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ABBTRACT

In this thesis the necessary conditions for the existence of
near- , hooked near-, and indecomposable Skolem sequences are
found and shown to be sufficient. We show also the existence of
disjoint Skolem, disjoint hooked Skolem and disjoint near-Skolem
sequences. Disjoint Skolem sequences are then applied to the
existence problems for disjoint cyclic Steiner and Mendelsohn
triple systems.

We also consider Skolem labellings of graphs: we prove that
every graph with v vertices can be embedded as an induced subgraph
in a Skolem labelled graph on O(v®) vertices, and show that all
paths, cycles and n-windmills can be Skolem labelled or minimum

hooked Skolem labelled.
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INTRODUCTION

When studying Steiner triple systems, Skolem in 1957 [S13) was
led to ask the question: "Is it possible to distribute the numbers
1,2...,2n in n pairs (a,,b,) such that we have b, -a.=r forr =
1,2,...,n2", He answered this question by proving <that the
necessary and sufficient conditions for such distribution to exist
is that n must be = 0,1 (mod 4); he called it a "1,+1 system".
Nickerson [N2] was first to write that system in the form of a
sequence. For example, if n=5 the sequence 3,5,2,3,2,4,5,1,1,4 is
equivalent to the partition of the numbers 1,...,10 into the pairs
(8,9),(3,5),(1,4),(6,10),(2,7); this sequence is now known as a
Bkolem sequence of order 5. In a subsequent paper [S14], Skolem
showed that the existence of such a sequence of order r implies the
existence of a cyclic Steiner triple system of order 6n+l. In order
to show the existence of the latter also when n = 2,3 (mod 4), he
considered distributing the numbers 1,2,...,2n-1,2n+l, into n
disjoint pairs (a,,b.), r=1,...,n, such that b.-a,=r, and
conjectured that such distribution exists whenever n = 2,3 (mod 4).
O'Keefe [0]) proved this conjecture to be true; the solution

written in the form of Nickerson notation requires leaving a space
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(or zero) for the missing integer called a hook. For example,
4,2,5,2,4,3,6,5,3, 1,1,0,6 is a hookead Skolem sequence of order 6,
and is equivalent to distributing the numbers 1,2,...,11,13, into
the pairs (10,11),(2,4),(6,9),(2,5),(3,8),(7,13). The combined
results of Skolem and O'Keefe produced a solution of Heffter's (H2]
first difference problem, which implied the existence of cyclic
Steiner triple systems of order v = 1 (mod 6) (which are known to
exist for v = 1,3 (mod 6), v » 9). In order to prove in a similar
way the existence of cyclic Steiner triple systems of order v = 3
(mod 6), Rosa 1966 [R2] modified the notion of Skolem sequences by
inserting one extra hook in the middle. Another modification of
Skolem sequences was introduced by Abrham and Kotzig [A3]£ in an
extended Skelem sequence the zerc or hook may occur anywhere in the
sequence. The existence problem for extended Skolem sequernces with
prescribed position of the zero (subject to a parity condition)
remains oper..

Langford [L1] noticed that his son, while playing with
coloured blocks, placed them in one Pile so that between the red
pair there was cue block, between the blue two, and between the
yellow three. He expressed the case of three colours (n=3) as
3,1,2,1,3,2. This is now known as a special case of a Langford
sequence, and adding one to each term and appending a pair of 1's
results in a skolem sequence of order n+l. Thus an (n,d)-Langford
sequence (l,,1;,...,135.24) is a sequence in which each of the

integers k ¢ {d,d+1,...,d+n-1} is repeated exactly twice and
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whenever 1;=l4=k then j-i=k. The works of Priday, Davies,
Bermond, Brouwer, Germa, and Simpson (P3,D1,B7,512), proved that
the necessary conditions are sufficient for the existence of
Langford sequences and hooked Langford sequences (defined
analogously).

Among the applications of Simpso.:'s result on the existence of
Langford séquehces is the determination of the spectrum for the
repeated edges in 2-factorizations of 2K, by Colbourn and Rosa
(C8), and determining the quadratic leaves of maximal partial
triple systems [C6) (see also [C7,R3,R4] for more applications).

Skolem [S13] showed that the pairing (a_,b,) such that b -a =r
can be extended to the set of all positive integers by the formula
[n7,n7%], n=1,2,... , Where 7 is the golden section. Earlier in
1953 Coxeter [C1l3] made reference to several authors who proved the
same relation to be the winning combination of a modified game of
Nim discovered by Wythoff in 1907 [W].

The various ways to partition the integers [1,n], and their
relation to the modified Nim game and many other topics in
combinatorics were discussed in Nowakowski's thesis [N3]. He also
provi&ed a survey of the various results that were found earlier.
Thus we will not list them in this thesis.

The known applications of Skolem sequences to physical world
include interference-free missile guidance codes [El], and the
placement of radioastronomical antennas in a linear array with
distinct distances apart (B11,B12,B8].

Amar and Germa [A4] showed that the number g, ©of Skolem
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sequences of order n tends to infinity as n tends to infinity.
Abrham [Al] used an earlier result by himself and Kotzig [A3] to
show that o, » 2(n/8],

Edwards et al.(1982) [E2] used Skolem sequences to find
balanced tournament designs and domino squares.

Cho [C3] (1983) employed Skolem and hooked Skolem sequences
with vavious manipulations of the hooks and the differences to
construct various designs with prescribed automorphism types.

In this thesis we are concerned primarily with developing
new concepts, or expanding the known ones, that are useful to
design theory. In Chapter II, we generalize the concepts of Skolem
and hooked Skolem seguences to that of the near-Skolem and hooked
near-5Skolem sequences, that was introduced, in effect, by Stanton
and Goulden (1981)[S16] and used by Billington [B9] to find several
designs. We derive the necessary conditions for the existence of
such sequences and prove theiir sufficiency for all orders.

In Chapter III, we introduce disjoint Skolem sequences, and
we show that for n = 0,1 (mod 4) there exist at least 4 mutually
disjoint Skolem sequences, while for n = 2,3 (mod 4) there exist at
least 3 mutually disjoint hooked Skolem sequences. As a direct
consequence of that we improve the results obtained by cC.J.
Colbourn and M. Colbourn [C4,C5] on the existence of disjoint
cyclic Steiner and Mendelsohn triple systems. We also discuss the
relationship between disjoint Skolem sequences and Room squares.

Chapter IV deals with the m-fold Skolem sequences. Again we

show that the necessary conditions are sufficient for the existence
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of such sequences. We also introduce the concept of indecomposable
m-fold Skolem sequences and we show the existence of (at least) 3-
fold indecomposable Skolem sequences. Moreover, when m = 0 (mod 6)
there exists an m-fold indecomposable Skolem sequence for all
orders n.

Chapter V is different from the other chapters in that its
content is the result of two joint papers of the author and E.
Mendelsohn [M3,M4]. We introduce the concept of a Skolem labelling
of a graph, and prove that every v-vertex graph can be embedded in
a Skolem labelled graph with 0(v3) vertices. We alsc prove the
existence of a Skolem labelling of some special types of graphs,
surly as paths, cycles and n-windmills.

Chapter VI contains concluding remarks and open gquestions for

further research.



CHAPTER I
BASIC CONCEPTS

I.1l. Preliminaries

In this section we present the basic definitions and earliest
results obtained regarding Skolem sequences.
A Bkolem sequence of order n is a sequence § = (S1,S2/-4+,85,)
of 2n integers satisfying the following conditions:
1. for every k € {1,2,...,n} there exists exactly two
elements s; , sy such that s; = sy = k.
2. if s; = 8y = K then j-i = k.

A hooked 8Skolem sequence of order n is a seqguence HS =

(83/83,+--,83p,43) Of 2n+l integers satisfying conditions 1. and 2.
and the following condition:
3. 85, = 0.

Skolem [S13] found the necessary conditions for the existence
of such sequences to be n = 0,1 (mod 4). He credited his colleaque
Th. Bang for finding this proof; we show it here, since similar
arguments are used in finding almost all necessary conditions in
this thesis.

Lemma I.1. [Bang] The necessary condition for the existence of

a Skolem sequence of order n is that = = 0,1 (mod 4).
Proof We consider the sum of all sums, and the sum of all

differences of the subscripts 1,3, when $;=54=k.



n
(a) I (i+j) = 2n2 + n
k=sz;sj
n
(b) I (3-i1) = n(n+1)/2
k=1
k=si=sj

Adding (a) and (b) gives

n

2 I 3 = (5n%+3n)/2
=1

k=Si=Sj

This implies that (5n° + 3n)/4 must be an integer, which
happens only when n = 0,1 (mod 4). »
We give also the proofs of Skolem and O'Keefe [S13,0] for the

existence of Skolem, and hooked Skolem sequences, respectively.

Theorem I.1. [Skolem] A necessary and sufficient condition for
the existence of a Skolem sequence of order n is that n = 0,1 (mod
4).

Proof. Necessity is shown in Lemma I.1. For sufficiency

distinguish two cases.

Case 1. n = 0 (mod 4), let n= 4s.
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1) 4s+r-1 8s-r+1 1l £r < 2s
2} r 4s-r-1 1<r g -2
3) s+r+l 3s-r l<r g s=-2
4) s-1 38 2= memeece—maa
5} s S+l = = mmmmacme——
6) 2s 48=1 = @ memm——————
7) 2s+1 68 =000 mmm—c—cae-

Skip the line 6) for the case of s=1.
To verify that the above table will give a Skolem sequence we check
that every difference from 1 to n=4s is present exactly once:
The pairs in line 1) give all the even differences 2,4,...,45. The
two odd differences 2s-1 and 4s-1 are obtained from the lines 6)
and 7) respectively. The smallest difference 1 is obtained from 5),
the differences 3,5,...,2s-3 from 3) and the remaining odd
differences 2s+1,...,4s5-3 from 2).
It is easy to see that the above pairs consist of the numbers
l,...,2n.
In the subsequent proofs we will simply give the tables and skip

this process of verification.

Case 2. n =1 (mod 4), let n = 4s+1 (s 2 2).



4s+4+r+1

r

s+r+2

s+l

2s5+1

2s+2

J
8s-r+3
4s-r+1
3s-r+1
s+2
6542

4s+1

[
1A
H
A
7]

For n=1,5 we give the solutions:

1,1

2,4,2,3,5,4,3,1,1,5.

This completes the proof. "

Theorem I.2. [O'Keefe] A necessary and sufficient condition for the

existence of a hooked Skolem sequence of order n is that n = 2,3

(mod 4).

Proof.

Necessity is shown in Lemma I.1. For sufficiency

distinguish two cases.

Case 1.

i
r
4s+r+3
55+r+2
2s+1
4s+2.
4s+3

7543

n

= 2 (mod 4), let n= 4s+2 (s > 0).

J
ds-r+2
8s-r+4
75-xr+3
65+2
6543
8545

7s+4

i —
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For n=2:
1,1,2,0,2.

Case 2. n =3 (mod 4), let n = 4s-1 (s 2 1).

i p
4s+r 8g-r-2 1 £r s 2s-2
r 4s5-r-1 l<rcsc s-2
s+r+l1 3s~r l1sr< s=2
s-1 38 meeeeeeee-
s S+l = o mem—me—eee
*2s 4s-1 = =  semmeenee-
2s+1 6s=~1 =  ——e——eene-
4s 8s-1 = @ memeeemee-

Skip the line(*) for the case s=1.

This completes the proof. n
I.2.Early Applications

In this section we illustrate the earliest 1links between
Skolem sequences and design theory.

A Bteinexr triple system of order v, STS(v), is a v-set of
elements together with a set of 3-subsets of the v~set called
blocks such that every 2-subset of the v-set appears in exactly one
block. An STS(v) on the elements of Z, is said to be eyelic if,
whenever {a,b,c} is a block, so alsc is {a+l,b+1,c+1}. It is well
known that STS(v) exists if and only if v = 1,3 (mod 6).

Heffter (1897) [H2] investigated the existence of cyclic STS(v),

and reduced the question to two "difference problems":

Heffter's difference problem I. Can one partition the set
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{1,..,3n} into triples (a;,b;,c;), i=1...n, such that in each triple
either a; + b; = c; or a;+bj+c; = 0 (mod 6n+l) ?

Heffter's difference problem II. Can one partition the set

{3,..., 2n, 2n+2,..., 3n+l} into triples (aj,by,cy), i=1...n, such

that in each triple either a; + by = ¢; or a;+b;+c; = 0 (mod 6n+3)?

Heffter observed that a solution of his first problem would
give a cyclic STS(v) for v = 1 (mod 6), and solution to his second
problem would give a cyclic STS(v) for v = 3 (mod 6).

Peltesohn (19239) {[P1l] gave a complete solution to Heffter's
two problems except for the second problem when n=1 in which case
a solution does not exist.

Skolem and O'Keefe also gave a solution to Heffter first
problem (yielding a cyclic STS(v), v = 1 (mod 6)). Later Rosa
(1966) [R2] extended the same method to the second Heffter problem
(vielding cyclic STS(v), v = 3 (mod 6)).

The above partially answers the question: why use Skolem
sequences?.

First, Skolem sequences is a subject that has appeared in many
disguises in mathematics, and has several 1links with other topics
in mathematics (see Nowakowski's thesis [N3]).

Secondly, Skolem sequences have the advantage of being easier
to find, and easier to manipulate (i.e. shifting the hooks, and
shifting the numbers, or adding or deleting distances) to find
cyclic designs. These techniques are illustrated most clearly in

Rosa's work. For instance, Rosa[R2] showed that the set
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{1,...,n,n+2,...,2n+1} can be partitioned into pairs (b,,a,) where
b, ~-a.=r, r =1,...,n, if and only if n = 0,3 (mod 4). His
solution produced a hooked Skolem sequence where the hook is in the
middle; this is a special case of what is now known as the extended
8kolem sequence, i.e. a hooked Skolem sequence in which the hook
may occur anywhere in the sequence.

For example, when n =4, 1,1,3,4,0,3,2,4,2 is such a sequence.
It can be obtained either directly or by finding a Skolem sequence
of order n+l, where the largest number n+1 occurs in positions n+1,
2n+2, then removing this largest number, and replacing its first
occurrence with 0 (in our example, such a Skolem sequence is
1,1,3,4,5,3,2,4,2,5.)
The new sequence will yield the partition of the integers
{1,...,4,6,...9} into the pairs {(1,2),(7,9),(3,6),4,8)}. Every
pair (b,,a.) will give rise to a triple (r, b.+n, a,+n),
r=1,..n, e.q. the above set of pairs will give
{(1,5,6),(2,11,13),(3,7,10),(4,8,12)} which is a solution to the
second Heffter's problem with n= 4.
When replacing every triple (a,b,c) of the Heffter solution by a
base block {0,a,a+b} such that the set {{0,a,a+b}} mod(6n+3) are
blocks in the cyclic STS(én+3), in case of problem II, Heffter
observed that the extra base block {0,2n+1,4n+2}, must be added to
give the STS(6n+3). For example, the above Heffter solution will
give the base blocks {{0,1,6},{0,2,13},{0,3,10},{0,4,12}} mod 27;
with the additional base block {0,9,18} mod 27, they will be the

base blocks for a cyclic STS(27).



CHAPTER IX

NEAR- AND HOOKED NEAR-SKOLEM SEQUENCES

II.1 Introduction

Let m,n be integers, m < n, A near-skolem sequence of order
n and defect m is a sequence NS = (S;,S3,...,Ss,_2) Of integers

s; € {1,2,..,m-1,m+1,..n} which satisfies the following conditions:

1) For every k € {1,2,...,m-1,m+l,..n} there are exactly two
elements s;,sy, such that s;=s;=k.

2) If sy=s4=k then j - i = k.

A hooked near-sSkolem sequence of order n and defect m is a
sequence HNS= (sS;,Sp,...,8,.1) ©of integers s; € {1,2,...,m-
1,m+1,...n} satisfying conditions 1), 2) and the condition:

3) Spp-2 = 0. We will refer to near-skolem and hooked near-
Skolem sequences of order n and defect m as m-near-Skolem and
hooked m-near-skolem sequences, respectively.

Note that if we did not skip the difference m in the above
definitions, we would obtain the definitions of Skolem and hooked
Skolem sequences, respectively.

Near-Skolem sequences were introduced, in effect, by Stanton and

|2
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Goulden [S516], in particular, for the purpose of constructing
cyclic Steiner triple systems. They asked for a set of n-1 pairs
P(1,n)/m with each of the integers of (i1,...,2n-2} appearing
exactly once and each of the integers of {1,...,m-1,m+1,..,n}

occurring as a difference exactly once.

For example, the pairs (3,4),(6,8),(1,5),(2,7) form a P(1,5)/3;
the corresponding 3-near-Skolem sequence of order 5 is
4,5,1,1,4,2,5,2.

Billington applied near-Skolem sequences to obtain several
types of designs. (See [B9] for more details).

Recall that if we did not skip the distance m in the above
definition of a hooked near-skolem sequence, and allowed the hook
(i.e. the symbol 0) to occur anywhere in the sequence, we would
obtain the definition of the extended Skolem sequence. Billington
[B10] conjectured that the obvious necessary conditions (whict. are
just parity conditions, see [A3]) are sufficient for the existence
of the extended Skolem sequences (with 0 in a prescribed position).
This conjecture is still open.

The concept of near-Skolem sequences resembles that of the
extended Skolem sequences, but the two are not likely to be
equivalent. In this chapter we prove that the obvious arithmetic
necessary conditions for the existence of near-Skolem, and hooked

near-Skolem sequences (see Section II.2), are also sufficient.
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II.2.Necessity

In this section we find the necessary conditions for the
existence of near-Skolem, and hooked near-Skolem sequences,
respectively.

We need to determine what possible values m can take. For example,
there exist 6-,4- and 2-near-Skolem sequences of order 7:
7t,1,1,2,5,2,4,7,3,5,4,3
1,1,6,3,7,5,3,2,6,2,5,7
1,1,5,6,7,3,4,5,3,6,4,7
and there exist hooked 7-,5-,3- and l-near-Skolem sequences of
order 7:
1,1,3,4,5,3,6,4,2,5,2,0,6
2,3,2,6,3,7,4,1,1,6,4,0,7
2,5,2,4,6,7,5,4,1,1,6,0,7
2,5,2,6,4,7,5,3,4,6,3,0,7,
but there is no m-near-S<olem sequence of order 7 when m is odd,
and no hooked m-near-Skolem sequence of order 7 if m is even.
Lemma II.l. Necessary conditions for the existence of an m-near-
Skolem sequence of order n are:

1) if n = 0,1 (mod 4) then m must be odd;

2) if n= 2,3 (mod 4) then m must be even.

Necessary conditions for the existence of a hooked m-near-
Skolem sequence of order n are:

3) if n = 0,1 (mod 4) then m must be even;

4) if n = 2,3 (mod 4) then m must be odd.
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Proof. The proof follows the reasoning of [S13). Consider first the
case of a near-Skolem sequence. We consider the sum of all sums,

and the sum of all differences of the subscripts i,j whan si=sj=k

n
(a) T (i+j) =2n%? - 3n + 1
k=1
kwm
k=s;=s,4

n
(b) I (j-i)
k=1
K#m
k=Si=Sj

n(n+l1)/2 -m

Subtracting (b) from (a) gives
n
2 L i =(3n%-7n+2m+2)/2
k=1
k»m
k=$i=sj
This implies that (n(3n-7)+2(m+1))/4 must be an integer.
Solving for n and m , we obtain conditions (1) and (2).

Similarly, in the case of the hooked near-Skolem segquence, we

have
n
(a') L (i+j) = 2n® - 3n + 2
k=1
Kwm
k=si=sj
n
(b") L j-i =n(n+1)/2 - m
k=1
kwm

k=si=5j
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Subtracting (b') from (a') gives

= (3n® - 7n + 4 + 2m )/2

This implies that (n(3n -7) +2(m + 2)/4 must be an integer.

Solving for n and m, we obtain conditions (3) and (4). =

ITr.3.8ufficiency

In this section we prove our two main theorems (Theorem II.3
and Theorem II.4) showing that the above necessary conditions are
sufficient for the existence of near-Skolem, and hooked near-Skolem
sequences, respectively. In the process we will use some of the
known results [P3,D1,87,S12] to handle the cases when our

constructions degenerate.

First we need some more definitions.

A Langford sequence is a generalization of a Skolem sequence.
We use the same notation as in [S12]:
"A sequence (d,d+1,...,d+p-1} of p consecutive positive integers is
said to be perfect Langford if the integers {1,2,...2p} can be
arranged in disjoint pairs {(a;,b;): < i < p} so that
{bj-aj: 1 £ i £ p} = {d,d+l,...,d+p-1}. A sequence is hooked
Langford if the set {1,2,...,2p~1,2p+l1} can be arranged to satisfy
the same condition". For example, 4,2,3,2,4,3 is a perfect

Langford sequence with d4=2 and p=3, and 6,4,2,5,2,4,6,3,5,0,3 is
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a hooked Langford sequence with d=2 and p=5.

Theorem IX.l. [S12] Necessary and sufficient conditions for the

sequence {d,d+l1,...,d+p-1} to be perfect Langford
are:

1) p 2 2d-1.

2) p 0,1 (mod 4), for d odd and,

= 2,3 (mod 4), for d even.

o]
I

Theorem ITI.2. [S12)] Necessary and sufficient conditions for the

sequence {d,d+1,...,d+p-1} to be hoocked Langford
are:

1) p(pt+l-2d)+2 2z 0.

2) p

p=1,2 (mod 4) for d even.

2,3 (mcd 4) for d odd and,

Lemma IT.2. i) The existence of a Skolem sequence of order t ,t =

0,1 (mod 4) implies the existence of a (t+1) -near-Skolem sequence
of order q, where q > 3t + 4, and:

a) if t

0 (mod 4) then q = 0,1 (mod 4)

]

b) if ¢ 1 (mod 4) then g 2,3 {mod 4).

ii) The existence of a Skolem sequence of order t, t = 0,1
(mod 4) implies the existence of a hooked (t+1) ~-near-Skolem
sequence of order g where g > 3t+4 and:

a) if t

0 (mod 4) then q = 2,3 (mod 4)

b) if t = 1 (mod 4) then q = 0,1 (mod 4).
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iii) The existence of a hooked Skolem sequence of order t,
t = 2,3 {(mod 4) implies the existence of an (t+1)-near-Skolem
sequence of order gq, where g = 3t +4, and:
a) if t = 2 (mod 4) then g = 0,1 (mod 4)
b) if t

3 (mod 4) then g = 2,3 (mod 4).
iv) The existence of a hooked Skolem sequence of order t,
t=2,3 (mod 4) implies the existence of a hooked (t+1)=-near-Skolem

sequence of order g, where g 2> 3t+4, and:

a) if t 2 (mod 4) then g = 2,3 (mod 4)

b) if t

3 (mod 4) then g = 0,1 (mod 4).

Proof. The proof is a direct consequence of Theorems II.1l, II.2:

For instance, in case i) there exist a Skolem sequence of
order £, t = 0,1 (mod 4). Append to this sequence a Langford
sequence with d=t+2. By condition 1) of Theorem II.1,

p 2 2(t+2)~1. This will give an (t+1)-near~Skolem sequence of order

v

q 2 3t+4. By applying the parity condition 2) of Theorem II.1 to p,

we get the required parity for q.

The other cases are similar. n

For example, if we take a Skolem sequence of order 4,
i,1,4,2,3,2,4,3, and append to it a Langford sequence with
d=6,p=15, say,
15,13,11,9,7,16,14,12,10,8,6,7,9,11,13,15,6,8,10,12,14, 16

we get a 5-near-Skolem sequence of order 16
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1,1,4,2,3,2,4,3,15,13,11,9,7,16,14,12,10,8,6,7,9,11,13,15,
6,8,10,12,14,16.
If we join the hooked Skolem sequence, 1,1,2,0,2, to a hooked
Langford sequence with d=4 and p=11, say,
6,0,8,9,11,12,6,7,10,4,8,5,9,4,7,11,5,12,10, such that the 1last
member of the first will be inserted in the hook of the second and
the first member of the second will be inserted in the hook of the
first. We get the 3-near-Skolem sequence of order 12:
1,1,2,6,2,8,9,11,12,6,7,10,4,8,5,9,4,7,11,5,12,10.
Finally, if we take a hooked Skolem sequence, 1,1,2,0,2, and append
it to a perfect Langford sequence with d=4 and p=9, say,
9,7,5,10,8,6,4,5,7,9,4,6,8,10
we get a hooked 3-near-Skolem sequence of order 10
9,7,5,10,8,6,4,5,7,9,4,6,8,10,1,1,2,0,2.

Lemma IX.2 will be used to handle some of the small cases of
the main theorems. However, it is clear that this method cannot
cover all cases.

Theorem II.3. An m-near-Skolem sequence of order n exists if and
only if n = 0,1 (mod 4) and m is odd, or

n=2,3 (md 4) and m is even.

Proof, Necessity was proved in Lemma II.1.

For sufficiency we have to distinguish 8 cases. In each
case, solution is given in a form of a table. The first two columns
of the table give the two subscripts of s; and s;, and the third

3
column gives the difference k.
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For m=1, the l-near-Skolem sequence is a perfect Langford sequence
with d=2, which exists by [D1], so we will omit all the subsequent
cases when m=1.

Case 1. n = 0 (mod 8).

For n 2m > 1, let n = 85 and m=2t +1.

i j k

8s+r-1 l6s=r-2 8s-2r-1 0 < < 4s-t-2
12s5-t-2 12s-t-1 i eemeemmeeeemeee-
12s=-t+r 12s+t-r-1 2t-2r-1 0 < < t-2
4s+r l2s-r 8s-2r 0 < <1

2r-1 8s-2r-3 8s-4r-2 1< £ s-1

2r Bs-2r 8s-4r 1l < < 2s-1
2s-1 2s5+1 2 memmemee—e—e—e o
*4g5=1 8s5-3 48-2 |  —mmeememe—e————
2s+2r+1 65-2r-1 43-4r-2 1< £ s-2

Skip the line (*) for the case n=8.

Case 2. n =1 (mod 8).

For m=3, by Lemma II.2(iii)(a), we get all cases for all n > 9.
For n= 9 and 9 > m 2> 3, we list them:

n=9 and m=3

7,2,8,2,5,6,9,7,4,5,8,6,4,1,1,9
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n=9% and m=5
2,8,2,1,1,6,9,7,4,8,3,6,4,3,7,9
n=9 and m=7
i,1,6,2,8,2,9,4,6,5,3,4,8,3,5,9

n=9 and m=9 is a Skolem sequence of order 8.

For all the remaining cases where n>m > 3, and n > 9, let n =

8s+1 and m =2t+1.

i 3 k

8s+r-2 16s-r-~1 8s-2r+1 0 €£r < 4s-t-1
125~-t=-2 12s-t-1 1 merememee—————
12s-t+x 12s+t-r-1 2%t-2r-1 0<r s t-3
l2s-2 16s+2 4s+2 2 |  mmmemaeaeaaa
4s5+r 12s-r+2 8s-2r+2 l1<rs<3
4s+r-2 8§s-r-~2 45=-2r l<rcg2
*r 8s-r-4 8s5-2r-4 l<r g 2s-4
*25-1 6s5-1 48 0000 memseeae—e—a
*2s+r+3 6s-r-1 4s5=2r-4 l<r < 2s-5
2s5-3 2s 3 0 emmecmma———
25-2 2s5+2 4 = eccmmmmm—ao
2s+1 2s+3 2 —————————— -

Skip the lines (*) in the case of n=17.
Case 3. n = 2 (mod 8)
For m=2, by Lemma II.2 (i) (b) the existence of the Skolem sequence

1,1 provides solutions for all n > 10.
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For m=2 and n=2, obviously 1,1 is the required sequence.

For n =10 and

n=10 and m=4

10 2m > 4 we list themn:

3,9,2,3,2,7,5,10,8,6,9,5,7,1,1,6,8,10

n=10 and m=6

3,9,2,3,2,7,5,10,8,4,9,5,7,4,1,1,8,10

n=10 and m=8

3,9,2,3,2,7,5,10,6,4,9,5,7,4,6,1,1,10

n=10 and m=10 is a Skolem sequence of order 9.

For all the cases wheren>m > 2 and n > 10, let n =8s+2 and m=2t.

8s+r
12s+t
12s=-t+r
4s+r-1
1

2

3+2r
6+2r
6s5-1

2S+r+3

Case 4,

J
1l6s-r+2
12s+t+1
12s+t-r
125-r+2
4
45=-1
8s-2r-2
8s-2r-1
6s+1

65-r=2

k
8s5-2r+2
1
2t-2r
8s5-2r+3
3
4s-13
8s-4r-5
8s-4r-7
2

4s-2r-5

n =3 (mod 8)

0 £r g 4s-t

— T — - o — -

For m=2, by Lemma II.2 (i)(b) the existence of the sequence 1,1

provides solutions for all n » 11.



24

For n=3 and m=2

3,1,1,3.

For n=11 and 11 2 m 2 4 we list them:

n=11 and m=4
2,3,2,5,3,1,9,7,5,10,8,6,1,1,7,9,11,6,8,10
n=11 and m=6
2,3,2,5,3,11,9,7,5,10,8,1,1,4,7,9,11,4,8,10
n=11 and m=8
2,3,2,5,3,11,9,7,5,10,1,1,6,4,7,9,11,4,6,10
n=11 and m=10
2,3,2,5,3,11,9,7,5,1,1,8,6,4,7,9,11,4,6,8

For the remaining cases where n 2 m > 2 and n >11, let n =8s+3 and

m=2t.
i j k

8s+r+2 lés-r+4 85~-2r+2 0 £ r < 4s-t
12s-t+r+5 12s+t-r+3 2t-2r-2 0<rs< t-3
12s-t+3 12s-t+4 l eeeecnmaaaa
4s8+r 12s-r+5 8s=-2r+5 l<rs<2
8s 125+5 45+5 = o —mmmeeaeao
2+2r 8s+1-2r 8s~-4r-1 0 £ r g s=2
2s-3 2s-1 2 = mmrmemeeeeaea
1+zZr 8s5-2r-2 8s=-4r-3 0 £r < s-3
2s+r 6s+3-r 45-2r+3 0<r < 2s

Case 5. n = 4 (mod 8).

For m=3, by Lemma II.2 (iii)(a) the existence of the hooked Skolem



sequence 1,1,2,0,2 provides solutions for all n > 12.

For n=4 and m=3

2,4,2,1,1,4.

For n=12 and 12 > m > 3 we list them:

n=12 and m=5

8,12,4,6,3,10,4,3,8,6,11,9,7,12,2,10,2,1,1,7,9,11

n=12 and m=7

8,12,4,6,3,10,4,3,8,6,11,9,5,12,2,10,2,5,1,1,9,11

n=12 and m=9

8,12,4,6,3,10,4,3,8,6,11,7,5,12,2,10,2,5,7,1,1,11

n=12 and m=11

8,12,4,6,3,10,4,3,8,6,9,7,5,12,2,10,2,5,7,9,1,1.

For all the remaining cases where n > m > 3 and n >12,

and m=2t+1.
i

8s+r+3
12s-t+4
12s=-t+r+6
4s+r+2
8s+2

4s+r

1+
2s+r+5
2s-1

2s

25+1

J
l6s~r+6
128-t+5
12s+t-r+5
12s-r+8
12s+4
8s+2-r
8s-r-1
6s~r+l
2s5+2
2s5+4

2s8+3

k
8s-2r+3
1
2t-2r-1
8g=-2r+6
4s+2
4s5=-2r+2
Bs-2r-2
4s-2r-4
3
4

e s T o ——— —

l1<rcg?2
0 £ r g2s-2
€ r £2s-5

A ——— o
T —— —— i —

25

let n=8s+4
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Case 6. n = 5 (mod 8)
We only list the case of n=5:
n=5 and m=3
4,2,5,2,4,1,1,5

n=5 and m=5 is a Skolem sequence of order 4.

For alln2m > 1 and n > 5, let n =8s+5 and m=2t+1.

i j k
8s+r+3 lés-r+8 8s=2r+5 0 g £ 4s-~t+1
12s-t+5 12s-t+6 1 eeeecmmmeo
12s-t+r+7 12s+t-r+6 2t-2r-1 0 < < t-2
4s+r+2 125-r+38 8s-2r+6 1< < 2
2 4s+2 4s 0 meeemacccaaeo
1+2r 8s-2r+1 8s-4r 0 < < s-1
4+2xr 8s=-2r+2 8s—-4r-2 0 < £ s-1
2s5+1 2s8+3 2 = eeedem—acenaa
25+r+4 6s-1r+2 45-2r-2 0 < £ 2s-3

Case 7. n = 6 (mod 8)
For m=2, by Lemma II.2 (i)(b) the existence of the sequence 1,1

provides solutions for all n > 14.



For n=6 and m=2

5,6,1,1,4,5,3,6,4,3.

For n=6 and n=4

5,1,1,6,3,5,2,3,2,6

n=6 and m=6 is a Skolem sequence of order 5.

For all the remaining cases where n>m > 2 and n > 6, let n

=8s+6 and m=2t.

i
8s+r+4
12s+t+6
l12s5-t+r+7
8s+2
4s+r+l
1+2r
2+2r
2s-1

2s5+r+2

Case 8.

n

3
165-r+10
12s+t+7
12s+t-r+5
12s+5
12s-r+8
8s-2r
8s-2r+3
2s+1

6s-r+3

= 7 (mod 8)

8s+6-2r
1
2t-2r-2
4s5+3
8s-2r+7
8s-4r-1
8s=4r+1
2

4s-~-2r+1
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For m=2, by Lemma II.2(i)(b), the existence of the sequence 1,1

provides solutions for all n 2> 7.

We list the remaining cases of n=7:



n=7 and m=4
3,7,5,3,2,6,2,5,7,1,1,6
n=7 and m=6

3,7,5,3,2,4,2,5,7,4,1,1.

For all n>m> 2 and n > 7, let n =8s+7 and m=2t.
i J k
Bs+r+6 lés-r+12 8s-2r+6 0 s r < 4s-t+2
12s+t+é 12s5+t+9 1 eeeemrmmcee—.
12s-t+r+9 12s+t~r+7 2t-2r-2 0<r < t-3
8s+4 125+7 4s+3 - -
4s+r+l 12s-r+10 8s-2r+9 l<rc<2
1+2r 8s5-2r+2 8s5-4r+1 0 £r g s~-1
24+2r 85=-2r+5 8s-4r+3 0£r < s~-1
65+2 6s+5 3 eeeeccc—m——o
4s-1 4s5+1 2  eeeecmmme——ao
2s+2r+1 6s-2r is-4r-1 0 cgr < s=-2
254+2r+2 6g-2r+3 4s-4r+1 0 £r g s-1
This completes the proof of Theorenm IT.3, ]

Theorem II.4. A hooked m-near-Skolem sequence of order n exists

if and only if n = 0,1 (mod 4) and m is odd, or

n=2,3 (md 4) and m is even.
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Proof:
Case 1. n = 0 {(mod 8).
For m=2, by Lemma II.2 (ii) (b), the existence of the Skolem
sequence 1,1 provides solutions for all n > 8.

For nzm> 2, 1let n= 8s and m =2t.

i j k

1+r Bs-r+1 8s-~2r 0 £ r < 4s-t-1
4s8-t+1 4s=-t+2 i el T L e
4s=-t+r+3 4s+t-r+l1 2t-2r-2 0 <r < t-3
4s+3 Bs+2 45~1 =  memmmeeeeeeeaaa
4s+rx 125=-r+1 8s-2r+1 1 sr <2
8s+2r+4 lés-2r-1 8s-4r-5 0 £r g s-2
8s+2r+3 l6s-2r=-4 8s-4r-7 0 £ r < s=-2
l4s-1 14s+1 2 mmmmmmemeeeeo
10s+r+1 l4s-r-2 4s-2r-3 0 < r < 2s-3

Case 2. n =1 (mod 8).
For m=2, by Lemma II.2 (ii)(b), the sequence 1,1 provides
solutions for all n > 9.
We list the remaining cases of n=9 :
n=9 and m=4

7,5,3,9,6,3,5,7,8,2,6,2,9,1,1,0,8



n=9 and m=6

5,3,4,9,3,5,4,7,8,1,1,2,9,2,7,0,8

n=9% and m=8

5,9,7,4,2,5,2,4,6,7,9,1,1,3,6,0,3.

For all n >m > 2 and n >9,

i J
1+r 8s-r+1
4s-t+1 4s-t+2
4s=-t+r+3 4s+t-r+l1
4s+3 8s+2
4s+r 12s-r+3
8s+2r+4 l6s=-2r+1
8s+2r+3 l6s-2r=-2
12s+3 12s+5
10s+1 10s+4
10s+2r+3 l4s-2r
10s+2r+6 14s-2r+1

Case 3. n = 2 (mod 8).
We list all cases for n=10

n=10 and m=3

5,8,4,9,10,5,4,6,7,8,1,1,9,6,10,7,2,0,2

8s5=-2r

2t-2r-2
4s5-1

85-2r+3
8s-4r~3

8s=4r-5

4s5=-4r=-3

4s-4r-5

— o =y

30

let n=8s+1l and m=2t.

— e ——— - ..



n=10 and m=5
9,7,10,3,1,1,3,8,7,9,6,2,10,2,4,8,6,0,4
n=10 and m=7
9,6,3,5,8,3,10,6,5,9,1,1,8,2,4,2,10,0,4
n=10 and m=9

8,6,10,3,1,1,3,6,8,7,5,2,10,2,4,5,7,0,4

For all n > m > 1 and n > 10, let n=8s+2

and
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m=2t+1.

i J k
1+r 8s-r+2 8s-2r+1
4s-t+1 4s-t+2 1
4s-t+r+3 4s+t-r42 2t-2r-1
4s5+1 8s+3 4s5+2
4s5+r+1 125=r+5 8s=-2r+4
88+2r+5 16s-2r+1 85-4r-4
8s+2r+4 l6s=~2r-2 8s5-4r-6
10s 10s+2 2
l6s 16s+3 3
10s+r+3 l4s-r+3 45-2r

. —— - - S —

Case 4. n = 3 (mod 8).
We list all cases for n=11 :

n=11 and m=3

7,5,6,9,11,8,5,7,6,2,10,2,9,8,4,11,1,1,4,0, 10



n=11 and m=5
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8,10,7,3,11,9,3,6,8,7,2,10,2,6,9,11,4,1,1,0,4

n=11 and m=7

5,3,4,10,3,5,4,11,6,8,2,9,2,10,6,1,1,8,11,0,9

n=11 and m=9

7,10,6,3,11,8,3,7,6,5,2,10,2,8,5,11,4,1,1,0, 4

n=11 and m=11 is a hooked Skolem sequence of order 10.

For all n 2 m > 1 and n>11, let n=Bs+3 and m=2t+1.

i y k
1+r 8s5-r+4 8s=2r+3 0 £r g 4s-t
4s5-t+2 4s-t+3 1 e
4s-t+r+4 4s+t-r+3 2t-2r-1 0 £r g t-2
8545 12s+3 48-2 |  —cemeecmdmaae——-
4s+r+2 12s-r+6 8s5-2r+4 1 <sr<2
8s+2r+7 16s5-2r+5 8s-4r-2 0 £r £ s~1
Bs+2r+6 16s=2r+2 8s-4r-4 0<r < s-1
1l4s+3 1l4s+5 2 eeesecccecaeao
10s+r+6 l4s-r+2 ds-2r-4 0 £r < 2s-4

Case 5. = 4 (mod 8).

For m=2, by Lemma II.2(ii)(b), the existence of the sequence 1,1
gives solutions for all n > 12. We list the remaining cases of
n=4,12 :

n=4 and m=2

4,,1,1,3,4,0,3

n=4 and m=4 is a hooked Skolem sequence of order 3.



n=12 and m=4
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12,10,8,6,1,1,7,11,9,6,8,10,12,7,2,5,2,9,11,3,5,0, 3

n=12 and m=6

12,10,8,1,1,4,7,11,9,4,8,10,12,7,2,5,2,9,11,3,5,0, 3

n=12 and m=8

12,10,1,1,6,4,7,11,9,4,6,10,12,7,2,5,2,9,11,3,5,0,3

n=12 and m=10

12,1,1,8,6,4,7,11,9,4,6,8,12,7,2,5,2,9,11,3,5,0, 3

n=12 and m=12 is a hooked Skolem sequence of order 11.

For n2m> 2 and n > 12, let n = 8s+4 and m =2t.

i 3 k
1+rx 8s-r+5 8s5-2r+4 0 < r < 4s-t+1
4s-t+3 4s-t+4 1 emmememmeemeeeee
4s-t+r+5 4s+t-r+3 2t-2r-2 0sr < t-3
8s+6 12s+3 45-3 = | —mmmmmmmmee—eo
4s4+1r+2 12s=-r+7 8s-2r+5 l<r =<3
85+2r+8 16s5-2r+5 8s-4r-3 0 < r £ s5-1
8s5+2r+7 l6s-2r+2 85-4r-5 0 <r g s-1
las+3 14s5+5 2 emeeemeee— -
16s+4 1l6s+7 3 e
10s+2r+7 l4s-2r+2 4s5-4r-5 O £r g 2s-5

Case 6. n =5 (mod 8).
For m=2, Lemma II.2(ii)(b) similar to above will give solutions for

all n = 13.



We need only to list all cases for n=5

n=5 and m=2

4,5,1,1,4,3,5,0,3

n=5 and m=4

2,5,2,1,1,3,5,0,3
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For all n >m> 2 and n > 5, let n=8s+5 and m=2t.

i 3 k
1+r 8s=-r+5 8s-2r+4 0 < r < 4s-t+1
4s-t+3 4s-t+4 1 memmmmeeemeeo
4s5-t+r+5 4s+t-r+3 2t-2r-2 0 £r g t-3
4s+3 8s+6 4843 = |  —emememeeeeeeao
4s+r+3 12s-r+10 8s-2r+7 l1<rcg2
8s+2r+8 l16s=-2r+9 8s-4r+1 0 s rsg s-1
8s+2r+7 16s-2r+6 8s=-4r-1 0 <r < s-2
105+5 10s+7 2 e
10s+r+8 l4s=-r+9 4s-2r+1 0 £r < 2s-1

Case 7. n = 6 (mod 8). We list all cases of n=é.
n=6 and m=3
5,1,1,4,6,5,2,4,2,0,6
n=6 and m=5
1,1,3,4,6,3,2,4,2,0,6.

For all n,m wheren >m > 1 and n > 6, let n=8s+6 and m=2t+1.



i
1+r
4s-t+3
48-t+r+5
12847
4sS+r+3
1L0s4+2x+7
10s+2r+10
10s+6
8s+r+7

Case 8. n

J
8s-r+é6
4s-t+4
4s+t~-r+4
les+11l
12s5-r+l1
145-2r+9
14s5-2r+10
10s+8
16s-r+9

= 7 (mod 8).

8s-2r+5
1
2t-2r-1
4s+4
8s-2r+8
4s-4r+2
4s-4r

2

85-2r+2
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For m=3, by Lemma II.2(iv)(a), the existence

of the hooked Skolem

sequence 1,1,2,0,2, will give solutions for all n 3 15.

We list all the remaining cases for n=7,15

n=7 and m=3

4,2,7,2,4,5,6,1,1,7,5,0,6

n=7 and m=5

6,4,2,7,2,4,6,1,1,3,7,0,3

n=7 and m=7 is a hooked Skolem sequence of order 6.

n=15 and m=5

14,12,10,15,7,4,2,13,2,4,11,7,10,12,14,8,3,9,15,3,13,11,6,8,11,

9,0,6

n=15 and m=7

8,6,11,12,13,14,15,6,8,9,10,3,4,11,3,12,4,13,9,14,10,15,2,5,2,1,

1,0,5

n=1% and m=%
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8,10,11,12,13,14,15,7,8,3,6,10,3,11,7,12,6,13,4,14,5,15,4,1,1,5,

2,0,2

n=15 and m=11

4,7,3,9,4,3,10,13,7,15,5,5,9,12,14,5,10,6,8,2,13,2,1,1,15,12,8,0,

14

n=15 and m=13

10,8,12,4,7,3,14,4,3,8,10,7,9,15,12,11,6,1,1,5,14,9,6,2,5,2,1,1,

0,15

n=15 and m=15 is a hooked Skolem seguence of

For alln 2z m > 3 and n > 15, let n=8s+7 and

i
*1+r
*45—t+4
*4s~t+r+6
*4s54+7
8s+10
8s+11
s+2r+13
8s+2r+12
*4s+r+3

10s+10

10s+2r+13

10s+2r+12

lds+6

14s+9

*ld4s+11

j
Bs-r+8
4s-t+5
4s+t=r+5
8s+9
12s+6
12s+11
lés-2r+13
16s-2r+10
12s5-r+11
14s+8
14s-2r+7
14s-2r+4
1l4s+10
ldas+12

14s5+13

Bs-2r47
1
2t-2r-1
4s5+2
4s5-4

4s
8s~4r
8s=4r=-2
8s-2r+8
45=2
4s-4r-6
4s-4r-8
4

3

S —— — —— — it

-

order 14

m=2t+1.

-—— e e —— ——

—— v —

- ——— ——
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For n=23 use only the lines (*), and then add the following (i,3)
pairs:

(26,38),(27,31), (28,42),(29,45), (30,36), (35,43), (37,40), (39,41).

This completes the proof of Theorem II.4. =

II.4. Possible Extensions.

The obvious generalization of the near-sSkolem sequence is a
near-Skolem sequence with more than one defect. For instance, a
near-Skolem sequence of order n and defects m,, my {(m <my £ nj} is
a sequence S'= (S;,S3,...,S5y,.4) Of integers sy € {1,2,....,m~-
1,m+1,..., my-1,my+1,...,n}, which satisfies the following

conditions:

1) For every k ¢ {1,2,...,m1-1,m1+1,..,mz-l,m2+1,..n} there
are exactly two elements SisS4 € §', such that 51=5j=k-

2) If s;=s4y=k then j - i = k.

For example, 7,5,2,6,2,3,5,7,3,6 is a (1,4)-near-Skolem sequence
of order 7, and 1,17,8,3,5,2,3,2,7,5,8 is a (4,6)=-near-Skolem

sequence of order 8.

It is easy to see that the necessary conditions for the

existence of such sequences are:
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If n=0,1 (mod 4) then m;, m, must either be both odd or be
both even, and if n = 2,3 (mod 4) then m; and m, must be of
opposite parity. However, to prove that this condition is

sufficient does not appear to be feasible with our methods.

Another interesting generalization is to consider adding
rather than deleting one more difference. So an excess-Skolem
sequence of order n and surplus h is a sequence S''=
(S3+834+44+,53p42) of integers s; € {1,2,...n} which satisfies the

following conditions:

l) For every X € {1,2,...,h~1,h+1,..n} there are exactly two
elements sj,s5 € S'', such that sj=ss;=k and j - i =k,
2) for k=h, there are exactly 4 elements $1154,83,S, € §'',

such that s;=sy=s,=s,=h, and j-i = b-a = h.

For example, 5,7,1,1,3,5,7,3,7,8,6,4,2,7,2,4,6,8 is a 7-

excess=Skolem sequence of order 8.

It is also easy to see that the necessary conditions for the
existence of such sequences are:
For n = 0,1 (mod 4), h must be odd, and for n = 2,3 (mod 4),

h must be even.
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It is also interesting to note that the settling of the

existence question for the extended Skolem sequences will imply the

sufficiency of the above conditions for the excess-Skolem seguence,



CHAPTER III

DIBJOINT SBKOLEM AND HOOKED S8KOLEM SEQUENCES

IXI.1 Introduction

In this chapter we show the existence of disjoint Skolemn,
hooked Skolem, (n,2)-Langford and near-Skolem sequences. We apply
the results obtained to the problems of disjoint cyclic Steiner
triple systems and Mendelsohn triple systems. We also discuss the
relation between disjoint Skolem sequences and Room squares.,

Two Skolem sequences S and S' (or two hooked Skolem sequences
that have the same zero location, HS and HS') of order n are said
to be disjoint if whenever s;j=sy =k and s';=s', =k, then {si,s5} »
{s';,s':},for all k=1,...,n.

If whenever s;=sy =k and s';=s', =k, then 183,84} N {8'),8":}=
e, for all k=1,...,n. then the sequences are called completely
disjoint.

Given a Skolem sequence S =(sl,sz,...,szn), the reverse of S
is S, = (sSyp,Syp-1s--+.55,51), i.e. S8, is obtained by reading s
backward as a Skolem sequence. If S and S, are disjoint, then we
call s reverse-disjoint. These definitions can be extended to the
near-skolem and hooked near-Skolem seguences.

Two m-near-Skolem sequences NS and NS' (or two hooked near-
Skolem sequences that have the same zero location, HNS and HNS') of

order n are said to be disjoint if whenever $j=s4 =k and s';=s', =k,
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then {si,sj} v {s';,58':}, for all k=1,..,m-1,m+l,...,n.

If whenever si=sj=k and s')=s',=k, then {si,sj} N {s';,s'} =
o, for all k=1,..,m-1,m+l,...,n. then the two near-Skolem sequences
are called completely disjoint.

Given a near-Skolem sequences NS =(S1/S9s+++,82q-2}, the
reverse of NS is NS, = (Syp-2:52p-3r+-+¢52,51), If NS and NS_ are
disjoint, then we call NS reverse-disjoint.

The above definitions can also be extended in the obvious
manner to the perfect and hooked Langford sequences.

We give several examples to illustrate these definitions:
Two disjoint Skolem sequences of order 4:
3,4,2,3,2,4,1,1
2,3,2,4,3,1,1,4;
note that both are reverse-disjoint.

Two completely disjoint Skolem sequences of order 8:
4,2,6,2,4,8,5,7,6,1,1,5,3,8,7,3
6,1,1,7,8,3,6,4,3,5,7,4,8,2,5,2.

Two disjoint hooked Skolem sequences of order 7:
57,1,1,6,5,3,4,7,3,6,4,2,0,2
6,1,1,5,7,2,6,2,5,3,4,7,3,0,4.

Two disjoint 4-near-sSkolem sequences of order 6:
6,3,5,2,3,2,6,5,1,1

5,1,1,6,3,5,2,3,2,6;

note that the second is reverse-disjoint but first is not.
Two completely disjoint hooked 3-near-Skolem sequences of order 6:

5,2,4,2,6,5,4,1,1,0,6

41
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6,4,5,1,1,4,6,5,2,0,2.

Finally, two disjoint hooked Langford sequences of order 7 and
d=2:
5,7,4,6,3,5,4,3,7,6,2,0,2
3,6,7,3,2,5,2,6,4,7,5,0,4.
It is natural to ask the question: what is the maximum number of
mutually disjoint Skolem and hooked Skolem sequences of a given
order n? It is easy to see that the maximum cannot exceed n. Since
all the largest two numbers in any set of mutually disjoint Skolem
sequences must occupy distinct positions, but the number of
available positions is 2n (2n+l and 2n-2 in cases of hooked and
near-Skolem sequences, respectively), we cannot have more than n
mutually disjoint (hooked) Skolem sequences or n-1 disjoint near-
Skolem sequences.,

Lemma IIT,1. The maximum number of mutually disjoint (hooked)

Skolem sequences of order n is at most n. For near-Skolem sequences
of order n, the maximum is at most n-1. n
Initial investigations suggest that this upper bound is

probably attainable.

IIT,2 Main Results

In this section we show the existence of disjoint Skolem and
disjoint hooked Skolem sequences by producing constructions that
yield disjoint Skolem (hooked Skolem) sequences, or sequences
disjoint to some of the known constructions of Skolem (hooked

Skolem) sequences.
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Theorem IIX.: For all n = 0,1 (mod 4), n 2 4, there exist at
least 4 mutually disjoint Skolem sequences.

Proof: We present here two reverse-disjoint solutions that are
disjoint with each other, thus producing 4 disjoint Skolem
sequences.

Care 1. n =0 (mod 4); there are two subcases.

Case 1l.(a) n =0 (mod 8), n > 8, let n = 8s.

Solution 1:

i ]
r 8s~r+l l sr g 4s-1
4s 8542 = ememea————-
4s+1 12s+]1 2  e—m—em—m———
12s+2 12843 mccccvcaaa-

8s+2r-1 16s=-2r+1 1 < r <€ s-1
10s-1 108+l —=—eece—-
8s+2r+2 165-2r+2 1 £ r g s-1

10s+r+1 l4s-1r+3 l<r < 2s-1



Solution 2:

i ]

r 8s~r=-1 1 <r g 4s=2
4s+1-2 12s-r+3 1 s r=<2
8s-1 168-2 =  smmesecaaoo
8s+r-1 16s~r=3 l1sr g 2s-2
10s=2 10s~] = |  =—cceccmaaaao
10s+r-1 l4s-r~1 l<r < 2s-2
12s 168 2  =——mcce—e———-
l6s~3 168~1 = | m===a- ————

For n=8 we give the sclutions:
(3,4),(10,12),(2,5),(9,13),(11,16),(1,7),(8,15), (6,14).

(14,15),(9,11),(3,6),(12,16),(2,7),(4,10),(1,8),(5,13).

Case 1.(b) n =4 (mod 8), n > 4, let n = 8s+4.

Solution 1:

i 3

r 8s~r+5 l < r g 4s+l
4s+2 88+6 9= | —mmcmccmamaao
4s+3 128+7 2 | ——ececaa——a
12s5+5 125+6 2 —=-cceaaaa

8s+2r+3 l6s-2r49 l<£r<s
lis+8 145+10 mmmme———-
8s+2r+6 165-2r+10 1 € r < s-1

10s+r+4 14s-r+8 lsr =< 2s



Solution 2:

i J

1 4S+3 = o —mmmmmmmmeeo
r+l 8s-r+4 l £ r £ 45+l
4s+4 12848 2  ==mmeeee—e———
8s+r+5 16s~r+9 1l <r<2s
10s+6 10847 2 ——mmcamae—-
10s+7+r l4s=-r+9 l1<r < 2s
for n=4:

(1,2),(4,6),(5,8),(3,7).

(2,3),(6,8),(4,7),(2,5).

Case 2. n =1 {(mod 4), n > 5,

Solution 1:

i 3
r 4s-r+3 l<rz«<232s
2s5+]1 4S4+3 2 —mmmmaaeaa
2s+2 68+2 = mmmane—————
3s+r+3 8s-r+3 l<r £ s-2
7544 75+3 =wecceac—a-

S5s+r+l 7s5-r+3 1l gr<s

let n=4s+1.
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Solution 2:

i j
r 4s-r+1 1 <r < 2s-1
28 65+l =0 zm—em——————a
2s+1 4s+l 0l 0 meemecmcaa-
4s+r+1 8s-r+3 l <r s
5s+r+l 78-r+1 1 £r g s-1
7541 78+2 =  =—meeeeceeeoa

For n=5 we give the solutions:
(1,2),(7,9),(3,6),(4,8),(5,10).
(8,9),(3,5),(1,4),(6,10),(2,7).

To see that these solutions are reverse-disjoint, we check
that all the values of (i,j) and their rew positions in the reverse
sequence (2n+l-j,2n+1-i) are distinct componentwise.

For example, the values (r,4s-r+3) will be become
(8s+3-(4s-r+3),8s+3-r); these are unequal componentwise for all

r=1,2...,2s. u

Theorem IXI.2 For alln = 2,3 (mod 4), n > 6, there are at least

3 mutually disjoint hooked Skolem sequences of order n.
Proof.
Case 1. n =2 (mod 4), n > 10.
We present below a solution which is disjoint with O'Keefe's

solution (see Theorem I.2. Case 1.), and from a solution obtained



from Stanton-Goulden sclution [S16] for the 2-near-Skolem

sequence of order n by appending to it the hooked sequence 2,0,2.

We distinguish two subcases (a) and (b).

Case 1.(a) n = 2 (mod 8), let n= 8s+2 and n > 10.

i

r

r+l
45+2
8s+2r+2
8s+2r+3
10s+r+4
10s+2

12s8+5

For n

J
4s+3
8s-r+4
12s+4
l6s-2r+4
16s5-2r+7
l4s-r+6
10s+4

12s+6

10, we give the

hooked sequences:

following 3 mutually disjoint

5,3,8,10,3,5,2,7,2,6,8,9,4,10,7,6,4,1,1,0,9.

4,8,3,7,4,3,9,5,10,8,7,2,5,2,6,9,1,1,10,0,6.

9,6,10,1,1,5,7,6,8,9,5,4,10,7,3,4,8,3,2,0,2.

47
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Case 1.(b) n = 6 (mod 8), let n=8s+6 and n > 6.

i 3

1 4845 2= mmem—meaeaeaa
r+l 8s-r+8 1l £r £ 4s+2
4s+4 128410  mmme—mmmee

8s+2r+6 lés-2r+12 1 £ r £ s
8s+42r+7 165-2r+15 1 < r £ s
10s+xr+7 l4s-r+11 l <r < 2s
lis+9 118410 —~=—ecemmeea——

14s+11 14s5+13 2 |  s=eem————————

For n=6, we give the following 3 mutually disjoint hoocked
sequences:

5,2,4,2,6,5,4,1,1,3,6,0,3.

1,1,2,5,2,4,6,3,5,4,3,0,6.

2,3,2,6,3,5,1,1,4,6,5,0,4.

. Case 2. n = 3 {lod 4).
In this case we give two solutions which are disjoint, and are
also disjoint from O'Keefe's solution (Theorem I.2 Case 2) for n

2 3 (mod 4), let n = 4s+3 and n > 7.



Solution 1:

i 3
r 4s-r+4 1 £ r s 2s5+1
2542 6s+5 =00 mm——mmeao
4s+r+3 8s5~-r+6 l<rs<s
65+6 8S+7 = mem—meeee—o
5s5+4 58+5 =00 =s—mmmeme—meee
Ss+r+5 75+6-r 1 <r < s-1.

Solution 2:

i 3

1+r 4s-r+4 1 <rc<s

1 2s+2 0 meeme——e-
s+r+1 3s-r+2 l<rc<s-1
3s+2 3g+3 0@ meeme—aea
25+1 6s+4 0 0BZmmmmeeaa
4s+2r+2 85-2r+6 1 £rc<s
4542r+3 85-2r+9 l sr g s+l

For n=7 we give the following 3 mutually disjoint hooked
sequences:

4,2,6,2,4,5,3,7,6,3,5,1,1,0,7.
3,6,2,3,2,7,5,6,1,1,4,5,7,0,4.
6,4,7,5,3,4,6,3,5,7,1,1,2,0,2.

This completes the proof.
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As shown above, we checked the previously known results to
see if the new properties we introduce are included in them. One
of the interesting cases is Davies' solution of the perfect
Langford sequences of order n = 0,1 (mod 4) and d=2. We find that
Davies' solution for n = 0 (mod 4) is reverse-disjoint but for n
= 1 (mod 4) is not. We include Davies' solution in the proof of

the following theorem.

Theorem IIT.3. For n = 0,1 (mod 4), there exists a reverse-
disjoint perfect Langford sequence of order n and d=2.
Proof. We distinguish two cases:
Cage 1. n =0 (mod 4), n > 8. (Davies) [D1}.
We list here bDavies' solution for n = 0 (mod 4),

let n = 4s and n >8.

i 3

r 4s-r-1 l1<rzs<s-1
s §8=~1 == eeecemeaea
s+r 3s-r l<rc<s

25 6s 2 @0 cmmmme——
4s-1 65-1 === cecmccemaa
4s+r-1 8s-r-1 1<r < s-1
58+r-1 7s-r l1<r s s-1

For n=4 and 8 we give the following solutions:
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3,4,2,3,2,4.

5,7,4,6,8,5,4,3,7,6,3,2,8,2.

Case 2. n =1 (mod 4). We distinguish two subcases:

Case 2.(a) n =1 (mod 8), let n = 8s+1.

i j
2r-=1 8s-2r-3 l1<r < s-1
2r 8s-2r lsr<s
25-1 25+1 === 0 memmmmeeo
28+r+l 6s-r-1 l <r < 28=3
45-1 Bs=-3 = meeccmmamaa
4s+r-1 12s-r+1 l<rc<2
8s-r lés-r+1 l < r < 4s+1

Case 2.(b) n =5 (mod 8), n > 5, let n = 8s+5.

i J

2r=-1 8s5=2r+5 l1sr s s+l
2 4s+2 = ~eeemeeene
2r+1l 8s5-~2r+6 l<rz=<s
2s4r+2 65~r+2 l<r < 2s-2
4s+]1 125+6 2 =  —m——————-
4s+3 12845 2 |  —mmmeceeea
65+2 6s+4 = | —ememmeceeeao
8s+r+4 l6s=-r+9 1 £ r < 4s+1

For n = 5 we have the solution
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5,2,4,2,3,5,4,3,

This completes the proof. n

Theorem III.3 is not only valuable in showing the existence
of disjoint sequences for a special case of Langford segquences
but also will assist us in proving the following theorem for the

near-Skolem sequences.

Theorem IIY.4. For alln > m, n > 4, there exists a reverse

disjoint near-Skolem sequence of order n and defect m.

£ryof. We observe that 6 of the 8 constructions given in
Theorem II.3 are reverse-disjoint, thus providing solutions for
the cases n = 1,2,4,5,6,7 (mod 8), and m either > 2 or 3. We give
below solutions for the remaining unsettled cases.

We note that for m=1, the 1-near-Skolen sequence is a
perfect Langford sequence with d=2; by Theorem III.3. we proved
the existence of such reverse-disjoint sequences for all n = 0,1
(mod 4), so we will omit all cases for m=1.

case 1. n = 0 (mod 8).

The construction of Theorem II.3. Case.l. is not reverse-
disjoint , so we present an alternative construction which is

reverse-disjoint for all n > m > 1. Let n=8s, m=2t+1,
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i J
8s+r-1 l6s-r-2 0 sr g 4s-t-2
12s+t-=2 12s5+t-1 @@ @meecmmmm——aea
12s-t+r-2 12s+t-r=-3 0 <r g t=-2
4s+r-2 l125-r-2 0£rc<1l
2r=1 88-2r-1 l<rc<s
2 4ds 00 meeeeeeaoo
2r+2 8s-2r l<rcs< s-1
2s+r 65-r-2 l <r g 2s-3
6s-2 6s e mm—————

Case 2. n =1 (mod 8).
All constructions and solutions for small cases given for Case

2. of Theorem II.3 are reverse-disjoint.

Case 3. n =2 (mod 8).
All constructions and solutions for small cases given for Case 3.
of Theorem II.3 are reverse-disjoint except in the cases n=10 and
10 2 m 2 4; we list reverse-disjoint sequences here:
n=10 and m=4
8,6,7,2,10,2,9,6,8,7,1,1,5,3,10,9,3,5.
n=10 and m=6
8,9,4,10,1,1,4,7,8,3,9,5,3,10,7,2,5,2.
n=10 and m=8

7,9,4,10,1,1,4,7,6,3,9,5,3,10,6,2,5,2.
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Case 4. n = 3 (mod 8).

The constructions given for all small cases in Case 4. of Theorem
II.3. are reverse-disjoint except for n=11 and m=10 we give it
here:
6,7,9,11,3,5,6,3,7,8,5,9,1,1,11,4,2,8,2,4.

Neither is the construction given for the cases n > m > 2
and n > 11, reverse disjoint. We give here an alternative

construction which is reverse disjoint., Let n=8s+3 and m=2t.

i J

8s+r+2 l6s-r+4 0 £ r < 4s-t¢
12s+t+2 125+t+3 = ccmmmmme o
12s-t+r+3 12s+t-r+l1 0 <r g t-3
4s54r=-2 125-r+3 l<srcg2

8s B i ——
2r 88-2r+3 l1<rsgs-1
2r-1 8s-2r l<src<s
2s+r-1 6s-1r l1<rs 2s-1
6s+1 6s+3 =0 —mmaeeeaoo

Case 5. n =4 (mod 8),
All the constructions given in Case 5. of Theorem II.3 are
reverse-disjoint.
Case 6. n =5 (mod 8).
All the constructions given in case 6. of Theorenm II.3 are

reverse-disjoint.
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Case 7. n = 6 (mod 8).
All the constructions given in Case 7. of Theorem II.3 are
reverse-disjoint.
Case 8. n = 7 (mod 8).
All the constructions given in Case 8. of Theorem II.3 are

reverse-disjoint. n

III.3 Applications.

IIX.3.1 Disjoint Cyclic S8teiner and Mendelsohn Triple Systems

Recall from Chapter I that a Skolem sequence yields a
solution of (a restricted version of) Heffter's first problem
since, given a partition of the set {1,2,..,2n} into distinct
pairs (a;,b;) such that bj=a;+i, i=1,....n, the triples
(i,a;+n,b;+n), i=1,...,n, give the required solution to this
problem. Then {0,i,b;+n}, i = 1,...,n will be the base blocks
for a cyclic STS(én+1).

One may observe that also {0,a;+n,b;+n} i=1,...n, is (another)
set of base blocks of an STS(6n+l). Two STS(v)'s are called
disjoint if they have no blocks in common. It follows that two
cyclic STS(v)'s are disjoint if they have no base block in
common. Thus the existence of a Skolem or a hooked Skolem
sequence of order n implies the existence of two mutually
disjoint STS(6én+l) [C4]. Denote the number of mutually disjoint
STS{v)'s and cyclic STS(v)'s by n(v) and nc(v) respectively.

Observe that a Skolem sequence of order n disjoint from the given
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one, will produce another two sets of base blocks {0,i,b';+n} and
{0,a';+n,b';+n}, i = 1,2,...n, thus another two cyclic STS(6n+1),
and all four systems are disjoint. Thus we have two corollaries

of Theorems IIX., 1, III.Z2.

|

Corollary III... For all v 2 25 and v 1,7 (mod 24), nc(v) 2 8.

Corollary ITI.2 For all v 2 37 and v = 13,19 (mod 24), nc(v)2 6.

A Mendelsohn triple system of order v, MTS(v), is a pair

(V,B) where V is a v-set and B is a collection of cyclic triples
on V (i.e. a triple <a,b,c> that contains the ordered pairs
(a,b), (b,c), and (c,a)); such that every ordered pair of
distinct elements from V appears in precisely one triple. cyclic
MTS(v) is defined similarly to cyclic STS(v). We observe that a
cyclic Mendelsohn triple system can be obtained from a cyclic
STS(v) by replacing any base block {a,b,c} of the cyclic STS(v)
by the two base cyclic triples <a,b,c> and <a,c,b>., Thus we can
also improve on the best known bounds for the numbers of disjoint
cyclic Mendelsohn triple systems [C5].

Denote the number of mutually disjoint Mendelsohn triple
systems, and disjoint cyclic Mendelsohn triple systems of order v
by m(v) and me(v), respectively. Theorems III.1 and III.2, give
us also another improvement on the results obtained in [cs].
Corollary IIT.3. For all v 2 25 and v = 1,7 (mod 24), mc(v) = 8.
Corollary III.4 For all v » 37 and v = 13,19 (med 24), mc(v)z 6.



57

For example, the sequence 1,1,4,2,3,2,4,3 will give th~ solution
for the first Heffter problem:
(1,5,6),(2,8,10),(3,9,12),(4,7,11).

This will give the base blocks for two disjoint cyclic STS(25)

1) {0,1,6},4{0,2,10},{0,3,12},{0,4,11} (mod 25)

2) {o,5,6},{0,8,10},{0,9,12},4{0,7,11} (mod 25).

Now the sequence 3,4,2,3,2,4,1,1 is disjoint with the first one
(reverse-disjoint) and will give another two disjoint cyclic
STS(25)

3) {0,1,22},{0,2,9},{0,3,8},{0,4,10} (mod 25).

4) {o0,11,12},{0,7,9},{0,5,8},{0,6,10} (mod 25).

I13.3.2 Disjoint Skolem sequences and Room Squares.

Let S be a set of n+l elements. A Room square of side n is
an n by n array, R, which satisfies the following conditions:
1) every cell of R is either empty or contains an unordered
pair of symbols from S,
2) each element of S occurs once in each row and column of R,
3) every unordered pair of elements occurs in precisely one
cell.
Room squares of side n are known to exist for all odd n,
n +« 3 or 5.
It is also known that the existence of a Room square of side

n is equivalent to the existence of two orthogonal symmetric
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latin squares of side n, and to the existence of two orthogonal
one-factorizations of the complete graph Kg,;.

In this part we establish the relationship between Skolem
sequences and Room squares. In 1968 Stanton and Mullin [S17]
introduced the orthogonal starters method (or equivalently the
starter-adder method). Let G be an abelian group of order 2n+1,
A starter in G is a set of unordered pairs § = { {s;,t;} : 1 < i
< n } such that:

1) {s; ¢+ 1<ign}tl {t,:2<1i<cn = G\ {0}

2) { #¥(s; - ty) : 1 Si<n}=¢6)\ {0}.
A starter S = { {s;,t;} : 1 £1i € n} is said to be strong if
51+t1=5j+tj implies i=j. Let § = { {s;,t;} : 1 €i<n}and T = {
{u;,vy} * 1 £i < n} be two starters in G. Without loss of
generality we may assume that
s;~tj=u;~v; for all i. Then S and T are said to be orthogonal
starters if u;-s;=uy-s; implies i = j, and if u; » s; for all i.
Let S = { {s;,ty} : 1 £ 1 < n} be a starter; a set A = { {a;} @

1 £i<n} is said to be an adder for S if the elements of A are

non-zero and distinct, and the set S + A = {{s; + a;, t; + a; } :
1 <1< n} is again a starter. Recall that a Skolem sequence of
order n is equivalent to a partition of the numbers {1,2,...,2n}
into pairs (a;,b;) such that b;-a; = i for i = 1,...,n. Hence if
we take the abelian group G to be Zp,,; then the set SS={ {a;, b;}
:1s<1ix<n} will form a starter frr Z,.,,. We call it Skolem
starter. As for all n = 0,1 (mod 4) there exists a Skolen

sequence, we have:
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Lemma Y7I.2 [Skolem] For all n = 0,1 (mod 4), there exists a
Skolem starter for the group 2,,,,. "

For the cases n = 2,3 (mod 4), we define a pseudo-S8kolem

sequence PS of order n to be a sequence (by,by, «v., b,.) of
length 2n, in which each of the elements of the set
{ay,az,...,a3}, where a; = i or -i (mod 2n+l), occurs exactly
twice, and if b;=by=k then j-i=k. Let the defect D of a pseudo-
Skolem sequence be |{ k: k € PS, k > n} |; obviously 0 < D < n.

Theorem III.5 For every n there exists a pseudo-Skolenm sequence

of order n and defect D < 1.

Proof. If n

]

0,1 (mod 4), there is a Skolem sequence which
has a defect 0.

If n = 2,3 (mod 4), a hooked Skolem sequence by,b,,...,
bon-1/bans; exists. If by, =k, then the sequence will also
contain ban+i1-k = k (cf. [R2]). Then the hooked sequence can ba
transformed to 2n+l-k,by, by, ¢ v v oty bopy, 2n+1-K, boy y4ns - o bop g,
which is a pseudo-Skolem sequence with defect 1. .

We also notice that two disjoint Skolem sequences of order n
will give two different partitions for the numbers {1,2,...,2n}
into pairs (a;,b;) and (u;,vy) ,i =1,...n. This will give two

orthogonal Skolem starters if the following condition is

satisfied :
if aj;-u= aj-uy then i=j, and a; # u; for all 1 <i,j< n. For
example, the disjoint Skolem sequences
1,1,4,2,3,2,4,3

4,1,1,3,4,2,3,2



will yield the two orthogonal Skolem starters

S

T

{{1,2},{4,6},1{5,8},{3,7}}
{{2,3},{6,8},{4,7},{1,5}}

which will give the following Room square of side 9

{0,}

{5,8}

13,7}

{4,6}

{1,2}

{2,3}

{1,o}

16,0}

14,8}

{5,7}

{6,8}

{3,4}

{2,}

{7,1}

{5,0}

{7,0}

14,5}

{3,%}

{8,2}

{6,1}

{8,1}

{5,6}

{4,=}

{0,3}

17,2}

{0,2}

{6,7}

{5,}

{1,4}

{3,8}

{1,3}

17,8}

{6,=}

12,5}

{0,4}

{1,5}

{2,4}

{8,0}

{7,%}

{3,6}

14,7}

{2,6}

{3,5}

{0,1}

{8,%}

This leads to.

Lemma IJII.3 The existence of two disjoint Skolem sequences of
order n with the added condition: if a;-u;= a;~uy then i=j, and

a; * u; for all 1<i,j<n, implies the existence of a Room square

of side

We call two disjoint Skolem sequences with the above condition

2n+l1.

orthogonal Skolem seguences.

Conjecture: For all n = 0,1 (mod 4), there exist two orthogonal

8kolem sequences of order n.

60
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It is also obvious that a Skolem sequence with the added
conditien:
aj+by = ay+by implies i = j , for 1 < i,j < n,
gives a stronqg Skolem starter.

There are 6 Skolem sequences of order 4 but, of course,
there is no strong Skolem starter for Zg (in fact, there is no
strong starter for 24, see [D3]). However, there exist strong
Skolem starters for all admissible orders n < 28.

Lemma IIX.4 For all 5 < n < 28, n= 0,1 (mod 4), there exist a
strong Skolem starter for the group Z,.,;.

Proof

We present below the Skolem sequences that give the strong Skolem
starters.

n=5

5,2,4,2,3,5,4,3,1,1

n=8

5,6,7,8,2,5,2,6,4,7,3,8,4,3,1,1

n=9

1,,9,6,2,5,2,7,8,6,5,9,4,7,3,8,4

n=12

4,5,11,8,4,10,5,7,9,12,2,8,2,11,7,10,6,9,1,1,3,12,6,3

n=13

8,9,10,11,12,13,7,4,8,6,9,4,10,7,11,6,12,5,13,2,3,2,5,3,1,1
n=16
11,12,13,14,15,16,6,7,8,9,10,11,6,12,7,13,8,14,9,15,10,16,5, 2, 4,

2,3,5,4,3,1,1
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n=17
11,12,13,14,15,16,17,2,6,2,8,11,1¢,12,6,13,9,14,8,15,7,16,10,17,
5,9,4,7,3,5,4,3,1,1
n=20
13,14,15,16,17,18,19,20,8,3,12,7,3,13,10,14,8,15,7,16,12,17,12,
18,10,19,6,20,5,9,4,11,6,5,4,1,1,2,9,2
n=21
13,14,15,16,17,18,19,20,21,11,12,5,6,13,10,14,5,15,6,16,11,17,12,
18,10,1%9,9,20,8,21,3,7,2,3,2,9,8,4,7,1,1,4
n=24
16,17,18,19,20,21,22,23,24,6,7,8,11,1,15,6,16,7,17,8,18,14,19, 11,
20,12,21,10,22,15,23,5,24,9,13,14,5,10,2,4,2,3,9,4,3,1,1,13
n=25
16,17,18,19,20,21,22,23,24,5,9,25,3,10,5,3,16,4,17,9,18,4,19, 10,
20,15,21,8,22,14,23,7,24,11,13,8,25,12,7,6,15,1,1,14,11,6,2,13,
2,12
n=28
18,19,20,21,22,23,24,25,26,27,28,6,7,3,15,8,3,6,18,7,19,16,20,8,
21,10,22,14,23,15,24,9,25,13,26,12,27,16,28,11,9,14,17,5,10,4,13,

12,5,4,11,1,1,2,10. .

Strong Skolem starters are likely to exist for all n > 5.



CHAPTER IV
INDECOMPOSABLE SKOLEM SEQUENCES
IV.l Introduction

A 2-fold Skolem sequence of order n is a sequence

(S1:S2/+++,S4n) ©f 4n integers satisfying the following condi-
tions:
1. for every K € {1,2,...,n} there exist exactly 4 elements
S5;+54:81,8n € {S31,S,...,54} such that si=sj=sl=sm=k.
2. if s; = Sy =8) =s; =k (i<3j<1l<m then

[i-j| =]1-m| = k or |i-1l|= |j-m|=k .

An m-fold Skolem sequence of order n is a sequence
(S1,82¢+++,S2p) ©f 2mn integers satisfying the following condi-
tions:

1. for every k € {1,2,...,n} there exist exactly 2m elements
Silfsizr"-vSi(zm) € {sl,sz,...,szmn} such that Si1 T Sj3 T...=
Si(2m) =k.

2, if sj4 =k for j =1,2,...,2m, then there exist a perfect
matching M = {{tg,t'g} : q =1,2...,m; U“‘q=1 {tg.t'q} = {555 ¢ ]
=%,2,..,2m}} such that |tg - t'g| =k, for g =1,...,m .
Similarly, an m-fold extended S8kolem sequence of order n ic a
sequence (s),Sy,...,Sypn+1) ©f 2mn+l integers satisfying the
following conditions:

l. For every k € {1,2,...,n} there exist exactly 2m elements

S11/832+++++S5¢o2m) € {S1+S2,-.+/Sypu+1} Such that s;; = s;, =...=

63
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2. if Sj4 = k for j =1,2,...,2m, then there exist a perfect

matching M = {{tg,t'q} : q =1,2...,m; U’“q=1 {tq,t'q} = {544 ¢ 3
=1,2,..,2m}} such that |tq - t'q|= X, for g =1,...,m (1 £ k € n).
3. There is exactly one subscript x such that s,=0.

An m-fold hooked Skolem sequence satisfies conditions 1. and
2. for an m-fold extended Skolem sequence and the following con-
dition:
3'. Sopn = 0 (i.e. there is exactly one subscript, namely x = 2mn
such that s, = 0).

A t-indecomposable m-fold (extended) (hcoked) Skolem sequence

is an m~fold (extended) (hooked) Skolem sequence such that, for

all subscripts i,j , (1 £ i < j € 2mn ), the subsequence
(S1/Si41/+--+,+84) is not a t-fold (extended) (hooked) Skolem
sequence of order L (n 2 L > 1), for some t < m.

If an m-fold (extended) (hooked) Skolem sequence is
t-indecomposable for all t < m, then it is called

a totally indecomposable m-fold (extended) (hooked) Skolem

sequence or simply indecomposable. The above definitions could be

extended to Langford sequences (perfect or hooked) in the obvious

manner.

Necessary conditions for the existence of m-fold Skolem sequences

We use the notation (aij,bij) for (tq,t'q).

n,2m

Thus (1) (bij - aij) = mn({n+l) /2

| -

o e

1
1

(W}
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2m
(bl.j + aij) = 2mn(2mn+1)/2

n

(2)

:

1 0t

£

1l
1

.

adding (1) and (2) then dividing by 2, we get

2m
bij = mn(4mn+n+3) /4

n

(3)

[

e~

1
1

J

The left side of (3) is always an integer, thus the necessary
condition is:

If m is even then m-fold Skolem sequences may exist for all n,
and if m is odd, n must be = 0,1 (mod 4).

The existence of m—-fold (hooked) {extended) Skolem sequences

a) m~fold Skolem sequences

For n = 0,1 {mod 4) and all m, an m-fold Skolem sequence
trivially exists, by simply placing m Skolem sequences side by
side.

We need to consider the case n = 2,3 (mol 4), m even. This
case is also easy; we build an m-fold Skolem sequence from m/2
hooked Skolem sequences and their reverses, always inserting the
first member of the reverse sequence in the hook of the sequence.
The last member of the sequence will fit in the hook of the
reverse. Then we plac2 the m/2 combinations of sequence and
reverse side by side to form the m-fold Skolem sequence.

For example, the hooked sequence 1,1,2,3,2,0,3 and its reverse
3,0,2,3,2,1,1 will form a 2-fold Skolem sequence

1,1,2,3,2,3,3,2,3,2,1,1.
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b) m-fold hooked S8kolem sequences

These only exist if n = 2,3 (mod 4), and m is odd. We can eas-
ily build them by using the same m/2 combinations of a hooked
sequence and its reverse, used in part a), and add at the end a
hooked sequence to make a (2m+1)-fold hooked Skolem sequence.

The example of part a) will give the 3-fold hooked Skolem

sequence 1,1,2,5,2,3,3,2,3,2,1,1,1,1,2,3,2,0,3, when the hooked
sequence is added at the end.
¢) m-fold extended SBkolem sequences

We know that extended Skolem sequences exist for all n. An easy
construction given in [A3] is as follows:
(Pp,Pp=2,...,2,0,2,...,Py-2,P;,Q,,Q0-2,...,3,1,1,3,...,0,-2,Q,)
where P,,Q, are the largest even and odd number not exceeding n,
respectively. For n = 0,1 (mod 4) and all m, an m-fold extended
Skolem sequence could be formed by taking an (m-1)-fold Skolem
sequence from part a), followed by construction of [AK] given
above.

For n = 2,3 (mod 4} and m odd, b) is a special case of the
m-fold extended Skolem sequence.

For n = 2,3 (mod 4) and m even we need the following
construction for a 2-fold extended Skolem seguence:

if n is even, take
n,n-z,....,4,2,n,2,4,...,n-2,n,n-2,n—4,...,4,2,n,2,4,...,n-4,
n-2,n-1,n-3,...,3,1,1,3,..,n-3,n-1,0,n-1,n-3,...,3,1,1,3,...,

n-3,n-1.
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and if n is odd, take

n-l,n-3,...,4,2,n-1,2,4,...,n-3,n-1,n-3,n-5,...,4,2,n—1,2,4,...,
n—5,n-3,n,n—2,...,3,1,1,3,...,n—2,n,0,n,n-2,...,3,1,1,3,...,n—2,
n.

For higher m keep adding copies of this 2-fold Skolem sequence

as many times as required.

IV.2 The Existence of Indecomposable m-fold Skolem Sequences.

It is easy to show the existence of l-indecomposable m-fold
Skolem sequences if m is even: we use the construction for m=2,
given at the end of the last section. For higher m, repeat
adding the even part of the above construction at the beginning
of the sequence and the odd part at the end as many times as
necessary. Thus we have:

Theorem IV.1. For all even m and all n > 2, there exists a

l1-indecomposable m-fold Skolem sequence. n

For odd m, we need to consider first the case m=3.
Theorem IV.2. For m = 3 and n = 0,1 (mod 4), n 2 4, there exist a

3-fold 2-indecomposable Skolem sequence.

Case 1. n = 0 (mod 4); let n=4s

a4 by
i 4s5-i+2 l <ic<2s
8s+i+1 12s~i-1 1 <1ig 2s-1

20s5-2 24s-1 =  ——mm—emre——-
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azs by
2s+1 -
4s+i+1 8s-i+1 1< i< 2s-1

12s5+i-2 16s-i-1 1 <1ic<22s

a3y b3

21s 248 = | m———————
20s+i 24s-i-1 1 < i < 2s-2
l8s 2258-1 = smmeeacea-

16s+i-2 20s-i-2 l1 <icg 2s-2
18s-1 185+]1 2= | ==———————— !

18s=-3 188~2 | —ccmemce———

cagse 2. n=1 (mod 4); let n = 48 +1.

ay byy

1 4s=-i+2 1 <1ic< 2s
8s+1 12s-i=-3 l<ics
19s+1 2ls = —ommmee———
20s+i-1  24s-i+2 1<ig<s
a2 by

2s+1 6S+]l === @ zomem————maa
4s+i+1 8s-i+l 1gicg 2s-1

12s+i-4 16s-i-1 1 < i < 2s+1
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CET bs;

16s5+i+2 18s-i-1 1 <ic<s

225+i+1 24s-i+7 1 <1ss

21s+i+1 23s~1i+7 1 <12 s+l

18s+i-1 20s-1i 1 £1ix<s n

Corollary IV.1. For cdd m and n = 0,1 (mod 4), n 2 4 , there

exists a 2-indecomposable m-fold Skolem sequence.

Proof. Take the even part of the construction of Theorem IV.1l and

place corresponding sequence before the 3-fcld indecomposable
solution given in Theorem IV.2, and place the odd part at the
end; we obtain an m-fold 2-indecomposable Skolem sequence for all
odd m. ]
Theorem IV.3 For m = 0 (mod 6) and all n, there exists an
indecomposable m-fold (extended) Skolem sequence.
Proof
Let m = 6s, and let E,,0, be the largest even and odd numbers in
the sequence, respectively. Arrange the numbers in the following
manner:

E, En-2,...,4,2,E,,2,4,...,E,~2,E ,E -2,E -4,...,4,2,E,,2,4,...,
E,~4,E, -2

repeated 3s times, followed by
Ons0q=2,+++,5,3,0,,0,,3,5,...,0,,0,-2,...,5,3,0,,0,,3,5,...,0,-2,
o

n

repeated 2s times, followed by
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1,1,0,-2,0,-4,...,3,1,1,3,...,0,-4,0,-2,1,1
repeated 2s times.

This will give an indecomposable m-fold Skolem sequence. To
find an m-fold indecomposable extended Skolem sequence, we insert

a zero following any one of the above segments. |

Billington in an earlier work [M5] modified the notion of
pairings (cf. [S16]) to include hooks and m-fold sequences. For
example, p2(1,4)/4 - {5,13}) denotes a 2-fold Skolem sequence of
order 4 and defect 4 with two hooks in the locations 5 and 13:

1,1,1,1,0,4,2,3,2,4,3,3,0,2,3,2.
She proved that pz(l,n)/n = {n+1,n+2} (i.e. a 2-fold sequence of
order n with one missing distance n, and two hooks at locations
n+l and n+2) exists if and only if n is even, and used this
result to show the existence of balanced ternary designs with
block size three (designs that allow repeated elements to exist
in one block).

Thus there are numerous possibilities of combining the ideas
of the previous chapters and this one, and finding or creating

new applications to thenm.



CHAPTER V

BEOLEM LABELLING OF GRAPHB

V.l.Introduction

Given a Skolem sequence of order 4, say, 4,1,1,3,4,2,3,2, it

is natural to think of 4-1-1~3-4-2-3-2 as a labelling of a 7-

path. Fig V.1, shows that the idea can be extended to graphs.

1-1 4~2-3-2-4-3

o
]
w
|
~
t
[an
1
w
3]
I
w
|
0
B—— R — N—
I
w
|
"

(a) (b) (c)

Fig v.1
Note that Fig V.1(c¢) shows the necessity of some degeneracy

conditions - we wish a valid labelling of the disconnected graph

which is the union of a l-path and 5-path to be distinct from the
labelling of a 7-path.

Analogous to the use of BIBD’s in experimental designs this
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labelling problem can be seen as one of testing reliability of a
network where error propagation rate is dependent on number of
nodes used but not necessarily directly. We plaée test equipment
at fixed distances within the network one per node and each is
sending to/or receiving from one specific location. We want all
distances represented and all nodes used exactly once. Further,

each edge should be tested.

Definition V.1 Let n and d be integers, n > d > 0. A d-8kolem
labelled graph is a triple (G,L,d), where
{(a) G = (V,E) is an undirected graph
(b) L : V ~==> {d,d+1,...,d+n-1}
(¢) L(v)=L(w)=d+i exactly once for i=0,1,...d+n-1
and d(v,w) = d+i
(d) If G'=(V,E') and E'c E then (G',L,d) violates
(¢).
Definition V.2 Let n and d be integers, n > d > 0. A d~hooked

8kolem ‘abelled graph is a triple (G,L,d)
satisfying (a) and (d) of definition V.1 and

(b') L:V --=> {{0} U {d,d+1,...,d+n~-1}}

(c') If L(v) » 0 then (c).
That is, hooked graphs can have some vertices labelled 0. Note
that condition (d) in the above definitions requires that for any
edge e, G-{e} is not Skolem labelled. Given a graph G and a
labelling of its vertices. An edge is essential if the labelling

is a valid labelling of G but not of G-{e}. The condition (d)
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stipulates that in a Skolem labelled graph every edge is

essential. If condition (d) is not satisfied but conditions (a)

to (¢) are, the triple (G,L,d) will be called a weak (hooked)

Skolem labelled graph. A minimum hooked labelling of G is a one

with as few hooks as possible.

In this
(1)

(2)

(3)

(4)

chapter we show the following:
Any tree can be embedded in a Skolem labelled tree

with 0(2V) vertices.

Any graph can be embedded as an induced subgraph

in a skolem labelled graph on O(v?®) vertices.

For d=1, we exhibit a Skolem or a minimunm
hooked Skolem (with as few hooks as possible)
labelling for paths and cycles. There are at

most two hooks.

For d=1, we exhibit the minimum Skolem labelled
graph containing a path or a cycle of length n

as an induced subqgraph.

(5) For d=1, we exhibit a Skolem or a minimum hooked

Skolem labelling of all n-windmills.

We first summarize the main known results in terms of
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d-Skolem labelled graphs. Note that d=1 is understood if not
explicitly stated otherwise. Property (d) must be checked as it
is not part of the original quoted theorems.

Theorem V.l Skolem[S13] If n = 0,1 (mod 4), a path of length 2n-1

can be Skolem labelled.
Theorem V.2 Davies[D1] If n = 2,3 (mod 4), n » 2 then a path of
length 2n-3 {Vv,,V5,..,V24-3:V2n-2} can be 2-hooked Skolem

labelled with L(v,,.3)=0

Theoram V.3 Davies[D1] If n = 0,1 (med 4), n * 2 then a path of

length 2n-3 can be 2-Skolem labelled.
Corollary Davies{Dl1] If n = 2,3 (mod 4) then the disjoint union
of a path of length 2n-3 with a path of length 1 can be Skolem

labelled.

Theorem V.4 Simpson[S$12] A path of length 2m-1 can be d-Skolem

labelled if and only if

(i) m 2d-1

v

(ii) m 0,1 (mod 4) for d odd

(iii) m = 0,3 (mod 4) for 4 even.

Theorem V.5 Simpson(S12] For d > 2, a path of length 2m with a
label 0 only at the next to the last vertex can be d-hooked

Skolem labelled if and cnly if
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(i) m (m+1-2d) + 2 > 0
(ii) m= 2,3 (mod 4), 4 odd

(iii) m = 1,2 (mod 4), d even.

Theorem V.6 Rosa[R2] For n =0,3 (mod 4) a path of length 2n+1 has

a minimum hooked Skolem labelling with label 0 at the middle.

Theorem V.7 O'Keefe [0] For n = 2 (mod 4) a path of length 2n+1

has a minimum hooked Skolem labelling with label 0 on the vertex

next to the last.

We shall prove the following:
Theorem V.8 Every tree is an induced subgraph of a Skolem

labelled tree on 0(2v) vertices.

Theorem V.9 Every tree is an induced subgraph of d~Skolem
labelled tree on O(2v+4m') vertices where m' is the minimum value

of m obtainable from d in Theorems V.4 and V.S.

Theorem V.10 .Every graph is an induced subgraph of a Skolem

labelled graph on 0(v3) edges.

Theorem V.11 Every graph is an induced subgraph of a d-Skolem
labelled graph on O((v+d)3) vertices, where v is the number of

vertices.
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Theorem V.12 Every path of length m, with the exception

of {2,3,4,5,6}, can be
(a) Skolem labelled if and only if m = 1,7 (mod 8).

(b) hooked Skolem labelled if and only if m is

even.

(c) minimum hooked Skolem labelled with two hooks

if and only if m = 3,5 (mod 8).

Theorem V.13 Every cycle of length m 2 i3 can be

{(a) Skolem labelled if and only if m = 0,2 (mod 8)
(b) hooked Skolem labelled if and only if m is odd.

(c) minimum hooked Skolem labelled with two hooks if

and only if m = 4,6 (med 8).

Theorem V.14 The graph on the fewest vertices containing an

induced path of length m which is Skolem labelled
has m vertices if m =1,7 (mod 8), m+l vertices if m
even, and m+2 vertices if m = 3,5 (mod 8) (for m < 8

see Fig.Vv.2).

Theorem V.15 The granh with the fewest vertices that contains an

induced m-cycle, m 2 14, and is Skolem labelled is:

ta) the cycle with one pendant edge added

if m is odd
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(b) the cycle itself if m = 2,4 (mod 8).
(We conjecture that the only
2-connected Skolem labelled graphs
are these cycles).

(c) the cycle with two pendant edges
added

if m = 0,6 (mod 8).

(for 3 < m < 13 see Fig V.3).

Theorem V.16 The necessary conditions are sufficient for the
Skolem or minimum hocked Skolem labelling of all

n-windmills.



Embeddings of paths of length n, n < 8

n=1 n=3
1-1 1
I
4-1-3-2-4-3
I
2
n=2 n==~6
2—7—1 2-3-2—-4-3-1-1-4
2
N3 n=7
2
I
3—?—1-3 2-3-2-4-3-1-1-4
2
n=4

Fig. V.2
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Embeddings of cycles of lengthn, 3 < n < 13:
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V.2. Embedding of Trees and Graphs.

In this section we shall embed trees and graphs into Skolem
labelled graphs. We present the proofs in the form of
algorithms, the correctness of these algorithms is easily seen
[(M3]. We shall construct trees containing other trees by the
process of adding a new leaf to a given vertex.
We first present an algorithm which proves Theorem V.8.
Algorithm 1 Embed a tree in a Skolem labelled tree with 2v
vertices.
Let T be a tree (rooted at vertex Vol
LAST VERTEX=v,, d(v,vy)=LEVEL=0,
LEAST LABEL=1
*WHILE: There is an unlabelled vertex v, d(v,vy)=LEVEL
DO
Add a leaf to LAST VERTEX
Label this unlabelled vertex and the
new vertex by LEAST LABEL

LEAST LABEL LEAST LABEL+1

LAST VERTEX the new leaf
END;
LEVEL=LEVEL+1
LAST VERTEX= FATHER(LAST VERTEX)

END;

A modification of this algorithm will give Theorem v.9.



B1
Proof of Theorem V.9.
Algorithm 2 Embed a tree into a d-Skolem tree.

Input: a Tree T and integer d.

Root T at v,

Add a path of length 2m~-1=4d-3 to the tree T beginning

at vy and label it with this labelling which

satisfies Simpson's bounds:
3d-2,3d-4,...,d+4,d+2,d,3d-3,3d—5,...,d+3,d+l,d,d+2,...,3d+2,
d+1,d+3,...,3d-3,

Set LEAST LABEL = d+m

LAST VERTEX = (d+m-1)®" VERTEX from root of new path

Proceed from * of Algorithm 1.

We note that if a partially labelled tree is given with
labelled vertices < d, then Algorithm 2 is robust enough to
continue this labelling provided that any edge from a labelled
leaf to its father is declared essential. Note that the minimum
distance from an unlabelled vertex to the end of the added path

exceeds d. We shall use an analogue of this in the proof of

Proof Of Theorem V.10.

We shall first assume that the graph G=(V,E) is not a tree
and is connected (if it is not connected we may add edges. We
shall see from the proof that this addition of edges does not
change the O(v’) bound on the embedding). We shall use two
algorithms to embed G, the first embeds a graph as an induced

subgraph of a hooked-Skolem labelled graph , the second embeds a
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hooked Skolem labelled graph as an induced subgraph of a Skolem
labelled graph preserving the non-zero labels.

We shall need these auxiliary labelled graphs. Let P; be a
path of length i with ends labelled i and internal vertices
labelled 0. Let Dy be a path of length 3d-3 labelled by:
3d-2,3d-4,...,d+4,d+2,d,3d-3,3d+5,...,d+3,d+1,d,d+2,...,3d+2,
d+1,d+3,...,3d-3. (see Algorithm 2).

If S is an induced subgraph of both G and H, then ky G U; H
we mean a graph with vertices (V(G)\V(S)) U (V(H)\V(S}) U V(S)
and whose edges are (E(G)\E(S)) U (E(H)\E(S)) U E(8). If G and H
have labellings then the label on v € S is the larger of the two
labels of v (its label in G, and in H, respectively).

The idea of algorithms 3 and 4 is to add to G one path for
each vertex weG then to label the vertices adjacent to w and the
corresponding unlabelled vertices on P;'s with the same labels.
such that every edge incident to w will become essential. We
then add a long path Dy (meets Simpson's bound) to the last path
(the longest) and label the unlabelled vertices (in P;'s) and
attache pendant edges to Dy and label their end vertices with the
same labels.

Algorithm 3 To embed a graph as an induced subgraph of a hoocked

Skolem labelled graph.



83

Input: A graph G.
Initialize: Let the edges of the graph G be
€1/€2/44418ys€yy1s .- ,8e; the vertex vy
is an end of ey, for j = 1,2,...,v. (This
can be done since G is connected and not
a tree). Set I (the unessential edges) to
be ej,€;3,.4.,€,,€441¢+.-,85. Set the
(hooked) graph H to be G, and i=0.
End;
While (I + @) do
Let e be the first edge in I.
Let H := H U; P; (here S is as large as
possible subject to the condition that ees
if e is among the first v edges; we also
require that the end of e which is vy get
label i, i.e. the label of the end of Py).
Remove e and all eyeS, from I, where j>v.
i:= i+ 1,
End;
Output: H.

End.

We note that H has every edge essential and further, every

vertex of G has a non-zero label, and the largest label is e. We

pipe H into:
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Algorithm 4 To embed a hooked Skolem labelled graph with
largest label d into a Skolem labelled graph preserving non-zero
labels.

Input: A hooked Skolem labelled graph H with largest
label d.
Initialize: Hooks:= {the set of all hooks of H}.
t= 3 (the largest label of G) + 1.
V(G'):= V(H) U V(Dy).
E(G'):= E(H) U E(Dy) U {f}, where £ is an edge
connecting a vertex of G labelled 4 to an end
of Dy.
Order Hooks by increasing distance from
the end of f in G.
End;
While (Hooks » o) do
Label the first member h of Hooks by d+i.
Find a vertex x¢G' so that d(h,x)=d (this can
be done since Dy is long enough).
V(G'):= V(G') U {ty} where t; is a new vertex
labelled d+1.
E(G'):= E(G') U {tg4,x}.
d:=d+1.
Houoks := Hooks = {h}.
End;
Output: G',

End.



85

This completes the embedding.

We only now calculate the bound. To do this we need to find
the total number of unlabelled vertices just before starting
Algorithm 4. For each vertex x of G' processed, the number of
unlabelled vertices added is = (the last label used) + 1 - 2.
When we have processed all the edges through x, we will have used
labels = (last label used before edges containing x) + deg(x) +
1. This gives us the following bounds. The vertex i has last
label < (i-1)(v~i/2), and uses new labels < v-i. Thus introducing
(i-1) (v-i/2)-1 unlabelled vertices. Thus the total number of

unlabelled vertices is

<

Il e

(i-1) (v-1i/2) -1 = v(v+1) (2v-5)/6

i=1

Thus the total number uf vertices in the embedding is

€ Vv(v+l) (2v=-5) /6+3 (v (v-1))+2

Thus the embedding is o(v7). n

The obvious modification gives the proof of Theorem V.11.

Note that the embedding of K, shown in Fig.V.4 and Fig.V.5.

is similar to but does not illustrate algorithms 3 and 4.



An Embedding of X,

EMBEDDING STAGE 1

Fis. V4
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19-17-15-13-11-9-7-18——16—14-12—10-—8-7-9-11-13-15-17-19-8-10-12-14-16~18

K4 EMBEDDED

Fig. V.5
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V.3. S8kolem Labellingn of Paths and Cycles

In this section we will exhibit the S$kolem (minimum hooked

Skolem) labelling of paths and cycles with as few "hooks" as

possible.

V.3.1. Paths -

Proof of Theorem V.12

The necessity follows from a simple computation similar

to [S813].

(a) paths of length m = 8s+l1 or 8s+7

(b)

The number of vertices to be labelled is 8s+2 and
8s+8, respectively, hence n = 0,1 (mod 4), thus
apply Thecrem V.1.
1. paths of length m = Bs or 8s+6
Use Theorem V.3.
2.paths of length m = 8s+2 or 8s+4.

For m=8s +2 apply Theorem V.7.

For m=8s+4, s > 2, use the following construction:

Label the vertices 1,2,....8s5+5

(r ,4s+4-r) r=1,2....2s+1
(45+34r,8s5+4~-r) r=1,2,...5-2
(55+1+4r,7s+4-r) r=12,...8

(2s+2,65+3), (65+2,88+5), (7s+4,7s+5)
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For s= 1, the solution is:
(1,7),(3,4),(5,8),(6,11),(10,12),(9,13).
(c) 1. paths of length m = 8s+3
Use Rosa's construction [R2) for n = 1 (uwod 4).
2. paths of length m = 8s+5 (s » 3)
Label the vertices 1,2,...8s+6
(r,4s+4-r) r= 1,2,...,.25+1
(5s+4+r,7s+7-1) r=1,2,... s+l
(4s+2+2r,8s+7-2r) r=1,2... L g2 4
(4s+5+2r,8s+8-2r) r=1,2... L (s-1)/2 J
(25+2,45+5) .
For s=1 the solution is:
(2,3),(11,13),(7,10),(1,5),(4,9),(8,14).
For s=2 the solution is:
(1,11),(2,%0),(3,9),(4,8),(5,7),(6,13), (12,21), (14,15), (16,19),

(17,22). n

¥.3.2. Cycles

Lemma V.3.2.1 A necessary condition for an m-cycle to be

Skolem labelled is m = 0,2 (mod 8).

Proof

Let us assume that the vertices of an m-cycle are the
residues {1,2,...,m} in %y, and the edges are (i,i+1) (mod m).
Define |j| = min (j,m-j), and d(i,j) = |i-j|. We need only to
consider cycles of even length, since odd cycles will have a

hook.
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Assume that every two vertices a;, b; of an m-cycle

are labelled by i, 1 £ i £ m/2 =n.

d(ai,bi) if bi > a;
Note that b; - a; =
d(a;,b;) * 2n otherwise.

Thus
n
1) I bj-a; = n(n+1)/2 * 2sn , where s is an integer.
{21
but,
n
2) L b;+a; = 2n(2n+1)/2
i=1

Adding (1) and (2) gives
n
I by t sn = 1/4 n(5n+3)
i=1

which is an integer when n = 0,1 (mod 4). ]

Thus it may be possible to label a cycle of length m = 0,2
(mod 8) by m/2 labels, but if the cycle length m = 4,6 (mod 8)

then the labelled cycle must have at least two hooks.

Proof of Theorem V.13
We distinguish 3 cases:
Case(a). SBkolem labelling of cycles of length m = 0,2 (mod

8)-
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(a)l. Cycles of length m=8s.

Label the vertices 1,2,...,2n.

a; by < 1ic< d(aj,b;)
1 4s+l = @ mmm—————— 4s
s+2 S+3 = remeeeeeaa 1
25+2 65+l = | emem—————ao 4s - 1
2s+3 2 mememmeaea 2s+1
2+1 4s+1-1 1 <1igs-2 45~1-21i
s+l 78+l =  —mmem—aeeeo 28
8s+1-i 4s+1+i 1 < i g s-1 4s-21
68+1+1 6s+1-1 l1<51isgs-1 2i
35+2 58+1 = | mmem—ememeeeo 2s-1
S+3+i 3s+2-1i 1 £ i g s-2 2s-1-2i
(a) 2. Cycles of length m 8s+2.

We subdivide into two casas:

(a) 2.1. Let m = 16r+2, where r > 1.
a; b; <icxg d(a;,b;)
i 8r+3-i 1 1% 4r 8r+3-21i
4r+1 12r+3 =  ——ccccaaaa 8r+2
8r+1+2i  16r+3-2i 1 ¢ i < r-1 8r+2=-41i
8r+4+2i 16r+4-2i 1 < i g r-1 8r-4i
4r+2 8r+4 = emcmmmaaeo Ar+2
12r+4 12r+5 —eememeee 1
10r+1 10r+3 =  eeacmmaa o 2
10r+3+i 14r+5~-i 1 < i < 2r-1 4r+2-21i
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(a)2.2. Cycles of length m =16r+10, where r > 1.

a; by S ig d{a;,b;)
i 8r+7-i 1 i g 4r+2 8r+7-21
4r+3 12r+9 mececmmeaa 8r+4
8r+5+2i  16r+11-2i 1< i < r Br+6-4i
8r+8+21i 16r+12-2i 1 < i g r-1 8r-41
4r+4 8r+8 0 —eee—mmmaa 4r+4
12xr+7 12r48 2 = memmmeemae 1
14r+10 14r+12 —mmmmmmee 2
10r+6+i  14r+10-i 1<1icgor 4r+4-21i

Case (b). Hooked S8kolem labelling of odd length m. There are
4 cases to consider.
(b).1. m=8s+1, s 2 2.
We subdivide into three subcases.

(b).1.1 Let m=24r+1, r 21.

ay by <is d(ag,by)
i 12r=1-i 1 < i g 4r=-2 12r-1-21
24r 12r-1 —mmmem———— 12r

4r-1 S 1

4r+i 8r+l-i 1 < i g 2r-2 4r+1-2i
6r+1 18r ————memmeee 12r-1
20r 24r+l - eem—m———— 4r+l

i2r i6r —-mmmmme- 4r

12r+i 24r-i 1 £ i g 4r-1 l2r-2i

16r+i 20r-i 1<1ic<2r-1 4r-2i



(b}.1.2 Let m= 24r+9.

ag

i

24r+8
Ar+1l
qr+2+i
6r+3
20r+7
12r+4
12r+4+i

16r+5+i

by <i<
12r+3-i 1 < i <€ 4r
12r+3  ceccacme—-

4r42 W —————e——mwma

16r+5  =cecce———-
24r+8-i 1 < i g 4r

20r+7-1 1 < i < 2r

(b).1.3. Let m=241r +17.

ay
i
24r+16
4r+2
4r+3+i
6r+5
20r+13
12r+8

12r+8+i

by <ixs
12r+7-1 1<isg4ar+l
;.3 o o O ——
4r+3 memmmm————
8r+6-i 1<i <2r
18r+12 ~e;meeeeeeo
24r+17 = ccmmmmmmme-
16r+10 ——eemmmmme—-

24r+16-i 1 < i < 4r+1

16r+1l+i 20r+13-i 1 < i < 2r

lér+11l

20r+14 ——mm—c——————
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d(ag,b;)
12r+3-2i
12r+4

1
4r+1-2i
12r+3
4r+2
4r+1
12r+4-2i

4r+2-21

12r+7-21

12r+8

4r+3-21i
12r+7
4r+4
4r+2
12r+8-2i
4r+2-21

4r+3



(b).2. Cycles of length m=8s+3, s > 2. We subdivide into 3

subcases.
(b).

ai

1

2

2i+1

2i+2

4r+1

4r+3+i

6r+3

6r+2

12r+3

12r+3+i

16r+3+i

(b).

2

2i+1
2i+2
8r+4
4r+2+1i
6r+2

6T +4

2.1. Let
by
12r+1
20r+4
12r+1-2i
12r+4-2i
4r+3
8r+3-i
6r+4
18r+3
l6r+3

24r+4-i

20r+4-i

2.2. Let
by
12r+5
20r+10
12r+5=-2i
l2r+8-21i
Br+6
8r+4-~i
6r+3

18r+9

m=24r+3, r > 1.

——— Y —— - —

- ——— —

. — ——— — - —

——— v —— — -

d(a;,b;)
l2r
4r+1
12r-4i

12r+2-41i

4r-2j

12r+]
4r
12r+1-2i

4r+1-21

d(a;,b;)
12r+4
4r+3
12r+4-4i
12r+6-2i
2

4r+2-21i

12r+5



12r+7 l6r+8
12r+7+1i 24r+12-i
16r+9+i 20r+10-i

lér+9 20r+11

(b).2.3., Let m=24r+19, r 2

ay by

1 12r+9

2 20r+17
21+1 12r+9-2i
2i+2 12r+12-21
4143 4r+5
4r+5+1i 8r+9-i
6r+7 6r+8
6r+6 18r+15
12r+11 16r+14
12r+11 24r+20~-i

16r+14+1i 20r+17-i

——— - Gk Sk i —

1 <i

IA
[
H
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4r41]
12r+5-21i
4r+1-21

4r42

d (aj_l bj.)

12r+8
4r+4
12r+8-41
12r+10-41
2

4r+4-21

1

12r+9
4r+3
12r+9-2i

4r+3-2i

(b).3. m=8s+5, s > 2. We subdivide into two cases

(b).3.1. Let m=1l6r+5, r > 1.



ai
i
4r+]
4r+2
8r+3+21i
s8r+2+21i
10r+2
10r+4+i

12r+5

(b).3.2., Let m=16x+13, r > 1.

ag
i
4r+3
4r+4
8r+7+2i
8r+6+21i
14r+11
10r+7+i

12r+9

For m= 16, the solution is:

by
8r+3-i
l6xr+4
12r+4
l6r+7-2i
ler+4-2i
10r+4
14r+6-i

12r+6

by
8r+7-i
16r+12

12r+10

—— . — ——— ———

—— i —————

—— v ——

€1c

ey —— . —

l6r+15-2i 1 < i <

ler+10-2i 1 < i ¢

l4r+13
14r+11-~i

12r+8

l1<1iczsg

d(a;,b;)
8r+3-2i
4r+2
8r+2
8r+4-4i

Br+2-41i

4r+2-27

d{a;,b;)
8r+7-21
4r+4
8r+6
8r+8-4i

8r+6-41i

4r+4-21

(8,9),(2,4),(10,13),(3,12),(6,11),(1,7).

(b}.4. Cycles of length m =8s+7, s 2 1.
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a; b; < i< d(a;,by)
1l 48+5 = = 0 6meme—————— 4s5+3
1+i 4s+4-1 1sicxga22s 4s+3-21
2542 8s+7 @ emmmmeee—o 25+2
2s+3 65+5 =0 ——mmeee——o 4s+2
4s5+5+1 8s+7-i 1 <ic< s=-1 4s+2-21
75+6 78+7 =  ==me—e—a—aa 1
Sar4+i 7s+6~-1i l1<ic<s 25+2~21

Case (c¢). Minimum hooked 8kolem labelling of cycles of
length m = 4,6 (mod 8).

(c}.1. Cycles of length m= 8s+4. We subdivide into two
cases:

(c).1.1. Let m=16r+4, r > 2.

a; b; <ig d(a;,by)
i 8r+3-i 1l <1icg4r 8r+3-2i
4r+l 16r+3 =  emmeecee—aa 4r+2
4r+2 12r+2 @ ememmeeeea 8r
12r+3 12r+4 = e 1
8r+4+2i 16r+6~2i 1 < i ¢ r-1 8r+2-4i
8r+3+2i 16i+3-2i 1 <$icgr-1 8r-4i
14r+4 14r+6 = = ~—ccmmeeae 2
10r+2+i 1l4r+4-i 1 g i € 2r-1 4r+2-2i

For m=20 the solution is:

(13l14)l(4'6)I(518)!(11115)l(2:7)1(12118)0(3!16)I(9117)I(1f10)'
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(c)l.2. Let m=l6r+12, r > 2.

ay by <ix d(ay,by)

i Br+7=1i 1 5i< 4r+2 8r+7-21
4r+3 lér+9 ——memaaee.o 4r+6
4r+4 12r+8 | —mem————e—— 8r+4
12r+6 12r+7 = memme————— 1
8r+6+2i 16r+12-2i 1 < i g r-1 8r+6-4i
8r+5+2i 16r+9-2i l1<icgr-1 8r+4-41i
14r+10 14r+12 ~=cce—eeaa- 2
10r+4+i 14r+10-i 1l <i<2r+1 4r+6=-21i

For m=28 (i.e. r=1) the solution is:
(17,18),(s,8),(23,26),(5,9),(16,21), (4,10), (20,27), (3,11},
(19,28),(2,12),(7,24),(13,25),(1,14).

(c).2. Cycles of length m=8s+6, s » 2.

a; by <1ig d(a;,b;)
i 4s+3-1 1l <ic<azs 4s+3-21
2s+2 65+4 = o ——mmmmme- 4s+2
2s+1 6s+9 = —ccemmeeeee- 4s5=-2
4s+3 3s+7 = —ememmmaeeao 4
4s+4 4545 = emeeeeeeee- 1
4s+6 8s+6 = 0 —eemmmmmeeo 4s
4s+6+2i 8s+4-2i 1 < i g s-2 45-2-41i
4s+7+21 8s+7-21 1 < i g s-2 4s-41i

6S+5 T A — 2
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For s=1 the soclution is:
(8,9),(3,5),(10,13),(12,2),(6,11),(1,7).

This concludes the proof of Theorem V.13. u

V.4. Minimum Embedding of Paths and Cycles

In this section we find the minimun Skolem labelled graph

containing a path or a cycle, thus proving Theorems V.14, V.15.

Proof of Theorem V.14

a) For paths of length m = 1,7 (mod 8) part (a) of Theoren
V.12 gives the required minimum path.

b) For paths of even lengths, we use thas constructidns of
Theorem V.12 part (b), then label the hook by (m/2)+1, then
travel towards the other end of the path and attach a pendant
vertex and label it by (m/2)+1.

c) For paths of length m = 3,5 (mod 8), we similarly use the
constructions of part (c¢) of Theorem V.12, then apply the same

procedure of part (b) above to fill the two hooks. »

Proof of Theorem V.15
a) Use constructions of part (b) of Theorem V.13, then add
the extra label in the same manner we did in Theorem V.14 (b).
b) Use the constructions of part (a) of Theorem V.13.
¢) Use the constructions of part (c) of Theorem V.13, then

add the two new labels in the same manner it was done in Theorem

V.14. (c). ]
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V.S5. 8kolem Labelling of Trees

Initial investigations of Skolem labellings of trees seem to
lead to a conjecture, that all trees can be Skolem labelled if
they satisfy the necessary parity and degeneracy conditions. This
conjecture seems to be as difficult as Ringel-Kotzig conjecture
on the graceful labelling of trees (introduced by Rosa under the
name f-valuation, and later called graceful labelling by Golomb);
for details see [G1].

In this section we study the Skolem labelling of trees (for
example see Fig. V.6). We show the existence of a necessary
parity condition fcr all trees, and we show the existence of a
degeneracy condition for a special kind of trees (n-windmills).
We then show that these two necessary conditions are sufficient
for the existence of a Skolem labelling or minimum hooked Skolem
labelling for all n-windmills.

An n-windmill is a tree with n leaves (vertices of degree

one) which are equidistant from a unique vertex of degree > 2
(the centre). The paths from the centre to the leaves are called

yanes.



101

A Skolem

labe | led tree

Fig. Vv.6.
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V.4.2.The Necessary Parity Conditions for Trees

In this section we prove the parity conditions for all trees
znd the degeneracy condition for the n-windmills.

We define the Skolem parity of a vertex u € T in a tree T to

be I d(u,v;) (mod 2) for all v, €T .
i

If all vertices of T have the same parity, we speak about the

Bkolem parity of a tree T or simply the parity of T.

Lemma V.5.2.1 Let T be a tree with 2n vertices, then all u € T

have the same parity.

Proof Let u and w be any two adjacent vertices in T, and let v

be any other vertex in T. Since T is a tree then:
either d(u,v)~-d(w,v) =1 or d(w,v)=d(u,v)= 1.

Thus partition the vertices of T into two sets L and M, such

that:
L={veT: d(u,v) - d(w,v) =1} and
M={veT: d(w,v) - d(u,v) =1}.
Thus for all vy €T
2n-1 2n-1
_2 d(w,v,) =.E d(u,vy) + |L] ~ M|
1=1 1=1

But T has an even number of vertices. Thus |L| and [M| are
either both even or both odd, hence u have w the same parity.

Since T is connected all vertices have the same parity. =



103

Note that in case of a tree with an odd number of vertices
the number added to Id(u,v;) is an odd number, so the parity of
the vertices will depend only on which colour class the vertex is
in. |

Hence for a trees with even number of vertices the (Skolem)

parity of T is the parity of any of its vertices. If T has an odd
number of vertices the parity of a vertex depends on which colour
class of the bipartition it is in.

Let D(x,{u,v}) = EWT\{U,V} d{x,v) (mod 2), and we call
D(x,{u,v}) to be the parity of T\{u,v}.

Lemma V.5.2.2 Let T be a tree with 2n vertices, and let the

vertices u,w,x €T then
1) D(x,{u,w})= EveT\ghw} d{x,v) (mod 2) , does

not depend on x for all x ¢ T\ {u,w}

2) D(x,{u,v}) differs from the parity of T if

d(u,w) is odd, otherwise it has the same

parity as T.
Proof We observe than
Lver\qu,uy 4(x,Vv) = Lyer @(%,v) -(d(x,u)+d(x,w))

= Lyer d(X,v) - d(u,w) - 2 A

where A = min {d(x,u),d(x,w),d(x,2)}, where z is any vertex on
the u,w path with the shortest distance to X.

We see that I, g (y,.;d(%,V) (mod 2) is different from the
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parity of T by d(u,w) (mod 2). =

We can extend the notation D(x, {u,v}) to D(x,{vy,Vo},e..,
{V4-1:,V4}) to define the parity of T\{vl,vz,...,vj} in the obvious

manner.

Now we can prove the necessary parity condition for all trees

Lemma V.5.2.3 A necessary conditions for Skolem labelling of

any tree with 2n vertices are:

1) If n = 0,3 (mod 4) the parity of T must be even

2) if n=1,2 (mod 4) the parity of T must be odd

Broof By applying Lemma V.5.2.2 n times we obtain this result.
Since the parity of T is independent of choice of vertices, we
know that parity of T = D(x,{a,,by}) + n (mod 2), x » a, or b,
is the same as D(x,{a,,by},{ap-1,/bq-1}) + n + (n-1) (mod 2). Hence

the parity of T is the same as parity of (n(n+l))}/2.

An obvious degeneracy condition for a Skolem labelling of a
tree is that the tree must have 2n vertices and a path of at
least length n. Thus all windmills with more than four vanes can

not have a Skolem labelling. However, these windmills can have a
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minimum hooked Skolem labelling if they satisfy the following

condition:

(*) kX < (n%-n+2)/2m

where k is the number of vanes of the windmill of iength m (m>1).
Since the maximum distance to be covered by all -labels combined
isn+ (n=2) + (n=3) + ... + 1 =n+ (n-1) (n=-2) /2, which should

exceed the sum of all lengths of all vanes mk.

V.5.3.8ufficiency for all n-windmills

In this section we show that the above necessary conditions
are sufficient for obtaining the minimum Skolem labelling for all
n-windmills. For a k-windmill with kX vanes we arbitrarily number
the vanes (say clockwise) 1 to k, let m denote the length of the
vane of the windmill, then to every vertex v we associate two
coordinates (i,j) where i is the vane number and j is its

distance from the centre, denote the vertex by Vige

3-windmills

Lemma V.5.3.1 All 3-windmills with vane length = 1,7 (mod 8) have

a Skolem labelling.
Proof

Case (1) m=1 (mod 8) , m > 1



aij

(1, m-r+1)
(1,3/4(m=1)~r+2)
{1,r+l)

(2, r=-1)

(3,1)

(3,%(m+1))
(3,%(m+3) +r)
(3,%(3m+1)~r)

(3,1/8(7m+9))

For m=1

bij
(3,%(m+1)-r)
(2,3/4(m-1)-r+2)
(3,r)
(2, m~r+l)
(3,%(m+3))
(3,3/4 (m-1)+1)
(3,m-r+1)
(3,%(3m+1) +r)

(3,1/8(7m+1))

label (1,1),(1,2) by 2
(0,0),(1,3) by 1.

Case (2) m= 7 (mod 8) , m >

2y by
(1, m-r+1) (3,%(m+3)-x)
(1,3/4(m+1)~r) (2,3/4(m+1)-x)
(1,r) (3,r)
(2,r-1) (2, m-r+l1)

(3,%(m+1)) (3,%(3m-1))

(3,%(m+3)) (3,%(3m+3))
(3,%(m+3)+r) (3, m-r+1)
(3,%(3m~-1)-r) (3,%(3m+3) +1)

(3,7/8(m+1)) (3,1/8(7m-1))

-
A
H
A
I\

i

z

-
IA
La
IA

it

-
=)
F
[ ]

S

<r < 1/8{m-9)

€£r<1/8(m-9)

—— — ———— " - —

1 <r < %(m+l)
l<r < %(m+l)
1 <r < %(n=3)

1 £r < %(m+l)

< r<1/8(m-7)

Sr < 1/8(m=-15)
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label
%(3m+3)-2r
%(3m+5) -2r
2r+1
m=2r+2
L(m+1)
%(m-1)
%(m-1)-2r
2r

1

label

% (3m+5) -2r
%(3m+3)~-2r
2r

m=2r+2
%(m-1)
%(m-3)
%(m=1)-2r

2r+l



For m=7

label (1,7),(3,4) by 11 ;(1,5),(2,5) by 10;

(1,6),(3,3) by 9 ;(1,4),(2,4) by 8;

(0,0),(2,7) by 7; (1,3),(2,3) by 6;

(2,1),(2,6) by 5; (1,2),(2,2) by 4;

(3,2),(3,5) by 3; (1,1),(3,1) by 2;

(3,6),(3,7) by 1.
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Lemma V.5.3.2 For all 3-windmills with vane length m = 0,2,4,6

(mod 8), there is a minimum hooked Skolem . ubelling (i.e. with

one hook), with the exception of m

roeo

Case 1.

ay
(1,1)

(1,m~xr)

{(1,T+1)

(1,%(m+2))

(1,%(m+2)+r)

(3,%(3m+2))

(2,%(m=2)~-r)

(3,r)

(3,%(3m-6))

m= 2,6 (mod 8)

by
(1,m)
(1,%m+r)
(3,%m+r=-1)
(1,%(3m+2))
(3,m=-r+1)
(2,%(m-2))
(2,%(m=2)+r)
(2,%m+r+1)

(31%(3m-2))

2'

, m> 2

< r £ %(m-6)

£r s %(m-6)

€ r < ¥ (m+2)

Srsim-1

label

m-1

im-2r
Em+2r

Em

% (3m=-4r+4)
m+l

2r

Em+2r+1
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note that the case m=2 is degenerate by the necessary condition

(*).

Case 2.

ayj
(1,r)
(3,%m+1)
(2,1)
(1,m)
(3,m-r-1)
(2,%m-r)
(3,r)

(1,%m+r-1)
(1,3m/4+xr+1)

(1,3%m)

For m=4

m= 0,4 (mod 8)

by 5
(3,5m+r+1)
(3,m—1)
(3,m)
(2,%m-1)
(2,%m-r)
(2,%m+r)
(2,%m+r)
(1,3m/4-r)
(1,3m/4-r)

(1,%m+1)

, M > 4

T ks e ——— S A —— — ——— —
- —— . —— ——

T s — —

l1<r Am+1
1<rg2
1<r < ¥m-2

label (2,2),(1,4) by 6;(2,4),(3,1) by 5;

(0,0),(3,4) by 4;(3,2),(1,1) by 3;

(2,1),2,3) by 2; (1,2),(1,3) by 1.

label
Em+2r+1
Am-2
m+1l
Im/2-1
Im/2-2r-1
2r
Em+2r
Am-2r+3

2r+1

Lemma V.5.3.3 All 3-windmills with vane length = 3,5 (mod 8),

have a minimum hooked Skolem labelling with 2 hooks, with the

exception of m=3,



Proof

In this case m=3

(*)

For m > 5.

1o0¢%

also is degenerate by the necessary condition

aj b; 5 = rs label
(2,%(m+1)-r) (2,%(m+1l)+r) 1 <r < %(m~3) 2r
(1,%(3m=-1})) (2,%(m+1)) —ememm—memmeeeo m
(2,m-r+1) (3,%(m+1) ~r) 1<r < inm 3(m+1})/2-2xr
(1,1) (1, %(m+5)) = ——m=mmmme——eeee % (m+3)
(1,1+r) (3,%(m+5) +r) l<r < %(m3) (m+3) /3-2r
(3,m=r+1) (1,%(m-1)~-r) 1 <r < %(m=3) 3({m-1)/2-2r
(1,m=r-2) (1,5(m+3)-r) l1<r £ %(n-3) %(m-3)-2r
(3,%(3m-1)) (3,%(3m+3)) = memmmmmeeemmea 1
For m=5
label (1,5),(2,2) by 7:(2,5),(3,1) by 6;
(0,0),(3,5) by 5;(1,1),(2,3) by 4;
(2,1),(3,2) by 2;(3,3),(3,4) by 1. .

4-windmills

All 4-windmills have odd number of vertices, the only case

that is degenerate by the necessary condition (*) is m=1. So the

minimum hooked Skolem labelling in this case has at least one



hook.
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Lemma V.5.3.4 All 4-windmills with m > 1, have a hooked Skolem

labelling (one hook).

Proof All the following cases have this construction in common:

In vanes 2,4 we distribute the even numbers as follows

aiy by
(4,r) (2,r)

Case 1. m = 0 (mod 3)
a5y b 4
(3,m-r+1) (1,m-r)
(1,m) (1, (m+3)/3)
(1,r-2) (3,1+r)

Case 2. m = 1 (mod 3)

(3, m-r+1) (1, m-r)
(1,m) (1, (m+3)/3)

(1,r-2) (3,1+41)

IA
L 4
IA

<rcs

1 sr <2(m=1)/3

1sr<(m-1)/3

label

2r

label
2m-2r+1
(2m+3) /3

2r-1

label
2m-2r+1
(2m+1) /3

2r~-1



Case 3.

ajy
{3,m-r+l)
(1,m)
(3,%m-1)

(3,r)

Case 4.

aij
(3,m-r+1)
(1,m)
(3,%5(m-1))

(3,r+1)

m= 2 (mod 6)

by 4
(1,m-r)
(1,1)

(3,%m)
(1,r+2)

m =5 (mod 6)

by
(1,m-r)
(0,0)
(3,%(m+1))
(1,r)

k-windmills, x > 4

In this case there is no Skolem labelling, thus the only

£ s

1 <r 5 %(m-1)

l1<r g %(m-3)
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label

2m-2r+1

label
2m-2r+1
m
1

2r+1

possibility is a minimum hooked Skolem labelling. Note that the

maximum possible label is 2m; substituting in

k < (nz-n+2)/2m the necessary condition will be k < m-1+1/m

i.e. k <

Lemma V.5.3.5

2m-1

For any k-windmill the condition k < 2m-1 is



sufficient for a minimum hooked Skolem labelling.

Proof Fix m

Case 1. k=2t ,[Lk+l1l £ 2m

Label the vanes L;,Lgpy, Lo, Log-1s-+--Le,Dogyyot -

aij bij £r =
(2m-xr,m) (r+1l,m-r) 0<r st
(r,m) (r,m-r) 2 srcst

The distances not used are 1,t+1,... m-t+1

So for

(2m, ) {(1,r) t+1l £ 2r < m-t+1
(2m-1,r) (2m=-2,r+1) t+l<2r+i<m-t+1
(0,0) (m-1,1) e

Case 2, k=2trl , k » 2m.

Label the Vanes I-ll ’ Lzm, L2 Fl Lzm-l F LR B I Lt ] L2m+1_t ? Lzm_t -

a4 b4 £rs

{(2m-r,m) {r+l,m-r) 0sr st

(r,m) (r,m-r) 2 srcst
(2m-t+1,m) (2, m=t+1l) = e

The distances not used are 1,t+1,... m-t
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label

2m-r

2r
2r+l

1



So for

{(2m,r) (1,r) t+1 £ 2r £ m-t
(2m-1,r) {(2m-2,r+1) t+1<2r+1<m-t
(0,0) (2m=1,1) = = memeeemm—ee o

Case 3. k+l1=2m

Label the vanes Lj,L,p,La,Lon-1+s ¢+« «LpaysDneos L.

Ay by D . <

(2m=-r,m) (r+1,m-r) 0 <r < m-1
(r,m) (r,m-r) 2<r s m-l
(m+2,m) (2,2) = @ —emememeemma——e

The distances not used are m and 1

(0,0) (m,m) = memccemmmmaa—.—.

(m,m-1) (m,M=2) = eeeemem—maeae—o

This completes the proof of Theorem V.16.
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2r

2r+1

label

2m-r

We have many scattered results on special classes of trees such

as caterpillars and trees with exactly one vertex of maximum

degree 3. But this is the first class to be completely settled.



CHAPTER VI

CONCLUDING REMARKS AND OPEN QUESTIONS

The idea of this thesis originated through discussions with
Alex Rosa concerning the extended Skolem sequence conjecture.
Although this conjecture remains unsettled, the results in this
thesis, in particular those concerning the near- and hooked near-
Skolem sequences, are due to the various techniques that were
employed in the -unsuccessful- attempt to solve the extended
Skolem sequence conjecture.

In Chapter II. we proved the existence of near-Skolem and
hooked near-Skolem sequences. In addition to several open
guestions mentioned here, for instance, the existence of
sequences with two or more defects, and of excess-Skolem
sequences, several other generalizations are possible. For
instance, one may want to increase the number of hooks and/or the
distances (see for example, Cho [C3]).

In Chapter III. we have shown the existence of 4 mutually
disjoint Skolem sequences, and of 3 mutually disjoint hooked
Skolem sequences, respectively. It may be not too difficult to
improve these results somewhat, but to find a general
construction to show the existence of the maximum number of
mutually disjoint or hooked disjoint Skolem seguences does not
appear feasible at this point. The relation between Skolem

sequences and Room squares suggests the use of the former as an

114
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additional tool for solving some of the problems in this area.

In Chapter IV. we showed the existence of an indecomposable
m-fold Skolem sequence of order n, m = 0 (mod 6). The problem in
the other cases is still open, as is the existence problem for
indecomposable m-fold hooked Skolem sequences. As shown at the
end of the chapter, there are numerous possibilities of combining
ideas from Chapters II and IV to create new concepts that have
applications in design theory [MS].

Chapter V. is, in our opinion, of interest in that it
provides a link between Skolem sequences and graph theory, the
largest branch in combinatorial theory. It brings a new animal to
the graph labelling "zoo" [G2], namely the Skolem labelling of
graphs. We obtained several results concerning the embedding of
any graph in a Skolem labelled graph, and we found the Skolem
labelling or a minimum Skolem labelling (with as few hooks as
possible) of paths, cycles and n-windmills. There still remain
many open questions concerning the Skolem labellings of trees in

general, or even for special types of graphs or trees.



Index of Definitions and S8ymbols

(n,d)-Langford sequence (2)

2-fold Skolem sequence (63)

Adder (58)

Base block (12)

Centre (of an n-windmill) (100)
Completely disjoint Skolem sequences (41)
Cyclic Steiner triple system (10)
D-hooked Skolem labelled graph, (G,L,d) (72)
D-~Skolem labelled graph, (G,L,d) (72)
Disjoint near-Skolem sequences (40)
Disjoint Skolem sequences (40)
Disjoint Steiner triple systems (55)
Essential edge (72)

Excess-Skolem sequence (38)

Extended Skolem sequence (2), (12)
Heffter's difference problem I (10)
Heffter's difference problem II (11)
Hook (2)

Hooked Langford sequence (17)

Hooked near-Skolem sequence, HNS (13)
Hooked Skolem sequence (2)

Hooked Skolem sequence, HS (6)

Langford sequence (2), (17)
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M(v) (56)

M-fold extended Skolem sequence (63)
M-fold hooked Skolem sequence (64)
M-fold Skolem sequence (63)

Mc(v) (56)

Mendelsohn triple system, MTS(v) (56)
Minimum hooked labelling of a graph (73)
N(v) (55)

N-windmill (100)

Nc(v) (55)

Near=-Skolem sequence, NS (13)
Orthogonal Skolem sequences (60)
orthogonal Skolem starters (59)
Oorthogonal starters (58)

Perfect Langford sequence (17)

Pseudo-Skolem sequence, PS (59)

Reverse of a near-Skolem sequence, NS, (40)

Reverse of a Skolem sequence, S, (40)

Reverse-disjoint near-Skolem sequence (40)

Reverse-disjoint Skolem sequence (40)
Room square, R (57)

Skolem parity of a vertex (102)
Skolem parity of the tree (102)
Skolem sequence (1)

Skolem sequence, § (6)

Skolem starter, SS (58)
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Starter (58)
Steiner triple system, STS(v) (10)
Strong Skolem starter (61)
Strong starter (58)
Surplus (38)
T~indecomposable m-fold Skolem sequence (64)
‘Totally indecomposable m-fold Skolem sequence (64)
Vanes (100)

Weak (hooked) Skolem labelled graph (73)
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