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Abstract

This thesis addresses the detection problem in array signal processing in two aspects: (a) de-
tection problems in white noise environments; (b) detection problems in unknown coloured
(spatially correlated) noise environments. New criteria for determining the number of sig-
nals in both these kinds of noise environments are developed. The performance of the new

methods is analyzed theoretically and is confirmed by computer simulations using Monte

Carlo method.

The status of the existing methods for detection in array processing are reviewed, For
the white noise environment, some unfavourable characteristics of existing methods are dis-
cussed, for example, the subjective threshold setting required by the traditional threshold
methods, and the rigid performance of the information theoretic criteria. A new method,
namely Eigen-Threshold (ET) method is proposed and analyzed theoretically and checked
by computer simulations. The new method demonstrates superiority over the existing
methods by: (a) not requiring a subjective threshold setting as required by the traditional
threshold methods; (b) possessing a flexible performance which can be easily controlled by
a single parameter, in contrast to the rigid performance given by the information theoretic
criteria. By properly choosing the control parameter, the new method gives better per-
formance than both AIC and MDL. Because of these advantages, the new ET method is
more applicable in practice than other existing methods, Besides enjoying the same merit
of not requiring a subjective threshold setting, the ET method gives a quantitative control-
lable performance which is useful in practice, because although the asymptotic consistency
argument used in information theoretic criteria and some other methods has important

theoretical significants but: (a) in any practical application the sample size can only be



a limited number; (b) when the sample size NV is given, and a quantitative performance
is desired, the ssymptotic consistency argument may not make too :nuch sense since such
arguments could not give even an approximate error level except predicting whether the

error rate will go to zero when N goes to infinity.

For the more difficult detection problem in the case of spatially correlated noise, there
has not been any sat'sfactory method developad so far. By assuming a banded structure for
the noise covariance matrix, which is true for many engineering applications, and applying
a bi-array structure combined with canonical correlation analysis, a new elegant method
is developed in this thesis. The new method, called Canonical Correlation Test (CCT)
method, gives a reliable, simple, theoretically sound solution to the detection problem
in unknown coloured noise environments, Massive simulations have shown that the new
method is extremely robust to changes in the noise spectrum. Again, the new method is

characterized by a quantitatively controllable performance.

To compare the new methods with the existing methods, the widely accepted AIC

and MDL criteria are used for comparison purpose through out this thesis.
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Chapter 1

Introduction

1.1 What is array processing?

Applications of array techniques in various engineering fields have already had a long history.
In underwater sound engineering, for example, application of sensor arrays in sonar systems
can be found as early as 1910’s [31] for detection of submarines. For radar systems, the first
electronically scanned antenna array was designed and built in 1959 [21] to obtain a antenna
with high resolution and rapid scan ability. Such an ability is important for resolving the

modes of propagation arriving from different directions within a short time interval.

In an array system, the received signals are obtained by means of a group of sensors
at different known spatial locations in the field of interest. The function of the array
can be understood as spatially sampling the propagating wave phenomenon of interest.
Depending on the sensor cbaracters and the medium of propagation, the traveling waveforms
undergo deterministic and {or random modifications. Besides these modifications, the sensor
outputs are further polluted by additive noise such as measurement and thermal noise.
To extract information of interest from these modified and polluted samples, the array
outputs are further processed by various techniques and these procedures are called array
signal processing. The function of array signal processing is to refine the outputs of the
sensor array and to extract required information (number of targets, positions, speeds and

other properties of the targets). In some circumstances, array processing also supplies
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control messages for system operations such as beamforming and system adaptation. The
applications of array processing are quite broad, ranging from communications, radar, and
sonar systems, to fields such as radio astronomy, telephony, seismology, and ultrasonics [1].
However, this thesis will mainly address the detection problem (the problem of determining
number of sources!), specifically in radar and sonar systems. Extending the methods
developed in this thesis to other array processing problems should not be difficult if similar
mathematical models are applied.

1.2 Why use an array structure?

The motivation of the development of array techniques comes from special requirements in

engineering practice.

As we all know, sensing elements play a very important part in the engineering world.
They serve as the eyes of the respective systems. In different applications the term sensor
has different meanings. In radar, telecommunications, and radio astronomy, a sensof usually
means an antenna. In sonar system, a sensor means a hydrophone for passive, listening-only
sonar or a transducer for active sonar. In ezploration seismology, a sensor usually means a

geophone.

A single sensor is very limited in its performance capabilities. But, by combining
individual sensors into an array, the designer can achieve better, more flexible characteristics
such as high gain (or sensitivity), higher and more flerible directivity, and the capability for

multiple source handling than from a single sensor.

Take radar and other antenna-related systems as an example. In these systems,
antennas are devices ordinarily used for transmitting and receiving electromagnetic energy.
For some systems, these purposes may well be served by an antenna consisting of a single
element. Depending on the operating frequency, range, environment, economy, and many

other factors, this element may be as simple as a dipole or loop antenna or as complex

In array processing, the term fargets, sources, and spatial signals (or simply signals) usually refer to the
same physical concept; therefore, we will treat these terms synonymously in this thesis.
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as a parabolic reflector antenna. To obtain high directivity, narrow beams, low side lobes,

steerable beams, and particular pattern characteristics with relatively simple sensor elements,

systems comp_Ssed of a group of antenna elements, called an antenna array or simply array,
i ‘

A
are introducec.

Similarly, in sonar systems, array structures are also applied to achieve lower side
lobes, to provide beam steering over wide angular sectors, and to achieve multi-target

handling capability.

In radio astronomy, an array structure is used to increase the antenna aperture to
receive emissions from remote celestial sources. The arrays used for this purpose may have
tens of elements and may extend from hundreds of meters to nearly the diameter of the

earth.

For more details on various applications of array techniques, one may consult Haykin [33].

1.3 Functions of array processing in sonar and radar sys-

tems

Before we discuss the basic problems studied in array processing, we now lock at two

examples which illustrate the functions of array processing in radar and sonar systems.

A simplified block diagram of the receiver part of a typical radar system is given
in Figure 1.1 [28, Monzingo, p.13, Fig.1-3). The major blocks and their corresponding
functions are described in Table 1.1 [11]. The system is composed of five major functioral
blocks; they are the array antenna, transmitter, receiver, signal processing, and display
sections. The RF waveforms emitted by the antenna are generated by the local oscillator
and transmitter. The reflected spatial waves of interest are received by the array antenna.
In the receiver section, amplitude adjustment and frequency conversion is carried ont. The
major concern of the receiver is to achieve the highest possible signal-to-noise-ratio (SNR).
Having maximized the SNR in the receiver section, target detection and target parameter

estimation are performed in the signal processing section. The output from the signal
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processing section may serve several purposes; i.e., to drive the display devices as shown in
Figure 1.1 for example, and/or to provide the control section the necessary information for

adaptation operation of the system, or beamforming of the antenna pattern.

The second example is a typical sonar receiver. The block diagram of the principal
elements of this receiver is shown in Figure 1.2. In the so-called wet end, the transducer -
array receives signals from the underwater medium. The array processing section includes
the spatial and temporal operations. In this section, outputs from the sensor array are
processed hy spectral analysis, correlation, etc., which are followed by the detection and

estimation operations.

As we can see from these two examples, the coverage of array processing applications
is very broad. But modern array processing as a research direction is more concentrated
on developing high performance algorithms for the two most basic problems: detection and

estimation.

The term detection in array processing is used to refer to the process of determining
whether or not a target exists. If there are any, the number of targets needs to be deter-
mined. The term estimation refers to the process of extracting information concerning the
targets, or in other words, obtaining estimates of target parameters such as position (angles
of arrival and distance), strengths and cross correlations among the target waveforms, the
sizes and velocities of the targets, etc. Sometimes, the noise and interference parameters

also need to be estimated.

1.4 The signal model used in array processing

1.4.1 Waveform and array geometry assumptions

As we mentioned in section 1.1, array processing deals with the signals carried by prop-
agating wave phenomena. The spatially separated array elements serve as spatial sample
points of the propagating waves. Generally speaking, the waves may have any shape, but

in most theoretical analysis the waves are assumed to be plane waves; in other words, the
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Figure 1.1: Block diagram of a typical radar system

Table 1.1: Founctions of blocks in Figure 1.1

determines direction and shape of transmit and receive

provides frequency conversion and low noise amplification

provides target detections, target and clutter tracking,

Block Function
Transmitter generates high power R.F. waveform
Antenna

beam
Receiver
Signal processing

and target trajectory estimates.
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converts processed signals into meaningful tactical

information
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Figure 1.2: Block diagram of a sonar receiver

waves are assumed from far field sources. The array elements can also be arranged in a
three dimensional space in various configurations. Indeed, many different kinds of array
configurations applying different shapes and spacings can be found. However, there are
certain limitations which restrict the way the elements are located. For example, a spatial
analogy of Nyquist’s sampling theorem indicates that the minimum sensor spacing must
be less than or equal to a half of the wavelength in the propagating medium. Also, the
array must be amenable to theoretic analysis and design, and must also abide by various
manufacturing and implementation restrictions. As a result of these limitations, the most
commonly used array geometric structures are those with regular shapes such as linear,
circular, and planar arrays with regular spacings. Among these array configurations, the

linear array with equally spaced identical elementsis the dominant one, due to its simplicity.

In this thesis we also adopt the plane wave assumption and concentrate our discussion
on linear arrays with equally spaced identical elements. The details of the array terminology

used in this thesis can be found in Figure 1.3.
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delay incurred between adjacent elements when a plane wave impinges on a linear array.
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1.4.2 Spatial sampling model

“Assume the array of interest has p equally spaced elements, and there are & sources im-
pinging on the array. As we pointed out before, the array elements serve as spatial sample
points in the field of interest. The output of each element is a function of time ¢ which
describes the state of the corresponding spatial point. For p array elements, these functions

form a p-dimensional vector which can be written as
2(t) = [ 81(2), s £5(8) I (1.1)

where Zi(t), i=1,...,p are the outputs of the p array elements.

Alternatively the outputs of the array may be expressed as a function of frequency

by using temporal Fourier transform 2

z(w) = F{Z(t)} = [ z1(w), .oy 2p(w)]T (1.2)

where F{-} denotes the temporal Fourier transform operator.

The range of frequency in Equation (1.2) is problem dependent. It depends on the
frequency range of the sources of interest and the purpose of the system. For some systems,
the frequency range may be a very narrow band centered on a frequency w,. For other
systems, the useful information may be embedded in a relatively broad range of frequencies.

For each frequency, we can express the output of the m-th array element by

k ‘
Tm(w) =) si(w)etvxi (=1 oy (W) m=1,2,..p (1.3)
t=1
where w is the temporal frequency, s;(w), i = 1,2, ...,k are the temporal Fourier transform
coefficients of the i-th source, a; is defined by a; = sin(#;)/c. The quantity §; is the spatial
angle of arrival of the i-th source, ¢ is the propagation speed of the wave, d is the spatial

separation of adjacent sensors, and v,(w) is the noise component.

*In array processing, both temporal and spatial operations are involved. The term temporal Fourier
transform refers to the Fourier transform with respect to the time variable ¢.
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1.4.3 Narrow band spatial-temporal sampling model

In practice, array outputs are digitized by temporal sampling and A/D conversions. For
radar and active sonar systems, the temporal sampling is done after demodulating the array
outputs to baseband. For passive sonar systems, the frequency range of the received signal
is already in baseband form, and therefore can be directly sampled. There are various
schemes for the implementation of the temporal sampling procedure. One of the schemes

is first to sample the baseband signal and then to apply the temporal FFT, This procedure
is described in Figure 1.4. ;

In Figure 1.4, the baseband outputs of the array are sampled and n, = n, X N samples
are taken, where both n, and N are integers. The samples are sectioned to N segments

each with length n,, so the sample data matrix has the form

51(1) o Ba(mp) | Ba(np+1) v 51(20p) | o | o Ea(n) |
Z2(1) ... fg(np) .'Z-g(n,,+1) . .'32(2111,) e | o Zo(my)

o
i

Ep(1) .. Ep(np) | Zp(np+1) o Ep(2np) | oo | oo Ep(ns) ]

= [X1 X, . Xy (1.4)

Then, for each section of samples, the temporal FFT is carried out and the result is called
a snapshot. At this stage, each snapshot is a p X n, matrix. Let us denote these matrices
by Xy, n=1,2,..,N. The (m, i)th element of X, is the FFT of the m-th row of the n-th
segment X, evaluated at w = 27 (i — 1)/n,.

For multi-frequency or wide band array processing, more than one column of each
X, may be used. There have been several methods for solving array processing problems
for wide band signals [64]{38][13]. These methods use more information than methods using
the narrow band assumption; therefore, they usually give better performance but require
a more complicated algorithm and more computational intensity. In this thesis, we will

use the narrow band assumption in the derivation of our new criteria. Readers interested
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Figure 1.4: Ar example of 2 scheme for signal pre-processing in array processing
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in wide band processing 'ma.y refer the papers mentioned above. It should be pointed out
that most wide band methods usually apply certain techniques such as focusing to convert
the wide band problem to an equivalent narrow band problem. After such conversions, the

methods developed in this thesis may still be used.

Under the narrow band assumption, after frequency selection, each snapshot matrix
X » has only one column. In other words, each snapshot becomes a vector. A very simple

signal model can then be obtained, and is written as

() = (W) 4 () (L3)

i=1
where z,(n) stands for the m-th element of the n-th snapshot. The quantity ¢; =
wod sin(ﬂ.-)/c, is the electrical angle of i-th signal, wp is the centre frequency of the narrow
band, d is the spatial separation of the elements of the array, and c is the propagation speed,
When the separation d is selected as Ag/2, where Ag is the wavelength, then g = 2rmefwy,
and the angle ¢; becomes 2xdsin(6;)/Ao = 7sin(6;). The quantity s; is the complex
amplitude of the i-th source, which has a complex Gaussian distribution in most situations,
and v,,(n) is the noise component of the m-th element, assumed to be complex Gaussian

with zero mean and covariance matrix ¥ ,.

After sampling and FFT, the N snapshots of the p-dimensional vector form a data
matrix,
Zu %12 e Ty

xz z e T
X = 21 22 2N ) (1.6)

3p1 3p2 e sz

This data matrix and the signal model given by Equation (1.5) are the starting point of
most algorithms for detection and estimation of narrow band signals in array processing.
Using the data matrix defined by Equation (1.6), the signal model given by Equation (1.5)

can be expressed more compactly as

2z, = A(@)sp+vy, n=1,.,N (1.7)
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where z,, is the n-th column of the data matrix given by Equation (1.6). The vector a5 is
the n-th snapshot of the complex amplitudes of the signals. The p X k matrix A is called

direction matriz whose (m, i)-th element is exp{j¢:(m —~ 1}}.

Notice that z, is a sample of a random process, from Equation (1.7) the covariance

matrix of this random process can be obtained as
2 =A(9)%,A(¢)" + 2, (1.8)

where X, is the covariance matrix of signals, and ¥, is the covariance matrix of noise. If
the noise covariance matrix has a diagonal form with equal entries, the noise is called white
noise because such spatially uncorrelated noise has a flat spectrum. For the white noise

situation, the signal model can be written as
T = A(P)Z,A(¢)¥ + %I (1.9)

where o? is the power of the noise, usnally unknown. For this specific structure, it is easy to
verify that the rank of matrix ¥ equals k, the number of signals when noise is absent. This
is because both A(¢) and ¥, are rank k matrices. When the power of the white noise takes
a non-zero value, it can be shown that the eigenvalues of matrix ¥ has a special structure.
Arranging the eigenvalues in descending order, the first k eigenvalues are larger than the
p —k smaller eigenvalues, and the p— k smaller eigenvalues are all equal to o2. This special
eigenvalue structure (or equivalently, the residual structure in model matching) is the basic

fact on which most detection methods are based.

1.5 Summary of basic problems and development in array

processing

The basic problems studied in array processing can be briefly summarized as

1. Detection of number of targets
2. Estimation of target parameters

3. Adaptive beamforming
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The major difficulties in detection and estimation usually arise from the following

phenomena:

1. The limitation of the array aperture,

2. The noise and interference in the environment and receiver system,

3. Nor-ideal signal characters, such as non-planar wavefronts, correlation
between different incident signal components, etc.,

4. Calibration errors of the array elements.

Let us discuss the influence of array aperture first. An array with individual elements
can be considered as a spatially sampled version of spatially continuous aperture antenna.
The aperture is measured in wavelengths. The beamwidth of an array system is inversely
proportional to the aperture of the array. Generally speaking, the larger the aperture,
the narrower the beamwidth; therefore, the higher the resolution the array system can
achieve. This is especially true when the conventional spatial FFT method is used for
array processing, because conventional methods cannot distinguish targets falling within
one beamwidth [36). Another troublesome phenomenon of FFT processing is the side lobes
inherent in the spatial spectrum. These side lobes are caused by the finite size of the array,

and they may cause confusion and may conceal some smaller targets located in the range

of the side lobes.

In an attempt to alleviate the inherent limitations of the FFT approach, many al-
ternative methods have been proposed in the last two decades. Among them, methods
based on parametric models give the best resolution, The Multiple Signal Classification
(MUSIC) algorithm [57], for example, in principle can achieve infinite resolution for finite
array aperture under noiseless conditions. Methods belonging to the parametric type are
numerous, Autoregressive Moving Average (ARMA) Estimation [32}, Maximum Entropy
Estimation(MEE) [14][56], Prony Spectral Density Estimation (12}, Maximum Likelihood
Estimation (MLE) [52], and Maximum A Posterior Probability Estimation (MAF) [53], to
mention a few. A very important fact we should mention here is that all these parametric

methods require knowledge of the number of signals to start the estimation procedure, and
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usually the correctness of this knowledge is crucial in the estimation process. However, in
most practical situations, the number of signals is unknown, and systems can only obtain
this information by determining the number of signals from the sampled data, or in other
words, by applying a detection procedure. For this reason, detection is a very important

aspect in modern array processing.

Methods for detection in array processing can be classified according to the principles
they use and the problems for which they are developed. The earliest detection criteria are
based on testing the significance of the residuals after fitting a model to the data [10][4]. The
problem with this approach is that the residual is also a function of the noise level. Without
knowledge concerning the noise level, the tﬁreshold for testing must be set subjectively. This
causes difficulty in engineering applications because in most practical situations, the noise

level is 2 unknown variable.

To avoid this subjective threshold problem, several new methods have been developed
using different approaches, which all fall into the same framework. Detection techniques in
this class are called information theoretic criteria. The Akaike Information Criterion (AIC)
[2] and the Minimum Description Length criterion (MDL) [58](54] are two typical exam-
ples. Information theoretic criteria assume white noise in the candidate models [66][73][69];

therefore they belong to the class of methods for white noise environments.

Spatially correlated noise is also called coloured noise because the spectrum of this
type of noise is not flat. For unknown coloured noise, the information theoretic criteria can
not be used directly. However, if the covariance matrix of the coloured noise is known, the
noise components in the array outputs can be transformed to white noise by a so-called
whitening technique [74). After whitening, all the methods applicable for the white noise .

environment can then be applied.

The more difficult situations arise in the presence of spatially correlated noise with un-
known covariance matrix. For detecting number of signals in such environments, few meth-
ods are proposed. Le Cadre proposed a parametric method for carrying out the detection-

estimation procedure jointly. In Le Cadre’s method, noise is modelled by an ARMA model,
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and maximum [ikelihood estimation is used to estimate an enlarged parameter set in which
the noise ARMA parameters are included. The problem with this method is that more

uncertainty is added to the estimates as the result of expanding the parameter set.

Correlated signals such as multipath propagation and “smart” jammers can severely
damage the performance of the parametric methods, especially for those methods using
spatial projection techniques and principal component analysis. The reason is that when
the correlation of the signals increases and approaches unity, the amplitudes of the principal
components of the signals are dispersed over a larger range; the amplitude of the smallest
principal component will decrease and will approach zero. This will cause difficulty, or
even make it impossible to separate the noise subspace from the signal subspace. One of
the solutions for processing correlated signals is the so called spatial smoothing technique
(23][59][51]. The price paid in spatial smoothing is a reduced actual array aperture. Another
method which can work for correlated signals is maximum likelihood estimation, without

using principle decompositions.

The calibration problem arises when the characteristics of the response of the array
sensors differ from each other or differ from the assumed values. The difference is called
calibration error, which may include both amplitude error and phase error. Calibration
errors cén also be induced by mutual coupling between the sensor elements or by differences
in the electrical or mechanical characteristics of the channel associated with each sensor.

The existence of calibration error usually deteriorates the performance of the array system.

Another obvious difficulty associated with array processing is the hardware require-
ments and computational “horsepower” required to execute the array processing algorithms.
Although an array sysiem usually can give superior performance over that of a single sen-
sor (antenna or sonar transducer), an array system does require increased hardware and
computer power to perform the data processing. Therefore, the development of array pro-
cessing methodology is closely coupled with the development of electronics, fast algorithms
(the FFT, being a good example), and computer technology. As a result of the rapid devel-
opment of solid state electronics and new computer architectures, modern computers can

now carry out real-time data processing on the array outputs. The development of parallel
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computing techniques such as systolic arrays, gives modern array systems the means to
implement far more complicated algorithms, such as eigen-analysis based algorithms. With
this support from quickly expanding available computer power, one trend in array process-
ing research is the development of new criteria and algorithms which are more amenable to

implementation on massively parallel architectures.

The main theme of this thesis concerns the detection problem in array processing.

The contributions of this thesis to detection methods in array processing are:

1. A new attractive alternative method referred to as the Eigen-Threshold(ET)
method, for the white noise environment [16][17].

2. A new method based on canonical correlation analysis for detection in
the presence of spatially correlated noise [18][19). This method is
referred to as the Canonical Correlation Testing (CCT) method.



Chapter 2

Methods for detection in array
processing

2.1 Definition of probability of detection and errors

In array signal processing, the term detection means determining the number of sources
based on received data which are usually noise polluted. There is always a chance of
making a wrong decision when one tries to determine the number of signals from noise
polluted data. Let us denote the true number of signals by k, and the estimated number
of signals by k. We say the signals are correctly detected if ¥ = k. Otherwise, we say a
detection error has occurred. According to whether & > k or k < k, the detection errors
are classified into two kinds. Whenever k > k, we say a false aelarm error has occurred.
Whenever & < k, we say a missing error, or simply a miss, has occurred. These definitions

of errors and their probabilities are summarized in Table 2.1.
2.2 Hypothesis testing
The problem of detection (determining the number of signals) can be viewed as a spe-

cial case of model identification. As one of the basic problems occurring in science and

engineering practice, model identification has been studied from different approaches for

17
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Table 2.1: Definition of errors and probabilities

Value of k E=k E>kE E<k

Signals are de- | Falsealarm has | A ”miss” has

Name of event tected correctly | occurred occurred

Probability of the event | P, =P(k=k) | Po=P(k> k) | Py = P(k < k)

several decades. The earliest method developed for this purpose is the method of Hypothe—
sis Testing. The development of the general theory of hypothesis testing is due originally to
Neyman and Pearson (1933)[46], who proposed secking tests that minimize the chances of
error. The notion of cost and risk were introduced by Wald (1939)[63], who is responsible
for much of the development of the theory in analogy to the theory of games. For the devel-
opment of hypothesis testing theory for multivariate analysis (a statistical field which may
be applied directly to array processing), we should mention the names of M. S. Bartlett,
and D. N. Lawley. In the two papers by Bartlett (1951)[6](1954)[7], the x? approximations
of the analysis of multiplying factor yielded the fundamentals of the x? based multivariate
hypothesis test. In the paper by Lawley (1956)[40] the x? approximation problem is further
examined for testing the equality of the remaining eigenvalues of the covariance matrix,

where the effects of the k largest eigenvalues have been removed.

In this section, we shall use the procedure given by Lawley [40] to illustrate the idea

of the hypothesis test, as it applies to array processing.

2.2.1 Hypothesis testing using Bartlett and Lawley’s x2 tests

Consider the signal model given by Equation (1.7) in Section 1.4. Using the sample data

matrix defined in Equation (1.6), a matrix § is defined as

s=Xx* (2.1)
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where X is the p X N sample data matrix defined in Equation (1.6), p being the dimension
of the sensor array from which the data is sampled, and N being the number of snapshots.
The matrix S is related to the sample covariance matrix 3 by

._1 H—l .
F=5XX¥=5S. (2.2)

Denote the eigen decomposition of the matrix § by
5=QLQ¥ (2.3)
where L is a diagonal matrix,
L = diagly, Iz, ...y &), (2.4)

where I; > I2 > ... > |, are the eigenvalues of §, and Q is a unitary matrix whose columns

are the eigenvectors of S.

Assuming that there are & signals and the noise is white, as we have mentioned in

section 1.4, the eigenvalues of the true covariance matrix will have the following relations.
M>A> > > A un=.=2=2A (2.5)
where A is unknown in our discussion.

According to the case Illc discussed in Bartlett’s paper [7], the criterion used for

testing the hypothesis

Ho: ;\k+1=...=)\p=z\

(2.6)
Hy: N, i=k+1,..,p are not all equal
is
y; B
>
Cul-log.(lksrliszendp) + (P — K)logo((ktr + itz + . + L)/ (2~ k)] £ o (27)
Ho
where Cy is the Bartlett’s correction factor. For this case !,
1 2
CN-N—E(2p+1+1-,) (2.8)

1This coefficient and the corresponding degrees of freedom of the x* approximate given by Bartlett is for
real data
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and this criterion follows approximately the x? distribution with (p— k¥ — 1)(p — k + 2)/2
degrees of freedom when the hypothesis Hy is true. By setting a threshold -y corresponding
to a specified false alarm rate, the number of equal eigenvalues can be determined through
hypothesis testing. Ther the number of signals can be obtained because the number of equal
eigenvalues is p — k, where p is the number of sensors of the array, and k is the number of

signals.

2.2.2 Problem with the x? test

The problem with the method of hypothesis testing is the uncertainty over the degrees of

freedom of the criterion.

In 1956 Lawley published his result on this topic [40]. He pointed out that the criterion
given by Equation (2.7) does not, even asymptotically, follow a x? distribution, though it
will approximately do so if the eigenvalues of the true covariance matrix £, A1, Az, ... Ap
as given in Equation (2.5), are large and A is small. Even then the effective number of
degrees of freedom depends on the amount of variance removed from each variate by the

first & principle components.

To correct such an uncertainty, T. W. Anderson suggested the use of the form cx3
to describe the distribution of the criterion, where ¢ and d are constants and where x3
denotes a x? variable with d degrees of freedom. However, in most practical situations, the
knowledge required in determining these two constants is not available. Therefore, such

further corrections may only be done subjectively.

The requirement that the x2-test thresholds must be set subjectively Limited the
applicability of the above hypothesis testing methods in array processing. As an effort to

avoid this subjectivity, information theoretic criteria are introduced.
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2.3 Information theoretic criteria

We use the term information theoretic criteria to refer a class of detection criteria which
are derived from different approaches but fall into the same framework. The information

theoretic criteria framework can be expressed as follows:

Consider a family of &y models M = {M;},
M; = {f(z|6:)|8: € @}, i=1, .., ky (2.9)

where f(z|6;) is the density function of = with parameter 8;, and @ is the parameter space

of the model family. The information criteria are given by the form
IC(i) = —2Ln(8:) + cngi, i=1, ..., ky (2.10)

where i is the index of the candidate model, 8;, Ln(8;), ¢i are respectively the quasi
maximum likelihood estimates (QMLE), the quasi log-likelihood, and the number of frec
adjusted parameters under the model M;. The model minimizing the criterion given by
Equation (2.10) will be regarded as the best model in the family. The coefficient cy is the
weighting factor of the second term, called the penalty term, and makes the criteria different
from each other. Akaike [2] proposed ¢y = 2 in his AIC, Schwartz [58] and Rissanen [54]
proposed ¢y = log, N in the MDL (BIC), and Hannan and Quinn [30] proposed ¢y =
Clog.log, N (C > 0) in their & criterion. To give reader some more detail, and to

facilitate the discussion later on, we now give a brief discussion on each criterion’s penalty

term.

2.3.1 Akaike’s information theoretic criterion (AIC)

The reason this technique is called an information theoretic criterion is because it is derived

on the basis of the Kullback-Leibler mean information measure.

Let z be a random vector with a probability density function (pdf) g(:). Consider
family of pdf’s defined by

F={f(z|6) 8 € 0} (2.11)
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where @ is the space of the parameters. The true distribution g(=) is assumed to be an

element in this family with tru¢ parameters 8;. That is

o(=) = f(=l6) (212)
The Kullback-Leibler mean information is defined as
1(g:£,0) = Eallog.g(=)) - Ea, og, f(I0)
= [ og. g(a)dz - [ g(z) 1o, f(=I6)dz
= [ g(=)log{g(z)/ f(=I6)}d
[ #1600 10g{ f(l8.)/ £(z16)} = (2.13)

where Ep, denotes the expectation operator with respect to g(z), the pdf with true param-

eters 6.

The K-L mean information has the following properties:
a. I(g;f,0)=0if and only if f(={9) = g(=)
b. I(g;f,6)>0
Therefore, it can be used as a measure for discrimination between g(-) and f(-|8). Thus, the
model identification problem becomes the problem of finding the model which minimizes

the Kullback-Leibler mean information among the family.

Let z,,.--,zy be some 1.i.d. samples of z. Define the quasi-likelihood and the quasi

maximum likelihood estimate (QMLE) based on N independent observations as

N
Ly(8) = Zlog, f(=:]0) (2.14)
Ly(8) = mex Ly(9) (2.15)

The modifier “quasi” means the likelihood function is maximized for the model under test
and this model is not necessarily of the true order. By applying a Taylor expansion about

the quasi true parameter g, and using the relation

(6~ 80)" T (80)(6 — 80) ~ X2, (2.16)



2.3. INFORMATION THEEORETIC CRITERIA 23

where

Tw(8) = Eg [Blogeg(zyle) _ 310geg(zN|8)] (2.17)

ae a8

is the Fisher’s information matrix, x2 is the x? distribution of ¢ degrees of freedom, g being
the number of free adjusted parameters of the true model, Akaike showed that minimizing

the Kullback-Leibler mean information I{g; f,8) is equivalent to minimizing the criterion

ICa1c = ~2Ln(8) + 2q . (2.18)

2.3.2 Minimum description length criterion (MDL)

The criterion AIC developed by Akaike attracted broad attention because of its elegant
theoretical formulation and its striking difference from the traditional hypothesis testing
methods. But before long, a problem with the AIC was noticed. Firstly, the AIC is
given in a fixed formulation; therefore, the performance is not flexible. Secondly, this rigid
performance is not quite satisfactory. When used for detection in array processing, the AIC
yields a certain residual probability of error which persists even at high signal to noise ratios

and/or when the number of samples (snapshots) goes to infinity. In statistical terms, the

AlC is not consistent.

Consistency, as a statistical concept, is defined as follows: An estimator ¢,,, using a
sample of n values, will be said to be a consistent estimator of 4 if, for any positive ¢ and

77, however small, there is some N such that the probability that
|t — 8] < € (2.19)
is greater than 1 — 7 for all n > N. In notation of the theory of probability
P{ltn~8l<e}>1-1n, forn>N (2.20)

An equivalent statement for t, being a consistent estimator of § is that ¢, converges to &

in probability.

Inspired by Akaike’s pioneering work, and with a view to improve the AIC in terms of

consistency, a new criterion was derived independently by Schwartz [58) and Rissanen [54]
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from quite different points of view. Schwartz’s approach, namely BIC, is based on Bayesian
arguments. He assumed that each competing model in the candidate model family can be
assigned"a. prior probability, and proposed to select the model that yields the maximum
posterior probability. Rissanen’s approach is based on information theoretic arguments.
Since parametric modeling can also be considered as encoding the observed data by pa-
rameters, Rissanen proposed to select the model that gives the minrimum code length. The
new criterion is knoi&ﬁ_é.s Minimum Descriptive Length (MDL) Criterion. For large N, the

MDL and the BIC have the same form, given by
ICMmpL = —2Lxn(6) + ¢ilog, N . ' (2.21)

Compared with the AIC, the only change offered by the MDL is that the coefficient ¢y = 2
in the penalty term is replaced by log, N. This factor adjusts the penalty term according to

the sample size N to ensure consistency of the MDL criterion. The proof of the consistency

of the MDL can be found in [73][75).

2.3.3 Formulation of the AIC and the MDL with eigenvalues

In 1985, Wax and Kailath [66] published forms of the AIC and MDL criteria expressed in
terms of the eigenvalues of 5 (or §). Criteria in this form can be very conveniently used

in high resolution array processing for detection of the number of signals.

Let {;}, i =1,2,...,p be the eigenvalues of the sample covariance matrix of p X p
dimensions formed from N samples of array output. The array outputs are assumed to be p
dimensional complex processes. The eigenvalues are assumed to be arranged in descending

order. According to {66], the AIC and MDL can then be expressed as

N
AIC(k) = —2log, | ~o=kEd

{p—k)N
e T - & ) + 2k(2p - k) (2.22)
- i=kp] '3
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? ar 0
MDL(k) = —log, | —/—2——
p—}-E Dhekir i

(k)N )
) + -2—k(p ~E)log, N (2.23)
where k is the number of signals under test. The estimated numbe: 01' signals will be the
k which minimizes the criterion. The criteria given by Equations (2.22) and (2.23) will be

repeatedly referred to in this thesis so that comparisons can be made with the new criteria

developed in the ensuing chapters.

2.3.4 Other information theoretic criteria

Besides the well-known AIC and MDL criteria, there are numerous other criteria which fit
into the information theoretic criteria framework. Among them, we mention the works of

Hannan, and Zhao and Krishnaiah etc.

Hannan, in 1979, proposed a so-called ®-criterion for selecting the best order of an

AR models [30]. His argument is based on the law of the iterated logarithm. It has the

form
ICs = —2log, Ln(8) + ¢:C log, log, N (2.24)

where C > 2,

Zhao, Krishnaiah and Bai [73] further generalized the results of Akaike, Hannan,
Schwartz, and Rissanen by proposing a criterion called Efficient Detection Criterion (EDC)

ICepc = —2log, Ln(8) + C(N)g; (2.25)

where C(IV) is not given in a specific form, but for consistency, it must satisfy the following

two conditions:

lim C(N)/N=0 (2.26)
N—eoo .
Nlim C(N}/log log. N = o (2.27)

Hence, we see the MDL is a special case, and the ®-criterion a boundary case, of the EDC.
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Yin and Krishnaiah proposed a detection criterion which has a more general form.

With certain r-regular conditions satisfied, a real function f(-) replaces the log-likelihood
function in the EDC: .

ICanc = f({Py, -+ 1) + aCa ' (2.28)

where 1‘§“) is an estimate of );, where A1 > A2 > ..Ax > Ap41 = ... = A, are nonrandom
constants which are not necessarily eigenvalues, and satisfy |l§“) - Al =0(an),as n — o0
a.s., fori = 1,.-.,p, the a, > 0 are nonrandom, a, — 0. The quantity C, > 0 is a
nonrandom function of n, it should satisfy: C, — 0, and af*1/C, — 0, r being the level of
regularity of the function f(.). The quantity gx is the number of free adjusted parameters
of the model assuming k signals. Details of this method can be found in [69].

2.4 Comparison of the hypothesis testing method and the

information theoretic criteria

As we mentioned before, the hypothesis testing methodology proposed by Bartlett and
Lawley is the x* approximation of the likelihood ratio criterion. From the performance
point of view, the hypothesis testing method represents an effort to give a quantitatively
controllable error performance for the detection (model selection) procedure. By introducing
the correction factor, this effort succeeds in giving a fairly good approximation when the
noise level is low (the noise eigenvalue is small). But when the noise level is relatively high,
the accuracy of the approximation becomes a function of the signal to noise ratio. When
the signal {o noise ratio diminishes, the accuracy of the approximation becomes poor. This
means if we do not correct this influence, the actual performance of the method may differ
from the theoretically predicted one. To correct this influence, knowledge of the true SNR is
required. In most practical problems the SNR is unknown. Therefore, a certain subjective
judgment is required in the application of the hypothesis testing method of Bartlett and
Lawley.

In contrast to this, the information theoretic criteria are developed from totally differ-

ent bases. By using Kullback-Leibler mean information and other information measures for



2.4. COMPARISON OF THE EYPOTHESIS TESTING METHOD AND THE INFORMATION THEORETIC CRITERIA 27

model sclecting, the information theoretic criteria do not need a subjectively set threshold.
Another characteristic of this class of criteria is that consistency is emphasized in these
methods developed after the AIC. The consistency of these criteria is brought in by intro-
ducing a weighting factor, which is a function of the sample size N, into the penalty term
of the criteria. By selecting the weighting function properly (which means the function
should satisfy the conditions given in Equations (2.26) and (2.27)), the consistency of the
criteria is ensured. However, for limited N, quantitative error performance is not directly

obtainable for the information criteria, although fairly complex procedures [65]{70] do exist

for this purpose.

Comparing these two approaches, the common and contrasting characteristics can be

summarized as

1. The common characteristic — the core of the criteria: The central part of the hy-
pothesis testing method and most information theoretic criteria can be shown to be 2
likelihood ratio. From Equations (2.7), (2.22), and (2.23), we see that the likelihood
terms are invariant to multiplication of the eigenvalues by a common factor. Since the
noise variance is such a common factor in the noise eigenvalues, its influence may be
removed from the criteria. This property enables the likelihood ratio criterion based

criteria to effectively deal with the situations in which the noise variance is unknown.

2. The contrasting characteristic — the threshold/penalty term: the hypothesis testing
method uses the x? approximation to quantitatively control the false alarm perfor-
mance, but essentially fails because of the requirement of a subjective threshold. The
information theoretic criteria avoid such subjectivity by introducing a penalty term

which is determined using asymptotic consistency arguments.

Obviously, the major advantage of the information criteria is that it eliminates the
subjective threshold-required by the hypothesis testing method. Therefore, the information
theoretic criteria are more useful for solving practical problems. However, information
theoretic criteria are based on consistency arguments. No straightforward quantitative

performance analysis is directly available for these criteria, although the performance can
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be derived through somewhat complex procedures[65][70]. We notice that although the
consistency argument has important theoretical impact, in practice, the sample size N
can only be finite. When N is fixed, and quantitative performance is desired, consistency
arguments may not make too much sense. Hence, in this thesis, a.lthough we use mainly
asymptotic theory for our theoretic analysis, our arguments are more concentrated on the
development of new methods which can give a quantitative theoretical prediction of their
error performance. As aresult of such an emphasis, our new methods presented in this thesis
are characterized by quantitatively controllable performances, i.e., the false alarm rate may
be controlled to within any reasonable level. Hence, the performance of the methods may

always approach near-optimum levels, regardless of the operational SNR.

-~



Chapter 3

A new method for detection in
the white noise environment

This chapter addresses two main issues:

Firstly, a discussion on the asymptotic distributions of the eigenvalues of the sample
covariance matrix under the white noise assumption is presented. This discussion provides
the statistical theoretical support for our new method. The distributions involved are for
complex data, and are given in several different forms. These asymptotic distributions are
valuable not only because the literature on this topic is imited, but also because they are
useful for giving the reader a clearer, deeper view of the behavior of the sample eigenvalues,
which are widely used in various modern array processing techniques in direct or indirect
manners. Furthermore, if the reader compares these distribution functions with their real

data counterparts, interesting correspondences are revealled.

Secondly, based on the distribution of the normalized sample eigenvalues, a new
method, namely the Eigen-Threshold (ET) [16][17) method for detecting the number of
signals in the white noise environment is proposed. This new method is based on one step
predictions of the upper threshold of the estimates of the smallest multi-fold eigenvalue of
the covariance matrix. The probability of the predicted threshold being exceeded can be
controlled by a parameter ¢. For a given probability of error P., the new method yields

lower value of SNR threshold than that of the MDL, and has a lower error rate than that

29
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of the AIC at high SNR. In contrast to the hypothesis testing methods based on Bartlett
and Lawley’s x? tests, or T. W. Anderson;; éonﬁdence interval approach, subjectively set
thresholds are not required in this new method. This is because thg thresholds used in
the ET method are generated in 2 one-step prediction manner which fherefore, enables the
threshold values to be adjusted adaptively under different noise levels. Before a detailed

discussion of the new method, let us first introduce the eigen-threshold concept.

The performance analysis of the new method is given in the next chapter.

3.1 Eigen-decomposition of the covariance matrix

Consider a linear array of p sensors. The array output can be expressed as a complex vector
z(t), where,

z(t) = A(8)s(t) + n(t) (3.1}

where s(t) is a k£ x 1 vector which denotes the complex envelopes of the k¥ narrow-band
signals. The elements of s(t) are assumed to be independent Gaussian distributed random
variables with zero mean. A(#) is a p X k matrix whose columns are the direction vectors
with parameters 8 denoting the angles of arrival of the k signals. With each signal incident
from a different direction, A(#) is a full column rank matrix. The vector n(t) isa px 1
vector representing the receiver noise of the p sensors. It is assumed to be a complex, zero

mean, Gaussian white process.
Let ¥ be defined as the covariunce matrix of =, then
2 = A(8)2,A(8)" + oI (3.2)
where £, = E{s(t)s(t)"} is the covariance matrix of s(t), where rank(%,) = k for non-
coherent signals, and o2 is an unknown constant representing the noise power of each sensor.

Because ¥ is a nonnegative definite Hermitian matrix, it can always be decomposed

to a diagonal form as follows:

T =QAQ" (3.3)
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where Q is a unitary matrix whose columns are the eigenvectors of £, and A is a diag-

onal matrix whose diagonal elements are the eigenvalues of X assumed to be arranged in

descending order such that

A = diag(My Azy s Aky Ay wony A) (3.4)

and

M>X> L >X>A=02. (3.5)

If the covariance matrix ¥ were available, one might determine the number of signals
simply by counting the multiplicity of the smallest eigenvalues of £ . In practice however,
since ¥ must be estimated from the samples of the array output =(t), the last p ~ &
eigenvalues are no longer equal. Now assume z(#;), z(t2), ... 2(¢y) are a group of samples

of z(t), which may be simply denoted by 21, 2, ... zx, then the estimate of X is given as

- 1
> = ws (3.6)
where
N
§= 2 zizl (3.7)
i=1

which follows the complex Wishart distribution W,(V, 2). Therefore, the probability den-

sity function of S can be expressed as

T L i S S
f(S)—-———l-,p(N)IW xp[~tr(£~15)] (3.8)
where [¥| = det(¥?), )
Tp(N) = a?P-D2T] (N — i 4 1) (3.9)

=1

and the eigen decomposition of £ has the form

5 =¢po” (3.10)

where Q is a unitary matrix of dimension p X p, and is an estimate of @. The matrix D is

diagonal of dimension p x p, and is an estimate of A, which is given as

D = diag(dy, dy, ..., d;) (3.11)
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where dy > d2 > ... > d, with probability one for finite N. It is known that the exact
distribution of D is [35]

f(dlv d2: eeey deAh A!’ seey A’n A)

_wP(P—j)|5|N-P ] oFu(—E-l D)ﬁ f[ (d,-—d')2 (3.12)
T (N)T,(p)| 5] T EEsm

where oFo(—2~1, D) is the hypergeometric function with matrix arguments X!, and D.

This special function is difficult to calculate because of the infinite integrations in-
volved. For this reason, asymptotic distributions which are easier to apply in practical sit-
uations have been derived in a number of papers for various cases[3, 43, 15, 71, 68]. These
distributions are further modified for the development and analysis of the eigen-threshold

method of this thesis.

3.2 Asymptotic distributions of the residual eigenvalues

The asymptotic distribution of d; > dy > ... > d;, the eigenvalues of the sample covariance
matrix £ can be derived by expanding the hypergeometric function. Various authors have
obtained the asymptotic expansion for the joint distribution given by Equation (3.12). For
the cases where the true eigenvalues A, Ag, ..., A, are distinct, vhe asymptotic distribution
has been given by G. A. Anderson [3], and Li and Pillai [43]. For the case with multifold
eigenvalues, which is more difficult, the asymptotic distribution has been derived by Chat-
topadhyay {15], and Zhang and Wong {71}. The proof has also been summarized in another
paper of Wong, Zhang, Reilly, and Yip [68]. Here we present the distribution derived by

the authors above as a theorem. The lengthy proof is omitted.

Theorem 3.1 Suppose § = NX follows the complez Wishart distribution Wo(N,X), that

is, the probability distribution function of § can be ezpressed as

js1-r

19)= 5 Wiz

exp[~tr(2~15)) (3.13)
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where

P
To(N) = a?e-D2T] (N —i 4+ 1) (3.14)

& i=1
and the eigenvalues of 3 and ¥ are dy > dy > ... > dp and Ay > A2 > ... > A >
Akt1 = .. = Ap = A respectively. Then the asymptotic probability density function of
dy > ds > .. >.dp is given by

NpN- h(zp-k-nn.,-rp(p—l) k(k+1)/2pk(p)

fldr, da2, oy dlAr, A2y ey AR, A) =

i=k+1 i=1 j=i+1 i=1

exp{"N[Z P> ]} I o st %

P gN-p k P A:A p—1 dimd ,
.. : - 3.15
i:lg-l AN E;’H—l (A = A)(d: - dj) :I:J; .1;[11( 2 (3.19)

This asymptotic distribution function is still in a relatively complicated form. To get
a further simplified expression which enables us to study the behavior of the eigenvalues in
a more standardized form, a set of normalized eigenvalues are defined by normalizing the
difference between each sample eigenvalue and its corresponding true eigenvalue as

= N1/2 (;‘_ - 1) , =12 ..,p (3.16)

1
where A; = A, for i = k+1, £+ 2, .., p. To derive the asymptotic distribution of
these normalized sample eigenvalues, we first rearrange the distribution function given by
Equation (3.15) to a more standard form in which the influence between eigenvalues with

different values is presented more clearly, and therefore can be converted to new variables

more easily.

Corollary 3.1 Suppose § = N has the complex Wishart distribution W,(N, X), and the
eigenvalues of ¥ and ¥ ared; > dy > ... > dpandA; > A > ..> X > Mg = = Ap= A

respectively. Then the asymptotic probability density function of dy > dp > ... > d, given by
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Theorem 3.1 may be rearranged as

NpN-k(:;;—i—l)lzqu(P-l)"k(k+l)12f‘k (P)

f(dls dﬁs seey dplAIa AZ, weey ’\ln A) =

k dv-» N-d: k-1 & d: — d: kP d: — d:
H[T\IJJ—-HEXP(——;\"—')]HH s 11 1T ;\:—_;'

P N-p o d. p=1 P
II [fir-k ‘@‘P(-¥)] - IT IT (di-d;7? (3.17)
i=k+1 i=kil j=itl

In this expression, the first &k distinct eigenvalues and the last p — k eigenivalues with
p — k multifold are clearly grouped. The mutual influences between these k + 1 groups are

described by the coupling factors

k=1 k d' _ d' k P d_ - d' P—l P
MH%% It T fe-o e
i L i=1j=k+1 M i=k+1 j=itl

The first factor in Equation (3.18) gives the mutual coupling between the first k distinct
eigenvalues. The second one describes the influence of the first k eigenvalues on the (k+1)-th
group, the last p—k eigenvalues. The last factor in Equation (3.18) reflects the intra-relation
of the eigenvalues among the (& + 1)-th group. It is interesting to notice that because the

last p — k eigenvalues are multifold, the corresponding factor has a different form from the

factor for the distinct eigenvalues.

Applying the definition of the normalized eigenvalue given by Equation (3.16) to the
distribution function given in Corollary 3.1, an asymptotic distribution of the normalized

eigenvalues is given by the following theorem.

Theorem 3.2 Suppose § = N3 has the complez Wishart distribution Wo(N, X)), and the
eigenvulues of ¥ and ¥ aredy > d2 > ... > dpandAdr > A> > > === )



32. ASYMPTOTIC DISTRIBUTIONS OF THE RESIDUAL EIGENVALUES 35

respectively, Define the normalized eigenvalues as

m = NY/? (;ﬁ - 1) , i=1,2, . p (3.19)

where Ay = A, fori=k+ 1, k+2, ..., p, the asymptotic probability density function of
T, T2, - Tlp 18 given by

&1 n?
fm, m, ., ﬂp|3)=HWEXP{-E .
=1

p 2 -1 p
11 (21)1/21‘(1p—i+1)m{_n_2'}' II II i-m)* (3:20)

i=k+1 i=k+1 j=ifl

Proof: Apply the variable transform defined in Equation (3.16) on Equation (3.17), and

notice the Jacobian for this transform is

a(dy, dz, ..., dp)
a(’?l, T2y eoey TJ‘p)

k
= N-PI2\=k T ;. (3.21)

i=1

lJI=‘

The asymptotic distribution of n, ..., 7p can be written as

pN—p? 12,0p(p—1)~k(k+1)/2] -
f(nl.'p N2y aeny nplAlﬁ A23 '"3AklA) = o LT rk(p) exp( pN) '

f‘p(l" )fp(P)
k k-1 k “1/2(p. % — ks
1-.[ N Ai ~ ;A
[(1+N..1[2m)N_pexp(_N1/2m)] . (771 i : 3 ;) +1f-
- 1. ._I.I A = X
$==1 t=1 j=i+1

T [ N grexp(- ).

i=k+1

k 2 N-1/2 A — MiA
HH [ ,(\?_,\ 77:)+1]

i=1 j=k41

p~1  p

I II (m-n) (3.22)

iz=k+1 j=itl
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In Equation (3.22), the coupling factors corresponding to distinct eigenvalues converge
to unity at a rate of O(N—1/2). By expanding (1+ N~1/2p)¥ and exp(—N1/2) respectively

it can be shown that for large N,
(1+ N2 exp(—N/?n) = exp(—-n?/2) + O(N /%) (3.23)
By using the Stirling’s formula
al 2 (27n) 0™ exp{~n} (3.24)
it can be shown that when N is large,

NP¥-p /2
P LN —-i+1)

=1

exp(—pN) = (2x)~P/? (3.25)

Combining these results and applying them to Equation (3.22), we have the asymptotic

distribution of the normalized sample eigenvalues, which completes our proof. O

Note that in the distribution function given by Theorem 3.2, if ); is a distinct popula-
tion eigenvalue then 7; is asymptotically independent of n; for j # i at a rate of O(N~1/2),
and the limiting distribution of #;, { = 1, ..., k are standard normal. For real variables, this
result was first observed by Girshick [25] using the asymptotic theory of maximum likeli-
hood estimates. For the case where X' has multiple eigenvalues the result was presented by
T. W. Anderson [4]. The same conclusion as in Theorem 3.2 can be reached for complex

data.

According to this asymptotic independence, the joint distribution of the last p — &
normalized eigenvalues can be obtained simply by partitioning the joint distribution function

of 7y, -+, 7, and is given by following corollary.

Corollary 3.2 Suppose § = N3 has the complez Wishart distribution Wo(N, ¥), and the
eigenvalues of ¥ and X aredy > d3 > ... > dpand A1 > A2> ..> > My == A=A

respectively. Define normalized eigenvalues as

d.
n = N2 (31 - 1) , i=1,2 ..p (3.26)

1
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where \; = A, fori=k+1,k+2, ..., ‘p., the asymptotic probability density function of the

p — k smallest normalized eigenvalues Ney1, Tiya, vy Np is given by

P 1 n? =1 p
fOkiss -l B) = 11 (em) 2 T(p—i+ 1)exp{_?‘}° I1 L= an

i=k+1 i=k41 j=i+l

Obviously, when the number of signals k equals zero, this distribution is the distri-
bution function of the normalized eigenvalues given all population eigenvalues are equal.
On the other hand, because this distribution does not depend on the first k eigenvalues,
it can also be considered as the distribution function of the normalized eigenvalues of a
sample covariance matrix of order ¢ = p — k whose corresponding population eigenvalues
are equal. According to this characteristic, we can further write the limiting distribution of

the average of the last p — k normalized eigenvalues in a very simple form.

Theorem 3.3 Suppose § = N 3 has the compler Wishart distribution Wp(N, ¥), and the
eigenvalues of X and X ared; > dp > ... > dpand Ay > A2 > > A D> M1 == A=A

respectively, Define average eigenvalue of the last p — k eigenvalues as

1 P
l=—— 3" d; (3.28)
p-k. '
then the limiting distribution of [ is
(N(p - E)Y*(1 - X)/A~ G(0,1) (3.29)

where G(0, 1) stands for the Gaussian distribution with zero mean and unity variance.

The proof of this theorem is enclosed as an appendix to this chapter. The similar
result for real data has been given by T. W. Anderson [4]. What we have given here is the

extension to complex data.
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3.3 The Eigen-threshold (ET) concept

According to Theorem 3.2, the distribution of the last p—k& normalized eigenvalues is asymp-
totically independent of the first k£ normalized eigenvalues when the last population eigen-
values are equal. The asymptotic joint distribution for the last p — k normalized eigenvalues
is given in Corollary 3.2. The marginal distribution functions of each of the normalized

eigenvalues can be evaluated from the joint distribution by the following integrations:

+oo PRk p—1
JCSE  SY  (TT  L RT—
-0 J-oo —co
i=zk+1,k+2,..,p. (3.30)

where f(1k41, ..., p|Z) is giver by Equation (3.27). An example of the marginal distribution
functions evaluated by these integrations for the case of p = 8, k = 3, N = 100 is shown
in Figure 3.1. It is quite obvious that the distribution of each eigenvalue 7; (and therefore
d;) is well concentrated in a certain region. Using this fact, we may specify this region by
an upper threshold and a lower threshold in a symmetric way such that the probability of
the eigenvalue falling into the region equals a given value, say, 1~ a. We denote the upper
threshold of the i-th eigenvalue n; by 7}(a). The eigenvalue will exceed this threshold with
probability a/2. We call this threshold upper eigen-threshold or just eigen-threshold. This
threshold is distinct from most eigenvalue thresholds used by other authors in that it is not
a fixed value, but a function of the eigenvalue index. Therefore, it has the advantage of
being adaptable to the measured noise subspace eigenvalues. For the case of p = 8, k = 3,

N =100, & = 0.10, the values n¥(0.10) versus the index i are shown in Figure 3.2.

The eigen-threshold has the following characteristics:

¢ For normalized eigenvalues {7;}, the eigen-threshold can be pre-evaluated wher N, p,

and k are given. It does not depend on the multifold eigenvalue ).

o For sample eigenvalue {d;}, the eigen-threshold can be determined using the definition

of {n;}. However, in the conversion, the multifold eigenvalue A is required.

Once the eigen-threshold is determined, it can be used for determining the number
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——Eigen-threshold of 1,
3l ~+E(, )

-1}

i, index of eigenvalues

Figure 3.2: Eigen-threshold of the normalized noise eigenvalues.
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of signals by hypothesis testing; i.e., by observing whether or not the eigenvalue exceeds its
threshold.

3.4 Approximation of the Eigen-threshold

From Equatior (3.16), the definition of the normalized eigenvalues {7;}, we know that
the conversion from {n}} to {d¢}, the upper thresholds of sample eigenvalues {d;}, the
true multifold eigenvalue A is required. In practice, the value of the multifold eigenvalue
(the noise power in the detection problem} is unknown. Therefore, the eigen-thresholds of
the sample eigenvalues {d;} cannot be easily determined from the eigen-thresholds of the
normalized versions. In this section, we will discuss a method to approximate the eigen-

threshold without knowing the value of the true noise power. A one-step prediction formula

is derived.

Let the averaged observed noise-subspace eigenvalues {; be defined as

1 & .
b=y Ydj, i=k+1l.,p (3.31)

i=

When ¢ = k + 1 Equation (3.31) gives l;1, the maximum likelihood estimate of \.

From Theorem 3.3 we know that
(N(p— k) (lesr = A)/X ~ G0,1). (3.32)
Define ¢ as the two-direction threshold such that

-/:(2:rr)‘”2 exp(-u?/2)du=1- a. (3.33)

From Equations (3.32) and (3.33) we have, with confidence level 1 —a, the confidence

interval of the averaged eigenvalue as

-t S (N(p= E) (I = M)/ <t (3.34)
or

1~ HN(p— k)2 < hya /X S 1+ (N (p~ k)22, (3.35)
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Since we are using the asymptotic distribution of the eigenvalues here, the size of the sample

N is assumed to be large enough such that
t/INV2 <1, (3.36)

If we assume that the multiplicity of the multifold eigenvalue A is-m, from Equation (3.35)

we have

1=t(N -m) Y2 < lymir /A S 1+ (N . m)~1/2 (3.37)

and if we assume the multiplicity of A is m + 1, we have,
1—t(Nm+ 1)V < l,_u/A <14+ ¢(N(m+1))~1/? (3.38)

To derive the upper-threshold for the (p — m)th observed eigenvalue d,_,, we divide Equa-
tion (3.37) by Equation (3.38) and take the right half of the quotient, hence

l,,,,,, 1 +t(N(m+ 1))-1/2

(3.39)

The condition ¢/N1/? < 1 given in Equation (3.36) ensures that the ratio in the right hand
side of Equation (3.39) is positive. Notice that ,_,, can be expressed in terms of lpem+41

and d,_m as

1 1 2 d
lo—m —_ di = —— 3 -m| = m i .
PP T m41. impom m+1 [‘,nghn di+dp } e llp +1+ —1 (3.40)

In Equation (3.40), we have used the fact

2 2 d
bpomtr1 == (3.41)
m

Now, substituting Equation (3.40) into Equation (3.39), we obtain

1/2
dpon S d¥_,, = [( m+ )1+j(tﬁ£,"f;)l_)l)ﬁ Y . (3.42)

where d)_, . defined above is the predicted upper threshold value for dp—m-

The usage of this formula is discussed in the following section.
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3.5 Hypothesis testing for determining the number of sig-
nals

Now we are in a position to introduce a hypothesis testing procedure for &, the number
of signals. Qur procedure tests ¢, the multiplicity of the noise eigenvalue. The number of
signals is related to g by the relation,

k:p—q . (3.43)

The eigen-threshold concept is applied to this hypothesis testing procedure with the fol-
lowing understanding. If there are k signals and our assumption of the multiplicity of A is
correct, then the g = (p — k) observed noise eigenvalues dj41, ..., dp should be below the
threshold. As the result of the existence of the signal component, the smallest observed
signal eigenvalue di = d,_, should exceed the predicted threshold. To determine g (or k)
from p possible values requires 2 multiple hypothesis test. This multiple hypothesis test

may be decomposed into a sequence of binary hypothesis tests. In our case we establish a

testing procedure as follows:

Define a set of binary hypotheses {Hp,}, m=1,2,...,pas

Hn: k<p-m (3.44)
Hn: k=p-m (3.45)

The test procedure starts with m = *, where m is the assumed multiplicity

of the noise eigenvalue A. For each m, we accept H,, or H,, according to

Hn
dpm _; i (3.46)
m

where dj_. is the threshold of the (p — m)-th observed eigenvalue given by
Equation (3.42).
If Hy, is accepted, stop testing, and assign k = p—m. I H,, is accepted, put

m = m + 1, continue testing until either H; is accepted or m = p.
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The application of this procedure is simple. However, as a detection method there are
two points \v;rhich require further discussion. The first is the choice of ¢ in Equation (3.42).
The second is the error performance of this hypothesis testing procedure which is based on
the prediction formula (3.42). In the next chapter, the answers for both these questions are

given.

3.6 Appendix

This section is for the proof of the Theorem 3.3.

From Corollary 3.2 we know that:

1. thelast p—k normalized eigenvalues 741, Mk+2, --., 7p are asymptotically independent

of the first k distinct eigenvalues and,

3%

. the marginal joint distribution of these p—k normalized eigenvalues is the same as that
of the eigenvalues of a p — k variate process which has all its population eigenvalues

equal.

Therefore, we can change our proof to the asymptotic distribution of the equivalent

p — k variate process.

Consider a ¢ variate complex Gaussian process z, where ¢ = p — k, with zero means
and a covariance matrix whose eigenvalues are equal. Without losing generality we assume

the true covariance matrix equals AT

Define the sample covariance matrix of this process formed from a set of N samples

Z1, T2, .. Ty of ¢ by,
. 1Y
=5 >zl (3.47)
i=1
and denote the eigenvalues of this matrix by d;, i = 1, ..., ¢. What we need to prove is for

large N
Vel (15,
=5 ( E d; —-.\) ~ G(0, 1) (3.48)

1
73
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where G(0, 1) stands for the normal distribution. From matrix theory we know that
q -
> di=tr( ) (3.49)
=1
where tr(.) indicates the trace operation of the matrix argument, that is, the sum of the

diagonal elements which are denoted by &;i, ¢ = 1, ...,q. The quantities &;; can be expressed

in terms of the sampled data as
N N
Fi= Y Re(zy)* + > Im(z;;)? (3.50)
=1 i=1
where Re(z;;} and Im(z;;) are the real and imaginary part of z;;, the j-th sample of the i-th
element of the random process. From the definition of the complex Gaussian distribution

we know that Re(z;;) and Im(z;;) are i.i.d. random processes which follow real Gaussian

distribution G(0,A/2) . Therefore the sum of these diagonal elements can be written as

q 2N 29N

L:ZEyf: Zy? (3.51)

i=1 j=1 i=l

where y; follows distribution G(0,A/2) . So we can write

2LIA ~ X3y (3.52)

where x3 . denotes the x2-distribution with 2¢/N degrees of freedom. The first and second
29N

moments of this x? distribution are known to be
H1=2N (3.53)
B2 = 4N (3.54)
It is well known that the characteristic function of x2-distribution is [37]
#(t) = (1 - 2it)~v/? (3.55)

Shifting the x2 by its mean value v and scaling it by the square root of its variance 2v
v

r

the ¢.f. becomes

(1) = exp {—\‘/’—;i} , (1 - %)_m (3.56)
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and

log¢ft) = —vit v | -2it l( 2it )2_1 ( 2it )3_1(23': )4_
e = I v 2\Vm) Ti\Ww) T\ T
= —5 2 +0((20)?) (3.57)
This means that when v goes to infinity, the c.f. approaches exp{—12/2} . Recognizing that

this is the c.f. of the normal distribution with zero mean, we arrive at the conclusion that

the limiting distribution of x2 is normal distribution G(v, 2v).
That is, when N goes to infinity, using Equaticns (3.52) (3.53)(3.54) we have
2L/A ~ G(2gN, 4gN) (3.58)

Define the average of the sample eigenvalues (or the diagonal elements ) of 37 as

I= qizv (3.59)

From Equation (3.58), we can write

[~ G(A, E’%) (3.60)

By shifting and scaling this distribution, we have

m(’—j\—") ~ G0, 1) (3.61)

That completes our proof. O



Chapter 4

Performance analysis of the ET
method

4.1 Composition of the total detection error

According to the definitions of a correct detection and a detection error given in Chapter 2,
the performance of a detection criterion can be characterized by the probability of correct

detection Pp, or by the probability of error P.. The probabilities P, and P, are related by
Po=1-P, . {4.1)

The probability of error can be further decomposed to the probability of false alarm P and

the probability of missing Py, This decomposition can be expressed as
P¢=PM+PF. (4.2)

Consider the hypothesis testing procedure discussed in the last section. The meaning of the
terms correct detection, false alerm, and missing can be defined as follows. Suppose that
there are k signals impinging upon the array, and at the m-th step, the hypothesis H,,, or
equivalently & = p — m, is accepted. We say the signals are correctly detected if & = k.
Otherwise, we say a detection error has occurred. This error is classified as a false alarm or
a miss according to whether k > k or k < k. Whenever £ > k, we say a false alarm error

has occurred. Whenever k < k, we say a miss has occurred.

47
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We examine the hypothesis testing procedure to obtain an expression for the prob-
ability of error. At the m-th stage of testing for m = 1, 2, ..., p — 1, we apply the test
expressed by Equation (3.46). There are two possible outcomes which are represented by

the following events:

Am ¢+ dpem>dp

An ¢ dpmSdi,.

We denote the probability of these two events happening at the m-th stage by P(4,,)
and P(A,,) respectively.

Now, for 1 £ m < p—k — 1, if A, happens, the test will stop and we will conclude
that p — m signals exist, where p — m > k. This constitutes a false alarm. Thus, we can

formulate the probability of false alarm as
Pr=P(A1UAU...U Ap—k—l) (4.3)

Since A is an impossible event unless A;, for all i < m happen, then we can write Equa-

tion {4.3) as

Pr = P(A))+P(A1NA)+P(A NAaNA3) +...

+P(41N43N...N jp_k_g NApok-1)
p—k—1 _
= PA)+ Y P(4nnN (n:‘;fA,,)) (4.4)
m=2

Equivalentiy, the probability of false alarm can also be expressed by

Pr=1-P (nﬁ;’g‘lﬁ,,) i (4.5)

If the test goes on until m = p — k, and if A, happens, we will conclude that &
signals exist, which means that we have detected the number of signals correctly. This will
happen only if no false alarm occurs. Thus the probability of a correct detection happening
is

Pp = (1= Py)P(Aps) (4.6)
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Finally, if the test goes on until p— &+ 1 £ m < p, implying that no false alarm nor
correct detection has happened, then we have the situation in which k& — p+ m signals have
been missed when A,, happens. We further note that since A4y C A, missing (k=p+m)
for m > p—k+1implies (k — p 4+ m — 1) signals have already been missed which further
implies that at least one signal has already been missed. But missing at least one signal

occurs if Ap_x happens; thus, the probability of missing can be written as

Py=(1- PF)P(Ap-k) =(1-Pr)(1~- P(Ap-k)) (4.7)

4.2 Probability of false alarm

To evaluate the probability of false alarm, as shown in Equation (4.5), we need to evaluate
the probability of all A, not happening for m = 1,...,p~ k — 1. In other words, we need
to evaluate the probability of Equation (3.42) not being violated when m < p— k — 1.
But Equations (3.42) and (3.39) are equivalent events; thus, we can utilize the eigenvalue
ratio on the left hand side of Equation (3.39) for the calculation of Pr. Let us denote this

eigenvalue ratio as
Pm = Ip—m/lp—m-l-l: m= 1, gy P = k-1 (4.8)

This ratio is compared with a threshold 7m given by the right hand side of Equation (3.39),

i.e.,

14 t(N(m+1))-1/2

’Ym(t) = 1— t(N - m)—1f2

(4.9)

which, for given m and N, is a function of the parameter t. When p,, < vm(t), then A,

occurs. Hence, the probability can be expressed as

P (Nn=14n) = P(o1 S 1lt)y -+ ppmb1 < Tp—k—1(t)) (4.10)

which can be defined by a cumulative distribution function

Fm-~-pp-k-1(71(t)r ooy Tpeke1(t)) = P(p1 < m(2),-- *yPp—k—-1 < Tp-k=1(t)) (4.11)
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It can be shown (in the Appendix of this chapter) this distribution function is given by

F(t) = Fp1--°Pp..k-1 (71(8)s -+, Ypi—1(2))

= P(pr < 1(t), -5 Pp—k—1 £ Tp—k-1(1))

Yp—ie=1(1) —k—3(t) () o k1 ke
L 2 [

Sy(Pomka1Pp—k=2 " P1YL, Ppck=2 " P1Y1, " P1Y1, 11| Z)

dpp—k-18pp_k-2 - -dprdin . (4.12)

where f, is given by Equation (4.31) and has non-zero values only in region R, which is

given by Equation (4.35).

It should be pointed out that both the integrand and the integration region in Equa-
tion (4.12) are quite complicated, and very difficult to evaluate analytically. However, they
can still be evaluated by numerical methods. In Figure 4.1, a curve shows the results of
evaluations of Pr = 1 — F(¢) under the condition N = 100, for p = 8, k = 3 (therefore,
the noise dimension equals p — k = 5). The results for N = 500 is also evaluated and is
plotted on Figure 4.2 to show the insensitivity of the distribution to changes in number of

snapshots. For different ¥ values, we can find that Pr is almost the same.

4.3 Probability of missing

As shown in Equation (4.7) the probability of missing depends on the probability of missing
at least one signal, i.e., in the (p — k)-th step of hypothesis testing, dy < d}. Now, from
Equation (3.42)

1+ #(N(p~k+1))-1/2
L= N7z~ P = F)| e

d¢ = |(p-k+1)

= a-lgp R (4.13)
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where a is the prediction coefficient corresponding to the terms in the brackets of Equa-
tion (4.13), i.e., d} is a linear function of I, the maximum likelihood estimate of the noise
subspace eigenvalue. Also, di is the observed k-th eigenvalue after N snapshots. From the
hypothesis testing procedure given in last chapter and from Equation (4.13), we know that
the probability of missing is determined by the value of dj. relative to that of lpy;. The
larger is dj compared to lz;), the smaller is the probability of missing. All the signal and
noise parameters apply their influence on the probability of missing through changing the
relative value of d; when the prediction coefficient a is given. Therefore, it is reasonable to

infer that the probability of missing at least one signal depends on the ratio of E[dx] and
E[lg+1]). Let us denote this ratio by r, i.e.,

r= E[dk]/E[lk+1] (4.14)

The signal and noise parameters influence this ratio in different ways. The SNR changes
this ratio in a straight forward manner. The lower is the value of SNR, the less significant
is the signal component in d, and the closer to unity is the ratio r; therefore, the higher is
the probability of missing. Other factors influence the ratio through variation of the signal
subspace eigenvalues. Closely located signals, large differences in signal power levels, or
small numbers of snapshots usually make the signal subspace eigenvalues disperse over a
larger range than that with well separated, equally powered signals, or with a larger number
of snapshots. When the signal subspace eigenvalues disperse over a larger range, the value
of di. becomes smaller (so does the ratio r) because di is the smallest among these signal

subspace eigenvalues.

To evaluate P(d; < df}, we have to find the probability density functions (PDF) of dj,
and df, or equivalently, the PDF of d/Efli41] and d§/E[lx41]. Now, it is well-known [4)[44]

(di — Ae) ~ Glpn, AE/N +02) (4.15)

where, v = O(N~1) and 02 = O(N~?). Under the condition of large N, both iy and o2
tend to zero. Therefore, we can write the following approximate asymptotic behavior such

that

(di — E{di])/E[di] ~ G(0,1/N) (4.16)
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Using Equations (4.14) and (4.16) we can write

de _ de Bld] _ de 72
Elfeat] ~ Bldd] Elon] — " Bjdl ~

(4.17)

Thus if we denote the random variable d/E{lx+1] by 2, then the PDF of z is given by
f:(2) = (2m)"V 20 exp{—(z — r)*/(20%)} (4.18)
where

o, =r/N/? (4.19)

We now turn our attention to the random variable di, which as shown in Equa-
tion (4.13), is a linear function of Ixy;. The same argument leading to Equation (4.16)
can be applied here by substituting E[l¢4,] for A in Theorem 3.3 so that the approximate

asymptotic behavior of l;; is
(N (2 = £))(tks1 ~ Ellesa]) /E[lk41] ~ G(0, 1) (4.20)
Using Equations (4.13) and (4.20), we have
dY/Bllt1] = o - lep /Ellig1] ~ Gla, 6/ (N (p - K))) (4.21)
Thus, if we denote the random variable d}/E[lx4.1] by z, then the PDF of z is
f=(2) = (@m) 707! exp{~(z - 0)?/(202)} (4.22)

where
0z = af/(N(p—k))!/? (4.23)
Notice that di is asymptotically independent to other sample eigenvalues, so z is inde-
pendent to z. Therefore, the probability of missing at least one signal can be rewritten
as
P(Apx) = P(dp<dl)=P(z<1z)
=+ T
-[0 (270.0.) "t exp{~(z - a)?/(202)} .[o exp{—(z — r)%/(20?)}dzdz

(4.24)
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This probability is plotted against r for various values of ¢ in Figure 4.3 in which p =
8, £k = 3, N = 100. The values of t chosen are 1.8, 2.35, and 2.8. To verify that these
theoretical curves are accurate, simulations are performed on the computer. The same
parameters p, k, and N, are employed. With the same parameters and SNR, the received
signal is created by simulation according to the signal model described by Equation (1.5). ‘.
The observed covariance matrix ¥ is obtained after taking 100 snapshots of the simulated
received signal. The ratio r can be obtained by solving for the least signal eigenvalue of &
and the average noise subspace eigenvalue. These: values are then averaged over 500 trials
and the ratio of their averages calculated. With the various values of ¢, the frequencies of
the event A,_, happening in 500 trials are recorded. The SNR is then varied so that the
same procedure can be repeated for another value of r. The results obtained by simulation
are also shown in Figure 4.3. It can be observed that the theoretical and the simulation

results are in ciose agreement.

The total probability of missing can now be evaluated using Equation (4.7) and the
total probability of error can be evaluated using Equation (4.2).

4.4 Selection of the parameter ¢ in the ET method

The question that immediately arises is how to choose ¢, and whether there is an optimum
value of {. We can choose t according to whether the probability of false alarm is required
to satisly a certain allowable level, or the average probability of total error is required to

be minimum.

If we require the rate of false alarm to satisfy a specified level, the corresponding ¢
can be determined from the curve of Pr against ¢ shown in Figure 4.1 which is calculated

by Equation (4.5). For example, t(Pr = 1.5%) = 1.5, and t(Pr = 0.85%) =~ 1.6.

If it is desired that the average probal'::ility of total error is minimum over a specified

SNR range, we can locate the optimum value of ¢ by minimizing quantity

mtin P(t; RsnN) = mtin P.dpsy (4.25)

RSN Rgy
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Figure 4.4: Average probability of error vs. t for the ET method. p=8, N=100. 500 trials
averaged in the simulation. SNR. interval = -10 dB to 20 dB.
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where, pgy is the SNR, Rgy is the range of SNR in which we are interested. In the following,
we choose Ry to be the range of SNR from -10 dB to 20 dB. To calculate F, in the integral
of Equation (4.25), according to Equations (4.7) and (4.2}, P(4,.x) and Pr need to be
evaluated. Since P(A,_;) is originally evaluated as a function of r, the ratio of E[di] to
E[lx41], in Equation (4.25) is required to be a function of SNR; therefore, a conversion of
the variables is necessary. This is done by using the same method described in Section 4.3
to estimate E[d;] and E[{x4;] with given values of SNR, p, k, N, and angles of arrival.
Here, for convenience, we make use of the insensitivity of Pr to changes in N, p and k by
using the same P:(t) curve shown in Figure 4.1 for different numbers of signals. By using
Equation (4.7) to calculate Py, from P(A,_t), and using Equation (4.2) to obtain P, by
combining Py and Pp, then, P.(f; Rsy) can be evaluated by Equation (4.25). In Figure 4.4
three curves of P.(t; Rsy), where Rgy = (—10,20) dB, are shown against ¢ for the case
of p = 8, N = 100 and different numbers of signals. The numbers of signals used here
are £ = 1, 2, and 3. The angles of arrival are 15, 24, and 36 degrees. From Figure 4.4,
it can be seen that for & = 1, as ¢ increases from unity, P. decreases very quickly and is
minimum when ¢ &~ 1.5. Further increases in ¢ increase P., but at a slower rate than the
initial decrease. For & > 2, the initial decrease of P, is also very steep, but after 2 minimum
P, is reached, a further increase in ¢ only increases P, slightly. Also, for & > 2, the value
of ¢t at which the minimum P, is achieved is lower in value than that for & = 1. Since in
general, we do not know how many signals are there, it would be safe to choose ¢t = 1.5, so
that even if k > 1, the P, with this choice of ¢ is not much higher than the real minimum

P,.
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4.5 Simulation results

Results of three simulations are given in this section to illustrate the performance of the

eigen-threshold method.

4.5.1 Performance of the ET method with respect to different ¢ values

The first simulation is for checking the ‘error performance of the eigen-threshold method.
The conditions for this simulation are listed in Table 4.1. The simulation results are plotted
in Figure 4.5. The theoretical curves calculated by Equations (4.5)(4.7) and (4.2) are plotted
in Figure 4.6. Signals are assumed to be of equal power, the SNR is defined as the ratio of
the power of one signal to 2, the power of noise. We find that the error rates under high
SNR and the position of the threshold in P.—SNR relations in these two plots are in close

agreement.

4.5.2 Comparison of the ET method with AIC and MDL

The second simulation is for comparing the performance of the eigen-threshold method
under different ¢ values. The results are plotted in Figure 4.7 and the conditions used are
listed in Table 4.2. The result shows that the probability of false alarm can be quantitatively
controlled by adjusting ¢. Such a characteristic provides the detection criterion with a
valuable degree of freedom, which may be used for trading off the probability of false
alarm at high SNR and the probability of missing under low SNR to make the total error
probability as low as possible. It is interesting to notice that, as we expected in theoretical
analysis, when ¢ is larger than 1.5 the probability of false alarm under high SNR conditions

approaches zero.

In the third simulation, the eigen-threshold method is compared with the MDL and
the AIC criterion. The conditions used for this simulation are the same as those for the
second simulation. The results are shown in Figure 4.8. It is well-known [70][65) that

the AIC emphasizes better performance under relatively low SNR. at the expense of being
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Figure 4.5: Probability of detection error vs. SNR for ET method (Simulation). p = 8,
k=3, N =100,t=1.20, trials=500.
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Figure 4.6: Probability of detection error vs. SNR for ET method (Theoretical). p = 8,
k=3, N =100, = 1.20.
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Figure 4.7: Probability of detection error vs. SNR for ET method under different ¢ values.
p =28, N =100, k = 3, Angles=135, 24, 36 degrees, trials=200.
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Figure 4.8: Probability of detection error vs. SNR for AIC, MDL, and ET methods. p = 8,
N =100, k = 3, Angles=15, 24, 36 degrees, trials=200.
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Table 4.1: CONDITIONS OF SIMULATION 1

Number of sensors: 8

Number of snapshots: 100

Number of signals: 3

Signal power: A%(1) = A%(2) = A%2(3)=1.0
Signal angles of arrival: 15, 24, 36 degrees
Number of trials averaged: ~ 500

Table 4.2: CONDITIONS OF SIMULATION 2 AND 3

Number of sensors: 8

Number of snapshots: 100

Number of signals: 3

Signal power: A%(1) = A%(2) = A*}(3) = 1.0
Signal angles of arrival: 15, 24, 36 degrees
Number of trials averaged: 200

inconsistent. On the other hand, the MDL criterion eiiminates this inconsistercy while
sacrificing the performance at relatively low SNR. Since the performance of the eigen-
threshold method can be adjusted by appropriate choice of the parameter ¢, a suitable
choice of ¢t will yield a performance which takes advantage of both the AIC and the MDL
criterion such that at relatively low SNR, the performance is superior to MDL whereas at
high SNR, the inconsistency of AIC is removed. It can be observed from Figure 4.8 that
for a choice of t = 1.5, this goal is achieved.

Many other simulations involving different signal and noise conditions have been

carried out. A general discussion of the observations is presented here:
a}. Effects of the variation of signal parameters

Variation of the signal parameters can be effected in various ways, viz., variation of
total signal power, variation of the power of the signals relative to each other, and variation

of the angles of separation between the signals. If the noise parameters remain unchanged,
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these variations would affect the “effective SNR” r, which is defined in Equation (4.14) and
represents the ratio of the smallest eigenvalue to the noise power. In general, if the total
signal power decreases, or if the total power is constant but the the discrepancy of power
between signals increases, then r decreases. Similarly, if the angles of separation between the
signals decrease, r also decreases. If r decreases, the performance of t_hg detection methods,
viz., the AIC, the MDL, and the ET methods all deteriorate. '-'I.ilé\l;'ever, observing the
results of many simulations with different variations of the signal parameters, the relative
performance of these methods remain more or less the same, i.e. the ET method maintains
its superiority over the MDL method at low SNR while showing consistency in its estimates
at high SNR, thereby outperforming the AIC method. Note that since the ET, the AIC,
and the MDL methods use only the noise eigenvalues as a measure for the determination
of the number of signals, a change of the signal parameters in genreral will primarily affect

the missing error rate only.
b). Effects of the variation of the number of snapshots

The ET method is based on the assumption of asymptotic Gaussian distribution given
by Theorem 3.3. Under finitr: data records, the asymptotic conditions may not be met. The
question of how large should N be so that Equation (3.32) is true has not been answered
analytically. However, from the results of the many simulations involving different finite
numbers of snapshots N, the number of snapshots N, for which the detection probability
Pp(N) of the ET method approaches sufficiently close (|Pp — Pp(N)|/£o < 1%) to the
asymptotic detection probability Py calculated by Equations (4.5), (4.6), (4.12) and (4.7)
depends on the choice of the parameter t. The approximate values of N, are shown in
Table 4.5.2 which is obtained from averaging over a large number of trials under several
signal and noise conditions. These results inform us that in general, for a particular value
of ¢, one has to have a minimum number of snapshots given by Table 4.5.2 so that the
asymptotic conditions are sufficiently closely approximated to ensure the validity of the
method. If the minimum number of snapshots is not provided, then the error rate of the
method may drastically increase. However, we note that both the AIC and the MDL

methods are also asymptotic methods [21], and hence these methods will also break down
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if the asymptotic conditions are not met.

Table 4.5.2

t |1.2 1.5 1.8
N,lgo 48 35

4.6 Discussion

The concept of the upper eigen-threshold of the noise subspace eigenvalues has been in-
troduced in last chapter. This upper eigen-threshold is not a subjectively set threshold.
Rather, the threshold is set by a one-step prediction method. Based on this concept, a
new method for detecting the number of signals arriving at the array has been developed.
Because of the way that the eigen-threshold is set, the method enables the detection to
be carried out adaptively under various signal and noise conditions. The performance of
this method has also been analyzed. Simulations have been carried out on the computer
showing that the probability of error of this methed is in close agreement with that ob-
tained by theoretical analysis. A distinct feature of this new method of detection is that its
performance is adjustable by the choice of the parameter ¢. For a wide range of SNR and
for a range of number of incident signals, the optimum value of ¢ falls within the range of
1.3 to 1.5. In general, the choice of ¢ = 1.5 appears to be a good choice. In comparing the
new method to the commonly used criteria (AIC and MDL), it is found that for a suitable
choice of ¢, the new method eliminates the irreducible probability of error exhibited by the

AIC while being superior to MDL in performance under low SNR.

The AIC and the MDL criteria have been extended to the case of detecting wide-band
signals by establishing focusing matrices for various frequency components, and constructing
a transformed covariance matrix R [64] so that the eigenvalues of R are utilized [64]. Since
the ET method is developed based on the testing of the eigenvalues of the covariance

matrix, the same method of imposing eigen-threshold tests on the eigenvalues of R may be
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maintained so that the ET method can also be extended to the case of detecting wide-band
signals. With its advantage over the AIC and the MDL criteria, the ET method presents

an attractive alternative for the detection of the number of signals in array processing.

4.7 Appendix

To find the formulation of F(t) = F,,..,,_,_,(71(),- -+, ¥p-£=1(t)) in Equation (4.12), let

us introduce a group of intermediate variables
vi=LiA, i=k+1,k+2,..,p (4.26)

Then from Equation (4.8), o can be expressed by the ratio of yp_n 10 Ypoims1. Using the
formula [48, pp.196-197] for obtaining the distribution function for quotient of two random

variables, the distribution function of p,, can be calculated by

fnm (Pm) = j lyp-m+l lfyp_m.p—m+] (Pmyp—m+1 1 Yp—mtl lz)dyp—nﬂ-l (4-27)

Yp-m-+1

where fy,_ . o ms1(Yp—ms Yp—m+1|Z) is the joint distribution function of yp_m and yp_m4,

giver ¥. R, __ ., is the integration region of yp_m41-

Using vector notation, we let

¥ = [Uks1 ka2 o Yol (4.28)
and
N =[es1 Mgz oo |7 (4.29)

where 7; is defined in Equation (3.19). From Equations (3.19) and (3.31) the relation

between y; and 7; can be written as

(p—k)? v (p=k)1
0 -k-1"1 .. -k-1)"1
y=N", (v ) (» ) n+1 (4.30)
0 0 1
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where Ip_ is an identity matrix and the vector 1 = [11 ... 1}7, both of (p — k) dimension.

The joint distribution of yz41, ..., ¥p can be found by applying the variable transfor-

mation above to Equation (3.27) as

I/ 1 &, S 2
flE) = - “expq = LHE R (m:(y) — 05 (y))
Y (2m)lP k)/2r(p ~k}---T(1) 2 i=§;.1 .-=l:'-|{:-1j=111 ’
(4.31)
where, the Jacobian,
|J{=T(p—k+1) - NP-R2 (4.32)
The ni(y)’s are defined by the following linear transform;
(p=k) —(p~k=1)
p-k-1)
5= N1/? . . (y-1) (4.33)
-1
1

The distribution function F(t) can be evaluated by using Equation {4.31) and repeat-
edly applying Equation (4.27), the distribution function F(t) is obtained as the following

integration,

F(t) = FP["'p,_k-.l (m(t),--- "7p--k-!(t))

= Plp1 <)+, pp—i—1 £ Yp—i-1(2))

pk=1(t)  [rp—k—2(t) ) foo b1 peke2
= T L e i

fy(Pp—kmtPp—k—2"** PLYL, Ppak—2- - P1Y1,***, P1Y1, 91| Z)

dpp—i—1dpp—i—2" - dp1dy; (4.34)
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where f(-) have non-zero values only in Ry, the region of the y!s which corresponds to

Ry=(-00 <y < fpo1 <+ < Mgy < +00). (4.35)



Chapter 5

Strategy for Detection in
non-white noise environments

5.1 Detection difficulties arising in non-white noise envi-

ronments

In the previous chapters, the noise is assumed to be spatially uncorrelated. In other words,
the noise is white because uncorrelated noise has a flat spectrum. However, in engineering
practice, the noise may be spatially correlated. From this chapter onwards, we consider
this fact in our discussion. Detection of the number of sources in the presence of non-white
noise is relatively more difficult than in white noise environments due to the complexity
introduced into the detection problem from the noise part. In the white noise situation
discussed in the last two Chapters, only the noise power level is unknown, so we can still
make use of the spectral information, i.e. flatness, of the white noise for detection. Both
the information criteria and the ET method belong to this type. When non-white noise is
considered, both power level and spectral shape informaticn (or equivalently, the parameter
set which completely describes the noise characteristics) may be unknown. The structure of
the noise model may vary over a large range; likewise, so do the parameters. In other words,
each noise model may be represented by a point in a large parameter space, while white

noise is represented by a specific point in the space. Within this large space, the chance of

70
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appearance of pure white noise is rela._ti;Jely small. Because of this variation in noise spectral
characteristics, methods developed u'ﬁder the white noise assumption may suffer significant
performance degradation in the presence of coloured noise. Toillustrate the influence of non-
white noise, an example is given in Figure 5.1, which shows the performance of the widely
accepted AIC and MDL methods when the noise changes from white to moderately coloured.
It can be seen that, the more severely coloured the noise becomes, the more deterioration
the AIC and the MDL suffer in their performance, leading finally to a complete failure. As
will be discussed in later chapters, this failure is mainly due to a high false alarm error rate

induced by the non-white noise influence.

5.2 Strategy for detection in non-white noise environment

Before considering the details of our new method, let us briefly discuss the existing methods,

and possible approaches for the detection problem involving non-white noise.

5.2.1 Methods using autocovariance information

There are methods which are based on tae statistics of (or closely related to) the power level
or power spectrum of the noise process and signals. We call these methods Autocovariance
information based methods. The term autocovariance is used to refer the covariance within

an array. These methods can be discussed according to the cases in which they may be

applied.

For the case in which the noise power is known, the detection strategy is relatively
simple because a threshold can be set according to the noise power to separate signals from
the noise. Furthermore, there is a strategy which is relatively less sensitive to a non-white
noise environment {4]. However, in most practical situations the noise level is unknown. So

the applications of this type of methods are quite limited.

If the noise level is not known but the spectral information of the noise is available in

certain forms, e.g., in the form of the noise covariance matrix (white noise is a special case of
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Figure 5.1: Dllustration of the deterioration of the performance of the AIC and the MDI.
when the noise changes from white to coloured. (2) Spectrum of the envizonment noise, (b)
The performance surface of the AIC, (¢) The performance surface of the MDL.
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this kind, since the noise covariance matrix is known to be diagonal with equal entries), the
detection problem can always be converted to an equivalent white noise detection problem by
applying the so-called whitening technique. After such a conversion, the methods developed
for detection in white noise environments such as AIC, MDL, and our new ET method, can

be applied to the transformed variates.

The most difficult situation arises when both the power level and spectral information
are unknown. Such a combination renders all the existing spectral shape dependent methods
unusable. One approach proposed by Le Cadre [42] to attack the detection problslirn in this
difficult situation is to include the unknown noise parameters to the estimation firocedure.
In the method proposed by Le Cadre, the sigrals are modelled by line spectia as usual,
and the noise is modelled by an ARMA model. By trying all the possible caﬁdidate models
including the noise parameters in the estimation (model fitting) proceduré, the residuals of
the fit are checked by applying information criteria to find the best model. One problem
with this approach is that the size of the parameter set which is estimated is relatively large
compared with the number of signal parameters in which we are really interested. Such a
large parameter set size will not only drastically increase the computational requirements,
but will also introduce extra uncertainties which will worsen the estimates of the signal
parameters. Also, a very basic question which has not been answered in this approach
is the separability of the noise parameters from the signal parameters in the estimation
using discrete data. As a result of the discrete spatial sampling by the array sensors, the
signal spectrum is no longer a line spectrum. The separability of the signal spectrum from
the noise spectrum can only be insured when the number of sensors are very large. The
chance of mis-modeling signal components by the parameters of the noise part or vice versa
increases when the number of sensors decreases. When the array size is not very large, the

probability of mis-modelling may be large.
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5.2.2 Cross-covariance information and a’ new strategy

To gch the detection problem in the presence of spatially correlated noise a more reliable
solutié\n,“the mosr.‘.‘ important thing is to build the new method on information which distin-
gu;’:ﬁhes the noise frorﬁ signals. In the white noise environment, the success of information
criteria and the ET method is built on a cornerstone: the determinable difference of the
noise spectrum and the signal spectrum. White noise has a flat spectrum and the signals
have line spectra. This usable information is invariant to changes of noise power which
is assumed to be unknown in the white noise problem. However, this information is not
invariant to changes in noise correlation. As we all know, the power spectrum is intimately
connected with the covariance coefficients by the Fourier transform. Therefore, the au-
tocovariance matrix may not be a good starting point for attacking the non-white noise
problem, because the covariance matrix is not consistent with respect to changes in the

noise spectrum.

To find a consistent source of information, we should mention that in most engineering
problems, the noise is only correlated over a limited spatial range. This factor implies that
there may be consistent information embedded in covariances of the outputs of array sensors

which are properly separated in a spatial range.

An example of this kind is the reverberation noise in underwater target detection
problem. Reverberation is the noise resulting from the scaiiering of energy from a propa-
gating pulse as a result of inhomogeneities in the ocean and its boundaries. The background
noise in an active sonar for detecting an underwater target is ambient noise and/or rever-
beration. Reverberation, especially, causes difficulties in sonar signal detection since the
reverberation does not satisfy the white noise assumption. The statistical properties of
reverberation were studied by Y. Omichi [47], and Q. T. Zhang, et. al. [72). However, the
banded structure of the noise covariance is well illustrated by figures in [47). These figures

are enclosed here as Figures 5.2 and 5.3.

The experimental data used to obtain Figures 5.2 and 5.3 were obtained from the

wind driven surface of a fresh water lake, Two types of signals were transmitted to obtain



%2. STRATEGY FOR DETECTION IN NON.WHEITE NOISE ENVIRONMENT

ENV, [t 1,,,)

szj“-' l",)

ENV“('I', laﬂ"

Ew‘lue' 'nor)

ENV“(I.. 'u:)

Ewal(tn' 'nor)

g
¥
V.
1 18 i an [ s
s s s [t oy [©
. ‘/\ b e |e—— e
= [] a3 -1 . [ R T [ X ST [] X WYY . [ TR T n
1 154 T iy 15 "
e u/\ ”\/\' as - s M
. r\—/‘-\/ . . R T e
-l [] s -l [] 1 -um ] W = . (X T » X TR ™) [ ¥
12 12 18 12m » re
s [ asf a3 a ay
- m . /\ .»/-/\_,_ f\-\/—\ o Jm——
-3 L] = - e 1 '- -3 L 12 - I3 L] [F.] -0 + [F -] -1 L] LF . ]
1in 1.y 1 18 " LE .
a ay a8 u/\ ni‘/\( as)
s —— \,/\-\ ) A ' . . //\\,
-1 ] . -in 4 [ R T » [ - ST~ ] I -in ] (XTI T™Y [] Y
1% 1 18 V. (22 18
an as [t (L uA i
] ] ] . [ o
-l [) s -3 L3 133 =y L] 1.3 2% ] [¥.1 -in [ (X1} BE a (¥.3
14 18- iF-1 1.0 L 10
4 0 ay o u—\/\ ay
.l\(-/w e T —— N f'/\ o .
-3 ? Viw b1 R (E-] ~l$ » (K-} =1 L] [E3 = L] [X-] -3 L] X1
E_N‘;" " . E-—l‘l\' tl\‘ \‘ LI ﬁiJ“I' toed) EWH {t.. tu.:) EW!S“-' L E_Wiﬁctn' Yeoel

r

'C'_

msec

Figure 5.2: Envelope of the normalized covariance matrix of contixuous wave reverberation

at the observation time ¢ = 18.4 msec after transmission. Maximum temporal separation
7 = 31.25 msec. (This is the Fig. 15 of [47]
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the reverberation data: a pulsed continuous wave (CW) signal with a duration of 1.0 msec

with a carrier frequency of 80 kHz, and a linear frequency modulated {LFM) signal with a

duration of 1.0 msec and a sweep bandwidth of 10 kHz centered at 80 kHz. For each signal,

98 snapshots were sampled in quadrature form (mathematically expressed in complex data)

from a linear array of six hydrophones. The data matrix cas be written as

[ (tal) 2(ta2) - z1(te,98) |
7 z2(tey 1) 22(16,2) .-+ 2o(ta, 98)
L zﬁ(tm 1) 26(t032) tc zﬁ(ta: 98) i

The envelope of the normalized covariance function is given by

EFV,‘j(is, tat7)

ENVij(tayta +7) = —== e
VENVi(tayta) ENVij(te + Ty ta + 1)

where the envelope of the covariance function is expressed as

E._I\?V.'_,'(ta, tatT)= [{Xi:'(ta: ta + T)}2 + {Yij{ta, ta + "")}2]1/2

where

1 N
Xijltayta + 7} = 5 3 [5ilta, m)j(ta + 7, m) + yilta, m)y;(ta +7,m)]

m=]

N
1
Yij(tayta+ 1) = N Z [zi(tas m)yi(ta + 7, m) = yi(ta, m)zj{te + 7,m)]
m=1

and N = 98, z;(t,, m) = Re(2(ts, m)), and yi(ts, m) = Im(2(t,, m))

It can be observed that:

1. The diagonal elements of the matrices have the largest power.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

2. The power diminishes very quickly along the direction of element index away from the

diagonal. The covariances of the elements separated by more than two index units

are no longer significant.
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This observation suggests that for many engineering problems, even when the noise
is spatially correlated, the noise covariance of array elements separated beyond a certain
spatial range can be insensitive to changes in the spatial correlation of the noise. For these

engineering problems, a new detection strategy is suggested as:

1. Mathematically represeat the covariance of the noise by a Hermitian matrix with a
banded structure as shown in Figure 5.4. The parameter § is the bandwidth of the

non-zero elements of the matrix.

2. Apply two spatially separated arrays for detection. These two arrays should be suffi-
ciently separated so that, although the noise of the elements in each array is spatially
correlz;ted, the noise between elements of different arrays is uncorrelated. This struc-
ture involving two arrays is called a bi-array structurel. As an example, Figure 5.5
shows a bi-array structure in which the two arrays have parallel normals. In general,

we do not require parallel normals for the arrays in a bi-array structure.

3. Define the composite covariance of the two arrays as cross-covariance. The cross-

covariance of all the elements in these two arrays form a matrix called the cross-

covariance matriz.

4. Since the cross-covariance matrix is still not a consistent information source with
respect to changes in noise correlation, a canonical transform can be used to normalize
the cross-covariance to make the resulting criterion insensitive to the noise correlation.
This technique, called canonical analysis, is introduced in the following chapter. The

details of the application of this technique to the new method is discussed in Chapter
7.

To conclude this chapter, the relationships between the various detection methods,

and the corresponding knowledge required from the noise components are summarized in

Figure 5.6.

!Similar array structures have been used in a paper of Prasad and Chandna [50], and also in the ESPRIT
algorithm due to Roy and Kailath [55] for direction of arrival estimation. QOur new method can be viewed
.as a natural extension of this bi-array structure to the detection problem,
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Chapter 6

Canonical correlation and
Canonical variables

This chapter introduces some important concepts and theorems of canonical correlation
analysis. This technique was developed by Hotelling [34], and is the principal statistical
tool used in the derivation of our new detection method for non-white noise environments.

The new method is discussed in further detail in the next chapter.

In canonical correlation analysis, two sets of variates with a joint distribution are
studied, and the correlations between these two sets of variates are analyzed under a nor-
malized and orthogonal form (canonical form). This form is achieved by finding a canonical
transformation, which can be interpreted geometrically as finding a cvordinate system in
the space of each set of variates so that the new coordinates display unambiguously the

correlation of the two sets of variates.

From the practical viewpoint, canonical correlation analysis is concerned with char-
acterizing the correlation structure between two sets of variables, without losing much
information, by replacing them with new sets with smaller number of variables which are
pairwise highly correlated. This can be shown by the following discussion on the canonical

transformation.

82
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6.1 Population Canonical Correlation Coefficients and Canon-

ical Variabies

Suppose that (&) and y(t) are, respectively, px 1 and ¢ X 1 random vector processes which

may be expressed in a composite form as
ES
| ()

Assuming the means of both =(¢) and y(t) are zero, the variance-covariance matrix ¥ of

() = (6.1)

z(t) and y(t) can be written as

b X
B=El@=@)F]= | " T 7 (6.2)
X Yoy q
P g

Without loss of generality, in the fo''owing discussion, we will assume that p < ¢q. For =(t),
y(t) and ¥ defined above, a transform, namely the Canonical transform, can be introduced

as given by the following theorem.

Theorem 6.1 If X is positive definite, and rank{ X3} = k, then there ezist linear trans-

formations L of order p and M of order q defined by {39, p249]

u(t) = L z(t) (6.3)
v(t) = M y(i) (6.4)

such that the variance-covariance matriz of u(t) and v(t) has the form

I, F r

u(t) '
E uH uH = 65
oo wol)= L) o
rp g

where

P=[P O], (6.6)
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and P is a p X p diagonal matriz given by

P = diag( p1, pay - Py 0,...,0). (6.7)

Proof: Since ¥ is a positive definite Hermitian matrix, ¥';; and X2, are positive definite

and there exist full rank-matrices E’:{z and E;éz and their inverses, which are defined as

Xn= }3{{2 (Egz)h’ (6.8)
B = B4 (5" : (6.9)
B = (s (6.10)
B = (B (6.11)

Using the inverses above to define a transformed matrix 32
1y = B By (35" (6.12)
and applying the singular value decomposition on this matrix, we have
Zi2=q,PQf (6.13)

where @, and Q; are unitary matrices. P has the form defined by Equations (6.6) (6.7)

because

rank($12) = rank(Z1z) = k <p<gq (6.14)
Now, we can define transformation matrices L and M by
L =Qf (6.15)

M = Q¥ B;12, (6.16)

Applying these matrices to the transformation defined by Equations (6.3) (6.4), we have

E{u(t)u®(t)] = LE[z{t)"(t)L¥=L 2y L¥ =1, (6.17)
Eo(tyo"(5)] = ME(ty"(IM¥ = M Tz M¥ = I, (6.18)
Elu(t)o¥(t)] = LEz{t)y ()IM¥=L 312 M* =P (6.19)
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Notice:that Equations (6.17) to (6.19) are equivalent to the corresponding partition of
Equation (6.5); hencz, the theorem is proved. O

By applying the transformation defined in Theorem 6:1, the original variables z(t),
and y(t) are replaced by new variables u(t) and »(t). Furthermore, the new variables have

the following properties, whose proofs follow directly from the definitions:

() normality: Eflu(t)?] = E[lv;(t)*]=1 V 1<i<p, 1<j<q (6.20)

(ii) orthogonality: E[u(t)uj(t)] = Elv(t)v}(t)]=0 Vigj (6.21)

. . Pi YV i=j<k
(i) correlation: E[u(t)vj(t)]= o o (6.22)
V i£jork<i=j<p

where 0 < p; < 1,i=1, ..., k.

With these properties, the eleinents of the vector u(t) defined by Equation (6.3) are
called the canonical variables of the z-space, and those of v(t) defined by Equation (6.4)
are called the eanonical variables of the y-space. The first k canonical variables actually
carry the whole correlation information of the original variables, since the correlation of
the remaining canonical variables equal zero. The quantities pii=1 .-, k are called
canonical correlation coefficients. Each p; is a measure of the correlation between ui(i) and
v;(t). The columns of L¥ and M ¥ are called canonical vectors. If the canonical correlation

coefficients are so arranged that

MmzZzp22...2p20 (6.23)

then, we define the following

%3(t) is the 1st canonical variable of z-space
v1(2) is the 1st canonical variable of y-space
u2(t) is the 2nd canonical variable of z-space

vz(t) is the 2nd canonical variable of y-space
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and soon .

The canonical variables have the following optimality property. The first canorical
variables u1(t), and v;(t) are linear combinations of the components of z(¢) and u(2),
respectively, with unit variance having the largest possible correlation, and this correlation
is p1; then out of all linear combinations of ;fi:he components of z(t) and y(t) which are
uncorrelated with both u;() and v {t) and have unit variance, the second canonical variables
u2(t) and v,(t) are most highly correlated, and their correlation is p, and so on. These
characteristics and relations are mathematically described by Equations {6.3), (6.4}, (6.7),
and (6.20) to (6.22). Readers familiar with principal component analysis can immediately
recognize that the canonical variables u;(t), v;(¢) are the i-th principal canonical correlation
components in z-space and y-space. Theorem 6.1 guarantees the existence of this canonical

transformation.

6.2 Sample canonical correlations

Before introducing sample canonical correlations, we give a lemma which will be used in

the proof of Theorem 6.2 in this section.

Lemma 6.1 If on the basis of a given sample 6y, -, 6,, are mazimum likelihood estimators
of the parameters 6y, -+,0,, of a distribution, then ¢1(fy,---,8n), -+, dm(by,-++,0), are
mazimum likelihood estimators of ¢1(61,---,0m), -+, dm(61,--+,0m), if the transformation
fromby,--- 8, tody,---, Py is one-to-one. If the estimators of 8y, -+ ,8,, are unique, then

the estimators of ¢y,-«+, P, are unique.

Proof: See Corollary 3.2.1 of [5]. O

In practice, canonical correlations must be estimated from sampled data. Let z,,...,zy

be N observations from 2 p + ¢ variate Gaussian distribution G(0, ¥). It is well known
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(5] that the maximum likelihood estimate of ¥ is

. ¥u ¥ N ] Su S
5= An .12 =%E z;t;":—;—r 11 P2 'j];;“
Yo Xn i=1 S21 S22

e

S. (6.24)

The maximum likelihood estimates of {p;}, which are the population canonical cor-

relation coefficients, are given by the following theorem.

Theorem 8.2 Let zy, ---, zn be' N observations from z(t) which is defined in Equa-
tion (6.1) and follows the distribution G(0,¥). Let ¥ be partitioned as Equation (6.2)

(assuming p < ¢). The mazimum likelihood estimators of the canonical correlations are the

stngular values of the matriz

- _ _ H
312 g 511112512 (5221!2) = DlFDiI (6.25)
where
r=I[r, o] (6.26)
f‘P = dia'g( Y1, Y25 - Yp ) (6‘27)

where 127 27122.27,20.

Proof: Now, we have E.which is the maximum likelihood estimate of X, and the transfor-

mation being considered here is
-~ — — H
#(%) = SVD (55} 5y, (57%)") (6.28)

which is one-to-one. Then, making use of Lemma 6.1, the conclusion of the theorem follows.
a

The exact dist.ibution of the sample canonical correlation coefficients for complex

data has been derived by James [35] as

f.[(l - P?)szl(N, N;q; Pz,pz) . fp(N)Wp(p“l)

i=1 f‘p(N - 9)fp(Q)fp(P)
P P =1 p
JIGHEP - TIA - B0 IT ] (=73 (6.29)
i=1 i=1 i=1 j=i+l

(1>9}>..>42>0)
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where I’ = diag(7;) and P = diag(p;). The quantity T,(-)is defined in Equation (3.9). The
function 2Fy(N,N;gq; f’z,f‘z) is the Gaussian hypergeometric function. For details of the
derivation of the distribution function and the definition of the Gaussian hypergeometric

function, one may consult the work of James {35] and Constantine [20].

6.3 More Properties of Canonical Correlation

In this section we provide further theoretical insight into canonical correlation analysis by
discussing other significant aspects of this methodology other than the normality, orthog-
onality, and the optimality property of the canonical variables mentioned in Section 6.1,
and the maximum Ekelihood property of the sample canonical correlation mentioned in

Section 6.2. These aspects are stated in the following theorems:

Theorem 6.3 In a narrowband system in the absence of noise, the largest k sample canon-
ical correlation coefficients equal unity, whereas the smallest (p — k) coefficients are zero.

We refer to these groups as the signal and noise coefficients, respectively,

Proof:

Define the p X IV and ¢ x N sample matrices X and ¥ as

X = [21, 32,...,2:”] (6.30)

Y = [y, 25001y - (6.31) -

Then the p X p, ¢ X g, and p X ¢ covariance matrices of X and Y are
Snu=XX¥; Sp=Y7"; S;;,=XY", (6.32)
and
S12 = STM281(S5MHY . (6.33)
Let the singular value decomposition of X and Y be written as
X =U,Ir. vt (6.34)

Y =U,T,VJ (6.35)
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where I'z, a pX N matrix can be partitioned to 'z, a pxp diagonal matrix and a px (N —-p)

aull matrix as
r.= [0 E (6.36)
I, = diag(c!?, .. .,aff) 0,...,0),
and where cr,g"') are the singular values of X . The matrix I'y is defined in a similar way.

Iz the absence of noise, for narrow band systems, the row spaces of X and Y are
equivalent, because the temporal variation of the received signal on each array is identical.

Hence, there exist V', and V' satisfying Equations (6.34), (6.35), and
V=V, =V. (6.37)

Using the generalized inverse, we can write

snl=(xx") " =y, rtu.” (6.38)
sulP=(xy®y Yy, riv > (6.39)
S12=U L TUy =U I U (6.40)

where I'} = diag(-y,...,~%5,0,...,0); similarly for rt. g is apxq matrix which
91 T
can be partitioned as

| S [f-w o] (6.41)

where I'zy is a diagonal matrix which has the form

Iz = diag(a.gz) . agy)’ o,g::) ) agy), e, al(c:) ] a’,(:”), 0,--,0) (6.42)

By substituting (6.32), (6.34), (6.35), and (6.37) - (6.39) into Equation (6.33) and simpli-

fying, we obtain
S = S;Su(sp/hH
= U Irtr,rivl
I, 0

= U, U;’r (6.43)
0 0
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where the matiix Iy is the k x k identity matrix. Equation (6.43) is in the form of the
(unique) singular value decomposition of 5y,. Hence, the largest k singular values of Si2

are unity, and the remaining values are zero.

Since from (6.25) we have the singular values of §;2 are the sample canonical corre-

lation coefficients, the proof is complete. O
It is noteworthy that this result is independent of &, the number of snapshots.

Another important property of canonical correlations is given by the following theo-

rem:

Theorem 6.4 The canonical correlation coefficients are invariant with respect to the trans-

formaiion

(6.44)

N
il
8

&
]
by Q
L~

(6.45)

where C and B are nonsingulur matrices.

Proof: Under the transformation defined by Equations (6.44) and (6.45), the covariance

matrices of Z(¢) and §(¢) can be expressed as

Bn = cEZnc®=cIMisHck = e s e s = B (6.46)

$n = BIpBY = BEYNEUBH = BEYY (B IYD) = BYAEYP)H (6.47)

i?u = CBuBH (6.48)
where
3= c i (6.49
2 = BE?

are full rank matrices. Therefore, there exist inverses

F% = mpio-

(6.50)
5717 = p3}2p—
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such that

550357 = sMcic 3pBH(BY (B

= I En(ER%)"
= Q,PQf (6.51)
now, define transformation matrices
= Qr ey} (6.52)
M = Qs (6.53)
the transformed covariance matrix of Z and 4 becomes
iBam® = Qis (5 o
— Q{IE-U? ¢ lC3,B¥(B -1/2)}!(2;21!2)}1(251
= Q¥ 3u(35 ") of
= LY M¥ (6.54)
That is,
55’3121\:1'” =LY MH =P (6.55)

where P is a matiix with the form defined by Equations (6.6) (6.7). Referring to the
definition of the canonical correlation coefficients given in Section 3, we can immediately
derive the conclusion that the canonical correlation coefficients for the transformed variables

Z(t) and #(t) are the same as that of =(t)

Theorem 6.5 The sample canonical correlation coefficienta v; are consistent estimates of

the true coefficients p;.

Proof: The proof follows directly from the fact that ¥ = 49— Fas N — 0. O



Chapter 7

Detection using canonical
correlation analysis

In this chapter, the canonical correlation analysis discussed in the last chapter is used in
developing a new method for detecting the number of signals in a class of unknown noise
environments. The noise considered here may be spatially uncorrelated, or correlated over
a limited spatial range. In other words, the covariance matrix of the noise has a banded
structure (white noise can also be considered as a special case since its bandwidth is equal to
one), For this class of noise, the bi-array structure proposed in Chapter 5 and the canonical
correlation analysis discussed in Chapter 6 are applied to solve the detection problem. For
applying the canonical correlation analysis technique, the array geometric structures and
the relative spatial positions which may be used are quite broad. However, in this chapter,
we use a bi-array structure with two linear, equally spaced arrays with parallel normals
in our derivation since this simple geometry is not only suitable for clearly illustrating the
basic principle of our new method, but is also a commonly used structure in theoretical

derivations and in the engineering practice of array systems.

7.1 Formulation of the problem

Let us consider k independent narrow band signals arriving from & different directions at

two spatially separated linear arrays as shown in Figure 5.5. These arrays are denoted by

92
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X and Y with p and g sensors respectively. The outputs of these two arrays are denoted by

vectors z(t), y(t) which can be expressed as
z(t) = Azs(t) + nz(t) (7.1)

y(t) = 4,Bs(t) + ny(1) (7.2)
where s(t) is a k x 1 vector, describing the complex envelopes of k narrow band signals.
The elements of s(t) are assumed to be independent Gaussian distributed random variables
with zero mean. A and A, are p x k and g x k matrices, representing direction matrices
of the & signals. For simplicity, we assume: (1) the elements of each of the two arrays are
equally spaced by d, (d is less than or equal to the half-wavelength of the incident fields),

and (2) the normal of the two arrays are parallel. The direction matrices can be expressed

under these assumptions as,

1 1 1
ej'#i eJ‘#? e ej¢k
A: = eJ.2¢1 ej2¢2 e ej2¢k (7.3)

eip—1)d1  gilp=1)¢2 oilp~1)és

1 1 1
e.?lél eJé? e ej¢k
Ay=| ei2h e . ei2t (7.4)

ella-1)d1  oila=1)b2 pilg=1)¢s

where ¢y, ¢2, ..., ¢ are unique functions of the angles of arrival of the k signals. B isa
diagonal matrix of dimension k X k, the diagonal elements of which are the relative phase

shifts of the k signals between the two arrays,
B = diag( e/, ..., /0% ) (7.5)

where A; is defined as

A; = “"i’y sin(d; — 0sy) (7.6)
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where d;y, and @:, are parameters specifying the relative position of array X and array Y
as shown in Figure 5.5, and w is the angular frequency of the narrow band signals, ¢ is
the velocity of propagation. The vectors nz(2) and ny(t) are p and ¢ dimensioral vectors
respectively, representing noise components in the outputs of array X and array Y. The noise

is assumed to be Gaussian, complex, zero mean, with cross-covariance matrix satisfying
Fnzy = En(t)nf(t)] = 0, (7.7

where O denotes a p x ¢ null matrix. Equation (7.7) implies that we may consider array
X and array Y as two non-overlapping parts of a larger non-contiguous array, the noise

covariance elements of which satisfy
on(i,7)=0..V |i—-j] 2 6 (7.8)
where 8, a constant defined in Figure 5.4, represents the half band width of the variance-

covariance matrix structure of the noise of the large array. The output of this large array

can be expressed by a composite vector z(t) with z(¢) and y(t) as its components,

z(t
z(t) = ® (7.9)
y(t)
The covariance matrix 3’ of #(t) can be written as
n ¥
®=El():(t)]= | -0 T2 P (7.10)
Zn Y q
r 9

In Equation (7.10), we have partitioned ' according to the dimensions of z(t) and ()

respectively, Without loss of generality, in the following discussion, we assume that p < g.

Assuming there exist k signals, the covariance between =(t) and y(t) is represented

by the upper right submatrix ¥;; of 3 which may be expressed as
T2 = E[=(t)y"(3)]
= E[Aza(t)sﬂ(t)BHA;"]
= A,,,J.’)[a(t).s"’(t)]BHA!‘;f

= A X.,BYAJ. (7.11)
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where X, is the k x k covariance matrix of the signals. The matrix ¥, is full rank
because the k signals are assumed independent. The matrices A, Ay are full column rank
because the angles of arrival are all distinct, and B is a k X k full rank matrix; therefore,

rank (¥,2) = k, the number of signals.

Our detection procedure is based on the sampled outputs of z(t). If we denote the set

of samples by z,, z3, -+, 2y, as given by Equation {6.24) in last chapter, the maximum

likelihooa estimate of 3 is
- 1
¥r= WZ:;:{’ . (7.12)

Making use of the fact that rank(X'12) = k, in the presence of signal and noise, the number
of signals may be determined by testing the rank of ¥,, the sample estimate of Xy
or equivalently, by testing the rank of Sy since S13 = ¥,2/N. One possible way to
accomplish this is to test the significance of the singular values of §12. However, due to the
possible involvement of unknown spatially correlated noise, these singular values are still
not invariant to changes in spatial spectra of the noise. To obtain an invariant detection
method, instead of testing the singular values of S,; directly, we test the amplitude of the
singular values of a matrix with a standard form §;;. This matrix is obtained by converting
Sz through the canonical transform given in last chapter. The singular values of matrix

512 are invariant to the changes in the noise spectra.

7.2 Detection by testing the sample canonical correlation

coefficients

Assume the canonical correlation coefficients of the outputs of array X and array Y are

arranged in descending order of magnitude,

12p2p22... 20> prs1=pky2=...=pp =0, (7.13)

and a similar relation is also applied to the sample canonical correlation coefficients =;

which are defired by Equations (6.25) (6.26), and (6.27). We consider the following set of
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hypotheses:

Hrn: ppr#0, p2#0, oot Pm # 0 prat1 = Pme2 = ... = pp=0 (7.14)

form=p, p-~1, ..., 0. The physical meaning of the index m is the assumed number of
signals under test. The detection problem is thus equivalent to a multiple hypothesis test

to determine which value of m is most likely.

The procedure of testing {H,, } to find the most likely m value is a2 multiple hypothesis
test [62] which needs to be decomposed to a sequence of structured binary hypothesis tests.
A traditional way to obtain such a decomposition is to construct each elementary binary
hypothesis by applying two adjacent members among {H,,}. In other words, the multiple
hypothesis test is decomposed 1o p elementary binary hypothesis tests; in each elementary
binary hypothesis test, a primary hypothesis H,, is tested against its adjacent hypothesis
Hpn-1, for m = p,p—1,...,1. The hypothesis testing procedure starts with m = p, that
is, by testing H, against H,_;. If H, is accepted, we declare k = p and stop. Otherwise,
we accept the alternative Hp_; at the stage m = p, decrement m by one and use H,_,
as the primary hypothesis of the next stage. The procedure is continued until a primary
hypothesis is accepted. (Note that if the test continues until m = 1 and if H; is rejected,
then the alternative hypothesis Hg is accepted. Hence, all hypotheses from p, p—1, ..., 0

are considered). The logical structure of this testing procedure is summarized in Figure 7.1.

The criterion used for each step of binary hypothesis testing in Figure 7.1 is the
likelihood ratio of the primary hypothesis and the alternative hypothesis in that step of
testing. Denote the observation matrix Z = [z1, -, zy] and let L{Z]Q,,) be the likelihood
function of the observation Z with parameters in £2,,, the parameter space constrained by
the hypothesis Hy,. The likelihood ratio for testing H,, against Hy,_; is defined by

maxp L(z|n,)
maxp  L(Z|2m-)

AQNz) = (7.15)

where the superscript of A,(,i)(z ) distinguishes this likelihood ratio from the likelihood ratios
proposed later. It is shown in Appendix A of this chapter that the maximum value of
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i'r ‘ Hp—1 HP—Z HO
_— Hp:Hp—1 Hp-1Hp—2t— . - . —d HyHp
Hp Hp_1 H.|
k=p =p-1 C .. k=1 k=0

Termination of the hypothesis testing

k

Figure 7.1: Testing Scheme 1: using traditional hypothesis decomposition.

HpHp-‘] HpHp-2 e PR ——] HPHO

= =p-1 . et ke

Termination of the hypothesis testing

k
Figure 7.2: Testing Scheme 2: using a modified hypothesis decomposition.
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L(Z|nn)is .
fo = max (212m) = 182 P JI1-20) (7.16)

i=1

Therefore, the likelihood ratio defined by Equation (7.15) can be expressed by the sample

canonical correlation coefficients as

ma.xnm L(Zlﬂm) —-1- 72 (7 17)
m - .

(1) = =
Am (Z) lf.'lla.'xln’_“_1 L(Zlﬂm_l)

This likelihood ratio has a very simple formulation, in that only one sample canonical
correlation coefficient is required in each step of the test. However, the price paid for this
simplicity is the complexity of the effort required to determine the threshold values used
in the hypothesis testing. The statistic support for determining the threshold value which
is compared with this likelihood ratio in each elementary hypothesis test is unknown. The
derivation of the distribution function of the likelihood ratio given by Equation (7.17) is
quite complex. The complexity is caused by the fact that the marginal distributions of each
sample canonical correlation coefficient can only be obtained through a (p — k — 1)-fold

integration which is a complicated procedure, and thus makes this scheme less attractive.

To find a better decomposition scheme, we note that canonical correlation analysis
has a long history; there are previous results which give distribution rules related to sample
canonical correlation coefficients. The y? approximation given by Bartlett is one of these

results. This approximation rule is given as follows.

Bartlett’s approximation ' [7][8}:

When tke hypothesis

Hn1: pr#0, p2#0, vy Pt 20, pn = P41 = . =pp =10 (7.18)

is true, the asymptotic distribution of the statistic
1 z
C(m) = -2(N - 5(p+ g+ 1)] 3 log(1 - 7)) (7.19)
i=m
is x? with 2(p — m + 1)(g — m + 1) degrees of freedom. The factor [N-Li(p+g+1)]in

Equation (7.19) is known as Bartlett’s correction factor.

1The formula given here has beer. modified for complex data
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It is interesting to notice that the summation part in the statistic given by Equa-
tion (7.19) is the logarithm of the likelitood ratio of hypothesis H, against H,, — 1. This
likelihood ratio can be readily obtained using Equation (7.16) as

L(Z|n
A‘ﬁ’(z) = ma:;x‘:f:LgZ]lﬂ:‘)_l) = ?:m(l - 7?) ’

(7.20)

where the superscript of Aﬁ)(z } distinguishes this likelihood ratio from the one used in
scheme 1. Therefore, a new decomposition scheme can be constructed by replacing A$,‘.’(z )

in scheme 1 with AS,E)(Z ). This new scheme is illustrated by Figure 7.2.

In each step of the scheme shown by Figure 7.2, Hj is tested as the primary hypoth-
esis against alternative hypothesis H,,_1, for m = p,.--,1 respectively. With this testing
strategy, as many noise subspace sample canonical correlation coefficients as possible are
included in the testing criterion, so that Bartlett’s result can be applied and the multi-fold
integration required in the threshold setting for Scheme 1 can be avoided. Compared with
the likelihood ratio used in Scheme 1, the only change in the new likelihood ratio is that
the primary hypothesis H,, is replaced by Hy. This is a logical replacement because when
the test reaches stage m, all the population canonical correlation coefficients with indices
larger than m have already been accepted as zero. This new condition which is set up
during the test procedure makes H, convey the same meaning as H,, at stage m, although
the threshold values for testing the resulting criteria may be different. This equivalence
can also be shown by demonstrating the inter-connection between the thresholds applied in

these two schemes.

From Equation (7.17), the criterion used for Scheme 1 is given by,

H
Mgy Do, UZI2w) ., 5 o

m—1

where T,g) denotes the threshold value in stage m of scheme 1.

For Scheme 2, in stage m, the likelthood ratio testing criterion be obtained using
Equation (7.16) as
maxg  L(Z|%25) Hn
[ Pind kMt I — 2 > (2)
max,  L(Z|@m-1) Men(l-7) 2 Tw’, (7.22)

m~1

A(2)=
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where the superscript of AZ(Z) and T2 indicates these likelihood ratio and threshold zre
for Scheme 2. Compared with the criterion used for Scheme 1, it can be found that A,(,P(Z )
and A2)(Z) are related by )

A@(z) = ][] Al(2) . (7.23)

i=m
To show the relation between thresholds TS and T,Sf), we trace the testing procedures for
both Scheme 1 and Scheme 2 comparatively. Starting with m = p, the criteria at this stage
are the same for both schemes, so are the thresholds. If A,(,I)(Z )> T;Sl) (or Agz)(z )> T}”
for Scheme 2), then H, is accepted and the test is stopped, and the estimated number of
signals is assigned as p. If A,(,l)(Z ) £ T,Sl), or in other words, A,(,l)(z ) = apT,Sl), where

ap < 1, then the test is continued with a reduced value of m. At stage m, for Scheme 1 we

need to test
Hn
Az (7.24)
Hm—l
and for Scheme 2, the test is
Hm
AR(2) =T APz z 1@ (7.25)
m-1

Notice that when stage m is reached, from the previous binary hypothesis testing stages,

we already have
AN(Z) = T
A (2)

(7.26)
Aﬂl;(z ) = am+1T,EH.1
where 0, < 1, -+, @m41 € 1 are known numbers at this stage with given samples Z.
Therefore, the threshold value of Scheme 2 can be expressed by the threshold values

of Scheme 1 at the current stage and previous stages as

T = ;TP 1 T -+t T, T (7.27)

for m = p, .-+, 1. This set of equations gives a one-to-one correspondence between the two

sets of thresholds for a given set of samples Z. Thus, Scheme 1 and Scheme 2 are equivalent.



7.2. DETECTION BY TESTING TEE SAMPLE CANONICAL CORRELATION COEFFICIENTS 101

The reason why the two schemes are discussed is as follows. Scheme 1 is the most
rigorous from a statistical perspective, whereas Scheme 2 is far easier to use. By establishing
the equivalence of these two schemes, we have demonstrated the validity of using Scheme

2. Therefore, in the sequel, we consider only Scheme 2.

With scheme 2 the multiple hypothesis test is decomposed. By generating a set of
thresholds Trn, m = p, p—1, ..., 1 according to the 2 distribution rule given by Bartlett’s
approximation, such that the probability of exceeding the threshold remains constant for
each value of m, we may recursively test each hypothesis H,; in turn. The value of 12 where

C(m} first exceeds the threshold T}, corresponds to the most likely number of signals.

We now turn our attention to the performance of this detection algorithm. From the
testing structure, we know that a correct detection happens when & = k, otherwise we say
an error has occurred. Furthermore, an error can be classified into two kinds; whenever
k < k, we say a missing error has occurred. Whenever k > k, we say a false alarm error has
occurred. A miss happens when C(m) is below threshold for m < k. A false alarm happens

when C(m) exceeds the threshold for m > k. Accordingly, the probability of detection error

can be expressed by

Pe=1—PD=PH+Pp (7-28)

where P, is the total probability of a detection error, and P, is the probability of a correct
detection. Py, is the probability of missing; Py is the probability of false alarm.

In this analysis, we concentrate only on the probability of false alarm, because Pe
is the dominant detection error mechanism at moderate and high SNR conditions. That
Pr is dominant may be justified in the following way. First, according to (7.19), C{m)
is approximately x2-distributed for m > k, independent of SNR. On the other hand, we
see from Theorem 6.3 that, for a specific N, the signal coefficients approach unity as the
SNR becomes large. Hence, with fixed N and increasing SNR, the probability of C(m)
exceeding the threshold remains approximately constant for m > k (false alarm), whereas
the probability of C'{::) being smaller than the threshold for m < & (missing) becomes small.
Hence, Pr dominates at high SNR. Therefore, by considering only the medjum/high S~NR
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_case, the performance of the method may be quantified by considering only the probability
of false alarm.

We further simplify the error analysis as follows. It has been verified [70] that since
4k+1 is the largest of the noise canonical correlation coeflicients, C(k + 1) is more likely
to exceed the threshold T4y than C(k +2),...,C(p) ate likely to exceed their respective
thresholds. Therefore, Py, the composite probability of false alarm, is dominated by P[C(k+
1) > Ti41), the probability of false ala.rmingl\ one signal given k signals are present. The

r

latter symbol is denoted by Prx(1).

If H,, is true, then Ppim(l) is related to the threshold value Ti,41, according to

Bartlett’s criterion by

o0 1 n=% =x
Ppim(1) = /T-mn 2_22r(%):c'!‘e!'dz , m=0,12,..,p-1 (7.29)

where n = 2(p — m)(g — m). Therefore, for a specified false alarm error rate, the required
threshold values can be determined by solving this equation for Tppy; form =0, 1,..+,p~1.
The details of this process are given in Appendix B of this chapter. The threshold values
generated in this way maintain the false alarm rate at approximately the specified level
for k = 0,1,...,p — 1. Therefore, the performance of the new criterion is quantitatively

controllable.

The proposed detection procedure, with a means of controlling the moderate to high
SNR performance, is now complete. The steps involved in the execution of the method are

outlined below:

1. Use the sample outputs =i, =2, ..., 2y of array X and y,, vy, ..., ¥y of array Y to

form the sample product matrices Sy;, S22, and Sy2 by

N

511 = z:,-zf" (730)
=1
N

S =Y yuf (7.31)

i=1

N
Sip=) =yl . (7.32)

i=1
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I

2. Calculate the singular values 71, 72:"’, Yy, of the transformed ,E:atrix

1
U

812 = S 2515337y . (7.33)

3. For a specified false alarm rate Pr a set of threshold values {Tm} can be pre-calculated
according to x? distributions with 2(p—m + 1)(g—~m +1), m = p,...,1, degrees
of freedom, where m is the assumed number of signals under test. The details of the

method for obtainiug the thresholds can be found in Appendix B «f this chapter.

4. Hypothesis testing: Denote the hypothesis that there are m signals by H,,. The

testing starts from m = p. For each m, the criterion

1 P

C(m)=-2[N - 5(p+ g+ 1)] 3 log(1 - 7}) (7.34)

i=m
is compared with threshold value T, . If the criterion is larger than the threshold,
we accept Hn, stop the testing, and assign the value of & = m. Otherwise we reject
the hypothesis, decrease m by one, and continue the testing until a H,, is accepted,
or m becomes 1. At this stage, if the criterion éxceeds the threshold, then H; is

accepted; otherwise, the alternative Hy is chosen.

There are other criteria for hypothesis testing using canonical correlation coefficients

[67] [45]. However, here we concentrate exclusively on Bartlett’s eriterion.

7.3 Simulations and Discussion

7.3.1 Design of the computer simulations

To examine the detection method we proposed above, a group of computer simulations are
designed to check the performance of the new method, and to compare it with the existing

detection methods, namely, AIC and MDL.

The new method is examined using computer generated data which simulates the

signals polluted by spatially correlated noise. The noise data are generated by a group
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Table 7.1: MA COEFFICIENTS FOR THE NOISE MODEL

Model No. bo b b2
1 1.00 0.901 -0.81
2 1.00 0.40: -0.16
3 1.00 0.10: -0.01

of Moving Average (MA) models. The reason for using an MA model is the correlation
coefficients of a moving average process are “tail cut”. In other words, the covariance
matrix of a moving average process is of banded structure, which coincides with the basic

assumption of the new method.

The theoretical covariance matrix of the MA noise is generated in following way.
Assuming the MA coefficients are given by by, b1, -++, bm, the covariance matrix of the
MA process can be formed by [24]

P i " '
R, = (Z b,-Y,-) (z b,-Y.-) (7.35)
i=0 i=0
where {Y;} are rectangular p, x 2p, (pn is the dimension of the noise covariance matrix)

matrices defined by
. 1 if k—j=1
Yi(4, k) = (7.36)
0 otherwise
Once the noise covariance matrix is constructed, it can be used to convert white noise

( such as pseudo white noise generated by computers) into noise with a specified covariance

matrix through the following transformation,
vV = R\ *w (1.37)

where W is the white noise data matrix, and V is the noise data matrix with covariance

matrix R,.

To give the new method a more complete performance picture, three different noise

matrices, which correspond to different levels of severity of noise correlation, are used. The
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Spatial spectral density of noise

4 -
sk Noise MA coefficients: - 1
—— MA=[1.00, 0.90*, 0.1}
2 — MA=(1.00, 0.40%, -0.16]

.......... MA=[1.00, 0.10%, -0.01]

-30 -60 -40 20 0 20 40 60 30
bearing angle, degiees

Figure 7.3: Spectra of the coloured noise used in the simulations
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Table 7.2: THRESHOLD VALUES FOR p=8,¢=8

Theoretical Pr 10-1 102 10-3 10-1 10-%
s=38 4.6052 9.2103 13.8155 18.4207 23.0259
$=7 13.3616  20.0902 26.1245 31.8276  37.3316
$=6 25.9894 34.8053 42.3124 45.1894  55.6829
s=35 42,5847 53.4858 62.4872 70.5712  78.0942
§=4 63.1671 76.1539 86.6608 95.9687 104.5417
s=3 87.7430 102.8163 114.8351 125.3766 135.0114
s=2 116.3153 133.4757 147.0104 158.7915 169.4956
s=1 148.8853 168.1332 183.1864 196.2112 207.9896

MA coefficients for these thres noise matrices are given in Table 7.1. The bandwidth of the
noise covariance matrix used in the simulations is three. The spatial spectra of the noise
generated by each MA model are plotied in Figure 7.3. Two closely located signals are
used iz the simulation. The separation of these two signals is 0.5 standard beamwidths of
an 8-element array. The simulations use four different directions of arrival with fixed signal
separations. By doing so, the performance of the new method for different relative locations
of the signals and the noise peaks can be checked. The number of sensors of array X and
array Y each equal eight. The two arrays are assumed to be linear, and the two arrays are
oriented along iie same line. The sensors of the arrays are equally spaced with separation

equal to a half wavelength.

To check the accuracy of the theoretical false alarm given by Equation (7.29), five
groups of thresholds corresponding to theoretical false alarm rates (TFR) of Pr = 10-1,...,10~8
are generated and used in the simulations. These threshold values are listed in Table 7.2.
The MATLAB program for generating these threshold is enclosed as Appendix B of this
chapter.

In all the simulations the SNR is defined as the ratio of total signal p~wer to total

noise power of the arrays.
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Table 7.3: COMPARISON OF TFR WITH SIMULATION RESULTS

Theoretical Pp 10! 102 10-3 10—4

Simulation Pr  0.93x 10~! 0.87 x 10~? 0.83 x 10-3 0.87 x 10~4
* 195,000 trials are averaged over SNR range 6 to 15 dB.

7.3.2 Simulation results and discussion

The results of the simulation are given in one table and five figures. In Table 7.3, the
average false alarm rates of the simulations for the CCT method are compared with the
theoretic values. These results were obtained using a wide range of coloured noise models
and different signal locations. In total 195,000 trials are averaged. From these results, we
see that the false alarm rates obtained from simulations are in close agreement with the

specified Py values.

The error performance of the CCT method with respect to SNR. is illustrated by
the simulation results given in Figure 7.4 to Figure 7.8, each corresponding to a specific
theoretic false alarm rate. The parameters of the noise model (MA coefficients) are labeled

on the bottom of each figure.

Figure 7.4 gives simulation results for TFR=10~1. It can be observed that that in the
moderate and high SNR range (in which the detection error is dominated by false alarms),
the detection error rate is close to the theoretic value of 10~1, and is invariant to changes
in noise spectrum and the position of the signals, This shows the robustness of the new
method with respect to coloured noise, and this characteristic is a result of the invariant
property of the canonical correlation coefficients given by Theorem 6.3. In the lower SNR
portion of the curve, however, the P.—SNR threshold changes its position when the signal
position is changed. This is understandable, since as we mentioned before, missing errors
are SNR dependent. When the signals are located around the peaks of the noise spectrum,
the noise has more effect on the signal, which results in a lower effective SNR. Therefore,

a higher SNR value than what is required for the white noise case is required to reach the
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point beyond which a missing error can be eliminated. In contrast, if the signals are located
in the valley of the noise spectrum, the effective SNR is higher, so the threshold appears at a
lower value of SNR. The three plots of Figure 7.4 also demonstrate the trend that when the
noise spectrum becomes flat, the effect of signal position on effective SNR diminishes, and
the threshold SNR values for different signal positions converge to the same value of SNR.

When the SNR value increases beyond a certain value, missing errors are almost eliminated.

The four figures following Figure 7.4 confirm the robustness of our new method for
different TFR values (TFR=10-2, 10~2, 10—*, 10~5 respectively for these four figures).
Comparing Figure 7.4 to Figure 7.8, the tradeoff between TFR and P.-SNR threshold

caused mainly by missing errors, can be observed.

To compare our new CCT method with other existing methods, the widely accepted
AIC and MDL criteria are also tested in the same noise environment. The results are shown

in Figure 7.9 to Figure 7.12.

The plots in Figures 7.9 and Figure 7.11 are the simulation results for AIC and MDL
respectively, from an 8-sensor array (the same number of sensors used by array X of the
CCT method). For the results in Figure 7.11 and Figure 7.12, the number of sensors is 16
(the sum of the sensors used by both array X and array Y of the CCT method).

Comparing Figures 7.9 and 7.10 to Figures 7.4- 7.8, (also with reference to Fig-
ure 7.3), we see that, even under very mildly coloured noise (MA=[1.00, 0.10i, -0.01]), the
performance of AIC experiences severe degradation. On the other hand, we see that the
performance of the CCT method is relatively robust to changes in the shape of the noise
spectrum, and continues to maintain its controllable high-SNR performance. Also it is cb-
served that MDL no longer exhibits continuously diminishing P. with increasing SNR as it

does under white noise, and starts to show slight false alarm errors in the high SNR range.

For an intermediate degree of noise colour (MA=[1.00, 0.40i, -0.16]), P, — 100% for
AIC. This is because AIC requires the noise to have a flat spectral shape. For the same
reason, MDL has also degraded substantially, whereas the performance of the CCT has

remained relatively unchanged. Comparing the performance of MDL and AIC, we see that
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Table 7.4: COMPARISON OF COMPUTATIONAL INTENSITY"

Method,Size | AIC,MDL, p=8 | CCT,p=¢=8 | AICMDL, p =16

Flops/trial 60319 126675 262189

* This comparison is done by using the FLOP function of MATLAB;
N=100; one flop is defined as one multiplication and one addition

MDL shows somewhat more tolerance than AIC, because MDL is over-penalized, as has

been mentioned in several papers [70] [73].

For a relatively large degree of colour (MA=[1.0, 0.90i, -0.81]), the performance of
the CCT method again remains relatively constant. In this case, both MDL and AIC fail
completely (P, — 100%).

The results using a 16-senso1.:.arra.y show basically the same comparison, except for
lower SNR thresholds. This is because the 16-sensor array gives a larger sample size.

However, this advantage contributes little to improve the coloured noise performance of
MDL and AIC.

The comparison of the computational intensity for the CCT method, and AIC, MDL
with 8, and 16 sensors is listed in Table 7.4.
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Figure 7.4: Simulation results of CCT method for TFR=101
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Figure 7.5: Simulation results of CCT method for TFR=10-2
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Figure 7.6: Simulation results of CCT method for TFR=10-3
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Figure 7.7: Simulation results of CCT method for TFR=10~1
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Figure 7.8: Simulation results of CCT method for TFR=10-%
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Figure 7.9: Simulation results of AIC using eight sensors
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Figure 7.10: Simulation results of MDL using eight sensors
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Figure 7.11: Simulation results of AIC using sixteen sensors
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Figure 7.12: Simulation results of MDL using sixteen sensors
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7.3.3 Further discussion on the CCT method

Now, let us briefly discuss several potential aspects of the CCT method.

In the previous discussion, the canonical correlation coefficients of the signal compo-
nents are assumed to be unity, because for narrow band signals, the signal components at
the outputs of the different sensors are highly correlated. However, with little modification,
the CCT method can also be applied to the case when the canonical correlation coefficients
of the signal components are not equal to unity (this situation may happen in wide band
array processing, and in the preseﬁce of array calibration errors, etc.). For this class of
problems, we may use the La.wley-Glynn-Mu.ifhea.d criterion in which the influence of non-
unity principle canonical correlation coefficients is considered, to replace Bartlett’s criterion.
The Lawley-Glynn-Muirhead criterion can be considered as a further refinement made to
Bartlett's correction factor, by Lawley (1959)[41], and Glynn and Muirhead (1978)[25]. This

criterion is given as:

Lawley’s approximation {41]:

When the hypothesis

Hm: p1#0, p2#0, ooy pm # 0, prmg1 = prag2 = . =pp =0 (7.38)
is true, the asymptotic distribution of the statistic
1 m N P
—2[N-m-(p+a+ 1)+ 077 3 log(l-7f) (7.39)
=1 i=m+l

is x* with 2(p — m)(g — m) degrees of freedom. This result is correct to terms of order of
N-2,

It is interesting to note that if the magnitude of the first m canonical correlations

P1s s Pm are all unity or at least near to it, Bartlett’s test will agree with Lawley’s result.

If the values of py, pz, ---, pm are known, the criterion above can be directly applied
in the CCT method; otherwise, 11, 72, ***, ¥m, the maximum likelirood estimates of

£1, P2, ***, Pm, M2y be used to obtain an approximation.
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Another difficult situation which may occur in array processing is the presence of fully
correlated incident signals. Once the signals are fully correlated, rank{¥;;) < k. Hence,
spatial smoothing [60] must be used to generate a rank k matrix under these conditions.
Provided the number of subarrays v generated in array X and array Y are identical, it is

easy to verify that all the preceding algebraic results are valid in the spatial smoothing case.

However, statistically, the effective value of N to be used with (7.19) is difficult to
determine. Thi:’is a consequence of the fact that the samples from each subarray under the g
same snapshot are not independent. This implies that the effective value of N lies between
N, the number of srapshots, and N X v, where v is the number of subarrays used in spatial
smoothing. An inex:il:u:_t csr;ixﬁa.te of this quantity will cause the actual Pr to differ from the
value specified. However, by choosing the effective N to be equal to N, we can at least say
that the actual Pp will bounded above by the specified value, under the spatial smoothing

case.

7.4 Appendix A

The content of this swction is the derivation of the likelihood ratio under H,. The major

reference is a paper by Tso [61].

The hypothesis Hy, is defined as
Hn: pi#0, fori=1,..m and p;=0, fori=m+1,..,p (7.40)
where p; is the ith largest singular value of ¥y, the p X ¢ cross-correlation matrix defined
in Section 3. Without loss generality we assume here p < q.

This hypothesis serves as a constraint on the rank of ¥y, in our derivation.

We use the following steps to derive the likelihood ratio we need. We first convert the
signal model to a equivalent model in a regression form, which makes the expression of the

derivation more compact. Then, the maximum likelihood with constraint H, is derived.
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We start with the signal model of arrays X and Y with p and ¢ sensors,
z(t) = Azs(t) + nz(t) (7.41)

y(t) = AyBs(t) + ny(t) (7.42)

and convert these to regression form by pre-multiplying Equation (7.41) by AZ, solving the
signal vector s(t) as

s(t) = (A7 A:)7 A% (2(2) - na(1)) (7.43)
defining £'7! = (AZ¥A,)~1A¥ and substituting the result into Equation (7.42), we get the
equivalent regression model

y(t) = AyB I (2(t) - na(t)) + ny(t) . (7.44)

Denote the samples of =(t) and y(¢) by matrices X of p x N dimension and ¥ of
g X N dimension. According to the signal model, we can write

Y=DX+n (7.45)
where

D=4A,B¥; (7.46)
is of dimension g X p, and

n=Dnz+ny (7.47)

which follows the normal distribution

n~ G(O,X,). (7.48)

According to Equations (7.45)(7.48), we seek to maximize the likelihood function
log, L = const. + Nlog, | ¥} - tr{(Y - DX)*)Z; (Y - DX )} (7.49)

with respect to D and ¥, subject to the constraint H,,. We may eliminate ¥, by noticing

that the maximum likelihood estimate of ¥, conditional on D is

N
"D = «NLZ(Y -DX)Y -DX)* (7.50)

=1
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Inserting X7, into the likelihood function (7.49), the third term of the right side of (7.49)

becomes a constant, and maximizing the likelihood function is equivalent {0 minimizing
AD)=|(Y - DX)(Y - DX)¥| - (7.51)
subject to the constraint H,.

When H,, is true, the rank of D equals m. That means the matrix D can be
decomposed in the form of

D =GF (7.52)

where G is a ¢ X m matrix with full column rank, and F is 2 m X p matrix with full row

rank, and F satisfies

FX=W (7.53)
where W satisfies
wwi=1, . (7.54)
Using this decomposition, we can express (7.51) as
f(W,G') =|(Y - GW)Y - GW )| (7.55)
Applying the identity
Y-GW =Y(Iy-WiW)+(YwW" -a)\W (7.56)
the form of Equation (7.55) can be changed to
SW, @)= YTy - WHIW)YH L (YWY - G YWY - G)¥| (7.57)
Noticing that Equation (7.57) has the form of [4; + A3|, we apply the inequality
|41 < |41+ 4, - (758)

where A; and A; are positive semi-definite Hermitian matrices. Therefore, (7.57) is mini-

mized with respect to G as

ff = f(W,6) =Y Iy~ WHW)Y ¥ (7.59)
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when G takes the value
G'=YW?H® | (7.60)

Now we apply the canonical transform

x=i"v (7.61)

Y=Mm"v (7.62)
where

vuf =1, (7.63)

VVE=T, (7.64)

and L™ and 7" are the sample version of the transform matrices defined by Equa-
tion (6.3)(6.4) calculated from S defined by Equation (6.24). The matrix W can be ex-

pressed accordingly as

w=FXx=rFi"'vU . (1.65)
Define
T=rFi"" (7.66)
we have
W =TU (7.67)
TTY =1, . (7.68)
Furthermore, define
R=UV* (7.69)

so the form of Equation (7.59) can be further changed to

HTU) = M7 V(I - UPTRTU )V H (31 |

|3 I, - vURTETU V|

178

[}|T, - RETHTR|

|8 P, ~ TRRATH|

= |87 P|T(T, - RR¥)TH|

(1.70)
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Here, we introduce a theorem without prove. For the proof of the theorem, readers

may refer Theorem 10 of [9] and {26].

Theorem 7.1 If & is an arbitrary positive semi-definite Hermitian mairiz of order p, the
minimum of |Z#&$Z| over all matrices Z of order p X m consisting of m < p orthonor-
mal columns is the product of the m smallest eigenvalues ¢p_mi1,...;Pp_1,0p of . This

minimum i3 attained when the columns of Z are the corresponding eigenvectors.

By applying this theorem, the minimum value of Equation (7.59) can be found as
] m
S =10 PII -9 (7.71)
=1 :
where 7;, i=1,...,/m are the m largest singular values of R, the sample canonical correla-

tion coefficients of X and Y.

7.5 Appendix B

The content of this section is the details for calculation of the threshold values T}’s.
Suppose that the probability of a threshold x? being exceeded is specified. Let us
denote this probability by P,a. Using the definition of the x? distribution we can write

x?
P, = v 1

N x
1.0 - = 2 T e~ 3d 7.72
x o 25I(3) ? (7.72)

where n is the degress of freedom. Replacing variables n/2, /2 and x2? in Equation

(7.72) by a, y, and 2z, Equation (7.72) becomes
Pa,=10- j : —-I—-e""y“"ldy (7.73)
Xe o [(a) ) )

Recognizing that the second term in Equation (7.73) is the incomplete Gamma function

I'(a,z), Equation {7.72) can be written as

n x?
Pa=10- 1‘(5,?‘) o (7.74)
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the incomplete Gamma function can be evaluated by many well developed application soft-

ware packages; e.g., MATLAB [27].

To determine the x? value according to P2, an equation is defined by changing the
form of Equation (7.74) to

2
f(xd,m) = 10— By - I(3, % (7.75)

the desired threshold value x? equals the root of this nonlinear equation. A convenient way
to solve this equation is to use the built-in MATLAB function FSOLVE. For the convenience
of readers who may wish to calculate thresholds, the MATLAB programs for their evaluation

are enclosed.

% chi_th.m

4 this program used for determine the threshold values of
% chi-squire

% distribution such that

i

% 1.0 -~ error = chi(dof,ta).

% where '

% dof: input vector, degrees of freedom of the chi-square
4 distribution.

% error: input vector, probability of the threshold values be
4 exceeded.

%

% The output threshold values are in matrix ta.

% The number of columns of ta equals to the dimension of vector
% error,

% each column is

% dof, error, idexi, idex2 should be declared as global variables.

4
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global dof error idexl idex2

dof=input(’input degreas of freedom vector: ?);
error=input(’error rate vector: ’};
nn=length(dof);
ne=length(error);
ta=zeros(nn,ne);
for idexi=i:nn

for idex2=1:ne

ta(idexi,idex2)=fsolve(’fchi’, 1.1*dof(idex1));

end
end
disp(’check the accuracy of the results ...?)
a=diag(dof)*ones(nn,ne);
b=ones(nn,ne)-gamma(a/2,ta/2);
4
% end of program chi_th.m

4

function y=fchi(x)

% Function called by chi_th.m %0 evaluate the value of function

A

Y4 fchi = C*(1-chi(x, dof(idaxl))-error{idex2))

4

% the meaning of dof and error are the same as stated in chi_th.m,
% C is a scale factor to achieve the accuracy requirad.

%

% where dof, error, idexi, idex2 are global variables

%
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a=gamma{dof (idex1)/2.0,x/2.0);
y=1.e5*dof(idex1)*dof (idex1)*(1.0-a-error(idex2));
%

% end of function fchi.m

4



Chapter 8

Conclusions

This thesis addresses two important aspects of the detection problem ir array signal pro-

cessing:

1. Detection in white noise environments.

2. Detection in the presence of unknown coloured (spatially correlated) noise.

Novel approaches, namely the Eigen-Threshold (ET) method for the white noise environ-
ment, the Canonical Correlation Testing (CCT) method for unknown coloured noise envi-
ronme.t's, are developed in this thesis. Theoretical analysis for both these two methods
are provided. Computer simulation results demonstrate and confirm the effect and the

controllable performance of our new approaches.

For array outputs which contain sigrals polluted by white noise, our new Eigen-
Threshold method offers an attractive alternative to the existing methods applicable to the
white noise problem. Using predicted thresholds of the eigenvalues of the sample covariance
matrix, the new Eigen-Threshold method does not require a subjective threshold setting
which causes essential difficulties with the traditional threshold methods. Compared with
the information theoretic criteria, the ET method solves the white noise detection problem
through a different approach. The information theoretic criteria are based on certain infor-

mation measures which are used to trade off the information loss and the complexity of the

128
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resulting model in terms of the modelling order (i.e. number of signals in detection prob-
lems). Both the ET method and the information theoretic criteria can be formulated by
the eigem}.alues of the sample cova.ria.nce- matrix, but the ET method involves a more direct
exploitation of the statistical characteristics of these eigenvalues. The ET method is also
distinct. from information theoretic criteria by its controllable performance. The information
criteria emphasize the asymptotic consistency of the criteria for infinitely large sample sizes.
This argument leaves the finite sample performance of information theoretic criteria rigid
and uncontrollable. For example, the AIC suffers persistent residual false alarm errors even
when the SNR is high and/dr the sample size is large, and the MDL is over-penalized. In
contrast, the ET method is based on an “equal false alarm rate” concept for a finite sample
size. Although the asymptotic consistency argument used by information theoretic criteria
has important theoretic significance, a controllable performance is more useful for solving
practical problems since in practice only samples of limited size are available, The results
of computer simulations using the ET method show close agreement between the theoretic
predicted performance and the simulation results. In addition to the development of new
ET method, this thesis also provides a deeper insight into the statistical performance of the
eigenvalues of sample covariance matrices (especially for the eigenvalues of complex data).
Many concepts and theories in this thesis are also valuable tools for solving other eigenvalue

related problems.

Detection in unknown spatially correlated noise environments is a difficult problem. It
is challenge not only because of its complicated nature, but also because of the lack of some
fundamental work. The most important issue may be how to classify coloured noise. In the
space of parameters which specify various noise models, white noise is only a specific point
but the term "coloured noise” includes infinitely many noise realizations! There might not
exist a general method suitable for all forms of coloured noise. To develop effective methods
for specific kinds of noise, the classification of noise is as necessary as naming the colors in
our daily Lfe. In this thesis, a class of coloured noise is defined by the banded structure of
its covariance matrix. The practical support for this assumption is from the fact that the

spatial correlation of most roise decays much faster than that of signals, as we discussed
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in Chapter 5.

There has not been a satisfactory detection method for detection in the presence of
unknown noise so far. The existing detection methods fail to provide satisfactory perfor-
~ mance dﬁe to their dependencé vn the noise spectrum. This thesis successfully contributes
to this difficult problem by introducing a new approach. The derivation of this new method

is characterized by

1. assuming a banded structure for the covariance matrix of the unknown noise, and
2. applying two spatially separated arrays (bi-array structure) combined with

3. employing the invariance property of the canonical correlation coefficients of the out-

puts of the two arrays to changes in SNR and noise spectrum.

The resulting method, namely the CCT method, provides a simple, reliable, statistically
solid way to solve the detection problem in unknown noise environments. This new method
is also characterized with quantitatively controllable performance, so that the false alarm

rate is controllable and predictable.

A number of other problems are also worth further research and development:

1. The discussion of this thesis is concentrated on the detection problem with narrow
band signals and linear equally spaced arrays, although at certain points we have
given a brief indication of the possible extension of our new methods to wide band
signals and correlated signals. Further research is needed to give more detail into

these potential applications.

2. In this thesis, the concept of an eigen-threshold is introduced. To approximate the true
eigen-threshold, 2 prediction formula is derived by division of inrequalities. However,
other approaches for approximation are possible, and may be used to develop new

| detection methods.

3. In our CCT method, the bi-array structure is used in a specific form; i.e., linear

equally spaced arrays with parallel normals, to illustrate the principle of the CCT
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method. This by no means limits the application of the CCT method to this specific
array structure. The canonical correlation analysis technique can be used over a broad

range of array geometric structures. Further research should be conducted to apply

the canonical analysis to other array structures.

. In the CCT method, we have only discussed the application of the Bartlett’s criterion
in detail. Canonical correlation is a well-developed field, and there are many other

good criteria which may be used for detection purpose. Further research is needed.

. For all coloured noise problems, the classification of the coloured noise is a essential
requirement. We have not seen any standard classification procedure for this purpose.
In this thesis, we only defined the noise set relevant to our method. Further work

in this direction will benefit a wide class of research work involving coloured noise

problems.
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