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SCOPE AND C~S

A 2 inch diameter, conical-sha~d glass hydroCYGlone, operating
~_ I

I

without an, air co~e, ,was used in th~s ~tudy. 'The geometric dimerpions of

the cyclone followed closely with the optimum design conditions Jeter-
. !

mined for solid/liquid systems by Rietema (R-1) and used by Burrill and

Woods (B-3) for liquid/liquid systems. Distilled water was used as the

continuous phase. Dispersed oil phases studied include: butanol,

methyl isobutyl ,ketone (MIBK) , toluene and kerosene. /
\,

For each of the liquid/liquid systems, the efficiency of sep-

aration was determined as a function of volume split, oil/water phase

ratio and feed flowrate. Differentiation of the liquid/liquid systems,

in terms of physical properties, was based primarily on interfacial

tension. Density difference and viscosity o~f the dispersed phase,
~~

were comparable fromOne system to another. Mixing energy used to

disperse the oil phflSe in the water phase, geometric dimensions and
, .

temperature were constant throughout the work. The range of the oper-

ating variables were as follows:

i) oil/water phase ratio

ii) feed flOWTate'

iii) interfacial tension

iv) volume split

0.160 to 1. 00

100 to 365 roLls'

2.0 to 30.0 mN/m

0.17 to 3.90

For each system studied, photographs were taken at the inlet and outlets

leading to and from the cyclone, respectively, to determine the arop size"

.
of the dispersed phase.

t

The second part of the present work considered the influence that

the mixing energy had on the effects of oil/water ratio and feed flowrate

\
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as studied in the ,-first part.

The efficiency of separation (Es ) is 'defined as follows:

+ ~ fYf - Yu]
Qf t Yf

I

where Y and Q represent-volume fraction of light phase and flowrate, respect­

ively, while the subscripts denote ~specific orifice l~cation on the hydro-

cyclone.

From the first part the efficiency of sepJration i~ the cyclone
v '

was a very important function of VDlt1ll1~ split. The effect of the feed,
flowrate ~n separation in the cyclone was dependent on the.... interfacial

tension. The effect of oil/water ·ratio was dependent on the rate of

coalescence. Based on the photographic work, coalescence occurred in

the cyclone for several of-the systems studied.

The majori tY of past work has varied the mixing energy wi th a change

-. in the feed flowrate. k5 a result, drop size varied. Present work revealed

that this reversed the effect that feed flowrate had on the separation in

the cyclone with. mixing energy constant.

It was not possible to obtain two pure phases from the hydrocyclone

for any of the systems studied. One pure phase, however, was achieved for

I

respectively, for each of these systems•. For toluene/\1ater and kerosene/

water syst~ms, the interfacial tension was sufficiently high to prevent

The highest values of the optimum'E were 67, 57 and 62%,, s of ,

,
1;hree of 0>'four systems studied. A relatively pure water phase (~ 99%)

was obtained at the unclerflow for the MIBK/water, toluene/water and kerosene/

',//
/" !

water systems.

;

significant drop breaklIp when the feed flowrate was ,increased.

cir~tances, drop breakup predominated for MIBK~~ater
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systems 'due to the lower vaiues of interfaciaJjtehfiDn:\ With butanol/water,
/ '\

a'significant aJnotmt of light phase was found in tn1lD1de~f1ow. The optirnrnn

!Os for this ~ystem was only 26%'. .J \
It was not~d that the efficiency of separation, Es ' )incre~ed sharply

at first and then decreased gradually with increasing vOl~e split. The
, .;

optimum vo~e split occurred at a value greater xhan the feed phase ratio

for all systems studied. The optirnrnn value ranged from 100 to 500% greater

"

-
than the feed phase ratio. Sinc~ complete coalescence does not occur inside

the CYClone, i~~ not possib,le, t; have the ,optimum split equivalent to the

feed phase ratio. Continuous phase trapped in'the interstides results in

th~ optimum split equivalent to a value greater than the feed phase ratio.

If, on the other hand, it ,is not possible
, .

The role of the hydrocyclone is basically one of a prelimdnary stagesettler.
'/'/

~ the' physical separation process.

plished, then 'it is possible to reduce the volume requirement of a gravity

/
,
\

"A simple -mass balance model was used to describe the effects of volLDTle split.

"-
From thi1model the interstitial vollDlle could be inferred for all conditions.

Corrbining this information with models for breakup, Joalescence and hindered
/

set~iing yielded ~'serrd-quantitativeexplanation of all the trends observed.

/' Th~ feasi~ility of using the hydrocyclone'to separate emUlsions is

/ based OR ac;hieving at least one pure phase. If this achievement is accom­
/

,/'
/

to h~ve one pure phase, no us~ful pUI'Po~e is served by the cyclone. CollSe­

quently, the b~tanol/water system can not be considered a feasible system

to J?e separated by. a hydrocyclone.
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