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ABSTRACT

The magnetic susceptibility, resistivity, and Hall
coefficient of single crystals of UNi,Si, and UNi,Ge, have
been investigated. Thermoelectric power and specific heat
measurements of UNi,Si, have also been carried out.

The magnetic susceptibility of UNi,Si, and UNi,Ge,
follows the Curie-Weiss law in the paramagnetic state at high
temperatures and the anisotropy shows that the magnetic
moments on the U atoms are constrained to lie preferentially
along the c axis.

The resistivity of these two compounds is largely due
to magnetic scattering and the phonon contribution only
amounts to 8-14% of the total resistivity at room temperature.
Along the c¢ axis, the resistivity shows a Kondo type of
behaviour at high temperatures. The temperature dependence of
the Hall coefficient can be accounted for by a theoretical
model invoking a magnetic skew-scattering process. Distinct
features and anomalies are observed in both the resistivity
and the Hall coefficient at the magnetic transitions of these
two compounds.

The thermoelectric power of single crystal UNi,Si, is
also anisotropic, with the c-axis component strongly coupled
to the magnetic phase transitions. The gamma value obtained
from the specific heat measuremenics of UNi,Si, is 22 mJ mol™1

K~2 which indicates a small mass enhancement in the system.
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CHAPTER 1

INTRODUCTION

In recent years, there has been a great amount of
interest in the class of materials RT,X,, where R is either
the rare earth element Ce or the actinide element U, T is a
transition metal and X is either Si or Ge. Although most of
these compounds crystallize in the same ThCr,Si, type of body
centred tetragonal structure, they exhibit a wvariety of
properties, including heavy fermion behaviour, magnetic
ordering, superconductivity and enhanced Pauli paramagnetism.
Systematic studies (Palstra, 1986) of the 1-2-2 compounds of
RT,Si, indicate that those with a transition metal that has a
small number of d-electrons are commonly Pauli paramagnetic,
those with an intermediate number of d-electrons usually
result in a heavy-fermion state and those with a large number
of d-electrons are likely to result in systems which order
magnetically. A similar trend has also been established in the
UT,Ge, compounds (Dirkmaat, 1989).

From these systematic studies, a phenomenological
description of the band structure has emerged. The model is
composed of a very broad conduction band and a narrow band

which is related to the atomic f-levels of the Ce or U atoms.
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The idea is that as one moves towards the heavier transition
metals (hence more d electrons), the Fermi energy increases.
When the narrow band lies above the fermi level, there is no
local magnetic moment. If the narrow band is at the Fermi
level, the narrowness of the band leads to a large specific
heat and a heavy-fermion state at low temperatures. When the
narrow band lies below the Fermi level, it is filled, and
there is the formation of a localized moment at the cerium or
uranium site.

Among these three groups of materials, one group has
attracted particular attention for the past several years,
namely the heavy-fermion materials. A unique feature of the
heavy-fermion materials is the heaviness of the charge
carriers in the system. In usual metals, the specific heat at
low temperatures contains a linear term due to the charg.
carriers and a cubic term from lattice vibrations (Ashcroft
and Mermin, 1976):

Go(T) = yT + BT (1.1)
For a free electron metal such as Cu, the y value is only 0.7
nJ mol'! X2, For the heavy-fermion metals however, y values of
several hundred mJ mol! K? are fairly common. A direct
implicaticn of the large y values is the large effective mass
m" (Stewart, 1984; Coles, 1987) associated with the charge
carriers in the heavy-fermion metals. A striking feature of
the heavy-fermion metals is the development of the so called

"coherent state" (Lee et al, 1987; Coles, 1988) at low



temperatures, in which the resistivity decreases dramatically
with decreasing temperature due to the "coherent" nature of
the scattering. One other aspect of the heavy-fermion puzzle
is the fact that some of the large-y compounds are
superconductors at low temperatures. Since it was generally
accepted that goocd local moments and spin-fluctuations are
destructive to the standard BCS type superconductivity (s-wave
pairing), much effort has been made to identify the nature of
the pairing in heavy-fermion superconductors. Despite intense
efforts, much of the puzzle of the heavy-fermion state remains
unsolved and a formal theoretical treatment providing a
consistent picture for all the aspects has yet to emerge. On
the other hand, it has become apparent through the
phenocmenological description given above that all the three
groups are ultimately connected. One would be naive to single
out the heavy-fermion state from the rest which obviously
contain much needed further information for solving the
puzzle.

UNi,Si, and UNi,Ge, are among those compounds which
become magnetically ordered at low temperatures. The rich
magnetism in these magnetically ordered materials forms a
broad and interesting subject in its own right. However, it is
hoped that detailed studies of these compounds may also shed
new light on many closely related problems, particularly those
of the heavy-fermion state. Like many of the materials in the

RT,X, class, these two compounds also crystallize in the



tetragonal ThCr,Si, type of structure, with the atomic
arrangement shown in Figure 1.1. The space group of the
structure is I4/mmm. The uranium atoms occupy the 2a positions
to form a simple body-centered tetragonal sublattice. The
nickel atoms are in the 4d positions and the silicon or
germanium atoms are located at the 4e positions. The lattice
parameter a is typically around 4 A and the lattice parameter
c is about 9.5 A,

Because of the anisotropy in the crystal structure,
this class of materials exhibits strong anisotropies in many
of the physical properties. The magnetism of these materials
are associated primarily with the Ce or U atoms although,
occasionally, moments are also present on the transition metal
sites. In nearly all of the magnetic susceptibility
measurements of single crystal samples that have been
reported, the susceptibility along the ¢ axis is larger than
the susceptibility perpendicular to the ¢ axis in the
paramagnetic state. Most of +the magnetically ordered
compounds are found to have the magnetic moments aligned along
the tetragonal c axis in their ordered states. Since the
conduction electrons are strongly correlated with the
localized £ electrons, such magnetic anisotropy has a profound
influence upon the transport properties in the systems.

For the entire class of RT,X, compounds, the transport
properties are, to a very large extent, determined by magnetic

scattering of the conduction electrons. The resistivity of



FPigure 1.1

The body-centered tetragonal crystal structure of UNi,Si, and

UNiGe,. X represents either Si or Ge.






these compounds is often in the hundreds of pfl cm at room
temperature, and often shows a Kondo type of behaviour before
the cocherent state or magnetic ordering sets in. Among the
existing single crystal measurements, a consistent trend seems
to be that the Kondo increase of resistivity with decreasing
temperature is likely to occur along the tetragonal c¢ axis if
not for all the crystal axes. For those which order
magnetically, spin-wave (magnon) scattering at low
temperatures is of importance. Detailed analysis of the
resistivity measurements at low temperatures should provide
useful information about electron-magnon coupling and the
magnon excitation spectrum in the system. The Hall coefficient
of these compounds is often positive and much larger than in
normal metals. In general, the Hall coefficient contains an
ordinary component due to the Lorentz force and an anomalous
component from magnetic skew scattering. The thermoelectric
power in these materials is much like that in the transition
metals and rare earths (Blatt et al, 1976), large in magnitude
and complex in nature, but nevertheless is wuseful in
supplementing information about the transport anisotropy and
energy scale (Amato et al, 1989) of these systems. Because of
the strong interaction between the conduction electrons and
the localiced magnetic moments, the transport properties often
show anomalous behaviour at the magnetic ordering temperature.
Closer examinations of these anomalies usually provide

valuable information about the ordered state and the



renormalization of the Fermi surface. In particular, these
features at the transition temperatures can be monitored under
pressure or in a magnetic field to map out the phase diagrams,
providing further insight into the mechanism of the magnetic
interaction.

In Chapter 2, a brief account of the theoretical
background will be presented. In Chapter 3, the experimental
techniques and apparatus employed in this study are
summarized. Chapter 4 & 5 present the experimental results of
UNi,Si, and UNiGe, along with a detailed discussion. Finally,
Chapter 6 provides the summary and the conclusions of the

study.



CHAPTER 2

THEORETICAL BACKGROUND

a Magnetic Susceptibility

2,1 The Curie-Weiss Law

In the paramagnetic state of a system of localized
magnetic moments (magnetic ions), the molar magnetic
susceptibility ¥, defined as M/H where M is the magnetization
per mole and H the applied magnetic field, is expected to obey
the Curie law:

x = C/T (2.1)

provided that there is no coupling between the moments. The
constant C is called the Curie constant and is given by:

Ny (pitg)?

- 2.2
€= —5— (2-2)

where N, is the number of ions with magnetic moments per mole,
gy is the Bohr magneton and p the effective number of Bohr
magnetons per magnetic ion. However, when there is an
interaction between the magnetic ions, the moments will tend
to align themselves in a certain way. We first consider the

case of the ferromagnetic interaction in which the moments



tend to align parallel to each other. The interaction is
treated as an effective magnetic field acting on a given
individual moment and is assumed to be proportional to the
magnetization:

H,. = AM (2.3)

Eff
so that with an applied field H,, the total magnetization is
given by:

M = x(H, +AM) (2.4)
which yields the Curie-Weiss law:

x = M/H, = C/(T-AC) (2.5)
where C is given by (2.2). This expression describes fairly
well the observed susceptibility in the paramagnetic region
above the magnetic ordering temperature (Curie point).

For the case of the antiferromagnetic interaction, the
situation is slightly different: instead of aligning parallel
to each other, the magnetic moments tend to align antiparallel
to each other in an antiferromagnetic arrangement. Treating
the system as two sub-lattices A and B and introducing an
antiparallel interaction between sites A and B, one can show
that the susceptibility in the paramagnetic region of an
antiferrowagnet above the ordering temperature (Néel point)
obeys the following expression (Kittel, 1976):

x = C/(T + T,) (2.6)
where T, is the Néel temperature and C is a constant given by
the expression of (2.2). The above expression was derived

assuming a nearest-neighbour interaction. Experimental results
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above T, are of the form:

X =C¢/{(T + 8) (2.7)
where 8 differs from T,. The difference can be largely
resolved if the next-nearest-neighbour interaction is also
considered (Kittel, 1976).

In practice, the expressions (2.5) and (2.7) are
generalized into:

X = C/(T-6) (2.8)
with positive values of 8, (Curie-Weiss temperature) for
ferromagnetic coupling and negative values of 8, for the case
of antiferromagnetic coupling. In addition, the inverse of g
is often plotted against T to check the validity of the curie-
Weiss law and to extrapolate the values of 8., and C which in

Turn gives the effective magnetic moment per ion Plg-

B Electrical Resistivity:

2.2 The Ideal Resistivity

In normal metals, the electrical resistivity can be
written as p = m/nezr where m is the band mass of the charge
carrier and n the density. 1/7 is the scattering probability
of the Bloch waves and is the factor which leads to the
temperature dependence of the resistivity. For a simple non-
magnetic metal, the temperature dependence of the resistivity
is entirely due to the scattering of conduction electrons with

phonons. This resistivity (often called the "ideal" or
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"intrinsic" resistivity), together with the impurity
scattering resistivity, makes up the total resistivity:

P(T) = p, + P, (2.9)
where p, is the residual resistivity and p; is the ideal
resistivity which is described by the Gruneisen-Bloch

expression (Gruneisen, 1933):

YA
p; - C ( T )5 x°dx (2.10)
56 l[ (e*-1) (1-¢™)

where C is a constant and 6, the characteristic temperature
(Debye temperature) of the lattice above which all the phonon
modes begin to be excited. For temperatures well above or
below the Debye temperature 6,, the expression of the total
resistivity reduces to:

= p, + AT® T << 6, (2.11)

p
p = p, + BT T >> 6, (2.12)

2.3 The Kondo Effect And Kondo SBystenms

In metals with dilute magnetic impurities, the
resistivity at low temperatures often rises with decreasing
temperature and leaves a resistance minimum at temperatures
where normal ;%-Ts metallic behaviour is expected. This
phenomenon is known as the Kondo effect and is caused by the
exchange interaction between the conduction electrons and the

localized magnetic moments on the impurity sites. The
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scattering process is basically a "spin-flip" process in which
the conduction electrons flip their spins to "compensate" the
localised impurity moments. The first theoretical account of
this effect was due to Kondo (Kondo, 1964). The starting point
of Kondo's treatment is a single isolated magnetic impurity in
the otherwise non-magnetic host metal. It is assumed further
that the interaction between a conduction electron and the
magnetic impurity is the "s-d" exchange interaction of the
following form:

H = -Jo.8 (2.13)
where J is the s-d exchange integral (s here represents the
conduction or s-electron and d the localised d or f-electron
of the impurity), o and 8 are the spins of the conduction
electron and the magnetic impurity, respectively. By including
the second order terms in the scattering probability, Kondo
found that the resistivity due to this scattering process
exhibits a logarithmic temperature dependence:

p(T) = p, = p,1nNT {2.14)
where p, and p, are positive constants and the sign of J is
assumed to be negative (antiferromagnetic exchange). The above
expression leads to an increasing resistivity with decreasing
temperature and is valid above the characteristic "Kondo
temperature" T,. Here, kT, is the binding energy of this
antiparallel spin alignment. Because of this Kondo effect,
metals with dilute (concentrated) magnetic impurities are also

called dilute (concentrated) Kondo systems. If the magnetic
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ions are arranged periodically, then the systems are called
Konde lattices. Although Kondo scattering process was
originated for the single impurity problem, it has been shown
experimentally that, the Kondo scattering also contributes an
important part to the resistivity of the Kondo lattice systems
at high temperatures where the scatterings become independent

of each other (Schoenes et al, 1987; Coles et al, 1987).

2.4 S8pin-wave And Spin-Disorder Scattering

At the absolute zerc of temperature, the magnetic
moments in a ferromagnetic or antiferromagnetic metal are all
aligned and the system becomes an ordered array of magnetic
moments. If there were no impurity, then conduction electrons
with either spin could propagate through this perfectly
periodic lattice without being scattered incoherently. There
would be thus nc resistivity.

As the temperature is raised, thermal excitations,
both magnetic and vibrational, will occur. Here we
concentrate on those of magnetic origin. The magnetic
excitations of the lowest energy, which are hence the first to
be excited, are spin waves or magnons. These are the
collective excitations of the aligned spins, just like phonons
in the case of lattice vibrations. At high enough
temperatures, where more thermal energy 1is available,
individual ions can have their spin orientations disturbed

randomly by the thermal fluctuations, and it 1is more
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appropriate to treat the scattering process as spin-disorder
scattering. The influence of these excitations on resistivity
will be discussed below.

We first consider the electrical resistivity £from
spin-wave scattering. We restrict ourselves to the 1low
temperature region since it is only at low temperatures that
scattering due to magnons predominates. The formal treatment
of magnon scattering has been carried out by Andersen and his
coworkers (Andersen et al, 1976, 1979). The general expression

for magnon resistivity p, is the following:

kg

1l .43 df hw/kgT
Pm A'[ (-ﬂ;) q quTflgqF

sinh®(hw/2kT)

(2.15)

where A=31rm/(e2ﬁeF), |gq| is the electron-magnon coupling
constant and #uo the energy of a magnon which is a function of
the wave vector q.

For a simple ferromagnet, the dispersion relation of
magnons at low temperatures is simply #e = Cq® where C is a
constant, and the coupling constant [gq| is independent of q.
Inserting these into expression (2.15), one arrives at a T2
dependence of the magneon resistivity for a ferromagnet. In the
case of a simple antiferromagnet, #w = Dg where D is again a
constant and |g,| = q. The expression (2.15) gives a T
dependence for the magnon resistivity at low temperatures.

If there is magnetic anisotropy in the systen,
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however, an energy gap will be present in the dispersion of
magnons, as in the case of URu,Si, and many other uranium
ternary compounds. For an isotropic magnet, the lowest energy
of a magnon is zero which corresponds to a free rotation of
the completely ordered spin configuration (g=0)}. In the case
of an anisotropic magnet, such a rotation costs a certain
amount of energy, so that there is a minimum amount of energy
(gap energy) required to create a magnon. At low temperatures
(small g 1limit), the dispersion relation can be expanded
around its minimum which is simply:
ho = A +cf (2.16)

where A is the energy gap in the magnon spectrum and c a
constant. The coupling constant in this case is again
independent of the momentum transfer q. Inserting (2.16) into
the expression for the magnon resistivity, one can show that
the resistivity due to the scattering of gapped magnons is of

the form (Andersen et al, 1979):

pn 2 [1+2 X Jexp(-4/T) (2.17)

At higher temperatures, ions may have their spin
orientations disturbed individually by the  thermal
fluctuations and the excitations are no longer collective in
nature (Dugdale, 1976). Let us consider a simple case ir which
the magnetic moment of one particular ion is "flipped" over
from its direction in the ordered state. Via the s-d exchange

interaction, conduction electrons propagating through this
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disordered spin will be scattered which results in additional
resistivity. As the temperature becomes higher, more and more
such spin-disorders occur and the contribution to resistivity
becomes progressively larger. Above the Curie or Neéel
temperat\re, the spin orientations become completely
disordered and the resistivity due to spin-disorder scattering

eventually saturates and becomes independent of temperature.

2.5 Spin-Fluctuation Scattering And Magnetic Superzone

In a magnetic metal just above the ordering
temperature, there are long=-lived fluctuations in which the
spins in a region of the metal are aligned just as in the
ordered state. Similarly, there should also be regions of non-
ordered paramagnetic state fluctuating in the ordered state
just below the magnetic ordering temperature (Dugdale, 1976).
These spin fluctuations scatter the conduction electrons and
bring about anomalous behaviours in the resistivity. Since
these spin fluctuations are only important near the magnetic
critical point (Richard and Geldert, 1977: Alexander et al,
1976}, they are also called "critical scattering". In
addition to the critical scattering, there is also the gapping
effect in an antiferromagnet, due to the formation of a
magnetic superzone below the Néel temperature {assuming that
the magnetic superzone intersects with the Fermi surface). The
term "superzone" comes about as the magnetic periodicity may

well be different from the lattice periodicity, producing a
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"magnetic" Brillouin zone in addition to the "lattice" one.
We first discuss the contribution due to the critical
scattering.

The treatment of spin fluctuation scattering is a
rather complicated subject and a detailed account is beyond
the scope of the thesis. Instead, we shall discuss rather
briefly and qualitatively the basic approach involved and the
important results derived from it. The starting point is again
the s-d exchange interaction between the conduction electrons
(s) and the localized d or f electrons. The first theoretical
study of spin-fluctuation scattering in antiferromagnets was
by Suezaki and Mori (Suezaki and Mori, 1969) and later, but
independently, by Geldart and Richard (Geldart and Richard,
1972) . Here we simply follow the line of Suezaki and Mori. The
model hamiltonian of the system they used is the following:

H=H + Hy + H_, (2.18)
where H, is the hamiltonian of the s electrons, H; of the d or
f (localized) electrons and H_, of the mixing of s and d or £

electrons. Their expressions are given as:

Hy = g €q8" gl (€q=hg%/2m) (2.19)

N
Hd--N—‘[ngsk' Sy (Sk'.z;e‘k.asj) (2.20)
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=1 + +
Hs-d - =N L E Iq_ql{ (ﬂ q'+ aq* - a q _aq_) qu_ql
9 g

+ + + -
+a,a,S e t 24,305 g (2.21)

where a_ and a*qa are respectively the annihilation and
creation operators of conduction electrons with wave vector q
and spin o, and S, is the spin operator of the d or f
electrons with wave vector k. J, is the exchange constant. The
electron-phonon interaction is omitted since the primary
interest here is the scattering by fluctuations of the
localized spins in the vicinity of the magnetic ordering
tenmperature.

Using the notation of the creation and annihilation

operators, the current operator can be written as:

J',; = —(‘i)zl‘hq;‘a+(paqy (2.22)
m 9@

where u represents any of the coordinates x, y or z.

Using the above model hamiltonian and current
operator, and following the general linear response formula,
they were able to derive the following expression for the
derivative of the resistivity due to spin-fluctuation

scattering, in the vicinity of the Néel temperature T,

Puv 4 2yt (2.23)




is

where t=|T—T"]/T" is the reduced temperature, A is the critical
exponent and B, is a constant factor. The factor -B, is for the
case T > T, and the factor +B. is for T < T,. It is worth
pointing out that, because of the assumption made in deriving
equation (2.23), the expression is only valid for resistivity
along the direction of K where K is the magnetic reciprocal
lattice vector. For resistivity perpendicular to K, the
anomaly in dp/dT is expected to be the same as in the
ferromagnets which we shall discuss later.

As we mentioned earlier, in addition to the spin-
fluctuation scattering term, there is also the gapping effect
below T, if the magnetic Brillouin zone intersects with the
fermi surface. That is, the conduction electrons will feel a
new magnetic potential whose period is 27/K besides the usual
lattice potential. The new potential produces band gaps as is
shown schematically in Figure 2.la. The formation of a gap
leads to a reduction of the effective number of conduction
electrons along the K direction. This in turn will lead to a
sharp increase in resistivity. The effective number of
conduction electrons along the K direction was first derived
by Miwa (Miwa, 1963) and can be written:

0o = n{1-(31/8) (A/€.) (K/q))  (2.24)
where A is the energy gap, eF=1/2hq3 the Fermi energy, n the
number of conduction electrons per unit volume before the
formation of the gap. The temperature dependence comes from

the energy gap A. Combining the gap effect and the spin-



Figure 2.1

(a) Schematic diagram of the Fermi surface with the energy

gaps produced by the magnetic ordering potential.

(b) Predicted resistivity behaviour just below T, parallel to

the direction of K.



(b)
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fluctuation scattering, we finally arrive at the expression
of the resistivity derivative along the K direction below the
Neéel temperature T, (Suezaki and Mori, 1969):
dp’/dr = —Bgt'“**‘"2 + Bt (T<T,) (2.25)

where the first term with the constant B, is due to the
formation of an energy gap and the second term is due to spin-
fluctuation scattering from equation (2.23). Through the
scaling relation, one can generally show that (1+A)/2 > A.
Therefore, the first term of (2.25) would always have a
stronger divergence than the second one. In the case of B, >
B,, we thus expect the resistivity p, to show a pesak as is
depicted in Figure 2.1b. This kind of behaviour has indeed
been observed in several antiferromagnets such as Cr, a¢-Mn and
some rare earth metals (Meaden, 1965).

We finally turn briefly to the case of a ferromagnet.
The resistivity anomaly near the Curie temperature T, was
first explained by Fisher and lLanger (Fisher and Langer, 1968)
for T > T,, and later was extended to the case of T < T, by
Richard and Geldart (Richard and Geldart, 1973). The
derivative of the resistivity near the ferromagnetic
transition generally goes like the specific heat:

dp/dAT o« C(T) o £°¢ (2.26)

where t=|T-T,|/T. is the reduced temperature, C(T) the specific
heat and a the critical exponent of the specific heat. The
experimental values of a for magnetic systems generaly lie in

the range of -0.3 - 0.3 (Collins, 1989).
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c Hall Effect In Magnetic Metals

2.6 The Ordinary Hall Effect

Consider a rod-shaped specimen with a electrical
current J, flowing along the x direction and a magnetic field
B applied along the z direction, as depicted in Figure 2.4.
Carriers moving along the x direction with charge q and
velocity v will be subject to a Lorentz force qvB due to the
presence of the magnetic field. Such a force will deflect
electrons towards the -y direction. Since there is no current
flowing along the y direction, a charge build-up must occur
which in turn generates an electric field E, to exactly
balance the Lorentz force. That is:

E, = qVB (2.27)

Assuming that the electrons have an average velocity
v, the current density can be expressed as:

J, = qnv (2.28)
where n is the density of carriers of charge gq. Combining
equation (2.19) and (2.20), we have:

E, = J,B/nq (2.29)
The quantity defined by

R, = E/J,B = 1/nq (2.30)
is called the Hall coefficient (Hurd, 1972). We note
immediately that if electrons are the charge carriers, the
Hall coefficient is negative: R, = -1/ne where e is the

magnitude of the electron charge. The same result can be
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obtained through a more formal and sophisticated analysis

assuming an isotropic relaxation time 7.

2.7 The Anomalous Hall Exfect

An anomalous behaviour often arises in the Hall effect
of Kondo lattice compounds and magnetic metals in general.
This anomalous Hall effect is much larger than the ordinary
Hall effect in normal non-magnetic metals. The sign of this
anomalous Hall effect is often jositive, and the temperature
dependence generally follows the magnetization of the system.
One of the theoretical models to account for this anomalous
Hall effect was first proposed by Smit (Smit, 1958) to account
for the anomalous Hall effect in ferromagnets. The model was
further developed for dilute magnetic systems (Fert, 1973).

The model is based on the idea of a skew scattering
process by localized magnetic moments. Skew scattering occurs
when the probability of scattering has a left-right asymmetry,
i.e., the probabilities of scattering from k to k' and from k'
to k are different. Such a process will favour the scattering
one way (say to the left) over the other which in turn yields
additional contribution to the Hall effect. More recently,
Fert and Levy have extended this thecoretical model to explain
the anomalous Hall effect in Kondo lattice and heavy-fermion
systems (Fert and Levy, 1987). We briefly follow the line of
Fert and Levy. We begin by noting that the simplest form of

the exchange interaction between the conduction electrons and
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the localized f electrons is:

Hycnange = ~383 + A1.3 (2.31)
where s and 1 are the spin and orbital angul~r momenta of the
conduction electrons and j is the total angyular momentum of
the localized f electrons. The first term in (2.31) is real
and symmetric. However, since the matrix element <k'|1l]|k> = -
<x|1|k'>, the second term which contains 1 must be imaginary
and antisymmetric (Fert and Hamzic, 1980). It is the presence
of this 1l.j term in the hamiltonian that leads to the skew
scattering, as we will see below.

Including the exchange hamiltonian of (2.31), the
total hamiltonian can be generally written in the following

form:

H = z c’k.ck(Vu. + iwu') (2.32)
Kk

where V,,, and W,,, are real with

Vi = Vieg? Wigo = “Hpye
Because of the presence of the antisymmetric term W, = -W,,,,
the transition matrix to the third order contains

antisymmetric terms of the following form:

—(—2%)2 VMV*.W“.G(Ek-Gk')S(Gk—eq) (2.33)
q

It is the presence of these antisymmetric terms in the total

transition matrix that leads to the skew scattering
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probability. Using the skew scattering probability and the
general expression of the Hall resistivity (defined as p,=R;B
where B is the magnetic field), Fert and Levy derived the
following expression for the anomalous Hall coefficient:

R, = Cugky 'p.x (2.34)
where p_  is the resistivity of magnetic origin and C is a
constant determined by the phase shifts during the scattering

process:

C = -(5/7)gsiné,coss, T > T, (2.35)

5T Sin(253-62)5in62

¢ = -37¢

T <T, (2.36)
sin®s, ‘

where §; is the phase shift in the 1l=i channel (or in the
partiél wave with 1l=i) and g the Lande g-factor.

It should be emphasised here that, because of the
dependence on the phase shifts, the constant ¢ may not be all
that "constant" in a real system as different magnetic phases

may well have very different scattering potentials.
D Thermoelectric Power

2.8 Diffusion Thermoelectric Power

When a conductor is placed in a thermal gradient, the
electrons at the hot end of the conductor will acquire more
energy and will diffuse toward the cold end. Similarly, the

electrons at the cold end will diffuse toward the hot end.
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However, the diffusion rate is greater for the hot electrons
due to the larger velocities and therefore, such a diffusion
process will result in a net electron current. This current
will cause a charge build-up at the cold end and thereby
produce an electric field which opposes the further flow of
electrons, reaching a steady state. If we write this electric
field as E,, then the diffusion thermoelectric power S, can be
defined through the relation of E;, = S,;VI' where VI is the
temperature gradient. For a metal, there is the following
expression of S; derived by solving the Boltzmann transport

equations (Blatt et al, 1976):

7% k°T , §1nc (2.37)

Sa= 7 ()«

where ¢ is the conductivity and ¢, is the Fermi energy. For a
simple m2tal, the logarithmic derivative of (2.37) takes the
value of 3/¢, so the diffusion thermoelectric power is linear
in temperature. Electron diffusion is only one of the
mechanisms which give rise to thermal electricity, as we will
see later. The phenomenon in general is called the Seebeck

effect (Blatt et al, 1976).

2.9 Phonon and Magnon Drag Thermoelectric Power
As a result of the thermal gradient, a phonon current
transporting the heat should be also present. An electron

within the metal will be more likely to absorb a phonon
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travelling from the hot end to the cold end. Therefore, the
electron distribution will tend to absorb the phonon momentum
in the -V direction and will be "dragged" along by the phonon
current as in viscous flow. Consequently, electrons tend to
pile up at the cold end, generating a thermoelectric field in
addition to the one we just discussed. The magnitude and
temperature dependence of this phonon-drag thermopower,
denoted as Sg, may be estimated as follows: Consider an
acoustic wave propagating along the x direction through an
isotropic medium <containing sound-absorbing particles
(electrons;. The phonon pressure (similar to radiation
pressure) is related to the decay of phonon energy by p, =-
(dus/dx) (Blatt et al, 1976). In a steady state this force must
be balanced by the opposing electric force F, = -n_eE, where n,
is the electron density. Replacing the energy density of
phonons by the specific heat per unit volume C,, one obtains
du/dx = C,(dT/dx). Hence we have:

E, ® (Cy/n,e) (dT/dx) (2.38)
and hence the corresponding thermopower:

§4 = Cy/n.e (2.39)
As the phonon specific heat is proportional to T3 at low
temperatures and T at high temperatures, we expect the phonon
drag thermopower to follow the same temperature dependence:
S o« T3 T<<8, (2.40)

p

S, = T T>>8, (2.41)

By the same token, magnon drag should also generate a

corresponding contribution to the thermopower in a way
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analogous to the phonon-drag thermcpower. That is:

s, = C/ne (2.42)
where C_  is the magnon specific heat. At low temperatures, Cj
varies as T2 for a ferromagnet (FM) and T for an
antiferromagnet (AF), we therefore expect the following

behaviour for magnon-drag thermopower at low temperatures:

s, « T (FM) (2.43)
s, « T3 (AF) (2.44)
E specific Heat

2.10 Low-Temperature Specific Heat of Metals

The specific heat of a normal metal usually contains
a contribution from free charge carriers which is linear in
temperature and a contribution from phonons which rises as the
cube of the temperature for temperatures well below the Debye
temperature 6,:

c (T) = yT + BT (2.45)

If ¢ is the molar specific heat then y value is given by

+]
(Grimvall, 1981,

_ TNy m” (2.46)

12 (372n)
where N, is the Avogadro's constant, n is the density of
electrons and m° is the effective mass of the electrons, and
the g value is related to the Debye temperature 8,:
g = 19416} (2.47)

As a common practice, the specific heat data are often



29

analyzed by plotting cp/T against T to extrapolate y and §
which in turn gives the Debye temperature. The y value is of
importance since it can provide information about the
effective mass of the conduction electrons. The linear
temperature dependence of the electronic contribution to the
specific heat comes about because only those electrons within
k;,T of the Fermi energy can be thermally excited at
temperature T; each of them has thermal energy ~k,T, so the
total thermal energy of the electrons involved is proportional
to T?. The specific heat is defined as the temperature
derivative of the thermal energy, hence the specific heat of
this origin should be linear in T. For the phonon part of the
specific heat, we expect a cubic term of T because the number
of phonons thermally excited at temperature T is proportional
to T3, and each phonon has thermal energy of k,T so the total
thermal energy of phonons invelved is proportional to T*. For
magnetic metals, contributions of magnetic origin will add

additional terms to the expression of (2.45).



CHAPTER 3

EXPERIMENTAL TECHNIQUES

3.1 Electrical Transport Measurements

The station used for transport measurements consists
of a helium cryostat placed in an electromagnet or a
superconducting magnet, a sample probe with a vacuum jacket
and a PC-computer controlled data acquisition system. A
scheratic diagram of the transport station with electromagnet
is shown in Figure 3.1.

The water-cooled electromagnet is capable of producing
a magnetic field up to 1.6 Tesla with stability for many
hours. It can be either changed continuously or varied
discretely. A coil positioned between the pole pieces of the
magnet provides neaztive feedback for the current control unit
to stabilize the field. A Rawson Rotating Gaussmeter is used
to determine the field strength. The magnet can also be
rotated by angles up to 360° which is essential for the Hall
effect measurements.

The superconducting magnet is the solenoid type
manufactured by Oxford Instruments, and 1is capable of
producing axial magnetic field up to 8.5 Tesla. A stable HP-

6260B DC power supply is used to energize the magnet. The

30



Figure 3.1

Block diagram of the Electrical Transport Measurement Station.
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field strength is determined through the pre-calibrated
field/current ratio of 0.117 Tesla/Amps.

The sample probe used for the resistivity and Hall
effect measurements consists of a brass top plate, a sample
chamber with vacuum jacket (see Figure 3.2), two pumping lines
and a helium transfer tube which also serves as the main
support of the entire probe. At the bottom of the probe, the
pumping lines terminate into two separated cavities: one is
the sample chamber enclosed by a brass can while the other is
a vacuum chamber enclosed by a stainless steel can, which
surrounds the brass can. The sample chamber and the vacuum
jacket are each sealed with six small screws and an indium O-
ring. The vacuum jacket (the space in between the cans) can be
pumped to provide a vacuum space. Such a vacuum space is
essential to isolate the sample chamber from the surrounding
liquid helium and to allow a better control of the
temperature. Inside the chamber, there is a plate-like brass
sample holder which is thermally isolated from the rest of the
probe by a piece of kel-F rod. The sample is placed on the
flat face of the brass plate while the thermometers are buried
inside the plate. Such a configuration provides excellent
thermal contact between the thermometers and the sample. The
temperature is varied by a heater wound on the ocutside of the
inner can, and is monitored by calibrated carbon glass and
platinum resistor thermometers. The sample chamber is

normally pressured with 5 to 10 psi (gauge) helium gas to



Figure 3.2

Schematic diagram of the probe for transport measurements.
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ensure uniform heating. The wires for electrical connections
are extended out of the chamber through a thin stainless steel
tube with both ends sealed with epoxy. Similarly, the wires
pass through the top plate in a sealed tube and are finally
joined to the connection box mounted on the top plate. All the
wires from the sample chamber run continuously to the
connection box to minimize stray and thermal voltage. The two
pumping lines are regulated by two valves also mounted on the
top plate. Each valve is connected to a copper pipe which can
be connected to either a vacuum pump or a helium gas cylinder.

The probe used for thermopower measurements is very
similar to the one described above, except that the sample
holder inside the chamber this time 1s made of kel-F, a
reasonable thermal insulator which allows the establishing of
a temperature gradient with ease.

The helium cryostat consists of a cryogenics Dewar
with evacuated vacuum jackets and a sleeve for liquid
nitrogen. The inner chamber is sealed with a rubber O-ring to
the bottom of the probe's brass top plate, at the cop of the
cryostat. An outlet regulated with valves is provided for
gaseous helium which boils off during the experiment.

The wires from the connection box mounted on the top
of the brass plate of the probe are connected to the central
connection box mounted close to the PC computer station
through well shielded cables. They are finally jointed to

either the HP-59306A Relay Actuator (for current reversal), DC
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current source, the Keithley Model 705 Scanner, or the
Keithley 181 nanovoltmeter.

DC current for the transport measurements and
thermometers is supplied by two independent battery driven
current sources which can be adjusted in the range of 0.1pA-
100mA. For resistivity measurement, the current direction is
switched after each measurement using the HP Relay Actuator
and the sample voltage is monitored by the Keithley 181
nanovoltmeter. The polarity reversal and the subsequent
averaging procedure are needed to eliminate the offset voltage
and other spurious signals.

The resistivity of the samples is measured with the
conventional four-probe method: two for applying the DC
current and two for measuring the voltage. The samples used
are typically of the dimensions of 5x1.5x0.2mm°, and all the
electrical contacts are made of silver paste with a typical
contact resistance of 2~3 . The current values used are
typically in the range of 5-20 mA. As mentioned above,
reversal of the current direction was carried out to eliminate
spurious effects.

The Hall voltage is also measured in the four-probe
configuration with two for the DC current and two for the Hall
voltage. The standard procedure for Hall voltage measurement
is as follows: at a given temperature, a voltage reading is
taken first with the field applied perpendicular to the flat

face of the sample, then a second voltage is taken after
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reversing the magnetic field. The Hall voltage is calculated
as:

V, = 1/2[V(H)~V(-H)] (3.1)
Such a procedure is necessary to eliminate the offset signal
resulting from the mismatch of the two Hall contacts.

The thermcelectric power (or thermopower for short)
was measured by a differential method, that is, a small
temperature gradient across the sample (AT) was generated and
the corresponding thermal voltage (AV) was measured. The
reference used was high purity thick lead wire which has well
defined absolute thermopower. The thick lead wires were first
slightly flattened, then mechanically pressed against the two
ends of the sample with plastic screws to form the electrical
contacts (junctions). A small heater was placed under one of
the lead-sample junctions. The thermometers were embedded in
small brass blocks which were then thermally attached to the
flat lead wires at each of the two junctions. The other two
ends of the lead wires were brought to and thermally attached
onto a brass block far away from the sample. Two thin copper
wires were then electrically joined to the two ends of the
lead wires on this brass block and run through the top plate
of the probe for thermal voltage measurements. The measured
signal contains both the thermal voltage of the lead and that
of the sample, that is to say: if T is the temperature at the
cold end of the sample and T+AT the temperature at the hot

end, then the voltage of the sample is -SAT while that of the
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lead wire is S,AT, assuming that S is the thermopower of the
sample and S, the one of Pb. The total voltage measured is
then:

AV = (5, - S)AT (3.2)
From this expression, one can easily calculate the thermopower

of the sample:

S = 5, = AV/AT (3.3)

3.2 DC Susceptibility Measurements

The susceptibility is measured with a Quantum Design
SQUID magnetometer. A schematic block diagram of the SQUID
magnetometer is shown in Figure 3.3. The sample is mounted on
a travelling rod in a cryostat. A superconducting magnet
generates fields up to 5 Tesla along the direction of the rod,
referred to as the axial direction. The temperature of the
inner chamber is stabilized through a helium exchange gas.
Three superconducting coils, wound about the rod in the axial
direction are connected together. The central coil is counter-
wound withi respect to the coils above and below and has twice
as many turns. At a given temperature, a stepping motor
controlling the axial motion (up and down) of the sample rod
is activated. The axial magnetic field generated by the
superconducting magnet creates an axial magnetic moment in the
sample. Each single axial step of the sample induces a current
pulse in the coils according to the position of the sample in
the coil configuration. The signal is inductively coupled to

a SQUID and accurately measured. A complete trip of the sample



Figure 3.3

Block diagram of the SQUID magnetometer used for the magnetic

susceptibility measurements.
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through the coil configuration will generate a graph of signal
versus sample position. The normalized sguare root of the sum
of squares of these data points is proportional to the
magnetization of the sample.

The entire unit is highly automatic, the controls of
temperature, field, the motion of sample and data acquisition
are all done automatically by a microcomputer based control
unit. The system is periodically calibrated with a standard
palladium sample to ensure the accuracy of absolute

measurements.

3.3 B8pecific Heat Measurements

The specific heat was measured by A. Le Dawson of
McGill uriversity by a conventional thermal relaxation method
with an apparatus similar to the one described by Bachmann et
al. (Bachmann et al, 1972). A block diagram of the apparatus
is shown in Figure 3.4. In the set-up, the sample is thermally
attached onto one face of a small sapphire slide which serves
as a sample holder. On the other side of the slide, there is
a thin layer of evaporated constantan film (~1kfl) which was
cut into two halves with one of them serving as a heater. On
the other half, an Au+0.07%Fe--Chromel thermocouple was
attached with silver epoxy which measures the temperature of
the sample. The sample and the addenda (everything else
including the sample holder, heater, thermocouple and epoxies)

were then thermally linked to a large copper block through the



Figure 3.4

Block diagram of the specific heat measurement apparatus.
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thermocouple wires and the current 1leads of the heater
(constantan film). The copper block serves as a heat reservoir
on which the reference junction of the Au+0.07%Fe--Chromel
thermocouple was also attached (see Figure 3.4 for more
details).

The basic principles involved are outlined as follows:
Suppose that the heat reservoir (copper block) is stabilized
at a temperature T, and the sample and the addenda are at a
temperature T=T +AT with the heater power on. The total
specifiec heat of the sample and the addenda is simply C =

dQ/dT which can also be written as:

do/dt

C = =
gr/at

(3.4)
where dQ/dt and dT/dt are the time-derivatives of the heat
transfer and temperature. For small AT, the power leaking out
of the sample and the addenda through all the links can be
approximated as K(T,)AT where K(T ) is the thermal conductivity
of all the thermal 1links at temperature T,. The time-
derivative of Q is then given by:
do/dt = P - K(T,)AT (3.5)

where P is the power of the heater. 1If the power of the
heater is turned off suddenly at time t=0, then from (3.5),
one obtains 4Q/dt=-KAT. Noting that dT/dt=dAT/dt, one finally

arrives at the following expression for the total specific

heat C:
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-K(T,) AT

- (3.6)
—dAT/4t

Assuming the value of C is constant over the temperature range
AT, one finally has:
AT(t) = AT(0)exp(-t/7) (3.8)
C = K(T,) T (3.9)
Thus measuring K and 7 constitutes a measurement of C.
The relaxation time T can be measured by measuring
AT(t) as a fuction of time, and the value of K of a given
material (say copper) is known. To actually get the specific
heat of the sample, a calibrating run without the sample is
needed to determine the specific heat of the addenda which is
later subtracted from the total specific heat C to get the

sample specific heat.



CHAPTER 4

UN,Si,
4.1 Introduction

UNi,Si, crystallizes in the ThCr,Si, type of crystal
structure mentioned in Chapter 1 and has been studied
previously by neutron diffraction and magnetization
measurements. Neutron-diffraction studies by Chelmicki et al.
(Chelmicki et al, 1985) showed that UNi,Si, undergoes a
magnetic phase transition at Tx=103 K to a collinear
antiferromagnetically ordered state (AFl). At 53 K, the system
undergoes a second phase transition into a commensurate
longitudinal spin density wave (LSDW) state. The magnetic
moments in this system are associated with the uranium atoms
and are aligned along the c axis in the ordered states. In
contrast, magnetization studies (Chelmicki et al, 1985;
McElfresh et al, 1990) showed ferromagnetic ordering below 98
K and no evidence of a phase transition at 53 K. More
recently, neutron diffraction studies of single crystal
samples by Lin et al. (Lin et al, 1991) confirmed the presence
of the two magnetically ordered phases and, in addition,
established a third magnetically ordered phase, between 103 K
and 123 X, which is an incommensurate longitudinal spin

density wave state. The studies also revealed that the
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longitudinal spin density wave state below 53 K is accompanied
by a net ferromagnetic moment of 1.0 % 0.3 i, per U-atom along
the c axis. The commensurate LSDW state has a periodicity of
3¢ and the incommensurate one has a periodicity slightly
smaller than 4c, where c¢ is the 1lattice parameter of the

tetragonal ¢ axis (Lin et al, 1991).

4.2 B8ample Preparation

The single crystal of UNi,Si, used in this study was
prepared from U, Ni, and Si ingots which were premelted,
cleaned where applicable, and weighed. They were reacted and
homogenized in an inert gas atmosphere in an arc¢ furnace with
a water-cooled hearth. The single crystal was grown by the
Czochalski technique in a Reed-type triarc furnace which
had been modified to include a water-cooled hearth and a seed
rod. Argon gettered with titanium was used at 100 kPa as the
chamber atmosphere. The samples for various measurements were
cut parallel and perpendicular to the tetragonal ¢ axis with
a spark cutter. X-ray measurements established that the
samples were single crystals with lattice parameters a=3.96 A

and ¢c=9.51 A.

4.3 Magnetic Susceptibility
The magnetic susceptibility (M/H) has been measured in
a magnetic field of 1.6 Tesla with the fields applied parallel

(x,) and perpendicular (x,) to the c axis. The result is shown
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in Figure 4.1. The susceptibility is very anisotropic, with %,
exceeding x, by a factor of 3 at room temperature and 54 at 5

K.

From room temperature down to about 130 K, the
susceptibility obeys the Curie-Weiss law, as can be seen from
the temperature dependence of the inverse susceptibility shown
in Figure 4.2. A best fit for temperatures above 130 K with
the expression

X=C/ (T-8,) (4.1)
yields 8, =-530 K and p,~3.55 p,; for x,, 6,=-15 K and u,=3.67
g for x,. The Curie-Weiss temperature 0., is very anisotropic
indicating a strong confinement of moments along the ¢ axis.
The susceptibility starts to deviate from the Curie-Weiss
behaviocur at about 130 K where the system is about to enter a
magnetically ordered phase (incommensurate LSDW) which sets in
at 123 K. However, no sharp feature is observed in the
vicinity of the 123 K transition.

At the Néel temperature T, =103 K, a sharp peak
characteristic of an antiferromagnetic transition is observed
in ¥x,. A similar feature is also present in x, but the
magnitude is much too small to be seen on the scale of Figure
4.1.

As the temperature is further lowered, the onset of
ferromagnetism occurs at about 78 K for H|c. The
ferromagnetism co-exists with the commensurate LSDW state (Lin

et al. 1991); the transition temperature of this magnetic



Figure 4.1

Temperature dependence of the magnetic susceptibility of

UNi,Si, measured in a field of 1.6 Tesla. a: Hfc: O: Hlc.
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Figure 4.2

Temperature dependence of the inverse susceptibility of UNi,Si,

measured in a field of 1.6 Tesla. a: H|e; O: Hlc.
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phase observed by neutron scattering is 53 K. The apparent
increase of the transition temperature here is due to the 1.6
Tesla magnetic field applied along the ¢ axis. Detailed
discussion of the field dependence of this transition
temperature will be postponed to section 4.5 of this chapter.
The estimated ferromagnetic moment per uranium atom at 5 K
with H=1.6 Tesla is 0.62 u; which is in reasonable agreement
with the neutron diffraction result (Lin et al. 1991) of 1.0
+ 0.3 p;. The susceptibility perpendicular to the c axis (y,),
however, shows very different behaviour. It starts to increase
at about 57 X and reaches a maximum of 2.0x10"> (emu mol’') at
about 40 K. Below 20 K, the susceptibility jx, drops down to
3.9%x10° (emu mol’') and remains at this value at 1low

temperatures.

4.4 Electrical Resistivity

The dc resistivity of UNi,Si,, both parallel (p,) and
perpendicular (p,) to the tetragonal ¢ axis, has been measured
from 4.2 K to 300 K. The result is shown in Figqure 4.3. The
resistivity is very anisotropic. The room-temperature value of
the resistivity is 226 pQ cm for g, and is 156 uQl cm for p,.
At 4.2 K, the c~axis resistivity p, decreases to 69 ufl cm and
the value of p, drops to 20 uft cm. The temperature coefficient
dp/dT is positive at all temperatures for p, but is negative
for p, down to 150 K. There are several distinct features that

are associated with the three magnetic phase transitions: As



Figure 4.3

Temperature dependence of the resistivity of UNi,5i, with the
current parallel and perpendicular to the c axis. The dotted

line was taken with decreasing temperature to show the thermal

hysteresis.
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the temperature 1is lowered, a drastic decrease 1in the
resistivity alory both directions occurs at about 123 XK. A
second feature occurs at about 103 K where the slope of p,
becomes much steeper while the resistivity perpendicular to
the c axis p; develops a knee. As the temperature is lowered
further, a local maximum occurs in p, between 56 and 35 K,
while the resistivity p, 1is very smooth in the same
temperature range. The local maximum in p, shows a temperature
hysteresis of 4.5 K, as shown Figure 4.3.

The temperature dependence of the resistivity above
123 K is comparatively weak. Such a kehaviour indicates that
electron-phonon scattering does not dominate the contributions
to the resistivity in this system and scattering of magnetic
origins is more important. If we take the linear variation of
p, above 200 K as coming from phonon scattering, then at room
temperature the phonon contribution only makes up about 14% of
the total resistivity p,. The resistivity p, at temperatures
above 150 K has a negative slope and appears to be
characteristic of the Kondo behaviour. A best fit with the
expression

p = p, + AT - BInT (4.2)

however, requires a negative value of A which is unphysical as
it implies a negative phonon contribution to the resistivity.
Such a result indicates that the resistivity 1in this
temperature range is in a broad cross-over region from a Kondo

behaviour at high temperatures to a non-Kondo behaviour
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region, and one would need to extend the measurement to much
higher temperatures to have a meaningful fit.

The resistivity at low temperatures is best described
by a gapped spin wave term (Andersen et al, 1879) plus a T2
term:

p = p, + AT? + BT(1+2T/4)exp(-4/T) (4.3)
where p, is the residual resistivity, A the energy gap in the
spin wave (magnon) spectrum, and A and B are constants. The
best fit of the resistivity with this model is shown in Figure
4.4 for the temperature range of 4.2-45 K. The best-fit
parameters are summarized in Table 4.1. Because of the large
magnetic anisotropy in the system, as has been demonstrated by
the magnetic susceptibility (section 4.3) and the neutron
diffraction measurements (Lin et al, 1991), it is almost
certain that an energy gap should be present in the spin-wave
excitation (magnon) spectrum (Collins, 1991). Therefore it is
not surprising that the gapped spin wave model works as well
as it does. Note that the gap values A are rather comparable
with those of URu,Si, (Palstra et al, 1986; Dawson et al, 1989)
obtained through the same procedure. The ™ term is needed to
have a good fit, particularly at the lowest temperatures (T<10
K) where the resistivity is best approximated by a T2
temperature dependence. Palstra et al. and Dawson et al. also
found it necessary to include a T? term in order to better fit
the resistivity of URu,Si, at low temperatures. These authors

have attributed this T° term to a Fermi liquid behaviour



Figure 4.4

Resistivity of UNiSi, in the temperature range of 4.2-45 K.

(a) Ifjc: (b) ILc. The solid line is the best fit using the
expression of p = p, + AT? + BT(1+2T/A)exp(-4/T). The best-fit
parameters are listed in Table 4.1. Some data points were

omitted for clarity.
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Temp. P, A B A

Range (s cm) | (49 cm K?) (2Q cm K1) (K)
Ijc | 4.2-45K 70.03 1.16x%1073 1.034 1.00.4
Iic | 4.2=-45K 19.67 5.89%10™ 0.375 102.1

Table 4.1. Best-fit parameters obtained from fitting the low
temperature resistivity of UNi,Si, with the expression of p =

p, + AT? + BT(1+2T/A)exp(-A/T).
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(Pines and Nozieres, 1966). Unfortunately, Fermi liquid
pehaviour is not the only one which gives rise to a T?
dependence of the resistivity, and further more, both the
theoretical prediction (Ashcroft and Mermin, 1976; Dugdale,
1977) and most of the reported experimental evidence (for
reviews, see Steward, 1984; Coles, 1987; Ott, 1987) seem to
suggest that the T? dependence should only be seen in very
pure samples at extremely 1low temperatures (below 1K),
although a higher upper bound (15 K) has been reported
recently (Thompson et al, 1987). Therefore, it is still
unclear up to what upper temperature the Fermi liquid
behaviour holds and if it is indeed the mechanism behind the
T2 term so often cbserved in these heavy fermion compounds and
Kondo lattice systems above liquid helium temperatures.

The strongest anisotropy of the resistivity comes from
the behaviour in the vicinity of the 53 K phase transition
where, a local maximum is seen in p, while p, remains very
smooth. This type of resistivity anomaly at the magnetic phase
transition has been observed in several systems including Cr,
a-Mn, Dy (Meaden, 1965) and URu,Si, (Palstra et al, 1986;
Dawson et al, 1989). In all the cases, the origin of the
anomalous increase has been attributed to gapping of the Fermi
surface by the formation of the magnetic Brillouin zone, as
has been discussed in section 2.5 of Chapter 2. Because of the
drastic change of the magnetic periodicity along the c axis at

T.=53 K, gapping of the Fermi surface may well be the case in
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UNi,Si,. However, the situation here is somewhat different:
the phase transition at 53 K is of first order (Lin et al,
1991), as is also indicated by the thermal hysteresis, and the
term due to critical scattering should be absent in the model
discussed in section 2.5 of Chapter 2. Furthermore, one can no
longer use the critical approach to handle the temperature
dependence of the energy gap A (which in turn gives rise to
the T-dependence of the gap resistivity). In fact, for a first
order phase transition, the energy gap should be a step
function of temperature and goes from zero above T, to a
finite value A below T_. In a real system, such a step
function may be broadened, as in the case of UNi,Si, (Lin et
al, 1991). Despite all these differences, the anomalous
increase of the resistivity p, in the vicinity of 53 K can
still be qualitatively explained by a broadened step function
of the energy gap, as is depicted in Figure 4.5. Such a
description is also consistent with the Hall effect result

which will be discussed later in section 4.7.

4.5 Field Dependence of The Phase Transition Temperatures
In order to shed new light on the nature of these
phase transitions, resistivity measurements under magnetic
fields have been carried out. It is found that the two lower
phase transition temperatures can change significantly when a
magnetic field is applied along the ¢ axis. No such change of

the 123 K phase transition is seen within the experimental



Figure 4.5

Schematic diagram showing how the combined contribution of the
resistivity from magnon scattering and gapping of the Fermi
surface can generate the anomaly seen in p,. Note that %P has

been shifted upward by an amount of g(T ) for clarity.
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uncertainty (~ 2 K in a field of 3.5 Tesla). In Figure 4.6,
the resistivity p, taken at 0 and 2.5 Tesla for a limited
temperature range is plotted. One can note immediately that
the anomaly associated with the 53 K transition in zero field
moves up by 20 K in temperature in a 2.5 Tesla field. One also
notices that the feature at 103 K in zero field moves down to
lower temperature in an applied field. In contrast, the
feature at 123 K remains virtually unchanged. A quantitative
and also more sensitive way of describing these changes is to
identify the features of the phase transitions in the
temperature derivative of the resistivity dp,/dT. The low
temperature phase transition is identified as the negative
minimum in dp,/dT, the antiferromagnetic transition Iis
identified as the peak in dp,/dT, and the 123 K transition is
identified as the shoulder in dp,/dT, as indicated by the
three arrows in Figure 4.7. In doing so, a temperature-field
phase diagram is mapped out and is shown in Figure 4.8. The
highest field at which the two low temperature phase
transitions can still be identified is 3.5 Tesla. At still
higher field, these two features are all washed out. Similar
changes in the transition temperatures with magnetic field
have also been observed independently by Lin et al. (Lin et
al, 1990) with neutron scattering measurements up to 3 Tesla.
In addition, they were able to identify a splitting of the 103
K phase above 2.5 Tesla, as shown by the dashed line in

Figure 4.8.



Figure 4.6

Resistivity.of UNi,Si, measured with I|c in a magnetic field

applied along the c axis. Solid line: H=0 Tesla; Dotted

line: H=2.5 Tesla.
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Figure 4.7

Derivative of resistivity of UNi,Si, measured in a magnetic

field. I|c:; H|c. Solid line: H=0 Tesla; Dotted line: H=2.5

Tesla.
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Figure 4.8

Phase diagram of UNi,Si, mapped out through monitoring the
field dependence of the transition temperatures. The dotted
- 1:ne is the result of neutron scattering measurements of Lin
et al. (Lin et al, 1990). The triangle region on the left of

the dotted line has the same LSDW (C) phase.
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The fact that the transitions are not seen in the
resistivity measurements above 3.5 Tesla indicates that the
LSDW«—AF1 transitions do not occur above 3.5 Tesla and the
lines around the AF1l region are connected in Figure 4.8. The
increase of the LSDW«—AFl transition temperature with the
applied magnetic field is expected, as the LSDW state gains
certain energy by having the net moments aligned along the
direction of the applied field. Similarly, such an argument
can also be applied to explain the increase of the

LSDW(C)+—LSDW(I) transition temperature (see the dashed line).

4.6 Thermoelectric Power

The temperature dependence of the thermoelectric power
of UNi,Si, parallel (S,) and perpendicular (S,) to the
tetragonal c axis is shown in Figure 4.9. The thermoelectric
power 1is also anisotropic, with a larger magnitude
perpendicular to the c axis. Above 123 K, both S, and S, are
weakly temperature dependent and the ratio of S./S, is in the
range of 2 - 4. The thermoelectric power is negative from room
temperature down to about 20 K, and becomes positive at
temperatures below 20 K. The positive thermoelectric power
reaches a shallow but notable maximum at about 10 K and then
starts to diminish as the temperature is lowered further. For
the thermoelectric power perpendicular to the c axis, there is
a broad peak centred at approximately 94 K. However, the only

sharp feature associated with the phase transitions is the



Figure 4.9

Temperature dependence of the thermoelectric power of UNi,Si,.

a: VT|c; O: VTlc.
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sudden increase of the magnitude at about 123 K. The features
associated with the two phase transitions at lower
temperatures, particularly the one at 53 K are rather weak
compared with those observed in S,. In fact, a feature as
small as the one at 53 K in S. can easily come from a small (-~
5 degrees) sample mis-alignment. Thus, the behaviour of the
thermoelectric power is in good correspondence with that of
the resistivity in which p, shows distinct features at all
three phase transitions while p, shows no feature at 53 K.
The fact that the thermoelectric power S, shows a very
weak feature at 53 K transition together with the fact that
the resistivity p, shows no feature at 53 K, suggest that the
transport electrons moving in the basal plane (.1c) are rather
insensitive to the phase transition at 53 K. On the other
hand, both the resistivity and thermopower parallel tc the ¢
axis show strong features at the 123 K and 103 K transitions
as well as the 53 K transition. This may also be understood
within the frame of a modified Fermi surface below 53 K
already discussed in section 4.4, as such a modification can

affect all of the transport properties.

4.7 Hall Bffect

Figure 4.10 presents the temperature dependence of the
Hall coefficient measured in a field of 1.6 Tesla. As in many
of the Kondo lattice and heavy fermion compounds, the Hall

coefficient of UNi,Si, is positive except at its minimum where



Figure 4.10

Temperature dependence of the Hall coefficient of UNi,Si,

measured in a field of 1.6 Tesla. a: Hl|c, Ilc. O: Hlc, Ifec.
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small negative values are observed. Agaln, the behaviour of
the Hall coefficient is very anisotropic in both magnitude and
the temperature dependence.

We first focus on the Hall coefficient measured with
H|lc and I.c. The Hall coefficient gradually increases upon
cooling from room temperature down to about 130 K. In the
region of the incommensurate LSDW phase, a small dip in the
Hall coefficient is developed. Between 103 and 56 K (the AFl
state), a giant U-shape dip is observed which yields sharp
peaks at 103 and 56 K, respectively. Below 56 K, the Hall
coefficient decreases monotonically. The Hall efficient
measured with Hic and I|c also shows a gradual increase with
decreasing temperature down to about 130 K. Below 130 K, the
Hall coefficient falls steadily to small values.

With the presence of skew scattering, the Hall
coefficient can be written as:

R, = R%, +R%p,(T)x(T) (4.4)
where R% is the ordinary Hall coefficient, and R® is the pre-
factor of the skew scattering term and is related to phase
shifts. In order to carry out a best fit of the Hall
coefficient with the expression (4.4), one needs to know the
magnetic part of the resistivity p,(T). An ideal approach
would be to approximate the phonon part of the resistivity
with the resistivity of ThNi,si,, as such a compound is
isostructural with UNi,Si, and yet thorium contains no magnetic

moment. However, since the phonon contribution to the
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resistivity is small (14% as is estimated in section 4.3), it
is a reasonable first approximation to replace p,(T) with the
total resistivity. As we do not know how much of the residual
resistivity p, is due to magnetic scattering, we simply let p,
vary and be determined by the best fit. The best fit obtained
is shown in Figure 4.11a as the solid line and the best-fit
parameters are shown in Table 4.2.

For the case Hic and I[c, although the best fit and
the experimental result has some discrepancies in the minimum
region and in the region between 103 and 200 K, the overall
features of the measured Hall coefficient are well accounted
for by the theoretical model with single parameters R° and R°®.
For the case Hic and Ilc, however, the experimental result
cannot be satisfactorily accounted for by the model with fixed
parameters RS° and R® over the whole temperature range.
Instead, it has to be broken into two separate regions, above
and below T =53 K, to have a satisfactory fit of the data. The
best fit so carried out is shown as the solid line in Figure
4.11b and the best-fit parameters are summarized in Table 4.2.
As has been discussed in section 2.7 of Chapter 2, the sign
and value of R® depends sensitively on the phase shifts §.. It
is therefore not surprising that R® changes both its sign and
value at the 53 K transition, as the form of the scattering
potentials for transport electrons along the c axis may well
be very different in the two ordered phases. On the other

hand, the very different values of R below and above T., seem



Figure 4.11

Temperature dependence of the Hall coefficient measured in a
field of 1.6 Tesla. (a): H|c and Ilc; (b): Hlc and I|c. The
solid line is the best fit using the expression of R, = RS’ +

R°pyX. The best-fit parameters are summarized in Table 4.2.
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Temp. P, R,® R®

Range (u cm) | (1073 em’/C) (103f‘l'_""::'._z.;_-fJ
Hic,Iic | 4.2-300K 4.5 -0.03%0.03 1.4%0.1
Hic,Ilc [4.2-53K 3.5 0.10%0.01 -0.30+0.05
Hic,Ic | 53-300K 3.5 -0.05+0.01 1.59+0.04

Table 4.2. Parameters obtained through the best-fitting
procedure of the Hall coefficient with the expression of R, =

RS° + Rp.x.
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to imply a modification of the Fermi surface which is

consistent with the anomalous increase in p; just below T..

4.8 BSpecific Heat

The specific heat of UNi,Si, has been measured from 1.5
K to 29 K. The result is plotted as C,/T versus T? in Figure
4.12. For T < 10 K, the data are fitted with the expression

/T =y, + BT (4.5)

where y, is the coefficient of the electronic term and 8 the
coefficient of the cubic term (see inset of Figure 4.14). The
fit yields y, = 21.8 + 0.1 nJ mol™ K? and S =0.0390 * 0.0004
mJ mol™! K. The magnon contribution to the specific heat is
expected to have an exponential behaviour when an energy gap
is present in the magnon spectrum. However, such a behaviour
is not observed in the specific heat which suggests that the
magnon contribution is not significant at low temperatures.
Assuming that the cubic term is a phonon contribution, a Debye
temperature of 6,=370 K is deduced from the 8 wvalue . The
small y, value extrapolated suggests a rather small mass
enhancement in this system, hence one can conclude that UNi,Si,

is not a heavy Fermion material.



Figure 4.12

Specific heat divided by temperature (C/T) versus temperature

squared (T?) for UNi,Si,. The inset shows the linear fit of the

low temperature part (1.5-10 K}.
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CHAPTER 5
UNi,Ge,

5.1 Intrcduction

UNi,Ge, has the ThCr,Si, type of structure and has been
studied previously by neutron diffraction, magnetization and
resistivity measurements. The neutron diffraction studies
(Chelmicki et al, 1985) concluded that UNiGe, is a simple
body centred antiferromagnet of collinear AFl type below T,=74
K. The moments are associated with the uranium atoms and are
aligned along the ¢ axis in the ordered state. The
magnetization measurements by both Chelmicki et al. and
Dirkmaat show the typical ©behaviour of a simple
antiferromagnet, although the latter has a slightly higher
Néel temperature (77K). In addition to the magnetization
measurement, Dirkmaat (Dirkmaat, 1989) also measured the
resistivity of UNi,Ge, which shows a nearly temperature-
independent behaviour above T, and fast decrease below T, - In
fact, the decrease was found to follow a T? dependence below
30 K. These measurements were all performed on
polycrystalline samples and no detailed study of the
anisotropies of the physical properties in this system was

reported up to this point.

71
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5.2 Sample Preparation

The single crystal of UNi,Ge, used in this study was
prepared from U, Ni, and Ge ingots with exactly the same
procedures for preparing single-crystal UNi,Si, described in
section 4.2 of Chapter 4. The samples were cut parallel and
perpendicular to the tetragonal ¢ axis with a spark cutter. X-
ray measurements indicated that the samples were single

crystals with lattice parameters of a=4.0% A and c=9.47 A.

5.3 Magnetic Susceptibility

Figure 5.1 shows the temperature dependence of the
magnetic susceptibility (M/H) measured in a field of 1.5 Tesla
with the fields applied parallel (x,) and perpendicular (yx,)
to the c axis. The ratio of yx,/x, is 1.2 at room temperature
and is about 0.3 at 5 K. The susceptibility is curie-Weiss
like at higher temperatures, as can be seen from the inverse

susceptibility shown in Figure 5.2. A best fit above 85 K with

the expression

%=C/ (T-8,) (5.1)

yields p,, =3.05 Bgr 84==2.3 K for x,, and u,,~=3.09 p,, 6,=-79
K for x,. The large anisotropy in the Curie-Weiss temperature
Bw suggests a strong confinement of the moments along the ¢
axis. The susceptibility starts to deviate from the Curie-
Weiss behaviour at about 85 K. At about 77 K, a peak
characteristic of an antiferromagnetic phase transition occurs

in x, while a change of slope in yx, is seen. The shoulders at



Figure 5.1

Temperature dependence of the magnetic susceptibility of

UNi,Ge, measured in a field of 1.5 Tesla. a: Hfec; 0O: Hlc.



2.0 LI 1 1 1 L L 1 1 I b

—
O
1
R
-
-4

x (107 emu mol™")

O
U

1 I

-t
n
i
aﬂ
nﬂ
%Pbbp
D
I
l_
O

1 A 1 1 } L 1 L 1
0.0 0 100 200
TEMPERATURE (K)



Figure 5.2

Temperature dependence of the inverse susceptibility of UNi,Ge,

measured in a field of 1.5 Tesla. a: H|c:; O: Hlc.
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about 50 K are due to *he presence of a weak ferromagnetism
which sets in together with the antiferromagnetic ordering at
about 77 K.

The clear evidence of the weak ferromagnetism comes
from the hysteresis in the field dependence of the
magnetization at 5 K, as is shown in Figure S.3a. Figure 5.3b
shows the decay of the magnetization in zero magnetic field
(see figure caption for detail) with increasing temperature.
Such a behaviour also exists in the magnetization
perpendicular to the tetragonal ¢ axis. At 5 K, the
ferromagnetic moment perpendicular to the ¢ axis is about
twice as large as the one along the c axis.

The ferromagnetic component is very weak indeed. The
effective moment estimated at 5 K in a field of 1.5 Tesla is
only a few percent of a Bohr magneton per U atom. Such a
ferromagnetic moment is too small to be picked up by a neutron
scattering experiment in the presence of the large uranium
moments. This may explain why no ferromagnetism has been
reported in previous neutron work on powder samples. The
behaviour of the weak ferromagnetism is quite peculiar and
cannot be explained by a simple canted antiferromagnetic
structure, as such a structure does not give rise to the weak
ferromagnetism observed perpendicular to the ¢ axis. In fact,
the tetragonal structure of UNi,Ge, has the central inversion
symmetry which does not allow a canted antiferromagnetic

structure (Moriya 1963). Neither can it be explained by the



Figure 5.3

(a) Magnetic hysteresis of the magnetization of UNiGe,
measured at 5 K. The field is applied along the c axis.

(b} Decay of the magnetization of UNi,Ge, with increasing
temperature. The sample first was aligned with a 5 Tesla field
along the ¢ axis at 5 K. The moment was then measured along

the ¢ axis in a zero applied magnetic field.
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presence of any ferromagnetic impurity as the weak
ferromagnetism sets in together with the antiferromagnetic
ordering at the Néel temperature Ty- It is speculated that
some Kkind of imperfection of the sample is somehow responsible
for the weak ferromagnetism observed. However, detailed
knowledge of the crystal structure below the Néel temperature

is needed before one can proceed further.

5.4 Electrical Resistivity

The dc resistivity of UNi,Ge,, both parallel (p,) and
perpendicular (p,) to the c axis, has been measured from 4.2
to 300 K. The result is shown in Figure 5.4. Again, the
resistivity is very anisotropic. The room-temperature value of
the resistivity is 317 u0 cm for P, and is 178 un cm for p,.
At 4.2 K, the value of P, 1s 203 ufl cm and that of p, is only
7.8 pufl em. Similar to UNi,Si,, the temperature dependence of
the resistivity is relatively weak above the Néel temperature
Ty With a positive coefficient dp/dT for p, and a negative
coefficient for p,. Belcw the Néel temperature, the resistivity
p, decreases drastically with decreasing temperature while the
resistivity p, shows an anomalous increase just below the Néel
temperature Ty, reaching a giant maximum of 668 ufl cm at about
60 K, decreasing at lower temperatures.

The resistivity P, has the negative slope
characteristic of Kondo behaviour above the Néel temperature

T,. Between 125 and 300 K, p, can be fitted with the



Figure 5.4

Temperature dependence of the resistivity of UNi,Ge, with the

current parallel and perpendicular to the c axis.
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expression
p = p, + AT - BlnT (5.2)

for temperatures above 125 K, as is shown in Figure 5.5. The
best fit parameters obtained are: p_ =689 u cm, A=0.027 p{l cm
K' and B= 63.7 0 cm (1nK) '. The phonon resistivity at room
temperatur=s can be estimated from the value of A and is about
8 ufl cm. Assuming the variation in p, well above the Néel
temperature is due to electron-phonon scattering, as the spin-
disorder scattering resistivity saturates, one obtains an
estimated value of 14 pfl cm for the phonon resistivity at room
temperature. These numbers, although not to be taken too
literally, clearly indicate that electron-phonon scattering is
not the dominant scattering mechanism responsible for the
large resistivity in this systen.

Similar to the case of UNi,Si,, the resistivity of
UNiGe, at moderately low temperatures can be described by a
gapped spin-wave term plus a T? term:

p =p, + AT® + BT(1+2T/A)exp(-A/T) (5.3)

The best fit of the resistivity with this model is shown in
Figure 5.6. The best-fit parameters, together with the
temperature range of fitting, are summarized in Table 5.1. It
is worth noting that the gap values for UNi,Si, and UNiGe, are
all roughly around 100 K, indicating a similar magnetic
anisotropy in the two systems.

The most remarkable feature of the resistivity is

perhaps the giant maximum in p, below the Néel temperature.



Figure 5.5

Resistivity of UNiGe, with I|c in the temperature range of

100-300 K. The solid line is the best fit with the expression

of p p, + AT - BlnT. Some of the data points have been

removed for clarity.
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Figure 5.6

Resistivity of UNi,Ge, in the temperature range of 4.2-45 K.

(a) Ifc; (b) Ilc. The solid line is the best fit using the

expression of p = p_ + AT? + BT(1+2T/A)exp(-A/T). The best-fit

parameters are summarized in Table 5.1. Some of the data

points have been removed for clarity.
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Temp.

[ A B A

Range | (481 cm) (U cm K¢ | (un cm K1) (K)
Ilc 4.2=-45K 201 0.0753 14.06 95
I.c 4.2=-45K 7.6 0.0048 3.71 138

Table 5.1. Best-fit parameters obtained from fitting the low

temperature resistivity of UNi,Ge, with the expression of p

p, + AT? + BT(1+2T/A)exp(-A/T).
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This lind of resistivity maximum Jjust below the Néel
temperature has been seen in several systems including Cr, a-
Mn, Dy (Meaden, 1965), and URqui2 (Palstra et al, 1986; Dawson
et al, 1989). However, none of the above mentioned has the
huge magnitude of the maximum seen in UNi,Ge,. The theoretical
model used with some success in explaining this phenomenon has
been the one first proposed by Miwa (Miwa, 1963) and later
developed by Suezaki and Mori (Suezaki and Mori, 1969), as has
been discussed in section 2.5 of Chapter 2. The expression
given by this model for resistivity Jjust below the Néel
temperature is the following:

p; = P(T) = A(T,-T)%% - B(T,-T)"%  (5.4)
where the first term is the gap term and the second is the
spin-fluctuation term. The exponents were determined for a 34
Ising model (Collins, 198%9). The gapping of the Fermi surface
is highly plausible, as the magnetic "Brillouin zone" is only
half of the size of the lattice arillouin zone and most of the
zone-folding occurs along the c¢" axis. In Figure 5.7, a
theoretical curve generated using this expression with A=250
and B=65 is shown, together with the experimental data p,. The
agreement with the experiment is by no means satisfactory, but
it does give rise to the same general feature of the

resistivity anomaly below the Néel temperature.

5.5 Hall Effect

Figure 5.8 presents the temperature dependence of the



Figure 5.7
Resistivity anomaly in p, of UNi,Ge, below the Néel temperature
Ty. The solid line is a theoretical curve generated using the
expression p = p(T,) + A(T,-T)%® - B(T,-T)%% with A=250 and
B=65.
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Figure 5.8

Temperature dependence of the Hall coefficient of UNiGe,

measured in a field of 1.5 Tesla. a: Hjc, Ilc. O: Hlc, Ijc.
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Hall coefficient of UNiGe, measured in a field of 1.5 Tesla.
The Hall coefficient is positive at higher temperatures and
shows a gradual increase with decreasing temperature. Below
the Neéel temperature, the Hall coefficient decreases
drastically and becomes negative at low temperatures.
Generally speaking, the Hall coefficient measured with Hic;
I[lc has a larger value (2-3 times) than that measured with
Hlc; Iic except at low temperatures where the latter is more
negative than the former.

The temperature dependence of the Hall coefficient can
be well accounted for by the model of Fert and Levy (Fert and
Levy, 1987) which invokes the ordinary Hall effect and the
skew-scattering contribution:

R, = R + R°px (5.5)
In Figure 5.9a, the best fit with this model for the case Hlc;
I.c is shown as the solid curve (ver the entire temperature
range measured. The procedure is exactly the same as described
in section 4.6 of Chapter 4. The best-fit parameters are
summarized in Table 5.2. Despite the small discrepancies at
the low and high temperature ends, the fit is rather
satisfactory. For the case Hic:; I|c, it is again necessary to
break the data into two separate temperature regions, below
and above the Néel temperature T,» to fit the data
satisfactorily with this model. The best fit is shown in

Figure 5.9b as the solid line and the fitting parameters are

summarized in Table 5.2.



Figure 5.9

Temperature dependence of the Hall coefficient measured in a
field of 1.5 Tesla. (a) HJ]ec and Ilc; (b) Hlc and I|c. The
solid line is the best fit using the expression of R, = R +

R°pX. The best-fit parameters are summarized in Table 5.2.
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Temp. P, R,° R®

Range (uQ cm) | (1073 cm’/0) (103%)
Hie,ILc 4.2-300K 0.0 ~0.30%£0.01 0.44£0.01
Hie,Ijc 4.2-76K 3.0 -0.2+0.1 0.34%0.04
Hic,Ilc 76=30CK 3.0 0.33%0.03 0.93%£0.03

Table S5.2. Best-fit parameters obtained through fitting the

Hall coefficient of UNi,Ge, with the expression of R, = RS +

R°p X .
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The necessity of separating the Hall coefficient into
two regions to best fit the data for the case Hic and Ilc has
profound implications. As discussed earlier in section 4.7 of
Chapter 4, the very different values of R®* above and below the
Neel temperature T, perhaps should be best interpreted as due
to the change of the scattering potentials. The change of the
ordinary Hall coefficient R,° across the Néel temperature
signals a modification of the Fermi surface due to the
antiferromagnetic ordering. Such a result is also consistent
with the anomalous increase of p, Just below T, as it also

requires a modification of the Fermi surface (gapping).



CHAPTER 6

CONCLUSIONS

Magnetic susceptibility, resistivity and the Hall
coefficient of UNi,Si, and UNi,Ge, have been studied in detail.
Thermoelectric power and specific heat measurements of UNi,Si,
have been carried out. The magnetic and transport properties
of these two systems are highly anisotropic, with the
transport properties strongly coupled to the magnetism in
these systems.

The magnetic susceptibility of UNi,Si, and UNiGe, is
Curie-Weiss 1like in the paramagnetic state at higher
temperatures. For UNi,Si,, the effective moment per U-atom is
3.62 py for Hfc and 3.55 u; for Hic. These numbers are very
close to the calculated value of 3.62 p; for trivalent
uranium. The Curie-Weiss temperature extrapolated from the
experimental result is 8,=-15 K for Hjc and 6,=-530 K for
Hic. At about 78 K, the onset of ferromagnetism is observed
with the moment along the ¢ axis. The ferromagnetic moment is
about 0.62 p, per U-atom which is in reasonable agreement with
the neutron diffraction result of 1.0 + 0.3 kg (Lin et al,
1991). For UNi,Ge,, the effective moment per U-atom is 3.05

pg for H|ec and 3.09 pg for Hic which are 1less than the

90
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calculated value of 3.62 gy for trivalent uranium. The Curie-
Weiss temperature is 6w='2'3 K for H|c and 8.,=-79 K for Huic.
The Curie-Weiss temperatures of the two systems are quite
different. However, if one compares the ratios of 8., parallel
and perpendicular to the ¢ axis of the two compounds, they are
very similar indicating a similar magnetic anisotropy in these
two systems. The behaviour of the weak ferromagnetisnm
occurring in UNiGe, is very peculiar and remains one of the
unanswered gquestions at this stage of the study.

The resistivity of both UNi,Si, and UNi,Ge, is largely
due to magnetic scattering of the conduction electrons. At
room temperature, the phonon contribution to the resistivity
is estimated to be only 14% for UNi,Si, and 8% for UNi,Ge,. At
high temperatures, the resistivity along the ¢ axis shows a
Kondo type of increase with decreasing temperature. However,
only UNi,Ge, can be described by the theoretical model
satisfactorily. At low temperatures, the resistivity in both
compounds can be described by a T? term plus a term due to
gapped spin-wave scattering. The precise origin of the T2 term
is not clear yet. The magnon gap values obtained through the
resistivity analysis are around 100 K which further
demonstrates the similar magnetic anisotropy in these two
compounds. The most remarkable features are the anomalous
increase of the resistivity along the ¢ axis associated with
the 53 K transition in UNi,Si, and the antiferromagnetic

ordering in UNi,Ge,. Although there is a lack of a detailed
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understanding, the resistivity anomaly, both in UNi,Si, and
UNi,Ge,, can be qualitatively described by a modification of
the Fermi surface. For UNi,Si,, a thermal hysteresis of 4.5
K has been observed in the resistivity anomaly at 53 K, which
indicates that the phase transition is of first order.

The two lower phase-transition temperatures of UNi,si,
show a strong field dependence when the magnetic field is
applied along the tetragonal c axis. Using the resistivity
features at the phase transitions as indicators, a phase
diagram has been mapped out through the measurement of
resistivity in a magnetic field. An interesting aspect of the
phase diagram is the vanishing of the simple body-centred
antiferromagnetic phase (AFl) at high fields (H > 3.5 T).
Such a phenomenon is explained in terms of the energy gain of
the LSDW-(C) phase where the net ferromagnetic moments are
aligned along the magnetic field.

The temperature dependence of the Hall coefficient of
UNi,Si, and UNi,Ge, can be described by the model of Fert and
Levy which invokes the magnetic skew scattering of the
conduction electrons by the localized moments. For the case of
Hlc and I.ic, satisfactory agreement with the experimental
result is obtained over the entire temperature range measured
with a single set of fitting parameters. For the case of Hic
and I|c however, the experimental data have to be separated
into two temperature regions before a satisfactory agreement

between the model and the data is obtained. For UNi,Si,, the
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dividing temperature of the two regions is T.=53 K. For the
case of UNiGe,, the dividing temperature of the two
temperature regions is T,=77 K. In both cases, the separation
is at the magnetic phase transition where an anomalous
increase in the resistivity along the ¢ axis occurs. In each
of the two compounds, the fitting parameters of the two
temperature regions have quite different values, suggesting a
profound change in the magnetic scattering potential (R®) as
well as the structure of the Fermi surface (R,°) at the
magnetic phase transition. The picture of a modified (gapped)
Fermi surface is consistent with the description of the
resistivity and Hall coefficient. However, it should be
emphasized that further investigations (such as optical
measurements) are needed before the explanation is on a solid
footing.

The temperature dependence of the thermoelectric power
of UNi,Si, is not well understood, largely due to the complex
nature of the phenomenon itself. Nevartheless, it demonstrates
the transport anisotropy of this system. One piece of
important information obtained from the thermopower
measurements is that the 53 K phase transition has a profound
influence upon the electron transport along the ¢ axis, but
has very little effect on the electron transport perpendicular
the ¢ axis.

The specific heat of UNi,Si, is perhaps the least

"abnormal" result measured. The specific heat below 10 K can
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be described by a linear term plus a cubic (T°) term. The
extrapolated Debye temperature is 2370 K. The ¥ value
extrapolated from the low temperature specific heat is 22 mJ
mol™! K2, which indicates a rather small mass enhancement in
the systenmn.

These results of UNi,Si, and UNi,Ge, suggest some new
experiments. Optical measurements on both compounds in the far
infrared region are of importance because they will provide
valuable information about the renormalization of the Fermi
surface. It is important to carry out the specific heat
measurement on UNi,Ge, to obtain information about %the mass
enhancement. To clarify the issue of the weak ferromagnetism
in UNi,Ge,, further susceptibility measurements on high~quality

single-crystal UNi,Ge, are needed.
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