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Abstract

This thesis deals with the application of the Finite
Element Method to the analysis of laminateéd fiber
composites. specifically, it addresses the problem of
representing the variation of material properties through
the element volume in order to reduce the number of degrees
of freedom required to represent a laminated composite.
This is accomplished by a modification in the evaluation of
the eiement stiffness matrix, whereby the through thickness
integration is evaluated separately for each ply of the
laminate. This modification results in a significant

reduction in the core memory requirements.

The modification is implemented in a f£inite element
code and used to investigate various aspects of laminate
behaviour using a design philosophy based upon the laminae
constituents rather than the more usual laminate properties.
Problems involving lamina coupling, edge and surface
deformations are solved for symmetric and unsymmetric
laminates. The tensile behaviour of a particular laminate
is predicted, and the ability to back calculate the specimen
composition parameters is demonstrated. An explanation of

the specimen size limitation for tensile tests is verified.
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Views of plate edge deformations are cbtained that are not
predicted by classical laminated plate theory, and that are

currently unavailable in the literature.

The modified element formulation is also used to
implement a method whereby laminates of various lamination
sequences may be ranked in terms of their energy absorption
potential when subjected to quasistatic loading conditions
by comparing the total energy absorbed before catastrophic
failure. This is accomplished by the used of a damage
analysis method that is based upon element integration peint

failure rather than the usual first ply failure criterion.
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1.0 Introduction

1.1 Fiber Composites

The traditional approach to the design of engineering
structures has been to start with a given material and
design stress level, and detail appropriate members to
carry the specified loads without exceeding the material
allowable strengths. These strengths are usually defined
as a certain percentage of the material's tensile
ultimate (Fyy) or yield strength (Fiy). The advent of
advanced fiber composites has given the impetus for a
major change in the normal design philosophy. Rather than
being constrained to designing a structure with a given
set of material properties, it is now possible to tailor
the required properties into the material itself, thereby
rendering the finished product much more efficient in the
role for which it is required. This is what may generally

be known as Zero-Based design.

The term composite refers to a mixture of two or more
materials that are microscopically distinct but together
form a single macroscopic entity. Such materials have a
long history, and in the past two decades they have found
widespread usage in the aerospace industry. 1In current
engineering terms the word has come to refer to materials

made of stacked layers of a fibrous reinforcement material

1



held in place by a rigid binder. Such materials have been
extensively utilized in aerospace applications in the form
of long fibers embedded in a carrier matrix to make thin
plates or shells. Combinations of such materials have
several advantages in that they tend to exhibit the best
qualities of their constituents as well as other qualities
that neither possess. This has resulted in a broad range
of investigation of these materials using various

techniques.

Long fibers of any given material are inherently much
stiffer and stronger than the same material in bulk form.
This is mainly due to the high alignment of the crystals
in the fiber and the lower defect concentration.
Geometrically the fibers are characterized by their high
length to diameter ratio and their crystal-sized diameter.
Their main disadvantage is the relative lack of
compression strength, for which they require some sort of
binder. Their main advantage is the ability to fabricate

structures with preferential directional properties.

The usage of fiber composites has gone through
several stages., The first of these was a demonstration
phase during which confidence was built on the reliability
and commercial viability of fiber composite parts. The
second stage involved the direct replacement of existing

non-critical secondary structure. Following this was a



production stage during which parts of a structure were
designed using fiber composites from the ocutset for the
purpose of weight savings. The past decade has seen an
increased use of fiber composites in the energy absorption
field. Kevlar laminates are being used in the energy
absorption and protection role for ships as well as army
field personnel. Closely related to this is the
protection of spacecraft from micrometeorite impact, the
integrity of fan blade containment rings for jet engines
and the safety of nuclear reactor containment vessels from

tornadobourne debris.

Currently the design of fiber composite structures
employs some form of lamination theory to construct the
material of the structural element required. Laminated
fiber composites refer to materials built up of layers of
a fiber reinforced matrix. while control of the
individual constituents and their relative abundances in
the lamina may be used to tailor the lamina orthotropic
properties, control of the lamination sequence and fiber
orientation may be used to tailor the finished material to
the specific design requirements of the structural element

being built.

Fiber composite laminates can be manufactured to
perform a variety of functions that are not possible when

using isotropic materials. The coupling between



extensional and bending deformations allows one to
fabricate parts for a variety of applications such as tail
rotor blades for helicopters, and forward swept wings for
advanced jet aircraft. In the former the centrifugal
loading from an increased rotational velocity can be used
to apply a twisting moment to the tail rotors, generating
a horizontal 1lifting component that would offset the
rotational moment from the main rotor blades. In the
latter the bending moment caused by an increase in lift
can be used to twist the wing planform in a direction that

would prevent catastrophic divergence.

1.2 Methods of Analysis

The usual elasticity approach to solving engineering
problems is to assume an unknown stress function over the
region of interest, and substitute tnis into the
compatibility equations ([1]. Application of the boundary
conditions then determines the necessary constants for a
correct representation of the solution. Unfortunately
this procedure is cumbersome for all but the simplest of
problens. Tt is practically impossible to apply this

method to complex geometries.

The most common approach used in the structural
analysis of laminated composites involves some variation

of Classical Laminated Plate Theory (CLPA). In this case



+he laminate displacements are represented through the
thickness by a linear function in terms of the midplane
displacements and curvatures [21. Unfortunately this
approach is limited to thin plates since the effects of

shear deformations is not taken into account.

The wutilization of laminated composites is not,
however, limited to thin plates. Applications also exist
for thick laminates, in which case the classical theory
cannot be applied. Many higher order laminated plate
theories have been proposed to overcome the difficulties
encountered due to the thickness effects [3,4,5], however
they are all variations on a given theme. These theories
attempt to take care of the zero shear stress requirement
at the top and bottom surfaces of the laminate with
varying degrees of success. Unfortunately they do not
take care of the free edge effects at the longitudinal and
lateral extremes of the plates. These effects become of
paramount importance in considerations of failure for

plates loaded along their edges.

current design procedures for laminated fiber
composites involve a number of independent steps to arrive
at a viable design. One must evaluate the lamina
properties, perform 2 ljaminate analysis, test for failure
and decide if any modifications are necessary. often it

is difficult to predict the deflection response from a



knowledge of the stresses within the laminate. It would
be advantageous to be able to predict the deflection
response of thick laminated fiber composites simply from a
knowledge of the lamina orientations, the laminae
constituents and the applied loading. The Finite Element
Method allows one to integrate the above steps into one

easily mastered process.

The wunderlying concept of the displacement based
Finite Element Method is the division of a structure into
a series of subregions or elements. The behaviour over
each element is described by a set of assumed functions
for the displacements. The form of these assumed
functions is such that the displacement continuity is
satisfied at the element boundaries. The local behaviour
is described by the use of an apprroriate function wvalid
for the region of interest. The advantages of this methed
lie in its application to «complex geometries. In
addition, the method may be applied te 3D analysis with

much greater ease than either of the previous two.

The Finite Element Method, is not without its
limitations. The plate or shell elements currently
avaiiable in commercial codes such as ASAS, ANSYS, MARC
and the 1like cannot be used to predict the three
dimensional stress fields encountered in problems related

to thick plates. Formulations of thick plate and shell



elements found in the literature involve the use of an
increased number of variables to overcome some of the
limitations inherent in thin plate theory, however they
still represent the entire 1laminate thickness by one

element.

1.3 Objectives

To overcome the limitations imposed by the use of
plate and shell elements, several solid elements may be
used to represent the laminate thickness. The use of this
element allows inclusion of all laminate stresses as well
as end effects in the analysis of thick laminates. The
properties of each ply would be assigned to one element,
and a stack of these would represent the plate behaviour
in the thickness direction. Unfortunately, this would
lead to an excessive computational demand, and some method
must be found whereby those degrees of freedom not germane

to the problem are eliminated.

Current methods of solution for fiber composite
problems require knowledge of the lamina orthotropic
properties. These are usually evaluated experimentally
using various test methods. Such tests are expensive to
perform, and the results are valid only for the particular
lamina being tested. However, it is also possible to

compute the lamina properties from a knowledge of the



properties of the constituents and their relative

abundances in the laminate.

The serviceability design for laminated fiber
composites is wusually based upon a first ply failure
criteria. The laminate is considered to have passed its
structural limit at the onset of failure in one of its
lamina. This is a conservative approach, and does not
take into account the significant residual strength of
failed laminates. The problem is further complicated by
unequal strengths in the tensile and compressive
directions. Often failure of fiber composite laminates is
based upon the deflection response rather than failure to

carry a given load.

Laminates subjected to overloads exhibit a damaged
behaviour that manifests itself in reduced material
properties. The extent of this damage may be determined
experimentally through ultrasonic C~Scan [6] methods or by
measuring the response to a known load. Alternatively, if
the vibration characteristics of the damaged laminate can
be related to the extent of damage, a vibration test will

suffice.

It was the purpose of this study to devise a method
whereby the small deflection response of a laminated fiber

composite may be computed based upon the known loading



conditions, the laminate constituents, the 1laminae
orientations, their relative abundances and their
respective material properties. The damage incurred due
to overload was then used in an attempt to predict the
energy absorption characteristics of particular laminates

in a effort to rank them for an enerqy absorption role.

In order to accomplish the above, the following

objectives had to be net:

1. The capability of representing several plies through

the element thickness had to be provided.

2. A lamina analysis capability was found to be
essential for the element stiffness routines in order that
material properties for the elements could be generated

from the basic lamina constituents.

3. Failure of the laminate required the incorporation of
a damage progression model in order to realistically

predict the response of the laminate to overloads.

4. Ranking of various laminates in terms of energy
absorption regquired a method whereby the energy absorbed

due to material failure could be tracked.
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1.4 Scope

The scope of this thesis is limited to representation
of the laminate deflections using small deflection theory.
It does not deal with large strains and large deflections.
ITn addition, dynamic effects such as those related to
visco-elasticity and damping are not included in the

analysis.

To this end a finite element code was developed that
is capable of small deflection 3D analysis of laminated
fiber composite structures. The code implements a 2D
element for which the number of nodes can be varied from
four to nine, and a 3D element for which the number of
nodes can be varied from eight to twenty. The code can be
easily expanded to handle large deflections and large
strains by inclusion of the appropriate subroutines. The
addition of an eigen analysis routine will allow vibration
studies to be undertaken to determine the effect of

material damage upon the vibration characteristics.



2.0 Literature Review

2.1 Laminate Analysis

The most common usage for fiber composites has been
in the form of 1laminated plates. Individual layers of
fibers are embedded in an epoxy or polyimide binder
material and oriented in various directions to produce the
desired anisotropy. The analysis of these kinds of
structures has been done using what is known as Classical
Laminated Plate Theory, which in turn is based on the

Kirchhoff hypothesis for thin plates (7].

The theory embodies a reduction of the three
dimensional elastic continuum to a two dimensional non-
Euclidean continuum of the middle suxface. The behavior
of the plate is described by writing the overall bplate
displacements in terms of a power series expansion of the
thickness coordinate. Due to the nature of the problem, a
convective set of coordinates may be used which become
curvilinear in the deformed state. Though reasonable,
this approach leads to complications. Alternatively, a
Lagrangian approach may be utilized in which the
coordinates are embedded in the plate so that the middle
surface is always at z=0 and the upper & lower surfaces

are always at z=+3h and z=-%h respectively.

11
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The general form of the displacement field is taken
from Basset [8), where the displacement terrs are directly
specified in terms of the midplane displacements and their

respective derivatives.

Uix,y,2) = Wxy) T (2.1.01)
2 Sw(x,y) + --- + 20 §™ (%, v)
where
U(x,y,z) is the overall plate displacement.
(%, y) is the midplane displacement.

6™ (x,y) is the n'th derivative of the thickness
displacement.

z is the thickness coordinate.

Basset's paper can be considered to be a landmark in plate
theory, since the displacement assumptions he put forward
form the basis of nearly all plate theories used to model

the behaviour of laminated fiber composites.

The Kirchhoff theory of plates utilizes a set of
assunptions that can only be satisfied in the case of
small deflections. The first of these assumptions is the
Bernoulli hypothesis of a line originally straight and
normal to the middle surface remaining so under
deformation, implying zero transverse shearing strains.
The second assumption requires that normals to the
midplane have constant length, implying zero through

thickness strain.
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Under these assumptions the inplane plate
displacements may be described by a truncation of the
above series expansion to the first power in z. In the
case of a flat plate the resulting inplane strains are

then given by

Exx = (8U°/8X) - z (&6%w/6x?)
eyy = (6v°/8Y) - 2 (62w / 6y2) (2.1.02)
€xy = (6u/8y) + (6v+/8x) - 2 z (62w / Ex8Y)

which are usually written as

Exx = €xx” t 2 kxx'
€yy = €yy* + zkyy' (2.1.03)

exy = €xy" + Z Kxy"

The last term of the last equation represents the
twist curvature of the midplane. It is evident that the
variation of strain through the 1laminate thickness is
linear. For the case of curved shells it is necessary to
supplement the €j; terms with (w/rjj) where rjj is the

radius of curvature.

Substitution of the strain wvariation into these
equations allows one to express the stresses in the
various plies in texrms of the laminate midplane strains

and curvatures.
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The statically equivalent resultant forces and
moments acting on a laminate may be obtained by
integration of the stresses through the laminate

thickness. These are given by

+(t/2) +{t/2)
Njqy = o35 dz Mjj = 0ij 2 dz (2.1.04)
-(t/2) =-(t/2)
where
Njj = Force per unit crossection
Mjj = Moment per unit crossection

Due to the small thickness of the lamina, the
stresses are assumed to be constant within each laminae.
This allows the above integrals to be broken at the
element boundaries and summed over the total laminate
thickness. Substitution of the strain variation into
these equations allows one to express the stresses in the
various plies in terms of the laminate midplane strains
and curvatures. For an orthotropic lamina the stress-

strain relationship is given by

Oxx Q11 Q2 Q4 €xx ]
Oyy | = Q21 Q22 Q24 €yy (2.1.05)
Txy Qa1 Q2 Qa4 €xy
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where [Q] is the transformed reduced stiffness matrix for

the lamina [9].

Since [Q) may be different for each ply,

the stress variation through the laminate thickness may

not be continous.

Combining this with the power series representation

of the displacements and realizing that the midplane

values are not a function of the thickness coordinate then

gives

m

Z, Q]

Nij =.Z

hot}
M35 = I, (@]

which is usually written as

Nij

nij
where

(Al
(B] =

(D]

_ rZ (n-1) +Z (n—-1)
€i5° dz + Xkij°® z dz

- Jz(n) Jz(n)

_ ~Z (N-1) -z (n=1)
€ij3° | z dz ¥ kij® 22 dz

L Jz(n) Jz(n)

Azx3 B3x3 €ij

C3x3 D3x3 kij

Plate extensional stiffness matrix
Plate coupling stiffness matrix =

Plate bending stiffness matrix

(¢l

(2.1.06)

(2.1.07)
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The presence of the Bjj terms in the stiffness matrix
implies a coupling between the bending and extensional
deformation. This means that an extensional force may
result in bending and twisting of the laminate as well as
an extension in the direction of the applied force. A
similar statement may be made for the case of an applied
moment. The coupling terms arise from geometric
anisotropy due to the lamination sequence and lamina
orientations, and have been investigated by

Reissner & Stavsky {10].

The classical theory described above has been used
extensively in the analysis of laminated fiber composite
plates. However the theory considers only stresses in the
plane of the laminate. Since the interlaminar stresses
are not included in the analysis, the theory is incapable
of providing any insight into some of the failure
mechanisms associated with laminates. It is readily
verified that the theory implies non-zero values of Tyy at
the free edges of the laminate. Though this is physically
impossible, the Xirchhoff assumptions yield acceptable
results from an engineering standpoint when the theoxy is

applied to thin plates with small deflections.

Unfortunately the classical approach becomes invalid
for applications involving stress distributions which are

of a three dimensional nature. The mismatch of the



17

properties through the thickness leads to a violation of
the Bernoulli hypothesis of plane sections remaining
plane, and the theory becomes inadequate to describe the
structural response. Also, the usual form of the theory
uses statically equivalent stress and moment resultants
which must be computed from the applied loads. These are
generally valid only far from the point of 1load

application.

The three dimensional equations of elasticity involve
six components of stress which are related to six
components of strain through Hooke's law. Furthermore the
assumption of large deflections regquires the use of
Green's strain tensor to second order. An analytical
solution using an asymptotic expansion in the powers of
the plate thickness has been given by Fox [11]. The
solution is obtained by considering the interior and
boundary regions separately in terms of the full three-
dimensional equations of elasticity. However the solution
is valid only for small values of the plate thickness, and

breaks down when applied to laminated fiber composites.

2.2 Higher Order Plate Thecries

Higher order plate theories have been put forward by
a number of investigators that overcome some of the above

limitations. All involve displacement assumptions that
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are truncated at increasingly higher powers of the
thickness coordinate. Unfortunately these introduce other
preoblems. For instance, in the case of a second order
truncation of the displacements, transverse shearing
stresses arise that do not satisfy the zero shear stress
boundary conditions at the top and bottom surfaces of the

plate.

The earliest consistent treatment of the effects of
shear deformation on the bending of elastic plates is
given by Reissner [12] using first order displacement

approximations of the form

u = u°® + z sw°
v =vVve + 2z §w° (2.2.01)

w = we

where u°, v° and w°® are functions of x &y, and the
symbol § stands for differentiation with respect to the

appropriate coordinate.

The equations of equilibrium and the stress-strain
relations were determined in the form of the stress
resultants by use of Castigliano's theorem of least work.
The solution is obtained in terms of two plane harmonic
functions. The theory is applied to the problem of
torsion of a rectangular plate and the plain bending and

pure twisting of an infinite piate with a circular hole.
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The results are reported to be accurate from a practical

point of view.

Mindlin [13] later obtained the governing equations
by a direct method using the same level of approximation
but without using the cocrresponding stress distribution
assunptions However the formulation requires a shear
correction factor that must be determined by comparison to
an exact elasticity solution, and so is not able to stand

on its own.

Whitney & Leissa [14] have used the basic assumptions
of thin plate theory, including inertia and thermal
effects, to formulate the governing equations of a
laminated anisotropic plate by integration of the
nonlinear equations of elasticity. Closed form solutions
to the 1linearized equations revealed that the coupling
phenomenon increases transverse deflections and decreases

buckling loads and fundamental vibration fregquencies.

The inclusion of the effects of transverse shear
deformation in a structural laminated orthotropic shell
theory has been investigated by Dong & Tso [15]. Their
derivation leads to Mindlin type correction factors in the
transverse shear resultant-strain relation. Aas with the
Mindlin plate theory, this formulation is also not able to

stand on its own since the values of the correction
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factors are based upon a match for the Jlowest cutoff
frequency with that obtained by three-dimensional
elasticity. Also although the theory reliably predicts
displacements and stress & couple resultants, detailed
stress and strain states cannot be described with the same

degree of confidence.

Shear deformation theories based on the above set of
assumptions are generally known as First Order Plate
Theories (FOPT). In these kinds of theories the
transverse normal component of the deformation is assumed
to be independent of the thickness coordinate. This poses
inherent limitations in problems of induced contact with a
smooth surface. Essenberg [16] has investigated a theory

based upon

u=u® + z 6w°

<
!

ve + z &w® (2.2.02)

wW=WwW®+ 2z 6W® + 2 62w°

in an attempt to alleviate these limitations by deriving

the corresponding one~dimensional plate theory.

Whitney & Sun [17] have also used these displacement
assumptions to develop a refined theory for laminated
anisotropic cylindrical shells. The effects of both shear
deformation and transverse normal strain were shown to be

significant factors in the accurate analysis of shells
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with a small thickness-to-radius ratio. Reasonably good
agreement was observed with exact elasticity solutions for

static deformations.

Nelson & Lorch [18] have wused full second order
displacement approximations to model the highly dispersive
character of axial waves in laminated orthotropic plates.
This theory extends CLPT to include transverse normal,
transverse shear and gquadratic terms in the kinematic

assumptions. The displacement assumptions are of the form

u°® + 2 fw° + 2 82w°

u

v =Vv0 o+ z SWwe + z §%w° (2.2.03)

W =W® 4+ 2 §W° + 2 82w°

Composite correction factors are used to bring this theory
into correspondence with exact elasticity solutions for
the response of an infinite plate to plane harmonic waves.
The theory accurately models the dynamic behavior of
plates over the lower portion of the frequency spectrunm
for wavelengths greater than the plate thickness.
Unfortunately there is an inconsistency in their use of
the Mindlin shear correction factor since nonuniform shear
stresses are implied by the assumed form of the

displacenments.

Hildebrand et al [19] have also examined a theory

based upon a full second order expansion of the midplane
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displacements, ind have concluded that the inclusion of
the quadratic terms in the inplane displacements does not
provide a significant advantage over the lower order
theories. Naghdi [20]) has used these to derive a general

theory of shells.

Reddy [21] has presented 2 nonlinear theory of plates
with transverse shear deformation that accounts for the

von Karmén strains using

= u° + z 6we + 22 6?w° + 23 §3we

u =
v=v% + 2 §fWw® + 22 §%we + 23 §3we (2.2.04)
W= w°

Hamilton's principle is used to derive the egquations of
motion. This theory models the parabolic distributions of
the transverse shear strains through the thickness of the
plate and, in comparison with CLPT and FOPT, provides a
better prediction of deflections, stresses and

frequencies.

Riessner [22] has also presented a theory using
higher order displacement approximations rxepresenting the
lowest order corraction to the classical theory for out-
of-plane deformation effects. The inplane displacements
are represented by incomplete cubics in z, and the out of

plane displacement by an incomplete quadratic in z. Thus
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u =2 §w° + z3 63w°
v =z 6we + z° §3we (2.2.05)

W= we + z2 §2we

This theory gives accurate results when compared to the
elasticity solution for the bending of a plate with a
circular hole. Unfortunately all inplane deformation
effects are not included due to the incomplete

representation of the displacements.

These inplane deformation modes have been included by
Lo et al [23] by virtue of a full cubic representation for
the midplane displacenents for u and v. The
representation for w is truncated at the second power,
which is consistent in that the transverse shear strains
due to inplane displacements are of the same order in z as
those determined by the transverse displacement. The

displacement assumptions for this case are

u® + z fw° + z2 62w° + z3 63w°

u =
v =v° 4+ z &w° + z2 §2we + z3 §3we (2.2.06)
w =W +z£w°+22 52w

The theory is applied to angle-ply and cross-ply laminates
loaded by a sinusoidal pressure distribution on the top
surface, for which displacements and flexural stresses are
numerically computed. Exceptionally good agreement to

elasticity solutions is obtained for the first case, and
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close agreement for the second case. Unfortunately
material discontinuities at the interfaces of the layers
mitigate against good predictions of the flexural stresses

at these locations.

It should be noted that the term "higher-order" as
used in the above discussion refers not to the oxder of
the differential equations representing the plate
behavior, but to the level of truncation of the terms in
the power series representation of the plate
displacements. Although the use of these higher order
theories has merits, their computational demands increase
with each increasing power of the thickness coordinate.
Also, although these higher order theories allow somewhat
better predictions of thick plate stresses in comparison
to CLPA, they are still valid only far from the plate
edges. They are unsuitable for the prediction of the free
edge effects responsible for delamination modes of

failure.

2.3 Finite Elements

The above theories have usually been applied to
analytical procedures for the purpose of solving specific
problems involving homogeneous orthotropic plates. The
technique of finite element analysis has been introduced

by several investigators to solve problens involving
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laminated fiber composites. Typically the higher-order
theories mentioned above have been used to develop various

forms of plate elements.

The method itself is based upon a representation of
the overall behavior of a structure by it's discretization
into a series of contiguous subregions, also known as
elements. The behavior within each element is described
in terms of a set of assumed displacement functions. The
form of these assumed functions is such that displacement

continuity is satisfied at the element boundaries.

The plate elements are formulated using the principle
of virtual work. The kinematic relations are obtained
from the general form of Green's strain tensor with the
von Kirman small deflection assumptions invoked [24].
These assumptions imply that the derivatives of the
u and v displacenents with respect to the
X, Y and z directions are very much smaller than the plate
thickness. The plate stress distribution is then obtained
from the strain energy expression using Castigilano's

theorem.

Pica et al [25] have applied this technique using a
Mindlin type of formulation to the investigation of
geometrically nonlinear behavior of homogeneous isotropic

plates. Numerical comparisons are given for square, skew,
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circular and elliptic plates using Linear, Serendipity,
Lagrange and Heterosis elements. Unfortunately, no
discernable pattern of behavior emerged from this

investigation.

Reddy [26] has used the assumptions of
eguation 2.2.01 and a combination of the Timoshenko and
von Karmin theories to formulate a geometrically nonlinear
shear deformable laminated plate element. Transverse
shear, rotary inertia and large deflections are accounted
for in the develcopment of the equations of motion. The
theory is applied to study the dynamic response of simply
supported and clamped plates with both isotropic and
orthotropic material properties. Reference solutions are
provided for layered composite plates, unfortunately the
effects of material damping are not included in the

analysis

Reddy and Chao [27] have used the assumptions of
equation 2.2.01 and the thin plate Kirchhoff approach to
study the small deflection elastic behavior of single
layer and two-layer cross-ply plates loaded in the
transverse direction. These materials are known to have a
slightly different response in the tensile and compressive
directions. This bimodular response of the materials was
included in the analysis, which was found to significantly

affect the results.
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Unfortunately these elements suffer from a limitation
in the description of the through thickness stress, in
that plane stress assumptions are wused in their
derivation. Also the use of plate elements requires the
use of a fully space averaged representation of the
laminate properties through the thickness. It is not
possible to represent the laminate by more than one
element through the thickness. Consequently these
elements cannot be used 1in +the analysis of thick

laminates.

As mentioned above, non-zero values of Txy are
present at the laminate edges. These are usually
neglected in engineering problems by appealing to Saint-
Venant's principle. However in the case of fiber
composites the characteristic decay length over which end
effects are significant is several times longer than the
corresponding length for isotropic materials [28,29].
Numerical results have shown that a complex three
dimensional stress state is present in the region of the
free edge [30]. Since delamination is an important
failure mechanism for laminated fiber composites, accurate
determination the state of stress at the free edges of the

plate is essential.

The application of the Finite Element Methoed to the

edge stress problem has been investigated by
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wWhitcomb et al [31}]. They examined the normal stress
distributions along the interface between the +45° and
-45° plies of a (#45)g graphite/epoxy composite using an
g8-node plane isoparametric element. Layered fiber
reinforced laminates have been examined by Lee [32] using
an 8-node isoparametric solid element. A multilayer
rectangular specimen subjected to a biaxial 1load was
modelled with this element, and the damage progression
monitored as a function of the applied load. Other
investigators have alsco used various plane and solid
elements in their investigations of laminated fiber
composites [33,34]. However in all cases the through
thickness modelling of the laminates has been done with

constant properties throughout any given element volume.

2.4 Lamina Micromechanics

Since a fiber composite is made up of two distinct
materials, the material behavior will be a function of the
properties of the lamina constituents and their relative
abundances. In the case of laminates, the behavior will
also be affected by the lamination sequence. It is
impractical to experimentally determine the elastic
constants for all of the permutations and combinations

that may be used in structural design.
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The study of the detailed interaction of the lamina
constituents for the purposes of investigating the
behavior of a heterogeneous material is known as
micromechanics. The prediction of lamina properties is an
essential adjunct to the design process, and several
authors [35,36,37] have obtained bounds on the elastic
constants through the wuse of energy theorems from
classical elasticity. The minimum potential energy
theorem is used to yield the upper bound, whereas the
lower bound is obtained from the minimum complementary
energy theoren. However it is much more advantageous to
mathematically derive the lamina properties on the basis

of the constituent materials.

These methods utilize a basic set of simplifying
assumptions consistent with the physical situation and
based upon the principles of solid mechanics. The first
of these assumptions is that the lamina can be considered
to be macroscopically homogeneous, 1linearly elastic and
generally orthotropic. Additionally, the fibers and
binder are assumed to be homogeneous, linearly elastic and
free of wvoids. The fibers are assumed to be regularly
spaced and perfectly aligned, with complete bonding at the
fiber matrix interface. Finally, the lamina is assumed to

be in the stress free state.
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The differences in the various methods arise from the
degree to which each of these basic assumptions 1is
relaxed. The theories range from a disjointed constituent
response to sophisticated statistical methods.
Unfortunately, not all of the assumptions are stated in
the derivation of these theories. Further, many of the
above assumptions tend to be unrealistic simplifications

of the physical state of the materials being modelled.

Early investigators [38,39] made the assumption that
the response in the fiber direction was governed solely by
the reinforcement, with the binder governing the response
in the transverse direction. This Netting analysis
approach provides acceptable values for the longitudinal
stiffness, but gives low values for the transverse
stiffness and shear modulus. Its major use has been in
the design and analysis of a large class of filament wound
pressure vessels which, by their very nature, eliminate

the major drawbacks of this method.

The basic mechanics of materials approach embodies
all of the above assumptions. In addition, the fiber and
matrix strains are taken to be equal in a direction
parallel to the longitudinal fiber axis, and the fiber and
matrix stresses are taken as equal in a direction
perpendicular to the fiber axis. These assumptions have

been used to evaluate preliminary estimates of various
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elastic constants by Ekvall f40]. A square array with the
ply subjected to a plane stress state provided good
agreement with experimental data for E;, but low values
for E3, Gi3 and pi13. In a later work [41] the concept of
a restrained matrix was introduced which gave better

results for Ej.

Equations predicting the tensile moduli based upon a
hexagonal array have been derived by Shaffer [42]. Two
equations are developed for the transverse modulus, both
of which predict low values when compared with experiment.
Equations based upon a square array with transverse
isotropy normal to the fibers have been derived by
Abolin'sh [43]. 1In this case the Poisson effect normal to
the fibers has been neglected. It was found that the
value of E3 fell close to the lower bound, whereas the

value of us3 fell between the upper and lower bounds.

The inclusion of voids in the binder was investigated
by Greszczuk [44]. The equations derived in this case
gave theoretical results that were in good agreement with
experimental data. These were later extended [45] to
predict values for the coefficients of thermal expansion

in the longitudinal and transverse directions.

Equations predicting the thermal conductivities of

composites with inclusions of various shapes have been
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derived by Foster et al [46]. Good correlations were
obtained between theory and experiment.
Springer & Tsai [47] have provided similar equations based
upon square and rectangular array mnodels. Again, the
values predicted were in reasonable agreement with

experimental data.

Rigorous approaches to predicting the lamina elastic
constants are generally referred to as self-consistent
methods, of which there are two basic variations. The
first wvariation involves an extension by Hill (48] of
Hershey's [49] approach for aggregates of crystals. The
model is that of a single fiber in an unbounded matrix.
The assemblage is mathematically subjected to a uniform
loading at infinity parallel to the fiber axis, and the
strain field computed. This is then used to extract the
elastic constants. The procedure has proved to be
reliable for low fiber volume fractions, but unreliable

for high values of this parameter.

The second variation of the self-consistent approach
involves a modification of the procedure used to predict
the viscosity of a Newtonian fluid containing a collection
of equal elastic spheres {50]. The model is composed of
three concentric cylinders, with the outer cylinder being
unbounded. The inner cylinder is given the properties of

the fiber, and the middle c¢ylinder that of the binder.
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The outer cylinder is given the properties of the
composite. As before, a uniform loading is applied to the
model, and the constants extracted using the resulting
strain field. Whitney & Riley [51] approached the problem
in a similar manner with a2 model consisting of a single
filament surrounded by a cylinder of finite radius
representing the binder. An energy balance was used to
derive expressions for E;, E3 and gi3. Whitney [52] later
extended this to take into account the effect of filament

twist on E;.

The elasticity approach depends to a large extent
upon the geometry of the laminae as well as the fiber and
matrix characteristics. For instance, the fibers may be
solid or hollow with a uniform or nonuniform elliptical or
rectangular crossection. In addition the material
comprising the fibers may not necessarily be isotropic.
The entire laminate is assumed to be made up of a single
repeating element upon which the analysis is based. The
repeating element may be a single encased fiber or an
array of fibers depending wupon the regularity of
construction. In general, the placement of the fibers in
a lamina deviates from an orderly pattern to some extent.
Their alignment is also not always perfect. The resulting
elastic fields are averaged to obtain the expression for

the desired elastic constants.
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This approach has been used by Hermann & Pister [53]
to obtain the elastic and thermoelastic constants for a
square array of fibers by reducing the problem to that of
a square boundary containing a circular inclusion. The
solution of the reduced problem yielded values of the five
elastic constants, two thermal expansion coefficients and
two thermal heat conductivities. Unfortunately, no
details of the solution were provided other than that the
boundary conditions were satisfied exactly at the
interface and by a point matching procedure [54] on the

sides.

Adams & Dorner [55,56] utilized a finite difference
scheme to solve this problem using a fundamental region
that was rectangular in shape. A triangular repeating
element representing a hexagonal array of fibers was used
by Chen & Cheng [57] to obtain a series solution in polar
coordinates. The boundary conditions were satisfied at
the interface and at the sides by a least squares
technique. Bloom & Wilson [58] solved the same problem
using an infinite series selected such that the boundary

conditions at the interface were satisfied iderntically.

The underlying assumptions behind the statistical
approach is that the lamina thermoelastic properties can
vary randomly with position, so the governing equations

are partial differential equations with variable
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coefficients. The variation is a combination of some mean
value plus a fluctuating term determined by the field
equations. The expressions for the desired constants are
obtained by taking a statistical average, requiring the
inclusion of all of the statistical moments.
Unfortunately the sophisticated nature of the expressions
obtained from this method, can 1lead to unmanageable
computational difficulties [59]. The procedure can be
simplified by neglecting moments of order higher than the
second. However, unless care is taken in the application
of +these approximate expressions, they can deviate

considerably from the true values.

In all but the mechanics of materials approach the
solution of the laminae engineering constants are given by
a fairly complicated set of relationships between the
constituent properties. Furthermore, variations in
manufacturing will always yield variations in the laminate
geometry. This makes precise prediction of the required
constants a difficult task. Even so, practically all
theories predict some thermoelastic constants with

reasonable accuracy when compared to experimental data.

Over the last 25 years the mechanics of materials
approach has been used to derive equations for many
different properties. Though of simple form, they are

scattered throughout the 1literature. A unified set of



simple working equations has been provided by Chamis [60]
with a view to providing experimental guidelines for
maximum benefit and mnminimum testing. These equations
provide a detajled quantitative insight into the strength
and stiffness behavior, and are useful in parametric
studies for the evaluation of various constituent

parameters.

The ply properties defined by these equations are
given with respect to the material axis orientation in
terms of the properties of the constituents and their
respective volume fractions. The mechanical properties

are computed from

Ep
Ej; = VgEfy1 + VpEp Ez2 = %
{ 1 - Vg? (1-Ep/Ef23) 1]
. Gp
By2 = Velfiz + Vpkp G2 = %
[1-~- Vf (l-GbIGflz) ]
(2.4.01)
Ez2 Gp
B23 = -1 G23 =

2 Go3 [ 1 - Ves (1-Gp/Gga3) )



where
Vy = Volume fraction
V¢ = Volume fraction
Ep = Elastic modulus

Efy1 = Elastic modulus

Efss = Elastic modulus
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of binder
of fiber
of binder
of fiber in the 1-direction

of fiber in the 2-direction

Gp = Shear modulus of binder

Gfyz2 = Shear modulus of fiber in the 1-2 plane

G¢p3 = Shear modulus of fiber in the 2-3 plane

¢y = Poisson's ratio
2-direction due

pg12 = Poisson's ratio
2-direction due

of the binder for strain in the
to a stress in the l-direction

of the fiber for strain in the
to a stress in the l-direction

The measurement of the c¢onstituent volume fractions

is a time consuming task. It is usually gquicker to

measure the weight fraction of fiber by desolving the

binder in a solvent according to method D3176 of the

ASTM standards. The volume fractions can then be obtained

from

Wb=Wc—Wf

(1 -Vy]
Vp =
[ 1 + (Denp/Deng) ((1/Wp)—1) 1]
(2.4.02)
[1-Vy]
Vg =

[ 1 + (Deng/Denp) ((1/Wg)-1) ]
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where
Vi, = Volume fraction of voids
Wp = Weight fraction of binder
We = Weight fraction of composite
Wg = Weight fraction oif fiber

Denp = Density of bindcr

Deng = Density of fiber

The volume fraction of voids depends to a large
extent upon the temperature, the pressure and the cure
cycle used in making the laminate. However for important
applications these +variables are tightly controlled.

Typical values of this variable are in the range of 1-2%.

2.5 Lamina Failure Criteria

Structural analysis utilizes some form of failure
criterion to determine the failure loads of a particular
structure. These failure criteria are based upon wmaximum
allowable strains or stresses for the material of which
the structure is composed. The allowables represent the
limit of elasticity wunder any possible combination of

stress.

The determination of the onset of nonlinearity and
degradation of material properties is much easier to
determine for a unidirectional test specimen than it is

for some general laminate. This is due to the nonlinear



39

behavior of general laminate configurations from the onset
of loading. I+t would be uneconomical to experimentally
establish strength allowables for all possible
orientations of laminates that may be utilized. It is
much simpl2r to establish strength allowables for each
lamina at one orientation angle based upon its
constituents, their respective weight fractions and the
void volume fraction. The strains obtained from an
analysis can then be transformed to the lamina axes and
used to evaluate the resulting lamina stresses in the

principal material directions.

The material properties for the laminae constituents
are usually determined from tests in which the specimens
are subjected to a uniaxial state of stress. This
necessitates a logical method of approach to the
application of uniaxial strengths to multiaxial loading
conditions. There are a number of failure criteria
available in the literature that may be used to predict
ply failure in a fiber composite laminate. In the case of
orthotropic materials subjected to a biaxial stress state
three stress components will appear in the yield criterion
and the resulting yield surface is a three dimensional
figure. For the case of a triaxial stress state, up to

six stress components will appear in the yield criterion.
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The vyield surface in this case is a surface in six

dimensions.

In the Rankine theory the maximum stresses in the
lamina principal directions are limited to values that are

less than their respective failure strengths. Thus

Sic < 03i < Sip for i = {1,2,3}
(2.5.01)
loiyl < Sij for ij = {12,23,31}
where
Sjc = Compressive failure strength in the i-direction
Sjp = Tensile failure strength in the i-direction
Sij = Shear failure strength in the i-3j plane

The assumption is made that if any one of the inegualities
above is not satisfied the material has failed by the
mechanism associated with that inequality. This is in
effect a collection of six subcriteria since there is no
interaction between the variocus modes of failure. The
result is a set of cusps in the strength variation as a
function of the orientation angle. These cusps are not

borne out by experimental data.

The Tsai-Hill failure theory [61] is a modification
of Hill's failure criterion [62] for anisotropic
materials. The general form of Hill's criterion
represents a hex-dimensional surface in stress space.

This anisotropic yield criterion may be used as an
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anisotropic strength criterion since both define limits on
linear elastic behavior. Any point falling within the
boundary of this surface represents an admissible state of

stress.

For the case of fiber composites a state of simple
anisotropy exists in which there are three mutually
perpendicular planes of symmetry at every peoint. The
principal axis of anisotropy lie on the intersections of
these planes. In reference to these planes, Hill's

criterion has the form

F (011022)°% + G (022-033)2 + H (033-013)2

+2 (L 7122 + M 1232 + N 1312 ) = 1(2.5.02)
where
F = (1/51)2% + (1/S2)% - (1/53)2 L = (1/2) (1/S32)2
G = (1/53)2 + (1/53)2 - (2/51)% M = (1/2) (1/S33)?
H= (1/S3)% + (1/51)% ~ (1/52)% N = (2/2) (1/S31)?
The constants F, G, H, L, M and N are parameters

characterizing the anisotropy of the material.

This is very similar to the criterion first proposed
by Huber in 1504 and later by von Mises & Hencky [63], of
which Hill's theory is an extension. The former is
obtained by equating the strain energy per unit volume due
to dilatational stresses to the maximum distortion energy

in simple tension. For orthotropic materials, the effects
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of distortion and dilatation cannot be separated,
therefore the above equation is not related to the energy
of distortion. The theery has been used to analyze the
strength characteristics of composite materials [64] with
the assumptions that the yield strength and ultimate
strength are identical. Primarily, the Tsai-Hill failure
theory possesses several advantages over the Rankine
theory. The variation of strength is a continuous
function of the ply orientation angle. In particular, the
theory nmodels the interaction between the various

principal failure strengths.

Unfortunately, as with the Rankine theory, the Tsai-
Hill theory still suffers from inadequacies in the
description of experimental data. In particular, the
theory predicts the same failure stress for tension as for
compression. This makes it necessary to use two separate
yield conditions in order to realistically characterize
the tensile and compressive strengths. Hoffman [65] has
shown that if odd functions of ¢33, 032 and ¢33 are
included, it is possible to use a single yield criterion.

The resulting modification using linear terms gives

Hy (022‘033)2 + Hy (033-011)° + Hj3 (611-022)2

2

+ Hy 0972 + Hg 0222 + Hg 0332 (2.5.03)

+ Hy 7122 + Hg 1232 + Hg 1372 =1
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Hy = (1/S3¢ Szr) + (1/S3¢ S3T) = (1/Sic SiT)
Hp = (1/S3¢c S3t) + (1/S3¢ Syt) - (1/S2¢ S27)

Hy = (1/S3¢ Sit) + (1/Sac Sa27p) — (1/S3¢ S3T)

Hg = (1/S17) — (1/S10) By = (11312)2
Hg = (1/Sa7) - (1/Sa¢) Hg = (1/S23)2
Hg = (1/S37) - (1/S3c) Hg = (1/S31}2

The predictions of this theory agree reasonably well with
experimental results. Inspite of this, it must be pointed
out that this is only a convenient empirical relation
between experimental data. The physical significance of

the modifications are not yet fully understood.

The correlation between theory and experiment can be
improved by increasing the number of terms in the
prediction equation. The use of strength tensors has been

suggested by Gol'denblat & Kopnov [66]. They used

(Fi 01)% + (Fij 0309)8 + (Fijx ozo50007 =1 (2.5.04)
where
F3 = Strength tensor of rank two

Fig Strength tensor of rank four

Fijk = Strength tensor of rank six
and investigated the special case of a=1, B=% and TI'=-—w.

However the use of a sixth rank tensor results in the

number of components in the criteria running into the
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hundreds. Furthermore, the criteria is not practical
since the failure surface is open ended. To overcome this
difficulty, Tsai & Wu [67] have postulated a failure
surface in stress space defined by 6 linear and

21 quadratic terms. The surface is given by
Fj 0j + Fjj 0309 = 1 (2.5.05)

The linear terms represent the tensile and compressive
failure strengths, and may be obtained through the use of
a simple tension test. The quadratic terms represent the
interaction between the normal stresses, and may be

obtained from the use of a biaxial tension test.

The general character of a tensor failure theory
lends itself to specific advantages when compared to the
theories mentioned above. Tensor theories are invariant
under rotation or redefinition of coordinates. The
symmetry properties of these theories are similar to those
of the laminate stiffness and compliance matrices, and
they transform according to known tensor transformation

laws. Thus employment of these theories is unambiguous.

The best failure criteria to use depends to a large
extent upon the material it is applied to and the
application. For instance, the Tsai-Hill failure
criterion seems to be the most accurate for E-Glass/Epoxy

composites. The biaxial interaction term has been
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measured by Pipes & Cole [68)] in various off-axis tests
with a Boron/Epoxy composite. Although determination of
this term was not precise, there was nevertheless
excellent agreement between the Tsai-Wu tensor theory and
experimental data. In addition, inelastic behavior of the
lamina invalidates the prediction of the stress field used
to evaluate the above failure criteria. In such cases
criteria based upon strains rather than stresses may be
utilized [69). Also, design allowables may be expressed
as limits on strains or stresses, so a single criteria is
not always possible. However if the analysis is limited
to elastic behavior at the lamina 1level, non-linear
behavior at the laminate level is still a possibility.
Therefore the systematic application of the criteria
discussed above should suffice to describe the overall

structural behavior.

2.6 Damage Mechanics

The general practice in laminate analysis is to use
what is known as a first ply failure criterion [70]). The
stresses in each ply of a laminate are computed from the
strains, and a determination made as to whether or not the
ply failure strengths have been exceeded. Lamina failure
is categorized in terms of through thickness cracks that

would cause failure if the material were not an integral
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part of the laminate. If failure of the 1lamina has
occurred, the material contribution of that ply to the
renainder of +the Jlaminate is eliminated, and the strains

recomputed from the modified laminate properties.

The problem with this approach from an engineering
point of view is that it is overly conservative. Single
laminae do not fail catastrophically after the onset of
local damage since the load can be transferred over the
fiber breaks through the binder material. Furthermore for
a general structurz in which the lamina stresses are a
function of the position, the first ply failure cricerion
would lead to elimination of the contribution of areas of
the laminate that are loaded to below the faillure strength
of the materijal. A more realistic approach is to model
the damage caused by overloading, and to modify the
material properties only in the region affected by the

overload.

The methodology behind damage mechanics involves the
introduction of new damage variables that take into
account the degradation processes occurring in the
material. These processes are generally related to some
form of defect generation on a sufficiently small scale to
be individually insignificant. These damage variables are
then used at the macroscopic level in the prediction of

material failure. This is not the same as the well known
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study of fracture mechanics, whereby a single
geometrically defined defect is wused to gauge the
structural integrity of a material. In contrast, damage
mechanics starts with a wvirgin material free of defects
and follows it through to the damaged state at which point

fracture mechanics takes over.

The damage parameter Dp may be defined in relation to
some measurable macroscopic quantity ¢ that is

representative of the damage process by

Dp = (°¢-¢) / (°¢-"¢) (2-6.01)
where
°p = Value of representative quantity for virgin

material

B Value of representative quantity for failed

material
The principles of damage mechanics were first applied
to model high temperature tertiary creep in metals by
Kachanov [71]. The nonlinear behavior just before failure

was modelled by using an effective applied stress given by

Oeff = [6/(1-Dp)1l (2.6.02)
where
¢ = Applied stress

Dy = Damage parameter
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which was then substituted into the usual creep law to

give
€ = Kep [0/(1-Dy) 19 (2.6.03)

where Kop and g are mnaterial constants, g being non-

dimensional.

The damage parameter represents a steadily increasing
destroyed fraction of material, with catastrophic failure
at the point where Dy is equal to unity. The change in Dp

was represented by an evolution law of the form

(8Dp/6t) = Dep [0/ (1-Dp) 1% (2.6.04)

where Dep is a material constant. The material constants
may be evaluated by a creep test to experimentally
determine the time to failure as a function of the applied
load. However, this has limited utility for most fiber

composite materials.

Damage resulting from the creation and propagation of
microcracks may be modelled by an increase in the surface
energy of a material. This can be related to a reduction

in the material stiffness by
o = E°(1-Dp)e (2.6.05)

The elastic strain (W) and complementary (W*) energies are

then given by
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W = | % €2 [E°(1-Dp)]} dvol
(2.6.06)

W = | % 02/[E°(1-Dy)] dVol

The energy expended during damage growth is then given by

Wag = © (8€/8t) — (§W/8¢)
(2.6.07)
= % E°e?(6Dp/6t)
In order to follow the damage process and be able to
predict the degradation of material behavior, a damage
evolution law is required that will follow the damage
process under a given load history. Both of the examples
cited above involve a time dependent evolution law for the
damage parameter. The time rate of change of damage
growth may be modelled as a function of the applied stress

and the current level of damage, giving

(6Dp/6t) = Fpi(c,Dp) (2.6.08)

Sidoroff ([72] has suggested two other types of evolution
laws for the damage variable. In the case where the rate

of damage growth is strain dependent, we may use

(6Dp/8€) = Fpa(0,Dp) (2.6.09)
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In the case of fatigue 1loading, it is more convenient to
nodel the evolution of the damage parameter as a function

of the number of stress reversals, thus

(§Dp/8N) = Fp3(Omax:Omins Do) (2.6.10)

Superposition of the above three equations then results in

a general damage evolution law of the form

Dp = Fpy dt + Fpz de + Fp3 &N (2.6.11)

The discussion so far has been based upon the implied
assumption that the damage, however caused, 1is isotropic
in nature. Unfortunately defect patterns in fiber
composites can be highly directional, sco isotropic damage
is not a reasconable assumption. Finally, there is mnore
than one failure mechanism associated with fiber
composites, and representation of these by a single damage

variable is not realistic.

Due to these shortcomings, the application of damage
mechanics to structural analysis requires an extension of
the above approach to three dimensions. To this end the
use of damage tensors has been suggested by a nunmber of
authors [73,74]. These tensors have been dJefined by

statistical descriptions of the distribution and shape of
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the defects, however they have not met with much success.

Furthermore, thzy do not have any precise physical

meaning.

Kraijcinovic [75] has used a continuum damage approach
to model the effect of matrix cracking using three
independent damage parameters representing crack
nucleation and growth due to longitudinal, transverse and

shear loading. However the model is restricted to inplane

behavior.

What is needed is a description of the damage
parameter in terms of the failure modes of a fiber
composite. The variables describing its evolution should
include the effects of mircovoid coalescence, matrix
cracking, fiber breakage, interfacial debonding and

interlaminar delamination.

2.7 Energy Absorption

Studies of the energy absorption characteristics of
materials is an important consideration in impact studies.
Considerable effort has been expended in this area, and
some data published in the literature is concerned with
experimental investigations of various fiber/matrix

combinations. Unfortunately the bulk of this data remains
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classified since the investigations were performed under

defence department contracts.

Most of the published data relates the energy
absorption to some form of impact parameter such as the
peak force or the maximum deflection. However, the
calculation of the actual energy absorbed by the impact is
a difficult task, due mainly to the various failure
mechanisms encountered. These include, but are not
limited to microveid formation and coalescence,
fiber/matrix debonding, fiber pullout and interlaminar

delamination.

Microvoid formation and coalescence mpay be mnodelled
by a modified Griffith [76] approach, whereby material
failure is treated as resulting in the formation of a
strain free sphere. The strain energy released is equated

to the energy of the new surfaces created by the void.

¢ ¢ dvol = nclr (2.7.01)

Vol
where
c = Diameter of void

I' = Surface enerqgy

Fiber/matrix debonding results from shear forces that

are generated at the interface as a result of the
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differential moduli between the two constituents of the
lamina. Debonding occurs if this shear force exceeds the
interfacial bond strength. The energy absorption depends
upon the length of the debond, the fiber diameter and the
interfacial bond strength. The critical debonded 1length

of fiber can be defined as

Lap = [ogre/27] (2.7.02)

where

of = Failure strength of fiber

re = Radius of fiber

T

Applied shear stress at interface

Since the fiber failure strength can have a statistical
distribution about some mean value [77], the critical
pullout length will also have a similar distribution. The
energy absorbed in the formation of the fiber debond is

then given by

Ugp = 27Lgp ( Yplm + Tflf ) (2.7.03)
where
ry = Radius of matrix tunnel

r¢ = Radius of fiber

)
H
I

Surface energy of matrix

Tf = Surface energy of fiber
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Different expressions for the fiber debonding energy have
been given by Beaumont {78], Phillips & Tetelman [79] and

Wells [80] .

Oonce the fibers have broken, stress transfer is still
possible due to friction between the fiber and matrix due
to differential thermal expansion of the two mnaterials.
The differential compressive stresses are a direct result
of the fabrication process. The phenomenon of crack
bridging occurs if the matrix crack propagates past the
unbroken fibers, resulting in the fibers beilng literally

pulled out of the binder.

Energy is dissipated as heat as the fibers displace
relative to the binder due to the work done against the

interfacial shear stress. This pullout energy is given by
Upo = 27mrglan’ (2.7.04)

The main drawback of the above expressions is that
they involve knowledge of the material surface energy,
which is generally not known. Though Griffith showed how
to obtain this for glass fibers, the procedure is not

simple for fibers of advanced composite materials.

There are two experimental methods whereby enerxgy
absorption is evaluated for laminated fiber composites.

The method used by various military establishments is to
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fire a projectile of a given mass at a flat target and
measure what is known as the ballistic limit (V50) of the
material. This is the velocity at which 50% of the
projectiles penetrate the target. Commercial research
establishments use a much cheaper ball drop or Charpy test
in which the energy absorption is related to the impact
load and the maximum plate deflection. These methods are
not used so much to measure the absorbed energy as they
are to rank the materials tested in terms of their energy

absorption potential.

As mentioned above, little data is available on the
energy absorption characteristics of laminated fiber
composites. What data is available indicates that the
results depend to a 1large extent upon the lab that
performs the testing. Wardle [81] has indicated that
plain weave fabrics absorb more energy than those with
more complex weave styles, whereas Winkle & Adams [82]
indicate that satin weave fabrics are better energy
absorbers. Harding & Welsh [83] have indicated that
fracture strengths and failure modes are unaffected by
strain rates, and Hull [84) has indicated that the energy
absorption characteristics are alse not strain rate
dependent. In contrast, Ohlson [85] has found that the
peak lcad and flexural modulus increased with increasing

loading rate up to a maximum, and decreased thereafter.
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None of the methods mentioned above are able to
provide any insight into the damage process or the failure
progression. Furthermore, they are only useful as a
method of ranking the various lamination sequences. Both
tests require the use of a large sample size for a
reliable result, the wmanufacturing costs of which
contributes significantly to the overall cost of the test.
For specimens involving thicknesses Iarger than about
% in (0.635 cm), complications arise in the cure cycle due
to heat and mass transfer problems in the center of the
laminate. It would be advantageocus to have a method
whereby such rankings could be done analytically to reduce

the sample size required for the experimental tests.

2.8 Summary

The analysis of laminated fiber composites has
largely been handled using laminated plate theory, since
this provides an adequate description of the behaviour of
the laminate for most applications. However these
theories still have their limitations, and several methods
have been proposed to overcome them. These have all
involved increasingly higher order truncations in the
functions used to describe the mnidplane displacements.

Such methods allow a better solution to the zero surface
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shear stress conundrum, but do not address the problem of

the edge effects responsible for delamination behaviour.

The application of the Finite Element Method to
laminated fiber composites has generally used a form of
plate element tc represent the laminate. However these
elements are incapable of providing an insight into some
of the fa’lure mechanisms that arise due to the nature of
their formulation. Standard 3D elements are available
that can be used, however they are usually limited to a
single ply representation through their thicknesses.
Incorporation of a multi-ply element will increase the

utility of a Finite Element analysis.

In the majority of cases, the ply properties used in
the laminate analysis are obtained from experimental data,
thereby limiting the utilization of these materials to
lamina for which properties are already known. However
various techniques exist which allow the use of a design
philosophy in which the final laminated structure can be
created from the basic material properties of the
constituents themselves, rather than from the more limited
knowledge of the ply properties. Though rarely
implemented in classical plate theory, the application of
these technigques to the Finite Element Method is

straightforward.
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Several laminate failure criteria are available to
determine the overall strength of laminates.
Unfortunately their wuse is generally of an overiy
conservative nature, in that failure of a single point is
taken to constitute catastrophic failure of the laminate.
There is generally no account taken of the significant
residual load carrying capability after initial failure.
The application of a damage variable analysis to these
materials has been limited. However the use of the
currently available failure criteria, in conjunction with
a multi-ply element, allows the use of a more realistic

approach to failure.

studies of the energy absorption characteristics for
laminated fiber composites have been undertaken by various
investigators, however few of the experimental results
have been conclusive. Analytical studies of energy
absorption have dealt mainly with the effects of overloads
on single fibers embedded in @& binder. Various
expressions have been proposed to evaluate the energy
absorption, however they all require the measurement of a
property that is not readily accomplished. The Finite
Element Method allows failure to be tracked at the
integration point level within an element. This in turn
allows a simple evaluation of the energy absorption as a

function of damage progression.



3.0 Elenment Stiffness

3.1 Strain Energy

The finite element solution to an engineering problem
represents the behaviour of a structure by discretization
into a number of subregions over which simple displacement
assumptions may be used. Each subregion is bounded by a
set of nodes. The usual form of the element stiffness
matrix follows from the displacement based formulation of
the finite element equilibrium equations [86]. The

elastic strain energy in a loaded element is given by

U =% | 055 €j§ aVol (3.1.01)

where the integration is performed over the volume of the
element. The stresses and strains in an element are

related through Hook's law, which may be written as

{oij} = [D] {eij} (3.1.02)

The strains within an element are defined in terms of

the assumed displacements as

{€jj} = [L] {u} (3.1.03;

59
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where L. is a suitable 1linear operator. However the
displacements themselves are usually defined in terms of a
set of basis functions valid only within the element. it

is customary to write
X
{u} = £ Nj {uj} (3.1.04)

where the uj represent constant displacements at discrete
points or nodes on the element, and the Nj represent the
shape functions associated with that node. Therefore the

strains may be written as

{ei5} = [B] {ui} (3.1.05)

Since the uj are constants, they may be taken outside
of the integral sign. The strain energy expression then

becomes

Ue = % {uj}t (81T (D] [B] dvol | {uj} (3.1.06)

It is readily verified that the term in the square

brackets represents the element stiffress matrix.
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3.2 Shape Functions

In +the usual elasticity approach to solving
engineering problems an unknown stress function is assumed
over the region of interest, and substituted into the
compatibility equations. Application of the Dboundary
conditions then determines the necessary constants that
allow a correct representation of the solution. The
Finite Element Method represents the same function in a
piecewise manner by a set of shape functions valid at
discrete intervals within the domain. These functions are
used in conjunction with constant values at given points
in the subdomain to interpolate +the unknown function

within the element.

There is no mathematical restriction on the type of
basis functions used for the interpolation of the unknown.
However it has been customary to use polynomial
interpolation due to the ease with which these functions
may be developed and differentiated. The 1latter is
especially helpful when computing the element strains.
Such functions have been used to develop a large number of

elements for use in various engineering problems [87].

The approximation of the unknown function may be
accomplished through the use of either Lagrange or
Hermitian interpolation. In the former a polynomial is

sought that passes through a given set of peints within
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the domain while satisfying the values at those points.
In the 1latter the polynomial must also satisfy the
derivative values at those points. For both cases the

general form of the polynomial is given by

n

N; = £ .7
17 i=0 j=0

[ (x-x3) [/ (xi-xj) ] uj (3.2.02)
where the symbol 7 denotes a product of the indicated
binomials over the indicated range, and i & j are not the

sanme.

Due to the nature of the shape functions, they may be
used to interpolate many other variables within the
element. They may be used not only in the evaluation of
the stiffness matrix, but also in the representation of
the applied 1loading, the evaluation of the mass and
damping matrices for dynamic problems, and the stability
matrix for buckling problems. It is therefore useful to
isolate the evaluation of these shape functions from the

requirements of the problem.

To this end these functions are written in a set of
natural coordinates that range from -1 to 1. Such
coordinates represent a mapping of the physical
coordinates into a nondimensionalized system of parent
coordinates. The element stiffness matrix may be easily

evaluated in this parent (r,s,t) coordinate system, and
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(x,y,2) coordinate systen

through the use of an appropriate transformation.

3.3 Strain-Displacement Matrix

The strains in an element are defined in terms of the

displacements within the element through the use of a

suitable operator.

This operator is referred to as

Green's 3D strain tensor to second order, and is given by

{r] =

(676x)+X(6/6%)2
%(6/6y)2
%(6/52)°

(5/6Y)+(8/8%) (8/8Y)
(6/8y) (8/62)

(§/62)+(&6/62) (§/6%)

X (85/6x)°2

(§/6y)+5(6/8y)2

x(5/62)°

(6/6x)+(8/6%) (8/6Y)
(6/62)+(8/8y) (8/62)

(8/82) (6/6x)

(3.3.01)
X(5/6x)2 ]
X (5/8y)>

(6/62)+%(5/62)°2

(8/6x) (§/56Y)
(8§/8y)+(8/8y) (8/62)
(§/6%)+(5762) (6/6%)
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In the case of a small deflection analysis it is not
necessary to use all of the terms in [L] since the
derivatives of the u and v displacements with respect to
the x, y and z directions are small in comparison to the

thickness.

3.4 Element Families

The form of the strain-displacerment matrix will
depend upon the tvpe of element utilized to represent the
domain of the problem. As described in the literature
review, extensive use has been made of plate element
formulations in the application of the Finite rlement
method to problems invelving laminated fiber composites.
Many of these do not include the out-of-plane shearing
stresses, and rarely do they include the out of plane
normal stress components that may be responsible for edge

delamination failures.

Beginning with the general displacement assumptions
of Basset and truncating the inplane displacements to
third order, the midplane displacement assumptions are

given by

u=u°+zex+22@x+z3nx

5 5 (3.4.01)

= yo
v V+zey+z Qy-t-z ﬂy
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where
8y = (6wW°/6y) 8y = (6W°2/8x2) R = (6w°3765°)
8y = (§w°/by) &y = (6wo2/6y2) Ry = (swo3/64%)

The symbol & indicates partial derivatives of the
associated functions with respect to the indicated
variable. The truncation to third order is the minimun
required to satisfy the zero shear stress requirement at
the top and bottom surfaces of the laminate. The same
expressions may be used to represent +he through thickness
displacement. However the transverse shear strains due to
the inplane displacements should be of the same order in 2
as those determined by the transverse displacement. It is
therefore reasonable to assume a second order truncation

for w, giving

W= we +z 8, +2° 8, (3.4.02)
where

8, = (&§w°/é&z)

8, = (§w°2/6,°)

The boundary conditions on the surface shears
requires that both &y and &y vanish at 2z=*xh, therefore

the displacement assumptions become
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w = u® + oz [ 8, - (4/3)(z/n)? [ 8y + (6w°/8X) }

veverz | ey = @/3Em? |

w=w?+ 2z 8, + 2?2 2

Putting these equations

and using the constitutive

orthotropic laxnina then gives

+ (h/2)% (88,/8x) ]

(3.4.02)

Oy + (8w°/4Y) ]

+ (n/2)2 (685/6Y) ]

into Green's strain tensor

relations for a generally

Nex1 Agx6 Bexe Dexs Eex6
Mex1 Bex6 Dexs Eexe Fexs
Pex1 | = | Pex6 Eexe Fexs Gexs
Rex1 Egx6 Fexs Sexe Hexs

i Sex1 | Fexe Gexe Hexs Iexs

where

(01 =t %3y OT3xz esxa 'Taxa
2e331 2T3x1 Jeax1 “Taxa

{a,B,D,E,F,G,K,I,J71T =

t

Qij (1, z,zz,z

Fexe
Gexe
Hgxs [ U ] (3.4.04)
I6x6

Jexe6

4
€3x1 4I‘3x1 3T

3'34

,25,25,27,28] dz
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The problem with using this plate element formulation
is that each node of the element will require at least
30 independent degrees of freedom. The modelling of fiber
composite structures using this element will quickly lead
to practical computational difficulties due to the
excessive core memory regquirements. Furthermore, the use
of Thigher order displacement assumptions in the
development of these elements does not give significantly
better results when compared to CPLA. Due to the above,
this element formulation does not offer the appropriate

requirements for a cost effective analysis.

The most general form of element family is the solid,
of which the 4-node Tetrahedron is the simplest. The
displacement functions for this element are linear,
resulting in a constant state of strain throughout the
element volume. Unfortunately this element is cumbersome
to use in the modelling of laminated plates. Other
popular elements suited to this task are the 8-node and
20-node Cuboids. The former uses linear displacenment
assumptions whereas the latter uses displacement
assumptions that are quadratic. Writing the displacements
in terms of the shape functions then gives the strain-

displacement matrix as

(B] = (L] {N}T {uj} (3.4.05)
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Clearly [B] consists of first order derivatives of
the shape functions with respect to the global
coordinates. The matrix may be written in partitioned
form, with the number of partitions egual to the number of
nodes used to define the elenment. If deflections are
assumed to be small, it is customary to introduce the
von Kirmin small deflection assumptions. These imply that
the derivatives of u & v with respect to x, y & z are

small. For the i'th node, a typical partition is given by

[ (sN/6%) 0 0 ]
0 (6N/&y) 0
0 0 (5N/82)
(Bl = (3.4.06)
(58/8Y) (6N/6x%) 0
0 (6N/62) (6R/6Y)
L (6N/82) 0 (6N/6x) .
41

For the case of an 8-node cubeid element, this would yield
a constant variation for €334 in the i-direction, and a
linear variation perpendicular to it. This is similar to
what is obtained from plate analysis, which gives a linear
variation of strain through the laminate thickness and a
constant strain in the 1laminate plane. The use of a
20-node cuboid element will yield a linear variation of

strain in the laminate plane since the shape functions
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will be quadratic, and a parabolic variation 1in the

thickness and width directions.

3.5 Jacobian Transformation

The derivatives of the shape functions are readily
given in terms of the parent coordinates, it is therefore
necessary to transform these into the global coordinate
system in order to obtain the global element stiffness
matrix. In terms of the parent rst~coordinate system, the
shape function dexrivatives in the transformed xyz-

coordinate system are given by

(6N/ &%) (8N/8x)
(6N78y) | = 13171 | (8N/8s) (3.5.01)
(6N/82) (SN/6St)

where [J] is known as the Jacobian operator. This

operator relates the transformed coordinate derivatives to
the parent coordinate derivatives, and is a measure of the

amount of distortion between the two coordinate systems.

Since the displacement interpolations are given by
the sum of the products of the shape functions and their
respective nodal displacements, the Jacoblan operator 1S

given by
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B ensm g xg £, (887605 vy
n n

(J] = iEO(GN/SS)i X3 igo (6N/és)i ¥Yi
n n
2o (6N/8E) 1 X4 iZp (SN/6%)5 ¥i

(3.5.02)

n
Zo (6N/61); 24

n
iEO (6N/é6s)1 234

n
sZo (8N/68)5 23

The evaluation of the [B] matrix is done in the
natural coordinates of the bagis functions, so the
integration of the element stiffness matrix extends over
the parent volunme. Therefore the differential wvolunme
element must be written in terms of the parent
coordinates. In terms of these coordinates, the volume

integration is given by

avel = det[J] dr ds dt (3.5.03)
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where det{J] refers to the determinant of the Jacobian

matrix.

3.6 Material Property Matrix

The material property matrix (D] is based upon the
engineering constants of the material comprising the
element. These elastic constants are determined by
performing & series of mechanical tests (88]. In
general, these tests involve a measurement of the
deformation that a material undergoes when subjected to a
known force. This allows the compliance matrix {C] to be

readily determined.

The most general form of the compliance matrix for an
anisotropic material contains 36 elastic constants [89].
However the deformations for a fiber composite are usually
linearly elastic to failure. It is therefore possible to
write a strain energy potential function which can be used
to show that the compliance matrix must be symmetric [90],
thus reducing the number of independent elastic constants

teo 21.

For the case of orthotropic materials, there are two
orthogonal planes of material property symmetry relative
to a third mutually orthogonal plane. There is no

interaction between the normal stresses and the shearing



strains,
strains.

constants to nine.
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or between the shearing stresses and the normal

This reduces the number of independent elastic

(1/831)
—(e21/E22)
—-(K31/E33)

0

o

Thus

—{pr12/E11)

(1/E22)

—(#32/E33)
0

0

(1/G312)
0

—-(#13/E11)
=(B23/E22)
(1/E33)

0

o

0

(1/G23)

Elastic modulus in the i-direction.

Shear modulus in the ij-plane.

(3.6.01)

Poisson's ratio for strain in the j-direction when

stressed in the i-direction.
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The material property matrix relates the strains in a

material to the stresses, and so is the algebraic inverse

of the compliance matrix.

constants,

given by
Dyjix = {
Dz = [ (
Dyz = [ (
D1 = [ (
D22 = [
Doz = [ (
D3y = [ (
D32 = [ (
D33 = [
Dggq = Gi2
Dgs = G23
Dge = G31

where

the non-zero elements of the

K21
K31
k12
(2
K32
Hi3

k23
(1

E23
K31
K21
B32
B3
B12
#12
E21

$12

B32)
B23)
k32)
B23)
B31)
#31)
K23)
B13)

E£21)

In terms of the engineering

—~ o~ e~
7
[ 8]
48]
t1
ta)
w
v}
e

[D] matrix are

(3.6.02)

Dp = ( 1 - py2 K21 = K23 B32 — B31 B13 — 2 #13 H32 821 )

3.7 Lamina Orientation

(E11 E22 Ea3z)

Laminated fiber composite structures are usually

constructed by stacking several unidirectional layers of

laminae in a specified sequence of orientations with
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respect to a reference system of coordinates. Therefore,
in order to perform an engineering analysis the principal
direction of material orthotropy must be referenced to a

common geometric axis.

From elementary mechanics of materials, the
transformation equations required to express the material
stresses in a coordinate system inclined to the material

axis is given by
{6} = [T]T (D] [T] {€} (3.7.01)

where ([T] is the transformation matrix relating the
strains in the ply principal directions to those in the
global reference axis. For the three dimensional case
this matrix is given by a fourth order ‘tensor
transformation in terms of the direction cosines of the
unit vectors in the respective coordinate systems [91].
since the 1laminae rotations are confined to the

x-y plane [92], the transformation matrix simplifies to

Cos?e sin?e 0
sinZe Cos?e 0
0 0 1
[T] = . .
Cos8 Sine -Cos8 Sino 0
0 0 0
0 0 0
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~Sin2o 0 ]
sSin2oe 0 0
0 0 0
{3.7.02)
Cos286 o 0
o} Cose siné
0 -Sin® Coso

where 8 is the counter clockwise inplane rotation angle
from the global reference axis to the material reference

axis.

3.8 Numerical Integration

The evaluation of the element stiffness matrix
involves integration of a function over the domain
represented by the element. From the above discussion,

this integral is given by

(k1 = | 31T (11T (D) (T] [B] det[J] dr ds dt (3.8.01)

An explicit evaluation of this integral is generally
impractical. Exact solutions of this equation are
obtainable in the parent coordinate system for only the
sinplest of these expressions. In general, cases may

arise where such closed form integration is not possible.
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In practice the integrals are evaluated numerically using
Gauss quadrature [93], the integration order used
generally being dependent upon the degree of the
interpolating polynomials used for the element shape

functions and the particular matrix to be constructed.

The Gauss technigue substitutes the integration by a
summation over the domain of the product of a substitute
function evaluated at discrete points within the domain
and a weighting factor. The number of points at which the
function is evaluated is not necessarily the same in all
three dimensions of the domain. If W; represents the
weighting factor for a particular peint, then the
stiffness matrix is evaluated as a triple summation over
the domain given by

t

S r
(X) =&y 221 igl [ F(r,s,t) Wr ¥s Wt ] (3.8.02)

where
gpr = Number of integration points in r-direction
gps = Number of integration points in s-direction

Number of integration points in t-direction

9

F(r,s,t) = [BIT (71T (D] [T) [B] det[J)

The number of operations required to evaluate this
integral is equal to di where Np is the integration order

and 4 corresponds to the number of dimensions of the
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element. It is therefore essential to choose as small a
value of N, as is practical. Zienkiewicz [94] suggests
the minimum requirement to be that which would integrate

the determinant of the Jacobian operator accurately.

The stiffness matrix for each element of the domain
is easily evaluated using this technique by substitution

of the appropriate matrices into the above equation.

3.9 Composite Element

For homogeneous isotropic materials the ([D] matrix is
a constant throughout the element volune. Therefore the
evaluation of this matrix is usually performed only once.
In the analysis of fiber composite laminates the variation
in the material properties through the element domain is
done by the assignment of a different (D] matrix for each
individual element. Theoretically one can nodel fiber
composite structures by breaking up each ply into the
usual finite element mesh, with the thickness of each

element representing the thickness of each individual ply.

Practically, this leads to numerical difficulties due
to the 1limitation in the element aspect ratio. The
limitation springs from the resulting relative magnitudes
sf the terms in the element stiffness matrix. Large

differences in these magnitudes tend to create problems in
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accuracy due to ill-conditioning [95]. The magnitudes of
these differences is greatly dependent upon the aspect

ratios of the elements used to model the problem.

For the sake of argument, we may set 2 maximum
permitted aspect ratio of 1:20. Since the usual thickness
of a fiber composite Ply is more or less
0-005 inches (0-013 cm), this limits the physical
dimensions of an element to 0-10 inches (0-254 cm) square.
A typical problem such as a one square foot plate with
80 plies through the thickness would then require well
over a million elements for a moderately accurate
solution. If an 8-node cuboid element is employed in the
modelling, the problenm would require almost
three and a half million degrees of freedom. Such a large
number of degrees of freedom will tax the core memory
requirements of todays supercomputers, and overload the
capabilities of current machines. Even if this were not a
problem, the large number of degrees of freedom results in

an excessive cost in terms of computer time.

One obvious way to overcome this difficulty is to use
the method of substructuring [96] in order to reduce the
total number of degrees of freedom. The global stiffness
matrix is assembled as usual, and then partitioned into
four submatrices. These matrices are an external boundary

region ([Keel), another representing a region within this
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boundary ([X3jil). and two others representing the
connection between them ({Kej] & [Kjel])- Thus
Kee FKei Ue Re]
= : (3.9.01)
Kie Kij Uj Rj J

The internal degrees of freedom are then condensed out,
leaving behind a representation of the model in terms of
jts ove—all stiffness and equivalent loads (Fig 1).
s = ..—1 R: - K3 U
Ui =Kiji; - ( Ry ie Ue )
1 - (3.9.02)

{ Kee — Kei Kii ~ Kie ) Ue = Re —Kej Kij = Ri
The condensed set of eguations is then scived for the
external degrees of freedom, and those results used to
obtain the solution in the interior of the structure. In
the case of the problem described above, the resulting
variable count is approximately two orders of magnitude

less than the case without substructuring.

The above procedure is identical teo performing Gauss
elimination on the internal degrees of freedcm and results
in a large savings of computer time if repeated solutions
are required for the same structure but with different
boundary loading. This is not possible if failure occurs
at any location in the structure, since the global

stiffness matrix must be modified. Any change in the load
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response due to material failure requires a reformation of
the substructures. The disadvantage is that the unknown
function used in the derivation of the finite element
equilibrium equations is now represented by a series of

piecewise approximations inside the region of interest.

In the case of laminated fiber composite analysis,
unless the deflections are known to lie within the elastic
1imit of the material, it is necessary to evaluate the
stresses and strains in the interior region to determine
whether or not failure has occurred. This requires the
solution of the displacements in the interior of the
structure. Since sush a priori knowledge cannot be

assumed, this method offers no advantages.

It is not possible to use the substructure method at
the element level in order to overcome the requirement of
reassembly due to material failure. It is feasible to
create a super-element from a stack of elements, with each
element representing a single ply through the thickness.
However the assembly of the structure from this super-
element will not yield accurate results since interelement

displacement continuity will not be satisfied.

An alternative approach is to represent several plies
of the structure within one element (Fig 2). If, for

example, ten plies were represented through the element
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thickness, the above mentioned problem would require a
little over one thousand elements and about
four thousand five hundred degrees of freedom (2 reduction
of over 99%). For the case of a 20-node cuboid element
the displacement would Dbe represented by a single
quadratic function rather than several quadratics through

+he thickness.

In the analysis of fiber composite materials, there
js a tacit assumption that the material of which any one
given ply is composed is the same from one peint to
another. This implies that the material properties are
the same within the ply. It is therefore possible to
break the integral at the ply boundaries, and assume a
constant [D]} matrix within each ply. The overall
[D] matrix may be computed by summing the contributions of

each ply-.

Unfortunately the variation of the material
properties within the element need not be caused only by
the differences in the ply constituents, their relative
volume fractions and the ply orientations with respect to
the global reference axis, but also by local material
failures. Since the stresses within an element are not
necessarily constant throughout its constituent ply
volumes, material at different locations will fail at

different values of the applied load. This is important
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in the prediction of the displacenments of the overall
structure. Therefore the [D] matrix must be computed at

each integration point within any one given ply-

Due to the non-constant nature of the material
property matrix throughout the element volume, it is no
longer possible to perform the volume integration using a
pinimum number of Gauss points. Rather, the integration
must be performed using several points through the
thickness. The procedure adopted is to divide the element
thickness into a number of sections equal to the number of
plies through the element thickness, with the ply

boundaries delineating each section.

The general expression for the element stiffness

matrix then becomes

1= B [ BB (s Rr¥eBel | (9.00
where n is the number of plies through the element
thickness. The stiffness matrix is evaluated over each
ply volume, and the results summed over the element
volume. Since Gauss quadrature is used through the ply
thickness, the integration points and weights must be
corrected for <the nonstandard 1limits in the thickness

direction. If the upper and lower limits of integration
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are denoted by L,; and L3, the new sampiing point (Sp) and

weight (Sy) are given by

Sp = % -L3) Sp°® + % (L1-Ixy)

P (Iy-L1) Sp 2 17In (3.9.04)
Sw = % (Iy-L1) Sw°

where

Sp°® = Sampling point based on interval of -1 to 1.

Sampling weight based on interval of -1 to 1.

o

The values of the sampling points and weights based upon
the parent interval of -1 to 1l have been computed and

published in the open literature [971.

The modified integration procedure neatly takes care
of several problems. It not only allows a smooth
variation of the material properties within the ply
volume, but also allows a smooth variation of the fiber
orientation. This is useful in studies in which the fiber
orientation is a function of the position, as in the case
of injection molding. Its is also useful in the analysis
of thick laminates for which the properties at the center
of the thickness may be significantly different from those

near the outer surfaces due to fabrication anomalies.



4.0 Damage Analysis

4.1 Introduction

The design of a structuve in terms of its load
carrying capability is determined by comparing the results
of an analysis to some form of failure criterion. The
pasis of the failure criterion is dependent upon the
application, and may be perceived as the separation of
critical structural components. However, in general, the
failure criterion is usually based upon maximum allowable
strains or stresses for the material of which the
structure is composed. The allowables represent the limit

of elasticity under any possible combination of loads.

Unlike common engineering materials, fiber composites
cannot be classified in terms of any one particular
failure criterion. It has been common practice to set the
laminate failure point in terms of the failure of the
first ply for which the load exceeds the capacity of the
laminate. In this case the strains or stresses are
computed in the lamina principal material axis and
substituted into one of the various failure criteria
described in the literature review. As mentipned before,
this approach is overly conservative, and takes no account

of the localized failure mechanisms.

84
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The mechanical modelling for fiber composites as well
as other materials is much more developed towards
rheological behaviour than towards failure prediction.
among the questions that must be answered in the
prediction of material behavior is that of how to model
the damage caused by exceeding the various material
strengths of a structure under load. The determination of
the onset of nonlinearity and degradation of material
properties is much easier to determine for a
unidirectional test specimen than it is for some general
laminate. This is due to the nonlinear behaviour of
general laminate configurations from the onset of loading.
Furthermore, it would be uneconomical to establish
allowable strengths for all possible orientations of

laminates that may be utilized.

Tt is much simpler tc establish strength allowables
for each lamina based upon its constituents, their
respective weight fractions and the void volume fraction.
The resulting strains from the finite element analysis can
then be transformed to the laminae axis and used to
evaluate the lamina stresses in the principal material

directions.

The material properties of the laminae constituents
are customarily determined from tests in which the

specimens are subjected to a uniaxial state of stress.
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This necessitates a logical method of approach to the
application of uniaxial strengths to multiaxial loading
conditions. There are a number of failure criteria
available in the 1literature that may be used to predict

ply failure in a fiber composite laminate.

4.2 Binary Damage Model

Evaluation of the various strength criteria mentioned
in the 1literature review is fairly straight forward with
the exception of the Tsai-Wu failure theory. In this case
we are dealing with a criterion that involves the use of
interaction terms between the normal and shear stresses.
In its expanded form, the Tsai-Hill failure criteria is

given by

Fy 017 + Fp 022 + F3 033 + F4 712 + F5 T23 = Fg T31
+ Fp1 0112 + F22 a22% + F33 0332
+ Fqq T122 *+ Fss5 123% + Fee 1312
+ 2 Fyp 011 022 + 2 Fy3 013 033 + 2 F1q 921 T12
+ 2 Fi5 071 T13 + 2 F16 911 731 (4.2.01)
+ 2 Fp3 Og3 033 + 2 Fpq 022 T12 + 2 F25 022 713
+ 2 Fa6 922 T31
+ 2 Fgq 033 T32 + 2 F35 033 723 + 2 F36 033 T31
+ 2 Fgg5 T12 Ti3 + 2 Fae T12 731

+ 2 Fgg 723 731 = 1
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where the symmetry of the tensor has been used to reduce

the number of independent components.

The engineering strengths are related to the strength
tensors in the same manner that the engineering constants
are related to the components of the elastic compliance
matrix. For the case of a uniaxial state of stress in the

j-direction, the criterion simplifies to
F; 031 + Fij 0ii° =1 (4.2.02)
i 9ii ii 9i1 .L-

where summation over the repeated indices is not implied.
If Sjc and Sjp are the measured compressive and tensile

strengths respectively in the i-direction, then it can be

shown that
Fy = (1/S17) - (1/S10) Fi1 = (SicSim) ™}
F, = (1/Sa7) - (1/S2¢) Fop = (SacSam) 7t (4.2.03)
F3 = (1/Sa) - (1/S3¢) Fa3 = (SacSam)

similarly, if Sjj and Sjj are takers as the measured
positive and negative shear strengths in ij-plane, then
the imposition a state of pure shear in the three

orthogonal planes gives

Fg = (1/S12) - (3/S21) Fgq = (S12521) 7"
= (1/S23) - (1/S32) Fss = (S23532) " (4.2.04)

= (1/S33) - (1/S513) Fgg = (331313)-1

b
4]
|

)
(1))
I
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Thus all six linear terms Fj and all six diagonal
terms Fji are easily established. In general the
magnitudes of the shear strengths in any given plane are
the same but of opposite sign, resulting in the
disappearance of all three of the shear interaction

diagonal terms F4, Fg and Fg-

The off-diagonal terms are related to two stress
components, and so require the imposition of a biaxial
stress state in their determination. The ratio and sign
of this biaxial stress state is arbitrary. For the case
of the normal stress interaction terms Fjj, 1if the

magnitudes of ¢jj ard 044 are identical, we have

Fij = (1/26%) { 1 - [(1/Sip)-(1/Sic)+(1/S3p)=(1/S50)) @
(4.2.05)

- [(1/SicSim)+(1/S5¢S5)] 0% }

This test is rather expensive to perform. However
there may be no need to perform such a test since it has
been possible to correlate experimental data with the
¢uadratic normal stress interaction terms set to

zero [98]. Nonetheless Tsai [99) has suggested the use of
Fij = = 1.0 / ( 2.0 [ Sic Sir Sjc SjiT 1% ) (4.2.06)

as an alternative.
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For the case of the remaining normal and shear stress
interaction terms Fjq, if the magnitudes of ¢gjj and 035

are identical, we have

Fi5 = (1/212) { 1 = [(1/Si)-(}/Sic)+(1/S15)=(2/S51)] 7

(4.2.07)
- [(1/SicSip)*+(1/S51§S31)) T2}

However if the material principal axis coincides with the

longitudinal axis of the fibers then these terms mnmust

vanish. Therefore there is no need to conpute them. For

the case of a specially orthotropic lamina in the

principal material axis it can be shown that the Tsal-Wu

failure criterion simplifies to

Fy 017 + Fp 032 + F3 033

2 2 2
+ Fq31 011° + Fa2 022° + F33 933

. (4.2.08)

2
+ Fqq T122 + Fgg5 7T23° + Fgg 731
+ 2 F15 0311 022 + 2 F13 011 933

+ 2 Faq 022 033 = 1

Since this failure criterion is formulated in the
principal axis of the laminate, its utility in the global
reference axis is contingent upon transformation to the
latter. It is instructive to express this failure
criterion in laminate coordinates for analysis of failure
at free edges and surfaces where selected stress

components must vanish. Doing so gives
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Fy Oxx + F2 Oyy + F3 022 * Fq Oxy
# F11 oxx® *+ F22 °yy2 + F33 0z2°
+ Fgq Txy? + Fss Tyz® + Fee T ox> (4.2.09)
+ 2 Fyp Oxx Oyy * 2 F13 Oxx P2z ¥ 2 F14 Ixx Txy
+ 2 Fp3 Oyy 9zz 2 Faq Oyy Txy

Alternatively, one can transform the strains in the global
reference axis to the principal material axis using the
inverse transformation. The criteria may then be utilized

by evaluating the stresses from these transformed strains.

Binary failure models provide an envelope within
which the material is considered to be safe. They in
themselves do not provide any means to model material
degradation. This requires the use of damage mechanics to
model the degradation of the material properties as a

function of the applied load.

4.3 Progressive Damage Model

Fiber composites generally fail by microveoid
coalescence, interfacial debonding and fiber breakage
resulting in a degradation in the mechanical stiffness and
strength. The failure is highly dependent upon the
direction of the applied load due ¢to the material
anisotropy. Therefore in order to use damage mechanics in

the prediction of material behaviour, the parameter used
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to represent the damage growth nust take this into
account. One way to do this is through the use of several
damage parameters that model degradation of material
behaviour by altering the material engineering constants.

The change in the engineering constants can be modelled by

E11 = E13°(3-Dm1) G12 = G12°(1-Mw4)
Ez2 = E22°(1-Dn2) Gz3 = G23°(1-Dps) (4.3.01)
E33 = E33°(1-Dn3} G33 = G31°(1-Cme)

The prediction of the mechanical behaviour also needs
to account for the darage growth. This requires a
parametric description of the mechanical behaviour. Cne
can use the effective stress approach as outlined in the
jiterature review, with the damage parameter related to
the change in the void volume fraction. However it is
difficult to obtain a quantitative measure of the volume

change.

The overall effect of the evolution of the danage
parameter is to introduce nonlinearity in the material
behaviour. Experimental studies have shown that this
nonlinearity is manifest by a step change in the load
deflection curve [100]. Thus we may make the assumption
that the material behaviour can be modelled by a piecewise

linear function of the damage parameter. This being the
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case, the damaged behavicur may be represented by altering

the material engineering constants in a similar manner.

The danage parameters may be determined
experimentally by use of uniaxial tension tests. In the
case of Dy, & single lamina with the fibers oriented
parallel to the loading direction will yield a load
deflection curve that is monotonic to failure. This is
due to the fibers carrying the bulk of the load. Once the
fibers fail, the binder would already be saturated with
microcracks, and will not be able to sustain the
redistributed load. I+ would be reasonable therefore to
assume that this parameter jumps from zero to unity at the
failure load. The nonlinearity due to the statistical
distribution of the individual fibers would be minor, but

easily accounted for if required.

The determination of Dpy may be made by loading a
single lamina with the fibers perpendicular to the locading
direction. The load deflection curve in this case will
resemble a discontinuous function with several abrupt
changes in the slope. The slope changes are indicative of
an increasing number of microcracks that reduce the
transverse stiffness to the point of failure. The damage

parameter may be computed for the i‘th step change as

Dp2i = [1-(E3/E°)] (4.3.02)
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It is Q@ifficult to separate the effects of Dpp and Dp3-
It is quite possible that the latter may be affected by
the laminate thickness due to the material constraints
away from <the surface. However since the individual
laminae are assumed to be orthotropic, it may be assumed
that the two damage parameters follow an identical

evolution law.

The shear damage parameter Dpg4 may be evaluated by a
uniaxial tension test on a symmetric crossply laminate
with the fibers oriented at an angle of 45° to the loading
direction. The resulting load deflection curve will again
be similar to that obtained for Dpz. In this case the
damage growth will be representative of interlaminar
delamination as well as microcracking. The slope will
again be represented by a discontinuous function, so this
damage parameter may be computed in a similar manner as
above using the change in shear modulus. Also, the

variation of Dpg may be assumed to be the same as that of

Dmg -

The remaining damage parameter Dpg may be taken to
represent the damage growth in the laminate due to shear
applied in a plane perpendicular to the fibers. The
damage in this case will Dbe representative of the
generation of microcracks and interlaminar delamination as

for Dp4, however the evolution of this damage parameter
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cannot be taken to be the same. This is because of the
different constraints due to the fiber orientation. One

can assume isotropic damage in this case due to the makeup

of the individual lamina in this plane.

4.4 Energy Absorption

For elastic deflections the area under the load
deflection curve can be used as a measure of the
recoverable energy absorbed by the structure. This energy
can also be computed by integrating the strain energy

density over the volume.

Eng = % | {0}¥{e} dvol (4.4.01)

Since there is more than one ply through the element
thickness, it is necessary to perform the integration
within each ply and sum over the total volume. This
recoverable strain energy will not vary 1linearly with
increasing load due to material failure, so it is

necessary to perform the integration at each load step.

Local point failure is characterized by the formation of
various defects ranging from microvoid coalescence to
through thickness cracks. The formation of these defects

results in <the lowering of the strain energy density
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around the failed point. Defect formation may be modelled
by a modified Griffith [101] approach, whereby material
failure is treated as resulting in the formation of a
strain free volume surrounding the failed peoint. The
strain energy available is equated to the energy of the

new surfaces created by the defects.

Consider a structure loaded to a given stress level., If
no material degradation has occurred, the elastic strain
energy stored in the volume around the integration point
is given by the above equation. Two running totals are
kept for each ply of each element at each load level; a
recoverable total and a nonrecoverable total. If the
integration point remains in the elastic region, the

strain energy is added to the recoverable total.

If +the integration point experiences an overload as
defined by one of the failure criteria, the strain energy
is added to the nonrecoverable total and the point marked
as failed. The corresponding void volume fraction is set
to 095, which will result in a greatly reduced
contribution to the material properties from this point.
A value of unity is not used to avoid numerical problenms
with the global stiffness matrix. Alternatively the
elastic properties may be obtained in the usual manner,

and then reduced to some insignificant fraction of their
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original value. In either case, further contributions

from this point to either total are ignored.

Defect formation may also be modelled by using the damage
analysis approach. As the load is increased, material
fajilure will result in a Jjump displacement, giving a new
value of strain for the same stress level. The difference
in the stored strain energy can be used to compute the

energy lost due to failure.

Consider a structure loaded to a given level *P. If no
material degradation has occurred, the elastic strain
energy stored in the volume around the integration point

is given by

leng = % | {*o1T{le} avol (4.4.02)

consider now a further increase in the applied load to %p.
If there is again no material degradation, the stored
elastic strain energy will be a function of the lcad. In

+his case we have
2Eng = lEng (2p/1p)? (4.4.03)

However, if material degradation has occurred a junp
displacement will have taken place during the loading.

The response of the material will still be linear, but now
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with a different set of material constants. The stored

strain energy in this case will be given by
2Eng” = % J {20}T{2¢} avol (4.4.04)

The energy lost due to defect formation will then be given

by the difference of the last two equations.
12g; = lpng (2p/1P)2 - & | {203T{%€} avel (4.4.05)

The process is then repeated for the next load step. In
general the lost strain energy for the j'th load step is

computed from
iJgn = ieng (Jp/ip) - (1/2) | 3017} avol (4.4.06)

where i=j-1.

The main drawback in using this approach is that only the
stress state at the end of the load increment is known.
The location of the jump displacement is not. Also, if
the load increment is too large several Jjumps may be

missed. This problem can be alleviated by lowering the
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load increment and resolving f£from the previous known
stress state until failure is no longer detected. The
joad is then incremented by the new value. This will
guarantee that the jump occurs at the end of the load

step (Fig 3).

In computing the lost energy there is a tacit assumption
that the strains in the structure vanish upon unloading.
This is not always the case. However since the degraded
material constants are known, and since the material is
still assumed to be linearly elastic, it is possible to
determine the intercept on the strain axis for a zero
state of stress. This can then be used to evaluate the
elastic strains by taking the difference between the
current strains and the intercept strains. This
difference can then be used to compute the strain energy

for the current lcad step. Thus, for the j'th load step

Jeng* = % 301T{Fe-%3¢} avor (4.4.07)

where {036} are the intercept strains. In the case where
the intercept strains are zero, this reduces to

equation (4.4.04).
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4.5 Structural Failure

Either of the above approaches will give an
indication of the failure state throughout the structure
at the integration point level. However this approach
leads to another problem. Whereas before the traditional
approach to failure was overly conservative, this one is
overly generous. It is now possible for structures having
suffered material overloads to be considered as failed
long before total material failure has occurred. Some

overall failure limit needs to be defined.

This problem may be overcome by using the ratio of the
stored and 1lost strain energies. As the structure 1is
loaded the total energy lost at each load step is summed.
As this happens the recoverable elastic strain energy
stored in the structure will diminish. Eventually a point
will be reached at which the recoverable energy will be
equal to the energy lost. Eventually the structure will
have failed to the point where no appreciable strain
energy can be stored, and no further degradation is

possible.

The ratio of the stored and lost strain energies may be
used to determine the 1limit for structural failure, and
will depend to a large extent on the application involved.
In the case of energy absorption, a failure limit of V50

is often used. This indicates the velocity at which 50%
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of any given projectile type will penetrate the armor.
Similarly, for this application 2 1:1 ratio of the stored

and lost energies can be used to delimit structural

failure.



5.0 FEA Code

5.1 Implementation

The end result of this study was to devise a method
whereby laminated fiber composites could be ranked in
terms of their energy absorption capabilities as a
function of the known loading conditions, the 1laminate
constituents, the laminae orientations, their relative
abundances and their respective material properties. To
this end the above formulation has been incorporated into
a special purpose finite element code that can be used to
predict the small deflection response of laminated fiber
composite structures. The code was written in standard
FORTRAN-77 to run on an IBM compatible personal computer,
and can easily be altered to run on any machine with a
standard TFORTRAN compiler by changing the machine
dependent parameters. The code has been successfully run
on a Digital Equipment VAX 11/730 and a Silicon Graphics

4D/2206TX Work Station.

The FEA code was written in three parts due to the
memory limitations of the PC. These parts consist of an
input processor, a main analysis section, and an output
processor. The first of these sets up the required files

for the main finite element analysis. The last extracts

10l
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the relevant information from the binary storage files,
and writes it to an ASCII file that may be read in the
ordinary fasnion. The output processor alsc includes the

necessary graphics interfaces.

In addition to the main set of FEA codes, there were
three separate programs written in a supporting role. The
first (CLPA) was a progranm implementing the Classical
Laminated Plate Analysis to verify the predictions of the
FEA code for thin laminates. The next two (GSSM and EMSM)
generate the generalized stress strain matrix and the
element stiffness & mass matrices from Xknowledge of the
lamina constituents. These two independent programs use
the same basic routines as the main code, and may be used
to interface the modified element formulation with
existing PE codes for a non-linear and/or a dynamic

analysis.

5.2 Elements

There are two element families implemented in the
code. The Variable S-Node Quadrilateral (V0SQ) may be
used to analyze certain problems that are amenable to a
2D examination. The ful)l 3D analysis must wuse the
Variable 20-Node Cuboid (V20C). These elements can be

used to define 2D meshes with the number of nodes per
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element varying from four to nine, and 3D meshes with the

number of nodes per element varying from eight to twenty.

Although there are commercial codes that allow the
analysis of fiber composite structures, the elements they
employ are invariably modifications of plates or thick
shells [102,103,104]. In all cases the material
properties must be specified for the entire element at
once. This is usually done by the use of separate
laminate analysis routines. These routines are rarely
provided with the code, requiring the user to generate

this piece of information independently.

Both element families model multiple layers of
material through the element thickness using the refined
integration scheme previously described. The numnber of
nodes used to describe the element geometry is independent
of the number of layers ‘hrough the element thickness,
therefore higher order elements may be easily implemented
in the code by the addition of the appropriate shape

function routines.

5.3 Material

Before the overall elenment properties are used to
describe the element behaviour, knowledge of the

jndividual lamina properties must be known. Although
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there are a large number of combinations and permutations
when considering the makeup of a laninated fiber
composite, there are nevertheless only a few building
blocks from which these lamina are constructed. The
material properties of these building blocks are fixed,
and can be coded into a subroutine as a database. It is
then a simple matter to add to the datzbase. This is the
approach adopted in the code. All that is required of the
user is the binder and fiber of which the lamina is
composed, along with their respective weight fractions and

the volume fraction of voids.

The lamina properties are determined by another
subroutine using the information provided above. These
properties are used to evaluate the [D] matrix for any
given point within the ply. The (D] matrix is then
rotated into the global frame of reference before being

incorporated into the overall element stiffness matrix.

5.4 Stresses

The solution of the simultaneous set of algebraic
equations produced upon assembly of the element equations
and application of the necessary boundary conditions is a
vector of nodal displacements. The displacements over the
whole structure can be determined by substitution of these

nodal displacements into the assumed displacement
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functions for the elements of interest. However
application of a failure criterion requires a description
of the stress field. This may be obtained by multiplying
the material property matrix [D] by the strains at the
point of interest. The evaluation of the strains is done
through the derivatives of the assumed displacement

functions.

Theoretically the strains and stresses may be
evaluated at any peint within the element. Unfortunately
their order of convergence 1is lower than that of the
displacenents as the finite element mesh is refined. Some
authors use the element node locations as the points at
which the stresses are computed. However Barlow [105] has
observed that the stresses are best computed at selected
points based upon the order of interpolation of the
displacement functions used to describe the elenment
behavior. These points are usually chosen to be the same
as the integration points used in the formulation of the

element stiffness matrix.

For homogeneous isotropic materials the stresses are
continuous within an element. This is a result of a
constant material property matrix throughout the element
volune. However in the case of the current composite
element the [D] matrix is a function of the thickness

coordinate, and is not necessarily constant even within
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each ply. It is therefore necessary to compute the
strains at each location of concern and use the
appropriate (D] matrix at that location to obtain the

stresses. There are two methods that may be employed.

The first method is to compute the strain-
displacement matrix [B] within the ply of interest at the
ply integration points, and use this to evaluate the
strains. The second method is to evaluate the strains at
those integration points based upon a homogeneous
isotropic element, and then use sone form of extrapolation

to evaluate the strains for the individual plies.

In the case of laminated fiberx composites the
interlaminar stresses are of vital importance in the
determination ~f laminate failure. The stresses at the
ply boundaries will control the delamination mode of
failure for the laminate. Conseguently the locations of
the evaluation points may be chosen to be the Gauss
coordinates in the longitudinal and transverse directions
and the ply boundaries in the thickness direction. An
additional set of points may be chosen located at the
midpoint of each ply face. These points may be referred

to as semi-Gauss points.

Although the node locations are not the best place to

compute the stresses in terms of accuracy, sometimes
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comparison of results with other references may require
this to done. In the case of the composite element, the
ply corner and edge locations corresponding to a single
element may be chosen. since each option has its

advantages, all three are implemented in the FEA code.

5.5 Failure Routines

There are four models of failure coded into the
program that may be used to determine material failure.
The first three of these are the binary models of Rankine,
Hoffman and Tsai-Wu. The stresses at each evaluation
point are computed in the principal axis of the lanina,
and compared to the strengths computed from the 1lamina
constituents. A failed point may be marked by setting its
associated void volume fraction to 95%. This will avoid
the numerical difficulties that may be encountered in the

solution of the global stiffness matrix.

The progressive damage model is the fourth criteria
that may be used. In this case the variation of each
damage parameter must be specified as a function of the
load 1level. This is best obtained from experiments on
coupon specimens. The variation is tracked for each
parameter at each evaluation point as the material is

loaded, with the appropriate parameter used to modify the
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elastic constants of the lamina when the material property

matrix is computed.

The binary damage models described above are usually
implemented in commercial codes in 2D since only these
kinds of elements are used. All models used in the
FEA codes described here have been expanded ¢to cover
2D stress distributions. Since it is not always possible
to use one failure criterion for the entire laminate, each
of the above may be individually specified for any one

given ply.

Before any of the above criteria can be utilized, it
is necessary to evaluate the laminate strengths as a
function of the constituents. This is done by the same
subroutine that computes the lamina properties. Since
these strengths are referred to the lamina principal axis,
the strains from the FE analysis are rotated into this
reference frame before using the point [D] matrix to

evaluate the stresses.

5.6 Damage Tracking

Tracking danmage progression with applied loading is
an important ability in the analysis of fiber composite
laminates. The onset of dJamage occurs at a specific

applied load level which is generally not known
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beforehand. in an actual experimental test the load is
applied gradually, and material failure monitored as a
function of the applied load. This can be easily

simulated in an FEA code.

The program allows the locad vector to be incremented
in steps. Once the element stiffness matrices have been
computed and assembled, the displacements are solved for
some initial value of the applied load. These are used to
compute the stresses, which in turn are used in the
failure routines described above. If no failures have
occurred, the load vector 1is incremented and the process
repeated. If failure has occurred within an element, the
ljocation is marked, and the affected element stiffness
matrix is regenerated with the relevant modification in
the ply properties. The global stiffness matrix is then
reassembled, and a new solution found for the same load
vector. The process is repeated until there are no
further failures for that load vector. The load vector is
then incremented to the next value, and the process
repeated. In this way it is possible to track the

progression of damage in the structure.



6.0 Verification

6.1 One Element Example

The FEA code described in the previous chapter was
written from the bottom up, with each subroutine being
tested on its own before being integrated into the main
code. Numerical verification of the algorithms was done
using various textbook examples. The main parts of the
code tested were the element stiffness routines, the
boundary condition routines, the equations solver
routines, the stress evaluation routines and finally the
failure criteria routines. Numerical verification of the
integrated code was done by comparison with theory and
with a previously available general purpose

code (INDAP) [106].

The first problen solved was taken from
Grandin [107]. This was a single 4-node gquadrilateral
with two nodes fixed and concentrated loads applied at the
remaining two nodes (Fig 4). Although the material of the
element was the same through the thickness, ten plies were
used to test the integration scheme. The results obtained
from the FEA code using the new composite element were in

excellent agreement with those from the text.

110
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6.2 Patch Test

The use of any element formulation is contingent upon
the verification of the element's ability to reproduce the
observed behaviour of the structure it is used to model.
Before such verification studies can be undertaken, it is
necessary to prove that the element will converge to an
acceptable solution as the mesh model is refined.
confirmation of element convergence 1is guaranteed Dby
passing what is generally known as the patch test ([108].
This test requires that a patch of elenents be able to
reproduce all of the constant states of stress when
subjected to the appropriate boundary and loading
conditions. The requirement arises from the condition
that as the mesh model is refined, the size of the
elements in the mesh will be small enough that the stress
variation within the element will be negligible. This
test provides a necessary and sufficient condition to
guarantee monotonic convergence under the required

conditions.

The +test involved a patch of sixteen 4-node
quadrilaterals [109] to determine the validity of the new
formulation as well as its implementation (Fig 5).
Constant states of stress for oyxy, Oyy and Tyxy Wwere
correctly reproduced with the appropriate boundary and

loading conditions as required. Following this, a pure
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bending moment was applied as shown in figure 5, and the
stresses in the middle of elements #5 to #8 were evaluated
and compared with those obtained from beam theory. The
deflected shape is shown in figure 5, and a graphical
comparison of Oyx is given in figure 6. The agreement

between the FEA analysis and beam theory was within 3%.

6.3 Convergence Test

The patch test provides for a guarantee that a given
element formulation will converge to a solution, but not
trat it would converge to the right solution. In order to
coafirm the <convergence of the modified element
formulation, the problem of a laminated bar was
investigated (Fig 7). The bar was 1 inch (2-54 cm) square
in crossection and 8 inches (20-32 cm) 1long. It was
composed of two equal thickness layers of aluminium and
steel, with the top layer being steel. At one end of the
bar all nodes were fixed in all directions, while a
uniformly distributed locad of 1000 psi (6-89 MPa) was
applied to the opposite end, in a direction away from the

fixed end and parallel to the long axis of the bar.

The element formulation described above was tested using
various 2D and 3D elements. In each case, from one to
eight elements were used, with each mesh refinement

inciuded in the old mesh. Table 1 compares the strain



113

energy convergence for the various elements and meshes.
Figure 7 illustrates the computed deformation, with the
dotted 1lines representing the undeformed mesh. All

deflections have been magnified by a factor of 1000.

The upper part of the table gives results for the
modified elements using from one to eight elements along
the length, and one element to represent the thickness.
The lower part of the table gives results from a separate
code (INDAP) using one element per ply through the
thickness. The LB designation refers to the Laminated Bar
mesh. The next two numbers refer to the number of nodes
per element, and the final letter indicates the use of
either a quadrilateral (Q), or a cuboid (C) element. The
results were obtained on a Zenith 2ZF-158 with an 8087 math
coprocessor using Lahey F77, and verified of a Silicon

Graphics 4D/2206TX Work Station.

The same results were obtained using the modified
element formulation with two elements used to represent
the thickness. All elements indicated good
convergence (Fig 8) in that the difference in the stored
elastic strain energies for the last two cases was of the

order of S5%.

As is apparent from the deformed mesh, the resulting

deflection along the middle of the bar was a combination
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of extension and bending, the latter due to the coupling
introduced by the unbalanced construction. A rough
estimate of the horizontal deflection of the loaded end
was determined by assuming an equivalent modulus for the
bar and applying Castigliano's Theorem [110]. The
vertical deflection of the loaded end at the midplane was
evaluated by assunming an equivalent flexural
rigidity [111] and applying the Second Moment-
Arsa Theorem {112). The stored elastic strain energy was

determined using energy methods [113].

A comparison of the results from the FEA code with
those obtained from theory is given in Table 2. The
sixteen element models (LBO9Q8x2 & 1LB20C8%x2) were used to
compare the results of the FEA code with IWDAP. Only one
ply was assigned to each element for these cases. The
results of the two codes were found to be identical. The
eight element models (LB09Q008 & 1LB20C008) were used to
obtain a comparison of the composite element results with
the normal elements used in other codes. In this case
each element was assigned two plies through the laminate
thickness. Again, the results were in goecd agreement in

that the variations were less than 1%.
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6.4 Reinforcement Interactions

Fiber composite laminates can display some rather
unorthodox behaviour under certain loading conditions that
is at variance with normal homogeneous materials. For
instance, a strip of homogeneous material subjected to
uniaxial tension will exhibit an extension in the
direction of the applied force, and a contraction due to
Poisson effects in the width and thickness directions. In
addition, an anisotropic material will also undergo
shearing deformation in planes parallel to the coordinate

planes.

Consider the case of an off-axis laminated strip
subjected to a uniform normal stress along its
length (Fig 9). If the ends are free to displace, then
the inplane shearing stresses result in shearing strains
that cause the strip to distort into the shape of a
parallelogram. However if movement of the ends of the
strip is constrained in such a manner as to prevent
lateral and rotational displacement (simulating clamped
ends), additional shearing forces and bending couples will
be induced. These induced loads will result in an
S-shaped deformation pattern that has been experimentally
verified by Pagano & Halpin [114] using a nylon reinforced

rubber composite with various length to width ratios.
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To verify this type of behaviour, a laminated strip
consisting of four plies of a Kevlar/Epoxy composite was
modelled using a 20 element mesh with a length to width
ratio of 4:1. The strip was fixed at one end, and a
uniform prescribed 1longitudinal displacement was applied
to the other end. The character of the resulting
deformation response (Fig 10) is similar to that given by
the analytical solution provided in the above reference.
The mesh deflections shown in Figure 10 are magnified by a

factor of 1000.

6.5 Lamina Coupling

Oone of the unique aspects of fiber composite
behaviour is the coupling that arises out of unbalanced
constructions and the effect of the free edge on the
delamination of laminated plates {115]. The bending and
stretching coupling caused by the unbalanced construction
of the laminated bar described above is evident. However
to better illustrate this, the case of an unsymmetric
layup of a four ply square plate was
investigated (Fig 11). At one of the plate edges all
nodes were fixed in all directions, while a uniformly
distributed load of 1000 psi (6-89 MPa) was applied at the
opposite edge in a direction away from the fixed edge and

parallel to the plate surface. The plate was represented
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by a 25 element mesh using the variable 20-node cuboid.
The plate was 5 in (12-7 cm) on a side and 1 in (2-54 cm)

thick. The layup sequence used was (00,-05,+05,00) .

The deflection of the ioaded plate illustrates the
bending and stretching coupling phenomenon arising from
unsymmetrical laminate constructions (Fig 12)}. The
undeformed mesh is represented by the dotted lines. The
displacements in the figure have been magnified by =2
factor of 1000. Similar Dbehaviocur was <found by

Ashton et al [116] for a *30 degree layup (Fig 13).

The twisting behaviour arises from the unbalanced
moments produced by the nonuniform through thickness shear
stress distribution (Fig 14). Application of an off-axis
tensile load results in the fibers tending to line up with
the loading direction. This realignment is restricted by
the presence of the surrounding plies, so a shearing
stress is created in each off-axis ply. The direction of
this shearing stress is reversed in the two off-axis
plies, and since each is on the other side of the
midplane, a torgque results that tends to twist the

laminate.

In spite of the fact that the fiber orientations are
symmetric with respect to the load direction, it 1is

impossible to pull on this kind of a laminate without
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bending and/or twisting it at the same time. Neither can
such a laminate be subjected to a moment without inducing
extensional deformations. This behaviour has important
implications from the standpoint of constructioen, in that
for certain applications the lamina orientation angle must
be tightly controlled to avoid unwanted behaviour in
balanced symmetric laminates. Of particular importance is
the use of laminated composites in high performance
aircraft. For example, the wing torque box of the
F-15 Eagle uses a Boron/Epoxy laminated skin bonded to
Graphite/Epoxy ribs and supported by two main spars of
titanium [117]. High positive G-loads induce high tensile
stresses on the bottom surface, and high compressive
stress on the top surface. If the construction is not

properly balanced, the skin will tend to debond in flight.

6.6 Tensile Behaviour

The safe design of engineering structures takes into
account the limitations of the materials used in making up
the elements of the structure. These limitations are
generally related to some form of failure criteria that
the constituent materials must be able to meet, multiplied
by a safety factor that is dependent upon the application.
The failure criteria used in the design process are based

upon the experimentally determined properties of the
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materials used. Even though multi-axial loading
conditions may prevail in the finished structure, the
criteria are still based upon the results from uniaxial
tension or compression tests. These mechanical tests form
the basis of the design efforts, and so must be carefully

implemented.

The situation for structures of laminated fiber
composites is complicated by the fact that the mnaterial
properties may be dependent upon not only the orientation
of the test specimen with respect to the applied load, but
alsc with the direction of the load application. This
requires a logical approach in the application of the
chosen failure criteria to multi-axial loading conditions.
The selection of the specimen shape and testing
methodology must take into account the manner in which the
material will be actually utilized. It is important that
the design of the specimen be such that neither it nor the
test fixture will have an influence on the reproducibility
of the test results. Yet the test method itself has to be

simple to use.

In the case of orthotropic materials, the test method
must take into account the peculiarities of their
behaviour, otherwise major inaccuracies may result during
reduction of the raw data. For instance, the statistical

variability in the individual fiber strengths results in a
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hump when the tensile strength is determined as a function
of the specimen thickness. The apparent decrease in the
tensile strength for small specimen thicknesses is due to
the presence of surface defects {118]. The decrease for
large thicknesses is due to the increased probability of
encountering defects in the greater crossectional area of
larger specimens. This scale effect is anisotropic, and
is largest in the direction in which the greatest

dimensional change occurs.

The use of standard test methods such as those
recommended by ASTM overcomes sone of the problems
associated with the reproducibility of test data. The
relevant standaxd for the tensile strength of
unidirectional crossplied composite specimens is
ASTM D30389. This method gives recommended specimen
dimensions for several tensile coupons, and sets a limit
on the size of the test specimen that is dependent upon

the lamination type.

when specimens of this nature are tested, they are
fitted with bonded fiberglass or aluminum end tabs in an
attempt to lower the longitudinal stresses near the ends
and minimize the end effects. ASTM D303% recommends the
use of bonded glass/epoxy end tabs with a 5 degree taper.
The tapered section of the tabs is usually placed outside

of the jaws, with the flat area inside the grips. However
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it is easier and cheaper to manufacture end tabs without
any taper. Also, the specimen extension is usually
measured by a clip gauge having a gauge length of fron
k¥ to 1 inch (1-27 to 254 cm). Since several specimens
are usually required for a good statistical result, they
are cut from one sheet onto which the end tabs are co-
cured. To cut down on costs, these specimens may also be
cut to a shorter length. The end result 1is that the
actual test specimen may not conform exactly to the ASTM
standard. The variations may be minor, and it is often

argued that they have little effect on the overall result.

The growth of damage in a £fiber composite tensile
specimen is strongly dependent upon the loading history it
is subjected to. There are two kinds of tensile testing
machines in use. The oldest machines are screw driven,
and subject the specimen to a constant rate of extension.
Tests done on these machines are referred to as
displacement controlled. The newer servo~hydraulic
machines are capable of applying a monotonically
increasing load to the specimen. Tests done on these
machines are referred to as lcad controlled. Although
both kinds of tests will give the same failure load, the

tensile pehaviour will be different.

Consider the case of a (0,90)g fiber composite

tensile specimen subjected to a displacement controlled
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test. Ideally, as the specimen is loaded, a uniform state
of stress is produced along its length. As the failure
joad is attained, the specimen fails catastrophically
along its entire length. In reality however, this is not
what happens. What is generally found is that as the
failure load is approached, dips in the load-displacement
curve begin to appear. The load drops and rises several
times as the inner 90 degree plies fail, and then

continues to rise at a different slope.

This behaviour is due mainly to the constraints
applied to the specimen ends. Immediately outside of the
jaws, the longitudinal constraint is relaxed, however the
lateral constraint still has some effect on the
deformation. Close to the jaws, as the specimen extends
along its length, Poisson contraction in the width
direction is prevented from taking place. This in turn
results in a higher stress in the direction of the applied
joad at the location of the constraints. These end
effects diminish as the distance from the ends is
jncreased. The result is a limit on the minimum size of

specimen that can be used for a valid tensile test.

The size and shape of the coupon specimens used in
tension tests is designed to give a constant state of
stress along a specified gauge length, within which the

extension of the test piece is measured. It is imperative
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that the stress be constant within the gauge length,
otherwise the results will not accurately reflect the

material properties.

Outside of the gauge length, the stress distribution
pecomes nonuniform due to the constraints imposed upon the
ends of the specimen. These constraints are brought about
by the requirement to grip the test piece. In most cases
the ends of the specimen are clamped by a conmpressive
force applied by the jaws into which the specimen is
inserted. Therefore movement is restricted in the width

and longitudinal direction within the jaws.

Clearly the longitudinal stress distribution is not
uniform throughout the full 1length of the specimen.
Therefore as the load is increased, points closer to the
ends will fail first, resulting in a drop in the load. As
the applied displacement is increased, points closer to
the center of the specimen will fail, resulting in another
load drop. This will continue until the 90 degree plies

fail completely.

Figure 15 shows a photomicrograph of the crossection
of a (00,90)g laminate with a crack through the 90 degree
plies. The outer fibers lie parallel to the plane of the
paper, and the inner fibers perpendicular to it. The

thick dark lines between the 0 degree and 90 degree plies
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are resin rich areas. There is also a resin rich area
between the two 90 degree plies in the middle of the
laminate. The crack in the S0 degree plies runs
vertically all the way from top to bottom. The vertical

white lines are defects in the photograph.

Since the 90 degree plies will no longer be
contributing to the specimen stiffness after failure, the
load-displacement curve will have a different slope. From

simple mechanics of materials, this new slope will be

given by
{ ngo Ego )
Mg = Mj (6.6.01)
( ngo Ego ) + ( ngo Egp )
where
Mj = Initial slope

ngg = Number of 0 degree plies
ngo = Number of 90 degree plies
Ego = Elastic modulus of 0 degree plies

Egg = Elastic modulus of 90 degree plies

Analysis of the stress distribution brought about by
the constraints using elementary mechanics is futile,
since these methods assume a constant state of stress in
the first place. Elasticity methods using the stress
function approach may Yyield good results, however the

expressions utilized can become fairly complicated. The
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finite element method provides an avenue that overconmes

these objections.

Verification of this behaviour was done by modelling
a tensile specimen using a mesh of from 7 to 22 elenments.
The specimen consisted of a 4-ply Glass/Epoxy Laminate.
Each element was one inch (2-54 cm) square and
0-2 inches (0-51 cm) deep. The first and last elements of
the mesh model were given the properties of aluminum. One
end of the specimen was fixed in all directions, and a
uniform prescribed displacement applied to the other end.

The Tsai-Wu criterion was used as the failure model.

The longitudinal stress distribution for one of the
middle plies shows the expected variation (Fig 16).
Evidently a specimen length of less than
5 inches (12+70 cm) is inadequate for a reliable
evaluation of the tensile strength. The distribution of
the same stress through the specimen thickness (Fig 17)
indicates that this stress is lower in the middle plies
than in the outer plies. Nevertheless, the middle plies
fail first due to their lower strength in the direction of
the specimen length. A specimen modelled with 12 elenments
was used to verify the load-displacenrent
behaviour (Fig 18). The expected load drops and change in

slope were observed.
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The load drops observed in a displacement controlled
test are replaced by displacement Jjumps in a load
controlled test (Fig 19). When failure occurs at a
specific point, the load is redistributed, and carried by
the surrounding unfailed material. The total applied load
remains constant due to the nature of the test. Since
material failure constitutes a lowering of the overall
laminate stiffness, a Jjump in the displacement trace

QCccurs.

The above examples verify the expected behaviour of
the modified element in a qualitative manner.
Quantitative verification requires knowledge of the makeup
of the fiber composites used in the experiments in terms
of their respective volume fractions and relative
abundances. Unfortunately, the exact type of binder
and/or reinforcement is usually not provided. What is
provided is the lamination sequence, the generic type of
binder, the generic type of reinforcement and an overall

stiffness of the laminate.

Nevertheless it 1is possible to infer the volume
fraction ratios of the components from tensile tests if
sufficient information is available. Whitney et al [119],
performed experimenta) tests to determine the behaviour of
(Op.90p) s laminates under tension. Though they do not

provide load-displacement traces, their stress-strain
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curves indicate that the tests were done under load
control. Using their data for a (03,903)s laminate along
with the initial stiffness provided and the assumption of
0-2% voids, it was determined that their specimen was made
up of 65% by weight of fiber. Table 3 compares the
results of an analysis using both CLPA and the FEA code

with those from the above reference.

The FEA analysis indicated a stiffness drop after
failure of the 90 degree plies of 45%. This is identical
to the drop predicted by CLPA, and compares well with the
drop determined from the graph given in the above
reference, which was 42%. The above reference also
reports a stress-strain curve for a (02,902)g laminate.
However in this case no displacement jump is reported.
only a knee in the stiffness response is noted. In
contrast, a finite element analysis of this lanminate
indicated the presence of a displacement jump similar to
but of significantly less magnitude than for the
(01,903)s laminate. The drop in stiffness for this
laminate was found to be 22%, which is again the same as
that predicted by CLPA. The corresponding drop fxom the

above reference is 27%.

The lower part of the table compares the failure
stress and strain from the FE analysis with those obtained

from the curves of the above reference. The results for
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the failure strains show good agreement for both
laminates. The failure stress for the (00;,503)g5 laminate
also shows good agreement, however that for the

(002,903)¢ laminate indicates a difference of about 18%.

Experimental tests on fiber composite specimens
generally yield from a five to fifteen percent variation
in terms of replication of the data. These variations are
caused by changes in a number of parameters. For
instance, changes in the cure temperature and pressure may
affect the degree of compaction of the fibers and the rate
of extraction of the volatiles from the curing process as
well as the final properties of the binder. The
extraction of volatiles is also affected by the laminate
thickness and by the type of bleeder and release film
used. Strength and stiffness properties can be affected
by small changes in the fiber orientation and contiguity

for hand layups.

Another consideration in the duplication of the data
is the dimension of the specimens. It is evident from the
above that past a certain point, the tensile results will
depend upon the length of the specimen. The same is true
for variations in the specimen width [120). Furthermore,
Whitney et a1 do not indicate exactly how their
measurements for strain were made. There are two common

ways to do this. One method uses a Dbi-axial
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dual sensor strain transducer to measure the extension
along a given gauge length. Another uses a bonded
electrical resistance strain gauge. The latter method
requires correction factors that are ignored by the
standard ASTM test methods. This can result in
significant reinforcement error {121]. When considering
these factors along with the realization that the binder
material was unknown, the failure strengths predicted by
the FEA code show good agreement with those from the

reference.



7.0 Element Capabilities

7.1 Introduction

The derivation of the classical theory of laminated
plates considers only the inplane stresses. There 1is no
account taken of the through thickness stress gzz, nor of
the out-of-plane shearing strains Tyz and  Tzx-
Accordingly, the classical approach is unable to provide
predictions of some of the stresses that actually lead to
lapinate failure. Also, CLPA is incapable of predicting
certain types of behaviour due to the nature of it's
formulation. Some of these have to do with the
deformations at the edges of angle ply laminates, and the
existence of through thickness stresses. The use of a
3D finite element analysis overcomes many of these

limitations, as will be described below.

7.2 Interlaminar Stresses

The extensional stresses predicted by classical
jamination theory are unaffected by the stacking sequence
used in the makelp of the laminate. In contrast, the
strength of symmetric angle ply laminates subjected to
inplane loading have been observed to show a dependence

upon the laminate stacking sequence (122]. In particular,

130
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delaminations have been observed to begin at the free
edges [123], with progressive delamination being the
failure mode in fatigue. Pagano and Pipes [124] have
postulated that the interlaminar normal stress at the free

edge is responsible for this behaviour.

To verify this prediction, a (0,90)g laminate was
modelled using 25 elements and loaded on one
edge (Fig 11). The finite element solution indicates a
through thickness expansion at the loaded edge (Fig 20).
The deflections in the figure have been magnified by a
factor of 1000, with the original mesh shown by the dotted
1ines. This is caused by the differential strains in the
middle and outer laminae due to the mismatch in the

moduli.

Due to the higher modulus of the 0 degree plies
parallel to the loading direction, the upper and lower
surfaces of the laminate undergc a smaller extension than
the two middle plies. Thus the inner plies are subjected
to a lower stress in the load direction than the outer
plies. Equilibrium considerations require a bending
moment on each side of the midplane that is of equal
magnitude but opposite sign. Far from the free edge these
bending moments have no effect. However as the free edge
is approached, compatibility considerations require the

deformation shown in figure 20.
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Poisson effects result in a contraction of the
laminate perpendicular to the direction of the applied
joad. Since the 90 degree fibers of the two middle plies
lie in the direction of the compressive stress, these
plies will undergo 2 smaller compression than the outer
plies due to their higher stiffness. The consequent
deformation of these edges will also result in a through
thickness expansion of the laminate (Fig 21), though of

much smaller magnitude than that of the loaded edge.

The distribution of the interlaminar normal stress
along the length and width of the laminate is not
uniform close to the free edge (Fig 22). Far from the
free edge this stress shows 2 uniform distribution in each
pPly. As the 1loaded edge is approached, this stress
becomes compressive before increasing to a large value. A
similar behaviour occurs in the width direction. Thus the
interlaminar normal stresses arise all around the edges of
the laninate. For the (0,90)g laminate, these stresses

have a positive sign along the free edges.

Advanced laminated fiber composites generally consist
of a multitude of plies stacked on top of each other. The
plies are held together by resin rich areas between them
that are formed when the laminate is cured. These resin
rich areas typically exhibit a lower strength than the

bulk of the composite. A positive interlaminar stress in
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these areas will tend to delaminate the plies much earlier
than the occurrence of a failure due to overload in the
plane of the lanminate. Reversing the stacking sequence
results in a reversal of the interlaminar stress, thereby

mitigating against laminate fajilure due to delamination.

The longitudinal and transverse stress computed at
the middle of the laminate agree with those from CLPA.
Therefore the stress distributions referred to above
indicate that the effect of the free edge is significant
only for a distance of from one +to two laminate
thicknesses. For an unloaded edge, the deviation from
CLPA is insignificant after a distance of one laminate
thickness. In the case of a loaded edge, CLPA is invalid
at a distance less than two laminate thicknesses from the

edge.

7.3 Edge Deformations

The concept of Zero-Based design allows one to build
into a laminate the desired stifrness properties to match
the loads expected in an application. If a desired
Jongitudinal to transverse stiffness ratio is required,
this can be accomplished using various numbers of 0 and
90 degree plies. If, on the other hand, isotropic
behaviour is required, one must use a Dbalanced

construction of plies with a layup sequence of either
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(-45,+45)g or (0,-120,+120)g. These will result in quasi-

isotropic behaviour over most of the laminate.

However the deformations at the edges are not
symmetric either with respect to the loading direction, or
perpendicular to it. Consider a (-45,+45)g balanced
symmetric construction subjected to a uniform distributed
load on opposite edges. If all four plies were free to
deform, the inner plies would form a parallelogram with
the loaded edge making some positive angle with respect to
its original position. However the constraints imposed by
the outer plies mitigates against this deformation from
taking place. The outer plies would deform to the same
angle, but of opposite sign. Here too, the constraints
from the inner plies would inhibit this kind of
deformation. There is no twisting due to the midplane

symmetry.

The edge deformations of a (-45,+45)g laminate were
investigated using the mesh of figure 11, but with the
loading applied to the opposite edges in the x-direction.
As expected, the resulting edge deformations exhibited
symmetry about an axis lying 45 degree off the loading
direction. The deformation of the loaded edge exhibits a
concave curvature on one side of the laminate, and a

convex curvature on the other side (Fig 23). The mesh
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deflections shown in figure 23 have been magnified by a

factor of §00, and are not predicted by lamination theory.

The surface displacements of such a symmetric angle-
ply laminate have been experimentally determined by the
utilization of a Mcire technique by Pipes & Daniels [125].
A plot of these displacements from the FEA analysis
indicates the same characteristic deformation
pattern (Fig 24). Reversing the order of the layup
sequance results in a mirror image of the deformations and

stresses.

Although the shearing stresses on both sides of the
midplane arising from the constraints are of equal
magnitude in all plies, the moment of these stresses is
greater for the outer plies than for the inner ones.
Hence the through thickness deformation is not uniform
across +the laminate width. The resulting through
thickness stresses are positive on one side of the

laminate, and negative on the other (Fig 25).

7.4 Plate Deformations.

The deformation patterns of square plates with
various lamination sequences have been investigated
analytically using the Finite Element Method by a number

of researchers [126,127]. Indeed, the sguare clamped
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plate has become somewhat of a standard to check plate
problems [128,129,130]. However these investigations have
all used plate elements. As with CLPA, these elements use
an averaging technique through the laminate thickness that

tends to mask certain behaviocur.

Consider a square 8-ply (02,902)s laminate with the
0 degree plies lying parallel to the x-axis (Fig 26). The
effective moment of inertia of the crossectional area
about the centroidal axis in the xz-plane fer this
jaminate will be larger than that in the yz-plane. This
is due to the 0 degree plies being further away from the
midplane than the 90 plies. Hence the overall laminate
bending stiffness will be larger in taie xz-plane. It
follows then that the deflected share Eontours of a face

loaded crossply plate will show two axis' of symmetry.

Application of a uniform distributed 1locad, in the
negative z-direction, on the top face of such a plate
results in the expected suxrface deformation (Fig 27). The
mesh deflections in figure 27 have been magnified by a
factor of 100. A trough forms in the direction of the
0 degree plies due to the higher bending stiffaess in this

direction.

The longitudinal and transverse stresses through the

thickness of the laminate indicate large jumps in these
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values at the ply boundaries (Fig 28). Both oxx and Oyy
go from tensile at the bottom surface to compressive at
the top surface, and reach their maximum values at these
jocations. Therefore one would expect initial failures to

be located at the top and bottom surfaces of the laminate.

The initial failures can be further localized by
examining the distribution of the same stresses for these
two plies. Doing so indicates that the highest value of
oyx OCcurs at the x-coordinate limits in the middle of the
clamped edge (Fig 29). The highest value of Jyy occurs at
the y-coordinate limits, alse in the middle of the clamped
edge (Fig 30). Initial failure would therefore occur in
either one of these locations depending upon the variation
of the individual 1lamina strengths. Increasing the
applied load till the onset of failure confirms these

predictions.

7.5 Energy Absorption

Laminated plates used in the energy absorption role
are generally subjected to loading perpendicular to the
lamination plane. It is therefore often necessary to
determine the failure characteristics under such loading.
Energy absorption for fiber composites is usually related
to some form of impact parameter such as the peak force

or the maximum deflection [131,132]}. Such parameters are
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used to rank materials in terms of their energy absorption
capabilities Dbefore detailed trials are conducted.
However the response to a monotonic load test may also be
used to determine the initial ranking. Such a quasistatic
test may be easily simulated using the finite element
method. Both the failure progression and the relative
energy absorption characteristics can be explored for

various lamination sequences.

Consider a clamped 25 element square plate modelled
as in figure 26, but with a uniformly distributed locad
applied over the center element in the negative
s-direction. To investigate the effect of the lamination
sequence, each element of the 5x5 grid was composed of a
70% weight fraction of Kevlar fibers embedded in an epoxy
binder with a 2% void content. This would give a volume
fraction ratio of fiber to binder of 66:32. The applied
joad was increased 1in steps to allow the failure
progression to be tracked. The Tsai-Wu model was used to

determine material failure.

The surface displacements and the stress
distributions have the same character as previously
described (Fig 31). The first indication of
failure (Fig 32) occurs at an applied load of
9-1 ksi (62-7 MPa). The square symbols in figure 32

represent the strain energy dissipated at each load step
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due to material failure. The solid 1line indicates the
accumulated energy dissipated up to a particular load
step. The stored strain energy at this point is
1510 in-1b (170-6 J). Again the initial failure occurs in
the predicted location (Fig 33), and subseguent failures

occur in the inner plies along the x-axis of the laminate.

The top surface of the plate is represented in
figure 33 by a shaded square, undexr which is given the
applied load. The lighter colored areas in each shaded
square represent the location of an element in which at
least one integration point through the thickness has
failed due to an overload. The dixection of the 0 degree
fibers is from left to right. There are three main energy
release points before total failure of the plate at
11-0 ksi (75-8 MPa). The final value of the total energy
absorbed after initial failure is 2980 in-1b (336-7 J),
which indicates a good residual energy absorption

capability past the initial failure point.

Evidently the entire plate does not fail at once due
to the directional variation of the internal stresses
cause by the lamination sequence. One can try to change
this by equalizing the bending stiffness in the two
inplane directions. One way to do this is by relocating
one pair of 90 degree plies to the outer surfaces. Doing

so modifies the stress distribution (Fig 34), resulting in
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a gyy for plies 1 & 8 that is about the same magnitude as

oxx for plies 2 & 7.

The initial failure locations still lie in the outer
plies in the middle of the clamped edges, but now they are
lJocated at the limits of the y-coordinates. A plot of the
surface deformations confirms the change in the bending
stiffness, with a slight trough appearing perpendicular to
the previous direction. The jnitial failure load for this
lamination sequence was 10-5 ksi (72-3 MPa}, and the
stored strain energy at this point was
1750 in-1b (197-8 J). However there was only one major
energy release point (Fig 35), and the total absorbed
enerqgy after failure was actually less, being

2380 in-1b (268-9 J).

The increase in the initial failure load was due to
the altered stress distribution throughout the laminate.
More of the load is reacted by the stresses in the inner
plies, so the stresses in the outer plies are lowered for
the same value of applied load. Thus the applied load can
be increased to a higher value before the cnset of
failure. Unfortunately when failure does occur the higher
values of the redistributed stresses result in a quicker
spread of the failure locations throughout the

laminate (Fig 36). The applied load moves through 2
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smaller distance before catastrophic failure, resulting in

a lower energy transfer.

As mentioned above, quasi-isotropic behaviour can be
obtained by using two families of lamination sequences,
these being ((+45p,-45n)m)s and ((Op,+120p,-1208)p)g- The
order of the plies is irrelevant to the inplane behaviour
so long as they are of equal thickness. These Two
jamination sequences c¢an be used to approach a nearly
equal bending stiffness in the two inplane directions.
Initial failures for these sequences occur at greater
values of the applied 1load, and occur away from the
constrained edges (Fig 37). The failuxe patterns indicate
an axis of symmetry along the ply layup directions. This
is clearly evident when a greater number of elements are
used in the model. Figure 38 indicates the accumulated
energy absorption for each of the above laminates as a
function of the applied load. The number at the end of
each curve is the stored elastic strain energy prior to

catastrophic failure.

Another interesting phenomenon associated with these
layup sequences was the warping of the plate
surface (Fig 39). The mesh deflections in the figure have
been magnified by 100, and are not predicted by lamination
theory. The warping is due to the creation of unbalanced

shearing forces through the laminate thickness.
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In order to use laminated fiber composites as energy
absorbers, it is important to use a layup sequence that
will result in as high an energy absorption as possible.
In addition, the residual energy absorption capability
after initial failure should also be maximized to prevent
catastrophic failure before the damaged plate can be
either repaired or replaced. A comparison of these is
presented in Table 4. Increasing the load at which
initial failure takes place is a secondary consideration.
These factors would tend to suggest that the first layup

sequence is best suited to the energy absorption role.



8.0 Conclusions & Recommendations

8.1 New Capabilities

The use of thick laminated fiber composites in
primary structure requires a more thorough analysis than
simple 2D plate theory is capable of. The Finite Element
Method is well suited to this task due to its ease of
application to complex geometries. Unfortunately such
application has been limited due to the large memory
requirement needed to represent a structure with the

available 3D element formulations.

Most commercially available finite element codes for
laminated fiber composites require that a separate lamina
analysis be performed to evaluate the element stiffness
matrices. In many cases the codes do not allow the lamina
properties to be separately computed, but require the
results of experimental testing. The method of
implementation of the modified element does away with the
requirement of a separate preprocessor for the individual
plies. The element allows a realistic modelling of the
material property variation throughout each ply volume as
these properties change with the progression of material

failure.

143



144

The geometrical description of the 3D element
formulation described above is independent of the number
of plies through the element thickness. Therefore the
addition of plies through the thickness does not require a
corresponding increase in the number of degrees of freedom
required to represent the element. Solution of the types
of plate problems described in the last two chapters are
not practical using currently available 3D elements due to
computer memory and time limitations. The use of the
modified integration scheme allows a drastic reduction in
the number of degrees of freedom required for a given
problem. A plate element had been considered during *“he
early course of the reseaxch, however it was found to be
impractical due to the large number of degrees of freedom
required. Also, the literature review indicated that the
use of higher order displacement assumptions in the plate
element formulation did not significantly increase the

accuracy of the results.

Classical theory represents plate displacements in
terms of the mnidplane values. The inplane strains
exhibit a linear variation through the thickness, and are
limited to constant values in the plane of the laminate.
In contrast, the modified element allows a linear
variation of the inplane strains in the plane of the

laminate, and a parabolic variation of these strains



145

through the thickness. It is therefore possible to
resolve the dilemma o©of a non-zero surface shear stress
that is produced by the classical theory. Also, the
Finite Element Method is just as easily applied to complex
geometries as it is to simple ones. The same is not true

for classical plate theory.

Plate elements are incapable of giving insight into
some of the failure mechanisms since the through thickness
normal stresses and/or the out-of-plane shearing stresses
are not generally included in their formulation. The
modified element allows the prediction of the edge
deformations and stresses  that lead to observed
delamination behaviour at the edges. Currently available
3D elements only allow these kinds of deformations at the
mesh level. The modified element allows these
deformations to be observed at the element level, since
full coupling behaviour is simulated within the modified
element. Qualitatively, the element reproduces the
observed edge deformations for symmetric and unsymmetric
laminates. The variation of the interlaminar normal
stress is properly modelled. This can be used to predict
the change in the delamination behaviour with lamination

sequence.

The edge deformations of symmetric balanced laminates

can be inferred through the use of Moire techn.ques.
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However plotting the results from the FE code actually
allows a 3D visualization of the deformation. Such
visualizations have not yet been reported in the
literature. The warping of the plate models used in the
damage progression and energy absorption studies has not
been previously reported, nor have any predictions been
rade with regard to then. Damage progression studies
reported in the literature have been limited to C-scans of
individual square plates subjected to ball drop tests.
Failure progression with the loading conditions described

above has not been previously investigated.

The initial failure locations in the damage
progression studies are properly predicted. The modified
element has been used to accurately predict the tensile
behaviour of two specific laminates. An investigation
into the longitudinal stress distribution indicates that
ASTM Standard Test Method D3039 allows a2 specimen size
that may be too small to accurately evaluate the tensile

strength of (0p,%0pn)s laminates.

The modified formulation of the element stiffness
matrix allows a variation of the material properties
throughout the element volume. Classical theory as well
as current plate elements allow this Xxind of wvariation
only through the thickness. The modified element allows a

smooth variation of the properties within the plies
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themselves, whereas classical theory and current plate
elements restrict the materials properties to constants
within each ply. As a consequence of the variation of
material properties allowed by the modified element,
damage progression can be tracked throughout the element
volume at the integration point level rather than at the
ply level as is done in classical plate analysis. This in
turn provides a method whereby the energy absorption due
to material failure may be tracked for different
lamination sequences, and used as a comparison for ranking

purposes.

8.2 Limitations

There are several restrictions on the implementation
of the modified 3D element. Large displacement and large
strain analysis are precluded. Therefore the plate
results are restricted to deformations that are less than
108 of the plate thickness. However this can be overconme
by inclusion of the large strain and large displacement
matrices in the element stiffness formulation. The
modified integration procedure is not affected. The code
jtself allows only guasistatic loading conditions.
However the element mass and stiffness formulations can be
incorporated into another code by the inclusion of a

subroutine in the latter. This subroutine can call the
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existing routines to compute the modified stiffness and

mass matrices.

The element formulation described above uses readily
available shape functions that allow a cubic
implementation of the two variable node elements. Such an
implementation does not satisfy the zero shear stress
condition at the upper and lower surfaces of the laminate
unless at Jleast two elements are used through the
thickness. Since the modified integration technique is
independent of the number of degrees of freedom used to
describe the element, implementation of a higher order
element is a straight forward matter. a fully gquartic
implementation will allow the resolution of the non-zero
surface shear stress dilemma encountered using simple

plate theory.

Although the wmodified formulation significantly
lowers the core memory requirement for a given static
problem, the individual element stiffness matrices take a
longer time to compute. However since fewer elements are
required, the overall solution times are not significantly
different. Also, any averaging technique used to condense
a problem invariably results in a loss in accuracy, and
this is no exception. However this is balanced by the
fact that the nmodified element allows the solution of

problems that would otherwise be deemed impractical to
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solve without it. For example, the plate problems
described in the last chapter required about 2% hours of
computer time on a Silicon Graphics 4D/2206TX Workstation
for a static solution if 100 elements were used in the
model. For the 25 element meshes used to investigate the
damage progression, the average solution times were about
3 hours. Such problems could not be solved at all on this
computer using the currently available formulations due to

the significantly higher memory requirements.

8.3 Summary

Problems involving lamina coupling, edge and surface
deformations were solved. Some results away from the
edges were compared to predictions from classical plate
theory and found to be in excellent agreement. The
longitudinal interlaminar normal stress distribution was
found to exhibit the behaviour hypothesized in the
1iterature. Other results were found to agree with those
observed experimentally, such as the deformations
resulting from tensile loading of an off-axis specinmen
with clamped ends. In addition, the code was used to
predict the tensile behaviour of a particular laminate.
The ability to back calculate the specimen composition
parameters has also been demonstrated, and an explanation

for the specimen size limitation has been verified. The
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qguantitative predictions were found to agree well with

experimental observations in the literature.

The 3D composite element formulation described above
jncludes all coupling effects, and allows for a smooth
variation of material properties throughout the element
volume. This has been used to predict the damaged
response of various laminated fiber composites. The
FEA code developed as part of this effort includes three
binary damage models and one progressive damage model, all
of which use 3D failure criteria. The material properties
for a range of fibers and binders are provided within the
code, as well as a lamina analysis capability, for ease of

use.

The Finite Element Method has been used to predict
the coupled small deflection response of undamaged and
damaged laminates, the edge deformations and stresses of
symmetric and unsymmetric laminates, and the material
failure locations. It has also been used to track damage
progression and to rank specific laminates subjected to

quasistatic loads.

The main reason for using an analytical methed as
opposed to an experimental one was the expense and
complication of the experiments. Proper testing requires

a facility costing of the order of one million dollars,
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and only allows one to determine the material ranking in
terms of energy absorption. Ball drop tests are used to
determine parameters related to energy absorption such as
the peak force or the maximum deflection. Nevertheless

these too are used only to rank materials.

Such tests require a large group of specimens of each
type to obtain statistically valid results. The
difficulties in the manufacture of thick laminates further
complicates the issue. The research proposes a different
method of ranking using finite element analysis. The
results from this analysis may be used to screen laminates

for tests on a reduced number of samples.

The finite element method can be viewed as a tool
used in the solution of complex problems that are not
amenable to analysis by standard engineering techniques.
Its application to the analysis of laminated fiber
composites has been limited by the models used in the
analysis. The composite element described above is an

attempt at improving this situation.
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Element Family
Mesh
LBO4Q 1LB0O8Q LBO9Q LBOSC LB20C
1x1 0.1715%9 0.21319 0.21477 0.18394 0.23478
2x1 0.17970 0.21619 0.21780 0.1955%9 0.24020
4x1 0.15053 0.21851 0.21937 0.20953 0.24030
8xl 0.20138 0.21981 0.22003 0.22412 0.24429
4x2 0.21965
8x2 0.22038 0.2269% 0.24460
Table 1 : Strain Energy Convergence Results.
————
U W Energy
(10%) | (203) | (in-1b)
Theory 4.000 2.950 0.246
LB09Q8x2 4.370 2.579 0.220
LB20C8x2 4.850 2.894 0.245
LB09Q0GC8 4.384 2.577 0.220
LB20C008 4.868 2.885 0.244
Table 2 : Comparison of Composite Element Results.
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(01,903)s (02,902)s

Ref cLPA | FEA | Ref CLPA | FEA
E11i (10:3 psi) 2.37 | 2.44 | 2.44 | 3.60 | 3.42 | 3.42
Eyie (2073 psi) 1.37 | 1.33 | 1.33 || 2.62 | 2.66 | 2.66
$Drop 242.2 | 45.6 | 45.4 || 27.2 | 22.3 | 22.2
Ofail (1013 psi) | 8-.75 9.15 || 15.6 13.2
€fail (207°) 3.44 3.75 || 4.53 4.96

Table 3 : Comparison Of Results For Tension Test Analysis.

Initial Final Residual
(in-1b) | (in-1b)
(02,902) g 1510 2980 1.97
(901,002,901) g 1750 2380 1.36
((+45,-45)2) s 1470 1800 1.22
(004 ,+1205,-1205,007) g 1580 1750 1.11

Table 4 : Comparison of Energy Absorption For Clamped Plate.
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Figure 1 : Substructure Nlustration
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Figure 2 : Composite Element Geometry
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Figure 4 : Single 2D Element Test For 4-Node Composite Quadrilateral
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Deflected Mesh

Figure 5 : Patch Test
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Figure 7 : Laminated Bar Convergence Test
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Constrained Ends

Figure 9 : Off-Axis Laminated Strip Deformation
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Figure 13 : Experimental Confirmation Of Twist Deformation
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Figure 21 : Deformation Of (0,90) Crossplied Stacks
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