u "

void prt_arr();

W.C_String(t01,pr,80);

W_C_String(t02,pr,80);

fprintf(pr,"\n¥%s\n\n", jc_rec.Comment) ;

fprintf(pr,"Day and Time of Run: %s//Y%s\n\n\n",datum,ttime)};

fputs(t03,pr);

fprintf(pr,"%s?10d (g_nrun)\n",t04,g_nrTun);

fprintf(pr,"%s¥i0d (g._niter)\n",t08,g._niter);

fprintf(pr,"%si10d (g.itexr)\n",t0S,g_iter);

fprintf(pr,"%s%10.61f ( ctau )\n",t06,jc_rec.ctau);

fprintf(pr,"¥%si10.61f ( u )\n",t07,u);

fprintf(pr,"%s%10.61f (g_sdamp)\n",t12,g_sdamp);

fprintf (pr,"%s%10.61f (g.damp)\n",t13,g_damp);

fprintf(pr,"is Yc (g_full)\n",t14, g_full"?’ *M?);

fprintf (pr,"¥s e (g_fder)\n",tl10,g fder?’Y’:’°N’);

fprintf(pr,"%s¥10.1le ( g_out)\n",t09,g out);

fprintf(pr,"%s%10.1le (g_uaccur)\n"“,t16,g_unaccur);

fprintf(pr,"%s%10.61f (g_gridsize)\n\n",t17,g_gridsize);

fprintf (pr," Reduced temperatures for this rum, s_tefi],i=1,%d:
\n".g_nrun);

prt_arr(pr,s.t¢,0,g.nrun-1,"%12.61£",6,0);

if (g_save == 1) fprintf(pr,"\nis¥s\n",t15,0utFile);

fprintf (pr,"\n¥sis\n".t11,JcFile);
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}

/tt-‘.t*.'*l*ﬂ**ttl*“l‘!ltttt‘t‘K**‘t*‘t*!‘l!**#*t‘l‘tt-'-ltiit“‘/

void page2() /* a summary of preprocessed data »/
/“***.*..“*“..““‘*-*‘*“‘-tt"‘*“'***‘*t“*t““".'*‘l.*‘.“‘/

{
static char
=01 = "\n\n Preprocessed data:\n",
*t02 Critical tamperaturae [K] .
*t03 = Actual temperaturs [K] "
=04 Inv. lifetime of normal scat. imp. [meV] "
=205 Inv. lifetime of param. scat. imp. [meV] "
*t06 = " Dofine type of A2F:\n",
=07 (=0 one or two delta functions Nan,
=t08 (>0 defined by spectral function with na bins)",
*t09 = ¢ Mu - star ",
*T10 Cutoff frequency = nw*wmax ",
g1l = Debye fraquency [meV] .,
*t12 System with inelastic scattering? (=T yes/=F no)",
*t13 Concentration of inelastic scatterars ",
=tlg = ¥ Parameter gog "
void prt_arr();

o oeowonnwnwnwauu

fputs(t0i,pr);
fprintf(pr,"4s%10.61f ( tc0 )\n",t02,jc_rec.tcO*BOLTZ);
tprintf (pr,"%4s%10.60f ( tc00 )\n",t03,jc._rec.tcO0+BOLTZ);
fprintf(pr,"%s¥10.61f ( ctan )\n",t04,jc_rec.ctaun);
fprintf(pr,"%s%10.62f ( ctaum)\n",t05,jc_rec.ctaum);
fputs(t06,pr);
fputs(t07,pr);
fprintf(pr,"%s%10d ( na )\n",t08,jc_rec.na);
fprintf(pr,"%s%10.61f ( mu )\n",t09,jc_rec.mu);
fprintf(pr,"¥si10d ( nw )\n",t10,(int)jc_rec.nw);
fprintf(pr,"¥%s%10.61f ( wmax )\n",t1l1,jc_rec.wmax);
if (je_rec.gog !'= ONE)
fprintf(pr,"%si10.51f ( gog )\n",t14,jc_rec.gog);
fprintt(pr,"¥is Ac ( iel )\n",t12,jc_rec.iel?’T’:’F?);
if (jc_rec.iel) ’ :
fprintf(pr,"4s%10.61f ( con )\n",t13,jc_rec.con);
fprintf(pr,"\noMatsubara gaps jc_rec.delO[i],i:=1,%d:\n",
je_rec.jepi+l);
prt_arx(pr,jc_rec.del0,0,jc_rec.jcpl,"¥12.61£",6,0);
}

/t:*t:ttttz*t*ttttttttt-:tt:tztxtttttt*t:ttt:*a:t:tta:t:tu:tttt:t::[

void page3() /* listing of signif. data and iteration output »/
/t##*tttltttit*t*tltlt*ttttlttttttt#ttttttttttti**l.t***ttt*lttlt*t/

{

static char
*t01 = "Siginificant Lata of the System",

#t02 = Y=====ssssmmcococsommmmessooo—ooi

*g03 = 0 Area under AZ2F "
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*z04 = " Mass enhancement factor ",
«g05 = " Lanbda{Tc) ",
=t06 = " Electronic part of the spec. heat [J/mole/K] “,
=07 = Sommerfeld constant gamma [J/g-at/Kex2] .,
»=t08 = “Iteration of the nonlinear Eliashberg Equatiocns",

.tog = " - .

fputc(’\n’,px);
fputc(’\n’,pr);
W_C_String(tdl,pr,80);
W_C_String(t02,pr,80);
fprintf(pr,"¥%s%10.51f ( a )\n",t03,jc_rec.2);
fprintf(pr,"%s%10.51f (lambda)\n",t04,jc_rec.lambda);
if (g.full) {
fputc(’\£?,pr);
W.C_String(t08,pr,80);
W_C_String(t09,pr,80);
fprintf (pr,"\nis\n\r",jc_rec.Comment);
fprintf(pr,"Day and Time of Run: ¥s//¥s\n\n\2",cdatum,ttime);

/ltt*tttt*tlt**ltitt#l##t*'!llll**tttt****t****1#‘**!#*‘*****"‘#*#/
double rlambd (b2,iel) /* calculates lambda »/

PR L L L L T R N N e T e e T Y
double b2;
int iel;

double w,ep,rlam;

int i;

if (g_delta) {
rlam = awe/(we2+b2);
if (iel)
rlam = rlam+sawes/(wes2+b2);
veturn{rlam)};
} else {
ep = w = NUL;
for (i=1; i<jc_rec.na; i++) {
v 4= g dus
ep += jec_rec.a2f[il/(wew+b2);
rlam = ep*g_dw»TW0;
if (diel)
rlam += sawes/(b2+wes*wes);
return(rlam);
}

}
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/'“t‘*I*3**#tt-ilt!ttl'!tl*t*-“tt.l*#'l‘tt'ltl"t“!!*t***ttt"‘.-l/

void summary() /+ a tabulation of final results »/
/mnmnu-:umaunn:-nm-:nmnz:n:-ttxn:mu:--:u-ttmta:t::tt:t-ta--:t--tat/

{

in%t 1,3;
void Time() ,Data();

putc (*\f’,pr);
W_C_String("Summary",pr,80);
W_C_String("======="pr,80);
putc (’\n’,pr);
fprintf (pr,"\n\n\n\n");
fprintf (pr," run T/Te je~2/3 je")s
putc (’\n’,pr);
putc (°\n’,pr);
for (i=0; i<=(g_nxun-ONE); i++) {

fprintf (pr,"%4d",i+1);

for (§=0; j<=2; j++)

fprintt (pr,"%12.61f",g_summ(il[j]1);
pute (’\n’,pr);

if (g_summ{g.nrun-1]1[03 <= 0.2) {
fprintf (pr,"%4d",g_nrun+1);
fprintf (pr,"%12.61£%12.61£%12 61" ,NUL,g_jc0,powlg. jc0,1.5));
putc (’\n’,pr);
}
fprintf (pr,“\n\n\nSlopa of j_c¢~2/3 at Te= %12.61f",g_jcslopa);
putec (*\n’,pr);
Time(ttime);

Date(datum);
fprintf (pr,"\n\nDay and Time of Ending: %s//%s\n\n\n\n",datum,
ttime);

fclose (pr);

free(LoggedDir);
}*tltt***‘****‘*****tﬁtt‘tt‘*tl*ll**.t**it*l*ttt***#*tt'*t'--. "tt./
void Titer(inrun) /* iterates u to find jc at temperature t =/
/**‘tttI*i*tt*#**‘#t*t*ﬂt**‘**tt***ttt*t**Il*t**l‘***ﬁ*“tl‘t*t.“‘/
int inrum;
{

double corr(),jcder(),current(),yyl3] ,korr,x[5],y{58],chi(),
«del[S] ,»wwmu[S];

int ijk,0lddif,newdif,i,m_jcpl;

void jeiter(),summary():

m_jepl = (je_rec.jcpi+i)*sizeof (double);

for (i=0; i<=4; i++) {
del[i] = (double *)malloc((unsigned)m_jcp1);
wwow[i] = (double »)malloc((unsignedim_jepl);
if (del[i] == NULL || wwme[3i] == NULL) {
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fprintf(stderr,"insufficient storage\z");

exizt(1l);
}
}
if (inrun == 0)
jciter(NUL,1};

Sor (i=0; i<=4; i++)} {
memcpy{(char =)del[i], (char *)jc_rec.dell,zm_jcpl);
zmemcpy ((char =)wwmw[i],(char =)jc_rec.wwmw,a_jepl);

0lddif = pewdif = 1;
for (ijk=1; ijk<=g_iter 2% (olddif || newdif); ijk++) {
olddif = newdif;

x[0] = u*(ONE-TWO*g_gridsize):
z2[1] = u=(ONE-g_gridsizae);
x[2] = u;

x[3] = ux(ONE+g_gridsize);
x[4] = u*(ONE+TWO»g_gridsize);

for (i=0: i<=4; i++) {
memcpy{(char »)jc_rec.dell,(char =)dollil,m_jepi1);
memcpy({char *)jc_rec.wwmw,(char «)wwew[i],n_jepl);
jeiver (x[i1,0);
y[il = current(x[il);
memcpy ( (char *)del[i].(char *)jc_rec.delO,m_jcpll);
meacpy((char =)wemw[i],(char *)jc_~ec.wwaw,m_jcpl);
}
yyL[0] =jeder(x,y);
yy[1] =jcder(x+1,y+1);
yy[2] =jcder(x+2,y+2);
Xorr = coxr(NUL,x+1,yy);
newdif = fabs(korr) > g_uaccur;
if (korr < -ONE)
u += ONE;
else
u = (u-korr+g_sdamp»u)/(ONE+g_sdamp);
if (g.screen)
printf("i= %d, u= %1f, korr= %14.7le\n",ijk,u,korx);
fprintf(pr,"i= %d, u= ¥1f, korr= %14.7le\n",ijk,u,korr);
} /* aend of ijk loop =/
mamcpy((char *)jc_rec.dell,(char »)del[2],.m_jcpl);
memcpy {(char *)jc_rec.wwnmw,(char »)wwmw[2],z_jcpl);
tor (i=0; i<=4; i++) {
free((char *)del[il);
tree{(char »)wwmuw[il);
}
jeiter (u,0);
g.j¢ = current(u);
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