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CHAPTER 1
INTRODUCTION ’ ) .

1.1 Europium Chalcogenides

In recent years a great deal of research has been
carried out on the rare earth metals and their compounds.
These materials have large spin which gives rise to
fascinéting mégnetic'properties. We are particularly
.interested in the europium éhalcogenide series consisting
of europium oxide Eu0, .europium sulfide EuS, europium
selenide EuSe and europium telluride FuTe. fhese materials
are very simple in both crystal and magnetic structure,..
and are ideal for experimental and theoretical studiés.

All of them have %he NaCl crystal structure as in Fig. 1.1.

The mabnetic character of the europium chdlcogeniae
-crystals iquue to the divalent europium (E*") ion which

6,.10, 2, 6

has the electron configuration 1322522p63523p 3d""4s"4p

4d105525p64f7. From Hund's rule the seven 4f electrons

have their spins parqllel, and accordingly thé multiplet of
lowest energy has L=0, S = % and J = %. The spiﬁs on the
europium atom sites are parqllei inlEuO, Eus and EuSe; and —
these maﬁerials are ferromagnetic in character. . The

direction of magnetization with respect to the crystal axes.

A
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A cubic unit cell of europium chalcogenide.
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is determined by the magnetocrystalline anisotropy, which
has its origin in the crystalline electric field acting
at thg Eu sites. Thus there is a preferred direction for
the magnetization in each crystal, but it need not be the
same for different members of thé chalcogenide series. On
_the other hand EuTe is antiferromagnetic, the spins being
parallel in planes perpendicular to the [111] direction and
the spin di%ections alternating from one (111) plane of
magnetic ions to the next. The preferred orientation of

the spins in a particdlar (111) plane depends on a

relatively weak anisotropy energy in this plane.

1.2 Previous Works on Magnetocelastic Interactions

The phenomenon of 'magnetostriction‘, which déscribes
the elastic deformation of a magnetic substance under an
applied magnetic field, has been known for many years (see,
for example, Bozorth, 1951, and references therein). But

it was not until 1958 that the phenomenological study of
'magnetoelastic interactions' began with the independent
works of Kittel (1958) and Akhiezer et al. (1958). They
described the magnetoelastic interactiqns as a coupling of

the elastic strains with the magnetic spins. The 'finite

.

strain theory' for a magnetoelastic system was 1ater§

developed through the works of Téuéin (1956) , Tiersten

—————ban oo e



(1964) and Brown (1964,1965,1966). 1In contrast to the
smali gstrain theory of KittHlel et al. in this theory the-
total angular momentum (sgﬁn plus‘lattice) of the combined
magnetic and elastic. systems is conserved, i.e., the
Hamiltonian of the combined system is rotationally
invariant. Easéman (£966) experimentally measured the
magnetoelastic ;ffects in yttrium iron garnet (YIG), and
he was able to interpret the results using the finite
strain‘thgory.N The measurement of the change in elastic
constants of MnF2 as a function of an applied magnetic ~
field by Melcher (1970) also éemonstrated the validity of
the finite strain theory for an antiferromagnet. The
rotationally-invariant theory of magnetoelastic
interactions in the heavy rare earth metals was developed
by Southern and Goodings (1973) and they predicted the
fractional change in elastic constants for Gd, Tb, Dy, Ho,
and Er -in both the fefromagnétié‘and antiferromagnetic
regions. The subsequent measurements, of the dependence
of certéin elastic’constants as a function of applied
magnetic field for single crystal Tb in the paramagnetic
region, by Salama et al. (1973) were in reasonably good
agreemeﬁt with the predictions‘of équthern and Goodings.
The theory for ferromagnetic cryséals of cubic symmetry
has been formulatéd by Southern (1973,1973a) and He'ﬁgs
predicted the change in elastic tonstants ‘as a function of
applied magnetic field for éeveral rare earth iron cubic

.

Laves phase compounds.

’ .
)
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1.3 Scope of the Thesis

e <

1y

In the present work we describe the theory of
magnetoelastic interactions for a ferromagnetic cubic
crystal and apply it to the europium chalcogenides to
calculate the ch@pge in elastic constants as a function of
the applied\fiiiﬁkic field. In Chapter 2 we gegin by
discussing a simple‘Hamiltonian fér a magnetic system,
whichfconsists of the Heisenberg exchange term and the
interaction of the spins with an applied magnetic field.
The spin waves, which are the low-lying excited states of
the magnetic system, are briefly discussed. The crystal
field éerms for cubic sfmmetry are then introduced and the

magnetocrystalline anisotropy is described, the anisotropy

constants being expressed in terms of the crystal field

parameters.
\ o In Chapter 3.@éﬁdescribe the elastic s&stem. The
‘*%inite stréin'ﬁheory' ind 'small straiﬁ theory" fbr the
elastic deformation of a medium are aiscuséed briefly.
"'Then we write down the elastic Hamiltonian of a cryséal
~ ~havirg-cubic symmetry. o
In Cbgpte;'4 we consider the coupling between the
magnetic and ;Iééﬁic systéﬁs, The magnetoelastic coupling
Hamiltonian for .single ion @nteractioné in a cubic .
ferromagnét;c crystal can be written in'ferms Bf
magnetoelastic constants, symmetry strains and tensor'
. . '};

6
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éberators of the spins. The total Hamiltonian of a.
magnetoelastic system is the combination of magnetic,
elastic and magnetoeléstic coupling'Hamiltonians. We
discuss also the magfetostriction, the relation between
the magnetostriction consﬁants and the magnetoelastic
constants, and Ehé\magg;toelastic modes that result from
the presence of the magnetoe@astic coupling. From these
coupled modes one can oﬂbain/kn expression for the
effective elastic constant of a cubic crystal as a function
of the applied magdet&c fieé;.

In Chapter 5 we apply thehtheory to the europium
chalcogenide séries. We tabulate their basic magnetic
data, and experimental values of aniébtropy constants and
magnetostriction coefficients. From these values the
crystal field'parametegg‘and the magnetoelastic constants

for EuO are estimated. Finally we compute the change in

various elastic constants of EuO as a function of magnetic

—_
field, when the magnetic field is applied along.different\\\\\»i

-symmetry directions. The results are then comjarequyith

similar calculations for the rare earth iron cubic Laves

compounds.



CHAPTER 2

THE MAGNETIC SYSTEM

All magnetic substances have magnetic moments
associated with each individual atom. The magnetic moment
of a free atom comes from the total spin of its electrons
and their total orbital angular momentum about the
nucleus. Since the magnetic moment of the nucleus 1is
approximately lO-3 times smaller than the magnetic moment
due to the electrons, then it can usually be néélected.
"The magnetic moment associated with total orbital angular
momentum L is (in the MKS system) :

(2.1]

and that associated with total spin angular momentum $ is

My

~ _ _ _ eh
[2.2] Ug-— 22—1’5;

The quantity vp = is called the Bohr magneton. 1In

en_
2m
terms of the total angular momentum 3 the magnetic moment
is given by

-

[2.3] b= - gugd



where

J(J+1¥*+ S(S+1) - L{(L+1)

[2.4] g =1+ 553+ 1)

is the Lande g-factor.

The magnetization M is defined as thg magnetic
moment per unit volume. When an external magnetic field
is applied on a magnetic substance magnetic moments
corresponding to individual atoms tend to align (hemselves
in the direction of the applied field, and a.resultant
magnetization occurs. As the external field increases the
magnetization increases upto a saturation point due to the
alignment of domains. .In the case of ferromagnets a
spontaneous magnetization can exist in the absence of any
externai magnetic field.

Within a single domain the magnetization dec;easés
as the temperaturé increases, and eventually goes to iero
at the curie temperature T,- '

In compounds of the rare earth elements the

interactions between magnetic moments are well described

by the Heisenberg Hamiltonian:

[2.5]) v =- 3% J3.5.-5. . ' S



r
Here 5; represents the total angular momentum of the ith

atom,; and the exchange integral Jij depends on the relative
1
positions of the atoms. Specially for our wdgks in

13
europium compounds, since europium atom has zero orbital

>

angular momentum, Si represents the total ocalized spin

of the ith atom.

P

2.1 Spin Waves

In the ground state, for ferromagnets, all spins
are parallel, and have the maximum allowable value for the
spin component in the direction of magnetization. The
low-lying excited states are given by the linear\ﬁpmbination
of ferromagnetic states, each with a single spin flipped
and modulating these by a phase factor. Such an
excitation is called a spin wave or, when guantized, a
magnon.

When viewed in a semiclassical way, which allows
simple pictorial interpretations, as in Fig. 2.1, the
low-lying  elementary excitations consist of the spins
precessing‘gbout the direction of magnetization. Due to
interactio;; the successive spins advance in phase by a
constagt angle. The wavelike form of elemehtary excitations
is referred to as a spin wave.

In the presence of an applied magnetic field, H,

the energy of interaction with this field is - G'ﬁ, where

.

T ar ATl e



10

A A A

L

Fig. 2.1l(a) Ground state of ferromagnets.
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'"Fig. 2.1(b) Precession of the spins in phase.

1

G-0..QA-O D

Fig. 2.1(c) Wavelike form of the precession of spins

) <« /
when viewed from above. —
. -
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the magnetic moment is given by

) > ->
i ~
Therefore, the Hamiltonian of the magnetic system, in the"

presence of the field ﬁ, is -
(2.7 ¥ =- 1 J..5.-5. + guBﬁ.z S
i<j i

When a spin wave is created, involving the reversal of one
unit of spin, amladditional energy gugH must be supplied,

and hence this introduces an energy gap in the spin wave

. spectrum.

t

In additiop to an applied magnetic field theré may
also exist an effective 'anisotropy field', ﬁA' which may
arise from crystalline electric fields or from dipole-
dipole interactions. Although not strictly speaking a
magnetic field} the anisotropy energy can often be o

represented. by an effective field ﬁA which also introduces

a gap in the spin wave spectrum. We will discuss the
'anisotrop& energy' in the next section.

The standard theory of spin waves (see, for
example, Kittel, 1971) yields the following result for the
energy of a spin wave offwavevecﬁor a (for a ferromagnetic

cubic lattice with nearest neighbor interactions):

A e A,
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[2.8] - E> = E, + gugH + 23S[2 = I cos(3-8)]
q 0 B . S
Here EO is the ground state energy,

J 1s the nearest neighbor ex%hange integral Jij’

S is the magnitude of spin component in the
direction of magnetization,

Z 1is the number of nearest neighhors, and

!

3 is a nearest neighbor vector.
., .

At.small q (long wavelength) the excitation energy is

{(ga << 1, where a is the lattice constant):
n guBH + 2JSa2q2

As g goes3to zZero excitation\inergy go to a constant “alue
guBH. Due to the presence of\any anisotropy energy there

may be an additional constant term.with guBH. The excited

low frequency spin waves give the spin wave resonance. /

A . 7
With certain applied fields g=0 spin waves are excited

and we get the spin wave resonance.
A

2.2 Magnetocrystalline Anisotropy Energy

-

Experimental measurements reveal that ferromagnetic

>
.

or ferrimagnetic single cryétals can be maénetized most

easily by an applied magnetic field in certain directions



A4

> ol
f/ 13

called easy direl;ions of magnetization Hence it follows

A

" that there is an energy in the ferromagnetic crystal which

favouré the magnetization lying along the easy directions.

~ \

This energy is called the magnetocrystalkkine aniiizfnpy
energy. This anisotropy energy depends only 02/;

“

direction of magnetization. For a saturated crystal the L

anisotropy energy density may be formally written as.

[2.9] F

biai + bijaiaj + bijk aiajak +

Here repgated indices denote summation, the a, are the
direction cosines of the magnetization with respect to the
crystal axes; bi‘ bij’ etc. are constant coefficients. One
cah expand E in ascending powers of oy in the hope that
higher Qrdér terms are small. -

For a cubic crystal if the magnetization makes
z . ﬂﬁ

Fad}

a8

" ///7 y

}E?&sa

X o o
. S

an angle © with the z-axis, ay = cos. Also if the
magnetization makes an ahgle m-6 with the Z»axis; then

because of the cubic symmetry the free energy must remain
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the same. However, because
[2.16] ay = cos(m-B8) = - cos® ,

therefore, all odd terms in a3~must vanish. Since in a
cubic crystal all the three axes x, y, 2z are equivalent,
therefore, odd terms in oy and a, must also vanish. Also
we know that

f

-2
[2.11] ay + as + o

Now expanding F in terms of o5 taking into consideration

the above symmetry requirements and algebraic relationsh;ps

we come to the form

'

_ 2 2 -2 2
[2.12] F = Ko + Kl(ala2 + a5y

where Kl and K2 are called the first and second anisotropy

constants. Putting

k} [2.13a] oy

= gsinfcosd
[2.13Db] ay = sinfsing
[2.13c] - cose

"oy



we get
(2.14] F = K, + K, sin®8 - L (7K, - K,)sin® {
/// h - % (K1 + K2)sin48 cosdd - % K2 sin69
. + % K2 sin68 cosd¢

a

For hexagonal crystals the anisotropy energy is
found by a similar analysié to have the form .

0
_ . 2 .4 . 6
[2.15] F = KO + Kl sin”9 + K2 sin'6 + K3 sin ©

+ Ky sin68_c056¢ ,

where 8 is the angle between the magnetization and the

hexagonad x3—axis.
It is more convenient to .express the anisotropy

energy in terms of the (unnormalized) spherical harmonics,

Yom

[2.16] P = I k, V¥, ,

wﬁerg kxm are éalled’ahisotropy coefficients. We will

express them ‘in terms of anisotropy constants. ' We take .

the spherical harmonics as

-

—

SNt e e

A o oy e



[2.17]

where th

16

1
v - {(i—m)&jf
Lm (2+m} !

Y péml(cosﬁ)eim¢

’

e factor ,(—l)m is included for m > 0 ,

- and not included for m < 0.

In terms

crystals

(2.18]

the form

[2.19]

-~

of these Yom the anisotropy energy for cubic

has the form

_ 1 - 1 -
F = KO + 5% (21Kl + K2)Y00 - % (11Kl + K2)Y4O
1 y 1
- (11K, +-K,) [Y =Y . ]
1175 1 2) Wag * g7 Y444
2 > 2v7 > 1
* 337 Ko¥eo ~ 33T Ko l¥gq * 10T Y6, -4!

For hexagonal crystals the anisotropy energy has

_ 2 . o
F = KO + 105 (351(l + 28K2 + 24K3)YOO

2 -~
- 3T (7K, + 8K, + 8K3)Y

1 20

5 .

I
385

16 ~ 12
+ T?,/77 KylWee + 127 Y6,-6]

(11K, + 18K)Y¥, - 28 g vy

2 40 231 3760

-

——

e M bt e o

SV
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2.3 The Tensor Operators Ozm

Up to this pdint the expression for magnetocrystalline

anisotrépy is purely classical, depending on the direction of

L3

magnetization through the angles 0 and $ occuring in va' N
While it is possible to obtain the main results of this

thesis’ using classical mechanics, following Goodings and

Southern (1971) we have chosen to use the techniques of

g
quantum mechanics. This requires expressing the anisotropy

.energy in terms of the spin operators él at each site.

To obtain operator equivalents we follow Steven's

prescription (Stevéns, 1952; Hutchings, 1964). We first

write YQm in terms of cartésian\ggordinates X, Y, 2; then
- \' y

X, Y. 2 are replaced $y Sx’ Sy’ S, resgectively always

allowing for the noncoﬁmutation for Sx' S ., S_. This is

Y Z

done by replacing products of x, y. z by an expression
consisting of all the possible different orderings of the

corresponding operaﬁors‘sx, S S_ and divided by the total
1

y' Vz
number of such terms. The newly formed operator 'is written

in terms of the operators O tabulated by Buckmaster

Lm

(1962). These opefétors o] m have the same transformation

L

properties under rotations as those of ng.

In terms of the O, the anisotropy epergy for a |,

m
cubic cfystal has the form (Southern, 1973), \\

<y
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1
_ 50 - 10,2 -+
[2.20] F = B, ! [o4o(si) + (7): 044(q1”
1
N S . 2+
+ 55 Yolegy(s)) = (1) 064(Si)]

The O, are related to the operatofs 0 as follows:

‘m

. \+ — l - > ~
(2.21a] \.\‘Oﬁ.m =5 Oyt Oy \
1 - .
(2.21b] 0y = 5 (0, = 0, )

Bg and Bg are crystal field paramétqrs which are related

to the anisotropy>constants Ky and K, introduced in the

2
last section. Now combhining the exchange term, the Zeeman
term and the magnetocrystalline anisotropy eneréy we ¢an
write the Hamiltonian of a magnetic system for a cubic

3

crystal as:

(2.22] W = - igj Jijs“*i.s“’j + guB—ﬁ-)i; Ei '
| L
" BGT 1040(85) + (57 0fy(sp))
L
+ B : (00 (55) = (1)? 0F,(s)1.

In a similar way we get the Hamiltonian of a
magnetic system for a hexagonal crystal as (Goodiﬁés and

Sbuthern, 1971) ,



[2.23)

J.ell'ﬂ

z Ji.s:-+ +
iy i3 j
8% £ o, (s.) =+
2 L 0,0 (S,
1
8% £ o . (s.) +
6 60%5;

19
> ->
gugH+I s,
1
0 N
By 2 040(8))
1
;36"5(8 + 0 (s
6 ¢ [Og¢ ) 6-6

-,

///\\



CHAPTER 3

THE ELASTIC SYSTEM

We discuss the elastic deformation of a medium in
this chapter. The basic idea is that any elastic
deformation can be analyzed into a 'stretching' or an
'elongation' plus a rotation of the medium. In the finitg
strain theory the stretching is described by the finite
strain tensor Eij and the rotation is described by the

finite rotation tensor Rij' .

3.1 Finite Strain Tensor E

HV

We consider an elastic medium which experiences a
deformation. In the initiali or- undeformed state the
coordinates of a mass element Qith réspect to any
convenient rectangular cartesian reference frame are
.denoted by XU (w=1, 2, 3) as in Fig. 3.1. Similarly in
the final or deformed state, the coordinates of the same
mass ele%éht with respect to any other convenient reference
frame are noted by X, (=1, 2, 3). Also dXU goes to
dxu. The deformation of é point is described by the
relation\gfjthe coordinates of the same mass element in the

¥

20
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.Fig. 3.1 Deformation of a mass element.

21
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'

undeformed and deformed states. The relation may be

written as

[3.1lal xU = xu(xv)
or
[{3.1b] XU = Xu(xv)

Thé Xu are called the ﬁaterial or Lagrangian coordinates
and a material description uses these as fhe independent
variables. A spatial description uses the x, as
independent variables and these are referred to as spatial
or Eulerian coordinates. The deform;tiop may be described
using either method, but we will use the material
description since the undeformed state has certain known
symmetry properties.

After deformation the change in square of a length

in the medium is
dx dx,k - dX dXx .
S, uou
Since x ? xu(Xv),

X
£3.2] dx | = gy dX



-

Summation over v is implied here and 8xu/8xv is called the

“deformation gradient. Now the change in the square of the

length is
axx Bxk
[3.3] dxAdXA - dXAdX)\ = 'a—X—J -a—-i-\—)— dXUdXv - 6uvdXUdXV
9xX, IX
A A
= (xo— ==— - ¢ 1 dX, dX
SXU axv uv v

i
N
0

<
o)
~

=
Q
>

<

This defines the finite strain tensor as

QL

(zzk aik -9 v) :
uv“>

is a symmetric tensor which,

{3.4] E

0]

It is easily seen that E
1AV

because of its scalar-product form, doQ§ not depend on the

choice of reference frame employed for the deformed state.

We introduce the displacement

[3.5] ux = XA - XX .
Therefore,
su ax
A A ¢
{3.6a] = S.xg— — O
?Xu BXU HA
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or
ax Ju
) X
[3.6b] —_— = e +
axu axu uA
Putting this in Euv we get
9 ) ? 9 )
(3.7 B, 3 (a;v * aiu) + 3 ;:3\ aix
H 2 U v u v
Ve
. 1 81.1)\ Bux //
RN 2 BXH BXV /’

€ v is the symm§tric strain function of the usual small

strain theory. (The second term on the right hand side is
of second order in the displacement gradients and.is

neglected in the small strain theory.

3.2 Finite Rotation Tensor R

nv
We define a tensor Cuv - called Green's
deformation tensor as: . .
90Xy 3xy ({”
[3.8] C A T, S ] ) _ . ifj
T HV BXu BXV .

S

From the definition of the finite strain tensor we £ind,

[3.9] C = 2E + §
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Cuv is a measure of the strain. This is seen from the
expressions for the square of the distance between two
neighboring points before and after the deformation. The
square of the distance before the deformation is
(3.10] d 2 dx, dx
. 0 294
/
and that after the deformation is
{(3.11] as? = ax.ax, = oA % 4y ax
ATTA 3X  9X U v
. u v
= X dx
When E = 0, from Eg. [3.9], C.__ = & _ and ds® = ds?
MY ' A Y uv 0’

i.e., the neighborhood under consideration has undergone
atmost a rigid body dispiacemént an@ a rotation. Also from
Eg. [3.11], we see that Cuvdxudxv is positive def;nite. We
also see from the definition that Cuv is symmetric; it
therefore represents only 6 independent ﬁuantities instead
of 9 quantities represented by deformation gradients.

The symmetric matrix C

ne

form by an orthogonal transformation: We can write

-1

[3.12] ENY

C = CAG

San AN
' !
where SAu is an orthogonal matrix. Let the diagonal

-

can be brought to diagonal’

e wmmy 4 AR € e o e A Arrar o AR e e o -
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elements in this fépresenéafion be Cl' C2, C3; they are all
positive. Then the symmftrii te?sor with the same principal

axes but Yith elements C%, Cg, C% may be defined as the

tensor (Cz)ub' i.e., following

- ¢ 1,
[3.13) Cuv = SUACaShy

we can write

3 5
> -1
[3.14] (€®) 1y = SINChSry - .
Then we see that - ‘ N
b G d ad
-1 -1
[3.15] (€%) (€9, = S13C38xSextChSary
1 1
_.-13 5
= SUACA0an CarSary
| -l
= 5CaSav
oxr
L
[?-16] (c )UE(C )CV = Cuv .

We now define a tensor

AL aa e bR ax 2

PR
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L

where C 2 is defined in the principal axes in a manner
similar to the definition of C2. Ro%ated back to the

original coordinate system it is (C j)u\). We can easily see
~

using the definition of Cub in Eq. [3.8] that : E

"

&, —

[3.18] RUARYA = Cuy s

51

i.e., is an orthogonal matrix and describes a rigid

-RuA
body rotation of -the neighborhood under consideration.

Inverting thé?Eq. [3.17], we find,

[3.19] X = (C )uvRvA '

. |

which analyzes the deformation into a finite rotation
followed by a ‘finite strain. The three Euler angles
eguivalent to R, .plus the 6 components of C, are

together equivalent to the 9 components of Xy ue

-

3.3 Euv and Ruv inh 'Small Strain Theory

In small strain theory we write the displécement
[3.20] U, = Xy - XA .

The displacement gradient is : , p

\
A A iAW e

LIV

b i gt s
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[3.21) Uy T Xou 6k“ -
The uy 15 generally written as
1 1 _
(3.22] ul,j = 5 (ui,j + uj’l) + 5 (ul’j ujll)
= € + W,
1] 1]

We have already encountered the symmetric strain function
€197 Wji5 is the antisymmetric strain function and
_represents a rotation of the medium as a whole without any

deformation.

Now from Eq. [3.4], b

- 1 -
[3.23) E,y =3 05 %y - )
{ _
=L fu, s,y 8, ) =8 ] :
2 A,su A’ T A, AV Hv
_ 1 1
= 35 (uu'v + uv,u) + 5 ux,uux,v

_ 1
. ERTEY t 3 (EA + wlu)(ekv + wkv)
AN
R 1
= e, 7 (ExEay T Ea®au T Opfau T Oy
We also have the Eq. [3.9],
4 ‘ ) . {
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v "y v

Now if C is the diagonal matfi;/ih the principal axes,
7

/
we can wrilte

1 1
2 (1 + 2E) z

(3.24] C

where this expansion is carried out separately for each of

the diagonal elements of C 2. Then we make a rotation with
~
matrix R T
_1
13.25] R ic %r'= IR - R71ER + % (R 'eR) (R71ER) +
or
E
- - L -t

[3.26] (C )pv = Guv 5 (uu,v + uv,u) 5 uk,uuk,v

¥
3.1 1
t 37 (uu,a + ua,u)f(ua,v + uv,a) '

up to second order in displatement gradients.. Using the

definition of euv we can write

-1
2

_ _1 . 3
(3.27] (¢ )uv - 6uv €uv 7 Y, ua,v ) Cuafav

- v,
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Working through we find up to the second order in ’

displacement gradiénts

[3.28] RUK = 6UX + wAU - ux,veuv

3
t 3 Cuafar

In the first order approximation this leads to

(3.29] R, =26 + w

A HA Ay

This leads to the result in first order displacement

gradients as follows:

1
2. -
[3.30] (C )uv = Guv + Euv
and
5
[3.311 x>\’u = (C )uvRvA

= (6 + e )8, + W

Hv 13V Av)

= (8 + e ) (8 + w

vy Vi AV AV

i
o

+

AU EAU + W
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*

Therefore the displacement gradient

[3.32] UX,U = xA,u - 6Au = ¢

But, from the definition of Uy e we know that this is an
: 14

exact exgnessiOﬁTi'TﬁE;ZFQre, we may conclude that the two
/ .
eipxé%sions for C2 and R, when multiplied together, must

d

cancel in higher order terms.

3.4 The Hamiltonian of the Elastic System M _

We assume the elastic medium to be constrained so
that all 'antisymmetric strains' such as wij’ which
correspond to homogeneous rotations of the system, vanish.
The elastic energy He is then obtained in terms of the
symmetric strain components Exx' Eyy’ Ezz' Exy' Eyz‘and sz.
Following Callen and Ca&len (1965) we see that, under the’
crystal symmetry operations of the point group G, the six
strgin components transform into each other and thereby
generate a six-dimensional representation of G. This
(i:yepresentation is reducible. In particular, the quantity

E® = (E + E + Ezz) always transforms under the fully

XX YY
symmetric representation Fa of G. The remaining five-

dimensional representation is further reduced by the

-%—(E +E_+E_ )1, (E. -

linear combinations [EZ xx Eyy By “x Eyy 'y

Z

s

Y, E_,

i p i s
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| .
Eyz' Exz' In terms of these strain functions the energy

associated with the elastic medium is written, in a

general form, as

C e 1 ’
= 3 =
(3.33) k&e f j%j' 2 5

where ' labels the irreducible representation of order n

and i labels the basis functions (i =1, 2, ..., n). As

there may be more than one such set we distinguish them by
r

the superscripts j. The symmetry elastic constants ij

are linear combinations of the usual cartesian elastic

constants. (r\Q

For the case of cubic symmetry the elastic

Hamiltonian}{.e takes the form (see Southern, 1973a, 97 )

_ 1 Lo,L0,2 1y Y, 2 Y, 2
(3.34)] R, =5 C(EN" + 5 CI(E}])" + (E;) "]
1 ¢ €, 2 €, 2 £, 2
+ 5 C [(El) + (E2) + (E3) ] ’
where
o _ 1 k\
[3.35a] C” = §‘(Cll + 2Cl2)

Y = -

[3.35c] c = 4C44

£

rar

e e o L T AR
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[3.36a]

[3.36Db]

[3.36c]

[3.364]

[3.36e])

[3.36f]
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CHAPTER 4

MAGNETOELASTIC INTERACTIONS

The interactions between the magnetic moments on

atoms in crystals depend upon the jinteratomic spacings.
Therefore, the magnetic spin system is directly coupled to
the atomic displacements. This coupling of the magnetic

and eiastic systems is called the magne;oelastic coupling.
The total Hamiltonian of a magnetoe%astic system consists
of three parts - the magnetic Hamiltonian\{m, the elastic
Hamiltonian'}(,e and the magnetoelastic coupling “me' We

write the total Hamiltonian H as:

(4.1) © =H_+R_ +H

me -

4.1 The Magnetoelastic Coupling&{me

Tre b dtdmge e A

We have already discussed the: magnetic Hamiltonian
¥ and the elastic Hamiltopian]{e in previous chdpteri/ We
now discuss here the magnetoelastic coupling}{me. Following
Callen'and Callen (1965) this may be formed by taking

products of the symmetry Strains and spin operators which

transform according to the same irreducible representation

34 -

——-

-,
LN
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of the point group. 1Ih this way one can form an expression
which is invariant under all the symmetry operations of the
point group. The spin operators may involve spins on the
same atom or spins on different atoms. We consider here
only terms each of which consists of spin operators
belonging to a single ion. These single-ion magnetoeiastic
terms may be written as

; ' ~ ' .
e MEo- v s s el
where I' labels the irreducible representation and r labels
the basis functions for that irreducible representation.
s, s' label different sets of basis functions of I if it
occurs more than once. The number of independent
magnetoelastic coupling constants Mgés'sl is determined by
the particular point group. We have previously encountered

~

e
the symmetry strains Ei’s and the spin operators Or’s’S .

£m

For a cubid ferromagnetic crystal the single-ion

magnetoelastic coupling has the form (Southérn,'1973)

I _ I ,.
(4.31  W__ = ?tm (3)

JO.

I o TRV T DNy S S
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1
’ L U o T S - T 10,2 ~+

+

1
MY (RYS Yoy2 ot
M{E10,4(S5) + E5(2) 05 (540

“ 1
T _ 14,2 7+
1
Y, _ (24,2 _+
€€ .2 ¥ € , -
MZ{EI[IOZl(ﬁj)] + E2[— 1021(§j)]
+ 85003, (5 1)
37722733 '
where the symmetrv strains are defined in Egs. [3.36] and -

~

T+ ~ . .
the operators Olm’ Oﬁm and OQm are defined in Eq§. (2.211%.
All the terms in&ﬁée are invariant under any of the
symmetry operations of the point group. As an example we

consider the third term in}{; (3). The constants MY, MZ,

e

Mg, MI and Mg are called the magnetoelastic coupling

constants.

We know from Egs. [3.36b] and [3.36c] that

1
y _ (3)°2 '
E; = -6 (ZEzz - Exx._ Eyy)
y _.1 . _ ’
E, =5 (Exx Eyy)

and from the tabulation of Buckmaster (1962) that
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o

[35_ - S(s+1)]

| b=

f

N b=t
3]
[y

[3s2 - s°)

2
[3Sz - (Sx + 8% + Sz)]

I
N =

1 ..,.2
- 7 [ZSZ S - Sy]

and

4

0

D b=
X
+

[4.6] 0

22 (85) 2-2!

N TN

(6) [si + sf]

!
™o
>

1
(6) 2

1. , 2
=3 g [(5, + is))

. 2,
+ (Sx - 1Sy) ]

%
(6) 2 2
—i [SX - Sy] .

Therefore, the third term inWI@_(3) is

1
(3)° v 2 2 .2
= 12 M2{(2Ezz = Exx ~ Eyy)(zsz = Sy - Sy)
' 2 2. .
+ 3(E,, - B, ) (S, - S} .

Let us consider how this term'transforms under a four-fold

rotation of the coordinate stem about the x-axis. Under




38
this transformation,

d 3 5
X * X Tx - = S. > S and . u u

> -7 a_ &> - _a_. S + =8 u <+ -U k:\\
y } Yy 02z Yy z Yy z
3 5 .
A Y FE - §§ SZ g SY UZ uy

Then from'Eq. [3.4]

Exx > Exx ! K
E -+ E , ’

vy zzZ
EZz -> Eyy .

Therefore, the third term under this four-fold rotation of

R T TN RN

ﬁhe.coordingtesu becomes R
% - ¢
L4
_ _ (3 Y Cwi 2 _ Y
= 15 Mz{(ZEyy Ei. EZZ)_(ZSy S sz)
. 2 .2
t (B - Ezz_)(sx sz)}

ORISR

After multiplying this out and rearranging the terms it -
may be seen that this is exactly the same as the original

term in Eq. [4.4]. Therefore, this term is invariant under

| S
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this particular four-fold rotation. 1In the same way other

symmetry operations may be shown to leave this expression

invariant.

4.2 Magnetostriction

It is experimentally observed that a change in the

magnetic state of a ferromagnetic or ferrimagnetic crystal
-

is, in general, accompanied by a physigal deformation of the
crystal. This defogmation is referred to as the
spontaneous magnetostriction. The maénetostrictive strain
which accompanies the magngtization to saturation of an
elemehtary region of the body is anisotr;pic and depends
‘on the orientation of the magnetizafion veétor with respect
‘to the crystallggrdphic axes associated with this region.

The observed bu Py

magnetostriction may be interpreted in
terms of the spontaneous magnetostriction of each domaiﬁ,
but for simplicity we assume a single domain crystal. For
the magnetizing field to be uniform throughout the crys£al,
‘the demagnetizing field should also be uniforﬁ.throughout
the crystal. This is possible only if the crystal is
ellipsoida; in shape.

The deformation of the crystal does not arise wholly
dﬁe to the spontaneous ﬁagnétiéation. There is an '
interaction, between the demagnetizing field with the

. . J
spontaneous magnetization, which gives rise to an

) i
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1
~

additional lattice strain. This phenomenon is known as the
form effect; but its contribution to the magnetostriction
is usually negligibly small.

Let us suppoge that in the absence of any
magnetoelastic coupling an arbitrary point in the
undeformed lattice has the coordinates X, and a neighboring
point has the coordinates X5 + Axi as in Fig. 4.1. When the
magnetoelastic interaction is switched on, the first point
is displaced by the vector u and the second by u + Au. .
Regarding u; as.a function of the independent variaples xj

we can write
(4.7] AU, = == Ax. .

We have already seen that the displacement'gradient‘(aui/ax.)

!
can be written in terms of the symmetric strain function €3
and antiéymmetric strain function wij as )
- Sui

. - - = T . .
(a8t axj E'J_j wlj

The antisymmetric strain functioﬁ wij’ which represents a
rétation of the elastic'medium, must be zero if we are
concerned only with equilibrium properties such as the
magnetization,and magnetostrictioﬂ. 'Howeyer, in

nonequilibrium situations (e.g., when a sound wave travels

through a crystal) the wij need not be zero.

T e ARt C Wb A D+

e e '
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Deformation of two neighbouring

points.
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Magnetostriction is measured by the fractional
change in length of the elastic medium in .some direction £
¢

épecified by direction cosines Bl, 82, 83. We consider X,

and Xy + Axi such that Axi is in the direction 8.  If we )

define
1
z
4.9 Ax = (Ax.Ax.)
{ ] ( 34%
then ’
\s)
Ax A “ Ax
8:...__]'. 8=_i(._2_. 8=_§_
1 A% ! 2 Ax ’ 3 AX ’
\ .
i.e., we can write
’ T
Ax.,
[4-}01 Bj = K§l. .

o

The change in the distance between two points after the

i e mabom s o7 4

magnetization is switched on is the vector Adj. The change

\

in length along the diréction 8 is
[4.11] - 8% = bu By + AuyB2 + 4u, By
o4

= BiAui .

The. fractional change in length measured in.the direction 8

is : ' : -
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82

(4.12] A ix

BiAui
Ax

U, X.
1

Ix. Ax

= 8,

()

"
w

8
//
]
{

\\

If the antisymmetric strain is zero then

.

[4.13]  —%=c¢.. , '
and therefore,

[4.14] A= 8.8

€..8.:8.
13 1)

In this derivation the magnetization has been
|

assumed to be along some direction o with direction cosines
Oyr Op Og. Thus eij is a function of a. We usually write
AlOO as the fractional change in length measured along the

(100) direction, and similarly for A A et cetera.

110’ "11l’

& KA A iR e Lo
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4.3 The Magnetoelastic Modes

K‘\

In the presence of magnetoelastic coupling one no
longer obtains purely magnetic or vibrational modes. The
normal modes of the coupled system are mixed in éharacter
and are called magnetoelastic modes. They can be found by
sclving the eguations of motion for ghe elastic displacements
and the components of the magnetization which are a coupled
system of differential equations.

In the present thesis we have adopted a microscopic
description and the appropriate eguations of motion involve
the quantum mechanical spin operators and the phonon
operators. The unperturbed magnon energies can be obtained
by standard methods equivalent to the Holstein-Primakoff
transformations. In what follows it is sufficient to
consider only the lower magnon branch. In terms of the
creation an@gdestruction operators a; and ag for magnons
of Qave vector g in this lower branch, the magnetic . -

Hamiltonian ¢an be written in the form

(4.15] H_. =% E (a'a

1.-
+ ) j

2, ;
mog 92494 : ,

where E_ represents the magnon energy. The phonons are

taken to have unperturbed:ﬁw

|

gh where A labelé the phonon

branch. In terms of phonon 'creation and destruction

operators ng and 89} the Hamiltonian for the lattice

o




vibrations can be written as

(4.161 W = : ho ("

o 'R +
a, gr 9dx 49a

o

In the last section the magnetoelastic coupling was
described by a Hamiltonian consisting of products of strain
functions and spin functions which satisfy the crystal
symmetry. In order to express this coupling in
microscopic terms, the spin operators must be expressed in
terms of the u§ and ag'using the Holstein-Primakoff
transformation, and the strain functions -must be expressed
in terms of the B;X and 8 usiné the well-known expansion >

gx
for the displacement operators (see, for example, Kittel,

1963) n

B " s

3 t L
4.17 u(i) = & (ohw_ ) e (B + 8. e o,
(4171 1@ (20hog, o tar T Py

9,2
where p is the density of the medium and e is a unit:
A

vector in the polarization direction. After a lengthy
calculation the coupled Hamiltonian takes the form

(Seuthern and Goodings, 1973)

: t 1 + )
(4.181 ® = 5 E_(ala + 50+ ¢ he (B, B8, + 3
: g & 99 gx P D
- * t t
v \Y
+ g)\ag(.sg)\ + B_g)‘) + ‘gp‘o‘g(eg)\ + B”S)\)]

)
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where qu is a complicated function of both the direction of
magnetization and the applied magnetic field.

To find the coupled mode energies, we write down the

1 [

. | .
equations of motion for the operators ~_, «a_, R and R ’
q’ g9’ g -
i1.¢., .
Baf
. 4 1
[4.19] ih ~—— = [ang] et cetera.

at

/

Now, if we consider'only the coupling between the lower e
magnon branch and an impressed sound wave which has a
definite direction of propagation and a definite
polarization along one of the crystal axes, then by solving
the equations of moéion the coupled mode energies can be

shown to be

2 1 2 2 2 1 2 2. 2 .2
4.2 = = h + = -
[ 0] ?EA 5 (Ei + ng) 5 [(Eg h ng)
: ) 1
2.2 -
+ lGEg ngIVgAI ] .

We are usually concerned with behavier at long wavelengths,
i.e., we have ﬁng << Eg' In this weak coupling limit the
lower mode coupled energy is approximately given by
2
shw \Y
EAI EAI

@ =

[4.21] e2 = h2%2 -
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The elastic constant corresponding to a sound wave
having a particular direction of propagation and a
particular polarization is obtained from the sound velocity
of the corresponding phonon mode in the long wavelength
limit:
w
(4.22)  c = ov2 = p lim )2
g~0
When the magnetoelastic coupling is included, the
effective elastic constant C* is obtained in a similar way

from the energy of the appropriate magnetoelastic mode:

£

* L
[4.23) ¢ = p lim (5= . .
g—»O g

Hence from Eag. [4.21] the expression for the .effective
elastic constant is
dohw__ | |2

v

* ax - 49X

[4.24)] C =C - 1lim 5
O g0 Eg(ﬁg)

The exbressions for ng and Eg in Eq. [4.24] are very much
éimplified if both the direction of magnetization and
aéplied magnetic field are along one of tﬁe cubic symmetry
directions. The full expreséions for ng for the various
possible direption; of q and A (the polarization) are given
in’ the appendi# of Southern and Goodings (1973) and will

not be repeated here.

.
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[

4.4 Elastic Constants in Terms of Macroscopic Quantities

The relation for the effective elastic constant in
Eq. [4.24]) is not usually used for actual calculations.
For practical-purposes this relation is written in terms gf
macroscopic quantities which could be derived easily from
"the free energy of the magnetic system. Southern (1973a)
has shown that, when both the direction of magnetization and
the applied magnetic field coincide with one of the crys£al
symmetry axes, the transverse elastic waves which are either
propagating or polarized in the magnetization direction can

always be expressed in the form,

2
(MHME * MHA)

4M(HA + H)

*
f4.25] C

il
@]
1

where the upper 51gn refers to a transverse wave
propagatlng in the magnetization direction and the lower
sign refers to a transverse wave polarized in this
direction, H is the applied magnetic field and M is the
magnetization. Both the effective magnetoelastic field
HME and the effectivg anisotropy field HA éepend on the
direction of the magnetization ana the plane defined by
the propagation and the polarization girec;ions of the
elastic wave. %

To eliminate the domain alignment effects we

assume that some minimum field strength HO is required to

PN TN

RS X 2

s A 4
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achieve saturation of the magnetiiation and we write the
Eq. {4.25] in the.form

2
meg © Hal
FHY (H +H )

. N M(H-H ) [H
[4.26] C (H) - C (HO) = 4TH

The expressions for HME and HA can be obtained from

the free energy. Both HME and HA not .only depend on the
direction of magnetization, they 5155 depend on which.
elastic constant is being measured. 1In Tagle 4.1 we quote
the expressions. for MHME and MHA obtained by Soufhern (1973)
for a cubic crystal. The-effective anisotropy figld MHA

is given in terms of the usual macroscopic cubic

anisotropy constants K, and K, which are related . to tﬂe

microscopic constants defined in the magnetic Hamiltonian

in Eg. [2.23] as follows

v ' _ 4 l . .
[4.27a] Kl =< > [10b419/2 + 21b6113/2]
_ 231 o
[4.27b] K, = 5= b6Il3/2
" where ‘ .
_ 20 . 3
[4.28a] _ b4 = B, N ss(j)

= .82 ¥ 5
[4.28b] be =-Bg N, SS(3)

o gmmAs e va
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) 1, . ; 3
[4.29] S(n) = (8 - '2-') (s-1) (s - f) .. {8-n)

and Na is the number of magnetic. atoms per unit volume. The

+

temperature dependence is taken into account in the reduced

hyperbolic Bessel function f1+%(L:l(m)) wherej,—l(m) is the

inverse Langevin function and m is the reduced magnetization.

The effective magnetoelastic field MH o is given.in terms of
the magnetoelastic constants of Kittel and Van Vleck (1960)
which are related to those defined in the coupléd

magnetoelastic Hamiltonian im Eq. [4.4] as follows:

-

-5,
. s
[4.30a) B, = - Mg, / h
7
= - (3 Y Lz .
[4.30b] By = - (P MIN, SS(H I,
L
(4.30c] B, = - (-g—)2 .M;Na ss(%—)is/2
) L
ey ac (3 A e 3,2
[4.30d] B84 = SM;N_ ss(-z-)ig/2 3 MN, S8(3) 14,
7
[4.30e] B, = - 7(3) “MJN_ SS (%)ig/2
1
2 e

:
— 3,¢
'[4.3of} Be = (5)° MyN_ Ss(i’l

4 9/2

-

et it VR LI




CHAPTER 5

NUMERICAL ESTIMATES FOR EUROPIUM CHALCOGENIDES

|
In the previous chapters we have described the

theory of magnetoelastic interactions for cubic crystals.
In this chapter we estimate magnetoelastic effects in the
europium chalcogenide crystals. The basic data for these
materialé.are listed in Table 5.1, the elastic constants
in Table 5.2, the experimental values of anisotropy
constants and the estimated cfyétal field parameters in
'Table 5.3, and the ekpérimental vaiues of magnetostriction
coefficients, the estimated vglues éf magnetostriction
constants and the magnetoelastic constants in Table 5.4.
The data for the anisotropy constants and magnetostriction
coefficients is ;omplete qnly for europium oxide.

Therefore, our estimates of the field dependence of the

elastic constants will be limited to europium oxide. v

5.1 Estimates of Cryétal Field Parameters and
Magnetoelastic Constants for EuO

-Measurements of the anisotropy constants of EuO as

a function of temperature have been reported by Hugheé,

52
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Everett and Lawson (1974). Their results show the
temperature dependence expected for single ion anisotropy
originating in the crystdl_field. From their results of

le% and K2/M listed in Table 5.3 and using the value of M

‘in Table 5.1 we can find the values of K, and K2, at T=0,

1
which are listed in Table 5.3. From these values we can'

now estimate the crystal field parameters b4 and b6 defined
in Egs. [4.28]. At T=0 the reduced hyperbolic Bessel
functions f£+%(m) in Egs. [4.27] become equal to unity and

the relations between Kl(O)' K2(0) and b4, b_ are

6

) ‘ o 21
[5.1] K, = 5b4 5

[5.2] K, = == b

Now solving these two equations we obtain the Qalues of b4
6 listed in Table 5.3. These values are in agreement
with those quoted by Hughes et al. (1974) when differences

in notation are taken into account. By comparing these .

estimates with the values of'b4 and b6 quoted by Southern

'(1973) for the rare earth iron cubic Laves phase compounds

3

we f£ind that they are more than a factor of 10°: smaller.

%

The magnefdsﬁricéion coefficients of EuO single

crystal at 0°K were measured by Argyle and Miyata (1968).

The values of Ay and X are listed in Table 5.4. These

00 111

two measurements. alone. are’ insufficient to obtain numerical

S remacem———
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values for all the independent magnetostriction constants.
Therefore, following Southern (1973), we assume that Bl and
82 are the most important and that the other constants are

negligibly small. From Egs. (3.3a) and (3.3b) of Southern
(1973) we have

[5.3] Bl = - BUAlOO

»

where 1 is the shear modulus which can be obtained from the

relation (see, for example) Cottrell, 1964)

[5.5] u =-C

44 -

Using the value of C44 listed in Table 5.2 and from

. Egs. [5.3), [5.4] and [5.5], we obtain the values of Bl and

62 which are listed in Table 5.4. Then thg,magnetbelastic
constants Mz and M; are obtained from their relations of
B, and Bé in Egs. [4.30b] and [4.30c];'thesé values are
listed in Table Sll. If we compare again these values of

Bl éhd 82 with -those of the rare earth iroh cubic Laves

phase éompbunds listed in Southern (1973) we find that they

2

are more than a factor of 10 émaller.
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5.2 Changes in Elastic Constants due to Magnetoelastic
Interaction

Now using the wvalues of Kl’ K2, 81 and 82 giben in

Tables 5.3 and 5.4, we can calculate the wvalues of MHA and

MH,. in Table 4.1 for the various elastic constants

measured for-different directions of the magnetization.
These values are listed in Table 5.5.

In Figs. 5.1 to 5.4 we have plotted
[C*(H) —‘C*(HO)]/C* as a fungtioh of.(H—HO)/HO. It can be

easily seen from the figures that the fractional change in

J

the elastic constant Cyagr when the magnetic field is along
[001] or [110] direction and the transverse wave is

either propagating or polarized in the direction of the
. : J
magnetic field, is as large as 5x10”4 for ‘an applied field
R .

up to 25 kOe. The fractional chénge.for %.(Cll—clz), when

the magnetic field is along [110], is of the order of 10—5

. . 1
and the fractlonal.change for 3 (Cll—C12+C44), when the
6

magnetic field is allong [111], is of the order of 10 .

Melcher (1970) has reported the measurements of
%? of the order of 10—6 for antiferromagnetic Man. But,
upfto the‘pfééeﬁt tiﬁe no measurements ﬁave been reported
for any iferromagnetic ﬁaterials which would verify the
predictions of the finite strain theory. The reason fof
this is mainly the incompatible reéuifements on sample

shape for §erforming measurements of the .sound velocity in

-

!

e
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Fig. 5:1 AC44/C44 as a function of (H-HO)/H0 for EuO with
the magnetic field along ([(001] and HO = 10 kOe.
Solid (dashed) curves are for propagation

(polarization) along [OOl].
)
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(H—=H, )/ H,

Fig.
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Fig. 5.2 AC/C as a function of (H-HO)/HO for EuO with the

magnetic field along [111] and HO = 10 koOe.

Solid (dashed) curves are for propagation

" . 1
(Polarlzgtlon) alogg [I11]} and C = 3 (Cll_C12+C44)'

o
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Fig. 5.3

(polarization) along [110} and C =

AC/C as a function of (H—HO)/HO for EuO with the

magnetic field élong [110} and Hy = 10 kOe.

Solid (dashed) curves are for propagation

1
7 (C117C12)-



61

- T .

R ATTOITE g R TS

ol
U\UQm

20

I O

_'(H—-Ho)/Ho

5

'.Figo



g

Fig. 5.4 AC44/C44 as a function of (H—HO)/HO'for Eu0O with
the magnetic field along [110] and Hy = 10 kOe.
Solid (dashed) curvés are for 'propagation

(polarization) along [110].
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a'ferrdmagnetic crystal. On the one hand it is desirable

to have the crystal shaped in the form of an ellipsoid in

. order that the magnetization be uniform throughout the

crystal. However, sound velocity measurements by the

phase echo technique/require two parallel surfaces. A
sample in the .form of a disk satisfies both of these’
requiremenfs and it should be possible to grow good single
crys#als_having this shape. We, therefore, believe that it
will be possible to pérform measurements on EuO
corresponding  to the,célculations reported in this thesis.

On the basis of our calculations, the largest effect can be

expectéd for measurements of the elastic constant C44.
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'"CHAPTER 6

SUMMARY

The theory of magnetoelastic interactions has been

discussed for ferromagnetic crystals with cubic symmetry
in this ﬁhesis. A magnetic system is described where‘the
energy due to mégnetoelastic anisotropy is included; and
aﬁ{elastic system is described in the framework of finite
strain theory. The coupling of-the magnetic and the
‘e;astic systems is taken into account through single ion
interactions. The coupled modes of such a magnetoelastic
system are discussed,‘ahd expreséions for the changes in
various elastic éonstants as a function of an applied
magnetic field are written down. ‘

Using the available data for anisotropy'constants

and magnetoétriction coefficients we have estimated the

s
I

c;jstal field parameters and the magnetoelastic. constants
for Eub.' It is predicted that the fractional change in
the measured elastic éantant Cya is of the order of
5x10~% in an applied field of 25 kOe. Furthermore, the
difference between the values'of Caa measured for sound

waves propagating'along the~[001]‘6r [110] directions and

polarized in the other direction is calculated to be of the

64 !
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order of 10—5. It may be possible, by analyzing the
measurements of the fractional change in the various
elastic constants and their difference for two types of
tqaﬂsverse wave, to estimate the anisotropy constants and

magnétoelastic constants.
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