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ABSTRACT

A working definition of "good" control performance was

considered and the criteria for its measurement were then

determined. This study is focused on a time series approach

to control performance evaluation and diagnosis, in which

statistical tools such as the autocorrelation and

crosscorrelation functions and the power spectrum, as well as

the input and output variances are used. This technique

allows the use of normal operating data for control system

performance evaluation, thus requiring minimal effort.

Several simulation and industrial cases were

investigated for this research, including SISO feedback and

feedforward- feedback strategies as well as MIMO applications.

The basis of this approach is the comparison of the existing

controller statistical properties to that of a theoretical

optimum. In this manner, it is possible to ascertain whether

the potential for controller improvement exists and is

warranted. The diagnostic procedure then allows for the

determination of the likely cause of inadequate control

performance, with the ability to distinguish between poor

tuning and model mismatch and between poor feedforward or
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feedback control or the specific controlled or manipulated

variable in a MIMO system.
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1 . 0 INTRODUCTION

Presently, industry has many control schemes

implemented, whose benefits are judged against the pre-control

plant performance. Some of the conventional criteria used to

measure performance are the controlled variable mean (as

compared to a target value) and standard deviation and the

control loop service factor. Hence, normal operating data is

being used extensively in industry to monitor applications,

whereby the process performance is deemed acceptable or not

with respect to traditional process requirements such as

product specifications. If the key criteria are being

satisfied then further effort is not required. Since

monitoring is generally based on a comparison to prior

performance there is no information on the improvement that

still may be available. Furthermore, this monitoring phase

does not provide a means to determine why unsatisfactory or

non-optimal performance is being experienced. The evaluation

and diagnostic procedure being proposed in this research is

designed to address these two shortcomings of current

practice.

1



2

As the number and complexity of implemented control

loops increase, focus will be placed on existing control

scheme maintenance and improvement. This control performance

evaluation and diagnosis tool becomes valuable in that a

theoretical optimum is established and used for comparison

against which the actual controller is measured. If a

significant deviation exists between the actual and the best

achievable performance and more aggressive control action is

desirable, control modifications can be recommended.

This study has investigated Single-Input-Single-Output

(SISO) systems for both feedback-only and combined

feedforward-feedback control schemes. The study of these

simple systems is important as many cases having negligible

interaction can be evaluated and diagnosed in this manner.

Furthermore, study of SISO systems provides a solid basis for

the approach being used. It is important to note that these

cases are not limited to isolated control loops having no

other interaction. In these cases it is assumed that the

process involved is the physical process plus the other

control schemes implemented. As long as the latter remains

consistent throughout the analysis the results obtained are

reliable. The techniques and criteria developed for these

simple structures have also been extended to Multi-Input-

Multi-Output (MIMO) systems, both multiple single loop and

multivariable control schemes. The aforementioned cases have
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been examined both in simulation studies and in industrial

applications.

The aim of this research is to utilize readily

available normal operating data to accomplish control

performance evaluation and diagnosis. A simple analysis

method is proposed relying primarily on graphical analyses.

As a result of these inherent factors, limited effort is

required to fulfil the objectives of this diagnostic

technique.

As a result of this study a methodology has been

developed by which industrial control applications can be

evaluated. Upon observation of simple statistical parameters

control performance can be deemed satisfactory or

inappropriate. A theoretical optimum is generated against

which the control scheme's success can be judged. If there is

a sufficient discrepancy between the optimal and actual

performances the diagnostic procedure can locate areas of

inadequacy. In this manner the many existing control

applications can be examined and modifications can be

identified which will attempt to fulfil the control

objectives.

The remaining chapters of this thesis will provide

some of the statistical arguments supporting this approach,
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discussion of the simulation case studies used to develop and

test the methodology and the industrial examples illustrating

the potential and limitations of this analysis technique. As

mentioned previously SISO feedback-only and feedforward-

feedback control systems will be addressed first and the

methodology will then be extended to MIMO schemes.



2.0 CONTROL PERFORMANCE MONITORING AND DIAGNOSIS

Before control "performance" can be evaluated, the

measures of performance must be defined. These qualitative

and quantitative measures of control performance should be

based on safety, product quality, equipment protection, plant

data, site economics and facilities. The next obvious

question becomes how to use these measures to distinguish

between good and poor performance. All of these concerns must

be answered with engineering judgement and a sound

understanding of the process and its objectives.

The desirable features of any controller are "good"

performance in both regulatory (compensate for disturbances

entering the process) and servo (controlled variable must

follow frequent setpoint changes) operating modes, and

robustness to modelling errors. Servo control performance may

be assessed by the inspection of the process response to

infrequent setpoint step changes. Key performance indicators

are rise time, magnitude of overshoot and decay ratio, all of

which can be observed by visual examination of the process

transient response to the requested setpoint change. Measures

such as the integral error or absolute integral error can also

be used to evaluate the control performance. Desired response

5
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characteristics are dependent on the process specifications.

[Marlin et al., 1987; Stout & Cline, 1976] This technique is

also applicable to the case of step disturbances affecting the

process, but is not valid in the case of stochastic

disturbances.

Regulatory control performance in the presence of

stochastic disturbances is more difficult to assess as there

is no definite pattern to represent good control performance

in the dynamic response. This specific challenge is the focus

of this research. The evaluation techniques include variance,

the autocorrelation and crosscorrelation functions and the

power spectrum. These will be discussed in greater detail in

the following sections.

The remainder of this chapter introduces the

conventional analyses, which provide necessary parameters for

monitoring the performance of process control systems, and the

diagnostic tools proposed in this research to evaluate and

diagnose the control performance. To satisfy the latter, the

statistical tools already mentioned including variance,

autocorrelation, crosscorrelation and power spectrum will be

introduced. These measures have been chosen as they are

effective with the use of normal operating data and they are

straightforward to use and to understand. These statistical

techniques and the diagnostic procedure will be discussed in
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detail in the following sections. The methodology described

in this chapter is then demonstrated through simulation and

industrial examples in Chapters 3 and 4.

2 . 1 CONVENTIONAL ANALYSIS

Historically, control effectiveness has been

quantified using simple statistical calculations using readily

available process information. Table 2.1 lists common

parameters used in conventional analyses. The basis of this

conventional analysis is the comparison of these measures

between the controlled and uncontrolled cases.

Table 2.1 Conventional Monitoring Parameters

* control loop service factor

* controlled variable mean and standard deviation

* product specification and giveaway
* manipulated variable variance

* number of constraint/specification violations

* maximum value of violations and integral error

of violations

* number of incidents (off-specification products,

alarms, runaways, shutdowns)
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Although these quantities provide useful information,

their value is limited to a monitoring capacity. These

measures enable one to establish the improvement achieved over

the uncontrolled case and how well the control system is

achieving key plant objectives, but they do not provide

information on the potential for further improvement nor a

means to diagnose any shortcomings in the control performance.

These parameters should be used, however, in a preliminary

'monitoring' phase in which control schemes can be screened in

order to identify unsatisfactory performance. Only those

cases deemed unacceptable in this monitoring phase should be

further addressed in the diagnostic phase. This diagnostic

procedure will be introduced and demonstrated in the latter

section of this chapter.

2.1.1 STATISTICAL ANALYSIS

Statistical analysis can be performed on batch systems

or on continuous processes. In the case of the latter,

sampled data points are taken at a constant frequency and are

assumed to be representative of the long term nature of the

process. These assumptions hold if the variation in sampling

frequency is not large and if the process is stationary or

possesses stationary random properties. [Pryor, 1982] For

this reason it is imperative that the data analyzed is
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stationary or that stationarity conditions be imposed. This

is discussed in Appendix A, Time Series Review, which contains

information on model identification, the autocorrelation and

crosscorrelation functions and power spectrum, confidence

intervals and the differencing of nonstationary series.

Furthermore, the data which is collected should reflect

typical plant conditions in order to ensure that the

statistical parameters generated are representative of the

normal operation. In addition to this, enough data must be

collected or sufficient forcing should be present in the

system to ensure accurate statistical estimates.

Once the data has been collected, conventional

statistical analyses will provide useful information about the

process. Some of the most useful properties and the

calculations which provide the sample estimates are defined

below. The nomenclature used throughout this report is

defined in a glossary of terms included in section 7.0.

Mean = E(y) =y=£^ = ^ f>i i2'x)

i=i
■" iv

i=l

Error =

Er±
=

y±
-

y (2.2)
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Average Absolute Error = Er = — £ \Er£\ (2.3)

Variance = V= E{y-\i)2 = \ £ Er\ = -| J) (y,
-

y)
2 (2 .4)

■"
i = l

"
i=l

1
N

-

Standard Deviation = S = JV = (— V (y, - y)2)
2 (2.5)

The measure of the standard deviation, or variance, is of

great importance. Improved control performance reduces the

variance of key process variables, and hence this statistical

value can be used as an initial screening of control

performance.

The standard deviation of a variable can be attributed

to real variations and instrument or measurement errors.

Improved process control reduces the standard deviation by

reducing the former. This real variability can in turn be

traced back to changes in the independent variables. [Stout &

Cline, 1976, Marlin et al., 1987] In many cases performance

can be related to one key variable, which may be a

temperature, concentration or product quality, and a measure

of performance such as profit or cost can be expressed as a
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function in this variable.

A frequently encountered situation is one in which the

performance function, P, is linear,

Pavg
= A ± BM (2.6)

where A,B are constants, M is the variable average, which is

symmetrically distributed, and the variable is constrained at

some minimum or maximum limit. Reducing the variability of

the output in this case, will allow the operating point to be

moved closer to the acting constraint. The change in profit

or cost is then given by,

APavg
= BAM (2.7)

If we refer to Figure 2.1 tighter control, resulting in a

lower variance, allowed the process to move to a more

favourable operating point, M2 .

While these statistics are useful, they do not allow

for further diagnosis of the control system as important,

frequency-dependent information is combined and therefore

masked in these moments, such that the dynamic behaviour

cannot be evaluated. The control performance evaluation

techniques being studied in this research are based on a time

series approach. This method is being pursued as it is
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Figure 2 . 1 Performance and Variance

presently the only way in which to address stochastic

processes and to preserve the important dynamic information.

Statistical analyses such as the autocorrelation and

crosscorrelation functions and the power spectrum are used to

compare the existing controller to a theoretical optimum and

to identify problem areas. Depending on the system being

evaluated, problem areas may be within the process model (in

model-based controllers) or the controller tuning or execution

frequency. In many of these cases it is possible to further

isolate the controller inadequacy, such as to the feedforward
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or feedback component or the specific component in a

multivariable scheme.

A basic understanding of time series techniques is

assumed in this report. A quick review of the key statistical

parameters is provided in Appendix A.

2.2 CONTROL PERFORMANCE EVALUATION AND DIAGNOSIS

In this section the three tier approach to a

monitoring, evaluation and diagnosis system will be presented.

The first level is comprised of conventional analyses which

provide the monitoring phase of this technique while the

remaining two complete the diagnostic phase. The hierarchy of

monitoring, control evaluation and control diagnosis is

presented in Figure 2.2.

At the pyramid apex we have 'normal operating data1

which is abundant and easily accessible given the present

status of industrial computer data storage and manipulation

capabilities. It is important to stress the use of normal

operating data as this limits the amount of effort required to

fulfil the analysis. Control performance monitoring is the

first level in this procedure and would be executed for all

control loops. As numerous control schemes exist in any
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I
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not okcojp7 y
koy
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BEST

ACHIEVABLE^

STOP

yes/ \no

CHANGE

STRUCTURE

DIAGNOSIS
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□ control

□ process

□ modelling
□ tuning
□ FF or FB loop

Figure 2.2 Control Performance Monitoring, Evaluation and

Diagnosis

plant, this level acts as a screen to discriminate between

acceptable and unacceptable performance. The monitoring

criteria would include those variables listed in Table 2.1.

If the control scheme is meeting its objectives then further

analysis is not necessary- Only those applications deemed

unsatisfactory in this initial monitoring phase would be

diagnosed in the second level.



15

It is the development of these diagnostic levels which

comprises this research. The initial step in the diagnostic

procedure is to establish whether the best achievable

performance is being realized. If this is not the case then

an estimate of the best achievable control performance is

generated and compared against the actual control system

performance. This idea is not new as it has been presented in

Box & Jenkins [1976] and used in MacGregor, Taylor & Wright

[1988] and Harris [1989].

For the purposes of this research, variance is used as

a measure of control performance with the theoretical minimum

acting as the basis for comparison. This bound on achievable

performance, therefore, is the Minimum Variance Controller

(MVC) or in the case of multivariable systems, the Linear

Quadratic Gaussian Controller (LQG) . These controllers

provide the theoretically lowest variance for the variables

controlled and are thus valuable in establishing performance

limits. It is important, however, that in achieving this

level of performance that the variance of the manipulated

variable (s) is also reasonable. A controller which requires

the harsh manipulation of the input variable (s) is not

desirable and is therefore not generally useful in industrial

applications. Thus, in the practical application of this

analysis it may be necessary to generate other bases for

comparison, such as the best achievable performance with a PI
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controller. This will also be specific to the problem being

examined and will require knowledge of the process and its

goals.

If the best achievable bound does not present a

significant improvement over the actual performance but the

performance is still not satisfactory then either the

structure of the controller or process must be changed. The

former may be achieved, for example, by changing the loop

pairing or introducing feedforward control. The latter may

involve reducing the dead time of the process or attenuating

the disturbances. This solution path is not the concern of

this research since modifications made must be the result of

process and cost analyses of each specific control system.

If the estimated best achievable performance is

significantly better than that which is being experienced,

then the source of this inadequate or sub-optimal performance

must be diagnosed in order for it to be corrected. It is this

step which constitutes the main contribution of this research.

The causes of this poor control performance may be in the

controller tuning or in incorrect process model

representation. In more complex schemes the poor performance

may be attributed to the feedforward or feedback controller or

to a specific output or input variable in a MIMO scheme.
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In order to accomplish this challenging task a new

approach, one differing from conventional monitoring, is

required. Because we are limited to large quantities of

normal operating data describing stochastic processes a

statistical approach is most appropriate. Moreover, many of

these stochastic processes are identified using the time

series technique, hence the concepts of this approach are

familiar to process engineers. Specifically, the use of the

autocorrelation and crosscorrelation functions will be

demonstrated in fulfilling the objectives of this research.

2.2.1 ESTABLISHING BEST ACHIEVABLE CONTROL

"For processes described by linear transfer functions

with additive disturbances, the best achievable control in the

mean square sense is realized when an MVC is implemented.
"

[Box

& Jenkins, 1976] The minimum variance controller (MVC)

provides the smallest variance of any controller at the given

sampling intervals. It is rarely applied industrially,

however, as it often requires harsh input manipulations and

often lacks robustness. The MVC and its statistical

properties, are useful in providing a basis against which to

compare the performance of industrially implemented

controllers. The minimum variance controller provides a bound

on achievable feedback performance, beyond which improvements
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are not possible given the physical process configuration.

It can be shown that an estimate of the best

achievable control can be obtained by fitting a univariate

time series model to process data collected under routine

feedback control. At this point it should be mentioned that

this research deals exclusively with discrete, sampled data

systems. It is not necessary to introduce perturbations in

the manipulated variable and ' identif iability
' constraints

need not be imposed. [Harris, 1989] Given the general block

diagram for a univariate system, shown in Figure 2.3, the

closed loop process model is given by,

Yt
= (-: ^T^r) at (2.8)

1 +

GcGp
z

YSpt

t° t

N

Ei
\ Y_

"c
Ut

bp -K^H *►

Figure 2.3 Feedback-Only Control Block Diagram
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which can be represented by,

=
9(z"1}

* at
= ftz"1) * at (2.9)

4>(2-x)

This representation can be expanded through long division to

give a moving average time series model,

Yt
= [ 1 + y]f1(z-1) + i|r2(z-2) +

. . .

(2.10)

+ yf(z~f) + ij;f+1(z-(f+1)) +
. . .] at

where f is the true process dead time. The first (f+1) terms

cannot be affected by feedback control as the effect of the

input manipulations, ut, can only be observed after the

process delay. Therefore, these terms remain unchanged

regardless of manipulated variable perturbations. The

presence of feedback control only affects the remaining terms

in equation 2.10. In the case of minimum variance control

these terms are reduced to zero as all incoming disturbances

are completely attenuated. This reduces the process model,

for perfect control, to a moving average model of order f,

(YJmvc =

at
+ tiat-i + t2at-2 +

■ • •
+ 1fat-f

= [ 1 + iM*"1* + *MZ~2) +
•• ■ (2.11)

+ i|ff (z'f)] at
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Testing for Best Achievable Control

A moving average (MA) process of order f has the

property that the autocorrelation function is zero beyond lag

f. Therefore, given the time series response of the process

being examined the simple generation of the autocorrelation

plot can show whether MVC is being achieved by observing the

lag at which the autocorrelation is effectively eliminated.

If the autocorrelations are reduced to zero at or soon after

the process dead time, then the best achievable control is

being realized and further improvements can only be attained

through structural modifications. If the autocorrelation

function is significant after the process dead time then

control modifications can improve the process performance. In

order to decide whether modifications are warranted the

available improvement can be quantified. As noted previously,

if the variance is used as an indication of process

performance then an estimate of the minimum variance can

provide the necessary justification.

Estimating Best Achievable Performance

Given the moving average model in equation 2 . 10 the

variance is calculated by.
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VAR{Yt) = (1 + }]fl + ijr2+ . . .
+ i|r| + i|rf+1 +

. . . ) o\ (2.12)

where tys are the coefficients of the model, estimated from the

raw data and aa2 is the variance of the residuals obtained

after fitting the ARMA model. In the case of minimum variance

control only the first f+1 terms are required, as shown in

Equation 2.11, reducing the calculation of the variance to,

VARiYJuK
= (1 + ijr2. + i|r! +

...
+ i|r|) a\ (2.13)

This is the minimum variance which is attainable for the given

process configuration under the existing disturbance

conditions. Further reductions in the process output variance

cannot be achieved at the given sampling interval. Additional

reductions in the variance can only be attained through

structural modifications such as the reduction of disturbances

(aa2) ,
the reduction of dead time (f) ,

the incorporation of

feedforward control or the use of another manipulated variable

for control purposes.

The use of the minimum variance as a performance bound

provides a significant simplification to the evaluation and

diagnosis methodology. The only information required is the

process dead time, (f ) , and the i|r weights up to lag f , which

can be calculated from any open or closed loop data. The

future performance of any other controller, which deviated
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from minimum variance, would need to be calculated from a

simulation of the control system subject to the specific

stochastic disturbance. In the latter case both the process,

G and the disturbance, Gd, transfer functions would have to

be known. Although model identification is not difficult,

plant perturbations would be necessary.

In the case where the estimated best achievable

control is a significant improvement over the current control

performance, alternate controller tuning or algorithms can be

considered in order to reduce the controlled variable

variability, if this improved performance is desired.

2.2.2 CONTROL PERFORMANCE DIAGNOSIS

Once the controlled variable, (Ym)t, autocorrelation

has shown inadequacy in the control performance and the

estimate of the best achievable performance, calculated as

described in the previous section, shows a significant

improvement over the actual performance then further control

diagnosis is warranted. The basis for this diagnosis is the

analysis of the correlation between the various process

variables and other calculated quantities. Depending on which

variables are correlated it will be possible to deduce the

likely cause of control deficiency- The following sections
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will demonstrate the diagnosis methodology used for several

control strategies.

Feedback-only Control

If the autocorrelation of (Ym)t shows non-optimal

control and the estimated best achievable performance is a

significant improvement over the existing performance then the

control system must be examined. The crosscorrelation between

the input, ut, and the output, (Ym)t+k' duplicates the

information provided in the output autocorrelation. In the

case of perfect control significant correlation will only

exist from the input to the output, y , up until the dead time

of the process, in the positive lag direction. As discussed

in section 2.2.1 feedback-only control can have no effect on

the process output until after the process delay.

The reason why only the positive lag direction is

considered falls directly from the relationship between the

two crosscovariances of a bivariate system. As presented in

Appendix A,

YuyU)
=

Vyu(-k) (2.14)
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Therefore, the crosscovariance from ut to yt+k, y^,
in the

positive lag direction is equal to the crosscovariance from yt

to ut+k, y , in the negative lag direction. The converse is

also true,

Yuy(-*>
=

Yyu(+^)
(2'15)

As the systems being dealt with are under the influence of

feedback control the output has a direct effect on the input

moves which are implemented by way of the controller. As a

result of this, correlation will always exist from the input

to the output in the negative direction and is therefore of no

concern.

It should be noted that the presence of a large

negative autocorrelation at lag zero usually indicates that

the data has been generated under closed loop conditions as in

most dynamic, discrete time systems there can be no

instantaneous transfer of the input to the output. [Box &

MacGregor, 1974]

The control block diagram for the feedback-only

controller is given in Figure 2.4a. The process model Gm is

not used explicitly in the control algorithm but is used for

model prediction purposes only. The output predicted by the

identified process model can be calculated and used to verify
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Figure 2.4a Feedback Control Diagram

the accuracy of model. The controller can also be implemented

in IMC form as shown in Figure 2.4b, in which case the

prediction error calculation is used in the control system.

The prediction error is then given by,

(Ya
~

Yp)t= (Ym)c
-

Gm* Ut (2.16)

Degradation in performance can be the result of model/process

error or poor controller tuning. The goal of the diagnosis,

therefore, is to determine the source (s) of this poor

performance, if possible.

Using the model-based feedback control system shown in

Figure 2.4b and assuming a constant setpoint, block diagram
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Figure 2.4b Model-Based Feedback Control Diagram

manipulation yields the following expression for the model

prediction,

(Ym
-

Yp)t
= H * Nat (2.17)

where,

H-

i«*«£-0.) (2-18)

As evident from Equations 2.17 and 2.18, the prediction error

reduces to the disturbance when the model exactly matches the

plant, H=l. The manipulated variable can be represented by,

ut
= - K * H * Nat (2.19)
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As both the prediction error and the input are influenced by

the model accuracy, in H, a possible method for diagnosing

control performance would be to compare the behaviour of the

two. The crosscorrelation can be used for this comparison,

and is described in detail in Appendix A. The crosscovariance

from the input to the prediction error is given by,

Yu. (r.-V
= E[(-K*H*Nat) (H*Nat.k)] (2.20)

The simplest scenario results if the model is perfect, H=l,

and the disturbance is white noise, N=l. In this case all

crosscorrelations reduce to zero as E(at at+k)=n for k>0, and

the controller, K, uses only the current and past values of

the feedback signal. Therefore, given a system in which the

disturbance is white noise, non-zero crosscorrelations are

indicative of model error. A more realistic situation,

however, is one of autocorrelated disturbances, N*0. In this

case E[(Nat) (Nat+k) ] *0 for k>0, therefore, even with a perfect

model some significant crosscorrelations would result from

Equation 2.20. Although model error will contribute to the

crosscorrelation from the input to the prediction error, it is

not the only factor. Hence, non-zero crosscorrelations cannot

be used as an unequivocal test for model error. Given normal

operating data, therefore, it is not possible to diagnose

whether poor control performance is the result of modelling

errors or poor tuning.
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This distinction can be accomplished, however, with

the addition of setpoint changes to the process. In the

presence of setpoint changes, the prediction error becomes,

(Ym- Yp)t
=

H*DC + K* [Gp-Ga] *H* YsPt (2.21)

The crosscovariance from the setpoint to the prediction error

is given by,

Y^.ovv =E[(YspJ (H*Dt+k)]+E[(YsPt) (K* (Gp- Gm) * H* YspJ ]

(2.22)

As the imposed setpoint changes should be independent of

future disturbances, the first term in Equation 2.22 is

eliminated. Hence, the crosscorrelation between the setpoint

and the prediction error is only dependent on the model error,

as expressed in the second term. Therefore, if the model is

perfect no correlation would exist between the setpoint and

the prediction error. Conversely, if the model error is

significant, significant correlation will exist in Equation

2.22. This analysis can therefore be used to identify the

presence of model error. It is important to note that the

amount of forcing provided by the magnitude, frequency and

number of setpoint changes must be significant enough to

result in significant values of the calculated

crosscorrelations .
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If the model is deemed adequate by the above analysis,

the only other possible cause of poor performance is the

controller. Deviations from minimum variance control

performance can be the result of poor tuning or non-optimal

algorithm structure. Of course, aggressive control

manipulations resulting from a minimum variance controller may

not be appropriate to achieve the desired control objectives.

Therefore, once the cause of non-optimal performance is

established judgement must be used in improving the

performance. A compromise between the variances of the

controlled and manipulated variables must be reached.

It has been shown, therefore, that given

unsatisfactory performance as indicated by a non-optimal

output autocorrelation, the crosscorrelation between the

setpoint, (Y )t, and the model prediction error, (Ym-Yp)t+k/ can

be used to distinguish between tuning inadequacy or a poor

process model representation.

Feedforward Control

Figure 2.5 shows the control block diagram for

feedforward-only control. The closed loop equation is,

Ym
= d*Gd +

d*GCFp*Gp (2.23)
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Figure 2.5 Feedforward-Only Control Block Diagram

For perfect feedforward control, resulting in complete

disturbance rejection, the feedforward control algorithm is

given in Equation 2.24.

Gr = -
—± (2.24)

The resulting closed loop equation becomes,

Ym
= d*Gd + d* (--£*) *Gp

0

(2.25)

If the process and disturbance models identified are correct

and the feedforward controller has been designed as given in

equation 2.24, the output, (YJt, will not deviate from its

target value. Therefore, the crosscorrelation from the

disturbance, dt, to the output, (YJt+k, will not show any

significant correlation. Conversely, if either or both of Gd



31

and G are in error perfect disturbance rejection will not be

attained and Equation 2.25 will no longer be valid. In this

case the output, (YJt+k, will be a function of the

disturbance, dt, hence the crosscorrelation from dt to (Ym)t+k

will show significance.

It has been shown, therefore, that the

crosscorrelation from the disturbance to the output can be

used to establish whether perfect feedforward compensation has

been achieved. If this perfect control has not been attained

then either or both of the process and disturbance models is

in error.

Feedforward - Feedback Control

The combination of feedforward and feedback control is

shown in Figure 2.6. Most of the concepts used for the

diagnosis of this control strategy have been covered in the

previous discussions. Of course, the first level of

performance monitoring remains unchanged. The second level of

performance evaluation, however, must be modified to evaluate

the performance of both the feedforward and feedback

controllers. In the diagnostic level which follows, the cause

of poor performance, model mismatch or poor tuning, can then

sometimes be determined.
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Figure 2.6 Feedforward-Feedback Control Block Diagram

Because each controller has associated with it its own

models and tuning, the evaluation and diagnosis levels must be

able to examine each controller independently of the other.

To this end, the feedforward-feedback control diagnostic

hierarchy is shown in Figure 2.7. Many of the steps are

identical to the feedback-only diagnosis, therefore only the

modified steps are explained in detail.
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The inherent models used in designing the feedforward

and feedback controllers are used to generate an output

prediction, (Y )t, given the process input and disturbance

sequences. The value (Y -Y )t represents the model prediction

error and is composed of any error in both the process and

disturbance models and the unmeasurable noise or disturbances

entering the process. This quantity will again be used to

check for modelling errors. In the case of the feedforward-

feedback control scheme there are two models to consider, one

each for the disturbance and the process.

The initial step is to evaluate the performance of the

feedforward controller. Block diagram manipulation of Figure

2.6 yields the following expression for the controlled

variable,

Ymt= (Gd+GCFF*Gp) *dt
+ Dt +

Gp*UFBt (2.26)

If the feedforward controller is designed for perfect

disturbance rejection,

Q
" - -

md
(2.27)

G-p
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and is realizable, with the disturbance dead time being

greater than or equal to the feedback dead time, then the

first term in Equation 2.26 becomes zero. The measured

disturbance, dt, is also not correlated with future unmeasured

disturbances, Dt+k, or feedback control manipulations, (uFB)t+k.

Therefore, perfect control results in absence of correlation

between the measured disturbance and the future values of the

controlled variable. This gives the first diagnostic step in

Figure 2.7, which determines the performance of the

feedforward controller.

Proceeding down the left branch of Figure 2.7, in

which case the feedforward controller is providing perfect

compensation for the measured disturbance, the feedback

controller can then be evaluated in a similar manner to the

feedback-only control case. The autocorrelation of the

controlled variable is examined next. If the autocorrelations

are eliminated after the dead time, the combination of the

feedback control and the perfect feedforward control are

providing the best achievable control performance given the

current process and control structure. If the feedback

control deviates from the best achievable performance, as

indicated by the autocorrelation of the controlled variable,

the diagnosis is extended. Given the block diagram in Figure

2.6 the prediction error is expressed in Equation 2.28. The

crosscorrelation from the measured disturbance, dt, to the
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1 + Gc * Gm Gc * (G-Gm )
I y _ y \ -

cra mp n
cfs P mp

+ y
KX» Vt

-

1 + G G
vt

1+
SPt

1 + G, * G„
c

1 + C7^ * Gn
c

G„ * (Gw*Gm -

G*Gm )
Sn U. 5e £ %L-*dt (2.28)

1 + Gc * G_
c

cra P

prediciton error, (Ym-Y )t+k, can now be investigated. Because

the feedforward control has already been deemed adequate the

last term in Equation 2.28 reduces to zero, as Gd*G -G *G|nd=0.

Although the third and fourth terms are non-zero, they

essentially cancel one another even in the presence of model

mismatch due to the design of the feedforward controller, GcFF.

Moreover, the unmeasured disturbance and the setpoint changes

are independent of the measured disturbance and are therefore

not correlated. Hence, the proposed crosscorrelation between

the measured disturbance and the prediction error is not a

useful diagnostic.

Under feedback-only conditions, however, the

crosscorrelation between dt and (Ym-Y ) t+k does provide useful

diagnostic information. There is still no correlation from dt

to Dt+k and (Ysp)t+k, eliminating the first two terms in Equation

2.28, and terms 4 and 5 disappear entirely. The third term,

however, can be correlated with the measured disturbance and
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is a function of the accuracy of the disturbance model. If

the measured disturbance model is perfect then there will be

no correlation in the previously mentioned crosscorrelation.

Conversely, in the presence of significant measured

disturbance model error, the crosscorrelation will be non

zero. The data necessary for this diagnostic is easily

obtained by decommissioning the feedforward component of the

control system for a short period of time. Recall, however,

that the feedforward controller has already been established

to be perfect and therefore an error in the disturbance model

implies a compensating error in the process model. If it is

determined that model error does not exist but the feedback

control deviates from minimum variance, the poor performance

must be the result of inadequate tuning or the choice of

control algorithm.

If the evaluation of the feedforward controller showed

non-optimal performance then the right hand branch of Figure

2.7 is followed. Once again, the autocorrelation of the

controlled variable is examined for the presence of

significant correlation beyond the dead time of the feedback

process. If there is absence of correlation then the feedback

control is tentatively accepted as being minimum variance.

Although the feedback control performance appears perfect

under these conditions, it should be rechecked once the

feedforward control is corrected. This should be done because
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the feedback system experiences different disturbances

dependent on the quality of the feedforward control.

Lastly, if the feedforward controller is not perfect

and the feedback control is not performing to minimum variance

the individual models cannot be evaluated from normal

operating data. The process model, G ,
however can be

evaluated as described in the section on feedback-only

control, using periodic setpoint changes.

Because the statistical parameters used in this

analysis are only estimates for the data sample in question,

statistical significance becomes important. Enough data

and/or enough forcing must be present to ensure accurate

statistical estimates. The input and output variables should

exhibit enough variability such that relationships can be

observed in the correlation analyses. Any error seen in the

output sequence is assumed to be correct while the absence of

visible error is subject to two interpretations. A stable

output can be the result of either excellent control or the

absence of disturbances. In the latter situation the output

would not be adversely affected by disturbances entering the

system, hence no input manipulations would be required and the

output would not show variability. In those cases in which

enough data is not available or the variability is

insufficient the statistical significance of the results can
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be examined via quantities such as 'confidence intervals*.

Confidence intervals, which are discussed in Appendix

A, verify that correlation estimates beyond a certain lag are

effectively zero and therefore are not statistically

significant. Moreover, the question often arises of the size

of error needed before it can be detected using this

diagnostic tool. It must therefore be stressed that it is not

the absolute size of the parameter variation which is the

critical issue but whether this variation contributes

significantly to the final control performance. Confidence

intervals are thus used to distinguish between statistical

significance and random error. Therefore, in the analyses

presented in this document only the correlations appearing

outside these confidence bounds are considered.

In order to facilitate the analysis, a visual

representation of all the information is beneficial. A

'correlation matrix' is shown in Figure 2.8. The controlled

variable, measured disturbance and setpoint, at time "t", are

the rows of the matrix. The columns of the matrix show the

controlled variable and model predicition error at time "t+k",

where k>0. The specific matrix elements of interest are

indicated with a numbered box. It is intended that

significant correlation between any two variables on the

matrix axes will be signified with an 'X' in the corresponding
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Figure 2.8 Feedforward-Feedback Control Correlation Matrix

box. Absence of significant correlation will be denoted by a

blank box.

Depending on which matrix elements show significant

correlation, as determined through the diagnoses explained

previously, control system inadequacy can be distinguished.

Element 1 represents the output autocorrelation. An "X" would

be placed in this position if significant correlation existed

between Yt and Yt+k beyond the process dead time. This then

indicates that the feedback control deviates from minimum

variance. The crosscorrelation from the measured disturbance,

dt, to the controlled variable, (Ym)t+k, is shown in element 2.

An "X" in this position indicates poor feedforward control

performance. Element 3 represents the crosscorrelation

between dt and (Ym-Y )t+k. An "X" would be placed in this box
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if under feedback-only control this correlation was

significant, suggesting an error in the disturbance model.

Finally, element 4 shows the crosscorrelation between (Y )t

and (Ym-Y )t+k. An "X" in this box results from non-zero

correlation between the setpoint and future values of the

prediction error and is indicative of an indadequate feedback

model. The diagnostic matrix, therefore, provides a concise

display of the control performance diagnosis information.

This matrix representation is helpful but may not be

crucial in the analysis of this low dimension problem. It

clearly simplifies the diagnosis in the multidimensional

problems to be encountered in the MIMO examples. Matrix

representation will be further developed in the MIMO section

of this report, but the concepts follow directly from the

previous examples.

Creation of the diagnostic matrix does not require the

subjective visual evaluation of the auto and crosscorrelation

plots. Overall statistics can be used to determine

significance. [Box & Jenkins, 1976] An example of this is,

Q=nJ2r2xy(k) (2.29)

Jc=j
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where n is the number of data points. If the true values of

the correlation function are zero, between values j and L,

then Q is distributed as a Chi-squared distribution with

(L-j-1) degrees of freedom. This value of Q can then be

compared with the upper 100(l-a)% critical value of the Chi-

squared distribution, having the appropriate degrees of

freedom. If Q exceeds this critical value then an "X" is

placed in the diagnostic matrix. If the level of significance

is chosen to be small, a=0.01, then only relatively large

deviations from the best achievable performance would be

indicated in the matrix.

Multivariable Control

The calculation of the best achievable performance for

SISO control problems was discussed in section 2.2.1. The

extension of Harris' approach to calculating the bound on

achievable performance, as given by the variance under minimum

variance control conditions, is not directly applicable to the

general MIMO control problem. A multivariable ARMA model is

fit to the outputs of the process under the current control

conditions, shown in Equation 2.30.

biz-1) Yj.
= friz'1) aj. (2.30)
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This can be expanded to,

X±
=

zXl
+ »ia»-i + fr?a»--? +

. . .
+ l^a^ (2.31)

The variance can then be calculated from,

VARm^ = £a + iiEail + jfcAil
(2.32)

It is important to note that some of the values of the i|r
'
s are

dependent upon the particular control scheme active at the

time of data collection.

The simplest system to study has uncorrelated

disturbances and minimum dead times which appear on the

diagonal. This latter condition can also be satisfied if the

rows or columns of the matrix can be rearranged such that the

minimum dead times appear on the diagonal. Complexities such

as correlated disturbances, which are more common in

industrial settings, and dead time imbalances establish the

capabilities and limitations of this diagnostic procedure.

Finally, sparsity introduced in the system matrix demonstrates

the analysis simplifications which can be attained.

As the diagnosis technique is based on correlation

analysis, having independent or uncorrelated disturbances is
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an important simplification. As the disturbances affecting

the controlled variables become correlated the moves

implemented by the controller and any modelling errors

incurred will themselves become highly correlated, adversely

affecting the analysis. As will be shown in the illustrative

examples in Chapter 4, correlated disturbances introduce added

complexity to the diagnosis and as such the conclusions drawn

from the analysis are not as specific.

In the case in which the minimum dead times appear on

the diagonal it is obvious that the minimum dead time for each

output variable, which corresponds to perfect control

conditions, is this diagonal value. Once the dead times are

imbalanced the minimum realizable dead time for each

controlled variable becomes unclear and accurate performance

evaluation is adversely affected. Any well tuned controller

can reduce the correlations to zero between the lower and

upper limits as given by the theoretical settling times of the

process. The lower limit for each output is obtained if all

the emphasis is placed on that output alone. The upper limit

is given by the minimum settling time for a dynamically

decoupled system. [Holt & Morari, 1985] The actual achievable

performance under minimum variance control must lie between

these upper and lower limits.

The MIMO cases studied can be divided into two
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distinct groups according to the transfer function dead times.

Each one experiences a different level of success using this

evaluation and diagnostic procedure. The first group can be

classified as having minimum dead times on the diagonal and is

the simplest to address. Conversely, the second group does

not have minimum dead times appearing on the diagonal. In the

case of the former, if the diagonal elements of the transfer

function not only have the minimum dead time but all other row

elements have greater dead times, then an extension of the

SISO minimum achievable variance calculations is possible.

Let us consider a 2x2 example with independent

disturbances for which the minimum dead time for Y1 is f
1 ,

which corresponds to u1 ,
while a greater f2 corresponds to u2.

The following relationship can be written,

r, =

ar + ill. a. +
. .

- + i|/T a. + i|f. a. +
. . .

(2.33)
+ ij/. a. +

. . .

It is important to note that the same holds for Y2 but will

not be presented here. Similar to the SISO case nothing can

affect the first f1 terms in Equation 2.33. Under minimum

variance control conditions, however, all remaining terms will

be eliminated by input u1 . Since input u2 will have had no

effect until f2, the first f, f terms are unaffected by both

u1 and u2. Therefore, the problem reduces to that of the SISO
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example, whose disturbance includes the other controller, and

the minimum variance for Y1 can be calculated from,

VARiYJun = (1 + $1 + l|rl +
• • •

+ T\>2fl) a\ (2.34)

If the minimum dead times do not appear on the

diagonal, however, a best achievable performance reference

cannot be generated using the techniques established in this

research.

As introduced already, the representation of this

correlation information is a very important aspect of the

analysis. In MIMO systems which deal with many inputs,

outputs and disturbances it may be difficult to interpret the

cumbersome correlation results and thus to locate the area of

difficulty. In order to facilitate this process of deduction

a simple, visual means of representing the information is

provided. The correlation matrix representation introduced in

the feedforward-feedback analysis proves extremely useful in

the more complicated MIMO examples. The correlation matrix

used for the performance diagnosis is shown in Figure 2.9.

Once again, the rows and columns represent the variables at

times "t" and "t+k", respectively, and elements of interest

are indicated with a box. For display purposes in this

document an "X" placed in one of the correlation matrix

elements will denote significant correlation between the
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Figure 2.9 MIMO Performance Diagnosis Correlation Matrix

variables appearing on the matrix axes, while blank elements

indicate absence of correlation.

Elements 1 and 2 show the autocorrelations for the two

controlled variables, 3 through 6 represent the

crosscorrelations between the inputs and the controlled

variables and lastly, elements 7 to 10 show the

crosscorrelations from the controlled variable setpoint

changes to the model prediction errors. In the case of

perfect LQG control for the balanced dead time case, with

equal output weighting and no input penalties, the correlation

matrix would only show significant correlation in the

controlled variable autocorrelations up until their respective

dead times. Following the diagnostic procedure already
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outlined in the SISO examples, significant output

autocorrelation and significant crosscorrelation between the

inputs and the outputs beyond the minimum process dead time

indicate non-optimal control performance. Finally, the

crosscorrelations between the setpoint changes and the model

prediction errors provide information on the accuracy of the

process models.

The MIMO cases presented in Chapter 4 will demonstrate

some of the limitations of this performance evaluation and

diagnosis methodology, encountered specifically in the

presence of correlated disturbances and imbalanced dead times.

In the simplest case of independent disturbances and minimum

dead times appearing on the diagonal, the methodology is a

direct extension of the SISO case and is virtually as specific

in its diagnostics. The control performance can be tested

against optimal behaviour, the best achievable control can be

evaluated and problems within the control scheme can be

attributed to one or more of the inputs or outputs. The

diagnosis becomes more complex and less resolute, however, in

the presence of correlated disturbances and imbalanced dead

times. All of these concepts will be treated in greater

detail in Chapter 4 .
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2 . 3 SUMMARY

The development of this analysis tool demonstrating

its success and limitations will be shown in the many examples

to follow commencing with the simple pure feedback SISO

scheme, an extension to a feedforward-feedback strategy and

ending with a MIMO control scheme. These examples will

demonstrate the use of this diagnostic tool, following the

analyses discussed in this chapter, as they pertain to the

system being examined and indicate the conclusions which can

be drawn. Both simulation results and industrial case studies

will be presented for various control schemes which will

address the many aspects of the diagnostic procedure.

In the examples to follow it will be assumed that the

initial monitoring phase has been completed and the

performance is deemed unsatisfactory. If we refer to the

hierarchy displayed in Figure 2.2 further evaluation and

diagnosis is required at this stage. The initial step is to

generate the controlled variable autocorrelation which tests

for the existence of optimal control. If near optimal control

is present the evaluation diagnostic procedure is halted. At

this point the structure of the process or the control

algorithm must be examined. If the best achievable control is

not being realized then an estimate of the best achievable

performance is generated, and the actual performance is



50

compared against it. If a sufficient difference exists

between the two and the improvement in performance is desired

then further diagnosis is required to establish the source of

control inadequacy. Diagnosis of inadequate performance will

then proceed as discussed in the previous sections, specific

to the type of control scheme being examined. Conclusions can

then be drawn according to the results of this correlation

analysis.

During the course of this research various limitations

of the procedure have been established. Some of these have

been introduced in the previous section, according to the

control scheme being examined, and will be discussed in

greater detail as they are encountered in specific examples.

In some cases additional analyses, such as spectral analysis,

could provide needed information but in the attempt of

simplicity these steps have not been included in the method.

In its present form this diagnostic tool provides the user

with useful information for establishing the presence of a

problem and in deducing the likely source. As the technology

is developed and automated, further analyses could be added.

Presently, the key concern in developing this methodology is

in keeping it quicker and simpler to use than recommencing the

control design procedure. In some cases, however, process

reidentification and controller redesign are inevitable if

improvements are desired.
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Presently, this is an interactive procedure requiring

the direct involvement of qualified personnel. Ultimately,

the process could be automated as the technology is developed.

This automatization could take the form of an on-line expert

system to initially screen the control schemes in the

monitoring phase and then to analyze only those showing

unsatisfactory performance in the diagnosis phase. An

appropriate rule base could be structured to convey the

results or recommendations of the analysis. The personnel in

question can then review these results and decide whether

adequate incentive for improvement exists.

Various software was used in the course of this

research. The MIDSA™ [Taylor, 1990] software package was used

to simulate the feedback-only process under open and closed

loop operation, and was used to analyze the process

performance of all the simulation and industrial cases

examined. The Smith Predictor and Feedforward-Feedback

simulation cases were simulated in a spreadsheet environment.

[Stanfelj , 1990] The power spectrum plots shown for the paper

mill data were generated using the TIMESLAB™ time series and

identification software package. [Newton, 1988] The LQG

controllers designed for the simulated MIMO 2x2 case study

were generated using the LQDESIGN software package. [Kozub,

Swanson & Wong] The closed loop system was then simulated in

a general fortran program. [Stanfelj, 1990]



3.0 SISO CONTROL SYSTEMS

The first phase of research focussed on Single-Input-

S ingle-Output (SISO) processes. These schemes are important

as they are most prevalent in industrial practice and

therefore should be well understood. Moreover, they are the

simplest schemes to study and once the methodology is proven

successful in these applications the results will provide a

knowledge base for the more complex schemes examined in later

sections. This section covers the initial feedback-only and

combined feedforward-feedback simulation studies. In the case

of the former a model based feedback controller was also

examined. The analysis methodology and simulation results

were then tested and confirmed in a series of industrial

examples from both the pulp and paper and petrochemical

industries.

3.1 FEEDBACK CONTROL

A simulation study was initially performed on a SISO

process with a feedback-only control system. The process is

represented by the following transfer function,

52
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Y(z) = —

°-2z"3
*u(z) +

1 - 0.8Z"1 (1 - 0.8Z"1) V

* a, (3.1)

with the variance of at, aa2, equal to 0.001. It is important

to note the nonstationarity introduced to the process as a

result of the nonstationary disturbance model. The underlying

continuous process is represented by the following,

Yis)
-2s

S + 1

* uis) (3.2)

with a sampling period of one unit. A block diagram of the

system is shown in Figure 3.1.

Yspt

r t

N

E
i Y .

^c
Ut

bp -H^n ►*

Figure 3.1 SISO Feedback-Only Block Diagram

The open loop response for this process is shown in

Figure 3.2a. It is important to note that the only input is

the white noise specified in the process model. The estimated

autocorrelations are displayed in Figure 3.2b. Because of the
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nonstationarity of the disturbance model the autocorrelations

do not decrease rapidly but are maintained for a long period

of time. The power spectrum for this open loop process is

shown in Figure 3.2c. The power spectrum for this case is

very large at low frequencies and reduces rapidly at

increasing frequency. This is again characteristic of a

slowly drifting, nonstationary disturbance model which was

used in this example.

Therefore, the initial step of testing for optimal

control has shown that there are many large correlations

beyond the dead time of the process. An ARMA model, (refer to

Appendix A) ,
was then fit to the time series data to yield the

following relationship,

Yt
" K T— *at (3«3>c

(1 - 0.769Z"1) (1 - z-1)
c

with a variance of 0.00101 for at. Long division of the above

transfer function yields,

(3 4)

Yt
= (1 + 1.7692"1 + 2.3 06Z'2 +

. . . ) at

Because the process is nonstationary the coefficients in

Equation 3.4 are increasing, indicating an infinite variance

for the nonstationary process. Given the sample set for this

example, having a dead time of two units and the given noise
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variance the estimated best achievable performance is derived

from,

rai?{yjwr = (l2 + 1.7692 + 2.3602) *0. 00101
t mvc

(3.5)

= 0.0098

This minimum variance prediction of 0.0098 units shows that

great improvement can be achieved over the uncontrolled case

which produced a variance of 0.871 units. These results

indicate that control should be implemented in this system.

A minimum variance controller, MVC, was designed for

the given process model, and the system was simulated. All

calculations and equations are included in Appendix B. Figure

3.3 shows the process response, autocorrelation and power

spectrum for the process under MVC. The output response is

now stationary as a result of the integral action of the

controller.

If we refer to the autocorrelation plot we observe the

rapid decrease of the autocorrelations which confirms the

stationarity of the controlled process. The autocorrelations

beyond lag two, which is the true process dead time, are

effectively zero since they are within the confidence

intervals. Hence, the presence of an MVC is confirmed as all

autocorrelations beyond the dead time have been eliminated.
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As would be expected the actual MVC variance of 0.0099

compares well with the predicted minimum of 0.0098, confirming

the presence of optimal control. Any differences experienced

between the theoretical and actual results can be partially

attributed to the finite simulation period. This control

scheme has reduced the output variance from 0.871 to 0.0099

but has resulted in a highly oscillatory input response, which

may not be desirable.

The power spectrum for this process is displayed in

Figure 3.3c. A substantial reduction in the power spectrum at

low frequency levels has also been achieved as compared with

the open loop simulation. A more equal distribution of power

over the entire frequency range has been attained, which is

characteristic of a process under minimum variance control.

In this particular example the presence of minimum

variance control has reduced the process to a moving average

of order 2, MA (2), as a result of the two periods of delay in

the process model. As discussed in section 2.2.1 a minimum

variance controller may require harsh manipulations of the

input variable and often lacks robustness to modelling errors.

To reduce the effect of these undesirable characteristics

several other controllers were designed and the closed loop

process was simulated. These include a constrained minimum

variance controller (CMVC, X=l. 0) , with a penalty imposed on
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the input manipulations, a PI controller designed to minimize

the integral of absolute error (IAE) and a Dahlin algorithm

with several values of the closed-loop time constant (A.) . All

controller calculations are included in Appendix B. The

results obtained with these three controllers are similar,

thus, only the CMVC case will be discussed in detail.

Figure 3.4 exhibits the simulation results using the

constrained MVC. The closed-loop output response remains

stationary using this controller while the input manipulations

are now considerably smoother. The autocorrelation plot once

again decreases rapidly with those lags beyond five

effectively being reduced to zero. Because the controller

being used is a constrained MVC and therefore not "perfect",

there are still some significant autocorrelations beyond the

process dead time of two time intervals. Therefore, the

autocorrelation plot demonstrates that minimum variance

control has not been realized and thus improvement can be

achieved if it is desired. The power spectrum reflects these

results in that the power at low frequencies has been greatly

reduced from the open loop case but is slightly higher than in

the MVC simulation. The estimate of the best achievable

control performance, MVC, indicates that a 68% reduction in

the output variance can be achieved with tighter control. A

decision must therefore be made whether this decrease in

output variance is desired and warrants the large increase in
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Although it is evident that the system is not under

theoretically optimal control the performance of the

implemented controller may be satisfactory. Comparison of the

output variance between the MVC and CMVC cases shows only a

moderate difference in the variance which is accompanied by

harsh input manipulations. Whether this improvement is

desired must be decided by qualified personnel using process

knowledge.

Model Mismatch

The analysis methodology was then tested in model

mismatch cases. It is of interest to investigate whether this

evaluation and diagnostic technique is successful in

identifying modelling errors. In all model mismatch

simulations of the process under minimum variance control the

process became unstable. This verifies earlier claims that

the minimum variance controller often lacks robustness to

modelling errors, and hence finds limited use in industrial

applications.

The model mismatch simulations performed on the

process with more robust controllers, including the CMVC, PI
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and Dahlin remained stable. Once again only the results for

the CMVC case will be discussed. Refer to Appendix B for all

calculations. With the controller tuned to the base case

model a 50% increase in process gain was made on the plant,

G The results are displayed in Figure 3.5. Due to this

particular mismatch the output response became more

oscillatory and the input actions more aggressive compared

with the true model responses shown in Figure 3.4. The output

autocorrelations and power spectrum are plotted in Figures

3.5b and 3.5c respectively- The autocorrelation function

displays significant oscillatory behaviour with an approximate

period of ten sampling intervals, which can be attributed to

the mismatch. Model mismatch is also apparent from

observation of the power spectrum which shows a large peak at

0.1 Hz, corresponding to these oscillations. It is apparent

that the output autocorrelations and power spectrum plots

indicate definitively a deviation from minimum variance

control .

Figure 3.6 shows the simulation results for the

process under constrained minimum variance control with model

mismatch occurring as a 50% decrease in the process gain.

This particular mismatch results in a detuned controller.

Similar to the open loop case, the autocorrelation does not

damp out quickly and the power spectrum shows high power

content at low frequency. Therefore, it is evident from the
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autocorrelation and power spectrum of the controlled variable

that the controller is not aggressive enough resulting in a

sluggish process response.

Thus far it has been established that poor control

performance resulting from an overtuned or a detuned

controller can be diagnosed. The former can be identified by

oscillations in the autocorrelation plot and a corresponding

peak in the power spectrum while the latter system shows a

slowly damping autocorrelation and a power spectrum with high

power at low frequency. Additional analyses will be required

to differentiate between tuning and modelling errors.

3.1.1 MODEL-BASED FEEDBACK CONTROL

To further investigate the effects of model mismatch

on controller diagnosis a simulation study of a model-based

feedback control scheme was performed. A block diagram of the

system is given in Figure 3.7 showing the Smith Predictor

control structure. [Smith, 1957]

As discussed in Chapter 2 the quantity (Ym-Y )t, which

is the difference between the actual and the predicted output,

will be used to distinguish between tuning and modelling

errors. The following examples will demonstrate the use of
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Figure 3.7 Smith Predictor Block Diagram

this quantity.

A base case was established for this system assuming

a perfect process model and a minimum variance controller.

The process response and correlation data are shown in Figure

3.8. The output autocorrelation is eliminated after the true

process dead time of two periods, as is the crosscorrelation

between the differenced input and the output, all of which is

indicative of an MVC scheme. Moreover, the prediction for the

theoretically minimum output variance of 0.00386, given the

existing noise and disturbance conditions, agrees fairly well

with the actual output variance of 0.00453. Much of the

deviation can be attributed to the relatively small data
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sample consisting of 200 points. Averaging the results of

several simulation cases resulted in an actual output variance

of 0.00401 which differs by only 14% from the theoretical

minimum value. All calculations are included in Appendix C.

The crosscorrelation plot between the differenced input and

the differenced prediction error shows an absence of

significant correlation for positive lags. This implies that

the present input has no effect on values of the future

prediction error, hence the model is assumed to be correct.

Therefore, upon examination of this correlation data it is

possible to deduce that this controller is performing

optimally -

Additional simulation cases were performed to further

test the success of the diagnostic method. In order to verify

the ability to distinguish between tuning and model error,

cases of each were simulated and analyzed.

Figure 3.9 shows the results for a detuned controller

based on a correct model. In this case a PI controller is

used, given in Appendix C, designed using the Integral of

Absolute Error (IAE) technique. The output autocorrelation

and the crosscorrelation between the differenced input and the

output show significant values beyond that of the true process

dead time. The correlation plot of the differenced input to
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the differenced prediction term, (Ym-Y )t, however, does not

show any correlation. This implies, therefore, that there is

no model mismatch in the system and that non-optimal

performance is the result of poor tuning.

Figure 3.10 shows the results of a minimum variance

controller applied to an incorrect model. The mismatch occurs

as a reduction of 50% in the actual process gain. Similar to

Figure 3.9, the output autocorrelation and the cross

correlation from the input to the output show significance

beyond the dead time of the process. Unlike the detuned

control case, however, this example shows significant

correlation between the input and the prediction error. As

described in Chapter 2, this significant correlation suggests

model mismatch but is not necessarily conclusive. The

significant correlation can be the result of model error or

correlated noise. Model accuracy can only be unequivocally

determined from data with controlled variable setpoint

perturbations. Thus additional data, shown in Figure 3.11,

was obtained. Similar to the results in Figure 3.10, the

output autocorrelation and the crosscorrelation from the input

to the prediction error show significant correlation. The

presence of model error becomes conclusive in Figure 3. lid

where significant correlation between (Y )t and (Ym-Yp)t+k is

observed. Since model error exists, no evaluation of

controller tuning can be made.
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These examples demonstrate that non-optimal control

performance can be diagnosed successfully to indicate errors

in tuning or in modelling.

3.1.2 INDUSTRIAL CASE STUDY

Empirical Study of Pulp Base Weights at Domtar and Kruger

Paper Mills

The initial industrial application for this research

was in examining data from several Domtar and Kruger paper

mills. In each case the pulp basis weight is being controlled

with a commercial Dahlin controller.

Figure 3.12a and 3 . 12d show the output response for

the Domtar uncontrolled and controlled cases. It is apparent

from these responses that the controlled case is a great

improvement over the uncontrolled case but this research

questions whether further improvement is possible. The

autocorrelations of the two cases are shown in Figure 3.12b

and 3.12e. The uncontrolled plot is characteristic of a

slowly drifting, nonstationary process while the

autocorrelation of the controlled basis weight is eliminated

after the second time interval. As the dead time of the

process is approximately two units this latter case appears to
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be giving minimum variance performance. This is confirmed by

the fact that the actual output variance of 0.4 52 is

approximately equal to the predicted minimum of 0.485. Refer

to Appendix D for calculations.

Figure 3.13a and 3.13d show the controlled and

uncontrolled process response for basis weight data supplied

by Kruger. Using simple observation it is difficult to

differentiate between the two responses and to discern the

superior performance. The autocorrelation plots for the two

cases are shown in Figure 3.13b and 3.13e. Both plots show an

alternating pattern in the autocorrelation function. This

high frequency oscillation is also picked up as a large peak

at high frequency in the power spectrum plots shown in Figures

3.13c and 3.13f. This information indicates a possible

problem with the system sensor. When this problem was

detected and remedied the performance improved significantly.

From these two simple industrial examples the utility

of this diagnostic tool is apparent. The autocorrelation

function and the power spectrum have been used successfully to

confirm the presence of near optimal control in the first

instance and to diagnose a sensor difficulty in the latter

example.
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Empirical Study of a Heat Exchanger at Shell Scotford Refinery

A PI feedback control strategy was tested at the Shell

Scotford Petroleum Refinery. A rich amine solution is being

heated approximately 8 °C via exchange with low pressure steam

before entering an amine flash drum. A process flow diagram

is given in Figure 3.14. The heater is a double pipe heat

exchanger, with steam in the outer tube, having an approximate

duty of 1.10 MMBtu/hr. The rich amine outlet temperature is

controlled by manipulating the steam flow through the

exchanger.

A time series identification of the process yielded

the following transfer function [Box & Jenkins, 1976],

=

0.00852Z-'
+F(Z)+

1
(3.6)

1 - 0.568Z"1 1 - 0.8Z'1

with a variance of 0.05 (°C)2 for at. A Pseudo-Random-Binary-

Sequence (PRBS) signal was introduced into the steam flow with

a magnitude of 100 kg/hr and a switching frequency of 4

minutes, while the sampling period was one minute. A

continuous model which satisfies this discrete representation

is given in equation 3.7.

Ta(s) =

°-02e"°
* Fis) (3.7)

1.8S + 1
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Rich Amine

Steam Trap

Condensate

Figure 3.14 Process Schematic for Rich Amine Heat Exchanger

where F is the steam flow to the exchanger. A block diagram

of the system is shown in Figure 3.15.

The identified transfer function relating the amine

outlet temperature to the steam flow is used for the process

model. The quantity (T )t represents the predicted temperature

given the process model and the actual steam flow input. The

difference between the actual temperature and the predicted
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Figure 3.15 Rich Amine Heat Exchanger Control Block Diagram

temperature is given by the quantity (Tm-T )t. Unlike the

model based control case this quantity is not used by the

control algorithm, but it will be used in the analysis to

investigate possible modelling error.

Normal operating data was collected and analyzed for

the original controller tuning constants. Figure 3.16 shows

the process input and output response and the autocorrelation

and crosscorrelation functions. The output and input are

given by T13810 and F13023 respectively- The variance of the

controlled variable is 1.943 (°C)2. The slowly decreasing

autocorrelation plot is characteristic of a nonstationary

process and indicates a detuned, poorly performing controller.



86

00 2 «
Tl« 10

*

TIKE SESIES PLOT of T1J8H0 ud T13023

k
I f . -1 1 I 1

O 8 .

1

4 -

"ill I II I I 11 II M I 1 1 I 1

Jr,UTO-CO»WCIJ.TIOII» of T13I1.0

; COf» (roa nJ023 »lth 1 DXtt to TlStlO

Figure 3.l6(a,b,c) Rich Amine Heat Exchanger, Normal

Operation



87

Given the ARMA model fit to the time response data and the

true process dead time of one unit, the prediction of the

minimum variance for the outlet temperature, using equation

2.12, yields 0.186 (°C)2. Appendix E shows the necessary

calculations. This is a large reduction from the existing

case indicating the need to modify the controller.

The controller parameters were changed gradually and

an analysis was performed at each step. A summary of all the

cases studied is given in Table 3.1. The controller gain

required increasing while the reset time was decreased.

Analysis results for trial number 3, shown in Table 3.1, are

given in Figure 3.17. In this particular case the tuning

parameters are approaching those of an MVC. A large

improvement has been realized from the initial case as shown

by the presence of only two significant autocorrelations

beyond that of the process dead time. The best achievable

performance was estimated to yield a variance of 0.042 (°C)2,

as can be seen in Appendix E, which is virtually equivalent to

the 0.048 (°C)2 variance of the sample. There seems to be a

slight oscillation in autocorrelation function which may be an

indication of control difficulty. If we examine Figure 3.17d

it shows slight significance in the correlation between the

differenced steam input and the differenced model prediction

error. As stated before, this can be the result of either

model inaccuracy or an autocorrelated disturbance. Although
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there is no process model used directly in the control

algorithm, an inherent model was assumed in deriving the

control parameters. If the model accuracy is to be determined

explicitly, data could be collected under the presence of

controlled variable setpoint changes. This error, however,

appears to have a minimal effect on the system and thus for

the purposes of this application the performance may be

acceptable.

Some further case studies were performed with Figure

3.18 showing a controller yielding an overly aggressive

response, as can be seen in the highly oscillatory

autocorrelation plot. These results correspond to case number

4 in Table 3.1. The temperature variance is moderately higher

than in the MVC case while the steam flow variance has

increased by two orders of magnitude. This overtuned

controller is demanding overly aggressive manipulations of the

input variable causing the controlled variable to be adversely

affected. Although the temperature variance appears

acceptable the large input manipulations accompanied by the

oscillatory autocorrelation function indicate an overtuned

controller, hence detuning would be advised.

These simple industrial examples have been used to

demonstrate the use of the autocorrelation and

crosscorrelation functions and the power spectrum. In the
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'Shell Study' the correctness of the diagnosis was validated

by further empirical cases which followed the recommendations

based on the analysis of initial data. Therefore, this

diagnostic procedure has proven effective in screening for the

existence of a control performance inadequacy and in

differentiating between mistuning and modelling errors in

simple systems. In the latter case, however, the adequacy of

tuning cannot be established until the modelling error has

been eliminated.

3.2 SISO FEEDFORWARD - FEEDBACK CONTROL SYSTEM

It was the objective of this phase of the

investigation to determine whether statistical techniques such

as the autocorrelation and crosscorrelation functions could be

used in evaluating control performance for a more complicated

control scheme. To this end it was of interest to determine

whether inadequacies in a feedforward-feedback control scheme

could be successfully attributed to either the feedforward or

the feedback controller in addition to distinguishing between

mistuning and model mismatch, already discussed. Many of the

results obtained in this phase of the study follow directly

from the simple SISO pure feedback system discussed in the

previous section. The concepts presented in this section will

also introduce some of the methodology employed for the
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multivariable applications in the following section.

3.2.1 SIMULATION RESULTS

A feedforward-feedback control scheme was designed for

a first order with dead time process (FOPDT) . The controller

was designed for regulatory service with a FOPDT disturbance

model. It is important to note that the process and

disturbance models have an equivalent dead time. All process

simulations were performed with a Pseudo-Random-Binary-

Sequence, PRBS, disturbance input, dt. A random walk,

autoregressive noise model of order one, AR(1) ,
was also added

to the system. A block diagram for the process, showing the

process and disturbance models, is given in Figure 3.19. The

variance of at is 1.000. Using these models various

feedforward and feedback controllers were designed and

implemented. Refer to Appendix F for calculations.

This process was simulated in discrete time in a

spreadsheet environment. [Stanfelj, 1990] The control

details are provided in Appendix F. This technique was

selected because of its simplicity, speed and ease of data

modification and manipulation. Data generated from these

simulations was then analyzed in the MIDSA™ software package.



96

0.170Z"2

1 - 0.886Z
-1

uTOTt

0.376Z
L

1 - 0.836Z"

t!
1 - z

-1

Figure 3.19 Feedforward-Feedback Control Block Diagram

The control performance evaluation and diagnosis

methodology for combination feedforward-feedback controllers

was presented in detail in Chapter 2. As we recall, the

quantity (Ym-Y )t represents the model prediction error and is

composed of any error in both the process and disturbance

models and the unmeasurable noise or disturbance entering the

process. This quantity will again be used to check for
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modelling errors. The procedure thus established will be

demonstrated in the following examples.

Several cases having varying control equations were

studied. A base case was selected having a perfect

feedforward controller, defined as,

Gc (S) - -^44 <3.8)
C"

Gpis)

and an MVC feedback algorithm, with both process and

disturbance models being correct. In order to test the

diagnostic procedure, the individual controllers were then

detuned and the process and disturbance models mismatched.

Recalling Figure 2.7, it is evident that the potential

combinations causing poor performance are numerous, many of

which will be discussed in the following section.

Case Studies

The first control scheme investigated was the base

case having a perfect feedforward controller and a minimum

variance feedback controller. The simulation results for this

case are displayed in Figure 3.20. Figure 3.20b shows that no

correlation exists between the measured disturbance and the



98

TIHE SERIES PLOT oC YMEAS and UTOT

J I-

CROSS CORR. Iroa DIST to YMEAS

Figure 3.20 (a. b) Feedforward-Feedback, Base Case



99

-SO OO 6 0

AUTO-CORRELATIOHS of YMEAS

c

r

o

s

■

C io
o

r

r

•

1

a

c OS
i

o

n

00

( 1 '

ll III,

1

. i.l 1 1

-.05

10

- .16

l |i

1 1 1 1 1

-20 0 -IS 0 -10.0 -SO 0 0 SO 10 0 16 0 20 0
Lag

CROSS CORR from DIST to YM-YP with 1 Dxtt

Figure 3.20 (c,d) Feedforward-Feedback, Base Case



100

output which is expected for the perfect feedforward control

case. The output autocorrelation establishes the presence of

minimum variance feedback control, as all lags beyond the

process dead time are within the confidence region. The

output response is stationary with a variance of 1.957. This

value agrees well with the predicted minimum of 1.921, as

calculated in Appendix F. To confirm the absence of model

mismatch Figure 3.20d shows that correlation does not exist

between d, and (Y -Y )_,,. Therefore, the best possible control

is being achieved given the structure of the process and

control system. Control improvements can only be obtained

through modifications of these structures.

The next control case analyzed retained the correct

models but the feedback controller was detuned slightly by

implementing a constrained minimum variance controller

(A=1.0). The results are shown in Figure 3.21. No

correlation exists between the disturbance and the output, as

visible in Figure 3.21b, which implies perfect feedforward

compensation. The output autocorrelation has significant

correlations appearing beyond the dead time, which indicates

non-optimal feedback performance. The output response shown

in Figure 3.21a is similar to that of the base case with the

output variance being only marginally higher at 2.204. This

variance is 24% greater than the lowest achievable value of

1.772. Although Figure 3. 2 Id shows that no correlation exists
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between the measured disturbance and the differenced model

prediction error, the possibility of model error cannot be

eliminated. As described in Chapter 2, the feedforward

controller would have to be decommissioned and the data

analyzed under those conditions. Therefore, given this

analysis it is not certain whether the less than optimal

performance is the result of a detuned feedback controller or

compensating model errors.

Figure 3.22 shows the simulation results for the

previous case with the feedforward control decommissioned.

Unlike the previous example, Figures 3.22b shows significant

correlation between the measured disturbance and the

controlled variable, which is the result of the absence of

feedforward control. The autocorrelation of (Ym)t shows

significant correlation beyond the process dead time of one

unit, indicating non-optimal feedback performance. Similar to

the last example, Figure 3.22d shows no correlation from the

measured disturbance to the prediction error, therefore the

models are deemed correct. Therefore, the non-optimal

performance in the previous case is the result of a detuned

feedback controller.

Figure 3.2 3 shows the results of the simulation in

which perfect feedforward control was attained as a result of

compensating errors in the process and disturbance models.
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Figure 3.23b shows no significant correlation between dt and

(YJt+k which implies perfect feedforward compensation. The

autocorrelation of (YK# however, shows significant

correlation beyond the dead time of the process indicating

non-optimal control performance. Figure 3.23d shows absence

of correlation between the measured disturbance and the

prediction errror, which implies perfect models. As indicated

in the last example, however, this result is not conclusive,

thus further testing is necessary.

Using the same process and disturbance models, and the

same feedback controller as the previous case, the system was

simulated without the presence of feedforward control. The

results of this simulation are shown in Figure 3.24. The only

difference between these results and those of the previous

case are in Figure 3.24d, the crosscorrelation between dt and

(Ym-Y_)t+k. Unlike the previous example, significant

correlation in this plot establishes the presence of model

mismatch in the both models. Because the model errors are

exactly compensating, they were not apparent in the

crosscorrelation between the measured disturbance and the

controlled variable.

The next example follows the right hand branch of the

diagnosis presented in Figure 2.7. Figure 3.25, displays the

analysis results for a perfect model of the measured
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disturbance and a model mismatched MVC feedback loop. The

output response shows the controlled variable to be controlled

less tightly which is quantified by the 59% higher variance of

3.483 as compared with the predicted minimum of 2.193. The

disturbance-output crosscorrelation plot shows significant

correlation which indicates a non-optimal feedforward

controller. Moreover, the output autocorrelations remain

significant beyond the dead time of the process, indicating

that the best achievable control is not being attained.

Figure 3.25d shows significant correlation between the

differenced input and the differenced model prediction error

which suggests model mismatch in the system. In order to

clearly identify model error in Gd or in both Gd and G a

controlled test with setpoint changes would have to be

conducted and the data further analyzed.

The final combination examined is the case of non-

compensating model errors in both the disturbance and the

process models. In this instance both the feedforward and

feedback controllers are not performing optimally. The output

response shown in Figure 3.26a, accompanied with the large

output variance of 16.472, confirms the poor control

performance resulting from these modelling errors. The

predicted minimum variance is calculated at 4.603 which

represents a 72% reduction from the variance realized with

this controller. This predicted minimum variance is
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considerably higher than that calculated for the previous

cases. The reason for this discrepancy is that the poor

feedforward control is acting like an additional disturbance

which the feedback controller must attenuate. Therefore, the

minimum variance predicted for this case reflects the larger

inherent disturbance which results in a higher optimum value

than that which would be obtained in the presence of good

feedforward control, which would eliminate this disturbance.

In cases such as these, which exhibit significantly degraded

feedforward control, it is often possible to reduce the

controlled variable variance to below that of the initially

estimated minimum value, by improving the feedforward control.

This is evident in Equation 2.12 by noting that aa2 is reduced

by the feedforward control.

The presence of significant correlation between the

disturbance and the output indicates the inadequacy of the

feedforward controller. As expected, the output

autocorrelation demonstrates a deviation from the best

achievable performance. Figure 3.26d suggests the presence of

model mismatch in either or both of G„ and GAI but is not

conclusive. As in the previous example the accuracy of the

individual models cannot be established with this normal

operating data. This information can be obtained by

conducting plant tests involving controlled variable setpoint

changes if desired.
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It is important to note that some of these examples

required a large amount of mismatch in order to become

apparent in the analysis. At this point it is important to

note that the main issue is not to establish the amount of

mismatch necessary for definitive observation of the error,

but rather, upon observing poor performance to have the

ability to deduce the source of that error. Obviously, if the

mismatch or detuning in a process is not significant enough to

emerge in the analysis, it is not likely that modifications

are warranted nor would they necessarily improve the system

performance. Let us consider a process under both detuned and

tightly tuned control conditions. Given the same process-

model mismatch it may not be diagnosed in the former control

case because the controller is not as demanding while it may

be clearly evident in the latter as the mismatch contributes

more to the control moves. This difference will become

apparent in the correlation analyses from the confidence

intervals, as they allow true statistical properties to be

distinguished from random error.

In order to facilitate the analysis a visual

representation of all the information is beneficial. As

discussed in Chapter 2 a correlation matrix is used to

summarize the correlation information. Depending on which

matrix elements show significant correlation, controller

inadequacy may be deduced. Of course, the base or perfect
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control case correlation matrix will exhibit no significant

correlation in any of the correlation matrix elements other

than the autocorrelation. In this latter case the correlation

will be eliminated beyond the dead time lag of the process.

Therefore, an "X" will only be placed in the Yt*Yt+k element if

correlation exists beyond the process dead time. Figures 3.27

and 3.28 show the correlation analysis results in correlation

matrix format, taken from the examples shown in Figures 3.21

and 3.25. Figure 3.27 shows significant correlation occurring

only in the output autocorrelation. Therefore, it is apparent

that the feedback controller is only detuned as the

feedforward controller is functioning well and no model

mismatch exists in the system. Figure 3.28 shows significant

correlation from the measured disturbance to the output

variable, in addition to significant output autocorrelation

beyond the dead time. As a result of the former, the

feedforward control is determined to be non-optimal. Further

data collection under controlled variable setpoint changes is

then required. Analysis of the correlation between (Y )t

and (Ym-Y )t+k, as shown in the feedback-only examples, is

necessary to determine the exact cause of error. These are

the same diagnoses made previously but the matrix format

allows clearer access to all the information and therefore

easier interpretation.
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(time = t + k)
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Figure 3.27 Feedforward-Feedback, Detuned Feedback Example
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Figure 3.28 Feedforward-Feedback, Process Model Mismatch

Example
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This matrix representation may not be crucial in the

analysis of this low dimension problem but it clearly

simplifies diagnosis in the multidimensional problems to be

encountered in the MIMO examples. Matrix representation will

be further developed in the MIMO section of this report, but

the concepts follow directly from the previous examples.

This investigation of a feedforward - feedback control

system has shown that the use of the statistical

autocorrelation and crosscorrelation functions is a successful

performance diagnostic tool. The examples given have

demonstrated the diagnostic procedure which allows control

inadequacies to often be distinguished between tuning and

model mismatch and in the case of the latter between the

disturbance and process models.

3.2.2 EMPIRICAL STUDY OF A DISTILLATION TOWER AT SHELL

SCOTFORD REFINERY

The approach used for the simulations in the previous

section was then applied to an industrial example. A lead/lag

feedforward - PI feedback controller was implemented on a

Stabilizer bottom temperature at the Shell Canada Products

Ltd., Scotford Refinery. The lead/lag feedforward controller
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was reduced to a simple dead time block as the lead and lag

elements cancelled. The bottom temperature is controlled via

hot oil flow to the column reboiler while the tower liquid

feed flow acts as the feedforward variable.

A simple schematic of the process is shown in Figure

3.29. The stabilizer is a 50 valve tray tower having two feed

circuits, a liquid and a compressed vapour stream entering

above trays 25 and 27 respectively. Both feeds come from the

fractionator overhead drum where they are separated into the

vapour and liquid streams. The overhead product consists

primarily of C3, C4 and C5 components and feeds the gas

recovery unit. The bottoms product is Light Hydrocrackate and

consists mainly of C6 components. The objective is to

minimize iC5 in the overhead product, which is measured by an

on-line analyzer and is controlled by adjusting the Tray 45

temperature. This temperature controller is then cascaded to

the top product flow while the accumulator level is maintained

by adjusting the reflux flow. The vapour feed is only a small

portion of the total feed to the column and the reflux to

liquid feed ratio is approximately 0.85. The required heat

input is supplied by a hot oil reboiler and an air cooler

supplies overhead cooling.

An identification was performed on the process

yielding the models shown in equations 3.9 and 3.10.
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The gain is in (°C)/(m3 flow) and the dead time and time

constant are in minutes. The process and disturbance models

were identified by imposing a pseudo-random-binary-sequence

(PRBS) on the hot oil flow and the stabilizer feed flow,

respectively, and using time series identification techniques

to generate the appropriate relationships. [Box & Jenkins,

1976] The former had a magnitude of 10 m3/hr and a switching

frequency of 5 minutes while the latter' s magnitude and

switching frequency were 7.5 m3/hr and 5 minutes,

respectively. In both cases the sampling period used was one

minute. The approximate conditions of the column are given in

Table 3.2. During these identification experiments all

overhead control loops were under automatic control and

remained unchanged for the duration of the stabilizer study.

An initial feedforward compensator and a PI feedback

controller were then designed for the system. The



124

Table 3.2 HCU Stabilizer Conditions During Model

Identification

HCU Stabilizer Condi lions

Feed Flow (F24039)

Bottom Temperature (T24835)
Hot Oil Flow (UTOT)

50 m /hr

169 °C

107 m3/hr

following controller equations were used,

Gr = 0.73 z-4 (3.11)

GCfb ■• Kc
= 0.51

(3.12)

Tx
= 1

A block diagram is shown in Figure 3.30.

Data was collected and analyzed for the given process

with various feedforward and feedback tuning parameters. In

most of the test cases the stabilizer feed rate was perturbed

using a PRBS signal in order to introduce forcing into the

system. A PRBS of magnitude ranging from 3 to 5 m3/hr was

used. It is important to note that initial model

identification was performed under moderate rates to the unit,

as given in Table 3.2, whereas the subsequent performance

diagnosis was performed during both increases and decreases in

the column throughput. This wide range in the operating point

of the column introduced additional complexity in the
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dt

FB

T

U
TOTt

-0.00932Z-10

1 - 0.873Z"1

0.00761Z

1 - 0.875Z
-1

il
1

1 - .965Z~

Figure 3.30 HCU Stabilizer Control Block Diagram

performance analysis. The relevant column conditions for each

test case will be presented in the individual analyses and are

included in the case summary presented in Table 3.3. The

feedforward and feedback tuning parameters given in Table 3 . 3

have been scaled because of confidentiality concerns. The
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tuning parameters corresponding to what was thought to be the

best case, case 4 in Table 3.3, were given values of 1.0 and

all other cases were scaled accordingly.

The process gain is the ratio of the change in the

bottom temperature to the change in the reboiler flow.

Similarly, the disturbance gain is the ratio of the change in

the bottom temperature to the change in the feed flow. If we

assume the top of the column to be under automatic control

then both of these ratios and hence both gains are

proportional to the feed flow rate. Since these gains are

affected in the same manner the feedforward control gain,

which is the ratio of these two values, should remain

relatively constant in the event of feed flow rate changes.

On the other hand the feedback controller gain is a function

of the feed flow rate and as such should be in error as the

feed flow fluctuates. As a result of the large feed flow

changes experienced by the stabilizer during the testing phase

it would be expected that the models originally identified

would be incorrect and model mismatch would be observed at the

more extreme flow rates.

Figure 3.31 shows the closed loop performance of the

system under the feedforward and feedback control conditions

given in Equations 3.11 and 3.12. This corresponds to trial

number 1 in Table 3.3. The crosscorrelation between the feed
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and the bottom temperature shows significant correlation at

time intervals nine to twelve, which indicates inadequate

feedforward compensation. The autocorrelation function is

reduced to zero after nine time intervals which is greater

than the five unit dead time, indicating less than minimum

variance feedback performance. The bottom temperature appears

stationary with a variance of 0.077 (°C)2. This is a 62%

increase from the predicted minimum variance of 0.0476 (°C)2,

as calculated in Appendix G. Although not conclusive, the

crosscorrelation plot between the input and the model

prediction error, showing only a couple small correlations,

implies absence of model error. It is questionable whether

this is statistically significant but may be interpreted as an

indication of either correlated noise or model error.

In trial number 2 the feedforward gain was decreased

by 45% yielding the results shown in Figure 3.32. It is

important to note that when the feedforward gain is changed

the corresponding change in the disturbance model gain is also

made. In this manner the disturbance model is kept updated

and thus model mismatch can be investigated. The feedback

controller parameters remained unchanged. The control of the

bottom temperature degraded with this lower feedforward gain

as evident in both the temperature response and the higher

temperature variance of 0.133 (°C)2. This variance represents

a 216% increase from the calculated minimum variance of
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0.0421 (°C)2. The crosscorrelation between the feed and the

bottom temperature is shown in Figure 3.32b. This plot

indicates poorer feedforward performance, as compared with the

previous case, as the correlation values are larger and of a

longer duration, existing between lags six and thirteen. The

autocorrelation of the bottom temperature also shows degraded

performance, requiring eleven time periods before damping out.

The correlation plot between input and the model prediction

error is not significantly different from the previous case.

Once again, if model mismatch is present it does not appear to

be a large contributing factor to the poor performance. It is

evident, however, that the decrease in feedforward gain did

not improve the performance of the control scheme. Therefore,

other modifications must be made if improved performance is

desired.

Figure 3.33 displays the control results obtained for

the system with an increased feedback gain, corresponding to

trial number 3. The feedback gain was doubled while the

feedforward gain was returned to its initial value. The

bottom temperature variance is at its lowest value thus far of

0.0443 (°C)2, which is only a 35% increase over the predicted

minimum variance of 0.0328 (°C)2. The crosscorrelation plot

between the feed and the bottom temperature is similar to the

first case, as would be expected given the same feedforward

tuning parameters. As in the former example significant
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correlation is observed between lags nine and twelve. This

confirms the initial suspicion that feedforward modifications

are required. Since decreasing the feedforward gain did not

result in better control performance the next obvious step

would be to increase the gain. The autocorrelation of the

bottom temperature becomes negligible once again after nine

time intervals. As with the previous cases, model mismatch

does not appear to be a major concern as seen in the presence

of only small, random correlation in Figures 3.33d. The

higher feedback gain has resulted in improved performance over

the first case and therefore should be maintained.

In the next trial the feedforward gain was increased

by 4 0% while the feedback gain was maintained at its higher

value. Refer to trial number 4 for actual control parameters.

The correlation results for this case are shown in Figure

3.34. As was expected, the crosscorrelation between the feed

and the bottom temperature has been completely eliminated,

indicating perfect feedforward compensation. The

autocorrelation of the bottom temperature, however, has not

changed drastically, still being eliminated after nine time

periods. Once again Figures 3.34d suggests acceptable models

as only a few random lags show any significance. In order to

confirm the presence of perfect models a case should be

performed in which the feedforward controller is

decommissioned and the data analyzed. This will be shown in
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a following example. Nevertheless, this diagnosis suggests

that the control scheme is adequate in all respects. Where

this example deviates from what is expected is in the bottom

temperature variance. A value of 0.0935 (°C)2 was calculated

for the run which is a 159% increase from the predicted

minimum variance of 0.0361 (°C)2. This large difference

between the experienced variance and the lowest attainable

variance is certainly not consistent with the correlation

analysis results. It implies that the existing controller is

not performing near the theoretical optimum while all the

diagnostic criteria support a satisfactory control scheme.

Additional investigation into this case study did not reveal

any obvious causes for the discrepancy. Unmeasured

disturbances may have adversely affected the analysis. A

repetition of this test run may have produced other, more

consistent results. The use of larger data sets over extended

periods of time may have eliminated this difficulty.

The previous results were obtained for the system

under the decreased feed flow rates. As discussed initially,

it would be expected that the feedback controller would be

affected by this deviation while the feedforward controller

would not. The following examples were generated when the

flow rate was increased by as much as 50%.
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Trial number 6, the results of which are shown in

Figure 3.35, was performed with the same tuning parameters as

with the previous case but with no feed perturbation. As

would be expected for the well controlled system the

correlation analysis shows an output autocorrelation which

damps out after eight time intervals and no correlation in any

of the crosscorrelation plots. Furthermore, the attained

temperature variance of 0.0243 (°C)2 is only 10% larger than

the predicted minimum of 0.0221 (°C)2. Hence, it appears that

these tuning parameters result in good control performance.

This is consistent with the diagnosis obtained for the

previous case, in which the feed was perturbed. The

evaluation of the best achievable control performance for that

example, however, was inconsistent as it implied significant

improvement to be possible.

In order to verify the accuracy of the models, control

of the bottom temperature was then attempted without

feedforward control, although the feed flow rate was

perturbed. Trial number 5 in Table 3.3 summarizes this case.

The results of this example are given in Figure 3.36. The

temperature variance of 0.0519 (°C)2 is 137% greater than the

minimum variance calculated at 0.0219 (°C)2. The

crosscorrelation between the feed flow and the bottom

temperature shows significance between time interval one and

seven which indicates poor feedforward compensation or in this
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case, the absence of it. The zero-crosscorrelation between

the measured disturbance and the model prediction error

indicates that the disturbance model is essentially perfect,

hence the process model must also be perfect. Therefore, the

performance in the last example could only be improved by

tuning of the feedback controller or a different choice of

feedback algorithm.

The final example studied, trial number 7, is

displayed in Figure 3.37 which is the result of an excessive

feedforward gain. The temperature variance is at its highest

value thus far of 0.127 (°C)2 which is 180% greater than the

predicted best achievable case. Inadequate feedforward

control and possible model mismatch are apparent from the

significant correlation obtained in the crosscorrelation plots

between the feed flow and the bottom temperature and between

the input and the model prediction error, respectively.

Therefore, it is apparent that this modification to the

feedforward controller has degraded the control system

performance. The parameters of the feedforward controller

should be returned to their previous values.

All of these results were summarized in Table 3.3 and

all calculations are included in Appendix G. This industrial

case study has illustrated some of the analysis methodology

introduced in the simulation examples and has demonstrated the
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usefulness of this control performance evaluation and

diagnosis technique. Some inconsistencies have been observed

as can be expected in dealing with relatively small sets of

experimental data. Reproducing tests which lead to

questionable results may be necessary for the successful use

of this tool. The advantages of having this procedure on-line

would be the recursive generation of the relevant statistical

parameters. In this manner the results could be monitored

over time and the results would be verified.



4.0 MIMO CONTROL SYSTEMS

The success of the diagnostic procedure was then

examined for Multi -Input-Multi-Output (MIMO) systems. The

basic interpretations developed in the SISO studies are still

applicable here, as will be demonstrated. The analysis of the

feedforward-feedback example with the introduction of the

matrix representation serve as the foundation for the MIMO

analysis.

Multivariable control schemes are becoming more common

in industry and as such it is important to include them in

this research. The sudden popularity of the (Quadratic)

Dynamic Matrix Control, (Q)DMC, algorithm reflects an attitude

that these schemes can solve a wide range of control problems.

Because of their complexity and the interdependence of the

inputs, outputs and disturbances, performance evaluation and

diagnosis is challenging. The initial results in this chapter

are from a simulation case on a 2x2 example which will

illustrate the relevant concepts. Subsequently, the

evaluation methodology developed is applied to an industrial

QDMC case. These examples will present the capabilities and

the limitations of the analysis methodology being used.

150
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4 . 1 SIMULATION RESULTS

The control block diagram for the 2x2 system is shown

in Figure 4.1. Several models with different degrees of

interaction and the same process configuration were examined

and analyzed. In all cases a Linear Quadratic Gaussian, LQG,

controller [Astrom & Wittenmark, 1984] was designed for the

processes with varying weights imposed on the inputs and

outputs in order to realize a broad range of performance. The

details for each case study,- including the process model

transfer functions and the control equations, are included in

Appendix H.

Initially, a simple system was studied having

uncorrelated disturbances and minimum dead times which

appeared on the diagonal. Once these cases were studied and

a methodology was developed and proven, variations were added

to the analysis. Complexities such as correlated

disturbances, which are more common in industrial settings,

and dead time imbalances were introduced in order to determine

the capabilities and limitations of the diagnostic procedure.

Finally, sparsity was introduced in the system matrix and the

analysis simplifications were observed. The specific concerns

associated with each of these configurations were discussed in

Chapter 2. The procedure outlined in the section pertaining

to MIMO systems is followed in the succeeding examples.
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As introduced in Chapter 2, the correlation matrix

will be used to summarize the information required for

performance diagnosis. Individual correlation plots for the

cases examined can be examined in the Control Performance

Evaluation and Diagnosis Laboratory Manual. [Stanfelj, 1990]

The following results pertain to the simple process

configuration having uncorrelated noise and minimum dead times

appearing on the diagonal. The latter information is critical

in establishing the minimum number of lags for each output,

prior to which control can have no effect and beyond which all

correlation can be eliminated given perfect control. In the

instance that the minimum dead times do appear on the

diagonal, the minimum number of significant lags for each

output corresponds to this minimum dead time. This analysis

is not as straightforward in the case when all of the minimum

dead times do not appear on the diagonal and will be discussed

in more detail presently.

Figure 4 . 2 shows the analysis matrix results for the

base case. The base case consists of a perfect LQG

controller, based on a correct process model, having equal

weighting on both outputs and unlimited input moves. The

autocorrelation of both outputs is reduced to zero after their

respective minimum dead times of one unit. This is confirmed

in the crosscorrelation between the inputs and the outputs
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which are also eliminated after the dead time. The variances

of Y, and Y2 are 2.127 and 1.908 while u., and u2 experienced

variances of 273.599 and 228.232, respectively. Although not

shown in the correlation matrix, there was no correlation

between the inputs and the model prediction errors. As

described in Chapter 2, however, this diagnostic does not

conclusively indicate the presence or absence of model error,

under correlated noise conditions. Therefore, as described in

the feedback-only case, setpoint changes would have to be

introduced into the system and the data analyzed accordingly .

Nevertheless, in the case of perfect models there should not

be an "X" in any of the elements representing the

crosscorrelation from (Y ) . to ER. .
*

sp' 1 1
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This controller can be detuned by imposing penalties

on the variances of the input manipulations. The results of

the case in which equal penalties of 2.0 units are placed on

both inputs are displayed in Figure 4.3. The output

autocorrelations and the crosscorrelations between the inputs

and the outputs show significant correlation beyond their

respective minimum dead times, which suggests non-optimal

control . Both outputs experienced greater variances than in

the optimal control case, measuring 4.376 and 6.716

respectively. Once again, there was absence of correlation in

the elements representing the crosscorrelation between the

inputs and the model prediction errors, suggesting perfect

models but not definitively. As in the last case, analysis

should be done on plant tests having controlled variable
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setpoint changes. The significant correlations in elements 1

through 6, however, do indicate improvement in the control

performance of both Y1 and Y2 is possible.

The correlation matrix for the case in which only one

of the inputs, u1# is penalized is shown in Figure 4.4. In

this particular case the weight placed on u, was also 2.0

units. As with the previous example both output

autocorrelations are marked with an 'X1, indicating non-

perfect control. Contrary to the previous example, however,

this correlation matrix only shows significance between the

first input and both outputs. This fact establishes that the

degraded performance observed is the result of the first input

only. Furthermore, model mismatch would be discounted as

there would be no significant crosscorrelation between any
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setpoint changes and the prediction error. These last two

examples demonstrate the success of differentiating between

poor performance resulting from one or both of the inputs.

Figure 4.5 shows the correlation matrix representing

several cases of model mismatch in which either or both of

Gm(l,l) and Gm(l,2) are incorrect. In the particular case

presented here, the gain of Gm(l,l) was decreased while the

gain of Gm(l,2) was increased. Output weights remained

constant at 1.0 units each and no penalty weights were put on

the input moves. As is expected for non-optimal control, the
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autocorrelation for Y. shows significant correlation beyond

the dead time. Moreover, the variance of this output has

increased 200%, measuring 6.639. The control of Y2 is not

affected, as apparent in the autocorrelation function and

confirmed by a variance of 1.927, which compares well with the

minimum value. The former is expected as the inaccurate

models pertain only to Y, . Because of non-optimal control

resulting from the modelling errors in Y, , however, it would

be expected that the disturbance to Y2 is different than that

expected, hence the variance of Y2 could be higher than the

estimated minimum value. The variance obtained in this case,

however, does not reflect this probability. As with many of

the unexpected results obtained using this method it can be

argued that the errors introduced to the system are not

statistically significant and as such are not apparent in the

analysis. Moreover, if the errors cannot be observed in this

analysis they are not likely to be degrading the performance

of the particular control scheme in question. Both of the

input variances have increased dramatically from the base

case, having values of 5.44xl03 and 709.383 respectively for

u, and u2. The crosscorrelation between both inputs and the

first output show significance beyond the dead time regardless

of which or both of the models is mismatched. Similarly, the

crosscorrelation between both inputs and the model prediction

error for the first output also showed significant

correlation, which suggests model mismatch. Any deviation in
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Y. from its setpoint is recognized by the LQG controller which

then adjusts both inputs accordingly. Therefore, both inputs

become correlated with Y, and ER, . This model error, however,

would have to be confirmed once setpoint changes were added to

the system. The modelling error would be apparent from

significant crosscorrelations between (Y ), and ER1 and (Ysp)2

and ER, .

Figure 4.6 shows the correlation matrix for the case

in which at least one of the models for each of the outputs is

mismatched. In this example the gain of Gm(l,l) is decreased

and the gain of Gm(2,l) is increased, while the input and

output weights remain unchanged. For this example all of the

elements in the matrix would show significant correlation.

The two controlled variable variances have increased to 5.901

and 2.958. A similar increase was experienced by the input

variables whose variances increased to 1.60xl04 and 5.75xl03.

The analysis shows that both outputs are affected by incorrect

relationships but it cannot further deduce which of the models

is responsible. In a case such as this, however, the likely

solution would involve complete process reidentif ication if

the performance is unacceptable.

In order to more closely represent plant conditions a

simulation study was performed on the same system but with

correlated noise sequences. This was accomplished in the
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simulation by specifying a nonzero covariance between the two

noise sequences. Various covariance values can be used,

ranging from slightly correlated series, y=0-1/ to perfectly

correlated series, y=1-0. In physical terms this may

correspond to a flow rate and a flow composition disturbance.

Although not always true, the two are often experienced

simultaneously. As an example we can consider the product of

one column feeding another whose cutpoint is changed. The

change in stream composition is often reflected in the volume

which is produced, hence the two inputs are correlated.

Several examples were studied with varying noise

crosscovariance values. The results reported here are for the

extreme case of perfectly correlated noise sequences. The

base case is equivalent to that of the uncorrelated noise

example in that the autocorrelations greater than lag f are
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eliminated and the crosscorrelations are all zero.

Figure 4.7 shows the analysis results for the process

having perfectly correlated disturbance sequences and model

mismatch, consisting of a decreased gain, occurring solely in

element Gm(2,2) . We can compare this correlation matrix with

that shown in Figure 4 . 8 which corresponds to the same control

problem only with independent disturbances. The variance of

the controlled variables is comparable for the two cases with

values of 2.131 and 2.128 for Y, and 5.754 and 5.656 for Y2.

The manipulated variable variance is lower for the correlated

noise case registering 680.44 and 1.47xl03 for inputs one and

two, respectively, while the independent noise example showed

variances of 1.08xl04 and 1.56xl04. In the latter case the

disturbances are moving independently, hence the inputs must

compensate for both effects, causing the greater variance.

Elements 1 through 6 show the same significant correlations in

both cases of independent and correlated noise. If both of

these systems were tested in the presence of independent

controlled variable setpoint changes, both cases would exhibit

model mismatch only in the crosscorrelation from (Y ), and

(Ysp)2 to ER2. If the setpoint perturbations were not

independent, however, then both setpoint changes would be

correlated with both model prediction errors. It is apparent,

therefore, that in the presence of independent controlled

variable setpoint changes, correlated noise disturbances do
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not have an effect on the multivariable control system

diagnosis .

The complication of imbalanced dead times was also

studied. The system matrix is given below.

Y(z) =

0.393z-3 0.315z"5

1 - 0.6Z"1 1 - 0.6Z'1

0.0787Z"4 0.393Z"8

1 - 0.6Z"1 1 - 0.6z"

* Uiz) <4-1)

In this particular example we have the minimum dead times

appearing in column 1 of the matrix. Because the one input

cannot perfectly control both outputs the minimum process dead

times achieved under perfect control cannot correspond to

these minimum values. The results for this case under best

achievable control are shown in Figure 4.9. The output

autocorrelations are only eliminated after two and four lags,

respectively, for Y, and Y2. This follows the Holt & Morari

[1985] results discussed in Chapter 2, stating that the

minimum possible settling time must lie between the upper and

lower dead time limits given by the transfer function

relationships. In this particular case the lower and upper

limits for Y, are 2 and 3, respectively, and are 3 and 5 for

Y2. Refer to Appendix H for calculation details. If the

minimum dead times appeared on the diagonal, as shown in

Equation 4.2,
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Xiz) =

0.393Z'3 0.315Z'5

1 - 0.6Z'1 1 - 0.6Z"1

0.0787Z"8 0.393Z'4

0.6Z"1 1 - 0.6Z"1

* U iz) (4.2)

the output autocorrelations would have been eliminated after

two and three time intervals for Y. and Y2 respectively, as

shown in Figure 4.10. Furthermore, while the variance of both

inputs and of Y1 are comparable between the two

configurations, the variance of Y2 is 88% greater in the

former case, measuring 6.437 as compared to 3.426 for the

latter. As expected, both outputs cannot be controlled

optimally given the imbalanced dead time configuration. The

balanced dead time system produces minimum output variance

estimates of 3.009 and 3.143, which compare well with the

actual values of 3.180 and 3.426 for Y1 and Y2 respectively.

Refer to Appendix H for calculations. As discussed in Chapter

2
,
minimum variance predictions for the imbalanced dead time

system cannot be determined using this simplified procedure.

The exact estimates can only be obtained by solving the LQG

design problem.

A process having a sparse dynamic matrix was then

studied. In most cases sparsity simplifies the diagnosis as

the effects of specific variables are eliminated due to the

physical aspects of the process. If we assume a lower
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triangular matrix thereby reducing Gm(l,2) to zero only one

input variable and one model remain which have an effect on

Y1 . The correlation matrix for this sparse system is shown in

Figure 4.11. Therefore, any inadequacy observed in the

control of Y^ is due to excessive penalization of u, or an

incorrect model relating the two. Of course, this

rationalization is only correct if due to the physical system

Gm(l,2) is indeed negligible. The multivariable example

discussed in the next section will show this triangular nature

as the reactor examined experiences downward interaction only.

It is important to note, however, that inadequate control of

Y^ could be the direct result of violation of this assumption.

If a significant relationship exists between Y^ and u2 which

is not incorporated into the controller, poor control

performance may result and the correlation between u2 and Yy

must be examined. In this case the sparse system is returned

to its full state and the simplifications no longer apply.

Therefore, in the analysis of sparse systems certain

assumptions can be made which simplify the analysis by

eliminating certain variables, but care must be taken to

ensure that these assumptions are valid.
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4.2 MULTIVARIABLE INDUSTRIAL CASE STUDY USING QDMC

The control performance evaluation methodology was

tested on an industrial control system using the QDMC

algorithm. This control scheme regulates key variables on a

multibed hydrocracking reactor at Shell Canada's Scotford

refinery- The relevant information and design for this

control scheme has been presented in Kelly, Rogers &

Hoffman. [1988] The primary objective is to control the

overall reaction severity which is represented by the Weighted

Average Bed Temperature (WABT) . This is accomplished through

the control of the individual Average Bed Temperatures (ABT) .

Many combinations of the ABT's will give the same WABT;
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therefore, a secondary objective is needed to uniquely specify

the control objective. The secondary objective is to control

the ABT's either to a specified profile or to minimize energy

utilization.

The analysis was performed on the temperature profile

operating mode which yields a 6x5 control matrix. In this

operating mode the four individual ABT's are controlled to a

predetermined profile that optimizes selectivity. The WABT,

which is a linear combination of the four ABT's, is regulated

to maintain a desired level of denitrif ication of the

feed. [Kelly, Rogers & Hoffman, 1988] The final control

variable is the valve position adjusting hydrogen quench to

the first reactor bed. The five manipulated variables are the

four bed inlet and reactor inlet temperature setpoints. The

problem is not overspecif ied as the WABT is a linear

combination of the four ABT's and is therefore not

independent. Hence, the apparent 6x5 problem is actually a

square 5x5 system. The four bed outlet temperatures are

included in the QDMC design as associated variables in order

to safeguard against temperature excursions. Constraints were

also placed on the quench valve positions in order to ensure

reserve quench capacity in the case of temperature runaways.

These constraints were never active during the plant tests

described in this chapter nor are they active in typical plant

operation. Thus, the control system was always "square".



170

A schematic of the process is given in Figure 4.12.

High purity hydrogen is heated in a furnace and is added to

the hydrocarbon feed at high pressure. This combined stream

is reacted over a hydrotreating catalyst on the four reactor

beds. Unheated hydrogen is added at the inlet of each bed as

an intermediate quench for the exothermic reaction. The

quench stream to the first bed also provides fine adjustment

of the reactor inlet temperature. The reactor inlet

temperature is controlled by adjustment of the fuel gas flow

to the preheat furnace. The hydrogen quench valves to each

bed are adjusted to control the bed inlet temperatures. The

first stage reactor effluent is then fed to the second stage

hydrocracking reactor.

The controlled variable dynamic matrix is shown in

Figure 4.13. [Kelly, Rogers & Hoffman, 1988] The lower

triangular nature of the dynamic matrix illustrates the

downward interaction of the reactor beds. This is to be

expected as a result of the downward flow through the reactor

beds. Assuming there is negligible backflow through the

reactor, occurrences in lower beds will have no effect on the

upper beds. Therefore, changes in a given bed inlet

temperature introduce disturbances to the lower beds only.

The sparsity of the dynamic matrix reflects this one-way

interaction and thus simplifies the control performance

diagnosis, as the effects of certain variables can be
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Figure 4.13 HCU QDMC Dynamic Matrix

eliminated.

Initially, an analysis was performed on the existing

control system under normal operation. This first step

compared actual control performance to theoretically best
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achievable performance. The output weighting factors are such

that the WABT has the greatest importance, the four individual

ABT's have equal weightings substantially less than that of

the WABT and the reactor inlet quench valve position has the

lowest weighting. There is a move suppression for each of the

manipulated variables as well as a maximum move size. The

latter constraint was never active during any of the testing

nor is it active during normal operation. It is important to

note that the terms in the objective function are the

deviations from setpoint of the controlled variables.

The correlation analysis showed good control of the

WABT and poor control of the individual ABT's, which reflects

the priorities as defined in the QDMC objective function. The

WABT autocorrelation exhibited slight oscillatory behaviour,

however, which may be indicative of overly agressive control

action or model mismatch. The crosscorrelations from each of

the five manipulated variables to the WABT also showed this

oscillation. The autocorrelation function for each of the

four ABT's dampened very slowly and also showed slight

oscillation. Finally, the autocorrelation of inlet quench

valve position was eliminated soon after the dead time. As

with the other controlled variables the autocorrelation did

show slight oscillation. It is important to note that these

oscillations did appear outside the confidence limits and are
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therefore taken as being significant. Oscillations can be

induced in the autocorrelation, however, as a result of large

initial correlation. Coinciding with the controlled variable

priorities given previously were the variances experienced by

each of these variables. The WABT experienced the least

variation at 0.0119 (°C)2, followed by the four ABT's having

variances of 0.154, 0.0557, 0.0471 and 0.0253 (°C)2, and

finally the valve position with a variance of 11.754 (%)2.

The crosscorrelation function from the input variables

to the model prediction errors showed significant values in

all elements. This is either the result of model error and/or

autocorrelated disturbances. Furthermore, definite patterns

were distinguishable for the crosscorrelations corresponding

to each controlled variable, and these patterns were similar

for all input-output combinations. This result indicates that

the input variables themselves are highly correlated and any

disturbances affecting the process are also correlated. The

specific data set examined represents normal unit operation

affected by routine disturbances and was not subject to

external forcing. Because of the relatively steady operation

during the time in which data was collected the system

dimensionality was most probably low. Although there may be

several degrees of freedom in the system some of these could

be so highly correlated that they are statistically dependent.
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If this is the case then the effective degrees of freedom are

reduced. The QDMC system itself is of high dimension but

enough information was not available in the data to completely

represent these dimensions. Crosscorrelating the manipulated

variables with one another demonstrated significant

correlation, following the downward trend of process

interaction. This confirms that the input variables are

highly correlated as a result of the low system

dimensionality. Hence, the full benefits of this performance

analysis procedure could not be attained as individual

correlation relationships could not be observed. Therefore,

inadequacy in the control scheme could not be distinguished as

the errors present were propagated throughout the scheme and

this statistically based analysis method could not

differentiate the cause.

Process disturbances were then introduced to the

system in order to increase the system dimensionality.

Initially a PRBS disturbance, of magnitude 5% and switching

frequency 30 minutes was introduced into the recycle gas feed.

The collection frequency was 6 minutes and a total of 300 data

points were collected. The results obtained in this case

study are not significantly different from the previous

example. Once again the WABT control is near optimal as shown

in the autocorrelation function displayed in Figure 4.14. The
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autocorrelation is eliminated after two lags. Contrary to the

previous example, however, the WABT autocorrelation and the

crosscorrelation from the inputs to the WABT are not

oscillatory. The ABT's are still not controlled optimally as

apparent from slowly decaying autocorrelation functions.

Figure 4.14 also illustrates the Bed 1 Avg T autocorrelation.

Given the dynamic matrix in Figure 4.13 it is

difficult to establish the transfer functions having the

minimum dead times. Intuitively, it can be assumed that among

the transfer functions relating each ABT to the input

variables the one having the minimum dead time would be the

corresponding bed inlet temperature. Therefore, the criteria

of having minimum dead times appearing on the diagonal is

satisfied and the performance evaluation and minimum variance

prediction can be generated as discussed in Chapter 2. In the

case of the WABT, however, all of the input variables would

have the same time delay. The control interval used in this

system is six minutes. This is also the data collection

frequency which was used. Given this time interval the

minimum dead time for each controlled variable appears to be

less than the sampling period, thus "f" equals zero. Given

this information the minimum variance calculated for all of

the outputs is given in Table 4.1. All calculations are

included in Appendix I. The actual WABT variance differs
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Figure 4.14 HCU QDMC, Autocorrelation
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the least from its optimal value as is expected given the

objective function weighting. The remaining control variables

show room for improvement if this improvement is desired.

Table 4.1 Minimum Variance Predictions

Minimum Actual

Variable Variance

(°c)2

Variance

(°c)2
% Difference

WABT 0.00434 0.012 176

Bed 1 Avg T 0.0274 0.226 725

Bed 2 Avg T 0.0105 0.0486 363

Bed 3 Avg T 0.00712 0.0345 385

Bed 4 Avg T 0.00706 0.0661 836

Bed 1 Quench 13.81 1
*

41.201* 198

Valve Pos'n

*

(%)2

Crosscorrelating the disturbance to the controlled

variables shows significant correlation which confirms the

presence of forcing. Figure 4.15 shows the crosscorrelation

between the recycle gas feed and both the WABT and the Inlet

quench valve position. As with the base case, the

crosscorrelation from the inputs to the model prediction

errors also show significant correlation. Similarly, the
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correlation patterns produced are consistent, as shown in

Figure 4.16, which again implies a lack of independent

information. Figure 4.16 shows the crosscorrelation from the

Bed 2 and Bed 3 inlet temperature setpoints (BED2INTSP,

BED3INTSP) to the model prediction error for the WABT

(PREDE1) . A definite similarity is apparent upon observation

of these two correlation plots. This pattern is also visible

in Figure 4 . 17 which shows the crosscorrelation from the

Reactor and Bed 2 inlet temperature setpoints (REACINTSP,

BED2INTSP) to the model prediction error for the Bed 2 average

temperature (PREDE3) . The crosscorrelations between the input

variables themselves also shows significance and pattern

reproduction which confirms this lack of independent

information. Figure 4.18 shows the crosscorrelation from the

Reactor inlet temperature setpoint to the Bed 1 and Bed 2

inlet temperature setpoints. These plots indicate a definite

correlation exists between the manipulated variables and

moreover a similar pattern is apparent in this correlation.

At this point it can only be stated whether the controller is

meeting its objectives and how close the performance is to the

best achievable. The causes of inadequate performance cannot

be identified due to insufficient dimensionality in the

problem.

A similar experiment was done with three perturbations

affecting the process in order to increase independent system
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forcing and hence, dimensionality. The recycle gas feed was

once again perturbed in a PRBS fashion with a magnitude of 5%

of normal operation and a switching frequency of 3 0 minutes,

as was the WABT setpoint with a magnitude of 0.3% and a

switching frequency of 60 minutes, while the inlet quench

valve position setpoint was manually changed 10% every several

hours. Additional forcing was not possible as the existing

facilities only allow for two PRBS signals and the need for

steady plant operation did not allow for larger disturbances.

Data was collected every 6 minutes for a total of 500 data

points. The results obtained for this example are consistent

with the previous case and hence will not be discussed in

detail. Although the forcing was increased in this test case,

the perturbations may not have been sufficiently large or

spaced adequately to provide three distinct dimensions. The

results show that once again essentially only one dimension

can be recognized in the data sample. This question of

dimensionality should be addressed in a further study -

A simulation study was also performed on the closed

loop system in order to investigate various aspects of control

performance. The program used for these simulations was

developed by Shell and uses the same step weight models used

in the on-line QDMC program. Therefore, these models are

considered proprietary information and cannot be reported in

this document. The first case represents the actual unit
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operation reflecting the objective function weighting and the

imposed system constraints. The correlation results obtained

resemble those of the actual plant. The WABT and inlet quench

valve position control are near-optimal while the ABT's are

poorly controlled. In the next case equal weighting was

placed on all of the outputs leading to sluggish control of

all the controlled variables, as concluded from the slowly

damping autocorrelation functions. In order to get good

control of the ABT's the WABT weighting was decreased to 1

unit while the ABT's weighting was increased to 100 units.

This resulted in sluggish control of the WABT, as seen in a

slowly decaying autocorrelation, and minimum variance control

of the ABT's. Of course, the output weighting and input

penalties are selected to suit the system objectives, which is

not the concern of this research. This exercise shows,

however, that the control performance evaluation procedure can

be used to confirm whether the objectives are being met.

The MIMO simulation and industrial examples presented

here have demonstrated the analysis techniques used in the

evaluation and diagnosis of these complex schemes. The

analysis of the simplest MIMO system has been shown to be a

direct extension of the SISO analysis presented in Chapter 3.

This extension in the analysis procedure, however, cannot be

made with the addition of imbalanced dead times, as was

demonstrated. In these cases, the evaluation and diagnosis
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procedure being used is limited in its results. Correlated

noise and inadequate forcing, which reduce the dimensionality

of the MIMO system, have also been shown to limit the ability

of this statistical analysis procedure. Nevertheless, the

present analysis method does enable the user to verify that

control objectives are being met and identify whether further

improvement is possible. To address these complex examples,

however, further study should be focused on the dimensionality

of the MIMO problem. Additional analysis tools should be

investigated for their potential use in this application.



5.0 CONCLUSIONS AND RECOMMENDATIONS

A hierarchial method for monitoring and diagnosing

control performance has been developed and successfully tested

in an industrial environment.

The Minimum Variance and Linear Quadratic Gaussian

Controllers are useful bases against which to evaluate actual

control performance and establish potential for improvement.

The output autocorrelations of a SISO process under MVC are

reduced to zero after lag f, where f is the process dead

time. Similarly, the output autocorrelations of a MIMO

process, whose minimum dead times appear on the diagonal, are

eliminated after this minimum dead time value. If the dead

time values on the diagonal are less than the other values

appearing in their respective rows, the best achievable

control performance can be estimated using an extension of the

SISO procedure. The output autocorrelations of a MIMO

process, whose minimum dead times do not appear on the

diagonal, are eliminated sometime between upper and lower

limits, as established by the transfer function settling

times. In this case it is not possible to establish the best

achievable performance with the method used in this research.
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Statistical analyses such as autocorrelation and

crosscorrelation functions and power spectra can be used to

evaluate control performance, indicating the possibility of

improvement if it exists and if it is warranted. Model-plant

mismatch in a feedback-only control scheme can be detected in

the crosscorrelation between the controlled variable setpoint

and the model prediction error. If this is the case the model

error must be eliminated before the controller tuning can be

examined. In feedforward-feedback control schemes these

statistical tools can often distinguish between an imperfect

feedforward or feedback controller and between mistuning and

model mismatch. It is sometimes necessary, however, to

decommisssion the feedforward controller in order to evaluate

the model accuracy. Once again if model error is present,

tuning cannot be investigated until this mismatch is

eliminated.

In MIMO control schemes this diagnostic tool has

proven successful in deducing tuning or modelling difficulties

and in locating a specific input or output responsible for

non-optimal performance. In the presence of correlated noise,

affecting a MIMO control scheme, the analysis procedure cannot

always distinguish the cause of inadequate performance. In

evaluating MIMO control schemes it is necessary that enough

independent forcing is present in order to ensure adequate

problem dimension. This should be addressed in greater detail



in a further study.
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Finally, the matrix representation of correlation data

is a useful visual tool for successful interpretation of

control performance.
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7.0 GLOSSARY OF TERMS

a

ABT

AR(p)

ARIMA(p,d,q)

ARMA(p,q)

c(k)

CMVC

d

DMC

E

Er

ER

f

FOPDT

Gc

Gd

Gc
FB

GC
FF

Gm.

Gm.

random noise sequence

average bed temperature

Autoregressive model of order p

Autoregressive Integrated Moving Average model

of order p,d,q

Autoregressive Moving Average model of order

P/q

estimated covariance function

Constrained Minimum Variance Control

disturbance sequence

Dynamic Matrix Control

Expectation operator

variable deviation from setpoint

model prediction error

process delay

First Order plus Dead Time

controller transfer function

disturbance transfer function

feedback controller transfer function

feedforward controller transfer function

disturbance transfer function model

process transfer function model
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P

IAE

k

K

K'

LQG

MA(q)

MIMO

MMSE

MVC

N

Nt

N(z)

PRBS

Q

QDMC

r(k)

S, a

S(f)

SISO

u

*FB

U
FF

U
TOT

V

process transfer function

Integral of Absolute Error

lag

controller transfer function (IMC form)

controller transfer function (Smith Predictor

form)

Linear Quadratic Gaussian

Moving Average model of order q

Multi-Input-Multi-Output

Minimum Mean Square Error

Minimum Variance Control

sample size

time series of noise function

noise transfer function

Pseudo-Random-Binary-Sequence

Chi-Squared distribution

Quadratic Dynamic Matrix Control

estimated correlation function

standard deviation

power content at frequency, f

Single-Input-S ingle-Output

process input

input signal from feedback controller

input signal from feedforward controller

total process input, feedforward plus feedback

polynomial in z"1



v, a2

WABT

Y

Y, M

V meas

V
V

pred

V YP

z"1

V

X

variance

Weighted Average Bed Temperature

output

mean output

measured output

predicted output

model prediction error

backward shift operator

(1-z-1)

Dahlin closed loop time constant

constraining constant for CMVC

Y (k) covariance function

p(k) correlation function

8(z"1) transfer function numerator

0(z"1) transfer function denominator

(z"1) transfer function expansion weights



Appendix A

Time Series Review

Some of the time series techniques and properties used

in this research are discussed briefly in the following

section. If more detail is desired please refer to Box and

Jenkins. [1976]

ARMA Models (Autoregressive Moving Average)

In most cases adequate process models can be obtained

directly from the dynamic data collected from the process. If

this information is summarized in the form of an empirical

model with parameters estimated from the data it is referred

to as a parametric model. [MacGregor, Taylor & Wright, 1988]

These models can then be used directly in a control algorithm.

The parametric model identification methods used in this

research were developed for sampled data systems. This

discrete time representation is the most relevant to digital

computer control applications.
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Given the general univariate system shown in Figure

A.l, the output Yt is the result of changes made in the

process input ut and the process noise or disturbance Nt.

Yt
- Viz-1) ut + Nt (A.l)

Figure A.l Univariate System Block Diagram

V is a polynomial in z'1, the backward shift operator where,

iz-k) ut
-

ut_k (A. 2)

and therefore can be expressed as a difference equation. The

stochastic disturbance Nt can also be represented by

difference equations or by an autoregressive moving average

model .

A stochastic process is one which evolves in time

according to probabilistic laws. "White Noise" is the

simplest of all stochastic processes and consists of a

sequence of independent, identically distributed random
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variables, at. The underlying assumption, common to most

stochastic control, is that a stochastic process can be

described by a transfer function driven by random shocks. [Box

& Jenkins, 1976]

c

^(z^JV
C

(A. 3)

where, V - 1 - z'1

A highly correlated series such as Nt can therefore be

generated by passing a white noise sequence through a linear

dynamic filter. [MacGregor, Taylor & Wright, 1988] This

transfer function representation is referred to as an

autoregressive integrated moving average (ARIMA) model of

order (p,d,q) . If the process is stationary d become zero and

the model is reduced to an autoregressive moving average

(ARMA) model of order (p,q) . If the numerator reduces to

unity then a pure autoregressive model, AR(p) , results.

Conversely, a pure moving average model, MA(q) ,
is obtained if

the denominator is simply unity. The values of 6 (i=l,...,p)

and <p (i=l,...,q) are the parameters of the model and must be

estimated from the process data. Almost any time series or

disturbance process encountered in practice can be modelled

adequately with some choice of model order (p,q) and

parameters (6,0) . [MacGregor, Taylor & Wright, 1988]
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The ARMA models apply to stationary processes. A

stochastic process is described as being stationary if its

statistical properties or moments are unaffected by time.

Therefore, a stochastic process will have a constant mean,

variance and covariance. The latter will be discussed in the

next section.

Hy
"

EiYt)
(A. 4)

o\ -

EiYt
-

uy)2

These formulas are written in expectation notation. In

practical circumstances an estimate of these theoretical

properties must be calculated for the sample being examined.

-

N

y- 1
N

»y- y- E^f
-

7,5>i
r (a*5>

■"
i-1

If the process being examined is nonstationary then

stationarity conditions must be imposed before the model

parameters are estimated from the data. Stationarity can be

achieved by differencing the raw process data the required

number of times, d.

VdYt (A. 6)



201

where
,

VYt
-

Yt
-

yt_x (A. 7)

The drifting nature of the series is corrected as only the

difference between successive values is used and not the

absolute value itself. The first difference will eliminate a

drifting mean while the second difference will remove a

changing slope. Once the data exhibits a constant mean and

slope stationarity has been attained. The order of the

numerator and denominator and the model parameters can then be

estimated. The number of times the data is differenced

becomes the value of d in the estimated process transfer

function.

For more information on model identification refer to

Box & Jenkins. [1976]

Autocorrelation and Crosscorrelation

The covariance between values of a stationary

stochastic process separated by k periods of time will be

constant and only a function of the separation time, k. The

autocovar iance is defined by,
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yyyik)
-

E[iYt
-

uy) iYCik
-

uy)] ie-0,1,2 (A. 8)

and can be calculated with the Minimum Mean Square Error

(MMSE) estimate given by,

cyy(k)
' ^E <Yt

" ^ (Yt*t
~ Y"> *"0,1,2, . . . (A. 9)

The autocovariance at lag zero is equivalent to the process

variance. The autocovariance function represents the

dependency between successive values in a series separated by

k time intervals. The autocorrelation function is a

normalized or dimensionless autocovariance which is convenient

due to its independence from units.

v ik)

Pyyik)
-

Jyy
)' Jc-0,1,2 (A. 10)

W

Yyy(0)

Similarly, this value can be estimated for a data sample with

c ik)

Iyyik)
- yy)' Jc-0,1,2 (A. 11)

**
C (0)
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The absolute value of p and r are always less than or equal

to one, with values near +1 indicating a high dependency while

those near zero imply independence for normally distributed

Gaussian processes.

The graphical representation of the autocovariance

will produce various patterns. In the case of an oscillatory

function the position of the peaks and valleys is dependent on

the frequency of the variations in the error. Thus, visual

inspection of the autocovariance plot, noting the period of

oscillation, can determine the major frequencies of the

process disturbances. [Box & Jenkins, 1976]

In the case of two Gaussian processes Yt and ut, the

crosscovariance between u and Y at lag +k is similarly defined

as,

yuyik)
-

E[iut
-

uu) iYt+k
-

|iy)] £-0,1,2,... (A. 12)

and the crosscovariance between Y and u at lag +k as,

y^ik)
-

E[iYt
-

uy) (ut+Jt
-

nu)] £-0,1,2,... (A. 13)
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These parameters can be calculated using the estimates given

in Equation A. 14.

N-k

Cuy^
-

\Y, lut-u)(Yt.k-Y)iV
c-i

cyuW
-

^E (yt-T)(ut+Jt-u)
iV
t-i

iv-* (A. 14)

wfiere , £ - 0,1,2,

Whereas in the autocovariance case, Yyy(+JC)=Y (-k) , for the

crosscovariance function, Yuy(+k) =Yyu(-k) • Tne dimensionless

crosscorrelation is defined by Equation A. 15 and can be

estimated from Equation A. 16.

v (k)

puyik)
-

TuyV '

Jc-0,±1,±2,... (A. 15)

°uay

ruyik)
uy

——

(A. 16)

Jcuui0) Cyyi0)

Differencing

The autocorrelation and crosscorrelation functions are

only defined for stationary processes. Most processes,

however, do exhibit some nonstationarity in the mean or slope.
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A slowly drifting flow rate of a stream exiting a vessel under

level flow smoothing or the changing ambient temperature

throughout the day are examples of variables exhibiting

nonstationarity. This violates the initial assumption of

constant mean and variance. These nonstationary processes are

highly autocorrelated and as such crosscorrelating these

series will result in the correlation estimates, for the

sample set, at successive lags being highly dependent.

Therefore, the raw crosscorrelation analysis of autocorrelated

series can be misleading. In order to calculate valid

correlation functions for a sample of nonstationary data,

stationarity conditions are induced by differencing the series

themselves as discussed in the previous section. By

differencing the series the appropriate number of times, d,

the nonstationarity in mean and slope can be eliminated.

In the analyses used in this research the differencing

of nonstationary series is demonstrated. In most cases the

controlled variable is maintained at its desired setpoint and

is stationary, therefore it is not differenced in the

analyses. On the contrary, the manipulated and disturbance

variables are generally nonstationary and are differenced for

the correlation analysis.
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Confidence Intervals

The autocorrelation and crosscorrelation described

previously are theoretical functions of a stochastic process.

In practice, only estimates of these correlation functions can

be obtained from the available finite time series of N

observations (Y.,-YN, ^-Uy) . In order to check whether these

correlation estimates are effectively zero beyond a certain

lag, the corresponding estimates, r (k) and *" (k) ,
are

compared with their approximate standard errors. In the case

of 'larger lags* the standard errors of the estimated

autocorrelations can be computed from the simplified form of

Bartlett's formula, where the sample estimates replace the

theoretical autocorrelations [Box & Jenkins, 1976]. Thus, the

•large-lag standard error1 is given by,

*l*yylM -^{l
+ 2(ryy(l)^ryy(2)^

^^

+
... +ryr(g)2)}1/2

where k>q. Approximate expressions are given by Bartlett for

the covariance between estimated correlations, rk and rk+s.

Similarly, the 'large-lag' approximation is represented by

Equation A. 18.
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CD

covU^ik) ryyik+s)] -j-Yl Pyy(v) Pyy(v+s) (A. 18)
•**

y__»

The importance of these confidence intervals is in

establishing the statistical significance of the parameters

being estimated for each dataset. Therefore, it is not the

absolute size of variations which is the key issue but whether

this variation has statistical significance and can thus be

distinguished from random error. The confidence intervals

used throughout this reasearch, which are displayed in all the

correlation plots, are 95% limits which translates to + 2a.

Power Spectrum

The power spectrum of a stationary stochastic process

shows how the variance of the process is distributed with

frequency, and it can be obtained by taking the Fourier

transform of the autocovariance function.

n-i

C—n

-^-f*4 (A. 19)
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This definition, however, is not satisfactory for stochastic

signals undergoing random changes in frequency, amplitude and

phase. The sample spectrum for a stochastic series fluctuates

about the true spectrum and improvements are not obtained by

increasing the sample size. Therefore, in most case some form

of smoothing is necessary. For more information on smoothed

spectral estimators please refer to Box & Jenkins [1976] and

Timeslab [Newton, 1988],

The area under the spectral curve is equal to the

process variance. Hence, the percentage of the total area

which lies between two frequencies is the percentage of the

variance occurring in that frequency band. Cyclical

disturbances can be ascertained from peaks on the curve.

Therefore, an important application of the power spectrum is

the determination of these disturbances from their observed

frequency.



Appendix B

SISO Feedback-Only Control Simulation Results

The minimum variance controller designed for the FOPDT

process,

Yjz)
°-2z"3

*u(z) + ^
*ac (B.l)

1 - 0.8Z-1 (1 - 0.8Z"1) V
C

is given by,

-

, v 14.760 - 21.568Z"1 + 7.808z"2 ,_
-.

IJC \Z)
-

l-.-j

1.0 - 2.952Z-3 + 1.952Z"4

The constrained minimum variance controller, with a constraint

factor (A=0.4), designed for the same process is given by,

G iz)
4.009-6.079Z-1 + 2.297Z-2

{
c

1.0-1.187z-1 + 0.414z-2-0.802z-3 + 0.574z-4

The model mismatch cases performed on the system

consisted of the same CMVC given above but the process

transfer function was modified to create the mismatch. The

two mismatch cases examined are given by the following process

209
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transfer functions. A 50% increase in process gain yields,

Yjz)
0.3Z-1

^u{z) +
1

*ac (B.4)
1 - 0.8Z"1 (1 - 0.8Z-1) V

and a 50% decrease in process gain gives,

Yjz)
O.lz-1

i|tu(z) +
1

*ac (B.5)
1 - 0.8Z"1 (1 - 0.8Z-1) V



Appendix C

SISO Model-Based (Smith Predictor Algorithm) Feedback Control

Simulation Results

The minimum variance controller designed for the FOPDT

process shown in Figure 3.7,

0.2Z"1 , v 1
* uiz) +

1 - 0.8Z"1 (1 - 0.2Z"1) V
Yjz) =

u'/z

T*uiz) + — —

r-^*at (C.l)

is given by,

GAz) =

6.0 - 5.8z-^ + 0.8Z-2
(c#2)cX '

- ~ - - --1 . n o ^-21.0 - 1.2z_1 + 0.2z"

It is important to note that the plant and model dead times

were equivalent.

In order to estimate the best achievable performance

an ARMA model is fit to the time series data, yielding the

following relationship,

v , „\ _

1-0 + 0.520Z"1 + 0.302Z"2
„, a

xm\z)
- *

at
1.0 - 0.694Z"1 (C.3)

= (1 + 1.214Z-1 + 1.145Z"2 +
. . .) *at
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where the variance of a is 0.00102. Given the true process

dead time of two units the minimum variance achievable is

given by,

Var{YjMVC= (l2 + 1.2142 + 1.1452) * 0.00102

(C. 4 )

= 0.00386

A PI controller was designed for the process in order

to generate more realsitic control conditions. The controller

was designed using the Integral of Absolute Error (IAE)

technique [Smith & Corripio, 1985] yielding the following,

1.0 - 1.0 z'1

The model mismatch case performed on the system

consisted of the same MVC given above but the process transfer

function was modified to create the mismatch. The mismatch

case examined is given by the following process transfer

function. A 50% decrease in process gain yields,

Yjz) = —

°-lz"1
*uiz) + 1

r-=*ac <c-6>
1 - 0.8Z"1 (1 - 0.2Z"1) V

c



Appendix D

Paper Mill Data Industrial Case Study

DOMTAR - Controlled case

In order to estimate the best achievable performance

an ARMA model is fit to the time series data, yielding the

following relationship,

v_(->
-

i.o-o._45_-*

1.0 - 0.576Z"1 (D.l)

- (1 + 0.431Z"1 + 0.24 8Z"2 + ...) *at

where the variance of at is 0.389. Given the true process

dead time of two units the minimum variance achievable is

given by,

VarlYjwc- (l2 + 0.4312 + 0.2482) * 0.389

(D. 2 )

- 0.485

213



Appendix E

Shell Heat Exchanger Industrial Case Study

In order to estimate the best achievable performance

an ARMA model was fit to the time series data obtained under

original control conditions (shown as Case 1 in Table 3.1),

yielding the following relationship,

Yjz) ^°
-*at

1.0 - 0.975Z"1 (E#1)

- (1 + 0.975Z'1 + 0.951Z"2 + ...) *at

where the variance of at is 0.0952. Given the true process

dead time of one unit the minimum variance achievable is given

by,

VariYjtnr- (l2 + 0.9752) * 0.0952
m mvc

(E.2)
- 0.186

Given the case in which the control parameters were

approaching those of a minimum variance controller, Case 3,

the ARMA model fit to the process data resulted in,

Yjz) - (1.0 + 0.625Z"1 + 0.264Z"2) *
at (E.3)
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with a variance of 0.03 04 for at. The estimate of the lowest

achievable variance is then obtained,

* 0.0304

(E.4)
VarlYJwc- (l2 + 0.6252) * 0.0304

0.042

Case 4 demonstrated overly aggressive control. The

ARMA model fit to the process data resulted in,

Yjz)
- (1.0 + 0.825Z"1 + 0.582Z"2) * at (E.5)

with a variance of 0.118 for at. The estimate of the lowest

achievable variance is then obtained,

VariYj^- (l2 + 0.8252) * 0.118

(_ ^
- 0.198



Appendix F

SISO Feedforward-Feedback Control Simulation Results

The minimum variance controller designed for the FOPDT

process,

GAz) -

°-376z"2
,
*uiz) + 1—^*aP

1 - 0.836 z"1 1 - z"1
C

GAz)
°-17z'2

(P.D

1 - 0.886Z
-l

is given by,

{z) _

2.660 -2.223Z-*

ra
1.0 - 1.0 z"1

and the feedforward controller resulting in complete

disturbance rejection is given by,

(z) .

-0.440 + 0.366z-i
~

1.0 - 0.886Z"1

216
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It is important to note that the best achievable performance

refers specifically to optimal feedback control given the

specific system configuration and disturbances. If the

feedforward controller is not attenuating disturbances

adequately the minimum variance calculated under these

conditions will not be the lowest possible variance given a

perfect feedforward controller. Hence, in order to establish

the absolute best achievable performance, the feedforward

controller must be performing satisfactorily. Otherwise the

minimum variance calculated is that which is attainable under

the given adverse disturbance conditions. In the cases which

follow, the calculation of the minimum variance corresponds to

the disturbance conditions present and does not take into

consideration the adequacy of the feedforward controller and

whether this estimated minimum variance can in fact be further

reduced.

In order to estimate the best achievable performance

an ARMA model is fit to the time series data, yielding the

following relationship,

y (z)
1 • 0

+a
"

1.0-0.726z-1+0.455z'2-0.335z-3+0.178z-1
t

(F.4)

-(1 + 0.726z_1 +
. . .) *at
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where the variance of at is 1.258. Given the true process

dead time of one unit the minimum variance achievable is given

by,

Va^YJMvc
' d2 + 0.7262 ) * 1.258

- 1.921

A CMV controller, A=1.0, was designed for the process

in order to generate more slugggish control conditions,

yielding the following control equation,

Gc iz)
0-672 -0.595Z-1

(_>6)
ra

1.0 - 1.147 z"1 + 0.147 z"2

In order to estimate the best achievable performance

an ARMA model is fit to the time series data, yielding the

following relationship,

Y iz) — * a
m

1.0 - 0.908Z"1 + 0.242Z"2 (F.7)

- (1 + 0.908Z"1 +
. . .) * a

t

where the variance of at is 0.971. The minimum variance

achievable is then given by Equation F.8.
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Va^Yn)Mvc
~ d2 + 0.9082 ) * 0.971

(_>Q)
- 1.772

The model mismatch cases performed on the system

consisted of using the same controllers given previously but

the process and disturbance transfer functions were modified

to create the mismatch.

The first mismatch case consisted of compensating

model errors where both the model gains were decreased by 50%,

and is given by the following process transfer functions,

Gjz)
°-188z"2

1

* uiz) + ^— * acp
1 - 0.836 z"1 1 - z'1

GAz) -

(F.9)

0.085Z"2

1 - 0.886Z"1

The next mismatch case examined is given by the

following process transfer functions in which the process

transfer function is decreased by 50% but the disturbance

model remains correct,

GAz)
°-188z"2

♦_(_) + ±—T*atP
1 - 0.836 z"1 1 - z"1

(F.10)

GAz)
°-17z'2

1

1 - 0.886Z'1
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The ARMA model fit to the time series data generated

the relationship given in equation F.ll, where the variance of

at is 1.201. The minimum variance achievable is then

calculated as shown in equation F.12.

Y iz) -

1 • 0
* a

m

1.0 - 0.904z"1 + 0.292Z"2 - 0.211Z"3
t

(F.ll)

(1 + 0.904Z"1 +
. . .) * a

t

VariYjwc- <-2 + 0.9042 ) * 1.207

- 2.193

(F.12)

The final case studied is given by the following, in

which case both the disturbance and process transfer functions

are mismatched but the errors do not compensate,

~/\ 0.188z"2 /x 1
GAz) * uiz) + *

atp
1 - 0.836 z"1 1 - z'1

(F.13)

GAz) -

°-34z"2
1

1 - 0.886Z'1

The ARMA model fit to the time series data resulted in

the following relationship,

1.0 - 1.260z_1 + 0.344Z-2 (F.14)

- (1 + 1.260Z"1 + . . . ) * at
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where the variance of at is 1.779. The minimum variance

achievable is calculated as,

VarlYj^
- (I2 + 1.2602 ) * 1.779

^^
- 4.603



Appendix G

Shell Stabilizer Industrial Case Study

The original control test yielded the following ARMA

model fit to the time series data,

Yjz) ^
*at

1.0-0. 632, z^-O.lQlz-2
(G.l)

-(1 + 0.633Z"1 + 0.682Z-2 + 0.610Z-3

+ 0.57 8z-4 + 0.537Z"5 + ...) *at

where the variance of at is 0.0159. This corresponds to Case

1 in Table 3.3. Given the true process dead time of five

units the minimum variance achievable is given by,

VariYj^c
- (l2 + 0.6332 + 0.6822 + 0.6102

+ 0.5782 + 0.5372) *0.0159 (G.2)

- 0.0476

The feedforward gain was then decreased, as shown in

Case 2
, and a time series model fit to the data resulted in

Equation G.3, where the variance of at is 0.0130. The minimum

variance achievable is then given by Equation G.4.
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Y iz) -

1 ' °
*a

m

l.o-o.eisz^-o.ssiz-2
t

-(1 + 0.618Z"1 + 0.733Z"2 + 0.670Z"3

+ 0.671Z"4 + 0.6 50Z"5 +
. . .) *at

(G.3)

VariYj^c
- (l2 + 0.6182 + 0.7332 + 0.6702

+ 0.6712 + 0.6502) *0.0130 (G.4)

- 0.0421

The feedback gain was increased according to Case 3

and a time series model fit to the data resulted in the

following,

Yjz)- ^°
*at

l.o-o.sesz^-o^osz-2
(G.5)

-(1 + 0.563Z'1 + 0.625Z'2 + 0.525Z"3

+ 0.4 89Z'4 + 0.437Z"5 +
. . .) *at

where the variance of at is 0.0136. The minimum variance

achievable is then given by,

Var{YjMVC
- (l2 + 0.5632 + 0.6252 + 0.5252

+ 0.4892 + 0.4372) *0.0136 (G.6)

- 0.0328
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In Case 4 the feedforward gain was increased and a

time series model fit to the data resulted in the relationship

given in equation G.7, where the variance of at is 0.013 5.

Yjz) ^ -*a,
1.0-0. 59 0z-1-0.245z"2-0. 107 z"3

(G.7)

-(1 + 0.590Z-1 + 0.593Z-2 + 0.602Z"3

+ 0.563Z-4 + 0.542Z"5 + . . .) *at

The minimum variance achievable is then given by equation G.8.

VariYjwc
~ d2 + 0.5902 + 0.5932 + 0.6022

+ 0.5632 + 0.5422) *0.0135 (G.8)

- 0.0361

The tuning parameters were then kept constant and a

run, Case 6, was performed having no feed perturbations. The

time series model fit to that data resulted in the following,

YJz) — ——

-*at
1.0-0.449z"1-0.319z-2

-(1 + 0.449Z"1 + 0.521Z-2 + 0.377Z'3

+ 0.335Z-4 + 0.27 0Z'5 +
. . .) *a,.

(G.9)

where the variance of at is 0.0123. The minimum variance

achievable is then given by,

VariYj^c
~ <l2 + 0.4492 + 0.5212 + 0.3772

+ 0.3352 + 0.2702) *0.0123 (G.10)

- 0.0221
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The feedforward controller was then turned off but the

feed perturbations were reintroduced. Refer to Case 5 in

Table 3.3. The time series model fit to that data resulted in

the following,

Y iz) -
^ ■ 0

*a
m

1.0-0.445z_1-0.280z"2 - 0.219Z"3
t

(G.ll)

-(1 + 0.445Z-1 + 0.478Z"2 + 0.557z-3

+ 0.480Z"4 + 0.47 5Z-5 + ...)*at

where the variance of at is 0.00999. The minimum variance

achievable is then given by,

VarlYj^c
- (l2 + 0.4452 + 0.4782 + 0.5572

+ 0.4802 + 0.4752) *0. 00999 (G.12)

- 0.0219

The final example, given as Case 7, resulted from an

excessive feedforward gain. The time series model fit to the

data produced the following,

YJz) ^ ;**t
1.0-0.562z-1-0.318z-2

(G.13)

-(1 + 0.562Z"1 + 0.634Z"2 + 0.535Z"3

+ 0.503Z-4 + 0.453Z-5 +
. . .) *at
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where the variance of at is 0.0113. The minimum variance

achievable is then given by,

VarlYjwc
" <l2 + 0.5622 + 0.6342 + 0.5352

+ 0.5032 + 0.4532) +0.0113 (G.14)

- 0.0278



Appendix H

MIMO Control System Simulation Results

The LQG controller designed for the base case process,

Gjz)=Gjz)
=

0.393Z"2 0.315Z"2

1-0.607Z"1 1-0.607Z-1

0.0787Z"2 0.393z"2

1-0.607Z"1 1-0.607Z'1

1

1 - z"

0

0

1

1 -

z
-i

* u(z)

* a,

(H.l)

is given by,

Gc..iz)cij 1 -

Vijz-1)
(H.2)

where i and j refer to the row and column, respectively, of

the controller matrix and a and /3 are polynomials in the

backward shift operator, z"1. The coefficients of a(z"1) and

j0(z"1) for this example are given in Tables H.l and H.2. It

is important to note that in all cases studied the output

weights were equal, at 1.0 units.
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Table H.l Coefficients of a(z"1)

z°
3.031 -2.429

-.6070 3.031

z-1
-5.520 4.424

1.105 -5.520

Z"2
3.350 -2.685

-.6709 3.350

z-3
-.6779 .5433

.1357 -.6779

z-4
.30445-6 -.23895-6

-.37905-7 .20505-6

z-5
-.13225-6 .95335-7

.17295-7 -.64995-7

Table H.2 Coefficients of /3(z"1)

z-1 -1.214

Z"2 .3684

Z'3 -.10395-6

Z"4 .10645-6

The control equations for the case in which equal

penalty weights of 2.0 units were placed on both inputs is

obtained by using the coefficients given in Tables H.3 and H.4

in Equation H.2.
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Table H.3 Coefficients of a(z"1)

z°
.5327 -

.1077 .

.2125

5327

Z'1
-1.580

-.4072

.5431

-1.580

Z'2
1.899 -.

.5825 1

5592

899

z-3
-1.155

-.4014

.2931

-1.155

Z'4
.3557 -

.1347

.79245-1

.3557

Z"5
-.44355

-.17705

-1 .89705-2

-1 -.44355-1

Table H.4 Coefficients of 0(z'1)

z-1 -3.536

Z"2 5.268

Z'3 -4.329

z-4 1.946

Z"5 -.4842

Z"6 .51065-1
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Mismatch was then introduced into the system by

modifying the process transfer function to yield,

Gjz)
-

0.200z"2 0.500Z"2

1 - 0.607 z_1 1 - 0.607Z"1

0.07 87 z"2 0.393z"2

1 - 0.607 Z'1

0

1

1 - 0.607 z"1

1

* uiz)

1 -

z

0

-1

1 - z-1

* a,

(H.3)

while the controller remained the same as designed for the

base case given in Equation H.2, and Tables H.l and H.2.

The next mismatch case had the following transfer

function matrix,

GAz)

0.200Z"2 0.315Z"2

1 - 0.607 z"1 1 - 0.607Z"1

0.200Z"2 0.393z"2

0.607 z"1 1 - 0.607Z"1

1

* uiz)

(H.4)

1 - z"1

0

0

1

1 - z"

* a,
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while the base controller remained unchanged.

Model mismatch was then introduced to the process

model itself to give Equation H.5.

Gjz)

0.393Z" 0.315Z"2

1 - 0.607 z_1 1 - 0.607Z"1

0.0787Z-2 O.lOOz-2

1 - 0.607 z'1 1 - 0.607Z"1

1

* uiz)

1 - z-1

0

0

1

1 - z-1

* a,

(H.5)

The problem of imbalanced dead times was also studied.

The system matrix is given in Equation H.6.

Gjz)-Gjz)

0.393Z"3 0.315Z-5

1-0.607Z"1 1-0.607Z'1

0.0787Z-4 0.393z"8

1-0.607Z"1 1-0.607Z-1

1

* uiz)

1 - z-1

0

0

1

1 -

z
-1

* a,

(H.6)

The control equation is the same as that given in Equation H.2

with coefficients for polynomials a(z"1) and )3(z"1) as given in

Tables H.5 and H.6. The minimum possible settling time for

each controlled variable must lie between the upper and lower
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dead time limits given by the transfer function relationships.

The procedure outlined here follows the Holt & Morari results

[1985]. A lower bound for the settling time of output "i" is

given by Tj=min. (p,..) where p.. is the minimum delay in the

numerator of element "ij" of the transfer function matrix G.

In the case of the transfer function shown in Equation H.6,

the lower bounds for Y1 and Y2 are 2 and 3, respectively. Note

that the true process dead times are used, from the continuous

domain. An upper bound on settling time is given by,

Xjj
-

exp { -

S; ( Max iMax ( 0 , (^-£,.,)))}
i

where,

$i;j
- minimumdel ay in numera tor ofel emen tij ofG'1

<%i;j
- minimumdelay in denomina torofel emen t ij ofG'1

(H.7)

Considering only dead times in Equation H.6, G and G'1 are

given by Equation H.8.

■.-l

e-2s &-is

e~2s e~ls

1

e-9s-e'7 s

(H.8)

e-7s _e-4s|

_^.-3s -2s

Applying Equation H.7 to the above, the upper bounds on the

settling time for Y1 and Y2 are 3 and 5, respectively.
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Balancing the dead times, by placing the minimum dead

times on the diagonal yields the transfer function matrix

shown in Equation H.9.

Gjz)-Gjz)
-

0.393Z'3

1 - 0.607Z"1

0.0787 z'8

1 - 0.607Z"1

0 .315z
-5

1 - 0.607 Z"
1

0 .393z
-4

1 -

z

0

1 - 0.607 z'1

- 0
-l

1

1 - z"1

* uiz)

* a,

(H.9)

The coefficients for the control equation are given in Tables

H.7 and H.8. The minimum achievable variance for the two

controlled variables can be calculated for this final example.

ARMA models were fit to the two output series yielding the

relationships displayed in Equations H.10 and H.ll. The

variances of au and a2t are 1.972 and 1.573 respectively -

Yjz)
1.0

1 - 0.617 Z"1

* a,

(H.10)

- (1.0 + 0.617Z"1 + 0.381Z' ) * a.

YJz) -

1.0

1 - 0.737Z

— * at
-i c

(1.0 + 0.737Z"1 + 0.543Z-2

+ 0.400Z"3 + . . . ) *at

(H.ll)
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The minimum achievable variance is then derived from,

VAIUY.}^ - (12 + 0.6172 + 0.3812) * 1.972
1 mvc

(H.12)

- 3.009

WLR{y2}wc
- (l2 + 0.7372 + 0.5432 + 0.4002) * 1.573

(H. 13)

- 3.143

given minimum dead times of 2 and 3 units for outputs Y, and

Y2, respectively.
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Table H.5 Coefficients of a(z'1)

rQ
2.446 .4899

-.5096 2.545

_x
-4.455 -.8921

.9279 -4.634

_2
2.704 -1.498

-.5632 2.813

_3
-.5471 3.604

.1140 -.5691

„
-.98115-1 -2.744

-4

-.13345-6 .30595-6

_5
-.1787 1.348

.99825-7 -.11285-6

6
.1084 -.5415

-.13305-6 .15975-6

7
-.21945-1 .1096

.19105-6 -.37875-6

8
.82145-6 -.55095-6

-.25865-6 .67255-6

9
-.67235-6 .43665-6

.18525-6 -.54015-6

0
.18295-6 -.12885-6

-.46505-7 .14355-6
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Table H.6 Coefficients of 0(z'1)

z"1 -1.214

Z"2 .2079

Z"3 .19495-6

z"4 -.59145-1

Z"5 -.66335-7

Z'6 .15385-6

Z"7 -.20935-6

z-8 .37 87 5-6
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Table H.7 Coefficients of a(z_1)

z°
2.545 .89245-5

-.95855-6 2.545

Z"1
-4.634 -.16665-6

.16775-5 -4.634

Z'2
2.813 -2.039

-.10315-5 2.813

Z"3
-.5691 3.714

-.14465-6 -.5691

z-4
.11105-5 -2.254

-.5096 -.15735-5

Z"5
-.35385-6 .4561

.9279 -.30315-5

z-6
.33185-6 -.45635-6

-.5632 -.16005-5

Z'7
-18645-6 .21965-6

.1140 .89975-7

Z"8
.77415-7 .25495-7

-.52695-7 .21695-6

Z"9
-.11605-6 .70155-7

.46225-7 -.19195-6
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Table H.8 Coefficients of 0(z"1)

z"1 -1.214

z"2 .3684

z"3 -.11295-6

Z"4 .12735-6

Z"5 -.22765-6

z"6 -.1605

z"7 .1949

Z"8 -.59145-1



Appendix I

Shell HCU QDMC Industrial Case Study Results

The minimum variance estimates for the six controlled

variables were calculated for the test run in which the

recycle gas feed to the reactor was perturbed in a PRBS

fashion. ARMA models were fit to the time response data

collected for the six variables and the minimum variance

predictions were estimated as described in Chapter 2. As

discussed in Chapter 4, the minimum dead time of all the

transfer functions related to each of the controlled variables

was estimated to be less than the sampling time of 6 minutes.

Therefore, the minimum dead time lag, f, was chosen as zero.

This means that the best achievable performance for each

controlled variable corresponds to the residual variance

obtained after the ARMA model is fit to the process response.

Equations I.l to 1.6 display the models fit to each of the

controlled variables and the corresponding residual variance

obtained. These results were summarized in Table 4.1.
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WABTt
- (1 + 1.044Z-1 +

. . . ) at

where, o\ - 0.00434

BEDlAVTt
- (1 + 1.161Z"1 +

. . . ) ac

where, o2, - 0.0274

BED2AVTt
- (1 + 1 . 044 z"1 +

. . . ) at

where, a\t
- 0.0105

55£>3AVTt
- (1 + 0.892Z"1 +

. . . ) at

where, o2, - 0.00712

55L>4AVTC
- (1 + 0.946 z"1 + . . . ) a

2

where, at - 0.007 06

where, o2, - 13.811

c

INQVPOSNt
- (1 + 1 . 120 z_1 +

. . . ) a t

(I.l)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)
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