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ABSTRACT

A study is carried out to investigate the cross-flow induced
instabilities in heat exchanger tube arrays. For this purpose, the
shortcomings of the Lever and Weaver unsteady theoretical model for
a single flexible tube are dealt with and the modified model is
extended to a multiple flexible tube analysis. Among the
significant modifications is the Introduction of a decay function
to take into account the decay of the perturbations. This model
predicts both static and dynamic instabilities in the transverse
and longitudinal directions. It was found that a single flexible
tube become tends towards divergence at high values of the
mass-damping ratio. This phenomenon is associated with smaller
vibration frequencies than the natural frequency of the heat
exchanger tube and approaches zero (divergence} at very high
mass-damping ratios. The single flexible tube model is extended
to a multiple flexible tube model to investigate the effect of the
motion of neighboring tubes. It was found that this effect is
very important at high values of the mass-damping ratio where the
instability is dominated by stiffness terms. The decay function
is investigated experimentally. Velocity fluctuations are
measured up to 4 tube rows upstream the vibrating tube. The
experimentally determined decay function is used to predict the
critical velocities for the dynamic instability. Equations of the
theoretical model are solved numerically and the agreement between
the experimental data and the theoretical predictions is

reasonable for all array configurations.
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CHAPTER 1
INTRODUCTION

Cross-flow induced vibrations have been a major concern in
shell and tube type heat exchangers, such as steam generators,
coolers and condensers. In shell and tube type heat exchangers,
one fluid flows inside the tubes while another fluid is forced
through the shell and over the outside of the tubes. The trend in
modern heat exchiunger design is to increase flow rates and to use
a larger number of smaller diameter tubes with minimum structural
constraints for higher efficiency. This approach increases the
heat transfer rate while decreasing the pressure drop. These
requirements increase the llkelihood of problems due to flow
induced vibv.atlons.

In heat exchangers, flow types can be broadly classified as
(1) cross-flow, (ii) internal axial flow, (iii) external axial
flow or (iv) annular or leakage flow. Among these flow types,
cross-flow has been found to be most likely to produce exessive
vibrations. It is now widely accepted [1,2] that vortex shedding,
turbulent buffeting, acoustic resonance and fluidelastic
instability are the main mechanisms causing cross-flow induced
vibrations Iin heat exchangers. Vortex shedding and turbulent
buffeting result in small amplitude vibrations which in turn might
lead to unpredictable long term fretting fallures at the supports.
On the other hand, fluidelastic instabllity causes large amplitude

vibrations that might result in heat exchanger failures shortly
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after they are put into operation. Due to it's destruclive naturc
fluidelastic instability has been a subject of a subslantial
research effort in the last two decades.

Fluidelastic instability in heat exchangers arises duc Lo
the interaction of the vibrating heat exchanger tubes and the flow
field around them. The term “fluidelastic" refers lo the mutual
interaction of the fluid forces and the elastic structural forces.
At and above a critical flow velocity, a feedback mechanism
develops between the vibrating tubes and the surrounding fluld
such that energy from the fluid is fed to the tubes continuocusly.
As a result, the amplitude of vibration grows exponentially to
unacceptable levels. Once this happens, tube-to-tube clashing may
occur. Failure follows in a very short time if the operation is
not halted. Such failures In nuclear steam generators may result
in the leakage of primary side fluids into the secondary side
flulds. If a leakage is detected, because of the potential danger
of radioactive contamination and loss of primary side coolant,
nuclear power plant has to be shut down. The cost of repalrs and
loss of power production may exceed one quarter of a million
dollars per day. Therefore an understanding of the fluidelastic
mechanism and the prediction of the fluldelastic instabillty ls
necessary.

Although there is a substantial amount of experimental data.
available to avoid fluidelastic instability, scatter in the data
is significant. This results in overconservative designs of heat
exchangers at the expense of heat exchanger efficlency and hlgher

capital cost. Because of the complexity of the phenomenon, the



underlying mechanisms of the fluidelastic instability in heat
exchangers are not fully understood. A satisfactory theoretical
solution has not yet been obtained. This is because of the
difficulty in modelling the flow field. If the fluid forces
acting on the vibrating tubes are determined, the fluidelastic
instabllity threshold can be predicted. A proper analytical
solution of the flow field would require the solution of 3-D
Navier-Stokes equatlions. Moving boundaries because of the
vibrating tube, the unsteady nature of the flow field and
turbulence would impose difficulties in obtaining a theoretical
solution. No one has succeeded in obtaining an analytical
expression for the flow fleld in a tube bank. A numeriecal
solution in the practical operating velocities cannot be obtained
with the existing solution techniques and computer power. In
order to obtain the fluid forces acting on a vibrating tube, some
researchers [3-'7] simply measured them, and some [18-22]
have attempted to determine them from potential flow solutions
without success. On the other hand, Lever and Weaver {23-25]
simplified the flow field based on experimental observations and
then determined the fluld forces for the simplified model. They
modelled the unsteady fluld forces acting on a single flexlble
tube and predicted the critical velocity at which the fluidelastic
instablility starts. Although tﬁey reported good agreement between
thelr theory and experiments, there are some shortcomings. S.S.
Chen [81], 1n‘his generalized theory of fluidelastic instability in
tube arrays, discusses these shortcomings.

Among all the theoretical models, potential flow theories



[18-22] are not fully capable of modelling the observed behaviour
of the tube arrays. Unsteady semi-empirical thecories [6-8, 14-16]
measure all the unsteady force coefficients, and therefore should,
and do, predict the instability threshold quite well. Since the
measurement of a large number of force coefficlents is necessary
for each array geometry, such models are not practical design
tools. Price & Paidoussis’ quasi-steady [9-13] approach requires
far fewer experimental measurements, but their prediction of the
fluidelastic instability threshold is not as good. Lever &
Weaver’s [23-25] simplified unsteady model requires no new
experimental measurements and shows reascnable agreement with
experiments for certain array configurations. Thus, Lever &
Weaver's theory for the prediction of the fluidelastic instability

seems to be a suitable candidate for improvement.

1.1 STATEMENT OF THE PROBLEM

Although Lever & Weaver’'s model shows good agreement with
the experimental data for some array configurations, the results
are not satisfactory for others. There are other problems as
well. Theoretically, a dynamic model must produce static
instability when the time dependent terms are set to zero. Lever
& Weaver’s model does not predict the static instability from the
dynamic model. Also, they predicted multiple instabillty regions
that are not observed in the experiments. These shortcomings were
pointed out by Chen [8], and are discussed in detail in Chapter 2.

The purpose of this work is to develop a theoretical model

to investigate the fluidelastic instabllity in heat exchangers. In



order to do this, this work deals with the shortcomings of Lever
and Weaver's model. By Ilmproving and extending Lever and Weaver's
theory 1t 1s hoped to obtaln (a) better understanding of the
fluldelastic phenomenon and (b) a more reliable theoretical model
applicable to all the tube arrays and which requires a minimum of

experimental measurements.

1.2 OQUTLINE OF THE THESIS

A literature survey is given in the second chapter.
Previous experimental studles are summarized. The historical
development of the theoretical studies and the state of knowledge
in fluidelastic behavior of heat exchanger tubes is presented.

In chapter three, the theoretical model for a single
flexible tube is presented. Modifications done on the basic model
of Lever and Weaver are discussed. Among these modifications,
introduction of the decay function and the relaxing of the
frequency ratlio are fundamentally lmportant. The‘effects of these
modifications and the numerical solution are discussed.

The theory for the extension of the single flexible tube
model to a multiple flexible tube model is given in chapter 4. In
this chapter, depgrmination of the least stable mode of vibration
and the resultanéigtability curves are also presented.

In chapter 5, the experimental study conducted to gain some
understanding of the decay and phase characteristics of the
velocity perturbations is presented. The design of the test rig

and the instrumentation is explalned and experimental findings are
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presented.

The developed model is applied to differenl array
geometries in chapter 6. The results are compared with the
experimental data collected from the literature. A subsecquent
discussion of the results is given.

The conclusions of the present study are presented in

chapter 7.



CHAPTER 2

LITERATURE SURVEY

Since the fluidelastic instability mechanism in heat
exchangers was recognised by Roberts [26] and widely accepted
after Connors [3], a large body of experimental data has been
published [30-48]. Roberts [26]), studying a row of clrcular
cylinders, observed the switching of jets passing through the gaps
between the cylinders. He concluded that it is the Jet-switch
mechanism that feeds energy to the flexible cylinders continuously
and eventually causes dynamlc instability. Connors measured the
static force coefficients for a row of cylinders and developed a
model to predict the fluldelastic instability. Connors’
theoretical model [3] ylelds a simple equation widely known as

Connors’ Equation. This equation is in the form :

U =K-[ 3 ] (2.1)

where U 1s the characteristic flow velocity
f 1is the tube natural frequency
is the tube diameter
is the logarithmic decrement of damping
is the mass of the tube per unit length

T 3 O

is the density of the surrounding fluid
Here, U/fnd is called the critical dimensionless velocity

and ma/pd2 is called the mass-damping parameter. Connors reported



that the value of K is 9,9 for a single row of tubes. However,
later experimental studies [30-38] showed that this constant is
array dependent. Many researchers tried to find the value of the
constant K in Connors’ equation for various array configurations
and pitch ratios.. They [30-32] generated tables of K values for
design purposes. Hartlen’s study [30] also showed that the
exponent in Connors’ Equation might be different than 0.5. Other
experimental works [31, 33, 37, 38] supported this finding.
Weaver and Grover [37] showed that grouping the damping, §, and
the mass ratio, m/pdz, intc mass-damping parameter, m5/pd2, may
not be correct. The effects of damping, 6 [37], mass-ratio, m/pd2
[38], tube mass, m {[40], fluid density, p [35], induced upstream
turbulence [45), approach flow direction [41] and partial
admission [46, 47] on fluidelastic instability have also been
investigated. Chen's theoretical studies [6-7] showed that
Connors' equation is wvalid at high values of the mass-damping
parameter. However, in general, there is not a simple
relationship between the mass-damping parameter, mS/pdz, and the
critical dimensionless velocity, U/fnd. In their review papers,
Chen [27], and Weaver et.al.[l], give stability boundaries based
on experimental data for various array geometries. Figure 2.1
shows Weaver and Fitzpatrick's [1] definitions of the stabilicy
boundaries with experimental data from the literature.
Traditionally, researchers publish their fluidelastic
instability data by reporting the mass-damping parameter and the
dimensionless velocity. Yet, even after two decades, there is

still confusion about which parameters should be used te determine
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the dimensionless veloclty, Up/fnd' and the mass-damping
parameter, ma/pdz. For example, for the tube natural frequency
and damping, fn and 8, some researchers use in-vacuo values, somoe
use gquiescent fluid values, and some others use observed values at
the stability threshold. The critical pitch flow velocity, Up.
may not be easily determined and different implementation
techniques for the same experimental data might yleld
significantly different values. Chen [28] in his recent review,
addresses these problems. Partially as a result of the use of
inconsistent parameters and implementation techniques, the
A experimental data obtained Is rather scattered.

On the other hand, attempts have been made to determine the
fluidelastic instability  theoretically [3-29]. While
thesetheories helped the wunderstanding of how fluidelastic
instability occurs in heat exchanger arrays, they cannot be used
as design tools for the time being. Due to the complexity of the
flow field and it’s interaction with the tubes, the physics of the
phenomencn is not known completely, and this makes the phenomenon
difficult to model. Although the structural motion can be
modelled successfully, determination of the fluid forces acting on
the structure is extremely difficult. These forces can be
determined by using (1) experimental techniques [6-17], (2)
potential flow theory [18-22], (3) a simplified flow field
{23-25]. Experimental studies which measure all the fluid force
coefficients [6-8, 14-16] are successful in predicting 'the
fluidelastic instability. However, tedious measurements must be

taken for every array geometry under investigation and over a wide
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range of flow velocities. Thus such techniques are not practical
design tools. Models that require fewer measured fluid force
coefficients [9-13] do not generally give such good agreement with
experiments. Based on physical arguments, Lever and Weaver
[23-25] simplified the flow field and obtained an analytical
expression with some simplifying assumptions. This simple model
produced results with limited success. Models based on the
potential flow theory [18-22] are shown not to be suitable in
analysing tube array behavior [21].

Early theoretical models employed the quasi-static
assumption [3, 26]. These quasi-static theories assume that the
forces acting on the heat exchanger tube are a function of tube
displacement ounly. Using experimentally determined force
coefficients and an assumed mode shape, they obtained good
agreement between experiments at‘ld the theoretical prediction at
high values of t;he__ma_s;-damping parameter. Conmnors [3], measured
the steady-state force :coefficients by positioning the tubes
"according to a predetermined mode shapg. Assqﬂning that the
dynamic forces acting on a moving tube car; be approximated by the
measured static forces, he predicted the critical flow velocity
for fluidelastic instability (see Equation 2.1). Blevins'’
approach is basically an exte;\sion of Connors' model. He [4]
investigated the vibrations of a row of tubes and by assuming the
mode of vibration he determined the critical wvelocity as a
function of displacement dependent force coefficients and.damping.
Blevins later extended his model [5] to an array of tubes by using

the same quasi-static approach.
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On the other hand, if the effect of the tube velocity in
addition to the tube displacement is taken into account, the fluid
forces acting on a vibrating tube can be characterized more
realistically. Such models are called quasi-steady models. Price
and Paidoussis’ theory [9-13], for example, is a quasi-steady
theory, since the velocity dependent components of the fluid force
are found by using a flow retardation term. They determined the
displacement dependent fluid force coefficients experimentally.
Then, arguing that there will be a time lag between the fluid
force acting on the tube and the tube displacement, they
determined the velocity dependent component of the fluid force.

Unsteady theories [6-8, 14-16, 23-25] involve the fluid
forces as a function of displacement, velocity and acceleration.
Among these theories, Chen's [6-8] and Tanaka et al’'s [l4-16]
theories require the experimentally determined fluid forre
coefficients whereas Lever and Weaver's [23-25] theory doesn't
require such experimental measurements. Tanaka and Takahara
[14-16] measured the unsteady fluid forces acting on heat
exchanger tubes and, assumipg linear behavior, superimposed the
effect of individual tubes on every tube in the array to obtain
the fluidelastic threshold for the fully * flexible array.
Although they obtained excellent agreement with the experiments,
this theory is not a préctical design tool, since the force
coefficients have to be measured for every different array
geometry. Chen, in his pgeneralized theory of fluidelastic
instability (6, 8], gave the complete formulation of the

phenomenon. However, he also heavily depended on the experimental
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force coefficients. Although Chen's theory needs the array
geometry dependent fluid force coefficients, as in Tanaka and
Takahara's theory, it shed light on the mechanisms of fluldelastic
instability. The so called stiffness-controlled énd damping
controlled fluidelastic instabilities are first reported by Chen
[6, 7]. Lever and Weaver’'s theory [23-25], on the other hand,
doesn’t require such experimental measurements. In a simplified
model, starting from first principles, they determined the fluid
forces acting on a single flexible tube In an array of rigid
tubes. They argued that the stability threshold for the single
flexible tube is approximately the same as the fully flexible tube
array. They reported good agreement between the theoretical
prediction and the experiments for in-line square and parallel
triangular arrays, but the agreement was not as good for rotated

square and normal triangular arrays.

2.1 STATE OF KNOWLEDGE

While there are number of areas for improvement, theoretiecal
studies explaining fluidelastic instability have increased
significantly in the last decade. Now, it is recognised that
fluidelastic instability is dominated by velocity dependent fluid
forces at low values of the mass-damping pa?hmeter. This is called
damping controlled fluidelastic instability because instability
occurs when the damping of a tube becomes negative. At high values
of the mass-damping parameter, displacement dependent fluld forces
are dominant. Instability in this range 1is called stiffness

controlled fluldelastic instability.
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Quasi-static theories [3, 26] <can only predict the
stiffness controlled fluidelastic instability, since only the
displacement decpendent force coefficients are implemented.
Similarly, pure potential theories [1B-22] can only predict the
stiffness controlled instabilities since the perturbations are
instantly propagated in potential flow and there is no phase lag
between the tube motion and the forces acting on that tube,
Therefore, the resultant I»rces are only displacement dependent.
In suth theoretical models, the assumed phase relationship between
the tubes (mode shape) is the essential requirement for
fluidelastic instability.

The main requirement for the modeling of the damping
controlled fluidelastic instability 1is the phase difference
between the tube motion and the fluid force acting on it. This is
accomplished through a phase function in Lever and Weaver's theory
[23-25} and through a flow retardation parameter in Price and
Paidoussis' [9-13] theories., Both of these theories predicted
multiple unstable regions. Tanaka et al. [14-16] measurediﬁhe
above mentioned phase difference and based their analysis on these
values, Chen [6-8] has the same phase lag built in his model
through the use of velocity and inertial force coefficients in
addition to the displacement £force coefficients. Chen [27]
reported that a single flexible tube is sufficient to model the
damping-controlled fluidelastic instability. He also reported
that for stiffness controlled instability, at least two tubes are
necessary. In their recent review, Paidoussis and Price [29]

conclude that the minimum number of degrees of freedom must be two
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to model the stiffness controlled mechanism properly. Unllike
Chen’s finding, they report that a single flexible tube, 1If
modelled in two orthogonal directions (2 degrees of freedom), is
sufficient to predict the stiffness—-controlled instability. Here,
it is important to note that both of these papers reach their
conclusions by ignoring the velocity and lnertia dependent terms
and considering only the displacement dependent terms of the fluld
force.

Lever and Weaver's theory [23-25] with it's simple form,
showed good agreement with experiments for parallel triangular and
in-line square arrays. However, the agreement wasn't as good for
normal triangular and rotated square arrays. J3n the other hand,
their theory produced some unexpected results that need to be
explained. The problems associated with the Lever and Weaver
theory are the following;

(1) Static instability couldn’t be obtained from the dynamic
model. In a proper theoretical model, when the time
dependent terms are equated to zero, the dynamlic model should
produce the static instability solution. This wasn't the case
in Lever and Weaver’s model.

(2) A large number of instability regions are predicted by Lever
and Weaver at low values of the mass damping parameter. Not
more than two insFabllity regions were reported experimentally
(see Anjelic {48])

(3) At high values of the mass-damping parameter, the slope of the
stability curve is predicted to be unity. This means that the

dimensionless velocity, Up/fnd. is directly proportional to
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the mass-damping parameter, mS/pdz. These results contradict
experimental results and other theoretical estimates where the
square root of the mass-damping parameter is proportional cto
the dimensionless velocity.

(&) A single flexible tube surrounded by rigid tubes is assumed to
represent the fully flexible array. Some experimental studies
[44, 49] with single flexible tubes show that this assumption
is not correct for all of the array geometries.

It was the purpose of the present work to develop an
improved theoretical model using Lever and Weaver’'s theory as a
basis. To begin with, the above mentioned deficiencies of the
Lever and Weaver single flexible tube model was overcome. Then,
this model was extended to a multiple flexible tube model to

include the effect of the neighboring tube motion.



CHAPTER 3
SINGLE FLEXIBLE TUBE MODEL

In this chapter, Lever and Weaver’'s model [23-25] is
summarized and the natural evolution of the present study from
Lever and Weaver's theory is presented. Lever and Weaver modelled
a single flexible tube surrounded by rigid tubes. They simplified
the flow field and determined the unsteady forces acting on the
flexible tube. The effects of varying the array configuration is
taken into account so that the theory applies to every array
geometry. The shortcomings of Lever and Weaver’'s theory are
discussed in Section 2.2. By introducing a series of
modifications to their basic model these shortcomings are dealt
with in this study. Among these modifications, the introduction
of the decay function and relaxing the frequency ratio in the
eigenvalue snalysis are fundamentally important. In addition, the
numerical solution technique is discussed and the results are

presented,

3.1 THEORETICAL MODEL DEVELOPMENT

The basic model used is that of a single flexible tube in
an array of rigid tubes,. This is the same concept as that
developed by Lever and Weaver ([23-25] based on some experimental
observations, so only the details relevant to the present
modifications and consistent with a coherent model development

will be repeated here. The theory is general for an array which

17
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is symmetric about a streamwise axis through the center of the
flexible tube.

Four standard types of array configuration are geunerally
used in existing heat exchangers. These are shown in figure 3.1.
From the flow visualization studies of Abd-Rabbo & Weaver [42-43],
and Scott ([44], flow around the tube is idealized for wvarious
array configurations as shown in figure 3.2, These four
configurations can be classified in two groups ; (1) in-line
square, parallel triangular arrays and rotated square arrays with
P;( 1.71 : the streamtubes on each side of the heat exchanger tube
are separated, and (2) rotated square arrays with Pé> 1.71 and
rotated triangular arrays : streamtubes on each side of the
flexible tube overlap in upstream and downstream of region~ of the
tube. These differences only affect the selection of the model
parameters as will be discussed in the following sections. The
basic model concept is the same for all the array configurations.
Therefore, for the sake of simplicity, the system parameters will
be developed for the parallel triangular array in the following
sections and the list of parameters for all the configurations

will be given in Chapter 6.

3.1.1 Basic Model Concept

The flow around the tube in a parallel triangular array is
characterized by the moving fluid along the streamtubes, as shown
in figure 3.3, and represented by the curvilinear coordinate, s.
From the flow visualization studies of Weaver et al. {42-44], it

is reasonable to assume that the mean area of a streamtube 1is
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Figure 3.3 Idealized Model for Parallel Triangular Arrays-
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constant over the streamtube length and is determined by the
minimum gap area, Ao' which depends on the tube pitch, P, tube

diameter, d, and array geometry angle, a.

AD ~ in(Pcosa - % , P -d) (3.1)

Due to the vibration of the tube, the streamtube area will
change along the streamtube with respect to time. Therefore, the
streamtube area function can be expressed in terms of the mean

component, Ao' and the fluctuating component, a(s,t).
Al(s,t) = Ab + a(s,t) (3.2)

As a result of the area perturbation, the velocity and pressure
along the streamtube will have fluctuating components as well., At
some point upstream, the velocity and pressure will be undisturbed
and are represenced by the initial constant wvalues U|J and Po'
respectively.

In the curvilinear coordinate system, the location of the
minimum gap is at s = ¥ s . As can be seen in figure 3.3, the
streamtube attaches to the tube at s = -s, and separates at £ =
s_. In the upstream region ( s < -sa), there is a point at which
the area, velocity, and pressure perturbations reduce to
negligible levels. This point is designated s = -S,.

The fluctuation in streamtube area due to the tube motion,
will be felt later due to the finite fluid inertia. This time lag
is formulated with the use of the phase function, #(s).

The area perturbation created by the vibrating tube must
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diminish at large distances ( s < -sl) from the tube. Therefore
an area decaying function, f{s), is introduced to account for the
decay of the area perturbation. This function will also produce
decays of veloclity and pressure perturbations. The decay function

must satisfy £im f(s) = 0 (no perturbances at large distances from
S 3 -

the vibrating tube). Therefore, the unit area perturbation

function for a streamtube in the upstream region is written as:

i$(s)

au(s} = f{s)e (3.3)

Note that au(s] is duefined as the upstream area perturbation for a
unit displacement at the minimum gap. Therefore the upstream area
perturbation function, a(s,t), for the streamtube can be obtained
by multiplying a (s) by the total perturbation at the minimum gap,

al-s ,t). i.e.,
]

i¢(s)

a(s,t) = a(-sm.t)f(s)e (3.4)

In the attached flow region ( -s S s = ss), the phase lag
is zero (i.e. ¢(s) = 0) and the decay is assumed to be negligible
(f(s)=1 ).

These idealized streamtubes are anaiyzed ‘uslng one
dimensional unsteady fluid mechanics theory in curvilinear
coordinates. Thus, for a given tube disturbance, the fluld
pressure on the tube can be determined and the stability of the

tube analyzed.
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3.1.2. Continuity Equation

For the control wvolume, C.V., shown in figure 3.4, the

continuity equation for an incompressible fluid can be written as,

S 1aGs, 0] + &= [A(s,©U(s,0).m(s)] = 0 (3.5)

where, U(s,t) is the velocity vector, and n(s) is the unit vector
normal to the surface of the Control Volume. In equation 3.5, the
first term corresponds to the accumulating mass in the control
volume and the second term gives the amount of fluid crossing the
control volume surface.

Let Po(s) and Uo(s) be the mean components and p{s,t) and
u(s,t) be the fluctuating components of the pressure and velocity

respectively. i.e.,

P(s,t)} = P (s) + p(s,t)
o (3.6)

U(s,t) = Un(s) + uls,t)

It is assumed that Po(s) and Un(s) do not vary
significantly along s, i.e., Po(s) - Pn and Un(s) - Un‘
Substituting equations (3.6) into the continuity equation (3.35)
and integrating along the control volume coordinate, s, from inlet

S = si to exXit s = s yields, after eliminating steady-state and

higher order terms and nondimensionalizing :
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s
“
%T'EL —93—£§7L£—l ds + I.A'[u‘{s'.t') - u'(s..t.)] +
R mn at 0 C e 1
s, (3.7)
1" (st -a"(s",tHl =0
0 e 1
U
0
where, U =
r w1l
n 0

@ : natural frequency of the tube in still fluid

w : complex frequency of vibration
1; = 10/d . lO : dimensionless streamtube length
t = wt

a‘(s,t) = al(s,t)/d
L ]
A = A/
o o
u.(s.t) = u(s,t)/UO
]
5 = s/d

Note that, U(s,t)=|U(s,t)| and u(s,t)=ju(s,t}|

3.1.3 Momentum Equation

The linear momentum equation for the control volume may be

written as :

3 1
- I U(s,t)dv + jﬁ PU(s, £)(U(s, t).n(s)1dA = JF (3.8)
v

where V¥ : Volume of the control volume and dV = A ds
In equation 3.8, the first and the second terms correspond

to the momentum accumulation and the momentum flux for the flxed
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control volume, respectively., The R.H.S. of equation {3.8) gives
the sum of the external forces acting on the control wvolume.
Shear and gravity forces are assumed to be negligible. Since the
pressure is uniform at any cross section, the forces on the sides
of the <control volume parallel to the streamtube are
self-equilibrating. Therefore, the sum of the external forces

term reduces to :

[}

ZF

—EF P(s,t).n(s)dA

-Als ,t)P(s ,t)n(s ) - Als ,t)P(s ,t)n(s ) (3.9)
1 i i e e e

The momentum equation may be written in terms of
perturbation parameters by substituting equations (3.2) and (3.6)
inte equation (3.8). After eliminating the steady state and

higher order terms and nondimensionalizing, this becomes:

L} » - L ] » [ ]
:‘; Iau (s..t ) n(s.)ds‘+ —:,-’- -1—_- ba (s (f—’t )n(s.)ds'+
n at n A at
)
[ I ] - L] l; . L ] .
[2u(s ,t )+ —a (s ,t)lUn(s ) +
[+ 1 A. 1 r 1
© (3.10)
-
[ ] [ ] [ ] L] 10 L] L ] [ ]
[2Z1lu(s ,t )+ —a (s ,t)WUn(s ) +p
4] e A. e r ] h
()}
L ] » » L ] [ ] [ ] » -
= -p (sl.t In(s ) - p (s ,t In(s)
i e e
. Py P 10 P .
where p = = and p =h— U fu (s ,t )ds
pdw U pdl wU s i )
n o Onr o
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The pressure drop can be accounted for in equation (3.10) as done

by Lever and Weaver [24] by adding p, on the L.H.S. of Equation
*

(3.10). Here h is the pressure loss coefficient and Sy is the

inlet location of Lever and Weaver's model.

3.1.4 Pressure Forces Acting on the Vibrating Tube

The pressure forces acting on the vibratirg tube can be
found by integrating the pressure over the area of flow
attachment, -sl< s < s_- Inspection of the continuity and
momentum equations shows that the pressure at any point, and hence
the pressure force, is directly proportional to the magnitude of
the area perturbation at the minimum gap. For computational
convenience, the dimensionless pressure forces, F: and F;, are
obtained for a wunit perturbation at the minimum pgap. Here,
subscripts & and T denotes longitudinal and transverse,

respectively. These forces are given by,

n
-]

F;(:') - Fi(t") - J:p.(s',t.)cosﬂ(s.)ds.

: (3.11)

Fo(t) = F.(¢) - J;p.(s.,t.)sinﬁ(s‘)ds‘

F

where F*- =
pd’l w'U
0nr

In order to find the total forces acting in the transverse
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and longitudinal directions, F: and F; must be multiplied by the
dimensionless magnitude of the area perturbation at the minimum

. . .
gap, a (—sm.t ).

3.1.5 Equations of Motion of Tube

The flexible tube is assumed to behave as a two degree of
freedom simple harmonic soscillator with the same natural frequency
in orthogonal directions. Its equations of motion can be written

in the x and y directions as :

mx + ck + kx

F aI(-s L) + F aa(-s . t)
x m X {3' 12)

my + cy + ky Fyal(-sn.t) - Fyaz(—sm,t)

where A is the tube length, m is the tube mass per unit length
including added mass, ¢ lis the damping coefficient, k 1is the
stiffness, F; and F} are the unit fluid forces acting on the tube
in the x and y directions, respectively, and al(-sm,t) and
az(-sm,t) are the area perturbations of streamtubes 1 and 2 at the
minimum gap, respectively. By definition of the X and y coordinate

axes, F=F and F=F_,
x L y T

3.2 SOLUTION TECHNIQUE

The algorithm used for the numerical sclution is given in
Appendix A. The reduced velocity, Ur = UD/wl° , 1s calculated for
a glven dlmen;ionless velocity , Uf = Up/fnd. by using the
following relaﬁionship :
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U =U/K = % (1Y cosa (P -1) (3.13)
T t/u fnd LA 21\’ r -

where, Up is the pitch wvelocity, and Ku is the proportionality
constant that depends on the array geometry. This equation
follows from continuity and the resultant geometric relationship
between the minimum gap velocity, Uo, and the pilteh velocity, Up.
The remaining formulation and some details of the solution

technique are given below.

3.2.1 Determination of System Parameters

In order to show the natural evolution of the present
analysis from the Lever & Weaver theory, to start with, the same
system parameters used by Lever and Weaver will be used. This
way, the numerical solution can be tested and the effects of new
additions to the theory can be determined. Table 3.1 shows the
system pe¢rameters used by Lever and Weaver for wvarious array
geometries. These parameters together with the phase and decay

functions, will be used to determine the area fluctuation along

the streamtube,

3.2.2 Phase and Decay Functions

Lever and Weaver [24] assumed that the phase lag, ¢(s),

based on a hydraulic transient analogy, could be expressed as :
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(3.14)

Note that they set the phase lag to zero in the attached flow
region. Physically, this means that the area perturbations in this
region are created instantaneously with tube displacement. The
form of this phase function is wvery important and should be
studied experimentally. As no guidance 1is available from
experiments, the function proposed by Lever and Weaver will be
adopted here for the time being.

A basic inconsistency in the Lever and Weaver model is that
the effect of a disturbance is assumed to be limited to 1.5 tube
rows upstream and downstream of the flexible tube, yet the
magnitude of the area perturbation is assumed constant over this
range. Additionally, the velocity and pressure fluctuations at
the streamtube inlet {(initial conditions)} are assumed to be zero.
This is also inconsistent with the assumption of constant area
perturbation along the streamtube. These inconsistencies can be
overcome by introducing an area decay function, £(s), as given in
equation (3.4). A form for this function which satisfies the
requirement of constant area perturbation over the flow attachment

range, -s_ < s < s_, and becomes asymptotic to zero for large |s]

is :
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1
f(s) = — e | s < -s,

1 + B('Sn's)A (3.15)

- 1 -§s £ 85 <858

where B and A are constants to be chosen to suit the boundary
conditions. It is to be noted that this is a mathematical
artifice introduced to overcome inconsistencies discussed above.
The concept can be justified qualitatively on physical grounds as
disturbances must vanish at some distance from the source.
However, there is no experimental evidence on which a better
approximation can be based.

This area decay function is plotted in figure 3.5 for A =
10 and values of B which give the decay of 99%, that is f(-s;) -
0.01, and no decay (Lever & Weaver's model), f(-s:)-l.O, at the
streamtube inlet, -s:. The latter represents the distance upstream
and downstream within which a significant disturbance occurs and
is assumed to be 1.5 tube rows in figure 3.5, This wvalue is
somewhat arbitrary and was used so that a direct comparison with
the previous results of Lever and Weaver could be made.

Given the phase (3.14) and decay functions (3.15) and the
total area fluctuation at the minimum gap, upstream fluctuations

can be determined by using equation (3.4).

3.2.3 Area Perturbation in the Attached Flow Region :

Up to this point in the development, the model {is

applicable to any array geometry. However, as discussed in
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section 3.1, the streamtube area is determined by the minimum flow
area through the array and this is array geometry dependent. As a
result, the area perturbation in the attached flow region is array
dependent as well. This area perturbation in the attached flow
region can be determined from the idealized streamtube geometries.
It is assumed that the streamtubes in the upstream area cannot
differentiate between the fluctuations created by the streamwise
and transverse directions. Hence, given the fluctuation at the
minimum gap, upstream fluctuations can be determined as explained
in section 3.2.2.

Transverse Vibration : If a flexible tube moves only in the

transverse direction, the streamtube area perturbation is
approximately constant along the attached flow region and equal to
the streamtube area perturbation at the minimum flow gap. This is
a reasonable assumption and can be verified from the geometry of
the idealized streamtubes. If the flexible tube moves in the
transverse direction a distance y(t), for the parallel triangular
and the rotated square arrays with ?: < 1.7, the perturbation at
the minimum gap can be approximated by y(t)cos(a) as shown in
figure 3.6(a). This approximation introduces negligible error for
smali amplitude tube wvibrations. Typically, the wvibration
amplitude of the heat exchanger tube is less than 2% of the tube
diameter at the conset of instability. Therefore, the assumption
of small amplitude vibration is valid. In in-line square arréys.
a = 0° and the magnitude of the minimum gap perturbation would be
y(t). On the other hand, in normal triangular and rotated square

arrays with Pr > 1.7, the perturbation of the minimum streamtube
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area is y(t)/2 (see figure 3.6(b) ) This is because of the
overlapping of two streamtubes at s = 0. Thus, the mean flow area
is actually two streamtubes wide and, to allow for the same
theoretical definition of A, the perturbation is taken as half
the wvalue of the amplitude of the tube vibration. When the
magnitude of these perturbations are examined carefully, a
general formula for the area perturbation function in the attached

flow region can be found for all the tube arrays as follows:

ay(s,t) = y(t)eos(a) , -s_ < s < s, (3.16)

It must be noted that this formula introduces some error in
rotated square arrays with Pr > 1.7, but it is believed that this
error doesn’t affect the overall results significantly. This
expression is different than Lever and Weaver's model by a factor
of cos{a). In that model it was assumed that the area fluctuation
in the attached flow region is constant and equal to y(t)
regardless of the pitch angle, «.

Streamwise Vibration : If the tube moves only in the streamwise

direction x(t) amount, the area perturbation at A = a would be
x(t)sin(a). In this 6ase, constant area perturbation in the
attached flow region is not valid, since the perturbation changes
from =x{(t)sin{a) at s = s to -x({t)sin{a) at s = s_. This can be
concluded directly from the geometry of the idealized streamtubes.
Again, using the streamtube geomecry, the area perturbation in the

attached flow region can be obtained as:

ax(s,t) - x(t)sin(Zs/P:) (3.17)
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This formula is valid for all the tube arrays except the in-line
sguare arrays where ax(s,t) = 0. Physically, this means that in
an in-line square array, there 1is no static and dynamic
instability expected for a single flexible tube allowed to move

only in the streamwise direction.

Transverse and Streamwise Vibrations : If the tube is moving both

in transverse and streamwise directions, the to:al area
perturbation of the streamtube 1, in the attached flow region,

would be the superposition of equations (3.16) and (3.17). That

is :

al(-s,t) - x(t)sin(2s/Pr)6(a) - y(t)Cos(a) (3.18)(a)

Similiarly, for the streamtube 2;

az(-s,t) - x(t)sin(Zs/Pr)S(a) + y(t)Cos(a) (3.18)(b)
where, S(ay =1 , ifawx0
=0 , if e =0 (in-line square arrays)

At 5 = "s_ equations 3.18 reduces to :

a1(~sm,t ) = x(t)sin(a}f(a) - y(t)Cos(a) {3.19)¢{a)

a(-s_,t ) = x(t)sin(a)§(a) + y(t)Cos(a) (3.19) (b)

3.2.4 Uncoupling of Transverse and Streamwise Motions

Substituting the area perturbations at the minimum gap, s
- s in equation (3.19), into the equations of motion, equations

{3.12), yields :
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11}

(a) mx(t) + ex(t) + kx(t) = 2x(t)F sin{a)éla)
* (3.20)

(b) mip(t) + ey(t) + ky(t)

1

Zy(t)chos(a)

Note that the equations of motion are uncoupled. This
means that Lhe stability of the tube in the streamwise and

longitudinal directions may be analyzed separately.

3.2.5 Determination of Velocity and Pressure Fluctuations

As mentioned earlier, the fluid in the upstream region
cannot differentiate between the fluctuations created by
streamwise and transverse motions. Therefore, in order to avold
repeating the same calculation twice, one for the streamwise
motion and the other for the transverse motion, the area
perturbation is set to unity at the minimum gap. The desired
values of the fluctuating fluid forces acting on the vibrating
tube is then found by multiplying the fluid force (determined by
setting the area perturbation to unity) by the mininum gap area
perturbation.

Once the area perturbations in the upstream and the
attached flow region are determined, velocity fluctuations can be
found from the continuity equation (3.7). At this point in the
analysis, the frequency ratio, w/wn. is ;ﬁt known yet. Hence, the

velocity fluctuation is found as :

u(s) = u (s) +1{—E—)u.(s)/u ‘ (3.21)
-] W 1 r .

By substituting the velocity fluctuation (3.21) in the momentum



equation (3.10), pressure fluctuations can be obtained as

given below:

o

P(s) = p(S)/U_+ (—=)p (s) + (=) P (s)eU, (3.21)

W
n

The unsteady fluid force acting on the vibrating tube is then
found by integrating the pressure along the attached flow region

(equation 3.12). This force will be in the form :

F'(s) = F.(S)/U_+ (—2)F,(s) + (—)"F ()0 (3.23)

3.2.6 Nondimensionalized Equations of Motion

Assuming that the tube oscillates at the same frequeney in
the x and y directions with a phase difference, ¢, the motion can

generally be described by :

y(£) = ye'*
{3.24)
x(t) = Xe' ¥
where, w is the complex frequency of oscillation. Of course,

since the equations of motion are wuncoupled, the phase
relationship, ®, ig¢ of no consequence in the present analysis.
Substituting solutions (3.24) into the equations of motion (3.20),
introducing the ~variables ¢ = mﬁwd/ﬂ ., k- Amo’,  and

n

nondimensionalizing, yields :
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m w i mé [X) m o .

(a) - 2 )+ 17— () +— - 2F11°Ur(sma)
pd t pd n pd

and, (3.25)
2

m w i mé w m "

(b) - 2 )+ 72— (—;) + — 2Fyanr(cosa)
pd n pd n pd

Both the theoretical results of this model (see section 3.3.5) and
experiments show that transverse vibrations are potentially more
dangerous than streamwise vibrations. Hence, only the motion in

transverse direction will be considered below.

3.2.7 Characteristic Equation

Introducing the following transformation (3.26)

= . * = 2 W= W 2=
F = 21011:605(0) F (S) - ].:"._."Ur + (_w_n)F1Ur+ (—-;;) FZ (3.26)

equation (3.25) can be rearranged to obtain :

= 2 [/ . W 2
o FoUr + ( wn)FIU:+ ( wn) Fz
—_—— (3.27)
2 w |2 () w
pd”  — (T 1+ = ()

n n

This is the characteristic equation of the theoretical
model . Given the reduced wvelocity, U:, and the geometric
parameters of the array, Fo, 1'-‘1 and Fz can be determined as
mentioned earlier. The solution of the characteristic equation
(3.27) gives the frequency raf:io, w/mn and the mass ratio, m/pdz.
from w‘hich: the mass-damping parameter is obtained.

The flexible tube is assumed to be moving sinusoidally as

given by equation (3.24). In general, w is a complex number, so
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that w = @, + 1o . lere, W represents the exponential decay or
growth of the amplitude of motion in time, whereas we represents
the oscillatory frequency. Table 3.2 summarizes the behavior of
the wibratory motion of a heat exchanger tube depending on the
complex frequency. When wy is non-zero and W changes sipgn from
positive to mnegative, dynamic instability starts. At the dynamic
instability threshold, W, 0 and w, = 0. When W is zero, there
is no oscillatory motion. In this case, static instabilicty occurs
if @ is positive. At the static instability threshold, w - w -
0. Note that the imaginary part of the complex frequency is zero
at both the static and dynamic instability thresholds.

At the stability thresholds of both the static and dynamic
instabilities, w, is zero. Therefore, w = W and w/wn is a real
number. As a result, the solution of equation (3.27) can be
obtained by forcing the mass-damping parameter , m&/pd2 and the
frequency ratio, w/wn to be real numbers. For this purpose, an
iterative type of solution procedure is adopted to solve equation
(3.27). As an initial assumption w/w;-l is assumed. Then
equation (3.26) is evaluated and the resultant force coefficient
is used in equation (3.27) to determine the actual w/w“ and m/pd?.

If w/w; varied from its initial assumed value, equation (3.26) is
evaluated again with the updated value and iterations are
performed until the difference between the initial and final

values of m/wn is within 0.01l%. It was found that the convergence

is very fast,
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3.3 RESULTS AND DISCUSSION

As mentioned in the previous chapters, the analytical
expressions (equations 3.7, 3.10, 3.11 and 3.26) were solved
numerically. Although, it is possible to obtain the solution
analytically, the resultant equations would be cumbersome, making
basic changes to the model relatively difficult. To wverify the
computer code, Lever and Weaver’s model was simulated for the
parallel triangular array with a pitch ratio, Pr, of 1.375. This
array was selected, because the analytical solution was reported
by Lever and Weaver [25]. 1Using the same system parameters as
Lever and Weaver, the numerical solution for the transverse
instability is obtained (see figure 3.7). These results are
essentially same as the analytical solution., Numerical error due
to the finite integration step is less than 0.5% for the whole
range., Hence, numerical error is negligible and the numeriecal
solution is satisfactory.

Lever and Weaver's prediction of the dynamic instability in
parallel triangular arrays is in good agreement with the
experiments as shown in figure 3.7. They alsoe report good
agreement for in-line square arrays [25]. However, their
prediction is not as good for the rotated triangular and rotated
square arrays. In addition to this, qualitatively, there are
inconsistencies between Lever and Weaver's theory and the
experiments. These inconsistencies can be summarized-as follows.
(1) In Lever and Weaver's model, static instability cannot be
obtained from the dynamic instability solution. Theoretically,

when the time dependent terms are eliminated from the
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governing equations , static Instability is obtalned. This is
not the case in Lever and Weaver's theory where they used a
different model to predict the static instability.

(2) Other theoretical studles based on the experimental data
report that the slope of the dynamic Iinstability curve
approaches 1/2 at high dimensionless velocities. This means

that :

U/fd =K (mé/pd>)'"2 (3.28)
Lever and Weaver's model predicts a slope of 1 from the

dynamic instability curve in figure 3.7. That is:
U/fd =K (m3/pd®) . (3.29)

This discrepancy has to be explained.

(3) At low values of dimensionless velocities, typically Up/fnd
< 5, a large number of unstable regions are predicted.
Experiments [48] show that there is, in fact, a second
instability region in this area, but there is no evidence that
the number of unstable regions is greater than two. It should.
be noted that the same multiple Iinstability reglons are
obtained by Price & Paldoussis’ [10-13]. This phenomena will

be explained in section 6.2.

3.3.1 Effect of Area Decay Function

It is found that the reason Lever and Weaver's theory lis
incapable of predicting static instability from the dynamic model

is the inconsistent boundary conditions at the inlet of the
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streamtube., They assumed that the effect of a disturbance is
limited to 2 tube rows upstream and downstream of the flexible
tube, and the magnitude of the area perturbation was assumed
constant over this range. Additionally, the velocity and pressure
fluctuations at the streamtube inlet, s = -s  were assumed to be
zero. This is mot consistent with the assumption of constant area
perturbation along the stream tube. As a result, in an attempt to
determine the static instability from the dynamic model, when the
frequency w was set to zero, there was a uniform area perturbation
along the streamtube while the velocity and pressure perturbations
were uniform (i.e., area, velocity and pressure perturbations do
not vary along streamtubes). The values of these uniform velocity
and pressure were set by the inlet values at the streamtube inlet
and were equal to zero. It follows that the static force acting
on the flexible tube is zero, and hence no static instability
could be predicted.

Theoretically, if velocity and pressure fluctuations are
zero, there should be no area perturbation. Since, velocity and
pressure fluctuations are assumed negligible and set to zero at
the streamtube inlet, the magnitude of the area perturbation must
be set to a negligible value. The area decay function determines
the magnitude of the area perturbation as a function of the
position along a streamtube. A proper selection of this function
ensures that the magnitude of the areai;erturbation is negligible
(1% of the perturbation at the minimum gap) at the streamtube
inlet. With the introduction of the decay function, f(s), the

boundary conditions at the streamtube inlet becomes consistent and
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static instability can be obtained from the dynamic model by
setting the frequency ratio, w/wn-O. Results for the parallel
triangular arrvay with P:-l'375 are shown in figure 3.8, Except
for the introduction of the decay function, the same system
parameters that Lever & Weaver used are used for comparison
purposes. When obtaining the dynamic instability the frequency
ratio, m/wn, is forced to take the value of 1 as Lever & Weaver
did.

The decay function, while satisfying the inlet boundary
conditions, also reduces the fluid inertia that plays an important
role in dynamiec instability. Hence, the present solution for the
dynamic instability is affected significantly with the
introduction of the decay function. However, the solution for the
static instability is very close to Lever and Weaver's static
instability solution. This is because of the fact that the static
instability is dominated by the area change in the attached flow
region and the decay in this region is negligible.

Unfortunately, with the introduction of the decay function,
quantitative agreement between the theory and the experiments is
not good when the Lever and Weaver parameter values are used. The

following sections will outline the further development of this

theoreticel model.

3.3.2 The Effect of Relaxing the Frequency Ratio, w/wn

As mentioned above, at the stability threshold, the
frequency of vibration, w, and hence the frequency ratio, w/w;,

has to be a real number. Similarly, for a realistic solution, the
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mass ratio has to be real as well. On the other hand, the right
hand side of equation (3.25) is a complex expression Lhal
accommodates the phase difference between the tube motion and the

fluid force acting on the tube. Therefore,

FR + 1FI .

2 w2 8 e (3.30)
T w

n n

where, F_ = 21.U (Sina)Real(F ),
R 0O r x
F =21 U (Sine)Imaginary(F ).

Traditionally, the theoretical models in the literature
assume that the frequency of oscillation at the onset of
instability is equal to the natural frequency of the heat
exchanger tube (either in vacuum [6-13] or in still fluid
[23-258]1). That is w/w = 1. This is a reasonable assumption
supported by experimental observations. However, when w/wn= 1 is
substituted into equation (3.30), this assumption introduces an
error in determining the dynamic Instability threshold.

Equation (3.30) reduces to the following equation when w/w = 1

m FR * !FI
— = (3.31)
pd =

Since the denominator on the right hand side is an imaginary

number, in order to obtain a real valued mass ratlo, m/pdz. the
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numerator of the right hand side has to be an imaginary number as
well. Previous researchers [3-29] neglected the real component of

the numerator, FR to obtain the solution:

— = w*F (3.32)

However, at large values of the mass-damping ratio, mS/pdz, FR is
larger than F, and neglecting Fnintroduces an error. This error
can be avolded if the frequency ratio, w/mn is relaxed and
obtained by solving (3.30). Figure 3.9 shows the effect of
relaxing the frequency ratio. The dynamic stability solution
departs from that obtained with w/wn =1 at a value of m6/pda of
about 200 and approaches the static stability solution at very
high mass-damping ratios, implying that the fluid stiffness force,
Foo is much larger than the fluid damping force, F, . In this
range, the frequency ratio approaches zero (see figure 3.8). In
the limiting case when the fluid damping force is equal to zero,
the frequency ratio would be zero and the structure would go
statically unstable. It is noteworthy that over a large range of
the mass-damping parameter, the frequency ratio is very nearly
equal to unity and hence very little error was introduced by
assuming w/w & 1.0. Another important effect is that the slope of
the stability curve now approaches 0.5 as predicted by other
theories. In all calculations in the following sections,

the frequency ratio is relaxed and obtained as outlined above.
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3.3.3 Effect of Curvilinear Coordinates

Lever & Weaver's model showed good agreement with cthe
experiments for the parallel triangular and the in-line square
arrays. However, agreement wasn't as good for the rotated square
and rotated triangular arrays. It was thought that the reason for
this might be the torturous flow path that cannot be modelled
properly with linear one-dimensional flow equations. Curvilinear
coordinates are used in the present analysis in the hope that the
flow Ffield can be modelled more realistically. It was found that
it is the pressure gradient across a streamtube that makes the
streamtube bend around a tube. This pressure gradient means that
two-dimensional effects are important in areas where the flow
field changes direction sharply. However, without introducing
additional assumptions, these two-dimensional effects cannot be
modelled properly. Such assumptions can not be justified at this
stage of the present study. The formulation of the flow field is
left as it is for the curvilinear coordinates in the hope that the
above mentioned two-dimensional effects can be included in the
future when a better understanding of two-dimensionality  is
gained. ”

The results with curvilinear coordinates are shown in
figure 3.10 and are, as expected, essentially identical to the
results shown in figure 3.9 where one-dimensional linear

formrlation is used.

3.3.4 2-D Results

As mentioned earlier, from the present analysis the
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streamwise and transverse vibrations are uncoupled. This is the
result of not modelling the relative flow velocity with respect to
the vibrating tube which would couple these vibration modes. At
very low flow velocities, the relative flow velocity might be
large enough to affect the overall results. However, it was felt
that for the practical operating range of heat exchangers, this
relative flow velocity effect may not be important. For example,
the vector diagram for the Up/fnd = 1 is shown in figure 3.11.
The relative flow velocity is only 1.6% higher than the absolute
flow velocity and the angle 8 is 7°. At higher dimensionless
velocities, the effect of the relative flow veloclity is even less
important. At- dimensionless velocities less than about 1, no
instabilities have been observed for any tube array.

It is of course possible, that the streamwise motion of a
tube is coupled with the transverse motion of the nelghboring
tubes as in the case of Connors’ and Blevins' assumed mode shape
[4,5]. This aspect can be explored in the multi-flexible tube
analysis, since such an analysls would require the modeling of the
effect of relative tube motion.

The results wusing curvilinear coordinates, the decay
function and Lever & Weaver's parameters for the parallel
triangular array with Pr= 1.375 are shown in figure 3.12. The
vibration of the tube in the transverse and the streamwise
directions are uncoupled as mentlioned above. The results obtained

are similar _to Lever & Weaver's model. Streamwise dynaﬁic
instability is pfedicted nelther by the present analysis nor by

Lever & Weaver,
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3.3.5 Effect of Attachment and Separation Points

Lever & Weaver assumed that the attachment and separation
points are symmetric about s = 0, and the corresponding attachment
and separation angles can be found by ;: Bl= Bz= a/Pr. Heaver &
Abd-Rabbo’s [42,43] and Scott's [44] flow visualization plctures
show that these angles might be quite different than the proposed
ones. They also observed little wvariation iIn attachment and
separation angles when the pitch ratio was varied. Table 3.3 gives
the observed values for various array geometries.

The results in figure 3.13 are obtained by using the
attachment and separation angles listed in table 3.3 for the
parallel triangular arrays. The rest of the parameters and the
solution technique are the same as those used in figure 3.12. Note
that the present analysis predicts dynamiec instability in Lhe‘
streamwise direction when the experimental attachment and
separation angles are used. This is because of the change in the
net projected area of the tube surface subjected to f{luid force.
In the attached flow region, pressure f{luctuations don't change
significantly. Therefore, if Bl= Ba, the projected area, and
hence the fluctuating force component in the streamwise direction
is =zero. If B1> Bz' then there is a net fluctuating force
component in the streamwise direction. Therefore, streamwise
dynamle Instabllity is possible. It ls also found that transverse
instabllities are almost always more critical than the streamwlise
instabilities. This conclusion is found to be correct for other
array conflgurations as well.

The other important observation is that the choice of the



Configuration @ ﬁx ﬁz
In-Line Square 0° 20° 20°
Parallel Triangle | 30° | 40° 10°
%o;jc;dl?gu?re 45° 75° 15°
%o;jtgdlfgu?ret 45° 85° 15°
Rotated Triangle 60° 85° 15°

t Attachment and Separation angles for this
be the same as Rotated Triangular arrays.

array is assumed to

Table 3.3 Attachment and Separation Angles for Various

Arrays {(Erom [44))
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attachment and separation angles doesn’'t effzct the stability
thresholds in the transverse dircction significantly. Therefore,
even if the reported values in Table 3.3 are in some error, the

effect of this error on the overall result is not significant.

3.3.6 Phase Function

The phase function proposed by Lever and Weaver's laterx
papers [24, 25] attains zero value in the attached flow region.
Physically, this means that the area perturbation at the attached
flow region due to the vibrating tube is created instantly, hence
the fluid in attached flow region doesn’t oppose the motion of the
tube. This is a good approximation for the high mass-damping
parameter range where the fluid inertia is very low and the fluid
responds to the vibrating tube almost instantly. However, this
assumption may not be valid at low mass-damping ratios where the
fluid inertia is much larger. In addition, dynamic instabilities
in this range are associated with low dimensionless velocities
which means that the velocity of the vibrating tube with respect
to the mean flow velocity, and hence the oppesing fluid forces are
larger. In short, due to large fluid dinertia and low
dimensionless velocities, it is expected that the fluid in the
attached flow region contributes to the opposing forces in
addition to the fluid in the upstream region. In order to model
this, the phase function could be assumed to be noun-zero in the
attached flow region as well as upstream and downstream regions.
For this purpose,-éhe phase function proposed by Lever & Weaver

[24-25) is modified so that that spatial variation of the phase
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function along a streamtube starts at s = 0. Hence, Lhe phase

function becomes :

_ 1 s
¢(S) T ? (3.33)

r 1

Note that this is the same function proposed by Lever and Weaver
in their early paper [23]. At high values of the dimensionless
velocity, the phase function, ¢(s), approaches zero, thus giving
approximately zero values in the attached flow region. Therefore,
the predictions at high values of the mass-damping parameter will
not be affected significantly by using the phase function given by
equation (3.33) instead of the one given by equation (3.14). The
results for the parallel triangular arrays with the new phase
function are presented in figure 3.14. All of the terms except
the phase function are the same as the ones used to obtain figure
3.13. The results improved considerably at low wvalues of the
mass-damping parameter.

It should be noted here that the perturbation decay
function is also modified to be consistent with the phase function
so that the spatial decay starts at s = 0. This modificatlon,
however, does not affect the results significantly, since the
decay function has a very flat profile in the attached flow

region. The final form of the perturbation decay function, then,

is as follows.

1

f(s) = — (3.34)
1 + Bes

where, A = 10 and f(—sl) = 0.01.
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CHAPTER 4

MULTIPLE TUBE VIBRATION ANALYSIS

The effect of neighboring tubes on the (fluidelastic
instabillty threshold has been a subject of controversy. Lever &
Weaver's experiments [23] showed that the fully flexible tube
array goes unstable at essentially the same velocity as a single
flexible tube surrounded by rigid tubes. On the other hand, the
semi-empirical theories of S.S5.Chen [8] and of Price and
Paidoussis [12, 13], show that at high values of the mass-damping
parameter, multiple flexible tube vibration behavior Is qulte
different from that of a single flexible tube in a rigld array.
They report that the dominant fluid force is proportional to the
relative displacement of neighboring tubes. This component plays
an important role at high dimensionless velecities ( high
mass-damping parameter values), and is called a fluld-stiffness
force. As a result of the neighboring tubes' motion, fluidelastic
Instabllity occurs at lower velocities in multiple flexible tube
arrays than in the array with only a single flexible tube. It
should be noted that these results are not necessarily in
contradiction with Lever and Weaver's experimental results where
measurements were taken at mﬁ/pdz=1.8. At this mass-damping
value, the stiffness component of the fluid force is expected to
have a sméll effect.

In order to determine the effect of the motlon of

neighboring tubes, the single flexible tube analysis is extended

64
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to a multi-flexible tube analysis in this chapter.

4,1 UNSTEADY FLUID FORCE COEFFICIENTS

It is assumed that only the immediate neighboring tubes
have a direct effect on a tube. The same assumption is used by
Tanaka & Takahara [14-16] and excellent agreement is found between
their semi-empirical theory and the experiments. In the case of
parallel triangular arrays, the center tube and four neighboring
tubes are assumed sufficient to determine the forces acting on the
tube at the center (see figure 4.1). It is, of course, possible
to include the indirect effect of other tubes through the
immediate neighboring tubes. This is explained in detail as
follows.

The arrangement of the four flexible neighboring tubes
(tubes #2,3,4 and 5) and the flexible center tube (tube #1) will
be called a "unit cell" for tube #l from now on. It is assumed
that only these five tubes in the unit cell are directly
responsible for the forces acting on the center tube in the unit
cell,

Tanaka and Takahara [14] mechanically shook the center tube
and measured the fluid forces acting on the statiomary surroundirg
tubes by using strain gages attached to thenm. The phase
difference between the fluid force acting on the center tube and
the fluid force acting on one of the surrounding tubes is found by
comparing the signals obtained from the respective tubes.

In the present analysis, theﬁfluid forces acting on the

tubes in the unit cell are obtained theoretically with the
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existing theoretical model. For this purpose, the single flexible
tube solution is extended to determine the pressure fluctuatien in
the downstream region of the vibrating tube. Then the forces
acting on the upstream, center, and downstream tubes are
determined by integrating the pressure along the attachment

regions of the respective tubes,

4.1.1 Fluid Forces Acting in the Unit Cell

Consider only the tubes #1,2,3,4 and 5. The total force
acting on the center tube is assumed to be the superposition of
the fluid forcec due to the vibration of the individual tubes
{either one of the tubes #1,2,3,4 or 5) when the rest of the tubes
are stationary. This is the same assumption used and verified by
Tanaka and Takahara in their semi-empirical study. Their results
showed excellent agreement with the experiments for a wide range
of the mass-damping parameter.

The dimensionless equations of motion for the five tubes

can be written as (from equations (3.25) and (3.26));

2

1[-(L)+L(Ln+1]xf-? . iel,5

2 W x w 1 x
pd n n i

' (4.1)
m w. 2§ w . =
_—2['(T)+T(T)l+l]yl-FV =13
pd n n i

-~ — -
where, the frgid forces, E; . and,:..Fy ..-are functions of the
1 i

displacements of the five tubes. Similar to Tanaka and Takahara's
notation [12-14], the fluid-dymamic forces acting on tuber i can

be written as;



o
147]

X X Cw y
PpT1 ) \ J -in J
(4.2)
— 5 (c . .)
F = C ' i=1.5
Y, Z Yix 3 yiy y]
J=1 1
where 1, j=1,2,..,5 denote the five tubes. Cij. etc. are fluid

dynamic force coefficients. The first, second and third suffixes
refer to direction of the force on cylinder i, the position of the
vibrating cylinder generating the force (cylinder j), and the
direction of motion of cylinder i being considered respectively.

For example, cxav refers to the X-directlon force on tube H1
1

caused by tube #3 vibrating in the Y-direction. In this case the
upstream tube {tube #3) is the only tube that vlibrates, the rest
are stationary.

Some experimental studles (37, 38] show that the unstable
mode of vibration is usually the mode where all the tubes move in
tie transverse direction. Tanaka & Takahara's [12] and Price &
PaIdaussis' [12] semi-empirical theories also yielded the imzast
stable mode shapes with all the tubes moving in the transverse
direction. Chen’s semi-empirical [7]) ‘theory showed that
streamwise motion might be observed at high wvalues of the
mass—-damping parameter, but restrictiﬁgiﬂihéi motion in the
streamwise direction produces the instability threshold very close
te that corresponding to an unrestricted mode. Therefore, for the
sake of simplicity, the rest of the analysis will be carried by

considering only the transverse vibrations. However, it should be

kept in mind that the mefhodology is general, hence it |{s
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straiphtforward to include the streamwise vibrations.
In the case of nn streamwise vibrations, the displacements

of the fl:' .ule tubes in the unit cell are given as;

i=1,5 (4.3

Therefore, the force equations given in equation (4.2) reduce to;

F = ) (. ¥) (4.4)

Inspecting equations (3.25(b)), (3.26) and (4.1), it can be seen

that the force coefficients, C "y_ are the same as F given by
Y.

-

(3.26). For example, if tube #1 vibrates in the transverse
direction (y direction), the resultant transverse force, F, acting
on tube #2 becomes equal to C:rly

2

The force coefficient, Cyd , is determined as a function of
¥

the array pgeometry, reduced velocity, and frequency ratio as
mentioned in Chapter 3. The form of the unsteady fluid force is
obtained in equation (3.26). From this equation the force

coefficients can be written as :

C =c0 U+ 2+ 42 4.
yiy yiy ¢ Cly.i:rur( W 3' czv.i:r( w : (4.5)

where, C0, Cl and €2 correspond to Fo, ?‘1 and Fz in equation

(3.26), respectively.
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4.1.2 Fluid Forces Due to the Center Tube

In the unit cell of figure 4.1, if tubes #2 to #5 are rigid
and tube #l1 is displaced y;, the forces acting on the tubes are
determined from the single flexible tube analysis as presented in

chapter 3. Figure 4.2(a) shows these forces which are;

Fyl- YI ycyl
?yz- -y:CWyz
?ya- -—y: e, (4.6)
ﬁy&- —y: yuy,
_ys- -y: ,dy.'i

Note that the middle subscripts, ¢, u and d refer to Center,
Upstream and Downstream, respectively. For computational
purposes, equation (4.6) is written in compact form in equation
(4.7). Thus, the force array for the unit cell, when only the

center tube (tube #1) is vibrating, is obtained as follows;

F c
Yl ycy
F -C
1"2 yuy
) F,a T (4.7)
F -C
Y‘ yuy
F -C
- ysu - Ydyd
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Forces Acting on the Surrounding Tubes due to the
Vibration of (a) Tube #l, and (b) Tube #2 (solid

lined circles show the flexible tubes)




or,
< c -
{F} = (G vy, (4.8)

Here, {F}f and {C]® will be called the elemental force array, and
the force coefficient array, respectively. The superscript c
stands for ‘"cell" to indicate that an array or a matrix (s
obtained for the unit cell. The subscript 1 indicates that the
center tube in the unit cell is tube #1l. The reason for writing
the equations in this form is for computational purposes only. As
can be seen in the following sections, it is easier to analyze a
large number of vibrating tubes in this fashion. It should be
noted that if any of the tubes in the unit cell are rigid, {cy©
has to be modified accordingly. For example, if tube #2 and tube

#4 are rigid, then the 2nd and 4th terms in (€)1° must be set to

Zero.

4.1.3 Fluid Forces Due to all the Tubes in a Unit Cell

The principal of superposition is assumed to apply in
multiple tube vibrations. 1f only the center tube (tube #l)[ﬁs
vibrating, the forces acting on the tubes in the unit cell are
shown in figure 4.2(a). Similarly, if only an upstream tube (
tube #2 ) 1is vibrating, the forces acting on the immediate
neighboring tubes in the same unit cell are shown in figure
4.2(b). Forces due to the vibrations of other tubes in the unit
cell can be obtained in the same way and are superimposed tao
determine the total forces acting on all the tubes in the unit

cell. As a result, the forces acting on the tubes can be written
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as;

F - - - - -C

FYI (Cycy yl Cvuy yz ydy yi Cyus' 7 ydy y-‘i)

FYZ- (Cvcv Y2 cyur y,)

F=¢(¢ y-¢_ 1y 4.9
Fy (€., ¥y G ¥ (6.9)

yey T4 yay 1

yey

Written in matrix form, the force array for the unit cell can be

obtained as follows;

_F_‘_yl cm “Yyay yar  ydy -Cm 7
f’z < _¢_ 0 0 o0 y,
) Fys -, 0 ¢ 0 o0 [ vt (4.10)
?“ -Cwy 0 0 Cycy 0 y:
. Fys | €, 0 0 0 C,o,| . y; |
or, (F) = [C] (V) {4.11)

It must be kept in mind that the terms of the C.-matrix, [C], are a
function of the frequency ratio, r..:/mu , and the reduced velocity,
Ur. as shown in equation (4.5). Hence, the force coefficient

N

matrix can be obtained as;

(6] = [COJU% + [CLI(—)U_ + [C2](—)° (4.12)

n n
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For simplicity, only [C] will be used in the formulation for the

rest of the analysis.

4.1.4 Solution for the Fully Flexible Array

Consider the fully flexible array with n tubes (see figure
4.3)., Note that only 25 tubes are numbered in the figure, but it
is possible to include as many flexible tubes in the analysis as

desired. The displacements of the tubes are given as;

y, =Y e i=1,n (4.13)

The elemental force equations can be written from ecquation (4.8).
The unit cells for tube #9, and #13 are shown in figure 4.3. The
forces acting on the tubes in the unit cells for tube #% and tube
#13 are given below:
c c ol
{Fl, = {C}, ¥, b 149

[ €
(F}13- {C}13y13

Note that in the equations given above, the elementary
force coefficient array, (C}°, does not change. It is given by

equation (4.7). On the other hand, the force array is unit cell

. dependent. For example, lF]: - (Fx ,Fx ,Fx ,Fx ,Fx ). The
) . s 7 12 6 11

sequence of ﬁﬁmbering must be the same as for the unit cell shown

in figure 4.1. That is, the center tube (tube #9) is the first

one, the upstream right tube (tube #7) is the second one, the
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downstream righi tube (tube #12) is the third one, the upstreanm
left tube (tube #6) is the forth one and the downstream left tube
(tube #11) is the fifth one.

For a fully flexible array with n tubes, the elemental
matrix equations are written for each tube and these equations are
assembled in a single gloval matrix form as in Finite Element

Analysis. The resultant equations of fluid force will be in the

form :
{F}® = [c]%ty)® (4.15)
where,
s .3 s [
[C] - [ {Cll'[C}z' L ] {C)n]
(F}%= (F. ,F, ... ,F )
Yy, ¥, Ya

.3 * L]
[y‘ - {yl’yzl LR lyn}

Here, [C]® and (y)® refer to the global force coefficient
matrix and global displacement vector, respectively. Note that
due to the phase difference between the force coefficients and the
tube motion, the C-matrix, [C]‘, is composed of complex numbers,
Care must be taken when assembling the global C-matrix. The
global force coefficient arrays, [C}:. are easily determined from
the elemental force coefficient arrays, {C]:, by sorting the
non-zero terms, so that they correspond to the same tube
displacements in the global matrix equation as they do in the

elemental matrix equation. The following examples will show how
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to assemble the global C-matrix, [C]q, from the elemental force
coefficient arrays and how to treat the special boundary flexible

tubes that are adjacent to rigid tubes.

14.2. FLUID FORCE COEFFICIENT MATRIX FOR 13-FLEXIBLE TUBE AND
5-FLEXIBLE TUBE MOLELS

In this section, the general approach for an n cylinder
array developed in the previous section is applied to 13 flexible
tube and 5 flexible tube arrays. The 13 flexible tube analysis
will iilustrate how to assemble the global C-matrix, [C]q, from the
elementary C-arrays, [C]®. 1t will then be shown that this 13 tube
model can be reduced to the 5 flexible tube model developed in
section 4.1.3. Figure 4.4 shows the array under investigation.

The elemental force arrays for 13 flexible tubes ﬁén be written as;

{F}‘:= {C}‘l‘ v, , 1=1,13 (4.16)

The unit cells #4, 5, 7, 9 and 10 include flexible tubes only.
All of these unit cells have the elemental force coefficient

array, {C}°, in the same form as equation (4.6). For example,

c _ c
{F}Y = (¥ y,

or, . (F )Y [ c ]
Y4 ycy
F -C
_Y.’ yuy
1 Fya b =1 Sy b y] (4.17)
_ 4
F ~-C
__yl yuy
F -C
YG ydy
\ F \ /
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Parallel Triangular Array with 13 Flexible Tubes

Figure 4.4
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Any other unit cell has at least one rigid tube. These are the
boundary unit cells. Because of the rigid tubes existing in these
boundary cells, lC]C has to be modified for these cells. For
example; unit cell #3 has the two upstream tubes and the right
downstream tube rigid (they correspond to the 2nd, 3rd and 4th
terms in the elemental arrays), hence, the 2nd, 3rd and 4th terms

in {C}: must be set to zero, i.e

- ? -] ~ c -
ya yoy
0 0
(F) = - o L_J10o 1 Y, (4.18)
0 0
i; -Cvdv
L 1] L )

Similarly, cell # 12 has two rigid downstream tubes. Therefore,

r f 3 r -‘
_.le ¥y
F -G
. YIO yuy .
()} ,= 1 0 -1 0 by, (4.19)
F -G
Ys yuy .
L 0 o’ - 0 L

Then all these equations are written in the form;

(F}® = [c1®iy)® (4.20)

Since the global force vector, {F}®, is in the form;

8
(F} { Fl. Fz' cee F13} (4.21)
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the global force coefficient arrays, {C}® should be determined
accordingly. For example, for the unir c.:ll #3, {C}*® can written

as,

(C}*=1{0,0,C .0,-C .0,0,0,0,0,0,0, 07 (4.22)
3 yey ydy

Then, the global equations will be in the form:

r ? -y r - b
_)'1 yl
F "
y2 8 yz
<4 - - [Cl + 4 (4.23)
F .
- yla.d . y13‘

vhere,
8 B 8 3
[C]13= [ (S DY (-} b (0113]

For the array under investigation, {C]® is;
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c 0 0 -C 0 0 0 0 0 0 0 0 0
yey yuy
0 C 0 - -C 0 ] 0 0 0 0 0 0
yey yuy yuy
0 0 C 0 -¢C 0 0 0 0 0 0 0 0
yey yuy
-C - Q Cc 0 - -C 0 0 0 0 0 0
ydy ydy yey Yuy yuy
0 -C - 0 C 0 -¢ -¢C 0 0 0 0 0
ydy ydy yey yuy yuy
0 0 0 -C 0 C 0 0 -C 0 0 0 0
ydy yey yuy
[€}®*= 10 O 0o ¢ -c. 0 ¢ 0 -c -C 0 0 0 |[4.24
ydy ydy yey yuy yuy
0 4] 0 o - 0 0 C 0 -G 0 0 0
ydy yey yuy
0 0 0 0 0 -C -G 0 C o - -
ydy  ydy yey yuy  yuy
O 0 0 0 0 -G - 0 C 0 -C -C
ydy ydy yer yuy yuy
0 0 0 0 0 0 0 0o - 0 C 0 0
ydy yey
0 0 0 0 0 0 0 0o - -G 0
ydy ydy yey
0 0 0 0 0 0 0 0 0 -G 0 0 C
ydy Yoy

The solution for 10 flexible tubes can be deduced from the 13
flexible tubes by eliminating the 11lth, 12th and 13th rows and
columns, The remaining 10x10 matrix is the giobal force
coefficient matrix for the 10 flexible tubes numbered from 1 to 10
in figure 4.4, Similarly, a five flexible tube solution can be
obtained by considering a unit cell made up of f£lexible tubés
only. For example, unit cell #4, that includes tubes #1, 2, 4, &,
and 7 can be considered for the five flexible tube solution. That
is, any other row and column, other than the lst, 2nd, 4th, 6th

‘and 7th row and column is eliminated to obtain;
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[ & c 0 -¢ 0O o y
Y yey yuy 1
—_— -
0 c -C ] 0
Frz yey yuy y 2
{F }-]-¢ ¢ ¢ -c -G 1y } (4.25)
Y ydy ydy yey yuy yuy A
— -
F 0 0 -C C 0
e ydy Yoy yG
— *
4] 0 -C 0 C
Fv7 ydy yey }'7
. o - - N o

This solution appears to be different than the one obtained before
(See section 4.1.3). This is because of the different sequence of
numbering of the tubes. If the numbering follows the same
sequence as the previous one (see figure 4.1), both solutions are

the same. That is,

" LY pe - o -
F c -¢c_ -C - -c y
v, yey ydy yuy ydy yuy 4
— »
F -C 0 0 0
:rz yuy Cycv yz
— L
1 F b - -C 0 C 0 0 4,26
:r7 ydy yey ) y7 [ ( )
F - 0 0 ¢ 0 y.
Y, yuy yey 1
F . 0 ©0 ©0 ¢ v
Ye ‘ ydy yey 6

4.3 DETERMINATION OF THE VIBRATION MODE ( 5-TUBE MODEL )

So far, a general method is presented to determine the
fluid force matrix for a given array pgeometry and the
dimensionless velocity, Ur' What has not been taken into account

is the vibration pattern. Price & Paidoussis investigated the
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effect of the modal vibration pattern on the stability thresheld
(12,13). They assumed that, for any row, the motions of adjacent
tubes are of equal magnitude and either in in-phase or
out-of-phase. Similarly, they assumed that the motion of a tube
and it's counterparts two rows upstream and downstream is either
in-phase or out-of-phase. As a result of these assumptions, they
showed that the solution for fully flexible tube arrays can be
reduced to a two-~ylinder kernmel. Since the motion of the tubes
are constrained according to the above mentioned vibration modes,
this analysis is called the Constrained Mode Analysis. They tried
256 possible vibration modes and determined the least unstable
modes for various arrays [12). In parallel triangular arrays, one
mode was found to be the least stable mode for the whole range.
The same mode was also the least stable mode for the rtotated
square arrays with m6/pdz > 25, Price et. al.’'s subsequent
investigation [13] on the vibration pattern by varying the phase
relationships of the neighboring tubes verified their previous
findings.

In the present analysis, all possible modeshapes will not
be searched as this was already done by Price et. al. Instead, a
simplified approach, by using Price et. al.’'s findings, will be
adapted to determine a modeshape that would predict critical
velocities close to the absolute minimum critical wvelocity. The
approach used here is not as comprehensive as Price et. al.'s
approach, but should yield acceptable results,

The 5-tube model (figure 4.1) for the parallel triangular

arrays is simplified by using the following assumptions
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{1) The motion of the adjacent tubes in a row are equal In
magnitude and are either in-phase or out-of-phase with each other.
This is the same assumption used by Price et al. . If the tubes
are out-of phase, the forces acting on the center tube (tube #1)
due to the upstream tubes (tubes #2 and #4) would cancel each
other. A similar result would be found if the downstream tubes
are considered. Therefore, the center tube would be unaffected by
the neighboring tube motion if the adjacent tubes in a row are
out-of -phase. Since the effect of neighboring tube motion ls
desired for a successful modelling of the stiffness-ccntrolled
dynamic instability, adjacent tubes in a row should be in-phase
with each other. This is, in fact, the case for the least
unstable mode reported by Price & Paidoussis [12]. Therefore y; =
y:. and y; = y; and the force equations (4.12) for the unit cell

given in figure 4.1 reduces to :

(F ) o . [ o )
C =2C =2C
1 ycy ydy yuy yx
IF, L.l ¢ c o | *{vy } (4.27)
Y2 yuy yey Y2 )
f .
-C 0
\ Y3 ) [ ydy C"’Y. \ Y3 J

(2) There is 180° phase difference between the tubes in a row and
the tubes two rows upstream and downstream. This assumption
-ensures the repeatability of the vibration pattern in the
‘streamwise direction. That is, the tubes in a row will vibrate

the same way as the tubes 4 rows upstream and 4 rows downstream

do. Price and Paidoussis [12] assumed that the above mentiocned
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phase can be either 0° or 180°. Their analysis showed that 180°
is the one that gives lower critical wvelocity. Therefore, y; =

—y; and equation (4.27) reduces to :

F .

Y, Cycy 2(Cydy Cyuy) Y,
_ = . {(1.28)
F C C .

.Vz ydy yey Yz

Assuming that y;= y;A wa' the constrained equation of
motion for the five flexible tube array reduces to a single

equation {Here, « t,(lz, shows that Y, is leading Y, by wz) H

— L]
Fy1 = [Cycy- Z(Cydy- CM]A dlz] Y, (4.29)

The value of tpa is optimized to obtain the maximum lmaginary part
of equation (4.29). When substituted in equation (4.1), this
optimization ensures the largest mass-damping parameter, m&/pda.
for the given dimensionless velocity, Uf. Therefore, for a given
mass-damping parameter, Ut is minimized, and the least unstable
= = = = o -
mode 1s found as, Y,= Y, ylz "ba' Y,= Y& ¥, 4 180 wz. As will
be discussed in chapter 6, at high mass-damping parameters, the
force coefficients, C , C and C are essentlally real
ycy yuy ydy
numbers with positive values and Cydy > CWy In general. Hence,

equation 4.29 attains its maximum positive imaginary component at

(+]

about gbz= =90". As a result of this, the least stable mode

- [} - o L] . o
becomes Y, =y, = y14-90 v Yy T Y T Y4 90°. This modeshape 1s
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similar to Price and Paidoussis’ least stable mode, where Y, =Y,

- ] - o
-y, L9 y -y -y/£-90.

4.3.1 In-Line Square Arrays

Although the mndelling and determination of the unsteady
forces acting on the tubes in in-line square arrays is the same as
parallel triangular arrays (see figure 3.1(a)), the elemental
force arrays are different. The reason for this is the difference
in the relative positions of the neighboring tubes with respect to
the streamtubes, Following the same procedure described in
section 4.1.3, the global force coefficient array for the
5-flexible tube model in the in-line square arrays ( figure

4.5 ) is found to bhe:

F ¢ < /2 ¢C - /2 C 3
¥1 yey :rc:r/ yuy vcy/ ydy yl
F -C *
Y, vcy/z cycy 0 0 0 y 2
{F } - 0 {1y } (.30
Y, ydy 0 Cycy 0 yS ( )
F - 0 0 0 *
r‘ ruvlz Cvcy yﬁ
F c 0 0 0 c v,
ys yuy yey 5

The off-diagonal C:m)r terms are half that of the diagonal onmes,
because the tubes corresponding to these coefficients (tube #2 and
tube #4) experience the pressure perturbations of one streamtube,
whereas the center tube (tube #l) experiences the perturbations of
two streamtubes. A similar approach presented in the previous

section can be used to determine the least stable modeshape.
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Again, y; cannot be out of phase with y:, if it is desired to

couple their motion with the center tube (tube #1). Hence it is

-
assumed that they are in phase, i.e., Y, = Y, Similar to the

modeshape predicted in the previous section, if the downstream

tube is out of phase with the upstream tube, y; - -Y,- Then

equation (4.30) reduces to :

[ F, 1 [e¢ -G -(C_-C )- [ ¥y ]
1 yey yey yuy ydy 1
F "
- |- *
15 t-1¢.2 ¢, o 191 3D
F -
S ya L -- ,dy O Cycy - - ya o

For tube #l1 be coupled with tube #2, they cannot be in phase,
Hence, assuming out-of-phase motion, y; - -y:, equation (4.31) can
be reduced to a two degree of freedom system as mentiomed in the
previous  section. Again, by using the same argument for the

determination of the maximum mass-damping parameter, the following

L

characteristic equation corresponding to the modeshape y; -y, -

-

¥y

L * »
' Yo" Y, = 'Y1L ¢3 is found as :

Fyl -[2¢ _-(c -C ) L]y (4.32)

As described in the previous section, the value of ¢3 is optimized

and F is substituted into equation 4.1 to determine the
1

critical mass-damping ratio, m§/pd, for a given dimensionless

velocity, U:.



4.4 RESULTS AND DISCUSSION

The single flexible tube model is extended to a multiple
flexible tube model in order to Iinvestigate the effect of
neighboring tube motion. The basic assumption in the extended
model 1is that the total <f{orce acting on a tube is the
superposition of the fluid forces due to the vibration of the
individual tubes when the rest of the tubes are stationary. It is
also assumed that only the immediate neighboring tubes directly
affect the vibration of a tube. The rest of the tubes in the
array Iindirectly affect the vibration of the tube through a
cascade effect. Therefore, the fluid force acting on a tube is a
function of the motions of all the tubes in the array. The
resultant coupled equations of motion is reduced to a slnglé
equation by using a constrained mode analysis. By solving this
equation, the mass-damping parameter corresponding to a given
dimensionless velocity is found.

In order to determine the fluid forces acting on the
downstream tubes, the single flexible model is extended so that the
velocity and pressure fluctuations are obtained in the downstream
flow reglon. Although the downstream stresamtube length is not
known, intuitively one would expect vorticity generated by tube
motion to be convected many tube rows downstream. The experimental
study presented in chapter S5 supports this. However, such
convected disturbances are not related in any obvious way to the
inertial streamtube length assocliated with the phase lag. In the

absence of Information to the contrary, the downstream streamtube



90

length is assumed to be equal to the upstream streamtube length.
Additionally, the same type of decay function is used in the
downstream area as the one used in the upstream area.

The phase function in the downstream area is assumed to be
the same as the upstream phase function, since there is no
information on which to establish a better approximation.

The multiple tube analysis, presented in sections 4.1
through 4.3, is general for all tube arrays except in-line square
arrays. For in-line square arrays, the methodology is the same
except the elemental force coefficient array, {C}°, is different

as given In section 4.3.2.

4.4.1 Dynamic Instability for S5-Flexible Tubes

The results for the 5-tube model of the parallel triangular
array with Pr= 1,375 are shown in figure 4.6. The system
parameters used when obtaining figure 4.6 are the same as the ones
used tb obtaln figure 3.14. The solution for the single flexible
tube model is shown with the dashed line. Solid lines show the
solution for the multiple tube model. As it i{s seen in the flgure,
the multliple flexible tube model always predicts lower critical
dimensionless velocities than the single flexible tube model. The

difference between these two models is
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largest. at high values of the mass-damping parameters, implying
that the neighboring tube motion is very important in this range.
At low values of the mass damping parameters, the multiple
flexible tube solution is closer to the single flexible tube
solution. Hence, the coupling of the neighboring tubes 1is less
important in this range.

With the extension to multiple tube analysis, the
agreement between the experiments and the theoretical predictions
are improved at high values of the mass-damping parameter. As can
be seen in figure 4.6, the slope of the stability curve becomes 0.5
at high values of the mass-damping parameters. The frequency
ratio, u/wn is found to be approximately unity for the whole range.
This behavior is essentially the same as that described by Chen
{6-8] and Price & Paidoussis [10-13] as stiffness-controlled
dynamic instayiljty. As they reported, the effect of the
helghboring tﬁbes plays a major role at high values of the
maés—damplng parameter. - The present model exhibité the same
behavior, thus su&ceséfully modelling the stiffné§s controlled
instability.

An interesting feature of the results shown in figure 4.6
is the limited number of instablility reglons. No instability
reglons are elimlnated artificially as was done by Lever and
Weaver [23-25), and Price & Paidoussis [9-13]). Incidentally, the
number of instabllity reglons obtained here is close to the
maximum possible instability regions assumed by the above
mentioned researchers. Howwver, a close examination of the

numerical solution shows' that, other instability regions also
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exist, but they are out of the investigated range of the

mass-damping parameter (mS/p:'2 < 0.01).

4.4.2 The Effect of the Downstream Pressure Decay

It is noted in figure 4.6 that the effect of coupling from
neighboring tubes is reduced at smaller values of the mass-damping
parameter but that it does not disappear. This may be due, in
part, to the way Iin which the decay of disturbances has been
modeled. Physically, this decay 1s caused by viscous effects which
will manifest itself in terms of a decay in pressure perturbations.
This has been modeled artificially and simply by Iintroducing an
area decay function into the analysis. For the single flexible
t ibe model, this approach was satisfactory since only the pressure
on the tube being analyzed was needed. In the multiple flexible
tube model, the pressure on a downstream tube produced by motions
of an upstream tube is required. Since, the pressure is obtalned
by integrating area and velocity disturbances along a streamline,
the pressure dlisturbances will persist downstream even though the
local area disturbance has disappeared. Thus. the pressure
perturbations on downstream tubes are exaggerated over those which
would have been obtained by using a pressure decay function rather
than a perturbation area decay function. Cle&fly, the former would
have been more realistic but much more difficult to model.

In order to examine the effect of these exaggerated
downstream pressures, they were artificlally decayed by slimply
multiplying them with the area decay function ( equation 3.15 ).

The results are shown in figure 4.7. It is seen that the



91

Aeoa( 24NsSatd WealjsuMmog dY3 JO 399333 UL L'V aang14

NvQ\QE NELAWVIVd ONIdJNVA-SSVIA

y01 ¢01 201 107 o071 -0T1 m..._,.n:oﬁ
(TTrrrrt T T —._—__ 4 T ] __-——- ] L —.-_- T T T —-_-—- T T | _---u ) L .HI
_ [1] Ao1nedzyyd » 10a8d) = © i
{opojy aqn] 2(q1xold 9BUIS = - -----r-smmm-mn-
1opojy oqny 21q!X3J~-G = ]

IIIII'IIC

liillll L]
Illlll l

-
o
—i

lllll!l

o
o
—

AY
N |

- .
IR ISR EPS i | _-_p~__. I —_q_._u_\— __—_—-_- i ___-q_—q L _n-_-_- ]

™
o
i

‘N XLIDOTIA SSHINOISNAWIA



95

primary effect is at low values of the mass-damping parameter
where the agreement between the single flexible tube and multiple
flexible tube models has been improved. Most notable Is the
improved agreement in the multiple stability region for mS/pd2 <

0.2 .

4.4.2 Results For the In-Line Square Arrays

The modeshape discussed in section 4.3.1 was used to predict
the dynamic instability for in-line square arrays as shown in
figure 4.8. Again, perturbations are assumed to diminish within
1.5 tube rows upstream and downstream of the tube being studied.

Agreement with experiments is reasonably good over the
entire mass-damping parameter range. The effect of neighboring
tube motion reduces the stability threshold at higher values of the
mass-damping parameter. The effect of neighboring tube motlon ls

small at lower values of the mass-damping parameters as expected.
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CHAPTER 5

AN EXPERIMENTAL STUDY ON THE PHASE FUNCTION AND
THE DECAY FUNCTION

A weakness of the present theoretical model is the form of
the proposed phase and decay functions. These proposed functions
yield results which agree reasonably well with experiments, yet
they are based entirely on intuition and their validity is open to
question [10]. A parametric study of the present model shows that
the critical velocity for the fluidelastic instability for a given
array is significantly affected by the phase function. This
function, as proposed by Lever and Weaver [24], is based on the
surge phenomenon in liquid filled pipes. Although it is belicved
here that this rough analogy results in the correct qualitative
trends, the quantitative phase values may be substantially in
error. Therefore, a better understanding of the phase function is
necessary. A careful examination of the phase function shows two
unrealistic characteristies. Firstly, the phase function
approaches infinity when the dimensionless wvelocity approaches
zero. An infinite phase value represents infinite fluid inertia.
Clearly, this cannot be correct. Secondly, the phase function is
always equal to l/Ur at s = -s,. There is no reason to believe
that this should be seo.

- As mentioned above, it is believed here that the phase
function gives the correct pgeneral trends. Firstly, when the
dimensionless velocity increases, the phase lag decreases. Since
higher critical dimensionless velocities are obtained in less

dense fluids, inertial forces are smaller and perturbations are

97



98

felt in shorter time periods. Hence, the phase lag is expected to
be smaller at high dimensionless velocities. Secondly, the phase
function gives the phase lag as a linear function of position. The
further the position of a point from the vibrating tube the longer
it takes to feel the perturbation. This should be correct if the
perturbations are assumed to be travelling with constant speed.

On the other hand, it is important to determine how the
fluctuating wvelocity and pressure decay. How far from the
vibrating tube can the fluid disturbances be felt?. Do the phase
function and the decay function behave the same way in upstream
and downstream regions?. The following section describes an

experimental study which attempted to address these questions.

5.1 DESIGN OF THE TEST RIG

Because of the complexity of the phenocmencn, a satisfactory
theoretical solution for the phase function and the decay function
couldn't be obtained. 1In order to obtain some insight into this
behavior, it was decided to perform an experimental study. For
thiswpurpose, the wind tunnel designed by Grover [37] was used,
This facility is shown schematically in figure 5.1. 1In the test
section, the velocity distribution is uniform within 1% over the
middle 80% of the cross sectional area (inside the wall boundary
layers). The maximum operating speed is 19 m/sec when there is no
tube array in the test section.

A test section was designed for the purposes of this study.
All but one of the tubes in the array are rigid and fixed at one

end. The remaining tube is rigid but connected to a shaker. This
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tube is driven sinusoidally at the midpoint through an eccentric
cylinder-cam pair and the resulting velocity fluctuations in the
neighbouring streamtube are measured with a hotwire anemometer.
The tube motion is monitored with the use of an accelerometer and
the correlation of velocity and acceleration data should yield the
phase difference between tube motion and the wvelocity
fluctuations. The decay function can be obtained directly from
the velocity fluctuation measurements.

This test section was designed for the existing wind tunnel
in McMaster University [37, 38]. The test section dimensions
shown in figure 5.2 are quite satisfactory for the purposes of

this study.

5.1.1 Determination of the Tube Diameter

Grover [37] and El-Kashlan [38] conducted their
experimental studies on the existing facility. Their data for the
parallel triangular array with pitch ratio, P:’ of 1.375 has been
used by Lever and Weaver [23-25] for comparison. For consistency,
it was decided to design the test rig for the same array geometry
with Pr- 1.375,

Since it was the intention of this study to determine the
phase and decay functions as a function of position, velocity
fluctuations have to be measured along a streamtube at different
locations. This is accomplished by moving the hotwire probe along
the stream tube, A traversing mechanism is used for ﬁhis purpose,
The tube diameter is chosen to be as large as possible, so that

there is sufficient space in the array for the hotwire probe to
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Figure 5.2 Dimensions of the test section
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move safely. For the unit cell to be complete, there must be at
least five rows and three columns of tube. In order to simulate a
characteristic unit cell deep inside the array, three upstream
rows and a downstream row were added. Hence, the number of rows
increased to nine. For the given pitch ratio, P=-1.375, and the
minimum required number of 3 columns, the tube diameter was found
to be 62.5 mm. Since, the largest available tube size was 50.8
mm, the array was designed to have 4 columns with P;— 1.375. In
order to eliminate the wall effects, half tubes were used on the
side walls at appropriate positions. The final arrangement is

shown in figure 5.3.

5.1.2 Traversing Mechanism

The traversing mechanism consists of two disks as shown in
figure 5.4(b). The hotwire probe is attached to the smaller disk
eccentrically. By rotating the large disc and the small disk, the
hotwire probe can be positioned anywhere in the shaded area shown
in figure 5.4(a). Two of these mechanisms, one for upstreain and
the other for downstream measurements, are installed on the top

plate of the test rig.

5.1.3 Shaker Mechanism

The theory presented in this thesis assumes simple harmoniec -
motion of the tube, hence, experiments must simulate this basic
assumption. There are two mechanisms that can produce
reciprocating simple harmonic motion. These are (i) the scotch
yoke mechanism, and (ii) the eccentric cylindrical cam-follower

pair (figure 5.5). Scotch yoke mechanisms are not suitable for
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high frequencies because of the backlash of the slider in the
scotch yoke. tlence, an eccentric cylindrical cam-foll wer
mechanism was designed to shake the tube in the test rip. .orv
this purpose Fatigue Dynamics Inc.'s VHS-40H variable speed
fatigue testing machine was modified. A roller bearing was press
fit around the eccentric shaft as shown in figure 5.6.

When the machine rotates, the follower moves back and forth
sinusoidally. The stroke of the simple harmoniec motion can be
altered by changing the eccentricity of the £fatigue testing
machine. In this way, a stroke range of 0-50 mm { up to 10% of
the tube diameter) can be obtained. The direct transverse load on
the shaft shouldn’t exceed 40 1lbs ( £ 200 N ) according to the
specifications given for the testing wmachine. It is also
specified that the maximum rotation speed is 30 Hz.

The desired moticon of the tube is y(t) = Yehm where, Y is
in the range (l%-10%)d. For a given frequency, forces will be
largest in the case where the maximum stroke of Y = 0.1d = 5 mm.
Therefore, the spring was chosen for the worst case when Y = 0,1d.
In summary, the desired mechanicm must be designed keeping in mind

the following;

Limitations : Maximum load = 40 1lbs ( = 200 N )
Maximum frequency = 30 Hz

Requirement : Y;uf 5 mm (maximum stroke)

5.2 Dynamic Analysis of the Cam-follower

The free body diagram of the follower is shown in figure
5.7. Here, fc(t) is the contact force between the bearing and the

follower. In addition to fc(t). the inertial force of the bearing
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msy(t), will be carvied by the fatigue testing machine. Therefore,
the equations of the motion for the vibrating system can be

written as :

m F(£) + ky(e) = £ (v) (a) }
N (5.1)

m y(t) = £(¢) - £ (¢) (b)

where m, is the total mass of the moving tube, the connecting rod,
the spring and the accelerometer. By eliminating fc(t), equation
{(5.1) can be written in a compact form, to determine the total

force £(t) as given below :

(mA + ma)?(t) + ky(t) = £(r) (5.2)

where, m =1/3m + a2 +m +m
A spr red tube acc

m  « mass of the roller bearing

k = stiffness

The requirement that the cam-follower is to be in contact

at all time is; fc(t) > 0. That is,

ky(t) > -m y(t) (5.3)

Substituting y(t) = e  into equation (5.3) and

rearranging, one can find the requirement for contact as;

w >w (5.4)

where, w is the excitation frequency as given before, and © =
v k/rnA is the natural frequency of‘the;follower-spring assembly.
Since v  is given as 30 Hz, » is chosen to be 30 Hz.

The load acting on the bearing shaft can be found from
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equation (3.2) as;

£(c) = ((w) - w )y(E) (5.5)

where w, = \4 k/(ma+mn)

Let, f(t) = Fre'. Then the maximum load will be obtained

iwt s .
"' and w = 0. Hence, the most critical case is

when y(t) = Y e

max
when the spring is statically compressed to it's maximum
deflection. As a result,

F =Y w (5.6)

max max 0

The tube shaken by the cam-follower mechanism is an
aluminum tube with a 50.8 mm outer diameter. Its weight 1is
reduced by turning the tube to approximately 1 mm wall thickness
while keeping the outer diameter 50.8 mm. The connecting rod is
made of hardened steel with a 3 mm diameter. It is connected to
the aluminum tube with nuts. The total weight of the tube-rod
assembly is measured to be m, = .225 kg. The weight of the spring
is assumed to be 0.025 kg. This assumption will be checked aftér
the selection of the spring. A 1" ball bearing thaﬁ can carry 200
N is chosen to install on the shaft of the fatigue testing
machine. Its weight is specified as m = 0.05 kg. Since, Y;“r 5
mm and = V/E§7fﬁrﬁﬂp\ ©. w is already determined as 30 Hz.
Therefore, for the worst case F;ug 145 N which is less than the
maximum allowable load of 200 N. Therefore, the mechanism is
capable of satisfying the requirements. Note that the friction

force which might arise due to the motion of the rod with respect
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to the stationary test rig is not modelled. From the calculations
presented above, a maximum friction force of 55 N is allowed.
This is much higher than the practical range of the friction force

expected for the design.

5.2,1 Selection of the Spring

In the previous section, the natural frequency is

determined to be 30 Hz. The spring constant, then, can be Ffound

as;

2
k = mw (5.7)

For m - 225 kg, the spring constant is found to be : k = 8000
N/m. A die spring with a 4 em length and a 4 mm internal diameter
is chosen. Its weight is less than the assumed 0.025 kg,
therefore the initial assumption of the spring weight was

conservative and the design is satisfactory.

5.3 INSTRUMENTATION

The velocity fluctuations are measured with a miniature
general purpose hotwire probe (DISA type 55P11). The probe output
is connected to a dual channel FFT analyzer (Nicolet 660B) for
signal processing. The tube motion is monitored with an
accelerometer attached to the shaker mechanism, The accelerometer

output is connected to the first channel of the FFT analyzer,

5.4 REYNOLDS NUMBER

The Reynolds number, Re, of the flow does not play an

important role in many flow induced vibration problems. This is
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primarily because neither the drag coefficlent nor the Strouhal
number vary significantly over a significant range of practical
flow velocitles. However, very low Reynolds numbers should be
avolded, since the drag coefficients and the Strouhal numbers show
strong Reynolds number dependence in this range. For isolated
circular cylinders, at about Re = 300, vorticles formed behind the
cylinder wunderge a transition from laminar to turbulent.
Similarly, in the range Re = 3x10° - 3.5x10° transition of the
boundary layer of the cylinder from laminar to turbulent should be
expected. Such transitions cause the flow field to change
significantly. Hence, they must be kept in mind when designing
experliments and analyzing the experimental data,

It is found that the velocity fluctuations are measurable
when the flow velocity at the minimum gap between tubes is less
than about 25 m/s. At veloclties higher than 25 m/s, turbulence
levels, and hence the noise to signal ratio becomes too large to
obtain good measurements. Additionally, reliable measurements
could be obtained only for the minimum gap velocities greater than
2.5 m/s. This was attributed to the notwire probe sensitivity at
low velocities. Using the kinematic viscosity of air at 20°C, v =
1.5¢107 mg/s. and a tube dlameter of 4 = 0.05 m, the Reynolds

number range based on the minimum gap velocity is determined as :

Ud
[+

Re = —— = 0.8x10" to 8.0%10% (5.8)

This range is within the typical range of most experimental
data in the literature. Hence the test velocity range 1is

acceptable,
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5.5 EXPERIMENTAL TECHNIQUE

The time domain signals of the hotwire probe, xh(t).and the
accelercometer, x (t),are transformed to the frequency domain by
. |

using the fourier transformation :

T
-12Kft
X (f) - Ixh(t)e de
1]

(3.9
T

X (f) - J'xa(t)e'*z""‘dc

where T is the time interval during which xn(t) and xh(c) are
measured. The amplitude of the velocity fluctuation is determined
from the peak in xh(f) that corresponds to the excitation

frequency, f“c. The transfer function between these two signal

is defined [51] as:

X (£)

X (5)

H () - (5.10)

The phase difference between these two signals can be determined

from the transfer function :

(5.11)

Imag(H _ (£))
$,,(E) = Atan 20

Real(Hrh(f) )

The frequency domain data is averaged 64 times to determine the

amplitude of the velocity fluctuations and the phase difference
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between the accelerometer and the hotwire signals. It should be
noted that the dual channel FFT analyzer used in the experiments
has a built-in function to determine Hrm(f)’ hence no computation

is needed.

5.6 RESULTS

As mentioned earlier, the experiments were conducted on a
parallel triangular tube array with P;— 1.375, and d =~ 50.8 mm.
The intention of this study was to determine the phase and decay
functions for this array as functions of the mean flow velocity and
the position along the streamtube. The accelerometer and the
linearized hotwire signals were used in equation (5.11) to
determine the phase angle. Unfortunately, the measured phase
information appeared very confusing with no discermible trends, and
therefore will not be presented here. It is the author’'s feeling
that the reason for the unexplained, and seemingly unsystematic
behavior of the measured phase angles is the complexity of the flow
field and high noise-to-signal ratio. I is possible that the
fluctuating velocity comp;nents are reflected from the rigid tube
boundaries and superimposed on the wvelocity fluctuations
propagating directly from the source. Acoustic propagation of the
fluctuations might be affecting the results as well. In addition,
the immediate area of the vibrating tube would experience the
effect of propagating vortex structures generated by the tube
vibration. All of this is superimposed on a high ambient
turbulence generated by the tube bundle. In summary, the flow

field is wvery complex, especially in the close proximity of the
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vibrating tube, and it is not straightforward to secparate the
effects of the different flow phenomena. Because of the
unexplained behavior of the phase function, this part of the
experimental study was abandoned to the author's great
disappointment.

On the other hand, the measured values of the velocity
fluctuations showed some systematic trends and the useful results
are presented below.

When measuring the velocity fluctuations, noise in the
probe signal due to the ambient turbulence affects the quality of
the signal. In order to increase the signal to noise ratio, the
amplitude of the tube wvibration is set to 10% of the tube
diameter. In reality, the amplitude of tube vibration seldom
exceeds 2% of the tube diameter at the stability threshold.
Hence, it is iImportant to determine whether the large amplitude
(0.1d) tube vibration testing would provide data applicable for
the small amplitude ( 0.02d) tube vibration. Figure 5.8 shows the
effect of the amplitude of vibration on the amplitude of the
velocity fluctuation for various frequencies of vibration at
position 3U in figure 5.9. The results regarding the perturbation
velocity amplitude, including the ones which will be presented in
the following sections, are normalized with respect to the average
value of the perturbation velocity amplitude at s = 0 ( location 0
in figure 5.9 ) so that f(s) = 1 at s = 0. This reference value
is obtained by averaging the velocity perturbation amplitude at s«=0

for various flow velocities when the vibration frequency is 12.5 Hz
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and the vibration stroke 1is 0.1d. In figure 5.8, excellent
lincarity is found between the velocity perturbation amplitude and
the vibration stroke for all the frequencies at Re=2.0‘104. It is
concluded that the results obtained using a tube vibration
amplitude of 0.id can be used to study the small amplitude
vibration behavior with the advantage that the signal to nolise

ratio 1s improved significantly.

5.6.1 The Effect of the Mean Flow Velocity

In order to determine the effect of the mean flow velocity,
the probe 1s located at different positions in upstream and
downstream regions as shown in figure 5.9. At every location, the
mean flow velocity is varied and the time domain probe signal is
transformed to the frequency domain through the built in Fast
Fourier Transformation (FFT) function in the FFT Analyzer. The
amplitude of the fluctuating velocity, then, is determined from
the peak corresponding to the vibration frequency. 1In general,
the coherence was greater than 0.85 showing that the signal to
noise ratio is satisfactory, and the system behaves linearly. A
typical result at point 3U is shown in figure 5.10. The amplitude
of the velocity fluctuation is reasonably constant over the range
10°% Re < 4x10*. At a Reynolds Number 4'10‘. there appears to be
a drop in the amplitude of the fluctuating velocity. Repeated
experiments verified these results. The reason for this drop may
be the transition from a laminar to a turbulent boundary layer on

the tubes.
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5.6.2 The Effect of the Vibration Frequency

Figure 5.11 shows the effect of the vibration frequency on
the velocity perturbation amplitude as a function of Reynoclds
number at location 3U. As can be seen, the vibration frequency
over the range of frequencies tested has little effect on the
trends observed in the previous section. The scatter in the data
at Re < 10% Is thought to be caused by the poor signal to noise

ratio at low flow velocities.

35.6.3 The Effect of the Positlon

Similar results to the those shown in figure 5.10 are
obtained at different locatlions by traversing the streamtube with
the hot wire probe. The amplitude of the veloclity fluctuation is
shown in fligure 5.12 for every upstream location shown in figure
S5.9. The variation in the measured amplitudes at each location is
shown by the error bars. Although fhe varlation is fairly large
at some locations, especlally at position 2U, a clear trend of the
decay as a function of position can be seen. As shown in figure
5.12, the velocity fluctuations are observed as far as 4 tube rows
upstream from the vibrating tube. No measurable perturbations
were detected at distances larger than 4 tube rows. The
fluctuations at point 2U were sometimes unexpectedly large and may
be due to vorticity generated by the driven tube. In any event,
the decay of the fluctuations is clear and the upstream decay

function is determined as follows:
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1

f{s) = 1.05¢( — - 1) +1 (5.12)
1 + 1.2¢s

When obtaining equation 5.12, numerical techniques such as least
squares could not be used successfully due to the large deviation
in the data at the 1st row. A successful approach might weight
this questionable data point less than the others. However,
instead of assuming such a weighing scheme, the coefficients 1.05
and 1.2 were determined by trial and error to obtain the solid line
in figure 5.12.

Note that this decay function is normalized with respect to
the average value of the measured velocity fluctuation at s = 0 (
location 0 in figure 5.9 ) so that f(s) =1 at s = 0. Also note
that in the limiting case, when s is very large, {(s) approaches
0.0. In this study, it is assumed that the decay function shown in
figure 5.12 is valid for other array geometries as well. When
adapting equation (5.12) to other array geometries with different
pitch ratios, the proper coordinate transformation should be done
so that the value of f(_s1) is always the same. This can be done

by replacing s with 5.51-mfs where s = 2.88d 1is the

1-o' 1-30

position of the streamtube inlet for a« = 30° with Pr= 1.375 and
S, is the position of the streamtube 1n;et for an arbltrary
geometry. Such a transformation ensures that the perturbations
have decayed by a distance in 4 rows upstream of the vibrating

tube.

In the downstream region, very large velocity fluctuations
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are observed at Re < 5.0x10° at position 1D. This was thought to
be caused by discrete vortex structures being shed from the
vibrating tube. However, al.ost no decay was observed for Lhe
existing 3 downstream tube rows. This is probably because the
fluctuations are vortical structures belng convected with the mecan
flow. Some typical results obtailned in different poslitlons are
shown in flgure 5.13. These measurements imply, not surprisingly,
that flow disturbances generated by a vibrating tube are convected
many tube rows downstream. Thus, it is not possible from these
experiments to determine the downstream inertlal strcamtube length

which contribute to the phase lag.

5.6.4 Theoretical Prediction of Dynamic Instability by wusing the

experimental decay function

Figure 5.14 shows the dynamic instability for the parallel
triangular arrays as predicted by the present theoretical model by
using the experimental decay function ( equatlon 5.12 ). Since the
velocity perturbations are measured up to 4 tube rows upstream the
vibrating tube, the streamtube length is calculated along 4 tube
rows. The rest of the parameters are the same as the ones used to
obtaln figure 4.7. As it can be seen from these flgures, the
predicted stability threshold is not affected significantly at Ur >
10. However, for Ur < 10 the predictions are slignificantly
different. The reason for this is because, at high mass-damping

ratios, the forces acting on the vibrating tubes are strongly
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affected by the displacements of the nelghboring tubes but the

phase angle is small. The streamtube length, therefore, does not

affect the dynamic instability significantly. However, at low
values of the mass-damping parameter, the inertia of the
fluctuating fluid column plays an important role. Hence, the

streamtube 1length 1s an important parameter in determining the
dynamic instability threshold in this range of the mass-damping
parameter.

The agreement between the experiments [1] and the present
theoretical prediction with experimental streamtube length is
reasonably good at high mass-damping parameters as can be seen in
figure 5.14. However, at low mass-damping parameters, the
agreement 1s not satisfactory as the results of the multiple tube
model show many lnstability regions. As was discussed in chapter
4, the reason for these multiple instability reglons 1is the
unrealistic values of the phase function. For example, when the
experimentally determined streamtube length is used, the present
phase function predicts a phase difference of about 157 between a
tube's motion and the fluld force acting on the tube due to its own
motion at Ur = 1.0. Clearly, a phase difference of this magnltude
Is unrealistie. Therefore, this discrepancy polnts out to the
deficlency of the phase function wused 1in this study.
Unfortunately, due to the reasons explained earlier, experimental
study was not successful in determining the phase function.

It was hoped that these experiments would shed some light on
the nature of the phase function and the decay of disturbances as a

function of distance from the vibrating tube. It was assumed that
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the effectlve streamtube 1nertial length used in the phase functioen
was related to the distance over which the decay of disturbances
occurred. Clearly, usling this assumption with the theoretical
phase function produces unrealistic results. This 1s very
disappointing because it means that there is no obvious way of
incorporating any of the experimental results in the theoretical
model. Thus, it was decided to abandon the experiments altogether
and to carry out the final analysls using the Lever and Weaver
model parameters. That model predicted experimental observations
reasonably well at low values of the mass-dampling parameter. The
extensions to that theory developed in this thesls have overcome
many of 1its shortcomings, especially at high wvalues of the
mass-damping parameter.

Future research must be dlrected towards the experimental
determination of the phase function and the relationship between
streamtube inertial length and decay of disturbances. The present
study has shown the complexity of the fluidelastic mechanism and
the difficulties in obtaining useful results. It seems that the
very high turbulence levels generated by the tube array make

studying the fluld excitation mechanism especlally difficult.

N



CHAPTER 6
RESULTS AND DISCUSSION

The present study focuses on the theoretical aspects of
fluidelastic instabllity in heat exchangers. For thls purpose,
Lever and Weaver’s [24-25] theory has been modified and extended
to include the effects of nelghboring tube motion. In this
section, a summary of the the present theoretical findings and a
detailled discussion about the stiffness and damplng dominated
dynamlc instability mechanisms are given. Predicted thecretical
results are presented for the stabillty thresholds for all four
standard heat exchanger tube array geometries. These predictions
are compared with experimental data from the literature. The
effects of various parameters on the theoretical model are
Investigated. To set the stage for these calculations an overvieuw

of the theoretical model is presented and discussed.

6.1 THEORETICAL RESULTS AND DISCUSSION

The results of the theoretical developments presented in
chapters 3 and 4 provided some valuable insights into the model
behavior. These results were discussed in detail previously, and

therefore, only a summary of the important findings will be given

here.
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6.1.1 Single Flexible Tube in an Array

As mentioned in chapter 3, the modifications to Lever and
Weaver's single flexible tube model overcame the theoretical
anomalies and improved the agreement with experimental results and
other theoretical models. The following are the wmajor
improvements and findings from the single flexible tube model.

(1) Decay Function : In a proper dynamic model, when all the time

dependent terms are set to zero, the dynamic solution should
reduce to therstatic solution. However, Lever and Weaver's theory
on the dynamic instability of heat exchanger tubes does not
preduce this static instability. It was found that the reason for
this unexpected behavior is the finite area perturbation value at
the streamtube inlet, s = =S, where velocity and pressure
perturbations are set to zero. In a more conslistent model, all the
perturbations should be approximately zeroc at the inlet point s =
-s,. Figure 6.1(a) shows a typical area perturbation as modelled
by Lever and Weaver. When the time dependent terms (and the phase
function, ¢(s)) are set to zero, the area perturbation becomes
constant along a streamtube. Therefore, the magnitude of the
velocity and pressure perturbations along the streamtube are
constant and equal to their zero boundary values at s = -s, . It
follows that no static instabllity can be predicted. However, when
the perturbations created by the vibrating tube propagate, their
amplitudes should become smaller because of dissipation effects.
In the present study, the decay of the éerturbations is modelled by

introducing a decay function, f(s), in the theoretical model. The
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effect of this function is to set the area perturbation to a
negligible value at the streamtube inlet, s = -s, , so that the
area fluctuation is consistent with the forced boundary conditions
of =zero velocity and pressure fluctuations. A typical area
perturbation with the decay function is shown in figure 6.1(b). If
the time dependent terms are set to zero, the phase function, ¢(s),
becomes zero everywhere along the streamtube and the unit area
perturbation function becomes the same as the decay function, f(s]).
As a result, even if the time dependent terms are zero, an area
perturbation is produced and divergence predicted. Interestingly,
the predicted static instability is quantitatively very close to
Lever and Weaver’s statlc Instability solution obtained from thelr
separate model. Thls 1s because the static instability |is
dominated by the change of area (caused by the tube motion with
respect to the neighboring tubes) in the attached flow reglon.
Since the modlfication introduced into the model essentially
affects the overall fluid inertia while keeping the the fluid
Inertia at the attached flow reglén the same as before, static

Instablility is not affected.

(2) Relaxing the Frequency Ratio, w/mn : Previous researchers
have assumed that w/wh= 1 in their theoretical models when
determining the critical dimensionless velocity. 1.e., the tubes
always become unstable at thelr natural frequency. This
assumption causes some error for a single degree of freedom system
at very high values of the mass-damping parameter, where the fluid
stiffness forces (the real part of equation (3.26) are much larger

than the fluid damping terms. At these values of the mass-damping
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parameter, 1if w/mn is set to unity, the real part of equation

(3.26) which includes the fluld stiffness term cannot be satisfied.
By relaxing m/m“, the correct solution can be obtained. The
results shown in figures 3.8 and 3.9 show the effect of relaxing
the frequency ratio. As seen in figure 3.8, the dynamic solution
approaches the static solution at very high values of the
mass-damping parameters. At the same time, w/wn approaches zero.
This is to be expected, since the static instability solution is
obtained by setting w/wn= 0 in the dynamic stability analysis.

When the fluid stiffness forces are dominant in a single
freedom system, dynamic instability tends towards divergence.
This type of instability is different in nature than the stiffness
controlled instability observed in multiple flexible tube arrays.
In single degree of freedom systems, If the fluid stiffness terms
are dominant, the frequency ratio becomes smaller than one,
vhereas in the multiple degrees of freedom systems, the frequency
ratio is always approximately equal to one. It is the latter type
of stiffness controlled instability that is predicted by Chen and
Price & Paidoussis, As they discovered {6-8, 8-13], the fluid
stiffness coupling with the neighboring tubes is the essentlal
feature of tube array instabllity at high values of the
mass-damping parameter. More will be mentioned about this in the
following sections.

(3) Lever and Weaver's dynamic model predicted no streamwise
dynamic instability. It was found that the reason for this
behavior is the symmetric attachment and separation points about s

= 0. In the attached flow region, Lever and Weaver assumed a zero
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phase lag and varying amplitude area perturbation. As a result,
pressure fluctuations in this area increased along the streamtube
from the attachment point to the separation point. When the
pressure fluctuation is integrated along the attachment surface of
the tube, an opposing force was found. Hence, no streamwise
dynamic instability is predicted. The present analysls predicts
streamwise Instability by using the attachment and separation
points observed in the flow visualization experiments of Scott
[44). These attachment and separation points yield a higher
projected area of the pressure fluctuations in the streamvwise
direction in favor of streamwise instability. Figure 3.13 shows
the results with the new attachment and separation angles. It was
found that the streamwise dynamic instability is always less
critical than that of the transverse dynamic instability,

therefore, the streamwise instability is not of practical concern.

6.1.2 Multiple Flexible Tube Model

An important difference between the models of Chen and of
Price & Paidoussis and the single flexible tube model is that the
former ones include the effect of relative tube motion. Indeed, it
is this effect which generates their predicted fluid-stiffness
dominated dynamic instability. In view of the observations of the
present single flexible tube results and Chen and Price &
Paidoussis’ findings, it was thought that some improvement might be
achieved by including the effects of the relative motion between
neighboring tubes.

In the multiple tube analysis, the results show that the
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stiffness-controlled dynamic instability in multiple degrees of
freedom is modelled successfully. It ls found that the effects of
the neighboring tubes are very important at high mass-damping
parameter values. In the stiffness-controlled instability region,
the slope of the stability curve is found to be 0.5 and the
associated frequency ratio is about 1 over the whole range. This
behavior is the same as the semi-empirical theories of Chen and
Price & Paldoussis. By modelling the array behavior with the
inclusion of the effects of neighboring tubes, the quantitative and
qualitative agreement with the experiments is improved at high

mass-damping parameter values.

6.2 MULTIPLE INSTABILITY REGIONS

Lever and Weaver's model predicted a large number of
instability regions at low values of the mass-damping parameter.
Interestingly, this behavior was also predicted by Price and
Paidoussis’ theoretical model. It was found that the reason for
this behavior is the unrealistically high phase lag produced by
Lever and Weaver's phase function at low values of dimensionless
velocity. Figure 6.2 shows the phase function at s = =S, . Every
cycle of the phase function corresponds to an instability region
in Lever and Weaver's solution (Figure 3.7). For example, at the
dimensionless velocity of 1, the phase lag at s = -s, is equal to
20.8 radians (appx. 3 cycles). Incidentally, this dimensionless
velocity lies in the third instability region. Not surprisingly,
the same multiple instability regions are reported by Price &

Paidoussis. In their model, the flow retardation parameter, a
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form of the phase function, becomes very large al low values of
the dimensicnless velocity and produces the multiple instabillty

regions.

Physically, having the value of the phase function 6n at s
= -s ., means that the fluctuations created by the vibrating tube
are felt at s = =S, 3 cycles of tube vibration after they are
created. Intuitively, one would expect that the fluctuations would
diminish earlier, perhaps within two cycles of tube vibration after
they are created. Obviously, the phase function used in this study
is too large at low dimensionless velocities and is responsible for
the maitiple instability regions. Since, no better alternative is
found for the phase function, it will be used for all the results
presented, but only three instability regions will be accepted.
This is the same approach adopted by Lever and Weaver [{23-25], and

Price & Paidoussis [12].

6.3 MODEL PARAMETERS

The idealized flow fields for various array geometries are
shown in figure 3.1. The evolved model parameters for various
arrays are summarized in table 6.1. Lever and Weaver modelled the
added damping and the pressure loss by using the steady state drag
coefficient, c, In the present study, it was decided that using
the steady state drag coefficient is not necessary,- since no
significant change in the stability threshoid was observed by
neglecting these terms. Hence, for the following final results,

these terms are set to zero. Also, the streamtube length, based on
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table 6.1 and applying the artificial downstream pressure decay,
the unsteady force coefficients acting on the tubes in an array
can be determined. As mentioned earlier, the model is general for
all arfays and no new experimerntal measurements are necessary to
predict the critical flow velocities in other arrays. The only
experimental data used in conslructing the model are the
attachment and separation angles from Scott's study [44]. These
angles are obtained from flow wvisualization pictures. Careful
investigation over a range of flow rates showed little variation
in attachment and detachment angles. Hence, these angles as
listed in table 6.1 are assumed valid for all flow conditions and
pitch ratios. Figure 6.3 shows the predicted fluidelastic
instability for the parallel triangular arrays with Pr = 1.5. The
parameters used are the same as the ones used to oblain figure
4.7. These results are discussed in terms of the mechanisms
generating the instability in the following section. The results

for the other standard arrays are presented in section 6.6.

6.4 DAMPING-CONTROLLED AND STIFFNESS-CONTROLLED DYNAMIC

INSTABILITY MECHANISMS

The {luidelastic instability mechanism has been reported
(6-8, 8-13] as the combination of two mechanisms. One of these
mechanisms is the stiffness-controlled dynamic Instablility

mechanism that is dominant for high mass-damping parameters. In
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this mechanism, the fluid stiffness forces duec to the neighboring
tube motlon results in the tube’s becoming dynamlcally unstable.
The second mechanism is the damping controlled dynamic instability
that is dominant at low mass-damping parameters. In this type of
instability, neighboring tubes® effect is not important and a tube
goes dynamically unstable because of the fluid dynamlc forces
generated by the tube’'s own motion. The following sections will
clarify how these mechanisms operate in the present model and what
the nature of the relationship between the mass-damping parameter

and the dimensionless velocity is.

6.4.1 Mathematical Aspects

In both the single flexible tube model and the multiple
flexible tube model, the mass ratio for a given dimensionless
velocity and array geometry is determined from equation 4.1. This
~equation has very interesting properties and a close examination
yields important information about how the damping-controlled and
the stiffness-controlled dynamic instabilities behave. A form of

equation (4.1) is rewritten below :

A+ 1A
e R I (6.1)

Hené. A represenfs'the fluid forcing function acting on a tube (
. _ - -

- A =F. 7 Y, if tube #1 is being investigated }. In a
L "'-"1

-

i.-

K

physical system, the mass ratlo, m/pda. and the frequency ratlo,



142

w/wn. are real quantities. Therefore, equation (6.1) is forced to
yield a real valued mass ralio, m/pdz, and a real valued frequency
ratio, w/w . Iii the case of AR/AI << 1 ( the ratio AR/AI
physically related to the phase difference between a tube's
displacement and the total fluid force acting on the tube by the

relationship © = Arctan(AI/AR) ), equation (6.1) reduces

disp-force

approximately to :

m iAI
—_ (6.2)

3 w

mn

Note that since the real component of the numerator is set to
zero, the real component of the denominator has to be zero in
order to obtain a real valued mass ratio, m/pda. This requirement
leads to : u/mn = 1.0 . This is the approximate solution used for

the whole range by Chen [6-8], Price & Paidoussis [9-13] and Lever

& Weaver [23-25]. Rewriting equation (6.2), one can obtain :

—_— =T A (6.3)

As can be seen in equation (6.3) the mass-damping parameter,
m8/pd2. comes out of the nondimensional analysis.
In the case of A /A > 1, equation (B6.1) reduces

approximately to the following.



s = (6.4)

Since the imaginary component of the numerator is set to zero, the
imaginary component of the denominator has to be zero in order to
yield a real valued mass ratio, m/pda. This requirement leads to:
w/wn = 0.0 . This solution happens to be the solution for the

static instability and represents a limiting case for dynamic

instability of a single flexible tube in a rigid array.

Substituting w/wn = 0 and rewriting equation (6.2), one can
obtain :
_‘“_2 =X (6.5}
pd

It is important to note that the mass ratlo, m/pdz. and the
logarithmic decrement, &, are separate and they do not have to be
grouped in the mass-damping parameter, ma/pda. That 1s, the
damping, as represented by &, has no effect on static
Instabilities. This type of behavior is predicted by the present
'l
model to exist‘;nly in a single degree of freedom system at very
high values of the mass ratio. .
In reality, because of the finite inertia of the
surrounding fluid, there generally exists a phase difference,
disp-rorce’ between the tube motion and the fluid force acting on

the tube. This results in the complex valued forcing functiown, A,
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in equation (6.1) and, depending on the value of AR/AI. the
solution can be approximated by either equation (6.3) or equation

(6.5). These approximate solutions intersect at AR/AI = /8.

This ratio is A /A = 10 and @ = 1.5° for & 0.1.

dl sp—!‘orcc_
Figure 6.4 shows the exact solution of equation (6.1) for rns/pd2
together with the two approximate solutions when & = 0.1 and AI =
1.0, If the value of AI changes, the solutions shown in figure

6.4 would shift vertically while the 1lines representing the

approximate solutions crossing always at A /A = 10m.
R I

In a physical system, AR and AI represents the stiffness
and damping forces, respectlvely. This means that even though
damping is as small as only 3% of the stiffness force, the

damping type instability Iis dominant.

Tanaka and Takahara's experiments show that the

above mentioned phase difference, © is larger than

disp-force’
1.5° for the whole range within which they took the measurements.
These results make physical sense, since at low mass-damplng
parameters, fluid inertia is fairly large and fluid responds to a
tubes motion with a large time (phase) delay. At high
mass-damplng parameters, the -éfitical flow velocity is so high
that the interaction of the neighboring tubes become important.
As a result of the fluld forces due to the neighboring tube

motions which are not necessarily in phase with the tube's

displacement, again, Bdisw«brce is expected to be larger than

o

1.5°. This means that in actual heat exchanger analysis, cquation
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6.3 can be used as a good approximation. This behavior also
explains why the frequency ratio, u/mn, remains almost constant
and equal to one in heat exchanger arrays with multiple degrees of

freedom.

6.4.2 Physical Aspects

The form of the forcing function, A, is obtained for the
single and multiple tube analysis in chapters 3 and 4,
respectively. Substituting these functions in equation 6.1, the

following results are obtained.

(1) Single Flexible Tube :

The fluid force acting on a single flexible tube is glven by

equation 3.26. Therefore, the forcing function A can be written

A=C =¢0 UP+cl U(2)+c2 (2 (6.6)
cy r Wn ycy mn

In general, the force coefficients, CO. , C1: and C2 are
yey yey yey
complex numbers and their amplitudes are only geometry and phase
function dependent. Figure 6.5 shows the magnitude and the phase
of these force coefficients of a typical system. As seen in
figure 6.5, the force coefficient czycy 1s much smaller than other
two force coefficients and can be ignored for an approximate

solution. An inspection of the continuity and the momentum

equations, equations (3.7) and (3.10), respectively, shows that
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the phase angles of the force coefficients, CO , Cl and
yey yey

Czycy are phase shifted from the phase function at s = S,

¢(—sl). by approximately 0°, 90°. 180°. respectively. This is

also seen in figure 6.5. At intermediate and high values of the

dimensionless velocity, Ur > 10, the phase function approaches

zero. Hence, CO ,Cl1 and C2 would have the phase angles
yey yey yey

of approximately 0°, 80°and 1807 By ignoring the insignificant

last term of equation (6.6) and rewriting it :

2
r

o

A=z UT |CO |z0

+ U (=) |c1. e 90°
yey r wn yey

2
r

n

W
ujco | + U_(—) |c1yc | 1 (6.7)

yey n y
Substituting equation (8.7) into (6.1) yields the mass ratlo,
m/pda. and the frequency ratio, w/w . If the approximate solution
given by equation (6.3) is used for these ranges of dimensionless

velocity, one can find the following relationship :

md

— = [Clyc | Ur (6.8)

b4

This is the solution obtained by Lever and Weaver [23-25]. They
obtained a linear relationship between the mass damping parameter,
ma/pda. and the dinensionless velocity, Ur’ as seen in figure 3.7.
This behavior is now explained by equation (6.8). However, in the
previous chapter it was shown that when AR/AI > 56 ( this might
happen only in 1 d.o.f. systems with high mass-damping ratios), it

is not correct to use the approximate solution used by other
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researchers [6-28]. Since |CO | and |CO | are of the same
yey yey

order of magnitude, (A /A ) = [CO |U2/|CO |[U = U for U=
R 1 yey' r ycy' T r [y

Ul__Ku >10. Hence, at very high values of dimensionless velocity,
Ur > 500 (this number is valid for the parallel triangular arrays
with P = 1.375 where K = 15, it Is array dependant}, (X _/A )
r u R 1
becomes larger than 56 and equation (6.5) glves a better

approximation. Using equation (8.5} in this range of

dimensionless velocity, the following relationship is found :

LU |co
yr.'

B | u? (6.9)
P

y
The mass-damping parameter is obtained from equation (6.9) by
multiplying both sides by 8. Note that the mass ratio, m/pda. in
equation (6.89) 1is now proportional to the square of the
dimensionless velocity, Ur' This behavicer can be seen at high
values of dimensionless velocity in figure 3.9 to 3.13. As it is
glven in equation (6.9), the real {(stiffness) component of Cycy.
COch » 1s responsible for this dynamic instability.

At very high mass-damping parameters, dynamic instability
in single degree of freedom systems tends towards divergence and
is associated with reduced values of the frequency ratio. Figure
6.6 shows the change in frequency ratio, w/wn, for the predictid
dynamic instability given in figure 6.3. The dashed line shows
the solution for the single flexible tube. As seen in the figure,
the frequency ratio approaches =zero when the dimensionless

velocity  becomes  very large. Unfortunately, there
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are no experimental data available in the lilerature to corroborale
this predicted behavior. This type of dynamic instability Is
different than the stiffness-contrelled dynamic instabillty
reported by Chen and Price & Paldoussis where the coupling of tLhe
neighboring tubes ls necessary. Stiffness-controlled Instability
in multiple flexible tube models compares with the experimental
observations reasonably well, while maintaining m/mn = 1. In
order to model the neighboring tube behavior, more than one degree
of freedom is necessary. In chapter 4, the extension of the
single flexible tube model to the multiple flexible tube model was
given so that the stiffness controlled instability could be more
properly modelled.

(11) Multiple Flexible Tube Model

In the multiple flexible tube model, the force coefficient,
A, is determined as explained in section 4.3. 1In general A is a
function of the upstiream and downstream tubes’ force coefficients.
This shows that the interaction between the neighboring tubes has
been modelled appropriately. From the analysis of 5 flexible
tubes, at high values of the mass-damping parameters, A is

obtained in equation (4.29) as :

A=C -2(C  ~-C £ (6.9)
yey ( ydy yuv) ¥,

The force coefficient Cyuy is usually a few times smaller than

and C ., and hence doesn’t affect the results
ydy yey

significantly. The unsteady flow cquations yield these
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coef'ficients in the form :

c =co ui+cl U() +c2 (29°
ydy ydy r ydy v W ydy Un
(6.10)
c = vPecCl U () +c2 (2?
yuy yuy r Yuy r mn yuy wn

Again, the C2 and C2 terms are negligible and can be
ydy yuy

eliminated from the analysis without significant loss of accuracy.
The phase angles of Cydy and Cyuy closely follow the phase angles
of Cycy. Hence, for intermediate and high values of the
dimensionless velocities (for example, when the fluid density ls
small, U_>10 ), the phase function, ¢(s), yields small phase angles

and equation (6.10) reduces to :

(]
[t}

2 W
|co U+ 1|c1ydy| u ()

d
yay n

ydy
(6.11)

O
14

2 W
|coyuy| U+ 1|c1y“y| u_(—-)

yuy n

The force coefficient COydy is the same order of magnitude as its
counterpart, coycy. Similarly, the coefficient Clydy has the same
order of magnitude as its counterpart, Clycy. Although they have

the same order of magnitude, COyuy and Clyuy are few times smaller

than their counterparts in general.

Stiffness Controlled Dynamic instability :

At high values of dimensionless velocity (typically Uf >

100), the phase function ¢(s) ylelds small values representing a
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light fluid responding to the tube vibration almost instantly. In

this case, CO and COy are essentially real numbers and

ydy wy

represent the stiffness forces, and Cl and Cl1 are
ydy yuy

essentially imaginary numbers and represent the damping forces.

In this range of dimensionless velocities, the stiffness forces,

co  U® and co_ U® » are much larger in magnitude than the

ydy r yuy r
damping forces, C1_ U and C1 U , respectively. Therefore an
ydy r yuy r
approximate solution can be obtained by ignoring Clydy and Clyu
Y
and substituting equations (6.11) into equation (6.9) as follows;

o 2 _ _ 2
A= |coycy| uo -2 (|coydy| |C°,uy|) sz g, (6.12)

When optimized for minimum dimensionless velocity, p, Is found to

be approximately -90°. Since |C0ydy| is several times larger than
|C0yuy|. the imaginary component of A in equation (6.12) is a
positive number, and of the same order of magnitude as the real
component of A. Now, even at very high dimensionless velocities,
(AR/AI) = 1. Hence the solution of this equation can be obtalned

by using the approximate formula given by equation (6.3) as

follows:

md
— & 2u (|coydy|—|coyu

) v (6.13)
pd

Yy

All the terms in this approximate solution are stiffness terms, and
therefore, after Chen [6), this type of instability is called the

stiffness-controlled dynamic Instability. Note that Lhe

coefficient, CO

yey disappears from the analysis when the
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approximate solution is used. The implication of this 1s that the
stiffness controlled instability in multiple degrees of freedom
systems is produced as a result of the neighboring tubes' motion.
Also, note that the larger the difference in the magnitudes of the
force coefficients Cydy and Cyuy, larger the mass-damping parameter
will be. Since the minimum critical velocity is predicted when the
mass-damping parameter is maximum, it appears that an essential
feature in the stiffness controlled mechanism is the difference in
the magnitudes of the forces acting on a tube due to its upstream
and downstream neighbors.

The individual effects of the stiffness and damping terms
can be seen clearly in figure 6.7 for the parallel triangular array
with a pitch ratio of 1.5. In this figure the solid line shows the
exact solution and the dashed lines show two other solutions, one
solution has only the stiffness terms included and the other has
only damping terms included. As can be seen in figure 6.7, at high
mass-damping ratios the exact solution and the solution with only
the stiffness terms are very close, hence the dynamic instability
is stiffness-controlled. This sclution yields the slope of the
dynamic instability curve to be 0.5. Previous results obtained by
Chen, Price & Paidoussis, and Tanaka & Takahara support these

results.

Damping Controlled Dynamic Instabllity :

At intermediate and low dimenslonless flow velocitles Ur
< 100 ), all the force ccefficlents CO , CO , CO Cl .
yey ydy -yuy yey

C1 and Ci are complex numbers. Hence, it may not be
ydy yuy
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appropriate to use the simplified force equations (6.11). The

full form of the force coefficients given in equation (6.10)
should be used. Unfortunately, this form of the force coefficients
doesn't lend itself to any simplified solutions. In this region,
the instability is predicted accurately by using damping terms
only vhich also agrees with previous authors. It should be noted
that the fluid stiffness forces are about the same order of
magnitude as the fluid damping forces. However, due to the
reasons explained in section 6.4.1, the fluid damping forces

prevail in predicting the dynamic instability threshold.

6.5 RESULTS FOR VARIOUS ARRAYS

The idealized streamtube geometries for various tube arrays
are depicted in figure 3.1 and the model parameters are given in
table 6.1. As mentioned earlier, Lever and Weaver's steady state
drag coefficient, Cpo used to model the pressure drop and added
damping, was not found to have much effect and was therefore
dropped froa the model. The decay function given by equation 3.34
is used for all arrays. The final results for the 5 flexible tube
model are given for various arrays in figures 6.8 through 6.10. In
these results, the predicted lower branches of the instability
reglons are eliminated, and only three instability regions are
allowed. Both qualitative and quantitative agreement 1s reasonably
good for all arrays.

In all arrays at high mass-damping parameters, the slope of
the instability curve approaches 0.5. This is the area where the

fluid stiffness forces are dominant. At low mass-damping
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parameters, the fluld damping forces determine the the dynamic
instability threshold and the multiple flexible tube solution
approaches to the single flexible tube solution. The solution in
this region is not fully satisfactory due to the predicted multiple
instability regions. However, the agreement with experiments is
reasonably gocd when the lower branches of the instability regions

are eliminated artificially.

6.6 SUMHMARY
The summary of the important findings can be listed as
follows;

(1) The wunsteady force coefficients determined from the
simplified flow field are found to be in the form :

2 L) w .2
C= COUr + C1Ur(_6;] * Ca(—a:)

It was found that the coefficient Ca is much smaller than
Co and Cl. in general and can be neglected for a reasonable
approximation. At intermediate and high values of the
mass-dampling parameter, m5/pd2 > 10, the coefficients Co’
C1 are found to be in phase with the tube displacement and
and tube veiocity. respectively. Hence, simplified
relationships can be found between the dimensionless
velocity, Ur' and the mass damping parameter, m6/pd2.

(2) Dynamic Instability of a single degree of freedom system ( for
example a single flexible tube moving in one direction in a

tube array } was found to tend towards divergence at very high



(3)

(4)

(8)
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mass-damping parameters. This type of instability 1is
associated with the vibration frequencies smaller than the
natural frequency of the flexible tube. In this range, the
relationship between the dimensionless velocity and the
mass-damping parameter is of Connors type.

It was found that the single flexible tube in an array can go
dynamically unstable in the streamwise direction if the
transverse motion is restricted. However, transverse dynamic
instability is always more critical than streamwise dynamic
instability.

The stiffness controlled instability in multiple degrees of
freedom systems (for example, multiple flexible tubes in a
tube array) is found to be the result of the netghboring
tubes’ motion. In this type of stiffness controlled
instability, the frequency ratio is always approximately equal
to one. The relationship between the dimensionless velocity
and the mass-damping parameter is , again, of Connors type.
These results are in agreement with the other researchers
findings. At low mass-damping parameters, it was found that
the dynamic instability is dominated by the fluid damping
forces and the coupling between the neighboring tubes doesn't
affect the results significantly. Again, these results are in
agreement with the literature.

It was found that the mysterious multiple instability
regions in Lever & Weaver and Price & Paldoussis theories

are caused by the unrealistically high values of the phase
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function at low mass-damping purameters. This finding
suggest that the phase function used in this study needs to

be investigated in the future for a satisfactory solution.



CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The purpose of this thesis was to investigate theoretically
the fluidelastic instability in heat exchanger tube bundles. It
was thought that through a theoretical analysis which requires
minimum experimental data, an improved understanding of the
fundamental behavior could be obtained and a useful predictive
model could be developed. For this purpose, Lever and Weaver's
single flexible tube model was modified and extended to a multiple
flexible tube model. As with Lever and Weaver's model, the
present model takes into account the effect of the array geometry
and is general for all the standard array geometries. Although
some experimental data was used when developing the present model,
no new measurements are necessary to apply the theory to different
arrays.

In the present theoretical development, anomalies {n Lever
and Weaver’s theory are explained and dealt with. In Lever and
Weaver’s original model, the dynamic instability solution would
not yield the static instability solution when the time dependent

rterms in the formulation were set to zero. This mathematical
problem is solved by cetting the boundary conditions at the
- streamtube inlet in a consistent way through the use of the
perturbation decay function.

It was found that the dynamic instability in the modified

single flexible tube model tends towards divergence at very high

163
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mass-damping parameters. This Lype of instability is associated
with reduced frequency ratios, i.e. the vibration frequency at
thestability threshold is less than the natural frequency of the
flexible tube and decreases with increasing mass-damping
parameter. As the mass-da.>ing parameter becomes very large, the
frequency at instability approaches zero, 1i.e. the dynamic
instability threshold approaches static instability threshold.
This behaviour has not been observed experimentally and it must be
concluded that the use of a single flexible tube in a rigid array
to mode! a fully flexitle array is not valid at large values of
the mass-damping parameter. The semi-empirical models developed
by other researchers have indicated that the'coupling motion of
neighboring tubes becomes important at high mass-damping
parameters. Therefore, the single flexible tube model was
extended to a multiple flexible tube model to include the effect
of the neighboring tubes motion.
| In general, it was found that the multiple flexible tube
model predicts lower critical velocities than the single flexible
tube model. At high values of the mass-damping parameters, dynamlc
instabllity is found to be dominated by the displacement dependent
fluid stiffness forces. It was found that the coupling between the
neig?borlng tubes is the essential feature in this type of dynamic
instﬁgility. The resultant.relationship between the mass-damping
parameter and.thelﬁimensionless critical velocity is found to be of
the Connors type. The same behaviour is reported by Chen [6,8] and
Price é Paidoussis [10-13] and is supported by the experimental

data. It shoultl' be noted that the results obtalned by Chen and
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Tanaka & Takahara are based on the measured unsteady fluid dynamic
forces and, th-orafore, their findings represent Lthe actual
behaviour of the tube arrays. At low mass-damping paramcters,
present results show that the solution is dominated by the fluid
damping forces as reported by other researchers,

Experiments were carried out in an air tunnel to measure the
perturbation decay function and the phase function. Velocity
fluctuations were measured up to 4 rows upstream of a vibrating
tube. Although, wusefui information was obtained regarding the
decay {function, the measured phase data were chaotic with no
systematic trends. Repeated attempts failed to produce better data
and the experimant was abandoned.

Multiple instability regions are predicted by the present
multiple flexible tube model. This behaviour is similar to Lever &
Weaver's and Price & Paidoussis's results. It was found that these
multiple instability regions are the result of the perturbations
created by the vibrating tube many cycles earlier. This behaviour
is the result of the unrealisticaly high values of the phase
function at low dimensionless velocities. Since no better phase
information exlists at present, %thc piose function basically as
proposed by Lever & Weaver is used, but only three lnstability
regions are allowed. In this way the perturbations created by the
vibrating tube are artificially forced to diminish within two
cycles. Intuitively, this seems reasonable. The Price &
Paidoussis’ flow retardation pafameter. a form of phase functlon,
shows the same multiple instablility regions. These authors

eliminated this unrealistic behaviour in the same way. Clearly, at
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‘.8 stage, the theorctical modeliing of the fluidelastic
instability at low mass-damping values is not totally satisfactory.
Future work is necessary to determine the nature of the phase
function and to treat dissipation effects in a more realistic way.
The present theoretical model 1is a general theory
applicable to all the standard array geometries with any pitch
ratio. The unsteady forces acting on the tubes are determined
from the unsteady fluid dynamics of idealized flow fields. The
only experimental data necessary for the theory are the attachment
and separation points of the streamtubes. The attachment and
separation points of the streamtubes that were obtained
experimentally [44] for 21l the standard array geometries are used
in the present study. Hence, no new experimental data are
required to obtain the predicted instability for any standard
array configuration. As mentioned earlier, good qualitative
agreement is found between the present results and the
semi-empirical theories of Chen, Price & Paldoussis, and Tanaka &
Takahara. Quantitatively, results obtained agree reasonably well
with experimental data for all standard array geometries. This
represents a significant improvement over the prediction of the

Lever and Weaver model,

7.1 FUTURE WORK

In this study, an attempt was made to justify all the
simplifying assumptions on physical grounds. However, the phase
function is not modelled to the author’'s full satisfaction. The

reasonable agreement of the critical predictions with experimental
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data from the literature indicates that the phase function has the
correct characteristics. Unfortunately, In spite of a substantial
effort to verify the proposed phase function experimentally, no
conclusive information was obtained. Clearly, the flow field is
more complicated than what was modelled. From this point on, the
best progress on the present model can be made with experimental
studies designed to improve understanding the unsteady flow field.
The present theory models the fluid dynamics in one
dimension. Two dimensional effects, however, might be important
in the immediate neighborhood of the flexible tubes, especially at
low mass-damping parameters. Perturbations should be propagating
and decaying in the transverse direction as well as in the modelled
streamwise direction. Also, in the present study, the effects of
unsteady wakes have not been modelled. Unsteady wakes could cause
the attachment and separation points, which are assumed to be
stationary in the present model, to change as a function of time.
An interesting, but unknown, behaviour is predicted by the
present single flexible tube model at high wvalues of the
mass-damping parameter which corresponds to high dimenslionless
velocities. At these velocitles, the present theory predicts that
a single flexible tube, when restricted to move only in transverse
direction, will go dynamically unstable at significantly lower
frequencies than its natural frequency and will tend towards
divergence. It would be interesting to conduct an experimental
study to investigate this predicted behiwviour.
Further applications of the present theory might help our

understanding of specific problems assoclated with heat exchanger
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tube instability. A possible extension is to include the tube
motion in the streamwise direction as well as the transverse
direction in the multiple tube analysis. This extension Iis
straightforward and such an analysis would yield the effects of
coupling of the streamwise and the transverse vibrations. It is
also straightforward to modify the theory to take into account the
direction dependent natural frequency. Such a model can be used
to predict the instability in heat exchanger U-bend regions where
the stiffness of the tubes ( therefore the natural frequencies }
are not the same in streamwise and transverse directions.
Fluidelastic instability in open lanes can also be investigated
with small modifications to the existing theory. In such
applications, the continuity and the momentum equations must be
solved separately for the two streamtubes, one on each slde of

the flexible tube being considered.
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