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ABSTRACT

-« I L d

| This study is divided into two main parts. The first section deals with mathfa-
matical properties of distance functions. ‘The £p norm is analyzed as a function of its
‘parameter p, lea&ing to-useful insights for fitting this distance measure to a transportation
network. _Propertieé of round rforms are derived, which allow us later to genéralize some
Qell-known results. Thé properties of a norm Faised to a power are also investigated, and
these prove useful ‘in our subsequent analysis of location problems with economies or dis-
economies of scale. A posiﬁve linear combination of the Euclidean and rectangular distance
measures, which we term the weighted one-two norm, is introduced. | .This distance funetion
- provide.s a linear regression model with interesting implications on the characterization of .
. . .
trénsport%tioﬁ networks. A"’direcfional bias function is defined, and éxami_ned in detail for
the £, and weighted one-two norins.

In the second part of this study, sevgral propertiés are derived for various {forms of
the continﬁous minisum location moﬂel. The Weiszfeld iterative solution procedure for the
'standard Weber problem with €y &istances is also e:_caminé'é, and global and local convergence

: ' N\

results obtained. These results are extended to the mixed-norm problem. In addition,

optimality criteria are derived at non-differentiable points of the objective function.

(iii)
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CHAPTER 1 & :
INTRODUCTION

>

Locational analysis deals with the formulation of location models and their

solution.” These models are mathematical representations of decisi‘b:roblems in which new

facilities are to be situated. The term faciliEy is,usedkhere in a generic sense to denote such’

~ diverse entities as warehouses in a geographical region, machines on a shop floor, and

eledtronic components on a circuit board. Location models can be classified according to_
whether the set of possible sites is finite or infinite. The first category contains the discrete or
network models. We shall be involved only with the latter category, known as continuous

location models.

,Whatevef"éhé pyacticalitiés of the real system at hand, the locational amﬂysis
ixivariably consists of the formulation of a mathématical model which is an optimization of
some type,anda me.tfhodology to find & suitable solution to the model. Different criteria may
lbe used for the optimization problem. In the minisum model, the objective is to,minimize the
total cost, defined as a sum of cost;elements each of which is a fphction c_rf some distance
measure between two points (supply Iand deémand centres). Altern:ti‘vely, the §bjective might
be to find a point which minimizes the maximum distance to a set of customers. This
minimax criterion is pépular in such cases as the location of emergency facilities (e.g.,
ambulance centers, fire st_ations,'etc.) where service takes precedence over costs. A thirq, less-
u:ilized criterion involves fmciing a point in a constrained region which maximizes the

minimum distance to a set of customers (a maximin problem), as in the location of noxious

facilities such as waste treatment plants.
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a,

" Qur aim in overview is to develop properties of various useful classes and

functional forms of distance mgasures, and to examine thg implications on certain important

.models and solution procedures. The ldcation problems we shall look at will consist solely of

. i ' '
different forms of the minisum model, with emphasis primarily on the location of a single new
facility. The minimax and maximin problems will not be considered here.—;f‘or’a detailed ...
exposition of these _twb topicé, the interested reader is referred to Buchanan (1988). -

' ~ We begin this chapter with a brief literature review™f minisum location models,

which is not intended to be a complete survey. Extenswe lists of references on thxs subject and

71

other general location problems can be found in the exhaustwe b1bI1ography by Domschke

‘and Drexl (1985), in the selective reviews of Francis, Mchms and Wh1te (1983), and

Hansen P%ters and Thlsse (1983), and in the recent book by Love, Morris and Wesolowsky

.(1988); The purpose of our literature review ig to provide a suitable -background and

motivﬁﬁoh for thg work in subsequent chapters. Next, we discuss some fundamgntal concepts
pertaining to the distance functions employed in' continuous location rn.;)de'ls, and the .
.empirical work relﬁted to these functions. The empirical fitting of distance ineaséres is
carried out in‘order to improve the.accuracy of the travel distances predic_:ted bf them in the -

.
- : Ta

system being modelled. The chapter finally ends with a summary of our objectives.

l.ll Minisum Models | - N
The first known formulation of a location problem datés back.f.o tl;e éarly
seventeenth century; when Ferﬁat sought a poiht in the plane which mininiized_ the sum of
straight-line 'd_istances to three giver; points. This puzzle was worked on and éxtended over
the centuries. Fc.ar-an int;aresting historical perspective, see Kuhn (1967)_.' An "important .
generalization known as the Weber, or Fermat-Weber, problem concerns the siting of a

~

facility so as to minimize the sum of weighted distances to a set of fixed points. In a practical
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setting, tiiesehweighted distancesi'epresent.-cost components, and their sum gives the total

cost. The fixed poinis have known locations, and are alternatively called demand points,

demands, customers, destinations, existing facilities or vertices,

-

-

The Ferma)Veber problem and its extensmns form a major part of continuous

location theory, having received most of the attentmn of researche_rs in this ﬁeld. A

_formulation of the basic problem in N-dimensional Euclidean space (RN} is given below:

x n'
minimize Wx) = > w.d(x,a), ' . . (LY

- where a;=(aj, ..., aiN)T is the known position of the ith fixed point, i=1, ..., n;'n equals'the -

number of fixed points; x=(x1, xN)T is the unknown posit.ion of the new facility; w; is a

positive welghtmg constant (w1>0) whlch converts dlstance travelled between the faclhty

and the ith destmatxon into a cost fori= 1 LI and d(y,z) is some function used to- evaluate o

the distance between any two pomts y,2€RN, For the maaonl;y of practical apphcatmns we- .
o

have N=2; that is, the location problem occurs in the plane. Also note that the superscnpt T.

s1gruf'1es the transpose operatmn and we shall always deal with Euclldean spaces unless

.

otherwise specified. -

-

Problem (1.1) cannot be solved in closed form for general distance functions. An

iterative numerical solution method was first proposed by Weiszfeld (1937), for d equal to the -

Euclidean (straight-line) distance on R2, His techmque remamed in obscurlty for several

! -years, until its rediscovery by Mlehle (1958), Kuhn and Kuenne (1962), and Cooper (1963) In

" a seminad paper by Kuhn (1973), global convergence of We1szfe1d's procedure is proven Tor the

Euclidean case, provided that an iterate does not land on a fixed point. Furthermore such an

event is shown to occur only for a denumerable number of starting pomts Thus", the '

—
probabﬂlty that the slgorithm will fail for an arbltranly chosen starting pomt becomes.;

‘ neghg1ble when hxgh precision arithmetic is used. The iterative techmque is generahzed by

<.



Morris and Verdini (1979) to €, distances on RN. The £, function is a popular distance

measure in location models, and will be introduced in the next section, Katz (1969) develops'
. . ' N
some convergence properties of the algorithm, adapted to the case where the cost components

v

are general functions of Euclidean distance;;. The Weiszfeld procedure is easy to implement,
‘and can be readily extended to éeneralizatiorns of tl‘;e Fermat-Weber problem: We sh:;ll have:-
much more to say about this important method.

When rectanéular (alﬁo called rectilinéar, Manhattan or city-block)’distgnces are
used in problem (1.1), the ‘:oordinates of vecfor X become separab]c;. _The._resul.ting -N sub- -
problems, one for each x;, car.1 b'e solved quickly anrd exactly by hand o.r on the coghputer. The
'computa.tioﬁal advantage of the rectangular measure over other.distance 'fur.lct'ions extends to
several_ variations of the Ferr‘naf-Weber problem, (e.g., see Wesolowsky, 1977)." Thus, in '
additi;n to being the most appropriate measure for certain! -éases such .as urban settings, the

-

rectangular distance is often used as a first approximation in more complex location models.

Several modifications or generalizations of the basic model in (1.1) have been

proposed, some of which a?gidered below. '
'a) Up till now thé customers are represented as points in space. Witzgall (1964)

formulates a two-dimensional model in which they can be either'point or area demands. The
latter should be consideréd when the number of customers in a specified région is sufﬁcienily
large that the demand here can be accurately approximated by a density function. Such a
condition occurs for example with postal deliveries in é. city or suburb. Love .(1972) considers
the case_where demands are over rectangular regions and the distance measure is Euclidear{;
with rectangﬁlar‘ distances this problem ca‘n he sqlved exactly (Wesolé\;vskjr and Love, 1971a}.
Drezner and Wesolowsky (1980} extend the analysis to £y distancé;s, and to circles and other

géneral shapes. The solution technique they use is an iterative one based on the Weiszfeld

procedure. It is also -interesting to note that tie new facility, which is currently modelled as

r
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an unknown point x, may actually have a significant area (or volume), as in the location of a
. . . i

“parking lot to service a set of buildings.

b)  Problem (1.1) assumes that the same distance function is associated with every

~ fixeddocation. However, practical situations may arise where the distance to each customer is’
- -

more accurately measured by a dﬂferenf function; for example, wben travel modes (such as
land oF air) are not the same for each. This results in a more general problem:
- - - — . a .
.rmmmme Wm(d‘{)‘—- z widi(x, ai) s _ , _

i=1

whare d; is the distance measure associated with destination a;,i=1,...,n. When the d; are all

norms, a well-knbwn class of functions which we s.halll discuss in the next se;tion, this is-
called a;nﬁ:ggd-nqrm pr.obleﬁl. Hansen, Perreur ﬁhd Thisse (1980) develop soine ger;erall
i:roperties for such a case, ‘Alternatively, we rﬁéy have more than one distance function
pertaining to each destination; for example, when different products are sent to each customer

by different travel modes. This variation is formulated as follows:'

. n L ' .
N - . (1.2b)
minimize Wm(x) = Z z wijdj (x,ai) ) ) S
., i=1j=1 | _
where L denotes the number of different travel modes, and w;;=0 for all i and j, is the
A N . " .

appropriate weighting constant for customer i using distance function d;. Problem (1.2b) is
examined by Planchart and Hurter (1975) when L=2 and the dj are the rectangular and
Euclidean distances (norms). Note that problem (1.2a) is a special case of (1.2b), in which

wij = Ofor all j except one, fori=1,...n.

c) A stochastic extension of the Fermat-Weber problem is considered bjr Cooper

(1974.), in which the destinations are no longer predetermiped points a;, but random variables
with "given probability distributions. The objective in this case becomes the minimization of
the sum of weighted expected values of the distances from the source to the a;. Cooper’s model

uses:the Euclidean norm as the distance funetion assoé‘iated with each customer. The same

’



stochastic model is considered by‘WesoIowsky (1977) with rectangular dietences. Problem
(1.1) also assumes that the customer demands are de;erministic; but in reality, these demands
often ha\;e & random nature. Aly and White (1978) incorporate this feature in the stochastic
location model by consider_ing the weights w;j to be random variables, -

d) - . The Fermat-Weber problem can be,viewed asa statie model, since the number of
customers and their locations and demands are assumed to be constant over a long (infinite)
time horizon. Wesolowsky (1973) looks at the dynamic facility location problem, in which
thesehexogenous factors are permitted to change in each,period. He employs a dynamic

programming algorithm to optimize the sequence of locations of the new facility over a finite

planning horizon. Other approaches are discussed by Erlenkotter (1981).

- e} Thus far, the new facility can be located anywhere in‘the geographic space, since

the problem is unconstrained. In practical situations, natural and human factors (e.g., land

barriers, zoning 'regulations) tend to restrict, sometimes drastically, the set of feasible

- locations and routes. Hansen, Peeters and—Thiss&(:l-QSE) allow a very general feasible region

in the ferm ofa tiniorn of a finite number of convex polygons, and develop an algorithm to solve
this constrained probiem. Love (1969) ps,es a gradient method for locating a facility within a
convex subset of three-dimensional space. Eckhardt .(1975) proposes an amended Weiszfeld' .
procedure when the set ef feasible locations is defined by al corﬁr\bx‘polyhedfon in N~
dxmensmnal space. Schaefer and Hurter (1974) consider the case where the new facility is
constramed to be within a maximum chstance of each demand point. Such restnctmns,
referred to as metric constramts dre of mterest when locatmg services such as pohce and

postal statxons Properties of the optimal solution for several types of constrained problems

are given by Hurter, Schaefer and Wendell (1975).

f) " Problem (1.1) concerns the location of a single facility. An obvious aﬁd important

“extension includes the multifacility case, in which two or more new depots must be located

N1



. ' 2 -
simultaneously. Each depot can interact with the existing destinations, as well as with the

Y

other depots, and all interactions are assumed to be known. Clearly, when no flow exists
. s

between pairs of new facilities, the problem reduces to a number of single facility models. A

formulation of the unconstrained multifacility model is given below:
i

m n ' :
minimize WM(X) = 3 > wd(c,a)+ D> > v_dx,x), o3

j=li=1 r<s

where m is the number of new depots to be located: n is the number of existing destination
points; X=(x;;...,xy), where xj=(xji,...,xjN)T is the unknown location of depot j for j=1,...,m;

a;=(ai1,...,2;N)T is the known location of destination i,i=1,...,n; w;j=0 is a weighting constant -

which converts distance between an origin-destination pair inte a cost, i=1,...,n, j=1,...,m;

ves =0 is a weighting constant which converts distance between an origin-origin pair into a

cost, r= 1,...,rh —1,s=r+1,...,m;and dis the distance function.
. -~ , ) ‘
Ostresh (1977) extends the Weiszfeld procedure to.the multffacility case with

Euclidean distances, and proves descent propertjes of the iterations and convergence to the
o :

t handle vertex iterates (i.e., facilities which

opltimal solution. However, his procedure can
coincide). Radé (1988) proves global convergence of a modified version of this algqrithm. A
new approach is presented by Dfeiner. and Wesolowsky (1978a), in which a trajectory of
‘optimal solutions for a-se?ies of perturbed ﬁroblems is obtained by numeric;al iﬁtegration ofa
set of differential .equations. The trajectory begins with a perturbed problem which can be

[

solved easily, and ends with the solution tb the origﬁr}al problem.
| When d is the rectangular no;m, problem (1.3) can be solved by linear .-
-programming and related techniques; see Cabot, Francis and Stafy (1970), Picard and Ratliff
(1978), and Wesolowsky and Love (197 IB). However,r the number of consfraihts and variables

increases considerably with the problem size. Wesolowsky and Love i1972) use convex

programming with a hyperbolic approximation of the rectangular norm, whj :




-~

‘

(1976) propose an ‘edge-descent’ algorithm thich takes advantage of the convex, pieéewise-
planar shapeof the objective function.

A dual problem can be formulated for the single and multifacility models, which
provides an alternative method of solution. Kuhn grid Kuenne (1962) and Bellman (1965)
derive the dual for the single facilityﬁuclidean distance model. A dual for the multifacility
Euclidean case is given by Francis and Cabot (1972), while Love amﬁi.Kréemer (1973) propose
a dual decomposition method of solution, A generalization to £p dist:;nces is pfovided by Love
(1974). | ‘.
g) An important assumption of the multifacility location xﬁodel is that the
interaction§ between paiz"s of facilities are all known. In many practical sifual-;ions,
determining these interactions is a main feature of the préblem. For example, in locating
several warehouses to meet the demands of a set ommers, one generally must determine

the best allocation of customers to warehouses as well as the optimal locations of the latter.

The optimal number of facilities to service the customers is also usually unkndwﬁ; howevei-,

* this can be determined by repeated solution of the location-allocation problem for increasing

numbers of new facilities. A formulation of the location-allocation problem without capacity

B2

constraints is given below:

- m n
minimize ¢ = Z:l Zl wijd (xj, al),
j=li=

@

(1.4)

“

o
subject to z Wi'j=wi' =1,.,n.

. j=1 .

Now the weights wj; representing quantities or flow between facility j and destination i are

, variables, in addition to the unknown locations x; of the m facilities. The constraints in

problem (1.4) ensure that the den_:ands of each customer (w;) are satisifed.

-



~ Unfortunately, the objective function ¢ hasa complex shape which is not amenable
to solutmn by standard methods "With d as the Euclidean norm, Cooper (1967) proves that ¢
is neither convex nor concave. This fesult generally holds for any distance metric {e.g., see
Chapter 7 of Love, Morris and Weéo}owsky, 1988); so that ¢ can have several local minima. A
rather dramatic illustration is found in E'}ilon, Watson~_Gax_1dy and Christofides (1971). For a
50 customer, 5 depot problem {(n=50, m=15), they obtain 61 local optima by usmg different

initial startmg locations for the depots and an adaptive locatmn-allocatlon heunst:c Several

"heuristic methods are proposed by Cooper (1963 1967, 1972). Love (1976) solves the one-

dimensiorial version exactly usmg dynamlc programmmg However, except for some special
cases, this method cannot be extended efficiently to h1gher dimensional spaces. Heopstm
methods which attempt to' jump’ over local optima are given by Love and Juel (1982), who
aIso show that the location-allocation problem can be expressed as a concave minimization
p;og'ram. -Such progaﬁs involve the minimieation of a coneave function over a compact
region, so that the search for an optimal solution can be restric-ted to_the‘ boondary of the
feasible reg'lon

An exact 'solution method is given by Love and Morris (1975a) when dlstances are
rectangular.' This procedure uses the property that an optimal solution exists with the new

facilities located at discrete intersection points. An algorithm further reduces this candidate

set of points.. The conditioned problem is then solved exactly with a backtrack programming

‘procedure. Ostresh (1975) considers the two-center problem (m = 2) with Euclidean

distances. Cavalier and Sherali (1986) examine Euclidean distance location-allocatioh with

uniform, demands over convex polygons A large-scale nonlinear programmmg approach is

used by Murtagh and waattlsyawong (1982} but this can only g'uarantee a local optlmum

dependent on the initial starting locatlons.
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| The; heuristic methods generally involve the solution of a large number of location
problems as the allocations are varied. The use of rectangular' distances affords a
considerable comput#tional advantage, because of the relative ease of solving the location
.problemsg with this metric. For a sample of test proBlems and computational results for the
locaticn-alloeation problem with rectangular distances, see Love and Juel (1975).
~ Physical location problems occur in one, two or three-dimensional space. HoweVer,
it is interesting to note that Iocation'theo‘ry is'now being applied in areas other than physical
distribution systems. Examples include cluster analysis (Cooper 1973), and the spatial
analysis of voters' preferences (Riker and Ordeshook, i973j and customers' preférences in
pi-oduct‘c'iesign pfoblems (Schocker and Srinivasan, 1974). Such cases justify the use of
higher-dimensional spaces. | | |
As t; final comment, we note that the e#tensions discussed above to the Fermat-
Webe:" pr:()biéi;z, as well as other extensions not included here, gife greater flexibility to the
original model by allowing different types of cost structures to- be estimated more accurately.
;I*hese extensiéns'can be applied singly or in combir?aﬁons depending on the practical problem
at hand. ;‘As an example, one may wish to consider a stochastic location-allocation model with
mixed norms to represent a real situation. Of cct.urse there is the usual tradeoff; - the more

accurate the model, the more difficult and costly it is generally to solve.

1.2 Diéfancé Functions
" The purpose. of a distance function d is tﬁ give an accurate rheasul:é of 'fhe
E separatlon between any two points in space. In physmal locat.mn problems, thlS separatmn
normally s1gmﬁes the shortest travel dxstance between pairs of pomts in the transportatlon :
network. Thus given two points x,y € RN, the function d(x,y) calculates a chstance value, In

the most general sense, we see that d representsa mappmg of the form,



/\
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d:R" xRV >R, ] | - 42h
where RN X RN denotes all pairs of points taken from N-dimensional space, with each such
pair being assigned by d a value on the real number lme

Herein lies thg maip difference between continuous loclatioﬁ models and network
models. The lattér type uses actual distarices between pairs of ‘points, and by necessity
restricts the candidate set of iocations of the new facilities to the arcs aﬁd nodes forming the
t&ansportafion network. In realistic prc;blu.'-.;ms, the netwofk‘.t:an contain a large number pf
nodes and connecting arcs (road segments), so that data sforage reqﬁ?ements become
éxcessive. The existence of cycles in the graph requires that a shortest path algorithm be used
to find the short_:estg distance between pairs of nodes. These features plus long computation
times for large graphs tend to make network models'more cumbersome and expensive'.
However, because actual distances are used, these models can be made to represent 'realn

systems more accurately than the continuous models. (This is achieved by augmenting the

number of nodes in the network where necessary). As noted by Francis, McGinnis and White

- (1983), "you get what you pay for", ‘ ‘ :

Continuous location models, on the other hand, require vefy little data storage,
since distances between pairs of points are now calculated from the coordinates. Of course,
these distances only approximate the actual ones, Continuous medels are typically easier to

analyze. - They give- useful c_jualitativé insights about the~gystem, which can be used to

[

-siwmplify the network in a second stag'e of analysis; for example by removing from

con51derat10n a majonty of the candxdate solution pomts Furthermore there are sutuatxons
where the continuous location models are more appropmate in then- own nght for example

when the set of demand points or candldate selution points includes regions of the space such
'
as line segments, areas or volumes, or when the transportation network has a regular patte_rn .

such as a rectangular grid which can be represented with a high precision by some function d.
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A distance function should satisfy the following basic properties, where p, q, r are

any points in RN, '
| dip,) =0, (1.2.2)
) dip,g) =0 ifp=q, (1.2.3)

and S
(1.2.4)

: d(p,r) = d(p,q) + d(q,r) .
The first two conditions are intuitively obvious. The third one, known as the triangle

ineﬁuality, tells us that the distance between any two points is the shortest one from all .

possible paths. If d satisfies relations (1.2.2) to (1.2.4), it is te:‘-med a weak me\tric (e.g., see

Witzgall, 1964). If in additior d satisfies

dlp,a)=0 implies p=gq, (1.2.5)

and
(1.2.6)

_ . dlp,q) =d(q,p) , ' _ |
then it is called a metric. Relatlon (1.2.6) implies a symmetry in the system being modelled,
such that the dlst'.ance from p to q equals the distance from q to p for/all palrs of pomts
However, thxs cond1t1on will not apply when nonsymmetnc sh1pment costs exist, as with
travel up and down streams or inclined planes, and travel along one-way streets in an urban
area. It should be noted.that moét location ;no&els, includiné those djscussed in the previous
s'ection, assume felatiﬁn,‘(l;Z.G) holds; so that d{p,q) is interpreted as the distance between p
andq. |

Most distance functions employéd in continuous location probiems belong to the;.

family of norms. A function k is said to be a norm if it satisfies the following properties for

anyx,y € RN, Y2
k(x) =0, (.27
‘k(x)=0 if andenlyif, x=0, (1.2.8)

kax) =|a|k(x), Va€R,

(1.2.9)
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and

kx+y) < k(x) + k(y) . (1.2.10)

‘The value k(x) denotes the distance between the poin{ x and the origin (0=(0,...,0)T§. A pgorm
may be employed to define a metric by eetting d(x,y) = kix—y). Ho_wever, the converse ie no-t
necessarily true, since norms are homogeneous by relation (1.2.9) while metries do not have to
be. A norm provides the followmg map,

k:RNSR (1.2.11)

whlch is clearly restnctlve when compared with (1.2.1), Now the distance between points x

and y depends in no way on their absolute posmons but only on the vecMT y)j 101n;ng

them. . ' | o

A popular distance function in location models is given by the €5 norm, which we

define as follows for N—d'ime'nSionaI space:
d _ N Up

fp(x) - (1.2.12)

p=1,

‘ where once‘aga'm x=(xy,... xﬁ)T The rectangular distence 1s a special case with p=1, while
. Euclidean distance occurs with p =2, Propertles and applications of the €y norm will be of
ma_]or interest in subsequent chapters When p is strictly greater than1 (:'p(x) belongs to the
'familly of ‘round’ norms, so-named because their contours contain no flat spots. We shall be
exaﬁlining this important class ef norms in detail later on.
| Other examples include the weighted one-infinity norm. of Ward and Wendell
(1280), which is defined as follows: .

b,x) =a, € &x)+a, v2e x), (1.2.13)

where ay and ag are'honnegatwe numbers, not: both of which are zero, €1 is the rectangular
. . . A :
norm, and £, the Chebychev norm defined as

. fw(x) = Hm £ (x) = max ﬂxll} . . (12.14)
' p—r+@ 1sisN :

L
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The distance function be and its components €; and £, belong to a general class known as

"

‘block’ norms (e.g., see Thisse, Ward and Wendell, 1984, and War;l and Wendell, 1985), so-

named because their contours are made up of flat segments; that is, éhe contours form

polytopes in N-dimensional space. The block norm is characterized as follows:

b(x) = min [ Z [ﬁgjyx = Z pgbg} o _ ‘ (1.2.1?)
g=1 g= .

. In the above relation the b‘g's 'with g==1, £2,. ir are vectors which define the extreme

peoints of the unit contour (or polytope) of b(x) and by symmetry —bg=b_,. The block norm

“has a’geometric interpretation. The bg s mgmfy the possxble directions of travel in the trans-

portation network, and b(x) gives the distance of the shortest path connecting the tail and
head of the vector x which follows these permissible directions. A detailed aceount of the

block norm, with proofs of properties and examples, can be found in the references mentioned

“above. Note also that Thxsse Ward and Wendell (1984) compare some of the propertles of

block and round norms, and show that a block norm can be made to represent a round one as .
accurate!y as desired by increasing the number of extreme points {bg's) of its polytoi:e. In the
limiting sense then’ as r —ra, the block norm becomes a round one.

Other distance functions are found in the literature. Perreu_r and Thisse .(1974)
propose the radial and circumferehtial metrics, and a combination of these two, the circum-
radial metnc, for approximating star-shaped networks (e.g., the French railway sy%em) and
clrcumferentlal transportatuon systems (e.g., rmgroads around towns) These functmns are
called central mgtncs, as the movement in each case is made partly or gompletelj.,'r along rays
through an origin. Hodgson, Wong and Honsaker (1987) derive an zisymmefrié diétance for
cost) function for locating f‘acilities on an inclined plane. VIln this case travel up the slope is

more difficult than down, so that the cost of travelling from one point to another is not the

, same as the cost in the reverse direction. The authors formulate a minisum model to deter-
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mine the eptimal location of prebunching sites on a slope in the logging industry, and develop

a Weiszfeld-type iterative solution procedure, proving convergence of their_algorithm to the
- .

optimal site. When the demand points in a system cover a suﬁ'ieiently large area, the radius

of curvature of the earth’s surface can no longer be neglected. Certain distance _fuhctions have

been proposed for the analysis of location problems on spherical surfaces (e.g., see Aly, Kay

anct Litwhiler, 1979, Drezner and Wesolowsky, 1978b, and Love and Morris, 1972).

2]

y such as when

" For networks in which backtracking occurs'on a regular basis
-rectangular floor layouts have a single doorway accessing each department, Juel and Love
(1985) pro;eose the use of the hyper-recttlinear distance function. This measure corresponds to
the € function with 0<p<1 and occurs in practice when travei tiistances are generally

" greater than rectxhnear When 0<p<1 the £, distance funttion is not a norm, and further-
more, it is ne1ther convex nor concave. The authors show that for the hyper-rectxhnear case,

.an optimal solution of the single facility minist;m model must occur at eh.intersection point,
which may not be in the conlvex hutl of the existing facilities.

.A signiﬁcarit research eﬁ"ort has been directed at the problem of characterizing the
optlmal solution of the minisum mode] the objective bemg to simplify or narrow the search
for this solution by explmtmg the propertles of the partlcula.r distance function. The general
approaches taken here can be plassﬁed into two categories. The first reduces the set of

feasible solutions to a region chet'acterized by the geometry of the existing facilities. The

second uses the weight structure or flows between facilities to make deductions cn where the

o

optimal location must be.

" In the first category, Kuhn (1967 proves that the optt?rial solution of the Fermat-
Weber problem with Euclidean distan'ces on R? lies in the convex hull of the existihg _
fac111t1es This result readily extends to N-dimensional spece (Kuhn, 1973). Francis and

Cabot (1972) examine the multxfaclhty model w1th Euclidean distances on R2, and show that



the optimal locattons of all’ the new facilitiee must be within this same hull. For the more
general smgle and multifacility problems with €, distanceson RZandap > 1, J uel and Love
(1983) prove once agam that the optimal locatxons must be within the convex hull of the
existing faclhtles.

With any norm on two-dimensional space, at least one optimal solution to the

~ Fermat-Weber iJroblem belongs ‘to the convex hull of the fixed points (Wende.ll and Hurter,

1973). It should however be stressed that this property no longer holds in higher-dimensional

spaces, except when Euclidean dlstances are used (Plastrla 1984). For the special case of the
81 norm on R2, Love and Morns (1975a) prove that at least one optxthal solution belongs to a
smal]er rectangular hull _ of the existing facilities, and furthermore, attention can be
restricted to the intersection points contained in thfs hull.l Hansen, Pecreur and Thisse (1980)
define an octagonal hull of the exlstmg facilities (which is larger than the convex hutll) and
show that when a m1xed—norm problem on R2 mvolves {p distance functions only, then at least
one optimal location belongs to this hull. Ina more recent paper, Durier and chhelot (1985)
define a metrlc hull in order to account for nonsymmetric distance measures, whlch are
termed gauges. They show that an optlmal location in N-dimensional space can be found in
the metric hull of the existing facilities whatever the gauges are. |

The second cntegory mentione_d above uses the weight structure o.r flows bettveen

facilities to make deductions on where the optimal location should be. Such an approach can

result in cons1derable computatxonal savings in practmal sutuatlons An early contribution in

this vein is given by W:tzgal] (1964) who proves the "majority theorem" for single faclhty

location. Thxs states that in the Fermat-Weber model, an existing facility having 50% or

! "

more of the total interaction is an optimal base. A reﬁnement of this result is contained in the .

fixed point optimality criteria proposed by Juel and Love (1981),which apply to the single

- facility loc_ation'problem with eny set of norms. For the multifacility case, criferia are given
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by Juel (1983), and Juel and Love (1980), for establishing when facility locations coincide in

an optimal solution.

1.3 Empiriéal Wo.rk Related to Distance Fu;mtions: .
The major research'e.fforts in continuous location theory have been, and are still, in
the development of algorithms f;o -solve location problems such as those discussed briefly
above. Thus, 'the researchernormally begins with the assumption tﬁat the cos_t .s;tructure and
distance function(s..x) used in his model are a sufﬁéieritly accurate reia'resentation of some real
gystem.’ Fr.om a practical vi;awpoint, an accurate measure of distance in the real systemn is an
important requisiﬁé to finding an optimal solution. No.matter how exact and efficient thé .
solution algorithm méy be, the end result would be of questionable value unless the model is
. anaccurate represéntation of thé problem being analyzed. 7 / .
Very little wo:fk_ in the 'jiterature deals with the empirical fitting of distance
functions> to aciual data, alt‘hough this is clearly a to;-)ic of crucial interest in continuous
location models. Love and Morris (1972, 1979) ﬁresent several distance functioné which are,
for‘the most part, norms ﬁnqltiplied (weighted) by an inflation factbx‘ that helps to account for
hills, bequ and other forms of 'noiée' in the t,ranSportation network. They carry out  an
empirical study in which the best-fitting parameter values are obtained for. sets of data from
urban and rural regions. An'impoftant finding of their study is that a{n exﬁpirical distance
function should be tailored to a given regic;n whenever a premium is pla:;ed on accuracy. This
concl.:usion resulted from the observed statistical superiority of the weighted £, norh over the
Weighted rect#ngulu anci Eucliégan norms. Thus, the claim by Francis (1967), which, by the
way, has been assumed by the r.najorit:,;of researchers in continuous location theory, {haﬁ. the
- cases of practical interest are the ones where _aiswnces are rectangular or 'E#Elideﬁn, is
refuted by the findings of Lc;vé and Morris. v . | ..

|
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Other empirical studies are described below Berens and Karling (1985) examine
the road network of the Federal Republic of Germany, and conclude that the weighted
Euchdean norm is sufficlently accurate in this case. They further propose that fitting ’
dlstance functmns with two or more parameters is generally unwarranted, since in theif
opinion the gam in accuracy -wxll be small while the computatlonal work will increase
substantlally The conelusions of Berens and Kérlmg are refuted by Love and Morris (1988).

Certainly the previous work of Love and Morris (1972, 1979) shows that significant gains in
N N . N . ‘

_‘accu‘racy can be achieved with the weighted €, norm. The method used by Love and Morris

(and Berens and Korling) to find the best-fitting parameter values involves an exhaustive
grid search. Thus the number of iterations tends to increase exponentially with the number .-

of unknown parameters, so that the computational work can indeed beécome rather
v . - B -' . '

Ward and Wendell (1980) fit the weighted one mﬁmty norm to two sets of data of

/—/) mterclty hlghway travel used by Love and Morris (1972) for the weighted £, - norm, andh '

observe that their distance function is relatwely close in accuracy to the latter. Further

" empirical work is g:lone by Ward and Wendell (1985} using the general block norm, and the

data sets of Love and Mofris (1979).. Since block norms are linear in their parameters, Ward

‘ ahd Wendell are able to apply standard linear regression techniques to find the best-fitting

values. -

-

Another empmcal study is carned out by Kolesar, Walker and Hausner (1975), in

‘which travel times are of pnmary mterest .They show\that the relatmn of travel time to

distance for fire engines in New York City is nonlinear wit economies of scale. Love and
o ‘ .

- Dowling (1985) study the fit of weighted ¢p functions in facility layout problems with

RN
rectangular flow patterns, and observe that the accuracy of the fit is more sensitive to changes

in the inflation factor than to changes in the parameter p.

~
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‘In order to account for economies or,ﬂis-ecopomies of scale inherent in the struc{;;ﬁre

of 'the transportation network, Love and Morris (1972; 1979) propose’ a: distance function

having the £, norm raised to a power. This results in an e:&.ra paramgter, and consequen'tlyk/
better fit to the data. The authdrs generally observe economies of scale in the road nétworks

: LI : .
examined, although a few cases show dis-economies, These results make intuitive sense. One

would usually\expect_an economy of scale, arising from the larger number of routes available

when points are further apart. .

It is important to note that the location problem may be more accurately modelled

with distance functions raised to a power for purposes other than the particular structure of

the road network. That is, economies (dis-economies) of scale may exist for totally different
A B :

1)

1:ea50ns. As an example, one inight use different tranéportation rpqdes depending on the
distance between points, which would give rise to r;onlinearitie;-in'the cost structure. It is
generally assumgd in such cases that cost is a non-decreasing fu.n“ction of distance. Thus an
e;x.taadnsion the Fermat-Weber prbblem, with distances raiéed to a power, takes on practical

significance.- A formulation of this prohlem is given below:
. - .
minimize WNL(x) = > w, [d(x,a)]*,
3 i=1 ' )
A where 0<K <1 for economies of scale, K = 1 for continuous returns to scale (the original

(1.3.1) U/

r

¢
-

Weber problem), and K > 1 for dis-economies of Scale. ' \ .

Relatively little work can be found in the literature pertaining to problem (1.3.1).

@ " An early formulation of this model is given by Cooper (1968), in which d is the Euclidedn
norm. He develops an iterative selution techinique similar to the Weiszfeld procedure. Chen
(1984a,b) improves the efficiency and converger;ce properties of Cooper's algorithm by
changiﬁg the step-size. ‘He ,alsb investigates a more .genéral class of problems in which the

. . & . -,
cost components can be expressed as non-decreasirig functions of the Euclidean distances.
[+ -~
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Morris (1981) extends th;a iterative solution technique to the case where d is the €, norm, and
proves convergence for certain ranges of the parameters. He alé;shows that the objei:tiire
function in problem (1.3.1), with d equal to the £ norm, is neither convex nor concave when
0< K< 1, and furthermore, contains several local minima. For this condition the iterative
7 solution procedure may converge to a local minimum which is not the global optimum.
Hansen;-'éeeters, Richard and Thisse {1985) present a 'very general algorithm for
_solving the single facility location pfoblerr; in which tfansportation costs are increasing and
_continuous functions of distan;e. They call their algorithm Big Square - Small Square. The
general ideu is to divide the set of feaéible solutions in the plane into squares; to calculate
bounds for each square by taking the shortest aistance betweeﬁ the square and each demand
point; to pu‘rge those'équarés whose bounds are no better than the current incumbent
solution; é.nd to continue bfanching to smaller, sub-squares and bounding until the length of a

side of & square is smaller than a given tolerance. The authors repoft good computational

experience with their algorithm, which is encouraging considering the applicability of their

s,

method to general cost structures and general sets of constraints.
. . (a‘a_

1.4 Thesis Objectives *
The preceding sections give some insight into the broad nature of continuous

location theory, We started with the well-known Fermat-Weber problem, and then discussed

- several extensions to this classical model.” The importance of the distance function in

con.tinuouéllocat_ion models was emphasized. We observed that this distance measure should
satisfy the properties of t};e ‘weak’ metric, a wide class of functions of which the norms are
only a subset. Some ‘of the more popular d.ist.ance functions (e_.g.; £p norms, block norms)
yvhich appear in the lit;erature weré presented. Finally, we summarized the empirical work

dealing with the fitting of distance functions to actual transportation nétﬁworks. The



empirical work invariably begins by assuming a given form of the distance measure, and tl_'nen
proceeds to obtain the best-fitting parameter values based on E:Jme specified criteria.
In the m?xt- chapter" Seve_ral ge@ril Vmathematical properties of norms are deriv,ed_, .
which will be useful in the subsequent analysis. We begin by taking a look at sums of brder p,
Which represent the function €,(x) with the vecf.or x constant and the parameter p treated as a
variable. The results obtained here will be of interest when the problem of fitting thé 149 n;)rm
toa given_daﬁa'set is investigated. A practical classification of norms is presentéd néxt, and
_several properties are derived for thié classification scheme, -These results are ih largé pa
generaiizations of known propgﬂties for particular norms. Some insights into the
fundamental differences Bétween round and hlulock norms are also provided. The properties
| given here will be useful in our investigation of various minisum models,
The ﬁtting of empirical distance functions was identified in tl;t; previous section as
a tdpic of .theoretical and practical impor.tance which requires much further research. In
Chapter 3 we consider this problem in terms of the mathematical. aspects of fitting ‘the
weigilted ¢p norm. 'Atfpt;c.esent. an exhaustive-grid‘search is employed tolﬁnd the best-fitting
parameter values; e.g., see Love and Morris, 1972, 1979, Lﬁvé, ."I‘ruscott and Walker, 1985,
and Berens and Kérling, 1985. A number of important properties are derivéd here whif:h will
allow more efficient and more accurate searchesf for these values. In Chapter 4 a positive
linear combination of Eﬁélidean and rectangular_ distances is considered, which we term the
weighted one-two norm. It is shown t;hat for pract.ica_l purpc;ées, this distance measure can be
_used in place of the weighted £, n;rm. Since the weighted one-two n;)rm is linear m its
paraﬁleters, we are able to develop a simple linear regression model for detenhiging the best-

fitting parameter values. Statistical tests are proposed for this model which provide new

insights »f practical significance:
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The remainder of our study is devoted to a broad sample of minisum models In
Chapter 5 we return to the classieal Fermat-Weber problem, and generalize certain important
propertles to th_e classes of round and block norms.‘ Some generalized results for the

multlfacxhty model are also derived. A close look is then taken at the Weiszfeld iterative _

solution procedure After much analysis, we extend the global convergence pradof of Kuhn

(1973) and the local convergence results of Katz (1974) for Euclidean distances to the {’p norm.

Chapter 6 investigates the mixed-norm model. An extension of the Weiszfeld procedure is
proposed as.a solution method, and global and local convergencefbfoperties are proven.
Optimality criteria which extend the majority theorem of Witzgall (1964) and the results of

Juel and Love (1981), are also derived. Flnelly, in Chapter 7 we consider the mrmsum

§

problem w1th ‘cost components which are nonlinear functions of distance (e. g., see model

((1.3.1)), and obtain some general properties for this case. -
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CHAPTER 2

GENERAL MATHEMATICAL RESULTS

Iri this éhapter, we derive several general results which are 'interesting in their
own right, and of which many will be usefut for developing properties of location problems in

the subsequent chapters. First, we take a close look at sums of order p and the well-known

‘inequality of Jensen. The results here will be of interest when fitting the €p distance function

to a data set is investigated (Chapter 3). We also study the properties of a generalized sum of

order p, which would be applic.able to a generalization of the € distance function. The next

section deals with an important class of norms referred to as round norms. Some definitions

and properties are developed here, and coniparisons are made with the block norm. These

.r

results should improve our undersﬁanding of distance funétions, and will be useful in our

- analysis of minisum location models. The third section considers functions of norms, and in.

- particular, norms raised to a power. Such distance (or cost) functions have received

comparatively little attention in the literature, although their potential benefit in defining
more accurate location models has been recognized. Finally, we study directional derivatives
and the differentiability of norms and functions of-nor\rr;s. The results obtained here will be

Y
useful later on in our analysis of various minisum medels.

2.1 A Gene_r_-_‘ali_zation of Jensen’s Ihequality

2.1.1 Jensen’s Inequality Revisited

A surﬁ of order p is defined as follows (e.g., section 1-16 of Beckenbach and Bellman,l :

1965):
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lp

- (2.1.1)
S(y;p) = ( > yf’) .

i=1 -

where y (Y1 00 YT,
yi > 0,i=1,.., K, areany positive valﬁeé,

and._ p = Oisareal-valued parameter.

Notel that the above sum has the form of the diétance function Ep(x'— ap), WI;;ére ¥i replaces
| xi—ayi|,i=1, ..., K. The requirement that all t}_le yi’s be strictly positive (i.e., non-zero) is not
restrictive, since any Zero terms can be deleted _frqm the sum, the remaining terms re-labeléd
and K decreased accordingly, to give the form in (2.1.1).

The sum of order p satisfies the well-known relatiqn,
- SG;p)<8Gip), 0<p,<p,, K=2,

which is uguﬁlly refersed to as Jensen’s inequality (For two different proofs of (2.1.2), see

(2.1.2)_.

Theorem 19 of Hardy, L1ttlewood and Polya 1952 and Beckenbach, 1946.) Beckenbach
(1946) also shows that S(y; p) is convex in p for p>0. His proof utilizes techniques f'romr

' _convex analysis.

- We now re-prove Jensen s 1nequa11ty and the convexity result oL eckenbach by '
studying the ,_ﬁrst and second-order partial derivatives of S(y ; p) with respect to p. Although
this approach is less elegant than prevmus methods, and certainly very tedmus it does enable
us to prove in addltlon that S(y;p} is strictly convex in p for p>0 under very general
condltwns, namely K=2, We also are able to make some deductions concerning inflection
points forl p<6..‘ An extension of this approalh allov¥us to determine ‘sorﬁe intereéting
;‘Jroperties of a ‘generalized’ sum of ordér P

For the simple case where y=yy, ascalar,

Sy;p) =y, , (K=1), (2.1..3)

"L
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which'is constant for varying values of the parameter p. We consider from this point onwards
the more interesting case in which K=2. The first and second-order partial derivatives of

S(y ;p) with respect to p are calculated below.

a) ' First Derivative
" Let
S o | (2.1.4)
Cdly;pi= D yP, : o 1.
. i=1. o

soﬁhat_‘" _ | | . | -

' | | ~ Sy;p= b pIP. . (2:1.5) -
Then - . : .

o

-9 : tnd 1 &
— Sy;p) = ”"(-—-—+———)
woUP T L /.

A p? pd
1
K -
gnqa q)P A
= - > sheay,
p P i=1 . ’ ~
n q)(l—p)lp K s
B = 7 . (—¢8n¢+ z yPén yf) .
P o=l ‘
q,(l—p)lp K . - (2.1_.6)_
- S (3otalg ) e
) P i=1
Since ' - | ) ¥
.yP yP
N/k?;-:l](l <1, 1=]_._.K_’ -
’ P
2 ]
. ) i=1 .
¥ therefore : )
v
" fn —]<0, i=1,...,K >
Hence - ' .
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3 ’ 2.1.7
—Sy;p) <0,
P

wherever this derivative is defined (i.e., p=0). At p=0, the function S(y ; p) is discontinuous

as seen by the following limits:

-hm_ Stip)=0, . A (2.1.8)

p_.o " - s " . . N
and

hm+ Sy:p)=o. R (2.1.9)

0 ' ’ '

Otherwise, S(y ; p) is continuous and differentiable in p Based on these observations and the

inequality (2.1.7), the following result is obtained.

. Property 2.1.1

The sum of order p given in (2.1.1) with K=2 is a decreasing functmn of p for ‘

0<p<°° thatis SR . ,
Sipy <Sly;pp), 0<p1<p2-

The sum of order p gwen in (2 1. 1) with K22 is also a decreasing function of p m

-

(2.1.2)

the mterval —_0 < < 0 that is, o i
' St;p) > Sip) p2< p,<On |
_ (Note Inequality (2.1. 10) can be derived dlrectly from (2.1, 2), as shown by Beckenbach

(1946}, by noting that S(y. =p) = 1/S(1/y, p) where lly Ly, .. NyKIT ).

¥

b) Second Derivative ’ ‘ | w, |

/ " Letting o - : - R - .
. . , o
) . ¥ (2111
'f(}:p):;-:z yién [‘i]<-0, @110
=1 ¢l .y
we can rewrite equation (2.1.6) as :
‘ (1-p}p ‘
d Lo
2syim=2——o. (2.1.12)
P P

(2.1.10)

-



The second partial derivative with respect to p is then given by, -

l-p
1-p 1-p —_—
& -2 = @ af P
Ssuin=s el or S 2(er )+ 12
ap P p° ® p°
Using elementary calculus, the following results are obtained.
1-2p
X p
3 ( ¢ 9
= ¢")= @ - 29",
ap p2
a_nd'
2 o= v'tnd
. ap ’
where - '
3 o .
o= Loty ip = Z yPeny,,
.ap
and - ' -
. K N\
I Co, |
¢":= — iy = 2 yPieny)’.
. : - dp Ci=1
: substituting (2.1.14) and (2.1.15) into equation (%1.13) gives
‘ 2 | .
& [ 2 1,
—‘S(Y P)_—Cb -“CD‘I"*'—‘D Do’ +P¢¢ $d’' fnd
ap’ p? P P
Notmg that tb(y p) =pd' — dp¥fnd,the above equation sumphﬁesto
‘ . L ] | N
. 1 = 2 1 o ’
=S =50 B |-=90+ —2¢2-p(¢')2+p¢¢'] -
. p’ P~ p
Thus, - ,- A
™
— SG;p) =Al;p)-Bly;p)
3p . )
where
. 1-2p 2
R 4 ==
Ayip) ==<5¢ P,
P
and °

27

(2.1.13)

(2.1.14)

v

(2.1.15)

(2.1.16a) .

(2.1.16b)
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| 1
Bly;p) = — = t:l>¢ + = = p@"? + pot” .
p p .
Smce ¢(y ; p} > Ofor all p==0 itis obvmus that A(y ;p) > 0 for all p=0. We now examine the

terms of B(y ; p) From the analyms of the first derlvatwe a5/ap, it is s clear that Dy p) < O for

all p=0. Hence,

—-2—¢¢{ >0 for p>0, - (21.19) _
P <0 for p<0.
The second termof B(y ; p), 1
1, - '
_2‘¢, >0,Vp=0. : (2.1.20)

Finally, we add the third and fo : p) as follows:

-p@" +p4d" = p(¢e" - ¢'?
: P )

- . — A2
= p Z y?z y]?(fnyj)z—(z y{’fn)h)]
i i i N .

= p ZZY y“{(eny)z—fnyi?nyf}.] :

= p ZZy "Eny(fny —¢ny,)

> O

p[ >> ypypfny (€ny —¢ny, )

= . . . 1<J . . ) T £y | ]
N} S A
: yPyP —
+ ZZyiyj ény;(eny, f-’nyi)i‘.
. i>j
' -(2.1.21)

=p> > yiyny, ~én A
' i<y |
Note that i,j € {1, ..., K} is understood in the above summations, but omitted to simplify the

~ notation. From equation (2.1.21), we see that

P"



=0,ifp>0, .
—p@"? + p},q,n[ _ (2.1.22)

-=0,ifp<0,

with equality occurring if and only if y; = yjfor all'i, j € {1, ..., K}. From relations (2.1.19),

(2.1.20), and (2.1._22),-it i;s'seen that B(y ; p) > Ofor P >(0sHence, we conclude that

e Sy;p) >0, p>0 } 21.29)

a4

" Unfortunately, for p<0, the sign of 32S/3p2 cannot be determined from the above analysis.

This agrees with the knoﬁ;n result that S(y ; p) is not convex, or necessarily concave in p for

p<0, (e.g., see 1-16 of Beckenbach and Bellman,; 1965). For example, ifyi =ys= ..= YK =
. .ﬂ- . *
a, ther” ' .
C a .
S(y;p) = K¥a ;
S KU’ ‘ &S  KYaeK enK\ -
ST = - nK, and — = ——m—m |2+ — ) ;

ap p? ap’ p’ P

so that S(y ; p) has a unique inflection point in this case at the negative value
. ' 1 o L .
\ p=-—--= K. : (2.1.24)
: N 2

From the inequality (2.1.23), we immediately obtain the following result. 7 .
Property 2.1.2

The function S(y ; p) given in equation (2.1.1) with K = 2 is strictly convex in p, for
0<p<=o : : o L

Property 212 strengthens the known fact (Beckenbach, 1946) that S(y ; p) is -

- convex in p for p>0, and allows us now to state the following strict inequality.

Sy;P)< > a.S4;p) 2125

i=1

where



P=2 ap, -
i=1
'°i>0’i. mza-l and
. i=1 ]
p,>0,i=1,..,m,are arb':ltrary (and distinct) values of p.

Returnmg to equatmn {(2.1.6) for the ﬁrst derivative, the followmg mterestmg

observatmn is made,
¥

. . P ' P | :
e e tamem (2] ~.
1 p_'or‘ap p_.o P : ' .
. [9%)
= _¢fnK lim {—2] (‘.‘ yrﬂl,Vi)
- -ip '
_But

| _ . ‘. . |
/ . K. U SymKUp,p\: O,ym = m'mi (yi) ; .
ST S [Z yp] [ | -
4 . ‘ ' . kN ‘ B . r
‘ E ’ i=1 ' . ‘ .

=Y KUp p < 0;'yM =max (y,) .

Hence
- ~pwo~ P

We can now prove the following fact.

s N - '

: , D

. . - . T8

Property 2.1.3
S(y ; p} has at l.east one inflection point, and hence is neither convex nor concave in

P, inthe interval —w < p < 0. , , i
Proof:

We'know that S(y p) approaches the horizontai asymptote, y, = min; (y;),

Y

o



£

from below as p->-wr(e.g., Beckenbach, 1946). Hence S(y;pis conc;_ve .in p for sufﬁcieﬁtly
large negative values of p. It is easily shown that S(y ; p) ->0+ as p—0-, Thus, from eq.uation
- (2.1.26) we cbnciude'that ad > 0 exists such that S(y ; p) is convex in p for p € (=35, 0).
Therefore the property is proven. h |

. Béckeni_)ach (1946) poses a question concerning the number of possible jnﬂer;tion
points of S(y ; p) as a function of p in the interval (-, 0). We see from the abt;v'é result t_hat. ‘
.'there is at least one such point, thus establishing a lower bound ;)f one, .It follows that S(y;p)
can neve@e concave over the entire interval —m<p<0 a fact which does not appear to be
recogmzed uhtll now To' 111ustr\t'e Properties 2.1.2 and 2.1.3, the prevmus example
(y1=y2=..=yk =a,S(y:p) = Kllpa)is plotted in Figure 2.1.1.
2.1.2 A Generalization

L]

We now 1ntroduce a generalization of the sum of 9rder p, defined as fo]lows
— . NS

tp ', .
(2.1.27»
T(y;b,p) = [ Z biyfl .
i=1 _
ﬁ
where
Cy=GpyT, ¥ >0,i=1,0K,
CL b=b,,b)T, b >0,i=1,..,K,
and p=0. C

(This function is termed a ‘weighted’ sum in 2..10'0f7Hardy, Littlewood and Pélya, 1952.) “The
vector b and the scalar p can bé considered as a set of parameter values. If all the weights
bi =1, then T is Just the ordinary sum of order p given in (2.1.1). Note t.hat the functlon

"T(y; b, p) has the fommf a generalized 8 distance given by, p,
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-7, ~5. -3. -1. 1. 3. 5. 7.
| Parameter p |

Figure2.1.1 A Sum of Order p. B



[

K . Up . —_—
Eppx—a) = [z b |x;—a°

i=1

-(2.1.28)

/

The weights b; could, for example, represent non-symmetric costs along the axis directions in

a location model. Just as for S(y; 15), we are interested’in studying the behaviour of the sum T
. - - - ——— 4
as a function of its parameter p. . o . P
. L. . i N\ 1

Consider first the é.symptotic behaviour of T. Létting jm = min; (y;) and yy =

max; (y;) as before, we obtain,

.9 lim{T(Y‘,b,P)}. = lm+1 “ibiy?]w]
pte =l

prto

N prte =] Im . ~

(2.1.29)

_ Ky -
lim {T¢;b,p}=y_ Hm [ zbi(ﬁ) ‘ } -
pr - prea tlizg Y '
- o : (2.1.30)
=Ym. - ) . - b

Thus, the.function T approaches the same horizontal asymplotes ifrespective of the positive .
weights by, i=1, .., K. . S

Without loss in generality, let us assume that all the y;'s have distinet va}ues; that
is, yi = yj, i = ], for all j, ; ‘E {1, ..., K}. (If this isf nc;':t the case, commeon terms can be added.
together and K adjusted accordingly.}) Denoting the weights associated with y;,, and yp by by
ar_ld bum respectivély, it is clear from (2.1.2@51 (2.1.30) thatfor K=2,
‘ yh'; , if bM =1, '

lim T=[ o (2.1.31)

and



o

y_ ., b =1,
m . m
lim T=[ N ) (2.1.32)
ps—m Ym ¢ if 0<b_<1. ‘

Thus, the direction of app;oac}{ from above or below the horizontal asymptotes yy, ym depends,
on the magnitude of the corresponding weights by, b,.

" We now examine the behaviour of T near p=0. Let
K ‘ . .
B = Z b. ‘ (2.1.33)
7 i e
i=1 '

There are three possibilities to consider.

(9] . p>1 - @
1tkis readily seen that
> ~ bim T=+e«, lim T=0. (2.1.34)
. . p_.0+ p_.o‘- ) [T
(This is the same result as for S(y ; p)).
_ .
i  B<l ‘ 5
The situation is reversed;i.e.,
) im T=0,. Lm T= 4w, (2.1.35)
po” p0 '
@ ~p=1: -

In this ca..se, T(y; b, p) is "q':'alled the mean value function. Beckenbach (1946) gives

. {
the following result without proof. . _ S T

i=1

‘ . K o - | |
lim {T(y;b,p)} = l—l yil ; : : ~ (2.1.36) :
ps0 o _
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It follows that T is continuous at p=0 if, and only if, p=1. ‘fI'he result in {2.1.36) is not

immediately obvious; hence we prove it below.

K
1
tnT(;bp) = — En( Z b.y?) .
| ' R A e
In the limit p-;[j, the denominator and numerator on the right-hand side both go to zero when

B=1, so that by I'Hépital's rule,

K
. 1 :
lim nT = lim [K——'Z biyffnyi]
0 0 " p i=t
_zlbiyi_
1=

» K
= 2 b ény. .
i=s1

Hence,
,K
- iimT = exp(z bi{’nyi)
p—0 i=1 .
K o
= [1s}'.
: i=1

confirming equation (2.1.36).
"We now calculate the first and second-order partial derivati\:ris of en T with féspect

. top. Letting

b, , . '
e T T 2137

" equation (2.1.27) can be re-written as
‘ "
(2.1.38)

K
_T(y\;b.p)=13”"[ > ay?
i=1 -

whereq; > 0,1 = 1,....,K,and

-
a =1.
1

i=1

Then -
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‘ K
1 1 ‘
¢ nT=—-4¢nf+ — En( uiy?) . (2.1.39)
' P P i=1 ' —— '
a) First Derivative
3 11 YRS -
gen’l‘ = —,—2an——2£’n z ay; +;- R E— z Q,y; t’nyi
P ) P i=1 p i=1 }
Z alyl
i=1
1 K H
— P
. Zlalyi 1‘77"( K )] »p=0 (2.1.40)
p? > ayP B> ayf
i=1 j=1
Since .
a -1 4T
—fnT=—- —,
& '°
we immediately get ‘
. - BUP K . (1-pp K ; y? ‘
R B s S
i= i= r P
B ay;
j=1
. It is interesting to note that for >1, |
L . ¥, K p
: aT
im — = _¢ng. lim E‘;‘(z alYf) I
p—>0 % p>0". " P i=1 ”
p = —¢np- l_l yl' . im [—2 ‘ (equation(2.1.36))
i=1 p—bQ_ 4
, - o (2.1.42)

This is the same result as obtained for S(y ; p); (see equation (2.1.26)). Thus we can readi]j

show that Property 2.1.3 also holds for the generalized sum T(y; b, p) with p > 1. Meanwhile,

for p<1, we obtain in similar fashion the following result.
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. aT
lim —=+0.
‘ p—-0+ ‘
Hence, the function T(y; b, p) with B<1 has at least one inflection point in the interval
. - .8
O<p<+o.;
b) Second Derivative

-

In the following summations i, j € {1, .y K} is understood, but omitted tp simplify

the notation.

L
& 2 2 |
—_ = = all P
apzfn'lj = aan-i- afn(z ay; ) 22 N z a.y; Eny
. p - P 1}'1 i
: _; . AP a, y; fny, +p Za 0 (2 9,y (Eny )"
l . » .
(Zet) 7 N
1 ' - .
After some re-arranging this reduces to S | '
i - P ‘ ! |
2fn.T = 33 P 202 a,y; fn( ) _ 0
2 l 2 h ‘
+ p zz 99 y ; (fnyi—-fnyj) ], p=0, (2.1.43)
j<i \
where
> . 2.1.44)
o= Z uiyr - ’ | T

v

By means of the ﬁrst and second derivatives calculated above, we are able to prove :
some interesting results, whxch are extensions of Propertles 2 1.1 and 2. 1 2 for the ordinary
sum of order p First, let us consuier the simple case, K=1. Then

- . (@145 |
T(y b,p)=b.Py , : o RS .
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Jr _ 1 ljp ! (2.1.46)
g":__zbl ylfnbl:p:tol '
and B - . _
y en-ﬁl ; (2.1.47)
~—= =b Py ¢nb ——+—] p=0.
1 71 1 ¢
ap” p p’
The following facts are immediately obvious:
a) Ifby > 1, aT/ap < 0 for all p = 0, 32T/ap2 > 0forp > 0, and T has a unique

inflection poiﬁt atp = —1/2¢€nby < 0. Thus, T is decreasing and strictly convex in p, for 0 < :
'p < +o, Meanwhile, for —o <p <0, T is again decreasiﬁg in p, but concave in the inferval
(=, = 1/2 énby] and convex in the interval [ —1/2 n by, 0).
b) Ifby = 1, then T-= y; which is constant for varying p.
) Ifo<b -< 1; _anap'>- 0 for ail p=0, 32T/3p2 > O forp < 0,and T has a unique
inflection point at p = —1/2 fnb; > 0. Thus, T is increasing and strictly convex inp, for —~w
<p<0 Meanwhile.fc,:f 0< p < +w, T is again increasin.g in P, Put convex in the interval (0,
—1/2 {nby] andr‘co_!nc'ave in the interval [—1/2 €n by, +). Alterna'tive-ly, bjr noting that
by = 1/by" where by’ > 1, we readily see that the behaviour h;tere is just the mirror image of

the first case.

¥
~ The preceding results give some insights into the more interesting case where

K=2, to which we now turn.

Theorem 2.1.1

Consider the functio,n:T(y ; b, p) defined in (2.1.27), with given (constant) vectors y
and b. Assume withgul: lossAin generality that yy = max; (y;) occurs for alunique Me{l,..,
K}; i.e., there are n;) ties. (Ii.' Fhis is not the case, ad‘gihe coefficients (b;) of the Aties to form one

term.) Then for K=2, T(jr ; b, p) is a decreasing functionof pfor 0 < p < +or5_, if, and only if,
/
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bym = 1, where by is the coefficient of yy. Furthermore, if by = 1, T is also a strictly convex

function in p over'this same interval.

Proof;
@ - (If) Sincep > 0,K=2andby = 1, it follows that,
P p p . P
¥ ¥; ¥ y;
—1= : = - < - =1,i=1,..,,K. .
P- P : 1.
Bj_zl‘% j_zl-bj”j o

From equations (2.1.40) and (2.1.43), we see that

enT
307 <0 .and ar>0. . .
& : ap .

Hence, én'T is decreasing and strictly convex in pfor 0 <p < +e, It immediately follows

that T is a decreasing function ofpin this interval. Furthermore,

. . " 2 . -
A Ly @149
S | |
so that -
&7

— =T — th T >0.

N L |
Thus, T is also strictly convex in'p, for 0 < p < +», We conclude that by 2 1is a sufficient
condition for T to be d decreasing strictly convex function of p€(0, =),
(ii) (Only if) That by = 1 is a necessary condition for T to be decreasing in P
-immediately fpllow;} from the asymptotic behaviour of T as p— +®, shown in (2.1.31). Ifby
< 1, T approaches yy asymptotically from below, and hence is ir_lcreasing‘ and concave for
sufficiently large p.

Yor applications of T as a distance function in location models, one should be

i

interested in the case where all the weights are greé.ter than or equal to one; ie, b; = 1,
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-

i=1,.., K. (Otherwise, distances less than Euclidéan are possible.) Theorem 2.1.1 leads to |
the following useful result for this case,

J -
Corollary 2.1.1 -

T{y ; b, p) with K = 2 i$ a decreasing function of p > 0 for given weights b and all

(positive) y, if, and only if, b; = 1, i =1,.., K. Furthermore, T is also strictly convex in p

-under these conditions.

Proof:

-t

Consider any y such that the y;'s are not all equal. Clearly, by = 1 ifall tl;xe bi.F 1.*
By the theorer’n; we know that Tis degreasing and strictly convexinp > 0. N_onr considef any
y-such that all the y;'s are equal. Then, T = Bl/ry;, where f = SKi‘:l b'i > lifalltheb; = 1.
From our analysis of the special case (K = 1), we know that T is decreasing and strictly
convex jn p >0 ._Thus, b; = 1,i=1,..,K, is a sufficient condition. That .this is a]s;) é
necessary coﬁdition is readily seen by contradiction. .Suppose b, < 1,_‘f'or somer € {1, ..., K}.

Construct a vector y such that y; = Yipi#j, Vij€{l,..,K}, and y, = max; .(yi). By the

- theorem, we know that T is not a decreasing function of p€ (0, ;i-m), for this y.

The shape of T as a function of p becomes more complex when the criteria on the

weights are changed, as shown in the followinlg result,

Property 2.1.4 .

Consider a vector of weights b, such that ‘= I; bl >1,and by < 1 for at lea-st ox}le
r € {1, ..., K}. Then, for any given y there éxiéts a 8 > O such that T is decreasing and strictly
convex in p € (0, §). However, if y, = max; (y;), and there are nc; ties, then T is increasing and

strictly concave for sﬁﬁiciently large positive p.

a7
J



41

: Proof:

Follo.ws immediately from the limit p—»0+ in (2.1.34) and tlhe. limit p—> <+ in
(2.1.31). | |

Note that the function T describéd in the ﬁreceding result is neither increasing or
decréasing in p nor convex or concave in p over the entire interval 0 < p < +, and that at
least one inflection point existajn this interval. Thisisillustrated in Figure 2.1.2.

A The fact that T is a decreasing function of p in the interval (0, + %) for all y if, and
only-if, bi'z 1, i=1,..,K (Corollary 2.1.1), has been recognized previously by Hardy,
Littlewood and Pélya (1952) in thei;- Theorem 23. However, their proof is completely different
than ours, aﬁd furthermore, does not show the im.portant resuit thét _T is éonvex in p under
tﬁese conditions. 'The third and fil"nél case to consider for the weights b is where § = = E- b= 1.
In I:he same Theorem 23, the above authors prove that T is non- decreasmg in p over the
mterva] (0 + o) for all y if, and only if, this gondltmn holds. Thus the following property can -
be given without proof.

~
Property 2.1.5

A necessary and sufﬁclent condition to have ,
TG:b,p)=T(y;b,p,), 0<p1<p2, v
for gwen we1ghts b and all y, is that § < 1. Furthermore, there is strict mequahty unless all

the yi are equal and B 1
We make the additional observation that T has at least one inflection point in the
interval 0 < p < +w, if § < 1. (See the discussion following relation (2.1.42).) Thus, T is

neither convex nor concave in p under this ¢ondition. !
Use of negative p when the weighted sum T is a _diétance function in location
. < :

models does not appear to have a physical interpretation. However, there may bé_ other
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5. 10. 15 20. 25.
| Parameter p

Figure 2.1.2  General Shape of T under Conditions of Property 2.1.4.
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situations where p < 0 might be considered. In any case, we would like to take full advantége

of our lengthy calculations of derivatives. This questionable motivation%ﬁhe following

results for pA <0

Theorem 2,1.2 ‘
A

Consider the function T(y ; b, p) defined in (2.1.27), with given (constant) vectors y
and b. Assume without loss in ‘generﬁlity that y, = min; (y;) occurs for a unique
m € {1,...,K}; i.e., there are no ties; (If this is not the case, add the coefficients (by) of the ties to

form one term.) Then forK = 2, T(y; b," p) is a decreasing function of p in the interval (—w, 0),

: .
if, and only if, b, = 1, where by, is the coefficient of y,. Furthermore, if by, = 1,¢nTisa

strictly concave function of p over this same interval. o .' \
Proof: -
) (If). Sincep < 0,K =2, and by, = 1, it follows that
P P N | .
y. y: 17Y 2.150
e« = —(-——'3) <1, i=1,.,K. LI )
K P b yp bm yi /. .
Z bj ¥ ‘ ‘
j=1 .
Returning to equations (2.1.40) and (2.1.43), we can réadily show that . - \_./
3énT y &enT
<0 and <0, p<0.
. ap2 :

Hence, 8nT ig décreésing and strictly concave in p in the interval (—o,0). It immediafely_
follows that T is a decreasing function of p in this interval. We conclude that by, = 1 is.a
sufficient condition for T to be decreasing in pand 47N sttictl;raclgonca'ﬁ inp,for —o < p <0,
(ii) (Only if). That by, 2 1 is a necessary condition‘ for T to be decreasing in‘ P

immediat»ly follows from the asymptotic behaviour of T as p— -, shown in (2.1.32). If
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¢
»

bm < 1, T approaches yp, asymptotically from above; so that T {or ¢n'T) is increaging and

convex for sufficiently large negative values of p.

EA

- Corollary 2.1.2
T(y;b,p) withK = 2isa decreasihg function of p in ﬁhe interval {(—oo, 0) for given
weights b and all (positive) y, if, and only if, b; = 1,i=1,..,K: Furthermore, €nT is strictly

concave in p under these conditions.

- Prooi:
Consider any y ;ﬁcl? that the y;i's are not all eqﬁal. Clearly, by = 1if t;ll' theb; = 1.
' Bi the theorm::, we know tl-lat T is decreasing and €nT is strictly concave in p € (-; @, 0). Now
consider dny y such that all the y;’s are équal. Then, T = flipy,, where B = Z; by > 1, if all

the b’s = 1. From our analysis of the spécial case (K = 1), we know that T is decreasing in ¥

p€(—~m,0). Furthermofe,

1 | ‘ 1 -
¢nT =,-€n[5+€ny1, ' — = —=—fnB, and _ :
p .

—2€nT=—3€nB<0, for p < 0¢
oo P "
Thus, €nT is strictly concave in p € (—x, 0). We conclude that bi 2 1,i=1,. ,K,is a -

sufficient condition. That this is also a necessary condition is readily’éeen by contradiction,

similar to the procedure in Corollary 2.1.1. \\\
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2.2 ‘ Norms

2.2.1 Definition of Round Norms

In order to derive additional properties of location models, it is useful to

characterize norms in more detail. To this end, we define the unit ball B of a ndrm k acting on .

RN agfollows:

= {x|k(x) = 1} (2.2.1)

Thus B is the closed set of points #x RN contamed by the unit contour of k. The symmetry

property, k(y) =k(~y), implies that if y € B then so is —y. Hence B is a symmetric sét of
points containing the origin. !
x

Suppose x; and xg belong to B, and consider a point y = kxp + (1 —‘,Elht)x'ﬁ where

A €[0,1). That is, y can be-any point along the line segment joining x| and x». Then, using the
triangle mequahty and homogenexty properties of norms, we have ‘ L
- kiy) = k(hx + (- h) x2)

(2.2.2)
5 Ak(x )+(1 A)k(xz) =1.

Thus y € B, and te conclude that the unit ball is a convex set In summary, the umtmof
any nerm is a symmetric closed bounded convex set. Furthermore, it can be shown (e.g.,
Theorem 15.2 of Rockafellar, 1970} that a one-to-one. cor;espondencré"éxists between the
norms k and the symmetric closed bounded convex sets B. Thus, a norm is uniquely defined
by a unit ball, and vice versa. |

Thisse, Ward and Wendell (1984) use the unit ball to distinguish between block and

round norms. They classify block norms as those whose contours are polytopes (polygons in

R2) as dmtmct frorn round norms whose contours contain no flat spots. Thls feature is

L4

~ illustrated in Figure 2.2.1. Referring to Figure 2.2.1 let zy and zz denote two points on some

contour Cofthe normk. This contour, which is the boundary of a convex set, is given by

S cetlwen), (22.3)



a) Round norms

—1"

b) Block norms

Figure2.2.1  Unit Contours in R2,
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where b is a sealar greater than zero (b>D).b Noting that k(zy) = k{zg) = b, and proceedfng as

L

in (2.2.2), we obtain ‘ _

o k(z + (1-Nz)sb, A€[0,1] . - 224
In particular, if C is the unit contour, sothath = l,irelétion (2.2.4) becomes

k(g + 1-Dz)<1, A€[0,1]. - @29

We _arg now ready to give a formal definition of the round norm, in place of the

qualitative description of Thisse, Ward and Wendell (1984).

Definition 2.2.1 A normk is a round norm if, aﬁd only if,

kQz, +(1-Nz) <1, 2.2.6)

for all zl,. zg on the unit contour of k such that z; = zg, and all A in the open interval (0,1).

S~

. " Note that the strict inequality in réf&(ﬁ:‘_t(z.z.ﬁ) implies that the unit ball B of a

round norm is a strictly convex set. In contrast, th&wunit ball of a block norm is not strictly

© convex. If zy and 22 arée on the same facet of the unit polytope of some block norm‘k, then

- k(Azy + (1—=A)z9) = 1. Thus, for k(x) a block norm, the < sign in relation (2.2.6) must be

zzf_-placed by a‘l S?'sig:x. The strict. convéxity 'of B for round norms allows for some us&ful
p;operties given below. Iilc‘)weve'r,‘before proceeding with these propérties, we subdivide
r_ound norms into two clasées as fdilows. N |

. : . . .
Definition 2.2.2 A round norm k(x) which is differentiable at all x € RN, except x = 0 (the
origin), is termed a ciifferentiable round norm. Othe::\i_r.ise k(x)is a ndndﬁferentiabl'e round

norm. : C : ' 1

By definitidn, al! norms must be nondifferentiable at the origin; (e.g., see

“directional derivatives in Chapter 2 of Juel, 1975). The differentiable round norm has the

useful property that its first-order derivatives exist everywhere else. However, this propex;tir “

doeés not hoid for nondﬁferentiable round no::mé, or for block norms. For eiample, ifkix)isa

—_ - ’ \\
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block norm, th;en clearly k(x) is nondifferentiable along the edges of its polytope contours,
whilé it trdifferentiable at all other points.e;ccept x=10. In R?, this means that the l)_!ock norm
is nondifferentiable gt the corher points of its polygon contours, while it is differentiable

reverywhere else except at the origin. |
The pre_ceedihg discuséion leadé to a practical classification of norms for use in

location models. This classification scheme is shown in Figure 2.2.2. Sample contours of the

various norms are illustrated in Figure 2.2.1.

222 Properties
By means of the triangle inequality and homogeneity properties of any norm k .
[relations (1.2.9) and (1.2.10)), it follows immediately that-k(Ax; + (1=1) x9) = Xk(xy) +

(1=1) k(xg), for all x;, xs € RN and all A € {0, 1]. Hence, kisa convex function of x on RN. This

well-known result, (e.g., Fact 1 in Chapter 2 of Juel, 1975, and p, 131 of Rockafellar,
1970), which pefmits many location problzms to be forixl)ulated as convex minimization
. models. In this sub-section, we exploit the strict convexity of the unit ball B to derive S'Eronger
convexity results for the case where k is a round norm. This will enable us later on to develop
some general propefties for minisum models which employ round norms.
We begin by formally provin‘gﬂ:ﬂe- equivalence between the round norm and
S-norm. The latter is defined by Pelegrin, Michelot and Plastria (1985) as follows:
A norm k t;n RN is ga‘fi%ﬁ an S-norm if, and only if, k(x; +x3) =

k(x;) + k(xg) implies that xa = B x, for some scalar B.

Clearly, § must be a non-negative scalar; otherwise if xp = —|p| x4, then'
kix, + x2) = kix, - B| x,)
= |1 |p||k(x,)

< |1+ |B[k(x) = kx) + kix,) ,



BLOCK NORMS ROUND NORMS
NON- - DIFFERENTIABLE
DIFFERENTIABLE - |
@ | ’ .

Figuré 2.2.2 A practical classification scheme for norms.
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for any norm k and f 0. We proceed with the following basic result.

Property 2.2.1

Let k(x) be a x:t_)und norm on RN, Then for xq, x9#0, k{x; + x9) = kixy) + kixs)

iR

implies that x2 = Px; for some scalar §>0. Furthermore, if this condition is satisfied by a

norm, it is a round norm.

Proof:

Let x; and xg be any points in RN other than the origin. Obviously, if x5 = Bx;,

5o

B>0, then for any norm g, we have - T
g(xl + xz) =1 +8) g(xl) = g(xl) + g(x2) -

Now suppose k is a round norm, and choose x; and xg such that xg = Bx;, >0. Then the hq]f?

.

lines from the origin which pass through x; and x, intersect the unit contour of k at two
distinct points, say z; and zp respectively. ‘We have X] = WiZi, Xo = Jgzg, where [, g are
positive scalars and z; 2zp. Then, letting pr = py + p2, A = py/pr < 1, gives

ok b x) = pokDi o+ (1-Mg)

< Mo, - (mlation (2.2.6))

" But

. “ k(x,) + k(x,) = p, kiz) ﬂ-pz kiz,)
= W PR Sy
Hence, '
k(x; + xg) < kix1) + kixg).
We éonclude that for k(x; + xg) to equal k(x;) -+ k(xg_)', we must have x2 = fx;, >0.
Now we prove the second part of this property. Suppose g is. a norm such that g(x;

+ x2) = g(xy) + g(xg) implies that xg = Px;, >0. Then, for any xy; x5 such that xp = px;,

)
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BEv 0, we have :
" glx, +x) <glx)+glx). | 4
Now cfloose two distinct points z; and zg on the unit_contour of g. Clearly zg= Bz, B> 0. Then,
Iétting B = M1-1), X € (0,1), we see that (1-XN)zg=2z). Substituting il = Az hnd
xg = (1 —A)zo into the above ineﬁuality,lwe gét | |
gz, + 1-Nz] < gz) + gl(1=}z,)
= )g(zl) +(1-Mgh)=1.

Hence, we conclude that g must be a round norm, ending the proof.‘ '

We see then, that the round nor_;u;, introduced by Thisée, Ward and Wendeil .(1984)
and the S-norm defined by Pelegrin, Michelot and Plastria (1985) are one and thesame. The
next property is taken from Pelegrin, M_ichelot and Plastria (1985). We intro’duce some |
notation first. Let L(x;, x2) denote the straight line through any two points x, xp € RN,
(x1 = x3), and let (x1, x9) denote the open segment connecting x; and xp. Finally, we define

L (x), x) = Lix,, x) — (x, x,). = - (2'-2-7)

Since the authors do not give-a proof of their result, we add one for corhpleténess.

Property 2.2.2
For any point ag L'(x;, x2), any round norm k, and xp = Axy + (I-1 X2, A € (0,1),7

the following inequality holds; 7 , ,

kix,— 8) <Ak(x, - a) + (1 =Dk (x,—a) . (22.8)

" Proof: )

| kxg = ) = klhx, +(1-Mx, - al
= kb, +vy).

where ’ -

y, = Mx, —'_a‘) 'and, ¥o=(1-3(x,—a).

N
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Since a € L'(xy, x2), clearly y; # fys, where p is a positive scalar. It follows from Property 2.2.1

-

that k(y: + ya2) < k(y1) + k(yz). We conclude that
kix, - a) < Ak(x, — a) +(1 ~Mkix, —a).

The next property is a direct consequence dfl'Property 2.2.2, It is a fundamental
result for round norms, which will be s;en to have important imp]ication_s in location m'odeis.
We give two proofs for thlsi;esult The first one is a quick denvatmn based on Property 2.2.2;
while the second one goes back to basms -the stnct convexity of the unit ball of a round norm,

and gives some insight into why the result does npt hold for a block nqrm.

Property 2.2.3
Let k(x) be a round norm on RN N=>1. Then k(x) is stnctly convex along any

 straight line which does not pass through the origin.

Proof:
Let 0 denote the origin, and choose any two points X1, X2, X1 %Xz, such that
0¢ L(xl,xg) i.e., the straight line through x; and Xz does not pass through the origin.

Clearly, 0 ¢ L (x1, x2). Thus, we can substitute a = 0 into relation (2.2.8) to obtain

-r . y k(xo) <A k(xl) + '(1 —A)k.(xz) ) _(2.2.9)'

where _ . : . I
Xy = Axl + (l—h)x',‘, , A€0,1).

Hence we conclude that k(x) is*strictly conve}c along any straight line which does not pass

. . T~
through the origin. 7

Alternate Proof:
Again choose any two poiﬁts X1, X2, X1 % X2, such that the straight line thrt‘)ugh\xl

and xs does not pass through the orié‘in. Clearly, x; =0 and xp20. We car;,writé X] = P1Zg

8
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and xg = pgzg, where p; and py are positive scalars, and zj and zy are intersection points of the

" unit contour of k w1th the half lines from the origin through X1 and Xg respectively. "'hnce the

line through x| and x2 does not passthrough the origin, we must have z; 2z9. Without loss in
generality, assume that py <ug. Then with xg = Axy + (1-M)x9, A € (O,i), p = Ay + (1-Aypg,
and X' = Apy/p’, we obtain

k(x-o) = klAp, z + (1,— My, z)

= whiMz + 1=z

<€ p'  (relation (2.2.6))
= M-ll +(1=X) 1, - a ) (2.2.10)
But py = k(x;)and py = k(xg) so that (2.2.10) implies R

k(xo) < Ak(x P+ a-N k(x2)
endmg the proof.

Returning to relation (2.2. 10) leh us now suppose that k is a block norm, and
futhermore that x,_ and xo are chosen so that z; and zg are on the same facet of the unit
. polytope of k. In this case, k[A'zy + (1 A )zz] = 1, and 50, k(xo) = = Ak(xl) + (1—-1) k(xa).
We see that if k is a block norm, and the half lines from the orlgm through x; and xo mtersect
" the unit polytope of k on the identical facet, then k varies linearly along the line segment
connecting xy and xa. It fgllows that k is convex, but not strictly convex, along aﬁystraig‘ht
line in RN. | . |
As noted previously, the £, distance function is widely used in location models. The

following result gives additional information concerning the classification of this imp&rtant

function. '

Propért;v 2.24

£,(x) is a differentiable round normfor 1 < p < +,



.~

B4 .,

Proof:r

It is well-known that €,(x) is & norm,on RN for p21%add that it is differentiable
everywhere except atthe origin for 1<p< +, (e.g., P- 14 of Juel, 1975). Hence,-.we need oniy
simw that relation (2.2.6) holds for €,(xY to complete the proof. Let x and y be anir two points

in RN, Then,

¢ N p
eoty) = [ X [x +y P

i=1 .
N ' N Vp

< [ Sk +[Snp ‘
i=1 i=1

_ : | . @21

= e+,

from the Minkowsky inequality. Furthermore, equality in (2.2.11) occurs if, and only if,
x=yuy, ' (2.2.12)
where y is a non-negative scalar. But if z; and zo are two different points on the unit contour

of €,(x), then clearly, ‘ ‘ - m |
| | - (2.2.13)
' . - Zl ,:t pz2 ’

for any p = 0. This implies that z;" # pzy’ for any p = 0, where z;' = Azy, 29’ = (1=1)zp and
A€(0,1). Hence, .- . '

) 'fp Az, + A =A)] < Ep (Ml)l_+ EPE(} —A)z]

A L’p(zl) + (1—=2) fp (zz)

o | . = 1. ) (2.2.14)

Thus, relation (2.2.6) holds, and we conclude thét {p(x)isa differentiable round norm.

~ The next property shows how a nondifferentiable round norm can be conétructed.‘
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Property 2.2.5
Let kq(x) denote a block norm and ks(x) a differentiable round norm, where x € RN,

N >1. Let kg(x) be a positive linear combination of k 10%) and ka(x); i.e.,

(2.2.15)

ka(x) = alkl(x) + azkz(x),' a,a,>0.

1,
Then k3(x) is a nondifferentiable round norm.

Proof:

Sincé a positive linear coﬁnation. o,f_ norms is itself a norm, we conclude that k3 is
a norm. Since k; is a block norm, it is not ldifferentiable at all x other than the origin.
Clearljr, the same must h?ld for k3. Finally, let z; and z be any h..vo po!nts on the unit contour
of k3, such that z; = z3. (Note that z; and zp are not in general on the unit contour of k{ o.r ko)

¥

Then,

ka(zl) = alkl(zl) + azkz(zl) =1, and |

1-53(22) =‘a1k1(22) + a2k2(zz) =1, . ——

Two possibilities need to be considered. r
a) z; = -z9. Then for]\ € (0,1},
' - ky[Az + (1-2)z,] = kI -20z,)
= [1-2|k,z) -
= |1-2A|<1. (2.2.162)
b) Z] & —~23; 80 that the line through z1 and zg does not contain the origin. Thenfor A €

(0,1),



T

N

: 56

r
ky[Azy + (1-A)z,). = a k Az + A =Nz]+a " Az, + (1-1A)z,)
b
s 2, (Ak,lz) + (1 —Dk,@)} +8.k, Az, + (1-A)z)]
(triangle inequality)
< aiqhkl(z-l) + (1= Dk, @)} + a,fkk,@,) + (1 -k, ()}
{relation (2.2.9) for n—mnd norms)

= A{alkl(zl) +a k. (z)} + (1 —J\){alkl(zz) + a k,(z,)}
= A+1=-2=1. o o (2.2.16b)

We see from (2.2.16a) and (2.2.16b) that kg satisfies relation (2.2.6), and hence is 2 round
norm. We conclude that ké(x) isa nondifferentiablé round norm.

'Property 2.2.5 implies that any block norm or differentiable round norm can be

- considered as a limiting case of a nonidifferentiable round norm. For example,

1 ) . 1 ) .
k(x})= — lim k(x), and k()=— lim k(x), . (2.2.17
a - a .

' 1 a2—r0 2 al—bO ‘ e
where kj, ko and kj satisfy (2.2.15). In this sense then, the family of nondifferentiable round
norms contains the families of block and differentiable round n(;rms. It will also be evide/u{
later that the nondifferentiable round norm exhibits characteristics pecuiiat‘ to each of the

other norms.

23 Nbrms Raised to a Power

As no_ted m the first chapte:_-, ‘a generalization of the standérdiWeber problem
involves the use of distance functions raised to a power: This allows for a less restrictive cost
strﬁcture m the n:odel. If the distance function is raised to a power t € (0, 1), its associated
cost component exhibits an economy of scale; if t =1 there is a constant retﬁrn to scale;
finally, if t > 1 we have é. diseconomy of scale. This section deals with properties of a norm

raised to a power. We begin by deriving an inequality, which will be useful subsequently.

-
(S
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Lemma2.3.1 S -

Ife; = 0,i=1,.., M, then

. l::zﬁ

t M .
aZc'i’, for t>1; and

M tu .
t o

[Zci'] SZci, for t<1.

i=1- =1

(For t = 0, we assume that ¢; > 0, V i. Otherwise there are undefined terms.) In both

: relationé, equality holds if, and only.if, all the ¢;'s or all but one of the ¢'s are zero.

Proof:
If all the ¢i's or allbut one are equal to zero, it is trivially obvious that the equality
sign holds in each case. Hence, we assume from this point that two or more of the c-i's are

positive. For t > 0, we can delete the ¢i’s which are equal to zero and re-label the remaining

- ones; so that without restriction we now assume that

1

ci>0, Li’=1,...,M,_ and M=z=z2.

Re-write the left-hand side as follows:

Y t M t-1 M t-1 M t—1
‘ [Zci] =°1[Z°i] +°2[Z°i] -+"'+°M[Z"}
i=1 i=1 i=1 H=
Ift > 1, |
M t—1 .
[Za] >et i=nems
i=1
so that
£, ot t
[ch >+ g+, +d,, fort>1.
i=1 '
ft<1,
Y —_—
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so that

M - :
t t t
[z cl] < '::1+'¢:2+...‘+n:M ,, fort<1.
i=1
Thus the lemma is proven.
Let k(x) denote any norm on RN, and define the following function,

~ hx)= k&), ©o. @3
where t € (—w, +©), We note that : - . \

hiax) = (ki)
= o' kG = R, - 2.3.2)
so that the homogeneity property of norms is lost unless t = 1. Thus, h(x) is not a norm if

t = 1. The following results give additional information concerning the function h(x).

Property 2.3.1 ;

‘ h(x) does not -nc?cessarily satisfy the triangle inequality whent > 1.

Proof:
Choose three different points xi, Xz, x3 € RN, such that x; —x9 = B(xg—x3), > 0.

In other words, a straight line connects x;, x and x3. For this case, we have

k(xi—xa) = k(xl-xz) + k(xz—-xa) .

o by —xg) = [klx —x 3+ kix,>x )
> D, = x I + [kxy—x I (Lemma 2.3.1)

| = hix —x2) + hix -x3) L o (2.3.3)
Thus, the tnangle inequality does not hold in th1s case.
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Property 2.3.2
“h(x) satlsfies the trlangle inequality for 0 < t < 1 Furthermore, the trlangle

inequality is sat1sﬁed in a strict sense. _ 3

Proof:
For any three distinct points x, xz, x3 € RN, we have

hx,—x)) = [kéx, —xpl"

ol
’ = [k(xl—x2)+ kl(xz—xs)']" (triangle inequality)
< [ktxy=x I + (ktxy—x )" (Lemma 2.3.1)
= h(xl—rx2) + h(xz—xs) . . : (2.3.4)

Thus, the triangle inequality is satisfied, and furthermore, the ingquality is' strfet for any
distinet 'icil, X2, X3 € RN, ' L !

The preceding two properties generalize results given by Morris (1981), in \ﬁrhich
k(x) is the €p-norm, to the case where k(x) can be any norm. In addition, we show in
Property2 3.2 that the triangle inequality is strict for 0 < t < 1. The followmg result

provides information concg‘mmg the classification of a norm raised to a power.

Property 2.3.3 -

o

h(x) is a metric for 0 < t<1. B

Proof:
We veri'fy that the pfoperties of a metric hold. Let p, q, r denote three poinits in RN, .

@ Since k(p—q) = 0,V p, q € RN, it follows that h(p—q) = 0, ¥ p,q € RN,



&
i al
(ii)  hip—~q)=0 & kip~q)=0®@ p=4q. 7 -
(iii) hip~q) = h(p-r) + h(r-:- q), VY p,q,r € RN, by Property 2.3.2,

{with strict inequality if P. 4, r are distinct points).

(ivy ~ h(p—q) = [k(p—q)It = [kig—p)]t = h(g—~p)}, V¥ p,q€RN.
-
We conclude that h is a metrie. ) ‘

The above result can be generalized as follows: If ¢(p, q) is a metric and t € (0, 1),
then Q(p, @) = [¢(p, q)It is also a metric. We show that. Q(p, q) satisfies the triangle

inequality, the remaining prdperties of a metrie bying easily verified.

4

- Qp.q) = b,

< [olp, 0+ ¢, ) . (triangle inequality for the metric )
S 0@, 0F + @, (Lemma 23.1)
= Q@,n +r,q) . g - -

-The next property is taken from Pelegrin, Michelot and Plastria (1985). Since they
do not give a proof, we provide one for completeness. Also recall that their S-norm is identical

to our round norm.

.Property 2.3.4
If g is 2 nondecreasing strictly convex function, and k is a round norm on RN, then

g(k(x)) is a strictly convex function of x.

Proof:
. First note that glu), u€ Rl;'must be an increasing func‘tion of u. We see this as

follows: Sﬁppqse uj < ugand g(uy) = g(uy). Then by the strict convexity of g,
gu, + (1-Nuy) < Aglu) + (1-Nglu) =glu), fr.0<A<1, y

/\ -

»
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*
which contradicts the nondecreasing property of g. Hence, we must have g(uy) < g(ug) for

‘uy < ug. Now choose any two peints x;, x3 € RN, suc t X1 = X9, and x; = 0 (the origin).
There are two pqssibilities to cansider. {m‘i . |
T () xg = Bx), where f = 0 (B = 1.
Letting xg = Axl + (1—-A)xg, X €(0, 1}, we get
g(k(xol) = gklx +@T-xD

g + (1 = M) B k(x))]

It

glAkex ) + (1 - D k(x,)]

. (2.3.5)
< Aglix,) + (1 =N glix,) ,

* since k{x1) = k{xg) and g is a strictly convex function.
(i) xg # Bxp, whe"lre B= 0.
‘From Property 2.2.2 with a = 0, it follows that k(xe) < Ak(x1) + (1—A) k(xs). Since g is an

~

increasing strictly convex function, we get .

glklx)) < glhk(x) + 1 -Dk{x)]" .

a

= Aglk(x ) + (1 - Mglktx,)), (2.3.6)
with equality in the last iine if, and only if, k(x;) = k(xg). Combining (2.3.5) and (2.3.6), we

conclude that g(k(x)) is a strictly convex function of x.

» 1
. As a consequence of Property 2.3.4, we get the following result.
I
5
Property 2.3.5
o .
u- . .~ Ifk(x)isaroundnormandt > 1,thenh(x)isa strictly convex function of x.
. o .
‘ P?oof: »

Note that h(x) = g(k(x)), where the function g is given by
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. 2.3.7)
glu) = u" . .

Since g is an increasing strictly convex function for 0 < u < + and t>1, we immediately
conclude from Property 2.3.4 that h is a strictly convex fur@tion of x. |

Un.f'ortunatélyfthé Prdpe'rfies 2.3.4 and 2.3.5 do not extend to the case where lgﬁrﬁ
block norm. This is dﬁe to the fact that k now has polytope contours (polygo'n contours in R2).
Since k{x) is constant along the facets of these polytopes, 50 is g(k(x)), and thus g{k(x)) cannot
be a strictly convex function of x. However, Property 2.3.4 can be modified for the case whlere '

k is a block norm as follows.

Property 2.3.6
S

If g is a nondecreasing strictly convex function, and k is a block norm on RN, then
g(l(x)} is a strictly convex function of x along any straight line which is not tangent to a facet

of some contour of k. Otherwise g(k(x)) is a convex function of x.

° Proof:®

Let x;, x2 be any two points in RN, such that the straight line through x; and x»
(L(x3, x2)} is not tangent to a facet of some contour of k.' There are two possibilities to consider.
@) k(x1) = k(xq).

Letting xg = Ax; + (1=X)x3, A€ (0, lj, we get .
ghkix )= glklAx, + (1-1kx,]

-
(using the triangle 'me_gdality and
= g[hk(xl) +(1-Mk(x,)] the homogeneity property fork, and
the nondecreasing property of g)
. . (2.3.8)
< Aglkx ) + (1 =D glkix,), ' o -
sincegisa stx:iétly_ convex function. '

~ -

~ T
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(i) k(xy) = kixag).
Then x; and xg are on different facets of some pontopé contour of k. It imﬁ:ediat follows
that |

k) < Aklx ) +(1~Dk(x,) .

In Property 2.3.4, we showed that g must be an increasing function. Thus,

glkGxg) < glAkx ) + (1 - Dk(x,)]

= Mglkx ) + (1 = Dglx,). (23 9

’ Combin_ing (2.3.8) Ld (2.3.9), we see that t.he first part of the property is proven. Noting that
an increasing convex functicn of the convex function k(x} is itself convex in x proves the

second part. i

Analogous to Property 2.3.5; we obtain the following Speéial case.

Property 2.3.7

i

Ifk(x) is a block norm and t > 1, then h(x) is a strictly convex function of x along

. any straight line which is not tangent to a facet of some contour of k. Otherwise, h(x) is a

-convex function of x. .
24 Differentiability and Direeﬁﬁml Deriyatives T

It is usually desxrable in optimization models to deal with functions which are
dlﬁ‘erentlable everywhere. Unfortuna&\ljr, normsg are not%tlable at the orlgm Ifk isa

norm on RN, then by the homégeqeity property, . ) .\O
k(ax) = |a] k(x) L )

where a is any scalar vaIue Thus, if we plot k as a function of x-along any strmght line

passmg through the origin, the slope will have constant magnifude (>0), but opposite sign on

<h

each sxde‘of the origin, This V-ghape 1'.?111ustrated in Figure 2.4.1(a). Clearly then, the deri-

Y



h(x) S  h(x)
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x
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Figure2.4.1  Profiles of h(x) along a'Straight Line in RN Passing throu.gh the Origin,
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vatives are not defined at the origin. In addition, if k is a block norm or a nondifferentiable
: 4 -
round norm, it has infinitely many other points in RN where it cannot. be differentiated.

To partially circumvent these difﬁcul'ties, we use the concept of one-sided
directional derivaﬁves,- defined ag follows (e.g., see p. 387lof Kreyszig, 1983): Let f be a real-
valued function onéN, and let x and y be N-vectors, with y having unit length. Then the one-

. sided directional derivative of the f}:nction fat the point x in the direction y is given by
’ Focy) = lim f(x+8y)—-f'(x)} '

g-0" 8 4 )

-if this limit exists. ] . o~

b
We see from (2.4.1) that £ '(x ; y) gives the marginal rate of increase of f at point x in

(2.4.1)

the direction y. The term one-sided refers to the fact that the limit is taken‘as the r:eal
varieble § approaches 0 through ppsitive values (i.e., from the fight).- Since we sl.lallu deal only. -
with directional derivatives'that are one-sided; this term will be‘or_ni'tted. F;urtherrr_tore,_we
shall only'conside_r continuous functions, so thgt the Iimit-in (2.4.1) will always exist. Thus,

the proviso at the end of the definition can also be omitted. Finally we note that the’

restriction of y to unit lengtk means that

j’ _

o N (2.4.2)
. B - 2 _ . -
ezty)—[Zyi] =1, -
] . . i=1
where y = (yy, ..., yN)T.I If this restriction is deleted, then €o(y) has to be included in the -
i ‘denominator of the expression for which the limit is being taken in(2.4.1).
~ Iffis differentiable at the point x, the directional derivative here is equivalent to

the total derivative;ie., | - "

= £ ;y) = Vi) -y , ‘_(2-4-3)
where Vf (x) denotes the gradient vector of f at x, and the "." signifies the inner product (or dot

T

product} of two N-vectors. L



.
u

We now gwe a fundamental result for optimization models in which a convex

4

objectlve function is to be rmmmlzed This result is taken from Shapiro (1979, p 361), who

also provides a proof ) -

Property 2.4.1
Let f be a real-valued function on RN, ahd let x and y be N-vectors, v‘.'it.h.y having
unit length. If { is a convex functioh, then f has a global minimum at x if, and only if,
f'(x;y) = 0for all directions y. 4 ‘ |
Alternaltively_v,r, we can say that the convex function f has a global minimum at x if, -

an& only if,
' min £'(x;y)=20. . (2:4.4)
, y o _
That this is a necessary condition is obvious. If ye denotes the direction which minimizes

f'(x;y), and iff'(x 3{-) < 0, then the function f i.s decreasing at x in the direction y» over some
finite length. Hence, x cannot be a local (or globa.l) minimum. That relation (2.;1-.4) is a
sufﬁcient? condition can be seen as follows. If miny f'(x ; ¥) = 0, then by the convexity of f, the
point x must be a local minimum. Furthermore, a local mtnimum of a convex function is also
#»a global one. It is interesting to note that if f is differentiable a-gt x, the relation (2.4.4) reduces
to - : e |
Vi) = 0, (2.4.5)
.whlch isthe first-order condition defining statmnary points’ ofa dlfferentlable functlon
Let us now congider any norm k on RN. It is a well-known result that the
directional derivative at the origin is given Sy

| WOy =k,
(e.g., Juel, 1975, Juel ‘and Love, 1981). This follows readily from the definition of the .

(2.4.6)

direetional derivative givenin (2.4.1).



kim [ k(Sy) —k(0) }

g0t

lim la——k(y) ]': k(y).
g0’ )

If k is a differentiable round norm, it is differentiable pver}whe‘:"'e except at the origin; so that

k'(©,;y)

forx =0,
k'(e;y) = Vk(x)-y. (2.4.7).
Let us extend the results of the preceding paragraph to functions of a norm.
. Consider then the case where |
| fx) = g(k(x)) . (2.4.8)

‘Here, k is any norm on RN, and g(u) is a differentiable functmn fot' u € [0, +o). ﬁy means of

the chain rule of caIculus, we obtain

£'(x;y) = gkOkx:y), (2.4.9)
where :
. dgla)
g'(u) = el

Thenforx = 0, we get-

a4

£033) = gkONKO;3) = g'0) kiy), . (2.4.10)
where use is made of (2.4. 6) and the fact that k(0) = 0. Note also thatg (0) is.the right- sxded

derwatwe of g evaluated at 0, since the argument k(x) is non-negatwe Furthermore, if k isa

dlﬂ'erentmble round norm and x # @, then -

f'ix;y) = g'k(x) Vkix) -y . (2.4.11)

.

Asan ex_am%le, let us return to the function hi{x) = [k(x)]t.‘ Here, we have f = hand
g(u) = ut. Noting th;lt g'om=0 'Lflt > land +«if0 < t < 1, and applying equation (2.4.10)
gives | )
0, ft>1

. h'(O;y)z[ o o (2.4.12)
: A L4+, fOo<t<l.
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f -

The shape of h as a function of x along a s-traight line through the origin is illustrated in |
Figures 2.4.1(b) and (c) for the ranges of t above. Equation (2.4.12) generalizes the results
obtained by Love and Morris (1978) for the case where k is the Euclidean distance to the case 7

where k can be any norm. Our method is also more concise than theirs. -
—

Fof the case where t < 0, the function h(x) becomes unbounded as x approaches the

origin;i.e.,
| limh(x) = +, t<0. (2.4.13)
-0

This is illustrated in Figure 2.4.1(d). Thus, the-directional derivative is undefined at x = 0.

An inﬁiﬁte cost is associated with h(x) at x = 0, and the magnitude of h(x) decreases as the
distance l;(x) increases. Thus, the use of negative t does not make sense in standardAminilsum
location models. It is not surprising then thét t is restricted to positive values in the
literature. However, it is interest_ing .to note that for the location of a noxious facilit;,/where
..the‘ objective is to, maximize tlhé minimum distance to a set of fixed points subject to a set of
~ constraints, one mig-ht consider instead ahinisum criterion with negati\.fe t. Such a model - .
would take the form, o ) S
: ) .

minimize Wiox®) = z w hix-a) '

. i=1

X .
L4

n ! ' - . 0
= Y wkix-a)f, t<o, ‘
i=1 ' ’

where the w.i are positive weights, the a; are the fixed points, and the same set of location

constraints apply. The use of such a model in practical situations involving the Ipcation of

Jpoxious facilities should be of some interest, as an alternative criterion. As an example,

consider the location of a polluting facility such as a smoke-stack, where the amount of

pollution varies inversely as the distance from the facility. In this case,t = —1.

We use (2.4.12) now to obtain some interesting results fdr norms raised to a power.
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Property 2.4.2 | o ‘ \._/

Consider the function h(x) = [k(x)]t, where k is 2 norm on RN andt > 1. Then h(x)

1is differentiable at the ori‘gin, with

Vh(0) = 0.
Furthermore;ifk isa g‘iff_erentiable round norm, then h is differentiable everywhere.

(2.4.14)

Proof: _ . ' _,_/\f/

From (2.4.12) we see that h’(0:y) = 0 for all directions y. It immediately follows
that h is differentiable at x = 0, with'Vh{(0) = 0. if in éddition, ‘k i$ a differentiable round
norm, then by (2.4.11), h'(x;y) = t[k(x})t—1 Vk(x) -y = Vh(x) -y forallx 2 0Oand ally. Thush

is differentiable everywhere in this case.

Property 2.4.3
. Consider the function h(x} = [k(x)}t, where k is a norm on RN and t < 1, (t = Q).
- Then h(x) is not difTerentiaBie at the origin. Furthermore, -h(q)'c) is neither a i:onve# nor
concave function of x. _ ‘
. -
Proof:
. , N
Forthecase 0 < t < 1, we have'h'(0;y) = += from (2.4.12), for a_ll dir%c'tions y.
Also h is a finite-valued function of x with.lq}(O) = 0. It follows that'h is not differentiable at -

* »the origin, and that it §annot be convex or concave'in x. For the case t < 0, it is immediately

obvious from (2.4.13) that the same conclusion holds. -

- From properties (2.3.5) and (2.4.2), we see that h(x) is a strictly convex differen-

tiable function of x, if t > 1 and k is a differentiable round norm. This result has. practical

- -
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implications on the optimization of continuous location models. Consider for example, the
~— ' '

minisum objective function, ' P

WG(x) = Z w, h(x—a.) ,
i= 1

where the w; are posxtwe weights and the a; are ﬁxed points, ‘1 =1,..,n Then Wg is a
positive linear sum of strictly convex differentiable terms, and so, is itself a strictly convex
differentiable }unction of x, if t > 1 and k is a differentiable round horm. Thus, the optimal
location can be found by standard descent techniques Furthermore, this locatxon will be

. u-nique for any set of a;'s (collinear or not). If the minimization is constramed a convex
programming technique will solve it. )

Another practical implicati'on is that h(x) can be used as a "smoothiﬁg" approxima-

tion of a differentiable round norm k(x), by choosing a value of t slightly larger th%boné; ie.,

, t=1+e, _
where 0 < ¢ << 1. This provides an alternative to the well-known hyperbolic and

h},rperboloid approximations used extensively in the literature (e.g., Love and Morris, 1975b,
Morris and Verdini, 1979, and Eyster, White and Wierwille, 19:( 3). We illustri;.te this concept
in Figure 2.4.2 for the one-dimensional case, where the hyperboli¢ approximation V(u2+¢) of
u| is compared with our smoothmg functmn |u| t+e. Note that our approximation is
s:gmficantly better near the origin (u Q),. but it becomes maccur%te with IuI sufficiently
larg_e.' A
If k is a block norm olr a nondifferentiable round norm: there exist points’'x other
-I than the oring-inv where k is nof differentiable. The next property characterizes this set of

points,
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Préperty 24.4
~ Let k be a norm on RN which is not differentiable at all points other than the origin,

and let S denote the set of points where .k is not differentiable. Consider any X € S, xo # 0.

Then

Lcs, " ' (2.4.15)

where Ly, is the straight line passing through the origin and‘xo.

Proof:
We begin by noting that 0 € 8 for all norms. For the given riorm k, we can also
choose an xg € S such that xgp = 0. Consider the change of variables, v = x/y, where p is a non-

zero constant. Since k(x) is not differentiable at xg, it follows that f(v) = k(uv) is not

ﬁerenﬁable at vp = xp/p. But k(pv) = |p| k(v), so that k(v) cannot be differentiable at vq.
, conclude that the straight line through thie origin and xq belongs to the set S.
The directional‘derivative of a norm k(x) at x = 0 i3 given in equation (2.4.6). We

would like to extend this result to thé otl}ér non-differentiablgpoints of k(x). This would be of

Ly

intei‘est for block norms and nondifferentiable round norms. From Prdpérty 2.4.4, we know
that these points form straight lines through the origin. Referring to Figure 2.4.3(a), let L, '
"denote such 2 line, and let us calculate the directional derivative at any xg € L, (x¢ = 0), in_
the direction of the urﬁt vect;or y. The unit ven;tor ¥ can be ’reprgs_;entodfér the unique sum of

‘two {vectors, VL and V¢, where VL is parallel to L, and Vg is tangent to the contour of k at xg;

=

(see Figtfre 2.4.3(a)). Thus,

y = VL + VC; (2.4.16)

so that the directjgas derivative of k'&t'xo in the direction y is given by

-~ b

L3
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R = &.(I,)

a)  General case

L2 ’
e ¥
x,
/ V'-
y .
/ AR
e . \WKG‘)=£C7-°)
z ﬂ s \\ ‘ x,
0 ¥

b) Rectangular norm

d

Figure2.43 Directional Derivative Calculatisn ata Non-Differentiable Point.
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. ktx0+5y)_k(x0)
k'(xo;y) = lim { ]
+

5
' §—0
[kl BV, + 8V —k(x)y .
E 'i"‘-'-'[ 5 }
80"
c kg +BV)) =k(x))).
‘ 8—>0+ 2
since ' )
- ¥ 2
k(g + 8V, +8V) = kix,#5Y,) + 06",

But |
- k(x )~ 8k(V,) , if X, and V, haveopposite directions,

k(xo-i- SVL) = { ' o
e k(x0)+8k(VL) , if X, and 'VL have the same direction ,

¢

-~ where 8 is sufficiently small, and use is mﬁde of the fact that k(vitve) = k(vi)+k(vo) if

pr)

vo=Bvy, P > 0. We see then that

» . [ '.'k(VL)" if x,and V, have opposite directions, (2.4.17)
X.:¥) = L
0 +k(V)),  ifxjand V havethesame direction. .

’ . ”
- As an example, consider the case where k(x) is the rectangular norm (€,(x)) on R2.

" The set of points at which k(x) is not differentiable is gi#en by

S={x]x1=0 or. x2:0},

where x '-, (x1, x2)T. That is, the set S consists of the points on the vertical and horizontal

axes. Let xg be a point on t.he-'ve.rtical axis other than the origin, and let 8 be the smallest
angle at x, between the vertical axis pointing away from the origin and the unit direction

vector y; (see Figure 2.4.3(b)). Then

S —(os9+sin®), 135°=0sS180°,
k(V)) = o _ ! 3

. ) © v +lcosB+sinB), i 0=0=135%

We see from (2.4.17) that T

Tl rw) = r : ° - (2.4.18)
N BN : k(x.o.y)—cose+sm9-,l 0<0=180°. o
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. \
PR . ) .
With y = (yq, y2)T, we have cosd = yp and sinB :fﬁl, so that (2.4.18) can alternatively be
written as
(2.4.19)

k'(xgiy) = |y, +yy- .
' Consider now a minisum location.model with fixed points or customers, a;,

\ i=1,..n Each custm;nerai has a norm of the fdrm ki{x—a;) associated with it. The norm

ki(x—a;) as a function of x is the same as'k.i(x) translated or shﬁled by tile vector 8;. We see

\Q)\ _ tﬁat the origin associated with ki(x—a;)isatx = é; {x—a; = 0). Furthermore, if k; is a block
nlorm or nondifferentiable round norm, then the straight lines (Ly) containing £he non-

differentiable points x of ki{x — a;) will pass through a;, (see Property 2.4.4).

-
i

Directional del:ivatives are used in minisum locatioh models to determine
optimality criteria at the fixed point§ (e.g.,. Juel and Love, -1981, and Juel, 1983). We shall see
lg:% they. can be applied to péints othe:"- than the fixed locations, for block norms and

' nondiﬁeren!;i'able round norms, to obtain additional optimality criteria at the intersection

-i:roints.' These intersection points occur in R2 where two (or more) non-differéntiable lines (Lg)

from diﬂ;?rent fixed locations cross.
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" CHAPTER 3

THE ¢, NORM

As noted in Chapter 1, the- €p norm is us.ed exteﬁsively in the literature on
continuous location theory. The most popular distances - re;tangular and Euclidean - are
specific examples of this norm with p = 1 and 2 respectively. Il;l this chapter, we invgstigate
several ﬁrOperties of the £p norm which are relafeJd directly or indirectly to the application of
this functio.h in approximating travel distances of road networks.

Firsi we define a directional bias function for norms in general, which is subse-
quently uséd to study the directional bias of the £, norm in detail. An i;nportant rélatio.n
between £p distances with 1 < p < 2 and those with 2 S.p'j + is established. We then
derive some properties of the £, norm multiplied by an inflation factor, which pertain to
certain fitting criteria applied-;in the literature. These ﬁroperties should bse wseful in

-

simpiifying the search for the best-fitting parameter valueé.. Finaily, we discuss a general
. 4 ~ o
procedurg for fittiﬁg this distance fu.nc.tibn to actual road data, and illﬁstrate the approacb .
- througha case study. | ..

‘Throughout this chapter, atfentiqn’is res‘tx;icted to distance functions acting oﬁ t.hg
plane (R2), since this is the most common cﬁse occurring in practice. Hoﬁever, the i)roperties
‘ given héré can be exte_nded in straightforward fas”hion to hig!gr-dimen_sional spaces.--Also
not;a that the reference axes are g]wéys assumed to be mutuélly orthogonal unlres‘s otherwise
stated. | o : o #

.« ., e
3.1 Directional Bias . |
B For any norm k on R2, we ha.vg the folIovfring fundamentdl result. ‘

6.

1
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Property 3.1,1

The dimensionless ratio,

sk S
r= G , x=0, - +  (3.1.D
_ Ez(x) - , ' ‘
is a function of 0 alene, wheré 0 is the angle spec fying the vector x = (x1, x2)T; that ;;/\
' ‘ (3.1.2)

_ -1
9 = tan (lexl) .

(Sce Figure 3.1.1a)

Proof: ‘
’ For thé points x= 0 on any hallf-line ending at the origin, we have -
kix) = £, (),
\w.;here ¢ is a constant. It immediately follows that r = r(6). | _ )‘-.'." '

) b
We shall call r(8) the directional bias function of the norm k. In a qualitative sense,

this fuﬁg\:tian can be thought of as & measure of the relative difficulty of travel in any
direction Ir r(81) > r{Bp), then one must travel a longer distance along a line at anglé 10 with
the x1-axis than along a line at angle 8y with the xg-axls, to cover the same Euclidean
distance between pairs of pomts In the physical world, the shortest possxble path between

%-two points is the straight-line or Euclidean path. Hence, for norms used to approximate

actual travel distances, the directional bias function should satlsfy the followmg relation,

| {@)=1,vY8. 1 - (13
Otherwise, distances shorter than Euclidean are possible.  The differentiability of r at a

+ gpecified angle 9_0 depénds on the differentiability of k at xg (Figure 3.1.1b). We shall discuss
this rélationship in more detail later on. |

.The traditional method ;;f illustrating and comparing the difectioxial bias of norms

is by means of the hit cm:le (e.g., sge igure 10.1 in Love, Morris and Wesolowsky, 1988),

The functmn r(B) prowdes a formal definition of d1rect1ona1 bias, and a new way of |

-



a) Constant along any specified orientation 8

\

b) Differentiability dependent on type of norm

-

“.

Figure 3.1.1 N Deten{:}ﬁr_ﬂryg the Directional Bias Function of a Norm.

/
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representing it graphically which we believe is more informative and easier to interpret than
the unit circle, since the relevant information is now contained in a standard plot of a function
of one independent variable (8).

From the symmetry property of norms, it follows that

kix)
£,(x)

() =
2

k(—x)

£o(~x)

Thus, r{6) has a periodicity of n/n where n must be some integer greater than or equal to one.

= @+, : (3.1.4)

Let us consider now the directional bias of the 4o nofm, denoted by rp(8) where

p = 1. Using the definition in (3.1.1), we obtain ' ' .

L@ v - -
8) = P . p+ - p] ] ‘ . (3.1.5)
- O £,x)  £(x) R : '
Since ‘ . .
* : *2 | 1 (3.1.6)
0= - inf = . 1.
c0s fz(x) and sin Ez(x) ,
equation (3.1.5) can be rewritten in the form,
: ) 1/
5 EAI PRI
w0 = (o) (25) |
'82(X) N Efx)
5
Yp

| cos® |P + |sin8 |P

Alternatively, we see that the ¢p norm can be expressed.in terms of the Euclidean distance

and the angle of travel ('B) as follows:

\ Up |
MOE £,00) [ |cosB P + |sin@|P ] . (3.1.8)
~ Examples of the directional bias function for different values of p include
r,0) =|cosB{ + [sin6{ , o - (3.1.9)
and s . : X
¢

(3.1.7 -



N
‘Proof: . -
| .
rp@+n/2) = [lmﬂ6+w2>|P+lsm<7m0)|“} .
= 9|p+]c059]P
- </
= c056‘|p+[sm6]p '_r(e) A G B S Y

Property 3.1.3 \\
o . Foranyreal ,

0 = ||oos6* + |sing 7} =1, (3.1.10)
for the rectangular and Euclidean norms respectively. - , oy
Some useful properties of rp(B) are derived below,
— &
Property 3.1.2 o ' Q

rp(®) is periodic with period n/2 (=90°).

-rp(n/4 + Q)= rp(n/4—.Q) .

Proof:

t

‘This follows immediately from the observation that cos (/4 + Q) = sin (/4 —) and
sin (/4 + Q) = cos (nf4 - Q).

From the two preceding results, we see that r(6) is the mirror image of itself about
the line 8 = n/4, and that this fuﬁction has a period of n/2. Hence, it is only necessary. to
consider 0 in the 1nterva1 [0, r/4], (i.e., O to 45°). Notmg that | cosBl = cosf and {sin@| = sinf

for 9 €[0, /2], we readﬂy obtain the following expressions for the first and secqnd-order

Fd

(3.1.12)
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derivatives of 1p(0):

dr (8) : | |
p°) _ sin20 _(_m,,_geﬂinp_ge)' _ (3.1.13)

do '2‘[rp o =

and -

(3.1.14)

where - <<,

Property 3.1.&
~In the interval 0 = 8 <n/4, rp is a strictly increasing function of 9if0< p < 2,
while it is striétlf decreasing irile fp>2.
Proof: ‘ T .
For0<8 .< /4, we have cosd > sin 0; so that cosP—26 > sinp'29 if p > 2, while

cos? 28 < sinP~20 ifi 2. From (3.1.13) it follows that for 0 < & < /4,

- dre : , e
—L 50, ifp<2(p20), | @15
de : |
and
dr , .
' s i (3.1.15b)
. : : — <0, fp>2.
} de P _. |

o

Hence, the i:roperty isproven.
Property 3.1.5

Ifp>1 anc_l'p = 2, then rp has a unique inflection point (6+) in the interval

0s0<nmn/4."
RN

‘e
-~
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Proof: )
" First consider the case 1 < p < 2. Since rp is strietly increasing (Property 3.1.4)
and so is 8in20, we see from (3.1.14) that d2rp/d62 is the sum of two strictlyr decreasing terms. .

Hence, d‘f-’rpldé2 is strictly decreasing in 8 € (0, n/4). Furthermore,

dr ' ‘ | (3.1.16)
lim ‘—-:=+m, l<p<2)] ™ o
oot do
and . '
d’r (/) L % . (3.1.17)
= fz(p—2)2p <0,(1<p<2), :

Therefore, a unique B» existssuch that d2rj(6+) / d62 = 0, and 84 is an inflection point.
Now consider p > 2. Since r} is strictly decreasing (Property 3.1.4), it follows that
- d2rp/de2 is the sum of two strictly increasing terms. Merre, d2rp/d6? is strictly increasing in

0 € (0, /4). Furthermore,”

2 . °
dr (0 . (3.1.18)
==1, p>2), .
| de? : :
and using (3.1.17),
d’c (/4) o (3.1.19)
— >0, (p>2).
de? o

- Once again we conclude thata unique inflection point 8. exists w%th d?rp(8)/d62 = 0, thereby
ending the proof. )

| The shape of r(6) is illustrated in Figure 3.1.2 for various values of p, and for @ in

the range [0,n/2], i.e., one complete cycle (Property 3.1.2). 'From Properties 3.1.3 ap'd 3.14,it
follows that rg has. its m.alximum value at 8 = n/4 and -gipimum vaiue at 9;: 0, /2, if
0 < p < 2, while the conversé holds if p > 2. Defining the direction of gréatest (least)

diﬂfic'ultf as the vkalué ge-which maximizes (minimizes) rp, we.see that for 0 <p < 2 the

direction of greatest difficulty is at 45° to the axes (8 = 14, 3/4, 51/4, Tr/4), and the direction

)
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of least d-ifficuljy is ‘parallel to the axes (6=0, /2, n, 3r/2). In other words, the distance
Ep(;c~ y) between any two points x and y separated by a straight line seg:mlent“qf fixed length‘
£a(x=y), is maximized if this line segment is at 45° to the axes, ahd minimized if it is parallel
to an axis. The ;:onverse holds when p>2. |

We note the following characteristics of the di'rectional. bias function at 8=0, /4,

w2, which will be useful in the subsequent discussion.

' rp(0)=fp(n/2)=1, p>0; = G120
T @1z
ra) =2° *, vp=0; -
dr(0) dr(w2)
PP g, 1<p<u; (3.1.22)
ds - de . P
- dr (/4) -0, Vpuwo. Do (3.1.23)
de ‘ : !. . 3

Relation (3.1.23) can be calculated directly from the functional form of the first derivative in
(3.1.13), while (3.1.22) is readily obtained after rewriting the first derivative as follows:
dr. (6) 1 ' |
E_ - 1(--ou:’s"'lesinﬂ+::osE!sinp—18), 0<@</2. -
\ db [rp(g)]l’— . _ ] ' .
L ’ ' "
Since the functional form of drp/d6 given in (3.1.24) (or (3.1.13)) is valid only in the

interval 0 < 6 < /2, the slopes calculated at 0 and 2 are in actuality.right and 1éft—sided
derivativéé respectively. However, since the slo;ies at 0 and /2 are eql'lal in (3.1.22), vx-re

conclude from the periodicity of r,(6) (Property 3:1.2) that rp has a two-sided derivative at

8=0and /2 f;r p>liie,rpis differentiable here. This is not the case if 0 <p=1, as seen by

the following limits. Forp=1 ('rec_tangular distance), we have

dr . . -
im Sl lim | _sing + mgl —1. (3.1.250)
g—0* o - g-0" :

R

- (3.1.24)

™



/ " 85

while

dr, ‘ :
im o= -1.. (3.1.25b)
..
2 -

For 0 < p < 1 (hyper-rectilinear distance),

. dr, l‘ . ir | 1
lim £ = lim {-—l(—cosp_lﬁsin6+cosﬂsinp_le)]
mot 99 oot [l'p(B_)lp' o
oL [—cosp“lesiné} L lim cqu sinpl"IB]
oot b m@PTH ) gt b @
— lim {—sinf}+ lim {inP~'8} - (equation(3.1.20))
a0t gm0
= +o, o~ ‘ o - (3.1.26a) .
while similarly, - \P\‘”
/ : < _ . —
. - dr, ' ‘ o (3.1.26b) - _
im — = Hm’ [_—cosp'16+cosﬁ}=—w.' o
n& de n— ﬁ\’_ ’
6._._ B_'_ - . . -, -
N Hence we conclude, using tHe px;e:e%fng limits and the periodicity of ry(8) (Property 3.1.2),
L 3 that the right and left-s_idéd derivatives are not equal at 0 or n/2, and thus ry is not
differentiableat 0=nr/Z, n=0,£1, £2,..,when0<ps1. T e

N We see now that the directional bias function of the €5 norm is differentiuable for all

0 if, and only if, p > 1. This result can be extended to gq;leral, norms as follows.
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Theorem 3:1.1 -
The directional bias function r() of the norm k is differentiable for all 8 if, and only

if, k is a differentiable round norm.

. Proof:
Without loss in gene;ality, consider only the poin'ts x on the circie of unAit radius )
* centered at the origir.l;(fg(x) = 1). Let xg denote such a point, 8¢ be the angle specifypé the
vector x;), and yg be a qnii"vectdr ténigent to the circle at xg. (See Figure 3.1.1b). Let d/d8+

- and d/d8- denote the right-sided'and left-sided derivatives respectively. Referring to Figure

3.1.1b, we have-in general

. dr8) |
, +0) =k(xg; ¥y » (3.1.27a)
'do
and
dr(e,)
- = -—k(xo; I_-yo) . (3127b)
e~ .‘
Ifk is a differentiable round norm, then by-(2.4.7), 2
_ kixg;yg) = Vkixg) -y = —k(xgi —yy) ; (3.1.28)
so that '
T S B . - ) -
LT ""‘--"Mw.‘.ﬁw = d_r(ﬂ . ST (1.29)

e+~ a9~

o Hence, k a differentiable roundw is a sufficient condit.id‘n forr to be differentiable at all *

NG o

values of 8. .

If k is not a différentiable round norm, and furthermore xg is chosen such that

Vk(xg) is undefined, then we must have .
s . | ~
- ] k(xo;yo): —k(xo;—yo) .

(Since k is differentiable in the radial direction through xg, we would otherwise conclude that

o
(3.1.30)

. Vk(xg) exists, which is a contradiction.) ) ' S

t



Therefore,

' 4 di8)  dre) (3.1.31)

* ' :
-t det deT - - :
~ so that r is fiot differentiable at 8. Hence, k a differentiable round norm is also a necessary

condition for r to be .different.ie:ble at all values of 8."

Ed .
Theorem 3.1.1 provides another way of viewing the different classes of norms,

‘ . N
discussedv in Chapter 2 (see Figure 2.2.2). Iﬂi is a differentiable round norm its directional

bias A,Sunctlon T 1s a smoothly varying function of 8. On the other hand, if k is a non-
differentiable round norm or a block norm, then r(0) has sharp corners at certain values of 8

where the slope changes by a discrete amount. This characterlstlc is illustrated in Figures

§.1.3a and b, where one cycle of ry(8) is plotted for sample €, norms withp > 1, and cofnpared

*

with r(6) of weighted one-infinity norms (see (1.2.13)) whose paraineters are adjusted so that
rp(6) = r(8) at 6=0, /4, /2. | | |

A practical observation can be made concernmg the £, norm (p =1), after a close
scrutmy of Figure 3.1.2 and {équatlons (3.1.20) to (3.1.23). First we note that {rp(B) is a

decreasing function of p except at the boﬁndaries 8=0 and n/2 in Figure 3.1.2, where it is

" constant. (This result is a direct consequence of Property 2.3.1.) When 1 < p < 2, the:

direction of greatest difficulty is at 6=rr/4 (45° to the axes), and the direction of least difficulty

is at =0, n/2 (p ralIel to the axes) Meanwhile, when p>2 this situation is reversed,

: signifying a phase change of 45°. One should expect therefore that the norm tq(x), where qis g

ER

somé valiie greater than 2, can be accurately approxipated by thie nerm ofp(x’), where x’
gives the coordinates of the point x in a new set of axes [obtained by a 45° rotation of the

original axes, ois a scaling factor less than l,andp takes on a value in the open intefval (1,2),

" This expectation is reinforced by the Tact that dr/dS = 0 at 6=0, n!4,'and_ /2, for p>1 "

(equations (3.1.2@), (3.1.23)).

Y ' ' .

e



88

lo|5-. . ’ - - —— ..__‘-..;‘ ' ‘ ,."—ﬂ\\. */0.5379-]"' +o.'+l2_6':°
- N

110°1
.05 +
1.00
095 — : . + ' ' » B
0° 15° 30° - yg° 60° 75° 90°
. .
(a)
s
l'oS-
1.00 K
095+
0.90 -
Oogs"-
0.8C ; ' : s —t - - Q)
c0° 18° . 30 4s° 6o’ 7s° q0° )
(b)
. Figure3.1.3 Comparison ot: Directional Bias Functions. )



89

LS

We proceed now to investigate the accuracy of such an apprommatmn Define a

‘ normahzed' dlﬁ'erence between ofp(x") and €q(x) as follows

Uf(x') E(X)
A=—F—— 3 . yx=0.
’ e(x)

(3.1.32)

7 Smce Euchdean distances are preserved under an orthogonal transformation and a rotation

inR2is such a transformatmn (Sh1elds 1969, p 285), therefore

' (3.1.33)
Thus, we obtain
’ £ ) - @, (3.1.34)
£,(x) q
o ‘ |
where it is recalled that x =(x;, x9)T and 8=tan-1(x9/x;); and
f"p(x ) €p(x ) (3.1.35) -

- - - —_— = -1/
| e e T

sincethe axes are rotated 45°. Hence, for a given value ofq > 2, and ép'eciﬁed values of p and
' L}

g, Alsa functmn of B alone; ie., ~ o -

AB@=o T (0 ~-w4)~r (9) (3'1'36).

Due to the symmetry of the dlrectlonal bias function of the £, norm (PrOpertws 3.1.2 and

3.1.3), it suffices to consider B in the range,

0s0= m’4
. The question now is how to specify for a given rq(6), (q>2), the valuesof gand p in

o 3.1.37)

the approxirnation function orp(6-n/4). We choose a simplel method. Impdse the following

_‘boundary’ conditions,

A0) = A(/4) = 3.1.38)

to obtam two equatmns to solve for the two unknowns ¢ and p. With (3.1.20), (3.1.21) and

Property 3.1.2, the boundary condmons become
' 11 . :
- 3 ‘ ' - (3.1.39a)
A®)=o-2F “-1=0, ' .

and
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1 1
2T - (3.1.39b)
_ A4 =a-21 2 =0, .
Solving for 0 and p gives
1 1 '
F‘ ‘ 3 * _ ) (3.1.40)
> _ : o=29 2 .
and L.
P =qlg-1). (3.1.41)
Besides the zero value imposed on A at the boundaries, 8 = 0 and n/4, it is easily shown using
(3.1.22), (3.1.23) and Property 3.1.2 that - : : *
: doQ) _ dawa) _ ﬁ' (3.1.42)
d ~ de

-As a result of the boundary conditions in (3.1.38) and (3.1.42), and the fact that '
rp(0—r/4) and rq(B) have the same ‘gefieral concave/convex shape arising from a unique .
. I ) . . .
inflection point (Property 3.1.5), we expect the difference function A to be small. This implies

that the approximation gives a good fit. Let us determine now the accuracy of this fit.

For0 < 0 = n/4, we have

+

: 14
rq(B) = {c0s70 + sin%0]Y9 (3.1.43)

|

[cosp(rrltl—ﬁ) + sinP(w/4—0)

and

P]”" L

o .
cos(@—/4)| + l sin(® —n/4)

r, (Q — n/4)

Up

= — [(cose + sinB)P + (cosB—sinB)p] .
, V2 \
Also note from (3.1.41) that . . '

q=p/p-1). .
Using the above equations and (3.1.40), it follows that A can be re-written in terms of © and p

. alone. 'InQorder to signify that the difference function has equations (3.1.40) and (3.1.41)

-

imposed on the parameters o and p, we denote it as 8(0;p). It is"_readily seen that

N
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[}

Up

1
§@:p) = 2 P’(oo59+sin9)P+(cose—sin9)P
(3.1.43)

' ' : (p—l)fp‘ T
. —[(msﬂ)mp’”+(sina)p’(P‘”] | ,

where

0<0<n/4 and 1<p<2. (3.1.44)

We can now carry out a numerical search over the ranges given in (3.1.44) to deter-

mine the maximum absolute magnitudé of 8, d@nd the values of 8 and p where this occurs.

First note the following limiting cases: . . . . . )

lim 8(8;p) = cos6 — lim [

p—>1+ - p—bl-‘{.-

[H

» l(p— /p
(cosB)M‘;_ D 4 (sin e)P’(P“’I }
]

- c0s@ — max {cos9, sind}
= - 0=6 = w4 : '
cosf ' cosd {0 4) , ' _ . (3.1.45) .h:>
—

im &0;p) = 6(6;2)

P2 . :
1/2
1 ) a2
= —=!(cos8 + sin®)? + (BH—sin0)?| —1
V2 _ x§
(3.1.46)
= 1-1=0. ‘
Also, by (3.1.38), .
(3.1.47)

L800;p) =84 ;p)=0 .
Thus, the p and © which maximize | § | must be at an interior point, remote from the

boundaries of the rectangle defined by the ranges in (3.1.44). This facilitates the numerical
search, since we can now bypass large values of the exponent p!(p; 1}(=q}in (3.1.43) when p .

approaches 1+,
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o |

The difference function 5(9;p) was evaluated on the computer over a finely-divided
grid covering the points (8,p) defined by (3:1.44). The results are summarized in Figures 3.1.4

and 3.1.5, where maxg || and the 8+ at which this occurs are plotted as functions of p. Observe

v

that
;‘. . ’ maxe‘p|8| = 0.027818 .~ (3.1.48)
at | -
=1.2355 and 0,, = 33.493°, (3.1.49)

where the maxlmxzmg values p*+ and B+ are obtamed by t.he grid search to an accuracy of
0.0001 and 0.001° respectwely In Figure 3.1.6, §is plotted asa functmn of B for sample fixed
p. The profiles here are unimodal in shape, and 0+ shifts to the left for fnc;rea'smg values of p

(see also Figure 3.1.5). It is also interesting to note that

§@;pp=0, YO,p, _
a result conﬁrmed by the exhaustive grld search. Fmally, in Figure 3.1.7, one cycle of rq(B)

(3.1.50)

and its approxxmatxon by g rp(B ~r11/4) are shown for the sample caseg,p=1.2(q = 6).

We see from the abov?r?s\ﬂg\\s that the d1rect10na1 bias i'unctmn rq(®) for anyq>2is -
accurately approgciﬁlated by or,;(B—nf4;, where the scahng factor o and p € (1,2) are given in
(3.1.4Q) and (3.1.41), This leads to the following importaht conclusion.

" . The norm €4(x), where ¢>2 and x G R2, can be replaced for all practical

purposes by fhe norm of,(x’), where x' is the vector of c?ordinates of x

' measur'e(i m a new set of axes rotated 45° from the origina),

o =2/a-12 < 1,and p= ql(q 1)€qQ, 2)

In quantltatwe terms, we obtain from (3.1. 48) and (3.1.50) the following bounds on t.he

dlffe(ence; ‘ . , .
0<g ep(x') - Eq(x) < 0.027818 £,(x) . (3'1'51)
Recall that certain constraints were imposed on the normalized difference A (see

(3.1.38)), in order to specify o and p for a given q. If these restrictions are removed, and
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instead g and p are chosen to minimize the maximum absolute magnitude of A, the approxi-

_ mation will be improved. This result strengthens the conclusion above;, namely, that for

' (1_,.2) after rotating the axes 45°. . e

-prﬁctical problems, the estimation of actual distances by an €, norm with p>2 need never be

considered, sipee the same degree of accuracy can be obtained with a value of p in the interval

-

. L . i -
ﬁs a final comment on this topic, we note that when p is given'i)y (3.1.41), £,(*) is

sthe.polar o{ C.q(.). Thus, tl'te bounds in (3.1.51) provide a/guantitative relation between £q(x)

.

and its polar aéting on transformed coordinates. .

3.2 .Fitting the Weighted €, Norm

a

The weighted €, norm was introduced in Chapter 1, where we noted the succassful

'us%;'of this function in estimating actual distances from several road ﬁétworks. We shall see

below that the weighted &, norm has two parameters, an inflation factor t and the parameter
p of the £, norm, which need to be specified. Two criteria are mentioned in the literature for
fitting the unknown parameters of a distance function to a set of data (e.g., see Love and

Morris, 1972, p. 64) Applied to our d1sf)ance f&nctmn these goodness- of-fit criteria are as

follows: o _ ’ o /

7

Criterion 1

‘. - n
minimizeADeé z Z Ide(a.,a.)—-A..|; 7 . (F2.1)
1] 4] .
. " i=1 j=i+l
Criterion 2 '

. n—1 n

(3.2.2)

- minimize SD,= > > [d (a;,8) — A ]2IA
_ 2 Lp i=1 j=i+1 .
where n= the number of fixed pomts';' {cities, destinations, customers) in the road

- network, which are chosen for the data set;

Ajj= ' the actual distance (road miles) between the fixed points'a; and a;;

-



-

Q . ) -
de(a;,a)) = t y(aj-a) isthe weighted €, norm used to estimg}e the distance (road
miles) between a; and a;; _ : o

and ~ T,p>0 arethe unknown parameters.

The first criterion involves minimization of the sum of absolute deviations between

- estimated and actual distances. As noted in Love and Morris (1972), the implication here is

that the empfrical function tends to estimate greater actual distances relatigelﬁf more

accurately than shorter distances. On the other hand, the second criterion, which involves

minimization of a weighted sum of squared deviations, achieves a greater sensitivity for.

shorter distances through the weights Aj~1. It also possesses attractive statistical properties

1

‘ Proof:

-
(Love and Morris, 1972); We ses that the two criteria measure goodness-of-fit in significantly .

different wa‘ys. ’ ; .

As noted in Chapter 1, the minimizationiof ADpg or SDg is currently carried out by
an exhaustive gri(i search o'ver a 'safe’ range of parérﬁefer values. Sir.lce the céléul'ation of AD,
or SDg at each grid.poi':nl: involves O(n2) operations, this procedure becomes very time
consuming and inefficient for large samples. It appears t.hat no effort has been made yet to
impro:re on the brute- forcevapproach. Thus, the purpose of this section is primarily to derive
properties which wil_l permit us to find thc; best-fitting values of T and p for the two criteria in

an efficient manner. - ‘ J

The first two results pertain to the behaviour of AD¢ and SDp as functions of the

inflation factor t alone (i.e., p is fixed).

~

Property 3.2.1
ATy is a contvex function of <.

Denote the terms in the summation defining ADg by



gy P =ld,@pa) - Ayl=el e - ) - Ayl

. (323
- ll., = 1! T n ¥ 1 <J ‘
.Then for any lJ ,
o ThEe). HreAyie 6 —a), (3.2.4)
. ' - g" = ) £y ‘
5 Y lip@—a)ift>A /€@ —a).
. . pi T e 7 ¢

Wae see that the slopé dg/dt is non-decreasing in 1, and “erce gj is a convex function of v,

< 4 . Py : -
Thus, ADg is the sum of convex terms in 1, and is itself a convex function of T.

Property3.2.2 -~ | ’
L - SD¢ is a strictly convex function of <.

v

Proof: .
Denote the terms in the.summation defining SDe by
' . 2 Y oa 2
b o [d,(a, aj) - Aij] _ [v fp(ai - aj) = Aijl
ij P A, a A, ]
¢ T i ' '
. T \ (3.2.5)
R Y oLj=1,..n, i<j. -
Thenforanyij, =~ - =~
dh = Zle "A;e( | . (3.26)
nouT A [véfa; —a) - Al €fa, —2), -
ar;d
—h. = f_[e (a ;5)12>o (3.27)
' A
1 :

Thu.s, hii isga strictly gonvéx’function of t. Since SDg is a sum of terms which are strictly
convex in T, then it is also a strictly convex function of t.

| We ;hall see later that Propet"tieslr?‘:.?..l and 3.2.2 afe very useful in stre,amlhining

. thesearchfor the best-fitting values of t and p. In the meantirﬁe, let us examine AD; and SD,

as functions of p (i.e., vis fixed). This turns out to be a relatively complicated problem.

24

Cw



..

‘fr’\ . . .
Eroperty 323 . —~ o

\

interval (0, +), If the vector a;——;aj is parallel to an axis, then gjj is constant. Otherwise, there

Congider any term éij(t,p) in the sum ADy (see (3.2.3)) as a fu\r}\ction of p in the open

are two pos’sibilities- ‘ :

@ i Ay >tmax{]au—a_,1| Ialg-ajzl} = T.Bm(al-aj) then gij is a unimodal function of p,

. strictly convex over the interval 0<ps plj and. stnctly concave for p=pjj, where p,] is the

unique value of p such that - ! . .
(3.28) °

. min, g; (% P) = 8,5 p,) = 0
i) . if Ajstéx(aj-a), then gjjis a decreasing strictly convex function of p with a
minimum apbroached asymptotically as p->'+ o0,
Proof:
- - Suppose a;-a,: is parallel- to the x;-axis, so that ajg-aj2 = 0. Then clearly, «

&g(ai,aj) = tlaj;-ajy| for all p>0. A s_irﬁilgr result holds if aj-aj is par:aliel to the xo-axis.
Hence, gij isa éonstént ﬁ_xr}ction of pwhena; — gjis parallel to aﬁ axis.

| On i:he other hand if this:is n’ot' the case, then laie— 2| >0, t = 1,2. By Properties
2. 1 1 and 2.1.2, it follows that dg(al,aj) isa decreasmg strlctly convex functmn of p€(0 +00),
Also limp_,g +de(as,a)) = +mJ and hmp_.u,dg(al,a,) = t&n(a, al) usmg equatxons (2 1, 9) and
(2.1.29). The remamder of the proof is now obvious.

. 3 . o

Property 3.2.4

" The prelvious result applies to any term h;;(z,p) in.the sum SD, (sé;a' (3.2.5)), except '_
when a;-a; is not parallel to an axis and Aj; >tecn(ail— aj). ‘,For this case, hj; is also a unimodal

function of p with minimum at p;;. However, h;; is strictly convex over the interval 0<psp;

s



101

and sfrictly concave for p=pjj, where pyj is the unique inflection point such that

2

. 3
- hij (c, pij) =0. : (3.2.9)
. _ - ‘
Furthermore,
" | ' B (3.2.10)
' S P TRy -
Proof: _

If aj~g; is paréllel to an axis, then gj; is a constant function of p (Property 3.2.3).
.Therefore, h;; =£gij2/Ai,-. is a.lso constaLﬁt inp. | | |

Now consider aj-a; not imrallel to an axis, To simplify the notation le't'_f:fi
Blp) : = €plai-ay), f1:= |ajy-aj1|>0, fy:= [ajz-aj/>0, and B'(pi_ and [S"(p)-give the first an(i

second-order derivatives of p. We have

‘7\ - .
o) — (3.2.11a)
-)\h.ij (np) =B - A /A, | a).
. d _ 2¢ ' . o |
. 5 hij('f,P) = B —‘Aij)ﬂ ®, (3.2.11b)

ij .
and

s .

' 2t
~ 2 hi.-(ts p) = — [v(@' (Fﬁ}? + @ Blp) — A.) B(p)]. (3211(‘.)
1 A.. ) 1]
. ' ap ij . )
Furthermore, by Properties 2.1.1 and 2.1.2, it follows that 1

| B'(p)<0 and B'p)>0, VD€, +). - G2

If Ajj=tfe(aj-a;), then ' ' . J
. 'Gﬂ(p)-ﬁfij>1:€m(e.1i—aj)—Aij, 0<p <+, (Property 2.1.1) ' '

| o (3.2.13)

=0.

- Hence, ~

oy s o'y L - @3.2.1%
— <0 and — >0, 0<p<+o, . . _
a0’

Clearly then, hj; is a decreasing strictly convex function of p with the minimum

([x€ulaj-aj)-Az] 2Z/A;) approac'hed asymptotically as p—>+o,

LY
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Now consider the case where Aj;>tfx(aj-a)). It is readily seen that hjj has a positive
vertical asymptote at p = 0 and a horizontal asymptote approached from below as. p— +w.
Hence, h;; must have at least one inflection point pjj, such that a2h}j(t, pij)/op2 = 0. We now

show that pj; is unique, and furthermore, pij>pi1:. Using equation (2.1.6), rewrite §'(p) as

follows: . |
: Bp) = B®)-H(p), . ' (3.2.15)
~ where . ‘ _
B
s & .

1 3.2.16

)= o[ ) e gen( 2 )] @219

PR fi+1 f+6 S
Therefore,

-

B"(p) = B'(p) H(p) + B(p) H'(p)

: 2 ' (3.2.17)
= B(p) (H*(p) + H'(p)].

Substituting (3.2.15) and (3.2.17) into (3.2.11¢), and equating to zero, it follows that p; must

solve the equation

Ay 2H%p) + H(p) (3218
B0 HAp)+ Hp)
But
- 2HXp) + H'(p) > H2p) + H'(p)
, >0 (B >0),
so that =
2H2p) + H'(p) ' ; ,
2 (p) (p) >1,¥p>0. | - (3_.2.19)
H%p) + H'(p) . ‘
Hence, ) .
- i " (3.2.20)
Aij >t (pij) . ) ‘ :
Since .
_ ' ‘ (3.2.21)
Aj=tBly.

by the definition of pj; (see Property 3.2.3), and'ﬁ isa decreasing function of p, we must have

U : Pij = Pij-
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el

A lengthy computatio-n, the details of which are left to Appendix A, reveals that the
: fight-hand side of équatidn (3.2.18) is a decreasing function of p (>0). The left-hand side,
Aiy/cp(p), is clearly an inéreasing function of p. It follows that pij is unique, and that hj; is

.

) strictly convex in p for 0 <p = p;j and strictly concave in p for p=p;;. Also note that

<0, if 0<p<p,,

o, . - \
) =0,ifp= Py (3.2.22)
ap . .

| >0;lifp>pij', R ~
and hence, hjis a unirx:\odal function of p with minimum at pj;. This ends the proof.

| .The shapes of gj; and h;; for varying p are illustrated in Figufe 3.2.1‘&?1{:1 b), for the
case where the vector aj—a; is not parallel to an axis. Sincé AD¢and SD¢ are the sums of terms.
gij -and‘ hyj respectively, each term beiﬁg in \general neither convexnor concave in p, we obtain

the following important result.

Property 3.2.5

- Consider the sums AD, and SDe as functions of p in the open interval (0, +»); i.e.,

-

SNy the inflation factor v is fixed. In general ADg and SD¢ are neither convex nor concave inp, and”

e

may have more than one local minimum or maximum. -

As a consequence of the above property, there is no easy way to find a value of p
which minimizes AD; or SD; globally for a giiren t. One is forced essentially to do a thorough
,nﬁmérical search over a safe range. It would be advantageous to restrict this search by

specifying the smallest interval of p in \:vh'ich'the global optimum is known to occur. This is

the purpoée of the following results.

Property 3:2.6 -

Ifv=landat least one of the vectors a;-a; is not parallel to an axis, then

NS
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. (a) ﬁ‘-}- £ ’C-waa;,- a'd") (&) | A; > 't'ean (ag-.a.‘-_)

L . . Figure3.2.1" Ceneral Shape of gij and h;;. | o .. .
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0< p; . p; =2,
where pl"‘ and ps* ape any values of p which minimize AD'e and SDg respectively for the

specified t. -

Proof: | . T E

The proof relies on the fact that the shortest distance between two points is the

~

Euclidean (straight-ling) distance between them. Hence

. - . (3.2.23)
N Aij = 62(21i —.aj) , ¥ 1,.‘]. .
Since €p(a;-a;) is a non-increasing function of p (Property 2.1.1), and t=1, therefore
.Aij - tfP (a - aj) = Aij —té,la, ~ aj) . :
o , (3.2.24)

' =0, ¥Yijandp>2. .
Furthermore, the first inequality in (3.2.24) is satisfied strictly for each pair (i,j) with a;-g; not

parallel to an axis. Thus,

n-1 n iy
AD,>2)= > > |v€ (2 —a)— Ayl
i=1 j=i+1 ‘

n-1 n .
=3 Z (A —ve, (@ —a))
i=l j=i+l

L}

n-1 n ‘ :
> 2 (A -t —a))

i=1 j=i+l ‘ '
(3.2.25)
= ADe(p =2). .
¥ Similarly, ‘ _ .
SDC p>2)> SDc(p = 2). : (3.2.26)

' Therefore, we Eonclude that any V?Iue of p- which minimizes ADg or SD¢ lies in the interval

~ (0,21

‘-

=
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P-r'operty :3.2.7
LetK = {i.)lai-a; is not parallel to an axis, i <j}, and assume that K is non-empty.
Also assume that A'ﬁ>c8m(ai—aj), Y(i,j)€K, where t has some specified value. Then
' . - - L]
P, SPPy S Py
where y '
P.= min p,. and Py =  max B

m . . y . .
- G,j)e K G,D€K

‘ . p -
Proof: *

For pairs (i,)¢K, the correeponding terms gj; and hj; are constant functions of p by
Prooerties 3.2.3 and 3.2.4. For pairs (ij)€K, gj and h;j are decr'easing for 0<p=pj;, while
these terms are increasing for'papij,‘again using Properties 3.2.3 and 324 If; follows that
AD¢ and SD¢ are decreasing functions of p for 0<p=py, and increasing fnnctions of p for
P=DpPM. TI‘nerefore, we conclude that an)r value of p which minimices ADg or SDe¢ i:'or. the
specified t, lies in the interval [py, pM]. |

The preceding result has some practical implications. First note that the pﬁ‘can be
- obtained with relative ease, using standard techmques such as interval bisection or Newton-
'Raphsons method (e.g., see Dahlquist and Bjorek, 1974 Chapter 6), since Bij {or hy) is a

ummodal functmn of p.  With the interval [pm,pM] speclﬁed we now have lower and upper
bounds on the values of p1* and pa*, so that the search for m* and pa* should be confined to
this interval. This provides a substantial rmprovement over the current pract.1ce in wh1ch a
safe range for the search is left to the arbxtrary drscretmn of the analyst.

| The range [pm,pM] also charactenzes or describes the road network in a new way. If :
the w1dth of the interval, measured by PM~Pm, is small, we c‘an regard the road network as

being consistent with the distance function dg, in that de approxrmates mdlﬂdual travel

distances consrstently w1th a h1gh degree of g accuracy Thus, the width of the mterval [pm,pM]
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;:;n be considered ds a measure of the cqnsistency of the road network with the distance
function d;. We also observe that the specification of [pn,pm] is especially us.eful forl
cqqsistent road networks, since it reduces the search for p)* and ps* to a r':arrow: inl:_erval in
this case. |

Let us riow examine another aspect of the cwerall problem, namely that of finding

t1* and 1%, the values of ¢ whlch minimize AD; and SD¢ respectively for a given P- The

convemty results @'Sgertles 3.2.1 and 3.2.2 can be put to good use here First we consuier

/sum SD¢ which is strictly convex in t (Property 3.2.2). Thus, a necessary and sufficient

condition for minimizing SD with p fixed is given by

56]); n-1 n

—=> 3 K—[ne (a, -8 - Al @~ a)

81: i=1 j=i+1 7§

=0, (3.72.27)
which provides the closed form solution,
- o _ .
Z z I.}(ai - aj) .
. i= = : -
% = o . | . (3.2.28)
2 e —a )]2/A
=] j= =i+1
Next consider the sum AD; which is convex int (Property 3.2:.1). We have
JAD n-1 - n '
¢ .
—_—= z Z 51gn[1:€ (a --a)—A ]:‘.’ (a. —a) (3.2.29)

a i=1 j=i+l

wherever this derwatwe exists, so that AD, is also piecewise linear in 1 with discontinuities

in the slope at - ,
T =ALE (e —a), Li=1,. v, i<, (3230 .

It is mterestmg to note that the shape of ADg for varymg tis smular to that of the objective “

function in one coordlnate for the unconstrained single facility minisum problem with -

. rectangular distances (e.g., see Love, Morris and Wesolowsky, 1988, p. 18-22). Hence an
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analogous solution method can be used to obtain tj*. An outline of this method is given

below.

Algorithm 3.2.1 {Finding vy * for given p}
. Step 1:- Calculate each T;j using (3.2.30).
Step 2: Sequence and re-label the pairs (355, £5(aj-a5) as (1:,,‘8,), r=1,...,n(n-1)/2, such thgt

TISTS ... STyn-1)2; 1.2, the 1j; are arranged in non-decreasing order.

ran

Step 3*(Finding 1,*)
Set' i = 0:
n{n—-12 .,
S. = - €.
1 r
: r=i+1 '

Repeat
| iRiv1, | .
Si«S_1+2¢4
until §; = 0. |
I£S; = Othenty* € [1;, %i+1],
else (S; > 0) vy * =1,
. It should be clear:that 11* and 1:2_"' are functions of p; furthermore, the curves t1*(p)
. and t2*(p) are readily obtamed using A]gor1thm3 2.1 and equatmn (3. 2 28) respectwely ’

Wlth thls mformatmn we can 1mmedlately calculate ADg and SD,*, the minimum values of

AD¢ and SD; as functions of p; i.e., 7
) AD,*p) = AD, (v,* (¢), p), SD,*(p) = SD, (5,* (0}, P) . (3.2.31)
 Thus, the cntena speclfied in(3.2. 1) and (3.2.2) are now reduced to minimization problems in
. ) -~

one variable. .
Usiné ‘the preceding result, we outline a strategy for‘fin'liing the global minimizers
of ADé and SDy, denoted by (t1**,p1**) and (zv2**,p2**) respectively.

£ - .
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,~Alg0rit:,hm 3.2.2 {Solving Criter-ifls. 1and 2}
Step 1: Determine the curve of ADg*(p) (or SD¢*(p)), with a small enough increment Ap to
identify all sub-intervals containing a local minimum. Delete those sub-iptérvals which
obviously do not possess a global solution; and label the remaining orieg. 1,...,M.
Step 2: Do tﬁe followingfori=1,..., M.
Divide sub-interval i using a smaller increment of p- With the.additional points, reduce the
width of the sub-interval containing t;he local minimum (denoted by p{¥). Repeat t_ﬁis process
until pi) is calculated to the desired accuracy. o
Step 3: Set py** = p(k) and 1;** = 11*(p(k), where ADg*(p(k) = minf{AD¢*(p)}. (Fﬁr SDy,
set po** = plk) and t3** = 13*(pk)), where SDe*(p(I;)) = min{SDg*(plin}.)
lThe preceding algorithm doeé not specify a range of p in s'tep 1 for ADg* (or SD¢*),
which guarantees that a global solution will eventually be fouﬁd. This question is addressed
"in the next section,

| 3.3 General Considerations on the Use of the Weighted £, Norm .

Section 3.1 discusses the diréctional bias of norms in general, and the €, norm in

* particular. Implicit in this discussion is the fact that the directional bias function pertains to

: a.particular' set of orthogonal reference axes. Thus, characteristics such as the directions of

" rotation.

- greatest and least difficulty of the distance function are measured relative to tﬁé given axes.

* Except for the weighted Euclidean norm (see (3.1.10)), rotating the axes results in a different

directional bias, or allt;ernatively,‘ the distance between any two points varies under this

a

In Section 3.2, where fitting of the parameters v and p is discussed, we assume that
the reference axes are pre-speciﬁed. The resulting estimates (tl*',pl“). or (tgi';',pz") obviously

depend on this choice of axes. Consider, a;s an example, the hypothetical case where the roads
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ina trans‘portafion network form a perfect re-(:tangulaf grid aﬁd tl;;—c'iestinations aj are all

situated at intersection points of the roads. If'the axes are chosen parallel to the grid, théﬁ

==L, ™ =p"=1 and ‘actual distances are predicted exactly. On th‘e other

* hand, if the axes are specified at 45° to éh_e grid, then v** = 1:2”‘ = V2and p;™ = po*™* = +oo,

with actuai distances being predicte;l exactly once again. However, for any other choice of
axes, the parameters will take on intermediate values, and the'predicted distances will not

coincide with the actual. |

Clearly, the specification of the reference akesisan impq‘?'tant partofan mpi:icai
- study. One must recognize the dual relation between the distance function and the reference
axes. Both are required in order to obtaina speciﬁc i;orm of the directional bias. The choice of
axes and disténce function should be made after a careful studj éf the road network. Based on
the predominant pattern of the roads, one should éscertain the directi_ons which are easiest
and most difficult to tr'av‘el in. The axes and the distance i‘unc@;ion should be chosen
" accordingly to coincide with this directional bias.

Specification of tHe referéncé_ax_es for the distance function based on an identifica-
tl-.ion and examination of the patterns in the road network, does not appear'tc.) be a considera-
tion i,n‘:‘the empirical studies dgscribed in the literature te.g., Love and"Morris, 1972, 1979, and
1988, Love, Truscott and Walker, 1985, Ward and Wendell, 1980 and 1985). Inother wt.)rds,
the axes are chosen _arbitr;a.rily without examining the physical nature of the system. Before
showing the advantages qnd usefulness of our approach for th.e weighted £ norm, some

definitions are in order.

Definition 3.3.1
- The normalized travel distance between destinations a; and a; in the data set is

given by
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' - _ I . (3.3.1)
. a; = Aijffz(ai - aj)', ij = },P, n, i<j. o

Definition 3.3.2
2

- A set of axes having orientation y means that these axes are rotated counter-

clockwise by an angle y from true east and north.

Definition 3.3.3. o
. Y

Let R(B;yp) denote a function of 8, where the angle 8 is measured relative to a set of

&

axes having orientation yg (see Figﬁre 3.3.1). Then R(8;yp) is said to have a recténgular bias

if, and only if, the followmg conditions are satisfied: 2‘

ot

@ - R(0+1/2; yo) = R(8; yo), V6 {permdlclty of n/2};
(ii) R(n/4~ Q;yb) = R(m’4 + Qiy0), 0sQ=n/4 {symmetry property}; _
fii_i)@‘ Ris non-decreasing for 8¢ (0, n/4] and non-increasing for 8¢[n/4, /2] {unimodal

cycle with maximum at & = n/4}.

Definition 3.3.4

'A"transportation network has a predominant rectangular pattern rf.-'lafive to a set -

-

of axes with orientation yg if, and only if, the following relation is satisfied:
a(e; Yo) = Bo + BIR(B;YO) + _G(B;YO);

where ﬁd,Bl =0 are parameters with at least one Bi strictly positive, a is the normalized travel

(3.3.2) %

distance from any point q to any point s, where vector {s—q) has direction 8 (Figure 3.3.1), Ris
a function with rectangular bias, 6 is an mdependent error term with mean zero, and {(B;yg)
denotes that the angle 0 is measured relative to the axes w1th onentatmn Yo.

An obvious exainple of rectangular bias occurs when

R(6; yo) = rp(a; yo), 0<p=s2. (3.3.3)
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1
[

Figure 3.3.1 Reference Axes (x1, x2) with Orientation yg.
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Typically we expect the road network to have an underlying rectangular grid (identified as
the predominant pattern), offset by some angle yg to the true east and north directions. We
shall observe this condition in our case study of the road system in southern Ontario, at the

end of the chapter. The normalized travel distance would be modelled in this case as
a®;yy) = B, + B, r 6B y) + €Oy .

In a transportation network with a predominant rectangular pattern, the direction of greatest .

(3.3.4)

difficulty .is at yg+mr1j4, m = 1,5,5,7, while the direction of least difficulty is at yo £ fnm’2,
m=0,1,2,3. This 51gn1ﬁes that for pairs of pomts separated by the same straight-line @ ,
dlstance the actual travel distances are generally greatest at 45° to the set of axes with '
orientation yg and least parallél to these axes. For the special case where p=2in(3.3.3), we

have
(3.3.5)

| a(®; vy = (Bé +B) + E(B.; Yo s

i.e., the normalized travel distance is a cpnstant plus an error term. This signifies a highly-

devéloped netwdrk, with travel in any direction having the same _deé‘ree of difficulty on

average. Also note that R(8;y;) does not necessarﬂy re-presgnt the directional bias of a norm.

'For example, if the road system has one-\#ay stregts'qr 6bstéélés Tesulting in a lot of back-
tracking, then R might belong to a hyper-rectilinear distance function (i.e.,p<1in(3.3.3)).

| Consider again the weighted €p norm, with t.iirectional' bia; function trp(G;y) where

y now specifies the orientation of the reference axes pertaining to the distance function. We

can speclfy a third c.rltermn for fitting the parameters T and p, basedona mmlmlzatxon of the

sum of squared normalized deviations; as follows.

Criterion 3 _ _ .

. minimize SND Z Z [tr (9 ,Y)—(I ] . (3.3.6)
LT3 i=1l j=i+t
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where N
4 a, (y) a.,{y) ’
* 9.. -~ tan (Jz_——‘—"‘) v 1 J ' ; . (3-3.7)
¥ (y)—a (Y) -

the yin (3.3.7) mdlcatmg that the coordmates of a, and aJ are measured in the reference axes
of the dlstance function,
The advantage of choosing y to comply with the ph'ysical nature of the

transportation network being modelled is shown in the following important result.

Theorem 3.3.1 \,

Suppose we have a transportation network with a pred'omine\mt rectingular
pattern asin (3.3.2), and the weighted €, distance function is used to model fr;’ivel distances in
this network. If ¥ = yo (i.e., tﬁe reference axes of the distance fuﬁction :ﬁgcide with thc;se of
the network) and the sample size of destinations in the data set is sufﬁc1ently large (i.e., the

asymptotlc 11m1t1ng case n-»»), then

. . . 3.3.8
' 0<p§52, ' - (- )

]

where p3** is the value of p at a global minimum of SNDg.

" Proof:

The proof is by contradiction. Consider avalueof p>2, and let

% = Pt BiRGy w9 | . (3.3.9)
= u —-€ (9 : \ro) ©Vi,j .
Noting that y=yy, and deletmg both for notatxonal convenience, we obtam

n-1 '
SND, = > Z [r‘r(e)-a+a-u12
i=1 j-—-l+1

ZZ (tr(e )—o.) + ZZE (®. )_xzzz(u.(g 3y u-)&(e )‘_ (3..'3.10)'

i<j - i<j i<j
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In the limiting case-, n—»co,

> (u-(e )-—a JE@ -0, _ . (3.3.11)
1<_]

since E(B) is an independent random variable with mean of zero. Thus, for sufficiently large

sa mples

' 2
SNDC=ZZ(1:r(B)—a) +zze(9) (3.3.12)
_ i<j 1<J
The second summation in (3.3. 12) isa constant so that we only need to consider the first:

summatmn for the minimization of SND,. Clearly, a v’ can be found (for p >2) such that

ltr(B)—lu(B)I—Ir-—o(G,)l . :
(3.3.13)

< Irr(G‘)— a @] ve.
(This is illustrated in Figure 3.3.2.) It follows that (3.3.8) must be true, |
B . d . . i O

» - & ‘
1 : " ¢
Corollary 3.3.1 L . ‘ AR

/  If in addition R(B;yg) =r1(B;yg), then o

| . ' S (3.314)

. Wl
1= p 3 S 72 -
Proof:
§
We know from the precedmg theorem that 0 <p3"" = 2 Therefore it only remains to

be shown"that p3"“ 2. Deleting Yo again for notatmnal convenience, we have

a@ =B, +B,r,® - |
(3.3.15) -

= Bk + (L = Nr,0)],
where . .
| By=B,+B, . ‘ (3.3.16)
and . “ -

0sA=pyB <1 (3.3.17)
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Figure 3.3.2  Directional Bias Functions which are Out-of-Phase by 45°.
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. I ‘ ‘ : ‘
Since travel distance is always at leaet' as large as tMe straight-line distance, and

al0) = ﬁo By = Br, it follows that

<

The geperal shape of a is illustrated in F:gure 3.3.3, where by symmetry ‘we only need to -
consider 0=<8=<n/4. Referrmg to Figure 3.3.3, it should be clear that for >0 and pE(O 1),at’

can always be found such that

| 'r,(8) — a-(é)l = ]n,rp(é) ~ a(9)]. (3.3.19) |

Hence, a global optimum of SND; exists with p3™ =1, ending the proof. -

- Using a similar method as in Property 3.2.2, it is readily shown that SND is a*

stri'ctly convex function of the inflation factor t. We can proceced as in the derivation of

' (3.2.28), to obtain a closed form solution for 13*, the minimizer of SNDy for a fixed p.- Thus, we

obtain
n-—1 n
Z a7, 6,5 v)
—_ *( V) i=1 j=i+1
TP Y n-1 n ¥ ’ : .
2 ) ‘
Z rP(Bij;y) | (3.3.20)

_ The precedmg theorem and its corollary are readily extended tgithe criteria 1 and 2
gwen in (3.2.1) and (3.2. 2) respectwely Thus p3 can be replaced by p**, t = 1,2, 3 in(3.3.8)
and (3.3.14). These results lead to the fol]owmg general precedure for modelling travel

distances in a transportation network with the weighted €, distance function.

Step 1: Verify that the transportation network has-a predominant rec_tang‘ﬁlar pattern with -
respgct to a set of axes having soine orientation (yg). If this is not the case, a different distance

function should be considered.

_ Step 2: Orient the reference axes of the yveighted ¢p distance function to coincide with those

(

of the network (i.e,y = yg). P -‘
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Tr.(8), o<p<l
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Figure 3.3.3 | Fitting rp(6) to a Road Network with Underlying Rectangular Grid.
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-

Step 3: Det‘ermine the best-fitting values of the parameters t and p for one or more of the
criteria given above, where pis restricted to the interval (0,2] or [1,2] in accordance with
.. Theorem 3.3.1 and quol]ary 3.3.1.

In brief, the procédure first involves a verification that the weigh£ed‘€p function is -
appropriate for the network beihg modelled. lNext the axes are rotated so that the distance
function is in phase with the network. Only at, this point, are wé ready to sol\i-e for the

-parameteré vand p. The advantages-of such an approaéh can be summarized as follows:

0 the directional bias inherent in the road network is reproduced by the distance
function;
_(i1) because the reference axes coincide with those of the network, we can expect the

best overall fit of the weighted ‘Ep function to actugl distances;and
| (iii) | the Search for the minimizing values of v and p (e.g.,"using Algorithm 3.2.2) can be
done efficiently, since p is effectively restricted by Thecrem 3.3.1 and its corollary
to a small interval. ‘
~As a simple example, consider aﬁ underlying pattern of roa_Lds ifxtersec_ting at an
oblique angle, so that the network does not have a rectangular bias. Use of the weighted €y
function in this case would 1eéd to relatively poor estimates of actual-distan.ces. Instead, we
w.ould be better off fitting the parameters t and p of a medified function of the form t€,(Ax;yp).
Here A is a non-singular, non-orthogonal 2X2 matrix which transforms the coordinates in a
“setof referencé axt;.s with orientation yg, to r'ep.roduce the obliSue pattern of the road network.
To illustrate the general considerations given above on the use of t:he weighted €}
function, we present a éase study of the road system covering the central and eastern parts of
southern Ontario. Eighteen representative cities are chosen _frorh thﬂiS region to form the data
set. 'i‘hese cities are listed in Table 3.3.1, with théir coordinates’ measu;'ed‘ in the base axes

pointing true east and north. From an inspectioh of the official road map, a section of which is



Table 3.3.1 - Cities Forming the Data Set

Coordinates (1/4" Unit)(@)(b)
- City No. City Name '
' ' %) X2

1 Windsor - 2.0 -5.3
2 Sarnia . 12:7 : 9.3
3 _ Chatham 1535 —3.2
4 _London 31.0° 88
5 Kitchener/Waterloo 42.9 18.7

6 Brantford . - 46.6 11.6
T Hamilton . 53.2 13.9
\ 8 Toronto 61.0 23.2
9 Fort Erie 680 6.7
10 St. Catharines. 4 63.0 -12.0
11 Stratford 35.3 ... 17.0
12 Goderich } 24.2 25.3
13 Barry 56.0 ‘387
14 Owen Sound 367 . 43.0
15 - Peterborough 71.3 36.7
) 16 Belleville 921 34.3
17 Cttawa _ 117.7 61.6
18 Cornwall 1325 - 53.8

' (a) SCALE: 9.5 units = 50 km.

(b)  Coordinates measured in base axes (east, north).

¢
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shown in Figure3.3.4, we can discern an approximate rectangular pattern underlying the
network. The base of this rectangular gfid is formed in large part by the number 40‘1
Highway., which is a major ;joute in the network _follo';ving the north shore of Lake Ontario
and the St. Lawrence River. Therefore, using our genere._l procedure, we_s}ioulrd rotate the
reference axes of the distance function to parailel the 401 Highway.
| The effect of rotatihg'}‘;l:;e reference axes on the~rﬁinimuni.value of ISDg (C-riterion 2); _
and the corresponding parameter values‘tg"‘ ahd pz"; .is shown in :I‘able 37.3.2. The main
point of interest here is the sensitivity of p2™* to the axis orientation y, and the fact that'pz". .
takes on a rather ow value (1.4583) et y = 22.5° This suggests a substantial rectangular
biae in the foad system, at an orientation in line with the mean direction of the 401 Hiéhway,
thus cor:.ﬁrming oer eerlier conclusion based on an inspection of the map. Also note that the
fit, measured by the minimem \%alu—e of SDyg, is opltimized ét y=22.5"

Referring to Table 3.3.2, we see that if the axes ere ax:bitrarily set parallel to the
east end noreh directions (i.e., y = 0°), a value of p»*”* close to 2.0 is obtained. "I‘hie can be
explained by the fact that the distaece function is now severely out. of phase with the
underlying pattern or structure of the networl’cl..The erbitrary speciﬁcatio;l of the reference.
axes in this fashion is common practice in the literature. For e‘x'ample,_ I._.ove, Truscott aﬁd

: We]ker (1985) use the east and north directions as -the reference axes in tiieir empirical study,
Which co.vers basically the same geographic region as ours. N ot- surpeisingly, they also obtain
'a value of p2*” close to 2.0. This leads to the erroneous conclusion mt.;imat l';:;avel distanees are
essentially Euclidean multiplied by an inflation factor; i.e., there is virtually no rectangular

bias in the road system. Thus, the case study confirms quite dramatically the ‘efulness of

our general procedure for'ﬁtting the weighted £, distance functior;,
. . _ .
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Table 3.3.2 - Effect of Orientation (y) on Best Fit

min SDy

YO ™ pa*
0 1.1118 1.9174 417.71
5 1.0874 1.7210 407.22
10 1.0765 . 1.6059 389.79
15 1.0715 1.5173 © 367.85
- 20 1.0715 1.4635 34982
995 1.0733 . 14583, 347.40
25 1.0756 1.4675 350.86
- 230 ©'1.0826 1.5458 375.21
40 1.1158 1.9286 417.83
" 50 1.1693 2.5243 396.71
60 1.2211 13.0832. 357.20
65 1.2353_ $3.2055 35138
70 1.2324 3.1122 ' 360.69
11778 2.4794 401.74

80
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CHAPTER 4
THE WEIGHTED ONE-TWO NORM
The Euclidean and rectangﬁlar norms are the most commonly-uéed distance
functions in continuous location models. Since thelact._ual routes in the physical problem are
not likely to follow purely straight-line or rectilinear paths, a logical extension would be to

: T . - . . . . ..
consider a positive linear combination of these two distances. Since this hybrid funection is a

positive sum of norms, it is also a norm. The purpose of this chapter is to examine our new

b

distance measure, which we term the weighted one-two norm and denote as follows:

- kg (x; g, by) = by €2(x) + by £1(x), ' 4

where x € RN; bo,.Bl = 0, with at least one of thé?se parametefs being strictly positive; and £,

£ are the rectangular and Euclidean norms.

Letting .-
br =Dy + by > 0, ‘ | 42
we can rewrite (4.1) as
ke (x; by, by) = by ki (x; ag), B V%)
with ’ | -
ay = bo/br, ay = by/br, C!g"|' a; =1, ‘ | (4.4)
and 7 . -v-
Kn(x: ag) = ag £2(x) + (1—ag) £1(x) . o (4.55

~ This allows an inte—resting physical interpretation of the weighted-one-two norm. The shortest
“Toute between any- two points,q and r on a transportation network can be viewed as a

composition of straight-line segments parallel to the vector (q—r) and rectilinear segments.

That is, part of the route follows a direction paralle-l to q—r, while the remainder is alo'ng' a

- 124
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i,

rectangu]d'r‘%d. -Loosely-speaking, the parameter qg gives the proportion of the route which
is Euclidéan, while the remaining proportion, @y = 1—ay, is rectilinear. The parameter by
takes on the role of an inflation factor, similar to v in the weighted €, norm. For a

transportation network with an underlying rectangular grid (i.e., R=ry in (3.3.2)), this

interpretation is intuitively appealing, since a typical trip moves along the griq part of the

way and diagonal roads the rest. T . ‘
e . We begin this chapter with a look at the diregtional bias function of the weighted

one-two norm on REZ(N = 2). This leads to &.m important observation concerning thg_relation :
between the f_‘amilies of norms, knlx; ag), 0=ap=1, aupd £p(x), 1sp=2. Next, wé. use our.
hybrid norm to develop a simple linear regressibn model for describing travel distances in a
transportation networkl. Some novel applications are derived for this meodel, based on
sténda_rd statistical tests. These concepts a::é illustratédrwith a continuation of tﬁe‘case study

at the end of Chap"t.er 3.

4.1 Directional Bia.f;

. ' o : &
From the definition in (3.1.1), the directional bias function of the weighted one-two \\../

norm with by = 1is given by’ . T
‘ SN : . .
ru(B; ag) = ky, (x; ag)/€a(x) o . A
. ='ap + a3 €1(x)/€a(x) .
. : Lo~ :
=aqag + ay ri(8), (4.1.1)
where 8 is defined in (3.1.2). Recallihg that R
: ' 0<ay<1l,andag +q; = 1, | (4.1.2)

we see that ry is a convex combination of the directional bias functions of the recténgular ‘

norm (r;(6)) and Euclidean norm (rs(8) = 1). -

P



126

The following properties are immediafply obvious from the results in Section 3.1,

and are therefore given without proof.”

Property 4.1.1 ’

rn(9; ag) is periodic with period n/2. o ' gg w

Property 4.1.2

For any real £,

kid
“

ra(d + Q; ag) = rp(d — Q; ag). -

Property 4.1.3 .
If Clg< 1,thenry 1s an mcreasmg function of 8 in the 1nterval {0, n/4]

From the precedmg results and Definition 3.3.3, it is clear that ru(6; ag) exhibits a
//—/ rectangular bias\.\‘Qe also abserve that 7

and

'Th(0; 0} = r(8), ' 4.1.3) . -

(1) =1 - Y (41.4)

S0 that these two functmns are prec1.5e1y the same as rp(B) withp = -1 and 2 respectwely Itis

1mportant to keep in mind that the reference axes for rh and rp are assumed to have the same
orientation y, and that y is omitted to simplify the notation.

_Recall from Section 3.1 that ry(6) is a decreasing funr%tion of p, except at § = mn/2,

m=0,%1,%£2, ..., where it is constant. An analogous result holds for ry,"as éhowq below.

Property 4.1.4

rh is a non-increasing function of its parameter ag.
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Proof:
Sincea; = 1—aqp, we can rewrite (4.1.1) as
rh(8; ag) = r((8) + dyp (ll-rl('B)). | _ (4.1.5)
Therefore, | - |
| 3 | L
. Py [r, ®;al=1-1/6). : - (4.?.6).,

Butr(8)=1, with equality only at 8 = mn/2, where mis an integer. It follows that
. ' ¥ . :

- o (r, 6; 00)]_ =0, _ ) _ (4.1.7)
) " . .
and hence ry is a non-increasing funetion of ay. Furthermore, ry, is decreasing in ag, except at
6=mw2,m=0,+1,+2, ..., whereitisconstant.
We see then that ry, and rp have the same’ type of b1as (rectangular), for age[O 1land

pE[I 2]. Furthermore, from'Property 4.1.4, eqations (4 1.3) and (4.1.4), and the results in

4
Section 3.1,)({3110w3 that a one-to-one correspondence can be established between ry and rp-— -

~h
withagand p increasing in their re.spe;:tive intervals [O,Ij and [1,2] and where the ampIit\idels
of ry, ?nd‘ rp are decreasing simultaneously. Thus, we might expect that our hybri‘g,norm '
closely pproximafes the €p norm, for an ‘abpmpriatg choice of ag as an i;icreasing function of
p. Béf ré investigating this relatioﬁ? we noté ét basic difference in the -shapes of rh(B; ag) and

rp(8). Whereas the latter has an mﬂectxon point in the interval 0=68=<n/4 by Property 3. 1&

no such point exists in the former as shown below,

Property 4.1.5
. L}

-

r is a strictly concave function of 0 in the interval 0=0s w2, for any <l



.Proof: E
For 0s0=m/2, we have
‘f.i(ﬂ) = cosB + sin a, 7‘
| and tlhus, l‘
,rh(B;aos = ap + ay (cos® + sin O).
Since cos® and sin®, are both strictly concave in this interval, and also, a; = 1—'00>0', the
result follows immediately. | |
Let us \nom@nvestigate th'e aécurlacy of the hybrid rlorm. kn(x; ao)”as an

approximation of pr?b)f for 1=p=2, where the paranieter ap is a function of p vet to be

determined. As in Section 3.1, we use a normalized differencé, defined here by
| o2 bni g - 60 | |
L I 7t

Since ag is a function of p, this can be rewritten in the form,

V=0 - | SECRE:)

-

A(8; p) =/r4(8; ag(p)) - rpl®). L w1

Due to the periodicity and symmetry of the d_irectional bias functions {Properties 3.1.2, 3.1.3,
‘4.1.1and 4.1.2), it suiﬁce§ to consider 8in the'range,. '
‘ o' | 0=6sn/4. ‘ ' 4110
At9 =0, we héve rp'(O)_ =1by (3.1.20), and furt_hérmore, '
) ra(0; ag) = ag -+ ap r1(0)
. | =ag+a; = 1_; | (4.1.11)
Thus,

. A(0;p) =0, (4.1.12)

independently of the choice 31‘ ag for a given p. In‘order to specify the form of ag(p), we adopt a
‘ ol

similar procedure as in Section 3.1 (see (3.1.38)), by imposing the following boundary

condition:

- -/

]
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_ Awap) =0, | (4113)
Noting.that &
. AP =a (1 —a)V2 22
we can readily solve equation (4.1. 13) to obtain

U .
2-27 (4.1.14)
YRVE '
To sxgmfy that the difference function sat1sﬁes the specific constraint in (4.1.13),

-Q

we denote it by 8(9; p). Noting that |cos8| = cos 6 and [sin 6 = sin 6 for 0<0= /4, and using

~ (4.1.14), it is easily shown that ’ / Y
o 2ol ~V2 S |
80;p) = = + ( )(cosB + smG) - [cospe + su'lpf:)]up (4'1'15},
2 V2 2-V2
where the ranges of interest are given by
0=0=n/4 and ISpSZ ' (4.1.16}

The difference functlon S(B,p) was evaluated on the computer ov/er a finely-divided
- grid covering the points (8,p) defined by (4.1. 16) The results are summanzed in Fxgures 41.1
‘-sand 4.1.2, where maxg|8] and the 8s at wh1ch this occurs are plotted as functlons ofp.. Observe
that:
‘ ‘maxgp|6] = 0.015431 , - _ ’ (4.1.17)
at ‘ | A

ps+ = 1.3498 and B+ = 10.1637°, ' _ (4.1.18)

. wl}ere the maximizing values pss and B+ are obtained by the grid search to an accuraéy of -
10.0001 anci 0.0001° respectively. In Figure 4.1.3, § is plotted asa functioh of 0 for sample ﬂﬁ‘ced .
p. Observe that rthe ;Sroﬁlés here-are uqimodal in shapé. .From Filgure 4.1.2 we see that the
value B« which maximizes |§| for a gi;ren)p, shifts to the right fqr increasiﬁg p. It is also

. interesting to note that

86;p) 20, Y0,p | (4119
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a result confirmed by the éxhnustive grid search. Finally, in Figure 4.1.4, we show one cycle
of rp(B) and its abproximation by ry(8; ag} for thé sample éase{ p = 1.4 (ag = 0.6134135).
Returning to Figure 4.1.2, it is seen that 8« varies in a nearly linear manner from
approximately 8.é° to 12.3%as p increaseé from 1.05 to 1.95. These low values for 6+ can be
explained‘qualitativély as follows. -At 0°, the curve of rj, has a zero slope-'(equation‘(B.1.22)),

while the right-sided derivative of ry, is given by

a .
—+rh(0;c:0) a,

" o rl(D)

(4.1.20)

=al=1_°0‘

Thus, a gap between the two curves is formed, and ‘inc't'"eases in size as 0 moves to the right of
0° (e.g., seé Fié‘ure A4.1.4). However, the second-order derivative of rp with respect to 0 is very
large in the vicinity of 0° (equation (3.1.16)); so that the slope of rp quickly catches up te and
su;ﬁasses the slope of ry, resulting in a transition from an incr;e:;sing to decreasin.g. gap size at
a low value of Be. |

| Consider‘a transportation network with & predominant rectangular pattern, such
tﬁat R=r; 'for the m?del in (3.3.2). In this case, the weighted one-two norm (kj) will givé a
better‘ fit than the weighted'fp norm (dg)‘. This is readily seen if we substituf:e

ro

ri(8; bo, by) = kg (x; by, b1)/€a(x)

= brra(8a, - < (4.1.21)

in place of try{(8) in equation (3.3.12), Then the first term on the right-hand side of (3.3.12)
L L ' .

goes to zero asymptotically as the sample size of destinations n-»=, since bg—> [y and b;—p;.

Thus, for s

tly large sample sizes, the sum of squared normalized deviations will be
sma ky than with de. Alternatively, we can explain this property in physical terms -
- as follows. For a transportation network with an underlying rectangular grid, the expected

travel distance should increase at a positive rate as we move away from a direction of least
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difficulty (i.e;, parallel to a reference axis). Thug, the pﬁsitive slope in equatioﬁ (4.1.20) is -
moré appropriate than the zero slope of rp" at-0 = 0. In this respect, the shape of ry, is better-
suited for such networks than that of rp.

Combining (4.-1.17) and (4.1.19), we obtain thé follow‘ing‘ bounds: |

| 0sky(x; ag) — £p(x) < 0.015431 £3(x), 7 (4.1.22)

where x is any point in R2, 1 <p=<2 and ay is given‘by-equation (4.1.14). We see then that ky,
is an accurate approximation function of €. .Eurthermore, recall t.hat:a constraint was
imposed on tbte\:ormalized difference A (sée (4.1.13)}, in order to obtain the form of qgp in
(4.i.14). .‘If this restriction is removed;,. and instead ag is chosen to"r-n‘.inimiz_e the maximum
a\ll)jpl:&te magnitude of A, the approximation will be improved. Thué, we conclude in summary
the following important result: |

The weighted €, norm with 1=<p=2 and x €R2 can be replaced for all -

practical purposes by a Weighted one-two norm,
i -

42 A Linear Regression Model

Wg begin by hypothesizing the following model for actual travel distances:

Alg,r) = Bobalq—1) + Bréi(g—r1) + elg—r), . (4.2.1)

where ' '

q,r are any two points in the pléne,‘

-"Alg,r) equals the travel disté.nce betweengandr,
v Bo, By =0, with at least one of thesé parameters being positive,
1,82 are, as before, the rectangu'lar.énd:Euclid'ea'n nm:ms, and

. e(q—-r)is an indeﬁendent error term which is assumed to be normally distributed

A

with mean zero.
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-

It is assumed here that the reference axes for méasﬁring the coordinates of q and r have a
known fixed orientation (yg). Also recall the physical requirement, A(g,r) a’fz(q-;r), ¥ qr,
which implies that fg+ By =1, similarly as in (3.3.18).
‘ Let us corisider the error term more closely. The vector (q—r) has a direction 8 and
a magnitude lq—r]] = €2(q—r). One would logically expect that for a given 6, the variance of
the error term should increass as g =il becomes l::rger.l In other words‘, the variation in
travel diétance is greater for pairs of poin"ts which are fu'rther apart. Thus, we assume that a
'norma‘lized error defined as |
| €©) = e(q—rMlg—xl, (4.2.2)
hﬁs a s_tand-érd deviation given by o(8). Making the further simplifying assumption that
| W@ =ove, 423
where oisa constaﬁt, it follows that € is a nor,mal.random variable wit';h zero mean and a
consf.ahf vﬁ:;iancé, o2 ie.,
-_ € = N(0,02). . | - (4.2.4)
Now dividing both sides of (4.2.1) by €2(q —1), we olbtain ' | |
a@® =Py + P @+ € - (4.25)
where _u(B) = Al(q,r)/€2(q—r) is the normalized travel distance (see Definition 3.3.1), and € is
an independent ra;nd-om variable with distribution given by (4.2.4). Thisis ﬁfecisely the same
model as in (3.3.4), fo‘r a transportation network with a predominant ‘rectarigﬁlar pattern
(Definition 3.3.4) and RErlg except now we specify in addition that € is normally distributed
Mwith constant variance. Ag.
The formuiai:ion' in (4.2.5) provides a -simple‘ liﬁear regression model with one
independént variable, ri(8). For any particular set of data, we can readily calculate the. léast
: : o

A A .
squares ectimators fg and f; of B and By, respectively. It is a well-known fact (e.g., Neter,

A . ) ’
- Wasserman and Kutner, 1985, p. 39) that ﬁo and f; are the best linear unbiased estimators of

-~
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1

the model parameters. (Noté, ‘however, that the assumption of constant variance must hold.

Otherwise, the we1ghted least squares estimators should be used after determmmg the fune-

. txonal form of 0{0).) Furthermore since the expected normahzed travel distanee is given by ‘
g

L‘; .
a@) =EL®]=p,+p,r,®,  ___ (4.2.6)

it follows that ﬁo and 61 cnn be used as the coefficients of the w;jghted one-two norm, ky
(equation (4.1)), to approxlmate actual distances in the network Then ky(x; 30, [31) estimates
the mean or expected travel distance between any two points q and r,such that q—r = x.

. We now propose a few applications of the model in (4.2.5), which provide new ways
of analyzing the physical nature of the transportation network under consideration. Tneso
applications rely on standard methods of linear regression analysis In the followmg
statlstlcal tests, Hy and H; denote the nul] and alternate hypotheses respectively. The details

pertaining to these tests are omitted here, since they can be found in any standard text on

linear regression (e.g., see Chapter 3 of Neter, Wasserman and Kutner, 1985).

Test 1 {Directional Bias}
Here we consider the decision problem,
Hg:B1 =0 versus Hy: Bl>0 (4 2.7)'
When Hgis l'Q]ECtEd in favour of Hy, we conclude that the network has a statistically-
s1gmﬁcant rectangular bias. This implies that the underlying rectangular pattern of roads in
the network contributes on average to the totaI travel distance between.paxrs of points.
Test2 (Diagonal Roads}

Next consider the decision prob_lnem,

Hp:Po =0 versus Hj:Bo >0. o (4.2.8)
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If Hy is rejected in favour of Hy, we conclude that the Euelidean component of the travel

- distance is statistically significant. This implies in turn that the diagoenal roads traversing

the network contribute on average to the total travel distance between pairs of points.

Test3 {Outliers)

Under the assumption of congfant variance for the error-term, a substantial
deviation of an-actuai normalizé.;d disthnce from the estimated mean (ﬁo-'r-ﬁl r1(8)) may
signify the presence of an ouﬂier. Such dutliers afe detected from an analysis of the residuals.
Since our model has only one independent variable, it is possiblé to plot the residuals and

‘ ident.ify'any outliers vis;ually; A more rigorous method involves the uée of standardized
rgsiduals (e.g., see Belslejr, Kuh and Welsch, 1980). | It is erucial that the outliers be _identiﬁ'ed,
since theiy can have an excessive influence én.t’:he estimates (ﬁo, 31) of ;.he mode] p,are'xmeters,

and hence on the distance function itself. ™

. In addition, the outliers provide important information concerning the physical
. S .

nature of the transportation network beingr modelled. If several of them are associated with

the same destinatign; say a,, then this implies that the distance function obtained for the

population in general does not accurately estimate travel distances to a, (and its environs) |

from the othér points in tine network. To rémedy such a situation, we should custom-fit a
-separate distance function for a, alone, usiﬁg the suﬁsgt of déta associated with a,. . This
results in a mixed-norm model, which will be discﬁssed in further detail in Chgter 6. The
‘importance of the mixed-norm model is that it allows a more accurate rebreseptatipn of the

real system. In this respect, we are closing the gap between continuous and discrete location
models. _ . ' . : , _ B a
" Toillustrate the use of our linear regression model, let us continue the case studg} of

the road network in southern Ontario discussed at the end of Chapter 3. The 18 cities listed in

P
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Table 3.3.1 provided 153.(=18Cyp) travel distances for the aﬁalysis, which was carried out with
 the Minitab computer package. Based on our previous cbservations on the nature of the( road
system,:ah orientation of 22.5° was chesen for the reference axes of the model.
The least squares estimators of the coefﬁ_ciénts Bo, By, were found to be
'ﬁo_ = 07517 and By = '0'.325554 . |
From the output ;)f standardized residuals, Fort Erie and St. Catharines were identified'as the
source of several outliers. A scan of the map shows that these two cities are located south of |
Lake Ontario,: and that tfxel lake provides a large obstacle bgtween' them and the other
destinations in the data set. Hence, we conclude that a separate distance function should beﬂg _
used for these two citiés. The data points corresponding tq the Sarnia-Windsor and
Petetborough-Barrie links. wer¢ also identified és significant outliers. ‘This‘is due to the fact
that Lake St. Clair and Lake Sifncoé result in local barriers to travel between these two pairs.
DeIeﬁng Fort 'Eri(;. and St. Catharines plus the two links mentionedAabo;._re,'and
.repeating the regression analysis with the remaining data, we. obtained leé.st squares
estimators, A
$o=07786 and B = 0.2881.
. SuSsequent reﬁoval of outliers was observed to have little effect on these values.ﬁ Finally, we
‘note tﬁat the t-tesf_.‘ vaIues-assbciﬁted with Eo and ’ﬁl’ for the reduced data set, reépecti{re_ly

12.72 and 5.64; provide strong statistical evidence in support of the alternate hypothesis in

Tests 1 and 2 above.
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CHAPTER 5

SINGLE FACILITY LOCATION WITH THE ¢; NORM _ ‘%

The single facility unconstrained #ninisum location problem, commonly referred to
as the Weber problem, wis introduced briefly in Chapter 1; (see model (1.1)). We re-state it
" "
here for the more restrictive case where the distance function is given by a norm k on RN.

Thus, we obtain the following model:

Minimize Wx) = > w k(x—a), (5.1)

=1
where a; = (ajj, ...,'aiN)T_is th_e known position of the ith destinatior_l or fixed pm&%i =1.,0 |
nig the number of fixed points; x = (x:l, s xN)T is tl;e unknqwn position of the new facility; w;
’is a posifive weightin_g constant.which converts dista}nce ti‘avelled between the_new faeility
and the ith c‘usfomer intoa cosf, fori=1,...,n;and k(-) is a norm used to measure the distance.
between any two p(;ints in RN, P,
In this chapter, we begin with the minisum model in (-,5.1), and dévelop some
| general properties for the case where kisa :;ound norm. These results provide some insights

into the differences between models which use round norms and those which use bldci& norms. \__//

" . We then consider the special case where k is the £, norm. ‘The model in (5.1) Becomes

n

. _ | (5.2)
minimize W(x) = ZI W, Ep(x—ai),
i= :
wherep = 1, and wi, 8j, 1 = 1, ..., n, and x are defined above. When th& parameter p has a

. ‘ ~ -
value in the open interval (1, + =), £,(-) is a differentiable round norm (Proper?f; 2.2.4). For

p = land +=, we have the rectangular and Chebychev norms, both of which are block norms.

A Weiszfeld-type solution algorithm for the model in (5.2) is analyz'ec.i. in great detail for global

L]
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obtained.
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convergence properties and local convergence rates, and some interesting results are

5.1 + Properties of the Minisum Problem -

| In this section, we derive properties ﬁertaining to the optimal ;so]ut;ion of. model
(5.1). Conditions which guarantee that this solution is unique have been obtained by
Pelegrin, Michelot and Pla;ria (1985), for a more géneral minisutﬁ problem. We provide a
different proof of these results which is geared to the specific model in (5.1). -This al;v,b permits
us fo analyze the behaviouf of the objeéti\:e function in more detail and the prope'.rties of tﬁe

optimal solution when it is not unique. We first consider the case where k is a round norm,

~ then a block norm. Finally, we make use of the uniqueness results to deduce properties

concerning.the location of the optimal solution in relation to the fixed points. Extensions to

the multifacility problem are also discussed. - -

Property 5.1.1

Co_nsider t}}e- minisum problem given in (5.1}, wheré theaj,i=1,..,n,(n> 1), are
collinear points, and k is a round norm. Then the objective funcEio'n Wi(x) is éonvex piecewise
linear along.the straight ]iné joining the aj, and strictly convex everywhere else. |

Proof:

Since W(x) is the sum of convex functions, it is also convex. Let L; denote the
straight line paséing through the fixed points, and choose a point x € Ly, such that x = a;, '

i=1,..,n. Then

k(x;ai) = cez(x_gi) _' . i=1,.,n, (5.1.1)



 derivative of W at x in the direction y is given by
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where c is a positive constant. Let y denote a unit vector parallel to L;. The directional

Wix;y) = c( Z W, ~ Z wi) , l(5.1.'2)

._ iE-J1 iEJ2
w};ere Ji= | (x—ap -y >0},
and Jg2 = {j| (x—a)) -y < 0}.

We see that W'(x; y) is constant at all poixfs in the open segment (a;;, a;,) of Ly; where a;, and

" aj, are adjacent fixed points on L). Furthermore, W'(x;y) changes by a discrete amount .

between adjacent segmentg, since oﬁe of the in&ices gei.:s ‘transferred between J; and 'ng.“lt
follows then th;t W) is con\}ex piecewise linear on Lj. .

Now consider a point x € L, arkdraw any straight liner Lo through x. A: least
(n—1) of the a;’s are not containéd in Ly. Chooseone of these; say, ar € Lz, Since k iég\round
norm, it follows from Proper;;y 2.2.3 tl';at k(x—a,) is -strict.ly convex along Ly. Thus, W(x) is

[

the sum of n convex terms, of which at least {(n— 1) are strictly convex along Ls. It follows that

Wi(x) is strictly convex everywhere except along the straight line throﬁgh the fixed points,”

_ e
thereby ending the proof.

Corollary5.1.1 -
© For the collinear case considered above, suppose an optimal solution x* exists such

that x* € L;. Then x* isthe only optimal solution. If on the other hand, x* € L, there are two

. possibilities:
i) oox* is uniquely located at a fixed point; or
ii) all the points on the closed line segment fai,, ai,] are optimal, where a, and aj, are

*
.-

adjacent fixed points on L.

a

L
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Proof:

Follows immediately from Property 5.1.1.

’

Property 5.1.2 - J ' : )

Consider the minisum problem given‘in (5.1}, where k is a round norm, a_rll'd the aj,
_i=1,..,n,are non-colfinear points this time. Then the objective function W(x) is a strictly
r

convex function of x.

Proof:

Let L denote any straight line in RN, Sincg the a;j are non-collinear, there must be
at least one ﬁxed point, say a,, such that a, E’ L. Since k is a round norm, it foIlows-from
Property 2.2.3 that k(x—a,) is'str_ic;tly convex alof{g L: 'Thuc W(x) is the éum of n convex

terms, at least one of which is strictly convex alc')?x‘_grL. We concivde then that W(x) is a strictly

convex funetion of x. .

Corollary 5.1.2°
The optimal solution x* of the minisum model given in (5.1) is unique when k isa

‘ o
round norm and the fixed points a; are non-collinear. '

Proof;

Follows immaediately from Property 5.1.2.

Corollary 5.1.2 gives sufficient conditions for the optimal solution of the classical |
minisum problem to be‘ unique. It is also interesting to note that Properties 5.1.1 and 5.1.2

generalize the Result 3 of Francis and Cabot (1972), where k is the Euclidean norm on R2, to

i
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: & :
the case where k is any round norm on RN." Conside! now the case where k is a block norm.

The uniqueness of the optimal solution can no longer be guaranteed, as made evident by the

&

following result, which applies irrespective of whether the a; are collinear or not.
Property 5.1.3
1 . ‘ 7 . )
Letkbea blo‘elQ)rm in the minisum model (5.1). Then the objective function W(x)
t
is convex piecewise linear in x along any straight line in RN,

-
Proof: - T _ , .
Aiong any straight line in RN, W(x) is the sum of n convex piecewise linear terms.

-

(See ‘tﬁe discussion pertaining to block norms in Section -We W(x) is itself a convex.
piecewise Iir}ear function of x along the line. .- . -
Let us consider now the minisum model (5.1) where k ie a block norm on R2(N = 2).
Recallihg Property 2.4.4, we d‘raw through each of the fixed poiof.s aj the sltroight lines along
which k(x —~a;) is non-differentimble. This is illustrated in Figure 5.1.1 when k is the weighteo
one- mfimty norm, We see that these hne; form in general polygons of various shapes and )
sizes. Let us define a 'small box' as any polygon bounded by these lines, which does not
' contain w1thm it other such polygons. In other words, a small box is any cell formed by the
straight lines we have drawn through the a;. “ <
In Theorem 6 of Thisse, Ward and Wen;i_ell (1984), 1:‘ is shown that an optlmal
solutlon must occur at one of the intersection or fixed points located at the corners of the small
“boxes. We can prove this result quite readily using Property 5.1.3. The objective functmn
W(x) is convex piecewise linear.a.long any straight lirll_e L. Furthefmo'l'e, the directional
. derivative W;(x ; y); where y is a unit vector parallel to L and x € L, only changes, and by a

L
discrete amount, when L crosses from one small box into an adjacent one. Suppose then that
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]

Figure5.1.1 L:Tzon-Diﬁerentiable Points and Small Boxes for the Weighted One-Infinity
Norm. ‘
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an opt.imal Solution occursata lpoini; Xy belonging to a small box labelled Bj. If x, is an interior
point of Bj, draw‘ the straight line L to pass through x, and a corner point x. of B;. Clearly
W'{x;y) = 0 onthe open line seément of L contained in Bj. (Otherwise xg cannot be optimal.)
Thus t%e corner point x. is also optimai. A similar line of reasoning holds if x, is on an edge of
Bj, and L is chosen to coincide. with this’ édge. Thus we conclude as in 'I‘h.isse, Wgrd aﬁd )
Wendell (1934) that an optimal solution occurs ata cornfir peint. -
Based on the precedir;g discussion, we can also characterize the optimal solution of ‘
V_r‘nodf_;l (5.1), when k is a block norm.on R2. There é.re three possibilities: |
i the optimal solution occurs uniquely at lan intersection or ﬁ_xed point;
ii) the points along one edgeof a small. box are all optimal; or -
iii) all the points belonging to a small BOx are optimal.
Since Property 5.1.3 holds in RN, it is also. interesting to no£e that the aboy'e résﬁlfs can be
generalized to hiéher~dit_nen§i6na1 spaces, | -
The following properties deal wi_th_the location of the optimal solution in re-lation to
the convex hull of thé -t;ixed points, denotell by c.h.{ay, ..., a;}.

El

Property'5. 1.4

>

Consider the minisum model (5.1), where k is a round norm on RZ. Anjr optimal

- solution must lie in the convex hull of the fixed points. ,7

Proof;
Consider first the case where the a;, i'=1,...,n, are non-collinear points. From

Corollary 5.1.2, we see that the optimal solution x* is unique. For any nor:i_i, an optimal

solutior. must exist within the convex huil of the fixed poinﬁs (Corollary 4 of Wendell and .

Hurter, 1973). Hence, we conclude that x* € c.h. {ay, ..., an}. Now consider the case where the
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a;,i=1,..., n, are collinear points. Suppose an 6ptimal splution x* exists outside the convex
hull of the fixed points. By Corollary 5.1.1, it follolvvs that x* We uniql:ie optimal. But this
contradiets Corolléry 4 of Wendell and Hurter (1973), which states that an oﬁtimal solution
can be found in c.h. {ay, ..., an} Hence, we conclude for the (;ollinear cas;a that any optimai

AP

solution x* € c.h. {a;, ..., an}.

Property 5.1.5 o : o :
| Consider the minisum model (5.1), where k is the Euclidean norm on RN (k = -fz).
-Any optimal solution'must lie ip the convex hull of the fixed points,

‘ .
Proof:
| First we note that k is a round norm (Property 2.2.4). The remainder of the proof is
identical to that 6f Property-5.1.4, except that .Corollary 3 of Wendell and Hurter (1973)
:;eplgces their Corollary 4. _

Juel and Love ('1583); show that all optimal solutions of the miﬁisum model (5.2) in
two-dimensional space (i.e., k is the {, norm on R2), must occur in l;he convex hull of the fixed
points whenp>1. Thei.r proof relies on properties of the directional derivati_ve of the £, norm.
We see'that ?r;)perty 5.1.4 generalizes this resulit to the case where k is any round norrnr on
R2, 7- - |

Thé hull properties discussed above for .single facilify locatiop: can be readily
ektend'ezd to the 'multifacilit.;f case. The’ mﬁltifaciiity problem was introduced briefly 1n

[N

Chapter 1; (see model (1.3)). We reformulate it here with the distance function being given by

-

anorm k:

: m n m=1 m ‘
“ s - (5.3)
minimize WM(X) = z Z wij‘k(xj_'ai) + z Z Vi k(xj--xk),
o : j=1 i=1 i=1 k=j+1 .
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wher$ m is thie number of new facilities to be located; n is the ruumber of existing destinations
(or ﬁz;:ed'poinfs); X = (x1, ..., Xra) 15 an Nm X 1 column :ector ‘witl; Xj = (le, . XjN)T being the
.‘unknqlwn position of new facility j, for j = 1, ..., m; aj = (aj, ..., aiy)T is the known positit.m qf
._ the ith destination, i =1, ...,m; wij = 0.is a weighting constant whi::h—converts dist.ance
between new facility j and destination i into a cost, fori =1, o =1, mvg=0isa
weighting constant whicﬁ converts 'distance between new facilities j and k intﬁ a cost, for
i = 1, -y ﬁ—l, k=j-1,...,m; and ﬁﬁally k(-) is.an appropriate'_norm used to measure the
nilistance between any t;wo pointé in RN,

o As discussed in Francis and Cabot (1972, p. 3&), the new facilities must be chained

in ordef that the model (5.3) be well-formulated. This means that each new facility j must be
'

linked to some existing facility i, ei_Eher directly (wjj > 0), or indirectly through a chain of new

facilitieg jhits ...,jp; s‘uch thaf v, > 0, ;’idz >0,.., ;'ip-dp > 0, Wij, > 0, (and vi = vy when

k > 1). Otherwise at leasf two new facilitigs can be located coincident to each other anywhere

in RN, without affecting the solution. ‘Hencefnrth, we assume that the multifa_cilﬁy proi)lem

is well-formulated; i.e., the new faciliti.es are phained‘ lr‘ |

The next result extends Property 4 of Francis and Cabot (1972), where k is the €2-

norm on R2, to the general case where k is any round norm on RN. To simplify the notation,

- let
| - R ) 619
f(x) = 21 w, kix.—a), i=1,..,m, , -
[ » L 3 1= ' . : .
" and .
‘ m—1" m, ' ‘ : : 5.1.4
£X) = > Z v, kx—x), | -1
_ j=1 r=j+1 . . ’
so that

, _ |
WMEK) = > f6) +£,(X). | . 615

A
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Property 5.1.6

Consider the multifacility model (5.3j, where k is a round norm on RN, The
objective function WM(X) is strictiy" convex if, and only if, for j = 1, ..., m, the set

S = {a'i | wi; > 0}is nonempty, and the points in each set S; are not collinear.

Proof:

A~

The proof is a straightforward extension of the one given by _Francis’ and Cabot
(1972). The detai]s; are given here for completeness.
(i) (If). If S; is nonempty and the points in S;are not collinear, forj = 1, ..., m, it followg "
using Property 5.1.2 that fi(x;) is sf.rictly conve:; on RN j = 1,..,m. 'kThus, Em;i=1 fi(x;) is
s;:rictly conve‘x on RNH'I_.' Let Xy éhd X3 be distinct points in RNm, wi-th X1 =(x1,..., xm) and

X2 = (y1, ..., Ym). Using the triangle inequality, we obtain forAe (0, 1),
2 2 v kihx + (1-Ny,- Ax —(1~ Ny,

i<r

f X 1‘ +(1-X)

I

> Zv k[h(x -x)+(1 A)(y -y

j<r
< AZ 2 v k(x—x)+(1 A)Z 2 v k(y ~y)
- : Y i<r j<r
= M X)+0-0f X) . (5.1.6)

"Thus fo is convex on RNm, We see that WM is the sum of a convex and a strictly convex -
function, both having domain RNm, and thus, WM is strictly convex on RNm, -

‘(i) (Only if). Consider first the case where at least one set S; is empty, and without loss
. . "

of generality, suppose Sy, is empty. Let vip = vip+...4 Vi 1,m. Then,

n—-1 . .
WM, ..., 0, x )_v kix )+ > £00) . , (5.1.7)
j=1 o ‘
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Since k(xm) vﬁries linearly on any half-liné H in RN beginning at the origiﬁ, it follows thgt
WM will be linear on the line segment joining o,.., Q, xml) and (0, ..., 0, x2) in RNm where
xm! and x,,,2 are distinct points on H. This contradicts the fact that WM is strictly convex, and
so, each 'sét S5 must be nonempty.

Now suppose that the points in at least one set S are ;qllinear; without loss of

generality, assume the points in Sy, are collinear, and that wy, > 0. Define -

m—1
Wllm = Z ij + Win= Ym + Wi’
=1 - < .
W =W, i=2,..n, .
and
a ’
' fix,) = gl Wik =8
Then ' '
m-1 ) '
WM@,,...,a,x )= 21 fj(al)‘-i- f'(xm) . ' (-5-1-3)
. j=

Using Prbperty 5.1.1, it follows that f is convex piecewis%};ngar on the line L in RN containing -
S.,'“', "I‘Hus:,.distiru:t'T points x,;! and x,2 in.L may be chosen such that { is linear oﬁ the line
segment in RN joining x! and x2. It follows from (5.1.8) that f will be linear on the line
segment jdining (ay, ..., a1, XmY and (ay, ..., a1, Xy 2) in RNm, Thi‘s_ contradiets fhe faét that WM
is .strictly convex, and 50, the ﬁoints in each set Sjare not\coll-im‘ear.

Property 5.1.6 f)rovides a sufficient condition for guaranteeing that WM(X) has‘ a

.unique minimum. That is, if k is a round norm on RN, and S; is nonempty and the points
cont@iﬁéd in 5; are not collinear for j = 1, ..., m, then WM is minimized at a uﬁique X* in RNm,
Of course this is not a necessary condition, since WM does not have to be strictly convex to

have a unique optimal, It is also interesting to note that the sufficient condition for strict

convexity given in the above property does not depend in any manner upon f,.
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The next result cbnsiders the case where k i-s a block norm.* We see that
Property 5.1.3 for the siagle facility objective function W(x) extends quite readily to WM(X).
o, 3
Property 5.1.7 s
i Consider the multitecility model {5.3), 'Where k is a block norm on RN, Then

WM(X) is convex piecewise linesr along any straight line in RNm,

Proof:
From Prbpert§.5.1.3, it follows that fi(x;) is convex plecewise linear along any line
. ARt ‘

in RN, for j =1, ...,m. Thus, Emj.__lf}(xj) is convex piecewise linear on any line in RNm,

L4

Returning tb relation (5.1.6), we ség that &
LOX +1-0X) = > > v, kAb—x)+ A =Ny,~y)]
] <r :

where Xy = (xy, ..., xm) and X2 = (y1, ..., ym) are two distinct points in RNm and 0 s A < 1.
As) varie; from 0to 1, the argument of f, describes the line_segmént‘joining .41 a;nd X9, while
 the argumeﬁt'of k describes the line segment in RN joining the pointls (xj—x¢) and (yj— y,) for
éach term in I;.he doublé summation. Fora ﬁxgd increment on the line segment joining X and
" X9 in RNm, we obtéin the same propoftional increment on the line segment joining (xj—x;)
and (yj—yr) m RN, for 1 5j <r=<m. Using thjs fact and Property 5.1.3, it follows that f, is

% ‘
the sum of convex piecewise linear functions on the line segment joining X, and Xy, and hence

is also convex piecewise linear on this line segment. Thus, we conclude that WM is convex, -

piecewise linear along any straight line in RNm,

Some localization results have been obtained for the multifacility problem. Francis

and Cabot (1972, Property 2) prove by induction that any optimal solution to the model (5.3), -

. withk as the Euclidean norm on R2, must have all the new facilities located in the convex hull

- of the fixed points. Juel and Love (1983) extend this result to the case where k is an €y norm
»n oo : : .

»

¥
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onR2, and?< p< 4w Meanwhile, Hansen, Perreur and Thiése (1980) shov.v that an optimal
solution exists with all the new faciiitigs in the Sonvex hull of the fixed points; when k is atny
" norm on R2. -(Hoﬁrever, optimal locations may also exist outside the hull.) The next result
" generalizes the one by Juel and Love (1983) for t!;e ¢p norm on R2 (1.<p< -F_m) to any round

norm on R2,

Property 5.1.8
Consider the multifacility model (@ where k is a round norm on R2, and let

. - s : S
X* = (x1*, ..., Xn*) denote an optimal solution. Then

{x;,...,x;{} C c.h.{él,...,an}.

Proof:
¥ From the codvexity prop'erty of WM., it follows that at least one optimal solution

exists. Assume that sucha solution (x;*, ..., xm*) has at least one new facility located OEE.S_iEe
ch. {a, ..., a8n}. Then c.h. {81, --.\8n, X1%, ... x*} D c:h. {2y, - Clearly some of the riex;r

facility locatio’ns correspond to extreme ﬁoints of the larger };ull. Take one of these points, say

x € c.h. {ay, ..., an}. If one new facility is located at x, then by Property 5.1.4, a better solution -

can be obtained by moving this fa:cility to some location in the convex hull of t.fxe fixed points ‘
and the remaining new fg—cilities.; This contfadicts the optimality assumption for .
(x1*, ..., Xm*). If two or more ne\;' facilities are locate;;l-ét x, they can be combined and treated
as a single new facility to arrive at the same contradiction. Hence, we conclude that all the
new facilities must Be located inc.h. {ay, ..., a5} for an optimal solution.

The next result generalizes the one by Francis and Cabot (1972) for the Euclidean

norm on R2 to higher-dimensional spaces.
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Property 5.1.9 . - )
\“ -
Consider the multifacility model (5.3), where k is the Euclidean norm on RN

{k = £5), and let X* = (x;*, ..., xn*) denote an optimal solution. Then

{xl,...,xm}g c.h.{al,...,an}.

Proof:

The proof is 1dent1cal to the previous one except that Property 5 1.5 replaces
Property 5.14, L
52 The Weiszfeld Procedure Revisited

521 . One-Point Iterative Methods

r-I'he literative solution technique developed by Weiszfeld (1937) to solve the single
facil_ity minisum medel with Euclidean distances hasl received considerable attantion in the
literature, Ag noted in Chapterl this atgorithni was re-discovered several years later |
independently by Mleh]e (1958), Kuhn and Kuenne (1962) and Cooper (1963) The main
advantages of the Welszfeld procedure are its simplicity and ease of programming, and the )
fact that the iterations give progressively better solutions. The disadvantages of the
| Weisﬂkl procedare include the fact that it will fail if one of the iterates happens to be a fixed,
.point (Kuhn, 1973), and the local convergence rate is generally lmear (Katz 1974). In
exceptional cases which occur onIy when the optimal Jocationisata ﬁxed pomt this rate may
be quadratic or sublinear. By local convergence, we are referrmg to the behaviour of the
iterates (x9) when they are sufficiently close to the opttmal solution (x*). |

It is worthwhile noting that the Weiszfeld pi'ocedure belongs to a broader class of
so&r}techniques kaown as one-point iteratian methods. (For a geaeral discussipn of one-

‘point iteration methods, the reader is referred _to Dahlquist and Bjérck, 1974, Chapter 6.)
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This class of solution techniques can be described as follows. Given a general system of N

nonlinear equations in N unknowns,

| O (5.2.1)
fi(xl’ xN)—O, i=1,..,N, ] ' .
we rewrite the system in the form, .
- ' ‘21 N . % (5.22).
X, = cbi(xl,...., xN) . i=1,..,N; ST . :
and then proceed to solve for the unknowns by the following iterative sequence, - o O

xq+1 = ‘bl(qu asey xq i - 1, ey N. (5'2'3)

,. i N -
Hé’zfe,_ q= 0,.1, 2,..,1s hsed to specify the iteration number, and (x;o, ..., xNO) gives our initial
estimate of the solution for thé starting point hf the iterations. The system of equations ih
{5.2.1) can n_ormally be put in the form (5.2.2) in -rhany-different wasrs, not all of which will
necessarily yield sequénces that converge to -the solution. The trick then is to find the

functions ¢; with good convergence properties. One can rewrite (5.2.3) in vector notation as

follows: -

xI* = px%) q=0,1,2,.., . (5:2.4)
where x = (xi, ..., x5)T, and (b(x) = (dy(x), ..., ONCN)T.
‘ We see that the term 'one-point’ derlves from the fact that the iteration functién ¢
uses only the current iterate (x49) to determme the succeeding one (xQ'" 1), This is the S1mplest
possible form which ¢ can take. More generally, i) is a function of m points, which are not
necessarily sucqessive iterates, so that

X9t = gyt yo=l | gammtly : ' (5:2.5)

This is referred to as an m-point iteration method. The principal requirement of an iterative
.method such as the one given in (5 2. 4) or (5.2.5) is that the sequence generated should
. converge to a solutmn (or root) of the system of equations given in (5 2. 1) for any arbitrary
starting pm%Lettmg x* = (x1*, ..., xN*)T denote such a solution, this means the_nt

lim x% = x*, (5.2.6)

q—’m
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for arbitrary xe € RN, This is referred to as the global convergence property of the iterative
method. (For a general discussion of global convergence, see Luenberger, 1973, Chapter 6.)
In the Weiszfeld procedure, the system of equations (5.2.1) is given by the first-

order conditions for a stationary point of a differentiable function; namely,

VW(x) =
where V = (alaxy, ..., 3/axy)T denotes the gradxent vector, W(x) —E“l_lw fo(x —a;) is the

(6.2.7)

: objectwe function of the minisum problem Wlth Euclidean distances, ¢a(:) is the Euclidean
norm on RN, and the remaining symbols are as defind in model (5.1). The itgration function
¢ used to solve (5.2.7) will be discucsed later, .

Kuhn (1973) shows that the Weiszfeld procedure converges globally to thc solution
x* of (5.2.7) provided ,that’an iterate x4 does not fall on one of the fixed pcints aj. If this occurs,
the iteration function ¢ becomes u.nd.clfined due to aivision by zero. We shall investigate this -
problem in greater detail later. ‘In the meantime,- it suffices to note that an xa will coincide
'wiath an a; onl)r fcr a denumerable_ number of starting points (Kuhn, 1973). Theoretically
then the probability of a vertex ltqrate occurring would be zero for a randomly chosen
starting point and-a computer wlth mﬁmte accuracy. H ence in practice we should expect this
problem to ¢ occur very rarely, and so, we should not be too concerned about it. If by chance a
vertex iterate does occur, one can always re-start the iterations' ct an xo slightly removed from
the fixed point in question.- Ostresh (1978) proceeds in th1s manner to resolve the problem of
vertex iterates, by defining a new step when an iterate falls on a fixed point. With this
modification, global convergence is g'uaranteed for any starting point. |

‘In an earlier paper, Ostresh (1977) extends the Wetszfeld procedure to the multi-
faclhty minisum problem with Euclidean distances, and shows that the descent property of
the algcrithm also holds in this case. By descent prope::ty, we mean that the iterative'method

-

gives lower values of the associated objective function from one iteration to the nexf., provided

n
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the new itefate does nét equal its predecessor. For the mult}facility case, the problem of
vertex iterates becomes more complex, sincé the new facilities can coihcide with each other
énywhere in .the location space ,(RN)‘ If two or more new facilities coincide o;' a new facility
c;)incides wii;h an existing one, the Weiszfeld procedure will fail in a similar manneraas the
'sill'lgle facility case Wi'len an iterate lands on a fixed point. The popular way of girgumventing
_this problem is ‘to‘use a smoothing fﬁnctidn in plaé'é of the distance measure. Eystér, White
and Wierwille (1973) introduce a hyperboloici approximation of the Euclidean norm. Alter-
natively, the hyperbolic ;1p‘proximlation ban be used (e.g., see Love, 1969, 1974, Wesolowsky
and Love, 19’72,.;ndl1{0ve and Morris, 1975b). 'i‘hese‘:.‘smoothing fur;ctions have the
computationally-appealing property that they are infinitely- differentiable everywhere.
Althbuéh this approach eliminates the problem of vertex itérates, it has the disadvanta.g_e
that the solution obtained can be a considerable distance away from the solution of the
origina'l model. ' o * e
The local convergence properties of a‘ri iterative method such as thg one in (5.2.4)
are a méé.sure of the ultimate speed of convergence, v.vhen the it;.erates ar;e‘ within a suffi-
cieﬁtly small neighbourhood of the solution x*. However, they have to get Ehere ﬁr;t. There-
fore, one should establish beforehand that the algorithm is globally com;érgent. Generally,
the llocal é‘onvergence propert_ies ar% of interest . when we wish to determine the relat?ve
advantage of one algorit}im to another.. Kat; i1974) shows that the Weiszfeld procedure has a
local convergence rate Which is always Iinea:r if x* is not a fixed point. His results apply to the
single faci;ity minisum problem with Euclidean distances in RN, In mathematical tg:;nis‘, thié

means -

RN WL L S
B sas
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where c is a positive constant giving the asymptotic convergence rate, and || - | denotes the

Euclidean norm in RN, For example, if ¢ = 4, the distance between xa and x* is
approximately halved after every iteration for sufficiently large values of q.
We can use more sophisticated one-point iterative methods to improve the con-

vergence rate when x4 is ®lose to x*. However these methods require several more com-

r

putations at each step. It can be shown that a one-point iterative method of order r always

requires the computation of all quantities related to the functions f; (xq, ... xx), i = 1, v N, up -

to and including the (r—1)th order partml derwatwes atteach iteration £Dahlquist and

-

‘ 'B‘]ﬁrck, 1974). This becomes very cumbersome for values of r > 2, unless the higher-order

derivatives are easi]y‘com'puted. An.rt_h-order method implies that |

lim M =c (=0)
g [xI—x*f '

(5.2.9)

‘An example of a one-point iterative method of higher order would be the Newton-Raphson

g

method generalized to N dimensions, for which r = 2. Katz (1974) uses Steffensen’s methdq,
whlch is also of second order, on several sample problems to obtam much better convergence*

rates near the optimal solutmn than by the Weiszfeld procedure However, it should be noted

that Steﬁ'_ensen s iterations are not known to be globally convergent. This leads to the idea o-f -

L{sing hybrid algorithms to solve the minisum location problem, in which. we begin with the

Weiszfeld procedure, and then switch to a more sophisticated technique to accelerate the

‘convergence when the iterates are close to the optimal location.

3

Morris and Verdini (1979) extend the Weiszfeld procedure to the minisum model
with €, distances. We shall proceed next to prove global convergence of their generalized
algorithm. VCuri'ently such a proof exists only for the special case of Euclidean distances

{Kuhn, 1973), or'when a hyperbolic approximation of the ‘851, norm is used (Morris, 1978, 1981).

The smoothing function has the advantage that the singularities in the iteration function are
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L2

.

. - ' '
eliminated. Subsequently in section (5.3), we extend the local convergence results of Katz

(1974) for the Euclidean norm to the ¢, norm. Aside from academic interest, our aims serve a

practical purpose as well. As noted previously, the use.of the hyperb lic approximation of the
85 norm,lor othér smoothing functions'fo;‘ that matter, may result in solutions which are
considerably removed from the optimzi-l. solution to the original problem. Hence, al global
convergence proof pertaining to the original' (un-approximated) model would be useful.

Finall;, a knowledge of the local convergence properties will enable us to design hybrid

-

algorithms and choose acceleration methods more effectively.

"

-

5.2.2 Global Convergence Proof

" Let us consider nq\'.v the single facility minisum model (5.2), where distar.ces are
given by the £, norm on RN. Substituting the functional form of the €, norm, we can rewrite

“the objective function as follows:

. ' 1

R . " n N Vo ' (5.2.10)
5 - W(x) = Z wi( Z |xj__alj| P) . p.z 1". * . aia,
i=1 ' -

N 4

i=1

When p = 1, so that rectangﬁlar distances ‘aré. being used, the minimization problem can be

separated in thﬁc'limensions and solved in an efficient manner (e.g., see Love, Morris and

4

Wesoldwsky, '1988). If the Chebychev norm is used (p = +), the problem can be refor-
mulated-to rectangular distances by a rotation of the axesl3 and solved in a similar fashion.
Hencé, in applying the Weiszfeld iterative procedure to minimize W(x), we restrict attention

in practice to problems where the parameter p has a value in the following range,

1<p <+, N X3 b))

‘Recall that the £, function is a differentiable round norm for values of p in this range

(Property 2.2.4).

\g

Ey X
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~ Ifasolution occurs at an x* which is not a fixed point, then W(x) is differentiable at x*,

and the first-order necessary conditions for a stationary point require that

W&
%4

0, t=1,..N. ! S (5.2.12)

* Note that the system of equations in (5.2.12) is analogous to the system given in (5.2.1), where
one-point iterative methods were being discussed. Since W is a convex function of x, the
equations (5.2.12) are also sufficient conditions for x* to be an optimal location. Evaluating

the paftial de‘rivatives of W at x*, we rewrite (5.2.12) as follows:

n | * |p—1 o ‘ .
_ . X85 : (5.2.13)
z wistgn(xt—an)—-——l- =0, t=1,.,N, R
=l [€ (x*—a)1P~

where again x* = (x;*, ..., xx*)T. The procedure now ig to re-arrange (5.2.13) in an analogous

- formas (5.2.2). One of the many ways this can be accompliéhed is to note first that

. 5.2.14
(x,—a,) = sign (xt-ait)]x.t-aitl; ( )
so that (5.2.13) becomes
. = N _2
n . [x,~2,/° (5.2.15)
Z Wi(xt_alt.) 3 , t=1,..,N,
_ i=1 e (x* ~a)]®
and we readily obtain i
n . . . .
2 wixg—ay P %a, /e -a )P - )
- . ) t=1,.,N. (5.2.16)
t 1 )
Zl w | xt—ait[p'z'l [é’p(:'r."'—ai)]p"1
. 1=
Asin(5.2.3), the above set of equations suggests the following iterative scheme:
o ' : ' : 1 \
2 -2 q p- ’
_ 2 Wil xt"ait[ 8,/ [ep(x =)l o
x3* = =2 , t=1,..,N, (5.2.17)
n .
, g _
> wilxi—a, [P70/ [Cp(:u:q—ai)]p !
i=1

where the superscriptq = 0, 1, 2, ..., denotes the iteration numiaQ.

Letting

)]

N

—
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\ -2
wilx,—a,|"

y,(x) = ——————  i=1,.,n,. t=1,.,N,
* [€ (x—a 1P~

we can rewrite (5.2.17) in the compact form,

(5.2.18)

. n . .
’ Z Yit.(xq)ait. | )
e T E N (5.2.19),

n

Z yit(xq)

i=1
Note that the iteration function vector ¢(x}) in (5.2.4) is now defined as
) . &
O = (%) ..., Gy, | (5.2.20a)
where '
b n - .
2 W ay

o) = F———, t=1,..N. (5.2.20D)

n
2. ¥y ()
i=1

For the special case where-p = 2, the iterative scheme in (5.2.17) simplifies to

n .
: q
, Z Wiy [ Ext-a)) _
X+ = 21 ,  t=1,..,N. . (5.2.21)
t n N .
- q
2wl tfxi-a)

i=1

This is the well-known ngszi_‘eld procedure for the minisum model with Euclidean distances,

for which several reft.erences are noted in subsection 5.2.1. The iterative method in (5.2.17)
éxtencfs the Weiszfeld procedure to thergleneral case where distances are given by an £, norm.
A simi]ar_ t"ormulation for the hyperbolic approxim%f the €, norm is given by Moyris
(1978), Morris and Verdini (1979), and Love, Morris and Wesolowsky (1988). g .

‘Returning to the equations (5.24f) and letting

‘ v, {(x) ‘ o
A ()= ——— | i=1,.,n, t=1,..N, . (5.2.22)
it n .
2 1@ |
=1 .



we see tha\t ’ / -
x3* = Z A, Va, t=1,..,N.
i=1 .
Since
’ Ait(x) =0, vi,t,
and _ . - ¢

n
DA =1, V¢,
i=1

we conclude the important result that x;4+1 is a convex combination of aj, i = 1,...,

 jteration step, fort = 1, ..., N. Furthermore, for the special caée,'p =2,

yn(x) = \rm(x) =.. = YiN(x) =Y; x), i‘= 1,..,n,
so that o ’ o
¥; &) : .
A, (x)= 'n———=.hi(x), v t,i,

Z Y; )

j=1
and

qu Z A, (xq)a t=1,..,N (p=2).
' i=1

Hence, x;9+1 is the same convex combination of the ai,’s as xsa+1 is of the a;2's, ...,
. 2 il 2

151

(5.2.23)

(5.2.24)

(5.2.25)

n, in each

(5.2.26)

(5.2.27)

" (5.2.28)

and xnq+1

is of the aijN's. All the iterates xa+1,q = 0, 1, 2, ..., must therefore fall within the convex hull

of the fixed points a;, Kuhn (1973) uses this result to prove that the optimal solution for single

fagility minisum problems with Euclidean distances lies in the convex hull of the a;:

However, if p = 2, then equations (5.2.26), and thus (5.2.27) and (5.2.28), do not

‘hold in general. In other words, x;9+1 will not be the same convéx combination of the aj;’s as

x24+1 is of the ajp’s; and so on. Hence, we can only conclude for P = 2 that all the iterates
‘,3

xq+l,q=0,1, 2 ., will fall in 2 bounded hypercube containing the fixed points; that is,

min fa.} < xq"'l < max {8},

i , i

(5.2.29)
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fort=1,...,Nandq=0,1,2,... )

Congider now the case where ay¢ = agy =...= ap, for some t € {1, %, N}. Then, from

(5.2.23) and (5.2.25), it follows that

: | .. (5.2.30)
B x3* =4, q=0,1,2,... '/J

Hence, each iterate xa+1 lies in the hyperplane, x;—ay = 0, and the problem reduces to one
in (N —1) dimensions. We assume without restriction that all problems are reduced in this
ménner.to th.e minimum number of required dimensions. |
1}5 notéd by Morris (1981), no cofnplét_:e proof of global convergence for the €, norm
has previously b;aen published except for the case where p = 2; i.e., the l’iterati\m l_netl"lod i}n
(5.2.21). Our purpose then is to extend the global convergence proof to tl;é iterative fnethod in
| (5.2.17) for £ norms in general. Much of the anlalysils to follow is based on and motivated by

the work of Kuhn (1973) for Euciidean distances. However, our convergence proof requires

some new approaches due to complications we shall see later arising {rom the following

fundamental resu}t.

Property 5.2.1

Ifp < 2,the iferation function ¢(x) is uhdeﬁned along the hyperplanes,

x —a, =0, i=1,..n, (5.2.31)
o ) t it, . . o
for t = 1,..,N. Whereas if p = 2, the iteration function ¢(x) is undefined only at the fixed

pointsa;,i=1,..,n,fort=1,..,N. /

Proof:
'p < 2, then | x;—aj|P~2— +, as x approaches any point oﬁ the hyperplane,
xy—ai = 0, in RN. Note that this hyperplane also includes the fixed point a;. If p = 2,

division by zero within the functional form of &(x) will only occur if €o(x-ap) = 0;ie., x=a;
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for some i. Aside from the above singular points where ¢t(x)_ cénnot-be computed dire ly",‘we
see that the fﬁnctional“fox"m of dy(x) is well-defined and continuous. Hence, the property
follows.

Property. 5.2.1 reveals a basic difference between a Weiszfeld procedure with
Euclide’#n distances and one wit}ﬂep distances, where p < 2. In the former case, the iteration .
functions ¢4(x), t = 1,..., N, are singular only at t}he fixed locations a;, i = 1, ..., n. However,
in the latter case, we have to contend with singularity on the hyberp]anes,.xt—ag; =0,
i=1,.,n t=1,.,N. It would be advantageous in proving global convergence fo; each
iteration function 'cbt(x)A to be continuous. Hence, we{ study the behaviour of ¢y(x) in th_é
vicinity of its Singu]ar points to see if it can be made continuous at these points. The foll~owi'ng
tﬁree results deal with this question. |

ot
el
e

Property 5.2.2
Let p have a value in the range, 1 = p < 2. Then the iteration function e(x),
t € {1, ..., N}, is continuous if, and only if, we set ¢y(x) = aj; at all points x on the hyperplane

xg—ap=0,fori=1,..,n

Proof: '

. This follows immediately from the fatt that |
lim ¢ x) = a,, vrt, (5.2.32)
X0

N ‘ 4
and ¢y(x) is continuous everywhere else. -

)

% Lt L.
Property 5.2.3 . . ) - e
Letp = 2 Then the iteration function d(x), t € {1,.., N}, is contmuous quand only

if, we set q;,,(a,) =ay, fori=1,.
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A
Proof:
This follows immediately from the fact that
lim ¢ &x) =a_, ¥rt, (5.2.33)
t rt
b o ld: |
e
- and ¢y(x) is continuous everywhere else. -

Property 5.2.3 was prgvioixsly recognized by Kuhn (1973). Us‘ing vector notation,
we see that dfa) = a;, i =1, .-, 0, in order that the mapping ¢: x— ¢(x) bé continuous for
p =2. As seen from Property 5.2.2, this-resiﬂt‘also holds for 1 < p <2, but there are
additional requirements on nN hyperplanes in RN a..s well. For the case where p > 2, t.he

following rather surprising result is obtained.

_ Property 5.2.4

Let p-have a value in the range, 2< p < +w. Then the iteration function ¢(x),
t € {1, ..., N}, cannot in general be made continuous at its singular pointsa;, i = 1, ..., n.
Proof: ‘o g

Let H denote the hyper'p‘lane,.xt-a,t =0,r€{1,..,n}, and consider the following

limits:
p—-;2 p-1 ‘ _—
Z wilart_aitl ait/ [8p(ar-.--ai)] ’
. _ i=r. - . (5.2.34)
lim tl)t(x) = : e —y .
e Z w, | a,—a "%/ [8p(ar-ai)] :
t€H i=r '
| : (5.2.35)
Iim 'd)t(x) ='art — '
I—a ’
r
x¥H

The first limit is easily obtained from (5.2.17). The second one follows from thetobservation

that
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Hm [ -
T—a_ [t‘.'p(x—ar)]p 1

t t
r¢H x¢H
— |

= im 1

x-ra T.p'." lxt_arr.l

x¢H

(5.2.36)

—1 400 ' .

where €,(x—a,;) = 1| x;—ax], and v > 0 depends on the direction of approach to a,. Since the
two limits are not in general equal, the propérty'is proven.

In summary, we define the following iter:'ation procedure:

i) Forl=sp<2,
q e g s _
ot [cbt(x ) fot—ait::O, i=1,..,n,
X = , .
t . q - .
a if x;~a, =0, ie{1,...,n},
- (5.2.37)
t = 1,..,N .
Y Forp =2,
: e if x%a, , i=1,.,n, -
xi*! = o .. (5.2.38)
a, if :o:q=.';ni , 1€{1,..,n}. : S

From Property 5.2.2, we see that the mapping given in (5.2.37) is continuous. From
Properties 5.2.3 and 5.2.4, it follows that the mapping in (5.2.38) is continuous for p = 2, and
- discontinuous in general at the fixed points éi for p> 2. Denote the procedure given in .

(5.2:37) or (5.2.38) symbolically as

. (5.2
T: x— T(x) (x € RM). (5.2.39)

Clearly, T is just our iteration function vector ¢ specified in (5.2.20a) and (5.2.20b), with the
. | :

singularities of its components, the ¢, accounted for. The remaining properties deal with the

iteration procedure T as defined in (5.2.37) 6r (5.2.38).

e
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Property 5.2.5

The map, T : x -+ T(x), liesina compact set.

Proof:

From equations (5.2.23), (5.2.24) and (5.2.25), it is seen that x,a+! i$ a convex
combination of the ait,‘i = i, o, if x4 is not a singular' point of &t Furthermore, if x4 is a
singular point of ¢y, then x,a+1 = a,, r € {1, , n}, f;'om.(5.2.3'7) and (5.2.38). We cont:luclﬁ _
" that all the iterates except possibly the starting point will fall in a boundempmh

thait (5.2.29) is satisgied.

"Before proceeding to the next property, we introduce the following notation:

H, = x|x,-a, =0}, i=1l,..,n, t=1,.,N; - (5.2.40)
n . .
H = U H, t=1,.,N; (5.2.41)
i=1 ]
and
N L
U H . , f1lsp<i,
=1 . (5.2.42)

§ = : : ) .
. fay,ema ), fpz2. '\\

In other words, S is the set of points, x € RN, where ¢ is singular. Let D denote the set of x
where the objectiQe function W is not differentiable. If p>1,then D = {ay,...,a,}. Ifp=1,
then D=UN,_ H, It is interesting to note that D ='Sif p = 1 or p = 2, but DCS if

l1<p<2

Property 5.2.6 . . ) i o
Let x* denote an optimal solution of the medel (5.2.10). If x4 = x* then xq+1 = x*

as well as all subsequent iterations, Ifxa € Sand xa+1 = x9, then'xa = x*.

]
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| Property 5.2.7

167

Proof: |

If x* € S, then YW(x*) =0 implies that x* = ¢(x*) = ((1).1(1*), ey ONE*)T, There-
fore, if xa = x*, then xa+! = T(x9) = ¢p(x*) = x*, as we‘lI as aIl_ subsequent itérations.
Consider now 'ﬁﬁe case where x* € 5. If p = 2, then x* = a,, for some r € {1, .., n}. Hence, if

xq = x*, then by (5.2.38), xa+! = a, = x*. If 1 = p < 2, and V, = {t| $4(x*) is non-singular},

we obtain the following: the complement of V,, V’,, is non-empty; x.* = a; sVr€V', and

x* = q)l;(x"') Vrev,. Hénce, if xg = x*, then by (5.2.37), x.a*! = g;, = x,*¥Yr€ V’,, and
XA+l = gu(x*) = x *Vr€ V,; so Ithat xa+1 = x* For the last statement of the property, we
have xq+1 = T(xq) = ti)(xQ), since x4 ¢ S, Henc‘e; x4 = ¢(x49), which implies that YW(xq) =0.
We conclude that xq = :'c‘. -l

The next result shows that each iteration moves in a descent direction of the

- objective function, W.

If p = 2, then xa+1 lies on a vector from x4 pointing in the direction of steepest
descent of W at xa. Otherwise, if p = 2,.this vector points in a descent direction which is

generally not the steepest descent. Inboth cases, we assume xa+1 = xq.

Proof:
Equations (5.2.19) and (5.2.20b) can be rewritten in the form,
- . | _
PR AL RICLE
X, -¢°(xq)—-xt— — - . t=1,.,N
z ¥, x9
. i=1
But -

st |
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L

. _ - p—-1
w, signlx, —a, )| x,—a, |

Y x) - (x —a) = [t’p(x—ﬂi)]""m‘

N

= wrytep(x—-ai), Y i, t,

where ' -
d
Vt = —
ax ¢
Letting
‘ n
_ — (5.2.43)
= SL(X) - z Yit(x) r . t= 1: cery N *
~ i=1 o _
we see that _ , e
X3 = d v WY, t=1,..,N, © . (5.2.44)
t t Lt , . ‘
. 5,(x% ‘

prdvided, of course, x4 15 n§t a singul;ar point of ¢y, Since xa+1 = xq, it follows that xq is not at
a fixed location; i.e.,, xa=a;, i=1,...,n. ;I‘hus, x4 can be a singular point of ¢ only if
, 1 s p < 2 and x4 = a;, for some i £ {1, ..., n}. In this cﬁse, s¢(xq) = + o, and ;.;tq+1 = aj;, as
“_relll as all spbsequent iterations. However, a non-empty set J C ({1, ..., N} must exist such
tha; s¢(x4) has a finite value for all r €J (i.e-., x9isnota .singular point of ¢,), since xé+ 1 = xq,

hY

We see that

. (5.2.45
St(xq) >0, t=1,.,N; . . 4 )

also, sy(x9) is finite valued for all t € {1, ...., N} if p = 2, and finite valued for at least some ¢t if

1 = p < 2. Furthermore, by (5.2.26), it follows that
- ‘ ' - (5.2.46
| 5,(x) = s,(x) = ... = sy&x) = sx), p=2; (5.2.48)
but this does.not generally hold if p = 2. We conclude from {5.2.44) and (5.2.45) that xa+1 lies
dn a vector from x9 poirting in a descent direction of W at xq. For p = 2, this is the steepest

descent direction, since by (5.2.46),

Az L vwed (p=2). ‘ (5.2.47)
o o

\ ‘ '- _ ' o @



\ ' 169

Eor p= 2,A the above equation does not hold in éenerai, so that the d‘escent is not in the
steepest direction. |

- The preceding result shows that the iterations move in downward directions along
the surface of the objective function W. We can rewrite (5.2.44) in the form, |

2.48)
x3T = X9 M) vwiy) (6.248)

in a similar manner as Morris and Verdini (1579) for‘ the hyperbolic approximation of the €,
norm, to show that the iterative scheme is actually a modified gradient descent mefhod with
pre-determined ste;; size. Th.e modification matrix [M(xa)]-1isa diagonal matrix with (non-
negat'ivei diagonal elements given by 1/s4(xq), t = 1,...,N. As noted by Kuhn (i973), a
problem affecting gilobal conve;gence may arise if the iteratés ‘overshoot’; that is, the step-size

may be too large, causing W to increase between iterations. The following important result

\sﬁt? that overshooting cannot occur for a certain range of p.

Property 5.2.8 ‘ {Descent Property}

If1 S p s 2and xa+1 = xq, then W(xa+1) < W(xa). ¢

Proof:
E For a given xq, let v := yip(x9),i=1,..,n, t =1, i, N, Then, from {5.2.19) we
have | | -
| | xq+1 Z Y“aml :zl Y“ , ‘ .
provided xa € H 1f 1= p<2 and xq £ Sif p = 2 (see relations (5.2.40), (5.2.41), and (5.2.42)).
Let Vg = {t| ¢(xq) is non:’ar} Ifp=2, then since xa+1 = xq, we must have x4 = aj,
i=1,.,nie,xa¢8. Clehrly, Vq=1{1,..N}ifp = 2. On the other hand, 1f1' <'p < 2,then

" since x4+1 # x4, we must have V4G {l,...N}and Vg = 0.
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Fort € V, define

' 5.2.49
g &) = 21 HCRLI ( )
=

Then gi{x,) is a strictly convex function of x;, and has a unique minimum at x¢4+1, Thus, for
allt € Vg,
B i = g
n

‘ s = Z Jxl-a IP[8 (x9— a)]1 B ,(5.2.50)

i=1l

At least one of the inequalities given by (5.2.50) must be satisfied in a strict sense, since
xq+1 = xa. Now for s € V'y, where V’q is the complement of Vg, we have x5q+l. £ xg4. (Note

that V'g = 0if p = 2)) Thus,

ﬂ\ .. | . hs(x:+l) = hs(z(g), Y s EV:1 , (5.2.51)
v\lrheré ’ : »
hx) = Z.wilxs—ais]"[fp(xq-ainl—lﬂ__ _ ' (5.2.52)
i=1 -

Combining (5.2.50) and (5.2.51), gives .

D gtx‘”ln 2 hGIhH <Y gad+ Z h (%)
:ev sEV ) ‘ tGV sev
T q

n N - ‘ .
= z ZWIX p[£'(xq a)]l‘p

1

i=1 k=1
. «
= ZW €x —a)—'W(xq) . - (5:253)
i=1

Now consider the left-hand side of the above relation, and p = 2:
‘ _ } / ‘
—
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SRS W B
ey, sV,
e . .
- . 1 2
- -2 1-p, +
=2 2 wlxi-a [exf—a] (g™ —ay)
i=1 tev P
q
[}
. .
q+l_- 1p q l-p o o
+ _Zl RADMECHE RGN . (V. =0ip=2)
1= .
sEVq
n N ) : : 9 ) ‘
= p-2 1-p, 9F1_, A0 '
= Z Z wilxﬁf'aikl [8p(xq—ai)] P (kg "—a) (x3- —xg,VsEVq)" "\3
i=1k=1 . : :
’ I = 3yl =0
n N . p-2 o2
=3 D wit-a)' T a7 Ty P
¢ i=1 k=1 " - )
b ~ /=0
n N p;2 ] 9 )
=> > wi[€p(xq-ai)ll‘?p[(\ ,)|x§-..aik| P.+-|xg“_aik]*=] -
. o i=1 k=1 NI e P
for p < 2, (Beckenbach and Bellinan, 1965, Chapter 1, 14.(7)) ' ”
S n 9 ‘ g . ] .
-2 z q_ 1- + p
= z \fi_(l—;)fp?xq—ai) +p Z w (€ x-a)] P[t'p(xq —a))] . ,
v i=1 ' i=1 il
. : ‘ n 9 s 2 n . ’
Coe - ; \ b
A = > “’i(l' ;)fp(xq—ai, *e 2 wil-pe&i-a)+ pe x1 -ag)
. i?l i=1 -
- " forp=1, (Beckenbach a'nd Bellman, 1965, Chapter1, 14.(7))
Som - il " n ‘ .
=-2 witkl-a)+2 > w £t —a) o
E S =l ' i=1, : B &g
v S T | : (5.2.542) ~
T = WY + 2w I | S - ‘ -

~ i o -
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Forp = 2,-we have ,

2 e"h+ 2 bl
t€ Vq € V:l

n N ‘ : )
> > wlex-a)t x3tioa, ) (V. =0)
i=1 k=1 ' - -

1"-f

Z w, i)™ e (x‘l*‘ ~a)f
i=1

.

= > w {—6,a0—a)+2e, 63 ~al} ' -
i=1 . ' o N

{Beckenbach and Bellman, 1965, Chapteri, 14.(7)

| (5.2.54b)
= —W\’(%ZW(xq‘* Ly, |
Comparing (5 2.54a) and (5.2,54b) with (5.2. 53) gives
WY + 2WETT) < WK, 1sps2. " - ,
Hence :
» Wxith < WY, 1sps<2, {5.2.55)

thus proving the descent propérty of the algorithm for values of p in this range. *

For values of p greater than 2 the descent property does not hold at all tlmes This

is due to the fact that the first mequahty in (5.2.54a) is reversed for p > 2. Consu:ler the

follomng 51mp1e example w1th four fixed points inmtyo dlmensmns a) = (b 0), ag = {0, 10)
a3 = (10 10) aq =(10,0), wi = wp = 2 and w;; = wq = 1. - Let the starting pomt of the

iterations be xo = (0 5). Itis readily seen from (5 2.17) that the iterates will oscillate between
G-

(10, 5) and (0, 5) in all subsequent iterations, for any value of e - 2. This unstable behaviour

is illustrated in Figure 5.2.1, as well as the first few iterations when x¢ = (0, 9)T and p =3. If

o7 .
" . x%is a point on the vertical line through a; and ag or a3 and a4, then the consecutive iterates

will oscillate between these two lines to infinity or until one of them lands on an a;. Itis clear
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A ™
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then from this simple example and Property 5.2.7, that although the iterates move in descent
directions, they can overshoot if p > 2 (i.e.; W(xa+1) > W(x4)).
‘ TS . S’ . N . P
A similuar situation applies if p < 1 (p = 0). Recall in this case that the tp distance

function is no longer a norm. It can readily be shown that Property 5.2.7 still applies, so that

the iterates move in descent directions of the objective function W. However, we cannot

_guarantee tl"mt o;rershooting will not occur, since the second inequality in (5.2.54a) is reversed
w}_ien p<l

If xa = aj for some q, then qu T{a;) = a;, so that W(xa+1) = W(xQ) As a result,
the f'ixed points.belong to the solution set I' referred to in the general global convergence proof
for descent algorithms of Luenberger (1973, Chapter 6), which 1mpl1es in turn that a
subsequence of the 1terates may converge to any aj. Thig other potential dlfﬁculty of the
Welszfeld procedure was recognized by Kuhn (1973) for Euclidean distances (p= 2_)?‘P‘or the
case 1 < p < 2, the problem is coﬁiplicated further by the possibl;Iity that T(Q) = Q at non-
'Loptimal ﬁoints Q€5 whereS ié the ux_flion of ilyperplﬁnes, x¢—3ajt = 0, as defined in'(5.2.42).

For example, consider the intersection point B in N dimensions defined as follows:

B = (aill’ ai22, . aiNN) s ) (5.2.56)
wher¢ §j€{l,..,n},j=1,.,N, | B
ar%d B:tal, i=1,..,n . . ¢

If1 s P < 2, then T(B) = B, and thus all the intefsection points belong to the solution set T'.

As another example, consider a hypothetical point Q on the hyperplane x; —a;; = 0, butonno

1.

other hyperplanes nf §, satisfying

WQ _ WQ W@
sz . axa o BxN
fl=p<«< 2 then TQ =Q,and Q€T. Usmg similar hypotl"etlcal examples, it follows that

=0.

we must inv estxgate the p0531b111ty-of convergence % non-eptimal point belonging to S.
| | | \(,

L3
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Before addressing the potential problem of convergence to a non-optimal point in S, -

we prove two useful lemmas,

Lemma'5.2.1

n . .
Letpe€[1,2], and consider any sequence x4, q = 0, 1, 2, ..., generated-by the map

T: x=»T(x). Then {xq} and all the subsequences thereof conyerge to one and the same point.

'F - ' ~
Proof:

~ First consider the case where xa+1 = T(xa) = xq for some q. Clearly the sequence

repeats from that point, thus verifying the lemma for this case. Hence, we only. need to

congider sequences where xa+1 = xd for all q. \ -
With the possible excéption of xo, the sequence x4 lies in a compact set defined by a
. bounded hypercube (Property 5.2.5). Hence, by the Bolzano-Weierstrasz Theorem, there.

exists at least one point P and a subsequence xr¢ such that limgo xt¢ = P. To prove the
lemma, we must show that there is at most.or'-:e such P. This is done by contradiction.
Suppdse.the:e/(jre M subsequences (M = 2) of xa which converge to distinet points

Py, ..., Pym. Consider the first sub'sequ'\ence xre. Then '. '
‘ y
lim x "= P, . - - (5.2.5T) _

£

By the monotonicity of W on the entire seque.nce x4 (Property 5.2.8), we also have

| W) > WD > > WEy (5.2.58).
Now construct a 8—neighbourgood around P, isolaﬁng it from rthe other P;. :Then i_t is clear
that we can choose our subséﬁuence xve— Ptl such that 'T(xrc) € A for all €, where A denotes
the 8-neighbourhood. Invoking the Bolzano-Weierstiasz Theorem bnce‘again, we conclude

: : 5.
that the subsequence T{xr¢) must converge to at least one point, say P’y € Ay;i.e.,

;o
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-

. | |
lim Tx 9= P, 2P, . ~ (5.2.59)
fran

But -

r ) .
fim T(x 9 =T@), . (5.2.60)
=0

by (75.2.57) and the fact that T is a continuogs mapping. Since Py = T(P,), then by Property
¢

5.2.8,

- W(T(Py) < W(P)). - D (5.2.61)
But this clearly results in a contradiction of the monotonicity of W on the entire sequence x4,
‘(relation (5.2.58)). Hence we conclude‘ that the.re cannot be M“subsequﬁ\‘ehces (M = 2) which
converge to distinet points, Py, .. .,le.[. Thﬁs, thé sequence x4 <l:-o.mlr'erges to a unique point.

- Lemma 5.2.1 reveals an imporf:ant property concerning the nature _of' any sequ_encé

b | generatgd by the Weiszfeld pfocedure, and is a stronger result than previously recognized.
The-unique.ness of the con_vei'gence point is based principally oﬁ tﬁe st;ict monofénicity of W
on x4. The lemma applies even when more than one optimal location .’.-:* exists, which can
occur when 15= lor when the a; are'collinear.f We cannot extend the lemma p priori to values
of p > 2, since the descent property can be violated and T is not continuous aQbe fixed pointé

in this case.

-

The second lemma provides a sufficient condition for non-convergence of the

.

sequence x4 to'a specified point Q, which will be useful in our investigation of the singular

points%n the hyperplanes x; — aj, = 0 when 1sp<2

‘Lemma 5.2.2

f Let Q@ = (Qy, ..., Qn)T be any point in RN, Consider a sequence x4, q =012 ..,
¥ ‘ .
Y | ) ) .

generated by the map T, such that x,a = Q¢ for all qand some t € {1,.,Np. If
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‘ | $,(x)-Q, | oL C
lim —————] >1,  (5.2.62)
é[d =Q [xt—QtI : ' ’ .
x --Qt:O . ' ' o

then the given sequence does not converge to Q.

Proof: ' _ | — 0

Suppose that the sequetce xa converges to Q. Then for any G-nexghbourhood of Q
. ' &

where 8 > 0 can be made arbltranly small an M can be found such that o
e hy,  Va>M, (5.2.63)

where Aq denotes the 8-neighbourhood. But for sufficiently smail 5, we have by (5.2.62),

1 .
|x1*1-q,| , . (5.2.64)
—_— >, v x9¢A. .

- -

Hence an s exists_such that\kf) xq 6 Aq then Qﬁ € Aq, WhICh contradicts (5.2.63). “

_conclude therefore that the sequence x4 does not converge to Q.

Informally, the above result says that if an iterate happens to land inside Aq, then

. the subsequent iterates will eventuaﬁKbe\I;i:ked out by T. In order to, apply the preceding

lemma at the singular poinﬁé of the iteratiom¥unctions ¢, we use (5.2'.17)‘ to obtain

D [ g Qg | P2 q__ p-1
E wi|x ¢ — 85 2, -l [Ep(x a))l
qtl_ _ ' : : _
t - art - n. : an .
' x9_q |P-2 a_, yp-1
2 wilxi-a,|P~?/ [€x -2l

i=1

2 w,|xd-a |P” “a,~a )f[e(x a)]P“

i=r

-2 -1
-21 w,lxi—a,|P=% /(e x3-a))]P
i= .
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LY .
q pP-2¢, - q p-1
[x9*1_a | 3 wiixg—a |t @, —ay) /1€ (x"~a))] |
t re. i=r
- . -1 -2
|xl-a | ‘ |xi-a |P | xq—a P
Ve q p—1 t. artl z -
[Cp(x -a )l e (4 (xq a )]p
ré{l,.,n}, t=1,..,N. - (5.2.65)

We are primarily interested in sequences where none of the itefates coincide with
singular points of the cpt: As will be seen later, .the probal_aility_ of an iterate landing exactly on
a singular point is very Iow", for a réndomly-chasen x0, and theoretically it is zero if the
sequence is ggl;g}ated with inﬁnite accuracy. Tﬁe following definition distinguishes between

-

the two fundamental types of sequences.

Definition 5.2.1' R
A séquence x9,q=0,1,2,..,1is t:ermeci regular if x4 € S for all q, Qhere S is the set
of singular points defined.in (5.2.42). dtherwise x4,9=0,1, 2. ié anon—regular sequencé )
It is important to note that ‘q € S for some q, then xf-I+k €5,k=1,2,.., as seen

by (5 2.37) or (5.2.38). The next result shows thata regular sequence will never converge toa

non-optimal pointinS.

— ~Property 5.2.9

C0n51der any regular sequence x4 of the map T, thh 1= p <2, Let Q € Sbe anon-

‘optimal location; i.e., Q = x*. Then {xq} does not converge to Q

Pronf:‘ky .
Ly, -

> We consider three cases as follows;
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o

) 1<p<2Qw=a,i=1,.,n

Since Q is not a fixed point, the first derivatives aW(Q)/axy are defined for all k.

Furthefmore, since @ = x*, at least one of these derivatives is non-zero, say dW(Q)/9x,. Thus,

L )
W@ 3 1Q,~a,,|* - (5.2.66)
g Zwisigant—an[_t—u__l} 20, | A
s (¢ @2 °
where Q = (Qy, ..., Q)T as before. ‘
Suppose {xa} converges to Q. Then
lira x9 = iim T« =Q, | ' (5.2.67)
. o g
which implies by the continuity of T that
TQ) = h | (5.2.68)
| HQ =a,Vi, then clearly Qisnota smgular point of ¢y, and we obtam from (5.2. 66) _

Hence T(Q) = Q, cbntradicting the supposxtxon that {xa} converges to §.  We conclude that
Q¢ = ay for some r € {1, ..., n}, if convergence of {x3} to Q is-to take place. Then (5.2.66)

becomes

T lagma Pty .
WQ z w, sign(a —a, ){———-——-——] =0. : (5.2.70)
. fm €@ W) L

Usmg (5.2. 65) itis readily seen that

Lim I‘bt(X) a l - tm ‘ o (5.271) ) -
—Q ' xtTartl ‘
58,0
so that convergence of {xﬁ} to Q cannot occur due to Lemma 5.2.2, ' v
\.
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ii) p=1Q=a,i=1,..

Again, suppose that {xq} converges to Q. Usmg a similar reasonmg as in case (i), we
conclude that for t € {1, ..., N}, if Q = aj, Vi, then OW(Q)/axy = 0. Let Jq = {s| Qs—ars = 0},

where rg € {1, ..., n}. Without loss in generality, asstme thatYor each s € Jq, there is a unique

Ty such that Qs—arg = 0. This is always the case if the fixed points do not share common

coordinates. (The proof can be easily modified otherwise.) Since Q = x*, dg is a non-empty

/

set.

The directional derivative of W evaluated at Q in the direction of the unit vector

y = {y1} ..., yn)T is caleulated as follows:

W{Q;y) = lim (W(Q-i-ﬁy)_w(g)]
07" 6 P
n | . &
= lim |2 1-1
50" )
Z Z W(I r3+‘8y I | -—-aisi)
[SEJ r 8
= lim ‘
g—0" 3
z z wl(l Qt+8yt_ aitl_l Qt—aitb'
tE;I' i=1
+—= }‘\
! 8
= 2 { Iy|+Zws1gn(a ai,)Y.] |
-'ltJ l=r
F2 2 v senQoayy, | (5.2.72)
'oi=1 . _
t€d ’ | . ‘

Q
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/
where .
hl ’
JQ ={1,..,N} = JQ
is the complement of Jg. But 7 ‘ - "
WQ _ < . (5.2.73)
= Zl W sign@Q-a ) =0,  Vted,. :
1= . .
Hence, equation (5.2.72) becomes
Wiy = > [wr |y, + 2 w,signa,_ IS L P (5.2.74)
s€J 5 i=r 5 .
o Q 8 .
Since Q is a non-optimal location, we must have by Property 2.4.1,

min W'Q;y) < 0 . (5.2.75)
Yy ’ ‘

‘Hence

-|y3]”< 0, (5.276)

Z wi Sign(arss - ais)

i=r
. s

é minW’_(Q;y)=min[ > [wriysl—
. y 8

y sEJQ

. which implies that

,

z WiSign(a'r s"ais)
: 3 .

wot i=r
8

> 1 ‘ (5.277) -

r ’ 1
3 -

w

for at least one s € Jq,say s = 0. Using (5.2.65) withp=1,t = gandr = rg, it is readily seen

' : .
] Z w.signfa —a. )
‘ I(bc(x)-_ar al B P 1. roa. i -,

lim = o

=+Q Ixu ar ol wr
X —-a =0 o g
c ro .

- > 1 (5.2:78)

so'that convergence of {xq} to Q cannof occur due to Lemma 5.2.2.
iii) 1=p=2Q=acforsomer€(l,.., n}

‘Let . ‘ \J
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f- R ™

W00 = W —w ex—a) = W €x-a).  (62.79)
l:‘l' .

Then the dxrechonal derwatwe of WatQ = apin the dxrectmn y is given by
W'(a ,y)—VW(a)y+w 8(y) - . (5.2.80)
{Note that ifp =1, weare assummg w1thout; loss in generahty as in caSe (ii) that the fixed

points do not share common coordinates. 0therw1se, VW,(a,) may not be deﬁned and the

above equation would have to be modified slxghtly ) Let
-VYw (a Sy

SR (5.2.81)
Ty = ———. -
o W 14 (y) : . . .
‘Then the convergence of {xa} to a, must be along a unique asymptotic direction V such that
f(V) = max f(y). e . (5.2.82)
-y

(see Property 5.3.8 in the next subsection).
- As shown in Juel and Love (1981), a necessary and sufficient condition for a, to be

an optimal solution is that f(V) = 1, Since a, is not optimal in our case, it follows that

~VW.(a)-V. L
W=—ew '
VW(a)V+we(V)<o ' ; _— (5283)

- Comparing (5 2 80) and (5.2. 83), we sn;.:e that W (ar; V) < 0. Hence convergence of {xq} to a,
cannot occur, since thxs would contradict Property @descent property) -

Since cases (i), (ii) and (iii) exhaust allpossibilities, the proof is complete.

At last we are ready to prove global con\{ergence of f._he. Weiszfeld procedure. -
Hewever, this shall be un'c;ler‘the prbviso that p has a value in the range [1, 2], a’nd xa €5 for

all q; i.e., the sequence is regﬁlar.

Theorem 5.2.1 ‘ '(Global Convergence)
Let xq, q=0,1, 2 . hea regular sequence generated by the map T for a value of p

in the closed interval (1, 2]. Then {x4} converges to an optxmal solution of ; the smgl@facxhty

»
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location probleﬂl; ie.,

lim x% = x* .

(5.2.84)

Proof:

'By Lemma 5.2.1, it follows that {xq} converges to a unique point, P € RN, so that

limxd=P. R . (5.2.85)
‘ Kk n '
To prove the theorem, we must show that P.= x*

If xa+l = xa for some ¢, then the sequence repeats from that pomt and P = xa,
Smce x9¢ S, P = x* by Property 5.2.6. Othermse by Property 5.2.8,

W% > Wb >...>W(xq)>...?W(x*)_.

Hence ' , ’
- _ : lim [W(x%) —WTxY)] = 0 . - (5.2.86)
Qv ) . . .

Since the continuity of T and (5.2.85) imply . .

' " lim T&Y = T(P) , - - (5.2.87)
s :

it follows that ) ‘ _
\\) *lerefore by Property 5.2.8, we must have P = T(P) IfP €S, then P= x* by'Property 5.2.6.

If P € S, then P cannof b"e a non—opt1mal locatmn by Property 5.2.9. Agam P = x* and the
e

theorem is ;\o/.e;l. |
‘Consider now a non-regular sequ%xq, q=0,1,2, ... If p =2 (orp >%) this

implies that xq coincides w1th a ﬁxed point for some iteration number q, as-well as all,

subsequent 1terat1ons - not an interesting situation. On the other hand if ‘1 S p <2, then
- ~ {xa} is restricted from some iteration number onwards to motion in a subspace of RN defined

' by the intersection of one:r more hy]oerplanes of the form xt— ajt = 0. The following corollary

" gives an analogous result as Theoremn 5.2.1, for a non-regular sequence when 1 < R.< 2. F1rst

%
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we introduce the following notation. Let
- J = {rix -_airr=0.},
and _ ’

=Ny,

r E J T . ‘
where s is some iteration number such that J=0, i€ {1 n}- depends on r, and Hjr is

defined in (5.2.40). . : !
o
Corollary5 2.1
Consxder a non- regular sequenge X9, § = O 1,2,..., of "the map T with p&[l1,2).
: Then 1f all subsequent 1teratmns after x¢ do not fall on any hyperplanes Hi; not already

4]

included in H, the sequence converges to an optimal solution for the subspace H:

3

. Proof:
By Lemma 5, 2 1, it follows ﬂmt {xQ} converges to a umque point, P E RN ’
Furthermore, by the defimtmn of T it follows that x5+k k=0,1,2,. hes'm H;hence P € H A
\ “The remammg steps are essentially the same as in the theorem S |
| Forp = 2, there is on!y a denumerable set of startmg pomts x© such that {xQ} will
termmate at an aj after a finite number of iterations (Kuhn, 1973). This’ resul.t can be

extended to p > 2. However, for 1= p < 2, the singular points of the iteration function vector

o comp::ise the hyperplanes H;;; and we obtain the follewing.

Property 5.2.10 | \

For pE(l, 2) the sequence xfl, =0,1, 2 ., converges to x*, except for a set of .

starting points x0 which is dense as the set RN -1,



@

oY 185

Consider a pointQ € S such that if xr = Q for some r, the sequence results in a non-.

-

’\optxmal solution. Then

-
_ ! = =Q}
is ﬁmte since xo solves a system of algebraic equatmns It follows that
. - s )
x°|x" =Q for some r} S
*is denumerable. Let o ' ~
» : .
={QeS|if x" =Q thenlim x%= x*}.
' . L . R . . g

: ‘ Y
Since S’ is dense as the set RN-1, we conclude that

“x°|x" €8’ for some r}
is also dense as the set RN~1,

Since xo caﬂ be any point in RN, the likelihood that the algorithm will not converge

to x* for an arbitrarily chosen staf;ing point should be very low (zero theoretically if_the

- sequence is calculated with unlimited accurac.y). As a consequence of Property 5.2.16, we are

well-advised to use double precision aritlf:metic_whén 1 =p <2. A topic for future considera-

tion woul;:l the use ;)f a varigble step-size wheﬁ an iterate ~Iands on a sin‘gular point,

extc;ndxng ?:results of Ostresh(1978) for p = 2. Asa ﬁnaI comment, we note that although

global crgrergence of a rq lar sequence is not guaranteed for p > 2 (e. g see counter-

examp.es in Figure 5.2. 1) this is not a practical ]1m1tatmn since we only need to consnder‘l

~ values of pinthe mterval [1, 2] for properly oriented axes (Chapter 3).
&

83 i..ocal Convergence Rates of the Weiszfeld Procedure ’

pr thaf. global convérgénce has‘been‘pr;vén f;)r 1sp=2, wé turn our attention

td the behaviour of the sequence x4 when- the iterates are close to an optimal solution lx* Katz

(1974) studies the local convergence rat:es of the Welszfeld procedure for the single facxhty

.« minisum problem in N-dimensions with Euchdean dlstances (p = 2). For this case he shows
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that the local convergence is always linear if x* is not a fixed point. Furthermore for Nc—-2
the upper asymptotlc convergence bound (Ay) takes on a’value in the range 1/2 = AM <1 I
‘_ x*is a destination, the local convergence rate is usually linear, but 1t can he quadratm or
sublmear in certain cases.

The only published results concerning local convergence of the Weiszfeld procedure
appear to be those gwen by Katz (1974). Our-objective then j is to extend these results to the
single facility minisum problem wrthn\;p dlstances where 1 = p = 2, We shall soon see that
the analysis is cons1derably more complex and that a basmally dlﬂ‘erent methodology than
the one by Katz (1974) is required, because of the mure cliymbersome form of thn .
 functions*¢y, for general p. {Compare the functional forms in (5.2. 17) and (5.2.21)). Interest-
ingly though, the general results obtained by Katz (1974) for Euclidean distancesm.lso apply
when p takesona value in the open interval (1, 2), buta diﬁ'erent situation holde forp=1.1In
the first case the £, function is a round norm, whereas it bedomes ablock norm whenp = 1.

_ _We study the local convergence rates in great detail for the t\ro.-dimensional
problem (N = 2), since locatlon in the plane oceurs most commonly-in practrce The ana1y31s
® also leads to some mterestmg observatlons for values of P outszde the mterval [1 2}' The

results are then extended to the single faclhty minisum problem in RN,
: . o

5.3.1 | Convergence to a Non-Singular Point | 7 - * |

- We shall assume here as in Katz (1974) that the fixed points or destmatlons aj are
' _ non-collmear Forp > 1, this guarantees a unique solutmn x* (Corollary 5.1.2). The colhnear“
case is tnvral to solve in two dlmensmns (see Corollary 51.1 and Property 5.1.4)s0 that a |
Weiszfeld iterative procedure would not be req(nred here In the followmg analysrs the same

notatwn 1s used as in section 5.2, unless stated othermse

Recall that the iteration functions are given by

-~

-
M
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(5.3.1)

A\

q)(x) Z Y (x)a / Z\rlh(x) t=1,..,N,

where

' %, = oy P2 o (5.3.2)
y..x)= , i=1l,.,n, t=1,.,, N. ‘ .
i (e, (x—a1°" : |

n )
Let us consider first the case where x* is not a singular point of the ¢y; i.e., x* € 3. Since the ,

first partial derivatives of the objective function W(x) are equal to zero at :é*, it follows

immediately that -
‘ . . o N (5.3.3)
x(.," «bt(x ), t=1,..,N,

L

- orin vector notation,

X = gx¥) 634

For p€[1,2], the 1terat10n functmns are infinitely d1fferent1able at any x E S.

Thus, we can rewrite (x) ina S-nelghb_ourhood of x* in terms of its Tay]or series expansion’at °

x*. For sufficiently small 5, the higher-order terms in the series become insignificant.
N ’ .

‘Letting || - [ denote the Epclideén'distance, we obtain

) = d® + P'x*) - x—x*) + O x=x*[D | -

Y = x e x—xM + O x—x*H), | x€aA, (5.3.5)
where A denotes the 5-neighbourhood of x*, and ¢'(x*) is the N XN matrix of first partials of ¢

evaluated at x*; i.e.,

EXa) EX YN
-
san=| - B i o (5.3.6)
e Ay &N By
T T

We proceed now to calculate the elements of the above'matrix. For general x,

P

o
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. F
STy e,
arpt(x) 3 ZE:Y“(X a,
axj axj Z’Yit(zc)

i

> a%[yi;;(m:)]-at ZY (x)-a,
T ox

= ] ‘ [Y (0]

; ¥, (x) [Z Y;r.(x)]

. ! ; z ¥y () -2, .6 L

= — =y (x)]-a - —— D =1y, (5()]} ; S CRN

st(x) [; axj it it Z Yit(x) gaxj it ) .
i

" where’
5,(x) = Z Y x),
and the summations are understood to be over the index set {1 » 0} At x = x* the above -

expression reduces by means of (5.3.3) to

L
5¢ (x*) 1 '
. B (5.3:8)
x s ; [ax by )} e x\)
Using standard caleulus, we obtain , ;
8 . 6] < (1 -plw, 51g:1(:-:j -.aij) ij - aijl p"llxt —a p-2 et ' (5.3.9)
o o I x—a®l
and a _ :
S . s .
3 —w,sign(x, —a, )[x -a |p - p-1x, —a_|F -
— [y, (] = — - \[()j). —L | (5310
, [£,(x — a,)]P (£ G ~a)l? .
Thus,:. ’ : '
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WM Gz i Wi Sig“(x; - a;) Sig“(": —-a;) I"; - aijl F_I’x: = Ayl P
o &M {3 ' ' (€, (x* —a)] Zp-1 '
i=t, ‘
. : : | (5.3.11)
and ‘ ,  o
}&Y 4 =» Ix, —a, /P2 [ k, =a P | T
= w, (2-p)+ (p 1) ——\'—} ' ' ‘
ox, 5(x*) |=Z'1 ' [€,x* ~a ) Lk re, tc* — ap)] P
. P
. L p=1) < Ix, - a, : :
= (2—p) + — . (Y —— (6.3.12)
P 5,(x*) Z Y“’# [e (x* — a. )] P’ -

Usmg equations (5.3. 11) and (5.3.12), we can readlly construct the NXN matrix ¢'(x*). For

the planar case (N =2
P'x%) = [% <b12‘ ‘ (5313 .
by O
where - L S
1 o Ixp—ayl®
(I) (2'-p)'f‘M Y (x )_l'.._..l_..' o
. 50 {2 [£_(x*—a)IP
P I 4
' * p~1,* p—1
(P 1) [1—8“' |x2--ai2]
) - ! .
12 = 5 x *) z w. mgn(x ~a, sxgn(x a.,) {ep(xt_a_)]h—l
p-1 p—1
(p 1) |x1—a | Ix 2]
’ w, sngn(x ~a; )sxgn(x —-a, ’
M s £ Z i2 (¢ (et —a )PPt
and ‘ ‘ .
( 1) | —32|
Oy = @2—p) p fx

(6, (x*—a, P

When distances are Euchdean, this matrix reduces to the special form,
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0, w; sy —a)’ i W 0= ) —a,5) |
=1 (6 —a)® =t [ r—a)®
"x*¥) = - » ' L] ' l . 5.3.14
an(x,[) s [ w; (X, -8, )x,~a,) =W ("2'-%}2 : ( )
ISR R TCACLETS .
p= 2 ) — : )
where- ' '

: n
)= > w /€ (x—a).
o ‘ i=1 : .
The matrix in (5.3.14) agrees with the result obtained by Katz (1974).
The eigenvalues of ¢'(x*) are important quantities, since they determine the
ultimate rate of convergence of the iteration proéedure. Denoting the eigenvalues by A,
- j=1,..,N, a"neéessax_'y condition for éonvergence to x* is that ‘

B = max ﬂlj]} =1 : ] ' | : .(5.3.15)

wvf} N J

(e.g., see Dahlquist and Bjérck, 1974_-, or Ortega an;i Rheinboldt, 1970). Fur.thermore, if this -
relation holds‘ st:iétlyj the local cc.mvergence rate will be linear or better, since B equalg the
upper asymptotic convergence bound (Katz, 1974). ‘

| ow derive some propertieg of the 2X 2 matrix ¢’(x*) in (5.3.13), which will be

useful in characterizing its eigenvalues, A; and As.

Property 5.3.1

The eigenvalues of the matrix in (5.3.13) are real.

Proof: A
For p = 2, $'(x*) is a real symmetric matrix, as seen by (5.3.14). Hence, the eigen-

values are real in this case (Finkbeiner, 1972, Theorem 5.19).
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For p = 2, ¢'(x*) is no longér symmetric, since s1(x*) # sp(x*) in general. Hence,

the ‘desired résult is not immediately obvious. Consider the characteristic equation,

det[d'(x*) — All = B3 i6)
where I is the 1dent1ty matux A denotes an elgenvalue, -and ‘det’ symbohzes the determmant

For the 2 X 2 matrix, we obtau.x the quadratic equatmn,

z (6.3.17 -
Az-)&(q;u+¢22) Ty Pog— Py =0, ‘ 4
whose roots are ' : '
.— 1 \/ 2 - 5.3.18
1— -2~(¢11+¢22) ' (rb“—-‘(pm) 4?4¢21¢12 , ‘ ( .3.18a)
and ' - ' '
17 > .
A= @y to+3 Y (b — Doy + 4050, - (5.3.18b)
Since - R -
| @i~ 2 0,
and '
o - -1y * p-—l. 2
L =17 [ . . m—agl® lxy~a,J
by = — w.sign(x —a_ )sign(x, —a, '
. 21712 sl(x*)sz(xt) lZ—‘-1 i 17l 2 12) -[8p_(x“-ai)]2P"1
=0,
it follows that’

(4’11"‘1’22) +4¢21‘b12 =0.

Hence Ay and Ap are real valued.

Property 5.3.2
- Forl=ps2

det{¢’'x"] >0, .
where ¢’ (x") is the matrix in (5 3.13) and we assume that the fixed points a; are non-collinear., '
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-
. lx,—a,l® B wlx, —a P2 2.19)
Ri60:= 3y ——— = > L L (5.3.19)
U=l [ep(x-ai}]" i=1 [ep(x,_ai)]h—
s x,—a,|? LA ~a |®? o
F2(x):=-z.yi2(x)-—ga => 2 _i2 1 (5.3.20)
T =1 : [fp(x —ai)]p i=1 [fp(x'—-ai)]2"'
and f ’ : | o

‘ n ' ix —a [P x,~ ~a,Pt (53%)
H(x) : w, sign(x —a, )sngn(x —a. - . s
Zl | 2 (ACEEN KL
Using Schwarz’s inequality, we obtain | '
z“: lx,—a, |?~2 ” i | l"z‘aizjép-'z *
o1 = __..__) (3 nd™
- = an""’ VOMNT e e —a

»

. (5.3.22)
= [F, (x) F, (1%

Equahty holds above‘d& and ‘only if,
sign(x, —a, )Ix —a,|P” 1= csign(x,~a_)|x,—a, zlp_

for some scalar ¢ and i= 1,..,n Forp > 1, this implies that

. 1.
- lxy—a | =le| P --azl vi,
30 that (5.3.23) can be rewntten in the form, 4

' =
(x 1-au) —c(xz‘@!—giz)\_h, V1:

(5.3.24)

where
.
. ¢ =sign(d):|c|PL.
. Thus, equality holds in{5.3.22) for’p > 1 if, and only if, the a, are collinear.

-

. Now consider the determinant of ¢'(x*).

(5.3.23)



det(p'(x"] =

=

@- p)2 +2—p)p— 1){

227
@2-p) +(2—-p)(p—1)[ 5

¢11¢22 T ‘1’21‘1’12

F (x"‘)

(-1
sl(x*) sz(x"‘)

F &%)

" (relation (5.3.22)) -

LA

g, 15p£2

F,(x*)

3,(x*)

[F,(x*) F,(x*) = {HG )]

F2(x"')

5,(x*) '
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(5.3.25)

Since the al are non-co]lmear the first inequality in (5.3.25) is satlsﬁed stnctly for p > 1.

Furthe;more the second 1nequahty is satisfied stnctIy forl=p < 2. Hence, we conclude

that det[p'(x¥)] > O0forl =p < 2:_ . g

Now consider the trace of the matrix ¢'(x*}, denoted by tr {(p'(x;)]. For p=2, we

see from (5.3.14) that tr [¢'(x*}] = 1. This result also holds for higher dimensions (N > 2).

Howéver, from (5.3.13) we note the following intéresting fact:

lim tridp'(x¥)] = 2
1

while for N > 2, it is readily shown that

lim trip'x"]=N
Pl

-

(5.3.262)

(5.3.26b)

We are a'ssuming here that x* remains a non-gingular poinl: since ¢'(x*) is undefined other-

wise. Thus, the trace of q; (x*) varies as a function of p- The following result places bounds on

this functlon

Property 5.3.3

Ifp €11, 2], then

0<tr(p'&x®)] s 2,

(5.3.27)
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where ¢'(x*) is the 2X 2 matrix in (5.3.13). Furthermore, if p # 1, the upper bound is satisfied

. ~
strictly.
Proof: ‘ _ N | <
L . (F (x*) F.(x*) o
2 (5.3.28)
N] = (4-2 +
tr[(b &*)] = p)+ (p-1) (x‘) o
Since
F.(x*) ‘ .
>0, Vvj (5.3.29)
| 3%
it is immediately obvious that
. . Ctrip’'x®] >0 .
Rewriting '
F.(x*) n . - .
J = #) [ D * _a 7P (5.3.30)
e = 2 Bb-adts 1 6 ~a®, S
< : N : ‘
where _ o -
' S ' (5.3.31)
B0 = yx) 1 > N, Vg, 3.
k=1
we obtain
Fa { I —a,|P ] (5.3.32)
. o S max — 3 1,
550 1si=a e, &t~a)l?
with at least one of the inequalities bemg‘satlsﬁed strmtly for eachj. Thus,
trld’ x*] = (4= -2p) + (p- Dx2 =2, (5.3.33)

-

mth equahty only when p=1.

- ForN > 2, the preceding property is generalized in a straightforward manner to

obtain : . -

- 0 <trlp'x*)] = N, p€[1,2],
with the upper bound being satisfied strictly except whenp = 1.

(5.3.34)
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—

—

We have insufficient information at this point to make any conclusions co_ncéz:ning

the' local convergence rate of the iteration procedure. Howevef the following observatlons

Jead to an mterestmg resolutmn of this problem From equatlon (6.3.11) and‘the second-or;ler

partml denvatwesgwen in Chapter 7(sets = pin (7 2. 5)) 1t is read11y seen that

]

ap,(x*) 1 WY - . , |
T T wm o dTe o G
From(53 12) and (7.2.4), weobtam
P (x*) - 1 & : |":‘aitlp
- = 1—(1—p7[ Y, (c¥) ——— 1]
o 5,0c%) gl * [ep<x*—gi)1p
i . . -p) [ ]
. . =1-= * -1 ) .
- 5,(x*) z i) [8 (x"‘—a)]p ‘ '
= 1oL "2"‘";"), =N 63
. St(x ). ax, _ ' v '
Thus, the N XN matrix ¢'(x*) (see (5.3.6)) takes the form,
C_oL W . 1 AWe 1 Pwam ]
50 ax? RS Faxy sk 0%y 3%,
co i dwen 1 ey 1 dwee
5,(x*) dx ax, B0 el TG gy
d'(x*) =
1 PWe 1 W& . 1 W)
T ey sy Lk T axy ¢
® | o I - (5.3.37)
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Let us consider again location in the plane (N = 2), where ¢'(x*) is the 2% 2 matr:kx

givenin (5 3.13). Using(5.3.37), we see that
' q; (x*) = I - B(x*),

where ' .
C 1 W& 1 FWE®]
" I8, axf 8,(x*) dx,ax,
Bx% = | .
1 W 1 PWan
—
_sz(x"') ax, %, 8,(x*) axg ]

(5.3.38)
1

(56.3.39)

Letting M1 and p2 denote the eigenvalués of B(x*), we obtain the following preliminary resuit.

[

Lemma 5.3.1

Ifp > 1, and the fixed pomts a; are non-collinear, then 14 a,nd Mo are posmve ie.,

pl,}l2> 0.

Pll'oof: \
By Property (5.1.2), we I-mow that W 13 a strictly convex funetion of x. Thus,
FW(x*) FW(x?)
— >q, - >0,
e | 2
and '

PWEY W (82W(x*) )2

ax? o> 3, ox,

" Also nite that s;(x%), dy(x*) > 0. It follows that

¥

B By = det B(x*)

1
sl(x‘)sz(x*)

2 2
.axl axz 8x18x2

PWx) PWex) ) (a”W(x*) )2]

(5.3.40)
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’ L]
Furthermorgi,i
: By +H, = rBEY
1 WM 1 WY
- sl(x‘).- axf 32(x") ax,f,
L \d )
o o (5.3.41)
> 0. '

: Us.ing a similar method as in Property 5.3.1, it is rea.dily shown. tI_nat B1 ‘and_ po are real.
Hence, we conclude that py, po > 0. | | o
The main result folioﬁrs at last.
'Thet-)rem 5.3.1
Let p take on a value 'in“thg range 1 < p s 2 and the fixed-points a; be non-
colIinear._‘ Then the eigenvalues of the ?XZ matrix ¢'(x*} in (5.3.13)‘- satisfy the following
relatio_n; B ‘ | ‘ | A . .
0 < *1'32 <'1_' . 0 (5.342)

Hence, the asymptotic convergence rate to the non-singular point x* is linear.

‘, i ' ' ' . . l L]
Proof: "
The eigenvalues, A and Ag, are real by Property 5.3.1. From Properties 5.3.2 and -
5.3.3, it follows that .
. ) . - (5.3.43)
Al Az >0, o 7
and . _
oA+ A, <2, B c (B34
. Hence | : .
| , " (5.3.45)
Al, Az >0. o |

Since cp'(x“') =I- B(x;“), we also have .
(5.3.48)

> s

hlzl—pl, A2=1-1.12'.

Y
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‘ Byt py, pg > 0by Lemma 5.3.1, and hence
- MY, <1
Combmmg‘jﬁ 3’ 45) and (5.3.47), we obtain the desxred relatlon (5.3.42).

E5.3.47)

o show that the local convergence rate to x* is linear, we employ a direct extension
of the method in Katz (1974). \Let ‘ | - )
- U% ' | (5.3.48)
denote the ;ransformation from the original x-c_oordlinatef to new coorciinetes (%) with respect
te the eigenvectors of ¢'(x*) (columns of U), Th_en, pre-multiply’ing (5.3.5) by U~1 and using_ .
standard lindar algebra (e,g., see Stephensqn, 196‘6, Cﬂapter 8), it follows that

R = % 1 U ) U- @I-5%) + O —x*)

(5.3.49)

= %* + diaglh,, 1)-G=%) + O(O— D) ,
where ” ' |
1 ) 5
5 Al 0
- diagA,, 1) := .
’ iag,, ) [ 0 Azl
Thus,
GIM-X)T+ GIV-R)R = AR+ AIRISK? 4 Oty ., (5.3.50)

RecalI from equations (5 3.18a) and (5.3.18b) that M=k by definition. Therefore, from tﬁe
Precedmg relation, we obtam : : - | %,f
- R9-% 1 s R RO <R, .3

~where higher-order terms have been neglected and the Euchdean nérm (ﬂ ) now acts on the l
transformed coordmates Hence, IAII and [A2| give the lower and upper asymptot1c con-
vergence hounds reSpectwely Since relatmn (5.3.42) holds, we conclude that the local_
convergence rate to the non-singular optlmum x*is linear. - |

| A few,comments are required concermng the transformation in (5.3. 48) When
P = 2, we see from (5.3.19) that ¢’ (x*) isa symmetnc matrix. Hence, the eigenvectors in U

" are orthogonal (e.g., Stephenson, 1966, Chapter 5). Furthermore, if the eigenvectors ;re b
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no;malised to unit length, then UT = U.—l for this case. However, when p = 2, b'(x*) loses il;s‘
symmet::y, so that the transformation becomes non-::)rthogonal in geﬁeral. For the sp‘et.:ial
case where X1 = Ay, the off—diagonal elements €b12 and &9 must equal zero; i1ence, cb’fx"') is
already in diagona?ized/_&;rm and U =-1. In all cas'ers, the inverse UV—1 exists and
equation (5.3.49) is obtainable. We now proceed to illustrate relation (5.3.42) with a few

simple numerical examples.

v

‘Example I:

Four fixed locations are given which fornt the corners ofa square: aj = (-1, -1), . »

.az = (1, =-1), aé = (1, 1), a3 = (-1, 1). The weight at each fixed location is the same; i.e.,

&
Wi = wg = w3 = wq'= w. For p>1, there is a unique optimal solution at the centre of the

square; x* = (0,0). Forp=1, afl_points contained in the square are optimal. The elements of

¢'(x*) are easily calculated, yielding the diagonal matrix,

3 1 o -
"(x*) 2:\‘2?
¢t = . 3 1
g " 2P
Thus,
3 1 )
A=) ==-—-=-p, p=1
1= %2 T g TP P \
Example 2:

The fixed. peints remain the same, but the weights are now w; = w3 = w, and

r

wg = wg = 1/2w. The optimal location is unchanged from the previous example; x* = ('0,0).7-

We obtajfl

Y, &) =y ) =3w, i=1,..,4,

wheret = 20-p¥p. Thus, -« '

-



. Solving for the eigenvalues gives’
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s,(x*) = 5,(x*) = E iwi =3tw .

After some simple calculations, we find ' .
: 3 1 ' p-1 .
v oo = Lied
o [ 2P 6 ]
¢'(x -1 1 .

5 2 4 1
A =-==p, A==_->p =1.
D 3 3P P

1 3 3 2

.Ei:az'nﬁle 3:

In the previous examples the eigenvalues vary as linear functions of p, because of |
the inherent symmetry of the fixed points and the wexghts We move the four fixed points now
to the corners of a rectangle as followg a; = (-—3, —1),a3 = (3, — 1), a3 =(3,1),a4 = (=3, 1).
Let the welghts be the same at each aj; Wi = Wz = w3 = wyq = w. Thus, the optimal locatmn

remains at x* = (0, 0). The elements of ¢'(x*) are readily calculated, to obtain

3P4 S
2—( p) 0
‘ 1+3F _
¢’(x*)=[ . . )
- 1 43P
0 2-( p)
‘ Y L+3°
Hence,
- 1+3% /3Py N
e (B2R), L, (2L
1+3° 1+3P
’Exampl_eti:

The a; remain unchanged from the previous example, but now w; = w3 = w and

w2 =wy4 = 1/2w, The calculations proceed as follows,
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: w.x; —a |P~2 w, -3P72 '
oo i1 il _ i s .
¥;, (") = T = oon =l
[\‘.’p(x*—ai)] p= [1 + gpiP=ip :
i T : gp-1
s (x*) = Y..&x*) =1 w, wheret = ——-——:
1 bt il 1 ' 1 1+ 3p](p—-l)lp
S e p-2
Y (x")—wiizliz—aizl - T i=1..4;
2" T -1 (p=twp '~ = e
[e,e*~alP=! [t + PPV
4 | g
s, (x*} = V.. (x*) =1, w, wheret, = ———+—
2 1;. i2 2 2 (1 + SP](P_D(p

The diagonal elements ¢y, and{¢2§ are easily verified to be the same as in the previous

example. The off-diagonal elements are given by

_ =1 gP~!

{wl—w2+w3—w4}

=(p—1}/(1+3"), and o ' —

o = 5,x%) _ gp-2 (p—-1) ‘ ‘ -
A g (x%) 1_2 ] 1439
Thus, |
o _( : p) p—-1
_V1+43P .1 +3° -
| il
R . g 3P—2$:_.]L)_ 2_(14'?'1))_ S
- (1 +3P) 1+3°
Solving for the eigenvalues, we obtain . .
1 1 (p-1 '
A\ =-@-p - (‘p—‘)\/(sp-n2+<4)3"'2
. 2 2 1+3° - :
‘and | -

1 1/ p-1 ' ' : |
A== @-p)+ (p—)\/(sp-1)2+(4)3"‘2. pa1l. B
: | 1+3P/ ‘

s
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As an illustration, the eigenvalues in Example 3 are plotted as functions of p in
Figure 5.3.1. Itis interesting to note that the preceding examples illustrate a tendency for the
eigenvalues to increase, and hence for the local convergence rate to decrease, as p decreases

froma valueof 2to 1. Furthermore, as p—> 1+, A; and Ag both converge to unity (A, Ap - 1-).

! . .
- This occurs in all cases where x* remains a non-singular poeint, as seen by the following result,

Property 5.3.4

+
_ p—t . T
provided a § > 0 exists such thatx* ¢ Sfor 1 < PpP<1l+38, whereIS is the set of singular points

of ¢ defined in (5.2.42).

Proof:
Since x* €.Sfor 1 < p < 1 + , the limit is defined. Referring to (5.3.13), we see
‘that the coefficient of (p=1) in each element of $'(x*) is bounded,-and hence all terms

containing (p—1) go to zerd as p—> 1+. Thus, ¢12, d21— 0 and ¢11, Pa2 - 1~, giving the

desired result for N = 2. The same principle readily extends to higher dimensions, so that

lim p'x*)=1forN=2. :
+ _ - . : L -

o o1

The precedmg property has some practical sxgmﬁcance For p slightly greater than

1, the asymptot.m convergence to x* w1ll be at a slow lmear rate, smce Xy and A2 have values

close to 1. Thus, an acceIeratmn technique such as Steffensen s method would be most advan-

tageous in this case, to finish the iteration sequence "In general we expect the usefulness of
‘'such acceleration methods to i mcreasq asptakeson 1owgr values in the inte;'val (1, 2).

| Also nﬁte thatifp=1 aﬁd there is an optimal location x* ¢ S, then this solution is

not uniqﬁe, and furthermore, a §-neighbourhood (§ > 0) of x* exists sﬁch that all’x inside‘this'

neighbourhodd are optimali (see the discussion followiﬂg Property 6.1.3).. Hence, if an iterate



203

015t

0.5-

0251

l - ~ LaS 1.5 | _ 175 | 2.



204

lands on a point x, = x* inside the 8-neighbourhood, the sequence will remain there and

never converge to x*. Such an outcome relates to the fact that eigenvalues A; and Aq are

. precisely equal to one in this case.

An interesting behaviour occurs in the preceding examples when p > 2. We see

that

lhll > 1 ’)5M, © (5.3.53)

. where M > 2 is a sufficiently large value. Thus, the iteration procedure will not converge to

x* in these examples, when p is sufficiently large. This result is formalized below.
Theorem 5.3.2
Convergenﬁe of the iteration procedure to x* will not occur in general for

sufficiently large values of p exceeding 2.

Proof; (for N V= 2) _
Let the weights and the geometry of the fixed points be arranged such that
Bl -yl > 1xp -yl
is empty for all p'€(2, +«). (Note that examples 1 to 4 satisfy this condition.) It is gasily
verified that - '

Clim td'(x*)] = —co.
) prto

Sinee Xl = min {Aj, A9}, and A+ he= tr[q)"(x”)], it follows that an M > 2 exists such th;.'t
(5.3.53) holds. . Hence, the itérgtion procedure will not converge to x* for p > M, and the
theorem is proveﬁ.

The proof above is readily extended to higher dimensions, so that the theorem
1 e :

3 -

applies for N = 2, Some comments are appropriate at'this time:

_ () Since 0 < Af, A2 < 1 at p = 2 (Theorem 5.3.1), it follows from the continuity of the

eigenvalues as functions of p that an r > 0 exists such that local convergence also occurs in

-
¢
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the interval 2 < p<2+r. However, élobal convergence of tile iteration procedure is
guaranteedonly for1 < p < 2, as evidenceq‘by the counter-example in Section 5.2.

(i) ~  Based on their computational exﬁerience, Morris and Verdini (1979) conclude that
- eonvergence can be expected for p > 2. However, we see now by Theorem 5.3.2 thatA the
iteration proc‘edure will not generally converge to x*, even locally, if values of p are used

- which are too high.

5.3.2 Convergenceto a Singula;' Point .

‘ We consider now the case where the optimal solution occur; ata singuiar point of
the iteration funections bt i;e., x* € S. For Euclidean d'istances (p = 2), Katz (1974) studies
the local convergence of the iterative procedure when x* is at a ;ixed point. He sht;u's thazt i.;he
convergence rete is normally linear, but under certain'conditions, it can be superlinear or
sublinear. We wish to extend these reeults to €p distances m general, where 1 < p < 2. Recall
that forp = 2, the.eing'ular points occur only at the fixed Ioca.tion's; whereas fer l1=p<2the
i)robl m becoxﬁes more complicated because all points on the hyperplanes, x; — ay, = G, are

‘/jcluded in S |
When x* € S, one or ‘more of the iteration functlons ¢y is undefined, as well as its
denvatwes so that the Taylor series expansmn given in (5.3.5) is no longer feas1ble Thus,
.another method is required to study the behaviour of the iterates close to x*. In order to
. sxmph.fy the notation in the subsequent a.nalysm we restrict attent.mn to location in the pIane
(N = 2), although the method and results are readlly extended to hlgher-dlmensmnal spaces

1
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5.3.2.1 Optimal Location at an Intersection Point
Consider an intersection point given by

B = (apy, a37)T, . (5.3.54)
where r,s€{l,..,n}andr = s. By definition (see (5.2.56)), B is not a destination. Without
loss in generality, assume tha§ ajp = a..l,- Yi=r, and aj2 #* ag9, Vi = 5. (Otherwise minor
changes are required in the calculations below.) We suppose now that |

x*=B . ‘ . (5.3.55).

The it.‘eration fun;:tion &1 (x) for the xl-coc;rdi_xléte can be fewril:ten in the form, /N

-2 ' p-2
w [x,~a [P7%.a w;x —a [P7*.a

r1+z 1

ex—a)*! o fema)P!

il

¢1(x) =
p-2 .
W lxl—arll W, fx,

UACELS) Lt S L

p—-2
a,

arl + orl(x) Hrl(X)

T Tromhe 0 G (5.3.56)

LACTER) Lot
1 = - (5.3.57)
* Wj |xt - ajtl P 2 ’ th(x) ) .
, Z ~a, EP‘ Ay ‘ ‘

H. (x) = ) .

¥ i=j [8 (x—a, H—p_ (5.3.58)

and : : -
- wlx —a P~ 2 ,
Bl o : (5.3.59)

i=j [e (x—a, )]p—

foralljandt.
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We are interested in the behaviour of the iteration functions ¢; when x is ‘close’ to
x* = B. Noting that
' (5.3.60)
2.
0, =00x~a_|*"P, xe Ap
where Ag is a small §-neighbourhood of B, we can express the right-hand side in (5.3.56) in

terms of a power series for p<2, to obtain

tb(x) [a +0 (XJH (x)] [1—0 (x)h (X)+0 (x)h2 (x)+0(0 (X))]
ﬁ

=a,,+[H, ()= h_ (x)aﬂ]o (=h, GH, () — h_()a_]a? 1)+ 0003 (). G360

Let
e x —a )P~ (5.3.62)
g(x) 1= —u— | o
w
. r
and o
' .= o (5.3.63)
E;t(x) = Hn(x) - hrt(X) a,, vt |
Then ' ' ]
% 5.3.64
o ,(x) = g (x)- |x ~a |2" ( )
- and equation (5.3.61) becomes
) = a, + E—'(x)g (x)|x -a, 12"p4- h (x)E“(x)g‘f(x)lxl—a:_-lrt_2p _
*(5.3.65)

+O0(E x)|x —a l|G %),
. Itisimportant to note thatforp > 1,
Erl(B) = Hfl(B) —'hrl(B) 8'rl
' w.]a_ —a [""2-3 - w-[a.“-a |P=2.4
= Z Arl il 1 _ Z irl il

=/ BB-a)*t S (e Boa)!

a

rl -

]

. “"‘_1
— Z Wi Sign(arl—ail) —Iar—l_...al_llp\_i
i [¢ (B—a)]P~"

dW(B)

(5.3.66)
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since x* = B, Forx € Ap, we apply the Mean Value Theorem and (5.3.686) to obtain
Erl(_x) E®+VE Q- (x)~a )+ Y,E Q- (y~a )

=V (EQ- (x —~a_ )+ V E (Q) (x -2 2) . (6.3.87)
where Q € Ag, and V, denotes a/a;ct Returning to (5.3. 65) we see that

ctal(x)-_al_l = gr(m:)[‘?1 Erl(Q)-(xl-—a“) + V2Er-l(Q)-(xé—a§2)]-[xl—-a‘ 2l__p‘

rl
‘ < r~
+ O ~Bf-x,~a_| =), (5.3.68)
Hence, _ , ‘ ) .
20 2y 2 B 6369
——— =0(x,—-a >, . = 3.
I I \
Sumlarly, 1t can be shown that
' J ' &, (x) ~ a o2 _ 5,570
| ——— =0(x,-a_J*"P). R 3.
[ — B ‘ | 2 52l ‘ ‘ }

Furthermore, if B-is an intersection peint in RN (see (5.2.56)), where%N > 2, the saine
procedure can be used as abeve to obtain a similar resultas in (5.3.69) or (5.3.70) for each 4,

t =1,...,N. This leads to the following intriguing fact.

 Property5.3.5
Suppose the optiinal location x* occurs at an intersection point for some value of p

in the open interval (1, 2)_. Then the local convergence rate to x* is superlinear,” .

”Rectangultir.distances p=1 must be treatéd separately ‘This is due to the fact
that whenp =1 aW/axt is undefined on the hyperplanes X —ap=0 and not _]ust at the fixed |
pomts so that (5.3. 66) no longer applies. It is well- I-mown that an optimal solution in this case
always occurs at an mtersectmn pomt or a fixed pomt Let us consider agam x* =B, an
.intersection pomt and also let us assume that the optxmal solutmn is umque (Recall that
tlus is not guaranteed for the non—colhnear case if p = 1.) Using (5.3.65) and invoking the

optimality crltena atB denved in Property 6.2.3 (setL = 1), w'e_ see that
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; (5.3.71)
$,(x) —a,, =B, B)g B)|x,—a_| + Of~B|?,

where

2 wsgn —a )y <1. (6342

: OSIE Blg, B) =

,.r 0 imr

The upper bound must be satisfied strictly since x* is unique. A similai- result applies for the

-

other coordinates x;. Furthermore, the first inequality in (5.3.72) is generally satisfied in a

. strict sense, so that we obtain the following result.

!

v

Property 5.3.6 ' n
Letp=1,and suppose“l:'hqyx* occurs uniquely at an intersection point,
‘ = (a AT
- (al'll’ a!'22' e al'NN)
(See the definition in (5.2.56).) For the special case where -

Z w51gn(a —a)-O t=1,...,N;

= —
"t -

the local convergence rate to x* is quadratic.‘ Otherwise, the rate is linear.

" Consider the poseibility now that x* occurs at a singﬁlar pt_)int which is not an
intersection or a ﬁxed point, for1 <p'< 2. Say for example x";k = drk for‘some r€ {1 ..., n}
and k € {1 .+ N}, but x*; = a;; for alliand all t = k. From the preceding analysis it folIows -
that the local convergence rate to x* will be superlmear 1n the xj diregbion, However based

on sub-section 5.3.1, it will only be linear in the s space comprising the other dxrectmns

Hence, the overall rate of convergence is lmear.

5.3.2.2 | Optimal Location at a Destination : i
Consider the case where the optimal solution coincides with a fixed point; that is,

x=a | (5.3.73)
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forsomer€{1,..., n}. Our objective here is to analyze the local behaviour of the iteration

4
o

functions ¢y when x is in a (small) §-neighbourhood of ap.

Letting A, denote this neighbourhood, we first observe'that forallt,

1
v o= w [fp(x-a;‘)] p-t. ]xt—artl =P
r

1, . , '
< —'[¢ x—a)IP~l.[ (x-a)1®"P  (1=ps2)
: w P r p r

r

It

;‘: -ep(x - a‘r)

r

Ofpc—a .

(5.3.74)

Thus, ¢y(x) can be expressed as a power series using the same procedure ag in sub-section.

5.3.2.1, to obtain

~

— Cen 2
cbt(x) =a,+ Eﬂ_(x) 0. x}—h (x)E (x) 0,

+ 0(0 (x)) y X €A

Expressmg En(x) interms of its Taylor series at a,, and using (5.3.74), we see that

<pt(x) =aq + En(a,) anlx) + 0(|]x — a2, x £ A,.

Furthermore,
: la,, a.tlp'z .
CEa)= w - .(a.~a )
_ rt’ r igr l[f (a —a.)]p—l xt‘ rt
por. i _
Iart._'ait el
= — Z W, s1gn(a —-——1
i=r [f (a —a. )]P
_ W (a)
. . th

where W(x) is defined in (5.2.79), and in general, Eq(a,) = 0.

LY

o

(5.3.75)

(5.3.76)

(5.3.71)



211

Let x5, 8=0,1,2,..., be any regular sequence generated by the 1terat10n

procedure whlch converges to a,. Then an 1terat10n number q exists such that xs G A, for

$=q,q+1,.... Using (5.3.76), we obtainfor N = 2,

: : (5.3.78a)

" -, =E @) 0, 69+ OxI-a |},
and ] _
. . (5.3.78b)

- 3 -0 =Byl 0, 6+ Ol
Consider the case where '
‘ ; ' (5.3.79)

. N _ ) : T . ’ . ' ,
. ‘ - v wr(ar). - (Erl_(ar)’ Erz(ar)) = 0 » ‘ : .
" and without loss in generality, assume that E;i(ay) = 0. (Note that if VW(a,) = 0, the local

convergence rate will be quadratm ) Then d1v1d1ng (5.3.7 8b) by (5.3.78a) gives

§7-a, B0 6

ol + 0(]]xq—a.r|D
x .

1T arl E;l(ar)‘.orl(xq)
E (a) [xd—a_|2-P , -
_ 27 ._ 2 rzl — Oﬂlxq—ar!D . : (5.3.80
Erl(ar? lx?—aﬂl P .
Let . ‘ . .
' .= ‘ R . ' (5.3.81)
b:=E_fa JE_(a),
and ' ‘ -
. x;—ar2. . : | . (5.3.82)
v - tan@_: = , s=q, q+1, . S
s 3
. xl—arl |
Then equation (5.3.80) can be rewritten as
- N (5.3.83)

' rt.anB ' ='b!tan9 l2-'p+0(llxq—-a M. .
Ifb = 0 (E;o(ay} = 0), then tan 8q+1 = O(lx4 — a,]), which can be made arbitrarily small by
' mcreasmg q. "We conclude that tan Bq.,.l approaches zero asymptotiecally in thls case. On the

otherhand,ifb = 0,a recursive argument can be used as follows: .
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~
(_/"
tand ,, = bltang,_, 1>+ 0(|tx““-ar|p
= bjbltan® |2 I’+0(ux —a {?7P + O(xI*'~a alb
: 2 - 3
, * | b ) - b 'Ibl 2-p°|tan9ql (2-P) + 0(8) ; - (5-3.843-)
and proceeding in this manner,
- m~1 m )
tan@ , =b. Ib] 2P |b;‘2"‘” . ) @P Jtane] P+ 0@ . (5.3.84b)
N otmg that the geometric series;
: o, l-@—p™ ,
1+ @-p) + (é-p)2+ ot @op™ i ———l-p_ p=1, (5.3.85)
p—-
we rewrite (5.3.84b) as '
=& A @-p" ' ~ (5.3.86
tan 9q+m = sign (b) -[b| *:Jtan Bq[ + O}, .3.86)
where - o ‘ |
1@ -
A '-__—iﬁl— , and 1<pS2
p-

But & can be made arbitrarily small by increasing q, and 2 - R)m can be made arbxtrarlly

- small by increasing m. Hence, we conclude that -

-
" Hp=1,equation(5.3.84b) becomes
. . _ . ) m L - :
tan_9q+m = sign(b)=[b| ™ - Itag Bql + 0B ,
‘sothat - . - - o

0, if bi<1,

. , —, fb< -1,
For the special case where b= +1 or —1, it follows that tanB does not have a unique

" asymptotic valu&whenp = 1 ' < o

. 1 | . _ ‘
. '. rd 2/ (5.3.87)
lim tan®, =sign(®)-jo|P™", 1<p=2 . g

c={te. i b>1, =1 . . (53.89)
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. We see from the preceding 'a‘nalysis. that the series {xs} converges to a, along an
asymptotic "direction of approach” which depends only on b. Also note from equations

(5.3.7 8a) and (5.3.78b) that the quadrant of the approach angle is uniquely determined by the ‘

signs of E¢1{(a,) and Ep(a,). For Euclidean distances, equation (5.3.87) becomes

lim tan® = sign(b)-|b|
g—»oo ' . @

2,

= b=E LaYE (@), p
which is the same result obtamed by Katz (1974).

We summarize the results obtamed above by the followmg

i

Property 5.3.7

- Let p take a value in the range 1 < p = 2, and let {xs} be a regular sequencé which
converges to the fixed point a,. Then ‘{xs} converges to ap along an dsymptotic direction. of
.approach uniquely defined by 8+, where

o E, @)
tan9_=51gn(--——-E (a))

A '
E,@) 1077 '
E_-(;—i ' \% (5.3.89)

dnd P+ is Iocated in the quadrant defined by the signs of E1(a,) and Erg(ay).

For p = 1, the direction of approach is e\’.l‘arrg}bhé xl-axis if. [Eﬂ(a,)l > |E;a(a,)], along
. the xg-axis if IErL(ar)l < IErz(ar)l and along an indeterminate 0 1f |Er1(ac) = [Eeala). Agam
the quadrant is umquely defined by the signs of E,l(ar) ang Erg(a,)

~ Alternatively, the direction of approach can be speciﬁed by the unit véctor v,

i . 1 1 | . _
E )P g;')‘(a L 1 © (5.3.90)

V= (Sign (E @) ——**D—-— , sigp_ E, (a ))

defined as follows:

‘where



1214

2 e (5.3.91)
D= [lErl(ar)| + ]Erz(ar)l i
Equations (5.3.90) and (5.3.91) are generalized for higher-dimensional spaces in a straight-
forward manner.

Consider the following problem,

&Y l | - (5.3.92)

max ,lf (yl =
w, €P(y)

¥
where '

- : T (5393
E:l' = (Efl(a’r)’ Er2(ar))T == v_\vn(ar) ! ' ( )

and y is a unit vector. Itis a well-known fact that

. g _
max fly)= - .fq(er) .
- . . y r .
whereq = p/(p—1) and €q(") is the polar of the £, norm (e.g., see Juel and Love, 1981). But

‘ L | L
IE_(a)P? [E_a )|P~
| - hEﬂwJ- : = +4Eﬂmj._i,ﬁ___]
. flv) = - T—
' ‘ . We -pf(p—l) pp—1) ol 4
_ 3 ’ lErl(ar)l : + IEr2(ar.)| ' ':‘ Lo
7 ' -
1 HE=1) TS o
i IErl(ar)l + |Er2(ar)| .
| Ve ‘ ‘
' o
. 1 _ Y
= ; []Erll(a'lz-)lq + IE1'2(ar)| ‘I] 4 N\
r
’ X, ' (5.3.95)
o = —2@E). 3.
. . qr . ? .

r

Comparing (5.3.94) and (5.3.95), we oBtain the foIlowir;g interesting result,

5

(6.3.94)
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Property 5.3.8

-~

‘The asymptotic direction of approach V at the fixed point ar'max'imizes the function
f{y); that is,

. E Y ' :
f(V}= max [f(y)= } -
y w, &0

Note that e, - y gives the descent ratein the direction y due to the component W, of

(5.3.96)

- the objective function'W, while wp £(y) gives the ascent.réte of the comﬁonént wr €p(x — ap).
Hence, we see that V is the directic;n which maximizes the descent rate of W, relative to the
ascent rate of w, (.’p(':é — a,;) at a; or loosely-speaking, V can be regarded a§ a difection of
miflimum asc’ent (or maximum descent) of the 6'li.jective function W at a,.

dJ uel and Lové (1981) prove that a necessarSr and sufficient condition for a, to be.an ‘

optimal selution is that

1 -
—Efk)=s1l, "x*=a_. (5.3.97)
w 9qr r

r . . . .

On the other hand, if a, is not optimal, it follows that

1 . .
—E)>1, x*=a_ . ; . (5.3.98)
Wr i .

Consider a regular sequence {x8} which converges to a,. Since V is the asymptotic direction of

appréaéh for this sequence, then

. lxs_arJ_v’ ‘ ' - (5.3.99)
soo L —a] '

Let V = {vy, v2)T, where the cbmponents v1 and vy are defined in (5.3.90). Néglecting higher- -

order terms in the limit as s — w, it follows from (5.3.99) that

S+1_ Hx8+l_

a. = v.-

Xy rt t al
\‘ 0
Kx**t-a ‘
= (i-a t)__..Lu T ~ (5.3.100)
T k-ad

and so, (5.3.78a) can be rewritten in the form,
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1 ‘
— — p—1 | 2-
= E_(a)- - [Ep(xs-ar)] -|1»c5'1—&?..n_1 P
r - .

(e —a P! (xf~a )

E (a) — . s el
o wrmgn(xl—aﬂ)lxl—arll

LGRS L ey
E (a)-v ( - .
rlr 1 o § )I 3 |p—1
. . :wr sxgl.l(xl—alr'l xl_arl
Hence, '

bToad wibd-ag® ) (5.3.101a) |
. = r.1(;3._1__)-\.r1.

i |
oo I - a (e (x*~a n® -
Similarly, we obtain '

s+l ) _— | ‘
{Itx —al  w [xp-a P ]_E ) (5.3.101b)
IR SERY i (A0S Lot B

Adding equations (5.3.101a) and (5.3.101b) gives

lim {-——'2- -wr‘\‘.’pl(xs—ar)] =¢ V.

But v

. : 5.3.102
fp(xs - ar)—> x® - arI] fp(V) , ( g

from (5.3.99), and we finally conclude that
) ﬂxs-l-l_ar" e V 1 ¢ ) _
m = =—4¢k),
o B oa) W EWM T w oarr o (63109
where the second equality is obtained from (5.3.95). This leads to the folloﬁng important\__

r

result.

*

Theorem 5.3.3
' Let p take a value in the range 1 < p < 2, and let x* = ay, r€{l,... n}, be- the

unique optimal solution. Then the local convergence rate to a; is linear with asymptotic
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convergence factor p = £,(e.)/w,; except for two special cases. If fq(e..) = 0 Vv W,(a,) = 0), the

rate is quadratic; if £4(er) = wy, the rate is sublinear.

Proof:
If0 < &, (e)wy < 1, we see from equation (5.3.103) that convergence is linear with

asymptotic convergence factor p‘ﬁ €qlerdwr. If £4(e) = 0, then e; = 0, and it' follows f‘rom

(5.3. 76) that the local convergence rate is quadratic If €4(er) = wy, then from equatlon

' '(5 3. 103) and the fact that global convergence is assured by ‘I‘heorem 5.2.1, we conclude that

. the convergence must be sublinear. From (5.3.97), we see that all possibilities have been

considered.
Theorem 5.3.3 generalizes a result obtained by Katz (1974, Theorem 2) for

Euclidean dlstances, to the case where p can have any value in the closed mterval [1 ,2].

Althougha similar result is obta.med for the generahzed problem, the analysxs turns out to be

considerably more complex when values of p other than 2 are used Also note that the

-analysis can be extended to hlgher-dlmensxonal locatlon spaces (N > 2) ina strmghtforward

manner, o that Theorem 5.3.3 holdsfor N = 2.

If a; is not an optxmal solution, then the asymptotlc convergence factor, p > 1, by ‘
(5.3.98). Thus, a regular sequence vnll never converge toa non-optxmal ﬁxed point, ThlS pro-
v1des an alternate proof to the one given in Property 5 2 9 (for case u1) It is also interesting to
note that if an iterate x4 lands in a suﬁ'iclently small &nexghbourhood of ar, a non-optlmal
fixed point, then the sequence will lmger near a, for several iterations, but will ultunately

move away along a direction of departure tendmg to 9.
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5.3.3 Ndn-Singulair Optimum in'N-Dimensional Space .

’l:(l’i;:t";r, we have concentrated on the loéal conbergence properties of our if.erative
solution procedure in R2. Whenx* was an intersection pomt or a fixed pomt the convergence’
rates derlved in subsection 5.3. Z(Propertles 5.3.56 and 5 3.6, and Theorem 5.3.3 ) were seen to
apply readily to hlgher-dlmensu)nal spaces as well. However, the local convergence rate
when x" is a non-singular point in RN stilkremains an open questmn Our objectwe then is to
generalize Theqrem 5.{3.1 to the minisum problem in RN. ‘The concept of an asymptotic

direction of approach, introduced when x* was a fixed point, will be useful here.

We begin by defining a diagonal matrix,

N (6, 0 B B
U X 3 R o\
) w=| 0 0 (ss(x‘))m - - 0 ' © (5.3.104)

Thep, recalling the form of $'(x") in (5.3.37), it is readily seen that

A=W - ¢'(xHW-1 =227 {(5.3.105)
. is symmetric and positive definite, provided that p>1 and the a; are non-collinear. This leads

to the following important result,

'Prop_erty 5.3.9
Consider the NXN matnx ¢’ (x*), and let p>1 and the a; be non-collinear, Then
(a) the exgenvalues of q)'(x‘) are real (b) the algebramally largest eigenvalue of ¢'(x*) is less

than one, and (c) the set of eigenvectors for $'(x*) forms a basxs in RN,
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Pfoof:

This property is a direct application of Theorem 2-2.1 in Hageman. and Young
(1981). However, since they do not provide a proof of their theorem, we give one here for
completeness. |
ﬁote the'eigemﬁlll@s of Aby p, t= 1_, ..., N, and those of $'(x*) by A,
t= 1,...,N. Since A is a symmetric and positive definite matrix, therefore j?
| B>0, t=1..,N - (5.3.106)
But from-(5.3.105), A-and [I-—cp'(:;')] are similar matrice@ thu's‘ have identical

eigenvalues. It immediately follows that the ht' are real, and

t

ffl—ht: By, . t=1,..,N. (5.3.107)

Combining (5.3.108) and (5.3.167), we'see that | _
. <1, t=1,..,N. - (5.3.108)

Now let the columns of the | NXN matrix D denote the eigenvectors of A. Then the
eigenvectors of $'(x*) are given by the columns of W-1D. Since the eigenvectors_in D include

a basis for RN, it is immediately clear that those in W-1D also form a basis for RN, thereby

- ending the proof.

Theorem 5.3.4 - {Local Convergence in RN}
Let p take on a value in the 'rahge 1<p=2, the a; be non-collinear, and the optimal
solution occur at a non-singular point x*. Then the asymptotic convergence rate to x* ié '

'linear.

‘Proof:
- We pro#e this result in a heuristic fashion. Consider a perturbed problem in which

an additional {ixed point a, 4+ is plaéed' within a (small) §-neighbourhood of x*. Let us adjust
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the weight Wn(l to ensure that a, +1 (2x") now gives the optimal location, while perturbing

the original problem as little as possible; i.e.,

1, C
- fq(gn_H) =1, (5.3.109)
fn+l
where
8n+1 = -VW(an_'_l)',

and W is the objeétive function of the original problem (see (5.3.97)). Then, from the results in

subsection 5.3.2 (Property 5.3.7) ﬁnd global convergence (Theorem 5.2.1), it follows that any
regular sequence {xs} will converge to a, 4.1 along a unique asymp.tot':ic tiirection of approach.
Now consider a series of perturbed prébler_ris, such that a4 1~>x* and wp 4 is
adjﬁsted according to (5.3. 1d9). Each problem in t_his series similarlyhar.;apniqqé asymptotic |
dire.ct.ipn of approach to an+ 1l. Also note that £, 430 since VW(x*) = 0. Thus, wy4.1—0, and
the series converges to :the origiﬁal prob]em.‘ Wercpnclude thex;efdre that the sequence {xs}
” converges to x* in the original prob‘lem along a single asymptotic direction. But this is

possible if, and only if, the,dominant eigenvalue of cp'(k"‘)is positive; i.e., the spectral ra-dius,
p .

p = max [AL[ S : (5.3.110)
_ R 1=t=N ' ' |
ts associated with a positive eigenvalue. I(Othe‘rw'ise there would be two direct_ions of
“approach.) Using (5.3.108), it follows that : ) , i
p<l, (5.3.111)

and hence, we conclude that the asymptotic convergence rate is linear. N

R J
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THE MIXED-NORM MODEL.

‘The mixed-norm problem was introduced in paragraph {(b) of Chapter 1, where we
, ! ! .

noted that such a model should be considered when flows using different transportation

modes are associated with individual ¢ is chapter, a sp?iﬂc form of the mixed- .

norm problem is studied, in which distances tra d by the various transportation modes
are aaequately approximated by different £p norms. The resulting model can be formulated

as follows:

‘ n L _ L
lminim.iz'e W_(x)= z_l | gl ity (x—ai)., .. 6D
where

pi=1,j=1,..., L, are distinct values of the parameter p in the €, distance fﬁnction;
_ wij'>0,. ] =1,.. .,.L, i=1, ..., n, are weighting constants whiéh con’vertldistance
travelled between the new facility (x} and destination a; using transportatioﬁ mode
jinto ﬁ eost; and .
" L=2.
‘The féétriction‘above that none of the {.vij can be zefo is not Iimiting ina pr:actical sense (sinlcé
the wj; can be made arb_itrarily small), and hz;.s the advantage of simplifying the np'tation in

r -

the subsequent analysis.

We proceed next to solve model.'(ﬁ.l), by developing a simple extension of the

Weiszfeld procedure for a single €, norm (Chapter 5). Global convergence of our iterative
solution algorithm is proven when the pj all fall within®a certain range of values. Lgcal

convergence properties of the algorithm are also investigated.

/"\

{
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In Section 6.2, criteria are derived which verify the optimality of the fi;ced points in
model (6.1). We also propose the use of intersection point opti&lity criteri_a Qhen one éf the
bj's équaIs unity, and compute these for our problem. A typical t;pplication .is'. examined
having L=2, p;=1 and pp=2.- Thisl‘particular model could be used to represent material
handling costs, for .example on a éhop floor, when flow iw source moves partly along
rect-angu'lar aisles, while the remainder travels along conveyance equipment Iinking each

-

destination to the source by a straight path.

8.1 Solution 'hy an Extended:Weiszfe.ld Procedure

Thé Weiszfeld prm;edure in Chapter5 for the standax;d min‘isum‘problem ulrith' a
single t’p norm is readily extended to our mlxed-norm model. As in (5.2. 1[2) we begm by
supposmg that an opt1mal ‘solution occurs at a dxi'ferentlab’le point, x* = (x*,. .., x 07T so

that the folIowmg set of ﬁrst-order necessary condltxons must be satisfied:

—W «=0, t=1,..N (6.1.1)
. axt m . : )
Since Wy, is a pesitive linear combination of norms, it is a convex function of x. Hence the

above system of equatmns also nges a sufficient condition for x* to be an 0pt1mal Iocatmn

-

Evaluatmg the partml derivatives of Wn at'x®, , we get

. p.-—l ’ L. ht .
Z Z mgn(x —a)—--—-—1 =0, t=1,..,N. - (6.1.2)
==t - [f(x-a)]J o o

B
Following the same s substitution as in (5.2.14) and (5.2.15), the above equations are

b

then re-arranged in anﬁlogous form as (5.2.16) to obtain:

-
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T n L Ix —a. '
it
Z altzw . p~1
‘=1 j=1 [fp(x _ai)]J | |
%= ] . t=1,...,N. (6.1.3)
t. _ R -~
Ixg=ay

. n o
Z Z . I
-1
i=1 -'=“ [f (x —a)]J S :
o ' ’ B - . -
Thus, replacing x* on the right-hand side by x% and on the left-hand side by x93}, where

'q=0,12,.., denoteé the iteration number, we have the one-point iterative method given by

x4 o {bkxq)._ ’ / (6.1.4)
wilere‘ - L
) = @), ..., oy, | 8.15)
B0 = T t=1,... X, (6.1.8)
oy o C .
and 7.
- N / | 6.1
_ﬁit(x)=-zwij_.—-_—T_—1’ ‘ 1=1,...,r‘t., t=1,..l.,N.
- 2i=l p¥(x—g)] ! "
R . -
N . Note that if L =1 (;Lg;,Ja single £, norm), the iteration method reduces to the Weiszfeld
& - procedure in (5.2.17) with wi; = wy, p; = p, and Py(x) = yi(x), for all i, t. ‘ ' ’
Letting . o . .
| = | o (6.1.8)
B = B0/ 2 But), ¥ e e
the iterative scheme can be rewntten n the compact form,
S B o (6.1.9)
41 _ _ . d.
-xg = Z }it(xq)ait , t‘_— 1,...,.N, ) o .
whex:é
' (6.1.10) -

?tit(x) = 0". v it, '

L
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and

We see that thxs is precrsely the same form as in (5.2, 23) and thus, xt“""1 is once again a

convex combination of ay;, i = 1,..., n, for each e {1 .» N}. Hence, the same conclusion is
reached namely,%hat all the iterates xq+1 fall in in a bounded hypercube contammg the ﬁxed

points. More prec1sely, we have
. .

min fa} < x3*! < max fa ) (6.1.12)°
i cod =

fort=1,..,Nand q=0,1,2,.... A ) "

| Let us-proceed now with an analysis of our extended Welszfeld procedure for the

mixed-norm problem.. The main objegtive here w1ll be to determme the concht:ons which

guarantee global convergence of the algonthm td an optlmal Qlutmn "Several of the results

which follow are a stralghtforward extension of those given' in Sfct:on5 2, for L=1.

Complete proofs for these results are therefore ozmtted ‘ '

Property 6.1.1 R ‘ . N '

Ifpr < 2 for some r€{1,...,L}, the iteration function gh(x) is undefined along the

hyperplanes, * : L )
Kol

xt_an=o', -i;_l,._..,n,

Cfort=1,,.. N. Whereas if p 2 2 for all j, then ¢ is undefined only at the fixed points a;,

+

i=1,..,nfort=1,.. N,

Proof:

Follows immediately from Property 5.2.1, and the fact that wij > 0 for alliandj.

5 | 3 -

3 ' . F
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LB

The iteration’ functlons ¢ are well-behaved apd contmuous everywhere except et
‘the singular points noted above where they are undeﬁned The next three results deal with

the local behaviour of the ¢ 31; their singular points.

Property 6.1.2_ _
S Consfder the case where p, < 2 for gsomer € {1, ...,L}. Then for any te{l, ..., N},
¢t is a continuous function of x if, and only if, we set dy(x) = ayy at_all points x on the o
" hyperplane xt:;a;t =0,fori=1,....n
Proof: -

Smce L = 2' at least one of the szl< 2. The remainder of the proof is aA
stro1ghtforward extensxon of Property 5 2.2 | | |

Property 6.1.3 - ‘ . - &

Consider the case vwhere p; = 2,j=1,...,L, with p, =2 for some r € {1 - L}
- &
‘Then for any t € {1, ..., N}, & is a continuous function of x if, and only if, we set dela;) = ay,
) b . .

fori=1,...,n.

- Proof:

A streightforward ext_ension of Property 5.2.3.

Property 6.1.4 ot
Consider the final possibility where p; > 2, for all j: Then ¢y, t _=_.1,‘.“, . N, cennot in

general be made continuous at the singular pointsa;,i=1,...,n.
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-
Proof; ’
A straightforward extension of Property 5.2.4.
. ﬁ . . .
Based on the preceding properties, we define the following iteration scheme:
i) If pr < 2for one or morer € {"1, ...,L{
. . ﬂ )
- q s .
. i«pt_(xq) if  x)-a, =0, i=1,..., n,
x?+1 = [ i .
a, if xq—at=0, s €1, , n},
- (6.1.13)
K] Ituz 1’ !NI (1_001121
|
i) Ifp =2,V j,
oY if x%za, i=1,..., n,
T Voo
xT = - ]
b : q..
LAy if x'=a, ‘s€{1,...,n},
' (6.1.14)
q=10,1,2,"..
Let us denote the procedure hiven in (6.1.13) or (6.1,14) symbolically as
o . _ ‘ (6.1.15)
| T:x—> Tx). (x€RY. .
Then T is a continuous mapping if p, < 2 for some r € {1, ..., L} by Properties 6.1.2 and 6.1.3, _
and discontinuous in general at the fixed points a; otherwise, by Property 6.1.4.
Property 6.1.5 '
Thé map, T: x-»T(x), liesina cdmpact set.
Proof:
o’ Using an identical reasoning as in Property 5.2.5, we conclude that all the iterates

except po.sé'ibly the starting point fall in a bounded hypercube, such that (B.i. 12) is satisfied.
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Adopting the same notation as in (5.2.40) and (g2.41), the set of singular points of

the vector function ¢ is given by .

N : ‘
U Ht‘ ifp <2 fordpeormorer€{l, ..., L},
s |t B 7' | (6.1.16)

{al, S an} otherwise .

Then Definition 5.2.1 can be used to distinguish between the two basic types of sequences,

fegular and non-regular;

Property 6.1.6

Let x* denote an optimal solution of model (6.1). Ifxa = x* then xa+1 = x*, as well

as all subsequent iterations. Ifxa ¢ S and xa+1 = x4, then xa = x*, ' a . N
f
Proof: '
A direcl_: extension of Property 5.2.6.
Property 6.1.7 " : | 7 .
Each iterate moves in a descent direction of Wi, provid‘ed xq+1 = xq 7
q=0,1,2,....
Proof:
Equation (6.1.4) can be rewritten in the form,
| . ox
x9—
. zl BxY - (xi—a,) :
x:”l: ¢t(xq)=x?—-l- - , t=1,..,N.
2. By xY
i=l’
_ But

-7
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p.—1,

L . ‘ t alt !
Biylx)-tx,—a, ) = > w,;sign (x,—a,) p.—
i=r [£ (x—a)]’
* pj l
: : . L .
( o = zwij vtfp_(x_ai), v oi,t.

- Thus, letting \ . : '
' n . K . ) ‘

s =B, t=1,..,N, (6.117
i=1 '

we obtain

. n L
x3*l = o ZZ ve(x-a)

t 5 (xq)

(6.1.18)

1
=x?—- VtW(xq), o t=1, ..., N.
S(xq) .m Vs

This assumes, of course, that xdis not a singular pomt of any of the cpt
Since xq+1 # x4, it follows that xa = aj,i = 1,...,n. Thus, xa ¢ S only if pr < 2 for
‘some r € {1,. | L} and x,3 = ajy for all t € J, where dg is a non- empty subset of {1 . LNL
" Clearly, the complement J 'q ={1,...,N}-dqis a non-empty set, for otherwise, xa+1 = xa. If
<. t€ Jq,' then sy(x9) » +=; and if t €dJ 'q, thep sy(x9) is positive and finite-valued. We see then
that L - | |

« ‘ ' T (6.1.19
50> 0, t=1, .., N, q=0,1,2,... . 19)

' Furthermore s¢(xq) is fimte-valued for all tif pj=2, i=1, ..., ,L, arid finite-valued for at -

least one t if p, < 2 for somer € {1,...,L}. Hence_, we conclude th_at the iterates follow descent

-directions of W, .

The iteration procedure can be rewritten in the same form as (5.2.48), where once
again, the modlﬂ&etmn matrix [M(xCI)]"1 is dlagonal with non-negatwe diagonal elements

(lfst(xQ)). We see now that the 1terates move in descent directions with pre-determined step-

* LY
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size., jﬁst as in the single-norm case (L = 1). If the step-size is too large, ovér-shooting will
occur. The next result gives.a sufficient condition (analogous to Property 5.2.8), to guarantee
that this never occurs.,

‘ r
Property 6.1.8 {Descent Property}

flsp=2j=1,...,L, and xa+1 = xq, then W(xa+1) < Wexa),

Proof:
Since L = 2 and the py's take on distinct values, it is clear that at least one Pj <2 -

Hence, by (6.1.16),
N | . : '
_S - U Ht' (6.1.20)
il

Let Vg = {t| q;,,(xq) 1s non-singular}. Since xa+1 = xq, Vgisa non-empty set.

Fort € Var deﬁne

gx) = Z p“(x —a)? 6120
where B;.:= f;(xq), V i, t,and a given xa. Fors € V'q (the complement of Vqh deﬁne .
n Lo LI o (6.1.22)
= ‘ i1 64 i . -1
h(x) =2 > wlx -a.| (4 (x -a)t ,
i=1 j=1.
Then using smular steps asin Property 5.2.8, we obtain
> g, Gty + Z h G < W, . (6.1.23)
tEV . sEV ’ .

Consider the left hand side of the abnve relatlon
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n L J
=2 33 wilki-a, i i, (x a}] Tati_g

it

i=1 J=1tEV
.n L . - ‘
P. 1-p . -
+> > xq+l a,l M6 (x—a] T
i=1 j=1seV’ . i
; - B2 2
n L N LT =
- 1-p. T p.
q B - 1 'q+1_ i
=S5 S Wil Tl Va1 T x3t g ]
i=1 j=1 k=1 J .
ud , .
g l=0 |
(qu—xq, Y s¢V)
s q

a.- L N I..—p. pP.—2 P ) 9 p
; ' 1 B
a'z Z Z wij[fl-)j-(xf‘—ai)] "[( )lxﬁ—a. | 1+ p-—lxq 1_, )

i
k k kI
i=1 j=1 k=1 P ' i l
=2l = 0
ifp.<2,Vj (Beckenbach and Bellman, 1965, Ch. 1, 14.(7))

n .L‘ - . :
=ZZ (lupi)t’ (x9—a, )+2ZZ—[€ (xq—a )] J[1E (xq"'1 a)]J

i=lj=1 } j _ i=1j= lpj -‘

n L n L w_
=z> > wij(l - )e (-a)+2 > Z—-{(l—p)f.’ (x _a)+pe (xq'” —a,)}

i=1j=1 - ; i=1j=1 P
- ifp}. 21,Yj (Beckenbach and Bellman, 1965, Ch. 1, 14.(7)),
n L N . ‘ _
_ : +1 ¢ S
=> > [-w; €,6%~2) + 2w, € (x? ~a)l :
i=1 j=1 ] J v
= -W_ &9 +2W_x3*)) /

(6.1.24)
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Comparmg (6.1.23) and (6.1.24) gives

-W_ Y +2W_x"h) < w (xq) if1sp <2, V).

Hence, ‘
q+1
| | Wm(x | ) < Wm(xq) ,
ending the proof,

We now see that the descent prdperty is guaranteed if all the pj lie in the closed
interval [1,2]. As in‘Section 5.2 (for L=1), we also need to address the problem of possible
" convergence of a given sequence {x4} to a non-optimal singular point. Two preliininary results

are given next, which follow immédiately from Lemmas 5.2.1 and 5.2.2.

Lemma6.1.1 _
Letpj€[1,2],j=1,...,L,and consider any sequence x9,q = 0, i, 2, ..., generated by
. ?

the map T. Then {x4} and all the subsequences thereof converge to one and the same point,.

Proof:

Identical to Lemma 5.2.1, w1th Propertxes 5 2 5 and 5.2.8 replaced by

Propertles 6. 1 band6.1.8 respectlvely

Lemma 6.1.2
Consider any point @ = (Qy, ..., QN)T, and a sequence {xa} such that x3 = Q; for all
q and some index t€ 1, ...,N}. Then relation (5.2.62) gives a sufficient condition for non-

convergence of {xq} to Q.

Proof:

_Same asfor Lemma5.2.2. ° -
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-
We now show that a regular sequence will never converge to a non-optimal

;ungular pomt

Property 6.1.9 .
Suppose P€ML2L,j=1,.,L,andletQ€Shea non-optimal locétion; ie, Q= x*

Then any n\agular sequence {x4} of T does not converge to Q.

‘Proof: .
—t
Using (6.1.6) and (6.1.7),we can rewrite the iterative transformation as follows:
q+1 =
X —a, = o&Y-a
= Zﬂn(xq)(a ~a_ )/ z B, x9
l:l’
. 4
. L | q-atp" =2
1
Z (a Z Wi -~
. 1==r j=1 74 (XQ_ai)]J .
= 3 s (6125
, P2 !
) & & qu_axt
2 2
i=1 j=1 [ (x8—a )]J
forr€{1,..,n} and t G {i,-...,N}. Hence,
-2
. I J
t
' z (a;,~a t)Z W, —--——’
q+1 ‘ i=r j=1 [’B (xq a. )].I
B e ‘ (6.1.26)
q - - p. 1 . P'—2 ) e
Ixg—a, xg-a | g3

iw " a]ZZw

Tt it e g
| s,
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/

Without loss in generality, assume that the pJ are arranged in mcreasmg order We
also assume that the ﬁxed points do not share common coordinates. (The proof can be easily

modified otherwise.) Then, three cases are cpnsid_ered.

i) m>1,Q#ag;, i=1,.,n.
Using the same procedure as in case (i) of Property 5.2.9, we conclude that, if

convergence of {xd} to Q takes place, then an r and t can be found such that

W_Q :
axt - %0, and Qt= a..
Hence,
‘ . b1
W, (Q) - ey ~a :
= w.sign(a —a )————— 2. (6.1.27),
Togx . 4 1) rt it p-1
t i=rj=1 (4 (Q—a.)]" .
. - ‘ B v
Using (6.1.26) and (6.1.27), it readily follows that
lim [¢t(x)""art| _ +m . hd
=Q - [x-a ' R - (6.1.28)
X, —a =0 C , .
t rt

so that convergence of {xﬁ} to Q cannot occur by Lemma 6.1.2.
ii) ,plzl,Q:ai, i=1,..,n )
Agaiﬁ, suppoée that {xdq} converges to Q. Using a similar reasoning as in case (i), we
conclude that for t € {1,..., N}, if Q; = ag, Vi, then aWe(Qaxy = 0. Les
JQ = {s| Qs~a,, = 0}, whete T €41, ... .0}, Si.nceﬁQ € 5,Jqis a non-empty set..
| The directional denvatxve of Wi, at Q in the direction y=01,.., yN)T is calculated |

as follows

AN



=2

o

W Q) =

R 3
. [Wm(Qﬂ-Sy)-Wm(Q)]
5-0" 0
2 2w, Q oy —a)- 3 S w e @-a)
— lm | i i . i j )
50" | 8 |
l‘!_ .
o 2w [8Q+by—a)-,Q-a)l
= lim (i=l ‘
507 | 8. -
n L '
zz w[f (Q+8y— a) € (Q a))]
+1-13 =2 B }
Oy 5

Z {wr 1Iy | + Z W, sngn(a ais)ys}

s€J i=er
8

Q. .

+ Z Z“"umg“@ —a, )yt-l-zz w;; Ve (Q a) 4

tGJ'Q' i=1lj=2
= Z[ |y|+Z[ sign@, ,—~a,)
sEJ rl l==r Yi1 rs is /'\_m\‘
p.—1
; L : . la:r s—aisl !
. 8
+ Zzwij Slgn(arss_?'is) ;5.—1 ]ys}
= : [fﬁ(Q—ai)l_
W (Q)
+ 2
L I tery .

- But from above, we see that

234
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’ - aW_@Q) ,
=0, ¥V téd
ax, Q
Hence,
W= [ LR [w sign(a, ).
8€d |==r
Q
p.~1
2 sl (6.1.29)
a WA
+zwu Slgn(a s is) p.—I.]y ] . .
=2 a0 T qeay?
Since Q is a non-optimal location, therefore by Property 2.4.1,
-t minW;n(Q; y)<90. (6.1.30)
: y
. This implies
. . N . .. . . p -1
1 | B 5=’ . (8.1.31)
- Z(w s1gn(a -5--3. )+Zw sign(a _—— ia) . )’.>1, o
rgl dwr . j=2 k e, (Q an'

| for at least one s € Jg,says = h Using (6.1.26) with m=1, t = h,andr = ry, and 1. 31), it
is readily seen that,
' |¢,;(x)-arhh|

x~Q Ixh-4'a, h, >1. (6.1.32)

C N N RS .
arhh=0

Thus, convergence of {xa} to @ cannot occur due to Lemma 6.1.2.

X

iii) Q = g forsomer € {1, .1 % .
Consider the function
=1 78 |
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which gives the contribution to Wy, from the cost components due to a,. For x along some ray

from a, with direction 9, it is readily verified that

- (6.1.34)
| Ur = wr’ 8“9)(:: —ar) ,
where p(0) € (1,2) and |
L
j=
Furthermore, from the unit circles of the 8 . » L, and considering the results obtained

for the weighted one-two norm (Chapter 4), it follows that w, €p(x—ay) is a clqse approxi-
mation of Uy, where 1;, € (1,2) is 2 mean value of p(8). Thus, the iterates in a S-neighbdurhood
of a; behave to a first approximation as if the single cost w, fp(x—ay) is associated with a;.
Based on Property 5.2.9 (case (iii)), we see that {xti} will not converge to a,, since this would
have to be alonga descent direction of Wy, thgreby vioiating Property 6.1.3.

- Since caseﬁ (i)‘, (ii) and (iii) exhaust all possibil_ities, the proof is complete.

We are finally ready to prove global convergence of our algorithm. This extends the

result given in Theorem 5.2.1 for the single norm to the more general mixed-nbrrp model.

Theorem 6.1.1
Letpj€[1,2),j = 1,..., L. Then any regular sequence xd,q = 0, 1, 2, ..., converges to
S R . .

an optimal solution; i.e., 4

lim xq _ x- (6.1.35)
q—bw

Proof:
The same as Theorem 5.2.1, with Wp, mstead of W, Lemma 6.1.1 replacing Lemma
5 2 1, and Propertles 6. 1 6, 6.1.8 and 6.1.9 replacing Properties 5. 2. 8, 5.2.8 and 5.2.9

respectively.
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It is interesting to consider the case where {xd} is a non-regular sequence. Using

the same notation as in Corollary 5.2.1, we obtain the following immediate result.

Corollary 6.1.1
Let p; € [1;2], i=1l ... L,',and‘consider any non-regular sequence x4,
q=0,1,2,.... If all subsequent iterafes after x8 do not fall on any hyperplanes Hj; not

already included in H, then {xq} converges to a solution whlch is optxmal in the subspace H.
' H

As a final comment on global convergence we note that Property 5.2.10 read11y

extends to our mixed-norm problem as follows.

Property 6.1.10

Ifp. € [1, 2) for at least one r € {1 L}, then {xq} is a regular sequence _except for a
set of starting pomts x0 w:hlch is.dense as RN-1,

The steps of the proof are the same as in Property 5.2.10. We conclude tl';at if
p € (1,2] for all j, tfle likelihood that the algorif.hm will not converge to x* for arbitrary x0 is
very low (zero theoretically if the sequence is galculated with unlimited accuracy). Once
agam the use-of double preclsmn arithmetic is recommended , _ &/

We take a qulck Iook now at loeal convergence rates, restmctmg attention to the
case where W, is strictly convex (1.e., the a; are non-collmear), and the optimal solution x*
does not oceur at a shéular point. Let ¢'(x*) denote the N XN matrix of first partiels of the

_vector ¢ evaluated at x*. Then, using an analogous procedure as in subsection 5.3.1, it is

readily seen that

» 6.1.3
Q&) = ], (©139)
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where ’ T ‘ .
| | &) g W)
P = =8y 6.1.37
kt axt kt Sk(x ) axtaxk ;n.( )
5 {1, if k=t o th 'Km N d1'
kt = |0, otherwise, T oneckerdelta, - (61.38)

and : kt= 1,...,N,
Note that $'(x*) has the same form as in equation (5.3.37), except the new objective function

-

W replaces Wand si(x) is now given by (6.1.17).

For the tv;vo-diléfnsional case (N = 2), the elements of $'(x*) are giveﬁ by - . ‘
a -2 Y e
—ay| A Ixi_a'll ! |
Z Z w {(2—p)+(p 1) ]\, (6.1.39a)
s(x). 1j=1 [g (x ._a)]J _ 1 (x —a)]J
‘azlj ix;—ai;’j |
- s X)) im1i 1 i Y _ad o
| B=1j= [epj(x -3, It’,lJ(x 8,)] :
, oL Ix, | Ix —a:,lJ : "(s'.‘1.39c)
. o ¥ — Zz(p—l)w sign (x; —a, ’S‘g“(" 2732 - s W=l 7
. s(x )i=1j=1 [8 & —a)l i
and
b = 5x) o . | o : (6.1.39d)
21 o P12° : '
o 8kx)

Consider the case where pj € [1,2] for all j, so that global convergence to x* of any
- regular sequence is guaranteed by Theorem 6.1.1. Clearly, ¢11 and ¢gs are positive-valued, so

that
A +h, = o'l >0, (6.1.40)

where Ay and Ag are the elgenvalues ‘of $'(x*). Next, we show that the detenmnant of p' (x") is

positive. Lettmg _ - -



A
2, e
F(x) = z z (pj--l)wij I
i=1j=1, [ (x—a)] ?
. pj ]

By o
G = D D> @-pw. :
oo i=li=l - [€ (x 421)]J
P _
J e
t=1,2, A
and 7
. - :_ . b -1
n L ' |x1—ai1|‘J [x —aj’ )
HGx) = Z Z (p — 1w sign(x, —a, )sign(x,~a,) - -
i=1 j=1 [ep-(x_ai)] J

the following expression is obtainéd:

det[q,_'(x‘)] = ——L— {6, G o % +G G F (x )

s, (x )92(" ")

+ G, IF () +F 6V F )~ HAx ),
Applying Schwarz S mequahty, we readily show that

Hz(x) <F(x)F(x) ,

239

(6.1:41)

(6.1.42)

w1th strict mequahty holding even if the a; are collmear Furthermore, since Fl, Fa, Gy and

Gz are all clearly positive, it now follows that
il A, = det[d')] > 0 .
Comparing relations (6.1.40) and (6.1.43) leads to the result,
’ A, >0, t=1,2.
From (6.1.37) we see that

] : &) =1-B &),

where

(6.1.43)

(6.1.44)

(6.1.45)
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"
L PW_x), 1 EW_ )
e sl(x.) axf - sl(x.) X, 0%,
B () = ' L § - | | (6.1.46)
1 W) AW ) '
_sz(x‘) ax ax, Sz(x.) . ax§

" Furthermore, it can be shown in exactly the same way as for Lemma 5.3.1 that the eifen-

values of Bp(x*) are positive. Denoting thgse eigenvalues by py and po, and recalling

A = = : ‘ © o (6.1.47)
| At— l-pt,‘ ‘t -71,2, "’
leads to the result ‘ O
A <1, t=1,2 (6.1.48) *
t : . ks
Comparing (6.1.44) and (6.1.48), we finally conclude that
o ' (6.1.49)

, 0<A;<‘1, t=1,2.

Hence, the following important result is obtained.

Theorem 6.1.2
| Consider the mixed-norm problem in two dimen-sions, such that p; € [1,2],

j=1,..,L,theajare non-collinear, and :gf ¢ S. Then the local cgnvergence rate to x* is linear, -

- 8 . !
As a final comment on local convergence rates, we note that the results in sub-

| section 5._3.3.a‘re readily extended to the mixed-norm meodel. This follows froﬁl the previous
~observation that ¢'(x*) has an ana]o‘géus form in both cases. In particular note that
' ' ' A<1, t=1,..,N, | (6.1.50)
for the more éeﬂeral condition whefe p; = 1 (but not necessarily <2), for allj.

£
.

6.2  Optimality Cliteria at Non-Differentiable Points
In this section, we are interested in deriving optimality criteria at points x € D,
where D denotes the set of nion-differentiable points of Wy,. Consider first the céseAwhere

o > 1 for allj. Then the cost component Uy, _(éee equaﬁun (6.1.33)} associated with any fixed



T

‘ - o
point a, is a positive linear combination of differentiable round norms centered at a,, and

hence is itself a differentiable round norm centered at a,. It follows that D = {ay, ..., an} for -

this ¢ase. On the othér hand, if one of the py's equals 1, then D becomes the union of hyper-
planés xi—ap=0,i=1,..,n,t= N However when x is neither an intersection nor a
ﬁxed point, there exists at least one direction Xp where Wy, is differentiable; and hence
IWn(x)oxp =0isa necessary condition for x to be optimal. It follows i in the latter case that
optxmgllty criteria are prachcal ci?ly at the intersection and fixed points.

-

Once again, we make the standard assumption that the a; do not share an)%xnmon,

) %
coordinates with one another. If this is not so, the criteria given below can be easily modified,

where applicable, to suit the individual case. Let us first consider the fixed i)oint fr,

r€{l,.., n} Using'rele;tion (2.4.6), it follows that the directional derivative here is given by

" ta ) = - . (6.2.1)
Wm(ar'y)_ Zwrjep.(y)_zBrtyt ! . '
_ ' : i= Cot=l - -
where
p.—1 .
la~a,l! ‘ ' .
= "z ZW Slgn(a )"—"—;'“T, t=1,...,N. (6.2.2)
= j-
i=r j= | [fp(ar—ai)] . | |
Letting ‘ _ . - ) : -
) " .
P (Brl' ’ BrN)’
. L
8
=1
(:ll_‘l .—..erlwr, i=1, , L, -

we rewrite (6.2.1) as,

W' (ar.y) =w, Za

Y (6.2.3
- w‘-’p(y) -B,-y . __

A necessary and suﬁiclent condition for ar to be an Opumal solution is that W' m(a, ;¥) 2 0 for

all chrechons y (Property 2.4. 1) This immediately 1mphes
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max {-1— Br'YJ =1, . (6.2.4)
y ‘w, LO) _
where the norm, .
. ] | |
L) = 3 SACE o (6.2.5)

‘Note that L, is a convex combination of the t’pj's. Using the definition of the polar and letting

L,° denote the polar of Ly, the optimality criterion at a, given in (6.2.4)Becomes

| _,I_LO(B)SI__ . (6.2.6)
.Wr

Relation (6.2.6) is 1dent1cal in form to the optlmahty cr1termn of J uel and Love
(1981), where a smgle arbxtrary norm is assocxated with each fixed point. The total weight
(wy) at a, has the same mterpretatmn as the simple cost coefficient in the single-norm case.
However, the polar of an all-bitrarylconvez-c combination of €, norms is not réadily available in
élosed form, and ¢btaining Lr° for-' a specific problem proves to bea ;:umbersome task (e.g., see

Juel, 1975). Thus, fixed poirit optimality criteria have Iimited practical use in the mixed

 norm problem. At the end of this section, we demonstrate the apphcatmn of (6.2.5) when L. is

aconvex combmat:on of €] and €.

Suppuse now th"t Pj € [1,2] for all J. Then a lower bound on th/ e directional

denvatlve of Wm ata;can be obtained in the followmg manner, -Note that

LW ey =1, j=1,..,L, ©2
i
and B; - y is maximized when the unit vector y has the same direction as B;;ie.,
. /= B./IB | (6.2.8)
Using (6.2.1), (6.2.7) and (6.2.8), it immediately follows that for any y,
W(a ,y)aZW — B, ‘B, /IB,|
J =]
1. . o . .
= w —[B. (6.2.9)

Thus, a suﬁ‘iment condition for a, to be an optimal solutmn is that

~
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' ' (6.2.10)
wanu_[Z ] ' .
t=1 R .
The above criterion provides a pt([mtical (but obviously less accurate) alternative to

relapioﬁ (6.2.6).

Witzgall (1964) pmves a "Majonty Theorem" whlch applies to the Weber problem
with distance funct:on given by a metrie. ThlS theorem states that a fixed point is always
optimal if it a(:coun.ts for 60% or n:_lore of the total interaction. -One can easily extend this _
result to a generalized version of tf1e mixed-norm model, as shbv;n below.

o \ _ | S
Préperty 6.2.i

Consider the problem,

- minimize W o) = z Z is d(x a)
Coi=1 j=1

whe_f‘e d; is a metric, j =1,. L and the other symbols are as before Then a sufficient

condition for a, to be an optimal solution for somer € {1,..., n}is that

W.EZW .7= ,...,L . . (6.2.11)

Proof:l

- From the triangle'inequality and symmetry properties of the metric, we obtain
- (6.2.12)
f_dj(x'ai)_(-lj(ar’ai)l = dj(x’al’) [ VJillx' ’ ) ’

Hence,
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' . n L
W_0)-W (a) = gl z_lwij dx,a)- Z z W, dJ.(ar ,a,)

i=1 j=1

*Fﬂ

L .
Z a0, a)-d_ a)]+Zw dx, a)

- =1
L L
z-zz |d(x a,)— d(a a)l+Zw dfx,a)

=1 _ 1 1
I_, .
= Z gwij[dj(x.ar)-l d(x,a)~-dfa_,a)]
j=1 i=r .

‘ " (relation (6.2.11)

. = 0 o (relatxon 6.2.12)) .
Therefore, ar musc be an opnmal solution if the wy; satisfy (6.2. 11)

Returmng to the mixed-norm model (6.1), we now provide a sufficient condition for
4, to be optimal which is based on the combined effect of thewy,j=1,..., L, as measured by

¢

the total weight w; at a,.

Property 6.2.2
Consider the mixed-norm model (6.1) with 1 = pj s 2 for all j. Suppose that an

r € {1, ..., n} can be found such that,

w ;_.( ‘/N__)w,' ' ' (6.2.13)
r .. - .

where

Then a, is an optimal solution.
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Proof: .
( For any x€ RN, ‘ o ¢
) - Wm(x)’—wm(ar) = Sl + S2’
where ‘
L -
Z X3 (x -a);
and -
S-z ZW [f(x a.) f(a—a)]
: i=r j=1 % ) ‘
Since 1 < p; < 2, V], it follows that for any z € RN, - - ’ /
: (6.2.14)

82(2).'5 Epj(z)SCI(z), jél,...,l_...
Furthermore, in N-dimensional space,

6@ s VN ) . (6.2.15)
Using (6.2.14) and (6.2.15), we see that
SaZw f(x a)«-wf(x-—a) - (6218
j=1
and
S =~ Z z WijIep.(x--ai)“gp.(ar-a'i)l
izr j=1 i i
=- Z z Wi ¢ (x a) (triangle inequality)
i=r j=1 ‘ .
=-VN fz(x—a)z 2 wo oo " | 6217
) 1=rJ 1. ) o ” .
Substitutmg ' : . o | -
‘ | .
> z Wy = wew,, | (6.2.18)
izr j=1

into (6.2.17) and combuung with (6.2.16) gives _
S, + S, = [(1 -H/N)wr -_-\/N‘w] bx—a). ' (6.2.19)
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~

’

\‘< Hence, if w; satisfies (6.2.13), we immediately oiitam : "\_
W 0-W @)=0; o | rj
so that a, must be an optimal solution. '

1t is informative to note the following alternative proof of Property 6.2.2, based on

the directional derwatwe of Wnat ar From (6 2.2),iti is clear that

) IB I < z Z w =W s V t. . . (6.2.20)‘
: izwr j=1 : o . .
Usmg the lower bound on W' m(a, ; ¥)in (6.2.9), and imposing (6.2.13), we thus obtain
12 —

_ 2 -
Wm(ar_;y) = wr—( z Brt)
: t=1

..\

' _ = wr;\/I-\T-(w—wr)

= (1+VNw -VNw20, Vy,
therefore coﬁcluding that a, is an optimal solution.

For location in the plane (N =2}, it now follows that a sufficient condition for ar,

.

r € {1, ..., n}, to be optimal is that

: V2 a
. ' w r—_-( _) w = 0.5858 w. (6.2.21)
AN V0

However, we note from (6.2.13) that ag N jncreases, wy must become a largéi fraction of the’

éuinulative weight w in order to guaran'tee the optimality of a,. Hence, the ‘usefulness of
Property 6.2.2 is limited to lower dimenéiohal spaces. 4

Let us assume without loss m generality th_at tl‘le Pj’s are arranged in increasing

order, and consider the case where p; =1. Then, by Property 2.2.5, L, defined in (6.2.5) is a

nondxﬁ'erenhable round norm. For minisum models employmg block or nondﬁferenhable

round norms, one can derive optimality criteria at any nondxfferenhable point of thuﬂi-l objective

. functlon by considering the dlrectmnal denvatwe ina 51m11ar manner as at the fixed pomts

However, 1t appears that such cntena are not provided in the published hterature other than

N
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for the fixed points. ‘In the next result, optimality criteria are specified at the intersection

points.

Property 6.2.3

Conasider the rr‘xixed‘norm model (6.1) with py = 1, and let Q denote an intersection

point; i.e.,
_ T
Q = (arll’, arzz, vee, @ N)

™N

where ry € {1, ..., n} depends on s = 1,..., N. (Recall that Q = a;, i = 1,..., n, by definition of an

intersection point.) Then Q is an optimal solution if, and only if,

mm {Cs} =0, (6.2.22)
1=ssN -
where '
‘ p.—1
Iar x!_"aislJ _ .
Cs= Z [w sign(a_ s—a )+Zw mgn(a r 58 )——-—H , )
t=eg ™ =2 " ¢, @~ all |

(6.2.23)

s=1,...,N. - : . | T

Proof:

Referrmg to the directional derwatne calculated in (6.1.29), and noting that

= {1, ..., N} for the mtersectlon point Q, it follows that

. o . 6.2.24
min W_@;y) = mm[z Ca|ya|}_ o ( .)‘ _
. y y s=1 : C
Thus, Q is optimal if, and only if, Cs = 0 for all 5. We conclude that (6.2.22) isboth a necessary
/ "

and sufficient condition for Q to be an optimal solution.
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An Application:
]Zet us cons:der a typlcal mixed-norm problem in R2, whlch utilizes the rectangular

and Euchdean norms. The model is stated as follows

minimize W_(x) = EZW e(x_a) o -~
' i=1 j=1 J

where N = 2, L 2,pp=1,and py = 2. Alternatively, the objectlve functlon can be written

as

n ]
W0 =3 w Lx-a),

5 (6.2.25)

with
W, = wi1+w‘i2 .'l
.Li(z) =aq, e1(£)+ Bi&@,  VzeR?
0 <g;=w w <1, . B, = Wolw, = l-a,
i=1,...,n :
-We see that Li‘is a convex combination of the ¢; and €2 norms. Furtherniore, if g4 has the same )
“value for all i (aj=aqa,i=1,...,n), the problem reduces to a standard minisum model with
dlstances given by a welghted one-two norm (L(z) = a £1(z) + (1~ a) €2(z)).
The fixed point optimality criteria -can be derived directly from relation (6.2.6),
" using the polar for positive linear combinations of 81 and €2 given by Juel (1975, P. 15)
- However, it is mmpler to back track a few steps, and utilize the special stxrhcture of the
directional derivative for this case. The gntena thus obtained have a different form, which is
more compact and easier to implement.
From (6.2. 3)
W a9 = v_nr[ar €0+, €01 ~B -y

(6.2.26)
= wr[ ar el(y) + ﬂr]-.Br Yo



iy,

249

since y is a unit vector (€2(y) = 1). Letting 0 denote the direction of y, we have
y = (cos®, sin@)T; h (6.2.27)
so that (6.2.26) becomes

PR ' . . . 6.2.28
~ - W @ ;¥)=w[a(cosB|+]|sinB]) +p,]-B_ cos0~B ,sin8. ( )

Clearly, the directional derivative at a; will be minimized if, and only if,

sign{cos@) = sign(Br J> sign(sing) = sign(Br D (6.2.29)

"in which case,

' | . ' (6.2.30)
W (a;y)= (urwr—lBﬂ[) |eosB| + (@ w_—|B_))|sin6] + (1 —-aw_.
Also note that the direction which minimizes W'r,(a, ; y) is restricted to a specific quadrant by

(6.2.29).

Suppose that a; w, 2 min{|Byy|, |Byo|}, and without loss in generality, assume that

. |Bri] = min{B,q, |B.ol}. Then the first term on the right-hand side of equaf.ion (6.2.30) is non-

negative, and cleérly,'é 6 which minimizes the directional derivative at a, satisfies

g'_\
(lcos8y], |sind,]) = (Q, 1). Hence, we obtain

min (W_(a_;y)} = —-max{]Bu] , IBrzl} +w_.
y .
The other possibility to consider is that a, w; < min{{B;y], |B2|}. For this case, it is readily -

©231).

shown using elementary calculus that

min {W, (a_;y)} = —l@aw_~[B_?+ @ w_~BP1%+0—aw_. (6.2.32)

y

‘From (6.2.31) and (6.2.32), we immediately obtain the follo&ing optimality criterion at a fixed

point.

Property 8.2.4
Consider the mixed-norm problem with objective function defined in (6.2.25). Then

X = a, 1 € {1, ..., n}, is an optimal solution if, and only if,
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C maxiBlBg, if a,w, = mingB, ), |8},
w = {(
r

It is interesting to examine relation (6.2.33) for the limiting cases, a,—> 1~

(6.2.33)

= )tcu,w,-isrlpf’f (@w, =B )",  otherwise.
r .

(Ly—> €1), and a, > 0% (Ly — £3). Assuming that w, = IByy) or wy = [B,g|, we see that

. 1 .
llm {( 1 a )[(arwr'—lBrll)z + (ﬂrwr-"l BrJ )2]1/2} = +o |

a —1 -
Hence, the optimality criterionat a, reduces in the first case to testing whether or not
W= ma_x{]BrlI , |Br2“ . ' (6.2.3%)

For the second case we have a, w, — 0, and hence, the limiting form of (6.2.33) becomes

w 2(132 +32 )1’2 ' . (6235) :
Naote that (6.2,34) and (6.2.35) are the optimality- cntena at a, with Lr as the rectangular and

Euclidean norms respechvely.

i

The followmg results glve some useful information concerning the sen51t1v1ty ofan

»

o

optimal solutmn at a fixed pomt
_"-_-‘\

Property6.25 _ o -
For the inixed-norm problem with objective function de ed by (6.2.25), suppose

that an'r € -{1 , n} exists such that w, > max{]Brll |Byl}. Then an a® € [0, 1) can be found -

such thaf. x = ar is an optimal solution for all @, in the interval [a®, 1].

Proof: ,
Since w, > max{]Bﬂl, [Byal}, it follows that an a® € [0, 1) exists such that
a° 'w, = min{B_|,|B_} . _ .
Then, for any ar € [a%, 1], we see that the eriterion m (6. 2@)3 satisfied. - Hence, by

Property 6.2.4,a,isan optn'nal solutmn for alla; € [a*, 11.
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Property 6.2.6
For the mixed-norm problem with 6bjeci‘.ive fuhction defined by (6.2.25), suppdse

rl/that anr € {1,..., n} exists such that wp = (Br12+Br22)m. Then x = a_ is an optimal solution

forall a, in the intervai [0, 1]. . o / {\ ,

Proof:

Without loss in generality, assume that
| llBrll = mm{]_Brl”lBﬂ]} '

There are two possibilities to consider.

®  [Bal=o. |
- Then w, E_I.Br2| = max{]Brll: IBr2|}- and ap w; EﬁliﬂﬂBu[, IBr2l} for any ar € [0, 1).

If follows from Property 6.2.4 that a, is an optimal solution for all ar €[0,1]. .

J

() |Bea| > 0.
| Let . oL :
‘ha) (= aw, -[B_[, ' - _ '(6.2.36a)
r.hz(“r) i= aw -[BJ, '- o *(6.2.36b)
and (3 2 2, 2 - (6.2.37)
- gla) = ('i-:‘—)ﬂll(ar) + (e )1
r _

The first-order derivative of g is given by,

dgla) - 1 e (d-a)w : -
£ z[mfﬂz ., +_2r_;2_(h1+h2)] - (6.2.38)
da, (1-a) / @2+ hd ~
Now, since wp = (Br12 +Br22)m, it follows that
w. >[B| = max{B_|,[BJ} . | (6.2.39)
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L]

Then, an a* € (0, 1) exists such that _

a’ w, =B, |= rmn{]Brl[ lBrz” (6.2.40)
From (6.2. 39) (6.2.40) and Property 6 2.4, we conclude that a, is an optimal solution for all
or € [, 11, |

S@xt consfider ay in the interval [0, a*). Clearly, hy < 0 and ha < 0; so that
| b, +H, = —(h|+[h) . . (624 ®
Substituting a; = 01in (6.2.38), we obtain
W,

“—“—2)1}5 (IBHI + [B 2l)

2
B,+B

dg(O)

-

= [(-B-fl + Bf2 -):Uzm(]Brl| + |Br2,)]

- : * (6.2.42)
. < 0, . (Property 2.1.1) .
Also, g(0) = (B, Z+BLH72, andhence - | o '
w_ = g(0) . ’ - (6.2.43)

From (6.2.42) and (6.2.%), it follows that an a** > 0 exists such that wy = gla,) for all
a. € {0, a**, 'Furthermore, let a** denote the largest value for which this is true. We show by

- contradiction that a* = a*. Suppose a™* < a”. Then, using (6.2.41), we have

dg(a") B
dur ' a1-

1 't‘. L1 w - -l
_‘2[0{;’@ )+ e NP —= (h,@™) + ™)
a ) ' gla )

1 - L) L
< a———)[(hz(u Y+ Bia™ D" — b, @) + b,

< 0. o ' (Pioperty 2.1.1)
But this contradicts the fact that a* is the”largest value such that w, = g(a,) for all

ar € [0, u”]. Hence, a** = a°, and( we conclude from PrOpQrty 6.2.4 that a; is an optimal

(6244)

solution for all _a;. € [0,a*).
Thus, combining fegpits, we see that x '=‘a, isoptimalfor0 <o, = 1.

et

Ly
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Property 6.2.7
For the mixed-norm pfoblem with objective function defined by (6.2.25), suppose
\ihat anr € {1, ..., n} exists such that ar is optimal for a = a,; and a, = ;152_, where a;y, apg are

values in the interval [0, 1]and a;; < ar2. Then ar is optimal for all a, € [a,1, a2l

B

Proof:
A straightforward modification of the one given for Property 6.2.6.
The next result provides the criterion for testing the optimalify of an intersection
point in our example. _ -
Property 6.2.8
Consider the m-ixed-norm model with objective fuhctidn'given in (6.2.25), and let Q
denote an intersection point; i.e. y _ _
. . /
o T ‘ _‘
Q . ( rl! a Q " ‘ ﬁ
where r,s € {1, .. n} r = 3. (Recall that @ = a;, i = 1,..., n, by definition of an intersection
point.) Let
| @, ,-a)1y R
1 (6.2.45a)
C, = [w signfa | )+ w,, ———tl ,
. 1 1§r g ;1 12 f 4 (Q -, )
- la-a) L
2 i ‘
c o [ : .
” I Z 1580 ,—a.) +w, ey |- | (6.2.45b)
Then, Qisan dptxmal solutlon if, and only if,
Cmin{C,Cl=0. - (6.2.46)

Proof:

*This is a direct application of Property 6.2.3.



CHAPTER 7 | e

A GENERALIZED MINISUM PROBLEM

An extension of the single facility minisum location problem (or Weber problem)
has the distance function raised to some power K. This generalization was discussed brieﬂy
in Chapter 1 (see model (1.3.1)), where we noted that‘economies of scale are 1ntroduced in the

model if 0 < K < 1, while dls-econormes occur when K>l Finally, if K = 1, we are back to
! 5

‘the original Weber prob]em with its constant returns to scale. The purpose of the new
formulation is to provide a more accura:te representation of the cost strucxture in'tﬁe real
problem. As explairted in Chapter 1, the actual costs will often exhibit a nonlinear relation
with the distance functiorl.

In this chapter, a new ‘model is investigated which generaikizes\the minisum

problem‘with' distances measured by a norm even further This model, which we

approprmtely name the m1xed-power problem is formulated as follows:

minimize W (x) = Z w. [k(x_a b I o . (11

i=1

where wi, a;,1 = 1, ..., n, k(") and x are the same as in model (5.1), and K > 0,i=1, .., n,is
) the power associated with the ith ﬁxed pomt or destination. If all the K; are equal, we have
. the original exte_nsmn of the-muusum problem.' Howevag, by allowing different values of the
K; for each customer, we are .providing a greater flexibility in the cost strﬁcture; This
recognizes the fact that economies or dis-economies may differ among customers, due to the
use of different transportatxon modes and other possible factors .

“We begin’ this chapter by deriving some general properties of the mixed-power

problem. Next, we look at the specific case where k is the {pnorm. The model then becomes

- 254 I -
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minimize W(x) = 21 wile (x—a)l ', p=1.
=

To our'best knowledge, the mixed-power problem has not been formulated previously in the

(7.2)

Fpul;lished literature on location theory. Since this model allows the cost component of each
‘customer to.Rave a differemt functional form?-it can be considered analogous to the mixed-
norm probler;l. We cou'ld‘complicate matters fu:"ther, but hopefully increase the accuracy of
the mode] as well, by mixing norms and powei'-’s simultaneously. For example, we might

con¥ider the followiﬁg model: - ' ) : .
n .

. . i
minimize WGM(x) = zl wi[ki&‘x';ai)]'l , : | ‘ (7.3
i=

where k; is the norm associated with customer i, and all other symbols are the same as above.

7.1 - Geheral Properties

7 We first derive some properties related to the shape of the objective function. These

results generalize ones obtained by Mor;'is (1981) for the case where k is an €p norm and all
the K are equal. Unless stated otherwise, the location problem takes plaée in N-dimensipnal
o _ L v

: 'spa_ce (RN}, .

Property 7.1.1 _ o : ‘ ,,../
- Le.t k be a round norm in model (7.1). If Ki=z1,i =\IT..., n, with at least one of

- these inequalities satisfied strictly, then Wg isa strictly convex function of x.

-

. Proof: 4 . :

Wel(x) is a positive-Hnear combination of convex terms, with one or more of these
hs .
- &

terms ha_\_ring K:>1,r €{1,...,n}, and being strictly corrvex by Property 2.3.5. Hence, Wg(x) is

strictly convex.

7 . o7
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Property 7.1.2 ' N

If 0 <K, <1, where r € {I,...,n}, then the fixed point a, is a local milnimum of

/

Wex). /
Proof:
.-/ Letting
- K, . - C
hi(x):= [k(x)] *, | i=1,..,n, N.I.l)
we can rewrité the objective function as ‘
. n ] ’
Wo0= > wh(x—a). (1.1.2)
i=1 .
Then the directional derivative of Wg evaluated at x=a, in the direction yis givenby
Wil iy)= Z wihila —a; y)+wh' 0;y). _ (1.1.3)
12r .
But for all i=r (see equation (2.4.9)),
| s ‘ | K-,
h‘i (@, -a;:y)= Klka ~a)l k'a —a.;y), _ (7.1.4)

‘ which is finite-valued; while for i=r, .
by equation (2.4.12). It follows that
W G (al.' » Y) - + @ 1 .
* for all directions y, and hence, the fixed point a, is a local minimum of W¢.

-

- ) ' : - ’ . . n
V—Q Pr._'operty'?.l.:l I . | oo

If0 < K, <3}r one or morer € {1,...,n}, thent Wg(x) is neither convex nor concave.

-

-
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Proof:
By Property 7.1.2, a loeal mxmmum occurs at x = a,, an mtenor poin /so that We
cannot be a concave function of x. Since Wg is bounded in any compact set contammg ar,and
| WG (ar. y) = <+ for all directions y (equation (7.1 6)), 1t follows that WG cannot be a convex

function of x either, -
Returning to Property 7.1.1, we see thof fhe opt:imt;llsolution (x*) must be unique, if
k is a round norm and K; = 1, Vi, with at least ooe of these inequalities satisfied in a strict
sense. The uniqueness of x* is guaranteed here for any arrangement of the fixed point's— -
even the collinear case. _Suppose noﬁ that k is a block norm. Then Wg will no longer be ag
strictly convex function of x, so thog x* may not be unique. HoweVer, from Property 2.3.7 it .
follows that the optimal solutions must all lie on a facet of some polytope contour df k (x—a,),
for éaoh r € {1,...,n} such that lK, > 1. This result provides an easy w_eiy_ of checking the
luniqueness of the optimal sifution for problems in R2 (N=2) Say that we huve found an .
optimal solution at xo Now draw the edge of the polygon contour of k(x—a,) passmg through
. xg for each r€{l,..n} havmg K; > 1. Ifany two of these edges are not parallel then xg must
be the unique solution. In higher-dimensional spaces, this verification step becomes more
difficult, since we are now dealing w1th the 1ntersectmn of hyperplanes instead of edges.
The umqueness propertles dxscussed above are 111ustrated with two simple
‘ examples in R2, First consider a problem having two fixed points, a; = (0 1)T and ag = (2, O)T
wi=wz=w,and K; = Ky, = K. Suppose that k is a round norm. Then if K = 1, the set of
optimal solunons‘conmsts of all the points on the line segment joining a; and ag. However if
K>1,thenx* = (1, 1/2)T is the umque t10n Now suppose that k = €; (a block norm). If
| =1, all the points contamed in the rectang]e with vertxces (0,007, (0,1)T, (2,1)T and 2,007

are optxmal. If K> 1, x* occurs at a reduced set consisting of the points on the 45° line
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segment through (1, 1/2)T bounded by the sides of the rectangi&(see Figure 7.1.1(a)). We see
that x* is not“unique-héré é:ren when K > 1.

For the second example add twolmore destinations at the unoccup:ed vertices of
the rectangle; that 13, 23 = (0,0)T and a4 = (2,1)T. Let w; = w and K K,i=1,.,4. Then
the optimal solution is umquely g1ven by x* = (1, /2)T for k a round norm and K = 1 If
k=4¢ and K =1,all the points w1th1n the rectangle are optimal as in the ﬁrst example But
fK>1x*= (1 1/2)T becomes the unique solutmn since the edges passing through x* of t.he
polygon contours for k (x—a;) and k (x—ag) are not paratlel to those of k (x—aa) and k (x- ag),
as shown in Figure 7.1;1(h). | |

'- Letus considet now the case where 0 < K < 1 for at least one of the indices r. Ina
small S—neiéhbourhood of the fixed point a,, the directional derivative of W is dominated b& |

the contribution from the cost component associated with ar. Thus, along any line segment

£,
through a, and contained in the 8-neighbourhood, Wg has the basic shape shown in Figure

v

2.4.1(c). This confirms graphically Property 7.1.3. Since Wg is nejther.a convex nor concave -
function of x, the optimal solution will not be unique in general. By Property T.1.2, a local
optimum occurs at x = a,, which cannot be ruled out a priori as the global optimum. A global |
solution may also exist at a point other than the a;.

| The following result is rather mtere‘sting, in that it shows a tendency for the

optiit:al solution to move to a fixed point for sufficiently small values of the K;.

Property 7.1.4 .
}\O In the limiting case K;— 0+, Vi, the optimal solution of model (7.1) occurs at.

x* = a4, where wg = max; {wi}.
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Prodf:
‘ Denote this limhiting case by lim’. Then for X * aj,i = 1,...,n, we have
-2 - .
, e W = Z v (7.1.7)
whileforx = a,,r€{1,...,n}, ;
/\hm WG(x) = lim V\’:G(ar)
N ‘o - KI
| = lim [ 2 w,lkla ~a) }
? izr oL
= Z W, . , {7.1.8)
'E 9 . . . i#r ' . )
- It follows that '
X - izs K . :

which occurs at x* = a,. /j

- As Ki—} 0+, i =1,..,n, we see from (7.1.7) that there is a flattening effect-on the
objective function. The. cost component associated with each destmatwn ag becomes
_insensitive to the dlstance travelled, because of the extreme economies of scale resulting from
‘the 16w values of the K;. We also note from (7.1 7) and (7.1.8) that. the cusps at the fixed points
(see Flgu:je 2.4.1(c)) becomne more'pronounced as the K; are decreased. This fact is recognized_ B
by.Morris (1981?for the case where k is the £, norm, and illustrateci in t}is Figure 2 with a
one-dimensional ekample._ We see now that the opt;imal solution tends to be for sufficiently

small values of the K; at the destination with the largest weight.

Ifallthe K; =1, we return to the standard minisum problem,

minimize W(x).= Zwk(x a).
L |
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<

For this moedel, a fixed point a, will be optimal if, and only if, the following criterion proven by

Jiel and Love (1981) is satisfied:

w ak°[Zka(a -—a) (7.1.10) .

\=r

.where k° denotes the polar of the norm k, k (x—a;) is differentiable at x = a, for all i= r and
Vk(ar—a,) denotes the gradient of k(x) evaluated at x 1 ay—aj (or alternatlvely, the gradient '.
of fi{x) = l{(x al) evaluated at x = a,) for all i=r. The above result derwes from the fact that
the directxpnal derivative W' (a, ;¥) must be greater than or equal to zero for all unit vector
directions y, when x = a; is an optimal solption.' (For further discussion, see tlle derivation of
fixed point optimality criteria for the mixed-norm problem in Chapter 6.) Since W is a convex
function of x, the requirement, W' (a‘,,;‘ y) 2 0,V y, is both a necessary and sufficient condition

" for optimality at a, (Property 2.4.1). Asa comparison, note that Wg' (a.:y) = +oo, v y,,il".‘
0<K.,<1 (equatioll (7.1.6)). Bllt since Wg(x) ls not convex, we can only conclude that a is a
local minilnunl.

The fixed‘ point optimality eriterion in .(‘7..1.10) for the .';tlalndard- mini;um pt.'oblem.
shows that if the weight w, is sufficiently large relative to the weights and geometry of the
other fixed points, then X* = a,. In fal:t, by the majorlty theorem of Witzgall (1964), a, is

’aﬁanteed tobe an optimal solution if —~

: However the optimality cntermn in (7.1 0) is often satisfied in practiée at'a much lower

MIH

value of w;, as seen in the examples given by Juel and Lov;e (1381).

Consider once ég;m the mixed-power model (T.l) inwhichK; 21 for all i, with at
least one of lhese ‘inequalitit\es;eltisﬁt.ad stricﬂy.‘ Furthermore, assume thﬁt J={i|lK;= 1} isa
non-empty set, Then, optimality criteria at the fixed points a,, where r € J, can be derivedina

similar manner as for the standard minisum problerh. First we calculate the directional
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derivative of Wg at a, in the direction ¥. :
_ Wi ;y) = Zwih'i(ar—ai;wark(y) ' ' \

i=r

| K-l
= yT.[ZwiKi[k(ar'—ai)]l Vk(a_—a,)
izr

where equation (2.4.6) is used in the frst 'step, and we assume that k (x—a;) is differentiable

fw k), (7.1.11) -

at x = a,,Vi=r, and use equation (2.4.11) in the second step. A necessary condition for an

optimal solution to occur at a, is that Wg' (a,; y) = 0 for all directions y. 'Lett;ing
. L Y .

K =1 .
v, =W, Ki [k(ar—ai)] Yo Wiz s ‘ . o (1.1.12)
we see that this implies
' yT-[ > Vin(ti'r—ai)] +w k@) =0, Yy,
7 i=r : - o
or ] o
—yT [ Z {rin(ar—ai)] ) . (7.1.13)

w > izr . Yy .

r k(y)

Substituting z'= “- Y, gnd noting that k(—z) = k(z), we can rewrite (7.1.13) as

lzT? [Zvin(ar—-ai)
w, = max [ 1T ' ‘ ]

z k(2 . ' "~ (1.1.14)

= k[ 2 Vivk(ar._af)J ’
i®mr 3
by definition of the polar. Since Wg isa convex function of x when all the K; = 1, it follows
that (7.1.14) is both a necessary and sufficient condition for an optimal solution to occur at ar,
foranyre€d. Comparing' (7.1.14) with (7.1.10), it is interesting to note that the optimality
criterion at any fixed point a,, r € J, corresponds to the one for the standard minisum pfobIem_
with adjusted weights v; used in place of the w; for i = r.

“Thus far we observed that a, is a local minimum of Wg if 0 < K, < 1, and

that the criterion (7;1.{4) can be used to test for the optimaligywof ar when K, =1, If



. Kj=1,Vi, then this criterion is both a necessary and sufficient condition for a global
minimur;l at a,. Howevef, if any of the K; are in the interval (0,1), then (7.1.14) is a nécessary
" condition but not a sﬁfficient one, since Wg is no longer a convex function of x, To complete
this topie, consider now a fixed poirit a, with K, > l.. We prove below that the directional

PR

derivative W¢' (a,; y) is independe’nt of the weight w; in this case. Thus, the optimality
criterion at a, (Wg' (2, ; y) = 0 for all y) is unaffected by any increase in w.. We conclude that
fixed point optimality criteria are not relevant at any destinations a, with power K, > 1,

Tex

Property 7.1.5

Consider model (7.1) where K, > 1 for some r €{1,.., n}. 'Then the directional -

derivative of W evaluated at the fixed point a, in any direction y is independent of the weight

Wr.
Proof: _
- ' W'G(ar 1y) = z W, Irx’i(al_—ai i)+ W h'r(O  y). ‘
. 1¥r ) -
Buth’,(0; y) = 0, by equation (2.4.12) with t = Ky > 1 and h(x) = h(x). Thus
Wisla,;y) = D wh'ita ~a;y), (7.1.15)
i=r .
which is independent of W . -

In general, a direction y can be found such that Wiglar;y) < 0in (7.1.15). As an

example, assume that k(x —a;) is differentiable at x = apforalli = r. Then (7.1;15) becomes
N | |
Wi y) =y [z vin(ar--ai)], .
i=r ]

where v; is defined in(7.1.12), But
Z v, Vk(e_—a)=VW_(a), | - @118
izr . .

where

263
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. ) Ki ) .
We =2 wlkix—a)l ', | (7.1.17)
i=r ‘ o
and thus, ‘
Wiy =y"- VW, @), K>1. (7.1.18)

_- Except for the special case where VWg,(a,) = 0, we can choose y to be the steepest descent

direction; i.e.,

SRR Y AT | (1.1.19)

so that
| w' @Y= = [VW, @)l <0 . ' @, 1.20)

It follofs that the fixed point a,, with’ Ky > 1, is never an optlmal solution, except for very
" special chou:es of the we1ghts and geometry of the other destinations. -

In Chapter 5 we showed that any optimal squtlon of the Weber problem in R2 must
lie in the convex hull of the fixed points, when the chstance function is a round norm
(Property 5.1.4)." We also showed that this result holds in RN when the Euclidean norm is
used (Property 5.1.5), Surprisit1gly enough these lotaliiatidn restﬂts extend to a general class
of minisum problems, pf which 'mode_l_ (7.1)is é Spec;iﬁc case. The key observation here is that

an optimal solution of the general problem also solves a related Weber problem.

Theorem 7.1.1
Consider the following minisum model,
minimize W (x) z w, g, (k(x_a )) (7.1.21)
. i=1

where gi(u) is an increasing dlﬁ'ergntlable function of u in the interval [0, #ﬁ), i=1,.,n
and k is a round norm on R2. Then anj optimal solution must lie in the convex hull of the

- fixed points.
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Proof:
Let x* denote an optima] solution. If x* is a fixed point, it i3 automatically within

the convex hull. Therefm_'g, we only need to consider the case, x* # a;,i = 1, ..., n. | o *
Hkisa nondi-.fferentiable round norm, the objective function W; may not be |

differentiable at x*. Hence, in order not to lose generality, we need to consider the directional 7

derivative, W'y (x*; y). The necessary condition for a local minimum must be satisfied at x*;

le, _
. Pl . .
min W)= 0. (7.1.22)
o y
Using equation (2.4.9), we see that
Wi =3 we (e DK 2,3 3), . P
i=1 _ _
where g'i(u) = dgij(u)/du,i =1, ..., n. Now let C // 7
v, = Wig'i GGx*-a), i=1,..,n. : (7.1.24)
* Since the gi are increasing functions, then g';(k(x* ;ai)) > Oforalli; sothat
v, >0, i=1,.,n. : (7.1.25)
Combining (7.1.22), (7.1.23) and (7.1.24), it folYows that
o : . o
Z v kK'(x*—a_:y) | 20. 7 (7.1.26) l
i 7 : T
y i=1 i .
Consider the following Weber problem,
' s . . n . .
miziimize'"W(x) =Y vkx—a), ' (1127
ﬁﬁl ‘ i=1 T

where the v; are ad]usted positive weights defined in (7.1.24). By the mequahty (7 1 26), we
conclude that x* is also an optimal solution of this related problem But all optxmal solutions -
of (7.1.27) must lie in the convex hull of the fixed points, by Property 5.1.4. Hence,

A
x* ¢ c.hfay,... a,,}, endmg the proof.

PETA
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In model (7.1}, gi(u) = u™i with K; > 0,i=1,..,n. Since these are increasing,
differentiable functions of u in the interval [0, + ), we- immediately obtain the following
result.

Corollary 7.1.1 - ' I

Let k be a round norm on R2 in model (7.1). Then all optimal solutions must lie in
" the convex hull of the fixed points.

The preceding theorem and its corollary apply in N-dintensional space when k is
the Euclidean norm, as shown next.

- Theorem 7.1.2 a

" Consider the fo]lowing minisum model,

minimize W () = Z Wi gt -a)\ (1128

i=1
where g;(u) is an mcreasmg dxﬂ'ere'xtxable function of uhify the interval [0, +OO] i= i,.

and 82 is the Eu..hdean norm on RN, Then any optimal solutmn must lie in the convex hull of

the fixed pomt:s.

Proof:

As in the preceding theorem, we only need to consider the case x* = aj,i=1,.
.——/ ~
The directional denvatwe of Wg at x* can be calculated, with the proof proceedmg in a similar’

manner as before However, since the Euclidean norm is a differentiable round norm .
(Property 2.2. 4), it Tollows that Wy is dlﬁ'erentlable at x*, and we can use instead the ﬁrs‘ |

.‘order necessary cc.ndltlon, .
VWs(x‘) =0. . - (7.1.29)

But
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VW& = 3 v Ve xv~a), (7..1.30)

i=1

where the v; are ad_]usted positive weights defined in (7.1.24) -‘th k = &y Thus

n _
Z v, ve (x"'—a.) =0, : ' ' (7.1.31)
i=1

It follows that x* is also an optimal solution of the related Weber problem, -

et . n P Y ‘ .
minimize Wix) = 3 v, €,x—a). =
i=1
'Therefore by Pmperty5 1.5,x* € c.h. {al, e a..,}
The next result is immediately obvious. .
Corollary 7.1.2
| ‘Let k be the Euclidean norm on %N in model {7.1) (or alternatwely, = 2 in model

(7.2)). Then all optimal solutions must liein the convex hull of the fixed points.

The preceding local:zati%n the?rems require t'hat the g; be increasing differentiable
functions. This is not restrictive in a practical senée, since wé normally expect costs to
increase with distance travelied ‘and any function can always be approximated by a
dlﬁ‘erentlable one to the degree of accuracy desired. It is also mterestmg to note that the
objective functmn (Wg) does not have to be a convex functmn of x since the g; are not restrlcted
in this max‘l\ner and yet all optlmal solutions wﬂl be in the convex hull. We can go one step-

further, using the same reasoning as in the theorems, to obgerve'that all local minima of W

lie in the convex hull,

7.2 Applications with ﬂle {p Norm .
In this section, we mvestlgate the mixed-power problem (7.2), where k is now the fp

norm. Lc;ttmg K pls,, 8; >0, 1 = 1,...,n, model (7.2) can be rewritten in t,he form,
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. ‘. n s/
minimize W(x) = ‘21 wi'[w
= yw e (x_a, (7.2.1)
i=1
where .
’ .- . 1 ‘
N .- .
«8 (x-ai) = [Zl lxj—a ]PJ "" s>0, C (7.2.2)
j= .

isadistance f'unctlon on RN ﬁrst introduced by Love and Morris (1972 1979) for N =

We initially calgulate the first and second-order partial derivatives of the s

function, smce these will be requ1red in the subsequent analysis. Using standard caleulus, we.

“obtain. after some re- -arranging the f‘ollowmg results at points x where the derwatwes are

i

defined:
r. v oo
. pll-3) :
-— . . . . (7.2.3)
-_— 8, s p—1 . .
o fp,g("} = [C_’P(x)] sxgn(xj)]le , i=1,.,N;
2 pH1—25) ) . .
= s -2 p, P » (7.2.4)
; fp's(x) = [t‘pfx)] g lle ._(p l)ffp(x)] + s(1_--.-5)lxj| }
i : - ‘
o J"—‘-‘l.---.lN;
and _ _
0 T pl1-29) ' . s
~(7.2.5)

2 gy s : . p=1;_ |p-1
x o, fp's(x) —-""s?‘ (1 —-s)[n‘.’p(x)] 51gn('xj) sign(x, ) xj[ | x P77,

»

hk=1,.,N, jak.
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From Property 2.3.5, it follows that £, ;5 isa strictly con.vex function of x whenp > 1
andp/s > 1 (p—s > 0). However, ii: P=1land1/s > 1, then £1,5(x) is convex but not strlctly s0,
by Property 2.3.6. It is m‘;tructwe to venfy these results using the Hessxan matrix of second-
order derivatives given in (7.2, 4) and (7 2.5). This is'done below for the tw0-d1mensxonal case
(N 2), thereby extending the convexlty proof of El-Shaieb (1978 'I‘heorem Dforp=2to"

general values ofp = 1

We consider first the second-order derivatives a2¢, s(x)/ax;2. From (7.2.4), it follows

.th.at v .
& |
= lM(x) = B(x)/t\ (x), \'*\
i . : -
where' _
| . Elf2
B(x)f fe (xF Ilep:-z . e
>0, 1ij=0, ’ | i%g)
» ~and L ' '
A6 = =D 1P+ 2 (1_g|x |?
_ P ] ]
N *p .
y = @-1 %P+ S-9)x|?
. t=1 T
, o p—s)
. p P
. =(p- l)z Ix P+ .|xj]
) ) : t=J .
> o, 1fx:t0 - . (7.2m
smcep s > 0. Hence, if p = 1'and p/s >"1 then '
———8 (x):%ﬁa i=1,.,N, - 2y

a.x2l-"v15

. The Hessxan matnx for N = 2 is gi%en by

L
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¢ [ 8522- Ep‘s(x) P pﬂ(X) =
1 12
H)x;p,9) = ) (‘7'-.2.9) |
&
_ ;x—;- € (x ) a—xE L’p'sfx)

where

- p I/s
| fp's (x| + |x, [ - _
The determinant of Hy, is readi obtained using (7.2.4) and (7.2.5). After a straightforward
computation, we get o " ' - .
o 9 . 2p‘(ll—s)
. p G ® 1 p-2 p~2
det(Hy) = Rl G I P L PR Lo

(/"DZ.IIO) -

For any x withx; = 0 and xg = 0, it follows that

W ‘ . detM) >0, ifp>1, (7.2.11) |

sincep—s > 0, and
(7.2.12)

det(Hz) =0, - ifp=1. .
From (7 2.8), (7.2.11) and the first-order dlfferentlablhty of £p 4(x) for all x
(Property 2.4.2), we conclude that £, is a strictly convex function ofxifp>1 and p/s > 1.
. However since det(Hg) = 0 if p= 1 it follows that ¢, s 1S convex but net in'a strxct sense, if
' lls > 1. Thus, Propertles 23 5and 2 3.6 are venﬁed by means of the Hess:an matrix f‘or the

case where kisthe €p normen R2

If ;{ >1 (and finite), and the Iocatmn problem isin R2, we can apply Corollary 7.1.1

to obtain the result that any optimal solution of model (7.2) must lie in the convexﬁ hulI of the

fixed points. Consider now the case where p p = 1 50 that the cost components contain

: rectangular distances raise apower Usmg (7.2.1 and (7. 2. 2), the model becomes

: minimize WG(x) z w, e (x—a) (7.2.13)
[ B . ' l R

where - ' c

b7 |
- 4 . 1
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UB . .
\ . (7.2.14)
, s>

N
7 _s(x) =1
‘ j=s1
We shall soon see that if s; = 1 (or Kj = 1) for all i with at least one of these inequalities
_satisfied strictly; then. any optimal solution must occur at one of a finiKe_nyber of
.intersecfion or fixed point locations,

The first and éecond-qrder partial derivatives of €, 5 are obtained directly from

(7.'2.3), (7.2§)Aand (7.2.5) with p=1 Thué, at peints x where the derivatives are defined we

have
. (1-5) .
3 1 . . " ' (7.2.15)
: ; 81'5():) = ; [Cl(x)] sxgn(xj) , i=1.., N,
J
( | {1-25) .
S o, \ (7.2.16)
— ¢ (x) = goen 0 j=1,.,N;
asz _ 1s g 1
and <
(  (1-2s) )
1- S sionte)si . (7.2.17)
aijXk fl's(x) = E [8 (x)] S1gn(xj) s:gn(xk) s |

ik=1,.,N, j=zk.
It 1s 1mportant. to note that the first partial derwatwe in (7.2.15) is undeﬁned on the
hyperplane X = 0, smce s:gn(x,) 1s undefined here. (An exception occurs atx =0 when s < 1
in which case 3¢, s(0ax; = 0. ) Hence, higher-order derivatives in w}uch d8/3x; appears at least
Q'.

Lace are also undeﬁned on the hyperplane Xy = 0

We are now ready to prove the following useful result.
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Property 7.2.1
Congider the minisum problem given in (7:2.13), whére the €15, are distance
funetions on RN, Ifs; = 1forall i withat least one of these inequalities satisfied strictiy, then

any optimal solution must oceyr at an intersection point or a fixed point.

Proof:
Suppose that a local minimum occurs at an xo = (x19, ..., xN9)T which is r,':'ot an

intersection point or a fixed point. Then one or more indicesr ¢ {4. ..., N} exist such thaf;

x° 2 a i=1..n. . I 1(7.2.18)
r ir ? LALEF R L3N . o

Hence, the objective function Wy is infinitely differentiable in the x, direction at X0, and .

furfhermbré using (7.2.16),

e . (1-?.si)
: i - {1-s) ,
—W.x% = W, [€(x°-a) !
r“\‘ . 83:12_ ¢ , i=1 ' si2. ! '
<0 . (7.2.19)

since s; 2 1, Vi, with at least one s; >°1. This implies that Wg is strictly concave in the x,
direction at x¢, which contradicts the supposition that %o ig a local minimum. We conclude
- that all local minima of We must oceur at an intersection point or fixed point, and hence.éky

global solution occurs here as well.
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N = 2. If in addition these funections are strictly concave, the authors show that the optimal

.

solutions can only occur at the fixed points and the mtersectmn points contamed in the convex
hulI of the fixed points.

Suppose now that 0<p<1l,s0 that the objective functxon in (7.2, 1) 1s a weighted
sum of hyper-rectllmear distances raised to dlﬂ‘erent powers. Juel and Love (1985) prove that
for the. standard Weber problem with hyper-rectilinear distances, an optirnal solution always
occurs at an intersection or fixed point. They also show that.the optlmal location may not lie
within the convex hull of thd exi ting fac111t1es even when N = 2. We extend this inter-
section point property to the mixed-power problem, for a certain range of values of the‘

parameters 8i. The proof'is analogous to the one for Property 7.2.1,

Property 7.2.2 : f
Consider the minisum problem in (7.2.1), where the €p s, are distance functions on
RN If0 <p <1, and $i = p for all i, with at least one of the s; > p, then any optimal'solution

must coincide with an intersection point or a fixed point:

Proof: . '
Suppose that a local minimum oceurs at | an xo = (x9, ., ,xNOJT which is not an
‘ mtersectmn pomt or a fixed pomt Then X0 ag,i= 1 . n, for at least oner € {1, .. N}. it

follows that Wg i is infinitely differentiable at x¢ in the x, direction,_anéi usin‘g (7.2.4) and

B ~ . ~
(.27, ~ Fal
' M1-2s) ' ‘
oy, ) 8 . o
R i o P=2, .o - (7.2.20)
ax W) = 21 s Ef X "ai)] o - Ape®~a),
1= 1
- where ' ) _ : A
n
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*
' (p—s)
' A (x-a) (p— l)z[x —alp [x -a |P
ter
p—s) ”y '
=Tt e
X -
v = 0, i=1,., N (s Zp). (7.2.21)

Since one or more of*the 8i > p, there exists at, least one qc€ {1 . N} suchthat Ad,(xo —a4) < 0.

It follows that

2 :
(7.2.22)

' (x%) < 0,
ax2 ,G

and using the same reasoning as in the preceding property, we conclude that any optimal
solution occurs at an intersectiop point or fixed point.

© Ifsi=p,i=1,..,n, we return to the standard Weber.problem. Note that in this

case,
Air(xo"‘ai) = (P— 1) Z.]X:—-aitlp ’ i =\1 1oy I, (7.2.23)
tzr. i

' For P <1, we have A{,(xo—'ai) < Oforalli. Furthermore, except for the trivial problem where
the fixed points all lie on a stifa%ght line parallel to the x,-axis, there must bé again at least

one q € {1, ..., n} such that Aqr(xO—aq) < 0. Hence, (7.2.22) applies here as well, and {ve

-conclude the followmg important result,

"Property 7.2.3

Ifsi=p,Vi,0< P < 1, and the a; do not all lie on a straight line par,gllel to one of

the axes, then any optlmal solution of the minisum problem in (7.2. 1) coincides w1th an

intersection point or fixed point. : ‘ -

»

/
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Juel am;l Love (1985, Property 3) show that an optimal location for the preceding

problem can always be found atan mtersectmn or fixed point. Property 7.2.3 glves a stronger ™\

result; we see now thatan optxmal solution canno"t exist elsewhere,

. -

e

i, a
. . . u‘t‘i‘
- -

--——-—.———“-‘-—-“' 2 -



P APPENDIX A

(To be read in conjunction with Property 3.2.4)

\

) Property A.l N |
Let

2Hp) + Hip) i A
- . Hp) + H'(p) o -
where H(p) is defined in equation (3.2.16), with f; and fy denoting positive constants. Then

Gp) =

;-":"‘—?G(p) isa decreﬁsing function of p in the interval (0, +),

| Proof:
To prove that G(p) is a decreasing function of p € (O,.+ o0), .it _suﬁ'icés_ to show that

Gp) <o Rewriting (A.1) in the form,

- H2
Glp) =1+ — 5 ,
. H*+ H'
we obtain using standard calculus,
| SHH' H?
G'(p) = 2 -3 5" {2HH' + H"
H'+H' @+ H)P?
HEV-WHT \ (A.2)
@+ HY " | -
Since f; and fg are both positive constants, it immediately follows from (3.2.16) that
Hp)'< 0, ¥ p &, +o). (A.3)
'Thus, G'(p) < 0if, and'only if, ‘
' ' ' A4
2H-HH > 0 4 (a4

276
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Without loss in generality, assume that f; = f;. Réturning to equat:ién {3.2.16), we

have

1] 1 ! W /P

“Hpp) = > tn + tn .

p° 11+0uf 1+uf 1+uPf 1+uP/|

where '
N\_ :
_ 0<u\—f2/flsl.
Letting
_ dlp):=1+uP,

and noting that

¢'p) = v’ tnu, '
) equation (A.5) can be written as

' : tno 1
. H=o—4+=¢.
o p2 ; pd
Again using standard calculﬁs, we obtfin
2nd ‘2 1
H'=—~52 20° @¥+——w.
PP <b pd’
and
. 6tng 6 ; 3
H = - 4+3¢+ (cp) 2 ¥ -

PP _pfb Pd

j‘ - 3 t o 2 ‘03 1 1

-__“'Q(b+—(¢)+—¢ .
pd? po’ pd

(A5)

(A.6)
(A7)

(A.8)

(A.9)

_. (A.10)

(A.11)

» . .
Wlth equatlons (A.10) and (A.11), ﬁxe left-hand side -of (A.4) becomes after some

‘ sxmphﬁcatmn and re-arranging:

| .
2HYPEHE = Y S,
Ci=1

where” - . , Al

(A.12)



5 '26 " 5 13 '
_ " n¢+5¢ encp+ @' _54'¢

8 = = ,
17 pia? i pi®  pl?
S _ (¢l)2¢n 2(¢N)2
2 . | p2¢37 p2¢’2 ’
S = 3¢'d"tnd’  203°eny
3 p%? . 23¢3 ’ |
‘HJ " ) é . R
S4=_¢:)2+¢a€n¢’ -
' and PP P
200 gY  4¢ 2(p"°
° s, = (nscb 4 en¢+ ®"

P p’d  ple?
Recalling equations (A.7) and (A.8), and also noting that

&' = uP(en g ) " = uPlen w®,
we can rewrite the 5; in terms of p and the constant u as fo]lows:
| - 5uf A+uPen(l+uP(Enu)® - - 4
. 8 =3 - . —uP(enu)
p°l+uf)” L p ~
. J et o
P (enw* @ +uP)
S, = T 3
pA+uP® .
s o Aol +uPen w3 +uh)
(6 / Pt +uPy? ’
P @nu)® (1 +uP) €l +uP)
) S4 = Y ~uPfnu + ‘ '
p+ud) p
and ' . ,
g -
2 [en(l+uP) uPénu
‘ 85 = = — -
1) P

: 1+uP

278

ST

-

7

" (A.13b)

-

(A.13c)

N (A13d)

4

(A.13e)
(A.14)

(A.152)
(A.15h)

1

(A.150)

' (A.15d)

(A.15e)

Sincé 0 < u < 1 from relation (A.6), therefore ¢nu < 0 and ¢n(1+uP) > 0. Henée; it

isreadily seen that,- '

L~
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520, j=1,23, | | (A.16a)
S,<0,  (A.16h)
and o o A16
55>0 - (A.16¢c)
"In order to prove that
. B s >0, ' L]
. i=1"i
it is thus sufficient to show that '
¥ s =0.
. i=1"7i .
After a series of straightforward algebraic steps, we obtain
+ . 1 , )
S,+8,+8, = —3——~b-3- [p u™P(en w* — @ —uP) (n u)® en(1 +uP)) . (A.17)
) p 1 +uf)- ’ H ’ ‘
' Then, using the inequality,- ’ i . e ’
C x> f(l+x), Vx>0, '

and deleting non-negative terms, it follows that

uP (en w)® en(l +uP)
S, +8,+ 5, = — . -
: p (1 +ufy : \
wPEnu)? ' (A.18)
= = :
1 +uP? _
Combiqing'(é.lsa) and (A.18), we now see that _ v
L : - . T ,
- 5d . S = 5ePen(1 +uPienu)? 4u®(fnu)®
.y = plt +uf? p’(1 +uP?
gRTm | - o oAl9
‘ B a 0 . . . .

Combining (A.16¢) and (A.19) gives
¥ s >o0.
o i=1"i -
Thus, the inequality (A.4) is satisfied, ending the proof.
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