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ABSTRACT

The magnetic susceptibility, resistivity, and Ha11

coefficient of single crystals of UNi2Si2 and UNi2Ge2 have

been investigated. Thermoelectric power and specific heat

measurements of UNi2Si2 have also been carried out.

The magne~ic susceptibility of UNi2Si2 and UNi2Ge2

follows the Curie-Weiss law in the paramagnetic state at high

temperatures and the anisotropy shows that the magnetic

moments on the U atoms are constrained to lie preferentially

along the c axis.

The resistivity of these two compounds is largely due

to magnetic scattering and the phonon contribution only

amounts to 8-14% of the total resistivity at room temperature.

Along the c axis, the resistivity shows a Kondo type of

behaviour at high temperatures. The temperature dependence of

the Hall coefficient can be accounted for by a theoretical

model invoking a magnetic skew-scattering process. Distinct

features and anomalies are observed in both the resistivity

and the Hall coefficient at the magnetic transitions of these

two compounds.

The thermoelectric power of single crystal UNi2Si2 is

also anisotropic, with the c-axis component strongly coupled

to the magnetic phase transitions. The gamma value obtained

from the specific heat measuremen"i;S of UNi2Si2 is :;'2 mJ mol-1

K-2 which indicates a small mass enhancement in the system.
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CHAPTER 1

INTRODUCTION

In recent years, there has been a great amount 0 f

interest in the class of materials RTzXz, where R is either

the rare earth element Ce or the actinide element U, T is a

transition metal and X is either si or Ge. Although most of

these compounds crystallize in the same ThCrzSiz type of body

centred tetragonal structure, they exhibit a variety of

properties, including heavy fermion behaviour, magnetic

ordering, superconductivity and enhanced Pauli paramagnetism.

Systematic studies (Palstra, 1986) of the 1-2-2 compounds of

RTzSiz indicate that those with a transition metal that has a

small number of d-electrons are commonly Pauli paramagnetic,

those with an intermediate number of d-electrons usually

result in a heavy-fermion state and those with a large number

of d-electrons are likely to result in systems which order

magnetically. A similar trend has also been established in the

UTzGez compounds (Dirkmaat, 1989).

From these systematic studies, a phenomenological

description of the band structure has emerged. The model is

composed of a very broad conduction band and a narrow band

which is related to the atomic f-levels of the Ce or U atoms.

1


























































































































































































































































